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REVIEW

Gut microbes from the phylogenetically diverse genus Eubacterium and their 
various contributions to gut health
Arghya Mukherjee a, Cathy Lordana,b, R. Paul Ross b,c, and Paul D. Cotter a,c

aDepartment of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland; bSchool of Microbiology, University College 
Cork, Cork, Ireland; cAPC Microbiome Ireland, University College Cork, Cork, Ireland

ABSTRACT
Over the last two decades our understanding of the gut microbiota and its contribution to health 
and disease has been transformed. Among a new ‘generation’ of potentially beneficial microbes to 
have been recognized are members of the genus Eubacterium, who form a part of the core human 
gut microbiome. The genus consists of phylogenetically, and quite frequently phenotypically, 
diverse species, making Eubacterium a taxonomically unique and challenging genus. Several 
members of the genus produce butyrate, which plays a critical role in energy homeostasis, colonic 
motility, immunomodulation and suppression of inflammation in the gut. Eubacterium spp. also 
carry out bile acid and cholesterol transformations in the gut, thereby contributing to their home-
ostasis. Gut dysbiosis and a consequently modified representation of Eubacterium spp. in the gut, 
have been linked with various human disease states. This review provides an overview of 
Eubacterium species from a phylogenetic perspective, describes how they alter with diet and age 
and summarizes its association with the human gut and various health conditions.
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Introduction

The importance of the gut microbiota in human 
health is now well established1. Components of the 
microbiota can facilitate the extraction of energy 
from nutrients, the deposition of fat in adipose 
tissues and provide for other resident microbes of 
the gut, besides eliminating pathogens through 
exclusion and other means.2 Depending on 
a plethora of factors that may be personal or envir-
onmental, the composition and function of the gut 
microbiota can vary significantly. However, distin-
guishing between a healthy or an unhealthy gut 
microbiome is difficult due to this large variability. 
Community composition alone, therefore, is not 
a reliable indicator of an aberrant or unhealthy 
state1 and, thus, a nuanced understanding of the 
microbiota, encompassing how specific taxa con-
tribute to gut homeostasis and interact with their 
human host, is required for the development of 
evidence-based microbial therapeutics.3,4

Here, we focus on the genus Eubacterium, which 
was first proposed by Prévot in 1938 to describe 
a group of beneficial bacteria isolated from human 
feces.5 Eubacterium spp. are frequently encountered 

in the oral cavity and intestinal tract of mammals, 
including in the rumen of ruminants, as well as in 
the environment. The genus forms one of the core 
genera of the human gut microbiota and shows wide-
spread colonization of the human gut across various 
human populations in Africa,6,7 Australia,8 Europe,9 

India,10 South America,11,12 Asia13 and North 
America.14,15 Indeed, extensive human gut metagen-
ome studies have reported the recovery of a large 
complement of metagenome-assembled Eubacterium 
rectale genomes irrespective of geographical location, 
age, lifestyle and clinical status.16,17 Interestingly, while 
Eubacterium spp. are routinely recovered from animal 
gut, an absence of E. rectale have been reported in 
primate gut; coupled with its omnipresence in the 
human gut this suggests a high degree of specificity 
and adaptation for the latter.17

Multiple species of the genus are currently 
regarded as promising targets for microbial thera-
peutics. Indeed, recent consensus among gut 
microbiologists suggests that specific strains of 
butyrate-producing microbes belonging to the gen-
era Eubacterium, Roseburia and Faecalibacterium, 
among others, may ultimately be considered as 
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beneficial to human health in the same manner as 
strains of Lactobacillus and Bifidobacterium.18 The 
genus Eubacterium is challenging to define, as dis-
cussed further below, and several species initially 
assigned to the genus have been subsequently reas-
signed to an existing or novel genus. Even now, the 
genus continues to be phylogenetically diverse and 
members can be assigned to several lineages. In 
recognition of this taxonomic flux, we will include 
some former Eubacterium species that have been 
recently reassigned to other genera for the purpose 
of this review. Additionally, we will largely restrict 
our discussion to Eubacterium species that are most 
relevant to the gut. Notably, even though much is 
known about the genus in general, our understand-
ing of its function in the gut continues to evolve. 
Ultimately, here we review the literature to date 
relating to the phylogeny, characteristics and con-
tributions of the members of the genus in relation 
to the human gut health and microbial ecology.

The genus Eubacterium is phylogenetically 
diverse

The genus Eubacterium consists of Gram positive, 
uniform or pleomorphic non-spore forming, obli-
gately anaerobic, and chemoorganotrophic bacter-
ial rods. Species in this genus can be saccharoclastic 
or nonsaccharoclastic and motile or immotile in 
nature.19 Bacteria from this genus produce mix-
tures of organic acids from carbohydrates or pep-
tone, which may include copious amounts of 
butyric, acetic and formic acids but do not produce: 
(a) only lactic acid, (b) propionic acid as the major 
acid, (c) greater quantities of acetic acid than lactic 
acid with or without the formation of formic acid 
and (d) lactic and succinic acid with small quanti-
ties of acetic or formic acid.5 This definition is 
rather loose and leads to the incorporation of spe-
cies in the genus by default; historically resulting in 
the inclusion of species with a variety of phenotypes 
and genotypes in the genus and, ultimately, making 
it highly heterogeneous. According to the latest 
iteration of the Bergey’s Manual of Systematics of 
Bacteria and Archaea19 as well as NCBI Taxonomy, 
the genus Eubacterium belongs to the bacterial 
phylum Firmicutes, order Clostridiales and family 
Eubacteriaceae. However, according to the Genome 
Taxonomy Database (GTDB), which uses whole/ 

draft genome information for classification of taxa, 
the genus should be assigned to the family 
Lachnospiraceae.20 The genus currently consists of 
42–44 species depending on the taxonomy being 
followed, and the major species of interest in rela-
tion to the human gut include Eubacterium rectale, 
E. hallii, E. ventriosum, E. eligens, 
E. coprostanoligens, and E. limosum. The DNA 
G + C content (mol%) of the genus varies from 30 
to 57% and the type strain is Eubacterium limosum.

Due to the rather loose definition of the genus, 
many of the species currently in the genus do not 
belong in the genus sensu stricto and are likely be 
moved to novel or existing genera in time. Indeed, 
16S rRNA analysis of the species in genus 
Eubacterium has highlighted their wide distribution 
across phylogenetic trees.5 Here, we provide an 
update of this tree to display the phylogenetic rela-
tionship between some members of the genus and 
other closely related species using a representative 
maximum-likelihood tree constructed with 16 ribo-
somal protein markers (Figure 1). The majority of 
members of Eubacterium that have undergone 
taxonomic reassignment are assigned to phylum 
Firmicutes and are widely distributed therein. 
Examples include E. formicigenerans and 
E. timidum, which were reassigned to the genera 
Dorea and Mogibacterium respectively.24,25 

However, several other members have been reas-
signed to other phyla; instances include the reas-
signment of Eubacterium species to genera such as 
Slackia, Cryptobacterium and Eggerthela, all of 
which belong to phylum Actinobacteria. Notably, 
certain Eubacterium species such as E. cylindroides 
may exhibit both Gram-positive and Gram- 
negative characteristics, thereby creating ambiguity 
in a fundamental phenotypic characteristic that is 
frequently implemented in taxonomic assignment; 
this contributes further to the considerable confu-
sion in classification of Eubacterium species.26 It 
has been proposed that the core genotype of the 
genus Eubacterium sensu stricto be restricted to the 
type species of the genus, Eubacterium limnosum, 
along with Eubacterium callanderi, Eubacterium 
barkeri and Eubacterium aggregans,19,27 with the 
remaining species potentially assimilated into/ 
reclassified as existing or novel genera when 
ample genomic and phylogenetic evidence support-
ing the same is available. For practicality, members 
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have to date been grouped into subcategories based 
on phylogenetic characteristics. One of the loose 
phylogenetic subcategories proposed contain 
E. rectale, E. oxidoreducens, E. ramulus, Roseburia 
cecicola and R. intestinalis, where all species 
included except E. oxidoreducens produce butyrate 
and are saccharolytic.19 The taxonomic relation-
ships of the members in this subcategory are dis-
cussed in detail by Duncan et al,28 and presents 
a strong case for reclassification of some of these 
species. E. eligens, an important gut Eubacterium, 
has been found to share considerable phylogenetic 
and phenotypic similarity with Lachnospira pecti-
noschiza and merits possible reclassification with 
availability of further evidence.19

