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Abstract

Land-use change to bioenergy crop production can contribute towards addressing the dual challenges of green-

house gas mitigation and energy security. Realisation of the mitigation potential of bioenergy crops is, however,

dependent on suitable crop selection and full assessment of the carbon (C) emissions associated with land con-

version. Using eddy covariance-based estimates, ecosystem C exchange was studied during the early-establish-
ment phase of two perennial crops, C3 reed canary grass (RCG) and C4 Miscanthus, planted on former grassland

in Ireland. Crop development was the main determinant of net carbon exchange in the Miscanthus crop, restrict-
ing significant net C uptake during the first 2 years of establishment. The Miscanthus ecosystem switched from

being a net C source in the conversion year to a strong net C sink (�411 � 63 g C m�2) in the third year, driven

by significant above-ground growth and leaf expansion. For RCG, early establishment and rapid canopy devel-

opment facilitated a net C sink in the first 2 years of growth (�319 � 57 (post-planting) and

�397 � 114 g C m�2, respectively). Peak seasonal C uptake occurred three months earlier in RCG (May) than

Miscanthus (August), however Miscanthus sustained net C uptake longer into the autumn and was close to C-

neutral in winter. Leaf longevity is therefore a key advantage of C4 Miscanthus in temperate climates. Further

increases in productivity are projected as Miscanthus reaches maturity and are likely to further enhance the C
sink potential of Miscanthus relative to RCG.
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Introduction

Global concerns surrounding the impact of anthro-

pogenic greenhouse gas (GHG) emissions on our climate

allied with challenges to global energy security are driv-

ing interest in renewable energy, including bioenergy. In

the European Union, member states have committed to

increasing the contribution of renewable energy to 20%

of total energy consumption by 2020 (EU, 2009). Further-

more, limitations identified in first-generation liquid

biofuels have engendered an increased focus on second-

generation alternatives produced from ligno-cellulosic

plant materials (Sims et al., 2010). Realisation of the

potential of bioenergy in the EU will, however, require

significant agricultural land area, estimated at between

18 and 21 million hectares (€Ozdemir et al., 2009).

Perennial rhizomatous grasses (PRGs), such as Mis-

canthus 9 giganteus and reed canary grass (RCG), confer

many advantages as potential nonfood bioenergy crops

and have received increasing attention in Europe and

the USA in recent decades (Landstr€om et al., 1996;

Lewandowski et al., 2003). Miscanthus, a C4 plant origi-

nating from East Asia, can be highly productive, yield-

ing 10–25 t dry matter ha�1 y�1 in central and northern

Europe (Lewandowski et al., 2000; Finnan & Burke,

2014), while yields of RCG, a C3 perennial grass indige-

nous to temperate regions of Europe, Asia and North

America, ranged from 5 to 12 t dry matter ha�1 y�1 in

trials in northern Europe (Landstr€om et al., 1996; Sai-

jonkari-Pahkala, 2001; Lewandowski et al., 2003; Kandel

et al., 2013). As perennial species, both Miscanthus and

RCG invest significant resources below ground, thus

building reserves for more rapid canopy development

in the spring compared with annual crops (Beale &

Long, 1995; McLaughlin & Walsh, 1998).
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High productivity in Miscanthus has historically been

attributed to the superior light-, water- and nitrogen-use

efficiency afforded by the C4 photosynthetic pathway

(Long, 1983). For example, the maximum efficiency of

solar energy conversion in C4 crops has been estimated

to be 40% higher than that of C3 species (Monteith,

1978). Furthermore, studies have highlighted the crop’s

exceptional ability to maintain high photosynthetic pro-

ductivity even in cool temperate climates (Beale & Long,

1995). This is most likely achieved through a combina-

tion of reduced susceptibility to photoinhibition and

decreased sensitivity to chilling temperatures (Beale

et al., 1996; Naidu & Long, 2004; Wang et al., 2008).

More recent studies have, however, identified

extended leaf longevity and high leaf area as the driving

factors contributing to greater productivity in Miscant-

hus. In a side-by-side comparison of field-scale stands of

Miscanthus and C4 maize (Zea mays) in the USA, Dohle-

man & Long (2009) showed that the efficiency of

captured sunlight-to-biomass conversion was almost

identical in both crops averaged over two growing sea-

sons. However, light interception efficiency was 61%

higher in Miscanthus, which developed a closed canopy

a month earlier than maize and maintained it a month

longer in the autumn. This resulted in substantial net

carbon gains for the cold-tolerant Miscanthus crop due

to enhanced leaf area duration (Dohleman & Long,

2009).

The question remains, however, as to whether Mis-

canthus can out-perform native C3 bioenergy crop candi-

dates in temperate regions in terms of productivity, leaf

longevity and net C sequestration. RCG, in particular,

grows vigorously after seed establishment and easily

out-competes weeds after the first year of establishment

(Lewandowski et al., 2003). Indeed, its competitive

advantages have allowed RCG to become an invasive

species in certain wetland areas of the mid-western and

north-western USA (Wrobel et al., 2009). To date, no

direct comparisons of Miscanthus and RCG under the

same environmental conditions have been made to

understand the relative dynamics of crop development

and C assimilation in these ecosystems. This informa-

tion would: (1) provide focus for exploiting favourable

plant traits and developing superior genotypes for

bioenergy production, (2) highlight the relative merits

of Miscanthus and RCG in different climatic zones with

varying growing seasons and (3) reveal the C balance

implications of land-use change (LUC) to these crops.

Additional factors, such as the previous land use and

the magnitude of LUC-related emissions, will signifi-

cantly impact the long-term C balance of established

bioenergy crops. The initial transition phase of LUC can

be associated with substantially increased GHG emis-

sions (Guo & Gifford, 2002; Fargione et al., 2008;

Donnelly et al., 2011; Poeplau et al., 2011; Houghton

et al., 2012), particularly if bioenergy crop yields are low

(Don et al., 2012). The time taken for the crop to achieve

maximum productivity is also likely to be a significant

determinant of the early establishment C balance.

In mature Miscanthus crops, soil C sequestration rates

of 0.4–0.66 Mg ha�1 y�1 have been reported for planta-

tions established on former croplands (Don et al., 2012;

Zimmermann et al., 2012; Poeplau & Don, 2014). Less

information is available on grasslands converted to Mis-

canthus, but limited meta-analysis data has shown an

annual carbon sequestration rate close to zero (no posi-

tive or negative effect) (Don et al., 2012; McCalmont

et al., 2016; Qin et al., 2016). Measurements of carbon

exchange in RCG plantations have provided evidence of

net C uptake in these ecosystems (Shurpali et al., 2009;

Mander et al., 2012; Lind et al., 2015); however, these

studies were largely confined to drained peat extraction

areas and there is little information on the carbon balance

of RCG crop plantations established on mineral soils.

This study presents the first side-by-side field-scale

comparison of Miscanthus and RCG to investigate com-

parative differences in crop development, leaf longevity

and ecosystem-scale C fluxes from initial establishment

to near maturity. The bioenergy crops were established

on land previously under permanent grass. Conversion

of grassland to bioenergy crops is of particular rele-

vance in Ireland and in the wider European continent

as over 90% and 35% of utilised agricultural area in Ire-

land and the EU-27, respectively, is currently used for

grass production (Central Statistics Office, 2014; Huyghe

et al., 2014). The specific aim of the study was to

address the following questions: (1) what are the C

emissions associated with the initial LUC from grass-

land, which we define as the ‘transitional phase’? (2)

What are the longer term C balance implications of

establishing Miscanthus and RCG crops on permanent

grasslands (the ‘post-establishment phase’)? (3) How

does leaf longevity in Miscanthus compare to that of an

indigenous C3 bioenergy crop and does it result in

higher net C uptake?

Materials & Methods

Site description & management

The study was carried out from late April 2009 to the end of

December 2011 at the Teagasc Environmental Research Centre,

Johnstown Castle, Co. Wexford in the south-east of Ireland

(52.3°N, 6.5°W, 67 m above sea level). This region has a

maritime temperate climate with a mean annual rainfall of

1038 mm distributed evenly across the year and a mean annual

air temperature of 10.4 °C. The seasonal range in temperature

is narrow (Fig. 1), with an average summer air temperature of
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14.9 °C and an average winter air temperature of 6.3 °C. The

prevailing wind direction is south-westerly.

