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Abstract 

Aims. Metformin, rosiglitazone and sulfonylureas enhance either insulin action or 

secretion and thus have been used extensively as early-stage antidiabetic medication, 

independently of the aetiology of the disease. When administered to newly diagnosed 

diabetes patients, these drugs produce variable results. Here, we examined the effects 

of the three early-stage oral hypoglycaemic agents in mice with diabetes induced by 

multiple low doses of streptozotocin, focusing specifically on the developmental 

biology of pancreatic islets. 

Methods. Streptozotocin-treated diabetic mice expressing a fluorescent reporter 

specifically in pancreatic islet α-cells were administered the biguanide metformin (100 

mg/kg), thiazolidinedione rosiglitazone (10 mg/kg) or sulfonylurea tolbutamide (20 

mg/kg) for 10 days. We assessed the impact of the treatment on metabolic status of 

the animals as well as on the morphology, proliferative potential and 

transdifferentiation of pancreatic islet cells, using immunofluorescence. 

Results. The effect of the therapy on the islet cells varied depending on the drug and 

included enhanced pancreatic islet β-cell proliferation, in case of metformin and 

rosiglitazone; de-differentiation of α-cells and β-cell apoptosis with tolbutamide; 

increased relative number of β-cells and bihormonal insulin+glucagon+ cells with 

metformin. These effects were accompanied by normalisation of food and fluid intake 

with only minor effects on glycaemia at the low doses of the agents employed. 

Conclusions. Our data suggests that metformin and rosiglitazone attenuate the 

depletion of the β-cell pool in the streptozotocin-induced diabetes, whereas 

tolbutamide exacerbates the β-cell apoptosis but is likely to protect β-cells from chronic 

hyperglycaemia by directly elevating insulin secretion. 
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Introduction 

Type 2 diabetes (T2D) is a metabolic disease of increasing incidence fuelled by 

obesity and ageing demographics [1]. Corresponding to >80% of the less common 

type 1 diabetes (T1D) cases [2], latent autoimmune diabetes of adults (LADA) bears 

close clinical similarity with type 2 diabetes [3,4]. Thus, T2D and LADA patients receive 

an initial treatment with oral hypoglycaemic agents (OHA), which leads to variable 

results ranging from the attenuation to the progression of the phenotype [4].  

The onset of severe diabetes in LADA and T2DM is associated with increased 

impairment of pancreatic islet hormone secretion, which directly impacts body’s 

glucose homeostasis [5]. The latter is controlled by a concert of two islet antagonising 

hormones, insulin (secreted by β-cells) and glucagon (α-cells), that ensure glucose 

clearance from or recruitment into the systemic circulation, respectively. Loss of β-

cells, typical to early stages of LADA [6] or later stages of T2DM, is believed to intensify 

the work of the surviving β-cell population [3], which enhances the expression of 

autoantibodies by β-cells, in LADA [7]. The depletion of β-cells has been also reported 

to induce transdifferentiation of other cell types into β-cells [8-10]. An unidentified 

signal triggering the compensatory mechanism [8] may involve changes in expression 

of transcription factors such as the increase in Pdx1 [11], Pax4 [12], Ngn3, MafA [13] 

or loss of Arx [14], Men1 [15], Dnmt1 [16]. The plasticity of highly committed pancreatic 

cells, especially the second-largest population of α-cells, is viewed as a tool for 

regeneration of the β-cell mass [8,17], an expectation strengthened by reports of 

therapeutically induced α-cell/β-cell transdifferentiation [15,18].  

An OHA of the thiazolidinedione family with a proven effect on T2DM and LADA 

progression, rosiglitazone inhibits the activity of PPARγ, increasing insulin sensitivity 
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[19] and glucose uptake by adipose tissue and liver [20]. Thiazolidinediones have been 

also shown to impact various aspects of β-cell biology [21], such as mitochondrial 

metabolism [22]. Sulfonylurea tolbutamide targets pancreatic β-cells directly, by 

inhibiting the intracellular ‘metabolic sensor’ [23], ATP-sensitive K+ channels, thereby 

triggering insulin secretion [24]. Historically the oldest OHA, biguanides are believed 

to impose their glucose-lowering effect by activating AMP-activated protein kinase 

(AMPK), which inhibits hepatic glucose production [25], possibly affecting the β-cell 

function [26]. 