Certain Eubacterium species that are important 
in relation to gut health have already undergone, or 
are proposed to undergo, reclassification in view of 
their divergent phenotypic and phylogenetic 

characteristics. For example, Shetty et al. proposed 
the reclassification of E. hallii as Anaerobutyricum 
hallii Comb. Nov., when reporting a similar novel 
butyrate and propionate-producing species 
Anaerobutyricum soehngenii.29 Indeed, E. hallii, 
along with E. indolis, E. cellulosolvens, 
E. plexicaudatum, E. ruminantium, E. saburreum, 
E. xylanophilum, E. uniforme, and E. ventriosum 
form a subcategory of interest in the genus 
Eubacterium. Notably, members of this group are 
not phylogenetically or phenotypically related to 
other species in the genus and exhibit distinct char-
acteristics that warrants the creation of a novel 
genus for each.19 Another common intestinal inha-
bitant, Eubacterium hadrum, was also assigned to 
the genus Anaerostipes, based on both genotypic 
and biochemical features.30 Additionally, it has 
recently been proposed that one of the most impor-
tant gut microbes, E. rectale, be reclassified as 
Agathobacter rectalis.31 This reclassification was 
however challenged by Sheridan et al.32 who argued 
that the evidence presented by Rosero et al.31 did 
not justify reclassification. The need for reclassifi-
cation of E. rectale was however acknowledged by 
Sheridan et al., but urged exercising caution with 
this important member of the human gut, noting 
that any change in its taxonomic or phylogenetic 
affiliations will have a major impact on human 
microbiota research.

Understandably, taxonomic reassignments pro-
posed have not been universally accepted yet and 
indeed, as noted, care must be taken while consid-
ering taxonomic classification and reporting of any 
member of genus Eubacterium. Further efforts 
relating to the classification of the genus should 
have a primarily genotypic focus with an emphasis 
on genomic characteristics. The prokaryotic taxon-
omy devised by Parks et al.33 in the GTDB, where 
a battery of universal, single copy marker genes 
derived from whole/draft genomes, are used to 
classify microorganisms, can be used as a model. 
Such an approach standardizes taxonomic assign-
ments through normalization of taxonomic ranks 
on the basis of relative evolutionary divergence and 
has been shown to be capable of deconvoluting 
polyphyletic groups. Combined with rapidly 
declining sequencing prices, the increasing and 
ample availability of prokaryotic genomes can con-
tribute greatly to such an exercise. With assembly of 

Figure 1. Phylogenetic relationship of Eubacterium spp. 
Complete genomes for Eubacterium species (current and recently 
reassigned) were obtained from NCBI along with other closely 
related gut microbes. 16 ribosomal marker proteins (including 
rpL14, rpL15, rpL16, rpL18, rpL22, rpL24, rpL2, rpL3, rpL4, rpL5, 
rpL6, rpS10, rpS17, rpS19, rpS3 and rpS8) were extracted from 
each genome, aligned with MAFFT v7.27121 and concatenated to 
create a RP16 protein alignment. Phylogenetic reconstruction 
using maximum likelihood was carried out in IQ-TREE22 with the 
following settings: -mset WAG,LG,JTT,Dayhoff -mrate E,I,G,I + G - 
mfreq FU -wbtl. Only genomes with at least 4 ribosomal marker 
proteins were included in the tree. The resulting tree was visua-
lized using iTOL.23 Possible misclassifications are denoted by 
filled, inverted triangles in the phylogram. Tree nodes are 
depicted by filled circles.
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high-resolution draft genomes from metagenomes 
also now routine, microbiologists can glean infor-
mation from truly uncultivable organisms and 
a definitive reclassification of the genus 
Eubacterium should be possible in the near future. 
Until then, there is likely to continue to be those 
who will view Eubacterium as a combined group – 
Eubacterium et rel. – when discussing human 
health, especially in relation to the gut. We will 
adopt this approach for the remainder of this 
review.

Modulation of Eubacterium spp. in the gut by 
diet and age

Diet is one of the most important factors that 
dictates the composition and diversity of the gut 
microbiota. In case of Eubacterium spp., their pre-
sence in the gut have been largely associated with 
increased intake of dietary fibers and have been 
shown to decrease with an increasing protein/ 
fat percent in diet.34 These observations are sup-
ported by recent studies outlining the utilization of 
digestion resistant complex carbohydrates by 
Eubacterium species.35–37 In a recent study by 
Scott et al., E. hallii and E. rectale were shown to 
be capable of utilizing media supplemented with 
resistant carbohydrates, i.e., fructans of increasing 
chain lengths such as P95 short-chain fructo- 
oligosaccharides, high-performance inulin, and 
Synergy-1; Dahlia inulin was metabolized exclu-
sively by E. rectale.35 Several studies have reported 
that a Western diet, which includes increased pro-
portions of animal protein and fat and is low in 
fiber, leads to a marked decrease in bacterial abun-
dance in the gut including desirable taxa such as 
Bifidobacterium and Eubacterium.38–40 The corol-
lary all appears to be true in that research involving 
the Mediterranean diet, which is well established as 
a diet that can contribute to health, has been shown 
to increase Eubacterium spp. populations in the 
gut.41,42 Other studies with diverging diets have 
also contributed to our understanding of how 
Eubacterium spp. is modulated in the gut. For 
example, Noriega et al. investigated changes in the 
gut microbiota when a polyunsaturated omega-3 
fatty acid-rich diet was fed to a 45-year-old 
male.43 After the feeding phase, the fecal samples 
collected showed a drastic increase in abundances 

of several butyrate producers including 
Eubacterium spp. indicating a positive modulation 
of Eubacterium by polyunsaturated fatty acids. 
Further investigations, however, must be per-
formed, to better understand the changes in 
Eubacterium spp. population in the gut with diet.

Through the process of aging, the gastrointest-
inal tract undergoes changes, including degenera-
tion of the mucosal barrier and enteric nervous 
system along with an alteration of intestinal moti-
lity and an increase in gastrointestinal pathologies. 
As a general trend, microbiota diversity in the 
elderly is decreased with fewer butyrate producers 
and an increase in the number of potential 
pathogens.44,45 Among other things, a decrease in 
short-chain fatty acid (SCFA) production in the gut 
can result in an impaired secretion of mucins by the 
intestinal epithelial cells, providing enhanced 
access for pathogens to the intestinal mucosa and, 
potentially, gut inflammation.46 In elderly indivi-
duals, gut inflammation can be exacerbated by 
impairment of the gut-associated lymphoid tissue 
(GALT), leading to inefficient control of the resi-
dent microbiota and release of pro-inflammatory 
cytokines and chemokines by enterocytes; with the 
latter driving the differentiation of effector TH1, TH 
2 and TH17 cells.47–49 Consistent with these obser-
vations, a decrease in the relative proportion of 
E. hallii, E. rectale, and E. ventriosum has been 
noted in centenarians, whereas potentially patho-
genic bacteria from the phylum Proteobacteria were 
increased.50 The beneficial effects of Eubacterium 
spp. were highlighted in an extensive study carried 
out by Ghosh et al., where a large cohort (n = 612) 
of elderly individuals were investigated to assess the 
modulatory effects of the Mediterranean diet on 
their gut microbiota.42 The authors reported that 
Eubacterium species such as E. rectale and E. eligens 
were positively associated with several markers of 
lower frailty and improved cognitive ability as well 
as increased short/branched chain fatty acid pro-
duction. Eubacterium spp. also showed negative 
correlations with inflammatory markers such as 
IL-2 and C-reactive protein. Furthermore, network 
analysis revealed Eubacterium spp. to be a keystone 
species in the elderly gut microbial ecosystem, with 
frailty-associated taxa on the fringe. However, in 
contrast to these general observations, other studies 
have inferred a positive association between 
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Eubacterium spp. and age.51,52 Clearly, inconsistent 
observations, albeit from studies involving diverse 
experimental designs with presumably quite vari-
able diets, highlight the need for additional age- 
related studies in which other variables, especially 
diet, are as consistent as possible.

