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ABSTRACT
Background: Leucine-enriched protein (LEU-PRO) and long-chain
(LC) n–3 (ω–3) PUFAs have each been proposed to improve muscle
mass and function in older adults, whereas their combination may be
more effective than either alone.
Objective: The impact of LEU-PRO supplementation alone
and combined with LC n–3 PUFAs on appendicular lean mass,
strength, physical performance and myofibrillar protein synthesis
(MyoPS) was investigated in older adults at risk of sarcopenia.
Methods: This 24-wk, 3-arm parallel, randomized, double-blind,
placebo-controlled trial was conducted in 107 men and women
aged ≥65 y with low muscle mass and/or strength. Twice daily,
participants consumed a supplement containing either LEU-PRO
(3 g leucine, 10 g protein; n = 38), LEU-PRO plus LC n–3 PUFAs
(0.8 g EPA, 1.1 g DHA; LEU-PRO+n–3; n = 38), or an isoenergetic
control (CON; n = 31). Appendicular lean mass, handgrip strength,
leg strength, physical performance, and circulating metabolic and
renal function markers were measured pre-, mid-, and postinter-
vention. Integrated rates of MyoPS were assessed in a subcohort
(n = 28).
Results: Neither LEU-PRO nor LEU-PRO+n–3 supplementation
affected appendicular lean mass, handgrip strength, knee extension
strength, physical performance or MyoPS. However, isometric knee
flexion peak torque (treatment effect: −7.1 Nm; 95% CI: −12.5,
−1.8 Nm; P < 0.01) was lower postsupplementation in LEU-
PRO+n–3 compared with CON. Serum triacylglycerol and total
adiponectin concentrations were lower, and HOMA-IR was higher,
in LEU-PRO+n–3 compared with CON postsupplementation (all
P < 0.05). Estimated glomerular filtration rate was higher and

cystatin c was lower in LEU-PRO and LEU-PRO+n–3 postsupple-
mentation compared with CON (all P < 0.05).
Conclusions: Contrary to our hypothesis, we did not observe a
beneficial effect of LEU-PRO supplementation alone or combined
with LC n–3 PUFA supplementation on appendicular lean mass,
strength, physical performance or MyoPS in older adults at risk
of sarcopenia. This trial was registered at clinicaltrials.gov as
NCT03429491. Am J Clin Nutr 2021;00:1–17.

Keywords: aging, LC n–3 PUFA, leucine, protein, muscle mass,
strength, sarcopenia

Introduction
Preserving physical function, mobility and ultimately inde-

pendence is a priority for older adults (1). Diminished skeletal
muscle strength and mass, termed sarcopenia (2), contributes
substantially to physical frailty (3), disability (4), falls risk
(5), physical dependence (6), reduced quality of life (7) and
mortality (8) among older people. As such, solutions to attenuate
sarcopenic declines are imperative. Older adults require ∼0.4 g
protein/kg per meal to maximally stimulate myofibrillar protein
synthesis (MyoPS), ∼67% more protein than is required by
younger individuals (0.24 g·kg−1·meal−1) (9). Typically, older
adults consume suboptimal protein intakes at breakfast and lunch
(∼0.1–0.3 g·kg−1·meal−1) (10, 11), which likely contributes to
the chronic state of negative net muscle protein balance that
precipitates muscle loss (12).
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Numerous studies in older adults have reported that the
MyoPS and mixed muscle protein synthesis (MPS) response
to a suboptimal protein dose is enhanced by the addition of
the amino acid leucine, a potent activator of the mammalian
target of rapamycin pathway and “trigger” for MPS (13–16).
Furthermore, supplementation of meals with leucine augments
integrated rates of MyoPS measured over several days (17). In
longer-term (6–13 wk) studies, leucine-enriched protein (LEU-
PRO) supplementation resulted in increased skeletal muscle mass
and/or increased lower extremity function in healthy (18) and
sarcopenic (19) older adults, although this is not a universal
finding (20). Interestingly, the improvements were observed in
the absence of concomitant exercise training (18, 19). This
suggests, as a proof of principle, that nutritional supplementation
alone may augment muscle mass and function in individuals who
are unable/unwilling to exercise, which represents a significant
cohort of older persons (21, 22).

Another emerging nutrient of interest in the sarcopenia field
are long-chain (LC) n–3 PUFAs derived from fish oil. A
double-blind randomized controlled trial (RCT) demonstrated
that LC n–3 PUFA supplementation for 6 mo improved muscle
mass (treatment effect: 3.6%; 95% CI: 0.2%, 7.0%), handgrip
strength (2.3 kg: 0.8 kg, 3.7 kg) and average 1-repetition-
maximum lower- and upper-body strength (4.0%; 0.8%, 7.3%)
in sedentary older men and women (23). LC n–3 PUFA
supplementation also augmented the mixed MPS response during
a hyperaminoacidemic-hyperinsulinemic clamp in older adults
(24), suggesting that LC n–3 PUFAs may enhance the sensitivity
of older muscle to amino acids.
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Therefore, we tested the hypotheses that 1) appendicular lean
mass (ALM), strength, and physical performance and MyoPS
would increase in older adults supplemented with LEU-PRO and
2) that the addition of LC n–3 PUFA supplementation would
further enhance the positive effects of LEU-PRO supplementa-
tion. To the best of our knowledge, no studies have investigated
whether an additive effect may exist when LC n–3 PUFA
supplementation is combined with LEU-PRO supplementation
in older adults in the context of a nutrition-only intervention.
We also determined the impact of LEU-PRO and LEU-PRO plus
LC n–3 PUFA supplementation on markers of metabolic health,
given the well-established impact of LC n–3 PUFAs on lipid
metabolism (25), as well as indices of renal function.

Methods

Study design

This randomized, double-blind, parallel-group, placebo-
controlled trial, approved by the University College Dublin
(UCD) Human Research Ethics Committee (permit: LS-16–41-
Murphy-Roche), was conducted in 107 older men and women
in UCD, Ireland. An overview of the study design is shown
in Figure 1. Participants were randomly assigned using the
MINIM randomization program, stratified by age and sex, by
an independent researcher to 1 of 3 groups: control (CON;
n = 31), LEU-PRO (n = 38), or LEU-PRO plus LC n–3 PUFAs
(LEU-PRO+n–3; n = 38). Figure 2 shows a CONSORT
(Consolidated Standards of Reporting Trials) diagram of the
progress from recruitment through to completion of the study.
All investigators, study staff and participants were blinded to
group allocations, and the randomization code was not broken
until statistical analysis of the primary and secondary outcomes
was complete. The primary outcome was ALM measured by
DXA. Secondary outcomes were as follows: handgrip and
lower extremity muscle strength, physical performance, body
mass, BMI, fat mass, step count, dietary intake, erythrocyte
phospholipid fatty acid composition, biochemical markers of
metabolic health and renal function, and in a subcohort of
participants, the integrated rate of MyoPS. At the screening visit,
participants were informed of all study procedures and were
given the option to be included or excluded from the subcohort
involving the MyoPS measurements.

Study endpoints were assessed pre- and postsupplementa-
tion. In addition, mid-intervention testing was conducted after
12 wk for all variables except for MyoPS. In order to reduce
the “practice” effect and enhance reliability, participants were
familiarized with all muscle strength and physical performance
assessments ∼1 wk prior to preintervention testing (Figure 1).
All endpoint testing visits took place in the morning to minimize
diurnal variation. In order to control for hydration status,
participants were asked to drink a fixed quantity of water
(200 mL) 2 h before attending UCD for measurements. Blood
sampling, body composition and anthropometry were assessed
first at each testing visit, while participants were in the fasted
state. Participants were then provided with a standardized snack
(cereal bar and juice) prior to muscle strength and physical
performance assessments. Recruitment and intervention were
conducted between 3 February 2017 and 20 December 2018.
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Week

CON supplementation: M (n = 17), F (n = 14), Age 73 ± 7 

12 240

Screening

PRE

D2O (100 ml) * *

Muscle biopsy

Familiarization

MID POST

Phone call Phone call

LEU-PRO supplementation: M (n = 18), F (n = 20), Age 70 ± 5 

LEU-PRO+n-3 supplementation: M (n = 17), F (n = 21), Age 73 ± 6 

FIGURE 1 Schematic overview of study design. Pre-, mid- and postintervention testing visits involved fasted blood sampling, anthropometry, DXA
scanning and the assessment of handgrip and lower extremity strength, physical performance and dietary intake in all participants. A subcohort of participants
also took part in the muscle biopsies and D2O loading. CON, control; D2O, deuterated water; LEU-PRO, leucine-enriched protein, LEU-PRO+n–3, leucine-
enriched protein plus long-chain n–3 PUFAs; MID, mid-intervention; POST, postintervention, PRE, preintervention. ∗ indicates consumption of 100-mL of
D2O.

