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ABSTRACT

Driven by the large amount of goat milk destined 
for cheese production, and to pioneer the goat cheese 
industry, the objective of this study was to assess the 
effect of farm in predicting goat milk-coagulation and 
curd-firmness traits via Fourier-transform infrared 
spectroscopy. Spectra from 452 Sarda goats belonging 
to 14 farms in central and southeast Sardinia (Italy) 
were collected. A Bayesian linear regression model 
was used, estimating all spectral wavelengths’ effects 
simultaneously. Three traditional milk-coagulation 
properties [rennet coagulation time (min), time to 
curd firmness of 20 mm (min), and curd firmness 30 
min after rennet addition (mm)] and 3 curd-firmness 
measures modeled over time [rennet coagulation time 
estimated according to curd firmness change over time 
(RCTeq), instant curd-firming rate constant, and as-
ymptotical curd firmness] were considered. A stratified 
cross validation (SCV) was assigned, evaluating each 
farm separately (validation set; VAL) and keeping the 
remaining farms to train (calibration set) the statisti-
cal model. Moreover, a SCV, where 20% of the goats 
randomly taken (10 replicates per farm) from the VAL 
farm entered the calibration set, was also considered 
(SCV80). To assess model performance, coefficient of 
determination (R2

VAL) and the root mean squared error 
of validation were recorded. The R2

VAL varied between 
0.14 and 0.45 (instant curd-firming rate constant and 
RCTeq, respectively), albeit the standard deviation was 
approximating half of the mean for all the traits. Al-
though average results of the 2 SCV procedures were 
similar, in SCV80, the maximum R2

VAL increased at 
about 15% across traits, with the highest observed for 
time to curd firmness of 20 mm (20%) and the lowest for 

RCTeq (6%). Further investigation evidenced important 
variability among farms, with R2

VAL for some of them 
being close to 0. Our work outlined the importance of 
considering the effect of farm when developing Fourier-
transform infrared spectroscopy prediction equations 
for coagulation and curd-firmness traits in goats.
Key words: goat, coagulation, curd firmness, farm, 
infrared spectra

INTRODUCTION

A large proportion of the world’s goat milk is des-
tined to cheese production, especially in those countries 
in the Mediterranean basin (FAOSTAT, 2018). This 
region is characterized by adverse weather and environ-
mental conditions in which autochthonous goat breeds 
are well adapted and usually managed in extensive or 
semi-extensive management types (Di Trana et al., 
2015; Stella et al., 2018). It has been shown that the 
farming system used represents a very large source of 
variation (ranging from 16–70% of the total variability) 
in milk composition and milk processing characteris-
tics, such as the coagulation properties (Pazzola et al., 
2018b). These values are greater compared with those 
of bovine (from 9–16%; Bittante et al., 2015) and ovine 
(from 16–43%; Vacca et al., 2015) farming methods. 
Indeed, a great variability of goat farming has been 
reported (Usai et al., 2006). The importance of the type 
of farming system is related to the destination of the 
milk produced and the genetics of the animals (Pazzola 
et al., 2018b). For instance, indigenous breeds are more 
suitable for harsh environments and extreme extensive 
management (Di Trana et al., 2015), and they are able 
to produce a milk characterized by better composition 
(e.g., high milk fat and protein) and technological char-
acteristics than that from cosmopolitan breeds (Čermak 
et al., 2013; Paschino et al., 2020).

Among the milk technological characteristics, tradi-
tional milk-coagulation properties (MCP) are widely 
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used to describe the complex process of cheesemaking. 
Moreover, the extension of MCP through the calibra-
tion of the curd firmness (CF) as a function of time 
(CFt) provides a more complete overview of the coagu-
lation process (Bittante, 2011). There is extensive and 
well-documented literature on the importance and rel-
evance of MCP, mainly in cattle (Bittante et al., 2012; 
Stocco et al., 2017; Nilsson et al., 2019), but also in 
sheep (Caballero-Villalobos et al., 2018; Cipolat-Gotet 
et al., 2018) and, to a lesser extent, in goats (Vacca 
et al., 2020). In addition, MCP show heritability esti-
mates between 0.15 and 0.27 in cattle (Dadousis et al., 
2016) and between 0.09 and 0.19 in sheep (Bittante 
et al., 2017). Hence, directional selection on desirable 
MCP characteristics is applicable. This could be of 
particular interest in goats, especially for those breeds 
(e.g., Alpine, Toggenburg) characterized by weak or 
nonexpressing alleles (e.g., F, N allele) of αS1-casein, 
associated with unfavorable coagulation process (Maga 
et al., 2009; Devold et al., 2011). It worth noting that 
genetic pattern at a specific locus might change over 
time because of the selective pressure, as recently 
evidenced in casein genes for the Murciano-Granadina 
goat breed (Pizarro et al., 2020). However, high MCP 
analysis costs and logistics pose restriction for their 
wide-scale application.