Short-chain fatty acids produced by Eubacterium 
spp. contribute to gut health

During the process of digestion, most available 
nutrients undergo absorption in the duodenum. 
However, a fraction of ingested carbohydrates that 
are resistant to digestion, including dietary fibers, 
remain intact until they reach the colon. Here, 
these microbiota accessible carbohydrates (MACs) 
are fermented and metabolized by specialized 
enzymes produced by the resident gut 
microbiota53 (Figure 2). Microbial degradation of 
these complex carbohydrates, and of host mucin, 
results in the production of hexoses and pentoses 
before subsequent conversion to lactate and SCFAs 
such as acetate, propionate, butyrate, formate, and 
succinate by several other gut microbes.54 These 
SCFAs can, in turn, be taken up by the host. 
Unsurprisingly, ingestion of dietary fibers have 
been directly correlated to SCFA concentration 
and abundance of butyrate producers including 
Eubacterium spp., whereas high-fat diets have 
been associated with reduced formation of 
SCFAs.34,55,56 Additionally, the abundance of 
Eubacterium spp. in the gut is strongly correlated 
with SCFA levels and the beneficial effects of SCFAs 
in a variety of clinical conditions such as inflam-
matory bowel diseases, metabolic syndromes, and 
colorectal cancer, as discussed below.

Production of butyrate and propionate by 
Eubacterium spp. in the gut

Among the SCFAs, propionate, and butyrate are 
most often considered to benefit human health and 
are produced by distinct cohorts of the colonic 
microbiota including several species from the 
genus Eubacterium57 (Figure 2). One of the most 
extensively studied Eubacterium species, E. rectale, 
was first isolated from the feces of healthy Japanese- 
Hawaiian males and identified as a major butyrate 
producer capable of utilizing complex carbohydrates 

such as cellobiose and starch for growth and 
proliferation.58 E. hallii, on the other hand, was 
first reported as a butyrate producer in the human 
gut by Barcenilla et al. in a 16S rRNA gene-based 
RFLP study.59 In the gut, butyrate can be produced 
from carbohydrates via glycolysis where two mole-
cules of acetyl-CoA are combined to form acetoace-
tyl-CoA and undergo stepwise reduction to produce 

Figure 2. Modulation of various processes through short-chain 
fatty acids (SCFAs) produced by Eubacterium spp. Upon reaching 
the gut, carbohydrates resistant to digestion (commonly derived 
from dietary fibers) are degraded by gut microbiota to produce 
monosaccharides. These monosaccharides can be utilized by 
certain bacteria, including Eubacterium spp., in the gut to pro-
duce SCFAs such as butyrate, propionate, and acetate. SCFAs 
interact with G-protein-coupled receptors such as GPR43, GPR41, 
and GPR109a to modulate inflammation, intestinal barrier integ-
rity, glycemic response, energy homeostasis and other host 
responses. Inflammation is suppressed by SCFAs primarily 
through inhibition of the NF-κB pathway and/or histone deace-
tylase function (HDACi) to downregulate pro-inflammatory cyto-
kines such as TNFα, IL-6, IL-12, IFNγ and upregulate anti- 
inflammatory cytokines such as IL-10, TGF-β in a variety of cells 
including immune cells such as macrophages in lamina propria. 
IL-18 expression upregulated by GPR109a contributes to the 
enhancement of intestinal barrier integrity. SCFAs can also be 
taken up by enterocytes through the monocarboxylate transpor-
ter (MCT) and along with peptide YY (PYY) and glucagon-like 
peptide-1 (GLP-1) variably stimulates the liver, muscles, pancreas 
and adipose tissues to influence glycemic response, lipolysis, 
fatty acid oxidation and gluconeogenesis.
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butyryl-CoA. Two distinct pathways are currently 
known for the final transformation of butyryl-CoA 
to butyrate; this proceeds either through the butyryl- 
CoA:acetate CoA-transferase pathway or the phos-
photransbutyrylase and butyrate kinase pathway.60 

The butyryl CoA:acetate CoA-transferase route for 
the final production of butyryl-CoA from acetyl- 
CoA is shared by E. rectale and the closely related 
Roseburia species, along with genomic organization 
of the butyrate synthetic genes. The same pathway is 
also employed by other Eubacterium species such as 
E. hallii and E. biforme (now reclassified as 
Holdemanella biformis) for the production of 
butyrate.60 Both E. rectale and E. hallii have been 
subsequently identified as prolific butyrate produ-
cers in the gut. Indeed, they were found to be among 
the 10 most abundant members of the human fecal 
microbiota, contributing more than 44% of butyryl- 
CoA:acetate CoA-transferase sequences retrieved 
from fecal samples of 10 healthy volunteers.61,62 

A recent Swiss cohort study has also shown 
E. hallii to be one of the first producers of butyric 
acid in the infant gut.63

Propionate can be formed via two pathways from 
sugar fermentation by gut microbes. While the 
succinate pathway processes most pentose and hex-
ose sugars to produce propionate, deoxy sugars 
such as fucose and rhamnose are metabolized by 
the propanediol pathway. The latter are readily 
available in the gut environment as dietary (e.g. 
human milk oligosaccharides) or host-derived 
(mucin) glycans and upon utilization by a variety 
of gut microbes can produce 1,2-propanediol as an 
end product. Although unable to degrade deoxy 
sugars, 1,2-propanediol can be metabolized by 
E. hallii, which has been shown to carry the gly-
cerol/diol dehydratase PduCDE, a key enzyme in 
the transformation of 1,2-propanediol to produce 
propionate and propanol with the generation of 
one ATP.64,65 The conversion of 1,2-propanediol 
to propionate is dependent on the availability of 
vitamin B12 and occurs within microcompart-
ments called polyhedral bodies to sequester the 
toxic intermediate, propionaldehyde.66

Although Eubacterium spp. can degrade com-
plex carbohydrates, certain strains of Eubacterium 
spp. strains may lack the ability to degrade specific 
complex carbohydrates and rely on metabolites 
produced by other gut microbes for doing so; 

fermented products produced by these other gut 
microbes can then be utilized by Eubacterium 
spp.57 The importance of cross-feeding mechan-
isms in SCFA production by Eubacterium spp. 
have been demonstrated in a number of 
instances.67–69 In these studies, Eubacterium spp. 
were co-cultured with Bifidobacterium spp. in the 
presence of complex carbohydrates. The 
Bifidobacterium strains, which are capable of 
degrading complex carbohydrates such as arabi-
noxylan oligosaccharides and fucosyllactose, were 
shown to produce acetate, lactate and 1,2-propane-
diol, all of which were in turn taken up and used by 
Eubacterium spp. to produce butyrate and propio-
nate. Evidence of such cross-feeding by 
Eubacterium spp. not only highlights the synergis-
tic interactions between gut microbes and butyro-
genic effects of resistant carbohydrates, but also 
underlines the ecological roles of Eubacterium 
spp. in the gut environment.

Eubacterium spp. modulate gut inflammation 
through SCFAs

SCFAs, and especially butyrate has been reported to 
impart varied beneficial effects on human health.70 

Although, the least abundant SCFA produced, 
butyrate constitutes the primary energy source of 
colonocytes, promoting their proliferation, matura-
tion, and a healthy colon.71 Indeed, E. rectale has 
been reported to preferentially colonize the mucus 
layer, thereby increasing the bioavailability of buty-
rate for epithelial colonocytes.72 Additionally, 
SCFAs, have been shown to play a major role in 
modulation of inflammation in the gut through 
promotion of intestinal integrity and regulation of 
immune response. SCFAs can improve transepithe-
lial resistance through upregulation of tight junc-
tion proteins such as claudin-1 and occludin as well 
as the intestinal mucin protein, mucin 2.73,74 

Modification of various signaling pathways have 
been also described to highlight regulation of 
immune response by SCFAs including activation 
of G-protein-coupled receptors (GPCRs) and inhi-
bition of histone deacetylases (HDACs).75 SCFAs 
can bind to at least four discrete GPCRs – FFAR2 
(Free fatty acid receptor), FFAR3, GPR109a, and 
Olfr78 as ligands, albeit with varying specificity.76 

For example, butyrate binds preferentially to 
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FFAR3 over FFAR2, which exhibits higher affinities 
for acetate and propionate.76 FFAR2 is widely 
expressed in diverse tissues with highest expression 
in immune cells. Several studies have shown that 
SCFAs can act as an anti-inflammatory agent 
through inhibition of pro-inflammatory cytokines 
such as IFN-γ, IL-1β, IL-6, IL-8, and TNF-α, while 
upregulating anti-inflammatory cytokines such as 
IL-10 and TGF-β in a FFAR2/FFAR3 dependent 
manner.75,77 GPR109a activates the inflammasome 
pathway in colonic macrophages and dendritic 
cells, thereby inducing differentiation of regulatory 
T cells, and anti-inflammatory IL-10 producing 
T-cells.78 GPR109a activation by SCFAs in intest-
inal epithelial cells (IECs) can also increase produc-
tion of IL-18, a key cytokine for repair and 
maintenance of intestinal epithelial integrity.79 