Participants

Urban community-dwelling men and women were recruited
via newspaper advertisements, recreational clubs and posters.
Inclusion criteria were as follows: ≥65 y of age, increased
risk of sarcopenia as defined by having low skeletal muscle
mass index determined by bioelectrical impedance analysis
(BIA) [<6.75 kg/m2 in females and <10.75 kg/m2 in males
(26)] and/or low handgrip strength [<20 kg females, <30 kg
males (27)], BMI (kg/m2) of 19–35, nonsmokers, no major
cognitive impairment [Mini-Mental State Examination (MMSE)
score ≥21] and generally healthy according to responses to
a standard health screening questionnaire. Exclusion criteria
included self-reported 1) malignancy in the past 5 y (except
for adequately treated prostate cancer without evidence of
metastases, localized bladder cancer, cervical carcinoma in situ,
breast cancer in situ or nonmelanoma skin cancer); 2) diabetes
mellitus; 3) advanced renal disease; 4) conditions affecting ability
to consume, digest and/or absorb the study drink (e.g., cow-milk
protein allergy, inflammatory bowel disease); 5) neuromuscular
disease; 6) significant body mass changes (>3 kg) in the
1 mo period prior to the study; 7) total walking incapacity;
8) participation in a structured, regular (at least twice per
week) and progressive muscle-strengthening program; 9) usual
protein intake at breakfast >0.5 g protein/kg (assessed via diet
history taken at the screening visit); 10) regular LC n–3 PUFA
supplementation and not willing to cease consumption ≥6 wk
prior to and for the duration of the 24-wk study; and 11) use
of medications interfering with the nutrition intervention (e.g.,
corticosteroids for systemic use, hormone replacement therapy,
insulin, high-dose anti-inflammatories, simvastatin).

Nutrition intervention

The active supplements provided 21.2 g protein/d, which
included 6.2 g leucine/d, with or without 4 g LC n–3 PUFAs/d;
full compositional details of supplements (CON, LEU-PRO and
LEU-PRO+n–3) are shown in Table 1. Participants received
individual servings of their assigned, ready-to-drink, juice-based
supplement in identical 200-mL cartons. All of the supple-
ments were taste- and energy-matched and were manufactured
by Smartfish (Norway). The LEU-PRO and LEU-PRO+n–3
beverages contained a combination of whey protein and a
peptide carrier enriched with free leucine (PepForm; Glanbia
Nutritionals). The LEU-PRO+n–3 supplements contained fish
oil, and the LEU-PRO and CON supplements were formulated
with a mixture of high-oleic sunflower and corn oil. Maltodextrin
was added to the CON supplement to make it isocaloric with
the 2 LEU-PRO–containing supplements. To supplement lower-
protein meals, participants were asked to consume 2 of their
supplements per day: one directly before breakfast and the other
directly before their second light meal of the day (lunch or
evening meal depending on the individual’s meal pattern).

Participants were instructed to maintain their habitual diet for
the duration of the intervention. In anticipation that participants
may be less hungry than usual when consuming the 2 ×
200-mL supplements each day, the research dietitians and nutri-
tionists emphasized the importance of maintaining the habitual
protein content of the diet and instructed participants to reduce
their intake of carbohydrate- or fat-rich, protein-poor foods (i.e.,
butter, sweets, cakes, desserts, bread, rice, potatoes, etc.) if their
appetite was lower at mealtimes. Participants were instructed
to avoid taking any new nutritional supplements throughout the
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FIGURE 2 Recruitment, selection, randomization and follow-up of participants. †In biochemical measurements, n = 1 was excluded due to the development
of type 2 diabetes during the course of the study. ††Not enough skeletal muscle tissue obtained to perform the MyoPS analyses in n = 2 in CON, n = 2 in
LEU-PRO and n = 3 in LEU-PRO+n–3. In a further n = 2 in CON, n = 1 in LEU-PRO, and n = 2 in LEU-PRO+n–3, MyoPS could not be determined
either pre- or postintervention due to inadequate muscle tissue. n = 1 in CON withdrew from the optional MyoPS measurement after the initial biopsy but
continued with the other study measurements, n = 2 in LEU-PRO and n = 1 in LEU-PRO+n–3 dropped out of the study entirely. ∗In the physical performance
measurements (TUG, FTSTS, SPPB, gait speed, single-leg standing balance) an additional n = 1 was excluded. ∗∗In the physical performance measurements
an additional n = 2 were excluded. CON, control; FTSTS, 5 times sit-to-stand; ITT, intention-to-treat; LEU-PRO, leucine-enriched protein; LEU-PRO+n–3,
leucine-enriched protein plus long-chain n–3 PUFAs; MyoPS, myofibrillar protein synthesis; PP, per protocol; SPPB, short physical performance battery; TUG,
Timed Up-and-Go.
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TABLE 1 Nutritional composition of the supplements per single (200 mL)
serving1

Supplements

CON LEU-PRO LEU-PRO+n–3

Energy, kcal 200 209 209
Fat, g 8.9 10.1 10.1

SFAs, g 1.0 1.6 2.1
MUFAs, g 2.5 2.8 4.5
PUFAs, mg 5.3 5.5 2.8
n–6 PUFAs, g 5.3 5.5 0.4
n–3 PUFAs, g 0.02 0.03 2.4

EPA, mg <0.01 <0.01 0.78
DHA, mg <0.01 <0.01 1.14
DPA, mg <0.01 <0.01 0.11

Protein, g 0.2 10.6 10.6
Leucine, g 0.0 3.1 3.1
Carbohydrate, g 29.7 18.8 18.8
Fiber, g 1.3 0.9 0.9

1CON, control; DPA, docosapentaenoic acid; LEU-PRO,
leucine-enriched protein; LEU-PRO+n–3, leucine-enriched protein plus
long-chain n–3 PUFAs.

intervention and to maintain their habitual physical activity for
the duration of the study.

Body composition and anthropometry

ALM (sum of the fat-free soft tissue mass of arms and legs)
and fat mass were evaluated via DXA (GE-LUNAR iDXA;
Aymes Medical). Body mass was assessed using a calibrated
scale (SECA), and height was measured using a stadiometer
(Holtain).

Muscle strength

Isometric knee extensor and flexor peak torque and isokinetic
knee extensor peak torque were measured on the self-reported
dominant leg using a dynamometer (Cybex NORM; Humac).
After a submaximal warm-up, participants completed 4 maximal
leg extension and flexion contractions at 90◦ of knee flexion, each
separated by 60 s of rest, followed by 3 maximal isokinetic knee
extensions at 2 different angular velocities—60◦/s and 120◦/s—
with 10 s of rest separating each contraction and 60 s between
velocities. The repetition yielding the highest peak torque value
in each test was used for further analysis.

Handgrip strength was measured on the right and left side
using a hydraulic hand dynamometer (Saehan SH5001; Glanford
Electronics Ltd.). On each side, 2 measurements of grip
strength were recorded. If the relative difference between these
2 measurements was >10%, a third measurement was performed.
The maximal value of the 2 reproducible measures was retained
for analyses.

Physical performance

Physical performance was assessed via the Short Performance
Physical Battery (SPPB) (28), the Timed Up-and-Go test (TUG)
(29) and the single-leg standing balance test (30) according to
standard protocols. As exploratory outcomes, the continuous

SPPB components of 5 times sit-to-stand (FTSTS) time (seconds)
and gait speed (meters/second) were examined separately from
the composite SPPB score. The TUG test and the single-leg
standing balance test were repeated twice, with the average of
2 tests used in the analysis.

MyoPS

The integrated rate of MyoPS was measured over two 72-h
periods: preintervention (immediately prior to the beginning of
supplementation) and postintervention (during the final week
of supplementation), as described previously (17). On the first
day of the preintervention 72-h MyoPS measurement period,
participants reported to the laboratory in the fasted state and
provided a saliva sample and a muscle biopsy from the vastus
lateralis of their nondominant leg. Biopsies were obtained under
local lidocaine anesthesia by an experienced medical doctor using
the microbiopsy technique (Biofeather, Medax) (31). The tissue
samples were frozen immediately in liquid nitrogen, then stored
at −80◦C. Participants then consumed a single 100-mL oral bolus
of deuterated water (D2O; 70 atom%; Isowater) to label newly
synthesized muscle proteins. Following this, participants returned
home and were asked to continue their usual diets and daily
activities. A second muscle biopsy was obtained from the same
leg 72 h later. Total body water 2H enrichment was used as a
surrogate for plasma alanine labeling and was determined from
saliva swabs collected daily during the 72-h MyoPS measurement
period. Saliva swabs were collected in the mornings before eating
or drinking and were frozen for further analysis. During the
72-h MyoPS measurement period, participants were asked to
keep a detailed, weighed food record and to wear a pedometer
(Piezo SC-StepX™; StepsCount) to record daily step count.
Participants were asked to refrain from alcohol and strenuous
exercise for 2 d before, and for the duration of, the 72-h MyoPS
measurement period.

The same procedure was repeated postintervention with 2
exceptions: 1) participants were asked to replicate their daily step
count from the preintervention MyoPS measurement period and
2) participants were provided with a copy of their preintervention
72-h weighed food record, which was modified by the research
dietitian to include one of their allocated supplements at breakfast
and one at their second light meal. In order to match energy intake
to the preintervention MyoPS measurement period, some protein-
poor high-fat/-carbohydrate foods were removed and/or portion
sizes of these foods were reduced (mainly biscuits, cakes, desserts
or bread) to account for the additional energy provided by the
supplements. Participants were asked to replicate this modified
preintervention food record during the postintervention MyoPS
measurement period.

