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Abstract

The aim of this study was to investigate the infices of concentrations of sodium alginate
(0.5%-1.5% in the water phase of an emulsion),@oyein isolate (SPI, 0.5%-2.0% in the
water phase) and oil phase (10%—-40% in the emylsiorthe properties (including water
loss, shrinkage, morphological, elastic, and stmatt properties) of emulsion gel beads
during gelation (0—30 min). Gel beads were prepavetd external gelation by dropping
emulsions into CaGlsolutions using pipettes. The Young’'s modulus rolilsion gel beads
kept increasing during gelation before reachingladaepu accompanied by syneresis (i.e.,
water loss), shrinkage, and structural tighten®Bl absorbed at the surface of oil droplets
could prevent re-coalescence of droplets duringatgel. Additionally, increasing
concentrations of sodium alginate and oil increabedYoung’s modulus of gel beads. Water
loss decreased with increasing contents of algiféa®d and oil, and shrinkage could be
diminished by increasing alginate and oil contents.

Keywords. Alginate; Elastic property; Emulsion gel bead; Mgtructure; Shrinkage; Soy

protein isolates.
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1. Introduction

Emulsion gels, also called emulgels, are a compddiwidal material which have some
properties of both emulsions and gels (Dickins@1,2). During the last decade, emulsion
gels have received growing interest, due to thebraatages compared to emulsions, such as
higher storage stability by reducing oil and watkase movement and lipid oxidation (Ma,
Wan, & Yang, 2017) and slower intestinal drug retealue to improved protective effects
against gastric and intestinal phases (Corstensp®€arabin, Elichiry-Ortiz, Hol, Troost,
Masclee, et al., 2017; Guo, Bellissimo, & Rouss@al7). In order to produce emulsion
gels, emulsions are first prepared by mixing gglagent, emulsifier and oil and then turned

into gels by different gelation mechanisms.

The choice of matrix material and emulsifier is ke factor in structuring emulsion gels.
Proteins (e.g., soy protein isolate (SPI) and wireyein isolate (WPI)) and polysaccharides
(e.g., agar and gellan gum) have been widely inyatsd as gelling agents in the formation
of emulsion gels (Brito-Oliveira, Bispo, Moraes,Mjaanella, & Pinho, 2017; Geremias-
Andrade, Souki, Moraes, & Pinho, 2017; Guo, et24117). Different gelling agents can form
different gelation structures, and the gelation ima@ésm (e.g., heat, high pressure,
acidification, enzymatic treatment, and additionioofs) for different gelling agents differs
(Dickinson, 2012), which can affect the propertbéemulsion gels and encapsulated food
nutrients. Both synthetic (e.g., Tween 80 and Sg#jrand natural (e.g., proteins, egg
lecithin, and soy lecithin) emulsifiers can be useg@repare emulsion gels. Lipid droplets in
emulsion gels can be divided into active and inactillers according to the interactions
between gelling agents and emulsifier-coated lipp@plets (Van Vliet, 1988; Yang et al.,
2020), which can also influence the propertiesmofilsion gels (Geremias-Andrade, et al.,

2017).
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Alginate, a linear unbranched natural polysaccleatiglderived from brown seaweed extracts
(PhaeophyceggKing, 1983) and composed of two monomeric is@ng(1—4)-linked D-
mannuronic acid (M) residues and1—4)-linked L-guluronic acid (G) residues (Ching,
Bansal, & Bhandari, 2017). Alginate-based emulgjels received high attention in recent
years (Lew, Paji Lijakovi¢, Pordevi¢, Rac, Raki, Solevé Knudsen, et al., 2015; Qu, Zhao,
Fang, Nishinari, Phillips, Wu, et al., 2016; Ze8hperi, Weiss, & McClements, 2015).
Alginate monomers can form gels by ionic crosshigkivith divalent cations (mostly calcium
cations in the food industry) (King, 1983). Extdrgalation and internal gelation are two
methods used to prepare alginate-based emulsisnRjatado, Ruiz-Capillas, Jimenez-
Colmenero, Carmona, & Herrero (2015) added Ca80 an alginate-based emulsion to
directly produce an alginate-based emulsion geb,34oraes, & Cunha (2014) used internal
method to produce emulsion gels, in which CaEDTA added to an alginate-based
emulsion first, after which acid was introducediberate calcium ions. Compared these two
methods, Puguan, Yu, and Kim (2014) found that fyelmed by external gelation had a
smoother surface and denser inner structure. litiadgdalginate-based gels are not sensitive
to gastric fluids, and can protect the encapsulatgdents from harsh gastric environment,
and the remaining gel structures can be furtheupted during intestinal digestion

accompanied by the release of encapsulated compd@idhdng, et al., 2016).

