
 

Journal Pre-proof

Variability in greenhouse gas emission intensity of semi-intensive
suckler cow beef production systems

Stine Samsonstuen , Bente A. Åby , Paul Crosson ,
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Research highlights 

 The whole-farm GHG model HolosNorBeef was used to estimate the variability of GHG 

emission intensity of Norwegian suckler cow beef production  

 Enteric CH4 was the largest source of total GHG emissions 

 Soil C was the largest source of variation between individual farms 

 When excluding soil C, the farms within region East and North re-ranked in terms of 

GHG emission intensity 
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Abstract 

Emission intensities from beef production vary both among production systems (countries) and 

farms within a country depending upon use of natural resources and management practices. A 

whole-farm model developed for Norwegian suckler cow herds, HolosNorBeef, was used to 

estimate GHG emissions from 27 commercial beef farms in Norway with Angus, Hereford, and 

Charolais cattle. HolosNorBeef considers direct emissions of methane (CH4), nitrous oxide 
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(N2O) and carbon dioxide (CO2) from on-farm livestock production and indirect N2O and CO2 

emissions associated with inputs used on the farm. The corresponding soil carbon (C) emissions 

are estimated using the Introductory Carbon Balance Model (ICBM). The farms were distributed 

across Norway with varying climate and natural resource bases. The estimated emission 

intensities ranged from 22.5 to 45.2 kg CO2 equivalents (eq) (kg carcass)
-1

. Enteric CH4 was the 

largest source, accounting for 44% of the total GHG emissions on average, dependent on dry 

matter intake (DMI). Soil C was the largest source of variation between individual farms and 

accounted for 6% of the emissions on average. Variation in GHG intensity among farms was 

reduced and farms within region East, Mid and North re-ranked in terms of emission intensities 

when soil C was excluded. Ignoring soil C, estimated emission intensities ranged from 21.5 to 

34.1 kg CO2 eq (kg carcass)
-1

. High C loss from farms with high initial soil organic carbon 

(SOC) content warrants further examination of the C balance of permanent grasslands as a 

potential mitigation option for beef production systems.  

Keywords 

Beef cattle; greenhouse gas emissions; farm scale model; regional differences; soil carbon; 

suckler cow production 

1. Introduction  

Globally, the agricultural sector accounts for 10-12% of greenhouse gas (GHG) emissions 

(Tubiello et al., 2014) with livestock production contributing a significant portion. It is estimated 

that food production will need to increase by 50% compared with 2012 levels to feed the global 

population in 2050 (FAO, 2017). As a consequence, beef consumption is expected to increase in 

both developed and developing countries (OECD/FAO, 2018) and, thus greenhouse gas (GHG) 

emissions from beef production are also likely to increase. 
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Beef products have been shown to have a relatively high GHG emission per kg food 

(Mogensen et al., 2012). However, there is substantial variation in emission intensities among 

countries (Gerber et al., 2013), and among farms within a country (Bonesmo et al., 2013). This 

variation in GHG intensity is partly due to methodological differences among studies, but 

fundamental differences in natural resource availability and farm management practices also 

contribute significantly (Alemu et al., 2017a; White et al., 2010). Exploring differences between 

farm systems in GHG intensity may help identify beef production systems and practices that are 

more efficient, which could lead to the development of mitigation options at farm level. Hristov 

et al., (2013) reviewed different management practices such as diet formulation, feed 

supplements, manure management, improved reproductive performance, and enhanced animal 

productivity to reduce GHG emissions from ruminant production and showed potential long term 

mitigating effects.   

Globally, approximately 44% of livestock GHG emissions are in the form of CH4 (Gerber 

et al., 2013). In Norway, enteric CH4 accounts for 44-48% of total farm emissions from beef 

cattle production systems (Samsonstuen et al., 2019). The diet influences CH4 emissions through 

the digestibility and fibre content of the feed. A high proportion of fiber in the diet yields a 

higher acetic:propionic acid ratio in rumen fluid, which leads to higher CH4 emissions 

(Sveinbjörnsson, 2006). Enteric CH4 emissions can be lowered through improved feed quality, 

use of inhibitors and by breeding animals for lower emissions (Difford et al., 2018).  

Legesse et al. (2011) investigated the effect of management strategies for summer and 

winter feeding and found a 3 to 5% difference in CH4 emissions across production systems. 

Concentrate-based beef production systems show lower GHG intensity compared with roughage 

based systems (de Vries et al., 2015). However, to ensure future food supply, grasslands less 
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suitable for crop production might be preferred over highly productive cropland for production 

of feed for beef cattle. Beef production in Norway relies on use of pasture and forages because 

the total land in Norway is 90% “outfields” (i.e. rough grazing in forest, mountain and coast 

areas), with half the outfield area suitable as pastures or for forage production (Rekdal, 2014). 

According to Norwegian laws and regulations, all cattle must be kept on pasture for at least 8 

weeks during the summer (Landbruks- og Matdepartementet., 2004). Grasslands have a large 

potential of storing C in plant biomass and soil organic matter through C sequestration (Wang et 

al., 2014). Grazing management influences the GHG emission intensity from beef production 

through diet quality (McCaughey et al., 2010), animal performance (Thornton and Herrero, 

2010), nitrogen (N) fertilizer use (Merino et al., 2011), and soil C change (Alemu et al., 2017b). 

The effect of grazing management and stocking rate on C balance have been investigated by a 

number of studies (Reeder and Schuman, 2002; Soussana et al., 2007; Wang et al., 2014). Reeder 

and Schuman (2002) found significantly greater soil C content with light to moderate stocking 

rates compared with no grazing due to a more diverse plant community with fibrous rooting 

systems. Soussana et al. (2007) reported that managed grasslands in Europe are likely to act like 

atmospheric C sinks. However, when the study included C exports through grazing and 

harvesting and related emissions of CH4 and N2O, total GHG emissions from grazed European 

grasslands were not significantly different from zero. Alemu et al. (2017b) concluded that a 

whole-farm approach is important to evaluate the impacts of changes in farm management aimed 

at decreasing the environmental impact of beef production systems. Yet, soil C is not included in 

most whole-farm GHG studies (Crosson et al., 2011). 

 Samsonstuen et al. (2019) developed a whole farm model, HolosNorBeef, adapted to 

Norwegian conditions and estimated GHG emission intensities for average Norwegian beef 
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cattle farms in two distinct geographical locations (low altitude flatlands suitable for grain 

production and high altitude mountains not suitable for grain production). The emission 

intensities in flatlands and mountains were 29.5 and 32.0 kg CO2 eq kg
-1

 carcass for British 

breeds, and 27.5 and 29.6 CO2 eq kg
-1

 for Continental breeds, respectively. However, the use of 

average farm scenarios did not account for variation in production systems, differences in 

resource base, breed differences, management practices, selection strategies, feed composition 

and feed quality that typically prevail among farms. 

Thus, the aim of this study was to use the HolosNorBeef model to evaluate commercial 

herds of Aberdeen Angus, Hereford, and Charolais cattle in geographically different regions of 

Norway with different management practices, resources, and quality of feed available to 

establish the variability in emission intensities and corresponding soil carbon (C) balance from 

suckler cow beef production under Norwegian conditions.   