Myofibrillar-enriched proteins were isolated from the muscle
biopsies (∼30 mg) and the incorporation of deuterium (2H) into
protein-bound alanine was determined using a GC-pyrolysis-
isotope-ratio mass spectrometer (MAT 253; ThermoFisher Sci-
entific) equipped with a pyrolysis oven using a 60-m DB-17MS
column and 5-m precolumn (no. 122–4762; Agilent) and GC-
Isolink, as previously described (32). Samples were measured
in quadruplicate along with a series of known standards every
12 injections. Saliva samples were analyzed for 2H enrichment
in duplicate on an isotope ratio mass spectrometer (Delta V
Advantage, fitted with a Gasbench II; ThermoFisher Scientific),
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as previously described (32). The fractional synthetic rate (FSR)
of myofibrillar protein was determined from the incorporation of
deuterium-labeled alanine into protein, using the enrichment of
body water (corrected for the mean number of deuterium moieties
incorporated per alanine, 3.7) as the surrogate for precursor
labeling between subsequent biopsies according to the following
standard equation:

FSR (%/d) = [(APEAla)] / [(APEP) × t] ×100 (1)

where, APEAla = deuterium enrichment of protein bound alanine,
APEP = mean precursor enrichment over the time period and t is
the time between biopsies.

Biochemical markers of renal and metabolic health

Fasted, resting morning venous blood samples were collected
from each participant’s antecubital vein. Serum, plasma and
erythrocyte aliquots were stored at −80◦C for the assessment
of the various analytes in duplicate at completion of the study.
Serum concentrations of triacylglycerol (TG), total choles-
terol, HDL cholesterol, creatinine (via enzymatic colorimetric
method), urea, cystatin c, glucose and high-sensitivity C-
reactive protein (hsCRP) were analyzed using a RxDaytona
chemical autoanalyzer (Randox Laboratories). LDL-cholesterol
concentration was calculated using the Friedewald equation (33).
ELISA kits were used to measure serum insulin (Crystal Chem),
serum insulin-like growth factor I (IGF-I; Crystal Chem) and
plasma total and high-molecular-weight adiponectin (ELISA
Genie) concentrations, as previously described (34). Estimated
glomerular filtration rate (eGFR) was calculated using the
Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) cystatin c equation (35). The CKD-EPI cystatin c equation
was chosen instead of creatinine-based estimates of eGFR as the
latter have the potential to be influenced by dietary protein intake
and muscle mass (36, 37). Total serum 25-hydroxyvitamin D
[25(OH)D; sum of 25(OH)D2 + 25(OH)D3] concentrations were
quantified using LC–tandem MS (LC-MS/MS; API 4000; AB
Sciex).

Erythrocyte membrane phospholipid composition was mea-
sured as described previously (38). Briefly, lipids from isolated
erythrocytes were extracted in chloroform:methanol (2:1 vol:vol)
containing butylated hydroxytoluene (0.01%) as an antioxidant
and heptadecanoic acid (17:0) as an internal standard. After
lipid extraction and transmethylation with BF3/methanol, the
lipid phase containing the fatty acid methyl esters was dis-
solved in hexane and analyzed using a Hewlett-Packard 5890
Series II gas chromatograph with a Varian CP-SIL capillary
column (100 m; internal diameter, 0.25 mm) and flame-
ionization detector. Individual fatty acids were detected in
accordance with the retention times of standards. Erythrocyte
fatty acid data are reported as relative abundance (percentage
composition).

Diet and physical activity

Participants wore a pedometer (Piezo SC-StepX™, Step-
sCount) to measure their daily step count for 3 d immediately
before their pre-, mid- and postintervention visits. Dietary intake
was assessed via a 24-h recall performed by a research dietitian

or nutritionist using the 5-step multiple-pass method (39) at pre-,
mid- and postintervention visits.

Medical history and medication use

A lifestyle questionnaire was used to obtain information on
history of diseases/illnesses, smoking history, current use of
medication, physical activity habits and dietary supplement use.
Any alterations to medications or new medications prescribed to
participants by their doctor were documented by the researchers
at each testing appointment or during phone calls at week 6 and
week 18.

Compliance

Participants were provided with daily supplement logs and
were asked to record the time of day supplements and meals
were consumed. Logs were collected from the participants at
the mid- and postintervention visits. Compliance was calculated
as the percentage of supplement consumed relative to the total
prescribed. Compliance was also verified in LEU-PRO+n–3 via
erythrocyte EPA (20:5n–3) and DHA (22:6n–3) phospholipid
content.

Sample size

We determined our sample size based on the findings of
Bauer et al. (19), which showed that, in sarcopenic older adults,
supplementation with leucine-enriched whey protein twice daily
for 13 wk resulted in an increase in ALM compared with the
placebo group. Based on a group-by-time interaction in a mixed
ANOVA, using a partial η2 of 0.02 and a correlation among
repeated measures of 0.57, we calculated that a sample size of 104
would be required at an α level of 0.05 and β level of 0.80, with
the assumption of an ∼20% dropout rate in all groups (G∗Power
v3.1).

On the basis of data from a previous leucine supplementation
study (17) in which MyoPS was measured over a 3-d period using
D2O in older men, we calculated that a sample size of 27 would
be sufficient to detect a difference in integrated MyoPS between
groups of 0.11%/d with an SD of 0.10%/d, using an α of 0.05 and
a β of 0.80 (G∗Power v3.1).

Adverse events

Participants were asked to report any adverse events to the
researchers when they occurred; otherwise, this information was
collected at each testing appointment (mid, post) and during the
6-wk and 18-wk phone calls.

Statistical analyses

All data were entered using the double data-entry method for
quality control. In the primary analyses, data were analyzed using
the intention-to-treat approach, wherein all participants who were
randomly assigned were included in the analyses in their in-
tended group, regardless of noncompliance, protocol deviations,
withdrawal and anything that happened after randomization (40).
Linear mixed-model analyses were conducted with group (CON,
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LEU-PRO, LEU-PRO+n–3), time (mid, post) and the group-
by-time interaction as fixed factors; participants as a random
factor; and preintervention values as covariates. Contrasts were
constructed to estimate the differences between the CON and the
2 intervention groups (LEU-PRO and LEU-PRO+n–3) postin-
tervention, with preintervention values as covariates. In addition,
mid-intervention comparisons were conducted via contrasts as a
secondary exploratory analysis, with the exception of MyoPS,
which was only assessed pre- and postintervention. Linear
mixed models are largely robust even to quite severe violations
of model assumptions (41). Nevertheless, major violations of
homoscedasticity and normality of residuals were ruled out by
graphing and visually inspecting the data. One of the participants
in the CON group developed type 2 diabetes (T2D) during the
study; this 1 participant majorly influenced the overall outcomes
for the circulating biochemical measures. As such, specifically
for the biochemical data, we present a modified intention-to-treat
analysis excluding this participant for clarity. No adjustments
were made for multiple testing for secondary outcomes due to
the exploratory nature of the study. Missing values in outcome
variables were not imputed because mixed models handle
missing data well by maximum likelihood estimation at the
observation (time-point) level, avoiding listwise deletion (42).
To assess the magnitude of between-group differences in skeletal
muscle outcomes postintervention, standardized effect sizes were
calculated using Cohen’s d and interpreted using thresholds of
0.2, 0.5 and 0.8 for small, moderate and large, respectively
(43).

In addition to the intention-to-treat analyses, 2 sensitivity
analyses were performed to determine the robustness of trial
findings (44). If the findings of sensitivity analyses are consistent
with those of the primary analysis, this indicates that the
findings are robust, thereby increasing confidence in the results
(44). First, a per-protocol analysis was conducted in which
we excluded participants who withdrew from the intervention,
those who were not compliant with the supplementation or
those who violated the protocol. Noncompliance was determined
using the self-report supplement logs and defined as either
consumption of <70% of the allocated supplements over the
24-wk intervention or missing/incomplete supplement logs.
In the second sensitivity analysis, participants with outlying
observations (± >3 SDs from the mean) were removed. As
percentage compliance values were not normally distributed,
between-group differences in compliance were assessed via a
Kruskal-Wallis H test. All analyses were performed using SPSS
(version 24.0; IBM). Results are presented as means ± SDs
unless otherwise specified. For the primary outcome, we
performed a Bonferroni adjustment on the 2 primary contrasts;
therefore, significance was accepted as of P < 0.025. For all
secondary and exploratory contrasts, significance was accepted as
P < 0.05.

Results

Characteristics of study participants “at risk” of sarcopenia

Participants who participated in this study were deemed to
be at risk of sarcopenia, whereby BIA-derived skeletal muscle
mass index was low as per the Janssen et al. (26) criteria, in line
with values denoting moderate-to-high physical disability risk

(Table 2). Handgrip strength and physical performance (SPPB,
gait speed, TUG) were normal according to the most recent
thresholds set by the European Working Group on Sarcopenia in
Older People (2) (Table 2). All participants self-reported as being
of White race. The baseline characteristics of the subcohort who
underwent the MyoPS measurements (Supplemental Table 1)
were generally similar to the overall cohort.

ALM was not affected by LEU-PRO supplementation alone
or in combination with LC n–3 PUFA supplementation

In both the intention-to-treat and the sensitivity analyses
(outlying values removed, per protocol) there were no differences
between CON and either LEU-PRO or LEU-PRO+n–3 in
adjusted ALM mid- or postintervention (P > 0.05; Table 3,
Supplemental Figure 1). In both the intention-to-treat and the
sensitivity analyses there were no differences between CON and
either of the 2 intervention groups in fat mass, body mass or BMI
at mid- or postintervention (P > 0.05; Table 3). Across all groups
there was an increase in body mass over the 24-wk intervention
(Table 3).