In the current study, we examined the impact of three oral anti-diabetic agents used 

for early-stage treatment of both T2DM and LADA, rosiglitazone, tolbutamide and 

metformin, on proliferation and plasticity of pancreatic islet α-cell pool, under the 

conditions of severe β-cell loss. The latter was modelled in mice bearing an inducible 

fluorescent label in α-cells (GluCreERT2; ROSA26e-YFP) that were repeatedly treated 

with low doses of streptozotocin (STZ) to induce apoptosis in β-cells, which is 

expected to provide a critical signal to compensate for the β-cell loss.  

Materials and methods 

Animals 

All experiments, carried out under the UK Animals (Scientific Procedures) Act 1986 

and EU Directive 2010/63EU, were approved by the University of Ulster Animal 

Welfare and Ethical Review Body. Animals were maintained in environmentally 

controlled rooms at 22±2°C with a 12h dark and light cycle and given ad libitum access 

to standard rodent diet (10% fat, 30% protein and 60% carbohydrate; Trouw Nutrition, 

Northwich, UK) and water. 
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GluCreERT2;ROSA26-eYFP mice 

Nine-week old male GluCreERT2;ROSA26-eYFP transgenic mice were used to perform 

all studies. An original colony, developed on the C57Bl/6 background at the University 

of Cambridge [27], was subsequently transferred to the animal facility at Ulster 

University and genotyped to assess Cre-ERT2 and ROSA26eYFP gene expression 

(Table S1). Three days prior to STZ dosing, mice were injected with tamoxifen (i.p. 7 

mg/mouse) to activate the tissue-specific expression of yellow fluorescent protein 

(YFP) in pancreatic islet α-cells (Figure 1A). 

Diabetes model and antidiabetic medications 

Our study was designed to evaluate direct effects of rosiglitazone, tolbutamide and 

metformin on islet morphology and cell transdifferentiation on background of sustained 

hyperglycaemia. To exclude the effects mediated by changes of insulin sensitivity or 

blood glucose (that affect islet composition and function [28,29]), we used mice with 

insulin-deficient diabetes [30] that was induced by a 5-day course of injections with 

STZ (Sigma-Aldrich, Dorset, UK; 50 mg/kg body weight daily, i.p.) (Figure 1A), 

dissolved in 0.1 M sodium citrate buffer (pH 4.5). The animals that underwent STZ 

injections and developed hyperglycaemia (non-fasting blood glucose>10 mM [31]) 

were then divided into 4 groups (n=6) and treated orally, once a day, with saline 

vehicle, rosiglitazone (TCI, Oxford, UK; 10 mg/kg), metformin (TCI, Oxford, UK; 100 

mg/kg) or tolbutamide (Sigma-Aldrich, Poole, UK; 20 mg/kg) for 10 successive days 

(Figure 1A). The doses were selected on the basis of ameliorating milder genetic or 

high-fat-induced [32] but not STZ-induced [33] forms of diabetes, in order to elucidate 

the direct effects on islet cell plasticity. Food and fluid intake were assessed every 2 

days, whereas blood glucose and body weight were assessed every 4 days. Non-
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fasting plasma insulin and glucagon were determined at the termination of the study 

(day 10). 