2. Materials and methods 

This analysis was based on a study of suckler cow efficiency and genotype × environment 

interactions. The project (Optibeef - Increased meat production from beef cattle herds) gathered 

comprehensive information from 2010 to 2014 on farm structure, herd management, animal 

production and economics for suckler cow herds with the breeds Aberdeen Angus (AA), 

Hereford (H) and Charolais (CH). To be included in the study the farms had to record a 

minimum of 60% of weaning weights (WW) and have a minimum of 10 purebred cows per herd. 

The requirements were met by 188 herds, and 27 farms (nine of each of the three breeds) were 

finally selected based on variety in geographical locations. The farms provided sufficient 

information to quantify whole-farm GHG emissions. Through market regulation and subsidies, 

farmers are encouraged to buy concentrates and sell grains produced on farm, rather than using it 
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as feed in livestock production (LMD, 2018). Hence, other production enterprises on the farms 

not related to the cow-calf operation, such as production of natural resources, use of farm inputs 

(i.e. area, fertilizer, and pesticides) for grain production, ley area for horses, and finishing of 

calves not born on the farm, was excluded from the analysis.   

The farms were distributed across Norway from Rogaland in the South to Troms in the 

North within climatic zones varying from 3 (good) to 8 (harsh) on the scale developed by the 

Norwegian Meterological Insitute and Det norske hageselskap (2006). The farms had a wide 

range of farm characteristics such as herd size, management practices, resource base and areas 

available for forage production. Thus, the farms were considered representatives of the broad 

spectrum of suckler cow farms in Norway. 

2.1 Farm characteristics 

The input data were farm specific production data, farm operational data and soil and weather 

data for the specific locations. The farm specific animal production data from the period 2010-

2014 were obtained from the Norwegian Beef Cattle Recording System (Animalia, 2017; Table 

1). Calving typically occurred in the period January-July, with an average calving date April 1
st
. 

However, three farms had a small proportion of the cows (0.18-0.41) calving during the autumn, 

with an average calving date October 1
st
.  

The feeding of each group of cattle throughout the year including type and proportion of 

concentrates, forage type and quality and time spent on pasture, were available through 

interviews with the respective farmers. The nutritive values of all forages, concentrates, and 

pastures (Table 2) were estimated using laboratory analysis information for the specific 

municipalities (Eurofins, Moss, Norway), information from the two largest feed manufacturers in 
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Norway (Felleskjøpet SA, Oslo Norway; Norgesfor AS, Oslo Norway) and from the chemical 

composition of forage, grains and pasture (NMBU and Norwegian Food Safety Authority, 2008).  

The manure was assumed to be deposited on pasture during the grazing period and during 

housing the manure handling system was deep bedding, solid storage or a combination set 

according to the management practices on the specific farm. All manure collected through the 

housing period was used for fertilizing ley areas. The areas (ha) and yields (kg ha
-1

) of forage 

and use of fertilizers (kg N ha
-1

; Table 3), were obtained through interviews with the farmers and 

the farm accounts. However, two farms had no grass silage production on the farm and buy grass 

silage from farms within the same area. Thus, the forage yield of the individual farms was 

assessed as the calculated forage requirement plus an additional 10% (DM basis) to account for 

losses due to ensilaging (DOW, 2012). The areas required for forage production on these specific 

farms were estimated based on yield statistics for the specific area (Statistics Norway, 2017) and 

the use of fertilizers was based on the Norwegian recommendations for N application levels for 

forage production (NIBIO, 2016).  

The use of energy, fuel, and pesticides was calculated based on information from the 

respective farm accounts (Table 3). For each of the individual farms a cultivation factor  

( w Tr r ) was calculated based on annual mean indices of soil temperature (
Tr ) and soil moisture (

wr ) according to Skjelvåg et al. (2012; Table 4). The cultivation factor was used together with 

initial soil C content in the Introductory Carbon Balance Model (ICBM; Andrén et al., 2004) to 

account for external effects such as soil moisture and temperature, and variation in resource base. 

Water filled pore space (WFPS) and soil temperature at 30 cm depth (ts30) for each individual 

farm were used for estimation of N2O emissions. WFPS to saturation was calculated according to 

Skjelvåg et al. (2012) using detailed soil-type recordings available through NIBIO, whereas ts30 

                  



 

9 

 

was calculated based on air temperature according to Kätterer and Andrén (2009). Due to 

expansion of the herd and/or sales of breeding stock, the herd size was not stable in most of the 

farms. Thus, carcass production assuming a constant herd size was calculated based on the 

corresponding replacement rate, farm specific slaughter weights, and dressing percentages from 

culled cows, surplus heifers and finishing bulls. Bulls not born on the farm were excluded as they 

were purchased and sold for breeding purposes, and did not contribute to carcass output. 

2.2. Modelling GHG emissions 

2.2.1 The HolosNorBeef model 

The GHG emissions were estimated using HolosNorBeef developed by Samsonstuen et al. 

(2019). HolosNorBeef is an empirical model based on the HolosNor model (Bonesmo et al., 

2013), BEEFGEM (Foley et al., 2011), HOLOS (Little et al., 2008), and the Tier 2 methodology 

of the Intergovernmental Panel on Climate Change (IPCC, 2006) modified for suckler beef 

production systems under Norwegian conditions. The model estimates the GHG emissions on an 

annual time step for the land use and management changes and on a monthly time step for 

animal production, accounting for differences in diet, housing, and climate. HolosNorBeef 

estimates the whole-farm GHG emissions by considering direct emissions of methane (CH4) 

from enteric fermentation and manure, nitrous oxide (N2O) and carbon dioxide (CO2) from on-

farm livestock production including soil carbon (C) changes, and indirect N2O and CO2 

emissions associated with run-off, nitrate leaching, ammonia volatilization and from inputs used 

on the farm (Figure 1; adopted by Samsonstuen et al., 2019). All emissions are expressed as CO2 

eq to account for the global warming potential (GWP) of the respective gases for a time horizon 

of 100 years: CH4 (kg) × 25 + N2O × 298 + CO2 (kg) (IPCC, 2007). Emission intensities from 
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suckler cow beef production are related to the on farm beef production and expressed as kg CO2 

eq (kg beef carcass)
-1

. 

Methane emissions 

Enteric CH4 emissions are estimated for each age and sex class of cattle using an IPCC (2006) 

Tier 2 approach. Estimation of gross energy (GE) intake is based on energy requirements for 

maintenance, growth, pregnancy, and lactation according to Refsgaard Andersen (1990). The 

DM intake (DMI; Table 5) depends on both the energy requirements of the animal and the 

animals’ intake capacity. The intake capacity is dependent on the fill value of the forage, as well 

as the substitution rate of the concentrates (Refsgaard Andersen, 1990). The GE intake to meet 

the energy requirements was estimated from the energy density of the diet (18.45 MJ kg
-1

 DMI; 

IPCC, 2006; Table 6). Enteric CH4 was estimated from monthly GE intake using a diet specific 

CH4 conversion factor for each cattle group (Ym = 0.065; IPCC, 2006; Table 6). The Ym factor 

is adjusted for the digestibility of the diet ( 0.1058 0.006 DE  ) as suggested by Beauchemin et 

al. (2010; Table 6).  

