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Abstract
Toward a scalable Bayesian workflow

Yuling Yao

A scalable Bayesian workflow needs the combination of fast but reliable computing, efficient

but targeted model evaluation, and extensive but directed model building and expansion. In this

thesis, I develop a sequence of methods to push the scalability frontier of the workflow.

First, I study diagnostics of Bayesian computing. The Pareto smoothed importance sampling

stabilizes importance weights using a generalized Pareto distribution fit to the upper tail of the dis-

tribution of the simulated importance ratios. The method, which empirically performs better than

existingmethods for stabilizing importance sampling estimates, includes stabilized effective sample

size estimates, Monte Carlo error estimates and convergence diagnostics. For variational inference,

I propose two diagnostic algorithms. The Pareto smoothed importance sampling diagnostic gives a

goodness of fit measurement for joint distributions, while the variational simulation-based calibra-

tion assesses the average performance of point estimates. I further apply this importance sampling

strategy to causal inference and develop diagnostics for covariate imbalance in observational studies.

Second, I develop a solution to continuous model expansion using adaptive path sampling and

tempering. This development is relevant to both model-building and computing in the workflow.

For the former, I provide an automated way to connect models via a geometric bridge such that

a supermodel encompasses individual models as a special case. For the latter, I use adaptive

path sampling as a preferred strategy to estimating the normalizing constant and marginal density,

based on which I propose two metastable sampling schemes. The continuous simulated tempering



aims at multimodal posterior sampling, and the implicit divide-and-conquer sampler aims for a

funnel-shaped entropic barrier. Both schemes are highly automated and empirically perform better

than existing methods for sampling from metastable distributions.

Last, a complete Bayesian workflow distinguishes itself from a one-shot data analysis by its

enthusiasm for multiple model fittings, and open-mindedness to model misspecification. I take the

idea of stacking from the point estimation literature and generalize to the combination of Bayesian

predictive distributions. Using importance sampling based leave-one-out approximation, stacking

is computationally efficient. I compare stacking, Bayesian model averaging, and several variants in

a decision theory framework. I further apply the stacking strategy to multimodal sampling in which

Markov chain Monte Carlo algorithms can have difficulty moving between modes. The result from

stacking is not necessarily equivalent, even asymptotically, to fully Bayesian inference, but it serves

many of the same goals. Undermisspecifiedmodels, stacking can give better predictive performance

than full Bayesian inference, hence the multimodality can be considered a blessing rather than a

curse. Furthermore, I show that stacking is most effective when themodel predictive performance is

heterogeneous in inputs, such that it can be further improved by hierarchical modeling. To this end,

I develop hierarchical stacking, in which the model weights are input-varying yet partially-pooled,

and further generalize this method to incorporate discrete and continuous inputs, other structured

priors, and time-series and longitudinal data—big data need big models, and big models need big

model evaluation, and big model evaluation itself needs extra data collection and model building.
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Chapter 1. Introduction: Pushing the frontier of a scalable workflow

“Had we but world enough and time,
This coyness, were no crime.

We would sit down, and think which way
To walk, and pass our long love’s day.”

—Andrew Marvell

There are various levels of Bayesian statistical practice. To begin with, given one observed

dataset and one belief model, Bayesian inference or Bayesian computation goes from likelihood and

prior to posterior, which is a deterministic procedure followed by Bayes’ rule, and is only judged

by whether the computation result or its approximation is faithful to the posterior distribution.

On top of Bayesian inference, Bayesian logic addresses decision theory. Bayesian logic is not

about applying the Bayes rule, but quantifying uncertainty using the probability theory. Conse-

quently, there is a tension between Bayesian inference and Bayesian decision theory: the prima-

facie-always-coherent Bayesian posterior predictions would not be Bayes-optimal unless both the

model is correct and the prediction is averaged under the prior replications. These assumptions

are rarely valid. Bayesian inference thereby does not automatically ensure an optimal prediction

nor a calibrated uncertainty estimation—the model is misspecified; the correct prior is not even

always well-defined; the target utility function may care more about what has been modeled, such

as different prediction horizon in time series, the calibration and the generalization ability to a new

area, or the intervals and quantiles of the outcome.

As a more realistic procedure, Bayesian data analysis involves three steps of model building,

inference, and model checking and improvement. A complete Bayesian workflow refers to Bayesian

data analysis for a sequence of models, and more generally would require efforts on data inquiry

and experimental design to facilitate this loop. To evolve models in the workflow serves two goals.

First, via an open-ended and interactive model modification, selection, averaging, we are building

better models in terms of better outcome prediction, uncertainty quantification, and the decision
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making. Second, the workflow is toward model understanding. A model is not only a prediction it

could generate, but also a probabilistic explanation of the data generating process.

Taking all steps into account, to push the scalability boundary of the Bayesian workflow requires

advances in three modules:

1. Fast but reliable computing. With the advent of Markov chain Monte Carlo (MCMC)

algorithms such as the Gibbs sampler, Metropolis, and Hamiltonian Monte Carlo, along

with generic black-box implementations such as Stan, modern Bayesian inference is highly

automated. With a regular density and an ergodic sampler, the Monte Carlo estimate is

ensured accurate with a long enough run.

However, there are problems in which we cannot afford exact MCMC: when the data size is

too large, whenmodels are too complex, when the posterior distributions contain pathological

geometries, or when we are interested in the tail of the posterior distribution where we almost

never have enough Monte Carlo draws. These challenges require either a specialized sampler

that targets the particular posterior geometry we are working with, or a specialized post-

processing technique that reduce finite-draw Monte Carlo errors by reusing existing draws.

This thesis presents progress in both directions.

With even more data and bigger models, faster or parallelizable algorithms like Laplace

approximation, variational inference (VI), approximation Bayesian computation (ABC), and

expectation propagation (EP) provide alternative approaches to approximate Bayesian infer-

ence. Besides the requirement on how to further speed up these algorithms, computation

diagnoses are a necessary part of the workflow to tell the reliability of computing.

2. Efficient but targeted model evaluation. For many models, the implicit goal is to predict

future unseen outcomes. We typically judge the prediction accuracy by some scoring rules

or user-specific utility functions, and evaluate the model performance by posterior predictive

check or cross-validation. Besides checking whether the current model is sensible, model

evaluation serves as an intermediate step toward model improvement, selection, or averaging,

2



hence needs to be called repeatedly. With a small dataset, we need to handle the large variance

in model evaluation. With a big dataset, exact cross-validation is intensive and needs efficient

approximations.

With conditionally independent and identically distributed (IID) outcomes, this model eval-

uation step can be automated, such as using importance sampling based leave-one-out. Later

in the thesis, we present other complications that require a tailored model evaluation: when

the data has more structures such as spatial, temporal, longitudinal, sequential, or causal

components; when we have a specific quantity to infer such as the treatment effect in an

observational study, the transformation of individual outcomes, the interval estimate of pos-

terior predictions; or when the future prediction is known to happen under covariate shift or

at a given covariate location.

3. Extensive but directedmodel building/expansion. Themodel complexity is not necessarily

the same as the modeling complexity: how much human effort is needed to build, customize

and improve the model. An over-parameterized deep neural network is large in terms of

model expressiveness, but can also be routinely applied to a family of data analysis tasks with

minimal user adaptation.

Big data not only have a big sample size and a high dimension, but also a complex data

structure: open-ended observational studies rather than randomized experiments, corrupted

measurement with errors rather than clean data, hierarchical data collection with potential

imbalance rather than iid samples. All of these complications are extra information we would

like to encode during bespoke modeling, often through an iterative procedure on a broad

class of models. However, repeatedly building and fitting new models pose a cost to human

intelligence and computation resource. This cost results in a tension between automation and

customization, between the complexity of the workflow and the final accuracy of the model

fitting, and between a fit-as-many-models-as-you-want and a one-fit-all attitude.

To achieve a scalable workflow, it is then tempting to direct, if not fully automate, this model
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building step such that new models are generated from existing ones. This present thesis

introduces two possible directions toward this goal: to expand one or several models using

path sampling, and to combine many models using Bayesian stacking.

Which piece above is the main scalability bottleneck in the workflow? There is no static

answer. In bygone days, Bayesian statistics was criticized as too impractical to apply in any but

the simplest models for the difficulty of computing. With modern generic computation algorithms,

Bayesian methods are sometimes criticized to be fit too easily and thoughtlessly. The relative ease

of inference puts more of a burden on model building and evaluation. Furthermore, these three

tasks are often tangled, which makes the challenge of scalability a product rather than a summation

of each piece. On the brighter side, this entanglement also suggests we could bypass the difficulty

in one piece by fixing problems in other parts. To name a few,

• Model evaluation requires implicit model building. For example, the usual leave-one-out

cross-validation reuses data as pseudo Monte Carlo draws. The pointwise model evaluations

in spatial, temporal, longitudinal, multilevel or causal data are themselves spatial, temporal,

longitudinal, multilevel or causal. Though a sample average is sometimes enough for the

overall model performance, careful modelingwith potentially different assumptions is needed

to assess fine-grained model behavior.

• Model building should be aware of what inference algorithm it will be equipped with. For

example, the simple Lasso is well compatible with the max-a-posteriori (MAP) estimate,

whereas the full Bayes solution to the same Laplace prior regression is often inferior in

predictions; The MAP estimate of group-level standard deviation in a hierarchical model

equipped with an improper gamma prior is often desired, whereas the Bayes solution to the

same zero avoiding prior model is highly biased. This concern is especially relevant when

using pre-trained model architectures.

• Model building should be aware of what decision problem it will be used in. For example in

time series analysis, a model good at predicting the one-day-ahead outcome is not necessarily
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good at one-month-ahead. Causal inference is another example in which the prediction is

targeted on the counterfactual conditional prediction.

• The computation problem is often an indicator of model misspecification. When the compu-

tation is too slow for one model, we have the freedom to (a) wait longer, (b) find a quicker

sampler that is more compatible with the current posterior, (c) adopt faster computation

approximations, (d) simplify or regularize the model to reduce computing burden, or (e)

modify the model to address modeling issues.

• The computing budgets are competing between flawlessly fitting one model and roughly

fitting many models. Put it in another way, the ultimate purpose of Bayesian computation

is not to compute the posterior integral from a given model as accurately as possible, but to

facilitate the model building-fitting-improvement loop.

Alongwith this goal toward a scalableworkflow, this thesis contains a collection ofmethodology

progresses, covering many directions listed above. The remaining chapters are grouped into three

themes: making use of the unnormalized posterior density before sampling, expanding a model

using tempering and path sampling, and combining models using stacking. Many chapters are

adapted from previously published articles, and are rearranged in a logically coherent order: Some

discussions in this introduction are fromGelman et al. (2020) and Gelman and Yao (2021). Chapter

2 introduces Pareto smoothed importance sampling, adapted from Vehtari et al. (2019b). Chapter

3 applies this idea to diagnosing the approximation accuracy of variational inference, previously

published as Yao et al. (2018b). Chapter 4 explores this tail-shape-of-density-ratio approach to

diagnose covariate imbalance in observations studies.

Chapter 5 discusses the challenge of normalization constant estimation and its relevance to

Bayesian computing and model expansion. The technique is also useful as a postprocessing tool to

reduce finite sampleMonte Carlo errors in general marginal density estimation. Chapter 6 proposes

a continuously tempered sampler using adaptive path sampling. This technique is dual-purposed—

As a computation approach, the tempering method makes it viable to efficiently sample from a
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metastable density; As a modeling approach, tempering provides a solution to expand or distillate

models via geometric bridges. These two chapters are modified from Yao et al. (2020a) along with

extra results.

Chapter 7 presents the stacking framework, a semi-automated solution to combining Bayesian

models, merging Yao et al. (2018a) and Yao (2019). The comparison between Bayesian model

averaging and stacking is another reflection of the tension between Bayesian inference and Bayesian

logic. Chapter 8 applies this stacking approach to combine non-mixing Bayesian computations,

proposed in Yao et al. (2020b). It is an alternative solution to metastable density sampling, although

the inference result typically differs from the exact posterior such as from path sampling. This

approach is relevant to an efficient workflow in which we free up asynchronous computation time

that can be reallocated to explorations of more models. Chapter 9 generalizes the stacking idea

to Bayesian hierarchical stacking, adapted from Yao et al. (2021b). Chapter 10 carries on the

discussion of several asymptotic properties of stacking and hierarchical stacking.

Finally, this thesis is concluded by a handful of open questions for future investigations.

6



Computation time

Inference

error

Exact inference (MCMC)

Approximate computation 

Toward Scalability of Bayesian computation

quicker sampling 
 with hard geometry 

smaller error from 
 existing draws

gauge the  
approximation 

error 

Figure 1.1: Toward scalable Bayesian computation. Bayesian inference typically relies on slow-but-
eventually-accurate MCMC methods or fast-but-likely-corrupted approximations. For the former,
we would like to push the efficiency boundary by either sampling quicker from challenging posterior
densities or reducing inference error from existing posterior draws. For the latter, we would like
a more reliable pipeline that diagnoses how large the approximation error is. This present thesis
presents an approach to variational inference diagnostics, a tempering algorithm that is designed
for efficient sampling in metastable posterior densities, and a method for reducing Monte Carlo
errors from finite posterior draws.
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Figure 1.2: Yet more importantly, toward a scalable Bayesian workflow. The workflow contains
model building, fitting, evaluation, and improvement, often in an iterative loop. Given a limited
budget, we are facing (a) the tradeoff between computation and model building: whether to
accurately fit one model and to roughly fit many models and (b) the tradeoff between the complexity
of the workflow and the final model fitting accuracy: whether to build and fit many models or to
apply an automated one-fit-all algorithm. Besides the scalable computation techniques in Figure
1.1, this thesis contains several other progress toward an efficient workflow, including (a) using
tempering and path sampling to expand one or several models, (b) using stacking as a semi-
automated solution to building meta-models, and (c) combining non-mixing inferences to free up
asynchronous computation time.
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Part I

Learning before sampling:

Making the most of the unnormalized density
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Chapter 2. Importance sampling and Pareto smoothed importance sampling1

“To see a world in a grain of sand, And a heaven in a wild flower,
Hold infinity in the palm of your hand, And eternity in an hour.”

—William Blake

2.1 When importance sampling would work or fail

The posterior distribution p(θ |y) is central to Bayesian computation. Suppose the goal is to

compute the posterior expectation of some function h(θ), one natural solution is to draw simulations

from the distribution p(θ |y), and compute this expectation using Monte Carlo integral. But even

before we can draw any sample, typically we are able to evaluate this target density (up to a

normalizing constant) and the function of interest. In this chapter we would suppress dependence

on y and refer to this target density as p(θ). In this chapter, we investigate importance sampling,

the methodology foundation for two other diagnostics we will introduce in the next two chapters.

Importance sampling is a simple modification to the Monte Carlo method for computing

expectations that is useful when there is an auxiliary distribution g(θ) that is easier to directly

sample from than the target distribution p(θ), which may be only known up to a proportionality

constant. The starting point is the simple Monte Carlo estimate for the expectation of a function h,

Ih = Ep(h) =
∫

h(θ)p(θ) dθ ≈
1
S

S∑
s=1

h(θs),

which requires exact draws θs, s = 1, . . . ,S from p(θ). The importance sampling estimate for the

same expectation is ∑S
s=1 rsh(θs)∑S

s=1 rs
, rs =

f (θs)

g(θs)
, (2.1)

1This chapter is a shortened version of Vehtari et al. (2019b)
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which only requires draws θs from a proposal distribution g(θ).

The success of the self-normalized importance sampling estimator depends on the distribution

of importance ratios rs. When the proposal distribution is a poor approximation to the target

distribution, the distribution of importance ratios can have a heavy right tail. This can lead to

unstable importance weighted estimates, sometimes with infinite variance.

The textbook examples of poorly performing importance samplers occur in low dimensions

when the proposal distribution has lighter tails than the target, but it would be a mistake to

assume that heavy tailed proposals will stabilize importance samplers. This intuition is particularly

misplaced in high dimensions, where importance sampling can fail even when the ratios have

finite variance. MacKay (2003, Section 29.2) provides an example of what goes wrong in high

dimensions: essentially, the ratios rs will vary by several orders of magnitude and the estimator

(2.1) will be dominated by a few draws. Hence, even if the approximating distribution is chosen

so that the importance ratios are bounded and thus (2.1) has finite variance, the bound can be

so high and the variance so large that the behaviour of the self-normalized importance sampling

estimator is practically indistinguishable from an estimator with infinite variance. This suggests

that if we want an importance sampling method that works in high dimensions, we need to move

beyond being satisfied with estimates that have finite variance and towards methods with built-in

error assessment.

2.2 Stabilizing importance sampling estimates by modifying the ratios

The stability of self-normalized importance sampling methods can be improved by directly

modifying the computed ratios. For notational convenience, we rewrite these importance samplers

as, ∫
h(θ)p(θ) dθ ≈

∑S
s=1 wsh(θs)∑S

s=1 ws
, (2.2)

where ws = rs would recover the standard self-normalized importance sampler.
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Ionides (2008) showed that the truncation rule

ws = min
(
rs,
√

Sr̄
)
, (2.3)

where r̄ is the average of the original S importance ratios, is consistent with finite variance and

asymptotic normality. The critical advantage conveyed by the truncation is that these properties

now extend to problems that only have integrable ratios; that is, we get asymptotic normality under

the assumption that E(|rs |) < ∞ instead of under the stronger condition E(|rs |
2) < ∞ which is

needed for the unmodified importance sampling estimator (2.1) to have finite variance.

This simple modification to the raw importance ratio greatly extends the range of problems

for which the estimator has finite variance and asymptotic normality. Unfortunately, while the

truncation can improve the stability of the weights, our experiments show that the simple weight

modification scheme can be too severe, leading to larger than necessary finite sample bias.

Modeling the tail of the importance ratios. Wepropose a new scheme formodifying the extreme

importance ratios that adapts more readily to the problem under consideration than the universal

truncation rule of Ionides (2008).

To motivate the new scheme, we begin by noting that the success of plain importance sampling

depends entirely on how many moments the importance ratios rs possess, with the estimator

having finite variance if the importance weights have finite variance. Chen and Shao (2004) and

Koopman et al. (2009) show that when the importance ratios have more than two finite moments,

the convergence rate of the estimators improves. This suggests that using information about the

distribution of rs |rs > u, for some threshold u → ∞ as S → ∞, should allow us to improve the

quality of our importance sampling estimators.

Pickands (1975) proved, under commonly satisfied conditions, that as sample size increases the

11



distribution of rs |rs >u is well approximated by the three-parameter generalized Pareto distribution,

p(y |u, σ, k) =


1
σ

(
1 + k

( y−u
σ

) )− 1
k−1

, k , 0

1
σ exp

( y−u
σ

)
, k = 0,

(2.4)

where u is a lower bound parameter, y is restricted to the range (u,∞), σ is a non-negative scale

parameter, and k is an unconstrained shape parameter. The generalized Pareto distribution has

b1/kc finite moments when k > 0, and thus we can infer the number of existing moments of the

weight distribution by focusing on k.

To estimate the parameters in the generalized Pareto distribution, we use the M largest impor-

tance ratios, where

M =


3
√

S, S > 225,

S/5, S ≤ 225.

Restricting the tail modeling to a subset of the largest importance ratios implicitly defines a value

of u in the Pareto distribution. The above choice of M was made based on extensive computational

theory and in line with the requirements for consistent estimation (Pickands, 1975). In practice,

we have found that the method is mostly indifferent to the exact form of M; for instance, using

M = S/5 in all cases was suggested by Vehtari et al. (2017) and it worked well even though it is

not asymptotically correct. We tested several other methods (Scarrot and MacDonald, 2012) for

selecting u directly, but found them to be more noisy than this simple heuristic.

The scale and shape parameters, σ and k, can be estimated using the highly efficient, low-bias

method of Zhang and Stephens (2009). We chose this approach due to its efficiency and its ability

to be used automatically without human intervention.

Occasionally, we will use a h-specific tail estimate k̂h for the tail of the distribution h(θ)r(θ),

θ ∼ g(θ). This can be useful when h(θ) is unbounded or goes to zero, as it is possible if h grows

fast enough (or goes to zero fast enough) relative to r(θ) that the tail behavior of r(θ)h(θ) can be

qualitatively different to the tail behavior of r(θ).
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Algorithm 1: Pareto smoothed importance sampling(PSIS)
Input: Raw importance ratios rs, s = 1, . . . ,S, ordered from highest to lowest
Output: PSIS-smoothed importance weights ws, s = 1, . . . ,S

1 Set M = 3
√

S if S > 225, or S/5 if S ≤ 225;
2 Set ws = rs, s = 1, . . . ,M − 1;
3 Set û = rM ;
4 Estimate (k̂, σ̂) in the generalized Pareto distribution from the M largest importance ratios,

using the algorithm of Zhang and Stephens (2009);
5 Set wM+z−1 = min

(
F−1

(
z−1/2

M

)
,maxs(rs)

)
, for each z = 1, . . . ,M;

6 If the estimated shape parameter k̂ exceeds 0.7, report a warning that the resulting
importance sampling estimates are likely to be unstable;

Although inmost cases we cannot verify that the distribution of rs lies in the domain of attraction

for an extremal distribution, we will use this as a working assumption for building our method.

Pickands (1975) notes that “most ‘textbook’ continuous distribution functions” (Gumbel, 1958)

lie in the domain of attraction of some extremal distribution function. For finite S, we could

alternatively interpret k̂ as saying that the sample (r(θs))
S
s=1 is not statistically distinguishable from

a sample of size S from a distribution with tail index k̂.

2.3 Pareto smoothed importance sampling (PSIS)

We propose a new method to stabilize the importance weights by replacing the M largest

weights above the threshold u by a set of well-spaced values that are consistent with the tails of the

importance distribution,

wM+z−1 = F−1
(

z − 1/2
M

)
= r(S−M+1:S) + k−1σ

[(
1 −

z − 1/2
M

)−k

− 1

]
:= r(S−M:S) + w̃z,

where z = 1, . . . ,M , and F−1 is the inverse-CDF of the generalized Pareto distribution fitted to the

M largest importance ratios.
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The resulting Pareto smoothed importance sampler can be written as

IS
h =

1
S

S∑
s=1

(
r(θs) ∧ r(S−M+1):S

)
h(θs) +

1
S

M∑
m=1

w̃mh(θS−M+m).

This facilitates the view of PSIS as a generalization of truncated importance sampling with a

problem-adapted threshold and a bias correction term. This estimator, summarized in Algorithm 1,

is asymptotically consistent and has finite, vanishing variance under relatively light conditions. The

final step in the algorithm warns the user if the estimated smoothness parameter in the generalized

Pareto distribution is larger than 0.7. This is an automatic stability check that we justify using a

complexity analysis in Section 2.4.

We recommend estimating the Monte Carlo error by formally adapting the estimator provided

by Owen (2013, Ch. 9) for self-normalized importance sampling,

̂̃Var(ÎS
h ) ≈

S∑
s=1

w2
s (h(θs) − µ̃)

2.

If the draws have been obtained via MCMC, we recommend adjusting the above variance estimator

to account for the autocorrelation in the sample,

̂̃Var(ÎS
h ) ≈

S∑
s=1

w2
s (h(θs) − µ̃)

2/Reff,MCMC,

where Reff,MCMC = Seff,MCMC/S is the relative efficiency of MCMC, and the effective sample size

Seff,MCMC for h(θ) is computed using the split-chain effective sample size estimate method (Vehtari

et al., 2020a).

Vehtari et al. (2019b) further show that PSIS is asymptotically consistent and has finite variance

under some mild, but complex conditions on the distribution of the ratios r(θs). The detailed theory

discussion is suppressed from the current thesis for brevity.
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2.4 Using k̂ as a diagnostic of importance sampling

As part of the PSIS procedure, we estimate the shape parameter k of the limiting generalized

Pareto distribution for the upper tail of the importance ratios. A simple option would be to use

this estimate k̂ and trust importance sampling as reliable if k̂ ≤ 0.5. Our theory shows, however,

that PSIS leads to valid and well-behaved importance sampling routines for any integrable density.

This suggests that requiring the estimated shape parameter be less than 0.5 will be unnecessarily

stringent.

Extensive experiments show that PSIS gives reliable (that is, low-bias, low variance) estimators

of Ih when k̂ < 0.7. This can be interpreted as the estimate being reliable when the sample used to

compute the PSIS estimate is indistinguishable from one that comes from a density with more than

0.7−1 = 1.43 finite moments. When k̂ > 0.7 the convergence of the estimator becomes too slow to

be useful.

In this section, we make the distinction between the true, but unknown, k and our finite sample

estimate k̂ as a way to understand the differences between the asymptotic behaviour of PSIS and

its finite sample behaviour. We first show theoretically that the computational complexity of

importance sampling has a meaningful qualitative change around k = 0.7. We then demonstrate

that the finite sample estimate k̂ is a useful indicator of the practical convergence of PSIS even

when the distribution of ratios has finite variance. In particular, we show that k̂ can identify poorly

behaved but finite variance proposals in high dimensions.

PSIS is reliable when k < 0.7. Several authors (Sanz-Alonso, 2018; Agapiou et al., 2017; Chat-

terjee andDiaconis, 2018), have proved, under a variety of assumptions, that aminimum sample size

to control the importance sampling error is roughly ∝ exp (KL(p| |g)) = exp
(∫

p(θ) log
(
g(θ)
p(θ)

)
dθ

)
.

The most comprehensive results are due to Chatterjee and Diaconis (2018), who show that a larger

sample size than this gives tail guarantees for the error in self-normalized importance sampling,

while for smaller sample sizes it is not possible to control the large deviations. We can turn this

theory into a heuristic bound by assuming that the density ratios r(θ) = p(θ)/g(θ) exactly form a

15



 

 

 

0 0.25 0.5 0.7 11

102

105

1010

1015

k

M
in

im
um

 s
am

pl
e 

si
ze

Figure 2.1: Minimum sample size required as a function of k, as computed according to the heuristic
(2.5). The required sample size quickly grows infeasibly large when k > 0.7.

Pareto distribution with shape parameter k ∈ (0,1) under g, in which case we can estimate KL(p| |g)

by
∫ ∞

1 r log r 1
k r−1/k−1dr = k(1 − k)−2. Hence, the minimal sample size,

S = O
(
exp

(
k(1 − k)−2

))
. (2.5)

Figure 2.1 shows the estimated sample size as a function as k using the approximation (2.5).

Although we do not recommend using this estimator directly due to both the uncertainty in esti-

mating k and the inaccuracy of the asymptotic approximation, we can see the quick increase in the

order of magnitude for the minimum sample size around k = 0.7.

Although PSIS gives consistent, finite variance estimates when k ∈ (0.7,1), these complexity

considerations suggest that they will not be practical in this regime. Simple experiments suggest

that this type of behavior also holds for TIS, suggesting that the k ≈ 0.7 may be a fundamental

complexity barrier for useful importance sampling estimators.

k̂ is a good convergence diagnostic in finite samples and in high dimensions. Although

importance sampling papers classically focus on the asymptotic properties of the estimator, the

literature is full of examples where an importance sampling estimator is consistent, has finite

variance, and is asymptotically normal but still fails to work. Most of these examples, such as
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the one in MacKay (2003, Sec. 29.2) where the importance ratios are bounded, occur in high

dimensions. Hence, if we want PSIS to work reliably for problems of any dimension, we need to

have a diagnostic that can flag poor convergence for any given sample of importance weights.

In the previous section, we argued that if we know the tail behaviour of the importance ratios,

we can tell if PSIS will succeed within a reasonable computational budget. In this section, we

argue that the estimate k̂ of the true tail index can quantify the finite sample behaviour. It does not

matter what the actual tail behaviour is if the observed importance ratios “look” heavy tailed. In

particular, we suggest the heuristic that if k̂ > 0.7, then the PSIS estimator will be unreliable.

2.5 Application: leave-one-out cross-validation by importance sampling

In this sectionwe present three examples where Pareto smoothed importance sampling improves

the estimates and where the Pareto shape estimate k̂ is a useful diagnostic. We demonstrate the use

of Pareto smoothed importance sampling for leave-one-out (LOO) cross-validation approximation.

The ith leave-one-out cross-validation predictive density can be approximated with

p(ỹi |y−i) ≈

∑S
s=1 wi(θ

s)p(ỹi |θ
s)∑S

s=1 wi(θs)
. (2.6)

Importance sampling LOO was proposed by Gelfand et al. (1992a), but for long time it was not

widely used as the estimator is unreliable if the weights have infinite variance. For some simple

models, such as linear and generalized linearmodels with specific priors, it is possible to analytically

check the sufficient conditions for the variance of the importance weights in IS-LOO to be finite

(Peruggia, 1997; Epifani et al., 2008), but this is not generally possible.

Vehtari et al. (2017) demonstraed

2.6 Discussion

Importance weighting is a widely used tool in statistical computation. Even in the modern era of

Markov chain Monte Carlo, approximate algorithms are often necessary, in which case we should
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adjust approximations when possible to better match target distributions. However, a challenge for

practical applications of importance weighting is the well known fact that importance-weighted

estimates are unstable if the weights have high variance.

In this chapter we have shown that it is possible to reduce the mean square error of importance

sampling estimates using a particular stabilizing transformation that we call Pareto smoothed

importance sampling (PSIS). The key step is to replace the largest weights by expected quantiles

from a generalized Pareto distribution. We have also demonstrated greatly improved Monte Carlo

error estimates, natural diagnostics for gauging the reliability of the estimates, and empirical

convergence rate results that closely follow known theoretical results.

The most important feature of PSIS is the k̂ diagnostic, which allows the user to assess the

reliability of the estimator:

• If k < 1
3 the Berry-Esseen theorem (Chen and Shao, 2004; Koopman et al., 2009) states faster

convergence rate to normality. If k̂ < 1
3 , we observe that importance sampling is stable and

all IS, TIS and PSIS work well.

• If k < 1
2 then the distribution of importance ratios has finite variance and the central limit

theorem holds (Geweke, 1989). However the finite sample bias may still be quite large and the

value of k̂ may be much larger than 1/2 indicating that the importance sampler is unreliable

for this realization of weights.

• If 1
2 ≤ k < 0.7 then the variance is infinite and plain IS can behave quite poorly. However

both TIS and PSIS work well in this regime.

• If 0.7 < k < 1 it quickly becomes too expensive to get an accurate estimate. We do not

recommend using importance sampling when k̂ > 0.7.

• If k ≥ 1 then neither the variance nor the mean of raw ratios exists. The convergence rate is

close to zero and bias can be large with practical sample sizes S.
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With these recommendations, PSIS is a reliable, accurate, and trustworthy variant of important

sampling that comes with a in-built heuristic that allows it to fail loudly when it becomes unreliable.
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Chapter 3. Assessing variational inference using posterior density ratios1

“You may hide yourself in a thousand forms,
Still, All-beloved, I recognize you.

You may cover yourself in magic mists,
All-present, I can always tell that it is you.”

—Johann Wolfgang von Goethe

3.1 Yes, but did it work?

Variational Inference (VI), including a large family of posterior approximation methods like

stochastic VI (Hoffman et al. 2013), black-box VI (Ranganath et al. 2014), automatic differentiation

VI (ADVI, Kucukelbir et al. 2017), and many other variants, has emerged as a widely-used method

for scalable Bayesian inference. These methods come with few theoretical guarantees and it’s

difficult to assess how well the computed variational posterior approximates the true posterior.

Instead of computing expectations or sampling draws from the posterior p(θ | y), variational

inference fixes a family of approximate densities Q, and finds the member q∗ minimizing the

Kullback-Leibler (KL) divergence to the true posterior: KL (q(θ), p(θ | y)) . This is equivalent to

maximizing the evidence lower bound (ELBO):

ELBO(q) =
∫
Θ

(log p(θ, y) − log q(θ)) q(θ)dθ. (3.1)

There are many situations where the VI approximation is flawed. This can be due to the slow

convergence of the optimization problem, the inability of the approximation family to capture

the true posterior, the asymmetry of the true distribution, the fact that the direction of the KL

divergence under-penalizes approximation with too-light tails, or all these reasons. We need a

diagnostic algorithm to test whether the VI approximation is useful.

1This chapter is a slight modified version of Yao et al. (2018b).
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There are two levels of diagnostics for variational inference. First the convergence test should be

able to tell if the objective function has converged to a local optimum. When the optimization prob-

lem (3.1) is solved through stochastic gradient descent (SGD), the convergence can be assessed by

monitoring the running average of ELBO changes. Researchers have introduced many convergence

tests based on the asymptotic property of stochastic approximations (e.g., Sielken, 1973; Stroup and

Braun, 1982; Pflug, 1990; Wada and Fujisaki, 2015; Chee and Toulis, 2018). Alternatively, Blei

et al. (2017) suggest monitoring the expected log predictive density by holding out an independent

test dataset. After convergence, the optimum is still an approximation to the truth. This chapter

is focusing on the second level of VI diagnostics whether the variational posterior q∗(θ) is close

enough to the true posterior p(θ |y) to be used in its place.

Purely relying on the objective function or the equivalent ELBO does not solve the problem. An

unknown multiplicative constant exists in p(θ, y) ∝ p(θ | y) that changes with reparametrization,

making it meaningless to compare ELBO across two approximations. Moreover, the ELBO is a

quantity on an uninterpretable scale, that is it’s not clear at what value of the ELBO we can begin

to trust the variational posterior. This makes it next to useless as a method to assess how well the

variational inference has fit.

In this chapter we propose two diagnostic methods that assess, respectively, the quality of the

entire variational posterior for a particular data set, and the average bias of a point estimate produced

under correct model specification.

The first method is based on generalized Pareto distribution diagnostics used to assess the quality

of a importance sampling proposal distribution in Pareto smoothed importance sampling (PSIS,

Vehtari et al., 2019b). The benefit of PSIS diagnostics is two-fold. First, we can tell the discrepancy

between the approximate and the true distribution by the estimated continuous k̂ value. When it is

larger than a pre-specified threshold, users should be alert of the limitation of current variational

inference computation and consider further tuning it or turn to exact sampling like Markov chain

Monte Carlo (MCMC). Second, in the case when k̂ is small, the fast convergence rate of the

importance-weighted Monte Carlo integration guarantees a better estimation accuracy. In such
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sense, the PSIS diagnostics could also be viewed as a post-adjustment forVI approximations. Unlike

the second-order correction Giordano et al. (2018), which relies on an un-testable unbiasedness

assumption, we make diagnostics and adjustment at the same time.

The second diagnostic considers only the quality of the median of the variational posterior as a

point estimate (in Gaussian mean-field VI this corresponds to the modal estimate). This diagnostic

assesses the average behavior of the point estimate under data from the model and can indicate

when a systemic bias is present. The magnitude of that bias can be monitored while computing the

diagnostic. This diagnostic can also assess the average calibration of univariate functionals of the

parameters, revealing if the posterior is under-dispersed, over-dispersed, or biased. This diagnostic

could be used as a partial justification for using the second-order correction of Giordano et al.

(2018).

3.2 Is the jointd distribution good enough: PSIS diagnostic

If we can draw a sample (θ1, . . . , θS) from p(θ |y), the expectation of any integrable function

Ep[h(θ)] can be estimated by Monte Carlo integration:
∑S

s=1 h(θs)/S
S→∞
−−−−−−→Ep [h(θ)] . Alterna-

tively, given samples (θ1, . . . , θS) from a proposal distribution q(θ), the importance sampling (IS)

estimate is
(∑S

s=1 h(θs)rs

)
/
∑S

s=1 rs, where the importance ratios rs are defined as

rs =
p(θs, y)

q(θs)
. (3.2)

In general, with a sample (θ1, . . . , θS) drawn from the variational posterior q(θ), we consider a

family of estimates with the form

Ep[h(θ)] ≈
∑S

s=1 h(θs)ws∑S
s=1 ws

, (3.3)

which contains two extreme cases:

1. When ws ≡ 1, estimate (3.3) becomes the plain VI estimate that is we completely trust the
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VI approximation. In general, this will be biased to an unknown extent and inconsistent.

However, this estimator has small variance.

2. When ws = rs, (3.3) becomes importance sampling. The strong law of large numbers ensures

it is consistent as S → ∞, and with small O(1/S) bias due to self-normalization. But the IS

estimate may have a large or infinite variance.

There are two questions to be answered. First, can we find a better bias-variance trade-off than

both plain VI and IS?

Second, VI approximation q(θ) is not designed for an optimal IS proposal, for it has a lighter

tail than p(θ |y) as a result of entropy penalization, which lead to a heavy right tail of rs. A few

large-valued rs dominates the summation, bringing in large uncertainty. But does the finite sample

performance of IS or stabilized IS contain the information about the dispensary measure between

q(θ) and p(θ |y)?

Here we propose to answer both questions by Pareto smoothed importance sampling (PSIS,

Chapter 2). The fitted shape parameter k̂, turns out to provide the desired diagnostic measurement

between the true posterior p(θ |y) and the VI approximation q(θ). A generalized Pareto distribution

with shape k has finite moments up to order 1/k, thus any positive k̂ value can be viewed as an

estimate to

k = inf

{
k′ > 0 : Eq

(
p(θ |y)
q(θ)

) 1
k ′

< ∞

}
. (3.4)

k̂ is invariant under any constant multiplication of p or q, which explains why we can suppress the

marginal likelihood (normalizing constant) p(y) and replace the intractable p(θ |y) with p(θ, y) in

(3.2).

After log transformation, (3.4) can be interpreted as Rényi divergence (Rényi, 1961) with order

23



α between p(θ |y) and q(θ):

k = inf
{
k′ > 0 : D 1

k ′
(p| |q) < ∞

}
,

where Dα (p| |q) =
1

α − 1
log

∫
Θ

p(θ)αq(θ)1−αdθ.

It is well-defined since Rényi divergence is monotonic increasing on order α. Particularly, when

k > 0.5, the χ2 divergence χ(p| |q), becomes infinite, and when k > 1, D1(p| |q) = KL(p,q) = ∞,

indicating a disastrous VI approximation, despite the fact that KL(q, p) is always minimized among

the variational family. The connection to Rényi divergence holds when k > 0. When k < 0, it

predicts the importance ratios are bounded from above.

This also illustrates the advantage of a continuous k̂ estimate in our approach over only testing

the existence of second moment of Eq(q/p)2 (Epifani et al., 2008; Koopman et al., 2009) – it

indicates if the Rényi divergence between q and p is finite for all continuous order α > 0.

Meanwhile, the shape parameter k determines the finite sample convergence rate of both IS

and PSIS adjusted estimate. Geweke (1989) shows when Eq[r(θ)2] < ∞ and Eq[
(
r(θ)h(θ)

)2
] < ∞

hold (both conditions can be tested by k̂ in our approach), the central limit theorem guarantees the

square root convergence rate. Furthermore, when k < 1/3, then the Berry-Essen theorem states

faster convergence rate to normality (Chen and Shao, 2004). Cortes et al. (2010) and Cortes et al.

(2019) also link the finite sample convergence rate of IS with the number of existing moments of

importance ratios.

PSIS has smaller estimation error than the plain VI estimate, which we will experimentally

verify this in Section 3.5. A large k̂ indicates the failure of finite sample PSIS, so it further

indicates the large estimation error of VI approximation. Therefore, even when the researchers’

primary goal is not to use variational approximation q as an PSIS proposal, they should be alert by

a large k̂ which tells the discrepancy between the VI approximation result and the true posterior.

According to empirical study in Vehtari et al. (2019b), we set the threshold of k̂ as follows.

• If k̂ < 0.5, we can invoke the central limit theorem to suggest PSIS has a fast convergence
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rate. We conclude the variational approximation q is close enough to the true density. We

recommend further using PSIS to adjust the estimator (3.3) and calculate other divergence

measures.

• If 0.5 < k̂ < 0.7, we still observe practically useful finite sample convergence rates and

acceptable Monte Carlo error for PSIS. It indicates the variational approximation q is not

perfect but still useful. Again, we recommend PSIS to shrink errors.

• If k̂ > 0.7, the PSIS convergence rate becomes impractically slow, leading to a large mean

square error, and a even larger error for plain VI estimate. We should consider tuning the

variational methods (e.g., re-parametrization, increase iteration times, increase mini-batch

size, decrease learning rate, et.al.,) or turning to exact MCMC. Theoretically k is always

smaller than 1, for Eq [p(θ |y)/q(θ)] = p(y) < ∞, while in practice finite sample estimate k̂

may be larger than 1, which indicates even worse finite sample performance.

The proposed diagnostic method is summarized in Algorithm 2.

Algorithm 2: PSIS diagnostic for variational inference
Input: the joint density function p(θ, y); number of posterior samples S;

number of tail samples M .
1 Run variational inference to p(θ |y), obtain VI approximation q(θ);
2 Sample (θs, s = 1, . . . ,S) from q(θ);
3 Calculate the importance ratio rs = p(θs, y)/q(θs);
4 Fit generalized Pareto distribution to the M largest rs;
5 Report the shape parameter k̂;
6 if k̂ < 0.7 then
7 Conclude VI approximation q(θ) is close enough to the unknown truth p(θ |y);
8 Recommend further shrinking errors by PSIS.
9 else
10 Warn users that the VI approximation is not reliable.
11 end
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3.3 Properties of the PSIS diagnostics

Invariance under reparametrization. Re-parametrization is common in variational inference.

Particularly, the reparameterization trick (Rezende et al., 2014) rewrites the objective function to

make gradient calculation easier in Monte Carlo integrations.

A nice property of PSIS diagnostics is that the k̂ quantity is invariant under any re-

parametrization. Suppose ξ = T(θ) is a smooth transformation, then the density ratio of ξ under the

target p and the proposal q does not change:

p(ξ)
q(ξ)

=
p
(
T−1(ξ)

)
|detJξT−1(ξ)|

q
(
T−1(ξ)

)
|detJξT−1(ξ)|

=
p (θ)
q(θ)

Therefore, p(ξ)/q(ξ) and p(θ)/q(θ) have the same distribution under q, making it free to choose

any convenient parametrization form when calculating k̂.

However, if the re-parametrization changes the approximation family, then it will change the

computation result, and PSIS diagnostics will change accordingly. Finding the optimal parametriza-

tion form, such that the re-parametrized posterior distribution lives exactly in the approximation

family

p(T(ξ)) = p
(
T−1(ξ)

)
|JξT−1(ξ)| ∈ Q,

can be as hard as finding the true posterior. The PSIS diagnostic can guide the choice of re-

parametrization by simply comparing the k̂ quantities of any parametrization. Section 3.5 provides

a practical example.

Marginal PSIS diagnostics do not work. As dimension increases, the VI posterior tends to

be further away from the truth, due to the limitation of approximation families. As a result,

k increases, indicating inefficiency of importance sampling. This is not the drawback of PSIS

diagnostics. Indeed, when the focus is the joint distribution, such behaviour accurately reflects the

quality of the variational approximation to the joint posterior.

Denoting the one-dimensional true and approximate marginal density of the i-th coordinate θi
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as p(θi |y) and q(θi), the marginal k for θi can be defined as

ki = inf

{
0 < k′ < 1 : Eq

(
p(θi |y)

q(θi)

) 1
k ′

< ∞

}
.

The marginal ki is never larger (and usually smaller) than the joint k in (3.4).

Theorem 3.1 (monotonicity of PSIS diagnostics). For any two distributions p and q with support

Θ and the margin index i, if there is a number α > 1 satisfying Eq (p(θ)/q(θ))α < ∞, then

Eq (p(θi)/q(θi))
α < ∞.

Theorem 3.1 demonstrates why the importance sampling is usually inefficient in high dimen-

sional sample space, in that the joint estimation is “worse” than any of the marginal estimation.

Should we extend the PSIS diagnostics to marginal distributions? We find two reasons why the

marginal PSIS diagnostics can be misleading. Firstly, unlike the easy access to the unnormalized

joint posterior distribution p(θ, y), the true marginal posterior density p(θi |y) is typically unknown,

otherwise one can conduct one-dimensional sampling easily to obtain the the marginal samples.

Secondly, a smaller k̂i does not necessary guarantee a well-performed marginal estimation. The

marginal approximations in variational inference can both over-estimate and under-estimate the tail

thickness of one-dimensional distributions, the latter situation gives rise to a smaller k̂i. Section 3.5

gives an example, where the marginal approximations with extremely small marginal k have large

estimation errors. This does not happen in the joint case as the direction of the Kullback-Leibler

divergence q∗(θ) strongly penalizes too-heavy tails, which makes it unlikely that the tails of the

variational posterior are significantly heavier than the tails of the true posterior.

3.4 Variational simulation-based calibration (VSBC)

The proposed PSIS diagnostic assesses the quality of the VI approximation to the full posterior

distribution. It is often observed that while the VI posterior may be a poor approximation to the

full posterior, point estimates that are derived from it may still have good statistical properties. In

this section, we propose a new method for assessing the calibration of the center of a VI posterior.
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This diagnostic is based on the proposal of Cook et al. (2006) for validating general statistical

software. They noted that if θ(0) ∼ p(θ) and y ∼ p(y | θ(0)), then

Pr(y,θ(0))
(
Prθ |y(θ < θ(0)) ≤ ·)

)
= Unif[0,1]([0, ·]).

To use the observation of Cook et al. (2006) to assess the performance of a VI point estimate,

we propose the following procedure. Simulate M > 1 data sets {y j}
M
j=1 as follows: Simulate

θ
(0)
j ∼ p(θ) and then simulate y( j) ∼ p(y | θ(0)j ), where y( j) has the same dimension as y. For each

of these data sets, construct a variational approximation to p(θ | y j) and compute the marginal

calibration probabilities pi j = Prθ |y(j)
(
θi ≤ [θ

(0)
j ]i

)
.

To apply the full procedure of Cook et al. (2006), we would need to test dim(θ) histograms for

uniformity, however this would be too stringent a check as, like our PSIS diagnostic, this test is

only passed if the variational posterior is a good approximation to the true posterior. Instead, we

follow an observation of Anderson (1996) from the probabilistic forecasting validation literature

and note that asymmetry in the histogram for pi: indicates bias in the variational approximation to

the marginal posterior θi | y.

The VSBC diagnostic tests for symmetry of the marginal calibration probabilities around 0.5

and either by visual inspection of the histogram of pi: and 1 − pi: to check if they have the same

distribution. When θ is a high-dimensional parameter, it is important to interpret the results of any

hypothesis tests through a multiple testing lens.

In the early published version (Yao et al., 2018b), on top of a visual check, we also mentioned

the use of use of Kolmogorov-Smirnov (KS) test to pi: and 1− pi:. This additional test, however, can

be highly biased because the dependence between p and 1 − p. Hence, we no longer recommend

this hypothesis test step anymore.

Unlike the PSIS diagnostic, which focuses on a the performance of variational inference for a

fixed data set y, the VSBC diagnostic assesses the average calibration of the point estimation over

all datasets that could be constructed from the model. Hence, the VSBC diagnostic operates under
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a different paradigm to the PSIS diagnostic and we recommend using both as appropriate.

There are two disadvantages to this type of calibration when compared to the PSIS diagnostic.

As is always the case when interpreting hypothesis tests, just because something works on average

doesn’t mean it will work for a particular realization of the data. The second disadvantage is that

this diagnostic does not cover the case where the observed data is not well represented by the model.

We suggest interpreting the diagnostic conservatively: if a variational inference scheme fails the

diagnostic, then it will not perform well on the model in question. If the VI scheme passes the

diagnostic, it is not guaranteed that it will perform well for real data, although if the model is well

specified it should do well.

The VSBC diagnostic has some advantages compared to the PSIS diagnostic. It is well

understood that, for complex models, the VI posterior can be used to produce a good point estimate

even when it is far from the true posterior. In this case, the PSIS diagnostic will most likely

Algorithm 3: Variational simulated based calibration (VSBC)
Input: prior density p(θ), data likelihood p(y | θ); number of replications M; parameter

dimensions K .
1 for j = 1 : M do
2 Generate θ(0)j from prior p(θ);
3 Generate a size-n dataset

(
y( j)

)
from p(y | θ(0)j );

4 Run variational inference using dataset y( j), obtain a VI approximation distribution
q j(·);

5 for i = 1 : K do
6 Label θ(0)i j as the i-th marginal component of θ(0)j ; Label θ∗i as the i-th marginal

component of θ∗;
7 Calculate pi j = Pr(θ(0)i j < θ∗i | θ

∗ ∼ q j);
8 end
9 end
10 for i = 1 : K do
11 Test if the distribution of

{
pi j

}M
j=1 is symmetric;

12 if rejected then
13 Conclude the VI approximation is biased in its i-th margin.
14 end
15 end
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indicate failure. The second advantage is that unlike the PSIS diagnostic, the VSBC diagnostic

considers one-dimensional marginals θi (or any functional h(θ)), which allows for a more targeted

interrogation of the fitting procedure.

With stronger assumptions, The VSBC test can be formalized as in Theorem 3.2.

Theorem 3.2 (variational simulated based calibration). Denote θ as a one-dimensional parameter

that is of interest. Suppose in addition we have: (i) the VI approximation q is symmetric; (ii)

the true posterior p(θ |y) is symmetric. If the VI estimation q is unbiased, i.e., Eθ∼q(θ |y) θ =

Eθ∼p(θ |y) θ, then the distribution of VSBC p-value is symmetric. Otherwise, if the VI estimation is

positively/negatively biased, then the distribution of VSBC p-value is right/left skewed.

The symmetry of the true posterior is a stronger assumption than is needed in practice for this

result to hold. In the forecast evaluation literature, as well as the literature on posterior predictive

checks, the symmetry of the histogram is a commonly used heuristic to assess the potential bias of

the distribution. In our tests, we have seen the same thing occurs: the median of the variational

posterior is close to the median of the true posterior when the VSBC histogram is symmetric. We

suggest again that this test be interpreted conservatively: if the histogram is not symmetric, then

the VI is unlikely to have produced a point estimate close to the median of the true posterior.

3.5 Examples

Both PSIS andVSBC diagnostics are applicable to any variational inference algorithm. Without

loss of generality, we implementmean-fieldGaussian automatic differentiation variational inference

(ADVI) in this section.

Linear regression. Consider a Bayesian linear regression y ∼ normal(Xβ,σ2) with prior

{βi}
K
i=1 ∼ normal(0,1), σ ∼ gamma(.5, .5). We fix sample size n = 10000 and number of re-

gressors K = 100.

Figure 3.1 visualizes the VSBC diagnostic, showing the distribution of VSBC p-values of the
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Figure 3.1: VSBC diagnostics for β1, β2 and logσ in the Bayesian linear regression example. The
VI estimation overestimates σ as pσ is right-skewed, while β1 and β2 is unbiased as the two-sided
KS-test is not rejected.
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Figure 3.2: ADVI is sensitive to the stopping time in the linear regression example. The default
0.01 threshold lead to a fake convergence, which can be diagnosed by monitoring PSIS k̂. PSIS
adjustment always shrinks the estimation errors.

first two regression coefficients β1, β2 and logσ based on M = 1000 replications. The under-

estimation of posterior variance is reflected by the U-shaped distributions.

Using one randomly generated dataset in the same problem, the PSIS k̂ is 0.61, indicating the

joint approximation is close to the true posterior. However, the performance of ADVI is sensitive

to the stopping time, as in any other optimization problems. As displayed in the left panel of

Figure 3.2, changing the threshold of relative ELBO change from a conservative 10−5 to the default

recommendation 10−2 increases k̂ to 4.4, even though 10−2 works fine for many other simpler

problems. In this example, we can also view k̂ as a convergence test. The right panel shows k̂

diagnoses estimation error, which eventually become negligible in PSIS adjustment when k̂ < 0.7.

To account for the uncertainty of stochastic optimization and k̂ estimation, simulations are repeated

100 times.

Logistic regression. Next we run ADVI to a logistic regression Y ∼ Bernoulli
(
logit−1(βX)

)
with a flat prior on β. We generate X = (x1, . . . , xn) from N(0, (1 − ρ)IK×K + ρ1K×K) such that the

correlation in design matrix is ρ, and ρ is changed from 0 to 0.99. The first panel in Figure 3.3
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Figure 3.3: In the logistic regression example, as the correlation in design matrix increase, the
correlation in parameter space also increases, leading to larger k̂. Such flaw is hard to tell from
the VI log predictive density (lpd), as a larger correlation makes the prediction easier. k̂ diagnose
the discrepancy of VI lpd and true posterior lpd, with a sharp jump at 0.7.

shows PSIS k̂ increases as the design matrix correlation increases. It is not monotonic because β is

initially negatively correlated when X is independent. A large ρ transforms into a large correlation

for posterior distributions in β, making it harder to be approximated by amean-field family, as can be

diagnosed by k̂. In panel 2 we calculate mean log predictive density (lpd) of VI approximation and

true posterior using 200 independent test sets. Larger ρ leads to worse mean-field approximation,

while prediction becomes easier. Consequently, monitoring lpd does not diagnose the VI behavior;

it increases (misleadingly suggesting better fit) as ρ increases. In this special case, VI has larger lpd

than the true posterior, due to the VI under-dispersion and the model misspecification. Indeed, if

viewing lpd as a function h(β), it is the discrepancy between VI lpd and true lpd that reveals the VI

performance, which can also be diagnosed by k̂. Panel 3 shows a sharp increase of lpd discrepancy

around k̂ = 0.7, consistent with the empirical threshold we suggest.

Figure 3.4 compares the first and second moment root mean square errors (RMSE) | | Ep β −

Eq∗ β| |2 and | | Ep β
2 − Eq∗ β

2 | |2 in the previous example using three estimates: (a) VI without

post-adjustment, (b) VI adjusted by vanilla importance sampling, and (c) VI adjusted by PSIS.