Currently, a potential solution to overcome those lim-
itations can be derived via Fourier-transform infrared 
(FTIR) spectroscopy. Indeed, there is an increasing 
interest in the dairy sector on the usefulness of FTIR 
information for the prediction of a variety of pheno-
types (Tiplady et al., 2019), either directly measurable 
in milk (e.g., fatty acids; Soyeurt et al., 2006) or related 
to the milk processing characteristics (e.g., cheesemak-
ing traits, MCP; Ferragina et al., 2013; Visentin et al., 
2015) and the animal condition (e.g., energy efficiency, 
lameness; McParland and Berry, 2016; Bonfatti et al., 
2020). In dairy cattle, recent advanced research made 
MCP predictions via FTIR spectroscopy applicable in 
the milk payment system of some Protected Designa-
tion of Origin (PDO) cheese consortia to reward or 
penalize dairy farmers (e.g., Trentigrana PDO cheese; 
Benedet et al., 2018). In the case of small ruminants, 
the practical use of the FTIR predictions along the 
dairy chain is still lacking. Although there is ongoing 
research in sheep on the use of FTIR spectroscopy for 
the prediction of MCP and CFt parameters (Ferragina 
et al., 2017; Correddu et al., 2019), up to present, there 
are no data available in goats.

An important factor to consider when developing 
prediction equations via milk FTIR spectra is the 
structure of the data, especially for traits not directly 
measurable in milk (e.g., technological traits, animal 

health, environment). In bovine milk, it has been shown 
that a random cross validation might overestimate the 
prediction accuracy of methane emission traits (Wang 
and Bovenhuis, 2019). Rather, a stratified cross valida-
tion (SCV) where, for example, each farm is evalu-
ated separately, might provide a more realistic model 
assessment (Wang and Bovenhuis, 2019). In previous 
studies, great variability was observed in different goat 
farming systems (Usai et al., 2006) and in MCP and 
CFt parameters among individual farms (Pazzola et al., 
2018b; Vacca et al., 2018). Hence, the type of goat farm 
is a factor that should be assessed, and its effect should 
be quantified for FTIR prediction models for MCP and 
CFt parameters.

Altogether, the economic importance of MCP and 
CFt parameters in the dairy sector justifies further in-
vestigation on the practical application at a wide scale 
of milk FTIR spectroscopy to predict MCP and CFt 
parameters because these applications could pioneer 
the entire goat cheese industry at the farm, breeding, 
and dairy plant levels. To this purpose, our objectives 
were to (1) investigate the potential of milk FTIR spec-
troscopy for the prediction of MCP and CFt parameters 
in goats and (2) quantify the effect of the farm vari-
ability on the prediction accuracy of MCP and CFt 
parameters using individual Sarda goat milk samples.

MATERIALS AND METHODS

Farm Characteristics, Milk Sampling, and Analyses

The study involved 452 Sarda goats reared in 14 
farms (F01–F14) distributed across the island of Sar-
dinia (Italy). Sampled farms were officially registered 
in the flock book and recording system of provincial 
associations of goat breeders. Farm characteristics are 
summarized in Table 1. In brief, the extensive system 
consisted of family-managed farms with pasture feed-
ing, natural mating, and milking on the return of goats 
from pasture; the semi-extensive system was charac-
terized by cultivated grasslands, control of estrus, and 
control of kidding season.