Manure CH4 emissions are estimated from the organic matter (volatile solid; VS) content 

of the manure. The VS production is calculated according to IPCC (2006), taking the GE content 

and digestibility of the diet into account. The VS are multiplied by a maximum CH4 producing 

capacity of the manure (Bo=0.18 m
3
 CH4 kg

-1
), a CH4 conversion factor (MCF=0.01, 0.02, 0.17 

kg CH4 VS
-1

 for manure on pasture, solid storage manure and deep-bedding, respectively) and a 

conversion factor from volume to mass (0.67 kg m
-3

; IPCC, 2006; Table 6).  
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Nitrous oxide emissions 

Direct manure N2O emissions are calculated based on the N content of manure and an emission 

factor for the manure handling system (0.01, 0.02, 0.05 kg N2O-N (kg N)
-1 

for deep-bedding, 

pasture manure, and solid storage, respectively; IPCC, 2006; Table 6).
 
The N content of the 

manure is estimated according to IPCC (2006), based on the DMI, crude protein (CP; CP = 6.25 

× N) content of the diet and N retention by the animals (Table 6).  

Direct soil N2O emissions are estimated by multiplying the total N inputs with an 

emission factor of 0.01 kg N2O-N kg
-1 

N according to IPCC (2006). The total N inputs include 

above- and below ground crop residue N, using crop yields of Janzen et al. (2003), and 

mineralized N in addition to application of N fertilizer and manure. The derived C:N ratio of 

organic soil matter (0.1; Little et al., 2008) is used to calculate mineralization of N inputs (Table 

6). The effect of location and seasonal variation was taken into account by including four seasons 

based on the local weather conditions and growing season; spring (April-May), summer (June-

August), autumn (September-November) and winter (December-March), and the relative effects 

of percentage WFPS ( 0.0473 0.01102 WFPS  ; Sozanska et al., 2002) of top soil and soil 

temperature at 30 cm depth (ts30; 0.5762 0.03130 ts30  ; Sozanska et al., 2002; Table 6).  

Indirect N2O emissions from soil are estimated from the assumed losses of N from 

manure, crop residues, and fertilizer according to IPCC (2006). The emissions from run-off, 

leaching and volatilization are estimated based on the fraction of the loss for the manure 

handling system adjusted using emission factors (0.0075 and 0.01 kg N2O-N kg
-1

) for leaching 

and volatilized ammonia-N, respectively (IPCC, 2006; Table 6). The emissions were based on 

the assumed fraction of N lost adjusted for emission factors for leaching (0.0, 0.0, 0.3, 0.3 kg N 

(kg N)
-1

 for deep bedding, solid storage, pasture manure and soil N inputs including land applied 
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manure, grass residue, synthetic N fertilizer and mineralized N, respectively; IPCC, 2006; Table 

6). Emissions from volatilization were adjusted for the emission factors for volatilized ammonia-

N (0.1, 0.2, 0.3, 0.45 kg N (kg N)
-1

 for soil N inputs, pasture manure, deep bedding, and solid 

storage, respectively; IPCC, 2006; Table 6). 

Soil C change 

Soil C change is estimated based on the Introductory Carbon Balance Model (ICBM) by Andrén 

et al. (2004), which estimates the change in soil C from total C inputs (i) from grass residues and 

manure. The fraction of the young (Y) C pool entering the old (O) C pool is estimated based on a 

humification coefficient of grass residue (h= 0.13; Kätterer et al., 2008; Table 6) and a 

humification coefficient of cattle manure (h= 0.31; Kätterer et al., 2008; Table 6). The 

degradation of the pools is determined by the respective decomposition rates (ky= 0.8 year
-1

 and 

ko=0.007; Andrén et al., 2004; Table 6). The change in Y and O soil C stocks is estimated based 

on the humification rates and decomposition rates together with the relative effect of soil 

moisture and temperature w Tr r  to account for regional differences due to soil type and climate. 

The yearly fluxes of Y and O soil C are given by the differential equations of Andrén and 

Kätterer (1997):  

1

dY
i k rY

dt
    

1 2

dO
hk rY k rO

dt
    

Carbon dioxide emissions 

Direct CO2 emissions are estimated from on-farm use of diesel fuel using an emission factor (2.7 

kg CO2 eq L
-1

; The Norwegian Environment Agency, 2017; Table 6). Off-farm emissions from 
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production and manufacturing of farm inputs are estimated using emission factors for Norway or 

Northern-Europe; pesticides, 0.069 kg CO2 eq (MJ pesticide energy)
-1

 (Audsley et al., 2014); 

electricity, 0.11 kg CO2 eq (kWh)
-1

 (Berglund et al., 2009); diesel fuel, 0.3 kg CO2 eq (L)
-1

 (Öko-

Instititut, 2010); silage additives, 0.72 kg CO2 eq (kg CH2O2)
-1

 (Flysjö et al., 2008); and N-based 

synthetic fertilizer, 4 kg CO2 eq (kg N)
-1 

(DNV, 2010; Table 6). Emissions related to the use of 

concentrates are estimated according to Bonesmo et al. (2013). The concentrates are assumed to 

be supplied by barley and oats grown in Norway (0.62 kg CO2 eq kg DM
-1

; Bonesmo et al., 

2012; Table 6) and soybean meal imported from South Africa (0.93 kg CO2 eq kg DM
-1

; 

Dalgaard et al., 2008; Table 6). Emissions from on-farm production of field crops are not 

included in the total farm emissions as they are sold and not used as feed by the beef enterprise.  

2.3 Sensitivity analysis and comparisons 

A sensitivity analysis was performed to investigate the evaluate possible errors in the estimated 

soil C balance. The sensitivity of the yearly effect of temperature and soil moisture (rW×rT) and 

initial soil organic carbon (SOC) was estimated by changing the factors 1% and recalculating the 

emission intensities. 

 Breeds and regions were compared through mean comparison of the estimated emission 

intensities (CO2 eq (kg beef carcass)
-1

) using the PROC GLM procedure of SAS
® 

software, V9.4 

(SAS Institute Inc., Cary, NC, 2017). 

3. Results  

The total farm GHG emission intensities showed no significant difference across breeds (Table 

7). However, N2O emissions from manure (P≤0.01) and emissions related to off-farm production 
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of barley (P≤0.05) and soya (P≤0.01) differed across breeds. Angus showed most variation in 

total emission intensities. This variation decreased when soil C balance was ignored.   

The farms showed wide variation in emission intensity (including soil C) with a mean 

estimate of 29.2 CO2 eq (kg carcass)
-1

 (median= 29.5, range 22.5 to 45.2; Table 7). Enteric CH4 

contributed most to the total GHG emissions, accounting for 44% of the total emissions. N2O 

from soil and manure was the second largest source, accounting for 13% and 11%, respectively. 

Soil C balance accounted for 6% of the total emissions and had the largest variation across 

farms, ranging from -2.7 to 14.1 CO2 eq (kg carcass)
-1

 depending on location. On-farm emissions 

from burning of fossil fuels accounted for 9% and the indirect CO2 emissions from 

manufacturing of farm inputs (i.e. N-fertilizers, fuels, electricity, pesticides) accounted for 8%.   

Regions East and Mid had lowest mean emission intensities, whereas Southwest and 

North had greatest mean emission intensities (Table 8). Soil C differed across regions (P≤0.05) 

and was the largest source of variation, on average accounting for 0.1 to 1.4 CO2 eq (kg carcass)
-

1
 of the total emissions in East and Mid, and 3.4 to 6.2 CO2 eq (kg carcass)

-1
 of the total 

emissions in Southwest and North. North had greater emissions from indirect and direct energy. 