Previous studies mainly focused on the formulatsbryctural properties, mechanical
properties, stability, and digestion of alginatsdemulsion gels. However, there are few
reports on the gelation process of alginate-basedston gels. It has been indicated that,
during the gelation process of alginate hydrogedpared by external gelation, calcium
cations can diffuse into alginate drops after beirgpped into a calcium chloride solution
(Rehm, 2009). Syneresis also occurs during thistigel process, with a consequent decrease

in dimensions of gel beads (Quong, Neufeld, Sigédek, & Poncelet, 1998; Rehm, 2009).
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However, the gelation process of alginate-basedsomugels may differ from that of
alginate gels, because the presence of lipids mndsders in emulsions may affect the
gelation process. Understanding the gelation psogtalginate-based emulsion gels may
help to produce emulsion gels with specific propsr{e.g., size, water content, mechanical
properties) by controlling gelation time, formutatj preparation methods and processing
technologies. Therefore, further studies are netaledderstand how alginate, emulsifiers

and oil affect the gelation process of emulsionbgeids.

The purpose of this study was thus to investigagtegelation process of alginate-based
emulsion gel beads. In order to improve the endapsu efficiency and hygroscopicity of
alginate-based emulsion gels, proteins (e.g., Ippitein and WPI) can be used as
emulsifiers (Corstens, et al., 2017; Piornos, BefDiaz, Morales, Rubilar, & Acevedo,
2017), and polysaccharides (eRyosopis albaexudate gum and chitosan) can be used as
structural strengthening agents (Natrajan, SricimaSundar, & Ravindran, 2015; Vasile,
Judis, & Mazzobre, 2018). In this study, denatuB&d was thus introduced as surfactant,
because SPI has a huge potential value in prodecmgsion gels, due to its good
emulsifying property, and denatured SPI has ine@a&snulsifying capacity compared to
natural SPI (Lin, Lu, Kelly, Zhang, Zheng, & Mia2Q17; Nishinari, Fang, Guo, & Phillips,
2014). In addition, the external gelation was usedyder to obtain gel beads with denser
structures, compared to internal gelation. Efféatamcentrations of alginate, SPI, and
sunflower oil on the shrinkage, water loss, elaatid structural properties of alginate-based

emulsion gel beads during gelation were investijatehis study.

2. Materials and methods

2.1. Materials
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Defatted soy flourgob'sRed Mill, Milwaukie, Oregon, USA) and sunflower ¢Aldi Stores
Ltd., Kildare, Ireland) were purchased from iHera &ldi, respectively. Sodium alginate
was obtained from Special Ingredients (Chesterfidk). Calcium chloride, sodium

hydroxide, and hydrochloric acid were purchasethf@gma-Aldrich (St. Louis, MO, USA).

2.2. Preparation of soy protein isolate

SPI was prepared according to the method deschpéttbonaite, Jongh, Linden and
Pouvreau (2015). The defatted soy flour was susggkmddistilled water at a ratio of 1:10
(w/w) at 45 °C and stirred for 30 min. The pH valuas then adjusted to 8.0 with 5 M
NaOH, and the solution was stirred for 30 min i@ Water bath. The supernatant was
collected by centrifugation (30 min, 6000xg, 13 ¢E9rvall LYNX 6000 Superspeed
Centrifuge, Thermo Fisher Scientific, Waltham, USRjotein isolates were obtained by
isoelectric precipitation by adjusting the pH vataet.5 with 6 M HCI. After mild stirring for
12 h at 5 °C, the suspension was centrifuged (80 ®¥00xg, 7 °C). The sediment was re-
suspended three times in deionized water at ao&tia3 (w/w) and filtered by multilayer
gauze to remove any remaining insoluble materrad, the filtrate was centrifuged (30 min,
6000x%g, 7 °C) again. The sediment was finally sndpd in deionized water at a ratio of 1:4
(w/w), and the pH value was justified to 7.0 wittvENaOH. Then, the solution was freeze-
dried (Free Zone 12 Freeze Dry System, Labconcpdation, Kansas, MO, USA). The
dried SPI was kept in polyethylene bags and statedom temperature. The protein content

of SPI powder was 96.29 + 0.03%.

2.3. Preparation of alginate-based and SPI-stabdizmulsions and gel beads

A dispersion of soy protein isolate (5% wt in distl water) was stirred at room temperature
for 30 min using a magnetic stirrer, heated at®@@ot 30 min, and then cooled to room

temperature. For the production of continuous phesdium alginate (0.5, 1.0, and 1.5% wit)
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was added into the pre-heated soy protein isotdtgien with adding water to reach final
concentrations of SPI (0.5, 1.0, and 2.0% wt) lsasimg at 400 rpm for 30 min with a
magnetic stirrer and then allowed to rest for 28 permit hydration. For the production of
o/w emulsion, sunflower oil (10, 20, and 40% wt)svealded to above continuous phase and
mixed at 18,000 rpm for 2 min with an Ultra-Turr@dXA-25, Staufen, Germany). Solutions
containing 1.0% alginate (1A) and dispersions doitg 1.0% alginate and 1.0% SPI
(1A1S) were prepared as control groups without ngpat 18,000 rpm for 2 min. Table 1

shows the formulations used for preparing emulsions

For producing gel beads, the resulting disperssmhstions were dropped into 2 % (w/w)
CaCb- 2H,0 solutions using 5-ml measuring pipettes and pifdtte filler (Thermo Fisher
Scientific Inc., Waltham, USA). The distance betwd#ee tip of pipette and the surface of
CaCl solutions was fixed at 10 cm. The samples weosvaitl to gel in CaGlsolutions for