The Miscanthus and RCG crops were established on two for-

mer grassland sites (2 ha and 1 ha in area, respectively)

(Fig. 2). Most of the experimental area had been maintained as

grassland for at least 37 years and was managed organically

for beef production since 2006. The Miscanthus site had been

conventionally tilled and reseeded with perennial ryegrass in

2000 and surface seeded with white clover in 2005. The RCG

site had been conventionally tilled and reseeded with perennial

ryegrass and red clover in 2005. Otherwise, historical land

management activities were comparable at both sites. The

swards received organic fertiliser in the form of cattle slurry

and farmyard manure. Grazing took place every 3–4 weeks

until October 2008. Soils in this area are variable and are classi-

fied as imperfectly drained Gleys (FAO classification: Gleyic

Cambisol) or moderately to well-drained Brown Earth soils

(Cambisol). Selected soil physical and chemical properties of

the Miscanthus, RCG and adjacent reference grassland sites are

summarised in Table 1. The wilting point, field capacity and

water content at saturation were calculated using a hydraulic

properties model (http://hydrolab.arsusda.gov/soilwater/

Index.htm) as 0.17, 0.32 and 0.59, respectively, for all sites.

On the 1st April 2009, both sites were sprayed with glypho-

sate to eradicate the extant vegetation. The soil was convention-

ally tilled using a mouldboard plough to a depth of 20 cm on

the 27th April 2009 (approximately one tenth of the Miscanthus

site) and completed on the 29th April 2009, followed by power-

harrowing on the 1st and 5th June 2009. Miscanthus rhizomes

were planted on one site on the 9th and 10th June 2009 and the

soil was consolidated using a heavy roller 1 week later. Addi-

tional herbicides were applied to the Miscanthus site in the

early establishment phase to reduce competition from grass

and broad-leaf weeds. The selective herbicide MCPA was

sprayed to control broad-leaf species (13th August 2009 and

27th July 2010) while glyphosate was applied soon after har-

vesting (5th March 2010 and 8th March 2011) to control grass

weeds. The crop was cut with a conditioner mower on the 4th

March 2010 and 4th March 2011 but the limited biomass mate-

rial that was cut was left on the ground.

The second site lay fallow until April 2010 when RCG was

established. For this, the site was power-harrowed and seeded

with RCG (Phalaris arundinacea L.) at a rate of 30 kg ha�1 on

the 15th April 2010, and then consolidated with a heavy roller

1 day later. MCPA was applied on the 29th June 2010 to reduce

competition from broad-leaf species. The RCG crop was har-

vested once during the study period, on the 12th October 2010,

while harvesting of the 2011 crop was delayed until spring

2012, which is the preferred time for harvesting. No fertilisers

were applied over the duration of the study.

Micrometeorological measurements

Ecosystem-scale CO2 fluxes were measured using an open-path

eddy covariance (EC) system commencing on the 28th April

2009 and 15th April 2010 at the Miscanthus and RCG sites,

respectively. The instrumentation was identical at both sites

and consisted of an open-path infrared gas analyser (IRGA)

(LI-7500, LI-COR Biosciences, Lincoln, NE, USA) coupled with

a 3D sonic anemometer (CSAT3, Campbell Scientific, Logan,

UT, USA). EC data were collected at a frequency of 10 Hz and

averaged over 30-minute intervals. The flux tower was located

in the north-eastern corner of the fields to maximise the fetch

in the direction of the prevailing south-westerly wind (Fig. 2).

Tower height was increased during periods of active growth to

maintain its position above the canopy while restricting the

flux footprint to the experimental area for as much time as pos-

sible. The maximum tower height was 4 m and 3 m at the Mis-

canthus and RCG sites, respectively, while the minimum sensor

to canopy height ratios were 1.47 (Miscanthus) and 1.52 (RCG).

Ancillary biometric sensors included an air temperature and

relative humidity probe (HMP45C, Campbell Scientific, Logan,

UT, USA), a net radiation sensor (NR-Lite, Kipp & Zonen,

Delft, The Netherlands) and a down-welling quantum sensor

(SKP 215, Skye Instruments Ltd., Llandrindod Wells, UK). Two

self-calibrating soil heat flux plates were installed at 8 cm soil

depth (HFP01SC, Hukseflux, Delft, The Netherlands) and aver-

aging soil temperature probes were installed at 2 cm and 6 cm

depth above the soil heat flux plates. Time domain reflectome-

ters (CS616, Campbell Scientific, Logan, UT, USA) measured

soil volumetric water content (VWC) in the upper 15 cm of soil.

Daily meteorological data (mean air temperature, total rainfall

and global solar radiation) were obtained from a Met �Eireann

synoptic weather station located 1.7 km from the field site.

Quality assurance and flux analysis

Data quality control procedures included spike removal (Vick-

ers & Mahrt, 1997), time lag compensation using a covariance

maximisation procedure and compensation for air density fluc-

tuations using the WPL term (Webb et al., 1980). The double

rotation method (Kaimal & Finnigan, 1994) was used to correct

for sonic anemometer tilt as the alternative planar fit method

requires several weeks of measurement with constant instru-

mental set-up and is often not recommended for measurements

over canopies with dynamic height variation (Moureaux et al.,

2012). Spectral attenuation effects were corrected following the

analytical methods of Moncrieff et al. (1997). Tests on developed

turbulence and stationarity were applied to the calculated fluxes

(Table 13, Mauder & Foken, 2004) and data of questionable qual-

ity (QC-flag = 2) were removed, while data of moderate quality

(QC-flag = 1) were retained but not included in the regression

analysis performed in the gap-filling procedure. Data screening

based on the results of these tests has been shown to result in a

less systematic distribution of data gaps compared to the

removal of fluxes below a derived friction velocity (u*) threshold

(Ruppert et al., 2006). Plausible limits were also applied to net

ecosystem exchange (NEE) (�50 < NEE < 30 lmol

CO2 m�2 s�1), latent heat (�20 < LE < 600 W m�2) and sensible

heat (�100 < H < 300 W m�2) fluxes.

The peak location of the flux footprint, xmax, and the dis-

tance from the flux tower which includes 90% of the source

area contributing to the measured flux, xR90, were estimated

for the prevailing south-westerly wind direction using the

Kljun et al. (2004) model as 35 m and 95 m, respectively, for

the Miscanthus site and 32 m and 87 m, respectively, for the
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RCG site. Owing to the relatively constrained field sizes,

detailed footprint analysis was conducted on half-hourly

fluxes based on the analytical Kormann & Meixner (2001)

footprint model. Since analytical models tend to overestimate

flux footprints in comparison to more complex Lagrangian

stochastic models due to the neglect of along-wind velocity

fluctuation (Kljun et al., 2003), this approach is likely to be

conservative. Sample flux footprints for the two towers at

their maximum height under unstable conditions are shown

in Fig. 2. At the maximum height, the footprint of the Mis-

Fig. 1 Mean monthly values for total rainfall (a), air temperature (b), vapour pressure deficit (VPD) (c) and soil volumetric water

content (VWC) at the Miscanthus (d) and RCG (e) sites for 2009, 2010 and 2011. The 30-year (1981–2010) mean monthly rainfall and air

temperature values for Johnstown Castle are also shown. The soil VWC at field capacity is included in (d) and (e) as dashed black lines.
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canthus tower was well conserved within the Miscanthus field

while close to 90% of the flux footprint from the RCG tower

was derived from the RCG field. At lower heights (April

2009 to August 2011 for the Miscanthus tower and April 2010

to June 2011 for the RCG tower), the flux footprints were bet-

ter confined to the experimental areas. Half-hourly data were

rejected if less than 70% of the derived footprint originated

from the respective experimental areas, similar to previous

studies (Ammann et al., 2007; Baum et al., 2008; Davis et al.,

2010; Vanderborght et al., 2010). This resulted in 17.4% and

14.9% of fluxes being rejected overall for the Miscanthus and

RCG sites, respectively.

The positioning of the EC sensors in relation to the inertial

boundary layer was also monitored due to the relatively low

measurement heights. The thickness of the inertial boundary

layer, calculated according to equation 5 of Munro & Oke

(1975), reached maximum values of 4.9 m, 4.9 m and 7.0 m in

2009, 2010 and 2011, respectively, for Miscanthus and values of

2.8 m and 3.7 m in 2010 and 2011, respectively, for RCG. The

lower limit of the inertial boundary layer was estimated to

occur between (z–d) = 5z0 and (z–d) = 10z0 (Garratt, 1992),

where z is the height above ground, d is the zero-plane dis-

placement height and z0 is the roughness length of the crop

surface. This yielded maximum values in the range 1.1–1.6 m,

1.1–1.5 m and 3.0–4.2 m in 2009, 2010 and 2011, respectively,

for Miscanthus and values of 0.8–1.1 m and 1.7–2.5 m in 2010

and 2011, respectively, for RCG. These estimates suggested that

the sensors were within the appropriate inertial boundary layer

for the vast majority of the experiment.