Leg flexion strength, but not leg extension or handgrip
strength, was lower following LEU-PRO+n–3
supplementation compared with CON

Intention-to-treat analysis demonstrated that there were no
impacts of either LEU-PRO or LEU-PRO+n–3 supplementation
on handgrip strength, isometric and isokinetic knee extension
peak torque, or any of the physical performance tests mid- or
postintervention (all P > 0.05; Table 4, Supplemental Figure
1). However, isometric knee flexion peak torque was lower in
LEU-PRO+n–3 compared with CON postintervention (P < 0.01;
Table 4), with a small effect size (d = −0.43, Supplemental
Table 2). Isometric knee flexion peak torque did not differ
between CON and LEU-PRO+n–3 mid-intervention (−2.3 Nm;
95% CI : −7.4 Nm, 2.8 Nm; P = 0.38), or between CON
and LEU-PRO either mid-intervention (−1.5 Nm; −6.9 Nm,
3.8 Nm; P = 0.57) or postintervention (P = 0.32; Table 4,
Supplemental Figure 1). The per-protocol analysis confirmed that
isometric knee flexion peak torque was lower in LEU-PRO+n–
3 compared with CON postintervention (−7.3 Nm; −13.6 Nm,
−1.1 Nm; P = 0.02). The sensitivity analyses yielded similar
results to the intention-to-treat for all other strength and physical
performance measures, except for FTSTS time, which was higher
(i.e., performance worsened) in LEU-PRO+n–3 compared with
CON postintervention in the per-protocol analysis (between-
group effect: 1.7 s; 95% CI: 0.4 s, 3.0 s; P < 0.01) and when
outliers were removed (1.1 s; 0.1 s, 2.2 s; P < 0.05).

MyoPS was not affected by LEU-PRO with or without LC
n–3 PUFA supplementation

Figure 3 shows the mean body water deuterium enrichment
over the 3-d MyoPS measurement period preintervention (Figure
3A) and postintervention (Figure 3B) in the subcohort of
participants who took part in the MyoPS assessments. Body water
enrichment followed a linear decay pattern (r2 = 0.989 pre, r2

= 0.997 post). Integrated rates of MyoPS preintervention were
1.64% ± 0.35%/d in CON, 1.71% ± 0.31%/d in LEU-PRO
and 1.38% ± 0.29%/d in LEU-PRO+n–3, and postintervention

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/advance-article/doi/10.1093/ajcn/nqaa449/6237554 by guest on 21 April 2021



8 Murphy et al.

TABLE 2 Baseline characteristics of participants1

CON
(n = 31)

LEU-PRO
(n = 38)

LEU-PRO+n–3
(n = 38)

Female sex, n 14 20 21
Age, y 73 ± 7 70 ± 5 73 ± 6
Body mass, kg 71.9 ± 10.0 69.0 ± 12.8 72.4 ± 12.7
BMI, kg/m2 25.4 ± 2.8 24.8 ± 3.4 26.7 ± 3.2
Fat mass, kg 23.0 ± 6.2 21.2 ± 7.3 25.0 ± 5.9
MMSE 29 ± 2 29 ± 2 29 ± 1
Number of medical conditions, n (%)

0 10 (32.3) 17 (44.7) 15 (39.5)
1 8 (25.8) 6 (15.8) 9 (23.7)
2 6 (19.3) 10 (26.3) 9 (23.7)
≥3 7 (22.6) 5 (13.2) 5 (13.1)

Number of medications 2 ± 3 1 ± 2 2 ± 2
SMMI (BIA), kg/m2

Female 5.73 ± 0.45 5.66 ± 0.37 5.84 ± 0.59
Male 8.32 ± 0.70 8.64 ± 0.81 8.79 ± 0.87

ALMI (DXA), kg/m2

Female 6.38 ± 0.51 6.10 ± 0.46 6.29 ± 0.60
Male 7.70 ± 0.60 7.99 ± 0.92 8.10 ± 0.69

Handgrip strength, kg
Female 22.9 ± 4.9 22.7 ± 6.0 19.4 ± 4.3
Male 39.0 ± 7.5 38.8 ± 6.5 37.3 ± 6.1

SPPB 11 ± 2 11 ± 1 11 ± 1
Gait speed, m/s 0.76 ± 0.17 0.72 ± 0.12 0.77 ± 0.17
FTSTS, s 12.2 ± 2.3 11.6 ± 2.6 12.2 ± 3.1
TUG, s 7.0 ± 1.3 6.7 ± 1.0 7.0 ± 1.4
Single-leg standing balance, s 26.3 ± 23.6 26.1 ± 19.2 28.0 ± 21.5
Isometric knee extension MVC, Nm

Female 104 ± 25 95 ± 29 85 ± 27
Male 159 ± 42 164 ± 41 176 ± 36

Isometric knee flexion MVC, Nm
Female 35 ± 7 37 ± 11 32 ± 10
Male 57 ± 17 60 ± 16 63 ± 20

TG, mmol/L 1.1 ± 0.4 1.1 ± 0.4 1.2 ± 0.6
HDL cholesterol, mmol/L 1.6 ± 0.5 1.7 ± 0.4 1.8 ± 0.5
LDL cholesterol, mmol/L 3.3 ± 0.9 3.6 ± 0.8 3.5 ± 0.9
Glucose, mmol/L 5.8 ± 0.8 5.6 ± 0.6 5.7 ± 0.5
Insulin, mU/L 4.8 ± 3.7 4.6 ± 3.5 6.2 ± 3.1
HOMA-IR 1.4 ± 1.3 1.2 ± 1.0 1.6 ± 0.9
hsCRP, mg/L 1.5 ± 1.3 1.2 ± 0.9 1.9 ± 1.4
Cystatin C, mg/L 0.91 ± 0.18 0.79 ± 0.11 0.92 ± 0.20
Physical activity, steps/d 8192 ± 5142 8354 ± 4125 8257 ± 3906
Oily fish consumption, portions/wk 1.5 ± 2.3 1.1 ± 1.0 1.4 ± 1.7

1Values are means ± SDs unless otherwise specified. ALMI, appendicular lean mass index; BIA, bioelectrical
impedance analysis; CON, control; FTSTS, 5 times sit-to-stand; hsCRP, high-sensitivity C-reactive protein;
LEU-PRO, leucine-enriched protein; LEU-PRO+n–3, leucine-enriched protein plus long-chain n–3 PUFAs; MMSE,
Mini-Mental State Examination; MVC, maximal voluntary contraction; SMMI, skeletal muscle mass index; SPPB,
Short Physical Performance Battery; TG, triacylglycerol; TUG, Timed Up-and-Go.

were 1.61% ± 0.32%/d in CON, 1.79% ± 0.38%/d in LEU-
PRO and 1.74% ± 0.29%/d in LEU-PRO+n–3. In the intention-
to-treat analysis, the integrated rate of MyoPS was similar in
CON compared with both LEU-PRO (between-group effect:
0.14 %/d; 95% CI: −0.25 %/d, 0.52 %/d; P = 0.46) and LEU-
PRO+n–3 (0.26 %/d; 95% CI: −0.26 %/d, 0.78 %/d; P = 0.31)
postintervention (Figure 3C). Both sensitivity analyses revealed
results similar to the intention-to-treat analysis.

Physical activity levels, as assessed by step count, were
similar between preintervention (CON: 9204 ± 6023; LEU-PRO:

8393 ± 2937; LEU-PRO+n–3: 7353 ± 2163 steps/d) and postin-
tervention (CON: 8470 ± 2519; LEU-PRO: 7936 ± 3203; LEU-
PRO+n–3: 7502 ± 3866 steps/d, P = 0.86) MyoPS measurement
periods, and did not differ between groups (P = 0.62). Protein
intakes were higher in the LEU-PRO and LEU-PRO+n–3 groups
postintervention, during the MyoPS measurement period, and
were higher than in the CON group (all P < 0.05; Supplemental
Table 3). There were no differences in energy, fat or carbohydrate
intakes between pre- and postintervention measurement periods,
or between groups (all P > 0.05).
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TABLE 3 Anthropometric and DXA-derived body composition1

Estimated
between-group

difference vs. CON at
POST, mean (95% CI)

P
Change from PRE

PRE MID2 POST2

Adjusted ALM,3 kg
CON4 12.9 ± 2.8 0.12 ± 0.46 0.11 ± 0.46
LEU-PRO5 12.6 ± 3.3 0.13 ± 0.36 0.11 ± 0.42 0.01 (−0.20, 0.22) 0.93
LEU-PRO+n–36 12.4 ± 3.1 0.07 ± 0.32 0.02 ± 0.31 − 0.08 (−0.29, 0.13) 0.44

Body mass (kg)
CON4 71.9 ± 10.0 0.9 ± 1.7 1.3 ± 2.1
LEU-PRO7 69.0 ± 12.8 0.9 ± 1.4 1.9 ± 1.6 0.7 (−0.2, 1.6) 0.12
LEU-PRO+n–38 72.4 ± 12.7 0.6 ± 1.6 1.1 ± 1.9 − 0.1 (−1.0, 0.8) 0.84

BMI, kg/m2

CON4 25.4 ± 2.8 0.34 ± 0.58 0.57 ± 0.95
LEU-PRO7 24.8 ± 3.4 0.33 ± 0.50 0.69 ± 0.57 0.27 (−0.05, 0.61) 0.10
LEU-PRO+n–38 26.7 ± 3.2 0.22 ± 0.60 0.40 ± 0.67 0.05 (−0.28, 0.37) 0.77

Fat mass (kg)
CON4 23.0 ± 6.2 0.5 ± 1.1 0.9 ± 1.4
LEU-PRO5 21.2 ± 7.3 0.6 ± 0.9 1.1 ± 1.3 0.2 (−0.5, 0.8) 0.65
LEU-PRO+n–36 25.0 ± 5.9 0.8 ± 1.0 1.4 ± 1.7 0.5 (−0.2, 1.2) 0.13

1PRE value, change from PRE-to-MID and change from PRE-to-POST values are means ± SDs. Data represent the total cohort and were analyzed by
an intention-to-treat approach using a linear mixed model with group (CON, LEU-PRO, LEU-PRO+n–3), time (MID, POST) and the group-by-time
interaction as fixed factors; participants as a random factor; and PRE value as a covariate. Estimated between-group differences represent LEU-PRO − CON
and LEU-PRO+n–3 − CON at POST and are derived from the linear mixed model and adjusted for PRE value. ALM, appendicular lean mass; CON, control;
LEU-PRO, leucine-enriched protein; LEU-PRO+n–3, leucine-enriched protein plus long-chain n–3 PUFAs; MID, mid-intervention; POST, postintervention,
PRE, preintervention.