Inhibition of HDAC activity by propionate and 
butyrate have been associated with the downregu-
lation of expression for pro-inflammatory cyto-
kines and chemokines such as CXCL8 and CCL20 
in IECs.80 HDAC inhibition by SCFAs have also 
been associated with the increase in expression of 
β-defensins and cathelicidins such as LL-37.81 

Given the extensive involvement of SCFAs in mod-
ulation of gut health as described, especially buty-
rate, a dysbiosis of the gut microbiota involving 
SCFA producers has major implications due to 
alteration of the SCFA profile in the intestine.82

Inflammatory bowel diseases (IBDs) are severe 
and chronic inflammations of the gastrointestinal 
tract and are characterized by two major clinical 
phenotypes: Crohn’s disease (CD) and ulcerative 
colitis (UC). CD involves the transmural inflamma-
tion of all layers of the epithelial wall, whereas UC 
only affects the superficial mucosal layer. In gen-
eral, IBDs recurrently exhibit dysbiosis of the gut 
microbiota that is characterized by a decrease in the 
diversity and temporal stability of the microbiota. 
While the exact role of microbial disturbances in 
the pathogenesis or causation of IBDs is still being 
elucidated, the proportion of butyrate producers 
including Eubacterium spp. in the gut are consis-
tently reduced in IBD subjects83-85 (Table 1). 
Indeed, a decreased abundance of clostridial clus-
ters IV and XIVa in IBD patients compared to non- 
IBD, healthy individuals along with a concomitant 
increase in proteobacterial pathobionts constitute 
a signature for microbial dysbiosis in IBDs and can 

be considered as biomarkers.86,95-97 Consequently, 
a decrease in gut butyrate levels is commonly 
observed in patients suffering from IBD, leading 
to improper modulation of the host immune 
system.98 Decreased levels of SCFA in the gut in 
IBD and experimental colitis have also been corre-
lated with reduced regulatory T cell functionality 
and increased inflammation.99,100

A butyrate-mediated protective effect provided 
by Eubacterium spp. in IBDs has been demon-
strated in several recent studies. In vitro studies 
using fecal microbiota from UC and CD patients, 
represented by fewer butyrate producers, exhibited 
a decreased capacity for colonization and butyrate 
production; supplementation of the IBD micro-
biota with known butyrate producers including 
Eubacterium spp. restored butyrate production 
and improved epithelial barrier integrity and colo-
nization capacity.87,101 The role of the Eubacterium 
spp.-butyrate-anti-inflammation axis in gut health 
was further demonstrated in children suffering 
from IBD who underwent an anti-TNF-α treat-
ment; patients harboring a higher baseline abun-
dance of E. rectale were more responsive to 
treatment with the presence of E. rectale being 
predictive of successful attenuation of 
inflammation.90 The protective effects of 
E. limosum, and the SCFAs it produces, in gut 
inflammation have been demonstrated in in vitro 
and murine models.102 SCFAs produced by 
E. limosum induced T84 colonocyte growth and 
reduced IL-6 and TLR4 expression by the colono-
cytes when stimulated by TNF-α treatment, with 
butyrate being the most prominent effector. 
Additionally, when provided with a 5% 
E. limosum chow, mice showed significant reten-
tion of body weight and colon length compared to 
the control group upon induction of colitis. These 
observations exhibit a butyrate-mediated anti- 
inflammatory effect of Eubacterium spp. on gut 
health and presents it as an attractive biotherapeu-
tic in inflammatory gut ailments.

Effects of SCFA production by Eubacterium spp. in 
Type II diabetes mellitus (T2DM) and obesity

The association of Eubacterium spp. with obesity 
remains controversial so far, with several reports 
suggesting a positive correlation of Eubacterium 
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spp. with obesity.103–105 BMI is often considered 
a proxy for adiposity; some BMI-based studies 
have also reported greater abundances of 
Eubacterium spp. in obese subjects.106,107 

Interestingly, higher levels of total butyrate have 
been reported in obese individuals with reduced 
fecal SCFAs in treated obese subjects, which sug-
gests an enhanced assimilation of carbohydrates 
and lipids that can contribute to the obese 
phenotype.108–110 Such an observation can explain 
the higher abundance of butyrate producers includ-
ing Eubacterium spp. in obese individuals. A closer 
look at dietary intervention studies indicates that 
the proportions of Eubacterium spp. and other 
butyrate producers in obese subjects may be influ-
enced primarily by diet. A significant reduction of 
Eubacterium spp. is consistently reported in several 
studies where availability of complex carbohydrates 
to gut microorganisms have been restricted in 
obese individuals.15,111,112 A study by 
Balamurugan et al. in obese and non-obese Indian 
children exposed to similar diets also did not find 
any difference in E. rectale abundance between 
groups.113 Taken together, current evidence indi-
cates that Eubacterium spp. along with other buty-
rate producers, when maintained in the gut 
through a consistent availability of reasonable 
amount of complex carbohydrates, increases in 
obese individuals in proportion, thereby facilitating 
energy extraction in the gut. It is also possible that 
diet rather than altered metabolic parameters in 
obese individuals, may drive the growth and pro-
liferation of butyrate producers including 
Eubacterium spp. The exact mechanisms through 
which the gut microbiota may modulate obesity are 
still being elucidated. Instances where butyrate 
have been shown to alleviate diet-induced obesity 
and improve glucose homeostasis make it difficult 
to make linear conclusions and provides an incen-
tive for further investigations.114,115 Ultimately, 
care must be taken while inferring direct associa-
tions between taxa and obesity, as such conclusions 
may be misleadingly oversimplistic for a metabolic 
syndrome with multifactorial influences.

Eubacterium spp. and butyrate producers have 
been positively associated with insulin sensitivity in 
several studies.116,117 Recent independent studies 
which compared metagenomes from healthy and 
T2D individuals, have clearly indicated a potential 

correlation between gut microbiota and T2D 
pathophysiology.118,119 The studies, carried out in 
Chinese and European populations, both reported 
a significant reduction of butyrate producers 
including Eubacterium spp. in T2D subjects.109,119 

Additional studies have demonstrated the restora-
tive effect of butyrate producers, including 
Eubacterium spp., transplanted from lean indivi-
duals, in both human and murine insulin-resistant 
models.120–122 Indeed, the increase in Eubacterium 
spp. after FMT was associated with metabolic 
improvement in insulin-resistant individuals.120 

When orally administered to obese and insulin- 
resistant db/db mice, E. hallii have been shown to 
significantly improve insulin sensitivity and energy 
metabolism.121 The stimulation of gut hormones 
and inhibition of food intake by SCFAs have been 
proposed as possible mechanisms of modulation of 
host metabolism by gut microbiota in T2D 
individuals.123 Such a proposed mechanism is con-
sistent with the observation that butyrate and pro-
pionate bound to FFAR2 receptor can regulate 
satiety hormones such as ghrelin (orexigenic pep-
tide), glucagon-like peptide-1 (GLP-1), and peptide 
YY (PYY) (anorexigenic peptide)124 (Figure 2). 
Ghrelin, also known as the ‘hunger hormone’, sti-
mulates appetite and is secreted before a meal, 
while GLP-1 and PYY are synthesized and released 
by enteroendocrine L cells and stimulate insulin 
secretion by pancreatic β cells, reduces food intake, 
and normalizes energy intake and weight loss. An 
opposite regulation of ghrelin and GLP-1/PYY by 
SCFAs, where GLP_1/PYY are upregulated and 
ghrelin is downregulated, ensures reduced food 
intake, satiety and reduced adiposity.125 Ghrelin, 
has also been negatively associated with the buty-
rate-producing E. rectale.126 Recent evidence from 
Zeevi et al., who performed a machine learning- 
based study on a large cohort (n = 800) in order to 
predict personalized postprandial glycemic 
response for individuals using an integrated feature 
dataset derived from dietary habits, gut microbiota, 
anthropometrics, physical activity, and blood para-
meters, also supports an affirmative role of 
Eubacterium spp. in insulin sensitivity.127 In their 
study, 72 features from the gut microbiome were 
inferred to be predictive, among which E. rectale 
was reported to be one of the most robust with 
a higher abundance of the bacterium in the gut 

GUT MICROBES e1802866-9



being positively associated with lower postprandial 
glycemic response (n = 430). Butyrate produced by 
Eubacterium spp. can also provide additional ben-
efits to T2DM patients through HDAC inhibition- 
mediated pancreatic β-cell reprogramming to 
improve insulin sensitivity and satiety.128 Finally, 
low-grade inflammation has been reported in 
T2DM, where inflammatory molecules are upregu-
lated in insulin target tissues and contribute to 
insulin resistance.129 For example, TLR4- 
dependent increase in production of pro- 
inflammatory cytokines through activation of 
macrophages and β-cells in pancreatic islets leads 
to dysregulation, functional impairment, and 
decreased viability of β-cells.130 SCFAs produced 
by Eubacterium spp. can contribute to restoration 
of physiological inflammatory environments 
through mechanisms detailed above. Such 
a connection is also reinforced by the consistent 
decrease of other gut butyrate producers in 
T2DM.116,117 Current observations therefore con-
sistently indicate Eubacterium spp. as a positive 
contributor in alleviating T2DM and should be 
considered as a potential therapeutic.