30 min with mild magnetic stirring, and the resudtibeads were rinsed with distilled water.
Samples were analyzed immediately for measureniefung’s modulus, shrinkage, water
loss, and morphology, and samples were kept ifllddstvater for observing their structures

within 3 hours after being prepared.

2.4. Properties of dispersions/solutions

2.4.1. Structures

Confocal scanning laser microscopy (CLSM) was useabserve microstructures of
dispersions/emulsions. Dispersion/emulsion sam(pled ul) were transferred to a glass slide
and stained with 50 pl of a mixture of Nile redl@., w/v, in polyethylene glycol-200) and
fast green (0.1%, wlv, in distilled water) at acaif 3:1. Confocal observation was

performed using a Leica TCS SP5 microscope (Leizaddystems GmbH, Wetzlar,
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Germany) at excitation and emission wavelength#8fnm and 633 nm, provided by an

argon laser and a HeNe laser, respectively.
2.4.2. Viscosity

The viscosity of dispersions/solutions was teste2b&?C using an AR 2000ex rheometer (TA
Instruments, Crawley, UK) with an aluminium parbf&ate (60 mm in diameter, and 0.5 mm
in gap). Each sample was added in the middle digP@late and allowed to stand for 2 min
before testing. The flow measurement was perforaved a shear rate range of 0.1 to 180 s

and viscosity1f) was obtained from the data analysis software.
2.5. Microstructures of gel beads

CLSM was used to observe microstructures of gellfedach gel bead was cut into a thin
layer (~ 1 mm), transferred to a glass slide, dached with a mixture of Nile red (0.1%, wlv,
in polyethylene glycol-200) and fast green (0.1%,wn distilled water) at a ratio of 3:1.

Confocal observation was performed by the methedriged in section 2.4.1.
2.6. Young’s modulus of gel beads

The Young’s modulus of gel beads during gelatioh, &, 3, 4, 5, 6, 8, 10, 20, and 30 min
were analysed by a TA.XT Plus texture analyser8ti&licro System, Godalming, UK)
according the method described by Ching, Bans&@hé&ndari (2016) with a minor change.
The surface of samples was dried with dry papesredakesting. Compression tests were
performed using a cylinder probe of 10-mm diamatet a 5-kg load cell. The samples were
compressed to 30% strain at a crosshead speetl ofri/s, and five beads with same
composition were examined one after another. Dulkdio ellipsoidal shapes, the cross-
sectional area of samples was calculated afterunegshe major axis and minor axis of

samples after being placed on the platform of tex&malyser. The Young's modulus of each
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sample was calculated as the gradient of the stisesdrain curve in the 5-15% strain region,

where stress and strain showed good linearity.ekperiment was performed in triplicate.
2.7. Water loss of gel beads

The water loss of samples during gelation was deted at 1, 2, 3, 4, 5, 6, 8, 10, 20, and 30
min after dispersions/solutions were dropped irticiam chloride solutions. In this study,
the water loss means the decreased water in ge$ lokesing gelation compared to the
original dispersions/solutions. Five gel partiokesre obtained from calcium chloride
solutions and washed with distilled water. Afteyidg the surface, the initial weight of 5
beads was weighted (Wand then they were dried in an oven at 80 °A oatistant weight
(W'g). The initial weight (W) and the weight after drying (yVof dispersions/solutions (5
drops) were determined by the same method. Thesy#ter loss was calculated from Eq.
(1), if we assumed that the main content (i.eipakg, SPI, and oil) of gel beads have no

significant change during gelation, and the expentwas replicated three times.

Water loss (%3 (Ve - Wo W Wi Wy 1 009 (1)
wowW W

2.8. Shrinkage of gel beads

The section shrinkage rate of gel beads was detedrat 2, 4, 6, 8, 10, 20, and 30 min after
dispersions/solutions were dropped into calciunotié solutions. Five gel beads were
obtained from the calcium chloride solutions andhea with distilled water. After drying
the surface, photographs of gel beads were takag asamera (iPhone 7 plus, Apple Inc.,
California, USA). The major semi-axis{%) and minor semi-axis 'tn) of gel beads were
measured by using a digital vernier calliper, dreldection area (4 was calculated from

Eqg. (2). The major semi-axis{) and minor semi-axis ) of gel beads after gelation for 1

min were measured, and the section areaWAs also calculated from Eq. (2). The section
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shrinkage rate of gel beads was calculated from(Zgand the experiment was replicated
three times. It should be noted that the sectiomishge rate of samples during gelation

process was compared to the section area of saadpdegelation for 1 min in this study.