The quality of the CO2 flux estimates was assessed by exam-

ining energy balance closure (EBC) at the site. This routine pro-

vides an independent check of the degree to which turbulent

Table 1 Physical and chemical characteristics of the soils at the Miscanthus, RCG and adjacent reference grassland sites in autumn

2011. Bulk density (BD), texture, pH and total nitrogen (TN) are reported for 0–15 cm soil depth. The soils at all sites are classified as

loam. Total carbon (TC) and total organic carbon (TOC) are shown for three depths: 0–15 cm (A), 15–30 cm (B) and 30–45 cm (C)

BD (g cm�3) Sand (%) Silt (%) Clay (%) pH TN (%)

TC (%) TOC (%)

A B C A B C

Miscanthus 0.98 50 32 18 6.4 0.3 3.2 2.9 1.5 2.4 2.2 1.1

Grassland reference 0.99 51 32 18 6.5 0.3 2.9 2.9 2.1 2.2 2.2 1.5

RCG 0.97 48 33 19 6.7 0.3 2.8 2.5 1.9 2.2 1.9 1.4

Grassland reference 0.88 52 30 19 6.2 0.3 2.7 2.5 2.1 2.0 1.8 1.5

Fig. 2 Experimental site map showing the location and dimensions of the Miscanthus and RCG field sites and surrounding grassland

fields, as well as a wind rose displaying the distribution of mean wind direction for the site. The wind rose was generated using the

freeware WRPLOT View (http://weblakes.com). Contributions from wind speed classes 0.5–2.1 (red), 2.1–3.6 (orange), 3.6–5.7 (yel-

low), 5.7–8.8 (green) and ≥ 8.8 m s�1 (dark green) are depicted. Sample footprints are shown for the Miscanthus and RCG eddy

covariance towers at their maximum height under unstable conditions (z/L = �0.06, where z is the height and L is the Monin-Obu-

khov length). Contour lines represent the crosswind integrated cumulative contribution (%) to the estimated footprint.
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fluxes are captured in the boundary layer and may highlight

significant bias in measurements (Twine et al., 2000). Energy

balance closure was tested by comparing half-hourly and daily

sums of net radiation with the sum of good quality (QC-

flag = 0, 1) LE and H fluxes and energy storage terms using the

equation

Rn ¼ LEþH þ Gþ Ss þ Sp ð1Þ

where Rn is net radiation, LE is the latent heat flux, H is the

sensible heat flux, G is the soil heat flux, Ss is soil heat storage

above the heat flux plates and Sp is the energy stored in photo-

synthate. Heat storage in the soil surface layer (of depth Dz)
was calculated as

Ss ¼ DTðhvqwcw þ qscsÞDz
Dt

ð2Þ

where DT is the change in average soil temperature above the

heat flux plates over the time interval Dt, hv is the soil volumet-

ric water content, qw is the density of water, cw is the specific

heat capacity of water, qs is the soil bulk density and cs is the

specific heat capacity of soil [a value of 837 J kg�1 K�1 was

used for cs (Scott, 2000)]. The energy captured during

photosynthesis and stored in biomass, Sp, was computed by

equating photosynthetic fixation of 2.5 mg CO2 m�2 s�1 to an

energy flux of 28 W m�2 (Meyers & Hollinger, 2004). For this

calculation, photosynthetic rates were based on gross primary

productivity (GPP) estimates calculated by subtracting mod-

elled total ecosystem respiration (TER) from measured NEE.

Heat storage in plant biomass and canopy air was not mea-

sured and considered minor relative to the other terms in equa-

tion 1, particularly in the case of Miscanthus which had a

sparse, open canopy for much of the study.

The regression analysis of half-hourly energy fluxes yielded

a slope of 0.945 � 0.004 [95% confidence interval (CI)] and

intercept of 5.2 W m�2 for the Miscanthus site and a slope of

0.905 � 0.004 and intercept of 6.3 W m�2 for the RCG site

(Fig. 3). Calculating daily sums of energy fluxes resulted in a

small increase in the slope for Miscanthus to 0.963 � 0.013

and a larger increase in the slope for RCG to 0.964 � 0.016

(Fig. 3). This suggests that there was a small contribution

from additional nonestimated storage terms, such as heat stor-

age in plant biomass or canopy air, to the energy balance of

these ecosystems. These contributions tend to be negligible on

a daily scale (Oncley et al., 2007). Although these slopes were

significantly different from one, they compare well with

Fig. 3 Energy balance closure on a half-hourly timescale for Miscanthus (a) and RCG (b) and a daily timescale for Miscanthus (c) and

RCG (d) in 2011. The dashed black lines represent the regression lines [y = 0.95x + 5.24, R2 = 0.96 for Miscanthus (half-hourly);

y = 0.91x + 6.3, R2 = 0.96 for RCG (half-hourly); y = 0.96x + 0.2, R2 = 0.99 for Miscanthus (daily); y = 0.96x + 0.04, R2 = 0.97 for RCG

(daily)]. The solid black lines indicate a 1 : 1 relationship. Daily sums were calculated using the available data in a 24-h period.
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reported ranges of EBC of 0.53–0.99 (Wilson et al., 2002) and

0.70–0.94 (Stoy et al., 2013) and suggest that the vast majority

of the available energy was accounted for. Consequently, tur-

bulent energy exchange was satisfactorily resolved by the EC

measurement system.

In addition, cospectral analysis of the high frequency data

was performed to assess the frequency response of the EC

system. Fast Fourier transforms were applied to the 10 Hz

data to yield full cospectra, which were subsequently reduced

into exponentially spaced frequency bins and ensemble-aver-

aged. Normalised, ensemble-averaged and frequency-

weighted cospectra for both sites are presented in Fig. 4 for

unstable conditions and compared with the universal theoreti-

cal Kaimal cospectral function (Moncrieff et al., 1997). The

shapes of the measured cospectra are generally consistent

with the Kaimal curve, except for small deviations from the

theoretical �4/3 slope in the inertial subrange. This result is

indicative of some small-scale dampening of the high fre-

quency signal, however, the flux postprocessing routines

employed included a correction for high frequency losses. The

CO2 spectral correction factor (SCF) for Miscanthus had a

median of 1.17 and mean � 95% CI of 1.19 � 0.001. For RCG,

the median was 1.15 and the mean was 1.16 � 0.002. These

values fall in the expected range of CO2 correction factors

(1.04–1.25; Aubinet et al., 2001) and compare well with an SCF

of 1.12 for a similar open-path system (Haslwanter et al.,

2009).

Gaps in the flux data created by measurement failures and

data quality analysis procedures were filled using semiempirical

gap-filling techniques. TER was modelled by relating soil tem-

perature to nocturnal measured NEE using the exponential

Lloyd & Taylor (1994) equation

TER ¼ R10e
E0ð1=ð283:15�T0Þ�1=ðT�T0ÞÞ ð3Þ

where R10 is ecosystem base respiration at a reference tempera-

ture of 10 °C, E0 is an activity energy parameter, T0 was set to

227.13 K as in the original study and T is soil temperature (K).

Significant seasonality has been demonstrated in the E0 param-

eter, particularly in summer active ecosystems (Reichstein et al.,

2005), and therefore bimonthly best fit estimates of E0 were

obtained in each year using equation 3. These short-term

bimonthly estimates were then averaged over each year to

derive more realistic long-term E0 values. Temporal variability

in the R10 parameter was also considered. For each available

nocturnal NEE value and adopting the relevant long-term E0

value, equation 3 was rearranged to provide an estimate of R10

in that half-hourly period. The weekly running mean, R10Mean,

was then computed and employed instead of R10 in equation 3

above to incorporate time-varying influences on R10 such as

soil moisture status, plant phenology etc. The dependence of

nocturnal TER on temperature was extended to daytime and

estimates of TER were obtained for all 30-minute periods in

this way.

GPP was initially computed by subtracting the estimated

TER from measured daytime half-hourly NEE. Daytime GPP

values were then pooled for bimonthly periods and subdivided

into fixed 4 °C temperature bins within each bimonthly period.

GPP model parameters were then derived for each subset using

a rectangular hyperbola function (Falge et al., 2001)

GPP ¼ aQPPFDAmax

aQPPFD þ Amax
ð4Þ

where a is the ecosystem quantum (photon) yield (mol CO2

[mol photon]�1), QPPFD is the photosynthetic photon flux

density (lmol [photon] m�2 s�1) and Amax is the maximum

assimilation rate (lmol CO2 m�2 s�1).