Butyrate-mediated contribution of Eubacterium 
spp. in inhibition of colorectal cancer and 
atherosclerosis

Dysbiosis of the gut microbiota is closely associated 
with incidence of various cancers including colorectal 
cancer. While chronic inflammation and reduced 
immune response resulting from dysbiosis has been 
reported to contribute to increased cancer incidence, 
commensal bacteria have been demonstrated to 
increase immune surveillance and decrease cancer 
incidence.131,132 Dietary fibers have been associated 
with lower risks of intestinal cancer development; this 
is primarily due to the strong anti-cancer effect of 
butyrate.133–136 Through modulation of various sig-
naling pathways involved in cell survival and apopto-
sis, the anti-cancer activity of butyrate has been 
demonstrated in cancer cells and mouse 
models.137,138 Butyrate, while being the preferred 
energy source for colonocytes, is poorly metabolized 
in cancer cells due to the Warburg effect. This leads to 
cytoplasmic accumulation and subsequent transloca-
tion of butyrate into the nucleus where it acts as 
a HDAC inhibitor and negatively modulates PI3K/ 

Akt and JAK2/STAT signaling pathways, resulting in 
inhibition of carcinogenesis and increased cancer cell 
apoptosis.138 Additionally, inhibition of signaling 
pathways such as NF-κB and HIF-1 by butyrate 
have been reported to increase anti-cancer immune 
responses.139 Interestingly, the anti-carcinogenic 
effect of butyrate is dose-dependent; a lower concen-
tration of the butyrate (0.5–1 mM) promotes growth 
of non-cancerous colonocytes and apoptosis in can-
cerous ones, whereas at higher concentrations (greater 
than 2 mM) it can cause apoptosis in both.140,141 

Indeed, butyrate induces proliferation of colonocytes 
at the cript of the colon, where its concentration is 
lower, but shows a pro-apoptotic effect closer to the 
lumen where its concentration increases; this also 
ensures normal turnover of cells in the intestine.142

Butyrate producers including Eubacterium spp. 
are decreased in abundance in patients suffering 
from CRC.143 Indeed, gut microbiomes in CRC 
patients are less fermentative in nature with signifi-
cantly decreased abundance of butyrate fermenters 
from Clostridium cluster XIVa such as Eubacterium 
sp. and Roseburia sp.; depletion of the butyryl-CoA 
transferase in CRC subjects have also been 
reported.136,143 Among Eubacterium spp., E. rectale, 
E. hallii and E. ventriosum are reported to be signifi-
cantly reduced in abundance in the gut of individuals 
with CRC136,143-145 (Table 2). E. ventriosum has been 
proposed as biomarker for low risk of CRC, with 
significant enrichment in healthy individuals com-
pared to CRC patients in diverse populations.145 

Additionally, butyrate levels in the colon share an 
inverse relationship with the incidence of CRC.148,149 

This can be attributed to gut dysbiosis in patients 
with CRC, where butyrate-producing capacity of the 
gut microbiota is significantly reduced.150,151 Such 
change in gut microbiota can be caused by 
a consistently lower intake of dietary fibers and con-
sequent-decreased levels of SCFAs, as often observed 
in individuals with CRC.136 In the absence of buty-
rate, the intestinal tract can reach a state of chronic 
inflammation, that contributes to development and 
progression of CRC.152,153 Such consistent observa-
tions suggest there is merit in investigating the use of 
Eubacterium spp. strains as therapeutic interventions 
in CRC and related diseases. Indeed, Feng et al. have 
been granted patent rights for the use various strains 
of E. ventriosum and E. eligens in treating colitis and/ 
or CRC.154
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Recent studies in humans and mice show that 
butyrate producers in the gut including Eubacterium 
spp. are negatively associated with atherosclerotic car-
diovascular disease (ACVD).146,147,155 Deep analysis 
of gut metagenomes from atherosclerotic subjects 
show a depletion of butyrate producers such as 
Eubacterium spp., Roseburia spp. and F. prausnitzii, 
compared to healthy individuals146,147 (Table 2). The 
gut environment in ACVD subjects have conse-
quently been reported to be less fermentative and 
inflammatory in nature.146 Notably, peptidoglycan 
(PG) and lipopolysaccharide (LPS) are pro- 
inflammatory, microbial pathogen-associated mole-
cular patterns (PAMPs) that are recognized as risk 
factors in cardiovascular diseases (CVDs).156 PG bio-
synthesis genes are enriched in ACVD metagenomes, 
which indicates greater peptidoglycan production that 
can lead to priming of the innate immune system and 
inflammation.147 PG has also been observed in ather-
osclerotic plaques, while patients with a high CVD 
burden exhibit greater risk from circulating 
endotoxemia.156 Interestingly, network analysis of 
ACVD gut microbiomes have revealed that microbes 
enriched in ACVD have a mutually exclusive relation-
ship with butyrate producers including Eubacterium 
spp., thereby suggesting consistency of dysbiosis in 
ACVD patients that is represented by a depletion of 
butyrate producers.146 Indeed, butyrate producers 
have been proposed to be protective against 
atherosclerosis.155 In atherosclerotic mice, negative 
association of Eubacterium spp. and other butyrate 
producers with plasma cholesterol, MMP-9 and 
A-FABP (biomarkers for cardiovascular pathologies) 
have been reported.155 It currently remains unclear if 
a dysbiotic gut is a read-out of atherosclerotic symp-
toms or vice-versa. However, since ACVD are mani-
festations of several factors such as lifestyle, diet and 
genetics, it is possible that lifestyle and diet may 
primarily contribute to a dysbiotic microbiota, 
which in turn may aggravate atherosclerotic develop-
ment. Depletion of butyrate producers including 
Eubacterium spp. in the gut leads to reduced barrier 
integrity and translocation of pro-inflammatory 
microbial components such as PG and LPS across 
the intestinal epithelium. Inflammatory responses 
triggered by TLR4 bound by circulating LPS, primar-
ily through the NF-κB pathway and the subsequent 
release of pro-inflammatory cytokines such as TNF-α, 
IL-6, IL-1, and IL-27, promotes the development of 

atherosclerosis.156 Additionally, nucleotide-binding 
oligomerization domain-containing protein 1 
(NOD1) and NOD2 can bind circulating PG and 
activate the NF-κB pathway to trigger inflammatory 
responses. Indeed, NOD1/2 knockouts in murine 
models have revealed these receptors as critical in 
maintaining intestinal barrier integrity and develop-
ment of atherosclerosis.156 Butyrate producers includ-
ing Eubacterium spp., therefore, may play an 
important role in the gut-heart axis; they can restore 
a dysbiotic gut microbiota and modulate inflamma-
tion in ACVD subjects and merit further exploration 
as potential therapeutics.