By excluding the soil C balance, the variation between individual farms decreased and the 

emission intensity across all farms had a mean estimate of 27.5 CO2 eq (kg carcass)
-1

 (median= 

26.9, range 21.5 to 34.1). Excluding soil C led to re-ranking of individual farms in terms of GHG 

emission intensity (Table 9). 

The comparison of the least square mean (LSM) differences of emission intensities 

showed that the differences in manure N2O emissions were significant both across breeds and 

regions (P≤0.01). Soil C differed across regions and direct energy differed across breeds (P≤0.05 
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and P≤0.05 respectively), while the difference between breeds and locations for other sources of 

emissions was not significant (Table 10).  

Estimated GHG were moderately sensitive to changes in initial SOC and the yearly effect 

of soil temperature and soil moisture (rW×rT). The sensitivity elasticity had a linear response 

ranging from 0.14 to 0.23 CO2 eq (kg carcass)
-1 

across region, caused by 1% change in initial 

SOC (Table 11). Changing the rW×rT 1%, caused a 0.12-0.19 CO2 eq (kg carcass)
-1

 across regions
 

(Table 11). 

4. Discussion 

4.1 Animal production 

 Our study investigated the GHG emissions from commercial Norwegian farms from different 

geographical regions, compared with simulated farms used in other studies (e.g. Mogensen et al., 

2015; White et al., 2010) with different management practices, cattle breeds, and natural 

resources. The farms investigated were distributed across the country and had a wide range of 

farm characteristics, representing the broad spectrum of suckler cow farms in Norway. Carcass 

weights used for estimating emission intensities from herds of Angus, Hereford, and Charolais 

were similar to carcass weights from intensive and extensive beef breed farming systems in 

Sweden and Denmark (Mogensen et al., 2015).  

4.2 Greenhouse gas emissions  

Under the current conditions for beef production in Norway, HolosNorBeef estimated mean 

emission intensities, including soil C, of 29.2 CO2 eq (kg carcass)
-1

 (median= 29.4, range 22.5 to 

45.2) for 27 herds of Angus, Hereford, and Charolais. This range of emission intensities is 

similar to reports for other Nordic countries; Denmark 23.1 to 29.7 CO2 eq (kg carcass)
-1

 and 
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Sweden 25.4 CO2 eq (kg carcass)
-1

 (Mogensen et al., 2015). Emissions related to off-farm 

production of soya differed in terms of emission intensities across breeds. Observed feed intake 

and use of concentrates showed variation both across breeds and between farms within breed as a 

consequence of diet composition and feed requirements. In general, farms with lower quality 

forage fed a larger proportion concentrates to the replacement heifers. Bulls were on average fed 

33% concentrates and were usually fed good quality silage. However, as increased production 

follows increased feed intake, the observed variability did not cause differences in total emission 

intensities across breeds.  

4.2.1 Methane emissions 

Enteric CH4 contributed most to the total GHG emissions, accounting for 44% of the total 

emissions on average. HolosNorBeef estimated enteric CH4 emissions based on the GE intake 

while adjusting the Ym for the digestibility of the diet (i.e. DE%). Hence, as shown by 

Samsonstuen et al. (2019), variation in Ym would cause a linear change in emission intensities. 

At equal GE intake, increased DE% would result in a linear decrease in Ym and a corresponding 

decrease in enteric CH4 emissions. Within breed, Angus showed the largest variation in both % 

DE, DMI and enteric CH4 emissions. Enteric CH4 emissions are mainly related to variation in 

DMI (Herd et al., 2014) and feed quality (Ominski et al., 2011), with improved quality 

associated with lower emissions as the proportion of easily digested organic matter in the feed 

increases (Wims et al., 2010). Diets with more starch and less fiber produce less CH4 per kg DM 

(Haque, 2018). In Sweden and Denmark, enteric CH4 was reported as the largest source of 

emissions, accounting for 45.1-50.4% of total GHG emissions (Mogensen et al., 2015), 

depending on feeding intensity. In the present study, the DMI varied between and within farms 

dependent on the production and diet composition as the location of the farm dictated the 
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available feed resources and use of pastures. Diet composition and forage quality changed 

throughout the year due to differences in animal requirements (e.g. for maintenance, growth, 

pregnancy, lactation) and availability of feed resources (e.g. pasture, silage, concentrates). For 

suckler cows, the variation in DMI within breed is mainly due to forage quality and use of 

concentrates, as the digestibility of the forage and proportion concentrates influences the forage 

intake capacity. Use of pasture also influenced the DMI as the cows were assumed to have a 

higher DMI from cultivated pastures than outfield pastures due to the availability of the feed. 

Feed requirements varied both between breeds and within breeds due to differences in weights at 

different ages. The variation in DMI from birth to slaughter is influenced by slaughter age and 

slaughter weight as it influences the feed required for growth. The DMI of heifers from birth to 

calving is influenced by the diet composition and requirements for growth. Surplus heifers were 

fed the same diet until they reached slaughter weight. 

Manure CH4 emissions varied from 2-8% of total emissions depending upon diet 

composition, housing conditions, and manure storage. HolosNorBeef calculated the manure CH4 

emissions on a monthly basis for each cattle class and determined the organic matter (i.e. VS) 

content of manure based on GE intake and the digestibility (i.e. DE%) of the diet. The DE% 

were variable, ranging from 59 to 71% among the farms leading to a large variation in manure 

CH4 emissions between farms. This is similar to the range in DE% (49 to 81%) reported by 

Hanigan et al. (2013). Diet composition and DMI influence manure CH4 emissions as increased 

organic matter (i.e., VS) content of manure increases the emissions from degradation (Monteny 

et al., 2001). Farms with low quality forage (e.g. straw or low quality silage) had lower manure 

CH4 emissions as both the digestibility of the diet and the VS content of manure decreases. 

Crude protein (CP) and fiber content of the diet is significantly related to VS (Appuhamy et al., 
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2017), and Amon et al. (2007) showed that increased lignin and cellulose content in the manure 

reduces the CH4 emissions as the digestibility decrease. However, manure management influence 

the manure CH4 emissions as the CH4 conversion is greater in deep bedding, compared with 

solid storage, due to anaerobic conditions. Thus, the greater CH4 manure emissions were for 

farms using deep bedding during the housing period.  

4.2.2 Regional variation 

Soil C (discussed in section 4.2.3) differed across regions. By excluding the soil C balance, the 

variation between regions and individual farms decreased and the emission intensity across all 

farms had a mean estimate of 27.5 CO2 eq (kg carcass)
-1

 (median= 26.9, range 21.5 to 34.1). East 

and Mid had lowest mean emission intensities, whereas Southwest and North had greatest mean 

emission intensities. Direct comparisons across and within regions are challenging as not all 

breeds were represented in all regions. Unequal distribution of breeds might cause confounding 

of breed within region. As all breeds were represented in both East and North and two breeds 

were represented in the region Mid, the confounding of region with breed was of greatest 

concern in the region Southwest, which was confirmed by region*breed LSM solutions for all 

regions except Southwest. Two farms and only one breed within this region Southwest might 

suggest that this region should have been omitted and the two farms included in a “South 

Region”. However, an increase in geographical area could have concealed differences across 

regions caused by differences in the resource base, such as initial SOC.  

The use of input factors is to a large extent influenced by the resource base, as the use of 

e.g. pesticides, fertilizer, and diesel fuel is related to the areas available for forage production, as 

pastures, and the distance from the field to the farm. Nevertheless, the least square mean 

comparison reveals a significant difference in emission intensities between breeds from direct 
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energy, suggesting that there are differences in use of diesel fuel between breeds, within regions.  