PSIS diagnostic accomplishes two tasks here: (1) A small k̂ indicates that VI approximation

is reliable. When k̂ > 0.7, all estimations are no longer reasonable so the user should be alerted.

(2) It further improves the approximation using PSIS adjustment, leading to a quicker convergence

rate and smaller mean square errors for both first and second moment estimation. Plain importance
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Figure 3.4: In the logistic regression with varying correlations, the k̂ diagnoses the root mean
square of first and second moment errors. No estimation is reliable when k̂ > 0.7. Meanwhile,
PSIS adjustment always shrinks the VI estimation errors.

sampling has larger RMSE for it suffers from a larger variance.

Reparametrization in a hierarchical model. The Eight-School Model (Gelman et al., 2013,

Section 5.5) is the simplest Bayesian hierarchical normal model. Each school reported the treatment

effect mean yi and standard deviation σi separately. There was no prior reason to believe that any of

the treatments were more effective than any other, so we model them as independent experiments:

y j |θ j ∼ N(θ j, σ
2
j ), θ j |µ, τ ∼ N(µ, τ2), 1 ≤ j ≤ 8,

µ ∼ normal(0,5), τ ∼ half−Cauchy(0,5).

where θ j represents the treatment effect in school j, and µ and τ are the hyper-parameters shared

across all schools.

In this hierarchical model, the conditional variance of θ is strongly dependent on the standard

deviation τ, as shown by the joint sample of µ and log τ in the bottom-left corner in Figure 3.5.

The Gaussian assumption in ADVI cannot capture such structure. More interestingly, ADVI over-

estimates the posterior variance for all parameters θ1 through θ8, as shown by positive biases of

their posterior standard deviation in the last panel. In fact, the posterior mode is at τ = 0, while

the entropy penalization keeps VI estimation away from it, leading to an overestimation due to

the funnel-shape. Since the conditional expectation E[θi |τ, y, σ] =
(
σ−2

j + τ
−2

)−1
is an increasing
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Figure 3.5: The upper two panels shows the joint and marginal PSIS diagnostics of the eight-school
example. The centered parameterization has k̂ > 0.7, for it cannot capture the funnel-shaped
dependency between τ and θ. The bottom-right panel shows the bias of posterior mean and
standard errors of marginal distributions. Positive bias of τ leads to over-dispersion of θ.

function on τ, a positive bias of τ produces over-dispersion of θ.

The top left panel shows the marginal and joint PSIS diagnostics. The joint k̂ is 1.00, much

beyond the threshold, while the marginal k̂ calculated through the true marginal distribution for all

θ are misleadingly small due to the over-dispersion.

Alerted by such large k̂, researchers should seek some improvements, such as re-parametrization.

The non-centered parametrization extracts the dependency between θ and τ through a transforma-

tion θ∗ = (θ − µ)/τ:

y j |θ j ∼ N(µ + τθ∗j , σ
2
j ), θ∗j ∼ N(0,1).

There is no general rule to determine whether non-centered parametrization is better than the cen-

tered one and there are many other parametrization forms. Finding the optimal parametrization can

be as hard as finding the true posterior, but k̂ diagnostics always guide the choice of parametrization.

As shown by the top right panel in Figure 3.5, the joint k̂ for the non-centered ADVI decreases to

0.64 which indicated the approximation is not perfect but reasonable and usable. The bottom-right
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Figure 3.6: In the eight-school example, the VSBC diagnostic verifies VI estimation of θ1 is unbiased
as the distribution of pθ1: is symmetric. τ is overestimated in the centered parametrization and
underestimated in the non-centered one, as told by the right/ left skewness of pτ:.

panel demonstrates that the re-parametrized ADVI posterior is much closer to the truth, and has

smaller biases for both first and second moment estimations.

We can assess the marginal estimation using VSBC diagnostic, as summarized in Figure 3.6. In

the centered parametrization, the point estimation for θ1 is in average unbiased. The histogram for

τ is right-skewed. Hence we conclude τ is over-estimated in the centered parameterization. On the

contrast, the non-centered τ is negatively biased, as diagnosed by the left-skewness of pτ:. Such

conclusion is consistent with the bottom-right panel in Figure 3.5.

To sum up, this example illustrates how the Gaussian family assumption can be unrealistic

even for a simple hierarchical model. It also clarifies VI posteriors can be both over-dispersed

and under-dispersed, depending crucially on the true parameter dependencies. Nevertheless, the

recommended PSIS and VSBC diagnostics provide a practical summary of the computation result.

Cancer classification using horseshoe priors. We illustrate how the proposed diagnostic meth-

ods work in the Leukemia microarray cancer dataset that contains D = 7129 features and n = 72

observations. Denote y1:n as binary outcome and Xn×D as the predictor, the logistic regression with

a regularized horseshoe prior (Piironen and Vehtari, 2017c) is given by

y |β ∼ Bernoulli
(
logit−1 (Xβ)

)
, β j |τ, λ, c ∼ normal(0, τ2λ̃2

j ),

λ j ∼ C+(0,1), τ ∼ C+(0, τ0), c2 ∼ Inv−Gamma(2,8).
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Figure 3.8: VSBC test in the horseshoe logistic regression. It tells the positive bias of τ and negative
bias of λ1834. β1834 is in average unbiased for its symmetric prior.

where τ > 0 and λ > 0 are global and local shrinkage parameters, and λ̃2
j = c2λ2

j /

(
c2 + τ2λ2

j

)
.

The regularized horseshoe prior adapts to the sparsity and allows us to specify a minimum level of

regularization to the largest values.

ADVI is computationally appealing for it only takes a few minutes while MCMC sampling

takes hours on this dataset. However, PSIS diagnostic gives k̂ = 9.8 for ADVI, suggesting the

VI approximation is not even close to the true posterior. Figure 3.7 compares the ADVI and true

posterior density of β1834, log λ1834 and τ. The Gaussian assumption makes it impossible to recover

the bimodal distribution of some β.

The VSBC diagnostics as shown in Figure 3.8 tell the negative bias of local shrinkage λ1834

from the left-skewness of plog λ1834 , which is the consequence of the right-missing mode. For

compensation, the global shrinkage τ is over-estimated, which is in agreement with the right-

skewness of plog τ. β1834 is in average unbiased, even though it is strongly underestimated from in

Figure 3.7. This is because VI estimation is mostly a spike at 0 and its prior is symmetric. As we

have explained, passing the VSBC test means the average unbiasedness, and does not ensure the

unbiasedness for a specific parameter setting. This is the price that VSBC pays for averaging over
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all priors.

3.6 Discussion

The proposed diagnostics are local. As no single diagnostic method can tell all problems, the

proposed diagnostic methods have limitations. The PSIS diagnostic is limited when the posterior

is multimodal as the samples drawn from q(θ) may not cover all the modes of the posterior and

the estimation of k will be indifferent to the unseen modes. In this sense, the PSIS diagnostic

is a local diagnostic that will not detect unseen modes. For example, imagine the true posterior

is p = 0.8N(0,0.2) + 0.2N(3,0.2) with two isolated modes. Gaussian family VI will converge to

one of the modes, with the importance ratio to be a constant number 0.8 or 0.2. Therefore k is 0,

failing to penalize the missing density. In fact, any divergence measure based on samples from the

approximation such as KL(q, p) is local.

The bi-modality can be detected by multiple over-dispersed initialization. It can also be

diagnosed by other divergence measures such as KL(p,q) = Ep log(q/p), which is computable

through PSIS by letting h = log(q/p).

In practice a marginal missing mode will typically lead to large joint discrepancy that is still

detectable by k̂, such as in Section 3.5.

The VSBC test, however, samples the true parameter from the prior distribution directly. Unless

the prior is too restrictive, the VSBC p-value will diagnose the potential missing mode.

Tailoring variational inference for importance sampling. The PSIS diagnostic makes use of

stabilized IS to diagnose VI. By contrast, can we modify VI to give a better IS proposal?

Geweke (1989) introduce an optimal proposal distribution based on split-normal and split-t,

implicitly minimizing the χ2 divergence between q and p. Following this idea, we could first find

the usual VI solution, and then switch Gaussian to Student-t with a scale chosen to minimize the

χ2 divergence.

More recently, some progress is made to carry out variational inference based on Rényi diver-
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gence (Li and Turner, 2016; Dieng et al., 2017). But a big α, say α = 2, is only meaningful when

the proposal has a much heavier tail than the target. For example, a normal family does not contain

any member having finite χ2 divergence to a Student-t distribution, leaving the optimal objective

function defined by Dieng et al. (2017) infinitely large.

There are several research directions. First, our proposed diagnostics are applicable to these

modified approximation methods. Second, PSIS re-weighting will give a more reliable importance

ratio estimation in the Rényi divergence variational inference. Third, a continuous k̂ and the

corresponding α are more desirable than only fixing α = 2, as the latter one does not necessarily

have a finite result. Considering the role k̂ plays in the importance sampling, we can optimize the

discrepancy Dα(q | |p) and α > 0 simultaneously. We leave this for future research.
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Chapter 4. Assessing covariate imbalance in observational studies

“The three thousand realms of existence are all possessed by life in a single moment.”

—Zhiyi, Mohe Zhiguan

4.1 Introduction

Learning from data involves extrapolation. In observational studies to make relevant inferences,

we need to extrapolate from sample data to population, from control to treatment group, and from

measurements to underlying constructs of interest. To what extent these extrapolations are reliable

depends on differences in the distribution of covariates between the treated and control group, and

the amount that these disparities map to differences in treatment effects. If the treatment is randomly

assigned, a model-free sample mean yields an unbiased average treatment effect. In contrast, when

the covariates are highly imbalanced, inferences become sensitive to assumptions about the form

of treatment interactions.

When the treatment z is binary, the imbalance is the difference of covariate distributions

in the treated p(x |z = 0) and control p(x |z = 1) groups, measured either in sample or in the

population. However, unlike the concept of overlapping that asks for a common support of these

two distributions, the degree of imbalance is a continuous spectrum rather than a binary distinction.

A hypothesis testing for imbalance is misleading, as a priori we know the observational data from

treated and control groups are unlikely distributed identically, and hence with enough data we will

always reject the null. The real assessment is to to choose the appropriate divergence metric, and to

determine whether we should trust the extrapolation results given the covariate imbalance having

readily occurred in the data.

There is a rich literature that raised concerns for lack of overlapping in causal data analysis (e.g.,

Imbens, 2004; Imai et al., 2008; Hill and Su, 2013; Imbens, 2015; Vegetabile et al., 2020). Recent
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works (Shalit et al., 2017; Sundin et al., 2019) has theoretically analyzed how the lower bound the

mean squared and Type-S error of the treatment effect estimation as a function of some chosen

imbalance metric, while these bounds are not tight for practical usage. Most existing methods either

relied on further model assumptions, or attempted to compute some divergence measure between

p(x |z = 0) and p(x |z = 1). In addition to a hard-to-interpret scale of the divergence measure, the

choice of the divergence is also arbitrary, and many proposed divergences are not even invariant

under reparameterization and affine transformation of covariates, the basic preprocessing of data.

This is especially a concern in modern high dimensional data setting (D’Amour et al., 2020) where

the imbalance can be arbitrarily worse by adding more unrelated or weakly predictive variables into

the covariate list.

This chapter proposes an accessible imbalance metric that is related to the Kullback–Leibler

divergence between the covariate distributions, the divergence that we show is most relevant to

average treatment effect (ATE) estimation. The proposed metric effectively takes into account only

the predictively relevant covariates, and can be adapted to the average treatment effect in treated

(ATT) and the average treatment effect in control (ATC) when the full imbalance is detected too

severe. Besides used for imbalance diagnostics, our approach comes with a post-hoc design analysis

that provides a rough scale of the sample size requirement, often more appropriate than usual power

calculation.

4.2 Why overlapping matters

We start by a binary treatment assignment scheme z = 0 or 1. Denote the outcomes y ∈ Y ⊂ R

and other covariates x ∈ X ⊂ Rd , the observed data is a sequence of triples (yi, zi, xi)i=1,2,...,n. We

adopt a fully Bayesian view, and assume a probabilistic generative distribution with joint density

psample(y1:n, z1:n, x1:n) in the super population (i.e., the unknown data generating mechanism) from

which the observed sample is drawn. We also assume the joint distribution is factorizable, i.e.,

p(y1:n, z1:n, x1:n) =
∏n

i=1 psample(yi, zi, xi), which is related to the individualistic treatment response

assumption and excludes interference. By the ignorability assumption, the expected treatment
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effect at any individual covariate location x∗ ∈ X is E(y |x∗, z∗ = 1) − E(y |x∗, z∗ = 0).

A probabilistic assumption is

0 < Pr(z = 1|xi) < 1, ∀i, (4.1)

the population version of which can also be phrased as that the covariate densities p(x |z = 1) and

p(x |z = 0) have common support. It ensures that the average treatment effect (ATE) is a valid

estimand by taking expectation over both x∗ and y with respect to the joint distribution

ATE = EX (EY (y |x, z∗ = 1) − EY (y |x, z∗ = 0)) . (4.2)

From the generative model perspective, the two expectations in (4.2) are the integrals of the

function h(y, z, x) = y under the target distributions

ptarget,1(x, y, z) = p(y |x, z)p(x)1(z = 1); ptarget,0(x, y, z) = p(y |x, z)p(x)1(z = 0).

The key feature of an observational study is the dependency of z on x. Hence, these two target

distribution is different from the sampling distribution psample that is factorizable by

psample(x, y, z) = p(y |x, z)p(z |x)p(x),

nor its conditional distribution on psample(x, y |z = 1) and z = 0.

To compute the expectation under the target destiny using simulation draws from some proposal

sampling distribution is a common task is Bayesian computation. To be more explicit, we now view

the observed data (xi, yi, zi)
n
i=1 as pseudo Monte Carlo draws from their joint sampling distribution

psample. To correct for the sample-target difference, these Monte Carlo draws are reweighed by their

importance weights. For treated units zi = 1, the importance weight is the ratio of the target and
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the sampling density:

ri =
ptarget,1

psample
=

p(yi |xi, zi)p(xi)1(zi = 1)
p(yi |xi, zi)p(xi)p(zi |xi)

=
1(zi = 1)

p(z = 1|xi)
=

1(zi = 1)
e(xi)

, (4.3)

and likewise ri =
1(zi=0)
1−e(xi)

for control units, where e(x) B p(z = 1|x) often called the propensity

score at x. The importance sampling estimate is the usual weighting estimate in causal inference,

ATE ≈
∑

i:zi=1 yie(xi)
−1∑

i:zi=1 e(xi)
−1 −

∑
i:zi=0 yi(1 − e(xi))

−1∑
i:zi=0(1 − e(xi))

−1 . (4.4)

In practice these probabilities are estimated from data, so practitioners are actually using inverse

estimated probability weighting.

The purpose of the current chapter is not to reinvent, or restrict estimation to, propensity

score weighting. Rather, we are addressing the consequence of the covariate imbalance. Form the

importance sampling perspective, the only assumption for a (self-normalized) importance sampling

estimate to be (asymptotically) unbiased is the common support of p(x |z = 1) and p(x |z = 0), this

is equivalent to the probabilistic assumption in causal inference, 0 < pi(zi = 1|xi) < 1. The law of

large numbers ensures the weighted estimates converges to the true ATE if the sample size from

both treated and control group is large enough.

However, unbiasedness does not ensure a finite sample accuracy of the treatment effect estimate.

In randomized trials such that p(z |x) = p(z) thereby psample = ptarget, the sample average of y |z = 1

minus y | = 0 forms an unbiased estimate of ATE. As a Monte Carlo estimates, this sample average

possesses
√

n convergence rate regardless of dimensions. In importance sampling scheme, there

is extra sampling variation in r . Only when both Epsample r2 < ∞ and Epsample(ry)
2 < ∞ hold, the

central limit theorem holds and brings square root convergence rate (Geweke, 1989). Furthermore,

when the third moments is finite, then the Berry-Esseen theorem states faster convergence rate

to normality (Chen and Shao, 2004). More generally, the finite sample convergence rate of the

ATE estimates, viewed as an importance sampling estimate depended on the number of existing

moments of importance ratios (Cortes et al., 2010; Chatterjee and Diaconis, 2018; Vehtari et al.,
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2019b).

4.3 Proposed covariate assessment

For ATE estimates, the target distribution is the marginal distribution of covariates

p(x) = π1p1(x) + π0p0(x), π1 = Pr(z = 1), π0 = Pr(z = 0).

It is the mixture of covariate distribution in treated and control groups,

p1(x) = p(x |z = 1), p0(x) = p(x |z = 0).

From a similar argument in the previous two chapters, we propose PSIS-diagnostics for ATE

estimates. Recall a generalized Pareto distribution with shape parameter k and location-scale

parameter (µ, τ) has the density

p(y |µ,σ, k) =


1
σ

(
1 + k

( y − µ
σ

))− 1
k−1

, k , 0.

1
σ

exp
( y − µ
σ

)
, k = 0.

We summarize the method in Algorithm 4. The key diagnostic quantity is the shape parameter k̂

of the importance weights from (4.3), which quantifies the divergence between treated or control

group to the target distribution in ATE estimates.

To extrapolate between p1 and p0 is almost as hard (or easy) to extrapolate from p1 or p0 to the

mixture, as

KL(p| |p0) ≤ π1 KL(p1 | |p0), KL(p| |p1) ≤ π0 KL(p0 | |p1).

KL(p| |p0) ≥ π1 KL(p1 | |p0) + log π0, KL(p| |p1) ≥ π0 KL(p0 | |p1) + log π1.

This equivalence is also verified by that the matching weight has the same distribution of the

propensity score weights, up to a constant location shift: rmatching
i = ei/(1 − ei) = 1/(1 − ei) − 1 =
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Algorithm 4: Diagnostics for covariate imbalance
Result: k̂ and neff diagnostics

1 Estimate the propensity score ê(xi) = P̂(z = 1|xi);
2 Fit the generalized Pareto distribution to the weights {1/ê(xi) : zi = 1} and
{1/(1 − ê(xi)) : zi = 0};

3 Obtain the shape parameter k̂1 and k̂2 respectively;
4 if both k̂1, k̂2 < 0.7 then
5 Pass the diagnostics for ATE, the imbalance is mild;
6 else
7 if one of k̂1 or k̂2 < 0.7 then
8 ATE or ATC is still computable;
9 else
10 Indicate severe non-overlapping and unstable causal estimates;
11 end
12 end
13 if 0 < k̂1, k̂2 < 1 then
14 Compute effective sample size neff for next stage experiment design.
15 end

rweighting
i − 1. The generalized Pareto distribution has already taken into account the location shift,

therefore it makes no difference to examine the weights from inverse propensity score or matching.

Put it in another way, matching and weighting have the same level of extrapolation, which is only

determined by the divergence between p0 and p1 and vice versa. That said, various matching

strategy (the choice of nearest neighbors, distance measures, kernels) improve the accuracy of

estimates by imposing more regularization on the weights.

In addition, the KL divergence is not symmetric. It is possible that only one of KL(p| |p0) and

KL(p| |p1) is small, which will be revealed by different k̂1 and neff for zi/ei and (1 − zi)/(1 − ei).

It provides a practical guidance for whether we replace the estimated ATE by ATT or ATC, and

which of ATT or ATC is more feasible to estimate.

Using k̂ in sample design. Under a variety of assumptions (e.g., Agapiou et al., 2017; Sanz-

Alonso, 2018; Chatterjee and Diaconis, 2018; Vehtari et al., 2019b), the necessary and suf-

ficient sample size to control the importance sampling error is roughly scales linearly with

exp (KL(sampling proposal | | target)) . The most comprehensive results are due to Chatterjee and

44



Diaconis (2018), who show that a larger sample size than this gives tail guarantees for the error in

self-normalized importance sampling, while for smaller sample sizes it is not possible to control

the large deviations.

We can turn this theory into a heuristic bound by assuming that the density ratios r(θ) =

p(θ)/g(θ) exactly form a Pareto distribution with shape parameter k ∈ (0,1) under g, in which case

we can estimate KL(p| |g) by
∫ ∞

1 r log r 1
k r−1/k−1dr = k(1 − k)−2. Hence, the effective sample size

neff = nk̂−1(1 − k̂)2, k̂ ∈ (0,1).

Dimension reduction from propensity scores. Throughput the chapter we have used the phrase

“heavy tail” vaguely. For our purpose it does not matter if the distribution refers to the covariates x

or the propensity score distribution. Slightly abusing the notation, we denote e1 to be the distribution

of propensity scores of treated units e1 = Pr(z = 1|x), x ∼ p1 and e0 as the distribution of propensity

scores of control groups e0 = Pr(z = 1|x), x ∼ p0. It is easy to show that KL divergence between

p1(x) and p0(x) (as two densities) is the same as the KL divergence between the distribution of the

propensity score e1 and e2. It is equivalent to conduct importance sampling on x, or on propensity

scores e(x), or on any of their bijective transformations. The following descriptions are equivalent:

1. k1 is large

2. The covariate distribution in the treated group Xt has a heavier tail than the control group Xc;

3. The propensity score distribution in the treated group has a heavier tail than the control group;

4. The propensity score ratio 1/(1 − e) has a heavy right tail;

5. The matching ratio e/(1 − e) has a heavy right tail.

4.4 Related work

There is a rich literature on imbalance assessment (for a review, see Imbens and Rubin, 2015,

Chapter 13). Many existing methods that are aimed to assess the overlap in covariate distributions

largely rely on normal approximation of x |z. For individual predictors, it is common in applied
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research to report the sample mean and standard deviation of each coordinate of x in the treated

and control group, denoted by µt , µc, σt , σc respectively, which further computes the normalized

difference

∆ =
µt − µc√
(σ2

t + σ
2
c )/2

Simply running a t test is misleading as we know a priori that the control and treated groups do not

have the same distributions. Other discrepancies include the ratio of the standard deviation

Γ = log(σt/σc),

and the tail-quantile difference,

π0.05
c = 1 − F̂c

(
F̂t(0.95)

)
+ F̂c

(
F̂t(0.05)

)
, π0.05

t = 1 − F̂t

(
F̂c(0.95)

)
+ F̂t

(
F̂c(0.05)

)
where F̂c and F̂t are the empirical distribution functions in control and treated group respectively.

For multivariate distribution, Imbens and Rubin (2015) recommend to examine the imbalance

of the log odd of propensity ratios in the treated and control group

l(x) = log
e(x)

1 − e(x)
,

for the reason that the log odds are “more likely to be approximately normal distributed.” Imbens

and Rubin (2015) further introduce an overlap measure by simply counting the number of controlled

(treated) units within a small log propensity score ratio neighbor of every treated (controlled) units.

Again, the choice of distance measure and the construction of nearest neighbors can be ad hoc.

Shalit et al. (2017) and Sundin et al. (2019) quantified the effect of imbalance on individual

treatment effect by the integral probability metric, a generalization of f -divergence,

sup
g∈G

��∫
X

g(x)
(
p(x |z = 1) − p(x |z = 0)

)
dx

��,
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where G is some function family consisting of functions g : X → R, in part because this metric

can be computed directly using the empirical distributions (Sriperumbudur et al., 2012).

The main bound their approaches address is

| |

∫
X

Ey |x,z L(y, f (x, z))p(x |1 − z)dx −
∫
X

Ey |x,z L(y, f (x, z))p(x |z)dx | |.

From importance sampling perceptive, this is the difference between the target integral and the

Monte Carlo integral, Ep f − Eq f , which is only relevant if we ignore all the casual context and

treat analysis as if in randomized trials. Furthermore, this metric varies by feature representation,

over which the method also optimize. As a comparison, the proposed k̂ is a intrinsic quantity in

the population, not depending on feature transformation. Besides, a directed-metric is more useful

than an undirected-distance because we can sepearte the task of ATT and ATC.

In short, there are a few reasons why existing imbalance metrics are not perfect for practical

data analysis. First, the scale of divergence measures are hard to interpret. It is often subjective

to determine how large the discrepancy in the mean difference or the integral probability metric is

practically too big to disable causal estimates. Second, unlike a hypothesis where it is enough to

find a test statistic along which the covariate distribution exhibits difference, here we know that they

are different but want to quantity the imbalance that has impact on the treatment effect estimate.

For example, the mean difference or integral probability metric is not invariant under an affine

transformation. Third, practical data analysis often include as many pre-treatment covariates as

possible (or at least attempt to if the imbalance if not a concern). Some inputs could be weakly

related to the outcome. If we know some dimension of x is independent of the outcome y given z,

its imbalance is irreverent to causal estimate. In practice we do not know how predictive each input

is in advance, hence the imbalance quantification becomes misleading when it includes all weakly

predictive inputs, and weight them equally in the sum.

Regularized importance sampling and trimming. In causal inference, various methods has

been introduced to stabilize weighted estimates. Trimming (Crump et al., 2009; Lee et al., 2011)
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discard all units with estimated propensity score outside the “rule of thumb” range [0.1,0.9],

which is computationally equivalent to truncated importance sampling (Ionides, 2008) with a fixed

truncation threshold r > 10. Subclassifications (Rosenbaum and Rubin, 1983, 1984) re-estimates

the propensity score in a small interval, and it is equivalent to replacing the importance ratio by a

piece wise constant function that also trims the tail.

Rubin and Thomas (1992, 1996, 2000) point out that the estimated propensity score rather

than the exact true propensity score leads to “better balance and better causal inference estimates.”

Analogously, researchers in machine learning propose to re-estimate the sampling density even

if it is known and such re-estimation result in “surprising” superefficiency (Liu and Lee, 2016).

From our point of view, to estimate the propensity scores when they are unknown, or to re-estimate

sampling distribution even when it is known, should be viewed as implicit regularization that comes

from the smoothness in regression or kernel density estimation. The superefficiency is just the usual

bias-variance tradeoff, and can also be achieved by other regularization forms of importance ratios

(e.g., Vehtari et al., 2019b).

4.5 Examples

The first example illustrates why the intuitive visual check and commonly used divergence

metrics are often not enough for imbalance assessment. The univariate covariate in control group

x |z = 0 is generated from normal(0,1). In order to compare the difference effect of bulk and tail,

we consider five data generating mechanisms for the treated covariate x |z = 1. The sample size is

balanced such such that ntreated = ncontrol = n. In the first three cases, the treated group has the same

normal tail distribution outside the [0.05,0.95] quantiles, with the bulk modified to be uniform

or piece wise uniform distribution. In the fourth and fifth cases, the bulk density is unchanged

but the tail is modified to be a normal(0,2) outside the [0.1,0.9] quantiles. Similarly in the fifth

case, the tail outside [0.05,0.95] quantiles is a student-t distribution with the degree of freedom 3.

We generate the outcome from y = |x |z + x + normal(0,0.1) that is unknown to the modeler, and

compute the analytic average treatment effect in the population.
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Figure 4.1: In each data generating mechanism, we generate n control units (densities in blue) with
covariate x from standard normal and n treated units (densities in red) from a slightly different
distribution. In the first three manipulation, we keep the tail unchanged and transplant the bulk
part from uniform and piece wise uniform distribution. In the last two cases we change the tail
to an inflated normal or a student t tail. Rows 2–3 are the histograms of the propensity scores in
the treated and control group. On the last row, we vary the sample size n from 50 to 2000, report
the root mean square errors (averaged over 200 repetitions) of the ATE estimates, and print the
estimated k̂, standardized mean difference ∆, and the standard deviation difference Γ. k̂ is a good
indicator of the finite sample error and the convergence rate. For k̂ < 0.5, the convergence rate
(black dots) is nearly as quick as a randomized trial (orange curve).

The first row of Figure 4.1 illustrate the density of covariate distribution in the treated and

control group in cases 1–5. In Rows 2–3, we project the the covariate distribution into propensity

scores, and visualize the histogram of the propensity scores in the treated and control group with

n = 1000 randomly sampled units. A careful visual check can reveal the potential nonoverlapping,

but it is not clear which one is “more balanced” or “closer.” For example, the histogram of bulk

transplant 2 seems to have different shapes, while the tail transplants seemingly overlap enough

except for a tiny right tail region.

To separate the propensity score estimation noise, we use the exact propensity scores in this

subsection. Accordingly the error of the inverse probability weighting estimate constitute the oracle
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learning bound given the population imbalance. In the last rowof Figure 4.1, we compute the relative

root mean square error of the inverse probability weighting estimates (RMSE of ATE estimate/ true

ATE, averaged over 200 independent repetitions) for each experiment with varying sample size.

For comparison, we also compute the errors of the randomized trails that are generated using the

x |(z=1) d
= x |(z=0) ∼ normal(0,1). Besides the PSIS k̂ in treated and control groups separately, we

also compute the divergence measure on absolute moment ∆ = (En |xc | − En |xt |)/

√
(σ2

t + σ
2
c )/2,

and standard deviation difference Γ = log(σt/σc) since the density is symmetric. The finite sample

estimates at n = 1000 are printed above each panel. k̂ captures the actual divergence we are

interested. When only the bulk is manipulated, k̂ is small. The corresponding ATE estimate error

exhibits similar and quick convergence rate—almost identical to the randomized trail result at the

same same size. This static asymptotic behavior is in agreement with square root convergence

bound as long as k̂ < 0.5. In contrast, when the tail is modified, the PSIS k̂ is 1.0 in the inflated

normal tail and infinity in the student-t tail. They are good indicators for the actual large and

slowly-converging ATE error. In contrast, other divergence measures are not informative for the

ATE estimation accuracy. In particular, the f -divergence can large by modifying the buck for its

contribution to the integral, but it is also the region where imbalance is less harmful for there are

enough sample units in both treated and control groups.

Misspecification of propensity scores. So farwe have only considered the exact propensity score,

which will rarely be known in practice. The error of the ATE estimates, can then be decomposed

into two terms

1/n
∑

ri fi − true ATE =
(
1/n

∑
ri fi − 1/nE

∑
ri fi

)
(4.5)

+
(
1/nE

∑
(ri − r∗i ) fi

)
. (4.6)

where ri is the estimated and potentially regularized ratios, and r∗i is the unknown true importance

ratios.

The first term, the Monte Carlo error term (4.5), is the computation instability of the weighting
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estimates, and k̂ still reflects its convergence rate. The second term (4.6), themodelmisspecification

error, which can be evaluated in the propensity score model.

Nevertheless, the following example shows PSIS diagnostic could still be useful in this model

misspecification situation. We consider the same data generating mechanism used in the previous

section

y = x + z |x | + normal(0,0.1).

For the control group, we generate the one-dimensional covariate xc from normal(0,1), whereas

the treated group xt is from normal(θ,1). The sample size in both control and treated group is n.

The average treatment effect in the population can be computed explicitly as E |x |, which will be

compared with the propensity score weighted estimates of ATE.

Firstly, we use the exact propensity score e(x) = normal(x |θ)/(normal(x |0) + normal(x |θ)).

We vary θ from 0.1 to 3, as a larger θ reflects a lager control-treated discrepancy. We also vary the

sample size from 100 to 10000. Figure 4.2 shows the relative root mean square error (RMSE of

estimated ATE / actual ATE) as a function of PSIS-k̂. As expected, a larger k̂ reveals the heavier

tail of the log propensity score and slower convergence rate and therefore a larger RMSE. Just like

the classic divergence measure ∆ and Γ, k̂ itself does not take into account the sample size directly.

However, the distribution with a large k̂ has such a slow convergence rate that any practically

large number of sample size will yield a unreliable estimate. According to the empirical study in

Vehtari et al. (2019b), we recommend to use k̂ < 0.7 as a threshold, although user should be more

conservative if the sample size is small or the propensity score has already been over-smoothed.

On the other hand, such diagnostic quantifies the divergence in the population level, and will be

useful in the design phase for calculating the minimal sample size needed for next experiment or

meta analysis. Vehtari et al. (2019b) provide the empirical formula.

The relative effective sample size is more useful metric for one single trial. It takes into account

the sample size used in the experiment and therefore make studies with different sample size

comparable. We can read the approximate scale of estimation error by (effective sample size)−1/2.

Now, in a more realistic setting we do not know the propensity score. What if we misspecify
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Figure 4.2: We generate the sample size in control group from normal(0,1) and the treated group
from normal(θ,1). θ varies from 0.1 to 3 and sample size varies from 100 to 10000. For each
setting we repeated the simulation 100 times to compute the relative root mean square error of
the inverse probability weighting, and k̂, neff in the proposed PSIS diagnostics. We use the exact
propensity score.

the model p(z |x) with a probit link and use this estimated propensity score in the weighting?

Figure 4.3 shows the result. It has the same pattern as in 4.2, but there is also significant

difference. Experiments with same k̂ has similar RMSE, nearly independent of sample size.
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Figure 4.3: We generate the sample size in control group from normal(0,1) and the treated group
from normal(θ,1). θ varies from 0.1 to 3 and sample size varies from 100 to 10000. For each
setting we repeated the simulation 100 times to compute the relative root mean square error of the
inverse probability weighting, and k̂, neff in the proposed PSIS diagnostics. The propensity score
is estimated from a misspecified probit model.

In this example, themodelmisspecification error term remains a constant (does not decreasewith
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Figure 4.4: We generate the sample size in control group from normal(0,1) and the treated group
from normal(θ,1). The parameter θ varies from 0.1 to 3 and sample size varies from 100 to 10000.
For each setting we repeated the simulation 100 times to compute the relative root mean square
error of the inverse probability weighting, and k̂, neff in the proposed PSIS diagnostics. The
propensity score is estimated from the correct logit model.

even larger sample size) when there is symmetric bias in propensity score estimatesE r(x)−E r∗(x).

This constant error offsets the difference in sample size. Furthermore, that bias term is more

significant in the tail– simply because we use the inverse propensity score 1/e, even a constant

bias in the logit or probit scale leads a larger bias in the tail of 1/e. For this concern, k̂ quantifies

how heavy the tail region is, and a heavy tail amplifies the bias for more mass concentration. As

a whole, k̂ diagnostics appear even more distinguishable for ATE estimates. Again, we observe a

sharp increase at k > 0.7, consistent with previous recommendation.

Finally, Figure 4.4 presents the result under the correct propensity score model (logit link). It

is similar to Figure 4.2. Roughly speaking, for simple logistic regression, the epistemic uncertainty

in propensity score shrinks as fast as n−1/2, therefore the computation instability term, whose

convergence rate is approximately n−(1−k) for k >0.5, dominates the final error.

To sum up, k̂ diagnoses the tail shape of weighting ratios. A heavy tail either directly leads to

slower convergence rate, or amplifies the model misspecification error, both of which contribute to

mean square error of ATE estimates.
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Part II

Expanding a model

by tempering and path sampling
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Chapter 5. The challenge of estimating the normalizing constant1

“If an infinite sum is what awaits us
Of days so white and nights so dark,

Then we already are the past we’ll be.”

—Jorge Luis Borges

In Bayesian computation, the posterior distribution is often available as an unnormalized density

q(θ). The unknown and often analytically-intractable integral
∫

q(θ)dθ is called the normalizing

constant of q. Many statistical problems involve estimating the normalizing constant, or the ratios

of them among several densities. For example, the marginal likelihood of a statistical model with

likelihood p(y |θ) and prior p(θ) is the normalizing constant of p(y |θ)p(θ): p(y) =
∫

p(θ, y)dθ. The

Bayes factor of two models p(y |θ1), p(θ1) and p(y |θ2), p(θ2), requires the ratio of the normalizing

constants in densities p(y, θ1) and p(y, θ2).

Besides, we are often interested in the normalizing constant as a function of parameters.

In a posterior density p(θ1, θ2, . . . , θd |y), the marginal density of coordinate θ1 is proportional

to
∫
. . .

∫
p(θ1, θ2, . . . , θd |y)dθ2, . . . , dθd , the normalizing constant of the posterior density with

respect to all remaining parameters. Accurate normalizing constant estimation means we have well

explored region containing most of the posterior mass, which implies that we can then accurately

also estimate posterior expectations of many other functionals.

In simulated tempering and annealing, we augment the distribution q(θ) with an inverse tem-

perature λ and sample from p(θ, λ) ∝ q(θ)λ. Successful tempering requires fully exploring the

space of λ, which in turn requires evaluation of the normalizing constant as a function of λ:

z(λ) =
∫

q(θ)λdθ. Similar tasks arise for model selection and averaging on a series of statistical

models indexed by a continuous tuning parameter λ: p(θ, y |λ). In cross validation, we attach to

each data point yi a λi and augment the model p(yi |θ)p(θ) to be q(λ, y, θ) =
∏

i p(yi |θ)
λi p(θ), such

that the pointwise leave-one-out log predictive density log p(yi |y−i) becomes the log normalizing

1This chapter is a slight modified version of Yao et al. (2020a).
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constant log
∫

p(yi |θ)p
(
θ | y, λi = 0, λ j = 1,∀ j , i

)
dθ. We will revisit some of these problems in

more depth in chapter 6 for they stand alone important statistical problems.

In all of these problems we are given an unnormalized density q(θ, λ), where θ ∈ Θ is a

multidimensional sampling parameter and λ ∈ Λ is a free parameter, and we need to evaluate the

integrals at any λ,

z : Λ→ R, z(λ) =
∫
Θ

q(θ, λ)dθ, ∀λ ∈ Λ. (5.1)

z(·) is a function of λ. For convenience, throughout the chapter we will call z(·) the normaliz-

ing constant without describing it is a function. We also use notations q and p to distinguish

unnormalized and normalized densities.

In most applications, it is enough to capture z(λ) up to a multiplicative factor that is free of λ,

or equivalently the ratios of this integral with respect to a fixed reference point λ0 over any λ:

z̃(λ) = z(λ)/z(λ0), ∀λ ∈ Λ. (5.2)

5.1 Easy to find an estimate, prone to extrapolation

Two accessible but conceptually orthogonal approaches stand out for the computation of (5.1)

and (5.2). Viewing (5.1) as the expectation with respect to the conditional density θ |λ ∝ q(θ, λ),

we can numerically integrate (5.1) using quadrature, where the simplest is linearly interpolation,

and the log ratio in (5.2) can be computed from first order Taylor series expansion,

log
z(λ)
z(λ0)

≈ (λ − λ0)
d
dλ

log z(λ)|λ=λ0 ≈ (λ − λ0)
1

z(λ0)

∫
Θ

(
d
dλ

q(θ, λ)|λ=λ0

)
dθ. (5.3)

In contrast, we can sample from the conditional density θ |λ0 ∝ q(θ, λ0), and compute (5.1) by

importance sampling,

z(λ)
z(λ0)

≈
1
S

S∑
s=1

q(θs, λ)

q(θs, λ0)
, θs=1,··· ,S ∼ q(θ, λ0). (5.4)
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How should we choose between estimates (5.3) and (5.4)? There is no definite answer. For

example, in variational Bayes with model parameter θ and variational parameter λ, the gradient

part of the (5.3) is the score function estimator based on the log-derivative trick, while the gradient

of (5.4) under a location-scale family in q(θs |λ) is called the Monte Carlo gradient estimator using

the reparametrization trick—but it is in general unknown which is better.

On the other hand, both (5.3) and (5.4) impose severe scalability limitations on the dimension of

λ and θ. Essentially they extrapolate either from the density conditional on λ0 or from simulation

draws from q(θ |λ0) tomake inferences about the density conditional on λ, hence depending crucially

on how close the two conditional distribution θ |λ0 and θ |λ are. Even under a normal approximation,

the Kullback-Leibler (KL) divergence between these densities scales linearly with the dimension

of θ. Thus it takes at least O (exp(dim(θ)) posterior draws to make (5.4) practically accurate. The

reliability of (5.3) is further contingent on how flat the Hessian of z(λ0) is, which is more intractable

to estimate. In practice, these methods can fail silently especially when implemented as a black-box

step in a large algorithm without diagnostics.

Free energy and sampling metastability From the Bayesian computation perspective, the log

normalizing constant is interpreted as the analogy of “free energy” in physics (up to a multiplicative

constant), in line with the interpretation of log q(θ) to be the “potential energy” in Hamiltonian

Monte Carlo sampling.

A potential energy is called metastable if the corresponding probability measure has some

regions of high probability, but separated by low probability connections. Following are two types

of metastability, which both causeMarkov chainMonte Carlo algorithms difficulty moving between

regions. This pathology is often identifiable by a large R̂ between chains and low effective sample

size in generic sampling (Vehtari et al., 2020a).

1. In an energetic barrier, the density is isolated in multiple modes, and the transition probability

is low between modes. In particular, the Hamiltonian—the sum of the potential and kinetic

energy—is preserved in every HamiltonianMonte Carlo trajectory. Hence, a transition across
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Figure 5.1: An illustration of metastability in a bivariate a distribution p(θ1, θ2). (A)With a mixture
of two Gaussian distributions, the energetic barrier prevents rapid mixing between modes. (B)With
a lower inverse temperature λ, the energetic barrier becomes flatter in the conditional distribution
p(θ |λ). (C) With an entropic barrier, the left and right part of the distribution is only connected
though a narrow tunnel, where the Markov chain will behave like a random walk. (D) Adding more
density on the neck increases the transition probability, while leaving p(θ2 |θ1) invariant.

modes is unlikely unless the kinetic energy is exceptionally large.

2. In an entropic barrier, or funnel, the typical set is connected only through narrow and possibly

twisted ridges. This barrier is amplified when the dimension of θ increases, in a way that a

random walk in high dimensional space can hardly find the correct direction.

As the name suggests, we have the freedom to adaptively tune the free energy of the sampling

distribution to remove the metastability therein. The basic strategy is to augment the original

metastable density q(θ) with an auxiliary variable λ, obtaining some density on the extended

space q(θ, λ). For energetic barriers, we can take λ to be an inverse temperature variable, a

power transformation of the posterior density. The energetic barrier is flattened by a lower inverse

temperature. Temperature-based approaches cannot eliminate entropic barriers in the same way,

but the transition is boosted by adding probability mass to the neck region. Figure 5.1 gives a

graphical illustration.

While the normalizing constant is not itself statistically meaningful in sampling from the

augmented density q(θ, λ), computing it serves as an essential intermediate step to constructing

the otherwise intractable joint density. Unlike in usual Monte Carlo methods where the target

distribution is given and and static, here as in an augmented system, we have the flexibility to either

sample θ from some conditional distribution θ |λ at a discrete sequence of λ, or from some joint
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distribution of (θ, λ), treating λ continuously. While continuous joint sampling has a finer-grained

expressiveness for approximating the normalizing constant, it is harder to access the conditional

distribution, which is ultimately what we need when λ is an augmented parameter.

To facilitate the normalizing constant estimation and sampling in metastable distributions, the

full problem contains three tasks.

1. Determining what distribution we should sample θ and λ from.

2. Estimating the normalizing constants efficiently with the generated simulation draws.

3. Diagnosing the reliability of the sampling and estimation, particularly distinguishing between

an informative extrapolation and a noisy random guess, and deciding when and where to

adaptively resample.

In Section 5.2, we introduce a practical solution to all three problems. It extends the idea of path

sampling (Gelman and Meng, 1998) to an adaptive design, which performs both the continuously-

ranged normalizing constant estimation, and direct sampling of the conditional density. Applying

this strategy to metastable sampling, we demonstrate in Sections 6.1 and 6.3 that our proposed

adaptive path sampling method enables efficient sampling in both the energetic and entropic bottle-

necks, and as a byproduct provides normalizing constant estimation and convergence diagnostics.

In Section 5.3, we compare the proposed adaptive sampling to other approaches and show that it is

the infinitely dense limit of these basic strategies (5.3) and (5.4). We experimentally illustrate the

advantage of the proposed methods in Section 6.5. For the purpose of log normalizing constant es-

timation and continuous tempering, we have automated our method in the general purpose software

Stan (Stan Development Team, 2020), and illustrate the practical implementation in the Appendix.

5.2 The general framework of adaptive path sampling

To begin with, we outline an adaptive path sampling algorithm for the general problem of

normalizing constant (ratio) estimation (5.2) in a λ-augmented system q(θ, λ), θ ∈ Θ, λ ∈ Λ. We

further elaborate its application in the context of metastable sampling in Section 6.1 and 6.3.
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Instead of sampling λ directly, we consider a transformed sampling parameter a through

λ = f (a), where the link function f : A → Λ is continuously differentiable and A is the support

of a. For simplicity, we will use A = [0,1] in this section. The actual sampling takes place in the

A × Θ space. If there is an interval I ⊂ A which f maps to a fixed value λI , we can directly

obtain conditional draws from θ |λI by {θi : ai ∈ I}, while not suffering from discretization

errors of the the normalization constant z(λ) =
∫
Θ

q(θ, λ)dθ. We denote the conditional density

πλ := p(θ |λ) = q(θ, λ)/z(λ).

The general algorithm then iterates the following four steps.

Step 1. Joint sampling with invariant conditional densities. To start, we sample S joint

simulation draws (θi,ai)
S
i=1 from a joint density

p(θ,a) ∝
1

c(λ)
q(θ, λ), λ = f (a), (5.5)

where c(λ) is a parametric pseudo prior that is constructed using a series of kernels {γi(λ)}
I
i=1 and

regression coefficients {βc j}
J
j=0 (which will be updated adaptively throughout the algorithm),

log c(λ) = βc0λ +

I∑
j=1

βc jγi(λ). (5.6)

By default, we initialize at a constant function βc = 0, i.e., c(λ) ≡ 1. No matter what the prior c(λ)

is, the conditional distributions θ |a ∝ q(θ, λ = f (a)) in the joint simulation draws are invariant.

This motivates to adaptively changing the pseudo-prior c(λ).

For the joint sampling task (5.5), we will typically be using dynamic Hamiltonian Monte

Carlo (HMC) (Hoffman and Gelman, 2014; Betancourt, 2017) in Stan, which only requires the

unnormalized log density log q(θ, λ) − log c(λ) as input.
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Step 2. Estimating the log normalizing constant from joint draws. Thermodynamic integra-

tion (Gelman and Meng, 1998) is based on the identity

d
da

log z( f (a)) = Eθ | f (a)
(
∂

∂a
log q(θ, f (a))

)
, (5.7)

where the expectation is over the invariant conditional distribution θ |a ∝ q(θ, f (a)).

The ratio of the normalizing constant can be computed by integrating both sides of (5.7). To

do this, we rank all the sampled draws according to their a coordinate: a(1) < a(2) < · · · < a(s∗),

and compute the pointwise gradients

U(i) =

∑
aj=a(i)

∂
∂a log q(θ, f (a))

��
θ j,aj∑

j:aj=a(i) 1
. (5.8)

When there is no tie, the gradient estimate (5.8) essentially approximates the intractable pointwise

integral in (5.7), Eθ | f (as)
(
∂
∂a log (q(θ, f (a))

)
by one Monte Carlo draw ∂

∂a log (q(θ, f (a)) |θs,as, a

common technique in stochastic approximation.

The integral of the right hand side of (5.7) is then computed from these expectation estimates

and the trapezoidal rule. For any a∗ ∈ A, we find its covering interval a∗ ∈ [a(i∗),a(i∗+1)), and

compute its normalizing constant with reference to z( f (0)) by

log
z( f (a∗))
z( f (0))

=

∫ a∗

0

d
da

log z( f (a))da =
∫ a∗

0
Eθ | f (a)

(
∂

∂a
log (q(θ, f (a))

)
da

≈
1
2
(a(1) − 0)(U(1) +U0) +

1
2

i∗−1∑
j=1
(a( j+1) − a( j))(U( j+1) +U( j)) +

1
2
(a∗ − a(i∗))(U(i∗) +Ua∗),

(5.9)

where Ua∗ and U0 are obtained by extrapolating U.

Step 3. Parametric regularization and adaptive updates. When the normalizing constant z(λ)

is only required up to a multiplicative factor, we can assume z( f (0)) = 1, In Section 6.3, we show

how to remove the fixed reference by additional self-normalization when the exact normalizing

constant is needed.
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Equation (5.9) yields an unbiased estimate of log z(·). However, due to the stochastic approx-

imation, (5.9) has nonignorable variance in the region where not enough ai are sampled. For

smoothness and regularization, we approximate log z(·) in some parametric family according to the

L2 distance criterion, min
∫ 1

0

(
log z(λ) −

(
β0λ +

∑J
j=1 β jγ j(λ)

))2
da. We compute this objective

function on a uniform grid with length I: {λ∗i = i/I,1 ≤ i ≤ I}, compute each log z(λ∗i ) using

estimate (5.9), and solve the least squares regression

βz = arg min
β

I∑
i=1

©«log z(λ∗i ) −
©«β0λ

∗
i +

J∑
j=1

β jγ j(λ
∗
i ))

ª®¬ª®¬
2

. (5.10)

This parametric estimation serves two goals. First, it provides us with a functional form for the

prior which we use in the next step to adaptively modify the sampling distribution. Second, the

regression estimate (5.10) smooths finite sample noise in (5.9), which is a bias-variance tradeoff.

We update the functional form of the pseudo-prior βc B βz, or equivalently c(·) B z(·).

Step 4. Diagnostics, stopping condition, and mixing. The marginal distribution of a from the

sampling distribution (5.5) satisfies p(a) = z(λ)/c(λ), λ = f (a). If z(λ) were accurately computed,

one step adaptation c(a) B z(a) would result in a uniform marginal distribution on a, which is the

basis of diagnostics.

Notably, the sampled marginal density p(a) can be estimated as a normalizing constant p(a) =∫
Θ

q(θ, f (a))c−1( f (a))dθ, thus we use a similar estimate as (5.9), only modifying the gradient U(i)

by

Up
(i) =

∑
j:aj=a(i)

∂
∂a

(
log q(θ, f (a)) − log c( f (a))

)���
θ j,aj∑

aj=a(i) 1
. (5.11)

The sample estimates of z(λ) and p(λ) possess finite sample Monte Carlo error and are prone

to over-extrapolation in regions of few a draws. Therefore, we repeat Steps 1–3 until p(a) is

“functionally close enough” to a uniform density. However, running until the complete uniformity

is both in practice inefficient and in theory unlikely to be obtained as the actual log normalizing

constant z() will not fall into the parametric family exactly.
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Our adaptation step z → c can be viewed as an importance sampling procedure from the

joint proposal c( f (a))−1q(θ, f (a)) to the joint target z( f (a))−1q(θ, f (a)). The importance ratio is

r(a) = c( f (a))/z( f (a)) = 1/p(a), which only depends on the marginal of a, and the normalizing

constant estimate (5.9) can be equivalently expressed by the importance sampling estimate z(λ)−1 =

c(λ)−1r(a) when the the marginal p(a) is estimated from path sampling.

To assess the accuracy of the final estimate, we use a Pareto-k̂ diagnostic adapted from Pareto

smoothed importance sampling (PSIS, Vehtari et al., 2019b). We fit the importance ratio ri =

1/p(ai) in a generalized Pareto distribution, estimating its right tail shape parameter k̂. As already

applied in other computation diagnostics (e.g., Yao et al., 2018b), k̂ quantifies the Renyi-divergence

between the sampled density c(a)−1q(θ,a) and the target z(a)−1q(θ,a) that has a uniform marginal

on a.

When k̂ < 0.7, the normalizing constant z(λ), viewed pointwise as an importance sampling

estimate, is ensured to be reliable with a practical number of simulation draws, and we terminate

sampling. The k̂ threshold can be chosen smaller to make the decision more conservative.

Otherwise, we perform further sampling with the updated pseudo prior c. Crucially, the path

sampling estimate (5.9) is always unbiased for the log normalization constant under any sampling

distribution as long as θ |a is left invariant. Thus, we save all previously sampled draws {as, θs}, and

mix them with the newly sampled draws in the normalizing constant estimation (5.9) during each

adaption. This remixing step corresponds to a divide-and-conquer strategy that we will further

exploit to sample from a metastabe distribution with entropic barriers (Section 6.3).

5.3 Related work: from importance sampling to bridge sampling to Rao-Blackwellization

to path sampling to adaptive path sampling

There is a large literature on methods for computing or approximating normalizing constants

that cannot be evaluated in closed form. We refer to Gelman and Meng (1998) and Lelievre et al.

(2010) for comprehensive reviews on normalizing constants.

63



Adaptive importance sampling. The basic importance sampling strategy (5.4) treats the nor-

malizing constant z(λ) as a conditional expectation with respect to the random variable θ, whose

distribution is parameterized by λ. Chatterjee and Diaconis (2018) proved that under certain con-

ditions that the number of simulation draws required for the importance sampling estimate (5.4) of

z(λ) to have small error with high probability is roughly exp(KL(πλ | |πλ0)).

When this KL gap is too large, a remedy is to add more discrete ladders λ0 < λ1 < . . . <

λK = λ, and use adaptive importance sampling. At the (j+1)-th time, we sample θ j1,...,jS from πλj ,

and the importance sampling estimate gives zλj+1/zλj = 1/S
∑S

i=1 q(θ j,i, λ j+1)/q(θ ji, λ j). The final

estimation of normalizing constant is

zλK
zλ0

=

k−1∏
j=0

zλj+1

zλj
≈

k−1∏
j=0

(
1/S

S∑
i=1

q(θ ji, λ j+1)/q(θ ji, λ j)

)
. (5.12)

Bridge sampling. The importance sampling is restricted to sampling from the conditional density

θ |λ for a constant λ at each run—a slice in the (θ, λ) joint space. Bridge sampling simultaneously

draws θ j1,...,jSj from πλj and θ( j+1)1,...,( j+1)Sj+1 from πλj+1 . Given a sequence of integrable function

{α j(·)}
J
j=1, we estimate the ratio of normalizing constant via the bridge sampling (Meng andWong,

1996) estimate:

zλj+1

zλj
=

Eπλj
(
α j(θ)q(θ, λ j+1)

)
Eπλj+1

(
α j(θ)q(θ, λ j)

) ≈ ∑Sj

i=1 q(θ ji, λ j+1)α j(θ ji)/Sj∑Sj+1
i=1 q(θ( j+1)i, λ j)α j(θ( j+1)i)/Sj+1

. (5.13)

Under some independence assumptions, the optimal choice of α j(θ) to minimize the variance

of multistage bridge sampling estimate (5.13) is αopt
j (·) =

nj z−1
j∑

m nmz−1
m qm(·)

(Meng and Wong, 1996;

Shirts and Chodera, 2008).