The net ecosystem carbon balance (NECB) is defined as the

net rate of C accumulation or loss from an ecosystem, taking

account of all physical, biological and anthropogenic sources

and sinks of carbon in an ecosystem (Chapin et al., 2006).

NECB was calculated as �ΣNEE � Charvest, where Charvest is

the carbon removed from the ecosystem at harvest, assuming

that contributions from carbon monoxide, methane, volatile

organic carbon (VOC), dissolved carbon and particulate carbon

were negligible.

Fig. 4 Normalised ensemble-averaged cospectra of CO2 and H2O in unstable conditions plotted against normalised frequency, f, for

the Miscanthus (a) and RCG (b) sites. The dashed grey curve and solid grey line represent the theoretical universal Kaimal cospectra

and the �4/3 slope predicted by Kolmogorov’s Law, respectively (Kaimal et al., 1972).
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An assessment of the uncertainty associated with annual

CO2 flux estimates was performed in a similar way to Black

et al. (2007). Firstly, the contribution of uniform systematic

errors to the measured fluxes was evaluated following Goulden

et al. (1996). Assuming spectral similarity between latent heat,

sensible heat and CO2 flux, the imbalance between available

energy and measured latent and sensible heat, as calculated in

the long-term energy balance, was used as an approximation of

the underestimation of ecosystem exchange by the EC mea-

surement system. Secondly, sampling uncertainty errors, asso-

ciated with the imputation of half-hourly missing data during

gap-filling procedures, were assessed in a similar way to Falge

et al. (2001). Artificial datasets were created with 10, 25, 35 and

45% of the data replaced by gaps and gap-filling procedures

were followed to fill the artificial gaps. The mean bias error

was calculated as the mean difference between measured and

calculated values for the complete data series. The final uncer-

tainty estimate was computed for each measured or gap-filled

half-hourly flux based on either the uniform systematic error

derived from the energy balance closure, expressed as a per-

centage, or the mean bias error arising from sampling uncer-

tainty (gap-filling).

Soil respiration

Soil respiration was monitored using a closed dynamic

chamber coupled with a portable infrared gas analyser (Envi-

ronmental Gas Monitor EGM-4, PP Systems, Hitchin, UK).

Chamber measurements were made on bare soil at 10 sampling

points in the Miscanthus and RCG sites, yielding an estimate of

the flux of CO2 from the soil surface which combines contribu-

tions from autotrophic (plant root) and heterotrophic (microbes

and soil fauna) components. Measurements were carried out

from early June 2010 to early September 2011 at approximately

weekly intervals during the growing season and monthly inter-

vals during the winter. Soil temperature and VWC (0–7 cm)

were recorded at each sampling point using a WET sensor

(Delta-T Devices, Cambridge, UK).

Crop analysis

Above-ground Miscanthus biomass was calculated as the pro-

duct of average shoot density and total dry biomass (leaf +

stem) per shoot sampled prior to harvesting and at least

monthly during the growing seasons of 2010 and 2011. Shoot

density estimates (shoots m�2) were based on the number of

shoots counted in a quadrat of area 2.1 m2 at 10 random loca-

tions in the Miscanthus plantation. Total dry biomass per shoot

was measured by cutting a minimum of 35 random shoots at

ground level during each sampling event and drying the leaf

and stem biomass at 70 °C to constant weight. Below-ground

biomass was sampled on three occasions (February 2010, Jan-

uary 2011 and September 2011) by excavating all below-ground

plant material associated with three randomly located Miscant-

hus plants to a depth of 40 cm. Roots, live rhizomes and dead

rhizomes were separated, washed free of soil over a 2 mm sieve

and dried to constant weight at 70 °C. Below-ground biomass

was up-scaled from the plant scale to a per unit area (m�2) basis

using calculated above- to below-ground ratios and average

above-ground biomass on each individual sampling date. The

contribution of understory vegetation was assessed by clipping

all above-ground material in quadrats of area 0.25 m2 placed

inside the large Miscanthus quadrats with subsequent determi-

nation of dry matter yields after oven drying at 70 °C.

Above-ground RCG biomass was assessed by cutting all

vegetation at ground level in quadrats of area 0.25 m2 ran-

domly positioned at five locations within the crop. Sampling

was carried out in September 2010, prior to harvest in October

2010 and in June and September 2011. A root auger of volume

750 cm3 (Eijkelkamp Agrisearch Equipment, Giesbeek, The

Netherlands) was used to sample below-ground biomass to a

depth of 45 cm in January and October 2011 at 4 random loca-

tions in the crop. The intact soil cores were mixed with water

in the laboratory, washed over a 0.2 mm sieve and dried at

70 °C to constant weight.

Miscanthus green leaf area index (GLAI) was determined by

firstly establishing an allometric relationship between leaf area

and the product of leaf length and width, following Clifton-

Brown et al. (2000). The length and width of leaves harvested

on three different occasions were measured and images of the

leaves were captured with a flatbed scanner (CanoScan LiDE

35, Canon, Tokyo, Japan). Leaf area estimates were obtained

using the open-source software IMAGEJ (http://imagej.nih.gov/

ij/) to generate the linear regression equation

leaf area ¼ 0:76 ðlength�widthÞ ð5Þ
where both measured quantities are in cm2, R2 = 0.93 and

n = 295. This equation was applied to leaf length 9 width mea-

surements made during above-ground biomass sampling. Mis-

canthus GLAI was computed as the product of green leaf area

per shoot and shoot density. The GLAI of understory vegeta-

tion was estimated based on an allometric relationship between

dry biomass weight and calculated leaf area.

RCG leaf area index (LAI) was monitored with a Sunscan

Canopy Analysis System (Delta-T Devices, Cambridge, UK) at

approximately monthly intervals, providing a measure of the

total leaf area per unit ground area. Individual measurements

made at 40 locations within the crop were averaged on each

sampling date. These measurements involved a non-destructive

sampling technique based on the fraction of photosynthetically

active radiation (PAR) intercepted by the canopy (Campbell &

Norman, 1989). Therefore, RCG LAI values included contribu-

tions from both live and senescent leaves as both influence the

transmission of light through the canopy.

Results

Environmental conditions

Mean annual air temperatures were close to the 30-year

mean temperature in 2009 (10.0 °C) and 2011 (10.4 °C)
but dipped in 2010 to 9.3 °C. Two prolonged periods of

cold weather were experienced during these years

(December 2009 to February 2010 and November 2010

to January 2011) (Fig. 1). In addition, summer mean
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temperature was 7% lower than the long-term mean in

2011. Rainfall totals were highly variable, with higher

than average rainfall in 2009 (1427 mm), close to the

average in 2010 (972 mm) and below average in 2011

(839 mm). Exceptionally wet summer months charac-

terised 2009, with atypically high rainfall also occurring

in November. The mean monthly soil VWC at the Mis-

canthus site was high for much of the study, only reduc-

ing below field capacity (0.32 m3 m�3) in August 2010

and August and September 2011. Soil VWC in the RCG

site was below field capacity from May to August of

each year but remained above field capacity

(0.32 m3 m�3) outside of the peak growth period. In

general, soil VWC was higher in Miscanthus than RCG,

most obviously from May to July 2011. Vapour pressure

deficit (VPD) was always low, ranging from a monthly

average of 0.06 kPa in February 2011 to a maximum

monthly average of 0.37 kPa in June 2009 and August

2010 (Fig. 1).

Crop development

Establishment and growth of the Miscanthus crop was

slow in the first 2 years after planting. Prior to the first

harvest in March 2010, above-ground dry biomass

totalled just 10 � 4.0 (standard error of the mean,

SEM) g m�2 while below-ground biomass stocks were

estimated at 13.8 � 7.1 g m�2 (Table 2). Following the

growing season of 2010, above-ground biomass reached

a seasonal maximum of over 100 � 20.2 g m�2 in

September and a maximum GLAI of 0.55 �
0.05 m2 m�2 was recorded in October (Fig. 5). The con-

tribution of understory vegetation to ecosystem pro-

ductivity was substantial at this time. Above-ground

biomass stocks of understory vegetation, dominated

mostly by grass species (Agrostis stolonifera, Poa trivialis

and Alopecurus geniculatus), totalled 110 � 21.7 g m�2

in September 2010, with an associated GLAI of 3.56 �
0.70 m2 m�2.