Individual milk samples (100 mL/goat) were col-
lected during the afternoon milking (1 sampling day for 
each farm). Milk was sampled from the recorder jar un-
der each stall in mechanical milking systems, and from 
the stainless steel graduated pails in the hand-milked 
systems, over the entire milking of each goat. Milk 
samples were then stored at 4°C and analyzed within 
24 h after collection. For each individual milk sample, 2 
measurements of MCP were performed using a lactody-
namograph (Formagraph; Foss Electric A/S, Hillerød, 
Denmark) during a 30 min test analysis, following the 
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procedure reported by Pazzola et al. (2018b). In brief, 
10 mL of milk (run in duplicate) for each sample were 
heated to 35°C for 15 min and then mixed with 200 µL 
of the rennet solution [Hansen Naturen Plus 215 (Pa-
covis Amrein AG, Bern, Switzerland), with 80 ± 5% 
chymosin and 20 ± 5% pepsin; 215 international milk 
clotting units/mL; diluted to 1.2% (wt/vol) in distilled 
water to reach the final value of 0.0513 international 
milk clotting units/mL of milk]. Coagulation process 
occurred at 35°C. The MCP recorded were as follows: 
rennet coagulation time (RCT, min), time to CF of 20 
mm (k20, min), and CF 30 min after rennet addition 
(a30, mm).

During lactodynamographic analysis, the Formagraph 
instrument recorded every 15 s the width (mm) of the 
oscillatory graph designed by the pendula immerged in 
the milk samples after rennet addition. Consequently, 
120 CF observations were recorded for each individual 
milk sample. The 30 min test analysis allowed us to use 
the following 3-parameter model (Bittante, 2011):

	 CF CF et P
k t RCTCF eq= × −









− −( ) ,1 	

where CFt = curd firmness at time t (mm); CFP = the 
asymptotical potential value of CF at an infinite time 

in absence of syneresis (mm); kCF = the curd-firming 
instant rate constant (%/min); and RCTeq = RCT es-
timated by CFt equation on the basis of all data points 
(min). Values of the aforementioned traits outside of 
the interval of the mean ± 3 standard deviations (SD) 
were considered outliers and excluded from further 
analysis.

For each milk sample, a FTIR spectrophotometer 
(MilkoScan FT6000; Foss Electric A/S) was used to as-
sess milk composition (fat and protein; ISO-IDF 2013) 
and to collect the spectrum over the range from wave-
number 5,011 to 925 × cm−1. Spectra were stored as 
absorbance (A) using the transformation A = log(1/T), 
where T is the transmission. Two spectral acquisitions 
were performed for each sample, and the results were 
averaged before data analysis.

Somatic cell count was determined by Fossomatic 
5000 (Foss Electric A/S) according to ISO-IDF (2006) 
standards, and later transformed into the logarithmic 
SCS [SCS = log2(SCC × 10−5) + 3; Ali and Shook, 
1980]. Total bacterial count was determined using a 
BactoScan FC150 analyzer (Foss Electric A/S) accord-
ing to ISO-IDF (2004) standards, and transformed into 
the logarithmic bacterial count [logarithmic bacterial 
count = log10 (total bacterial count/1,000)].

Statistical Analysis and FTIR Spectra

Modeling and Repeatability of Coagulation 
Traits. Files containing the 120 CF values for each 
milk sample were processed fitting a curvilinear regres-
sion with the PROC NLIN procedure (SAS Institute 
Inc., Cary, NC). The parameters of each individual 
equation were estimated with the Marquardt iterative 
method (350 iterations and 10−5 level of convergence).

To estimate the coefficient of repeatability (%), MCP 
and CFt parameters (2 replicates per goat), were ana-
lyzed using a MIXED procedure (SAS Institute Inc., 
Cary, NC) that included the random effects of farm, 
animal, pendulum (measuring unit of the Formagraph 
instrument), as well as the the residual. The coefficient 
of repeatability (REP, %) for MCP and CFt param-
eters was then calculated as the ratio of the sum of the 
variances of the random effects of farm, animal, and 
pendulum to the total variance.

Spectra Editing and Chemometric Model. Be-
fore spectra analysis, the absorbance values of every 
wavelength in the FTIR spectra of the milk samples 
were centered and standardized to a null mean and a 
unit sample variance. To detect outliers, Mahalanobis 
distances were calculated by means of the Mahalanobis 
function implemented in R software (R Core Team, 
2013). No samples were discarded because all spectra 
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Table 1. Characteristics of sampled farms (n = 14)