2PRE-to-MID changes represent participants with both PRE and MID data, PRE-to-POST changes represent participants with both PRE and POST data.
3Skeletal muscle biopsies which were performed in n = 36 participants on the nondominant vastus lateralis 72 h and ∼ 1 h prior to DXA scanning. This

resulted in variable degree of local muscle edema which had the potential to impact ALM values. Therefore, “adjusted” ALM was calculated in all
participants (including those who underwent biopsies and those who did not) by summing lean soft tissue in the arms plus the dominant leg.

4PRE n = 31, MID n = 28, POST n = 25.
5PRE n = 38, MID n = 27, POST n = 28.
6PRE n = 38, MID n = 31, POST n = 31.
7PRE n = 38, MID n = 29, POST n = 28.
8PRE n = 38, MID n = 33, POST n = 31.

Indices of renal function were better maintained in the
LEU-PRO and LEU-PRO+n–3 groups relative to the
control, whereas LEU-PRO+n–3 supplementation had
inconsistent effects on metabolic health

The modified intention-to-treat analysis revealed that indices
of kidney function were not compromised by either of the LEU-
PRO–containing supplements. Indeed, eGFR was higher and
cystatin c was lower in both LEU-PRO (P < 0.01) and LEU-
PRO+n–3 (P < 0.01) compared with CON postintervention
(Table 5). Serum creatinine concentration was lower in both
LEU-PRO (P = 0.02) and LEU-PRO+n–3 (P = 0.02; Table 5)
compared with CON postintervention, whereas urea concen-
tration was higher in LEU-PRO+n–3 compared with CON (P
< 0.01) postintervention. The modified intention-to-treat analysis
revealed no impacts of LEU-PRO supplementation on indices of
metabolic health. In contrast, in the LEU-PRO+n–3 group, serum
TG (P < 0.05) and plasma total adiponectin concentrations were
lower (P < 0.01) and HOMA-IR was higher (P = 0.04; Table 5)
compared with CON postintervention, indicative of mixed effects
of LEU-PRO+n–3 supplementation on metabolic health.

In contrast to the modified intention-to-treat analyses, neither
of the sensitivity analyses revealed differences in TG or total
adiponectin concentrations between groups postintervention (all
P > 0.05). Similarly, in the per-protocol analysis, HOMA-IR
was not different between CON and either of the 2 intervention

groups postintervention (both P > 0.05). However, in the analysis
wherein outlying values were removed, HOMA-IR was lower in
CON compared with both LEU-PRO and LEU-PRO+n–3 (both
P < 0.02). Both sensitivity analyses revealed results similar to the
modified intention-to-treat analyses for all the other biochemical
markers.

Supplementation intervention effectively increased protein
and leucine intake and LC n–3 PUFA status

As intended, our intervention successfully increased protein
and leucine intake at breakfast in both the LEU-PRO (P < 0.01)
and LEU-PRO+n–3 (P < 0.01) intervention groups compared
with CON, whereas leucine (both P < 0.01) but not protein
intake increased at lunch (LEU-PRO: P = 0.30; LEU-PRO+n–
3: P = 0.73; Table 6). Daily protein intake (expressed as
grams/day and grams/kilogram per day) was higher than CON
in LEU-PRO mid-intervention (P = 0.02; data not shown) and
postintervention (P = 0.01; Table 6) and in LEU-PRO+n–3 mid-
intervention (P < 0.01; data not shown) but not postintervention
(P = 0.09; Table 6). In order to energy-match the supplements,
the carbohydrate content of the CON supplements was higher;
this resulted in a greater carbohydrate intake (grams/day and %
of energy) in the CON group diet compared with both LEU-PRO
and LEU-PRO+n–3 (P < 0.01). Dietary n–6 PUFA intake was
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TABLE 4 Strength and physical performance1

Change from PRE Estimated between-group
difference vs. CON at POST,

mean (95% CI)PRE MID2 POST2 P

Handgrip strength, kg
CON3 31.7 ± 10.3 − 0.1 ± 3.2 0.5 ± 3.5
LEU-PRO4 30.3 ± 10.2 0.6 ± 2.9 1.0 ± 3.1 0.5 (−1.4, 2.3) 0.61
LEU-PRO+n–35 27.3 ± 10.3 − 0.2 ± 3.8 0.0 ± 3.3 − 0.8 (−2.6, 1.0) 0.40

Isometric knee extension peak torque, Nm
CON3 134.1 ± 44.9 0.3 ± 17.6 3.7 ± 17.9
LEU-PRO4 126.7 ± 50.0 2.2 ± 23.7 8.7 ± 23.7 4.9 (−5.8, 15.5) 0.37
LEU-PRO+n–36 125.4 ± 55.1 − 2.0 ± 18.4 − 1.1 ± 25.5 − 6.5 (−16.8, 3.9) 0.22

Isokinetic knee extension peak torque at 60◦/s, Nm
CON3 91.8 ± 33.8 − 1.6 ± 14.6 − 2.6 ± 16.0
LEU-PRO7 86.4 ± 31.1 − 0.1 ± 13.0 − 0.1 ± 18.2 2.4 (−5.3, 10.0) 0.55
LEU-PRO+n–38 84.2 ± 40.3 0.1 ± 12.0 − 2.6 ± 13.3 0.1 (−7.4, 7.5) 0.99

Isokinetic knee extension peak torque at 120◦/s, Nm
CON3 67.4 ± 24.8 − 1.3 ± 11.0 1.9 ± 11.7
LEU-PRO7 62.3 ± 25.7 − 0.1 ± 15.1 − 0.6 ± 13.4 − 2.0 (−8.5, 4.6) 0.56
LEU-PRO+n–38 63.8 ± 30.7 − 3.0 ± 9.6 − 2.2 ± 12.6 − 3.2 (−9.6, 3.2) 0.32

Isometric knee flexion peak torque, Nm
CON9 47.9 ± 17.2 0.8 ± 11.8 4.0 ± 9.3
LEU-PRO10 48.0 ± 17.9 − 0.5 ± 10.0 1.2 ± 10.1 − 2.8 (−8.3, 2.8)0.320.32 0.32
LEU-PRO+n–311 45.8 ± 22.0 − 1.1 ± 8.7 − 2.8 ± 11.6 − 7.1 (−12.5, −1.8) <0.01

SPPB score
CON3 10.7 ± 1.6 0.3 ± 0.9 0.3 ± 0.9
LEU-PRO12 11.1 ± 1.0 0.4 ± 1.2 − 0.1 ± 1.4 − 0.1 (−0.6, 0.4) 0.75
LEU-PRO+n–36 10.7 ± 1.3 0.0 ± 1.3 − 0.1 ± 1.1 − 0.3 (−0.8, 0.2) 0.29

Gait speed, m/s
CON13 0.76 ± 0.17 − 0.02 ± 0.10 − 0.04 ± 0.08
LEU-PRO12 0.72 ± 0.12 0.00 ± 0.08 0.00 ± 0.10 0.03 (−0.02, 0.08) 0.25
LEU-PRO+n–314 0.77 ± 0.17 0.00 ± 0.01 0.02 ± 0.11 0.04 (−0.01, 0.09) 0.08

FTSTS, s
CON15 12.2 ± 2.3 − 0.6 ± 2.0 − 0.1 ± 1.8
LEU-PRO16 11.6 ± 2.6 − 0.2 ± 2.4 0.7 ± 2.8 0.7 (−0.5, 1.9) 0.25
LEU-PRO+n–317 12.2 ± 3.1 − 0.2 ± 2.4 1.1 ± 2.5 1.0 (−0.2, 2.2) 0.09

TUG, s
CON18 7.0 ± 1.3 0.0 ± 0.8 0.0 ± 0.8
LEU-PRO4 6.7 ± 1.0 0.2 ± 0.8 0.3 ± 1.0 0.3 (−0.2, 0.7) 0.27
LEU-PRO+n–319 7.0 ± 1.4 0.2 ± 1.1 0.3 ± 0.9 0.2 (−0.3, 0.6) 0.42

Single-leg standing balance, s
CON20 26.3 ± 23.6 2.0 ± 13.1 0.8 ± 13.6
LEU-PRO4 26.2 ± 19.1 7.6 ± 16.8 3.1 ± 15.7 1.5 (−6.5, 9.5) 0.71
LEU-PRO+n–321 28.0 ± 21.5 8.2 ± 17.4 6.5 ± 16.1 4.4 (−3.5, 12.3) 0.27

1PRE value, change from PRE-to-MID and change from PRE-to-POST values are means ± SDs. Data represent the total cohort and were analyzed by an intention-to-treat
approach using a linear mixed model with group (CON, LEU-PRO, LEU-PRO+n–3), time (MID, POST) and the group-by-time interaction as fixed factors; participants as a
random factor; and PRE value as a covariate. Estimated between-group differences represent LEU-PRO − CON and LEU-PRO+n–3 − CON at POST and are derived from the
linear mixed model and adjusted for PRE value. CON, control; FTSTS, 5 times sit-to-stand; LEU-PRO, leucine-enriched protein; LEU-PRO+n–3, leucine-enriched protein plus
long-chain n–3 PUFAs; MID, mid-intervention; POST, postintervention; PRE, preintervention; SPPB, Short Physical Performance Battery; TUG, Timed Up-and-Go.