Table 2 Above- and below-ground biomass stocks in the Miscanthus and RCG crops in g (dry matter) m�2. Total above- and below-

ground stocks in Miscanthus are divided into their constituent pools. Values in parentheses represent the standard error of the mean

Date

Above-ground (g m�2)

Live Rhizome

Below-ground (g m�2)

Stem Leaf Total Dead Rhizome Root Total

Miscanthus

February 2010 8.2 (3.3) 1.6 (0.7) 9.9 (4.0) 10.7 (6.2) 0 3.0 (0.9) 13.8 (7.1)

September 2010 63.9 (17.3) 36.6 (5.2) 100.5 (20.2)

January 2011 33.1 (13.9) 6.5 (2.2) 39.6 (16.1) 73.6 (3.8) 9.3 (2.1) 22.3 (2.7) 105.2 (8.5)

March 2011 53.3 (15.2) 4.9 (1.4) 58.2 (16.4)

June 2011 52.3 (23.3) 31.5 (9.2) 83.8 (32.5)

September 2011 1001.6 (362.3) 308.9 (102.6) 1310.5 (464.6) 331.1 (138.4) 16.0 (6.3) 63.7 (21.8) 410.8 (166.4)

Reed Canary Grass

September 2010 653.0 (76.4)

October 2010 589.3 (28.5)

January 2011 489.0 (46.3)

June 2011 675.4 (93.9)

September 2011 706.4 (61.2) 834.5 (72.5)

Fig. 5 Temporal pattern of green leaf area index (GLAI) in Miscanthus and leaf area index (LAI) in RCG during the 2010 and 2011

growing seasons. Vertical bars represent the standard error of the mean.
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Following initial slow development in 2011, growth

rates increased exponentially towards the end of the

summer, yielding 1311 � 465 g m�2 in late September

2011. GLAI increased steadily over this time (Fig. 5,

Table 2). Above-ground crop expansion was facilitated

by a four-fold increase in below-ground biomass

between January and late September 2011 when total

below-ground Miscanthus biomass was 410.8 �
166.4 g m�2, comprising 80.6% live rhizome, 3.9% dead

rhizome and 15.5% root (Table 2). Correspondingly,

stocks of understory vegetation declined, associated with

herbicide application in spring 2011 and increased com-

petition fromMiscanthus plants. Estimated above-ground

biomass from weeds was 5.8 � 2.2 g m�2 and 14.5 �
6.3 g m�2 in late June and late September 2011, respec-

tively, while their GLAI was calculated as 0.19 �
0.07 m2 m�2 and 0.47 � 0.20 m2 m�2 at the same times,

representing significant reductions from 2010 values.

In contrast with the slow establishment of Miscanthus,

rapid growth was observed in the new RCG plantation

after sowing in mid-April 2010. A dense green canopy

developed early in the first growing season resulting in

a seasonal maximum LAI of 8.8 � 0.4 m2 m�2 at the

start of August 2010 (Fig. 5). A reduction in LAI was

then observed as the crop senesced. At the time of the

first harvest in October 2010, 589 � 29 g m�2 had accu-

mulated in above-ground biomass and the LAI was

6.5 � 0.4 m2 m�2. In the second year of establishment,

above-ground growth began earlier than in the conver-

sion year and, by early June 2011, a growing season

maximum LAI of 5.1 � 0.2 m2 m�2 was recorded and

above-ground biomass totalled 675 � 94 g m�2. Flower-

ing and senescence occurred earlier in 2011 than in 2010

with the result that, by August 2011, the crop had com-

pletely senesced. Significant below-ground biomass

stocks were recorded in the RCG crop in the second

year of establishment (Table 2), with the maximum

below-ground stock in September 2011 (835 �
73 g m�2) exceeding above-ground biomass estimates.

Understory vegetation made a minor contribution to

above-ground biomass in the RCG ecosystem, account-

ing for just 3.4% and 0.5% of total above-ground bio-

mass in June and late September 2011, respectively.

Carbon fluxes

Flux measurements at the Miscanthus site began 1 day

before the majority of the grassland field was tilled.

Ecosystem exchange of carbon was dominated by respi-

ratory fluxes in the first month post-disturbance. Half-

hourly NEE fluxes � SEM averaged 4.0 � 0.1, 3.3 � 0.1,

3.3 � 0.1 and 2.7 � 0.1 lmol CO2 m�2 s�1 in the first

(a) (b)

(d) (e)

(c)

Fig. 6 Diurnal course of half-hourly fluxes of net ecosystem carbon exchange in lmol CO2 m�2 s�1 in the Miscanthus ecosystem dur-

ing 2009 (beginning in late April) (a), 2010 (b) and 2011 (c) and in the RCG ecosystem during 2010 (beginning in mid-April) (d) and

2011 (e). Dashed vertical dark blue lines mark the ‘break-even point’ at which cumulative NEE becomes negative (net C uptake).

Dashed vertical red lines indicate the timing of the end of net C uptake.
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4 weeks following tillage, respectively, with positive

fluxes indicating a net release of C to the atmosphere.

Monthly cumulative NEE � uncertainty amounted to

104.7 � 3.1, 62.7 � 2.7 and �12.1 � 3.1 g C m�2 in the

first 3 months, respectively, post-tillage, representing

significant initial net losses of carbon from the

ecosystem.

A small recovery in photosynthetic activity was

apparent in subsequent months, concurrent with the

slow development of the newly-established Miscanthus

crop and the emergence of understory vegetative spe-

cies prompted by a flush of germination after the initial

soil disturbance. However, seasonal maximum rates of

instantaneous net C assimilation, recorded in mid-Octo-

ber 2009, were no greater than �15 lmol CO2 m�2 s�1

(Fig. 6). The magnitude of photosynthetic uptake was

similarly modest in 2010, peaking at �17 lmol

CO2 m�2 s�1 in late September. The seasonal pattern of

NEE changed dramatically in 2011, however, concomi-

tant with significant increases in above-ground Miscant-

hus biomass, large-scale leaf expansion and higher

GLAI. Maximum instantaneous rates of net C assimila-

tion were �30 to �35 lmol CO2 m�2 s�1 between mid-

August and late September 2011.

Measurements of NEE in the RCG crop began the

same day the site was harrowed and seeded in mid-

April 2010. Early half-hourly fluxes of NEE were domi-

nated by ecosystem respiration but C uptake became

evident from mid-May onwards (Fig. 6). Weekly-aver-

aged NEE was 2.6 � 0.1, 1.7 � 0.1, 0.8 � 0.1 and

�0.2 � 0.1 lmol CO2 m�2 s�1 in the first 4 weeks fol-

lowing planting, respectively. As a result, the ecosystem

represented a net source of carbon over the first month

(cumulative NEE was 33.3 � 2.4 g C m�2) but switched

to a net sink during the second (�88.0 � 4.8 g C m�2)

and third month (�127.3 � 13.9 g C m�2).

Rapid establishment and extensive early canopy

development in the RCG crop accompanied strong pho-

tosynthetic activity early in the first growing season.

Just over 2 months after planting (late June 2010), a sea-

sonal maximum NEE of �35 lmol CO2 m�2 s�1 was

recorded. Net C uptake continued until late September

2010 at a decreasing rate (Fig. 6). Winter NEE fluxes

were small as a result of the exceptionally cold tempera-

tures recorded from November 2010 to January 2011.

However, photosynthetic activity resumed when daily

mean temperatures began to exceed about 5 °C in

February 2011. Net ecosystem C accumulation contin-

ued until a seasonal maximum NEE of �38 lmol

CO2 m�2 s�1 was recorded in mid-May 2011, after

which rates of C uptake declined.

Daily fluxes of TER and GPP are shown in Fig. 7.

Maximal daily values of GPP in the Miscanthus crop

increased from �7.3 and �9.2 g C m�2 d�1 in Septem-

ber 2009 and June 2010, respectively, to �14.1

g C m�2 d�1 in August 2011. Maximal daily TER was

10.0, 9.5 and 7.4 g C m�2 d�1 in September 2009, June

2010 and July 2011, respectively for Miscanthus. In the

RCG crop, maximal daily GPP values of �17.6 and

�16.3 g C m�2 d�1 were recorded in late June 2010 and

Fig. 7 Daily total ecosystem respiration (TER) (light grey area), daily gross primary productivity (GPP) (dark grey area) and cumula-

tive net ecosystem exchange (NEE) (solid black line) over the duration of the Miscanthus (a) and RCG (b) studies. Cumulative NEE

was reset to zero at the end of each calendar year (indicated by a dashed vertical grey line). Measured soil respiratory (SR) fluxes are

also shown (black triangles), representing below-ground respiration from both autotrophic and heterotrophic sources. Vertical bars

represent the standard error of the measurement means.
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mid-May 2011, respectively, while maximal daily TER

values of 9.2 and 7.6 g C m�2 d�1 were observed in

mid-July 2010 and 2011, respectively. Higher TER val-

ues were generally associated with warmer soil temper-

atures and higher ecosystem productivity.