Item

Management system1

Extensive
Semi- 

extensive

Farms, number 6 8
Goats, number 183 269
Flock size, number of farms    
  Small (<100 goats) 1 1
  Medium (100–200 goats) 3 5
  Large (>200 goats) 2 2
Altitude, number of farms    
  Plain (<200 m asl2) 3 2
  Hill (200–500 m asl) 2 4
  Mountain (>500 m asl) 1 2
Milking, number of farms    
  Mechanical 3 4
  Hand-milked 3 4
Milk quality, mean ± SD    
  Fat, % 5.01 ± 0.98 5.33 ± 1.32
  Protein, % 3.97 ± 0.52 3.87 ± 0.51
  SCS3 6.58 ± 1.64 6.75 ± 1.68
  LBC4 1.80 ± 0.91 1.71 ± 0.86
1Extensive system: family-managed farms, feeding at pasture, natural 
mating, milking when goats are back from pasture; semi-extensive sys-
tem: cultivated grasslands, control of estrus and kidding season. 
2asl = above sea level.
3SCS = log2 (SCC × 10−5) + 3.
4LBC = logarithmic total bacterial count = log10 (total bacterial 
count/1,000).
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presented a distance value lower than the mean ± 3 
SD. The spectra were not subjected to any other math-
ematical pretreatment.

A Bayesian linear regression was used to predict the 
RCT, k20, a30, RCTeq, kCF, and CFP. All phenotypes 
were regressed to 1,060 spectra under the following 

model: y x e
j

ij j i= + +
=
∑µ β
1

1 060,

,  where y is the analyzed 

trait, μ = the overall mean, xij = the FTIR wavelengths 
of the ith sample (j = 1 to 1,060), βj = the regression 
coefficients, and ei = residual with iid N e~ , .0 2σ( )  The 

BayesB model implemented in the BGLR R package 
was adopted (de los Campos and Perez-Rodriguez, 
2015) as described in Ferragina et al. (2017).

Stratified Cross Validation Procedures. An ex-
ternal SCV scheme was used to assess the model’s pre-
dictive ability, where 1 farm at a time consisted of the 
validation set (VAL). Goats from the remaining farms 
comprised the calibration (CAL) set. The procedure 
was repeated 14 times, such that all farms were evalu-
ated. In addition, to assess the importance of shared 
variability between CAL and VAL, a SCV where 20% 
of the goats from 1 farm to be validated was included 
in CAL, and the VAL set consisted of the remaining 
80% of the goats from the evaluated farm, was consid-
ered (referred to as SCV80 hereafter). To account for 
individual sampling variability, the 20% of the goats for 
the SCV80 was sampled at random, and the procedure 
was repeated 10 times per farm. Results from SCV were 
averaged across the 14 farms and, in the SCV80, over 
the 10 replicates per farm. For all calibrations, model 
performance was measured using the coefficient of de-
termination (R2), the root mean squared error, and the 
SD of both CAL and VAL sets.

RESULTS AND DISCUSSION

Prediction Accuracy of Coagulation Traits  
in Goat Milk

Descriptive statistics and prediction results of the 
SCV are presented in Table 2. Mean values were consis-
tent with those reported in the Sarda goat milk litera-
ture (Pazzola et al., 2018a). Repeatability of coagula-
tion traits ranged from 98% (for RCT and RCTeq) to 
84% (for kCF and CFP). The CF measurements (a30 and 
CFP traits) are generally characterized by a reduced 
instrumental repeatability and reproducibility in later 
time after rennet addition, which is more profound 
after gelation (Ferragina et al., 2017). Compared with 
other species, repeatability values of goat RCT, RCTeq, 
and CFP traits were similar to that of bovine (Stocco 

et al., 2017) and ovine (Ferragina et al., 2017). Goat 
milk is generally characterized by slower increase of 
CF, weaker casein network forming after gelation, and 
earlier syneresis compared with bovine and ovine milk 
(Inglingstad et al., 2014; Pazzola et al., 2018b; Roy et 
al., 2020). Because of these characteristics of the goat 
coagulation process and because the traditional lacto-
dynamograph set up for analysis of bovine milk was 
designed to explore primarily the coagulation and the 
first part of curd-firming process, not syneresis, a slight 
decrease of repeatability of CF measurements after 
RCT was expected. For this reason, REP is commonly 
very high for the first traits measured (e.g., RCT and 
RCTeq) and tends to decrease over time both in the case 
of traditional and modeled coagulation traits (Stocco et 
al., 2015). This phenomenon is explained by the fact 
that, during the test, the variation related to the curd 
firming and syneresis tends to accumulate over time. In 
the present study, only a30 showed a higher REP value 
than those reported for bovine (Stocco et al., 2017) and 
ovine milk (Ferragina et al., 2017). This could be due to 
the fact that milk from Sarda goats of the present study 
is characterized by very good milk quality (e.g., high 
fat and protein contents; Table 1) and better coagula-
tive aptitude, faster gelation and curd firming times, 
and firmer coagulum than other dairy goat breeds (e.g., 
Alpine, Saanen; Vacca et al., 2018). Among the factors 
influencing the reliability of the FTIR predictions, the 
goodness (repeatability and accuracy) of the reference 
values is very important (Caredda et al., 2016). Indeed, 
it is interesting to notice that the prediction accuracy 
decreased with progressed coagulation (e.g., higher for 
RCT and lower for a30), along with decreasing REP 
values (Table 2).