2PRE-to-MID changes represent participants with both PRE and MID data, PRE-to-POST changes represent participants with both PRE and POST data.
3PRE n = 31, MID n = 28, POST n = 25.
4PRE n = 36, MID n = 28, POST n = 28.
5PRE n = 36, MID n = 32, POST n = 30.
6PRE n = 36, MID n = 33, POST n = 31.
7PRE n = 36, MID n = 28, POST n = 27.
8PRE n = 36, MID n = 33, POST n = 30.
9PRE n = 29, MID n = 27, POST n = 24.
10PRE n = 35, MID n = 28, POST n = 28.
11PRE n = 36, MID n = 32, POST n = 31.
12PRE n = 36, MID n = 29, POST n = 28.
13PRE n = 30, MID n = 26, POST n = 24.
14PRE n = 36, MID n = 29, POST n = 31.
15PRE n = 30, MID n = 26, POST n = 23.
16PRE n = 35, MID n = 29, POST n = 28.
17PRE n = 35, MID n = 28, POST n = 31.
18PRE n = 30, MID n = 27, POST n = 24.
19PRE n = 35, MID n = 31, POST n = 31.
20PRE n = 30, MID n = 27, POST n = 34.
21PRE n = 36, MID n = 31, POST n = 30.
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A B C

FIGURE 3 Linear time course of body water deuterium enrichment (%) following oral bolus of 100 mL D2O (70 atoms %) in participants preintervention
(A) and postintervention (B) in the subcohort of participants who underwent the MyoPS measurements. Values are means ± SDs; n = 28. The bolus was
consumed on day −3 before the intervention began and on day 165 of supplementation. (C) The integrated myofibrillar FSR (%/d) pre- and postintervention.
Each line represents 1 participant (n = 7 in CON, n = 9 in LEU-PRO, n = 5 in LEU-PRO+n–3). Data from participants for whom paired measurements were
not available (e.g., MyoPS data only available either pre- or postintervention) are not shown. Data were analyzed by an intention-to-treat approach using a linear
mixed model with group (CON, LEU-PRO, LEU-PRO+n–3) as a fixed factor, participant as a random factor and preintervention values as covariates. Data
from participants with both paired (pre and post) and unpaired (pre or post) MyoPS data were included in the analysis as per the intention-to-treat approach (at
preintervention: n = 9 in CON, n = 12 in LEU-PRO and n = 6 in LEU-PRO+n–3; at postintervention: n = 7 in CON, n = 9 in LEU-PRO and n = 6 in LEU-
PRO+n–3). There were no differences in MyoPS between groups (P > 0.05). CON, control; D2O, deuterated water; FSR, fractional synthetic rate; LEU-PRO,
leucine-enriched protein; LEU-PRO+n–3, leucine-enriched protein plus long-chain n–3 PUFAs; MyoPS, myofibrillar protein synthesis; PRE, preintervention;
POST, postintervention.

lower and EPA and DHA intakes were higher in LEU-PRO+n–
3 compared with CON mid- and postintervention (P < 0.01),
but were similar between CON and LEU-PRO (P > 0.05)
treatments. Erythrocyte phospholipid fatty acid composition
demonstrated that EPA and DHA concentrations were elevated
and that n–6 PUFA concentrations were reduced following
LEU-PRO+n–3 supplementation, compared with CON, both
mid- and postsupplementation (P < 0.01; Supplemental
Table 4). There were no differences in erythrocyte phospholipid
fatty acid composition between CON and LEU-PRO mid- and
postintervention.

In terms of habitual activity, daily step counts were similar be-
tween the CON and both intervention groups at mid-intervention
(CON: 7728 ± 4396; LEU-PRO: 9421 ± 4731; LEU-PRO+n–
3: 8927 ± 4198 steps/d; P > 0.05) and postintervention (CON:
7524 ± 3111; LEU-PRO: 8094 ± 3932; LEU-PRO+n–3:
8013 ± 3445 steps/d; P > 0.05).

There was high level of compliance with supplementation.
Compliance (based on daily self-report logs) with supplement
consumption was high [median (IQR): CON = 93% (87–95%);
LEU-PRO = 89% (83–94%); LEU-PRO+n–3= 92 (87–97%)]
and did not differ between groups (P = 0.36). One serious
adverse event possibly related to nutritional supplementation was
reported: the onset of T2D in 1 participant within the CON
group. Adverse metabolic effects of the CON supplement were
not apparent in any other member of the cohort (Table 5). The
most commonly reported side effects that may have been related
to the supplements were gastrointestinal symptoms (including
nausea, bloating, diarrhea, constipation and reflux), feelings of
fullness and weight gain. One or more gastrointestinal symptoms
were reported in 4 participants in CON (13%), 9 participants in
LEU-PRO (24%) and 5 participants in LEU-PRO+n–3 (13%).

Discussion
Contrary to our hypothesis, we report no beneficial impact

of 24 wk of supplementation with LEU-PRO alone or in

combination with LC n–3 PUFAs on ALM, strength, physical
performance or integrated MyoPS in older adults at increased risk
of sarcopenia. To our knowledge, this is the first study to assess
the putative efficacy of combined LEU-PRO and LC n–3 PUFA
supplementation (formulated without other active nutrients; e.g.,
vitamin D, creatine) on skeletal muscle health in older adults, in
the context of a nutrition-only intervention.

We hypothesized that supplementation with LEU-PRO would
increase ALM, strength, physical performance and MyoPS
in older adults, and that the addition of LC n–3 PUFA
supplementation would further enhance the positive effects of
LEU-PRO supplementation on these outcomes. Although we
observed no impact of supplementation on ALM or the majority
of strength and physical performance measures, unexpectedly,
we observed that one of the measures of leg strength (knee
flexor peak torque) was lower after the intervention in the group
supplemented with LEU-PRO+n–3 relative to the control group.
Furthermore, the sensitivity analyses indicated that FTSTS per-
formance, a well-established measure of physical performance
(2), worsened in the LEU-PRO+n–3 group compared with
the CON group. Interestingly, a deterioration was not apparent
following supplementation with LEU-PRO alone, suggesting that
participants responded adversely to the LC n–3 PUFA component
of the supplements. This is a surprising finding as Smith and
colleagues (23) demonstrated that supplementation with a similar
dose of LC n–3 PUFAs [3.4 g (Smith et al.) vs. 3.8 g (present
study) EPA + DHA/d] for the same duration (6 mo) improved
whole-body strength and thigh muscle volume in 44 healthy older
men and women. Another double-blind RCT showed that low-
dose LC n–3 PUFA supplementation (1.2 g EPA + DHA/d)
for 6 mo resulted in a small improvement in gait speed in 126
postmenopausal women (45). Nevertheless, the impact of LC
n–3 PUFA supplementation on muscle mass and function is
inconsistent (46, 47). The longest and largest trial in this area
to date reported no effect of 3 y of supplementation (∼1 g
EPA + DHA/d) on handgrip strength or FTSTS performance
in 1679 older adults (46). Similarly, another large double-blind
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TABLE 5 Circulating biochemical indices of metabolic health and renal function1

Estimated
between-group

difference vs. CON at
POST, mean (95% CI)

Change from PRE
PRE POST2 P

eGFR, mL·min−1·1.73 m−2

CON3 83.7 ± 18.7 − 7.3 ± 12.3
LEU-PRO4 95.5 ± 11.5 − 0.5 ± 8.9 8.8 (2.6, 15.1) 0.006
LEU-PRO+n–35 81.7 ± 19.5 − 0.2 ± 8.9 6.9 (1.8, 12.1) 0.009

Cystatin C, mg/L
CON3 0.91 ± 0.18 0.07 ± 0.12
LEU-PRO4 0.79 ± 0.11 − 0.01 ± 0.08 − 0.11 (−0.18, −0.04) 0.001
LEU-PRO+n–35 0.92 ± 0.20 0.01 ± 0.12 − 0.08 (−0.13, −0.02) 0.011