Transformation of cholesterol by Eubacterium 
spp. provides protection against cardiovascular 
diseases

Conversion of cholesterol to coprostanol by intest-
inal bacteria was first reported in the 1930s and 
several studies have been carried out since to iden-
tify bacteria capable of transforming cholesterol to 
coprostanol. Many of the identified microbes were 
eventually assigned to the genus Eubacterium; 
Eubacterium coprostanoligenes HL (ATCC 51222) 
represents one such bacteria that was isolated from 
a hog sewage lagoon and has received considerable 
attention due to its cholesterol-reducing 
properties.157 Although subsequently Bacteroides 
dorei, Lactobacillus sp. and Bifidobacterium sp. 
have been reported to have cholesterol utilization 
properties, these seem to be transient properties 
and may be lost, making E. coprostanoligenes HL 
the only available culturable gut isolate able to 
degrade cholesterol.158 The presence of 
E. coprostanoligenes in the gut microbiota has 
been strongly associated with fecal coprostanol.158 

Recently, 3β-hydroxysteroid dehydrogenase homo-
logs of E. coprostanoligenes have been identified in 
gut metagenomes that can transform cholesterol to 
coprostanol.158 Interestingly, these intestinal sterol 
metabolism A genes (ismA) have been attributed to 
yet uncultured gut microbes which formed 
a coherent clade with E. coprostanoligenes in the 
tree of life and may represent novel Eubacterium 
species involved in cholesterol reduction in the 
gut.158 The mechanism of cholesterol to coprosta-
nol conversion has been investigated with three 
major proposed pathways and Eubacterium spp. 

e1802866-12 A. MUKHERJEE ET AL.



have been found to be involved in all of these 
(Figure 3). The first pathway involves a direct, 
stereospecific reduction of the 5,6-double bond in 
cholesterol,159 while the second is an indirect path-
way which includes at least three steps. The latter 
pathway, which has been demonstrated in 
E. coprostanoligenes HL, requires NADP+ and pro-
ceeds through the production of cholestenone and 
coprostanone intermediates.158–160 An additional 
third pathway has also been identified which 
involves isomerization of cholesterol to allocholes-
terol, which can be reduced to coprostanol by 
Eubacterium ATCC21-403 and 408 species.161 The 
final pathway is, however, poorly studied.

Nearly one gram of cholesterol from dietary and 
extra-dietary sources reach the human colon daily, 
where it is metabolized by commensal gut bacteria 
to coprostanol. Unlike cholesterol, coprostanol is 
poorly absorbed in the intestine, and is suggested to 
have an impact on modulation of cholesterol meta-
bolism and serum cholesterol levels.162 This notion 

has been reinforced by findings that an inverse 
relationship exists between plasma cholesterol 
levels and the ratio of cholesterol to coprostanol 
in the feces.163 Cholesterol conversion to coprosta-
nol has been therefore considered as a new strategy 
for management of cholesterol homeostasis in 
humans. As an extension, Eubacterium spp., 
which are highly involved in coprostanol metabo-
lism in the gut have been investigated for their 
hypocholesterolemic effects. Li et al. reported 
a reduction in the plasma cholesterol levels and an 
increase in the coprostanol/cholesterol ratios in the 
digestive contents of hypercholesterolemic rabbits 
that were fed E. coprostanoligenes.164 The effects 
observed in these rabbits were further ascribed to 
cholesterol reduction by E. coprostanoligenes due to 
its preferential colonization in the jejunum and 
ileum, both of which are sites for cholesterol 
absorption. Similar observations have also been 
reported in germ-free mice.165 Additional results 
from a combined metabolomic and metagenomic 
study have identified multiple bacterial phylotypes 
including Eubacterium eligens ATCC 27750 
(p = 1.477e-02) to be significantly correlated to 
high fecal coprostanol.166

Atherosclerotic cardiovascular diseases (CVDs) 
are widely recognized as a major public health 
concern, where key risk factors in their develop-
ment include an imbalance in blood cholesterol 
levels and high serum concentrations of low- 
density lipoprotein cholesterol.167 Indeed, patients 
with ACVDs have higher cholesterol absorption in 
the gut.158,168 Notably, changes in the gut microbial 
community have been directly correlated to the rate 
of cholesterol converted to coprostanol, while 
a high efficiency of cholesterol transformation to 
coprostanol has been linked to a reduced risk of 
CVDs.158,169,170 Due to their hypocholesterolemic 
effect, Eubacterium spp. and other cholesterol- 
reducing microbes can provide protection against 
CVDs. Indeed, gut Eubacterium spp. in athero-
sclerotic subjects show a significantly negative cor-
relation with established markers of atherosclerosis 
such as low-density lipoproteins, cholesterol and 
white blood cells.147 E. coprostanoligenes were also 
reduced in the murine gut when mice were fed 
a methionine-choline diet to induce nonalcoholic 
steatohepatitis, where damage to the liver inhibits 
the production of endogenous cholesterol.171 

Figure 3. Cholesterol metabolism by Eubacterium coprostanoli-
genes in the gut. Cholesterol can reach the gut from two sources: 
endogenous (synthesized in the liver) or exogenous (in the form 
of dietary uptake). Cholesterol can be reabsorbed from the gut. 
The cholesterol that is not reabsorbed can be metabolized by 
Eubacterium coprostanoligenes to coprostanol both directly and 
indirectly through the intermediate, coprostanone. It can also 
reduce cholesterol to coprostanol upon epimerization to allo-
cholesterol through a pathway that remains poorly studied. 
Unlike cholesterol, coprostanol is taken up poorly in the intestine 
and most of it is excreted in feces, thereby providing a route for 
cholesterol removal from the gut and systemic circulation.
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Furthermore, cholesterol-reducing homologs of 
E. coprostanoligenes 3β-hydroxysteroid dehydro-
genase identified in metagenome-assembled gen-
omes from gut metagenomes have been associated 
with lower levels of serum cholesterol; the ismA 
genes were also correlated to higher levels of 
coprostanol and lower levels of cholesterol in 
stool.158 The reduction of cholesterol to coprosta-
nol still remains poorly understood and only few 
studies on cholesterol metabolizing bacteria are 
currently available. Greater investigative invest-
ment is necessary to garner a holistic understand-
ing of the molecular mechanisms behind 
cholesterol-coprostanol metabolism in the gut, 
including Eubacterium spp., and to perfect hypo-
cholesterolemic strategies.

Eubacterium spp. contribute to gut and hepatic 
health through modulation of bile acid 
metabolism

Bile acids (BA) are host-produced metabolites 
derived from cholesterol in liver pericentral hepa-
tocytes. Cholic acid (CA) and chenodeoxycholic 
acid (CDCA) are the primary BAs produced in 
liver which are then conjugated to taurine or gly-
cine before being temporarily stored in the gall-
bladder; these BAs subsequently undergo 
postprandial secretion to reach the gut. 95% of the 
total BA pool in the gut are absorbed efficiently and 
recycled back to the liver via the portal vein; this 
cyclic process is known as enterohepatic circula-
tion. The rest serves as a substrate for bacterial 
metabolism in the gut and constitutes a critical 
route for cholesterol excretion from the body. BAs 
can occur in several forms including primary BA, 
secondary BA, conjugated, or unconjugated. 
Various members of the gut microbiota are capable 
of transforming BAs, thereby influencing the com-
position of the local BA pool along with various 
other aspects of host physiology. Gut microbes 
including Eubacterium spp. that possess the 
enzyme bile salt hydrolase (BSH) are able to hydro-
lyze the C-24 N-acyl amide bond in conjugated BAs 
to release glycine/taurine moieties121 (Figure 4). 
Indeed, Eubacterium spp. along with other genera 
such as Roseburia and Clostridium constitute 
a major reservoir of BSHs in the gut.172 

Deconjugation increases the pKa of BAs to ~5, 

thereby making them less soluble which in turn 
leads to inefficient absorption and replenishment 
of the lost BA by de novo synthesis from 
cholesterol.173 Additionally, BSH activity can dis-
rupt micelle formation and absorption, resulting in 
a significant reduction of cholesterol levels.159 

Being reasonably widely distributed in the gut 
microbiota, BSH activity can thus be modulated to 
regulate weight gain and cholesterol levels in the 
host. Deconjugation also helps in bile detoxification 
through recapture and export of cotransported pro-
tons by the free BAs generated, thereby negating 
the pH.174 Another way intestinal bacteria can 
transform BAs is through the oxidation and 