Multistate Bridge sampling and Rao-Blackwellization. When some λk are rarely seen, the

inverse probability weighting is unstable. Motivated by the identity p(λ) = Eθ p(λ |θ), Carlson

et al. (2016) proposed a Rao-Blackwellized (Robert and Casella, 2013) estimate of the normalizing

constant, essentially replacing the empirical marginal probability mass function Pr(λ) by a Rao-
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Blackwellized estimate Pr(λ = λk) =
∑S

s=1 (q(θs, λk)/
∑

k ′ q(θs, λk ′)). We now show that this this

estimate is equivalent to multistate bridge sampling:

Theorem 5.1 (equivalence between Rao-Blackwellization and multistate bridge sampling). The

Rao-Blackwellized estimate can be derived from multistate bridge sampling (5.13) by choosing

αi j(θ) =
n j ẑ−1

j∑
m c−1

m qm(θ)
,

which is further an empirical estimate of the optimal bridge sampling functions.

Proof. Let qi = q(θ |λi) be the unnormalized density at a sequence of temperatures λi, i = 1, . . . I,

and Z = (z2, . . . , zI)
T the (ratio of) normalizing constants (assuming z1 = 1). With an arbitrary list

of Θ→ R functions αi,j , we define A an (I − 1) × (I − 1) matrix, and B an (I − 1) vector:

A =



a2 −b23 . . . −b2I

−b32 a3 . . . −b3I

. . . . . . . . . . . . . . . . . . . . .

−bI2 −bI3 . . . aI


, B =



b21

b31
...

bI1


,

with each entry a, b a shorthand for

bi j = Eπj (αi jqi), ai =

I∑
j=1,j,i

Eπi (αi jq j).

In discrete tempering, each time we sample from q(θ, λ) = 1
c(λ)q(θ, λ). Since λ is discrete here, we

denote cm = c(λm) and qm = q(θ, λ = λm), both of which are given in each adaptation.

We rearranged the multistate bridge sampling estimates zib ji = z j bi j, ∀i, j into a matrix form

AZ = B. Shirts and Chodera (2008) showed that the optimal sequence of functions that minimizes

the variance of the estimated Z is αi j(θ) = n j z−1
j /

∑
m nmz−1

m qm(θ), which in practice, starting from

some initial guess ẑ, this can be approximated by αi j(θ) = n j ẑ−1
j /

∑
m nm ẑ−1

m qm(θ).

Denote S(θ) =
∑

m cmqm(θ), then αi j(θ) =
nj ẑ−1

j

S(θ) . We estimate the matrices A and B by their
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empirical means.

âi ẑi = n−1
i

ni∑
k=1

ẑi

I∑
j=1,j,i

αi j(θi,k)q j(θi,k) = ẑin−1
i

ni∑
k=1

∑I
j=1,j,i n j ẑ−1

j q j(θ)

S(θi,k)
= ẑi −

ni∑
k=1

qi(θi,k)

S(θi,k)
.

I∑
j=1,j,i

b̂i j ẑ j =

I∑
j=1,j,i

ẑ jn
− j
i

nj∑
k=1

n j ẑ−1
j qi(θ j,k)

S(θ j,k)
=

I∑
j=1,j,i

ni∑
k=1

qi(θ j,k)

S(θ j,k)
.

Combining these two parts, we obtain the final estimate

zi =

I∑
j=1,j,i

ni∑
k=1

qi(θ j,k)

S(θ j,k)
+

ni∑
k=1

qi(θi,k)

S(θi,k)
=

N∑
m=1

qi(θm)∑I
j=1 c jq j(θm)

,

which is identical to the Rao-Blackwellized estimates.

Non-equilibrium methods. The importance sampling and bridge sampling estimates requires

n j > 1 simulation draws from each θ |λ j . In non-equilibrium methods, we start by a simulation

draw θ0 from equilibrium θ |λ0, evolve it through a sequence of transitions that keeps πk, k = 1, . . . ,K

invariant at each step, and collect one non-equilibrium trajectory (θ0, . . . , θK−1). Notably, we do

not draw from πK directly, and θ j, j ≥ 1 is in general not π j distributed. We still obtain an unbiased

estimate (Jarzynski, 1997; Neal, 2001):

zλK
zλ0

= E (expW(θ0, . . . , θK−1)) , W(θ0, . . . , θK−1) = log
k−1∏
j=0

q(θ j, λ j+1)

q(θ j, λ j)
. (5.14)

where the expectation is over all initial draws and trajectories.

Thermodynamic integration. The path sampling estimate (5.9) is unbiased for the log normal-

izing constant (ratios) log z, while other importance sampling based algorithms are unbiased in the

scale of the normalizing constant z. In our adaptive procedure, since we update the logarithm of the

joint density and compute its gradient in the next Hamiltonian Monte Carlo run, the unbiasedness

of log z is more relevant. In statistical physics, theW quantity in (5.14) is interpreted as virtual

work induced on the system. Jensen’s inequality leads to EW ≥ log z(λK) − log z(λ0). This is
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a microscopic analogy of the second law of thermodynamics: the work entered in the system is

always larger than the free energy change, unless the switching is processed infinitely slow, which

corresponds to the thermodynamic integration.

The thermodynamic integration equality (5.7) was first introduced by Kirkwood (1935) in

statistical physics, and further refined or applied by Ogata (1989); Neal (1993); Gelman and Meng

(1998); Rischard et al. (2018) in the context of normalizing constant computing. However, the

typical use of thermodynamic integration requires discretizing λ into a fixed quadrature ladder

λ1 < . . . < λK , on which the gradient U j is computed using many draws from θ |λ j . These ladders

involve further manual tuning (Schlitter, 1991; Blondel, 2004) to control the variance of U, and the

discretization error (bias) in the numerical integration is non-vanishing in a finite discrete ladder,

to a large extent compromising the unbiasedness property of log z estimation.

Our present chapter also extends the general discussion of path sampling in Gelman and Meng

(1998), with added steps on parametric regularization, iterative adaptations, and diagnostics. Es-

sentially we use stochastic approximation (Robbins and Monro, 1951) to compute the the pointwise

gradient (5.7). We employ a carefully designed link function f that allows direct access to simula-

tion draws from some chosen conditional distributions θ |λ, while also eliminates the discretization

bias. These extensions facilitate the continuous tempering scheme by providing direct access to

draws from the target distribution.

Path sampling as the continuous limit of importance sampling and Taylor expansion. In

Section 5.1, we describe two separate approaches: the importance sampling estimate (5.4) and

Taylor series expansion (5.3). They reach the same first order limit when the proposal is infinitely

close to the target. That is, for any fixed λ0, as δ = |λ1 − λ0 | → 0,

1
δ

logEλ0

(
q(θ |λ1)

q(θ |λ0)

)
=

∫
Θ

∂

∂λ
log q(θ |λ0)p(θ |λ0)dθ + o(1) =

1
δ
Eλ0

(
log

q(θ |λ1)

q(θ |λ0)

)
.

The path sampling estimate
∫ λ1
λ0

∫
Θ

∂
∂λ log q(θ |λl)p(θ |λl)dθdλ that we employ is the integral of the

dominate term in the middle. In this sense, path sampling is the continuous limit of both the
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importance sampling and the Taylor expansion approach.

More generally, thermodynamic integration (5.7) can be viewed as the K → ∞ limit of

the equilibrium bridge sampling, Rao-Blackwellization, and annealed importance sampling, but

without having to fit the conditional model infinitely many times. We will further elaborate in the

simulating tempering context that such continuous extension is desired, as otherwise the necessary

number of interpolating temperatures K soon blows up when the dimension of θ increases.

Theorem 5.2 (Path sampling as the continuous limit of importance sampling and Taylor expansion).

Path sampling can be viewed as the continuous limit of bridge sampling (5.13) and annealed

importance sampling (5.14) when the intermediate states (0 = λ0 < λ1 < . . . < λL+1 = 1) is

infinitely dense, such that maxl δl → 0, where δl = λl+1 − λl is the neighboring spacing.

Proof. Bridge sampling and annealed importance sampling work in the scale of the normalizing

constant z, essentially computing z(1)/z(0) by
∏L

l=0 (z(l + 1)/z(l)), or equivalently, log z(1)/z(0) =∑L
l=0 log z(l) − log z(l − 1). Further, both bridge sampling and annealed importance sampling are

based on importance sampling identity (with potential refinement of more intermediate states in

bridge sampling):
z(l)

z(l − 1)
=

∫
Θ

q(θ |λl+1)

q(θ |λl)
p(θ |λl)dθ.

In general, logE (q(θ |λl+1)/q(θ |λl)) , E (log q(θ |λl+1) − log q(θ |λl)), where the expectation is

taken over θ ∼ p(θ |λl). However, such difference will be be approaching zero when we have fine

ladder.

For a fixed λl , let

Gl(ξ) = log
∫
Θ

q(θ |λl + ξ)

q(θ |λl)
p(θ |λl)dθ.

It satisfies Gl(0) = 0, and its derivative is

G′l(ξ) =
d

dξ

(
log

∫
Θ

q(θ |λl + ξ)

q(θ |λl)
p(θ |λl)dθ

)
=

z(l)
z(l + ξ)

(∫
Θ

∂

∂ξ

q(θ |λl + ξ)

q(θ |λl)
p(θ |λl)dθ

)
.
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At ξ = 0, G′l(0) becomes identical to the path sampling gradient in (5.7), as

G′l(0) =
∫
Θ

∂

∂λ
log q(θ |λl)p(θ |λl)dθ.

By Taylor series expansion, Gl(ξ) = Gl(0) + ξ
∫
Θ

∂
∂λ log q(θ |λl)p(θ |λl)dθ + o(ξ),Hence, in the

limit as maxl δl → 0, the importance sampling based estimate can be rearranged into

log z(1)/z(0) =
L∑

l=0
Gl(δl)

=

L∑
l=0

(
δl

∫
Θ

∂

∂λ
log q(θ |λl)p(θ |λl)dθ + o(δl)

)
=

∫ 1

0

∫
Θ

∂

∂λ
log q(θ |λl)p(θ |λl)dθdλ + o(1),

where the dominant term equals the path sampling estimate, and the remainder approaches 0 in the

dense limit δl → 0,∀l since
∑

l δl = 1.

5.4 Marginal density estimation: No, we do not need kernel density estimation for MCMC

samples

Markov chain Monte Carlo (MCMC) methods in Bayesian computation are often framed as

a method for computing integrals, so that the simulation draws are merely an intermediate step

to evaluate some expectation with respect to the posterior distributions, whose convergence and

mixing behavior is well studied in various ergodic theories.

For statisticians there is an extra step to extrapolate sample to the population, as adjusting for

finite sample variation (in data) is standard practice: We fit hierarchical models to grouped data even

when the sample average within each group is unbiased and consistent. We use regression to adjust

covariate mismatch in randomized trials even when treatment is randomly assigned. Likewise,

here we would like to make a robust inference on the posterior distribution, with a hope to reduce

variance from finite Monte Carlo draws (O’Hagan, 1987).
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In this present chapter, we focus on one particular quantity, the marginal density: the normal-

ization constant of the joint density, integrating out all remaining dimensions. Given simulation

draws (θ1, . . . , θS), where each draw θs ∈ Rd is a d-dimension parameter θs = (θs1, . . . , θsd), we

would like to know the marginal density of a particular parameter. Without loss of generality we

consider the first coordinate

π(θ1) =

∫
Rd−1

p(θ)dθ2 . . . dθd .

We have suppressed the notation dependence on data y. It is possible to extend the discussion

to a low dimensional joint density but we will start by one dimension. We often know the joint

density q(θ1, . . . , θd) ∝ p up to a normalization constant.

Related methods. Kernel methods are widely used non-parametric density estimate of the form

π̂1(θ
∗) =

1
Sh

S∑
s=1

K(
θ∗ − θs1

h
).

The kernel methods are applicable even when the density form of q is not known. On the other

hand, it involves intensive manual tuning in the kernel choice K and bandwidth h. In addition, it

ignores all other dimensions θ2, . . . , θd unused.

Rao-blackwised kernel density estimation is based on the identity p(θ1) = E p(θ1 |θ−1). If

we know p(θ1 |θ−1) exactly–including the normalization constant, we can compute the conditional

marginal density estimator (Gelfand et al., 1992b),

π̂1(θ
∗) =

1
S

S∑
s=1

p(θ∗ |θ−1s)

When the conditional density is unknown, Gelfand and Smith (1990) suggested to estimated it first

from kernel densities.

π̂1(θ
∗) =

1
S

S∑
s=1

E πknrnel(θ1 |θ−1)

Importance weighted conditional density estimator (Chen, 1994) does not require the closed form

70



conditional density. Using the identity

π(θ∗1) =

∫ p(θ∗1, θ2, . . . , θS)w(θ1 |θ−1)

p(θ1, . . . , θd)
p(θ1, . . . , θd)dθ1 . . . dθd

where w(θ∗1 |θ−1) is an arbitrary conditional density that we can evaluate exactly. The sample

estimator reads

π̂(θ∗1) = 1/S
S∑

s=1
w(θs1 |θs,−1)

q(θ∗1, θs2 . . . , θsd)

q(θs1, θs2, . . . , θsd)

In practice,w(θ∗1 |θ−1) is often chosen to approximate the the unknown conditional density p(θ∗1 |θ−1).

Proposed method: path sampling estimates. Applying the general path sampling estimate to

the marginal density is straightforawd. We summarize the method in Algorithm 5. Here we assume

θ∗1 > θ(s/2)1 and the other half is symmetric. The output is the unnormalized density, which is

itself useful for many tasks. When we need the exact marginal density, there is an extra step of

self-normalization.

Algorithm 5: Estimate marginal density from MCMC draws and path sampling
Input: S simulation draws (θsd)Ss=1d = 1D, unnormalied joint desntiy p(θ1, . . . , θD), the

location at which to evaluate the marginal density θ∗1
Result: unnormalized marginal density q(θ1)

1 sorting. Sort simulation draws according to the coordinate that we want to evaluate the
marginal density. Denote θ(1)1 < θ(2)1 · · · < θ(S)1 to be the sorted unique value of θ1;

2 stochastic approximation. Compute gradients Ui(θi1) =
∂
∂θ1

log p(θ1, θ2, . . . , θd)|θ(s)1,...,θ(s)d ;
3 reference point. Compute θ0 B Median (θs1) = (θ(s/2)1);
4 quadrature. Locate θ∗1 in the samples: θ(i∗) ≤ θ∗1 < θ(i∗+1) and compute

log q(θ∗1) := log π(θ∗1)

π(θ0)
=

∑i∗−1
i=s/2

Ui+Ui+1
2 (θ(i+1)1 − θ(i)1) +

Ui∗+Ui∗+1
2 (θ∗1 − θ(i∗)1).

Examples To verify the methods, we start by a multivariate normal example. Suppose the

posterior θ is from θ ∼ MVN(µ,Σ),whose unnormalzied density is log q(θ) = −1
2 (θ−µ)

TΣ−1(θ−µ).

The true marginal distribuion of the first dimension π(θ1) is N(µ1,Σ11). In the simulation we fix

σ11 = 1 and µ = 0. What enters the path sampling computation is the distribution of
∑d

i=1 τ1i(θsi).

Increasing the dimension d is operationally equivalent to relabeling
∑d

i=1 τ1i(θsi) as θ2, which still

71



true log marginal

es
tim

at
io

n 
of

 lo
g 

m
ar

gi
na

l

−4 −2 0

−4

−2

0

1000 independent draws

sample mean = 0.02 
   sd= 1.03

kernel
 estimate

path sampling

true log marginal
−4 −2 0

−4

−2

0

100 independent draws

sample mean = 0.06 
   sd= 0.95

true log marginal
−4 −2 0

−4

−2

0

20 independent draws

sample mean = −0.06 
   sd= 1.34

true log marginal
−4 −2 0

−4

−2

0

acceptance rate= 0.26 
  tail ess= 242

sample mean = −0.02 
   sd= 0.88

true log marginal
−4 −2 0

−4

−2

0

acceptance rate= 0.1 
  tail ess= 44

sample mean = 0.02 
   sd= 1.01

true log marginal
−4 −2 0

−4

−2

0

acceptance rate= 0.07 
  tail ess= 50

sample mean = 0.08 
   sd= 1.12

Figure 5.2: When the margin of interest is independentg of others, the path sampling estimation
of log marginal density is exact even with a few posterior draws. The empirical density estimation
from kernel methods can have various pitfalls even in one dimension, especially in the tail regions
and when the Markov chain acceptance rate is low.

admits a jointly multivariate normal density. Therefore, in the next experiment, we fix d = 2 and

vary σ2: the marginal standard deviation of θ2 to simulate the dimension effect. Evidently, this

experiment setting is equivalently for path sampling to have an effective dimension d = 1 + σ2
2 .

When θ1 is uncorrelated with other dimensions, us = σ
−2
1 (θs1 − µ1). Further assuming σ1 = 1

and µ1 = 0, the path sampling estimate becomes

−1/2x2 =

∫
xdx ≈

∑
s

(xs − xs−1)
xs+1 + xs+1

2
.

In contrast, the empirical density estimation from kernel methods has various pitfalls even in

one dimension. In the left three panels of Figure 5.2, we vary the independent sample size S

from 1000 to 20, and compare the estimated log density with the true log marginal density. Even

when S = 1000 the tail estimation in kernel methods is far from accurate, while the path sampling

estimate remains exact. Furthermore, the empirical density estimation suffers from auto correlation

in Markov chains. In panels 4–6 in Figure 5.2, we generate S = 1000 draws from random walk

Metropolis Hastings (warm-up removed). When the acceptance rate is low, there aremany unmoved

points in the simulation draws.

Next, we change the variance of θ2 and the correlation ρ between θ1 and θ2. It is equivalent to

increase the effective dimension to 1+Var(θ2). We repeat this experiment 50 times and compute the

mean squares error (MSE) of the log marginal density estimation
∫
| log π1θ − log π̂1(θ)|

2π1(θ)dθ,
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Figure 5.3: We monitor the log relative efficiency (log ratio of MSE of the log marginal densities
in empirical and path sampling). Path sampling is more efficient until ρ = 0.9. The effective
dimension (deff = σ

2
2 ) plays little role in this comparison.

or the exponential divergence between the true target and the estimated marginal distribution. This

error term varies in order of magnitude when we vary σ2, ρ, and S, hence we define the relative

efficiency:

relative efficiency =
MSE of kernel estimate of log π1
MSE of path sampling of log π1

.

We present the log relative efficiency in Figure 5.3. The path sampling estimate of the marginal

density is more accurate until the correlation is too high. The log relative efficiency of 2 is a

seven-fold decrease in mean squared error.

In the next chapter, wewill apply this better marginal density estimate in the context of simulated

tempering andmultimodal sampling, and wewill further see its benefit over kernel density estimate.
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Chapter 6. Continuous tempering using adaptive path sampling1

“Our growing freedom from and control over nature rely on a series of stable
natural parameters that we tend to take for granted: temperature for example,
. . . we can do what we want only so long as we remain marginally enough.”

—Slavoj Žižek

6.1 Adaptive continuous tempering: Sample from a multimodal distribution

Given a statistical model, we can evaluate the posterior joint density p(θ, y)= prior×likelihood.

In this section, we suppress the dependence on data y and denote the unnormalized posterior

distribution from which we want to sample as q(θ) B p(θ, y), θ ∈ Θ. When q(θ) exhibits severe

multimodality, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between

modes. The state-of-the-art dynamic Hamiltonian Monte Carlo sampler for a bimodal density has

a mixing rate as slow as random-walk Metropolis (Mangoubi et al., 2018), and even optimal tuning

and Riemannian metrics do not help. Although it is possible to evade multimodal sampling using

other post-processing and re-weighting strategies (e.g., Yao et al., 2020b), we aim here to sample

from the exact posterior density.

To ease the energetic barrier between modes, we consider a distribution bridging between the

target q(θ) and a base distribution ψ(θ) through a geometrically tempered path:

p(θ |λ) =
1

z(λ)
q(θ)λψ(θ)1−λ, λ ∈ [0,1], θ ∈ Θ,

where λ is the augmented inverse temperature, z(λ) is the normalizing constant z(λ) =∫
Θ
ψ(θ)λq(θ)1−λdθ, and ψ(θ) is a proper base probability density, typically a simple initial guess

or the prior that is easy to sample from. When ψ is known exactly, z(0) is 1. We will discuss the

1This chapter is a slight modified version of Yao et al. (2020a).
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Figure 6.1: The link function λ = f (a). The flat area between 0.8 and 1.2 allows the continuous
sampler to have a region where there are exact draws from the target distribution.

choice of base distribution later. p(θ |λ) is the target density when λ = 1, and becomes “flattened”

for a smaller λ.

To ensure that the joint sampler can access the base and target distributions with nonzero

probabilities, we define a link function λ = f (a) : [0,2] → [0,1], that is symmetric f (a) = f (2−a),

and flat at two ends: f (a) = 0 when 0 ≤ a ≤ amin or 2 − amin ≤ a ≤ 2, and f (a) = 1 when

amax ≤ a ≤ 2 − amax. This is easy to satisfy using a piecewise polynomial, see Figure 6.1 for an

illustration.

f (a) =



0, 0 ≤ a < amin,

−2( a−amin
amax−amin

)3 + 3( a−amin
amax−amin

)2, amin ≤ a < amax,

1, amax ≤ a < 2 − amax,

−2( 2−amin−a
amax−amin

)3 + 3( 2−amin−a
amax−amin

)2, 2 − amax ≤ a < 2 − amin,

0, 2 − amin ≤ a ≤ 2.

(6.1)

It has a continuous first order derivative. In experiments and default software implementation, we

set amin = 0.1 and amax = 0.8.

An a-trajectory from 0 to 2 corresponds to a complete λ tour from 0 to 1 (cooling) and back

down to 0 (heating). This formulation allows the sampler to cycle back and forth through the space
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of λ continuously, while ensuring that some of the simulation draws (those with a between 0.8 and

1.2) are drawn from the exact target distribution with λ = 1.

To run simulated tempering, we apply the adaptive path sampling (Steps 1–4 in Section 5.2) to

the joint distribution,

p(θ,a) ∝
1

c( f (a))
q(θ) f (a)ψ(θ)1− f (a), a ∈ [0,2], θ ∈ Θ.

During each adaptation, we sample from this joint density, use all existing draws (including

from previous adaptions) to obtain the path sampling estimated log normalization constant log z,

parametrically regularize it, and update log c by log ẑ. Because f () is designed symmetric, z( f (a)) =

z( f (2 − a)), we flip all as to be 2 − as for all as > 2 during log z estimation (5.9).

In addition, the pointwise gradient U in (5.8) is further simplified to be

U(i) =

∑
j:aj=a(i) f ′(a(i))

(
log q(θ j) − logψ(θ j)

)∑
j:aj=a(i) 1

.

If the base density ψ(θ) is chosen to be the prior in the model, this gradient is simply the product

of f ′(a(i)) and the log likelihood.

When the marginal distribution of a is close to uniform, which is monitored by the Pareto-k̂

diagnostic, a path has been constructed from the base to the target. We then collect all draws in the

final adaptation with temperature λ = 1, i.e. {θi | f (ai) = 1}. These are the desired draws from the

target distribution q(θ). As a byproduct, we obtain the log normalization constant estimate log z,

and z(1) equals the marginal likelihood if ψ is chosen as the prior. The full tempering method is

summarized in Algorithm 6.

6.2 On the choice of temperature prior margin

In path sampling, the final marginal distribution of a relies on user specification. By default

we use z(·) → c(·), which enforce a uniform marginal distribution. More generally, by updating
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Algorithm 6: Continuous tempering with path sampling.
Input: ψ(θ),q(θ): the base and (unnormalized) target density;
Output: draws from the target distribution; log z(·): log normalizing constant.

1 Initialize pseudo-prior log c(·) = 0;
2 repeat
3 Sample {as, θs}s=1,...,S from the joint density q(θ,a) = 1

c(a)ψ(θ)
f (a)q(θ)(1− f (a));

4 Flip as B 2 − as all as > 1;
5 Estimate log z(·) by path sampling (5.9), from draws in all adaptations;
6 Estimate log p(·) by path sampling (5.9) and gradients (5.11), from the current

adaptation;
7 Update log c(·) ← log z(·);
8 until Pareto-k̂, the estimated tail shape parameter of the ratios 1/p(as), is smaller than

0.7.;
9 Collecting sample {θi | f (ai) = 1} as posterior draws of target distributions.

c(·) ← z(·)/pprior(·), the final marginal distribution of a will approach pprior. In this section we

discuss the choice of pprior beyond uniformity.

The choice of pprior is subject to a efficiency-robustness trade-off. There are three separate goals

to pursue via prior tuning:

1. Robustness. Because a uniform a ensures the Markov chain has explored the whole temper-

ature space, it is a conservative choice and we use for default in adaptations.

p(a) ∝ 1.

2. Minimal variance of log z. On then other end of the spectrum, we can ask for efficiency.

Gelman and Meng (1998) proved that the generalized Jeffreys prior minimizes the variance

of estimated log normalizing constant.

popt(λ) ∝
√
Eθ |λ U2(θ, λ).

where U(θ, λ) = ∂
∂λ log q(θ, λ).

3. Smooth transition in the joint sampling. From the perspective of successful sampling, we
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could ask for

KL
(
πa, πa+δa

)
≈ constant,

which is related to the constant acceptance rate in discrete Gibbs update (when the discrete

temperature update is restricted to either a one-step jump λk → λk±1 or remain unchanged,

This constant acceptance rate is often used as a tuning target in discrete tempering (Geyer

and Thompson, 1995). The next proposition gives an closed form optimal prior that ensures

this constant KL gap.

Theorem 6.1 (the optimal temperature margin that ensures smooth transition). The desired prior

to achieve a smooth KL gap is

popt(a) ∝
1

f ′(a)

√
Varθ∼p(θ |a)U(θ,a), ∀amin < a < amax.

Proof. It is easy to verify that

KL
(
πa, πa+δa

)
=

∫
log

( πa

πa+δa
)dπa =

1
2
(δa)2

( d2

da2 log z(a) −
f ′′(a)
f ′(a)

d
da

log(z(a))
)
+ o(δa)2.

Assuming we have already sampled from the joint stationary distribution, the gap between two

neighboring order statistics reflects how dense the local density is, i.e., δa ∝ 1/p(a).

Further, the two derivative terms can be expressed by expectations,

d
da

log(z(a)) = f ′(a)Eθ∼p(θ |a)
[
log(ψ) − log(φ)

]
.

d2

da2 log(z(a)) = f ′′(a)Eθ∼p(θ |a)
[
log(ψ) − log(q)

]
+ f ′(a)2Eθ∼p(θ |a)

( (
log(ψ) − log(q)

)2
)

−

(
f ′(a)Eθ∼p(θ |a) (log(ψ) − log(q))

)2
,
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which further simplifies to

d2

da2 log(z(a)) −
f ′′(a)
f ′(a)

d
da

log(z(a))

= f ′(a)2Eθ∼p(θ |a)

( (
log(ψ) − log(q)

)2
)
−

(
f ′(a)Eθ∼p(θ |a) (log(ψ) − log(q))

)2
.

Put all together, the constant KL gap will be achieved by

p(a) ∝(
d2

da2 log z(a) −
f ′′(a)
f ′(a)

d
da

log(z(a))
) 1

2

=
1

f ′(a)

(
Varθ∼p(θ |a)

(
log(ψ) − log(q)

) ) 1
2
.

It is also evident that under this prior, both KL
(
πa, πa+δa

)
and the reserve jump KL

(
πa+δa, πa

)
approximates (different) constants along the trajectory.

Due to dependence on the unknown normalizing constant (and higher orders), these two

efficiency-optimal priors require additional tuning and adaptations. In general, we still prefer

to use the simple uniform margin for robustness. Nevertheless, our method enables any user

specific-prior choice, and in Section 6.5, we illustrate that this adaptively estimated and assigned

efficiency-optimal prior further reduces the variance in implicit divide and conquer scheme.

6.3 Implicit divide and conquer in a metastable distribution

The proposed continuous simulated tempering algorithm in Section 6.1 alleviates metastablility

in energetic barriers. However, tempering is not effective at overcoming purely entropic barriers. In

such cases, instead of augmenting the density with an additional temperature variable, we increase

the density in the bottleneck region to encourage transitions between metastable regions.

In manymodels, it is known that certain marginal distributions are problematic. For example, in

hierarchical models, the centered parameterization effectively creates left truncation on the group

level standard deviation τ, as the sampler hardly enters the τ ≈ 0 region. We denote the joint

distribution q(θ, τ), where τ is the targeted problematic margin and θ is all remaining parameters.
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In other cases, these problematic marginals can be identified by various MCMC diagnostics such

as trace plots.

A conservative solution is to sample τ first from some “wider” proposal distribution, then

sample θ given τ in a Gibbs fashion, and finally adjust for the extra wide proposal by importance

sampling. Here we propose an alternative strategy based on path sampling that does not require the

Gibbs step or any closed form conditional density. The method is readily available using the joint

sampler in Stan.

We first sample some simulation draws from the joint posterior distribution of all parameters

q̃(θ, τ) = q(θ, τ), without requiring a complete exploration. Themarginal density of τ in the original

model, p(τ), is the normalization constant p(τ) ∝
∫
Θ

q(θ, τ)dθ. Hence, we compute log p(τ) over

all sampled τ using path sampling formula (5.9), and modify the sampling distribution by adding

the bias term log q̃(θ, τ) B log q(θ, τ) + log
(
ptarg(τ)/p(τ)

)
, where ptarg(τ) is a desired marginal

density. It can be fixed at any distribution that covers the true posterior marginal of τ, such as its

prior. we discuss other choices in the end of this section.

We then sample new draws (θ, τ) from this adapted sampling distribution. Since we only change

the marginal distribution of τ between adaptations, the conditional densities θ |τ remain invariant.

We mix the new sample with the ones from all previous adaptations and use this cumulative sample

to estimate the aggregated marginal density p(τ) using path sampling at each adaptation. We iterate

the above procedure until we reach approximate marginal convergence to ptarg(τ), which is further

quantified by the Pareto-k̂ diagnostic.

τ is often undersampled in some regions in early iterations. In these regions, the path sampling

estimated p(τ) is less reliable, and the log
(
ptarg(τ)/p(τ)

)
term will cause the sampler to focus

in these undersampled regions on the next iteration (and mostly ignore those regions that were

already sufficiently sampled). This adaptive behavior is what makes this algorithm an implicit

divide-and-conquer-type procedure. Algorithm 7 shows the complete setup for this procedure.

Once we have obtained our estimate of p(τ) from the divide-and-conquer algorithm, we can

use importance sampling to compute marginal posterior expectations and quantiles. Alternatively,
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the posterior expectation of any integrable h(τ) is the normalizing constant of h(τ)p(τ), which we

can evaluate using path sampling and (one-dimensional) quadrature (5.9). In our experiments, we

find the latter approach to be more robust. Furthermore, as a byproduct of our marginal density

estimate, we can evaluate the marginal distribution function out to arbitrary distances. This allows

us to estimate quantiles with extremely small tail probability that may be more difficult to estimate

with Monte Carlo draws.

In addition, the path sampling estimate of p(τ) can be used to diagnose poor sampling behavior

in standard HMC by comparing this estimate with the obtained empirical distribution.

Algorithm 7: Implicit divide-and-conquer scheme for metastable distributions
Input: q(τ, θ): the (unnormalized) joint density; τ: the problematic margin; θ: all

remaining parameters; ptarg(τ): the targeted marginal of τ.
Output: p(τ): marginal density of τ in the original joint density;

1 Initialize sampling distribution q̃ = q(θ, τ); j=1;
2 repeat
3 Generate sample {τs, θs} from q̃(τ, θ) ;
4 Mix these draws with all previous adaptations {τs, θs}

S
s=1;

5 Compute p(τ), the marginal density of q(τ, θ), using path sampling (5.9), gradients
(5.11) and all draws;

6 Smooth estimated p(τ) by regression (5.10), and record p j(·) B p(·);
7 Update sampling density q̃(τ, θ) B q(τ, θ)ptarg(τ)/p(τ);
8 j B j + 1;
9 until The ratios r = {p j(τ)/p j−1(τ)} have k̂ < 0.7.;

The optimal marginal distribution of a. Lastly, the adaptive path sample estimate does not

depend on the marginal distribution of a and λ, so that this marginal distribution is determined

by user specification. By default in (5.9) we use the update rule z(·) → c(·), which enforces

a uniform marginal distribution on a. More generally, by updating c( f (·)) ← z( f (·))/pprior(·),

the final marginal distribution of a will approach pprior. The choice of pprior is subject to a

efficiency-robustness trade-off. Gelman and Meng (1998) showed that the generalized Jeffreys

prior popt(λ) ∝
√
Eθ |λ U2(θ, λ) minimizes the variance of the estimated log normalizing constant,

where U(θ, λ) = ∂
∂λ log q(θ, λ). With a slight twist, in continuous tempering (Section 6.1), we

can prove that another optimal prior popt(a) ∝ 1
f ′(a)

√
Varθ∼p(θ |a)U(θ,a) ensures a smooth KL gap
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between two adjacent tempered distribution in posterior sample KL
(
πa, πa+δa

)
≈ constant for

amin < a < amax (Appendix 6.2). In discrete tempering, this constant KL gap is related to a

constant acceptance rate in the neighboring Gibbs update. However, due to its dependence on

the unknown normalizing constant (and higher orders), these two efficiency-optimal priors require

additional tuning and adaptations. In continuous tempering, we prefer the simple uniform a margin

for robustness, as it guarantees a complete λ tour in the joint path. In implicit divide and conquer, if

the efficiency is more of a concern, we recommend to adaptively update the target marginal to match

the efficiency-optimal one ptarg(τ) ← popt(τ) ∝
√
Eθ∼q(θ,τ)(

∂
∂τ log q(θ, τ))2, which can be further

stochastically approximated by joint Monte Carlo draws. This additional adaptation is optional and

the estimation of popt is not required to be precise.

6.4 Related literature

Simulated tempering. Simulated tempering and its variants provide an accessible approach to

sampling from a multimodal distribution. We augment the state space Θ with an auxiliary inverse

temperature parameter λ, and employ a sequence of interpolating densities, typically through a

power transformation p j ∝ p(θ |y)λj on the ladder 0 < λ1 < . . . λK = 1, such that pK is the

distribution we want to sample from and p0 is a (proper) base distribution. At a smaller λ, the

between-mode energy barriers in p(θ |λ) collapse and the Markov chains are easier to mix. This

dynamic makes the sampler more likely to fully explore the target distribution at λ = 1.

Discrete simulated tempering (Marinari and Parisi, 1992; Neal, 1993; Geyer and Thompson,

1995) samples from the joint distribution p(λ, θ) ∝ 1/c(λ)q(θ)λ using a Gibbs scheme, where

c(λ) is a pseudo-prior that is often iteratively assigned to be ẑ(λ): an estimate of the normalizing

constant of q(θ)λ which may be obtained by any of the methods discussed above. Each Gibbs swap

involves sampling θ |λ with a one- or multi-step Metropolis update that keeps p(θ |λ) invariant, and

a random walk in λ that leaves λ |θ invariant. The number of Metropolis updates, the number of

temperature samples, and the temperature spacing all involve intensive user tuning.

In simulated annealing (Neal, 1993; Morris et al., 1998), we evolve λ through a fixed schedule,
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and update θ using a Markov chain targeting the current conditional distribution p(θ |λ). The

annealed importance sampling (Neal, 2001) adjusts the non-equilibrium in the θ |λ update by the

importance weight defined in (5.14).

However, as we mentioned above, discrete tempering schemes are sensitive to the choice of λ

ladders. TheMarkov chain must usually proceed bymaking small changes between the neighboring

distributions. Following the discussion in Betancourt (2015), if some pair of πλj and πλj−1 have a

large KL divergence, the error in importance sampling (5.12) based algorithms will be dominated

by the j-th term. Under the optimal design, the Kullback–Leibler (KL) divergence between

neighboring distributions should be roughly constant:

constant u KL
(
πλ, πλ+δλ

)
=

∫
log

( πλ
πλ+δλ

)dπλ = log
( z(λ + δλ)

z(λ)
)
− (δλ)2

d
dλ

log z(λ), (6.2)

which can hardly be achieved even adaptively due to the reliance on the unknown log z and its

derivative.

Further, even with a constant KL gap, the discrete ladder imposes dimension limitations. For

example, in simulated tempering, a transition (θ, λi) → (θ, λ j) between two temperatures λi and

λ j in the Gibbs update would only be likely if there is significant overlap between the potential

energy distributions log q(θ |λi) and log q(θ |λ j). Under a normal approximation with dim(Θ) = d,

the width of the energy distribution scales by O(d1/2), while the distance between two adjoining

energy distributions is O(d/K). This leads to the best case bound on the necessary number of

interpolating densities K = O(d1/2). In practice, K is recommended to grow like O(d) (Madras

and Zheng, 2003). More theoretical discussion shows that K = O(d) is often needed to ensure a

polynomial bound on the adjacent temperature overlap and rapid mixing (Woodard et al., 2009).

Since the update on (λk)
K
k=1 behaves as a random walk, even when the θ |λ update takes zero time,

the relaxation time of a diffusion process with discrete state space (λk)
K
k=1 often scales by O(K2),

soon becoming unaffordable as K grows.

Toward continuous tempering. Gobbo and Leimkuhler (2015) designed a continuous tempering
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scheme by adding a single auxiliary variable a ∈ R to the system. The inverse temperature f (a) is

defined by a smooth function such that f (a) = 1 for |a| < ∆ and f (a) = 0.15 for |a| > ∆∗. The

Hamiltonian of the system is modified to be Ĥ(θ, p,a, pa) = f (a)H(θ, p) + p2
a/ma + log z(a),where

pa is the momentum of a, and log z(a) is adaptively updated using importance sampling, in order to

force a to be uniformly distributed in the interval [∆∗,∆∗]. Similarly, Betancourt (2015) introduced

adiabatic Monte Carlo, where a contact Hamiltonian is defined on the augmented Hamilton system

Ĥ(θ, p, λ) = −λ log q(θ)+1/2pT M−1p+ log z(λ). These methods are shown to outperform discrete

tempering, but they require amodifiedHamiltonian and are sensitive to task-specific implementation

and tuning.

Graham and Storkey (2017) formulated a continuous tempering on the joint density p(θ, λ) ∝

ζ−λq(x)λψ(x)(1−λ). This can be viewed as a special case of our proposed method by restricting the

parametric form of our normalizing constant estimate to a single parameter exponential function

z(λ) = ζλ. This method does not directly acquire simulation draws from θ |λ = 1 or 0, and integrals

under target distribution are evaluated through importance weighting.

6.5 Experiments

To manifest the advantage of the proposed method, we present a series of experiments. In

Section 6.5, we use a conjugate model to compare the accuracy of normalizing constant estimation.

In Section 6.5, we show that the continuous tempering with path sampling is scalable to high di-

mensional multimodal posteriors. In Section 6.5 and 6.5, we highlight the computational efficiency

from the proposed method, including higher effective sample size and quicker mixing time. Lastly,

we validate the implicit divide and conquer in a funnel shaped posterior in Section 6.5.

Beta-binomial example: comparing accuracy of estimates of the normalizing constant We

start with an example adapted from Betancourt (2015), in which the true normalizing constant

can be evaluated analytically. Consider a model with a binomial likelihood y ∼ Binomial(θ,n)

and a Beta prior θ ∼ Beta(α, β). Along a geometric bridge between the prior and posterior, the

84



lambda.grid.true

lo
g(

z.
gr

id
.tr

ue
)

0.0 0.5 1.0
−4

−2

0

λ

log normalizing const.
Easy case

theta.grid

ba
se

_d
en

si
ty

.g
rid

0.0 0.5 1.0
0

5

10

θ

conditional density

target

prior

lambda.grid

th
et

a.
gr

id

0.0 0.5 1.0
0.0

0.5

1.0

λ

θ

joint distribution when
lambda is uniform

Index

0

lambda.grid.true

lo
g(

z.
gr

id
.tr

ue
)

0.0 0.5 1.0

−16

−8

0

λ

Hard  case
log normalizing const.

theta.grid

ba
se

_d
en

si
ty

.g
rid

0.0 0.5 1.0
0

10

20

θ

target

prior

conditional density

lambda.grid

th
et

a.
gr

id

0.0 0.5 1.0
0.0

0.5

1.0

λ

θ

joint distribution when
lambda is uniform

Figure 6.2: (a) The analytic log normalizing constant. (b) the base and the target (c) the joint of
(λ, θ) when the marginal of λ is uniform. In the hard case the target and base is separated and the
log normalizing constant changes rapidly.
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Figure 6.3: Estimation of the log normalizing constant in the easy Beta-binomial example among
first 20 adaptations. All methods eventually approximate the true function, while the proposed
continuous tempering with path sampling has the fastest convergences rate.

conditional unnormalized tempered posterior density at an inverse temperature λ is

q(θ |λ) = Binomial(y |θ,n)λBeta(θ |α, β), θ ∈ [0,1], λ ∈ [0,1].

Due to conjugacy, the normalized distribution has a closed form expression p(θ |λ) = Beta(λy +

α,λ(n − y) + β), and the true normalizing constant z is

z(λ) =
∫ 1

0
q(θ |λ)dθ =

(
Γ(n + 1)

Γ(y + 1)Γ(n − y + 1)

)λ
Γ(α + β)

Γ(α)Γ(β)

Γ(λy + α)Γ(λ(n − y) + β)

Γ(λn + α + β)
.

We compare four sample-based estimates of the log normalizing constant: (i) continuous

tempering with adaptive path sampling (the proposed method) with joint density p(a, θ) ∝

1/c( f (a))q(θ | f (a)); (ii) continuous tempering, but replacing the path sampling estimate ofmarginal

density p(a) by an empirical estimate and using importance sampling ẑ(a) = p(a)c(a) to compute

and update z; (iii) discrete simulated tempering with importance sampling estimation and estimat-
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ing the marginal probability mass function Pr(λ = λi),0 = λ0 < λ1 < . . . < λK = 1 by Monte

Carlo average; (iv) discrete tempering with a Rao-Blackwellized (Carlson et al., 2016) estimate of

the probability mass function.

In the first setting (left half of Figure 6.2), we set α = 2, β = 1, y = 60, n = 80. Figure 6.3

presents the log normalizing constant estimates in the first 20 adaptations. All methods start with

a flat initial guess log z(λ) = 0. In continuous tempering, we draw 3000 joint (a, θ) draws in each

adaptation. The first half of the draws are treated as warm-up and discarded (which also do in the

discrete setting). We choose a length I = 100 approximation grid in the parametric adaptation

step (5.6). For discrete tempering, we use an evenly spaced ladder λi = (i − 1)/10, i = 1, . . . ,11

and draw 150 λ draws per adaptation, each followed 100 HMC updates in θ. These numbers

ensure the continuous tempering has a smaller computation cost (3000 joint draws) than in discrete

implementations (100 HMC updates on θ × 150 updates on λi) per adaptation, so as to make the

efficiency comparison convincing.

In this easy case, all methods eventually approximate the truth(red curve), among which our

proposed continuous tempering with path sampling has the quickest convergence rate, almost

recovering the truth within the first adaptation.

In the hard case (right half of Figure 6.2), α = 9, β = 0.75, k = 115, n = 550. The base

and target are two isolated spikes, and the log normalizing constant changes rapidly especially for

small λ . Figure 6.4 compares four log normalizing constant estimation methods in the first 20

adaptations. Continuous tempering with path sampling nearly converges to the true value after the

8th adaptation. Rao-Blackwellization achieves a reasonable discrete approximation at the 13-th

adaptation, but the result is unstable due to discretization error. In fact, Figure 6.5 displays the

L2 error of log z. Only the proposed method has a monotonically decreasing error with more

adaptations. The two empirical importance sampling based methods are both too noisy to be

useful.

Rows 2–4 in Figure 6.4 show the first 150 joint draws in adaptation 3, 6, and 10 from all four

methods. Our proposedmethod fully explores the joint space in adaptation 10. Here, the joint HMC
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Figure 6.4: Comparison of four tempering methods in the hard beta-binomial example. Row 1:
Starting from a flat guess, only the proposed method converges to the the true (red curve) value of
the log normalizing constant after 8 adaptations. Rows 2–4 compare the first 150 draws of the joint
distribution of parameters and temperatures in adaptations 3, 6, and 10. The proposed method
fully explores the the joint space efficiently, while the two discrete schemes exhibit random walk
behaviour in temperatures updates, and cannot adapt to the rapid changing regions near λ = 0.
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Figure 6.5: L2 errors of the log normalizing constant estimate log z(λ) from four methods during
the first 20 adaptations. Only continuous tempering with path sampling gives a monotonically
decreasing error which shrinks to zero in practical amount of time.
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jumps are gradient-guided and and make subtle jumps in regions of rapid change (where λ ≈ 0). In

contrast, since the conditionals at θ |λ = 0 and λ = 0.1 differ significantly, the discrete tempering

procedure cannot automatically impute more ladders among them, and always over-weighs one

end.

Sampling from Gaussian mixtures: compare accuracy of the multimodal sampling Next we

consider the problem of sampling from Gaussian mixtures. For visual illustration we begin with

the simple case of a mixture of two one-dimensional Gaussians.

Figure 6.6 shows five out of ten total iterations for which we ran our tempering algorithm. At

initialization, the joint sampler can only see a thin slice of a in the region around the base, with a

large resulting Pareto-k̂ diagnostic. With more adaptations, more temperatures are sampled, and

the path sampling estimate relies less on extrapolation. After four adaptations, the sampler has

fully explored a ∈ [0,2], and completed a base-target bridge in the augmented space. Collecting

simulation draws with f (a) = 1 retrieves the target distribution. The accuracy is confirmed by the

k̂ < 0.7, or a visual check of a nearly uniform a marginal distribution.

Next we consider a 10-component mixture of Gaussians. We generate the individual Gaussian

components with variance a tenth of the minimum distance between any two of the mode centers

to ensures separation between the modes. We perform this sampling in a range of dimensions from

10 to 100 (with the number of components fixed). We compare the proposed tempering with path

sampling with two benchmark algorithms (i) Rao-Blackwellized discrete tempering (Carlson et al.,

2016), and (ii) continuous tempering with a log linear normalizing constant assumption (Graham

and Storkey, 2017). We do not include other empirical importance sampling based tempering as

they are strictly worse than these two benchmarks. For all methods, we use an over-dispersed

normal base distribution.

In order to assess whether a given tempering procedure has succeeded, we count the proportion

of draws in each targetmixture component for each temperingmethod, and compare this distribution

to the actual equal weight target. The results are averaged over five independent runs. Figure 6.7
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Figure 6.6: Path sampling-based tempering for the target a Gaussianmixture, plotting adaptation 1,
2, 4, 6, and 10. The first row shows the joint simulation draws; the second row displays the estimate
of the log normalizing constant; the third row displays the marginal density on the temperature and
cumulative draws of the temperature variable, with Pareto-k̂ diagnostics printed at the bottom left
of each panel (good if k̂ < 0.7); and the fourth row is the draws from the target density.

Figure 6.7: Mean absolute error of target simulation draws from adaptive path sampling
based tempering (proposed), and two benchmarks: log-linear continuous tempering and Rao-
Blackwellization. Results are averages over 5 repeated runs. Left: Sampling error and time at
each adaptation for a Gaussian mixture target with 100 dimensions and 10 components. Numerical
labels indicate the number of seconds of CPU time before each adaptation completed. Middle:
Comparison of sampling errors as dimensions range from d = 10 to 100. The log-linear tempering
is supplied with true normalization constant while the other two are with uniform initialization.
Right: The estimated log normalizing constant log z(λ) from path sampling.
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displays the evolution of the mean absolute difference between the sampled mode proportions in

each adaptation of each algorithm and the target in the 100-dimensional case. The left panel of

Figure 6.7 labels each point with the total CPU time needed to complete each adaptation iteration.

Not only does the path sampling algorithm achieve more uniform mode exploration, but it does

so in significantly less computation time than the Rao-Blackwellized procedure. This is partly a

symptom of the HMC-in-Gibbs implementation of the Rao-Blackwellized algorithm.

The middle panel of Figure 6.7 displays the same mean absolute difference between sampled

and actual target distribution against the dimension for continuous tempering with path sampling,

the Rao-Blackwellized procedure, both with a uniform initialization, and the log linear tempering

initialized at the true normalizing constant. For path sampling and Rao-Blackwellized sampling,

we plot the results after five iterations of adaptation. In all cases, the final in-target sample from

the proposed method is closest to the actual target, with the the smallest mean absolute differences.

As shown in the right panel, the normalization constant log z(λ) is not monotone or linear, which

explains the undesired performance of the log linear tempering even when it is supplied with the

ground truth normalizing constant.

In Figure 6.7, we do not see the mode exploration degrade with increasing dimension for path

sampling. This is because the log normalizing constant itself scales mildly with the dimension in

Gaussian mixtures. It general, the number of dimensions is not the limiting factor of path sampling,

but it could inflate the log normalizing constant in a severe base-target mismatch. We further

discuss dimension scalability in Appendix C.

Flower target: the gain on computation efficiency Next we consider sampling from a flower

shaped distribution as previously used in Sejdinovic et al. (2014) and Nemeth et al. (2019). This

is a two-dimensional distribution with probability density spread throughout multiple “petals”. Its

probability density function is given by

p(x, y | σ,r, A,ω) ∝ exp
(
−

1
2σ2

(√
x2 + y2 − r − A cos(ω arctan(y, x))

))
.
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Figure 6.8: Draws (red dots) from the flower target generated by plain HMC (left) and continuous
tempering with path sampling (right). The blue contours represent the underlying target density.

Figure 6.9: Comparison of computational cost of path sampling versus standard HMC for a flower
distribution with 40 petals. The x-axis displays the time in seconds, and the y-axis shows the
achieved R̂-value for the x coordinate (left) and y coordinate (right) of the flower distribution.
The dashed grey line displays the 1.05 cutoff below which we consider our chains to have mixed
sufficiently. All results are averaged over 15 replications.

The probability mass is pinched into narrow regions between petals, slowing exploration of the

target. For this reason, the flower distribution is challenging to sample from using standard HMC.

Figure 6.82 plots draws from the flower distribution with 6 petals using plain HMC and using

continuous tempering with path sampling. As before, we use a normal base distribution. Both

algorithmswere run for enough time to generate a similar number of draws from the target. Standard

HMC clearly fails to adequately explore each of the petals of the flower distribution. Path sampling-

based continuous tempering succeeds in generating draws from each of the petals in roughly equal

proportions.

2Figure 6.8, 6.9, 6.11, 6.12, and the underlying experiments were conducted by Collin Cademartori.
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We further compare the total mixing time. Figure 6.9 plots the computed R̂ (Vehtari et al.,

2020a) for the x and y coordinates of a challenging flower distribution with 40 petals against

computational time. Continuous tempering with path sampling crosses the R̂ = 1.05 threshold for

adequate mixing in about a quarter of the time (already having included all adaptations) required

for standard HMC to reach that threshold, although the latter can eventually approximate the target

with many more draws. Thus, despite the much lower time cost per sample for standard HMC, path

sampling still manages to be more efficient in terms of total mixing time. This disparity will only

get more apparent as the difficulty of the target density increases.

Regularized horseshoe regression: expandmodels continuously and efficiently The proposed

path sampling and continuous tempering can enhance computational efficiency even when there

is no direct posterior multimodality. In particular, the HMC mixing time scales polynomially

with dimensions, hence fitting a slightly larger model can be cheaper than fitting two models

separately. Consider a sparse regression with regularized horseshoe prior (Piironen and Vehtari,

2017b,c), an effective tool for Bayesian sparse regression. Letting y1:n be a binary outcome

and xn×D be predictors, the regression coefficient β is equipped with a regularized horseshoe

prior: βd | τ, ζ, γ ∼ normal
(
0, γζd(γ

2 + τ2ζ2
d )
−1/2

)
, τ ∼ Cauchy+

(
0,2/

(
D − 1)

√
n
) )
, ζd ∼

Cauchy+(0,1), d = 1, . . . ,D. To take into account the model freedom between the logit link

Pr(yi = 1 | β, logit) = logit−1
(∑D

d=1 βd xid

)
and probit link Pr(yi = 1 | β,probit) = Φ

(∑D
d=1 βd xid

)
in the likelihood, we construct a tempered path between the logit and probit model

p(a, β, τ, ζ, γ) ∝
1

c(a)

n∏
i=1

(
Pr(y = yi |β, logit)1−λPr(y = yi |β,probit)λ

)
pprior(β, τ, ζ, γ), λ = f (a),

where pprior(β, τ, ζ, γ) encodes the regularized horseshoe prior.

In the first experiment, we generate n = 40 data points and D = 100 covariates with a maximum

pairwise correlation 0.5. Among all covariates, only the first three have nonzero coefficients β1,2,3.