Creatinine, μmol/L
CON3 79.1 ± 13.5 3.0 ± 6.3
LEU-PRO4 76.5 ± 16.1 − 1.4 ± 10.1 − 5.4 (−9.9, −1.0) 0.016
LEU-PRO+n–35 81.2 ± 15.6 − 2.1 ± 8.0 − 5.0 (−9.3, −0.7) 0.023

Urea, mmol/L
CON3 6.2 ± 1.8 − 0.7 ± 1.5
LEU-PRO4 5.7 ± 1.4 0.0 ± 1.3 0.5 (−0.2, 1.1) 0.150
LEU-PRO+n–35 6.0 ± 1.3 0.7 ± 1.2 1.3 (0.7, 1.9) <0.001

TG, mmol/L
CON3 1.07 ± 0.44 0.13 ± 0.60
LEU-PRO4 1.05 ± 0.36 0.17 ± 0.46 0.00 (−0.24, 0.25) 0.975
LEU-PRO+n–35 1.24 ± 0.57 − 0.12 ± 0.40 − 0.24 (−0.47, −0.01) 0.045

Total cholesterol, mmol/L
CON3 5.40 ± 1.08 0.02 ± 0.54 0.886
LEU-PRO4 5.76 ± 0.95 − 0.06 ± 0.78 − 0.03 (−0.41, 0.35) 0.886
LEU-PRO+n–35 5.83 ± 1.18 0.17 ± 0.77 0.17 (−0.19, 0.54) 0.350

LDL cholesterol, mmol/L
CON3 3.30 ± 0.89 − 0.05 ± 0.52
LEU-PRO4 3.61 ± 0.78 − 0.09 ± 0.66 0.03 (−0.29, 0.35) 0.866
LEU-PRO+n–35 3.51 ± 0.90 0.18 ± 0.66 0.26 (−0.05, 0.57) 0.101

HDL cholesterol, mmol/L
CON3 1.61 ± 0.45 0.02 ± 0.15
LEU-PRO4 1.68 ± 0.36 − 0.04 ± 0.16 − 0.06 (−0.18, 0.06) 0.327
LEU-PRO+n–35 1.75 ± 0.48 0.05 ± 0.32 0.03 (−0.09, 0.15) 0.589

Total adiponectin, μg/mL
CON6 17.2 ± 15.2 1.2 ± 6.1
LEU-PRO7 17.8 ± 14.0 − 0.8 ± 5.9 − 1.9 (−5.3, 1.4) 0.256
LEU-PRO+n–38 15.4 ± 12.02 − 2.9 ± 9.0 − 4.5 (−7.7, −1.2) 0.008

HMW adiponectin, μg/mL
CON6 3.02 ± 1.77 − 0.16 ± 0.97
LEU-PRO7 3.17 ± 1.93 0.25 ± 1.17 0.47 (−0.16, 1.08) 0.140
LEU-PRO+n–38 3.14 ± 1.70 − 0.11 ± 1.36 0.16 (−0.44, 0.75) 0.602

Insulin, mU/L
CON9 4.8 ± 3.7 − 0.4 ± 1.9
LEU-PRO10 4.6 ± 3.5 0.3 ± 1.2 1.1 (−0.3, 2.5) 0.094
LEU-PRO+n–35 6.2 ± 3.1 0.6 ± 2.2 1.2 (−0.1, 2.5) 0.063

Glucose, mmol/L
CON3 5.74 ± 0.76 0.05 ± 0.40
LEU-PRO4 5.56 ± 0.55 0.04 ± 0.40 − 0.08 (−0.34, 0.19) 0.568
LEU-PRO+n–35 5.75 ± 0.51 0.17 ± 0.45 0.15 (−0.10, 0.40) 0.248

HOMA-IR
CON11 1.3 ± 1.3 − 0.1 ± 0.5
LEU-PRO10 1.2 ± 1.0 0.1 ± 0.3 0.3 (−0.1, 0.7) 0.126
LEU-PRO+n–312 1.6 ± 0.9 0.2 ± 0.6 0.4 (0.0, 0.7) 0.036

hsCRP, mg/L
CON3 1.51 ± 1.34 0.16 ± 0.74
LEU-PRO4 1.21 ± 0.93 0.41 ± 1.23 0.20 (−0.48, 0.88) 0.568
LEU-PRO+n–35 1.88 ± 1.44 0.32 ± 1.83 0.38 (−0.28, 1.04) 0.255

(Continued)
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TABLE 5 (Continued)

Estimated
between-group

difference vs. CON at
POST, mean (95% CI)

Change from PRE
PRE POST2 P

IGF-I, ng/mL
CON13 133.5 ± 70.7 − 0.5 ± 39.5
LEU-PRO14 128.3 ± 44.7 6.6 ± 33.8 9.4 (−12.1, 31.0) 0.389
LEU-PRO+n–35 152.4 ± 54.7 12.0 ± 54.1 17.0 (−3.4, 38.3) 0.100

25(OH)D, nmol/L
CON15 67.8 ± 32.2 − 2.0 ± 21.8
LEU-PRO16 71.5 ± 23.3 − 5.3 ± 18.2 − 2.6 (−11.4, 6.1) 0.553
LEU-PRO+n–38 68.9 ± 25.1 0.1 ± 17.7 2.5 (−5.9, 11.0) 0.550

1PRE value and change from PRE-to-POST value are means ± SDs. Data represent the total cohort and were analyzed by an intention-to-treat approach
using a linear mixed model with group (CON, LEU-PRO, LEU-PRO+n–3), time (MID, POST) and the group-by-time interaction as fixed factors;
participants as a random factor; and PRE values as covariates. MID-intervention: data not shown. Estimated between-group differences represent LEU-PRO
− CON and LEU-PRO+n–3 − CON at POST and are derived from the linear mixed model and adjusted for PRE value. CON, control; eGFR, estimated
glomerular filtration rate; HMW, high molecular weight; hsCRP, high-sensitivity C-reactive protein; IGF-I, insulin-like growth factor I; LEU-PRO,
leucine-enriched protein; LEU-PRO+n–3, leucine-enriched protein plus long-chain n–3 PUFAs; MID, mid-intervention; POST, postintervention, PRE,
preintervention; TG, triacylglycerol; 25(OH)D, 25-hydroxyvitamin D.

2PRE-to-POST changes represent participants with both PRE and POST data.
3PRE n = 27, POST n = 22.
4PRE n = 37, POST n = 27.
5PRE n = 37, POST n = 31.
6PRE n = 28, POST n = 21.
7PRE n = 35, POST n = 26.
8PRE n = 38, POST n = 31.
9PRE n = 29, POST n = 22.
10PRE n = 33, POST n = 26.
11PRE n = 27, POST n = 21.
12PRE n = 36, POST n = 31.
13PRE n = 29, POST n = 23.
14PRE n = 36, POST n = 27.
15PRE n = 30, POST n = 24.
16PRE n = 36, POST n = 27.

RCT recently reported no effect of 3 y of supplementation with a
similar dose of LC n–3 PUFAs (∼1 g EPA + DHA/d) on SPPB in
healthy older adults (48). To our knowledge, however, no studies
have reported an adverse effect of LC n–3 PUFA supplementation
relative to the control.

In terms of critically evaluating whether we observed a
true negative impact of LEU-PRO+n–3 supplementation, it is
noteworthy that the lower leg flexion strength we observed
postintervention in the LEU-PRO+n–3 group relative to the
control group was partially due to an unexpected increase
in leg flexion strength within the control group between the
mid- and postintervention time points, in addition to a smaller
decline in leg flexion strength within the LEU-PRO+n–3
group. Nonetheless, taken together with the finding that FTSTS
performance worsened (∼1 s), these data are consistent with a
small deterioration in muscle function following LEU-PRO+n–
3 supplementation. One possible explanation for this finding is
that, despite randomization, the LEU-PRO+n–3 group was more
metabolically “challenged” at baseline. This group had a higher
baseline BMI, fat mass and HOMA-IR, with slightly elevated
inflammation indicated by hsCRP, all indicative of elevated
risk of insulin resistance (34, 49), compared with the other
groups. It is possible that this underlying metabolic/inflammatory
phenotype may have predisposed them to greater deterioration
over the 24-wk intervention period. Although this is speculative,

CRP is a proposed biomarker of frailty (50) and is prospectively
associated with the loss of strength (51) and incident mobility
limitation (52) among older adults. Furthermore, greater fat mass
has been reported to exacerbate anabolic resistance (53) and
declines in muscle quality (54) and physical performance (55)
with aging. As such, the LEU-PRO+n–3 group may have been at
slightly higher risk of decline at the study outset.