Blood glucose and hormone measurements 

Blood samples were collected from the tail vein of animals into ice-chilled heparin-

coated microcentrifuge tubes. Blood glucose was measured using a portable Ascencia 

meter (Bayer Healthcare, Newbury, Berkshire, UK). For plasma insulin and glucagon, 

blood was collected in chilled fluoride/heparin-coated tubes (Sarstedt, Numbrecht, 

Germany) and centrifuged using a Beckman microcentrifuge (Beckman Instruments, 

Galway, Ireland) for 10 minutes at 12,000 rpm. Plasma was then stored at -20oC. For 

hormone determination from tissues, samples underwent acid-ethanol extraction (HCl: 

1.5% v/v, ethanol: 75% v/v, H2O:23.5% v/v). Insulin concentrations were subsequently 

assessed by an in-house radioimmunoassay [34]. Plasma glucagon and pancreatic 

glucagon content were measured using glucagon ELISA (EZGLU-30K, Merck 

Millipore), or RIA kit (250-tubes GL-32K, Millipore, USA), respectively. 

Immunohistochemistry and imaging 

Following the removal of pancreatic tissue, samples were cut longitudinally and fixed 

with 4% PFA for 48 hr at 4°C. Fixed tissues were embedded and processed for 

antibody staining as described [30]. Tissue sections (7 μm) were blocked with 2% 

BSA, incubated with respective primary antibodies overnight at 4°C, and, 

subsequently, with appropriate secondary antibodies (Table S2). To stain nuclei, a 

final incubation was carried out at 37°C with 300 nM DAPI (Sigma-Aldrich, D9542). To 

assess cell proliferation and/or apoptosis, co-staining of mouse anti-insulin (Abcam, 

Cambridge, UK; 1:1000; ab6995) or guinea pig anti-glucagon (PCA2/4, 1:200; raised 

in-house) with rabbit anti-Ki-67 (1:200; Abcam ab15580) or TUNEL reaction mixture 
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(Roche Diagnostics Ltd, UK) was used. YFP, indicating the α-cell lineage, was 

detected by with a rabbit anti-GFP antibody (1:1000; Abcam, ab6556) (Table S2), 

which is reactive against all variants of Aequorea Victoria GFP, including YFP. The 

slides were imaged on an Olympus BX51 microscope, equipped with a 40x/1.3 

objective. We aimed to include all the islets visible on the slide in the morphometry 

analysis, independently of their localisation in relation to other pancreatic structures, 

with at least 50 cells analysed within each islet cross-section in the per-cell studies 

(Figure 2B, Figure 3). The multichannel fluorescence was recorded using DAPI 

(excitation 350 nm/emission 440 nm), FITC (488/515) and TRITC (594/610) filters and 

a DP70 camera controlled by CellF software (Olympus, UK). Images were analysed 

using ImageJ software. All counts were determined in a blinded manner with 60-150 

islets analysed per treatment group, as indicated in the figure legends. The non-

stained cells visible in the middle of the islet were not excluded from the computation 

of the islet area. 

Data analysis and statistics 

Statistical analysis was performed using PRISM 5.0 (GraphPad, U.S.A.) or R. Values 

are expressed as mean±SEM. Comparative analysis between experimental groups 

were carried out using independent-samples Student's t-test or (for >2 samples) a one-

way ANOVA with Bonferroni’s post-hoc. The difference between groups was 

considered significant for p<0.05. 
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Results 

STZ-induced intake of food and fluid is partially rescued by the antidiabetic drugs  

The treatment with STZ resulted in a progressive diabetic phenotype in the mice, 

which was reflected by the elevation of blood glucose concentration (Figure 1B). Non-

fasting blood glucose increased in the STZ-treated mice from 8.2±0.4 mM (end of the 

STZ treatment) to 32.6±0.4 mM 14 days afterwards (7.6±0.7 and 8.4±0.6 mM, 

respectively, in the control group). 

As designed, 10-day administration of rosiglitazone, tolbutamide or metformin had no 

significant impact on glycaemia (30.8±0.7, 31.3±0.4, 30.0±0.1 mM, respectively) 

(Figure 1B). The onset of hyperglycaemia coincided with the 9% decrease in the body 

weight from 19.2±0.4 g at the end of the STZ treatment (20.7±0.3 g in the control 

group, n.s.) to 17.4±0.4 g after 14 days (20.5±0.3 g in the control group, p<0.05) 

(Figure 1C). 10-day administration of rosiglitazone and tolbutamide had no statistically 

significant impact on body weight (17.9±0.6, 17.4±0.3 g, respectively, p<0.05 vs 

control), whereas metformin tended to exacerbate (16.7±0.6 g, p<0.05 vs control) the 

weight loss (Figure 1C). 