3.14XTmax XTmin=3-14X1" max X7 min

Section shrinkage rate (%) = Ads = x100% (2)

Ag 3.14Xmax X min

3. Results and discussion
3.1 Structural properties of gel beads

Structural properties are important for emulsiols ¢ecause they can influence mechanical
properties of emulsion gels and release behaviencépsulated nutrients. Many factors
(e.g., structures of the gel matrix, structureeratilsion droplets, and interactions between
the gel matrix and droplets) can influence thecétmes of overall emulsion gels. Therefore,
the effect of concentrations of alginate, SPI1 aihdmothe structures of emulsions and

emulsion gels was investigated in this study.

Fig. 1 shows the structures of emulsions/dispessimiore gelation and gel beads after
gelation for 30 min. In sample 1A1S, SPI formedraggtes and dispersed in alginate
solutions (Figs. 1A and 1V). This was because S& keated at 90°C for 30 min in this
study, and thus the solubility of SPI decreased,tdudenaturation; additionally, denatured
SPI1 exposed hydrophobic residues and thus formgakggtions in alginate solutions
(Wagner & Afon, 1990). After mixing the 1A1S dispien with oil, SPI modules can move
from the continuous phase to the O/W interfacesamadbsorbed at the surface of oil
droplets (Figs. 1A and 1B), due to their amphipattature and emulsifying capacity.
Hydrophobic groups of SPI absorbed onto the surddod droplets, and hydrophilic groups
connected with the water phase, acting as a siarreer against coalescence of oil droplets

(Nishinari, et al., 2014). However, increasing #hginate concentration to 1.5% led to more

10
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SPI aggregations in the water phase (Figs. 1B &)dlecause the higher viscosity of the
continuous phase of emulsions hindered SPI fromimgaw the oibwater interface
(Tavernier, Patel, Van der Meeren, & Dewettinckl 20 Higher SPI concentrations resulted
in more SPI being absorbed at the surface of opléts but led to more obvious flocculation
of oil droplets (Figs. 1B and 1D), probably dudhe depletion flocculation of droplets
coated by excessive amount of SPI (Moschakis, Mu&aBiliaderis, 2010). In addition,
increasing oil content of emulsions resulted in enaympacted gel structures (Figs. 1B and

1E), due to the decreased ratio of the water ptoathee oil phase.

Fig. 1 also indicates that there were more dark@esin emulsions/dispersions than gel
beads in all samples, which indicates that synemasil shrinkage of the water phase during
gelation led to more compact filler structuresatidition, the concentrations of SPI, alginate
and oil could affect the stability of droplets dwgigelation. As shown in Figs. 1B and 1W
SPI-coated droplets in sample 1A1S200 could mairteeir structures during gelation. This
was because SPI could stabilize the o/w emulsems gelation, syneresis and shrinkage
mainly occurred in the water phase during gelatramch had no significant effects on the
structures of emulsion droplets. Similarly, it waand that WPI-aggregate-stabilized
emulsions were stable during the gelation pericaséR Sala, Van Vliet, & Van De Velde,
2006). Additionally, higher SPI concentration reéedlin more stable droplet structures
during gelation, probably because of more SPI balygprbed at the surface of oil droplets
(Figs. 1D and 1Y). However, increasing the algir@ecentration to 1.5% led to re-
coalescence of droplets during gelation (Figs. a€ BX), because increased viscosity of the
continuous phase of emulsions hindered SPI fromimgaw the oibwater interface and thus
resulted in decreased stability of emulsion draptetring gelation. In addition, increasing the
oil content to 40% also led to re-coalescence opldts during gelation (Figs. 1E and 12),

probably because 1.0% SPI in the water phase wasnoogh to stabilize 40% oil.

11
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3.2. Young’s modulus of gel beads
3.2.1. The profiles of Young’s modulus during gelat

Compression tests were carried out to study thatielproperties of gel beads during
gelation. Firstly, the effect of introducing SPdamil into alginate gels on the profiles of
Young's modulus during gelation was investigates.shown in Fig. 2A, the changes of
Young’'s modulus of gel beads containing 1% algirtafein short) included three steps:
increasing up to 5 min, decreasing between 5 anditipand then reaching a plateau. The
Young's modulus of gel beads containing 1% algirete 1% SPI (sample 1A1S) had a
similar trend to that of sample 1A, but the Youngiisdulus of emulsion gel beads containing
1% alginate, 1% SPI, and 20% oil (sample 1A1S2@@eiased first and then reached a
plateau at 8 min directly (Fig. 2A). It can be séaat the gelation process of alginate-based
gel beads includes the maturation step (increaseshyy's modulus), the structural collapse
step (decreased Young’s modulus), and the equilibstep (unchanged Young’s modulus).
Therefore, it was assumed that the gelation meshaaf alginate beads prepared by the

external gelation has a direct effect on the chamg& oung’s modulus during gelation.