Furthermore, y is chosen to have a logit link in the true data generating process. We vary amin in

the link function λ = f (a) as defined in Equation (6.1), such that when 0 < a < amin, λ = 0, the

92



path sampling draws from the logit model, and when 1 > a > amax = 1 − amin, λ = 1, it draws

from the probit model. We run path sampling with two adaptations, S = 500 draws in the first

adaptation, and S = 3000 in the second. We then compute the tail effective sample size (tail-ESS,

Vehtari et al., 2020a) from the the probit and logit model in the aggregated draws divided by the

total sampling time (sum of 4 chains). For compassion, we also fit these two models separately

and count their effective sample size. To reflect the bottleneck of the computation, we monitor the

smallest tail effective sample size among all regression coefficients βd . Path sampling between

two models expands the model continuously such that both individual models are special cases of

the augmented model. Because the posterior distributions β |y under the probit and logit links are

similar, a connected path between them stabilizes the tail of posterior sampling, resulting in a larger

unit time tail effective sample size, as shown in the left two panels of Figure 6.10.

In the second experiment, we fix amin = 0.35,amax = 0.65, and vary the input dimension

D = nρ,2 ≤ ρ ≤ 8. Given that amax − amin = 30% of the sampling time is spent on intermediate

models, it is remarkable that most times the joint sample from path sampling renders a tail effective

sample size from individual models no slower than fitting them separately, as verified in the right

two panels in Figure 6.10. The simulation results are averaged over 10 repeated runs. As a caveat,

a joint path of two arbitrary models is not always more efficient than separate fits. Figure 6.10

displays the minimal effective sample size among all regression coefficients βd . When averaged

over all βd , the mean tail effective sample size in path sampling is smaller than individual fits in

this example, which can be viewed as a parameter-wise efficiency-robustness trade-off.

Sampling from funnel shapedposteriors by implicit divide-and-conquer Weapply the implicit

divide-and-conquer algorithm to the hierarchical model and eight-school dataset (Gelman et al.,

2013). In this problem, we are given eight observed means yi and standard deviations si which are

related to each other through the following hierarchical model with unknown parameters θ, µ, τ,

centered parameterization : yi ∼ normal(θi, si), θi
iid
∼ normal(µ, τ).
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Figure 6.10: The smallest unit time tail effective sample size among all regression coefficients in
the horseshoe regression with both Bernoulli logit and probit likelihood. The green line refers to
two separate model fits and the red line corresponds to a joint tempered path sampling counting
all adaptation time. Left two panels: we vary amin: the proportion of logit and probit sampling
in the final joint sample. Right two panels: we fix amin = 0.35,amax = 0.65 and vary the input-
dimension/sample-size from 2 to 8. In most cases, the joint path sampler generates a larger tail
ESS /s for both probit and logit sample, in addition to all intermediate models fitted simultaneously.

The centered parametrization in hierarchical models often behaves as implicit left-truncation due

to entropic barriers. In particular, as τ → 0, the mass of the conditional posterior p(θ | τ, y, s)

concentrates around µ, creating a funnel-shape in the posterior of θ that is challenging to traverse.

In this dataset, the left truncation can be overcome by switching to a non-centered parametrization

that introduces auxiliary variables θ̃,

non−centered parameterization : θi = µ + τ × θ̃i, θ̃
iid
∼ normal(0,1).

However, reparametrization is often restrited to location scale families, and choosing between

centered and non-centered parametrization remains difficult for real data (Gorinova et al., 2020).

We apply the proposed implicit divide-and-conquer algorithm on the sample drawn from the

original centered parametrization. It successively pushes the marginal of τ towards a desired target

marginal ptarg(τ). In our case, we use the efficiency-optimal prior of the form p(τ) ∝
√
EτU2(θ, µ, τ),

where the U(θ, µ, τ) functions are the gradients of the log posterior given in (5.8). This target

cannot be computed explicitly, so we also estimate it at each adaptation using a simple window-

based averaging scheme over the τ draws. We adaptively repeat the algorithm until we meet the

convergence criterion.
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Figure 6.11: Comparison of log estimation error of the left and right tail quantile estimations
using S = 4000 posterior draws from HMC (centered and non-centered parametrizations) and
implicit divide-and-conquer. The x-axis displays the left tail probability. The y-axis displays the
log absolute error of the quantile estimate. The proposed method (red curve) achieves the highest
accuracy.

Figure 6.12: Comparison of log estimation errors of the first to fourth posterior moment of τ using
draws S = 4000 from HMC (centered and non-centered parametrizations) or implicit divide-and-
conquer. The latter returns the marginal density estimation, which is further equipped with either
importance sampling or numerical integration. The x-axis displays the estimated moment, and the
y-axis displays the log absolute error of the moment estimate.
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Figure 6.11 displays the log errors for quantile estimates in the right and left tails of the marginal

posterior of τ for HMCwith (a) centered and (b) non-centered parametrizations, and (c) the implicit

divide-and-conquer. We set posterior draw size S = 4000 (after thinning) in all three samples. In

these experiments, we use estimates from the non-centered parametrization with 106 draws as our

ground truth. In the right tail, the implicit divide-and-conquer runs out-perform the Monte Carlo

estimates across all but the smallest quantile. For the left tail, we estimate quantiles with left tail

probabilities between 0.001 and 0.1. In this case, path sampling dominates all other methods, with

a significant improvement in the extreme quantiles.

The estimated marginal density p(τ) enables expectation computation. We examine the per-

formance for marginal moment estimation E(τm) using both importance sampling and numerical

integration (the same trapezoidal rule as in (5.9)). Figure 6.12 displays the log errors of estimates

for the first four moments of the marginal posterior distribution of τ. The moments computed from

simulation draws of the implicit divide-and-conquer, using either numerical integration scheme or

importance sampling, have a lower error than Monte Carlo estimates from both HMC parametriza-

tions.

Overall, we see from Figures 6.11 and 6.12 that the proposed implicit divide-and-conquer

provides good performance for a range of posterior estimation tasks, often out-performing all other

approaches and never generating estimates with errors large enough to be unusable in any of the

tested problems. This is remarkable since the implicit divide-and-conquer scheme generates its

underlying HMC samples using the centered parametrization during each adaptation.

The implicit divide-and-conquer scheme demands more computation time than one-run HMC,

but it avoids the need for a problem-specific reparametrization, so it can be applied in cases where

other approaches may not be available. Furthermore, because it comes with a stopping criterion, we

can ensure that the extra computation time arrives at a sufficiently accurate result by termination.
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6.6 Discussion

Initialization and base measurement In continuous simulated tempering, we initialize the

pseudo prior at c = 1. When the underling normalizing constant z(λ) is several orders of magnitude

smaller than z(0) for all λ > 0, the sampler starting from this non-informative initialization

will get stuck in λ = 0. Because f ′(a) = 0 in the base, path sampling will fail to update.

In this situation, we update the slope b0 in (5.6) to be the importance sampling estimate (5.4):

b0 ←− log ẑIS(1) = log
(

1
S
∑S

s=1 q(θs, λ = 1)q−1(θs, λ = 0)
)
. This estimate ẑIS is unlikely to be

accurate, thus we only use for initialization to avoid local convergence.

In Section 6.1, we merely require the base measure ψ to have the same support as the target q.

A natural candidate for ψ is the prior as we have used throughout the experiments. Ideally, the base

measurement should balance between being easy to sample from, and close enough to the target

distribution. This is not a unique challenge in our method, as all (discrete) simulated tempering

and, more generally, importance sampling methods need to construct a good base measurement.

The current chapter treats the base measurement as an extra input that user has to specify. Based on

the discussion on how to construct and optimize the proposal distribution in adaptive importance

sampling (Geweke, 1989; Owen and Zhou, 2000; Bugallo et al., 2017; Paananen et al., 2021), it

may be possible to obtain better performance by optimizing the choice of base measurement, which

itself is often an iterative problem.

That said, we are unlikely to be able to automatically construct a good base density for im-

portance sampling in high dimensional problems such that the KL divergence between the base

and the target is bounded. Otherwise other advanced sampling method would not be required.

Fortunately, the adaptive path sampling estimate is less sensitive to base-target discrepancy. As we

have seen in experiments, our path sampling-based method still yields accurate log normalizing

constant estimates and smooth joint sampling even starting from a crudely chosen base distribution

when importance sampling and bridge sampling have failed.
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Dimension limitations In accordance with the error analysis in Section 5.3 and the simulation

results, the proposed adaptive path sampling is more scalable to higher dimensions compared with

existing counterparts. However, path sampling-based continuous tempering can still fail in high

dimensional posteriors.

In essence, simulated tempering depends on, but can bemore difficult than normalizing constant

estimation. On one hand, simulated tempering does not require a precise estimation of z(λ) (left

half of Figure 6.13, see also Geyer and Thompson, 1995), as long as there is enough posterior

marginal density p(a) or p(λ) everywhere—but this will only happen when the scale of z(λ) is

small.

In Appendix C, we provide a failure mode example in a latent Dirichlet allocation model, where

the log normalizing constant estimation has a scale ∼ 104, and path sampling estimation manages

to estimate it with pointwise errors ∼ 102. For fitting a curve, a 1% error is accurate enough. But a

pointwise 1% error in the log normalizing constant amounts to inflating the marginal density p(a)

in the joint sampling (5.5) by a factor exp(102) at that point, which effectively becomes a point mass

and makes path tempering get stuck in one region. Such failures happen in discrete tempering too,

and is identifiable by our k̂ diagnostics. In other words, successful simulated tempering requires

the estimation of the pointwise normalizing constant with multiplicative precision, see Figure 6.13

for an illustration.

The absolute scale of the log normalizing constant is comparable to the log KL divergence

between the base and the target. In a prior-posterior tempering path, the log normalizing constant

at λ = 1 is the log marginal likelihood. It grows linearly with both the sample size and how closely

the model fits the data (the log likelihood). When the model is poor in predication (as in the

latent Dirichlet allocation example), the log normalizing constant soon escapes from the estimation

accuracy that any estimate can achieve, an analogy of the “folk theorem of statistical computing”:

When you have computational problems, often there’s a problem with your model (Gelman, 2008).

Furthermore, we present a geometric path for continuous tempering. It is not clear if to modify

the free energy by a density-power-transformation is the best way to remove metastability, although
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Figure 6.13: An illustration of the different orientations in normalizing constant estimation and
simulated tempering. In the left two panels, the blue curve poorly fits the true log normalizing
constant, but there is enoughmass everywhere in the resultingmarginal density to ensure a complete
path in simulated tempering. The right two panels: with a much larger scale, when log z estimation
is off by 1% at a single point, the resulting path becomes a point mass in λ. In continuous tempering,
such failure is diagnosed by a large k̂.

most existing tempering methods adopt this form. If there is rapid phase transition at some

critical temperature, any power-transformation tempering will be prohibitively slow (Bhatnagar

and Randall, 2004). Fortunately, the general framework in Section 5.2 permits an arbitrary path

formulations, and is easily implemented in Stan by replacing the closed form gradient U= log

likelihood by automatic differentiation. We leave this more flexible tempering path for future

research.

General recommendations We have developed a method that integrates adaptive path sampling

and tempering and have applied it to several examples. The procedure is highly automated, and

we have implemented it in an R package using the general-purpose Bayesian inference engine

Stan, returning both the desired posterior sample and the estimated log normalizing constant at

convergence. See Appendix B for software details.

In Bayesian computation, the ultimate goal is not to stop at the posterior simulation draws, but

to use them to check and improve the model in a workflow. If data come from an identifiable model,

then with reasonable sample size we can expect to distinguish among parameters and obtain a well

behaved posterior distribution (eventually achieving asymptotic normality). From this perspective,

multimodal posteriors should be unlikely with large sample size and may represent data that do not

fit the model. Hence, it is crucial to check the model fit even after the target posterior is obtained
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from our proposed sampling algorithms.

Finally, although we have argued its relative advantage over existing methods, we do not

think the proposed method based on adaptive sampling and tempering can solve all metasable

sampling problems, either because of a badly-chosen base measurement, or the dimension and

sample size limitation imposed by tempering itself. In this case, the Pareto-k̂ diagnostic is still

useful to understand why the method fails. Besides refining the base measurement and potentially

modifying the model, another alternative strategy to metastable sampling is to use cross validation

and multi-chain stacking (Yao et al., 2020b) to combine the non-mixed simulation draws, which in

effect changes the target distribution.

6.7 Software implementation

To provide an R (R Core Team, 2020) interface of path sampling and continuous tempering,

we create a package pathtemp, with the underlying execution inside the general-purpose Bayesian

inference engine Stan (Stan Development Team, 2020). The source code is available at https://

github.com/yao-yl/path-tempering. The procedure is highly automated and requires minimal

tuning.
To install the package, call

devtools::install_github("yao-yl/path-tempering/package/pathtemp",upgrade="never")

We demonstrate the practical implementation of continuous tempering on a Cauchy mixture
example. Consider the following Stan model:

data {
real y;
}
parameters {
real theta;
}
model{
y ~ cauchy(theta, 0.2);
-y ~ cauchy(theta, 0.2);
}

To run continuous tempering, a user can specify any base model, say θ ∼ normal(0,5), and list

it in an alternative model block as if it is a regular model.
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...
model{ // keep the original model
y ~ cauchy(theta,0.2);
-y ~ cauchy(theta,0.2);
}
alternative model{ // add a new block of the base measure (e.g., the prior).
theta ~ normal(0,5);
}

After saving this code to a stan file cauchy.stan, we run the function
code_temperature_augment(), which automatically constructs a tempered path between
the orginal model and the alternative model, and generates a working model named
cauchy_augmented.stan:

library(pathtemp)
update_model <- stan_model("solve_tempering.stan")
file_new <- code_temperature_augment("cauchy.stan")
> output:
> A new stan file has been created: cauchy_augmented.stan.

We have automated path sampling and its adaptation into a function path_sample(). The

following two lines realize adaptive path sampling.

sampling_model <- stan_model(file_new) # translated to C++ code
path_sample_fit <- path_sample(data=list(gap=10), # data list in original model
sampling_model=sampling_model)

The returned value path_sample_fit provides access to the posterior draws θ from the target

density and base density, the join path in the (θ,a) space in the final adaptation, and the estimated

log normalizing constant log z(λ).

sim_cauchy <- extract(path_sample_fit$fit_main)
in_target <- sim_cauchy$lambda==1
in_prior <- sim_cauchy$lambda==0
# sample from the target
hist(sim_cauchy$theta[in_target])
# sample from the base
hist(sim_cauchy$theta[in_prior])
# the joint "path"
plot(sim_cauchy$a, sim_cauchy$theta)
# the normalizing constant
plot(g_lambda(path_sample_fit$path_post_a), path_sample_fit$path_post_z)

Second, this automated procedure enables to fit two models together. The following Stan code

fits a regression with both the probit and logit link. A path between them effectively expands the
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Figure 6.14: Output from the logit-probit code example: the posterior draws β from the probit and
logit link, the join path in the (β,a) space in the final adaptation, and the estimated log normalizing
constant log z(λ). The visualization is based on 2 adaptations and S=1500 posterior draws.

model continuously such both individual model are special cases of the augmented model. The

computational efficiency is enhanced as we are fitting one slightly larger model rather than fitting

two models. In addition, the log normalizing constant tells us which models fits the data better,

which is related to but distinct from the log Bayes factor in model comparisons. The output in one

run is presented in Figure 6.14. The data favor the logit link accordingly.

data {
int n;
int y[n];
real x[n];
}
parameters {
real beta;
}
model {
beta ~ normal (0,2);
y ~ bernoulli_logit(beta * x); // logistic regression
}
alternative model {
beta ~ normal (0,1); // can be a different prior
y ~ bernoulli(Phi(beta * x)); // probit regression
}
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Part III

Learning from many models

by Bayesian stacking
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Chapter 7. Bayesian model averaging and stacking 1

“Double, double, toil and trouble; Fire burn and cauldron bubble.”

—Wayward Sisters, Macbeth

7.1 From model selection to model combination

Bayesian inference provides a coherent workflow for data analysis, parameter estimation, out-

come prediction, and uncertainty quantification. However, the model uncertainty is not automat-

ically calibrated: the posterior distribution is always conditioning on the model we use, in which

the true data generating mechanism is almost never included. No matter if viewed from the per-

spective of a group of modelers holding different subjective beliefs, or a single modeler revising

belief models through the routine of model check and criticism, or the need of expanding plausible

models for flexibility and expressiveness, it is common in practice to obtain a range of possible

belief models.

In Section 7.1, we review Bayesian decision theory, through which the model comparison,

model selection, and model combination are viewed in a unified framework. The estimation of

the expected utility depends crucially on how the true data generating process is modeled, and

is described by different M-views. We compare Bayesian model averaging and leave-one-out

(LOO) based Bayesian stacking in Section 7.2, which corresponds to theM-closed andM-open

view respectively. To explain why these methods work, we discuss related asymptotic theories

in Section 7.4. In Section 7.5, we investigate the computation efficiency, and demonstrate an

importance-sampling based implementation in Stan and R package loo. We also consider several

generalizations in non-iid data.

1This chapter is a slight modified version of Yao et al. (2018a) and Yao (2019).
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Bayesian Decision Theory Framework For Model Assessment

Model selection Model aggregation

M-viewsM-complete

M-closed

M-open

BMA

reference model stacking
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uniform prior
Section

point-wisely
Section
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Figure 7.1: The organization and connections of concepts in this chapter.

TheBayesian decision framework formodel assessment. Wedenote D = {(y1, x1), . . . , (yn, xn)}

a sequence of observed outcomes y ∈ Y and covariates x ∈ X. The unobserved future observations

are (x̃, ỹ). In a predictive paradigm (Bernardo and Smith, 1994; Vehtari and Ojanen, 2012), the

statistical inference should be inference on observable quantities such as the future observation ỹ,

where Bayesian decision theory gives a natural framework for the prediction evaluation. There-

fore, we can view model comparison, model selection, as well as model combination as formal

Bayesian decision problems. At a higher level, whether to make a single model selection or model

combination is part of the decision.

Given a model M with its parameter vector θ, we compute the posterior predictive density

p(ỹ |y,M) =
∫

p(ỹ |θ,M)p(θ |y,M)dθ, where we have suppressed the dependence on x for brevity.

To evaluate how close the prediction is to the truth, we construct the utility function of the predictive

performance through scoring rules. In general, conditioning on x̃, the unobserved future outcome

ỹ is the random variable in sample space (Y,A). P is a convex class of probability measure onY.

Any member of P is called a probabilistic forecast. A scoring rule (Gneiting and Raftery, 2007)

is a function S : P × Y → [∞,∞] such that S(P, ·) is P-quasi-integrable for all P ∈ P. In the

continuous case, every distribution P ∈ P is identified with its density function p.

For two probability measures P and Q, we write S(P,Q) =
∫
Y

S(P,ω)dQ(ω). A scoring

rule S is called proper if S(Q,Q) ≥ S(P,Q) and strictly proper if equality holds only when

P = Q almost surely. A proper scoring rule defines the divergence d : P × P → [0,∞) as
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d(P,Q) = S(Q,Q) − S(P,Q). For continuous variables, some popularly used scoring rules include:

• Quadratic score: QS(p, ỹ) = 2p(ỹ) − ||p| |22 with the divergence d(p,q) = | |p − q | |22 .

• Logarithmic score: LogS(p, ỹ) = log p(ỹ) with d(p,q) = KL(q, p). The logarithmic score is

the only proper local score assuming regularity conditions.

• Continuous-ranked probability score: CRPS(F, ỹ) = −
∫

IR(F(ỹ
′) − 1(y′ ≥ ỹ))2dy′ with

d(F,G) =
∫

IR(F(ỹ) −G(ỹ))2d ỹ, where F and G are the corresponding distribution functions.

• Energy score: ES(P, y) = 1
2EP | |Y −Y ′| |β2 −EP | |Y − y | |

β
2 , whereY andY ′ are two independent

random variables from distribution P. When β = 2, this becomes ES(P, ỹ) = −||EP(ỹ)− ỹ | |
2.

The energy score is strictly proper when β ∈ (0,2) but not when β = 2.

• Scoring rules depending on first and second moments: Examples include S(P, ỹ) =

− log det(ΣP) − (ỹ − µP)
TΣ−1

p (y − µP), where µP and ΣP are the mean vector and covariance

matrix of distribution P.

In such framework, the expected utility for any posterior predictive distribution p(·) is

EỹS (p(·), ỹ) =
∫
Y

S(p, ỹ)pt(ỹ |y)d ỹ, (7.1)

where pt(ỹ |y) is the unknown true data generating density of outcomes ỹ given current observations.

With the widely used logarithm score, the expected log predictive density (elpd) of model M is

elpd =
∫
Y

log p(ỹ |y,M)pt(ỹ |y)d ỹ. (7.2)

The general decision problem is an optimization problem that maximizes the expected utility

within some decision space P: popt = arg maxp∈P
∫

S(p, ỹ)dpt(ỹ). Model selection can be viewed

as a sub decision space of model combination, by restricting model weights to have only one

non-zero entry. In such sense, model selection may be unstable and wasteful of information.
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The expected scoring rule (7.1) depends on the generating process of ỹ, which is unknown

in the first place. How we will estimate such expectation depends on how we view the relation

between belief models and the true generating process, i.e., threeM-views.

Remodeling: M-closed,M-complete, andM-open views. Bernardo and Smith (1994) classi-

fied model comparison problems into three categories: M-closed,M-complete andM-open.

• InM-closed problems, the true data generating process can be expressed by one of Mk ∈ M,

although it is unknown to researchers.

• M-complete refers to the situation where the true model exists and is out of model listM.

But we still wish to use a model M∗ because of tractability of computations or communication

of results, compared with the actual belief model.

• TheM-open perspective acknowledges the true model is not inM, and we cannot specify

the explicit form p(ỹ |y) because it is too difficult conceptually or computationally, we lack

time to do so, or do not have the expertise, etc.

Computing the integral (7.1) requires a model for ỹ. The inference and model assessment can

have different model assumptions, akin to the distinction between estimation and hypothesis testing

in frequentist statistics. ForM-closed andM-complete problems, we specify a belief model M∗

that we believe to be or well approximate the data generate process, and we describe all uncertainty

related to future data in the belief model M∗ through p(ỹ |y,M∗). The expected utility of any

prediction Q is estimated by

EỹS(Q, ỹ) ≈
∫
Y

S(Q, ỹ)p(ỹ |y,M∗)d ỹ. (7.3)

M-closed andM-complete are a simplification of reality. No matter how flexible the belief model

M∗ is, there is little reason to believe it reflects the truth, unless in rare situations such as computer

simulations. Although such simplification is sometimes useful, the stronger assumption may also
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result in an unverifiable and irretrievably bias in (7.1), which will further lead to an undesired

performance in model aggregation.

InM-open problems, we still rely on models inM in inference and prediction. But we make

minimal assumptions in the model assessment phase. Cross-validation is a widely used strategy

to this end, where we re-use samples y1, . . . , yn as pseudo Monte Carlo draws from the true data

generating process without having to model it explicitly. For example, the leave-one-out (LOO)

predictive density of a model M is a consistent estimation of (7.2).

elpdloo =
1
n

n∑
i=1

log p(yi |y−i,M) =
1
n

n∑
i=1

∫
log p(yi |θ,M)p(θ |M, y1, . . . , yi−1, yi+1, . . . , yn)dθ.

7.2 From Bayesian model averaging to Bayesian stacking

We have a series of modelsM = {M1, . . . ,MK}, each having parameter vectors θk ∈ Θk . In

general θk can have different dimensions and interpretations, and some may be infinite dimensional

too. We denote the likelihood and prior in the k-th model by p(y |θk) and p(θk |Mk). The goal

is to aggregate all component predictive distributions {p(ỹ |y,M),M ∈ M}. Adopting different

M-views, we will solve the problem by various methods as follows.

M-closed: Bayesian model averaging. Bayesian model averaging (BMA) assigns a prior both

to the model space p(Mk) and parameters p(θk |Mk). Through Bayes rule, the posterior probability

of model k is proportional to the product of its prior and marginal likelihood,

p(Mk |y) =
p(y |Mk)p(Mk)∑K

k ′=1 p(y |M′k)p(M
′
k)
.

In particular, the aggregated posterior predictive distribution of new data ỹ is estimated by

pBMA(ỹ |y) =

K∑
k=1

p(ỹ |Mk, y)p(Mk |y).

InM-closed cases, BMA is optimal if the method is evaluated based on its frequency properties
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assessed over the joint prior distribution of the models and their internal parameters (Madigan

et al., 1996; Hoeting et al., 1999). In M-open and M-complete cases, BMA almost always

asymptotically select the one single model on the list that is closest in Kullback-Leibler (KL)

divergence, compromising the extra expressiveness of model aggregation.

Furthermore, BMA is contingent on the marginal likelihood p(y |Mk) =
∫

p(y |θk)p(θk |Mk)dθk ,

which will be sensitive to the prior p(θk |Mk). A correct specification of the model (anM-closed

view) is stronger than the asymptotic convergence to truth in somemodel, as it also requires the prior

to be correctly chosen in terms of reflecting the actual population distribution of the underlying

parameter. For example, consider observations y1, . . . , yn generated from y ∼ normal(0,0.12),

and a normal-normal model: y ∼ normal(µ,1) with a prior µ ∼ normal(0,102). Such prior is

effectively flat on the range of observed y. However, a change of prior to µ ∼ normal(0,1002) or

normal(0,10002) would divide the marginal likelihood, and thereby the posterior probability, by

roughly a factor of 10 or 100.

M-open: stacking. Stacking is originated from machine learning for the purpose of pooling

point estimates from multiple regression models (Wolpert, 1992; Breiman, 1996b; LeBlanc and

Tibshirani, 1996). Clyde and Iversen (2013), Le and Clarke (2017), and Yao et al. (2018a) develop

and extend its Bayesian interpretation.

The ultimate goal of stacking a set of K predictive distributions built from the model list

M = (M1, . . . ,MK) is to find the predictive distribution with the form of a linear pooling C =

{
∑K

k=1 wk p(·|Mk) :
∑

k wk = 1,wk ≥ 0} that is optimal according to a specified utility. The

decision to make is the model weights w, which has to be a length-K simplex w ∈ SK
1 = {w ∈

[0,1]K :
∑K

k=1 wk = 1}. Given a scoring rule S, or equivalently the divergence d, the optimal

stacking weight should solve

max
w∈SK1

S
( K∑

k=1
wk p(·|y,Mk), pt(·|y)

)
or equvalently min

w∈SK1
d
( K∑

k=1
wk p(·|y,Mk), pt(·|y)

)
, (7.4)

where p(ỹ |y,Mk) is the predictive density of new data ỹ in model Mk that has been trained on
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observed data y and pt(ỹ |y) refers to the true distribution.

With anM-open view, we empirically estimate the optimal stacking weight in (7.4) by replacing

the full predictive distribution p(ỹ |y,Mk) evaluated at a new data point ỹ with the corresponding

LOO predictive distribution p̂k,−i(yi) =
∫

p(yi |θk,Mk)p(θk |y−i,Mk)dθk .

Therefore, it suffices to solve the following optimization problem

ŵstacking = max
w∈SK1

1
n

n∑
i=1

S
( K∑

k=1
wk p̂k,−i, yi

)
. (7.5)

The aggregated predictive distributions on new data ỹ is pstacking(ỹ |y) =
∑K

k=1 ŵ
stacking
k p(ỹ |y,Mk).

In terms of Vehtari and Ojanen (2012, Section 3.3), stacking predictive distributions (7.5) is

the M∗-optimal projection of the information in the actual belief model M∗ to ŵ, where explicit

specification of M∗ is avoided by re-using data as a proxy for the predictive distribution of the

actual belief model and the weights wk are the free parameters.

Choice of utility. The choice of the scoring rule should depend on the underlying application

and researchers’ interest. Generally we recommend logarithmic score because (a) log score is the

only proper local scoring rule, and (b) the easy interpretation of the underlying Kullback-Leibler

divergence. When using logarithmic score we name (7.5) as stacking of predictive distributions:

max
w∈SK1

1
n

n∑
i=1

log
K∑

k=1
wk p(yi |y−i,Mk). (7.6)

M-complete: reference-model stacking. It is possible to replace cross-validation with a non-

parametric reference model M∗. Plug it into (7.3) we compute the expected utility and further

optimize over stacking weights, which we will call reference-model stacking. We can either stack

component models p(ỹ |Mk), or stack the projected component models using a projection predictive

approachwhich projects the information from the referencemodel to the restrictedmodels (Piironen

and Vehtari, 2017a). However in general it is challenging to construct a useful reference model, as

then there is probably no need for model averaging.
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The connection between BMA and stacking. BMA, and more generally marginal likelihood

based model evaluation, can also be viewed as a special case of the utility-based model assessment.

First, under anM-closed view, we believe the data is generated from one of the model M∗ ∈ M

in the candidate model list. We consider a zero-one utility by an indicator function of whether the

model has been specified correctly:

u(M∗,Mk) = 1(M∗ = Mk). (7.7)

Then the expected utility Mk is
∫
1(M∗ = Mk)p(M∗ |y)dM∗ = p(Mk |y), which is exactly the

posterior model probability p(Mk |y) in BMA. Hence the decision maker will pick the model with

the largest posterior probability, which is equivalent to the approach of Bayes factor. Interestingly,

the model with the largest BMA weight is also the model to be selected under the zero-one utility,

whereas in general the model with the largest stacking weight is not necessarily single-model-

selection optimal (see discussions in Section 7.4)

Second, under the M-closed view the information about unknownness is contained in the

posterior distribution p(Mk, θk |y), and the actual beliefs about the future observations are described

by the BMA predictive distribution. Using (7.3) and (7.4), stacking over the logarithmic score

reads

max
w∈SK1

∫
Y

log(
K∑

k′=1
wk′p(ỹ |Mk′, y))

K∑
k=1

p(Mk |y)p(ỹ |Mk, y)d ỹ,

whose optimal solution is always the same as the BMA weight wopt
k = p(Mk |y), as the logarithmic

score is strictly proper.

In practice it is nearly impossible to either come up with an exhaustive list of possible candidate

models that encompasses the true data generating process, or to formulate the true prior that reflects

the population. It is not surprising that stacking typically outperforms BMA in various prediction

tasks (see extensive simulations in Clarke, 2003; Yao et al., 2018a). Notably, in the large sample

limit, BMA assigns weight 1 to the closest model to the true data generating process measured

in KL divergence, regardless of how close other slightly more wrong models are. It effectively
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becomes model selection and yields practically spurious and overconfident results (e.g., Yang and

Zhu, 2018) inM-open problems.

7.3 Other related methods and generalizations.

Pseudo-BMA. When the marginal likelihood in BMA is hard to evaluate, it can be approximated

by information criterion. In Pseudo Bayes factors (Geisser and Eddy, 1979; Gelfand, 1996), we

replace the marginal likelihoods p(y |Mk) by a product of Bayesian leave-one-out cross-validation

predictive densities
∏n

i=1 p(yi |y−i,Mk). Yao et al. (2018a) propose another information criterion

based weighting scheme named Pseudo-BMA weighting. The weight for model k is proportional

to the exponential of the model’s estimated elpd: wk ∝ exp(êlpd
k
loo). Alternatively, such quantity

can be estimated using a nonparametric reference model inM-complete views (Li and Dunson,

2019). Wemay further take into account the sampling variance in cross-validation, and average over

weights in multiple Bayesian bootstrap resamples (Yao et al., 2018a). The information criterion

weighting is computationally easier, but should only be viewed as an approximation to the more

desired stacking weights.

Pseudo-BMA+. The pseudo-BMA estimation doesn’t take into account the uncertainty resulting

from having a finite number of proxy samples from the future data distribution. Taking into

account the uncertainty would regularize the weights making them go further away from 0 and

1. The Bayesian bootstrap (BB) can be used to compute uncertainties related to LOO estimation

(Vehtari and Lampinen, 2002). The Bayesian bootstrap (Rubin, 1981) gives simple non-parametric

approximation to the distribution. Having samples of z1, . . . , zn from a random variable Z , it is

assumed that posterior probabilities for all observed zi have the distribution Dirichlet(1, . . . ,1) and

values of Z that are not observed have zero posterior probabilities. We define zk
i = êlpd

k
loo,i, i =

1, . . . n, and sample vectors (α1,b, . . . , αn,b)b=1,...,B from the Dirichlet (

n︷  ︸︸  ︷
1, . . . ,1) distribution, and

compute the weighted means, z̄k
b =

∑n
i=1 αi,bzk

i . Then a Bayesian bootstrap sample of wk with size
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B is,

wk,b =
exp(nz̄k

b)∑K
k=1 exp(nz̄k

b)
, b = 1, . . . ,B,

and the final adjusted weight of model k is,

wk =
1
B

B∑
b=1

wk,b,

which we call Pseudo-BMA+ weight.

iBMA. We may combine the cross-validation and BMA. Intrinsic Bayesian model averaging

(iBMA, Berger and Pericchi, 1996) enables improper prior, which is not allowed in BMA. It first

partitions samples into a small training set y(l) and remaining y(−l), and replaces the marginal

likelihood by partial likelihood
∫

p(y(−l)|Mk, θk)p(θk |y(l),Mk)dθ. The final weight is the average

across some or all possible training samples. An alternative is to avoid averaging over all subsets

and use the fractional Bayes factor (O’Hagan, 1995). iBMA is more robust for models with vague

priors, but is reported to underperform stacking.

All model aggregation techniques introduced so far are two-step procedures, where we first fit

individual models and then combine all predictive distributions. It is also possible to conduct both

steps jointly, which can be viewed as a decision problem on both the model weights and component

predictive distributions. Ideally, we may avoid the model combination problem by extending the

model to include the separate models Mk as special cases. A finite-component mixture model is the

easiest model expansion, but is generally quite expensive to make inference. Further, if the sample

size is small or several components in the mixture could do the same thing, the mixture model can

face non-identification or instability. In fact, the immunity to duplicate models is a unique feature

of stacking, while many methods including BMA, information criterion weighting and mixture

models often have a disastrous performance in face of many similar weak models.

Apart from combining models, when we fit one single model but unstable computation, model

averaging techniques are also useful to combine inference results from multiple non-mixing runs.
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This is related to the idea of bagging (Breiman, 1996a). In particular, when the posterior density

p(θ |y) from a model contains multiple isolated modes, Markov chain Monte Carlo (MCMC)

algorithms can have difficulty moving between modes. We will explore this idea in the next

chapter.

7.4 Properties of stacking

Model aggregation is no worse than model selection. The stacking estimate (7.4) finds the

optimal predictive distribution within the linear combination that is the closest to the data generating

process with respect to the chosen scoring rule. Solving for the stacking weights in (7.6) is an

M-estimation problem. To what extent shall we worry about the finite sample error in leave-

one-out cross-validation? Roughly speaking, as long as there is consistency for single model

cross-validation, then asymptotically model averaging never does worse than model selection in

terms of prediction (Clarke, 2001). Le and Clarke (2017) further prove that under some mild

conditions, for either the logarithmic scoring rule or the energy score (negative squared error) and a

given set of weights w1 . . .wK , the weighted leave-one-out-score is a consistent estimate as sample

size n→∞,
1
n

n∑
i=1

S
( K∑

k=1
wk p̂k,−i, yi

)
− Eỹ |yS

( K∑
k=1

wk p(ỹ |y,Mk), ỹ
) L2
−−→ 0.

In this sense, stacking gives optimal combination weights asymptotically, and is an approximation

to the Bayes action.

Stacking viewed as pointwise model selection. Besides justified by the decision theory, stacking

weights also have a probabilistic interpretation. To see this, we divide the input-output product

space X ×Y into K disjoints subsets based on which model performs the best,

Jk B {(x̃, ỹ) ∈ X × Y : p(ỹ |Mk, x̃) > p(ỹ |Mk′, x̃),∀k′ , k}. k = 1, . . . ,K .
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under some separation condition, the log score stackingweight (7.5) is approximately the probability

of the model being the locally best fit: wstacking
k ≈ Pr(Jk), where the probability is taken with respect

to the joint true data generating process.

Moreover, the advantage of model averaging comes from the fact that model can behave

differently in different regions in (x, y) space. Let ρ = supk Pr(Jk), then 1− ρ is a rough description

of the diversity of models. In terms of the expected log predictive density (elpd), under the

separation condition, the gain from the optimally weighted models (against model selection) is

lower bounded by elpdstacking − supk elpdk ≥ L(1 − ρ)(1 − ε) − log K .

We omit details here and will visit this perspective in Chapter 10.

Selection or averaging? One practical difficulty in model comparison is to determine how large

the difference between model performance is “significant” and whether to discard bad models

(Sivula et al., 2020). The probabilistic approximation in the previous subsection suggests that an

overall weak model can still be useful in the aggregation. As long as a model is better than all

remaining models in some subset of data, this model possesses a non-zero stacking weight no

matter how poorly it fits everywhere else.

Lastly, a model with the largest BMA weight (assuming equal prior) is optimal under marginal

likelihood model selection. In contrast, a model with the largest stacking weight is not necessarily

optimal in terms of single model selection: it may outperform other models most of the time but

also have arbitrarily low elpd in the remaining areas—stacking is not designed for model selection.

Hence, we do not recommend to discarded models with small weights from the average.

7.5 Stacking in practice

Practical implementation using Pareto smoothed importance sampling. Stacking (7.5) re-

quires leave-one-out (LOO) predictive density p(yi |y−i,Mk), whose exact evaluation needs to refit

each model n times. k-fold cross-validation is computationally cheaper but may introduce higher

bias. Vehtari et al. (2017) proposed the an approximate method for Bayesian LOO. It is based on
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the importance sampling identity:

p(θ |y−i) ∝
1

p(θ |yi)
p(θ |y1, . . . , yn).

In the k-th model, we fit to all the data, obtaining S simulation draws θs
k(s = 1, . . . S) from the full

posterior p(θk |y,Mk) and calculate

r s
i,k =

1
p(yi |θ

s
k,Mk)

∝
p(θs

k |y−i,Mk)

p(θs
k |y,Mk)

. (7.8)

A direct importance sampling often has high or infinite variance and we remedy it by Pareto

smoothed importance sampling (PSIS, Vehtari et al., 2019b). For each fixed model k and data yi,

we fit the generalized Pareto distribution to a set of largest importance ratios r s
i,k , and calculate the

expected values of the order statistics of the fitted generalized Pareto distribution. These values

are used to obtain the smoothed importance weight ws
i,k , which is used to replace r s

i,k . PSIS-LOO

importance sampling computes the LOO predictive density as

p(yi |y−i,Mk) =

∫
p(yi |θk,Mk)

p(θk |y−i,Mk)

p(θk |y,Mk)
p(θk |y,Mk)dθk ≈

∑S
s=1 w

s
i,k p(yi |θ

s
k,Mk)∑S

s=1 w
s
i,k

.

Stacking for multilevel data. Although the illustration in this article is focused on iid data, the

leave-one-out consistency only requires the conditional exchangeability of outcomes y given x

(Bernardo and Smith, 1994, Chapter 6). Roberts et al. (2017) review cross-validation strategies

for data with temporal, spatial, hierarchical, and phylogenetic structure. In general, the PSIS-LOO

approximation applies to factorizable models p(y |θ, x) =
∏N

i=1 p(yi |θ, xi) such that the pointwise

log-likelihood can be obtained easily by computing log p(yi |θ, xi).

Non-factorizable models can sometimes be factorized by re-parametrization. In a multilevel

model with J groups, we denote the group-level and global parameter as θm and ψ. The joint
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likelihood is

p(y |x, θ,ψ) =
J∏

j=1


Nj∏

n=1
p(y jn |x jn, θ j)p(θ j |ψ)

 p(ψ), (7.9)

where y are partially exchangeable, i.e., ymn are exchangeable in group j, and θm are exchangeable.

Rearrange the data and denote the group label of (xi, yi) by zi, then (7.9) can be reorganized into

the long format
∏N ′

i=1 p(yi |xi, zi, θ,ψ) so the previous results follow. Depending on whether the

prediction task is to predict a new observation within a group, or a new group, we should consider

leave-one-point-out or leave-one-group-out cross-validation.

When the future data are known to come from a group j, there are two stacking strategies: (a)

apply generic stacking only to observations from the j-th group, which is asymptotically optimal

with enough data, but has large variance if the group size is small, and (b) apply stacking to

all observations regardless of their group structure, which has smaller variance at the cost of

less flexibility. The more preferred hierarchical stacking (Chapter 9) trades off between these two

extremes. Its Bayesian hierarchical formulation shares information across groups, stabilizingmodel

weights in small groups while still allowing the flexibility of group-specific weighting.

Stacking for time series data. When observations yt come in sequence and the main purpose

is to make prediction for the next not-yet-observed data, we can use the prequential principle

(Dawid, 1984) to factorize the likelihood: p(y1:N |θ) =
∏N

t=1 p(yt |y1:t−1, θ). In model averaging, we

can replace the LOO density p(yi |y−i) in (7.5) by the sequential predictive density leaving out all

future data: p(yt |y<t) =
∫

p(yt |y1:t−1, θ)p(θ |y1:t−1)dθ in each model, and then stacking follows. The

ergodicity of y will yield

lim
N→∞

1
N

N∑
t=1

S (p(·|y<t), yt) − lim
N→∞

1
N
EY1:N

N∑
t=1

S (p(·|Y<t),Yt) → 0.

which implies a similar stacking optimality as discussed in Section 7.4. Geweke and Amisano

(2012) investigate this stacking approach in time series data.

When there is a particular horizon of interest for prediction, a model that is good at short
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term forecast is not necessarily good for long term forecast. We can extend the one-step

ahead p(yt |y<t) to m-step-ahead predictive density p(yt<m |y<t) = p(yt, . . . , yt+m−1 |y1, . . . , yt−1) =∫
p(yt<m |y<t, θ)p(θ |y<t)dθ in the objective function (Lavine et al., 2021).

In terms of computation, the exact prequential evaluation requires refitting each model for each

t, which can be approximated by PSIS as, p(yt |y<t) =
∫

p(yt |θ, y<t)
p(θ |y<t )
p(θ |y) p(θ |y)dθ. We then start

from the full data inference p(θ |y) and dynamically update p(θ |y<t) using PSIS approximation.

When p(θ |y<t) reveals large discrepancy from p(θ |y) for some small t, we refit the model p(θ |y<t)

and update the proposal. Bürkner et al. (2020) verify such approximation gives stable and accurate

results with minimal number of refits in time series.

We can further extend the static stacking scheme to a dynamic model weighting, allowing the

explanation power of models to change over time. Yao et al. (2021b) present an election forecast

example that applies hierarchical stacking to longitudinal polling data. Another flexible model

weighting strategy in time series forecasting is Bayesian predictive synthesis (BPS, McAlinn and

West, 2019; McAlinn et al., 2020): The predictive density has the form
∫
α(y |z)

∏
k=1:K hk(zk)dz,

where z = z1:K is the latent vector generated from predictive densities hk(·) in each model and

α(y |z) is the distribution for y given z that is designed to calibrate the model-specific biases and

correlations.

The choice of model list As we have discussed earlier, BMA and information criterion weighting

are undesired against many similar weak models. We may remedy this by a careful construction

of priors. For example, George (2010) establishes dilution priors to compensate for model space

redundancy in linear models, putting smaller weights on those models that are close to each other.

Fokoue and Clarke (2011) introduce prequential model list selection to obtain an optimal model

space.

Stacking is prior invariant and immune to model duplication. Nevertheless, all methods dis-

cussed in the present chapter fit models separately, and are thereby limited in that they do not pool

information between the different model fits. The benefit of stacking depends only on the span of
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the model list (Le and Clarke, 2017), and models to be stacked should be as different as possible

(Breiman, 1996b). In light of discussion in Section 7.4, the ideal situation of stacking is when

models can offer different predictive density pointwisely.

In general, we do not recommend constructing a large list of weak models (e.g., subset regres-

sion) and aggregate them in a black box way, as in that setting we would recommend moving to

a continuous model space that encompasses all separate models. We prefer to carefully construct

component models that would have individually fit the data as much as possible, and all admissible

estimators for parameters should be considered before the optimization procedures.

7.6 Examples

Gaussian mixture model. This simple example helps us understand how BMA and stacking

behave differently. It also illustrates the importance of the choice of scoring rules when combining

distributions. Suppose the observed data y = (yi, i = 1, . . . ,n) come independently from a normal

distribution N(3.4,1), not known to the data analyst, and there are 8 candidate models, N(µk,1)

with µk = k for 1 ≤ k ≤ 8. This is anM-open problem in that none of the candidates is the true

model, and we have set the parameters so that the models are somewhat separate but not completely

distinct in their predictive distributions.

For BMA with a uniform prior Pr(Mk) =
1
8, k = 1, . . . ,8, we can write the posterior distribution

explicitly:

ŵBMA
k = P(Mk |y) =

exp(−1
2
∑n

i=1(yi − µk)
2)∑

k ′ exp(−1
2
∑n

i=1(yi − µk ′)
2)
,

fromwhichwe see that ŵBMA
3

P
−−→ 1 and ŵBMA

k
P
−−→ 0 for k , 3 as sample size n→∞. Furthermore,

119



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

sample size n = 3
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

0 2 4 6 8

y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 4

0 2 4 6 8

y

n = 5

0 2 4 6 8

y

n = 10

0 2 4 6 8

y

n = 20

0 2 4 6 8

y

B
M

A

n = 200

S
ta

ck
in

g 
of

 m
ea

ns

0 2 4 6 8

y

S
ta

ck
in

g 
of

 p
re

di
ct

iv
e 

di
st

rib
ut

io
ns

th
e 

po
st

er
io

r 
de

ns
ity

 o
f t

he
 c

om
bi

na
tio

n

Figure 7.2: For the Gaussian mixture example, the predictive distribution p(ỹ |y) of BMA (green
curve), stacking of means (blue) and stacking of predictive distributions (red). In each graph, the
gray distribution represents the true model N(3.4,1). Stacking of means matches the first moment
but can ignore the distribution. For this M-open problem, stacking of predictive distributions
outperforms BMA as sample size increases.

for any given n ,

Ey∼N(µ,1)[ŵ
BMA
k ] ∝ Ey

(
exp(−

1
2

n∑
i=1
(yi − µk)

2)

)
∝

(∫ ∞

−∞

exp
(
−

1
2

(
(y − µk)

2 + (y − µ)2)
))

dy
)n

∝ exp
(
−

n(µk − µ)
2

4

)
,

This example is simple in that there is no parameter to estimate within each of the models:

p(ỹ |y,Mk) = p(ỹ |Mk). Hence, in this case the weights from Pseudo-BMA and Pseudo-BMA+ are

the same as the BMA weights.

For stacking of means, we need to solve

ŵ = arg min
w

n∑
i=1
(yi −

8∑
k=1

wk k)2, s.t.
8∑

k=1
wk = 1, wk ≥ 0.
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This is nonidentifiable because the solution contains any vector ŵ satisfying

8∑
k=1

ŵk = 1, ŵk ≥ 0,
8∑

k=1
ŵk k =

1
n

n∑
i=1

yi .

For point prediction, the stacked prediction is always
∑8

k=1 ŵk k = 1
n
∑n

i=1 yi, but it can lead to

different predictive distributions
∑8

k=1 ŵkN(k,1). To get one reasonable result, we transform the

least squares optimization to the following normal model and assign a uniform prior to w:

yi ∼ N

( 8∑
k=1

wk k, σ2

)
, p(w1, . . . ,w8, σ) = 1.

Then we could use the posterior means of w as model weights.

For stacking of predictive distributions,we need to solve

max
w

n∑
i=1

log

( 8∑
k=1

wk exp
(
−
(yk − k)2

2

))
, s.t.

8∑
k=1

wk = 1, wk ≥ 0

In fact, this example is a density estimation problem. Smyth and Wolpert (1998) first applied

stacking to non-parametric density estimation, which they called stacked density estimation. It can

be viewed as a special case of our stacking method.

We compare the posterior predictive distribution p̂(ỹ |y) =
∑

k ŵk p(ỹ |y,Mk) for these three

methods of model averaging. Figure 7.2 shows the predictive distributions in one simulation when

the sample size n varies from 3 to 200. Stacking of means (the middle row of graphs) gives an

unappealing predictive distribution, even if its point estimate is reasonable. The broad and oddly

spaced distribution here arises from nonidentification of w, and it demonstrates the general point

that stacking of means does not even try to match the shape of the predictive distribution. The

top and bottom row of graphs show how BMA picks up the single model that is closest in KL

divergence, while stacking picks a combination; the benefits of stacking becomes clear for large n.

In this trivial non-parametric case, stacking of predictive distributions is almost the same as

fitting a mixture model, except for the absence of the prior. The true model N(3.4,1) is actually
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Figure 7.3: (a) The left panel shows the expected log predictive density of the combined distribution
under BMA, stacking of means and stacking of predictive distributions. Stacking of predictive
distributions performs best for moderate and large sample sizes. (b) The middle panel shows the
mean squared error treating the posterior mean of ŷ as a point estimation. Stacking of predictive
distributions gives almost the same optimal mean squared error as stacking of means, both of which
perform better than BMA. (c) The right panel shows the expected log predictive density of stacking
and BMA when adding some more N(4,1) models to the model list, where sample size is fixed to be
15. All average log scores and errors are calculated through 500 repeated simulation and 200 test
data generating from the true distribution.

a convolution of single models rather than a mixture, hence no approach can recover the true

one from the model list. From Figure 7.3 we can compare the mean squared error and the mean

logarithmic score of these three combination methods. The log scores and errors are calculated

through 500 repeated simulations and 200 test data. The left panel shows the logarithmic score (or

equivalent, expected log predictive density) of the predictive distribution. Stacking of predictive

distributions always gives a larger score except for extremely small n. In the middle panel, it shows

the mean squared error by considering the posterior mean of predictive distribution to be a point

estimate, even if it is not our focus. In this case, it is not surprising to see that stacking of predictive

distributions gives almost the same optimal mean squared error as the stacking of means, both

of which are better than the BMA. Two distributions close in KL divergence are close in each

moment, while the reverse does not necessarily hold. This illustrates the necessity of matching the

distributions, rather than matching the moments.

Stacking depends only on the space expanded by all candidate models, while BMA or Pseudo-
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BMA weighting may by misled by such model expansion. If we add another N(4,1) as the 9th

model in the model list above, stacking will not change at all in theory, even though it becomes

non-strictly-convex and has infinite same-height mode. For BMA, it is equivalent to putting double

prior mass on the original 4th model, which doubles the final weights for it. The right panel

of Figure 7.3 shows such phenomenon: we fix sample size n to be 15 and add more and more

N(4,1) models. As a result, BMA (or Pseudo-BMA weighting) puts larger weight on N(4,1) and

behaves worse, while the stacking is essentially unchanged. It illustrates another benefit of stacking

compared to BMA or Pseudo-BMA weights. If the performance of a combination method decays

as the list of candidate models is expanded, this may indicate disastrous performance if there are

many similar weak models on the candidate list. We are not saying BMA can never work in this

case. In fact some other methods are proposed to make BMA overcome such drawbacks. For

example, George (2010) establishes dilution priors to compensate for model space redundancy for

linear models, putting smaller weights on those models that are close to each other. Fokoue and

Clarke (2011) introduce prequential model list selection to obtain an optimal model space. But we

propose stacking as a more straightforward solution.

Linear subset regressions. The previous section demonstrates a simple example of combining

several different nonparametric models. Now we turn to the parametric case. This example comes

from Breiman (1996b) who compares stacking to model selection. Suppose the true model is

Y = β1X1 + · · · + βJ XJ + ε,

where ε ∼ N(0,1). All the covariates X j are independently from N(5,1). The number of predictors

J is 15. The coefficient β is generated by

β j = γ
(
(1| j−4|<h(h − | j − 4|)2 + (1| j−8|<h)(h − | j − 8|)2 + (1| j−12|<h)(h − | j − 12|)2

)
,
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where γ is determined by fixing the signal-to-noise ratio such that

Var(
∑

j β j X j)

1 + Var(
∑

j β j X j)
=

4
5
.

The value h determines the number of nonzero coefficients in the true model. For h = 1, there are

3 “strong" coefficients. For h = 5, there are 15 “weak" coefficients. In the following simulation,

we fix h = 5. We consider the following two cases:

1. M-open: Each subset contains only one single variable. Hence, the k-th model is a univariate

linear regression with the k-th variable Xk . We have K = J = 15 different models in total.

One advantage of stacking and Pseudo-BMA weighting is that they are not sensitive to prior,

hence even a flat prior will work, while BMA can be sensitive to the prior. For each single

model Mk : Y ∼ N(βk Xk, σ
2), we set prior βk ∼ N(0,10), σ ∼ Gamma(0.1,0.1).

2. M-closed: Let model k be the linear regression with subset (X1, . . . ,Xk). Then there are

still K = 15 different models. Similarly, in model Mk : Y ∼ N(
∑k

j=1 β j X j, σ
2), we set prior

β j ∼ N(0,10), j = 1, . . . , k, σ ∼ Gamma(0.1,0.1).

In both cases, we have seven methods for combining predictive densities: (1) stacking of

predictive distributions, (2) stacking of means, (3) Pseudo-BMA, (4) Pseudo-BMA+, (5) best

model selection by mean LOO value, (6) best model selection by marginal likelihood, and (7)

BMA. We generate a test dataset (x̃i, ỹi), i = 1, . . . ,200 from the underlying true distribution to

calculate the out of sample logarithm scores for the combined distribution under each method and

repeat the simulation 100 times to compute the expected predictive accuracy of each method.

Figure 7.4 shows the expected out-of-sample log predictive densities for the seven methods,

for a set of experiments with sample size n ranging from 5 to 200. Stacking outperforms all other

methods even for small n. Stacking of predictive distributions is asymptotically better than any

other combination method. Pseudo-BMA+ weighting dominates naive Pseudo-BMA weighting.