The cumulative effect of the measured NEE fluxes

over the course of the study is also shown in Fig. 7. In

the Miscanthus crop, cumulative NEE was

183 � 28 g C m�2 from late April to the end of Decem-

ber 2009, 13 � 45 g C m�2 in 2010 and �411 �
63 g C m�2 in 2011 (Table 3). GPP increased from

�797 g C m�2 in 2009 to �1684 g C m�2 in 2011.

Cumulative TER peaked in 2010 (1514 g C m�2) and

decreased in 2011 to 1273 g C m�2, concomitant with

below average summer temperatures. In the RCG crop,

cumulative NEE values were �319 � 57 g C m�2 from

mid-April to the end of December 2010 and

�397 � 114 g C m�2 during 2011. An increase in GPP

was observed from the conversion year

(�1430 g C m�2, 8½-month period) to the second year

of establishment (�1708 g C m�2), while TER also

increased over this period from 1112 to 1311 g C m�2.

The ‘break-even’ point at which cumulative NEE

became negative (net C uptake) occurred in early Octo-

ber in 2010 and late June in 2011 for Miscanthus (Fig. 6).

For RCG, the ‘break-even’ point occurred much earlier

in the year than for Miscanthus: in early June in the con-

version year (2010) and late February in 2011. With

regard to winter fluxes, net C uptake did not cease in

Miscanthus until mid-October and mid-November in

2010 and 2011, respectively, and the Miscanthus ecosys-

tem subsequently remained relatively C-neutral until

year end. In contrast, net C loss was observed from late

October onwards in the conversion year for RCG and at

a higher rate in 2011 from late September onwards.

The net rate of long-term C accumulation in an

ecosystem is better described by the NECB. Since no

removal of C through harvesting occurred during the

Miscanthus experiment, the cumulative NEE values

quoted for 2009, 2010 and 2011 are representative of

the NECB of this ecosystem. For the RCG crop, the

NECB was calculated as 66 � 58 g C m�2 (a net C

sink), while the NECB for the second year of RCG

establishment was 397 � 114 g C m�2, as no biomass

was harvested in this year. These values assume that

contributions from leaching, methane, VOC, carbon

monoxide and particulate carbon were negligible.

Leaching of dissolved organic carbon (DOC) and dis-

solved inorganic carbon (DIC) are likely to be the most

significant of these nonestimated fluxes (Osborne et al.,

2010; Smith et al., 2010). Kindler et al. (2011) reported

average DOC and biogenic DIC losses from European

croplands of 4.1 � 1.3 and 14.6 � 4.8 g C m�2 y�1,

respectively. This study included an Irish cropland

(Carlow) with well-drained, sandy loam soil which lost

2.6 � 0.5 and 15.2 � 4.1 g C m�2 y�1 as DOC and bio-

genic DIC, respectively. Following tillage disturbance

of a grassland lysimeter at Johnstown Castle with com-

parable soil to the Miscanthus and RCG sites (low to

medium drainage capacity), DOC leaching amounted

to 1.6 g C m�2 over a 33-week period (�O. N�ı Choncub-

hair, B. Osborne, K. Richards and G. Lanigan, unpub-

lished results). While such C losses comprise a small

fraction of the annual NEE estimates for Miscanthus

and RCG in 2011, their significance for the long-term

NECB is far greater.

Based on chamber measurements, soil respiration (be-

low-ground autotrophic and heterotrophic respiration)

accounted for the majority of TER, with small contribu-

tions from leaf and stem respiration (Fig. 7). This was

particularly evident in 2011 when significant below-

ground biomass had developed in both crops. Soil res-

piration in Miscanthus varied from 1.3 � 0.1

(SEM) g C m�2 d�1 in December 2010 to 7.7 �

Table 3 Annual cumulative fluxes of gross primary productivity (GPP), total ecosystem respiration (TER), net ecosystem exchange

(NEE) and net ecosystem carbon balance (NECB) for the Miscanthus and RCG ecosystems

GPP TER NEE* � uncertainty NECB† � uncertainty

Miscanthus

28th Apr 2009 – 31st Dec 2009

(Ploughing – year end)

�797 979 183 � 28 �183 � 28

2010 �1501 1514 13 � 45 �13 � 45

2011 �1684 1273 �411 � 63 411 � 63

RCG

15th Apr 2010 – 31st Dec 2010

(Harrowing/planting – year end)

�1430 1112 �319 � 57 66 � 58

2011 �1708 1311 �397 � 114 397 � 114

*Positive NEE values represent a net release of C to the atmosphere, negative values a net uptake of C by the ecosystem.

†NECB = �ΣNEE � Charvest where Charvest is the carbon removed from the ecosystem at harvest.
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0.9 g C m�2 d�1 in July 2011. In RCG, fluxes ranged

from 0.9 � 0.1 in January 2011 to 8.7 � 1.0 g C m�2 d�1

in July 2011. During intervals of active RCG growth and

slow Miscanthus development, soil respiration in RCG

exceeded that of Miscanthus, most notably in autumn

2010 and in April and May 2011. Outside of these peri-

ods, soil respiration fluxes were comparable in both

ecosystems.

Controls on ecosystem carbon fluxes

Net assimilation of carbon by the Miscanthus ecosystem

was closely related to crop development during the

growing season, as shown in Fig. 8(a). When Miscanthus

GLAI values were 0.5 m2 m�2 or lower, gross photosyn-

thesis was cancelled out by a comparable ecosystem res-

piration rate and monthly sums of NEE fluctuated

around zero. As leaf expansion progressed and a greater

fraction of incident light was intercepted by the Miscant-

hus crop, large increases in monthly NEE were recorded,

reaching a peak of �161.8 g C m�2 during August 2011.

A strong positive relationship was observed between

monthly sums of TER and GPP for much of 2009 and

2010 and the winter months of 2011 (Fig. 8b). Notable

deviations from a 1 : 1 linear relationship in May and

June 2009 correspond to significant reductions in photo-

synthetic capacity after conventional inversion tillage.

Monthly TER also exceeded monthly GPP in September

2009. This month was characterised by a 3-week period

when rainfall was significantly reduced (total 1.2 mm)

after a summer of exceptionally wet weather. In addi-

tion, respiration outweighed photosynthesis in March

and April 2010 and in April 2011 following systemic

herbicide application. However, the largest departures

from slopes close to unity were observed in the growing

season of 2011, when GPP was approximately 1.5 times

greater than TER.

The relationship between monthly sums of TER and

GPP in the RCG ecosystem is shown in Fig. 9(a) for

2010 and 2011. A strong positive association was

observed between the two variables in both years, with

respiratory fluxes representing roughly 50% of GPP

across the full measurement period. The only months

when TER exceeded GPP were April 2010 (after plant-

ing), November – December 2010 and October –
December 2011. The impact of soil VWC on monthly

TER fluxes in the RCG crop can be seen in Fig. 9(b). A

negative relationship was evident in 2010 as VWC

increased and reached values in excess of 0.4 m3 m�3,

presumably due to oxygen-limitation. Monthly sums of

TER in 2011 (drier year) were comparable to 2010 val-

ues at high moisture contents, but when soil VWC

decreased below a mid-range level (~ 0.26 m3 m�3), a

positive relationship was observed between TER and

VWC.

Discussion

In the discussion below, we address the three questions

posed, relating to (1) the transitional-phase C fluxes, (2)

the postestablishment phase C fluxes associated with

the Miscanthus and RCG crops and (3) the role of leaf

longevity in regulating net C exchange. We discuss how

our results compare with previous studies involving

land-use transitions and examine the implications of

our findings for bioenergy crop selection.

Fig. 8 Monthly sums of net ecosystem exchange (NEE) in the Miscanthus ecosystem are plotted against green leaf area index (GLAI)

for 2010 and 2011 in (a). Panel (b) shows the correlation for the Miscanthus ecosystem of monthly sums of total ecosystem respiration

(TER) with monthly sums of gross primary productivity (GPP), plotted in absolute values (|GPP|) to facilitate the comparison. The

black solid line indicates a 1 : 1 relationship while the dashed lines represent regression lines: 2009 (black line) y = 0.78x + 39.6,

R2 = 0.58; 2010 (dark grey line) y = 0.93x + 9.6, R2 = 0.97; 2011 (light grey line) y = 0.40x + 49.3, R2 = 0.85. Months showing deviations

from the 1 : 1 line are marked with their respective month number in the calendar year.
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Carbon fluxes during land-use transition to bioenergy
crops

Significant carbon emissions and changes in SOC have

been attributed to land-use transitions such as defor-

estation and conversion to cropland (Davidson & Acker-

man, 1993; Houghton et al., 2012; Poeplau & Don, 2013).