In general, the Southwest and North have smaller areas available, with a greater distance 

between farm and field and greater variation in climatic conditions. A large proportion of the 

farms were located in the East, which also had most variation within region. Differences in feed 

requirements between breeds increases the difference between individual farms within the 

region. The resource base in the East facilitates both good quality silage and the use of straw as 

forage due to grain production in the region, resulting in a great variety in diet composition and 

corresponding emissions between farms.  

4.2.3 Soil C balance 

The GHG contribution from soil C balance accounted for 6% of the total emission intensities on 

average and had the largest variation across farms, ranging from -2.73 to 14.11 CO2 eq (kg 

carcass)
-1

 depending on location. HolosNorBeef estimated the C balance between the soil and 

atmosphere using the two-compartment ICBM model (Andrén et al., 2004). The GHG 

contribution of soil C balance was influenced by the level of the initial SOC content, temperature 

and moisture in addition to forage production, application of manure, and N fertilizer. Inputs into 

ICBM are used to adapt the model to the local management and weather conditions (Bolinder et 

al., 2011). This model was previously calibrated to Norwegian conditions and used to estimate 

soil C change in the 100
th

 year with continuous grass and arable cropping (Bonesmo et al., 2013; 

Skjelvåg et al., 2012). Skjelvåg et al. (2012) investigated the farm specific natural resource base 

in six municipalities in different parts of Norway and found a wide range in initial SOC content 

in top soil varying from 56.1 to 116.8 Mg ha
-1

. The 30 Norwegian dairy farms investigated by 

Bonesmo et al. (2013) had an average initial SOC of 71.3 Mg ha
-1

, ranging from 40.3 to 99.5 Mg 
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ha
-1

. In comparison, the current study had an average initial SOC of 75.7 Mg ha
-1

,
 
ranging from 

44.8 to 168.4 Mg ha
-1

. 

On average, the C balance accounted for 0.1 to 1.4 CO2 eq (kg carcass)
-1

 of the total 

emissions in East and Mid, whereas in Southwest and North the average C balance accounted for 

3.4 to 6.2 CO2 eq (kg carcass)
-1

 of the total emission. The resource base of the regions varies, 

whereas the East and Mid are regions with a climate suitable for grain production. The regions 

Southwest and North are less suitable for grain production, and the arable lands have been used 

for forage production or as pastures for decades, resulting in high initial SOC. The initial C in 

topsoil is crucial for estimating C balance as a high initial SOC content will lead to a decrease, 

and a low initial SOC will lead to an increase (Andrén et al., 2015). Hence, the estimated C loss 

from farms in Southwest and North is a result of high initial SOC. As the soil C content is 

difficult to measure, Andrén et al. (2015) suggested to modify the initial SOC if the changes 

between samplings are unrealistic. However, in the present study there is only a single estimate 

of the SOC content and modifying the initial SOC is not possible.  

The ICBM model has been further developed into a multi-compartment model (ICBM/3) 

with several C pools to account for different decomposition rates of organic matter (Kätterer and 

Andrén, 2001). ICBM/3 divides the Y SOC pool into above ground residues, below ground 

residues and addition of manure and other organic matter. Multi-compartment models have pool-

specific decomposition rates and humification factors, making the model more dynamic and 

adapted to various management practices. Future soil C balance estimations could possibly be 

improved by incorporating the newest version of ICBM/3 to HolosNorBeef, or by calibrating the 

existing ICBM model with multiple soil samples from areas with large initial SOC. However, the 

complexity of multi-compartment models (e.g. ICBM/3) increases the amount and detail level of 
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the required input and decreases the transparency of the model. Such detailed input data for use 

in the multi-compartment model are not available at this point. According to Bolinder et al. 

(2011), single- and two-compartment models such as the ICBM model may replace more 

complex models in whole farm modelling and life cycle assessment (LCA) approaches as they 

are simple, transparent and can be programmed in a spreadsheet format. Kröbel et al., (2016) 

investigated the inclusion of both the two-compartment ICBM model and the multi-compartment 

Century model in the Canadian Holos model. The study indicated that the ICBM model allowed 

a more dynamic output of management and climate, increasing the flexibility and allowing more 

farm specific estimation compared with the more complex Century model (Kröbel et al., 2016). 

Hence, the two-compartment ICBM model may be sufficient for whole farm modelling of GHG 

emissions as it reflects the dynamics of the SOC stocks while taking the influence of crop yield, 

management, soil moisture and temperature into account.  

Sensitivity elasticities showed an average change in emission intensities of 0.10 to 0.23 

(SOC) and 0.12 to 0.19 CO2 eq (kg carcass)
-1

 (rW×rT) across regions. However, there were no 

significant different response in sensitivity elasticities between regions, implying that the 

estimated difference in soil C balance occurs due to more than just variation in the initial SOC 

and rW×rT. 

Grazing influences plant production (Lee et al., 2010), plant diversity (Limb et al., 2018) 

and adds organic matter through manure (Baron et al., 2007). The influence of grazing 

management on C sequestration has been investigated in various studies (Pelletier et al., 2010; 

Reeder and Schuman, 2002; Soussana et al., 2007, 2010; Wang et al., 2015). The influence of 

grazing is complex, as the soil C dynamics are influenced by the animal, climate, soil, plant, 

management and their interactions (Bolinder et al., 2011; Schuman et al., 2002). HolosNorBeef 
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does not include the effect of grazing management on C balance as the ICBM model does not 

account for the effect of grazing or stocking rate. Norwegian land contains approximately 60,000 

(arable) to 100,000 kg C ha
-1 

(pastures; NIBIO, 2019) and the potential for mitigation by 

sequestering C in outfield pastures under Norwegian conditions has not been scientifically 

documented. Applying Norwegian conditions to US studies, the estimated potential for C 

sequestration is 1000 to 6000 kg CO2 ha
-1

 year
-1

 (NIBIO, 2019). When considering pasture 

management strategies, the corresponding ecosystem services directly or indirectly influenced by 

pasture management should be taken into account.  

5. Conclusions 

A whole-farm approach that included changes in soil C estimated GHG emission intensities of 

22.5 to 45.2 CO2 eq (kg carcass)
-1

 from representative suckler cow beef farms in Norway with 

Angus, Hereford, and Charolais cattle. The variation in DMI and diet composition between farms 

influenced both enteric and manure CH4 emissions, and contributed to variation in emission 

intensities between individual farms. Including soil C balance in the emission intensity of beef 

production increased variability in GHG emissions among individual farms and caused a 

significant difference in estimated GHG intensities between regions. In addition to level of 

forage production, application of manure, and N fertilizer, the soil C balance was influenced by 

the level of the initial SOC content, temperature and moisture. Arable lands used for forage 

production or as pastures for decades result in high initial SOC in soils of some farms, which 

warrants further examination and additional measurement as the ICBM model is sensitive to high 

initial SOC and does not account for the effect of grazing or stocking rate. 
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Tables 

Table 1 Average animal numbers and performance for the 27 Norwegian beef cattle farms used 

to estimate GHG emission intensities (n=9 for each breed; Animalia, 2017). 