Finally, BMA performs similarly to Pseudo-BMA weighting, always better than any kind of model
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Figure 7.4: Mean log predictive densities of 7 combination methods in the linear regression
example: the k-th model is a univariate regression with the k-th variable (1≤ k ≤15). We evaluate
the log predictive densities using 100 repeated experiments and 200 test data.

selection, but that advantage vanishes in the limit since BMA picks up one model. In thisM-open

setting, model selection can never be optimal.

The results change when wemove to the second case, in which the k-th model contains variables

X1, . . . ,Xk so that we are comparing models of differing dimensionality. The problem isM-closed

because the largest subset contains all the variables, and we have simulated data from this model.

Figure 7.5 shows the mean log predictive densities of the seven combination methods in this case.

For a large sample size n, almost all methods recover the true model (putting weight 1 on the full

model), except BMA and model selection based on marginal likelihood. The poor performance of

BMA comes from the parameter priors: recall that the optimality of BMA arises when averaging

over the priors and not necessarily conditional on any particular chosen set of parameter values.

There is no general rule to obtain a “correct” prior that accounts for the complexity for BMA in

an arbitrary model space. Model selection by LOO can recover the true model, while selection by

marginal likelihood cannot due to the same prior problems. Once again, BMA eventually becomes

125



●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Stacking of predictive distributions
Stacking of means

−
4

−
3

−
2

lo
g 

pr
ed

ic
tiv

e 
de

ns
ity

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

Pseudo−BMA+
Pseudo−BMA

−
4

−
3

−
2

lo
g 

pr
ed

ic
tiv

e 
de

ns
ity

0 50 100 150 200 250 300

Sample size: n

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

Bayesian model averaging (BMA)

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

Model selection by loo
Model selection by marginal likelihood

0 50 100 150 200 250 300

Sample size: n

Figure 7.5: Mean log predictive densities of 7 combination methods in the linear regression
example: the k-th model is the regression with the first k variables (1 ≤ k ≤ 15). We evaluate the
log predictive densities using 100 repeated experiments and 200 test data.

the same as model selection by marginal likelihood, which is much worse than any other methods

asymptotically.

In this example, stacking is unstable for extremely small n. In fact, our computations for stacking

of predictive distributions and Pseudo-BMA depend on the PSIS approximation to log p(yi |y−i). If

this approximation is crude, then the second step optimization cannot be accurate. It is known that

the parameter k̂ in the generalized Pareto distribution can be used to diagnose the accuracy of PSIS

approximation. When k̂ > 0.7 for a datapoint, we cannot trust the PSIS-LOO estimate and so we

re-run the full inference scheme on the dataset with that particular point left out.

Comparison with mixture models. Stacking is inherently a two-step procedure. In contrast,

when fitting a mixture model, one estimates the model weights and the status within parameters

in the same step. In a mixture model, given a model listM = (M1, . . . ,Mk), each component in

the mixture occurs with probability wk . Marginalizing out the discrete assignments yields the joint
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Figure 7.6: Log predictive densities of the combined distribution obtained by stacking of predictive
distributions, BMA, Pseudo-BMA, Pseudo-BMA+, model selection by marginal likelihood, and
mixture models. In each case, we evaluate the predictive density by 100 testing data and 100
repeated simulations. The correlation of variables ranges from −0.3 to 0.9, and sample size ranges
from 3 to 50. Stacking of predictive distributions and Pseudo-BMA+ outperform mixture models
in all cases.

likelihood

p(y |w1:K, θ1:K) =

K∑
k=1

wk p(y |θk,Mk).

The mixture model seems to be the most straightforward continuous model expansion. Never-

theless, there are several reasons why we may prefer stacking to fitting a mixture model. Firstly,

MCMC methods for mixture models are difficult to implement and generally quite expensive. Sec-

ondly, if the sample size is small or several components in the mixture could do the same thing, the

mixture model can face non-identification or instability problem unless a strong prior is added.

Figure 7.6 shows a comparison of mixture models and other model averaging methods in a

numerical experiment, in which the true model is

Y ∼ N(β1X1 + β2X2 + β3X2,1), βk is generated from N(0,1),

and there are 3 candidate models, each containing one covariate:

Mk : Y ∼ N(βk Xk, σ
2
k ),with a prior βk ∼ N(0,1), k = 1,2,3.

In the simulation, we generate the design matrix by Var(Xi) = 1 and Cor(Xi,X j) = ρ. ρ

determines how correlated these models are and it ranges from −0.3 to 0.9.

127



Figure 7.6 shows that both the performance of mixture models and single model selection are

worse than any other model averaging methods we suggest, even though the mixture model takes

much longer time to run (about 30 more times) than stacking or Pseudo-BMA+. When the sample

size is small, the mixture model is too complex to fit. On the other hand, stacking of predictive

distributions and Pseudo-BMA+ outperform all other methods with a moderate sample size.

Proximity and directional models of voting. Adams et al. (2004) use US Senate voting data

from 1988 to 1992 to study voters’ preference for the candidates who propose policies that are

similar to their political beliefs. They introduce two similar variables that indicate the distance

between voters and candidates. Proximity voting comparison represents the i-th voter’s comparison

between the candidates’ ideological positions:

Ui(D) −Ui(R) = (xR − xi)
2 − (xD − xi)

2,

where xi represents the i-th voter’s preferred ideological position, and xD and xR represent the

ideological positions of the Democratic and Republican candidates, respectively. In contrast, the

i-th voter’s directional comparison is defined by

Ui(D) −Ui(R) = (xD − XN )(xi − XN ) − (xR − XN )(xi − XN ),

where XN is the neutral point of the ideology scale.

Finally, all these comparison is aggregated in the party level, leading to two party-level variable

Democratic proximity advantage andDemocratic directional advantage. The sample size is n = 94.

For both of these two variables, there are two ways to measure candidates’ ideological positions

xD and xR, which lead to two different datasets. In theMean candidate dataset, they are calculated

by taking the average of all respondents’ answers in the relevant state and year. In the Voter-specific

dataset, they are calculate by using respondents’ own placements of the two candidates. In both

datasets, there are 4 other party-level variables.
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Full model BMA Stacking of Pseudo-BMA+ weighting
predictive distributions

Mean Voter- Mean Voter- Mean Voter- Mean Voter-
Candidate specific Candidate specific Candidate specific Candidate specific

prox. adv. -3.05 (1.32) -2.01 (1.06) -0.22 (0.95) 0.75 (0.68) 0.00 (0.00) 0.00 (0.00) -0.02 (0.08) 0.04 (0.24)
direct. adv. 7.95 (2.85) 4.18 (1.36) 3.58 (2.02) 2.36 (0.84) 2.56 (2.32) 1.93 (1.16) 1.60 (4.91) 1.78 (1.22)
incumb. adv. 1.06 (1.20) 1.14 (1.19) 1.61 (1.24) 1.30 (1.24) 0.48 (1.70) 0.34 (0.89) 0.66 (1.13) 0.54 (1.03)
quality adv. 3.12 (1.24) 2.38 (1.22) 2.96 (1.25) 2.74 (1.22) 2.20 (1.71) 2.30 (1.52) 2.05 (2.86) 1.89 (1.61)
spend adv. 0.27 (0.04) 0.27 (0.04) 0.32 (0.04) 0.31 (0.04) 0.31 (0.07) 0.31 (0.03) 0.31 (0.04) 0.30 (0.04)
partisan adv. 0.06 (0.05) 0.06 (0.05) 0.08 (0.06) 0.07 (0.06) 0.01 (0.04) 0.00 (0.00) 0.03 (0.05) 0.03 (0.05)
constant 53.3 (1.2) 52.0 (0.8) 51.4 (1.0) 51.6 (0.8) 51.9 (1.1) 51.6 (0.7) 51.5 (1.2) 51.4 (0.8)

Figure 7.7: Regression coefficients and standard errors in the voting example, from the full model
(columns 1–2), the averaged subset regression model using BMA (columns 3–4), stacking of pre-
dictive distributions (columns 5–6) and Pseudo-BMA+ (columns 7–8). Democratic proximity
advantage and Democratic directional advantage are two highly correlated variables. Mean can-
didate and Voter-specific are two datasets that provide different measurements on candidates’
ideological placement.

The two variables Democratic proximity advantage and Democratic directional advantage are

highly correlated. Montgomery and Nyhan (2010) point out that Bayesian model averaging is an

approach to helping arbitrate between competing predictors in a linear regression model. They

average over all 26 linear subset models excluding those containing both variables Democratic

proximity advantage and Democratic directional advantage, (i.e., 48 models in total). Each subset

regression is with the form

Mγ : y |
(
X, β0, βγ

)
∼ N(β0 + Xγβγ, σ2).

Accounting for the different complexity, they used the hyper-g prior (Liang et al., 2008). Let φ to

be the inverse of the variance φ = 1
σ2 . The hyper-g prior with a hyper-parameter α is,

p(φ) ∝
1
φ
,

β| (g, φ,X) ∼ N
(
0,
g

φ
(XT X)−1

)
,

p(g |α) =
α − 2

2
(1 + g)−α/2, g > 0.

The first two columns of Figure 7.7 show the linear regression coefficients as estimated using
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least squares. The remaining columns show the posterior mean and standard error of the regression

coefficients using BMA, stacking of predictive distributions, and Pseudo-BMA+ respectively.

Under all three averaging strategies, the coefficient of proximity advantage is no longer statistically

significantly negative, and the coefficient of directional advantage is shrunk. As fit to these data,

stacking puts near-zero weights on all subset models containing proximity advantage, whereas

Pseudo-BMA+ weighting always gives some weight to each model. In this example, averaging

subsetmodels by stacking or Pseudo-BMA+weighting gives away to dealwith competing variables,

which should be more reliable than BMA according to our previous argument.

Predicting well-switching behavior in Bangladesh. Many wells in Bangladesh and other South

Asian countries are contaminated with natural arsenic. People whose wells have arsenic levels that

exceed a certain threshold are encouraged to switch to nearby safe wells (for background details,

see e.g., Yao et al., 2021a). We are analyzing a dataset including 3020 respondents to find factors

predictive of the well switching. The outcome variable is

yi =


1, if household i switched to a safe well.

0, if household i continued using its own well.

And we consider following input variables:

• dist: the distance (in meters) to the closest known safe well,

• arsenic: the arsenic level (in 100 micrograms per liter) of the respondent’s well,

• assoc: whether a member of the household is active in any community association,

• educ: the education level of the head of the household.

We start with what we call Model 1, a simple logistic regression with all variables above as well

as a constant term,

y ∼Bernoulli(θ),

θ =logit−1(β0 + β1dist + β2arsenic + β3assoc + β4educ).
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Figure 7.8: The posterior mean, 50% and 95% confidence interval of the well switching probability
in Models 1–8. For each model, the switching probability is shown as a function of (a) the
distance to the nearest safe well or (b) the arsenic level of the existing well. In each subplot, other
input variables are held constant. The model weights by stacking of predictive distributions and
Pseudo-BMA+ are printed above each panel.

Model 2 contains the interaction between distances and arsenic levels,

θ = logit−1(β0 + β1dist + β2arsenic + β3assoc + β4educ + β5dist × arsenic).

Furthermore, we can use spline to capture the nonlinear relational between the logit switching

probability and the distance or the arsenic level. Model 3 contains the B-splines for the distance

and the arsenic level with polynomial degree 2,

θ = logit−1(β0 + β1dist + β2arsenic + β3assoc + β4educ + αdisBdis + αarsBars),

where Bdis is theB-spline basis of distancewith the form
(
Bdis,1(dist), . . . ,Bdis,q(dist)

)
andαdis, αars

are vectors. We also fix the number of spline knots to be 10. Model 4 and 5 are the similar models

with 3-degree and 5-degree B-splines, respectively.
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Figure 7.9: The posterior mean, 50% and 95% confidence interval of the well switching probability
in the combined model via stacking of predictive distributions. Pseudo-BMA+ weighting gives a
similar result for the combination.

Next, we can add a bivariate spline to capture nonlinear interactions,

θ = logit−1(β0 + β1dist + β2arsenic + β3assoc + β4educ + β5dist × arsenic + αBdis,ars),

where Bdis,ars is the bivariate spline basis with the degree to be 2×2,3×3 and 5×5 in Model 6,7

and 8 respectively.

Figure 7.8 shows the inference results in all 8 models, which are summarized by the posterior

mean, 50% confidence interval and 95% confidence interval of the probability of switching from an

unsafe well as a function of the distance or the arsenic level. Any other variables assoc and educ

are fixed at their means. It is not obvious from these results which one is the best model. Spline

models give a more flexible shape, but also introduce more variance for posterior estimation.

Finally, we run stacking of predictive distributions and Pseudo-BMA+ to combine these 8

models. The calculated model weights are printed above each panel in Figure 7.8. For both

combination methods, Model 5 (univariate splines with degree 5) accounts for the majority share.

Model 8 is the most complicated one, but both stacking and Pseudo-BMA+ avoid overfitting by

assigning it a negligible weight.

Figure 7.9 shows the posterior mean, 50% confidence interval, and 95% confidence interval

of the switching probability in the stacking-combined model. Pseudo-BMA+ weighting gives a

similar combination result for this example. At first glance, the combination looks quite similar

to Model 5, while it may not seem necessary to put an extra 0.09 weight on Model 1 in stacking
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combination sinceModel 1 is completely contained inModel 5 if setting αdis = αars = 0. However,

Model 5 is not perfect since it predicts that the posterior mean of switching probability will decrease

as a function of the distance to the nearest safe well, for small distances. In fact, without further

control, it is not surprising to find boundary fluctuation as a main drawback for higher order

splines. This decreasing trend around the left boundary is flatter in the combined distribution since

the combination contains part of straightforward logistic regression (in stacking weights) or lower

order splines (in Pseudo-BMA+ weights). In this example the sample size n = 3020 is large, hence

we have reasons to believe stacking of predictive distributions gives the optimal combination.

7.7 Discussion

Sparse structure and high dimensions. Yang and Dunson (2014) propose to combine mul-

tiple point forecasts, f =
∑K

k=1 wk fk , through using a Dirichlet aggregation prior, w ∼

Dirichlet
(
α

Kγ , . . . ,
α

Kγ

)
, and the adaptive regression. Their goal is to impose the sparsity struc-

ture (certain models can receive zero weights). They show their combination algorithm can achieve

the minimax squared risk among all convex combinations,

sup
f1,... fK∈F0

inf̂
f

sup
f ∗λ ∈FΓ

E | | f̂ − f ∗λ | |
2,

where F0 = ( f : | | f | |∞ ≤ 1).

The stacking method can also adapt to sparsity through stronger regularizations. When the

dimension of model space is high, we can use a hierarchical prior on w in estimation (7.5) to pull

toward sparsity if that is desired.

Constraints and regularity. In point estimation stacking, the simplex constraint is the most

widely used regularization so as to overcome potential problems with multicollinearity. Clarke

(2003) suggests relaxing the constraint to make it more flexible.

When combining distributions, there is no need to worry about multicollinearity except in

degenerate cases. But in order to guarantee a meaningful posterior predictive density, the simplex
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constraint becomes natural, which is satisfied automatically in BMA and Pseudo-BMA weighting.

As mentioned in the previous section, stronger priors can be added.

Another assumption is that the separate posterior distributions are combined linearly. There

could be gains from going beyond convex linear combinations. For instance, in the subset regression

example when each individual model is a univariate regression, the true model distribution is a

convolution instead of a mixture of each possible models distribution. Both of them lead to the

additive model in the point estimation, so stacking of the means is always valid, while stacking of

predictive distributions is not possible to recover the true model in the convolution case.

Our explanation is that when the model list is large, the convex span should be large enough to

approximate the true model. And this is the reason why we prefer adding stronger priors to make

the estimation of weights stable in high dimensions.

General recommendations. The methods discussed in this paper are all based on the idea of

fitting models separately and then combining the estimated predictive distributions. This approach

is limited in that it does not pool information between the different model fits: as such, it is only

ideal when the K different models being fit have nothing in common. But in that case we would

prefer to fit a larger super-model that includes the separate models as special cases, perhaps using

an informative prior distribution to ensure stability in inferences.

That said, in practice it is common for different sorts of models to be set up without any

easy way to combine them, and in such cases it is necessary from a Bayesian perspective to

somehow aggregate their predictive distributions. The often-recommended approach of Bayesian

model averaging can fail catastrophically in that the required Bayes factors can depend entirely on

arbitrary specifications of noninformative prior distributions. Stacking is a more promising general

method in that it is directly focused on performance of the combined predictive distribution. Based

on our theory, simulations, and examples, we recommend stacking (of predictive distributions) for

the task of combining separately-fit Bayesian posterior predictive distributions. As an alternative,

Pseudo-BMA+ is computationally cheaper and can serve as an initial guess for stacking. The
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computations can be done in R and Stan, and the optimization required to compute the weights

connects directly to the predictive task.

Looking forward. Alongwith an increasing number of statisticalmodels and learning algorithms,

ensemble methods have been appealing tools to expand existing models and inferential procedures,

and to improve predictive performance. In addition, the popularity of ensemble methods in

Bayesian statistics can be viewed as representing a modern shift in Bayesian data analysis: from

a static model-based inference to a Bayesian workflow in which we are fitting many models while

working on a single problem.

This chapter is mostly about Bayesian model averaging, stacking, and their variants. For these

methods, the model weights are trained after model-specific inferences, and the cost of the former

is typically much smaller than the latter. Another popular approach to construct ensembles is to

train each model and the model weight simultaneously or iteratively, such as in boosting (Freund

and Schapire, 1997), gradient boosting (Friedman, 2001), and mixture of experts (Jacobs et al.,

1991). These methods are computationally intensive for full-Bayesian inference, but more useful to

combine weak learners. On the other hand, different ensemble methods can be further aggregated:

for example, to stack fits from BMA and mixture of experts.

Many of these ensemble methods had limited usage until enough computational resources and

efficient approximation became available. Conversely, many model averaging strategies also help

solve difficulties in statistical computing. For example, bagging stabilizes otherwise non-robust

point estimates, and stacking can be used in multimodal posterior sampling.

Looking forward, there are many open questions. To name a few, both BMA and stacking

are restricted to a linear mixture form, would it be beneficial to consider other aggregation forms

such as convolution of predictions or a geometric bridge of predictive densities? Stacking often

relies on some cross-validation, how can we better account for the finite sample variance therein?

While staking can be equipped with many other scoring rules, what is the impact of the scoring

rule choice on the convergence rate and robustness? Beyond current model aggregation tools, can
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we develop an automated ensemble learner that could fully explore and expand the space of model

classes—for example, using an autoregressive (AR) model and a moving-average (MA) model to

learn an ARMA model? We leave these directions for future investigation.

7.8 Software implementation

An R package loo (Vehtari et al., 2019a) provides model weights from the PSIS-LOO based

stacking and pseudo-BMA. Suppose fit1, fit2 and fit3 are three models fit objects from the

Bayesian inference package Stan (Stan Development Team, 2020), then we can compute their

stacking weights as follows.

model_list <- list(fit1, fit2, fit3)
log_lik_list <- lapply(model_list, extract_log_lik)
# stacking:
wts <- loo_model_weights( log_lik_list, method = "stacking",
optim_control = list(reltol=1e-10))
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Chapter 8. Using stacking to combine non-mixing Bayesian computations:

The curse and blessing of multimodal posteriors 1

“They are immortal, all those stars both silvery and golden shall shine out again,
The great stars and the little ones shall shine out again, they endure,

The vast immortal suns and the long-enduring pensive moons shall again shine.”

—Walt Whitman

8.1 The curse of multimodal posteriors

Bayesian computation becomes difficult when posterior distributions are multimodal or, more

generally, meta-stable, as then it is generally impossible to compute moments analytically or to

directly draw simulations. Variational and mode-based approximations can be poor fits to the

posterior, and it can be difficult to identify all the modes in the first place. General-purpose Markov

chain Monte Carlo algorithms can have problems moving between modes. And even if different

modes are found, it is difficult to compute their relative weights in the posterior distribution, as this

requires integration over the posterior density within each mode.

Should we just run longer and longer chains? This is inefficient when effective sample size

per iteration (Vehtari et al., 2020a) is low. The state-of-the-art Hamiltonian Monte Carlo sampler

for a bimodal density mixes as poorly as random-walk Metropolis (Mangoubi et al., 2018), and

even optimal tuning and Riemannian metrics do not help. When the posterior distribution has

unconnected masses, the Markov chain is not irreducible and will never converge to its target.

In some cases it is possible to collapse multimodality using reparameterization (Papaspiliopou-

los et al., 2007; Johnson and Geyer, 2012; Betancourt and Girolami, 2015; Gorinova et al., 2020),

but this is not automated for general problems. Several schemes have been proposed for sampling

from distributions with isolated modes by increasing the temperature to enhance the transition

1This chapter is a slight modified version of Yao et al. (2020b).
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probability between modes; these methods include annealing (Kirkpatrick et al., 1983; Bertsi-

mas and Tsitsiklis, 1993), parallel tempering (Hansmann, 1997; Earl and Deem, 2005), simulated

tempering (Marinari and Parisi, 1992; Neal, 1993), Wang-Landau algorithm (Wang and Landau,

2001), and path sampling (Gelman and Meng, 1998; Yao et al., 2020a). These merthods enlarge

the sampling space by an auxiliary tempeture and often require to estimate the partition function:

a high dimensional integral. They are useful for many statistical physics and molecular biology

problems, in which the only goal is to sample from a given density. However, tempering-based

methods are sensitive to implementation and tuning, and their theoretical mixing rates drop quickly

in high dimensions (Bhatnagar and Randall, 2004). Based on simulations in Yao et al. (2020a),

methods based on simulated tempering are unlikely to work in large statistical models with the

scale that we consider in the present chapter.

θ1

θ2

A) energetic barrier 

θ1

θ2

B) entropic barrier 

Figure 8.1: Both the energetic and entropic
barriers lead to sampling metastability, and
the entropic barrier cannot be eliminated by
increasing the temperature.

Moreover, the metastability of sampling (Figure

8.1) comes from both the energetic (two modes are

distinct) and entropic (two regions are connected

through a narrow neck) barriers. Increasing the tem-

perature does not ease the entropic barrier, which is

a common problem with hierarchical models.

Despite these computational difficulties, we

would like to aim for full Bayesian inference, or

some approximation, because of the general benefits

of using probability to quantify uncertainty in inferences.

One way to explore a multimodal space is to run a large number of chains of MCMC or

variational inference from dispersed starting points, but then the question arises of how to average

over resulting inferences if they have not mixed. There can be benefits to averaging non-mixing

MCMC chains even with uniform weighting (Hoffman and Ma, 2020), but it should be possible

do better: equal weighting is convenient but is not in general appropriate and can lead to a strong

dependence on initial values.
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Stacking (Wolpert, 1992; Breiman, 1996b; LeBlanc and Tibshirani, 1996; Clarke, 2003) and

its Bayesian variants (Clyde and Iversen, 2013; Le and Clarke, 2017; Yao et al., 2018a) use cross

validation to average over a discrete set of fitted models.

The present chapter extends stacking to combine multiple chains fitting the same model. Al-

though this might seem like a small step, the practical implications of this idea are large, because

multimodality, meta-stability, and poor mixing are common problems when fitting complex multi-

level models.

Applying Bayesian stacking for non-mixing computations involves two challenges. The com-

putational challenge is to approximate the results of cross validation without the need to repeatedly

re-fit the model. This can be done using Pareto-smoothed importance sampling (Vehtari et al.,

2017, 2019b). The conceptual challenge is that the goal of minimizing prediction error is not the

same as minimizing Kullback-Leibler divergence to or approximating a posterior distribution. We

can prove some theoretical results regarding the benefits of cross validation in this setting, but

ultimately the effectiveness of stacking is best demonstrated by applying it to a series of challenging

problems that represent different sorts of posterior distributions that arise in applied statistics.

The contribution of this chapter is to provide a practical solution to yield a combined inference

from non-mixing computations, and to evaluate it on a diverse set of statistical examples. Our

procedure is scalable with negligible postprocessing cost and constructed to minimize cross-

validated prediction error.

In Section 8.2 we discuss various types of posterior multimodality, some of which can arise

from model misspecification. Section 8.4 details our method and practical implementation to deal

with non-mixing chains for Bayesian computation. We use a theoretical example in Section 8.7

to show that stacked-chain inference can achieve higher predictive efficiency than exact posterior

density asymptotically. In Section 8.8 we demonstrate the proposed method in applied exam-

ples, including hyperparameter bimodality and slow mixing in Gaussian process regression, latent

Dirichlet allocation, unstable variational inference in horseshoe regression, and Bayesian neural

networks.
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8.2 The folk theorem of statistical computing

When you have computational problems, often there’s a problem with your model. This

“folk theorem” (Gelman, 2008) can be understood by thinking of a statistical model or family of

distributions as a set of possible probabilistic explanations for a dataset. If the data come from some

distribution in the model class, then with identification and reasonable sample size we can expect

to distinguish among these explanations, and with a small sample size and continuous model, we

would hope to find a continuous range of plausible explanations and thus a well behaved posterior

distribution. But if the data do not fit the model, so that none of the candidate explanations work,

then the posterior distribution represents a mixture of the best of bad choices, and it can have poor

geometry in the same way that the seafloor can look rough if the ocean is drained.

Poor data fit, or conflict between the prior and likelihood, do not necessarily lead to awkward

computation. For example, the normal-normal model yields a log-concave posterior density with

constant curvature for any data. But if a model is flexible enough to fit different qualitative

explanations of data, then poorly fitting data can be interpreted by the model as ambiguity, as

indicated by posterior multimodality.

The other way a model can be difficult to fit is if its parameters are only weakly constrained

by the posterior. With a small sample size (or, in a hierarchical model, a small number of

groups), uncertainty in the hyperparameters can yield a posterior distribution of widely varying

curvature, which leads to slowly mixing MCMC. In practice, we can often fix the geometry by

putting stronger priors on these hyperparameters. However, a strong prior constraint is not always

desired—sometimes we are interested in fitting a model that is legitimately difficult to compute,

because we want to allow for different possible explanations of the data, and a too strong prior

implies an adhoc selection. These are settings where the stacking approach discussed in this chapter

can be useful.

Under the correct model and reasonable priors, Bayesian posteriors often attain asymptotic

normality and leave little room for several distinct and non-vanishing modes. That ensures rapid

140



mixing for random-walk Metropolis, scaling as O(d) (Roberts et al., 1997; Cotter et al., 2013;

Dwivedi et al., 2018), and Hamilton Monte Carlo, scaling as O(d1/4) (Beskos et al., 2013; Bou-

Rabee et al., 2020;Mangoubi and Smith, 2017, 2019). From this perspective, multimodal posteriors

should be unlikely with a large enough sample size. With smaller sample sizes, lack of convergence

to the asymptotic normality can arise from various sources.

8.3 The general problem of Bayes limiting behavior under model misspecification

Mixture model examples. Before theory discussions, we first design four mixture examples,

visualized in Figure 8.2. They demonstrate the behavior of exact inference, uniformly weighted

parallel chains, and stacking weighted parallel chains in case of different types posteriors.

(i) A missing mode: We draw n points yi, . . . , yn independently from the mixture, 2
3normal(5,1) +

1
3normal(−5,1). We fit the model yi |µ ∼ iidnormal(µ,1) with a flat prior on µ. The true

data generating process (DG) is expressed by µ ∼ 2
3δ(5) +

1
3δ(−5), but the Bayesian posterior

p(µ|y) = normal(ȳ,1/
√

n) is unimodally concentrated at µ = ȳ ≈ 5/3 and cannot catch the two

modes in data.

(ii) A bad mode: With the same data y above, now we fit a two-component normal model y ∼
2
3normal(µ1,1)+ 1

3normal(µ2,1) with known mixture probability and a flat prior on µ1, µ2. The

model is identifiable, but the resulting posterior is bimodal, centered around (µ1, µ2) = (5,−5)

and (−5,5) respectively. Asymptotically (n → ∞) the posterior converges to the first mode,

thereby the data generating process, but the existence of a second artifact mode both challenges

the sampling and compromises the prediction with finite data sample size. In Figure 8.2 we

simulate n = 30 data points and run eight parallel chains. Four chains are trapped in the

“wrong” mode.

(iii) An ugly mode: We generate data y1, . . . , yn iid from 1
2Cauchy(10,1) + 1

2Cauchy(−10,1). We

fit a one-component model y ∼ Cauchy(µ,1) with a flat prior. The true data generating process

is expressed by µ ∼ 1
2δ(10) + 1

2δ(−10). In the limit (n → ∞), the posterior density will be
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 an ugly mode
 Cauchy mixtures 
 unequal weights

Summary:
example

# modes
in DG

# modes in
posterior

posterior→DGas
n→∞?

unweighted chains
approx. DG?

stacking approx.
DG?

i 2 1 7 7 7
ii 1 2 3 7 3
iii 2 2 7 7 3
iv 2 2 7 7 3

Figure 8.2: Under a multimodal data generating mechanism, the exact Bayesian posterior can
miss the modes in (i) or over-concentrate at one mode (iii–iv). Stacking, our proposed method,
approximates the data generating process well in (ii–iv). The sample size n = 30 in (i–ii) and
n = 100 in (iii–iv).

concentrated at one of two points µ ≈ ±9.8. In the simulation with n = 100, the right-side

posterior mode contains almost 100% mass (up to the precision 10−6). The induced predictive

model then only describes half of data. Stacking, as implemented in this chapter, assigns a

weight of 0.52 to the right-side mode, achieving a much better prediction compared to the data

generating process.

(iv) Another ugly mode: We draw n data points yi, . . . , yn independently from the mixture model,
2
3Cauchy(10,1)+ 1

3Cauchy(−10,1) and again fit a one-component model y ∼ Cauchy(µ,1)with
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True DG: ỹθ∗0

1, . . . , ñ

Limiting Bayes posterior
predictive distribution:

Figure 8.3: When the parameter θ is randomly drawn from a distribution p∗ in the data generating
process (8.3), the limiting posterior inference p(θ |y) almost surely converges to a point estimate θ∗0.

a flat prior. The posterior p(θ |y) carries almost all masses on the right-side mode p(θ |y) ≈

δ(θ − 10), while our proposed method still approximates the true data generating process.

These examples represent various sources of posterior multimodality. In example (ii), one of

the modes is purely an artifact. Not drawing a posterior sample around it improves finite sample-

predictions. Such artifact-type modes are found in cases of prior-data conflict, label-switching,

aliasing (Bafumi et al., 2005), mixture and cluster-based models (Stephens, 2000; Blei et al., 2003),

and hierarchical models (Liu and Hodges, 2003).

In other examples, the data generating process (DG) can be expressed via a bimodal distribution

on µ. In example (i), the Bayesian posterior p(µ|y) converges to some middle point. In (iii–iv), the

posterior overconfidently concentrates at one of the modes and ignores the other, even when these

two modes have equal density at the modal point. We will revisit the Cauchy mixture in Section 8.7

and prove its limiting behavior, in which Bayesian inference almost surely occasions overconfident

concentration, but the blessing of bimodality enables stacking to recover the true data generating

process from the wrong model and wrong inference.

The curse of a multiverse generating process. Given data y1, . . . , yn generated independently

and identically distributed from an unknown data generating process: ptrue(y), and a potentially

misspecified model y |θ ∼ f (y |θ) and prior p(θ), θ ∈ Θ, when the sample size n goes to infinity

and regularization conditions apply, the limiting Bayesian posterior will be almost surely supported

on the set of global modes (Berk, 1966; Kleijn and Van der Vaart, 2012): A =
{
θ∗ ∈ Θ :

Eỹ∼ptrue log f (ỹ |θ∗) = maxθ∈Θ Eỹ∼ptrue log f (ỹ |θ)
}
.

Such limiting behavior has two undesired properties. First, when data are generated from one

parameter θ0 in the model (anM-closed view), ptrue = f (·|θ0), the posterior will be asymptotically
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concentrated at θ0. But otherwise, the limiting predictive distribution should be interpreted as the

closest distribution to data generating process in terms of Kullback–Leibler (KL) divergence, as we

can rewrite A as

A = arg min
θ∈Θ

KL
(
ptrue(·) | | f (·|θ)

)
, ∀η > 0, Prbayes(| |θ − A|| < η | y1...,n)

n→∞, a.s.
−−−−−−−−→ 1, (8.1)

The asymptotic predictive distribution is equivalent to some point estimate f (·|θ∗), θ∗ ∈ A. What

makes a method Bayesian is the use of probability to quantify uncertainties. Ideally we would fully

use the expressibility of the model and find the optimal probabilistic inference poptimal(θ) from

some space F that renders the best prediction for future unseen data according to a user-specified

divergence D(·| |·),

poptimal = arg min
p̃∈F

D
(
ptrue(·) | |

∫
Θ

f (·|θ)p̃(θ)dθ
)
. (8.2)

In particular, if the model is expressive enough (see Figure 8.3), then there is a density p∗(·) ∈ F

such that

ptrue(ỹ) =

∫
Θ

f (ỹ |θ)p∗(θ)dθ. (8.3)

and we can choose any divergence D corresponding to a strictly proper scoring rule (Gneiting and

Raftery, 2007). Then the minimum of (8.2) is attained at p∗, hence the “correct inference.”

The limiting Bayesian posterior (8.1) is a special solution to (8.2) where we fix D to be

KL divergence and restrict the distribution family F to be formed from Dirac delta functions:

F = {δ(θ0) | θ0 ∈ Θ}.

To rephrase the folk theorem, challenges in sampling and difficulties in modeling are con-

founded. There is no general algorithm to sample from truly multimodal distributions, and even if

this could be done, the posterior multimodality can signify that the true data are unlikely generated

to have been from any single parameter in the model, and so the Bayesian posterior itself, which

over-concentrates in the limit, is not appropriate.

With enough data, model misspecifications can be detected using posterior predictive checks

(Gelman et al., 1996), and (8.3) can be expanded to a hierarchical model by replacing θ by n copies
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θ1,...,n, with hyperpriors θi |τ ∼ p(θi |τ):

yi |θi = f (yi |θi), θi |τ ∼ p(θi |τ), τ ∼ p(τ), i = 1, . . . ,n. (8.4)

But it enlarges the model n times bigger, hurting both computational scalability and finite-sample

convergence rate. Meanwhile, the hyperprior p(θi |τ) can still be misspecified.

8.4 Inference from non-mixed computation: parallel approximation and stacking

To start, we assume we have some existing computer program that attempts to draw samples

from a posterior distribution p(θ |y) but might get trapped in a single mode or, more generally, a

small part of the distribution. We will typically be using Hamiltonian Monte Carlo with the no-

U-turn sampler (HMC/NUTS) in Stan (Stan Development Team, 2020). For the present chapter,

all that is necessary is that the algorithm produces some set of posterior draws, which might also

be obtained for example by variational inference (Blei et al., 2017) or mode-based approximation

such as Laplace’s method or expectation propagation (Vehtari et al., 2020b).

Step 1: Parallel evaluation. We run our program M times from different starting points to

have a chance to explore many modes or areas of the target distribution. We also recommend an

overdispersed initialization. Multiple starting points is not a new idea in statistical computation,

but we emphasize that our goal here is exploration, without the expectation that the chains will mix

with each other, nor that all modes and separated regions are reached. It could, for example, make

sense to run the simulation algorithm in parallel on a large number of processors in a cluster. If the

algorithm is iterative, follow the usual protocol to discard the initial transient states; for example

when running MCMC we typically discard, as warmup, the first half of each simulated chain.

In practice, within-chain convergence is easier than mixing among parallel chains. This is

especially true for distribution with isolated modes and high between-mode energy barriers. To

monitor the within-chain convergence, we use split-R̂ (Vehtari et al., 2020a). For most simulation

we experimented, it is fairly easy to have split-R̂ ≈ 1 for most chains.
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Step 2 (optional): Clustering. We can use a between-chain mixing measure such as R̂ (Gelman

and Rubin, 1992; Vehtari et al., 2020a) to partition the M parallel simulations into K clusters, each

of which approximately captures the same part of the target distribution. Label the simulations

from cluster k as (θki, i = 1, . . . ,Sk), with the total number of draws being S =
∑K

k=1 Sk . This step

is optional and recommended if the number of parallel runs M is large.

To keep notation coherent, when the clustering step is skipped, we denote K = M and θks as

the s-th sample in the k-th chain. Throughout the chapter, we use 1 ≤ i ≤ n to index outcome

observations, 1 ≤ k ≤ K to index clusters (chains, optimization runs), and 1 ≤ s ≤ S to index

posterior draws.

Step 3: Reweighing non-mixing chains using stacking. From the previous two steps, we assume

θki come from a stationary distribution pk(θ |y), which in general do not mix, nor do they match the

exact posterior p(θ |y).

To take into account between-chain heterogeneity, we consider a generalized form of Monte

Carlo estimate for any integral function h(θ) from chain-wise weights w1,w2, . . . ,wK :

E[h(θ)] ≈
K∑

k=1

Sk∑
s=1

wk S−1
k h(θks). (8.5)

The usual Monte Carlo estimate is a special case with w1 = · · · = wK = 1/K .

We optimize weights in (8.5) to maximize the leave-one-out cross validation performance of

the distribution formed from the weighted average of the simulation draws. This first requires

estimation of the pointwise leave-one-out (loo) log predictive density (lpd, Gelman et al., 2014;

Vehtari et al., 2017) from the k-th cluster (chain):

log pk(yi |y−i) = log
∫
θ∈Θ

p(yi |θ)pk(θ |y1,...,i−1,i+1,...,n)dθ, i = 1, . . . ,n, k = 1, . . . ,K . (8.6)
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Second, we solve

w∗1,...,K = arg max
w∈S(K)

n∑
i=1

log
K∑

k=1
wk pk(yi |y−i) + log pprior(w), (8.7)

where S(K) is the space of K-dimensional simplex,

S(K) = {w : 0 ≤ wk ≤ 1,∀1 ≤ k ≤ K;
K∑

k=1
wk = 1},

and pprior(w) is prior regularization.

In Section 8.5, we further approximate all log pk(yi |y−i) terms by importance sampling—it

suffices to fit all the full data once in each chain. We will also discuss the choice of priors pprior(w).

We view this optimization as a finite-sample estimate in (8.2), where we construct the distribu-

tion family as a mixture from sampled posterior clusters, F =
{∑K

k=1 wk pk(θ |y) : w ∈ S(K)
}
.

Finally, plugging the stacking wightsw∗1, . . . ,w
∗
K into (8.5), we obtain the chain-weightedMonte

Carlo estimates. The resulting approximation of the target distribution uses
∑K

k=1 Sk draws, with

each θks having weight w∗k/Sk .

Notably, we are by default using the logarithmic scoring rules in predictive evaluation, for it is

strictly proper. It is straightforward to adopt a user-specified prediction utility by replacing the log

predictive densities in the optimization step (8.7).

Step 4: Monitoring convergence. After K parallel runs, we cannot exclude the possibility that

another local mode or separated posterior region has been overlooked. We could use capture-

recapture methods to estimate the number of unseen modes. When there is a discrete combinatorial

explosion, it is essentially impossible to capture the full support of the distribution. So we are

implicitly assuming that we have a rough sense of the support of most of the posterior mass, or,

conversely, that we were previously willing to approximate the target distribution using a single

mode, in which case we would hope a multimodal average to be an improvement.

On the other hand, there is no need to capture all modes that are predictively identical. We
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monitor the weighted log predictive density as a function of how many components are added in

stacking. Ideally we should test it over an independent hold-out test data set, and stop when the log

predictive density of the stacked posterior reaches the maximum. Alternatively we can use cross

validation. For each K′ ≤ K , obtain stacking weights wK ′
k from chain 1, . . . ,K′, and monitor the

their stacked lpd as a function of number of chains K′, which typically monotonically increases:

lpdloo(K
′) =

n∑
i=1

log
K ′∑

k=1
wK ′

k pk(yi |y−i), 1 ≤ K′ ≤ K . (8.8)

We terminate if lpdloo(K
′) becomes relatively stable. Otherwise we sample extra chains and repeat

steps 1–4 on all chains.

8.5 Practical implementation

Leave-one-out posterior distributions. Let pk(θ |y) to be the stationary distribution from which

the k-th cluster (chain) is drawn. Working with the exact leave-one-out distributions pk(θ |y−i)

in (8.6) is not only computationally intensive (requiring the model to be fit n times) but also

conceptually ambiguous: Using full data and given initialization, the sampler obtains θk1, . . . , θkSk

from the k-th region, but what if after yi is removed from the same initialization reaches another

mode, or what if there is a phase transition and there are no longer K clusters?

The usual leave-one-out model can be written as, p(θ |y−i) ∝ p(θ |y−i)p(θ) =

p(θ |y)p(θ)/p(yi |θ) = p(θ |y)/p(yi |θ).We avoid the ambiguity by defining pk(θ |y−i) to be

pk(θ |y−i) B
pk(θ |y)/p(yi |θ)∫

θ∈Θ
pk(θ |y)/p(yi |θ)

. (8.9)

Efficient approximation of leave-one-out distributions. We use Pareto smoothed importance

sampling (PSIS, Vehtari et al., 2017, 2019b) to compute (8.9). It suffices to only fit the full

model once per chain. For each chain k, we obtain the raw leave-one-out importance ratios

1/p(yi |θks), i = 1, . . . ,n and stabilize these by replacing the largest ratios by the expected order

statistics in a fitted generalized Pareto distribution and followed by right truncation. Labeling the
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Pareto-smoothed importance ratio as riks, we approximate pk(yi |y−i) by

pk(yi |y−i) ≈

∑Sk
s=1 pk(yi |θks)riks∑Sk

s=1 riks
, k = 1, . . . ,K, i = 1, . . . ,n. (8.10)

This is asymptotically (Sk → ∞) unbiased and consistent. The finite-sample reliability and

convergence rate can be assessed using the estimated shape parameter k̂ of the fitted generalized

Pareto distribution. We refer to Vehtari et al. (2017, 2019a) and Appendix B of this chapter for

detailed algorithms and software implementation.

In summary, after parallel sampling, the extra computation costs of stacking only involve

summations in (8.10) and a length-K-vector optimization in (8.7), which are negligible compared

with the cost of sampling.

Prior on stacking weights. Extra priors beyond a simplex constraint in model averaging have

been considered (Le and Clarke, 2017; Yao et al., 2018a) but seldom applied in practice. Under a flat

prior pprior(w) = 1, the optimum in (8.7) is nonidentified and numerically unstable if two simplexes

w′ , w′′ entail the identical prediction
∑

k w
′
k pk(·|y) =

∑
k w
′′
k pk(·|y).We need an informative prior

for the predictive power versus Monte Carlo error tradeoff.

If all chains are distributed identically, and within chain sampling is independent, the variance

of (8.5) will be Var
(∑K

k=1
∑Sk

s=1 wk Sk
−1h(θks)

)
=

∑K
k=1 wk

2Sk
−1 Var (h(θ)) , whose minimum is

attained at wk = Sk/
∑

k ′ Sk ′. This justifies the uniform weights 1/K in the usual multi-chain Monte

Carlo scheme where, after complete mixing, any weighting yields unbiased estimates.

Further, when the k-th chain has an effective sample size Seff,k (Vehtari et al., 2020a), we

approximate the variance of the Monte Carlo estimate (8.5) to be Var
(∑K

k=1
∑Sk

s=1 wk Sk
−1h(θks)

)
=∑K

k=1 wk
2Seff,k

−1 Var (h(θ)) , whose minimum will be attained at wk = Seff,k/
∑

k ′ Seff,k ′. This also

suggests we can estimate the the effective sample size of w-weighted samples by:

Ŝeff :=

(
K∑

k=1
wk

2Seff,k
−1

)−1

.
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To reduce Monte Carlo error, we partially pool stacking weights using a Dirichlet prior with a

tuning scale parameter λ > 0 that controls the amount of partial pooling,

pprior(w1,...,K) = Dirichlet

(
λSeff,1∑K

k ′=1 Seff,k ′
, . . . ,

λSeff,K∑K
k ′=1 Seff,k ′

)
. (8.11)

We add this regularization term into (8.7). If λ = 1 and Seff,k is equal for all k, it becomes the

unregularized Bayesian stacking. If λ → ∞ and Seff,k ∝ Sk , it results in the usual Monte Carlo

estimate wk/Sk = 1/S. Ideally λ can be further tuned using hold-out data or extra cross validation.

In later experiments of this chapter, we simply use λ = 1.001 as a rule-of-thumb value.

Stacking using a flat prior is always convex, and therefore adding a small λ breaks the tie and

makes it strictly convex. If all chains are already mixed, stacking with an informative prior does

not hurt, and we will recover the approximately uniform weighting.

Thinning and importance resampling. For settings where it is inconvenient to work with

weighted simulation draws, we can perform thinning to obtain a set of Sthin simulation draws

approximating the weighted mixture of K distributions. We further adopt quasi Monte Carlo

strategy to reduce variance. Given weights {wk}
K
k=1 for K clustered simulation draws {θks}

K, Sk
k=1,s=1,

and an integer Sthin ≤ infk(Sk/wk), we first draw a fixed-sized S∗k = bSthinwkc sample randomly

without replacement from the k-th cluster, and then sample the remaining Sthin −
∑K

k=1 S∗k without

replacement with the probability proportional to
(
wk − S∗k/Sthin

)
from cluster k.

Lastly, we have implemented all related functions together to facilitate PSIS-loo based chain-

stacking in an R package loo. It works seamlessly with Stan. See Appendix B for an example.

8.6 Related work

Scalable MCMC. Bayesian inference can be more scalable in advent of parallel distributed

computation. Various subsampling methods have been introduced that distribute data batches to

parallel nodes and aggregate the resulting inference (Huang and Gelman, 2005; Welling and Teh,

2011; Angelino et al., 2016; Mesquita et al., 2020; Quiroz et al., 2019). These methods typically
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rely on certain approximations to rescale the subsampled posteriors.

Our approach is a divide-and-conquer strategy. It allows embarrassingly parallelization and

eliminates between-chain communication, which often dominates the budget of parallel computa-

tions (Scott et al., 2016). Arguably, stacking does not speed up at all if the posterior is unimodal

and tail-log-concave, when usual HMCmixes fast. We are aiming here for complicated models and

pathological posterior geometry. We believe that the bottleneck of modern Bayesian computation

is sometimes not the input dimension, but the slow mixing rate arising from awkward geometry of

metastable distributions.

Multiple starting points. Gelman and Rubin (1992) used multiple sequences and importance

resampling to approximate the posterior distribution, where each individual chain was iteratively

constructed from a locally Student-t approximation at posterior mode. However, a poor initial

point can still slow convergence (Geyer, 1992) because of the use of importance sampling. In our

approach, we are less concerned about starting points and only prefer it to be overdispersed.

Raftery and Lewis (1992a,b) suggested to abandon poor initial points coming with slow con-

vergence rate and high autocorrelation by restarting. In the context of multimodality, it is hard to

tell if this represents a poor initialization (that sits near the boundary of an attraction region) or a

bad mode. A restart may lose the chance to explore some posterior regions.

Our convergence criteria in Section 8.5 are similar to the early approaches on stochastic opti-

mization stopping rules following the capture-recapture model (Good, 1953; Robbins, 1968; Finch

et al., 1989). Those analyses were focused on the convergence in parameter space, while ours

are directly targeted at the outcome space and are thereby more applicable to models with a large

number of disjoint but functionally identical modes.

Approximate inference using mixtures. Although our narrative has been focused on MCMC

sampling, stacking can be applied tomultiple runs of approximate inference; see examples in Section

8.8. Usingmixture distributions to enrich the expressiveness of variational Bayes is not new. Earlier

works have used mixture of mean-field approximations to match the posterior (Bishop et al., 1998;
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Jaakkola and Jordan, 1998; Gershman et al., 2012; Ranganath et al., 2016; Gal and Ghahramani,

2016; Miller et al., 2017; Chang et al., 2019). However, a direct application of mixture variational

methods can be prohibitively expensive in large models, and weights are often fixed to ease the

cost. Stacking does not need to specify either the parametric form of the mixture or the number of

mixture components, both of which adapt to data and prevent extra model misspecification.

Comparison to importance sampling and Bayesian model (chain) averaging. We compare

stacking with other possible chain-combination methods. First we can use importance sampling

to adjust for differences between non-mixed chains and the target distribution, with the hope of

recovering the exact Bayesian posterior. The importance ratio for the k-th cluster/chain is

(Importance sampling) : αk ∝
1
Sk

Sk∑
s=1

p(θks, y) ≈

∫
Θ

pk(θ |y)dθ, k = 1, . . . ,K . (8.12)

Under the ideal assumption that each chain is well-separated, and all regions of the posterior

distributions have been fully explored,

Θ =

K⋃
k=1
Θk ; ∀k′ , k, pk (Θk ′) ≈ 0; s.t. ∀θ ∈ θK, p(θ |y) ≈ αk pk(θ |y). (8.13)

Then the importance ratio p(θ |y)/pk(θ |y) ≈ constant αk under pk(·|y). Hence, the importance

resampled draws match the exact posterior. Under the same assumption, the importance ratio αk is

proportional to the marginal likelihood. To see this, rewrite (8.12) as

(BMA) : αk ∝

∫
Θ

p(y |θ)pprior(θ)1(Θk)dθ = P(y |Θk), k = 1, . . . ,K .

Under a flat prior pprior(Θk) = 1/K , this leads to Pr(Θk |y) ∝ Pr(y |Θk) ∝ αk . Thus, using the

importance ratio (8.12) in the weighted Monte Carlo (8.5) is exactly Bayesian model averaging

(BMA, Madigan et al., 1996; Hoeting et al., 1999) on a discrete space {Θk : 1 ≤ k ≤ K}. When

assumption (8.13) does not hold, importance sampling (8.12) can still be viewed as BMA onmodels
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that are implicitly constructed from each chain. In all experiments later in the chapter, we refer

BMA to (8.12).

Yao et al. (2018a) introduced a pseudo-BMA weighting for model averaging. In our context,

the pseudo-BMA weight for cluster k is

(pseudo−BMA) : αk ∝ exp

(
n∑

i=1
log p(yi |y−i,Θk)

)
≈ exp

(
n∑

i=1
log

Sk∑
s=1

riksp(yi |θks)

riks

)
,

where riks is the same leave-one-out importance ratio in (8.10).

In comparison, BMA is fully Bayesian under assumption (8.13) and correct model specification.

In many approximate inferences, pk(·|y) is underdispersed and BMA loses mass; Even when using

multi-chain MCMC,Θk are often duplicate (without clustering) or overlapped. As a result, BMA is

sensitive to initialization and priors. Furthermore, Yao et al. (2018a) noted that BMA and pseudo-

BMA can perform disastrously when there are many similar weak models in the list of candidate

models. Similiary, BMA, importance sampling, and pseudo-BMA overweight “bad” modes when

they are oversampled. As discussed by Geyer (1992) a simple unweighted average over chains helps

when the starting distribution is close to the target density and chains mix slowly—the scenario in

which other naive methods will work, too. In contrast, stacking is invariant to chain duplication

and is less sensitive to initial values.

Understanding “overfitting”. Overfitting is a combination of model and inference. Given a

model, it is possible some regions of posterior distribution more significantly overfits the data than

others. Therefore, in (8.7) we use leave-one-out log predictive densities (loo lpd) to evaluate the

expected log predictive density (elpd) for each chain even though they come from the same model.

For a fixed K and weights w, in the limit when n → ∞, the mean loo lpd of aggregated

chains: n−1 ∑n
i=1 log

∑K
k=1 wk pk(yi |y−i) converges to elpd: Eỹ∼ptrue log

∑K
k=1 wk pk(ỹ |θ)pk(θ |y)dθ

(see Theorem 8.1 for a rigorous statement) . However, stacking uses the data twice, once in the

parallel sampling and once in the aggregation of chains. In the aggregation step, we optimize over

weights w. If both n and K go to infinity, the aggregated mean loo lpd is no longer an asymptotically
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Figure 8.4: We generate random θ and σ and further y from normal(θ,σ), and stack 9× 104 points
of (θ,σ) from a uniform grid. Stacking overfits due to the non-identification and finite sample size
n. BMA, pseudo BMA, and importance sampling are identical and overconfidently concentrate.
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Figure 8.5: Overfitting is revealed the gap between leave-one-out and test data lpd. A Dirichlet
prior with a small λ reduces overfitting in stacking, even better than the exact Bayesian
posterior.

unbiased or consistent estimate of elpd.

Figure 8.4 constructs an extreme example. The data {yi}
100
i=1 are generated from normal(θi, σi),

where θi and σi > 0 are generated from a 2-dimensional (half) Student-t distribution centered at 0

and 2 respectively (see the last column).

Now to fit the model yi ∼ iid normal(θ,σ), i = 1,2, . . . ,100, we draw K = 9 × 104 samples of

(θ,σ) from uniform(−7,7) × (0,7). We view these as K chains, with one iteration per chain, and

compute stacking weights. We evaluate the leave-one-out and test data lpd (using holdout data of

size 1000) of stacking, Bayesian posterior, and the true data generating process.

In this setting BMA, pseudo-BMA, importance sampling using a uniform proposal, and Rie-

mann approximation are the same method, all over-concentrated at the posterior mode. Overfitting
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is revealed by a large gap between leave-one-out lpd and test data lpd. What’s worse, the overcon-

fidence of exact Bayesian inference and BMA will be amplified by a larger n. In contrast, stacking

overfits because of nonidentification, and is asymptotically optimal for a fixed K and n → ∞. A

Dirichlet prior with small λ reduces overfitting (Figure 8.5) in stacking. It is in agreement with our

recommendation in Section 8.5. This example also suggests we can use stacking to re-aggregate a

unimodal posterior distribution and achieve better prediction than from exact Bayesian inference.

