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1. Introduction
Agaricus bisporus (common button mushroom)
is an economically significant mushroom with
an annual global value in excess of $4.7 billion
(Eastwood et al, 2015). When commercially
grown, A. bisporus mushrooms are mostly
picked from the first and second flush. This is
due to the third flush resulting in reduced
yields (Royse and Sanchez, 2008), which are
also often more prone to disease. This occurs
despite significant nutrients and nitrogen being
available in the compost for A. bisporus to
utilise. To further understand why this is
occurring, microarray analysis was carried out
on compost samples throughout a full
commercial growth cycle, with the aim of
identifying genes that may be responsible for
this reduction in yield.

Fig. 1: First flush of A. bisporus.

2. Project Overview 3. Plasmid Design

4. Results
• Microarray results were analysed using R statistics after

normalisation.
• The data was filtered to select for genes that were

significant (P<0.01) in 25% of the arrays and clustered
using k-clustering and soft clustering from the
Bioconductor package mFuzz.

• Several genes of interest were identified, some of which are
believed to be critical in yield control as well as a gene
unique to A. bisporus.

• Cluster analysis demonstrated that several gene expression
profiles followed the commercial cropping cycle (Fig. 5
and 6).

Fig. 6: Gene expression changes across a commercial crop
of A. bisporus.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13

Y
ie

ld
 k

gs

Days

1st Flush

2nd Flush

3rd Flush

Fig. 5: Total yield for the first, second, and third flushes
of A. bisporus during a commercial growth cycle.
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• Four replicates of A15 compost samples were collected every 48hrs
from before 1st flush up until the end of the 3rd flush, from across an
entire Commercial Mushroom Farm shelf.

• RNA was isolated and hybridized to Microarrays.
• Data analysis was carried out to generate gene expression profiles,

by comparing each samples expression against Day 11 (Pinning).

• 5 candidate genes were selected based on their expression profile for
further characterisation;

• Cellulose, Hemicellulose/pectin, Oxidoreductase, Laccase and
an “Unknown” gene, that is unique to A. bisporus.

• The promoters of these genes have been linked to eGFP through
Gibson Assembly. A promoter analysis will now be carried out by
expressing these plasmids in the model basidiomycete Coprinopsis
cinerea and culturing the transformants on a variety of substrates and
monitoring eGFP fluorescence.

• Down regulation studies will also be carried out.

Fig 2: A schematic representing the gene expression comparisons of all 
time points against Day 11, the first sample point. 

Fig 3: Schematic plan for the insertion of the each genes promoter 
into the plasmid peGFPi004.
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Fig 4: Schematic plan for the insertion of the anti-sense gene 
fragment into the plasmid peGFPi004.

• 4 out of 5 of the candidate genes have had their
promoters isolated.

• 3 promoters have already been inserted into peGFPi004
and are in the process of been transformed into C.
cinerea.

• PCR optimisation for the isolation of antisense fragments
is underway.

• A large scale bioinformatics analysis of all the promoters
present in A. bisporus is also being conducted.

5. Future work
 Promoter analysis of identified genes using the available
A. bisporus and C. cinerea transformation systems.

 Identify specific regions within promoters which are
stimulated by certain substrates and identify compounds
which may be inhibitory to these.

 Down regulation of genes potentially involved in
compost utilisation to determine gene function.

Complete the large scale bioinformatic analysis of A.
bisporus promoters.

Fig 7: Gene expression profiles of the 5 selected genes for 
promoter analysis.
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