The effects of STZ treatment on the intake of food or fluid by the experimental animals 

were palpable 4 days post its cessation (day 0, Figure 1D,E) and were progressively 

elevating from that point. Both food and fluid intake were significantly attenuated after 

four days of treatment with metformin (Figure 1D,E), coincident with the decrease in 

the body weight (Figure 1C). Neither of the remaining two OHA influenced fluid intake 

(Figure 1E), however rosiglitazone and, at one point, tolbutamide significantly 

attenuated the intake of food (Figure 1D). 
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As a result of the STZ treatment, the non-fasting terminal plasma insulin levels that 

were measured on day 10 were substantially decreased (0.16±0.06 vs 0.95±0.04 

ng/mL in STZ-treated and control groups, P<0.01), whereas the differences between 

corresponding glucagon levels did not attain statistical significance (0.19±0.07 vs 

0.32±0.11 ng/mL) (Figure 1F). Whilst none of the OHA elevated insulin levels (Figure 

1F), metformin induced a significant decrease of plasma glucagon levels, on the STZ-

treatment background (0.15±0.03 vs 0.32±0.11 ng/mL in the control group, p<0.05) 

(Figure 1F). 

In line with the effect on plasma hormone levels (Figure 1F), STZ substantially 

decreased pancreatic content of insulin (27.5±9.9 vs 109.2±8.0 ng/mg of tissue in 

control, p<0.05), without any appreciable effect on the glucagon content (Figure 1G). 

Following subsequent rosiglitazone treatment, the glucagon content was substantially 

decreased (13.3±3.8 vs 22.7±4.2 ng/mg of tissue in control, p<0.05), whereas 

tolbutamide or metformin had no effect on this parameter (Figure 1G). 

The alleviation of the diabetic phenotype is associated with a mild effect on the islet 

composition 

We did not detect any significant alteration in the islet number, in response to any 

treatments (red in Figure 2A). At the same time, the observed decrease in plasma and 

pancreatic insulin (Figure 1F,G) coincided with the decrease in the average cross-

section area of islets in the STZ-treated mice (black in Figure 2A). The OHA therapy 

that followed the STZ treatment resulted in a mild increase in this metric (black in 

Figure 2A). 

The STZ treatment produced a significant reduction in the relative β-cell area 

(red/insulin+ in Figure 2B,C) and, respectively, an increase in the relative α-cell area 
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(black/glucagon+ in Figure 2B,C). Remarkably, a 10-day oral administration of 

metformin, but not rosiglitazone or tolbutamide, counter-acted the effects of the STZ 

treatment, resulting in small but significant differences in the percentage of β-cells 

(55±2% vs 48±2% in STZ mice, p<0.05) and α-cells (44±2% vs 51±2% in STZ mice, 

p<0.05) (Figure 2B,C). Interestingly, the islets from the STZ-treated animals contained 

a palpable fraction of cells that did not express insulin or glucagon (Figure 2C): we 

need to stress that, among other types, islets contain significant numbers of vascular 

endothelial cells [35,36], which are likely to contribute to this phenomenon.  

Oral hypoglycaemic agents increase proliferation but have no effect on apoptosis of β-

cells 

In line with the report of STZ inducing β-cell apoptosis, when used in small repeated 

doses [37], we observed a six-fold (2.2±0.1 vs 0.4±0.1% in control mice, p<0.05) 

increase in the percentage of β-cells expressing an apoptosis marker, TUNEL, in STZ-

treated mice (red, Figure 3A, Figure S1A). The metformin therapy tended to attenuate 

the β-cell apoptosis whereas tolbutamide further increased the expression of TUNEL 

by β-cells (3.2±0.3% vs 2.2±0.1 in the STZ-treated mice, p<0.05) (red, Figure 3A). 