After being dropped into calcium chloride solutiptiee surface of alginate drops can gel
instantaneously, and then®aan diffuse from the Cagéolutions into the interior of
alginate drops, which leads to the gelation oftgelds from outside to inside and increased
Young’s modulus (Ching, et al., 2017). This proasssalled the maturation step (Puguan, et
al., 2014). The concentration of alginate solutiand the size of gel beads are the main
factors affecting the Gadiffusion into alginate gel beads during gelatitiias been

reported that higher alginate concentrations inm@ied more calcium ions in alginate gel
beads (Quong, et al., 1998). In this study, allogelds were prepared with 2% (w/w)

CaCb- 2H,0 solutions, and the size of samples 1AF 2.1 mm and,= 2.0 mm), 1A1S

12
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(rmax= 2.2 and fin= 2.1), and 1A1S200 {sx= 2.1 and %in = 2.0) did not significantly differ
at the end the maturation step. Therefore, it vgasmed that the changes in Young’s
modulus of samples 1A, 1A1S, and 1A1S200 duringrih&uration step showed a similar
trend probably because oil and SPI had no sigmifiefect on the Ca diffusion from the

CaCl solutions in alginate gel beads during the maitumattep.

After the maturation step, the Young’s modulusarfiples 1A and 1A1S decreased before
reaching a constant value (Fig. 2A). The conceiotmatof C&" and alginate in alginate gel
breads decreases from the gel surface to gel Quren(g, et al., 1998), which indicates that
the gel structure of the outer regions of beadsrager than that of inside gel beads.
Therefore, the fragile core structure of gel bezatsnot support the whole structure, which
leads to the collapse of the inner structure aetiteof the maturation step and thus a
decreased Young’'s modulus (Puguan, et al., 201e\Weder, the Young's modulus of
sample 1A1S200 reached the balance directly afeemtaturation step during gelation (Fig.
2A). This was probably because the structuresmpsa 1A1S200 are totally different from
that of samples 1A and 1A1S. After introducinginib 1A1S dispersions, oil droplets
disperse in the alginate solutions during homogartn, and SPI molecules move to the
surface of oil droplets from the water phase, duaéir emulsifying capacity. The resulting
emulsions can turn into emulsion gels after algimbnomers are crosslinked by calcium
cations, and shrinkage also occurs during thisggecHowever, oil droplets may act as
fillers and help to support the structure of geddefrom collapse after the maturation step
during gelation. It has also been indicated thatdihcore could support the shell of silica
gels from fracture during the sol-gel process (biddu, Zhang, Qu, Li, & Yang, 2011).
Therefore, it was also assumed that oil playedrgrortant role on preventing the structural

collapse of alginate gel beads during gelation.
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The effect of concentrations of alginate (Fig. 28| (Fig. 2C) and sunflower oil (Fig. 2D)

on the profiles of Young’'s modulus of emulsion ge&ds during gelation was further
investigated. Fig. 2B shows that the Young's modufisample 0.5A1S200 increased
initially, decreased between 4 and 8 min, and thereased again, before reaching a plateau.
In this sample, the structure of gel matrix forngdd.5% alginate is fragile during the
maturation step, which results in severe structtwlhpse before compact emulsion droplets
can support emulsion gel structures. However, sasnpA1S200 and 1.5A1S200 showed a
similar trend, in which the Young’s modulus incre@sip to 8 min and then reached a
plateau (Fig. 2B). This indicates that increasilggnate concentrations from 0.5% to 1.5%
not only slowed CZ diffusion and thus caused a slowing of the maimmastep but also
formed stronger alginate-based matrix structurelstbns protected emulsion gel structures
from collapse during gelation. Figs. 2C and 2D slhioat increasing SPI concentrations from
0.5% to 2.0% and oil contents from 10% to 40% hagignificant effect on the profiles of
Young’s modulus during gelation (i.e., reaching pteteau directly after the maturation step
at around 8 min during gelation). This was probdi#gause increasing concentrations of SPI
and oil had no significant impact on calcium difarsin emulsion gel beads, and 10% oil
was high enough to prevent structural collapseailsion gel beads after the maturation step

during gelation.
3.2.2. Effect of alginate, SPI and oil on the Yosngodulus of gel beads after gelation

Mechanical properties are important for emulsiols gecause they are closely associated
with other properties (e.g., storage stability] pexception, and controlled release of
encapsulated nutrients). Many factors can affecthaeical properties of emulsion gels, such
as gel strength of gel matrix structures (i.e.fgaroand polysaccharide), modulus of filler
droplets, and interactions between oil dropletsthedyel matrix. Therefore, the effect of

concentrations of alginate, oil and SPI on the Ygsimodulus of emulsion gel beads was
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investigated in this study, and all samples weragared after they were allowed to gel for

30 min in CaC] solutions (Figs. 2B-D).