Another important finding from our study is that LEU-PRO
supplementation did not impact on ALM, strength or physical
performance. This corroborates the findings of several double-
blind RCTs that reported no effect of supplementation with
leucine (56, 57), essential amino acids (58) and/or protein (20,
59) on muscle mass and strength in nonexercising older adults.
In congruence with these previous studies, in the current trial,
baseline protein intake was 1.1–1.2 g·kg−1·d−1, which is within
the levels recommended to preserve muscle mass in healthy
older adults (1.0–1.2 g·kg−1·d−1) (60, 61) and may explain the
lack of observed effect of the leucine/protein supplementation
(62). Conversely, per-meal leucine intake at baseline was likely
suboptimal (∼1.5 g at breakfast, ∼ 2 g at lunch) and increased
with supplementation to ∼3.5–4 g leucine/meal, which is in line
with the leucine dose estimated to maximally stimulate MyoPS
in this cohort [∼3.5 g leucine/meal based on the mean body
mass of ∼72 kg and the leucine content of 0.4 g whey protein
isolate/kg per meal (9)]. Interestingly, despite habitual protein
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TABLE 6 Dietary intake1

CON LEU-PRO LEU-PRO+n–3

PRE POST PRE POST PRE POST

n 29 25 35 28 37 30
Energy, kcal·d−1 1902 ± 532 2173 ± 564 2010 ± 571 2057 ± 457 1755 ± 420 1865 ± 470
Protein,2 g·d−1

Food 78 ± 33 82 ± 23 84 ± 26 79 ± 22 77 ± 25 73 ± 23
Total 79 ± 34 82 ± 23 84 ± 26 100 ± 23∗ 77 ± 25 92 ± 25

Protein, g·kg BM−1·d−1 1.13 ± 0.48 1.16 ± 0.36 1.24 ± 0.42 1.43 ± 0.32∗ 1.08 ± 0.35 1.28 ± 0.36
Breakfast 0.24 ± 0.13 0.23 ± 0.10 0.28 ± 0.14 0.38 ± 0.10∗ 0.24 ± 0.12 0.33 ± 0.14∗
Lunch 0.31 ± 0.18 0.37 ± 0.28 0.37 ± 0.26 0.45 ± 0.21 0.34 ± 0.26 0.36 ± 0.20
Dinner 0.49 ± 0.31 0.50 ± 0.26 0.50 ± 0.23 0.56 ± 0.21 0.44 ± 0.28 0.51 ± 0.21
Snack 0.08 ± 0.14 0.07 ± 0.09 0.10 ± 0.13 0.05 ± 0.07 0.05 ± 0.07 0.07 ± 0.11

Leucine, mg·d−1 6356 ± 2704 6512 ± 1800 6995 ± 2815 12,332 ± 2351∗ 6132 ± 1934 11,315 ± 3157∗
Breakfast 1339 ± 764 1281 ± 597 1587 ± 919 4253 ± 780∗ 1491 ± 863 3904 ± 1305∗
Lunch 1800 ± 1031 2024 ± 1457 2034 ± 1435 3870 ± 1640∗ 1819 ± 1439 3538 ± 1584∗
Dinner 2730 ± 1808 2759 ± 1374 2834 ± 1689 3773 ± 1547∗ 2614 ± 1678 3344 ± 1770
Snack 487 ± 863 447 ± 574 541 ± 768 435 ± 880 281 ± 382 530 ± 1179

CHO, g·d−1 214 ± 62 268 ± 68 226 ± 78 229 ± 60∗ 200 ± 66 200 ± 57∗
Fat, g·d−1 80 ± 34 85 ± 30 82 ± 32 80 ± 24 69 ± 25 76 ± 28
SFAs, g·d−1 33 ± 14 32 ± 13 32 ± 15 28 ± 12 27 ± 13 25 ± 12
MUFAs, g·d−1 28 ± 17 27 ± 13 29 ± 12 26 ± 9 23 ± 10 28 ± 11
PUFAs, g·d−1 11 ± 6 18 ± 7 13 ± 9 19 ± 5 10 ± 5 14 ± 5∗

n–6 PUFAs 6.5 ± 4.3 14.6 ± 5.4 7.7 ± 7.7 15.2 ± 4.3 6.4 ± 4.8 6.8 ± 3.5∗
n–3 PUFAs 1.6 ± 2.3 1.2 ± 1.0 1.7 ± 2.3 1.5 ± 1.9 1.6 ± 1.9 5.4 ± 1.9∗
EPA 0.07 ± 0.20 0.06 ± 0.16 0.07 ± 0.21 0.19 ± 0.53 0.04 ± 0.14 1.40 ± 0.54∗
DHA 0.16 ± 0.39 0.12 ± 0.29 0.15 ± 0.43 0.26 ± 0.74 0.09 ± 0.26 2.06 ± 0.74∗

Fiber (AOAC), g·d−1) 22 ± 8 25 ± 8 25 ± 10.1 21 ± 7∗ 23 ± 10 21 ± 7∗
Protein, % of total energy

intake
16.7 ± 5.3 15.2 ± 3.2 17.1 ± 3.9 19.6 ± 3.3∗ 17.6 ± 4.5 19.9 ± 4.0∗

CHO, % of total energy intake 45.6 ± 7.5 49.8 ± 5.6 45.0 ± 9.7 44.6 ± 6.7∗ 45.6 ± 8.4 43.5 ± 8.0∗
Fat, % of total energy intake 37.4 ± 9.3 34.8 ± 5.4 36.3 ± 7.7 34.8 ± 6.3 35.4 ± 8.8 36.2 ± 7.8
Alcohol, % of total energy

intake
0.4 ± 1.5 0.2 ± 0.9 1.6 ± 5.5 0.8 ± 2.2 1.5 ± 3.9 0.3 ± 1.5

1Values are means ± SDs. Data represent the total cohort and were analyzed by an intention-to-treat approach using a linear mixed model with group
(CON, LEU-PRO, LEU-PRO+n–3), time (MID, POST) and the group-by-time interaction as fixed factors; participants as a random factor; and PRE values as
covariates. MID-intervention data not shown for clarity. AOAC, Association of Analytical Chemists; BM, body mass; CHO, carbohydrate; CON, control;
LEU-PRO, leucine-enriched protein; LEU-PRO+n–3, leucine-enriched protein plus long-chain n–3 PUFAs; MID, mid-intervention; POST, postintervention;
PRE, preintervention. ∗Different from CON at that time point, P < 0.05.

2Protein “Food” indicates protein intake from food only. Protein “Total” indicates protein from food plus supplement intake. All other values in the table
represent intake from food plus study supplements.

intakes of 1–1.3 g·kg−1·d−1, 2 double-blind RCTs reported
improvements in muscle mass and/or physical performance
following supplementation with LEU-PRO (3 g leucine, 20 g
protein) plus vitamin D (20 μg) once-daily in healthy (18)
and twice-daily in sarcopenic (19) older adults. The reason for
the inconsistency between these 2 trials and ours is unclear.
Indeed, the leucine content and the timing of the supplementation
were similar across all 3 studies, whereas, phenotypically, our
participants (who had low muscle mass and/or handgrip strength)
fell in-between the healthy and the sarcopenic participants in the
2 aforementioned trials. It is possible that the vitamin D
component of the supplements in the 2 previous studies may have
enhanced the beneficial effects of the LEU-PRO (63, 64).

In line with a lack of observed effect of LEU-PRO and LEU-
PRO+n–3 on ALM, we report no impact of supplementation on
the integrated rate of MyoPS measured over several days. Higher
supplemental doses of isolated leucine (5 g/meal × 3 times/d)
(17) and LEU-PRO (15 g protein, 4.2 g leucine × 2 times/d)

(15) have previously been reported to enhance integrated MyoPS
rates in older men and women, respectively. However, using a
LEU-PRO dose very similar to the current study (10 g protein,
3 g leucine × 2 times/d), Devries et al. (15) recently reported
that supplementation only enhanced MyoPS when combined
with resistance exercise and not in rested conditions in older
women. As such, a higher dose of leucine/LEU-PRO may be
required to augment MyoPS and potentially muscle mass in
older adults, at least in situations where resistance exercise is not
performed. Nonetheless, the MyoPS data in the current study
should be interpreted with caution as we obtained both pre- and
postintervention MyoPS rates in only 7, 9 and 5 participants in
the CON, LEU-PRO and LEU-PRO+n–3 groups, respectively.
As our sample size calculation estimated 9 participants per
group, we may have been underpowered to detect an effect of
supplementation, particularly with respect to the LEU-PRO+n–
3 intervention. Interestingly, mean MyoPS rates increased
following supplementation by 0.37%/d in the LEU-PRO+n–3
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group compared with 0.06%/d in the CON and 0.07%/d in the
LEU-PRO groups. This may be indicative of a positive effect
of LEU-PRO+n–3 supplementation on MyoPS and warrants
further investigation in fully powered studies.

It is important to highlight that, despite having extensive
experience in obtaining muscle biopsies (∼30 mg/sample) in
younger and healthy older adults using the microbiopsy technique
(65–67), ∼33% of the samples we obtained in the current cohort
of older adults with low muscle mass were insufficient for
performing the MyoPS analysis. The challenge of obtaining
muscle biopsy samples was also demonstrated in a recent study
of frail older adults using the Bergstrom technique (68). This
is a critical consideration when planning future studies in this
population in order to prevent biopsy failures and unnecessary
risk among vulnerable older adults.

Limitations of the current study include that, while we
present P values from hypothesis tests for secondary/exploratory
variables, this study was not statistically powered specifically for
these outcomes nor did we correct for multiplicity. Nonetheless,
we have endeavored to examine all treatment effects for the
magnitude of the difference based on our subject matter expertise,
irrespective of the P value. In addition, the small sample size for
the MyoPS data may have limited our ability to detect effects of
supplementation.

In conclusion, contrary to our hypothesis, we report no
beneficial impact of 24 wk of supplementation with LEU-PRO
or LEU-PRO+n–3 on ALM, strength, physical performance
or integrated MyoPS in older adults at risk of sarcopenia.
Further research is warranted to investigate the impact of
combined protein and LC n–3 PUFA supplementation and to
determine whether different subgroups of older adults may
respond differently.
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