Figure 4. Bile acid (BA) modification by Eubacterium spp. and 
enterohepatic circulation. BAs are produced from cholesterol in 
the liver and are continually released into the bile canaliculi via 
the bile salt export pump (BSEP). The bile canaliculi drain into 
the gallbladder where BAs are temporarily stored and undergo 
postprandial release into the gut. Before release into the bile 
canaliculi, cholic acid (CA) and chenodeoxycholic acid (CDCA), 
the primary BAs produced in liver hepatocytes, can be conju-
gated to taurine/glycine moieties to form conjugated BAs (T/ 
G-CA, T/G-CDCA). In the gut, primary BAs can be metabolized by 
gut bacteria including Eubacterium spp. into diverse secondary 
forms. BAs can undergo deconjugation to form deconjugated 
primary BAs and/or hydroxylation reactions to produce second-
ary BAs such as deoxycholic acid (DCA) and lithocholic acid (LCA). 
95% of BAs are reabsorbed in the gut and recycled back to the 
liver through the portal vein, with conjugated BAs exhibiting 
highest rates of reabsorption. This circular movement of BAs 
from liver hepatocytes to the gut and back to the liver is 
known as the enterohepatic circulation.
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epimerization of hydroxyl groups at C3, C7, and 
C12 positions, resulting in the generation of isobile 
(β-hydroxy) salts.175 Epimerization involves the 
reversible stereochemical change from α to β con-
figuration and vice versa, generating a stable oxo- 
bile acid intermediate. This process is catalyzed by 
α- and β-hydroxysteroid dehydrogenases (HSDHs) 
and can be carried out by a single bacterial species 
containing both enzymes or through proto- 
cooperation between two species, with each contri-
buting one enzyme. HSDH activity has been 
reported in several species including Eubacterium 
spp.176

Bacterial 7α-dehydroxylases in the gut convert 
primary BAs, CA and CDCA into deoxycholic acid 
(DCA) and lithocholic acid (LCA), respectively 
(Figure 4).173 Although quantitatively, 7α- 
hydroxylation represents the most important bac-
terial transformation of BAs in the gut, only few 
distinct members of the gut microbiota such as 
Eubacterium and Clostridium XIVa cluster have 
been reported to be capable of carrying out this 
reaction.173,177 Studies on Eubacterium strain VPI 
12708 have identified enzymes encoded by the bile 
acid inducible (bai) operon which catalyze 
a multistep pathway for primary BA 7α- 
dehyroxylation.178 DCA and LCA produced 
through 7α-dehyroxylation of primary BAs by 
Eubacterium spp. can have major impacts on gut 
health and homeostasis that are manifested primar-
ily through bile acid signaling receptors. Both DCA 
and LCA are high-affinity ligands for the nuclear 
hormone receptor, farnesoid X receptor (FXR); 
activation of intestinal FXR by DCA or LCA upre-
gulates the expression of the fibroblast growth fac-
tor 19 (FGF19), which in turn binds to the hepatic 
fibroblast growth factor receptor 4 (FGFR4) to sub-
sequently downregulate bile acid synthesis in 
hepatocytes179 (Figure 5). FXR also promotes anti- 
inflammatory properties, primarily through inhibi-
tion of the NF-κB pathway and BA detoxification, 
through modulation of proliferator-activated 
receptor α (PPARα).179 FXR activation has also 
been reported to induce expression of antimicrobial 
peptides, thereby contributing to control of 
pathobionts.173,180 TGR5, a GPCR that activates 
various intracellular pathways upon interaction 
with BAs, also binds LCA and DCA with the high-
est affinity in the BA pool (Figure 5). Once 

activated, TGR5 stimulates the secretion of incretin 
hormone GLP-1 and insulin, thereby promoting 
energy expenditure.181 Additionally, TGR5 can 
modulate inflammatory responses, which can be 
both pro- or anti-inflammatory in nature; BA- 
TGR5 signaling plays a critical role in the intricate 
balance of pro- and anti-inflammatory cytokines in 
the gut.179 LCA and DCA also bind to the preg-
nane-X receptor (PXR), Vitamin D3 receptor 
(VDR) and constitutive androstance receptor 
(CAR) to variously influence BA homeostasis and 
BA detoxification.179 The strong affinity of bile acid 
signaling receptors for microbiota-induced second-
ary BAs highlight how the gut microbiota including 
Eubacterium spp. can modulate BA homeostasis, 

Figure 5. Bile acid (BA) induced signaling pathways influence BA 
homeostasis and inflammation. BAs in the gut are taken up by 
enterocytes via the apical sodium-bile acid transporter (ASBT) and 
bind to the farnesoid X receptor (FXR) which in turn upregulates 
the expression of the fibroblast growth factor 19 (FGF19). FGF19 
can then bind to FGF receptor 4 in hepatocytes to downregulate 
BA synthesis in liver through the JNK/ERK pathway. Additionally, 
BAs transported through the portal vein can inhibit BA synthesis in 
hepatocytes in a FXR-mediated manner by entry through the 
organic anion transporting polypeptide 1 (OATP1) or sodium- 
taurocholate cotransporting polypeptide (NTCP) and upregulating 
the BA synthesis inhibiting transcription factor small heterodimer 
protein (SHP). FXR can also influence BA homeostasis through the 
peroxisome proliferator-activated receptor alpha (PPARα). LCA 
and DCA produced by Eubacterium spp. are high-affinity ligands 
for TGR5, which upon binding of said BAs can modulate glycemic 
response, immune response, BA homeostasis and BA detoxifica-
tion in various tissues.
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BA detoxification, control and maintenance of bac-
terial growth in gut, inflammation and glycemic 
responses through BA signaling. BA metabolism 
by a healthy gut microbiome also provides protec-
tion against C. difficile infection (CDI). DCA, 
which predominates in feces under healthy condi-
tions compared to CDI subjects, can stimulate ger-
mination of C. difficile spores, but importantly, 
inhibits the vegetative form of Clostridium 
difficile.182 Dysbiosis of the gut leading to 
a decrease of secondary BA-producing bacteria 
and correlated with an increase in fecal primary 
BAs is permissive to the germination of C. difficile 
spores culminating in CDI.183,184 Indeed, restora-
tion of gut BSH activity contributes to the efficacy 
of fecal microbiota transplantation (FMT) thera-
pies in CDI patients.185

The gut microbiota, as modulated by diet and 
other factors can lead to a particular BA profile 
which in turn has important consequences. A high- 
fat diet (HFD) such as the Western diet overstimu-
lates BA discharge into the intestine, leading to 
a dysbiotic gut microbiota and increased secondary 
BA production, especially LCA and DCA.179 DCA 
and LCA are the most hydrophobic among the BA 
pool and elevated levels can be cytotoxic; detrimen-
tal effects exerted by DCA and LCA can disrupt the 
architecture and function of the colonic epithelium 
through oxidative damage to DNA, triggering of 
pro-inflammatory responses and increased cell pro-
liferation. In HFD-fed mice, increased LCA/DCA 
was correlated to an increase in the abundance of 
Clostridum sordellii, a bacterium from Clostridium 
cluster XI.186 Surprisingly, Clostridium cluster 
XIVa to which Eubacterium spp. belongs was 
reported as a minor contributor, even though they 
exhibit 7-α hydroxylation properties. Such an 
observation is consistent specifically for 
Eubacterium spp., which is negatively modulated 
by HFDs, as mentioned above. The greater reab-
sorption of secondary BAs in the intestine resulting 
from HFDs and subsequent transport to the liver 
causes hepatic inflammation.179 A reduced FXR 
signaling due to increased inflammation results in 
decreased hepatic BA transporter function and 
increased BA sequestration in the liver; this can 
establish sustained hepatic inflammation, which 
can eventually lead to hepatocellular carcinoma 
(HCC).180 Dysbiosis in liver disorders such as 

HCC, fatty acid liver disease (FLD), fibrosis and 
cirrhosis is additionally characterized by an eleva-
tion of aerobic, pro-inflammatory, BSH-rich bac-
teria such as Enterobacter and Enterococcus, which 
also contribute to an increased production of sec-
ondary BAs.150 Indeed, the ratio between primary 
and secondary BAs in feces and the levels of con-
jugated and unconjugated BAs in serum are higher 
in nonalcoholic FLD (NAFLD) patients.187 

Eubacterium spp. is consistently found in lower 
proportions in liver disorders. Metagenomic shot-
gun sequencing of the gut microbiome of subjects 
suffering from fibrosis and cirrhosis has revealed 
a significant reduction of Eubacterium species such 
as E. rectale, E. hallii and E. eligens compared to 
healthy individuals146,188-190 (Table 3). These meta-
genomes also tended to be less fermentative in 
nature, i.e. displayed lower abundances for fermen-
tative butyrate producers such as Roseburia sp., 
Faecalibacterium sp. and others, besides 
Eubacterium spp.146, 179