Fig. 2B shows that increasing alginate concentnatioom 0.5 to 1.5% significantly

increased the Young’s modulus of emulsion gel bedkis was expected because increasing
alginate concentration could increase gel strenfjfiiginate-based gel matrix and thus
increase the Young’s modulus of overall emulsiols.ggimilarly, it has previously been
reported that increasing agar content (from 1.0.886) in o/w emulsions containing 0.1
volume fraction of corn oil decreased the overaluwme of void spaces and increased strand

compactness of emulsion gels (Kim, Gohtani, Mats@éngamano, 1999).

Fig. 2D indicates that increasing oil contents frb@% to 40% had no significant effect on
the Young’s modulus of emulsion gel beads. Accaydanthe interactions between
emulsifier-coated emulsion droplets and the gelimatil droplets can be divided into active
and inactive fillers (also known as bound and umilgoiillers) in emulsion gels (Dickinson,
2012; Yang et al., 2020). Active fillers are medlaltty connected to the gel network by
noncovalent and/or covalent bonds through emultsifieor examples, it has been reported
that WPI-coated oil droplets could be bound to al\d3ed gel matrix by covalent
interactions (e.g., hydrophobic interactions angtsur bridges) ( Sala, de Wijk, van de
Velde, and van Aken, 2008); it has been also inditéhat lactoferrin-stabilised emulsion
droplets could bind to @&carrageenan gel, probably because of electrostéticactions
between positively charged lactoferrin (pl = 8.8) amegatively chargecicarrageenan at pH
7-8 (Sala, van Vliet, Cohen Stuart, Aken, and vaVvelele,2009). In addition, the Kerner
model can explain the effect of active fillers tie mmechanical properties of emulsion gels
(Kerner, 1956). According to this model, increading volume fractiondg) of active fillers
can increase the mechanical properties of emuggets) which has been supported by many

studies (Oliver, Berndsen, van Aken, & SCholten, 2015; Sala, et al., 2009). However, in this
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341  study, SPI (pl = 4.5) and alginate were both negéaticharged at pH 6-%.0, so there are no
342  electrostatic interactions between SPI-coated dtend alginate-based gel matrix. It is also
343 unlikely that SPI-coated droplets can connect ¢odiginate-based gel network by covalent
344 interactions. Additionally, the results obtainedhis study were in a disaccord with the

345 Kerner model. Therefore, it was assumed that SRiecbdroplets were inactive fillers in

346 alginate-based emulsion gel beads.

347  Fig. 2C shows that increasing SPI concentratioosedsed the Young's modulus of

348 emulsion gel beads. According to the state of eimildroplets in gels, structures of

349 emulsion gels can be divided into two categoriesulsion droplet-filled gels and emulsion
350 droplet-aggregated gels (Dickinson, 2012). In emualslroplet-filled gels, the continuous
351 phase (e.g., protein- and polysaccharide-base{lfgefss a continuous gel matrix, and

352  emulsion droplets are embedded in this gel matmiemulsion droplet-aggregated gels,

353  emulsion droplets aggregate together and formwaarktstructure, such that the gel matrix is
354  disrupted by the aggregated emulsion droplets.hasgva in Figs. 1B and 1D, more

355 aggregations of emulsion droplets occurred in sartp2S200 compared to sample

356 1A1S200, probably because increasing SPI concentrigd to more depletion flocculation
357 of SPI-coated droplets in emulsions (Lam & Nickers?013). In active droplet-aggregated
358 gels, the crowding effect of fillers (particle irdetions) increases the shear modulus of the
359 overall gels (Oliver, et al., 2015). However, SB&ted droplets in alginate-based gel matrix
360 may act as inactive fillers as disccussed befothigstudy. Therefore, it was assumed that
361 increased aggregation of SPI-coated droplets (vefttlers) had a negative effect on the
362 Young’'s modulus of alginate-based emulsion gel bepbbably because aggregated

363 droplets (i.e., the increased phase separationdeetalginate-based gel matrix and SPI-
364 coated droplets) may disturb the formation of adtgrbased network structures (Dickinson,

365 2012 Lin, Lu, Kelly, Zhang, Zheng, & Miao, 2017).
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366 3.3 Water loss of gel beads

367 During the maturation step, inter-chain interactitetween stretches of alginate monomers
368 and C&" occurred with the diffusion of Gafrom the surface to interior of gel beads, and the
369 formation of junctions between these stretchesefbmater out, which led to shrinkage and
370 increased water loss of gel beads during gelaBagan, et al., 2014; Rehm, 2009). Fig. 3
371 shows the effects of concentrations of alginaté, &Rl oil on the water loss from emulsion
372 gel beads during gelation. It indicates that insigalginate contents (from 0.5 to 1.5%) or
373  SPI concentration (from 0.5 to 2.0%) had no sigatiit effect on the rares of water loss, but
374  increasing oil content (from 10 to 40%) could sline water loss in terms of the profiles of
375  water loss during gelation, probably because lomager content of the original emulsions

376  results in slower water loss of emulsion gels dygelation.