8.7 Asymptotic analysis in a theoretical example

In this section, we analyze the asymptotic behavior of stacking. We first prove that in general

chain-stacking is noworse than chain-picking. Thenwederive a closed-form solution in a theoretical

example to show that with model-misspecification and multimodal posterior, chain-stacking can be

predictively better than the exact posterior inference.

Optimality of the stacked predictive distribution. The stacking weights are not the same as

posterior masses of each mode. Even asymptotically, minimizing cross validation errors is different

from integrating the target distribution. Theorem 8.1 affirms that the stacked inference is optimal

from a predictive paradigm—it asymptotically maximizes the expected log predictive densities

(elpd) among all linearly weighted combination of parallel chains of form (8.5).

Theorem 8.1 (asymptotics of chain-stacking). Assuming we draw S posterior samples in each

chain from their stationary distribution pk , and we approximate the leave-one-out distribution by

PSIS as in (8.10), pS
k,−i(yi) =

∑Sk
s=1 pk(yi |θks)riks/

∑Sk
s=1 riks, then for a fixed number of chains K and

a fixed weight vector w, when in the limit of both the size of observations n and number of posterior

draws S, under regularities conditions (see Appendix), the objective function in stacking converges

to stacked elpd:

1
n

n∑
i=1

log
K∑

k=1
wk pS

k,−i(yi) − Eỹ |y1:n log
K∑

k=1
wk pk(ỹ |y1:n)

L2
−−→ 0, n→∞, S →∞.
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Cauchy example revisit: When can stacking outperform exact Bayes in the limit? Let’s revisit

the Cauchy mixture example in Section 8.3 and Figure 8.2. We consider univariate observations

y1,...n iid from the data generating process,

DG : yi ∼ Cauchy ((2zi − 1)a,1) , zi ∼ Bernoulli(p0), i = 1,2, . . . ,n.

In other words, y is either Cauchy(a,1) or Cauchy(−a,1)with probabilities p0 and 1− p0, where the

location a > 0 and probability p0 ∈ [0.5,1] are unknown constants (the 0 ≤ p0 < 0.5 counterpart is

symmetric and hence omitted). We denoted the density of this data generating process by ptrue(y).

We now fit y with the iid Cauchy likelihood with unknown parameter µ and a prior p0(µ) that

has full support on R,

Model : yi ∼ Cauchy(µ,1), µ ∼ p0(µ), µ ∈ R .

In particular, the data generating process can be expressed from this model if an inference θ is given

by a mixture of two points,

express DG in Model : µ ∼ p0δ(a) + (1 − p0)δ(−a).

The following theorems characterize the behavior of modes and the concentration of exact full

Bayesian inference in the limit of large n. Proofs and related lemmas appear in Appendix A.

Theorem 8.2 (characterize posterior mode in the Cauchy example). We construct a deterministic

function ξ(a) as visualized in Figure 8.6. It is an increasing function of a, with ξ(2) = 0.5 and

ξ(∞) = 1. The modality of posterior density p(µ|y1, . . . , yn) has a closed form determination.

(a) For any a > 2, and p0 ≥ ξ(a), there exists a large N , such that for all n > N , the posterior

is unimodal. The peak is near µ = a for a large a.

(b) For any a > 2, and 0.5 ≤ p0 < ξ(a), there exists a large N , such that for all n > N , the

posterior is bimodal. The two local maximums are near (−a,a) for a large a.
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Figure 8.6: Left: the deterministic function ξ(a). For any a > 2 the posterior is bimodal with
a large n if and only if p0 < ξ(a). Right: the elpd of the true data generating process and the
asymptotic (n→∞) elpd of full Bayes and multi-chain stacking at p0 = 0.5. When p0 = 0.5, a < 2
the posterior is unimodally spiked at 0, and stacking is identical to Bayes.

(c) For any 0 < a < 2, there exists a large N , such that for all n > N , the posterior is unimodal

with global maximum between 0 and a. If further p0 = 0.5, the maximum is at 0.

(e) When a > 2, p0 = 0.5 and equipped a symmetric prior p(µ) = p(−µ), there exists a large N

such that, for all n > N , the posterior is always bimodal with two maximums, which asymptotically

(n→∞) converge to µ = ±
√

a2 − 4.

Theorem 8.3 (posterior convergence in the Cauchy example). (a) For any a > 2, and p0 > 0.5,

the posterior distribution p(θ |y1, . . . , yn) converges in distribution to a point mass δ(γ) as n→∞,

where γ = γ(p0,a) depends on p0 and a.

(b) For any a > 2, p0 = 0.5, a prior that is symmetric p(µ) = p(−µ), the posterior distribution

p(θ |y1, . . . , yn) is asymptotically only charged at two points ±γ, with a closed form expression

γ =
√

a2 − 4. More precisely, the posterior distribution p(θ |y1, . . . , yn) is almost surely concentrated

at ±
√

a2 − 4 with equal probabilities 1/2.

(c) Under the same condition in (b), for any η > 0, almost surely the following limits hold,

lim sup
n→∞

Pr
(���µ − √

a2 − 4
��� < η | y1, . . . , yn

)
= lim sup

n→∞
Pr

(���µ + √
a2 − 4

��� < η | y1, . . . , yn

)
= 1

When a > 2, if 0.5 < p0 ≤ ξ(a), two modes (γ+, γ−) exist, but the exact inference will

asymptotically concentrate at the right mode γ = γ+. Even when p0 = 0.5 so that the two centers
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±a are equally important in the data generating process, the exact inference would still pick one

mode asymptotically, with the left and right mode having equal chances of being selected.

Corollary 8.4 (asymptotic elpd of chain-stacking). In all cases in Theorem 8.3, the expected log

predictive density (elpd) from the exact Bayesian posterior p(µ|y1, . . . , yn) is

elpdbayes =

∫
R

ptrue(ỹ |p0) log
∫
R

p(ỹ |µ)p(µ|y1, . . . , yn)dµd ỹ

n→∞
−−−−→ −

(
p0 log

(
π(4 + (γ − a)2)

)
+ (1 − p0) log

(
π(4 + (γ + a)2)

))
a is large
≈ − (1 − p0) log

(
1 + a2

)
− log 4π.

When a > 2, and 0.5 ≤ p0 ≤ ξ(a), the two modes (γ+, γ−) are detectable from multi-chain

MCMC. In this case, stacking behaves better than exact Bayesian inference. Indeed, the next

corollary shows that stacking approximates the data generating process in KL divergence.

Corollary 8.5 (asymptotic optimality of chain-stacking). (a) When n is large, for any a > 2 and

0.5 < p0 < ξ(a), both modes γ− γ+ receive asymptotically nonzero weights, and the elpd of the

stacking average,

elpdstacking =

∫
R

ptrue(ỹ |p0) log
∫
R

p(ỹ |µ)pstacking(µ|y1, . . . , yn)dµd ỹ,

is strictly larger than elpdbayes.

(b) When a is large, stacking weights for (γ−, γ+) are asymptotically close to 1 − p0 and

p0. Consequently, the stacked posterior predictive distribution approximates the data generating

process,

KL
(
ptrue(·),

∫
R

p(·|µ)pstacking(µ|y1, . . . , yn)dµ
)
' 0, when n→∞,a is fixed and large.

When n is large, for a > 2, p0 = 0.5, the stacking weights for two modes ±
√

a2 − 4 are

asymptotically equally 0.5. We analytically evaluate the elpd under the true data generating
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process, the asymptotic (n→ ∞) elpd of full Bayes, and multiple chain stacking in the right panel

of Figure 8.6. Stacking is predictively superior to the full Bayes. The elpd difference between the

data generating process and stacking vanishes for a large a, implying the KL divergence between

them approaches 0.

Lastly, our Cauchy example at p0 = 0.5might remind readers of the one constructed byDiaconis

and Freedman (1986a,b). They used a Dirichlet prior with the parameter measure Cauchy(µ,1) to

fit observations essentially coming from y ∼ 0.5δ(a)+0.5δ(−a)with a > 1. The resulting Bayesian

posterior of µ is concentrated at ±
√

a2 − 1. However, instead emphasizing the inconsistency of this

Bayesian procedure, we use our example to praise stacking: it approximates the true data generating

process given an misspecified model, inconsistent Bayesian inference, and non-mixing samplers.

8.8 Examples

We demonstrate effectiveness of stacking by applying it to a series of challenging problems.

Latent Dirichlet allocation. Latent Dirichlet allocation (LDA, Blei et al., 2003) is a mixed-

membership clustering model widely used in natural language processing, computer vision, and

population genetics. In the model, the j-th document (1 ≤ j ≤ J) is drawn from the l-th topic

(1 ≤ l ≤ L) with probability θ jl , where the topic is defined by a vector of probability distribution

φl over the vocabulary, such that each word in the document from topic l is independently drawn

from a multinomial distribution with probability φl .

Despite its popularity for data exploration, LDA suffers from computational instability as the

inference may not replicate itself from either multiple runs (Mäntylä et al., 2018) or data shuffle

(Agrawal et al., 2018). This confuses users as a different result is produced from each new run,

and reduces the predictive power of text mining classifiers. Past literature suggests to examine and

select one best fit from multiple unstable inference results subjectively or through cross validation,

or to conduct extra manual tuning for hyperparameters to get rid of posterior multimodality, which

however changes the original model andmay further undermine classification efficiency (Tian et al.,
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Chain weight Top words in the topic
0.20 mr, man, wickham, good, give, young, lydia
0.18 mr, man, young, bingley, collins, darcy
0.13 mr, lady, catherine, dear, great, young
0.12 wickham, elizabeth, mr, darcy, replied, hope
0.09 elizabeth, darcy, mr, sister, wickham, make

Figure 8.7: Weights of the top 5 chains in the LDA model with L = 5, and top words in the topic
that the first paragraph belongs to computed from these 5 chains.
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Figure 8.8: The mean log predictive densities from 30 randomly initialized chains, and the stacked
average of them, evaluated using both leave-one-word-out and independent test data. The number
of topics L in the LDA model varies from 3 to 10, and each chain contains 2000 or 4000 iterations.
Individual chains do not mix, and the best of them is invariably worse than stacking.

2009; Carreño and Winbladh, 2013).

We apply an LDA topic model to texts in the novel Pride and Prejudice. After removing

frequent and rare words, the book contains 2025 paragraphs and 32877 words, with a total unique

vocabulary size of 1495. We randomly split the words in the data into 70% training and 30% test.

The dimension of the parameters θ and φ grows as a function of the number of topics L by 2025× L

and L × 1495 respectively. We place independent Dirichlet(0.1) priors on θ and φ. We vary L

from 3 to 15, and for each fixed model we sample with Stan using 30 parallel chains initialized at

random starting points with 2000 or 4000 iterations per chain.

Due to the multimodal posterior p(φ, θ |y), individual chains do not mix after 4000 iterations.

As represented by green dots in Figure 8.8, different chains yield different log predictive densities

on test data, suggesting the multimodality is more than label-switching. Figure 8.7 lists, for five

runs, the top words in the topic to which the first paragraph belongs.

Following our stacking approach, the 30-chain-stacked average (red line in Figure 8.8) improves
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Figure 8.9: Stacking benefits from early-stopped MCMC. We run LDA with L = 10 topics on 30
chains. As the number of iterations increase from 500 to 5000, the test lpd of individual chains
increases, while the stacked average has a flatter slope, indicating we can stop early without losing
much predictive power. Monitoring R̂ and split-chain R̂ of all pointwise likelihoods, we find that R̂
is much bigger than split-R̂. The bottom right shows the effective number of nonzero weights. BMA
and pseudo-BMA put nearly all weight on one chain.

the model fit compared with even the best of individual chains by orders of magnitude, measured

in test data mean log predictive densities. Indeed, the improvement of stacking in mean lpd (≈ 0.2)

is standardized by sample size and equivalent to roughly an exp(105) outperforming margin in the

scale of Bayes factors. There is a mismatch between the trend of loo and test lpd, indicating the

inconsistency of single chain loo-selection. This may come from (a) the non-iid nature of textual

data, and (b) the parameter size is nearly the same as sample size such that loo has not reached its

consistency territory. But even so, stacking still performs well in test data and can be combined

with other predictive metric such as leave-one-document-out.

The left panel of Figure 8.9 shows the test data predictive performance using varying number

of itearations from 500 to 5000 (with fixed number of topics L = 10). As the number of iterations

increase, test lpd from inferences using individual chains elevates, while the stacked average has

a flatter slope, indicating that we can stop earlier and stack chains without losing much predictive

power, even though these chains are not completely mixed. The upper and middle right panel show

median, 30% and 50% central interval of R̂ and split-chain R̂ for all pointwise likelihoods. R̂ is

much bigger than split chain R̂, suggesting that the non-mixing is mostly due to lack of between-
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mode transitions. Given that in this problem sampling takes up to 12 hours CPU time per chain

per 1000 iterations, such early stopping of iterations provides a remarkable opportunity to reduce

computation costs. This is also manifested in Figure 8.8: for all L ∈ [3,10], individual chains

perform better when per-chain iterations increase from 2000 to 4000, whereas the stacked average

remains nearly unchanged (compare the red and dashed grey lines in the second and forth panel).

The bottom right panel of 8.9 shows the effective number of nonzero weights. In agreement

with our theoretical discussion, BMA and pseudo-BMA put nearly all mass onto one chain, and in

fact they often do not even select the optimal chain for the test data (left column). Accordingly, it

is no surprise that stacking outperforms BMA and pseudo-BMA.

In addition to the benefit of early stopping of iterations, stacking provides an extra bonus of early

stopping of topics. Usually, the number of topics L involves manual tuning. Stacking effectively

expands the model space. Therefore, we observe in the right two panels of Figure 8.8 that the

stacked average is less sensitive to L in test data lpd. Stacking compensates the lack of mixture

components in the model through additional mixtures of posteriors during chain aggregation.

Gaussian process regression. Consider a regression problem with scalar observations yi =

f (xi) + εi, i = 1, ...,n, at input locations X = {xi}
n
i=1, and εi are independent noises. We place a

Gaussian process prior on latent functions f with zero mean and squared exponential covariance. In

the next two experiments, we apply stacking to remedy bimodality in hyperparameter optimization,

and slow mixing in sampling, respectively.

Combining modes in hyperparameter optimization. In Gaussian process regression, posterior

bimodality can occur even with a normal likelihood:

yi = f (xi) + εi, εi ∼ normal(0, σ), f (x) ∼ GP
(
0, α2 exp

(
−
(x − x′)2

ρ2

))
. (8.14)

We use data from Neal (1998). The univariate input x is distributed normal(0,1), and the corre-

sponding outcome y is also Gaussian with standard deviation 0.1. With probability 0.05, the point
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is considered an outlier and the standard deviation is inflated to 1. In all cases, the true mean of

y |x is

ftrue(x) = 0.3 + 0.4x + 0.5 sin(2.7x) + 1.1/(1 + x2). (8.15)
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Figure 8.10: The posterior distribution of hyperparameters p(ρ,α,σ |y) has at least two local
modes. The left panel shows contours of the marginal posterior of ρ and α at fixed σ = 0.25. The
middle panel shows draws from the posterior predictive distribution f |y at the two hyperparameter
modes. We can either pick these two modes as type-II MAP or locally approximate the posterior of
hyperparameters at the modes by Laplace approximation or uniform-grid importance resampling.
Then the resulting modes or local approximation can be combined according to stacking, mode
height, or importance weighting. The right panel shows that stacking performs the best on test data
log predictive densities for all schemes.

Model (8.14) requires inference on f (xi) and all hyperparameters θ = (α, ρ,σ). We integrate

out all f (xi) and obtain the marginal posterior distribution

log p(θ |y) = −
1
2
yT

(
K(X,X) + σ2I

)−1
y −

1
2

log |K(X,X) + σ2I | + log p(θ) + constant, (8.16)

where p(θ) is the prior for which we choose an elementwise Cauchy+(0,3).

In Neal’s dataset with training sample size n = 100, at least two local maxima of (8.16) can be

found. We visualize the marginal distribution of p(ρ,σ |y) at σ = 0.25 on the leftmost of Figure

8.10.

Now we consider three standard mode-based approximate inference of θ |y:
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a. Type-II MAP. The value θ̂ that maximizes the marginal distribution (8.16) is called the

type-II MAP estimate. Using this point estimate of hyperparameters θ = θ̂, we further draw f |θ̂, y.

b. Laplace approximation. We compute Σ: the inverse of the negative Hessian matrix of

(8.16) at the local mode θ̂, draw z from multi-variate-normal(0, I3), and use θ(z) = θ̂ + VΛ1/2z

as the approximate posterior samples around the mode θ̂, where the matrices V,Λ are from the

eigendecomposition Σ = VΛ1/2VT .

c. Importance resampling. Instead of standard Gaussians in the Laplace approximation, we now

draw z from uniform(−4,4), and then resample z without replacement with probability proportional

to p (θ(z)|y) and use the kept samples of θ(z) as an approximation of p(θ |y).

In the existence of two local modes θ̂1, θ̂2, we either obtain two MAPs, or two nearly

nonoverlapped draws, (θ1s)
S
s=1, (θ2s)

S
s=1. We then evaluate the predictive distribution of f ,

pk( f |y, θ) =
∫

p( f |y, θ)q(θ |θ̂k)dθ, k = 1,2, where q(θ |θ̂k) is a delta function at the mode θ̂k ,

or the draws from the Laplace approximation and importance resampling that is expanded at θ̂k .

We visualize the predictive distribution of f using two local MAP estimates in the middle panel of

Figure 8.10. The one with the smaller length scale is more wiggling and passes the training data

more closely.

For each of these three mode-based inferences, we consider three strategies to combine two

modes:

a. Mode height. We reweigh the predictive distribution of f according to the height of the

marginal posterior density at the the mode: wk ∝ p(θ̂k |y), k = 1,2.

b. Importance weighting. For approximate posterior draws (θ1s)
S
s=1, (θ2s)

S
s=1, we reweigh them

proportional to the mean marginal posterior density wk ∝ 1/S
∑S

s=1 p(θks |y). We choose the

importance weights of two MAPs using the ones from importance resampling as it approximates

the total posterior mass in the surrounding region near the mode.

c. Stacking. Our fast approximate loo does not apply to MAP estimation directly. There-

fore, we split the data into training ytrain and validation data yval. We first obtain either

MAPs or approximate hyperparameter draws using training data and optimize their predic-
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tions on validation data. Stacking maximizes
∑nval

i=1 log
(∑K

k=1 wk p(yval,i |ytrain, θ̂k)

)
for MAPs or∑nval

i=1 log
(

1
S
∑K

k=1 wk
∑S

s=1 p(yval,i |ytrain, θks)

)
for Laplace and importance resampling draws.

In the right panel of Figure 8.10, we evaluate these three weighting strategies by computing

the mean expected log predictive density of the combined posterior distribution on hold-out test

data (ntest = 300). No matter whether we are combining two point estimates or two distinct

Laplace/importance resampling draws near the two modes, the stacking weights provide better

predictive performance on test data.

Combining non-mixed chains from Gaussian process regression with a Student-t likelihood.

Neal (1998) originally constructed this example in which noise εi in (8.14) is modeled by a t

distribution with mean 0, scale σ and degrees of freedom ν:

p(yi | fi, σ, ν) =
Γ((ν + 1/)2)
Γ(ν/2)

√
νπσ

(
1 +
(yi − fi)2

νσ2

)−(ν+1)/2

, f ∼ GP
(
0, α2 exp

(
−
(x − x′)2

ρ2

))
.

The Student-t model is robust to outlying observations but is computationally challenging, because

of (a) lack of closed-form expression for p( f |y), and (b) heavy-tailed posterior densities. Approxi-

mate methods exist, such as factorizing variational approximation (Tipping and Lawrence, 2005),

Laplace approximation (Vanhatalo et al., 2009), and expectation propagation (Jylänki et al., 2011),

but posterior sampling remains difficult.

We generate training data x1:n from uniform(−3,3), and the outcome yi has the same mean

in (8.15). yi either has standard deviation σ1 = 0.1, or inflated to σ2 > 0.1 with probability

proportional to exp
(
−

(
C i−0.4n

n

)2
)
, where C > 0 is a concentration factor that decides how the

outliers are concentrated with each other in x-space. In the experiment, we vary σ2 from 0.1 to

1 and C from 1 to 8. ntest = 300 hold-out test data points (X̃i, ỹi)
ntest
i=1 are generated from the same

mechanism.

We fix the degrees of freedom ν = 2 and sample from the full posterior distribution

p( f1, . . . , fn, σ,α, ρ) from K = 8 parallel chains and 8000 iterations per chain in Stan. We draw

initialization from uniform(−10,10) for unconstrained parameters and set the maximum tree depth
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Figure 8.11: Left: We fix the concentration factor C = 5 and vary the outlier standard deviation σ2
from 0.1 to 1 in the data generating mechanism. Right: We fix σ = 0.3 and vary the concentration
factor C from 1 to 8. In each setting, we sample from the posterior distribution using 8 chains
with 8000 iterations each, and combine chains using four weighting methods. We report the test
log predictive densities (using ntest = 300 independent test data) of three other methods subtracting
stacking, which are always negative. The lower row reports the maximum R̂ among all parameters.

to 5 for the NUTS algorihm. In the lower row of Figure 8.11, we report the maximum R̂ of all

sampling parameters among 8 chains: clearly these do not mix in all settings.

We compare four chain-combination strategies: BMA, pseudo-BMA, uniform averaging, and

stacking. After each iteration of (σ, ρ,α, f ), we draw posterior predictive sample of f̃ = f (X̃), and

compute the mean test data log predictive densities. Since test performance changes in orders of

magnitude under different data-generating settings, in Figure 8.11 we use stacking as a baseline

and compare the test log predictive densities of other methods by subtracting stacking ones. In all

cases, stacking outperforms other three approaches.

There are three contributors to the poor mixing in this example. First, chainwise predictions

may diverge even when parameters are nearly mixed. Figure 8.12 display sampling results for a

dataset with n = 20, σ2 = 0.6,C = 5. In the leftmost column, all (σ, ρ,α, f ) and transformed

parameters have R̂ < 1.05. But the log predictive densities are different across chains, shown in

the second column (chains have have been re-ordered by test lpd). Stacking detects this difference

via leave-one-out cross validation.

Second, the posterior distribution f |y can be multimodal. The rightmost column of Figure 8.12
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Figure 8.13: In an experiment (n = 40, σ2 = 1,C = 5), chain 1 is trapped in a bad local mode,
where the posterior f |y is narrow and fluctuate. It overfits observed value, and σ is trapped near
0 among 8000 iterations. It has a low elpd on both test data and loo, hence abandoned in stacking.

displays the joint posterior distribution of f conditioning on x = 0.3 and 1.5, clearly bimodal. In

this example, this is not a sampling concern owing to the small between-mode energy barrier, and

HMC/NUTS sampler in Stan is able to move between these two modes rapidly.

Third, some chains may be trapped in bad local modes. In Figure 8.13, we outline the sampling

result from another dataset (n = 40, σ2 = 1,C = 5). Chain 1 is trapped in a local mode with σ ≈ 0

and is unable to escape the local trap after 8000 iterations. The posterior prediction f fluctuates

and overfits the observations: f12 |y is nearly a delta function at y12. The strong overfitting of this

chain leads to a low elpd on both test data and leave-one-out cross validation, hence it is abandoned

by stacking.

167



Hierarchical models. Consider observations from J exchangeable groups. For simplicity we

assume a balanced one-way design, with data yi j, i = 1, . . . ,N from groups j. We apply a

hierarchical model with parameters (θ,σ, µ, τ),

centered : yi j |θ,σ ∼ normal(θ j, σ), θ j |µ, τ ∼ normal(µ, τ), 1 ≤ i ≤ N, 1 ≤ j ≤ J . (8.17)

Sampling in the space of (θ,σ, µ, τ) is called centered parameterization. When the likelihood is not

strongly informative, the prior dependence between τ and θ in (8.18) can produce a funnel-shaped

posterior that is non-log-concave, and slow-to-mix near τ = 0, due to a large entropic barrier.

Alternatively, with non-centered parameterization, sampling occurs in the space of (ξ,σ, µ, τ)

through a bijective mapping θ j = µ + τξ j , and the model is equivalently reparameterized by

non−centered : yi j ∼ normal(µ + τξ j, σ), ξ j ∼ normal(0,1), 1 ≤ i ≤ N, 1 ≤ j ≤ J . (8.18)

When the likelihood is not strongly informative, the non-centered parameterization is preferred

(Betancourt and Girolami, 2015; Gorinova et al., 2020), but when the likelihood is strongly infor-

mative, then the non-centered parameterized posterior has a funnel shape. The data informativeness

can be crudely measured by the inverse of F-statistics (between group variance divided by within

group variance). But beyond such heuristics and limited classes of models where analytic results

can be applied, there is no general guidance on which parameterization to adopt.

Parallel to the slow mixing rate due to the funnel shaped posterior, the posterior in (8.17) can

contain two modes, usually arising when the data indicate a larger between-group variance than

does the prior. Liu and Hodges (2003) characterized bimodality of this model under conjugate

priors in closed form.

To understand how the posterior bimodality affects sampling efficiency, in the first simulation

we generate data from J = 8 groups and N = 10 observations per group. The true τ and σ vary

from 0.1 to 20, with a varying amount of t-distributed noise added to θ. We place a conjugate

inverse-gamma(0.1,0.1) prior on both τ2 and σ2. For every realization of data, we sample from
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Figure 8.15: A grid search finds two posterior modes when data are generated by σ = 1 and τ = 25.
The second mode in density and prediction ability, ignored by posterior sampling.

the posterior distribution in both centered and non-centered parameterization using 4000 iterations,

and analytically determine whether the centered parameterization has two posterior modes.

In Figure 8.14, we assess themaximumabsolute parameterwise correlations (left three columns),

and the relative effective sample size (ESS divided by total iterations, right three columns) in

posterior samples. Conforming our heuristics, when between-group variation is large and within-

group variation is small, the centered parameterization is more efficient, and vice versa.

Surprisingly, in this example metastability and multimodality evolve in opposite directions. In

Figure 8.14 we visualize the occurrence of posterior bimodality in centered parameterization by a

thicker line width. When the between-group variation increases, the centered posterior eventually

becomes bimodal, but sampling becomes more efficient.

How is this possible? Figure 8.15 presents an example where the data are generated by σ = 1
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and τ = 25. Both the MAP and MLE are close to the true value. A second local mode explains all

variation by a large σ (opposite to Figure 8.13), but it is orders of magnitude lower than the first

one in posterior densities, hence ignored by sampling. That’s why the centered parameterization

runs smoothly in the existence of posterior bimodality. The bad mode also has a low loo elpd, so

stacking assigns it zero weight when we combine modes.

This simulation leaves a few open problems: which parameterization to choose in practice,

whether the sample has included all local modes, whether the ignored modes are predictively

important, and if we should search for them in the first place. The bimodality analysis of Liu and

Hodges (2003) applies to conjugate priors. But multimodality readily exists in hierarchical models.

To be specific, when the group-level standard deviation τ has a flat prior, τ = 0 is always a mode

of the joint posterior distribution. From the modeling perspective, this mode represents complete

pooling.

Given that the centered parameterization behaves like an implicit truncation and has sampling

difficulty in the small τ region, we propose a stacking-based solution for reparameterizations. We

run K + 1 chains. The first chain is complete pooling: restricting τ = 0 and θ j = θ1. The next K

parallel chains are centered parameterization with a zero-avoiding prior (Chung et al., 2013) on τ.

Finally, we use stacking to average these K+1 chains. Intuitively, if τ ≈ 0 is predicatively important

but missed by the implicitly left truncated centered parameterization, the first chain fills the hole;

when τ ≈ 0 is incompetent, the centered sampling is boosted by circumventing the computationally

intensive region τ ≈ 0.

To validate our proposal, we simulate data with dimensions J = 100 (number of groups) and

N = 20 (observations per group). We vary the true within-group standard deviation σ from 0.1

to 100 and add between-group noises Bv j to θ j , where B is a constant scalar varying from 0

to 50, and each v j is an independent Student-t(1) noise. We place a zero-avoiding prior τ2 ∼

inv-gamma(0.1,0.1). We sample one chain (3000 iterations) from the complete pooling model,

eight chains each from centered and non-centered parameterization, stack the complete pooling

and centered ones, and evaluate the prediction ability of the posterior inference using mean log
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Figure 8.16: We stack 8 parallel centered-parameterized chains and 1 complete pooling chain. The
stacked average always has better test data performance than both centered and non-centered ones
in all data configurations. The additional computation cost of stacking is minimal. Even when the
complete pooling chain receives zero weight, stacking still helps remedy slow mixing of remaining
chains and achieves better elpd than uniform mixing.

predictive densities on Ntest = 300 independent test data in each group. In the upper row of Figure

8.16, we place the stacking average as the baseline and extract its elpd from other parameterizations.

The complete pooling model almost always has lpd so low that it does not even appear on the graph,

and should never be used by itself. Instead of picking between the centered or and non-centered

parameterization, the stacking estimate (red line) always has a larger log predictive density than the

best of them. Such advantage is achieved at a negligible computation cost compared with sampling

time (middle row). These patterns are robust under different prior and data configurations, and we

have omitted similar outcomes when we tune J from 10 to 500 and for other zero-avoiding priors.

Lastly, in this example, stacking remedies both the incapability to sample in small τ regions,

and between-chain-non-mixing in the centered parameterization. The last row of Figure 8.16

monitors stacking weights for the complete pooling chain. Even when it receives zero weight, the

stack-weighted draws from centered parameterization are better than the uniform mixing of eight

chains.
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Stackingmulti-run variational inference in a horseshoe regression. The regularized horseshoe

prior (Piironen and Vehtari, 2017b,c) is an effective tool for Bayesian sparse regression. Denoting

y1:n as a binary outcome and xn×D as predictors, the logistic regression with a regularized horseshoe

prior is,

Pr(yi = 1) = logit−1(β0 +

D∑
d=1

βd xid), i = 1, . . . ,n, βd |τ, λ, c ∼ normal

(
0,

τcλd

(c2 + τ2λ2
d)

1/2

)
,

c2 ∼ Inv−Gamma(α, β), τ ∼ Cauchy+(0,1), λd ∼ Cauchy+(0,1), d = 1, . . . ,D.

Sampling from the exact posterior p(β, τ, c, λ |y) is computationally intensive and not scalable

to big data. Unfortunately, mean-field variational inference (VI, Blei et al., 2017) which optimizes

over the best mean-field Gaussian approximation to the joint posterior measured in KL divergence,

behaves poorly on horseshoe regression. In particular, VI cannot capture the posteriormultimodality

(see examples in Yao et al., 2018b), which is a key aspect of the regularized horseshoe, a continuous

counterpart of the spike-and-slab prior.

In general, the optimization problem in variational inference is not convex. Equipped with

stochastic gradient descent, multiple runs of variational inference can return entirely different

parameters. The common practice is to either select the best run based on the evidence lower bound

(elbo) or test data performance. In the presence of posterior multimodality, the best that a normal

approximation can do is to pick one mode, which in particular undermines the advantage of altering

between no pooling and complete pooling of horseshoe regressions.

In next two experiments, we apply stacking to multiple runs of automatic variational inference

(ADVI, Kucukelbir et al., 2017). In the k-th run, k = 1, . . . ,K,we obtain S posterior approximation

draws θk1, . . . , θkS. We treat these as posterior samples, obtain the leave-one-out predictive densities,

and use stacking to derive the optimal combination weights of all K runs.

Synthetic data. We first generate data from the model, Pr(yi = 1) = logit−1
(∑400

d=1 βd xid

)
, i =

1, . . . ,n = 40. The design matrix X is normally distributed with shared featurewise components to
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increase linear dependence. Of the 400 predictors, only the first three have nonzero coefficients

β1,2,3 = (3,2,1); this is the example discussed in Van Der Pas et al. (2014) and Piironen and Vehtari

(2017c). We assess the model prediction on hold-out test data with size ntest = 200.

Figure 8.17 presents the test data log predictive densities among 300 ADVI runs with 105

stochastic gradient descent iterations each run. Stacking achieves better prediction than any single

run and uniformmixing. Most of the runs have a low lpd, making the uniform reweighing undesired.

The elbo selection selects the second best run (in test data lpd).

Leukemia classification. We consider regularized horseshoe logistic regression on the leukemia

classification dataset. It contains 72 patients yi = 0 or 1,1 ≤ i ≤ 72, and a large set of predictors

consisting of 7128 gene features xid,1 ≤ d ≤ 7128.

In this section, we view HMC/NUTS sampling in Stan as the gold standard, which is slow

(several hours per 1000 iterations) but mixes well in this dataset (Piironen and Vehtari, 2017c).

We push the limit of variational inference by averaging 200 parallel ADVI runs with 105 stochastic

gradient descent iterations, where each run takes less than one minute, but the approximation from

any VI run is inaccurate.

173



 

0 20 40

posterior desnity
β1834

0.00

0.05

0.10

0.15

 

0 20 40

β1834

0.00

0.05

0.10

0.15

 
0 20 40

posterior desnity
β4847

0.0

0.1

0.2

0.3

0.4

NUTS
stacking

 

0 20 40

β4847

0.0

0.1

0.2

0.3

0.4

NUTS
BMApseudoBMA

 

0

20

40

One run of VI

 

One run of VI

 

One run of VI

 

0 20 40

0

20

40

HMC draws

 

0 20 40

Stacking 
 Weighted VI

 

0 20 40

Pseudo BMA 
 weighted VI

β1834

β4847

Figure 8.19: The stacked VI posterior distribution matches HMC/NUTS draws reasonably well both
marginally (left panel) and jointly (right panel) for the leukemia example, although individual runs
are inaccurate. The graph displays two parameters β1834 and β4847 that have the largest absolute
posterior means.

Figure 8.18 displays the leave-one-out log predictive density of the combined distribution as

a function of the number of runs to average, as previously described in (8.8). For stacking, there

is a first jump at 5 runs, a second jump at roughly 10 runs, and then almost stable afterwards.

For pseudo-BMA and uniform weighting, the loo elpd is worse with more runs, because VI is

sensitive to initialization, and pseudo-BMA, BMA, and uniform weighting are sensitive to weak

but duplicated runs (Yao et al., 2018a). Stacking achieves a much better leave-one-out lpd than

all individual chains and other weighting methods, nearly comparable to HMC/NUTS. There is

one caveat: because of the optimization procedure, the loo lpd of stacking likely overestimates its

expected lpd.

To better evaluate how close the final inference is to the exact sampling, we visualize the stacked

posterior VI draws of β1834 and β4847 (we pick these two variables which in our computation had

the largest absolute posterior means as estimated with HMC/NUTS) in Figure 8.19. Stacked

VI approximates the posterior well both marginally (left two columns) and jointly (right three

columns). It captures the main shape: a spike concentrated at 0 and a slab part—a true spike in

the stacked distribution might be even more appealing for interpretation. We also plot the joint

distributions from three individual runs, all distant from the truth. Stacking recombines these
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individual mean-field normal approximations, the mixture of enough of which can approximate

any continuous distribution.

Finally as a caveat, the PSIS-loo approximation is applicable to VI under assumption that each

VI optimum qk locally matches the exact posterior p (up to a normalization constant ck):

∃Θk ⊂ Θ, qk(Θk) ≈ 1, s.t. ∀θ ∈ Θk, qk(θ) ≈ ck p(θ |y), (8.19)

which can be assessed by diagnostics in Yao et al. (2018b). In this example, it is implausible that

(8.19) would exactly hold, but PSIS-loo still yields useful results. Alternatively, we can circumvent

assumption (8.19), replace loo by a training-validation split, and perform stacking on the validation

set, as shown in Section 8.8.

Bayesian neural networks. The posterior distribution of neural network parameters iswell known

to be often multimodal. We demonstrate stacking for such an example using the MNIST dataset, a

collection of images of handwritten digits that are to be classified into their true labels, 0–9. We

consider a two-layer neural network with tanh activation function:

Pr(yi = k) ∝ exp(
J∑

j=1
hi j β j k + φk), hi j = tanh(

M∑
m=1

ximαmj), i = 1, . . . ,n, k = 0, . . . ,9.

where n is the sample size, J is the number of hidden nodes, and M = 784 is the input dimension.

Making scalable Bayesian inference remains an open computation problem and beyond the scope of

this chapter. To simplify the problem while keeping the pathological multimodality in the posterior

distribution, we subsample n = 1000 training data from the labels y = 1 and 2 and set the number of

hidden nodes J = 40. We use hierarchical priors, α ∼ normal(0,σα), β ∼ normal(0,σβ), σα, σβ ∼

normal+(0,3). Switching the order of hidden nodes does not change the predictive density. We

eliminate the combinatoric non-identification in all other experiments in this section by constraining

the order of β: β1 ≥ β2 . . . ,≥ βJ .

We sample from the posterior distribution p(φ, β,α |y, x) using 50 parallel HMC/NUTS chains
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Figure 8.20: (1): The test mean log predictive densities of early stopped chains. Stacking performs
consistently better than single chains or other weighting methods. (2–4): The mean leave-one-out
and test data log predictive densities of 50 individual chains (green dots), their stacking weights
(size of the dot), and the test mean lpd of from four weighting strategies when fitting 40-hidden
node neural network on MNIST. There were 4000 iterations per chain, and network parameters
are initialized from uniform(−50,50), (−5,5), and (−0.001,0.001), respectively. Some individual
changes in the overdispersed setting are out of lower-range and not shown.

in Stan. In the right three panels in Figure 8.20, we present the posterior predictive performance of

individual chains and combinations, evaluated by the mean log predictive densities on both leave-

one-out data and an test data with ntest = 2167. The test score standard deviation is negligible. The

initial values of unconstrained parameters in panels 2–4 are drawn from uniform(−50,50), (−5,5),

and (−0.001,0.001), respectively. Each green dot stands for one chain, and the size of the dot reflects

the chain weight in stacking (we rescale the size proportional to w1/5
stacking to manifest extremely small

weights, see the legend on the right). Under an overdispersed initialization, the posterior inferences

considerably diverge, and uniform weighting is jeopardized by “unlucky” chains, while stacking

is not affected by a large number of bad chains. The PSIS-loo approximation does not accurately

estimate the test performance (detected by large k̂ diagnostics), but stacking still outperforms all

other weighting strategies. Under the (−0.001,0.001) initialization, all 50 chains are essentially

identical, and there is no gain from reweighing. In this experiment, a carefully tuned underdispersed

initialization is the most efficient. However, choosing optimal starting values in general models

remains difficult, whereas stacking is less sensitive to the initialization.

Early stopping is a commonly used ad hoc regularization method in neural networks (Vehtari

et al., 2000). The leftmost column in Figure 8.20 demonstrates that we can stack early stopped

176



chains to achieve a prediction-power and computation-cost tradeoff. In the setting of 40 hidden

nodes and overdispersed initialization, stacking is strictly better than the best single chain however

early we stop. Stacking with 1500 HMC iterations is better than the best chain at iteration 4000.

BMA and pseudo-BMA effectively choose just a single chain, and they and select the wrong chains

at times. Uniform weighting is again the worst due to its sensitivity to bad initializations.

The existing literature on neural net ensembles advocate to uniformly average over all ensembles

constructed by local MAPs found through stochastic gradient descent (Lakshminarayanan et al.,

2017), bootstrap resampling (Osband et al., 2019), or varying priors (Pearce et al., 2020). Our

experimental results show that inference from uniform weights is highly sensitive to starting points

and can be especially disappointing under an overdispersed initialization. The approximate loo-

based stacking sheds light on the benefit of post-inferencemulti-chain-reweighing inmodern deeper

neural networks. The additional optimization cost is tiny compared to the cost of model training.

We leave question of scalability to modern Bayesian deep learning models to future investigation.

8.9 Discussion

Learn better epistemic uncertainty to expiate aleatoric misspecification. Uncertainty comes

into inference and prediction through two sources: (a) due to finite amount of data, we learn

the epistemic uncertainty of unknown parameter θ through the posterior distribution p(θ |y), and

(b) due to either the stochastic nature of real world, even when θ is known, we represent the

aleatoric uncertainty through the probabilistic forecast of next unseen outcome as p(ỹ |θ, y). The

final probabilistic prediction contains both of them via p(ỹ |y) =
∫

p(ỹ |θ, y)p(θ |y)dθ.

Given a model, the epistemic uncertainty is mathematically well-defined though Bayesian

inference, but will only be optimal under the true model and when averaging over the prior

distribution. By being open-minded to model misspecification, the optimization (8.2) searches

for the “best” probabilistic inference and uncertainty quantification with respect to a given utility

function.

This chapter calls attention to post processing and re-calibrating Bayesian epistemic uncertainty.
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Stacking reweighs separated component in the posterior density, while in general we can consider

other transformations of the posterior draws such as location–scale shift, mixtures, and convolutions.

Bayesian inference is known to be poorly-calibrated under model misspecification (Gelman and

Shalizi, 2013). In the context of model-selection and averaging, the marginal-likelihood-based

“full-Bayes” approach produces over-confident prediction when none of the model is true (Clarke,

2003; Wong and Clarke, 2004; Clyde and Iversen, 2013; Yao et al., 2018a; Yang and Zhu, 2018;

Yao, 2019; Oelrich et al., 2020), and therefore is not Bayes optimal (Le and Clarke, 2017).

The suboptimality of Bayesian posteriors does not mean we think Bayesian inference is wrong,

but it does imply that there are tensions between a reckless application of Bayes rule under the

wrong model and the Bayesian decision theory, and more generally, between Bayesian inference

and Bayesian workflow. In the words of Gelman and Yao (2021), such tensions can only be resolved

by considering Bayesian logic as a tool, a way of revealing inevitable misfits and incoherences in

our model assumptions, rather than as an end in itself.

Chain-stacking as nonparametric inference. Aparametric model y |θ ∼ p(y |θ), θ ∼ p(θ), θ ∈ Θ

restricts the data generating mechanisms, which a priori are only supported at {p(y |θ) | θ ∈ Θ}.

The nonparametric Bayesian approach allows more flexible modeling that assigns a prior on a larger

space but is subject to other challenges of prior constriction and computation.

Multi-chain stacking enriches Bayesian inference in the same way that nonparametric priors

make models flexible. By allowing inference to depart from Bayes’ rule, we identify and correct

for model misspecification through stacked inference. The nonparametric aspect of stacking is also

reflected by the unspecified number of mixture components, as conceptually an infinite mixture

of simple distributions can approximate any continuous distribution. Of course, stacking cannot

resolve all model misspecification since it uses parametric inferences as building blocks.

Chain-stacking as diagnostics. Besides improving on model predictions, multi-chain stacking

can be used as a diagnostic tool.

First, uniformly identical stacking weight implies that parallel chains have mixed in overall
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from chain 1 and 8 in Figure 8.12. We compare two chains by a pointwise t test, where we plug in
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predictive performance. In comparison, R̂ is only marginally diagnostic on parameters. One

chain can be slightly but constantly better than the other, and such difference will be accu-

mulated across all points. For example, Figure 8.21 compares the pointwise predictive dis-

tributions of chains 1 and 8 in Figure 8.12. For each point x̃i, we compute the parameter

estimation E( f |y,X, x̃i) =
∫

f p( f |y,X, x̃i)df dσ and the log predictive density log p(ỹi | x̃i) =

log
∫

p(ỹi | f , σ)p( f |y,X, x̃i)df dσ, both using Monte Carlo draws from chain 1 and 8. We compare

two Monte Carlo integrals by a t test, and adjust the sample autocorrelation by plugging in the esti-

mated effective sample size (ESS) of the draws. In 84% of the test points x̃i uniformly distributed

on (−3,3), chain 8 has a higher pointwise predictive density than chain 1.

The distribution of log predictive densities often has a thicker tail than the distribution of

individual parameters, thereby having a larger Monte Carlo variation and slower mixing rate. Even

when all parameters are normally distributed in the posterior, the posterior log likelihood can be

χ2 distributed (see examples in Yao, 2019; Paananen et al., 2021). Compared with R̂, stacking

can reveal subtle aspects of poor mixing among chains, offering a diagnostic that is targeted to

prediction.
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Second, we can use stacking to diagnose where the posterior geometry cause sampling issues.

In the hierarchical model example, a nonzero complete-pooling chain (τ = 0) indicates that the

simulation using centered parameterization has not fully explored the basin around τ ≈ 0.

Lastly, stacking can diagnose interactions that have not been included in the model. When

stacking reveals strong and persistent differences among chains, it signifies potential model mis-

specification. In particular, the data can be a mixture of several generating processes corresponding

to different parameters (Kamary et al., 2019). We can expand to a hierarchical model as described

in Section 8.3.

Stacking as part of Bayesian workflow. We view stacking of parallel chains as sitting on the

boundary between black-box inference and a larger Bayesian workflow (Gabry et al., 2019; Gelman

et al., 2020).

For an automatic inference algorithm, stacking enables accessible inference from non-mixing

chains and a free enrichment of predictive distributions, which is especially relevant for repeated

tasks where computation time is constrained.

For Bayesian workflowmore generally, we recommend stacking in the model exploration phase,

where we need to obtain some inference. Parallel computation can be running asynchronously—it

may be that only some chains are running slowly—and stopping in the middle frees up computation

and human time that can be reallocated to explorations of more models. In addition, non-uniform

stacking weights when used in concert with trace plots and other diagnostic tools can help us

understand where to focus that effort in an iterative way.

8.10 Software implementation

We demonstrate the implementation of multiple-chain stacking in the general-purpose Bayesian
inference engine Stan (Stan Development Team, 2020). We use the Cauchy mixture model as an
example. First save the following Stan file to cauchy.stan.

data {
int n;
vector[n] y;
}
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parameters {
real mu;
}
model {
y ~ cauchy(mu, 1);
}
generated quantities {
vector[n] log_lik;
for (i in 1:n)
log_lik[i] = cauchy_lpdf(y[i]| mu, 1);
}

In the generated quantities block, we save log_lik: the log likelihood of each data point at
each posterior draw. We generate data from a Cauchy mixture according to example (iii) in Figure
8.2, and sample from its posterior densities. Here is the R code:

library(rstan)
library(loo)
set.seed(100)
mu = c(-10,10)
n = 100
y = rep(NA, n)
p = 0.5
y[1:(n*p)] = rcauchy(n*(p),mu[1], 1)
y[(n*(p)+1):n] = rcauchy(n*(1-p),mu[2], 1)
K = 8
# Fit the model in stan
set.seed(100)
stan_fit = stan("cauchy.stan", data=list(n=n, y=y), chains=K, seed=100)
mu_sample = extract(stan_fit, permuted=F, pars="mu")[,,"mu"]
print(Rhat(mu_sample))

We are using eight parallel chains, and the resulted R̂ = 1.6, clearly not mixing.
chain_stack() is a function to combinemultiple chains in a Stan fit object, returned by stan().

It only require the whole model fit once, and save the point wise log likelihood in each iteration,
called via log_lik here. The chain_stack() function uses the Stan optimizer (the default is
L-BFGS), and its first time compiling takes up to a few minutes. lambda is the tuning parameter
that controls the Dirichlet prior on stacking weights.

> library(devtools)
> source_url("https://github.com/yao-yl/Multimodal-stacking-code
/blob/master/chain_stacking.R?raw=TRUE")
> stan_model_object = stan_model("stacking_opt.stan")
> stack_obj=chain_stack(fits=stan_fit,lambda=1.0001,log_lik_char="log_lik")

Output: Stacking 8 chains, with 100 data points and 1000 posterior draws;
using stan optimizer, max iterations = 1e+05
...done.
Total elapsed time for approximate LOO and stacking = 0.87 s
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We can assess the reliability of the approximate leave-one-out using the k̂ diagnostics. In this
example, all pointwise k̂ estimates (100 observations × 8 chains = 800 in total) are smaller than
0.5, indicating that the loo approximation is accurate in this example.

> print_k(stack_obj)

Output: Count Proportion
(-Inf, 0.5] (good) 800 1
(0.5, 0.7] (ok) 0 0
(0.7, 1] (bad) 0 0
(1, Inf) (very bad) 0 0

We access the chain wights using

> chain_weights = stack_obj$chain_weights

Finally, we can use the weighted samples to calculate any posterior integral Estacking(h(µ)|y) as
in (8.5). Here we compute Pr(µ > 0|y): the total mass of positive values in the stacked inference.

> h = function(mu){mu>0}
> round(chain_weights %*% apply(h(mu_sample), 2, mean), digits=3)
[1] 0.523

Alternatively, we provide a quasi Monte Carlo based importance resampling function
mixture_draws() that draws posterior samples form the stacked inference. This enables us to
compute the same integral Estacking[h(µ) | y] using usual Monte Carlo methods:

> resampling=mixture_draws(individual_draws=mu_sample,weight=chain_weights)
> mean(h(resampling))
[1] 0.523
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Chapter 9. Bayesian hierarchical stacking:

Some models are (somewhere) useful1

“The fountains mingle with the river, And the rivers with the ocean,
The winds of heaven mix for ever, With a sweet emotion;

Nothing in the world is single; All things meet and mingle.

—Percy Bysshe Shelley

9.1 Introduction

Statistical inference is conditional on the model, and a general challenge is how to make full use

of multiple candidate models. Consider data D = (yi ∈ Y, xi ∈ X)
n
i=1, and K models M1, . . . ,Mk ,

each having its own parameter vector θk ∈ Θk , likelihood, and prior. We fit each model and obtain

posterior predictive distributions,

p(ỹ | x̃,Mk) =

∫
Θk

p(ỹ | x̃, θk,Mk)p(θk |{yi, xi}
n
i=1,Mk) dθk . (9.1)

Themodel fit is judged by its expected predictive utility of future (out-of-sample) data (ỹ, x̃) ∈ Y×X,

which generally have an unknown true joint density pt(ỹ, x̃). Model selection seeks the best model

with the highest utility when averaged over pt(ỹ, x̃). Model averaging assigns models with weight

w1, . . . ,wK subject to a simplex constraint w ∈ SK = {w :
∑K

k=1 wk = 1;wk ∈ [0,1],∀k}, and the

future prediction is a linear mixture from individual models:

p(ỹ | x̃,w,model averaging) =
K∑

k=1
wk p(ỹ | x̃,Mk), w ∈ SK . (9.2)

1This chapter is a slight modified version of Yao et al. (2021b).
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Stacking (Wolpert, 1992), among other ensemble-learners, has been successful for various pre-

diction tasks. Yao et al. (2018a) applies the stacking idea to combine predictions from separate

Bayesian inferences. The first step is to fit each individual model and evaluate the pointwise

leave-one-out predictive density of each data point i under each model k:

pk,−i =

∫
Θk

p(yi |θk, xi,Mk)p (θk |Mk, {(xi′, yi′) : i′ , i}) dθk,

which in a Bayesian context we can approximate using posterior simulations and Pareto-smoothed

importance sampling (Vehtari et al., 2017). Reusing data eliminates the need to model the unknown

joint density pt(ỹ, x̃). The next step is to determine the vector2 of weights w = (w1, . . . ,wK) that

optimize the average log score of the stacked prediction,

ŵstacking = arg max
w

n∑
i=1

log

(
K∑

k=1
wk pk,−i

)
, such that w ∈ SK . (9.3)

However, the linear mixture (9.2) restricts an identical set of weight for all input x. We will later

label this solution (9.3) as complete-pooling stacking. The present paper proposes hierarchical

stacking, an approach that goes further in three ways:

1. Framing the estimation of the stacking weights as a Bayesian inference problem rather than

a pure optimization problem. This in itself does not make much difference in the complete-

pooling estimate (9.3) but is helpful in the later development.

2. Expanding to a hierarchical model in which the stacking weights can vary over the population.

If the model predictors x take on J different values in the data, we can use Bayesian inference

to estimate a J×K matrix of weights that partially pools the data both in row and column.

3. Further expanding to allow weights to vary as a function of continuous predictors. This idea

generalizes the feature-weighted linear stacking (Sill et al., 2009) with a more flexible form

and Bayesian hierarchical shrinkage.

There are two reasons we would like to consider input-dependent model weights. First, the

2We use the bold letter w, or w(·) to reflect that the weight is vector, or a vector of functions.
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scoring rule measures the expected predictive performance averaged over x̃ and ỹ, as the objective

function in (9.3) divided by n is a consistent estimate of Ex̃,ỹ log
(∑K

k=1 wk p(ỹ | x̃,D,Mk)

)
. But an

overall good model fit does not ensure a good conditional prediction at a given location x̃ = x̃0, or

under covariate shift when the distribution of input x in the observations differs from the population

of interest. More importantly, different models can be good at explaining different regions in the

input-response space, which is why model averaging can be a better solution to model selection.

Even if we are only interested in the average performance, we can further improve model averaging

by learning where a model is good so as to locally inflate its weight.

In Section 9.2, we develop detailed implementation of hierarchical stacking. We explain

why it is legitimate to convert an optimization problem into a formal Bayesian model. With

hierarchical shrinkage, we partially pool the stacking weights across data. By varying priors,

hierarchical stacking includes classic stacking and selection as special cases. In Section 9.4, we

generalize this approach to continuous input variables, other structured priors, and time-series and

longitudinal data. We outline related work in Section 9.5. In Section 9.6, we evaluate the proposed

method in several simulated and real-data examples, including a U.S. presidential election forecast.

The proposed hierarchical stacking provides a Bayesian recipe for model averaging with input-

dependent-weights and hierarchical regularization. It is beneficial for both improving the overall

model fit, and the conditional local fit in small areas.