Net C losses in the early stage of LUC can arise as a

result of diminished photosynthetic capacity following

herbicide application, enhanced mineralisation after til-

lage as well as reduced C uptake while the new crop

develops to full maturity.

Table 4 summarises findings from previous research

on C fluxes during land-use transitions. In a reseeding

experiment in Johnstown Castle, cumulative TER from

a grass sward with similar soil type to the bioenergy

crop sites was 278 � 29 g C m�2 in the month follow-

ing herbicide application (�O. N�ı Choncubhair, B.

Osborne, K. Richards and G. Lanigan, unpublished

results). Including photosynthetic uptake (albeit at a

diminishing rate) would reduce this value signifi-

cantly. For example, Zenone et al. (2011) recorded a

cumulative NEE of 19–46 g C m�2 in the month after

herbicide application to long-term grassland. However,

further variable net C losses occur in the posttillage

period, dependent on the former land use, environ-

mental conditions and tillage intensity. Cumulative

NEE in the first 3 months posttillage in the Miscanthus

ecosystem was 155.4 � 8.9 g C m�2 and falls in the

mid-range of estimated short-term tillage-induced

emissions. These losses were primarily driven by min-

imal photosynthetic activity and slow above-ground

development of the rhizome-propagated plants. This

slow establishment is typical of Irish and many north-

ern European trials where 3–5 years is generally

required for full establishment (Lewandowski et al.,

2000; Clifton-Brown et al., 2007).

Following RCG planting in April, net C losses of

33.3 � 2.4 g C m�2 were recorded in the first month.

However, the ecosystem became a strong net C sink

after this. A number of factors may have contributed

to this result. Firstly, the RCG site had been ploughed

1 year previous to crop establishment. Therefore, any

increased mineralisation of SOC made available by til-

lage is most likely to have occurred in the months fol-

lowing the initial soil disturbance (Vellinga et al., 2004;

Willems et al., 2011). Secondly, a high seeding rate was

employed to guarantee successful establishment.

Thirdly, RCG is considered a highly competitive plant

that grows rapidly and pre-empts the development of

other vegetation early in the growing season (Lavergne

& Molofsky, 2004). For example, Adams & Galatow-

itsch (2005) highlighted a shift from a low root:shoot

ratio (< 1) in the first 4 months of development to a

higher ratio (> 2) in the remainder of the 2-year study,

which enabled RCG to initially monopolise above-

ground space and later to spread vegetatively below

ground.

Rapid early colonisation and crop development can

therefore reduce the early transitional C losses associ-

ated with land-use change. However, our results sug-

gest that significant net ecosystem C losses can be

generated as a result of reduced photosynthetic assimi-

lation and enhanced decomposition rates, particularly

in C-rich grasslands. This loss represents a short-term

land conversion carbon debt that must be overcome

before net C sequestration is attained in the newly

established bioenergy crop.

Fig. 9 Correlation of monthly sums of total ecosystem respiration (TER) with monthly sums of gross primary productivity (GPP) for

2010 and 2011 in the RCG ecosystem (a). GPP is plotted in absolute values (|GPP|). The black solid line indicates a 1 : 1 relationship

while the dotted lines represent regression lines: 2010 (dark grey line) y = 0.57x + 32.1, R2 = 0.98; 2011 (light grey line)

y = 0.44x + 46.5, R2 = 0.81. Panel (b) shows the relationship between TER and soil volumetric water content (VWC) during 2010 and

2011 in the RCG ecosystem. The dashed lines represent regression lines: 2010 (dark grey line) y = �1194.2x + 529.4, R2 = 0.72; 2011

(light grey line) y = �6451.4x2 + 3362.2x – 273.1, R2 = 0.91.
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C balance implications postestablishment

The Miscanthus ecosystem switched from a net C source

of 183 � 28 g C m�2 in the conversion year (8-month

period) to C-neutral in the second year and a strong C

sink in the third year (�411 � 63 g C m�2). In contrast,

rapid and early development of the RCG crop resulted

in the ecosystem being a net C sink both during the con-

version year (�319 � 57 g C m�2, 8½-month period

post-planting) and in the second year of establishment

(�397 � 114 g C m�2). Previous assessments of C

fluxes in the conversion year show highly variable

results (Table 4), with cumulative NEE ranging from

�58 to +312 g C m�2 depending on crop type and

establishment technique, location and duration of mea-

surements. Only a limited number of studies revealed

small C sinks in the conversion year, similar to RCG in

this study. Even after harvested biomass losses were

Table 4 Transitional-phase and post-establishment phase C fluxes associated with different land-use transitions. Annual fluxes from

permanent grasslands are included for comparison. Cumulative fluxes refer to net ecosystem exchange (NEE), total ecosystem respira-

tion (TER) or soil respiration (SR). For transitional-phase fluxes, the time period refers to the sampling duration in months (M). For

long-term fluxes, the length of establishment is given in years (Y), where Y1 is the conversion year

Original land

use

New land

use Location

Time

period

Cumulative

NEEA, TERB or

SRC (g C m�2) Research note Reference

Transitional-phase fluxes

Post-herbicide

Grass Grass Ireland 1 M 278 � 29B Summer reseeding Unpublished results*

Grass Soybean USA 1 M 19–46A Zenone et al. (2011)

Post-tillage

Grass Miscanthus Ireland 3 M 155 � 9A This study

Wheat Wheat USA 2 M 29–41C Dao, 1998

Grass Spring barley Denmark 3 M 260C Eriksen & Jensen

(2001)

Conversion year (Y1)

Grass Miscanthus Ireland 8 M 183 � 28A From tillage This study

Arable Miscanthus USA 7 M �58A From planting Zeri et al. (2011)

Grass RCG Ireland 8.5 M �319 � 57A From planting This study

Grass/Arable RCG Finland 5.3 M �57A From 1.5M post-planting Lind et al. (2015)

Grass/Arable Poplar Belgium 7 M 75 � 4.4A From 2M post-planting Zenone et al. (2015)

Arable Poplar Canada 12 M 312A From 4M post-tillage Cai et al. (2011)

Grass/Wheat Switchgrass USA 12 M �31A From 4M post-planting Skinner & Adler (2010)

Grass Soybean USA 12 M 205–262A No-till Zenone et al. (2013)

Post-establishment (long-term) fluxes

Grass Miscanthus Ireland Y2 13 � 45A This study

Grass Miscanthus Ireland Y3 �411 � 63A This study

Arable Miscanthus USA Y3 �554 � 20A Zeri et al. (2011)

Grass RCG Ireland Y2 �397 � 114A This study

Grass/Arable RCG Finland Y2, 3† �259A Fertilised Lind et al. (2015)

Drained peat RCG Finland Y4–7 �9 to �211A Shurpali et al. (2009)

Drained peat RCG Estonia Y4 �91 to �163A‡ � Fertiliser Mander et al. (2012)

Arable Switchgrass USA Y3 �485 � 20A Zeri et al. (2011)

NA Switchgrass USA Y3, 4† �448A Growing season only Wagle et al., 2015;

Grass/Arable Poplar Belgium Y2 �96 � 15A Zona et al. (2013)

Arable Poplar Canada Y5 �17A Cai et al. (2011)

Permanent grassland

Grass Ireland Annual �200 to �385A Johnstown Castle; similar soil Peichl et al. (2012)

Grass Ireland Annual �193 to �258A South-west region Jaksic et al. (2006)

Grass Europe Annual �240 � 70A 9 sites Soussana et al. (2007)

NA, not available.

*�Orlaith N�ı Choncubhair, Bruce Osborne, Karl Richards, Gary Lanigan.

†Mean value given for these years.

‡Chamber measurements.
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incorporated, the NECB of this RCG ecosystem post-

planting was still positive, indicating a net C sink of

66 � 58 g C m�2 in the conversion year.

Net C fluxes in 2011 compare favourably with long-

term fluxes from previous studies (Table 4), which

range from close to C-neutral for poplar and RCG in

certain years to in excess of �450 g C m�2 y�1 for Mis-

canthus and switchgrass. Good agreement exists

between our results and the studies on Miscanthus in

the USA (�554 � 20 g C m�2 y�1, Zeri et al., 2011) and

RCG on mineral soil in Finland (�259 g C m�2 y�1,

Lind et al., 2015), taking account of location and com-

parative differences in season length and environmental

controls. Studies focussed on the LUC transition from

permanent grassland to Miscanthus or RCG are severely

lacking, however, despite the fact that almost one-third

of utilised agricultural land in Europe is grassland (Fis-

cher et al., 2010).