 A.Angus Hereford Charolais 

 Mean Min Max Mean Min Max Mean Min Max 

  Beef cows (year-1) 27 15 55 32 18 55 38 18 120 

  Calves born (year-1) 26 14 53 32 18 55 38 18 115 

  Replacement heifers (year-1) 9 4 17 9 4 87 10 4 28 

  Twinning frequency (%) 2.4 0.00 9.89 3.44 0.00 7.46 7.89 2.17 12.76 

  Still born (%) 1.96 0.00 7.59 3.19 1.90 6.32 2.05 0.51 7.22 

  Dead before 180 days (%) 1.86 0.00 4.82 0.57 0.00 1.51 1.47 0.00 4.24 

  Gender distribution (proportion heifers) 0.50 0.44 0.56 0.49 0.41 0.55 0.47 0.45 0.52 

  Heifers, birth weight (kg LW) 39 37 42 40 38 42 45 42 49 

  Heifers, weaning weight (kg LW) 242 214 265 247 211 283 286 263 329 

  Heifers, yearling weight (kg LW) 371 329 410 355 261 418 439 392 482 

  Heifers, carcass weight (kg) 226 193 278 196 130 244 248 186 273 

  Heifers, age at slaughter (month)  19.0 15.6 22.3 17.6 10.8 20.3 16.7 13.5 20.4 

  Heifers, age at first calving (month) 24.6 23.5 25.7 25.1 24.2 26.7 25.4 23.9 28.9 

  Young bulls, birth weight (kg LW) 41 38 44 42 40 44 48 44 53 

  Young bulls, weaning weight (kg LW) 266 226 291 281 213 321 321 285 384 

  Young bulls, yearling weight (kg LW) 371 329 410 461 379 537 549 510 600 

  Young bulls, carcass weight (kg) 290 231 350 291 265 323 356 320 402 

  Young bulls, age at slaughter (month) 16.3 15.4 17.3 16.5 13.3 18.9 16.3 14.7 18.4 

LW= live weight
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Table 2 Mean (M) and standard deviation (SD; in parenthesis) for nutritive values of forages, concentrates and pastures for the 27 

Norwegian beef cattle farms used to estimate GHG emission intensities (n=9 for each breed). 

 Angus Hereford Charolais 

 DM FUmab CP DE DM FUm CP DE DM FUm CP DE 

Unit %  g/kg DM % %  g/kg DM % %  g/kg DM % 

 M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

Concentrates
c 

0.88 (0.00) 1.07 

(0.03) 

163 (21) 77 (2) 0.88 (0.00) 1.05 

(0.04) 

165 (38) 76 (3) 0.88 (0.00) 1.08 

(0.06) 

157 (15) 78 (4) 

Silagec 0.37 (0.15) 0.83 

(0.08) 

141 (4) 60 (5) 0.38 (0.12) 0.85 

(0.03) 

159 (11) 62 (2) 0.38 (0.10) 0.84 

(0.04) 

152 (16) 61 (3) 

Straw, NH3
d 0.86 0.70 95 52 0.86 0.70 95 52 0.86 0.70 95 52 

Straw, dryd     0.90 0.30 36 25     

Pasturede 0.20 0.95 196 68 0.20 0.95 196 68 0.20 0.95 196 68 

DM= dry matter; FUm = feed units milk/kg DM; CP = crude protein; DE = digestible energy
 

a
1FUm = 6.9 MJ net energy lactation  

b 
Information from the farmer 

c
 Forage analysis (Eurofins, 2015)

 

d 
NMBU and Norwegian Food Safety Authority (2008) 

e 
Equal pasture quality on outfield pastures as cultivated pastures according to Rekdal (2014)

Table 3 Farm inputs and land use for the 27 Norwegian beef cattle farms used to estimate GHG emission intensities. 
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 East (n=16) Southwest (n=2) Mid (n=4) North (n=5) 

 Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

Input use             

Fuel (L year-1)a 5681 34 15379 1709 804 2614 4364 1942 8780 4362 1392 6778 

Electricity (kWh year-1)a 47642 0 154303 6620 4670 8571 33860 19194 53665 20772 0 30961 

Silage additive (kg CH2O
2 year-1)a 5062 0 37800 2250 0 4500 0 0 0 0 0 0 

 Ley synthetic fertilizer (kg N ha-1)a 9 0 18 15 8 22 5 0 11 12 4 18 

 Ley pesticide (MJ ha-1)a 10.4 0 25.3 2.8 2.5 3.1 0 0 0 0.5 0 2.6 

  Pasture synthetic fertilizer (kg N ha-1)a 7 0 25 0 0 0 4 0 16 3 0 10 

Land use             

  Ley area* (ha) 54.5 10.0 180.2 16.5 8.0 25.0 61.7 33.1 84.9 31.6 15.0 55.7 

  Silage yield (kg DM year-1)b 241197 96688 1040000 36855 27810 45900 190266 119119 271250 131486 66000 280800 

Cultivated pasture* (ha) 14.5 0 53.1 6.3 5.6 7.0 16.9 2.5 50.1 14.3 0 30.0 

FUm= feed units milk
 

*
outfield pasture areas are not included 

a 
Farm accounts 2013/2014 

b
 Information from the farmer 

Table 4 Mean, minimum (Min) and maximum (Max) natural resource data for the grasslands of 27 Norwegian suckler cow farms used 

to estimate GHG emission intensities of beef production. 

 East (n=16) Southwest (n=2) Mid (n=4) North (n=5) 
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 Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

Soil temperature at 30 cm deptha, winter (oC) -0.3 -1.5 1.2 1.9 1.8 2.0 0.7 -0.5 1.6 0.8 -0.3 1.9 

Soil temperature at 30 cm deptha, spring (oC) 6.2 3.4 8.1 6.9 6.8 6.9 5.6 4.7 6.3 5.3 4.4 6.0 

Soil temperature at 30 cm deptha, summer (oC) 13.7 11.1 15.6 13.1 12.8 13.4 12.2 11.7 12.8 12.4 12.1 12.8 

Soil temperature at 30 cm deptha, autumn (oC) 5.5 2.8 8.4 8.1 8.0 8.1 6.0 4.6 7.4 6.1 4.5 7.4 

Water filled pore spaceb, winter (%) 71.2 51.5 85.5 65.9 64.5 67.4 51.2 43.4 56.7 66.4 44.6 92.6 

Water filled pore spaceb, spring (%) 56.7 41.7 68.4 55.0 53.9 56.1 41.4 35.3 46.5 59.6 35.3 90.2 

Water filled pore spaceb, summer (%) 47.0 31.1 62.5 50.9 49.1 52.7 35.7 29.2 40.6 45.2 21.7 56.7 

Water filled pore spaceb, autumn (%) 68.1 50.7 79.8 66.1 64.4 67.9 50.5 42.2 55.6 65.8 42.6 94.5 

w Tr r  yearlyc (dimensionless) 1.0 0.6 1.4 1.4 1.4 1.4 1.0 0.8 1.2 1.1 0.7 1.4 

SOC (Mg ha-1) 66.6 44.8 101.0 84.2 68.8 99.7 58.7 53.8 63.6 115.2 65.5 168.4 

n= number of farms; SOC = soil organic carbon
 

a
 Estimated according to Katterer and Andren (2009).  

b
 Estimated according to Bonesmo et al. (2012). 

c
 Estimated according to Andren et al. (2004). 

Table 5 Mean and standard deviation (SD; in parenthesis) for feed intake (kg DM/animal/year), crude protein (% DM) and digestible 

energy (% DM) for the 27 Norwegian beef cattle farms used to estimate GHG emission intensities (n=9 for each breed). 