Regarding SCV predictions (Table 2), RCT and 
RCTeq showed the highest R2

CAL (0.64 and 0.61, respec-
tively), followed by CFP (R

2
CAL = 0.50). The remaining 

traits had R2
CAL <0.50, and the lowest was observed 

for kCF (0.37). In general, results in the CAL set were 
comparable to those reported in ovine milk (Ferragina 
et al., 2017), in particular for the traits directly related 
to CF (a30 and CFP). In the VAL set, the R2

VAL was 
lower and the root mean squared error was higher, 
albeit with much higher SD for both parameters com-
pared with CAL, and the ranking among traits was 
analogous to the CAL. Because this was the first study 
to investigate the effect of farm on the prediction ac-
curacy of MCP and CFt parameters in goat milk via 
FTIR spectroscopy, comparison with literature was 
restricted. However, a recent study (Stocco et al., 2021) 
assessing the goat breed (4 breeds considered) effect on 
the prediction of MCP and CFt parameters via FTIR 
spectroscopy, by using a random 5-fold cross validation 
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procedure, reported R2
VAL from 0.42 to 0.68 for MCP 

(RCT and a60, respectively) and from 0.14 to 0.60 for 
CFt parameters (syneresis rate and CFP, respectively). 
The study also confirmed decreased prediction accura-
cies in a SCV scenario (using 3 breeds as CAL, and the 
remaining breed as VAL set), suggesting the impor-
tance of considering the breed of goats when developing 
FTIR calibrations. Similar to those results, our study 
showed the importance of considering the differences 
among farms on the prediction accuracy of MCP and 
CFt parameters. This variability was evident when ob-
serving the high SD of both R2

VAL and RMSEVAL (Table 
2), which were higher compared with a previous study 
on the same traits and statistical methodology in sheep 
(Ferragina et al., 2017).

Effect of Farm Variability on the Prediction Accuracy 
of Coagulation Traits

By including 20% of the VAL farm in the training set 
(SCV80), our expectation was to increase R2

VAL because 
important variation was included in the model training, 
and also because by using this approach, CAL and VAL 
data sets were not completely independent (Figure 1). 
On average, R2

VAL remained the same as the SCV pro-
cedure, and was of 0.45, 0.32, 0.29, 0.44, 0.17, and 0.33 
for RCT, k20, a30, RCTeq, kCF, and CFP, respectively, 
with similar SD to the SCV (data not shown). How-
ever, although the minimum R2

VAL was again close to 
0, the maximum obtained R2

VAL values were increased 
(0.87, 0.73, 0.73, 0.85, 0.65, and 0.79 for RCT, k20, a30, 
RCTeq, kCF, and CFP, respectively), representing an 
increase of ~20% for k20, ~16% each for RCT, a30, and 
kCF, and ~14% for CFP, with the minimum (~0.06%) 
for the RCTeq. On average, R2

VAL results for each 
coagulation trait among farms presented in Figure 1 
were analogous to the SCV, albeit with no repetitions 
per farm in that case. A considerable R2

VAL variation 
among farms was observed (Figure 1). Interaction be-
tween farm and trait was also present. More precisely, 
across the traits, we observed the following: (1) farms 
with either low or high variability of prediction model 
performance (e.g., F02 and F11 for RCT, respectively), 
(2) consistent high or low R2

VAL values relative to the 
remaining farms across the traits (e.g., F02 vs. F12), 
(3) different R2

VAL patterns, showing either high or low 
R2

VAL (e.g., F01 and F10 comparing kCF to all the rest 
of the traits), (4) general low predictability of kCF trait, 
with 3 farms (F01, F04, and F08) showing R2

VAL close 
to 0, (5) similar variation patterns across farms of RCT 
and RCTeq traits, and interestingly, (6) R2