In this study, the key driver of ecosystem C fluxes in

Miscanthus was crop development, constraining

monthly-cumulated NEE in the first 2 years close to

zero as primary production was counterbalanced by

ecosystem respiration. In addition to the inherent

limitations of slow establishment in northern Europe,

various other factors may have contributed to the poor

agronomic performance observed including relatively

late planting, possible rhizome failure and competition

from understory grass species. However, in the third

growing season, exponential above-ground growth and

leaf expansion was accompanied by a 4-fold increase in

below-ground biomass, resulting in strong net C

uptake from June to October of that year.

In the case of RCG, environmental conditions and

crop phenology were the main drivers of ecosystem C

exchange. Since crop establishment was rapid and early

canopy development was uninhibited by competition

from other species, physiological activity was dictated

by soil temperature, moisture and incident radiation.

Net C uptake of �35 lmol CO2 m�2 s�1 was observed

just over two months after planting, culminating in a

strong net C sink of �319 � 57 g C m�2 in the conver-

sion year and an increased net sink in the second year

(�397 � 114 g C m�2). Furthermore, below-ground bio-

mass represented a significant C stock of 3.4 t C ha�1,

similar to the results of Xiong & K€atterer (2010).

During periods when RCG productivity exceeded

that of Miscanthus (autumn of the conversion year and

early in its second year), higher soil respiration (below-

ground autotrophic and heterotrophic) was recorded in

RCG than Miscanthus. This may indicate that there was

a larger contribution from the autotrophic component to

total below-ground respiration in RCG at these times.

Soil respiration fluxes were similar in both crops outside

of these periods. In a Finnish RCG crop which had 70%

of total plant biomass below ground during the peak

growth period, autotrophic respiration was the domi-

nant component (about 55%) of TER (Shurpali et al.,

2008). Soil respiration constituted the majority of TER in

this study, particularly in the final year. While

recognising the methodological differences between

chamber and EC estimates, this result highlights the sig-

nificant and increasing contribution of below-ground

processes to C cycling in these developing perennial

crops. Enhanced below-ground C allocation and root-

associated C cycling may favour long-term soil carbon

sequestration (Xiong & K€atterer, 2010; Anderson-Teix-

eira et al., 2013), boosted also by the absence of regular

soil disturbance through tillage (Freibauer et al., 2004).

For the early postestablishment phase, our findings

suggest that RCG provides a more favourable C balance

than Miscanthus. However, the outperformance of RCG

by Miscanthus in the third growth year, both in terms of

yield and net C accumulation, indicates that the C sink

potential of Miscanthus will improve further as the crop

matures and above-ground productivity approaches the

maximum yield.

Leaf longevity in Miscanthus and RCG

Light-use efficiency is a critical determinant of primary

production and crop yield (Monteith, 1977) and is clo-

sely related to the crop’s ability to maintain a closed

canopy during the growing season (Beale & Long,

1995). Greater leaf longevity and higher leaf area have

been demonstrated in Miscanthus compared with C4

maize (Dohleman & Long, 2009). However, little infor-

mation exists on the relative performance of Miscanthus

when compared to native C3 plants well-adapted to the

temperate conditions of northern Europe.

In this study, strong coupling of GPP and crop phe-

nology was highlighted by a striking 3-month difference

in the timing of peak C assimilation in RCG (May) and

Miscanthus (August) in 2011. RCG emerged early in the

spring and achieved net C uptake (the ‘break-even’ or

compensation point) by late February. This is consistent

with the temperate climatic conditions of the current

study and the associated long growing season. How-

ever, the subsequent occurrence of peak RCG produc-

tivity in mid-May resulted in the early onset of

senescence in August. Crop phenology, therefore, intro-

duced an asynchrony between the timing of maximum

leaf area and maximum solar radiation for RCG, which

could have implications for the ability of RCG to fully

exploit peak irradiances and to maximise yields under

some environmental conditions. Furthermore, RCG TER

fluxes tended to exceed GPP in the winter months and

reduced the cumulative C sink by 113 g C m�2 in the

second year of establishment.
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In contrast with RCG which exhibited early season

leaf development, significant increases in leaf area did

not occur until June for Miscanthus. As a result, the

‘break-even’ point of net C uptake did not occur until

late June in 2011. However, Miscanthus maintained

growth and substantial leaf area late into the autumn

and sustained net ecosystem C accumulation until mid-

November. After this, the crop remained C-neutral until

the end of the year, similar to the findings of Zeri et al.

(2011). Indeed, strong coupling of TER and GPP was

observed during much of the current study, which

meant that significant C losses did not occur.

Dohleman & Long (2009) demonstrated a 59%

longer growing season in Miscanthus (199 days on

average) than C4 maize (126 days on average). Our

results show that the longevity of photosynthetically

active leaves in Miscanthus is comparable even to

native C3 crops. Indeed, the number of recorded days

with net C uptake in 2011 was almost identical for

both crops (215 and 212 days for Miscanthus and

RCG, respectively). This result compares very favour-

ably with an average cropping season length of

149 days in Irish spring barley (Davis et al., 2010)

and 212 days of net C uptake (six-year average) in

an Irish grassland (Peichl et al., 2011). This further

highlights the exceptional performance of C4 Miscant-

hus in cool temperate climates where C4 metabolism

should be temperature-limited and implies that Mis-

canthus may confer an advantage as a bioenergy crop

in the long term. If leaf photosynthetic capacity and

longevity is comparable to native C3 crops and C

emissions outside of the growing season are close to

zero, the net C balance of Miscanthus is likely to be

favourable.

Implications of the study

Bioenergy crop cultivation in northern Europe may

focus more on grassland conversion to avoid a reduc-

tion in the area of croplands dedicated to food and

feed production. However, permanent grasslands in

northern Europe show strong annual net C uptake,

with NEE values ranging from �193 to

�385 g C m�2 y�1 (Table 4). This highlights the poten-

tial negative impacts associated with disturbing grass-

lands that are highly productive and supply

substantial amounts of stabilised C to the soil (Jackson

et al., 1996; Jones & Donnelly, 2004; Poeplau et al.,

2011). Our study demonstrated that a significant C

debt can be associated with the early-establishment

phase of these bioenergy crops but highlighted the

future potential of Miscanthus to surpass RCG and

possibly long-term grasslands in terms of its C sink

strength. Additional measurements of other associated

GHGs, such as N2O and CH4, will be necessary, how-

ever, to assess the full GHG implications of land-use

change to this crop.

Furthermore, the duration of the full crop production

cycle must be considered. In the case of Miscanthus, pro-

ductive yields may be achievable for up to 15 years or

more (Clifton-Brown et al., 2007; Christian et al., 2008;

Arundale et al., 2014) but this is likely to be much

shorter for RCG (approximately 7–10 years; Saijonkari-

Pahkala, 2001; Finnan, 2007). Therefore, more cultiva-

tion and replanting will be required in long-term RCG

plantations and this has associated C balance

implications due to more regular soil disturbance and

concomitant reductions in productivity.

Although the theoretical light-use efficiency benefits

afforded by the C4 photosynthetic pathway are often

highlighted, the empirical results of this work suggest

that high biomass productivity will be controlled more

by leaf- or canopy-related factors, both genetic and

environmentally derived, rather than the photosyn-

thetic characteristics of individual leaves. Further to

this, the distinct difference in the timing of peak C

uptake between the two crops is significant and pro-

vides information on the suitability of these crops in

different climatic zones. While the late season perfor-

mance of Miscanthus may constrain its productivity in

regions with a short growing season, RCG may be a

better candidate in these regions due to its early emer-

gence in spring and subsequent rapid development.

Growing Miscanthus under a clear, plastic film, as is

common practice for maize production in parts of

northern Europe, may also be a valuable tool to

encourage earlier emergence in spring and enhance

further the duration of net C uptake in the crop (Clif-

ton-Brown et al., 2011).

A final point worth noting is the relative allocation of

biomass above and below ground in these two bioen-

ergy crops. At the time of peak biomass yield in 2011,

more than 50% of total RCG biomass was below ground

compared with 24% in Miscanthus and above-ground

biomass in Miscanthus was almost double that recorded

in RCG. Greater investment of resources below ground

could enhance long-term C sequestration; however,

lower above-ground yields have significant implications

for the economic viability and C-offsetting potential of

the RCG crop.
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