In the next chapter, we will turn heuristics from the previous paragraph into a rigorous learning

bound, indicating the benefit from model selection to model averaging, and from complete-pooling

model averaging to a local averaging that allows the model weights to vary in the population. The

theoretical results characterize how the model list should be locally separated to be useful in model

averaging and local model averaging.

9.2 Let the weight vary by input

The present paper generalizes the linear model averaging (9.2) to pointwise model averaging.

The goal is to construct an input-dependent model weight function w(x) = (w1(x), . . . ,wK(x)) :
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X → SK , and combine the predictive densities pointwisely by

p(ỹ | x̃,w(·), pointwise averaging) =
K∑

k=1
wk(x̃)p(ỹ | x̃,Mk), such that w(·) ∈ SXK . (9.4)

If the input is discrete and has finite categories, one naïve estimation of the pointwise optimal

weight is to run complete-pooling stacking (9.3) separately on each category, which we will label

no-pooling stacking. The no-pooling procedure generally has a larger variance and overfits the

data.

From a Bayesian perspective, it is natural to compromise between unpooled and completely

pooled procedures by a hierarchical model. Given some hierarchical prior pprior (·), we define the

posterior distribution of the stacking weights w ∈ SXK through the usual likelihood-prior protocol:

log p (w(·)|D) =
n∑

i=1
log

(
K∑

k=1
wk(xi)pk,−i

)
+ log pprior (w) + constant, w(·) ∈ SXK . (9.5)

The final estimate of the pointwise stacking weight used in (9.4) is then the posterior mean from

this joint density E(w(·)|D). We call this approach hierarchical stacking.

Complete-pooling and no-pooling stacking. For notational consistency, we rewrite the input

variables into two groups (x, z), where x are variables on which the model weight w(x) depends

during model averaging (9.4), and z are all remaining input variables.

To start, we consider x to be discrete and has J < ∞ categories, x = 1, . . . J. We will extend

to continuous and hybrid x later. The input varying stacking weight function is parameterized by

a J×K matrix {w j k} ∈ S
J
K : Each row of the matrix is an element of the length-K simplex. The

k-th model in cell j has the weight wk(xi) = w j k,∀xi = j. We fit each individual model Mk to all

observed data D = (xi, zi, yi)
n
i=1 and obtain pointwise leave-one-out cross-validated log predictive

densities:

pk,−i B

∫
Θk

p(yi |θk, xi, zi,Mk)p(θk |{(xl, yl, zl) : l , i},Mk)dθk . (9.6)

Same as in complete-pooling stacking, here we avoid refitting each model n times, and instead
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use the Pareto smoothed importance sampling (PSIS, Vehtari et al., 2017, 2019b) to approximate

{pk,−i}
n
i=1 from one-time-fit posterior draws p(θk |Mk,D). The cost of such approximate leave-one-

out cross validation is often negligible compared with individual model fitting.

To optimize the expected predictive performance of the pointwisely combined model averaging,

we can maximize the leave-one-out predictive density

max
w(·)

n∑
i=1

log

(
K∑

k=1
wk(xi)pk,−i

)
. (9.7)

On one extreme, the complete-pooling stacking (9.3) solves optimization (9.7) subject to a

constant constraint wk(x) = wk(x′),∀k, x, x′. On the other extreme, no-pooling stacking maximizes

this objective function (9.7) without extra constraint other than the row-simplex-condition, which

amounts to separately solving complete-pooling stacking (9.3) on each input cellD j = {(xi, zi, yi) :

xi = j}.

If there are a large number of repeated measurements in each cell, n j B | |{i : xi = j}| | → ∞,

then 1/n j
∑

i:xi= j log
∑K

k=1 pk,−i becomes a reasonable estimate of the conditional log predictive

density
∫
Y

pt(ỹ | x̃ = j) log p(ỹ | x̃,Mk)d ỹ, with convergence rate √n j , and therefore, no-pooling

stacking becomes asymptotically optimal among all cell-wise combination weights. For finite

sample size, because the cell size is smaller than total sample size, we would expect a larger

variance in no-pooling stacking than in complete-pooling stacking. Moreover, the cell sizes are

often not balanced, which entails a large noise of no-pooling stacking weight in small cells.

9.3 Bayesian inference for stacking weights

Vanilla (optimization-based) stacking (9.3) is justified byBayesian decision theory: the expected

log predictive density of the combined model Eỹ log
(∑K

k=1 wk p(ỹ |Mk)

)
is estimated by leave-one-

out 1/n
∑n

i=1 log
(∑K

k=1 wk pk,−i

)
. The point optimum ŵ asymptotically maximizes the expected

utility (Le and Clarke, 2017), hence is an M∗-optimal decision in terms of Vehtari and Ojanen

(2012).
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To fold stacking into aBayesian inference problem, wewant to treat the objective function in (9.7)

as a log likelihood with parameter w. After integrating out individual-model-specific parameters

θk such that p(y |x,Mk) is given, the outcomes yi at input location xi in the combined model

have densities p(yi |xi,wk(xi)) =
∑K

k=1 wk(xi)p(yi |xi,Mk), which implies a joint log likelihood:∑n
i=1 log

(∑K
k=1 wk(xi)p(yi |xi,Mk)

)
. But this procedure has used data twice—in other practices,

data are often used twice to pick prior, whereas here data are used twice to pick likelihood.

We use a two-stage estimation procedure to avoid reusing data. Assuming a hypotheti-

cally provided holdout dataset D′ of the same size and identical distribution as observations

D = {yi, xi}
n
i=1, we can use D′ to fit the individual model first and compute p̃(yi |xi,Mk,D

′) =∫
p(yi |xi,Mk, θk)p(θk |Mk,D

′)dθk . In the second stage we plug in the observed yi, xi, and obtain

the pointwise full likelihood p(yi |w,D′, xi) =
∑K

k=1 wk(xi)p̃(yi |xi,Mk,D
′).

Now in lack of holdout data D′, the leave-i-th-observation-out predictive density pk,−i is a

consistent estimate of the pointwise out-of-sample predictive density ED ′ (p̃(yi |xi,Mk,D
′)). By

plugging it into the two-stage log likelihood and integrating out the unobserved holdout data D′,

we get a profile likelihood

p(yi |w, xi) B ED ′ (p(yi, |w, xi,D
′)) =

K∑
k=1

wk(xi)ED ′ (p(yi |xi,Mk,D
′)) ≈

K∑
k=1

wk(xi)pk,−i .

Summing over yi arrives at log (p(D|w)) ≈
∑n

i=1 log
(∑K

k=1 wk(xi)pk,−i

)
. This log likelihood

coincides with the no-pooling optimization objective function (9.7).

To integrate out the hypothetical data D′ is related to the idea of marginal data augmentation

(Meng and van Dyk, 1999). Polson and Scott (2011) took a similar approach to convert the

optimization-based support vector machine into a Bayesian inference.

Hierarchical stacking: discrete inputs. The log posterior density of hierarchical stacking model

(9.5) contains the log likelihood defined above
∑n

i=1 log
(∑K

k=1 wk(xi)pk,−i

)
, and a prior distribution

on the weight matrix w = {w j k} ∈ S
J
K , which we specify in the following.
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We first take a softmax transformation that bijectively converts the simplex matrix space SJ
K to

unconstrained space RJ(K−1):

w j k =
exp(α j k)∑K

k=1 exp(α j k)
, 1 ≤ k ≤ K − 1, 1 ≤ j ≤ J; α jK = 0, 1 ≤ j ≤ J . (9.8)

α j k ∈ R is interpreted as the log odds ratio of model k with reference to MK in cell j.

We propose a normal hierarchical prior on the unconstrainedmodelweights (α j k)
K−1
k=1 conditional

on hyperparameters µ ∈ RK−1 and σ ∈ RK−1
+ ,

prior : α j k | µk, σk ∼ normal(µk, σk), k = 1, . . . ,K − 1, j = 1, . . . , J . (9.9)

The prior partially pools unconstrained weights toward the shared mean (µ1, . . . , µK−1). The

shrinkage effect depends on both the cell sample size n j (how strong the likelihood is in cell j),

and the model-specific σk (how much across-cell discrepancy is allowed in model k). If µ and σ

are given constants, and if the posterior distribution is summarized by its mode, then hierarchical

stacking contains two special cases:

• no-pooling stacking by a flat prior σk →∞, k = 1, . . . ,K − 1.

• complete-pooling stacking by a concentration prior σk → 0, k = 1, . . . ,K − 1.

It is possible to derive other structured priors. For example, a sparse prior (e.g., Heiner et al., 2019)

on simplex (w j1, . . . ,w jK) will enforce a cell-wise selection.

Instead of choosing fixed values, we view µ and σ as hyperparameters and aim for a full

Bayesian solution: to describe the uncertainty of all parameters by their joint posterior distribution

p(α, µ,σ |D), letting the data to tell how much regularization is desired.

To accomplish this Bayesian inference, we assign a hyperprior to (µ,σ):

hyperprior : µk ∼ normal(µ0, τµ), σk ∼ normal+(0, τσ), k = 1, . . . ,K − 1, (9.10)

where normal+(0, τσ) stands for the half-normal distribution supported on [0,∞) with scale param-
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eter τσ.

Putting the pieces (9.5), (9.9), (9.10) together, up to a normalization constant that has been

omitted, we attain a joint posterior density of all free parameters α ∈ RJ×K, µ ∈ RK−1, σ ∈ RK−1
+ :

log p(α, µ,σ |D) =
n∑

i=1
log

(
K∑

k=1
wk(xi)pk,−i

)
+

K−1∑
k=1

J∑
j=1

log pprior (
α j k |µk, σk

)
+

K−1∑
k=1

log p
hyper
prior (µk, σk) . (9.11)

Unlike complete and no-pooling stacking, which are typically solved by optimization, the maximum

a posteriori (MAP) estimate of (9.11) is not meaningful: the mode is attained at the complete-

pooling subspace α j k = µk, σk = 0,∀ j, k, on which the joint density is positive infinity. Instead, we

sample (α, µ,σ) from this joint density (9.11) using Markov chain Monte Carlo (MCMC) methods

and compute theMonte Carlo mean of posterior draws w j k , which we will call hierarchical stacking

weights.

The final posterior predictive density of outcome ỹ at any input location (x̃, z̃) is

final predictions : p(ỹ | x̃, z̃,D) =
K∑

k=1
wk(x̃)

∫
Θk

p(ỹ | x̃, z̃, θk,Mk)p(θk |Mk,D)dθk . (9.12)

Using a point estimate w j k is not a waste of the joint simulation draws. Because equation (9.12) is a

linear expression on wk , and because of the linearity of expectation, using w is as good as using all

simulation draws. Nonetheless, for the purpose of post-processing, approximate cross validation,

and extra model check and comparison, we will use all posterior simulation draws; see discussion

in Section 9.7.

9.4 Hierarchical stacking: continuous and hybrid inputs

The next step is to include more structure in the weights, which could correspond to regres-

sion for continuous predictors, nonexchangeable models for nested or crossed grouping factors,
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nonparametric prior, or combinations of these.

Additive model. Hierarchical stacking is not limited to discrete cell-divider x. When the input x

is continuous or hybrid, one extension is to model the unconstrained weights additively:

w1:K(x) = softmax(w∗1:K(x)),

w∗k(x) = µk +

M∑
m=1

αmk fm(x), k ≤ K − 1, w∗K(x) = 0, (9.13)

where { fm : X → R} are M distinct features. Here we have already extracted the prior mean µk ,

representing the “average” weight of model k in the unconstrained space. The discrete model (9.9)

is now equivalent to letting fm(x) = 1(x = m) for m = 1, . . . , J. We may still use the basic prior

(9.9) and hyperprior (9.10):

αmk | σk ∼ normal(0, σk), µk ∼ normal(µ0, τµ), σk ∼ normal+(0, τσ). (9.14)

We provide Stan (Stan Development Team, 2020) code for this additive model and discuss practical

hyperparameter choice in Appendix 9.8.

Because themainmotivation of our paper is to convert the one-fit-all model-averaging algorithm

into open-ended Bayesian modeling, the basic shrinkage prior above should be viewed as a starting

point for model building and improvement. Without trying to exhaust all possible variants, we list

a few useful prior structures:

• Grouped hierarchical prior. The basic model (9.14) is limited to have a same regularization

σk for all αmk . When the features fm(x) are grouped (e.g., fm are dummy variable from

two discrete inputs; states are grouped in regions), we achieve group specific shrinkage by

replacing (9.14) by

αmk | µk, σgk ∼ normal(0, σg[m]k), σgk ∼ normal+(0, τσ), µk ∼ normal(µ0, τµ),
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where g[m] = 1, . . .G is the group index of feature m.

• Feature-model decomposition. Alternatively we can learn feature-dependent regularization

by

αmk | µk, σk, λm ∼ normal(0, σkλm), λm ∼ InvGamma(a, b), σk ∼ normal+(0, τσ).

• Prior correlation. For discrete cells, we would like to incorporate prior knowledge of the

group-correlation. For example in election forecast (Section 9.6), we have a rough sense of

some states being demographically close, and would expect a similar model weights therein.

To this end, we calculate a prior correlation matrix ΩJ×J from various sources of state level

historical data, and replace the independent prior (9.9) by a multivariate normal (MVN)

distribution,

(α1k, . . . , α j k) | σ,Ω, µ ∼ MVN ((µk, . . . , µk),diag(σk) ×Ω ) . (9.15)

The prior correlation is especially useful to stabilize stacking weights in small cells.

• Crude approximation of input density. When applying the basic model (9.13) to continuous

inputs x = (x1, . . . , xD) ∈ RD, instead of a direct linear regression fd(x) = xd , we recommend

a coordinate-wise ReLU-typed transformation:

{ f : f2d−1(x) = (xd −med(xd))+, f2d(x) = (med(xd) − xd)−, d ≤ D}, (9.16)

where med(xd) is the sample median of xd . The pointwise model predictive performance

typically relies on the training density Ptrain
X (x̃): Themore training data seen nearby, the better

predictions. The feature (9.16) is designed to be a crude approximation of log marginal input

densities.
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Choice of features and exploratory data analysis. Choosing the division of (x, z) in discrete

inputs is now a more general problem on how to construct features fm(x), or a variable selection

problem in a regression (9.13). In ordinary statistical modeling, we often start variable selection

by exploratory data analysis. Here we cannot directly associate model weights wki with observable

quantities. Nevertheless, we can use the paired pointwise log predictive density difference ∆ki =

(log pk,−i − log pK,−i) as an exploratory approximation to the trend of αk(xi). A scatter plot of ∆ki

against x may suggest which margin of x is likely important. For example, the dependence of ∆ki

on whether xi is in the bulk or tail is an evidence for our previous recommendation of the rectified

features.

As more variables x are allowed to vary in the stacking model, model averaging is more prone

to over-fitting. Pointwise stacking typically has a large noise-to-signal ratio not only due to model

similarity, but also a high variance of pointwise model evaluation: the approximate leave-one-

out cross validation possesses Monte Carlo errors; even if we run exact leave-one-out, or use an

independent validation set in lieu of leave-one-out, we only observe one yi for one xi (if x is

continuous) such that log pk,−i is at best an one-sample-estimate of Eỹ |xi (log p(ỹ |xi,Mk)) with non-

vanishing variance. If fm(·) is flexible enough, then the sample optimum of no-pooling stacking

(9.7) always degenerates to pointwise model selection that pointwisely picks the model that “best”

fits current realization of yi: warg maxk pk ,−i (xi) = 1, which is purely over-fitting.

Even in companion with hierarchical priors, we do not expect to include too many features on

which stacking weights depend on. In our experiments, an additive model with discrete variables

and rectified continuous variables without interaction is often adequate. After standardizing all

features such that Var( fm(x)) = 1, we typically use a generic informative prior setting τµ = τσ = 1

in experiments. With a moderate or large number of features/cells, M , it is sensible to scale the

hyperprior τσ = O(
√

1/M), or adopt other feature-wise shrinkage priors such as horseshoe for

better regularization.
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Gaussian process prior. An alternative way to generalize both the discrete prior in Section 9.3

and the prior correlation (9.15) is Gaussian process priors. To this end we need K − 1 covariance

kernels K1, . . . ,KK−1, and place priors on the unconstrained weight αk(x), viewed as an X → R

function: αk(x) ∼ GP(µk,Kk(x)). The discrete prior is a special case of a Gaussian process via a

zero-one kernelKk(xi, x j) = σk1(xi = x j). Due to the previously discussed measurement error and

the preference on stronger regularization for continuous x, we recommend simple exponentiated

quadratic kernelsKk(xi, x j) = ak exp(−
(
(xi − x j)/ρk

)2
) with an informative hyperprior that avoids

too small or too big length-scale ρk , and too big ak . We present an example in Section 9.6.

Time series and longitudinal data. Hierarchical stacking can easily extend to time series

and longitudinal data. Consider a time series dataset where outcomes yi come sequentially

in time 0 ≤ ti ≤ T . The joint likelihood is not exchangeable, but still factorizable via

p(y1:n |θ) =
∏n

i=1 p(yi |θ, y1:(i−1)). Therefore, assuming some stationary condition, we can approxi-

mate the expected log predictive densities of the next-unit unseen outcome by historical average of

one-unit-ahead log predictive densities, defined by

pk,−i B

∫
Θk

p(yi |xi, y1:(i−1), x1:(i−1), θk,Mk)p(θk |y1:(n−1), x1:(n−1))dθk .

In hierarchical stacking, we only need to replace the regular leave-one-out predictive density (9.6)

by this redefined pk,−i, and run hierarchical stacking (9.11) as usual. Using importance sampling

based approximation (Bürkner et al., 2020), we also make efficient computation without the need

to fit each model n times.

If we worry about time series being non-stationary, we can reweight the likelihood in (9.11)

by a non-decreasing sequence πi: n
∑n

i=1

(
πi log

(∑K
k=1 wk(xi)pk,−i

))
/
∑n

i=1 πi, so as to emphasize

more recent dates. For example, πi = 1+ γ− (1− ti/T)2, where a fixed parameter γ > 0 determines

how much influence early data has. By appending x B (x, t), the stacking weight can vary across

the time variable, too.

In Section 9.6, we present an election example with longitudinal polling data (40 weeks time
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series × 50 states). For the i-th poll (already ordered by date), we encode state index into input

xi = 1, . . . ,50, all other poll-specific variables zi, data ti, and poll outcome yi. We compute

the one-week-ahead predictive density pk,−i B
∫

p(yi |xi, zi,D−i,Mk)p(θk |D−i,Mk)dθk where the

dataset D−i = {(yl, xl, zl) : tl ≤ ti − 7} contains polls from all states up to one week before date ti.

Stacking under covariate shift. So far we have adopted an IID view: the training and out-of-

sample data are from the same distribution. Yet another appealing property of hierarchical stacking

is its immunity to covariate shift (Shimodaira, 2000), a ubiquitous problem in non-representative

sample survey, data-dependent collection, causal inference and many other areas.

If the distribution of inputs x in the training sample, ptrain
X (·), differs from these predictors’

distribution in the population of interest, ppop
X (·) (p

pop
X is absolutely continuous with respect to

ptrain
X ), and if p(z |x) and p(y |x, z) remain invariant, then we do not need to adjust weight estimate

from (9.11), because it has already been pointwisely optimized.

By contrast, complete-pooling stacking is aimed at average risk. Under covariate shift, the sam-

ple mean of leave-one-out score in the k-th model, 1
n
∑n

i=1 log p(ỹ | x̃,Mk), is no longer a consistent

estimate of population elpd. To adjust, we can run importance sampling (Sugiyama and Müller,

2005; Sugiyama et al., 2007; Yao et al., 2018a) and reweigh the i-th term in the objective (9.3)

proportional to the inverse probability ratio ppop
X (xi)/ptrain

X (xi). Even in the ideal situation when

both ppop
X and ptrain

X are known, the importance weighted sum has in general larger or even infinite

variance (Vehtari et al., 2019b), thereby turning down the effective sample size and convergence

rate in complete-pooling stacking (toward its population optima (10.2)). When ptrain
X is unknown,

the covariate reweighting is more complex while hierarchical stacking circumvents the need of

explicit modeling of ptrain
X .

When we are interested only at one fixed input location ppop
X (x̃) = δ(x0), hierarchical stacking

is ready for conditional predictions, whereas no-pooling stacking and reweighed-complete-pooling

stacking effectively discard all xi , x0 training data in their objectives, especially a drawback when

x0 is rarely observed in the sample.
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We may combine hierarchical stacking and poststratification to estimate the overall average

risk. Suppose observations are from an online survey and we identify that the survey has se-

lection bias on certain demographic variables x, such as age, gender and education, we can

then fit multiple models and add hierarchical stacking to combine models. Finally we use

poststratification weight ppop
x= j to compute the average log predictive density in the population∑J

j=1 ppop
X (x = j)(

∑
i:xi= j log

∑
k(ŵ(xi)p(yi |D−i,Mk))/

∑
i:xi= j 1). Although it is plausible to further

reweigh the hierarchical-stacking likelihood in order to achieve double robustness, here as per the

protocol of multilevel modeling (Gelman and Little, 1997), we recommend poststratification only

after model inference and hierarchical stacking.

Generally, a data-dependent-design is conditionally ignoble if all relevant covariates are included

in the model and modeled properly. In our hierarchical stacking context, if the only goal is to adjust

for the covariate-shift, we conjecture that the “most efficient” hierarchical stacking weight should

only depend on the input through the propensity score f (x) = Pr(test|x): the probability of the an

input location belonging to the test data. Our proposed method might be especially useful in causal

inference, which we will leave for future investigation.

As a caveat, this algorithm-wise invariance does not ensure that the stacked prediction is good for

the population of interest: if all individual models fit the test data terribly, model averaging cannot

rescue them; when propensity score in the last paragraph is not properly estimated, the average

treatment effect derived from hierarchical stacking cannot be right. Perhaps an analogy would

be that the logistic regression is invariant under a retrospective (case-control) and a prospective

(cohort) design, but it does not ensure that the logistic regression always yields good predictions,

because the actual data does not necessarily have a logistic link function or a linear response.

For the task of averaging-models-with-covariate-shift, one open question is to compare the

following 2 × 2 combination of methods:

(a) each individual model likelihood is pointwisely importance-weighted,

(b) each individual model is itself a hierarchical (multilevel) model that includes all relevant

covariates,
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×

(i) importance-weighted stacking,

(ii) hierarchical stacking.

Any one component appears a sensible adjustment for covariate-shift. Dowe have double robustness

when combining them? What is the best combination?

9.5 Related literature

Stacking (Wolpert, 1992; Breiman, 1996b; LeBlanc and Tibshirani, 1996), or what we call

complete-pooling stacking in this chapter, has long been a popular method to combine learning

algorithms, and has been advocated for averaging Bayesian models (Clarke, 2003; Clyde and

Iversen, 2013; Le and Clarke, 2017; Yao et al., 2018a). This simple approach has been applied in

various areas such as recommendation system, epidemiology (Bhatt et al., 2017), networkmodeling

(Ghasemian et al., 2020), and post-processing in Monte Carlo computation (Tracey and Wolpert,

2016; Yao et al., 2020b). Stacking can be equipped with any scoring rules, while the present chapter

focuses on the logarithm score by default.

Our theory investigation in Section 10.2 is inspired by the discussion of how to choose candidate

models by Clarke (2003) and Le and Clarke (2017). In L2 loss stacking, they recommended

“independent” models in terms of posterior point predictions (E(ỹ | x̃,M1), . . . ,E(ỹ | x̃,MK)) being

independent. When combining Bayesian predictive distributions, the correlations of the posterior

predictive mean is not enough to summarize the relation between predictive distributions (Pirš and

Štrumbelj, 2019), hence we consider the local separation condition instead.

Allowing a heterogeneous stacking model weight that changes with input x is not a new idea.

Feature-weighted linear stacking (Sill et al., 2009) constructs data-varying model weights of the

k-the model by wk(x) =
∑M

m=1 αkm fm(x), and αkm optimizes the L2 loss of the point predictions

of the weighted model. This is similar to the likelihood term of our additive model specification

in Section 9.4, except we model the unconstrained weights. The direct least-square optimization

solution from feature-weighted linear stacking is what we label no-pooling stacking.
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It is also not a new idea to add regularization and optimize the penalized loss function. For L2

loss stacking, Breiman (1996b) advocated non-negative constraints. In the context of combining

Bayesian predictive densities, a simplex constraint is necessary. Reid andGrudic (2009) investigated

to add L1 or L2 penalty, −λ | |w | |1 or −λ | |w | |2, into complete-pooling stacking objective (9.3). Yao

et al. (2020b) assigned a Dirichlet(λ), λ > 1 prior to the complete-pooling stacking weight vector

w to ensure strict concavity of the objective function. Sill et al. (2009) mentioned the use of L2

penalization in feature-weighted linear stacking, which is equivalent to setting a fixed prior for all

free parameters αkm ∼ normal(0, τ),∀k,m, whose solution path connects between uniformweighing

and no-pooling stacking by tuning τ. All of these schemes are shown to reduce over-fitting with

appropriate amount of regularization, while the tuning is computation intensive. In particular, each

stacking run is built upon one layer of cross validation to compute the expected pointwise score in

each model pk,−i, and this extra tuning would require to fit each model n(n−1) times for each tuning

parameter value evaluation if both done in exact leave-one-out way. Fushiki (2020) approximated

this double cross validation for L2 loss complete-pooling stacking with L2 penalty on w, beyond

which there was no general efficient approximation.

Hierarchical stacking treats {µk} and {σk} as parameters and sample them from the joint density.

Such hierarchy could be approximated by using L2 penalized point estimate with a different tuning

parameter in each model, and tune all parameters ({σk}
K−1
k=1 for the basic model, or {σmk}

M, K−1
m=1,k=1

for the product model). But then this intensive tuning is equivalent to approximate the Type-II

MAP of hierarchical stacking in an inefficient grid-searching fashion (in contrast to gradient based

MCMC).

Another popular family of regularization in stacking enforces sparse weights (e.g., Zhang and

Zhou, 2011; Şen and Erdogan, 2013; Yang and Dunson, 2014), which include sparse and grouped

sparse priors on the unconstrained weights, and sparse Dirichlet prior on simplex weights. The

goal is that only a limited number of models are expressed. From our discussion in Chapter 10, all

models are somewhere useful, hence we are not aimed for model sparsity—The concavity of log

scoring rules implicitly resists sparsity; The posterior mean of hierarchical stacking weights w j k
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is in general is never sparse. Nevertheless, when sparsity is of a concern for memory saving or

interpretability, we can run hierarchical stacking first and then apply projection predictive variable

selection (Piironen and Vehtari, 2017a) afterwards to the posterior draws from the stacking model

(9.11) and pick a sparse (or cell-wise sparse) solution.

In contrast to fitting individual models in parallels before model averaging, an alternative ap-

proach is to fit all models jointly in a bigger mixture model. Kamary et al. (2019) proposed a

Bayesian hypothesis testing by fitting an encompassing model p(y |w, θ) =
∑K

k=1 wk p(y |θk,Mk).

The mixture model requires to simultaneously fit model parameters and model weights

p(w1,...,K, θ1,...,K |y), of which the computation burden is a concern when K is big. Yao et al.

(2018a) illustrated that (complete-pooling) stacking is often more stable than full-mixture, espe-

cially when sample size is small and some models are similar. Nevertheless, our formulation of

hierarchical stacking agrees with Kamary et al. (2019) in terms of sampling from the posterior

marginal distribution of p(w |y) in a full-Bayesian model.

Hierarchical stacking bears a resemblance with “mixture of experts” (Jacobs et al., 1991; Jordan

and Jacobs, 1994; Svensën and Bishop, 2003) in terms of using a local mixture to form ensembles:

p(y |x,w(x), θ) =
∑K

k=1 wk(x)p(y |x, θk,Mk) However, hierarchical stacking differs from the mixture

of experts, or mixture modeling at large, in the following ways:

1. Mathematically, stacking fits individual separately, hence the posterior predictive distribution

of outcome y at location x can be expressed by

p(y |x,D) =
∫ (

K∑
k=1

wk(x)
∫

p(y |x, θk,D,Mk)p(θk |D)dθk

)
p(w |D)d w .

But in mixture modeling, individual models and the weights are fitted jointly. The final

posterior predictive distribution is

p(y |x,D) =
∫
· · ·

∫ (
K∑

k=1
wk(x)p(y |x,D,Mk)

)
p(θ1, . . . , θK,w |D)dθ1 . . . dθK d w .
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2. Conceptually, the mixture model/mixture of experts is a way to build a model, while stacking

or hierarchical stacking is a tool for model averaging. From a statistical workflow perspective,

we would like to view a complete workflow containing (a) model building, (b) inference, and

(c) model check, model evaluation, postprocessing, model comparison and model averaging.

Of course, part of the message this paper conveys is that model evaluation is itself a model,

such that there is no technical isolation between them. However, this distinction on when the

method is called in the workflow implies what set of individual models this averaging method

would apply to. As we wrote in the related literature section: “rather than to compete with a

mixture-of-experts on combining weak learners, hierarchical stacking is more recommended

to combine a mixture-of-experts with other sophisticated models.”

3. A mixture of experts infers experts and gating models at the same time. It is possible to

decouple these two tasks computationally. For example, in each M-step in the EM algorithm,

the update on these two components are separated. But even so, the computation cost is

typically super linear on the number of parameters. Because a mixture of experts needs to

fit all models and gates in a single super model, it is often not feasible to obtain the exact

posterior distribution. Rather its inference relies on a MAP or a variational approximation.

In contrast, hierarchical stacking fits each individual model in advance, and the weights are

trained separately. This division largely reduces computation cost. Of course, this division

also comes with less flexibility: If the true data generating process is truly a mixture model,

then fitting individual component p(θk |D) separately is wrong and stacking cannot remedy

it. As we have argued, the right attitude is that we use stacking to combine plausible models

that would otherwise be used as the final belief model.

In themodern big data regime, wemay often buildmodels as big as possible. When individual

models have already sat next to the computation-feasibility frontier, it is not viable to include

them in an even bigger mixture model and fit all parameters jointly.

4. Another potential drawback of the joint training procedure in mixture modeling is the weak-
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identification problem, which is especially a concern when individual models are “similar”

or the sample size is not big enough. To verify this argument, Figure 6 in Yao et al. (2018a)

compares complete-pooling stacking and mixture modeling to combine subset regressions.

Despite a much longer inference time (about 30 more times when using MCMC) than

stacking, it has worse predictive performance than stacking. When the sample size is small,

the mixture model is too complex to fit, and is worse than any other model averaging and

selection methods we have considered. That said, this example does not mean mixture

modeling is useless, and the identification issues could be improved by a strong prior, but it

does manifest the flaw of treating the mixture modeling as a panacea for model averaging.

5. Hierarchical stacking or stacking can be used to average over computation instabilities: Even

conditioning on a single model, the posterior may contain multiple modes; the optimization

may research different results due to random initialization, stochastic gradients, data partition,

etc. Our GP example in the next section illustrates this idea in the context of posterior

multimodality. By contrast, a mixture of experts itself often has a multimodal posterior

(Svensën and Bishop, 2003).

6. There is a slight difference in how individual models are operationalized: the majority of

literature on mixture-of-experts draws a distinction between classifications and regressions:

for discrete variables, it is the probabilities from individual models that are additive; for

continuous outcomes, it is the outcome itself that is additive, which is equivalent to a

convolution of predictive densities. In our paper, there is no difference between classifications

and regressions: we always additively combine the predictive densities.

7. The original mixture of experts method introduced by Jacobs et al. (1991) did not have

explicit regularization on gate parameters w and was solved by maximum likelihood, which

thereby could be called “no-pooling” (but we have deleted this oversimplification in related

literature due to the reason AE has suggested).

In the later development of “hierarchical mixture of experts”(Jordan and Jacobs, 1994), the
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word “hierarchy” is related to the hierarchy ofmodels, which are often represented by a binary

tree. Rather, in this paper, the word “hierarchy” is more about the partition of data. That

said, as a multinomial logistic regression is equivalent to a sequence of logistic regressions,

the binary tree representation in hierarchical mixture of experts is not intrinsic.

Using Bayesian inference (variational Bayes) to train a mixture of experts was first proposed

by Waterhouse et al. (1996), and also developed by Svensën and Bishop (2003). Besides the

general concern on how close the variational approximation is to the exact posterior (e.g., Yao

et al., 2018b, especially a concern here because of posterior multimodality), this variational

approach also needs a conjugate prior, for which the default choice in Svensën and Bishop

(2003) is (using our notation):

σ2
k ∼ InvGamma(10−2,10−4),

which has some undesired properties according to Gelman (2006).

8. Hierarchical stacking is also featured by its use of built-in leave-one-out likelihood. If a

mixture of experts is used to combine a simple model and a significantly overfitting model,

the MLE is prone to assigning all weights to the overfitting one.

9. Our full-Bayesian formulation makes it straightforward to apply hierarchical stacking to

temporal, spatial, panel, or hierarchical data. In the polling example, we replace the leave-

one-out score with leave-seven-day ahead score to reflect our prediction task on the election

day. Because of the default conditional IID view, such extension to complex data structure

has long been an open problem for the mixture of experts (Yuksel et al., 2012).

Lastly, it is natural that both the mixture of experts and stacking have limitations and usefulness.

Some of our full-Bayesian formulation and the informative prior choice could be useful to motivate

further development in the mixture of experts, too.
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9.6 Examples

We present three examples. The well-switching example demonstrates an automated hierarchi-

cal stacking implementation with both continuous and categorical inputs. The Gaussian process

example highlights the benefit of hierarchical stacking when individual models are already highly

expressive. The election forecast illustrates a real-data example with a complex data structure. We

evaluate the proposed method on several metrics, including the mean log predictive density on

holdout data, conditional log predictive densities, and the calibration error.

Well-switching in Bangladesh. We work with a dataset used by Vehtari et al. (2017) who

demonstrated cross validation. A survey with a size of n = 3020 was conducted on residents

from a small area in Bangladesh that was affected by arsenic in drinking water. Households with

elevated arsenic levels in their wells were asked whether or not they were interested in switching

to a neighbor’s well, denoted by y. To predict this well-switching behavior, we collect a series

of household information x, including the detected arsenic concentration value in the well, the

distance to the closest known safe well, the household’s education level, and whether any household

members is in community organizations. The first two inputs are continuous and the remaining two

are categorical variables.

We fit a series of plausible logistic regressions, starting by an additive model including all

covariates x in model 1. In model 2, we replace one input well arsenic level, by its logarithm value.

In model 3 and 4, we add cubic spline basis functions with ten knots of well arsenic level and

well-distance respectively in input variables. In model 5 we replace the categorical education stage

by using years of schooling as a continuous variable.

Using the additive model specification (9.13) and default prior (9.14), we model the uncon-

strained weight αk(x) by a linear regression of all categorical inputs and all rectified continuous

inputs (9.16). In this example the categorical input has eight distinct levels based on the product of

education (four levels) and community participation (binary).

For comparison, we consider three alternative approaches: (a) complete-pooling stacking (b)
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Figure 9.1: (1) Pointwise difference of leave-one-out log scores between models 1 and 2, plotted
against log arsenic. Model 1 poorly fits points with high arsenic. (2) Posterior mean of pointwise
unconstrained weight difference between models 1 and 2, α2(x)−α1(x) in hierarchical stacking. (3)
Pointwise log weight difference between models 1 and 2 in no-pooling stacking. (4) Posterior mean
of w4(x), the weight assigned to model 4, in hierarchical stacking, displayed against log arsenic
and education levels. There are few sample with high school education and above, whose effect on
model weights is pooled toward the shared mean. The blue line is the complete-pooling stacking.
(5) The unconstrained weight of model 4, α4(x), in no-pooling stacking. The “high school” effect
stands out and the resulting model weights w are nearly all zeroes and ones.

no-pooling stacking, or the maximum likelihood estimate of (9.13), and (c) model selection that

picks model with the highest leave-one-out log predictive densities. We split the data into training

set (ntrain = 2000) and an independent holdout test set.

The leftmost panel in Figure 9.1 displays the pointwise difference of leave-one-out log scores

for model 1 and 2 against log arsenic values in training data. Intuitively, model 1 fits poorly for

data with high arsenic. In line with this evidence, hierarchical stacking assigns model 1 an overall

low weight, and especially low for the right end of the arsenic levels. The second panel shows the

pointwise posterior mean of unconstrained weight difference between model 1 and 2, α2(x)−α1(x),

against the arsenic values in training data. The no-pooling stacking reveals a similar direction that

model 1’s weight should be lower with a higher arsenic value, but for lack of hierarchical prior

regularization, the fitted α2(x) − α1(x) is orders of magnitude larger (the third panel). As a result,

the realized pointwise weights w are nearly either zero or one.

The rightmost two columns in Figure 9.1 display the fitted pointwise weights of model 4

against log arsenic values and education level in test data. Because only a small proportion

(7%) of respondents had high school education and above, the no-pooling stacking weight for this
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Figure 9.2: We evaluate hierarchical, complete-pooling and no-pooling stacking, and model selec-
tion on three metrics: (a) average log predictive densities on test data, where we set the hierarchical
stacking as benchmark 0, (b) calibration error: discrepancy between the predicted positive proba-
bility and realized proportion of positives in test data, averaged over 20 equally spaced bins, and
(c) average log predictive destines among the 10 ≤ n0 ≤ 200 worst test data points. We repeat 50
random training-test splits with training size 2000 and test size 1020.

●

●
●

● ● ● ●

●

●
●

●
● ●

●

●

● ●
●

● ●
●

●

●

● ● ●

●

●

mean test log predictive density
 higher is better

0 400 800 1200

−0.8

−0.7

−0.6

training sample size

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

● ●

●

mean absolute calibration error
 lower is better

0 400 800 1200
training sample size

0.15

0.20

0.25

 

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−3

−2

−1

0 400 800 1200

mean test log predictive density
 amomg the worst 10% data points

training sample size

hierarchical
 stacking

stacking

no−pooling
 stacking

model
selection

Figure 9.3: Same comparisons as Figure 9.2, with training sample size varying from 100 to 1200.

category is largely determined by small sample variation. Hierarchical stacking partially pools this

“high school” effect toward the shared posterior mean of all educational levels, and the realized

hierarchical stacking model weights do not clearly depend on education levels.

We evaluate model fit on three metrics. (a) The log predictive densities averaged over test data.

In the first panel of Figure 9.2, we set hierarchical stacking as baseline and all other methods attain

a lower predictive densities. (b) The L1 calibration error. We set 20 equally spaced bin between 0

and 1. For each bin and each learning algorithm, we collect test data points whose model-predicted

positive probability falling in that bin, and compute the absolute discrepancy between realized

proportion of positives in test data and the model-predicted probabilities. The middle panel in
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Figure 9.2 displays the resulted calibration error averaged over 20 bins. The proposed hierarchical

stacking has the lowest error. No-pooling stacking has the highest calibration error despite of its

higher overall log predictive densities than model selection, suggesting a prediction overconfidence.

(c) We compute the average log predictive densities of four methods among the n0 most shocking

test data points (the ones with lowest predictive densities conditioning on a given method) for n0

varying from 10 to 200 and the total test data has size 1020. As exhibited in the last panel in

Figure 9.2, the proposed hierarchical stacking consistently outperforms all other approaches for all

n0: a robust performance for the worst case scenario. To reduce randomness, all evaluation metrics

above are averaged over 50 random training-test splits.

Figure 9.3 presents the same comparisons of four methods while the training sample size

ntrain varies from 100 to 1200 (averaged over 50 random training-test splits). In agreement with

the heuristic in Figure 10.1, the most complex method, no-pooling stacking, performs especially

poorly with small sample size. By contrast the easiest method, model selection, reaches its peak

elpd quickly with moderate sample size but cannot keep improving as training data size grows. The

proposed hierarchical stacking performs the best in this setting under all metrics.

Gaussian process regression weighted by another Gaussian process. The local model averag-

ing (9.12) tangles a x-dependent weight w(x) and x-dependent individual prediction p(y |x,Mk). If

the individual model y |x,Mk is big enough to have already exhausted “all” variability in input x,

is there still a room for improvement by modeling local model weights w(x)? The next example

suggests a positive answer.

Consider a regression problem with scalar observations yi = f (xi) + εi, i = 1, ...,n, at input

locations {xi}
n
i=1, and εi are independent noises. The trainingmodel is aGaussian process regression

on the latent functions f with zero mean and squared exponential covariance:

yi = f (xi) + εi, εi ∼ normal(0, σ), f (x) ∼ GP
(
0,a2 exp

(
−
(x − x′)2

ρ2

))
. (9.17)

We adopt training data from Neal (1998). They were generated such that the posterior distribution
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Figure 9.4: From left to right, Column 1: posterior density at σ = 0.25. At least two modes exist.
Column 2: predictive distribution of y from two modes. Column 3: the pointwise companion of
log predictive density of the Laplace approximations at two modes, and the hierarchical stacking
weight of mode 1. Column 4: the test data mean predictive densities of the weighted model,
where individual components in the final model consists of either the MAP, Laplace approximation,
or importance sampling around the two modes, and the weighting methods include hierarchical
stacking, complete-pooling stacking, mode heights and importance weighing.

of hyperparameters θ = (a, ρ,σ) contains at least two isolated modes (see the first panel in Figure

9.4). We consider three mode-based approximate inference of θ |y: (a) Type-II MAP, where we

pick the local modes of hyperparameters that maximizes the marginal density θ̂ = arg max p(θ |y),

and further draw local variables f |θ̂, y, (b) Laplace approximation of θ |y around the mode, and

(c) importance resampling where we draw uniform samples near the mode and keep sample with

probability proportional to p (θ |y). In the existence of two local modes θ̂1, θ̂2, we either obtain two

MAPs, or two nearly-nonoverlapped draws, further leading to two predictive distributions. Yao

et al. (2020b) suggests to use complete-pooling stacking to combine two predictions, which shows

advantages over other ad-hoc weighting strategies such as mode heights or importance weighting.

Visually, mode 1 has smaller length scale, morewiggling and attracted by training data. Because

of a better overall fit, it receives higher complete-stackingweights. However, thewiggling tailmakes

its extrapolation less robust. We now run hierarchical stacking with x-dependent weight wk(x) for
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Figure 9.5: Comparison between hierarchical stacking and stacking of two locally Laplace approx-
imation (left) or a long-chain exact Bayes from the true model (right). We compare the binned test
log predictive densities over 10 equally spaced bins on (−3,3). A positive value means hierarchical
stacking has a better fit than the compared method.

mode k = 1,2 by placing a Gaussian process prior on unconstrained weight logit(w1(x)),

w1(x) = invlogit (α(x)) , α(x) ∼ GP(0,K(x)).

Despite the same GP prior, it is not related to the training regression model (9.17). To evaluate how

good the weighted ensemble is, we generate independent holdout test data (x̃i, ỹi). Both training

and test inputs, x and x̃, are distributed from normal(0,1). As presented in the rightmost panel in

Figure 9.4, for all three approximate inferences, hierarchical stacking always has a higher mean test

log predictive density than complete pooling stacking and other weighting schemes.

In this dataset, exact MCMC is able to explore both posterior modes in model (9.17) after a

long enough sampling. Gaussian process regression equipped with exact Bayesian inference can

be regarded as the “always true” model here. Hierarchical stacking achieves a similar average test

data fit by combining two Laplace approximations. Furthermore, hierarchical stacking has better

predictive performance under covariate shift. To examine local model fit, we generate another

independent holdout test data. This time the test inputs x̃ are from uniform(−3,3). We divide the

test data into 10 equally spaced bins, and compute the mean test data log predictive density inside

each bin. Compared with exact inference, hierarchical stacking has a comparable performance in
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the bulk region of x, while it yields higher predictive densities in the tail, suggesting a more reliable

extrapolation.

U.S. presidential election forecast. We explore the use of hierarchical stacking on a practical

example of forecasting polls for the 2016 United States presidential election. Since the polling data

are naturally divided into states, it provides a suitable platform for hierarchical stacking in which

model weights vary on states.

To create a pool of candidate models, we first concisely describe the model of Heidemanns

et al. (2020), an updated dynamic Bayesian forecasting model (Linzer, 2013) for the presidential

election, and then follow up with different variations of it. Let i be the index of an individual poll, yi

the number of respondents that support the Democratic candidate and ni the number of respondents

who support either the Democratic or the Republican candidate in the poll. Let s[i] and t[i] denote

the state and time of poll i respectively. The model is expressed by

yi ∼ Binomial(θi,ni),

θi =


logit−1(µb

s[i],t[i] + αi + ζ
state
i + ξs[i]), i is a state poll,

logit−1(
∑S

s=1 usµ
b
s,t[i] + αi + ζ

national
i +

∑S
s=1 usξs), i is a national poll,

(9.18)

where superscripts denote parameter names, and subscripts their indexes. The term µb is the

underlying support for the Democratic candidate and αi, ζ , and ξ represent different bias terms. αi

is further decomposed into

αi = µ
c
p[i] + µ

r
r[i] + µ

m
m[i] + zεt[i], (9.19)

where µc is the house effect, µr polling population effect, µm polling mode effect, and ε an

adjustment term for non-response bias. Furthermore, an AR(1) process prior is given to the µb:

µb
t |µ

b
t−1 ∼ MVN(µb

t−1,Σ
b),where Σb is the estimated state-covariance matrix and µb

T is the estimate

from the fundamentals.

Although we believe this model reasonably fits data, there is always some researcher degrees
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of freedom in model building and a room for improvement. Our pool of candidates consists of

eight models. M1: The fundamentals-based model by Abramowitz (2008). M2: The model by

Heidemanns et al. (2020). M3: M2 without the fundamentals prior, µb
T = 0. M4: M2 with an AR(2)

structure, µb
t |µ

b
t−1, µ

b
t−2 ∼ MVN(0.5µb

t−1µ
b
t−2,Σ

b). M5: simplify M2 without polling population

effect, polling mode effect, and the adjustment trend for non-response bias, αi = µc
p[i]. M6: M2

where we added an extra regression term βstockstockt[i] into model (9.18) using the S&P 500 index

at the time of poll i. M7: M2 without the entire shared bias term, αi = 0. M8: M2 without

hierarchical structure on states.

We equip hierarchical stacking with either the basic independent prior (9.9) or the state-

correlated prior (9.15). The state correlation Ω is estimated using a pool of state-level macro

variables, and has already been used in some of the individual models to partially pool state level

polling. We plug this pre-estimated prior correlation in the correlated stacking prior (9.15), and

refer to it “hierarchical stacking with correlation” in later comparisons.

Since the data are longitudinal, we evaluate different pooling approaches using a one-week-

ahead forecast with an expanding window for each conducted poll. We extract the fitted one-week

ahead predictions from each individual model, and train hierarchical stacking, complete-pooling

and no-pooling stacking to find the optimal model weights, and evaluate the combined models by

computing their mean log predictive densities on the unseen test data next week. To account for

non-stationarity discussed in Section 9.4, we only use the last four week prior to prediction day

for training model averaging. In the end we obtain a trajectory of this back-testing performance of

hierarchical stacking, complete-pooling and no-pooling stacking and single model selection.

The left-hand side of Figure 9.63 shows the seven-day running-average of the one-week-ahead

back-test log predictive density from models combined with various approaches. The right-hand

side of Figure 9.6 shows the overall cumulative one-week-ahead back-test log predictive density. We

set the uncorrelated hierarchical stacking to be a constant zero for reference. Hierarchical stacking

performs the best, followed by stacking, no-pooling stacking, and model selection respectively. The

3Figure 9.6, 9.7, 9.8 were created by Gregor Pirš.
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Figure 9.6: Left: pointwise differences in 7-day running mean log predictive densities on one-
week-ahead test data, where we set the hierarchical stacking as benchmark 0. Right: pointwise
differences in cumulative average predictive log density by date. The advantage of hierarchical
stacking is most noticeable toward the beginning, where there are fewer polls available.
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Figure 9.7: Mean test log predictive densities with 50% and 95% confidence intervals, among sub-
sets of states with few, moderate and many number of state polls, and among all states. Correlated
hierarchical stacking is set as reference 0. It is better than independent hierarchical stacking when
data are scarce. Complete-pooling stacking is close to hierarchical stacking in small states, but
worse in bigger states.
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Figure 9.8: Hierarchical stacking weights for M1 in the polling example. Left: weights for M1 of the
10 states with fewest polls and with most polls over time. Dotted line shows the complete-pooling
stacking weight and the solid black line is the nationwide mean weight. States with fewer polls
are shrunken more toward the mean. Middle: absolute differences between state-wise hierarchical
stacking weights and the nationwide mean, against number of respondents. The blue line is the
linear trend reference. States with smaller sample sizes are more pooled to the mean. Right:
absolute differences between hierarchical stacking and no-pooling stacking weights, generally
decreasing with bigger sample sizes.

advantage of hierarchical stacking is highest at the beginning and slowly decreases the closer we get

to election day. As we move closer to the election, more polls become available, so the candidate

models become better and also more similar since some models only differ in priors. As a result, all

combination methods eventually become more similar. No-pooling stacking has high variance and

hence performs the worst out of all combination methods. Hierarchical stacking with correlated

prior performs similarly to the independent approach, with a minor advantage at the beginning of

the year, where the prior correlation stabilizes the state weights where the data are scarce, and later

we see this advantage more discernible in individual states.

To examine small area estimations, we divided states into three categories based on how many

state polls were conducted. Figure 9.7 shows the overall mean pointwise differences in test log

predictive densities divided by these categories, along with a fourth panel over all states. No-

pooling stacking performs the worst in all panels. An explanation for that could be that we are

using a four-week moving window to tackle non-stationarity, which might not contain enough

data for the no-pooling method. The variance of the no-pooling is amended by the hierarchical

approach, which performs on par with stacking with scarcer data and outperforms it otherwise.
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We can also observe the advantage of using prior correlations in hierarchical stacking in the first

panel. With a large number of state polls available, for example close to election day in Florida and

North Carolina, no-pooling stacking performs well. In states with fewer polls, no-pooling stacking

is unstable. Hierarchical stacking alleviates this instability, while retaining enough flexibility for a

good performance with large data come in.

Figure 9.8 illustrates how cell size affects the pooling effect. The first panel show the hierarchical

stacking state-wise weights for the first candidate model w1 j as a function of date. For either early-

date forecasts or states with few polls, hierarchical stacking weights are more pooled toward the

shared nationwide mean. The middle and right panels compare the difference between state-wise

hierarchical stacking weights and the nationwide mean, or with no-pooling weights, against the

total number of respondents for each state and prediction date. The cells with more observed data

are less pooled and closer to their no-pooling optimums, and vice versa.

9.7 Discussion

Robustness in small areas. The input-varying model averaging is designed to improve both the

overall averaged predictionEỹ,x̃(log p(ỹ | x̃)) and conditional predictionEỹ | x̃=x0(log p(ỹ | x̃)), whereas

these two tasks are subject to a trade-off in complete-pooling stacking.

In addition, the partial pooling prior (9.9) borrows information from other cells, which stabilizes

model weights in small cells where there are not enough data for no-pooling stacking. For a crude

mean-field approximation, the likelihood in the discrete model (9.11)≈
∏

j,k normal(αmode
j k , λ j k),

where αmode = arg maxα
∑n

i=1 log
(∑K

k=1 wk(xi)pk,−i

)
is the unconstrained no-pooling stacking

weight, and −λ−2
j k =

∂2

∂α2
jk

|mode
∑n

i=1 log
(∑K

k=1 wk(xi)pk,−i

)
is the diagonal element of the Hessian.

Because α j k appears in n j terms of the summation, λ j k = O(n
−1/2
j ) for a given k. Combined with

the prior α j k ∼ normal(µk, σk), the conditional posterior mean of the k-th model weight in the

j-th cell is the usual precision-weighed average of the no-pooling optimum and the shared mean:

α̂ j k |λ j k, σk, µk ≈ (λ
−2
j k α

mode
j k + σ−2

k µk)(λ
−2
j k + σ

−2
k )
−1. Hence for a given model k, |αmode

j k − α̂ j k | =

O(n−1
j ): larger pooling usually occurs in smaller cells. This pooling factor is in line with Figure 9.8
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and the general hierarchical model theory (Gelman and Pardoe, 2006). Our full-Bayesian solution

also integrates out µk and σk , which further partially pools across models.

The possibility of partial pooling across cells encourages open-ended data gathering. In the

election polling example, even if a pollster is only interested in the forecast of one state, they

could gather polling data from everywhere else, fit multiple models, evaluate models on each

state, and use hierarchical stacking to construct model averaging, which is especially applicable

when the state of interest does not have enough polls to conduct a meaningful model evaluation

individually. In this context swing states naturally have more state polls, so that the small-area

estimation may not be crucial, but in general we conjecture that the hierarchical techniques can be

useful for model evaluation and averaging in a more general domain adaptation setting. Without

going into extra details, hierarchical models are as useful to make inferences from a subset of data

(small-area estimation) as to generalize data to a new area (extrapolation). When the latter task

is the focus, hierarchical stacking only needs to redefine the leave-one-data-out predictive density

(9.6) by leave-one-cell-out pk,−i B
∫
Θk

p(yi |θk, xi, zi,Mk)p (θk |Mk, {(xi′, zi′, yi′) : xi′ , xi}) dθk .

Using hierarchical stacking to understand local model fit. We use hierarchical stacking not

only as a tool for optimizing predictions but also as a way to understand problems with fitted

models. The fact that hierarchical stacking is being used is already an implicit recognition that we

have different models that perform better or worse in different subsets of data, and it can valuable

to explore the conditions under which different models are fitting poorly, reveal potential problems

in the data or data processing, and point to directions for individual-model improvement.