 A.Angus Hereford Charolais 

 Cow Heifer* Bull** Cow Heifer* Bull** Cow Heifer* Bull** 
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 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Concentrates 12 (25) 477 (251) 680 (427) 13 (18) 520 (388) 845 (130) 185 (186) 896 (219) 1125 (214) 

Grass silage 2150 (709) 1768 (419) 1605 (525) 1973 (571) 1278 (523) 1133 (320) 2325 (659) 1959 (460) 1565 (204) 

Straw, NH3 173 (518) 16 (48) 0 (0) 207 (337) 65 (114) 0 (0) 420 (543) 75 (174) 0 (0) 

Straw, dry 0 (0) 0 (0) 0 (0) 21 (41) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Grazing, cultivated  764 (426) 446 (224) 306 (153) 856 (527) 756 (375) 435 (252) 863 (434) 713 (400) 163 (489) 

Grazing, outfield*** 258 (286) 103 (165) 53 (104) 396 (285) 197 (173) 173 (208) 87 (151) 66 (124) 371 (206) 

Total DMI 3357 (285) 2810 (292) 2644 (811) 3466 (147) 2816 (387) 2586 (394) 3880 (161) 3709 (329) 3224 (226) 

CP (% DM) 15.85 (1.10) 16.52 (0.66) 16.29 (0.97) 16.83 (0.75) 17.18 (0.64) 16.64 (0.73) 15.93 (1.45) 16.42 (1.20) 15.94 (1.08) 

DE (% DM) 61.79 (1.99) 65.22 (2.50) 66.01 (3.35) 63.91 (1.29) 67.11 (2.02) 69.08 (1.93) 63.10 (1.79) 66.72 (2.09) 67.51 (1.67) 

DM= dry matter; DMI = dry matter intake; CP = crude protein; DE = digestible energy 

*
 Birth to calving, milk intake not included 

**
 Birth to slaughter, milk intake not included 

***
Outfield includes permanent pastures, outfield areas with meadows, heath and marshlands
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Table 6 Sources of GHG emissions, emission factors or equations used and reference source 

(Samsonstuen et al., 2019).    

Gas/source Emission factor/equation Reference 

Methane  

  Enteric fermentation 

 

(0.065/55.64) kg CH4 (MJ GEI)-1 

 

(IPCC, 2006)  

    Relative effect of digestibility 

(DE%) of feed 

0.1058-0.006 × DE  (Bonesmo et al., 2013)* 

 Max.CH4 producing capacity of 

manure (Bo) 

0.18 m3 CH4 kg-1 (IPCC, 2006) 

  Deep bedding manure 0.17 kg CH4 (VS)-1 (IPCC, 2006) 

  Solid storage manure 0.02 kg CH4 (VS)-1 (IPCC, 2006) 

  Pasture manure 0.01 kg CH4 (VS)
-1

 (IPCC, 2006) 

Direct nitrous oxide    

  Soil N inputs**  0.01 kg N2O-N (kg N)-1 (IPCC, 2006) 

  Relative effect of soil water filled 

pore space (WFPS mm) 

0.4573+0.01102 × WFPS  (Sozanska et al., 2002)***, 

(Bonesmo et al., 2012)*** 

  Relative effect of soil temperature at 

30cm (ts30oC) 

0.5862+0.03130 × ts30   (Sozanska et al., 2002)***, 

(Bonesmo et al., 2012)*** 

  Deep bedding manure 0.01 kg N2O-N (kg N)-1 (IPCC, 2006) 

  Solid storage manure 0.05 kg N2O-N (kg N)-1 (IPCC, 2006) 

  Pasture manure 0.02 kg N2O-N (kg N)-1 (IPCC, 2006) 

Indirect nitrous oxide    

  Soil N inputs** Leaching: 

EF= 0.0075 kg N2O-N (kg N)-1, 

Fracleach=0.3 kg N (kg N)-1 

Volatilization: 

EF= 0.01 kg N2O-N (kg N)-1, 

Fracvolatilization=0.1 kg N (kg N)-1 

 

(IPCC, 2006), (Little et al., 

2008)**** 

 

(IPCC, 2006) 

  Deep bedding manure Leaching: 

EF= 0.0075 kg N2O-N (kg N)-1, 

Fracleach=0 kg N (kg N)-1 

Volatilization: 

EF= 0.01 kg N2O-N (kg N)-1, 

Fracvolatilization=0.3 kg N (kg N)-1 

 

(IPCC, 2006) 

 

 

(IPCC, 2006) 

  Solid storage manure Leaching: 

EF= 0.0075 kg N2O-N (kg N)-1, 

 

(IPCC, 2006) 
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Fracleach=0 kg N (kg N)-1 

Volatilization: 

EF= 0.01 kg N2O-N (kg N)-1, 

Fracvolatilization=0.45 kg N (kg N)-1 

 

 

(IPCC, 2006) 

  Pasture manure Leaching: 

EF= 0.0075 kg N2O-N (kg N)-1, 

Fracleach 0.3 kg N (kg N)-1 

Volatilization: 

EF= 0.01 kg N2O-N (kg N)-1, 

Fracvolatilization=0.2 kg N (kg N)-1 

 

(IPCC, 2006), (Little et al., 

2008)**** 

(IPCC, 2006) 

Soil carbon   

  Young (ky) soil C decomposition rate 0.8 year-1 (Andrén et al., 2004) 

  Old (ko) soil C decomposition rate 0.007 year-1 (Andrén et al., 2004) 

  Humification coefficient (h) of grass 

and crop residue 

0.13 (Katterer et al., 2008) 

  Humification coefficient (h) of cattle 

manure 

0.31 (Katterer et al., 2008) 

Direct carbon dioxide   

  Diesel fuel use 2.7 kg CO2 L
1 (The Norwegian 

Environment Agency, 2017) 

Indirect carbon dioxide   

  Manufacturing N-based synthetic 

compound fertilizer 

4 kg CO2eq (kg N)-1 (DNV, 2010) 

  Manufacturing pesticides 0.069 kg CO2eq (MJ pesticide energy)-1 (Audsley et al., 2014) 

  Manufacturing silage additives 0.72 kg CO2eq (kg CH2O2)
-1 (Flysjö et al., 2008) 

  Production of diesel fuel 0.3 kg CO2eq L-1 (Öko-Instititut, 2010) 

  Production of electricity 0.11 kg CO2eq kWh-1 (Berglund et al., 2009) 

  Purchased soya meal 0.93 kg CO2eq (kg DM)
-1 

(Dalgaard et al., 2008) 

  Purchased barley grain 0.62 kg CO2eq (kg DM)-1 (Bonesmo et al., 2012) 

GEI= Gross energy intake; VS = volatile solids; WFPS = water filled pore space; ts30 = soil 

temperature at 30cm; EF = emission factor; Fracleach = Leaching fraction; Fracvolatilization = 

Volatilization fraction 

*Equation derived by Bonesmo et al. (2013) based on IPCC (2006), Little et al. (2008) and 

Beauchemin et al. (2010). 

**Includes land applied manure, grass and crop residue, synthetic N fertilizer, mineralized N 

***Equation derived by Bonesmo et al. (2012) using data from Sozanska et al. (2002) 

****Value simplified from equation given by Little et al. (2008)
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Table 7 Mean, minimum (Min), maximum (Max) and standard deviation (SD) estimates for greenhouse gas emission intensity (kg CO2 

eq kg
-1

carcass) (n=9 for each breed). 