Secondary bile acids as produced by the gut 
microbiota may also play a critical role in the devel-
opment and establishment of CRC. As mentioned 
above, butyrate inhibits colorectal carcinogenesis 
and a marked reduction of butyrate producers in 
the gut including Eubacterium spp. is commonly 
observed in patients with CRC. Several butyrate 
producers including Eubacterium spp., which 
belong to Clostridium cluster XIVa can additionally 
produce secondary BAs through 7-α hydroxylation 
of primary BAs.173 In IBD subjects with chronic 
inflammation of the gut, significantly lower levels of 
secondary BAs with concurrently increased fecal- 
conjugated BAs and a marked decrease of 
Clostridium cluster XIVa is reported.87,101,173,191 

A reduction in secondary BA levels contribute to 
a loss of the anti-inflammatory effects of secondary 
BAs on intestinal epithelial cells, thereby enhancing 
the chronic inflammation.191 Even though the loss 
of butyrate producers and secondary BA producers 
in IBD have been made separately, the two groups 
share significant overlap and both are depleted in 
chronic inflammation of the gut.87,101,150,173,191 

Indeed, a recent bioinformatic analysis of gut meta-
genomes has revealed significantly decreased popu-
lations of butyrate producers F. prausnitzii and 
E. rectale in IBD patients.192 Understandably, an 
absence of this group of butyrate and secondary 
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bile acid-producing bacteria that includes 
Eubacterium spp. promotes the development of 
IBD and its eventual progression to CRC, where 
a similar dysbiotic gut microbiome is 
observed.136,152,153 Indeed, modulation of bile acid 
profiles and/or gut microbiota are being pursued as 
novel therapeutic approaches for HCC and CRC.

Eubacterium spp. are involved in critical 
metabolic transformations in the gut

Metabolic transformations of specific compounds in 
the gut by the resident microbiota can be critical to 
human health. Substances can be taken up in the 
intestine that cannot be detoxified or broken down 
by the human body and thus, can result in toxicogenic 
effects. Eubacterium spp. have been shown to be cap-
able of carrying out important metabolic transforma-
tions in the gut with positive effects on human health 
including detoxification of toxic compounds into 
much more benign forms. Multiple beneficial trans-
formations by E. hallii were recently reported by Fekry 
et al. In their study, Fekry et al. found E. hallii to be 
highly proficient in the transformation of a highly 
abundant food-derived heterocyclic aromatic amine 
carcinogen – 2-amino-1-methyl-6-phenylimidazo 
(4,5-b)pyridine (PhIP) into a biologically unavailable 
form – 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahy-
dropyrido[3′,2′:4,5]imidazo [1,2-α]pyrimidin-5-ium 
chloride (PhIP-M1).193 Additionally, PhIP transfor-
mations by E. hallii in the presence of simulated 
proximal and distal colon microbiota led to a 300- 
fold and 120-fold increase in its abundance, respec-
tively, indicating great potential for use as a protective 
agent. In the same study, Fekry et al. also observed 
E. hallii to be capable of metabolizing glycerol to 
3-hydroxypropionaldehyde (3-HPA), which exists as 
reuterin in aqueous solutions. Interestingly, reuterin 
has been shown to have inhibitory effects against 
Gram-positive and Gram-negative bacteria, fungi 
and yeast, possibly through increasing oxidative stress 
by modulating intracellular glutathione, thereby mak-
ing it an attractive target for therapeutics.194

In another instance, the transformation of 8-pre-
nylanringenin (8-PN) from isoxanthohumol (IX) by 
gut microbes was investigated by Possemiers et al.195 

8-PN is known as a potent phytoestrogen and has 
been used to alleviate symptoms of menopause.196 

Production of 8-PN from IX, found commonly in Ta
bl
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hops and beers, has been found to be highly variable 
between individuals.197 In their study, Possemiers 
et al. carried out supplementation of E. limosum, 
a bacterium known to carry out the transformation 
from IX to 8-PN and found that germ-free rats could 
indeed be induced by E. limosum to produce greater 
levels of 8-PN from IX upon transplantation of the 
microbiota from low 8-PN producing individuals. 
This probiotic effect of E. limosum requires further 
investigation if it can be applied to humans, especially 
with respect to the potential for variations in duration 
of effect and between individuals in terms of coloniza-
tion efficiencies and other factors. The metabolic 
transformations described above add greatly to our 
understanding of the diverse array of benefits humans 
derive from gut Eubacterium spp. besides production 
of SCFAs. However, as highlighted already, further 
research is necessary to truly exploit all the potential 
benefits the Eubacterium genus has to offer.

Conclusion

The genus Eubacterium is a phylogenetically diverse 
group of microbes, a fact that makes associated taxo-
nomic assignments challenging. Regardless, many 
current and former members of this genus exhibit 
compelling associations with gut health, and, as 
a major butyrate producer and core gut microbiota 
component, are immensely important. In this 
review, we have discussed how Eubacterium spp. is 
involved in various aspects of gut health through 
important contributions in SCFA, cholesterol and 
bile acid metabolism in the gut; we have also elabo-
rated the phylogenetic characteristics of the genus 
and how it is modulated in the gut by diet and age. In 
the process we have outline how Eubacterium spp. 
play a major role in modulation of inflammation, 
regulation of immune responses, maintenance of 
barrier integrity in the gut, moderating glycemic 
response, and cholesterol homeostasis, among 
others. Strong correlations with beneficial effects in 
several clinical conditions have prompted further 
interest in the genus, with multiple species being 
considered for commercial endeavors as next gen-
eration probiotics/biotherapeutics.154,198-201 Most 
notably, efforts are underway at Caelus Health, in 
collaboration with Danish bioscience firm Chr. 
Hansen, to create oral formulations containing 
E. hallii strains as a biotherapeutic to reduce insulin 

resistance in individuals with metabolic syndromes 
and to prevent the development of T2DM.198 Given 
that the gut is a highly competitive and functionally 
non-redundant environment, recurring associations 
of Eubacterium spp. with positive clinical pheno-
types combined with a simultaneous resolution of 
its modes of action establishes a consensus on its 
positive influence on human health. However, 
further studies are required to attribute causality to 
observed associations, i.e., understanding pathogen-
esis of clinical conditions with respect to gut micro-
biota. In what remains a major caveat in gut 
microbiology research today, our understanding of 
how much the gut microbiota – across all relevant 
species – influences a clinical condition and vice 
versa is still limited. Longitudinal studies with tightly 
controlled diet regimens where the gut microbiota 
and relevant health parameters are evaluated over 
protracted time periods may be necessary to elabo-
rate such causalities. Even then, attribution of causa-
tion to specific species may prove to be difficult due 
to the tightly clustered functional niches in the gut.

A recurring motif suggests that in several clinical 
conditions, especially metabolic syndromes, diet, 
lifestyle, and other factors can induce the dysbiosis 
of the gut microbiota, which in turn creates an 
undesirable metabolic profile. The change in the 
effective proportions of these metabolites which, 
directly or indirectly modulate inflammation, bar-
rier integrity, energy homeostasis, and so on, plays 
an important role in the development and progres-
sion of disease pathogenesis. Given the complexity 
of the processes involved, host-metabolite- 
microbiota crosstalk must be approached from 
a system biology standpoint using technologies 
such as metagenomics and metabolomics. It may 
be necessary to study involved components 
together and not in isolation, with therapeutic solu-
tions aimed at modulation of all these components. 
To this end, further in vitro and in vivo character-
ization of Eubacterium spp. at the genomic, meta-
genomic and eventually at the ecological level is 
required. This will allow us to better understand 
how the relatively understudied Eubacterium spp. 
interacts with other members of the gut micro-
biome and how they are modulated by host factors 
and diet. Garnering such an understanding is cru-
cial to the successful control and prevention of 
clinical conditions using clusters of commensal 
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bacteria producing critical metabolites, as evi-
denced by Geirnhaert et al.101 Much remains to be 
understood about the metabolic activities, immu-
nomodulatory influences, and ecological role of 
Eubacterium spp., both in isolation and in combi-
nation, with other potential next-generation health- 
promoting microorganisms such as Akkermansia 
muciniphila and F. prausnitzii, to ensure its effec-
tive deployment in evidence-based gut therapeu-
tics. However, based on evidence to date, there is 
a lot of cause for optimism.
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