VAL close to 0 
across all traits in F12. The overall model performance 
presented in Table 2 and Figure 1 was clearly improved 
(data not shown) when excluding this specific farm 
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(F12). It is important to consider that the region where 
milk samples were collected has been characterized for 
decades by extensive and semi-extensive goat farming 
management, which is highly variable among areas of 
the island (Usai et al., 2006). As aforementioned, the 
variability of farms affects both composition and co-
agulation ability of goat milk (Pazzola et al., 2018b; 
Vacca et al., 2018). Hence, variability of R2

VAL among 
farms was, up to an extent, expected. In particular, 
2 of the farms (F11 and F12) were located in an area 
with high altitude and adverse environmental condi-
tions. Those factors, together with the lower hygienic 
control practiced by the farmers over the goats (the 
flocks were let free to graze without supervision in 

extensive farms), represent a source of milk quality 
variation (Pazzola et al., 2018b) that further influences 
the processing characteristics. For example, changes oc-
curring at the milk composition and coagulation level 
often caused by bacterial or SCC are well documented 
in goats (Barrón-Bravo et al., 2013; Stocco et al., 2019). 
In addition, the high genetic variability characterizing 
the Sarda breed (Dettori et al., 2015; Pazzola et al., 
2018a), as well as other nongenetic factors (e.g., parity, 
days in milk), might have caused the large differences 
in the R2

VAL values among farms. It is important to 
consider that the cross validation procedure is usually 
used to evaluate the performance of prediction equa-
tions where data are split randomly into a CAL and 

Dadousis et al.: PREDICTION OF COAGULATION TRAITS IN SARDA GOAT MILK

Figure 1. Coefficient of determination of validation (R2
VAL) results per farm (F01 to F14; purple boxes refer to extensive farms; yellow boxes 

refer to semi-extensive farms) of traditional milk-coagulation properties (MCP) and curd firmness over time (CFt) model parameters using 
mid-infrared spectra of individual goat milk samples in the second stratified cross validation scenario (SCV80). Traditional MCP: RCT = rennet 
coagulation time; k20 = curd-firming time; a30 = curd firmness 30 min after rennet addition. CFt model parameters according to 3-parameter 
model: RCTeq = RCT estimated according to curd firm change over time modeling; kCF = instant curd-firming rate constant; CFp = asymptoti-
cal curd firmness. Each farm was evaluated separately with 20% of the farm included in the calibration set. The procedure was repeated 10 times 
per farm (black dots); vertical lines within each boxplot represent the median, and red rhombus is the mean of the 10 replicates per farm; blue 
numbers on top refer to the number of goats in validation per farm.
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a VAL set. However, it has been demonstrated that 
when there are dependence structures in the data, 
cross validation may overestimate prediction accuracies 
(Roberts et al., 2017). In particular, Qin et al. (2016) 
indicated that random cross validation underestimates 
the error of the prediction equation when traits to be 
predicted are analyzed in batches that have systematic 
differences among them. In our case, because of the 
differences among farms within farming systems (Table 
1), we chose to build calibration equations directly 
at the farm level to consider the differences in milk-
coagulation traits (and therefore in the milk spectra) 
that came from the differences among farms. Wang and 
Bovenhuis (2019) investigated the feasibility of bovine 
milk infrared spectra to predict methane emissions by 
comparing random and block cross validation (using 
farms as blocks) procedures. They showed R2

VAL values 
of 0.49 and 0.01, respectively, for random and block 
cross validation. They suggested that the difference 
in the prediction accuracy between the 2 procedures 
could have been due to the confounding effect of farm 
and date of milk infrared collection, and especially to 
the breath sensors used to measure methane emissions, 
which largely differed among farms.

CONCLUSIONS

Overall, our work evidenced the feasibility of using 
FTIR spectroscopy to predict MCP and CFt param-
eters in goat milk. Despite this, a great variability was 
observed among farms and traits. The generally low 
R2

VAL do not justify the practical application, at pres-
ent, of the predicted coagulation traits. However, among 
traits, RCT and RCTeq showed the highest accuracies, 
and kCF showed the lowest accuracies. Moreover, our 
results demonstrated the importance of farm variabil-
ity in relation to coagulation traits, which should be 
considered when developing FTIR calibrations to avoid 
misleading results. Future studies with other farm-
ing systems, statistical models, and increased sample 
sizes are expected to show improvements in the model 
performance. A further investigation on the predictive 
performance of FTIR on individual cheese yield traits 
would be interesting.
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