 A.Angus Hereford Charolais Siga 

 Mean Min Max SD Mean Min Max SD Mean Min Max SD  

Enteric CH4 12.95 9.98 16.09 1.86 13.16 11.90 14.66 0.83 12.26 11.44 13.57 0.67 ns 

Manure CH4 1.33 0.36 3.18 1.00 1.54 0.41 2.91 1.06 1.42 0.42 3.60 0.96 ns 

Manure N2O 2.96 1.88 3.63 0.60 3.76 2.69 4.99 0.69 2.67 1.66 3.16 0.45 
** 

Soil N2O 3.53 2.64 4.11 0.45 3.70 3.10 4.22 0.32 3.80 3.05 6.16 0.95 ns 

Soil C 3.14 -2.73 14.11 5.13 1.97 -2.08 7.84 3.75 -0.19 -2.37 3.58 2.19 ns 

Off-farm barley 0.62 0.00 0.90 0.29 0.92 0.41 2.06 0.51 1.14 0.73 1.55 0.27 ns 

Off-farm soya 0.71 0.00 1.10 0.35 0.75 0.52 1.34 0.27 1.19 0.75 1.51 0.26 * 

Indirect energy 1.76 0.24 4.33 1.49 2.08 0.01 3.66 1.05 2.87 1.27 4.80 1.17 ns 

Direct energy 3.00 1.13 5.29 1.64 1.93 0.03 3.38 1.09 2.56 1.26 4.73 1.13 ns 

Total emissions 30.00 24.32 45.20 6.31 29.80 22.67 38.07 4.61 27.71 22.49 33.52 3.72 ns 

Total emissions excluding soil C 26.86 21.45 31.09 3.27 27.83 24.39 32.28 2.97 27.90 24.38 34.07 2.76 ns 

a
 Sig = significance: ns = non significant, 

*
 = P≤0.05, 

**
 = P≤0.01. 
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Table 8 Mean greenhouse gas (GHG) emission intensities and proportion of total emissions (in 

parenthesis) from average herds of beef cattle in four regions of Norway (kg CO2 eq kg
-

1
carcass). 

 East (n=16) Southwest (n=2) Mid (n=4) North (n=5) Siga 

Enteric CH4 12.76 (0.46) 13.95 (0.43) 13.41 (0.47) 11.93 (0.36) ns 

Manure CH4 1.76 (0.06) 0.96 (0.03) 1.07 (0.04) 0.86 (0.03) ns 

Manure N2O 3.19 (0.12) 4.51 (0.14) 3.06 (0.11) 2.44 (0.07) ** 

Soil N2O 3.65 (0.13) 3.87 (0.12) 3.56 (0.13) 3.77 (0.11) ns 

Soil C 0.06 (0.00) 3.36 (0.10) 1.40 (0.05) 6.18 (0.18) * 

Off-farm barley 0.95 (0.03) 0.58 (0.02) 0.87 (0.03) 0.86 (0.03) ns 

Off-farm soya 0.88 (0.03) 0.63 (0.02) 1.07 (0.04) 0.84 (0.03) ns 

Indirect energy 2.13 (0.08) 2.13 (0.07) 1.55 (0.05) 3.18 (0.09) ns 

Direct energy 2.30 (0.08)  2.08 (0.06) 2.26 (0.08) 3.48 (0.19) ns 

Total emission 27.67  32.06  28.26  33.55  ns 

Total emission 

excluding soil C 

27.61 28.70 26.85 27.36 ns 

n = number of farms. 

a
 Sig = significance: ns = non significant, 

*
 = P≤0.05, 

**
 = P≤0.01. 

Table 9 Ranking of farms with Aberdeen Angus (AA), Hereford (H) and Charolais (CH) in 

different regions in terms of GHG emission intensities including and excluding soil C balance. 

East (n=16) Southwest (n=2) Mid (n=4) North (n=5) 

Incl. soil C Ex. soil C Incl. soil C Ex. soil C Incl. soil C Ex. soil C Incl. soil C Ex. soil C 

H1 AA3 H17 H17 CH19 AA22 CH23 AA25 

CH2 H11 H18 H18 AA20 CH21 H24 H26 

AA3 H1   CH21 AA20 AA25 CH23 

AA4 A10   AA22 CH19 H26 H24 

CH5 CH2     AA27 AA27 

H6 H6       
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AA7 AA4       

CH8 CH5       

CH9 CH8       

AA10 CH14       

H11 AA7       

H12 CH9       

A13 AA13       

CH14 H12       

H15 H15       

CH16 CH16       

n = number of farms in each region. 
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Table 10 Least square means (LSM) of greenhouse gas (GHG) emission intensities and proportion of total emissions (in parenthesis) 

from average herds of Aberdeen Angus (AA), Hereford (H), and Charolais (CH) in four regions of Norway (kg CO2 eq kg
-1

carcass). 

 

a
 Sig = significance: ns = non significant, 

*
 = P≤0.05, 

**
 = P≤0.01.

 East (n=16)  Southwest (n=2)  Mid (n=4)  North (n=5) Location Breed 

 AA H CH  H  AA CH  AA H CH Siga Siga 

Enteric CH4 13.07 13.13 12.19  13.95  14.23 12.58  11.35 12.45 12.05 ns ns 

Manure CH4 1.85 1.77 1.67  0.96  0.99 1.15  0.40 1.53 0.45 ns ns 

Manure N2O
 

3.12 3.71 2.80  4.51  3.36 2.77  2.15 3.14 1.66 
** ** 

Soil N2O 3.39 3.61 3.90  3.87  3.70 3.42  3.71 3.74 3.94 ns ns 

Soil C 0.46 0.39 -0.53  3.36  2.31 0.50  10.68 4.55 3.36 * ns 

Off-farm barley 0.62 1.02 1.16  0.58  0.66 1.08  0.61 0.99 1.09 ns ns 

Off-farm soya 0.60 0.71 1.26  0.63  1.09 1.05  0.62 0.96 1.06 ns ns 

Indirect energy 1.79 1.90 2.60  2.13  0.36 2.73  3.07 2.49 4.80 ns ns 

Direct energy 2.06 1.89 2.84  2.08  3.10 1.43  5.25 3.14 1.88 ns * 

Total emission 26.94 28.13 27.89  32.06  29.80 26.72  37.84 31.71 28.63 ns ns 

Total emission excluding soil C 26.48 27.75 28.42  28.70  27.49 26.22  27.16 27.16 28.17 ns ns 
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Table 11 Sensitivity elasticities for the effect of 1% change in soil C change external factor 

(rw×rT) and initial soil organic carbon (SOC) on the greenhouse gas (GHG) emission intensities 

CO2 eq (kg carcass)
-1

. 

  East 

(n=16) 

 Southwest 

(n=2) 

 Mid 

(n=4) 

 North 

(n=5) 

 Siga 

 Response Mean SD Mean  SD Mean SD Mean SD  

Initial soil organic carbon Linear 0.17 0.09 0.20 0.14 0.10 0.24 0.23 0.15 ns 

Soil C change external factorb Non-linear 0.17 0.04 0.12 0.02 0.19 0.03 0.19 0.03 ns 

a 
Sig = significance: ns = non significant

 

b
 Mean sensitivity elasticity (%) for the the change ±1% of rw×rT
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Figure 1 System boundaries of the suckler cow beef production system (Samsonstuen et al., 

2019). 
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