377  Fig. 3 also indicates that the water loss of ermulgjel beads after gelation for 30 min

378 decreased with increasing alginate contents (fr@d1.5%), SPI concentration (from 0.5
379  to 2.0%) and oil content (from 10 to 40%). Manyttas can affect the water loss of emulsion
380 gel beads during gelation, such as the concentrafi€aC} solutions, the water content of
381 original emulsions, the strength of gel matrix, &mel hydrophilicity and rigidity of fillers. It
382  has been reported that increasing the concentrati@aC} solution (from 0.08 M to 0.3 M)
383 reduced the final weight of alginate gel beadstduée increased water loss (Puguan, et al.,
384  2014), but in this study all samples were dropped the CaGl solutions with the same

385 concentration. Therefore, increasing alginate cotragon from 0.5% to 1.5% decreased the
386  water loss of beads from 42.3 £ 1.2% to 36.9 + 088 gelation (Fig. 3A), which was

387 probably because elastic modulus of gel beadsaserkwith increasing alginate

388  concentration (Fig. 2B), and gels with strongermoatructures had better water-bolding

389  capacity.
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390 In addition, increasing SPI concentration from 0£6°2.0% decreased the water loss of

391  emulsion gel beads from 40.2 £ 0.6% to 37.3 + Oa384r gelation as well (Figs. 3B),

392 probably due to increased water-absorption capati8PIl-coated droplets. Denatured SPI
393  has emulsifying capacity because it has both hyaybjg and hydrophilic groups (Nishinari,
394 etal, 2014). As shown in Figs. 1A and 1B, SPIraggted in sample 1A1S but formed a film
395 at the oil-water interface in sample 1A1S200, inchthydrophobic groups of SPI connected
396 to oil droplets and hydrophilic groups connecteavater. Therefore, more SPI was absorbed
397 at the surface of emulsion droplets by increasiRgc®ncentration (Fig. 1D), which resulted
398 inincreased hydrophilicity of SPI-coated droplatsl increased water-retention capacity of
399 emulsion gel beads (Wang, Marcone, Barbut, & Lif12). This explanation could be

400 supported by previous conclusions by Wagner, €1.8P0) that SPI with highly denatured
401  proteins and high surface hydrophobicity exhibitee highest water-absorption capacity.
402  Additionally, increasing oil content from 10% to%0ed to the decreased water loss of

403  emulsion gel beads (from 46.1 £ 0.2% to 25.1 + Oxf8ér gelation) (Figs. 3C), probably

404  because the water content in original emulsionsifsigntly decreased with increasing oill

405  contents from 10% to 40%, and emulsion dropletddcprotect gel structures from collapse
406 as well. A similar finding has been reported whameasing the oil volume fraction (13%
407  31.1%) inp-lactoglobulin-based oil-in-water emulsions imprdibe water-retention

408  capacity of emulsion gels (Line, Remondetto, & $adbe, 2005).

409 3.4 Morphological properties and shrinkage of geads

410 As shown in Fig. 4, alginate gel beads (1A) wea@sparent, but the presence of SPI

411  decreased the transparency of alginate gel beédsSjlbecause of its yellow colour, and
412  introducing oil led to ivory gel beads, due to themation of emulsions. In addition, gel

413  beads in all groups were not completely spherarad, samples 1.5A1s200, 1A2S200, and

414  1A1S400 had small tails. This was because incrgdliconcentrations of alginate, SPI and
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415  oil could raise the viscosity of emulsions (Fig. Which could affect the morphological

416  properties of emulsion gel beads. In this studyused the simple dripping method to

417  produce emulsion gel beads. The emulsions wereeplusiit from pipette and one droplet
418  was formed at the tip before the droplet grew ae giradually and dropped into CaCl

419  solutions. During this process, spherical emulsimplets were formed because of the

420 surface tension of liquid (Ching, et al., 2017) wéwver, LewE, et al. (2015) found that D-
421 limonene could increase the viscosity and redueetmductivity of the alginate liquid

422  systems by changing structural ordering of alginatech indicates that the high viscosity of
423  emulsion was against the formation of sphericatltaahe tip of pipet because of poor flow
424  properties. For example, the introduction of hyggmmopylmethylcellulose (0.294.%)

425 changed the rheological properties of 2% alginalet®ns and produced beads with small

426 tails (Bellich, Borgogna, Cok, and Cesaro, 2011).