Vehtari et al. (2017) and Gelman et al. (2020) suggested to examine the pointwise cross-

validated log score log pk,−i as a function of xi, and see if there is a pattern or explanation for

why observations are harder to fit than others. For example, the first panel of Figure 9.1 seems

to indicate that Model 1 is incapable to fit the rightmost 10–15 non-switchers. However, log pk,−i

contains a non-vanishing variance since yi is a single realization from pt(y |xi). Despite its merit in

exploratory data analysis, it is hard to tell from the raw cross validation scores that whether Model
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1 is incapable of fitting high arsenic, or is merely unlucky for these few points. The hierarchical

stacking weight w(x) provides a smoothed summary of how each model fits locally in x and comes

with built-in Bayesian uncertainty estimation. For example, in Figure 9.4, log p1,−i − log p2,−i has a

slightly inflated right tail, but this small bump is smoothed by stacking, and the local weight therein

is close to (0.5,0.5).

Retrieving a formal likelihood from an optimization objective. The implication of hierarchical

stacking (9.11) being a formal Bayesian model is that we can evaluate its posterior distribution as

with in a regular Bayesian model. For example, we can run (approximate) leave-one-out cross vali-

dation of the the stacking posterior p(w |D−i) ∝ p(w |D)/p(yi |xi,w) = p(w |D)/
(∑K

k=1 wk(xi)pk,−i

)
.

In practice, we only need to fit the stacking model (9.11) once, collect a size-S MCMC sample of

stacking parameters from the full posterior p(w |D), denoted by {(wk1(xi), . . . ,wkS(xi))}i,k , compute

the PSIS-stabilized importance ratio of each draw ris ≈

(∑K
k=1 wks(xi)pk,−i

)−1
, and then compute

the mean leave-one-out cross validated log predictive density to evaluate the overall out-of-sample

fit of the final stacked model:

elpdloo
stacking =

n∑
i=1

log
∫
SK

p(yi |xi,w(xi))p(w(xi)|D−i)d(w(xi))

≈

n∑
i=1

log

∑S
s=1

(
ris

∑K
k=1 wks(xi)pk,−i

)
∑S

s=1 ris
. (9.20)

As discussed in Section 9.5, the same task of out-of-sample prediction evaluation in an optimization-

based stacking requires double cross validation (refit themodel n(n−1) times if using leave-one-out),

but now becomes almost computationally free by post-processing posterior draws of stacking.

The Bayesian justification above applies to log score stacking. In general we cannot convert

an arbitrary objective function into a log density—its exponential is not necessarily integrable;

Even if it is, the resulted density does not necessarily match a relevant model. Take linear

regression for example, the ordinary least square estimate arg minβ
∑n

i=1(yi − xT
i β)

2 equivalents

the maximum likelihood estimate of β from a probabilistic model yi |xi, β,σ ∼ normal(xT
i β,σ)
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with flat priors. But the directly adapted “log posterior density” from the the negative L2 loss,

log p(β |y) = −
∑n

i=1(yi − xT
i β)

2 + C, differs from the Bayesian inference of the latter probabilistic

model unless σ ≡ 1. The hierarchical stacking framework may still work for other scoring rules in

practice, while we leave their Bayesian justification for future research.

Statistical workflow for black-box algorithms. Unlike our previous work (Yao et al., 2018a)

that merely applied stacking to Bayesian models, the present chapter converts optimization-based

stacking itself into a formal Bayesian model, analogous to reformulating a least-squares estimate

into a normal-error regression. Breiman (2001) distinguished between two cultures in statistics:

the generative modeling culture assumes that data come from a given stochastic model, whereas

the algorithmic modeling treats the data mechanism unknown and advocates black-box learning for

the goal of predictive accuracy. As a method that Breiman himself introduced, stacking is arguably

closer to the algorithmic end of the spectrum, while our hierarchical Bayesian formulation pulls it

toward to the generative modeling end.

Such a formulation is appealing for two reasons. First, the generative modeling language

facilitates flexible data inclusion during model averaging. For example, the election forecast model

contains various outcomes on state polls and national polls from several pollsters, and pollster-level,

state-level, and national-level fundamental predictors as well as prior state-level correlations. It

is not clear how methods like bagging or boosting can include all of them. Data do not have to

conveniently arrive in independent (xi, yi) pairs and compliantly await an algorithm to train upon.

Second, instead of a static one-fit-all algorithm, hierarchical stacking is now part of a statistical

workflow (Gelman et al., 2020) that is subject to model criticisms and model improvements—

we can incorporate other Bayesian shrinkage priors as add-on components without reinventing

them, and we can use approximate leave-one-out cross validation (9.20) to check the out-of-sample

performance of the final stacking model and compare multiple priors. Looking ahead, the success

of this work suggests that we can use generative Bayesian modeling to improve other black-box

prediction algorithms.
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9.8 Software implementation

We summarize our formulation of hierarchical stacking by pseudo code 8.

Algorithm 8: Hierarchical stacking
Data: y: outcomes; x: input on which the stacking weights vary, z: other inputs;
pk,−i: approximate leave-one-out predictive densities of the k-th model and i-th data.
Result: input-dependent stacking weight ŵ(x) : X → SK ; combined model.

1 Sample from the joint densities p(α, µ,σ |D) in hierarchical stacking model (9.11);
2 Compute posterior mean of wk(x̃) at any x̃, and make predictions p(ỹ | x̃, z̃) by (9.12).

To code the basic additive model, we prepare the input covariate X = (Xdiscrete,Xcontinuous),

where Xdiscrete is discrete dummy variable, and Xcontinuous are remaining features (already rectified

as in (9.16)). The dimension of these two parts are dcontinuous and ddiscrete.

Here we use the “grouped hierarchical priors” (Section 9.7) with only two groups, distinguishing

between continuous and discrete variables.

w1:K(x) = softmax(w∗1:K(x)), w∗k(x) =
M∑

m=1
αmk fm(x) + µk, k ≤ K − 1, w∗K(x) = 0,

αmk | µk, σk1 ∼ normal(0, σk1), k = 1, . . . ,K − 1, m = 1, . . . , ddiscrete,

αmk | µk, σk2 ∼ normal(0, σk2), k = 1, . . . ,K − 1, m = ddiscrete + 1, . . . , ddiscrete + dcontinuous,

µk ∼ normal(µ0, τµ), σk1 ∼ normal+(0, τσ1), σk2 ∼ normal+(0, τσ2), k = 1, . . . ,K − 1.

This model is encoded by the following Stan (Stan Development Team, 2020) program:

data {
int<lower=1> N; // number of data points
int<lower=1> d; //number of input variables
int<lower=1> d_discrete; // number of discrete dummy inputs
int<lower=3> K; // number of models
//when K=2, replace softmax by inverse-logit for higher efficiency
matrix[N,d] X; // predictors
//including continuous and discrete in dummy variables, no constant
matrix[N,K] lpd_point; //the input pointwise predictive density
real<lower=0> tau_mu;
real<lower=0> tau_discrete;//overall regularization for discrete variables
real<lower=0> tau_con;//overall regularization for continuous variables
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}
transformed data {
matrix[N,K] exp_lpd_point=exp(lpd_point);
}
parameters {
vector[K-1] mu;
real mu_0;
vector<lower=0>[K-1] sigma;
vector<lower=0>[K-1] sigma_con;
vector[d-d_discrete] beta_con[K-1];
vector[d_discrete] tau[K-1]; // using non-centered parameterization
}
transformed parameters {
vector[d] beta[K-1];
simplex[K] w[N];
matrix[N,K] f;
for (k in 1:(K-1))
beta[k] = append_row(mu_0*tau_mu+mu[k]*tau_mu+ sigma[k]*tau[k],
sigma_con[k]*beta_con[k]);
for (k in 1:(K-1))
f[,k] = X * beta[k];
f[,K] = rep_vector(0, N);
for (n in 1:N)
w[n] = softmax(to_vector(f[n, 1:K]));
}
model {
for (k in 1:(K-1)){
tau[k] ~ std_normal();
beta_con[k] ~ std_normal();
}
mu ~ std_normal();
mu_0 ~ std_normal();
sigma ~ normal(0, tau_discrete);
sigma_con ~ normal(0,tau_con);
for (i in 1:N)
target += log(exp_lpd_point[i,] * w[i]); //log likelihood
}

To run this stacking program on model fits, we can fit all individual models in Stan, and extract

their leave-one-out likelihoods {pk,−i} by efficient approximation in R-package loo (Vehtari et al.,

2019a):

library(loo) # https://mc-stan.org/loo/
lpd_point <- matrix(NA, nrow(X), K)
for (k in 1:K) {
fit_stan <- stan(stan_moodel = model_k, data = ...) #x may differ in models
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log_lik <- extract_log_lik(fit_stan, merge_chains = FALSE)
lpd_point[,k] <- loo(log_lik, r_eff = relative_eff(exp(log_lik)))$pointwise
}

Finally we run hierarchical stacking as a regular Bayesian model in Stan.

library(rstan) # https://mc-stan.org/rstan/
fit_stacking <- stan("stacking.stan", # save the stacking code to a stan file.
data = list(X = X, N = nrow(X), d=ncol(X),
d_discrete=d_discrete, lpd_point=lpd_point, K=ncol(lpd_point),
tau_mu = 1, tau_sigma = 1, tau_discrete= 0.5, tau_con = 1))
# extract posterior simulations of normalized weights:
w_fit <- extract(fit_stacking, pars='w')$w
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Chapter 10. Characterizing the diversity of models

“Truth is so precious that she should always be attended by a bodyguard of lies.”

—Winston Churchill

10.1 All models are wrong, but some are somewhere useful

With anM-closed view (Bernardo and Smith, 1994), one of the candidate models is the true

data generating process, whereas in the more realistic M-open scenario, none of the candidate

models is completely correct, hence models are evaluated to the extent that they interpret the data.

The expectation of a strictly proper scoring rule, such as the expected log predictive density

(elpd), is maximized at the correct data generating process. However, the extent to which a model

is “true” is contingent on the input information we have collected. Consider an input-outcome pair

(x, y) generated by

x ∈ [0,1], y ∈ {0,1}, x ∼ uniform(0,1), Pr(y = 1|x) = x.

If the input x is not observed or is omitted in the analysis, then M1 : y ∼ Bernoulli(0.5) is the

only correct model and is optimal among all probabilistic predictions of y unconditioning on

x. But this marginally true model is strictly worse than a misspecified conditional prediction,

M2 : Pr(y = 1|x) =
√

x, since the expected log predictive densities are log(0.5) = −0.69 and

− 7
12 = −0.58 respectively after averaged over x and y. The former model is true purely because it

ignores some predictors.

This wronger-model-does-better example does not contradict the log score being strictly proper,

as we are changing the decision space from measures on y to conditional measures on y |x. But

this example does underline two properties of model evaluation and averaging. First, we have little
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interest in a binary model check. The hypothesis testing based model-being-true-or-false depends

on what variables to condition on and is not necessarily related to model fit or prediction accuracy.

In a non-quantum scheme, a really “everywhere true" model that has exhausted all potentially

unobserved inputs contains no aleatory uncertainty. Second, the model fits typically vary across

the input space. In the Bernoulli example, despite its larger overall error, M1 is more desired near

x ≈ .5, and is optimal at x = .5.

For theoretical interest, we define the conditional (on x̃) expected (on ỹ | x̃) log predictive

density in the k-th model, celpdk(x̃) B
∫
Y

pt(ỹ | x̃) log p(ỹ | x̃,Mk)d ỹ. If {celpdk}
K
k=1 are known, we

can divide the input space X into K disjoint sets based on which model has the locally best fit

(When there is a tie, the point is assigned the smallest index, and I stands for “input”):

Ik B { x̃ ∈ X : celpdk(x̃) > celpdk ′(x̃),∀k′ , k}, k = 1, . . . ,K . (10.1)

In this Bernoulli example, I1 = [0.25,0.67].

10.2 What does model dissimilarity mean, why does stacking help, and why can hierarchical

stacking help more

The consistency of leave-one-out cross validation ensures that complete-pooling stacking (9.3)

is asymptotically no worse than model selection in predictions (Clarke, 2003; Le and Clarke, 2017),

hence justified by Bayesian decision theory. The theorems we establish in Section 10.2 go a step

further, providing lower bounds on the utility gain of stacking and hierarchical stacking. In short,

model averaging is more pronouncedwhen themodel predictive performances are locally separable,

but in the same situation we can improve the linear mixture model from learning locally which

model is better, so that the stacking is a step toward model improvement rather than an end to itself.

We illustrate with a theoretical example in Appendix 10.3 and provide proofs in Appendix 10.4.

In this subsection, we focus on the oracle expressiveness power ofmodel selection and averaging,

and their input-dependent version. wstacking,cp refers to the complete-pooling stacking weight in the
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population:

wstacking,cp B arg max
w∈SK

elpd(w),

elpd(w) =
∫
X×Y

log

(
K∑

k=1
wk p(ỹ |Mk, x̃)

)
pt(ỹ, x̃)d ỹdx̃. (10.2)

Apart from the heuristic that model averaging is likely to be more useful when candidate models

are more “dissimilar" or “distinct" (Breiman, 1996b; Clarke, 2003), we are not aware of rigorous

theories that characterize this “diversity” regarding the effectiveness of stacking. It seems tempting

to use some divergence measure between posterior predictions from each model as a metric of how

close these models are, but this is irrelevant to the true data generating process.

We define a more relevant metric on how individual predictive distributions can be pointwisely

separated. The description of a forecast being good is probabilistic on both x̃ and ỹ: an overall bad

forecast may be lucky at an one-time realization of outcome ỹ and covariate x̃. We consider the

input-output product space X ×Y and divide it into K disjoints subsets (J stands for “joint”):

Jk B {(x̃, ỹ) ∈ X × Y : p(ỹ |Mk, x̃) > p(ỹ |Mk ′, x̃),∀k′ , k}, k = 1, . . . ,K .

In this framework, we call a family of predictive densities {p(ỹ |Mk, x̃)}Kk=1 to be locally separable

with a constant pair L > 0 and 0 ≤ ε < 1, if

K∑
k=1

∫
(x̃,ỹ)∈Jk

1

(
log p(ỹ |Mk, x̃) < log p(ỹ |Mk ′, x̃) + L, ∀k′ , k

)
pt(ỹ, x̃)d ỹdx̃ ≤ ε . (10.3)

Stacking is sometimes criticized for being a black box. The next two theorems link stacking

weight to a probabilistic explanation. Unlike Bayesian model averaging (Hoeting et al., 1999) that

computes the probability of a model being “true”, stacking is more related to Pr(Jk): the probability

of a model being the locally “best” fit, with respect to the true joint measure pt(ỹ, x̃).

Theorem 10.1 (probabilistic limit of stacking weights). When the separation condition (10.3)
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holds, the complete pooling stacking weight is approximately the probability of the model being the

locally best fit:

w
stacking,cp
k ≈ w

approx
k B Pr(Jk) =

∫
Jk

pt(ỹ, x̃)d ỹdx̃, (10.4)

in the sense that the objective function is nearly optimal:

| elpd(wapprox) − elpd(wstacking,cp) | ≤ O(ε + exp(−L)). (10.5)

Further, a model is only ignored by stacking if its winning probability is low.

Theorem 10.2 (model bound when stacking weight is sparse). When the separation condition

(10.3) holds, and if the k-th model has zero weight in stacking, wstacking,cp
k = 0, then the probability

of its winning region is bounded by:

Pr(Jk) ≤ (1 + (exp(L) − 1)(1 − ε) + ε)−1 . (10.6)

The right-hand side can be further upper-bounded by exp(−L) + ε .

The separation condition (10.3) trivially holds for ε = 1 and an arbitrary L, or for L = 0 and an

arbitrary ε , though in those cases the bounds (10.5) and (10.6) are too loose. To be clear, we only

use the closed form approximation (10.4) for theoretical assessment.

The next theorem bounds the utility gain from shifting model selection to stacking:

Theorem 10.3 (oracal expressiveness bound of stacking). Under the separation condition (10.3),

let ρ = supk Pr(Jk), and a deterministic function g(L,K, ρ, ε) = L(1 − ρ)(1 − ε) − log K , then the

utility gain of stacking is lower-bounded by

elpdstacking,cp − sup
k

elpdk ≥ max (g(L,K, ρ) + O(exp(−L) + ε),0) .

Evaluating Jk requires access to ỹ | x̃ and x̃. Though both terms are unknown, the roles of x̃

and ỹ are not symmetric: we could bespoke the model in preparation for a future prediction at a
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given x̃, but cannot be tailored for a realization of ỹ. To be more tractable, we consider the case

when the variation on x̃ predominates the uncertainty of model comparison, such that Jk ≈ Ik ×Y,

where Ik is defined in (10.1). More precisely, we define a strong local separation condition with a

distance-probability pair (L, ε):

K∑
k=1

∫
x̃∈Ik

∫
Y

1

(
log p(ỹ |Mk, x̃) < log p(ỹ |Mk ′, x̃) + L, ∀k′ , k

)
pt(ỹ, x̃)d ỹdx̃ ≤ ε . (10.7)

We define ρX = supk Pr(Ik). Under condition (10.7), ρX and ρ will be close. If we know the input

space division {Ik}, we can select model Mk for and only for x ∈ Ik , which we call pointwise

selection. The predictive density is

p(ỹ | x̃,I,pointwise selection) =
K∑

k=1
1(x̃ ∈ Ik)p(ỹ | x̃,Mk). (10.8)

As per Theorem 10.3, for a given pair of L and ε , the smaller is ρ, the higher improvement

(K(1 − ε)(1 − ρ)) can stacking achieve against model selection: the situation in which no model

always predominates. Thus, the effectiveness of stacking can indicate heterogeneity of model

fitting. Next, we show that the heterogeneity of model fitting provides an additional utility gain if

we shift from stacking to pointwise selection:

Theorem 10.4 (oracal expressiveness bound of pointwise selection). Under the strong separation

condition (10.7), and if the divisions {Ik} are known exactly, then the extra utility gain of pointwise

selection has a lower bound,

elpdpointwise selection − elpdstacking,cp ≥ − log ρX + O(exp(−L) + ε).

For any input location x0 ∈ X, if we can approach the theoretically pointwise optimal ŵ(x0) ∈

SK , then applying Theorem 10.3 to the space {x0}×Y suggests the advantage of pointwise averaging

(9.4) against pointwise selection (10.8).
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Figure 10.1: Evolution of methods. First row from left to right: the methods have a higher degree
of freedom to ensure a higher asymptotic predictive accuracy, the gain of which is bounded by
the labeled theorems. Meanwhile, complex methods come with a slower convergence rate. The
hierarchical stacking is a generalization of all remaining methods by assigning various structured
priors, and adapts to the complexity-expressiveness tradeoff by hierarchical modeling.

The relevance to the methodology evolution. The potential utility gain from Theorems 10.3

and 10.4 is the motivation behind the input-varying model averaging. Despite this asymptotic

expressiveness, the finite sample estimate remains challenging. We do not know Ik or Jk ; We

may use leave-one-out cross validation to estimate the overall model fit elpdk , but in the pointwise

version we want to assess conditional model performance—The more data coming in, the more

input locations need to assess. The asymptotic expressiveness comeswith an increasing complexity,

as the free parameters in single model selection, complete-pooling stacking, pointwise selection,

and no-pooling stacking are a single model index, a length-K simplex, an vector of pointwise model

selection index {1,2, . . . ,K}X , and a matrix of pointwise weight (SK)
X . It is natural to apply the

hierarchical shrinkage prior to handle this complexity-expressiveness tradeoff.

10.3 An illustrative example

Before theorem proofs, we first consider a theory example. It can be solved with closed form

solution, and illustrates how the Theorems 10.1–10.4 apply. The construction also verifies some

bounds we have derived are tight.

As shown in Figure 10.2, the true data generating process (DG) of the outcome is y ∼

uniform(−3,1), and there are two given (pre-trained) models with spike-and-slab predictive distri-
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butions

M1 : y ∼ .99 uniform(−4,0) + .01 uniform(0,2),

M2 : y ∼ .99 uniform(0,2) + .01 uniform(−4,0),

which yield piece-wise constant predictive densities

p1(y) = 0.99/41(y ∈ [−4,0]) + 0.01/21(y ∈ [0,2]),

p2(y) = 0.99/21(y ∈ [0,2]) + 0.01/41(y ∈ [−4,0]).

Using our notation in Section 10.2, the region in which M1 predominates is J1 = [−4,0], and M2

outperforms on J2 = (0,2] (the conventions send the tie {0} to M1). We count their masses with

respect to the true DG: Pr(J1) = 3/4 and Pr(J2) = 1/4.

Complete-pooling stacking solves

max
w∈S2

∫ 1

−3
1/4 log

(
(w10.99/4 + w20.01/4)1(y ∈ [−4,0])

+ (w20.99/2 + w10.01/2)1(y ∈ [0,2])
)
dy.

The exact optimal weight is w1 = 0.755, close to the mass Pr(J1) = 0.75 and is irrelevant to the

height of each regions. For instance, if the right bump in M2 shrinks to the interval (0,1) (i.e.,

y ∼ 0.99 uniform(0,1) + 0.01 uniform(−4,0)), then the winning margin therein is twice as big,

while the winning probability as well as the stacking weight remains nearly unchanged.

At the pointwise level, stacking behaves as a plurality voting system: as long a model “wins”

a sub-region (subject to a prefixed threshold L in condition (10.3)), the winner take all and its

winning margin no long matters.

By contrast, likelihood based model averaging techniques such as Bayesian model averaging

(BMA, Hoeting et al., 1999) and pseudo-Bayesian model averaging (Yao et al., 2018a) are analogies

of proportional representation: every count of the winning margin matters. For illustration, we
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vary the slab probability δ in Model 1 and 2:

M1 | δ : y ∼ (1 − δ) × uniform(−4,0) + δ × uniform(0,2),

M2 | δ : y ∼ (1 − δ) × uniform(0,2) + δ × uniform(−4,0).

The left column in Figure 10.3 visualizes the predictive densities from these two models at δ = 0.2,

0.33, and 0.45.

When the slab probability δ increases from 0 to 0.5, these two models are closer and closer

to each other, measured by a smaller KL(M1,M2). The (0.5,1) counterpart is similar, though

not exactly symmetric. We compute stacking weight and the expected pseudo-BMA weight with

sample size n: wBMA
1 (n, δ) =

(
1 + exp

(
nEy |δ log p2(y) − nEy |δ log p1(y)

) )−1.

Interestingly, pseudo-BMA weight wBMA
1 (n, δ) is strictly decreasing as a function of δ ∈ (0,1).

This is because when δ→ 0+, log predictive density ofmodel 2 in the left part log(δ/4) → ∞ can be

arbitrarily small, and the influence of this bad region dominates the overall performance of model

2. By contrast, stacking weight is monotonic non-increasing on (0,0.5) (strictly decreasing on

(0,1/3), and remains flat afterwards)—the opposite direction of BMA. Stacking simply recognizes

model 1 winning the [−3,0] interval and does not haggle over how much it wins.

In addition, when δ = 1/3, M1 becomes a uniform density on [−4,2]. When δ ∈ (1/3,1/2),

model 2 is not only strictly worse than model 1, but also provides no extra information for model
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0
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predictive
  densities

True DG

−4 −3 −2 −1 0 1 2
0

.25
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tilde y
−4 −3 −2 −1 0 1 2

0

.25

.5

tilde y

Count the mass

−4 −3 −2 −1 0 1 2
0
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J1 J2
weight ≈ 3/4

≈ 1/4

Weighted model 
 weight approx. =  mass 

−4 −3 −2 −1 0 1 2
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Figure 10.2: The true data is generated from uniform(−3,1) and the there are two models with
spikes and slabs on intervals (−4,0) and (0,2) respectively. J1 and J2 in Theorem 10.1 are [−4,0]
and (0,2], with DG probabilities 3/4 and 1/4. The stacking weights are approximately these two
probabilities, and irrelevant to how high the winning margins are.
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Figure 10.3: Left: Pointwise predictive density p(ỹ |M1 or M2)when the slab probability δ is chosen
0.2, 1/3 and 0.45. Right: Weight of model 1 in complete-pooling stacking (not defined at δ = 0.5)
and pseudo-BMA (sample size n=1 or 10, not defined at δ = 0 or 1) as a function of the slab
probability δ. They evolve in the opposite direction. Besides, stacking weights are more polarized
when models are more similar.
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Figure 10.4: From left: (1) KL divergence between model 1 or model 2 and data generating process.
(2) KL divergence between model 1 and model 2. (3) Separation constant L. (4) Stacking elpd gain
compared with the best individual model. (5) Stacking elpd gain as a function of L.
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averaging. Hence stacking assigns it weight zero.

The first two panels in Figure 10.4 show the KL divergence from model 1 or from model 2 to

data generating process, and the KL divergence between model 1 and model 2. The third panel

is the largest separation constant L for which the separation condition (10.3) holds. The last two

panels show the stacking epld gain (compared with the best individual model) as a function of δ

and L. This constructive example reflects the worst case for it matches the theoretical lower bound

g∗(L,K, ρ, ε) = log(ρ) + (1 − ρ)(log(1 − ρ) − log(K − 1)) (here L = L,K = 2, ρ = 1/4, ε = 0) in

Theorem 10.3, which verifies that the latter bound is tight.

When δ ∈ [1/3,1/2), Model 2 still wins on the interval J2 = (0,2] with the separation constant

ε = 0 and L ≤ log 2 (the winning margin is maximized at δ = 1/3). Nevertheless, a zero

stacking weight and a non-zero winning area do not contradict Theorem 10.1. Indeed, Theorem

10.2 precisely bounds the mass of the winning region when stacking weight is zero. We provide

self-contained theorem proofs in the next section.

10.4 Theoretical derivation

Theorem. We call K predictive densities {p(ỹ = ·| x̃ = ·,Mk)}
K
k=1 to be locally separable with a

constant pair L > 0 and 0 < ε < 1 with respect to the true data generating process pt(ỹ, x̃), if

K∑
k=1

∫
(x̃,ỹ)∈Jk

1

(
log p(ỹ | x̃,Mk) < log p(ỹ |Mk ′, x) + L, ∀k′ , k

)
pt(ỹ, x̃)d ỹdx̃ ≤ ε .

For a small ε and a large L, the stacking weights that solve (9.3) is approximately the proportion

of the model being the locally best model:

w
stacking
k ≈ w

approx
k B Pr(Jk) =

∫
Jk

pt(ỹ | x̃)p(x̃)d ỹdx̃.

in the sense that the objective function is nearly optimal:

|elpd(wapprox) − elpd(wstacking)| ≤ O(ε + exp(−L)).

229



Proof. The expected log predictive density of the weighted prediction
∑

k wk pk(·|x) (as a function

of w) is

elpd(w) =
∫
X×Y

log

(
K∑

l=1
wl pl(ỹ | x̃)

)
pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
k=1

∫
Jk

log

(
K∑

l=1
wl pl(ỹ | x̃)

)
pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
k=1

∫
Jk

log

(
wk pk(ỹ | x̃) +

∑
l,k

wl pl(ỹ | x̃)

)
pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
k=1

∫
Jk

(
log (wk pk(ỹ | x̃)) + log

(
1 +

∑
l,k

wl pl(ỹ | x̃)
wk pk(ỹ | x̃)

))
pt(ỹ | x̃)p(x̃)dx̃d ỹ.

The expression is legit for any simplex vector w ∈ S that does not contain zeros. We will treat

zeros later. For now we only consider a dense weight: {w ∈ S : wk > 0, k = 1, . . .K}.

Consider a surrogate objective function (the first term in the integral above):

elpdsurrogate(w) =

K∑
k=1

∫
Jk

log (wk pk(ỹ | x̃)) pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
k=1

∫
Jk

(logwk + log pk(ỹ | x̃)) pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
k=1

logwk

∫
Jk

pt(ỹ | x̃)p(x̃)dx̃d ỹ +
K∑

k=1

∫
Jk

log pk(ỹ | x̃)pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
k=1
(Pr(Jk) logwk) + constant.

Ignoring the constant term above (the expected cross-entropy between each conditional pre-

diction and the true DG), to maximize the surrogate objective function is equivalent to maxi-

mize
∑K

k=1 Pr(Jk) logwk , we call this function elbo(w), the evidence lower bound. To optimize

elpdsurrogate is equivalent to optimize elbo. We show that this elbo function has a closed form
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optimum. Using Jensen’s inequality,

elbo(w) =
K∑

k=1
Pr(Jk) logwk

=

K∑
k=1

Pr(Jk) log
wk

Pr(Jk)
+

K∑
k=1

Pr(Jk) log Pr(Jk)

≤ log

(
K∑

k=1
Pr(Jk)

wk

Pr(Jk)

)
+

K∑
k=1

Pr(Jk) log Pr(Jk)

=

K∑
k=1

Pr(Jk) log Pr(Jk).

The equality is attained at wk = Pr(Jk), k = 1, . . . ,K , which reaches our definition of wapprox in

Theorem 10.1.

What remains to be proved is that the surrogate objective function is close to the actual objective.

We divide each set Jk into two disjoint subsets Jk = J◦ ∪ J
•

k , for

J ◦k B {(x̃, ỹ) ∈ Jk : log p(ỹ |Mk) < log p(ỹ |Mk ′, x) + L} ;

J •k B {(x̃, ỹ) ∈ Jk : log p(ỹ |Mk) ≥ log p(ỹ |Mk ′, x) + L} .

The separation condition ensures
∑K

k=1 Pr(J ◦k ) ≤ ε .

Let ∆(w) = elpd(w) − elpdsurrogate(w). For any fixed simplex vector w, this absolute difference
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of the objective function is bounded by

|∆(w)| =

����� K∑
k=1

∫
Jk

(
log

(
1 +

∑
l,k

wl pl(ỹ | x̃)
wk pk(ỹ | x̃)

))
pt(ỹ | x̃)p(x̃)dx̃d ỹ

�����
≤

K∑
k=1

∫
Jk

�����log

(
1 +

∑
l,k

wl pl(ỹ | x̃)
wk pk(ỹ | x̃)

)����� pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
k=1

(∫
J ◦
k

+

∫
J •
k

) �����log

(
1 +

∑
l,k

wl pl(ỹ | x̃)
wk pk(ỹ | x̃)

)����� pt(ỹ | x̃)p(x̃)dx̃d ỹ

≤

K∑
k=1

∫
J ◦
k

log(1 +
∑
l,k

wl

wk
)pt(ỹ | x̃)p(x̃)dx̃d ỹ +

K∑
k=1

∫
J •
k

∑
l,k

wl

wk

pl(ỹ | x̃)
pk(ỹ | x̃)

pt(ỹ | x̃)p(x̃)dx̃d ỹ

≤

(
K∑

k=1

∑
l,k

wl

wk

) (
K∑

k=1

∫
J ◦
k

pt(ỹ | x̃)p(x̃)dx̃d ỹ +
K∑

k=1

∫
J •
k

pl(ỹ | x̃)
pk(ỹ | x̃)

pt(ỹ | x̃)p(x̃)dx̃d ỹ

)
≤

(
K∑

k=1

1 − wk

wk

)
(ε + exp(−L)).

The exact optima of objective function is wstacking. Using the inequality above twice,

0 ≤ elpd(wstacking) − elpd(wapprox) ≤ |elpdsurrogate(wstacking) − elpd(wstacking)|

+ |elpdsurrogate(wapprox) − elpd(wapprox)|

+ elpdsurrogate(wstacking) − elpdsurrogate(wapprox)

≤ |∆(wapprox)| + |∆(wstacking)|

≤

K∑
k=1

(
1 − wapprox

k

w
approx
k

+
1 − wstacking

k

w
stacking
k

)
(ε + exp(−L)).

It almost finished the proof expect for the simplex edge where wstacking
k or wapprox

k attains zero.

Without loss of generality, if wapprox
1 = 0,wapprox

k , 0,∀k , 1, which means p(ỹ |Mk, x̃) is always

inferior to some other model. This will only happy if p(ỹ |Mk, x̃) is almost sure zero (w.r.t pt(ỹ, x̃))

hencewe can removemodel 1 from the list, and the sameO(ε+exp(−L)) bound applies to remaining

model 2, . . . ,K . If there are more than one zeros, repeat until all zeros are removed.

Next, we deal with w
stacking
1 = 0,wstacking

k , 0,∀k , 1. If wapprox
1 = 0, too, then we have solved
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in the previous paragraph. If not, Theorem 10.2 shows that wapprox
1 has to be a small order term:

Pr(J1) ≤ (1 + (exp(L) − 1)(1 − ε) + ε)−1 < exp(−L) + ε .

We leave the proof of this inequality in Theorem 10.2.

The contribution of the first model in the surrogate model is at most Pr(J1) log Pr(J1). After we

remove the first model from the model list, with the surrogate model elpd changes by at most a small

order term, not affecting the final bound. Because the separation condition with constant (ε, L)

applies to model 1, . . . ,K , and due to lack of a competition source, the same separation condition

applies to model 2, . . . ,K and the same bound applies.

Theorem. When the separation condition (10.3) holds, and if the k-th model has zero weight in

stacking, wstacking
k = 0, then the probability of its winning region is bounded by:

Pr(Jk) ≤ (1 + (exp(L) − 1)(1 − ε) + ε)−1 .

The right hand side can be further upper-bounded by exp(−L) + ε .

Proof. Without loss of generality, assume wstacking
1 = 0. Let p0(ỹ | x̃) =

∑K
k=2 w

stackingpk(ỹ | x̃). Con-

sider a constrained objective ẽlpd(w1) = E(log(w1p1(ỹ | x̃)+ (1−w1)p0(ỹ | x̃)))where the expectation

is over both ỹ and x̃ as before. Because the max is attained at w1 = 0 and because log(·) is a concave

function, the derivative at any w1 ∈ [0,1] is

d
dw1

ẽlpd(w1) = Eỹ,x̃

(
p1(ỹ | x̃) − p0(ỹ | x̃)

w1p1(ỹ | x̃) + (1 − w1)p0(ỹ | x̃)

)
≤ 0.
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That is

0 ≥E
(

p1(ỹ | x̃) − p0(ỹ | x̃)
p0(ỹ | x̃)

)
=Pr(J1)E[

p1(ỹ | x̃) − p0(ỹ | x̃)
p0(ỹ | x̃)

|J1] + (1 − Pr(J1))E[
p1(ỹ | x̃) − p0(ỹ | x̃)

p0(ỹ | x̃)
|J0]

≥ Pr(J1)E[
p1(ỹ | x̃) − p0(ỹ | x̃)

p0(ỹ | x̃)
|J1] − (1 − Pr(J1)).

Rearrange this inequality arrives at

1 ≥ Pr(J1)

(
1 + E[

p1(ỹ | x̃) − p0(ỹ | x̃)
p0(ỹ | x̃)

|J1]

)
≥ Pr(J1)(1 + (exp(L) − 1)(1 − ε) + ε).

Hence, the model with weight zero cannot have a large probability to predominate all other models,

Pr(J1) ≤ (1 + (exp(L) − 1)(1 − ε) + ε)−1 < exp(−L) + ε .

Theorem. Let ρ = sup1≤k≤K Pr(Jk), and two deterministic functions g and g∗ by

g(L,K, ρ, ε) = L(1 − ρ)(1 − ε) − log K

≤g∗(L,K, ρ, ε) = L(1 − ρ)(1 − ε) + ρ log(ρ) + (1 − ρ)(log(1 − ρ) − log(K − 1)).

Assuming the separation condition (10.3) holds for all k = 1, . . . ,K , then the utility gain of stacking

is further lower-bounded by

elpdstacking − elpdk ≥ max (g∗(L,K, ρ) + O(exp(−L) + ε),0) .

Proof. As before, we consider the approximate weights: wapprox
k = Pr(Jk), and the surrogate elpd
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elpdsurrogate(w) =
∑K

k=1
∫
Jk

log (wk pk(ỹ | x̃)) pt(ỹ | x̃)p(x̃)dx̃d ỹ.

elpdsurrogate(wapprox) − elpdk

=

K∑
l=1

∫
Jl

log (Pr(Jl)pl(ỹ | x̃)) pt(ỹ | x̃)p(x̃)dx̃d ỹ −
K∑

l=1

∫
Jl

log (pk(ỹ | x̃)) pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
l=1

∫
Jl

(log Pr(Jl) + log pl(ỹ | x̃) − log pk(ỹ | x̃)) pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
l=1

Pr(Jl) log Pr(Jl) +

K∑
l=1

1(l , k)
∫
Jl

log(pl(ỹ | x̃) − log pk(ỹ | x̃))pt(ỹ | x̃)p(x̃)dx̃d ỹ

=

K∑
l=1

Pr(Jl) log Pr(Jl) +

K∑
l=1

1(l , k)

(∫
J ◦
l

+

∫
J •
l

)
log(pl(ỹ | x̃) − log pk(ỹ | x̃))pt(ỹ | x̃)p(x̃)dx̃d ỹ

≥

K∑
l=1

Pr(Jl) log Pr(Jl) + (1 − ε)(1 − ρ)L − ε

≥ρ log ρ + (1 − ρ) log
1 − ρ
K − 1

+ (1 − ε)(1 − ρ)L − ε

=g(L,K, ρ, ε) − ε .

The last inequality comes from the fact that the entropy term
∑K

l=1 Pr(Jl) log Pr(Jl) attains its

minimal at (ρ, (1− ρ)/(K − 1), . . . , (1− ρ)/(K − 1)) due to the convexity of x log x. We may further

use a lower bound ρ log ρ + (1 − ρ) log 1 − ρ/K − 1 ≥ − log(K), which arrives in g(·).

Finally, using the proof of Theorem 10.1,

|elpdsurrogate(wapprox) − elpdstacking(wstacking)| ≤ O(exp(−L) + ε),

we get elpdstacking − elpdk ≥ g∗(L,K, ρ) + O(exp(−L) + ε). Because selection is always a specials

case of averaging, the utility is further bounded below by 0.

From the constrictive example (Appendix 10.3), g∗(·) is a tight bound. We use the looser bound

g(·) in the main chapter for its simpler form.
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Theorem. Under the strong separation assumption

K∑
k=1

∫
x̃∈Ik

∫
ỹ∈Y

1

(
log p(ỹ |Mk, x) < log p(ỹ |Mk ′, x) + L, ∀k′ , k∗(x)

)
pt(ỹ |x,D)d ỹ ≤ ε,

and if the sets {Ik} are known exactly, then we can construct pointwise selection

p(ỹ |x,pointwise selection) =
K∑

k=1
1(x ∈ Ik)p(ỹ |x,Mk).

Its utility gain is bounded from below by

elpdpointwise selection − elpdstacking ≥ − log ρX + O(exp(−L) + ε).

Proof.

elpdpointwise selection − elpdsurrogate(wapprox)

=

K∑
l=1

∫
Il

(log pl(ỹ | x̃) − log (Pr(Il)pl(ỹ | x̃))) pt(ỹ | x̃)p(x̃)dx̃d ỹ

= −

K∑
l=1

Pr(Il) log Pr(Il)

≥ −

K∑
l=1

Pr(Il) log ρx

= − log ρx .

Finally, from the proof of Theorem 10.1,

|elpdsurrogate(wapprox) − elpdstacking(wstacking)| ≤ O(exp(−L) + ε).

236



Conclusion and future directions

A. Alternatives to Bayes rule (can we learn a better epistemic uncertainty)

As we have previously discussed in Chapter 8, epistemic uncertainty comes into inference and

prediction due to a finite amount of data. Given a model and an unknown parameter θ, the epistemic

uncertainty is reflected by the posterior distribution p(θ |y). When inference is conducted through

MCMCmethods, we have an extra Monte Carlo error when computing any posterior integrals with

respect to these destines.

Post-processing has long been used to shrink the Monte Carlo or approximation errors. In

Chapter 5 and Chapter 6, we explore Rao-Blackwellization and path sampling that reduce Monte

Carlo error for any normalization constant estimate. In Chapter 3, we post-process variational

approximation draws using PSIS to assess its accuracy.

However, to recover the exact posterior p(θ |y) is not the ultimate goal. The “full Bayes”

solution is only optimal under the true model and when averaging over the prior distribution. Being

open-minded to model misspecification, it will be more desired to find some “good” probabilistic

inference, denoted by p̃(θ |y), such that the posterior prediction p(ỹ |y) =
∫

p̃(ỹ |θ)p(θ |y)dθ is

“good”. We have mathematically defined this framework in equation (8.2).

Along with this idea, a second type of post-processing is designed to re-calibrating Bayesian

epistemic uncertainty. In Chapter 8, we use stacking to reweigh separated component in the

posterior density p̃(θ |y,w) =
∑

k wk pBayes
k (θ |y). In Chapter 6, we consider a tempered modification:

p̃(θ |y, λ) ∝ pBayes(θ |y)λ. We will discuss more aggregation forms in Problem D.

When we initially developed this method, we were sometimes questioned by “Is it a Bayes

procedure?”. We responded to them by prioritizing Bayesian decision theory against Bayesian

inference. Such tensions can only be resolved by considering Bayesian logic as a tool, a way of
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revealing inevitable misfits and incoherences in our model assumptions, rather than as an end in

itself.

An alternative, yet gradually more preferred, defense is through a model expansion perspective.

Take stacking for example: Yes, BMA is full Bayes, but stacking is full Bayes inference too if

we consider the augmented model p(θ,w, y) defined in equation (9.11). Likewise in tempering,

an orthodox Bayesian may only admit the validity of p(θ |y), the point at which temperature λ is

a constant one. But as soon as we expand the model by p(θ, λ, y) ∝ c(λ)p(θ, y)λ, the posterior of

temperature becomes a valid inference, and collecting all draws of λ draws amounts to a BMA

solution that average over temperatures, whereas the original posterior p(θ |y) becomes a narrow

slice (type-II MAP) of the extended model that ignores the variation on temperature. From this

point of view, post-processing techniques such as chain-stacking and full temperature trajectory do

not sabotage the Bayes’ rule—they expand the model.

Related to this idea, stacking is not only a model averaging tool, but also an inference paradigm,

sitting in parallel to Bayes and empirical Bayes. Consider one single model with data y and

parameter θ. There are three related paradigms to draw inference:

• In a full-Bayes view, the posterior inference has to be

log p(θ |y) =
∑

i

log p(yi |θ) + log pprior(θ) + Constant.

• From the (optimization-based) stacking point of view, the goal of inference is to better fit

the data with respect to some predictive metric. Equipped with the leave-one-out log score,

stacking estimates the best parameter by

θ̂ = arg max
θ

∑
i

log p(yi |y−i, θ) + log pprior(θ).

Yao et al. (2020b) discussed this stacking-as-single-model-training idea in the context of

multimodal posterior, in which full-Bayes is often overconfident. This approach is also
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related to empirical Bayes.

• Yao et al. (2021b) bridges these two ends. The Bayesian version of stacking can be viewed

as an single-model-inference defined by the modified log posterior density:

log p(θ |y) =
∑

i

log p(yi |y−i, θ) + log pprior(θ) + Constant.

Can we apply the redefined posterior from the last line to general inference problems?

B. M-views for data collection (where to sample observations)

So far we have not directly studied the data inquiry part of the workflow: How to design the

experiment? Where to sample observations? Should all data be collected once, or sequentially?

However, we implicitly encounter similar challenges several times. Chapter 2 discusses im-

portance sampling, one foundation of transfer learning and importance weighted active learning.

Chapter 4 discusses covariate imbalance, an example in which sampling distribution determiners

the convergence rate of the treatment effect estimate. k̂ is thereby a useful quantity for experiment

design. More relevantly, in Chapter 6, the simulated tempering consists of an active learning task:

how to distribute the free energy, the margin of inverse temperature, or what we called “prior” in

that context. We have argued that there is an efficiency-robustness trade-off, with three distinct

goals (Section 6.2) to optimize and we derive the optimal temperature margin respectively.

This tradeoff applies to many other experiment design problems. Take linear regression for

example: assume the observation is (x, y) pair with x ∈ [−1,1], and we work with a regression

model, yi = βxi + normal(0, σ). Suppose we also know that in the population of interest, the input

is x ∼Uniform[-1,1]. Similar to the three goals in Section 6.2, here we may also adopt three views:

1. Experiment design or an M-closed view. The objective is to minimize the variance of

estimate β̂, which is achieved by placing all masses of x at the two end-points ptrain(x) =

.5δ(−1) + .5δ(1).
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2. Active learning or anM-complete view. Adopting a covariate shift perspective, we reweight

the model to reflect the difference between training and testing covariates. That is to reweigh

the log likelihood by wi = ptest(xi)/ptrain(xi). Placing x only on -1 and 1 leads to an infinite

variance onw. If the linearmodel is approximately correct such that the bias is asymptotically

ignoble, we can use active learning techniques (Kanamori and Shimodaira, 2003; Sugiyama

and Ridgeway, 2006) to derive the optimal ptrain that minimizes the asymptotic variance of

the importance weighted estimate: ptrain(x) ∝ |x |.

3. Causal inference or an M-open view. In the derivation above, we still need some belief

model and have to assume it to be asymptotically unbiased. With a minimal assumption

view, we would like to hedge against minimax risks: what if the true model is y = x, except

inside a tiny interval x ∈ [−0.01,0.01], y = 100x? Then the previous design will miss

this part. The most conservative/minimax design is to minimize the variance of importance

weights, which is 0 and is achieved at ptrain = ptest = Uniform[−1,1].

In continuous tempering (Chapter 6), we adopt the third view with a little twist: the perfect

identification of test and training distribution might be too demanding. As long as the importance

weight has a small tail shape parameter, we are able to extrapolate training to test date, akin to the

causal reasoning in Chapter 4.

In practice, we have more complex models than linear regression, and designing the optimal

sampling distribution remains challenging. The reasoning above hints a viable direction to balance

the robustness-efficiency tradeoff: to seek the most “efficient” training sample such that the tail

shape of the importance ratios is controlled.

C. Bayesian update (when to jump out of the loop)

The decision framework would be more completed with additional sequential components. The

workflow has several adaptive module including iterative model building based on previous fitting,

early termination of computing when too slow, sequential data collection. When the model is fixed,
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the data-coming-sequentially problem fits in the classic online learning framework where we update

parameters. However, because of the persistent doubt on model specification, we would also like to

update the model on the fly. When should we dynamically update or abandon the current model?

To be concrete, consider a practical challenge in election forecast (we have explored a full

Bayesian model of election forecast in Chapter 9). During the election night, the state-level

election outcome comes in sequence, making a real-time update of the prediction useful after some

state results have been revealed.

We have two general approaches. Approach 1 is a full Bayesian solution. After fitting all

polling data, the model provides a joint posterior predictive density of the state-level election result,

say the Democratic share of among two parties, which we now denote by Pr(CA, NY . . . ) such

that the dependence on previously fitted polling data is suppressed. An online update is defined

by a conditional distribution: Pr(CA | NY = observed outcome). Similar to approximate Bayes

computation, we can adopt some distance metric, and collect posterior simulation draws from

the previous model fitting evaluate Pr(CA | NY ≈ observed outcome) using Monte Carlo draws.

Alternatively, we can approximate joint unconstrained posterior density by a multivariate normal,

such that any conditional update comes in a closed-form solution.

An orthogonal approach to this update is an extra regression model: to fit the actual state-

level outcome using the model-based prediction as an input. For example, a linear regression:

outcomestate i = β1predictionstate i + β0 + εi, εi ∼ iid error. The independent error may be improved

by a correlated multivariate distribution to account for state covariance.

These two approaches differ in how much trust they have in the model-based prediction.

Approach 1 learns the systematic “polling bias” from posterior correlations, which amounts to

Approach 2 with fixed β1 = 1 and fixed residual distribution. Approach 2 can learn the systematic

bias faster, but also needs more data to fit the regression model.

In this thesis, we have implicitly made this type of model update: we use stacking to recombine

multimodal posterior, effectively changing the working model after detecting model misspeci-

fication. In general, when model fitting, building, and data collection come sequentially and
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interactively, it requires more thinking or perhaps an extra meta-modeling on when to update the

current working model.

D. Operationalize the model space (how to combine distributions)

With input x ∈ Rd and output y ∈ Rm, we know how to learn y = f (x) using various regression

techniques. But what if the input source is a distribution rather than a number?

This is essentially the challenge we are facing in model averaging and model expansion. For

each data point, we have k probabilistic predictions pk(ỹ) (for brevity we will ignore covariates for

now). In (Bayesian) stacking (Section 7), we combine distributions by a mixture:

p(·|w) =
∑

k

wk pk(·). (11.1)

In tempering (Section 6) or distillation (Hinton et al., 2015), we combine distributions through a

geometry bridge:

p(·|w) ∝ exp

(∑
k

wk log pk(·)

)
.

In point ensembles (stacking, boosting, Bayesian predictive synthesis), we combine distributions

via a convolution (additive model of r .v.):

·|w
d
=

∑
k

wkYk, Yk ∼ pk(·).

There are certainly other ways to operationalize distributions such as superposition. The choice

of these operations impacts what model evaluation metric we can comfortably use. Under

convolutions, the L2 error is easy to compute, while the predictive density is hard to evalu-

ate. Using the mixture form, the log predictive density of the combined model comes directly.

These combinations of operation-form f and scoring-rule S give different aggregation method:

maxw Ey S( f (p1(y), . . . , pk(y)|w), y). For example, the quantile regression averaging (Maciejowska

et al., 2016) can be viewed as stacking with interval scores and convolution form.
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By optimizing parameters w, we say stacking is asymptotically optimal among mixtures. Yet

how can we also optimize over operations f ? What is the space of operations? What is the most

general combination form?

The support of these expansions is often large: a mixture of normals can approximate anything,

and yet a convolution of normals can also approximate anything. To study the subtle difference of

these “paths”, it might useful to start with frequentist properties. For example, Kamary et al. (2019)

convert hypothesis testing into a framing a mixture model that encompasses individual models as

special cases, and test if some wk in (11.1) is zero. Now that we have various paths, do they differ

in terms of the convergence rate of the hypothesis testing under the null? What is the optimal

operation?

E. Meta-learning (how would an AI learn statistics)

In this thesis, we advertise stacking/tempering as a semi-automatic model building/expansion

tool: when we are intellectually tired after building and fitting a sequence of models, we run

stacking to obtain a new model to try. Nevertheless, this procedure cannot replace all human

labors in the workflow as the mixture path (11.1) explores only a limited class of models. Beyond

current model aggregation tools, can we develop an automated ensemble learner that could fully

explore and expand the space of models—for example, using an autoregressive (AR) model and a

moving-average (MA) model to learn an ARMAmodel? Or using an inverse probability weighting

and a regression model to learn a doubly-robust regression?

These tasks are the ultimate goal that we would want an AI, who can learn statistics rather than

learn parameters, to achieve. We conjecture that stacking or hierarchical stacking might be a good

starting point toward this direction, but there are plenty of rooms for improvement. Perhaps it is

helpful to rethink what we are really learning when we “learn new models”.

There are three levels of what a “model” stands for:

1. A black-box prediction machine. We feed the model with training dataD and future input x̃,

and the model will output the outcome prediction p(ỹ | x̃,D). This “black-box” mapping is all

243



that stacking is using: we do not have to know what parameters are involved in each model.

2. A joint probability distribution. A parametric model is mathematically defined by a

joint probability distribution p(θ, y). If we are fitting mixture models or mixture of ex-

perts, the model aggregation and individual models are fitted simultaneously. Think

about the probit-logit model expansion in Chapter 6. They are defined by two joint

densities: p1(βprobit, y) =
∏

i Bernoulli_probit(yi |xiβprobit)p(βprobit), and p2(βlogit, y) =∏
i Bernoulli_logit(yi |xiβlogit)p(βlogit). Stacking simply ignores parameters while temper-

ing links two separated parameter spaces by

p(y, βlogit, βprobit |λ) ∝ pλ1(βlogit, y)p1−λ
2 (βprobit, y).

3. A joint probability distribution and parameters have meanings. More importantly, the black-

box prediction p(ỹ | x̃,D) ignores how the model is assembled by likelihoods and priors, while

some modules are shared across models. In the probit-logit example, knowing these two

models only differ in link functions, we would combine the model structure by merging the

functionally similar parameters (βprobit, βlogit) → βnew,

p(y, βnew |λ) ∝ pλ1(βnew, y)p1−λ
2 (βnew, y).

Using this path in Figure 6.10, we argue that it is even more computationally efficient

than fitting two models separately. If we have further prior knowledge on logit and probit

regressions, we can do even better by

p(y, βnew |λ) ∝ pλ1(βnew, y)p1−λ
2 (1.6 × βnew, y).

Sharing parameters during model averaging enhances computation efficiency (Figure 6.10),

and is a necessary step toward model understanding. Here we only illustrate geometric

bridges, while this idea can be energized to all other operations discussed in Problem D.
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All three views are useful. View 3 is arguably toward an interpretable machine learning: the model

is an explanation of nature. Unless learning the meaning of parameters as well, an AI would not

automatically name the model “ARMA” even after learning it from combining an AR and MA

model. On the other hand, View 1 can be useful as a high-level implementation. For example, it

is less meaningful to fit a mixer model or a mixture of experts on unstable computation results,

random initialization, non-mixing computation, or bootstrapped runs.

In order to apply View 3 to a general model expansion/averaging setting, a sequence of open

questions arises for future investigation: How can we detect similar modulus from different models?

Perhaps we characterize this similarity by hierarchical modeling and partially pool across models?

How can we encourage these functionally similar parameters living in different models to talk?

Can we use this template in the model fitting phase such that we can have a warm start for new

models during the workflow loop?
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