427  Fig. 4 also shows that the size of all samplesed=ad during gelation and, in order to

428 compare their shrinkage during gelation, the sadirinkage rates were calculated (Fig. 6).
429  The profiles of shrinkage rates show that shrinkadges of all samples increased during

430 gelation, probably due to syneresis (i.e., watss)@nd structural collapse (Rehm, 2009).
431  However, in terms of the profiles of shrinkage yatereasing contents of alginate and oll
432 could slow the shrinkage, but increasing SPI cdritad no significant effect on the rate of
433  shrinkage during gelation. Fig.6 also shows thatstirinkage rates decreased from 26.7 +
434  2.1%to 18.2 £ 2.2% and from 27.1 + 1.6% to 13&85% after gelation with increasing

435  concentrations of alginate (from 0.5% to 1.5%) aihdfrom 10% to 40%), respectively, but
436 increasing SPI concentration from 0.5% to 2.0% madignificant effect on the shrinkage
437  rates of emulsion gel beads after gelation for 8@ iMany factors can affect the shrinkage of
438  emulsion gels during gelation, such as water lgskstiffness, the content and properties of

439 fillers, and interactions between fillers and tbatnuous phase (Smith, Scherer, &
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Anderson, 1995). In terms of alginate, increastagoncentration could increase the elastic
modulus of emulsion gel beads (Fig. 2B), which mpeawide resistance to shrinkage

(Brinker, et al., 1994). Increasing oil concentratled to more compact filler structures,
which resisted further shrinkage during gelatios@sn on comparing emulsion gel structures
of samples 1A1S200 and 1A1S400 in Fig. 1. EiclR@mon, Ladyzhinski, Cohen, &

Mizrahi (1997) also indicated similar conclusiomsthat fructose or polydextrose being
introduced into polyacrylamide (PAAmM) gels could as a mechanical barrier against further
volume shrinkage of PAAm gels during dehydratioowdver, increasing SPI concentration
reduced the Young’s modulus (Fig. 2C) but increasatir retention (i.e., decreased water
loss) (Fig. 3B) of emulsion gel beads, which maglaix why increasing SPI concentration

had no significant effects on shrinkage rates afilsran gel beads.

4. Conclusions

The Young’s modulus of alginate-based emulsiorbgalds kept increasing before reaching a
plateau during gelation process. This gelation @geavas accompanied by syneresis (i.e.,
water loss) and shrinkage, which resulted in are@®ed compactness of emulsion gel beads.
SPI-coated droplets could maintain their structai@sng gelation. With increasing alginate
concentration (0.5%.5%), the water loss decreased, the Young’'s medatreased, and
shrinkage rate decreased. Increasing SPI condent(@t5%-2.0%) led to decreased

Young’'s modulus and water loss, and undifferentiaterinkage. Higher oil content (16%
40%) decreased water loss and section shrinkagg, m@td had no significant effect on the
Young’s modulus. These findings underlined theaféé concentrations of components on
the properties of emulsion gel beads during gefatihich are very important because the
properties of emulsion gel beads may affect endapsn, stability, and release of

hydrophobic functional ingredients encapsulateenmulsion gel beads.
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Tablel

Formulations of experimental emulsions.

Group

Water phase

Alginate Con. o wt)

Soy protein Con.% wt)

Oil Con. @6 wt)

1A (Control 1)
1A1S (Control 2)
1A1S200
0.5A1S200
1.5A1S200
1A0.55200
1A2S200
1A1S100

1A1S400

1.0

1.0

1.0

0.5

15

1.0

1.0

1.0

1.0

0

1.0

1.0

1.0

1.0

0.5

2.0

1.0

1.0

20

20

20

20

20

10

40

®The content of water phase was adjusted accorditigtoil content in the formulation.
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Figure Legends

Fig. 1. CLSM images of dispersions/emulsions (A—E) andogelds (V-2Z) after gelation for 30 min.

SPI and sunflower oil were stained by red and gresspectively.

Fig. 2. Kinetics of Young’'s modulus of alginate-basedlgehds during gelation: (A) control groups;
(B) effect of alginate concentrations (0.5—-1.5%hia water phase); (C) effect of SPI concentrations

(0.5-2.0% in the water phase); and (D) effect b€aitents (10—40% in the emulsion).

Fig. 3. Kinetics of water loss from alginate-based geldseduring gelation: (A) effect of alginate
concentrations (0.5-1.5% in the water phase); fleceof SPI concentrations (0.5-2.0% in the water

phase); and (C) effect of oil contents (10-40%hameémulsion).

Fig. 4. Visual aspects of alginate-based gel beads dgefagion (minimum scale mark = 1 mm).

Fig. 5. Viscosity of dispersions/emulsions with differesimponent concentrations.

Fig. 6. Kinetics of section shrinkage of alginate-basddgads during gelation: (A) effect of alginate
concentrations (0.5-1.5% in the water phase); fiereof SPI concentrations (0.5-2.0% in the water

phase); and (C) effect of oil contents (10-40%hmemulsion).
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Section shrinkage rate (%)
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Highlights

* The Young’'s modulus of emulsion gel beads in@dabefore reaching a plateau during
gelation.

» The gelation of emulsion gel beads was accompaesyneresis and shrinkage.

* High SPI and oil content led to re-coalescencenofilsion droplets during gelation.

* Increasing SPI content decreased the Young's lnedi emulsion gel beads.

* Increasing oil content decreased the shrinkagsmaflsion gel beads.
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