Although the STZ treatment per se has not affected the apoptosis of α-cells (black, 

Figure 3A), metformin administered to the STZ-treated animals mildly increased this 

characteristic (0.5±0.1% vs 0.4±0.1% in the STZ-treated group, p<0.05) (black, Figure 

3A, Figure S1A). 

The pro-apoptotic effect of the STZ treatment did not affect the percentage of 

proliferating β-cells, as was assayed via Ki-67 staining (red, Figure 3B, Figure S1B). 

This metric was increased by subsequent treatment with rosiglitazone or metformin 

(4.0±0.2% and 2.5±0.4% respectively, vs 1.3±0.1% in the STZ-treated group, p<0.05). 
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The STZ treatment produced a 5-fold increase in the fraction of proliferating α-cells 

(black in Figure 3B, Figure S1B), which was not affected by any of the OHA (black in 

Figure 3B). 

Long-term administration of oral hypoglycaemic agents does not affect α-/β-cell 

transdifferentiation 

The key feature of the animal model used in this study, the GluCreERT2; ROSA26-eYFP 

mice, is the tissue-specific targeting (pancreatic α-cells) and the inducible nature of 

the expression of YFP. When co-detected with anti-glucagon antibodies, 20 days post 

induction of the targeted YFP expression, the islets from these mice had only a small 

fraction of YFP+ cells that did not express glucagon (0.3±0.1%) (black, Figure 3C, 

Figure S1C). The YFP+ cell percentage was increased almost 3-fold after the STZ 

treatment (0.8±0.4%, p<0.05 vs control) and further potentiated by tolbutamide 

(2.7±0.8%, p<0.005 vs control, p<0.01 vs STZ) but not rosiglitazone or metformin 

(0.9±0.4%, p<0.05 vs control and 1.2±0.4%, p<0.01 vs control, respectively) (black, 

Figure 3C, Figure S1C). Of note, we were unable to detect YFP in almost half of 

glucagon+ cells, which we believe to reflect a technical feature of the anti-GFP 

antibody staining (red in Figure 3C). 

The percentage of the YFP+insulin+ cells was low in the experimental animals with α-

cell-specific targeting of YFP (0.6±0.1% in the control group). The treatment with STZ 

however triplicated this number (1.7±0.1%) (red, Figure 3D, Figure S1D). Neither of 

the OHA was able to further enhance the commitment of the YFP+ cells towards the 

insulin lineage (red, Figure 3D). At the same time, the administration of each of the 

OHA, following the STZ treatment, increased the percentage of bi-hormonal 

(insulin+glucagon+) cells (black, Figure 3D, Figure S1D). The size of this small cell 
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subpopulation was unaffected by the STZ treatment (0.27±0.01% vs 0.25±0.02% in 

the control group), whereas subsequent rosiglitazone (0.33±0.02%), tolbutamide 

(0.31±0.02%) and metformin (0.38±0.03%) administration substantially expanded it 

(black, Figure 3D). 

Discussion 

We probed the mechanisms whereby the oral hypoglycaemic agents may partially 

compensate for the selective apoptotic damage of β-cells. In our hands, pancreatic β-

cell population was partially replenished via increased proliferation, in response to 

metformin or rosiglitazone, whereas tolbutamide exacerbated apoptosis, arguably by 

putting an extra demand on insulin production and secretion mediated by cytosolic 

Ca2+ [38].  

Diabetic phenotype of the mice 

The diabetes model and the OHA dosage were designed to resolve the direct effects 

of the OHA on pancreatic islet cell plasticity [39]. We have opted for repeated injections 

of small doses of STZ [9,40] over high-fat diet or leptin receptor deficiency animal 

models of diabetes to enable cell lineage tracing and rule out any indirect effects, 

mediated by changes in insulin sensitivity or blood glucose, that may impact the islet 

plasticity. The model animals displayed stably elevated glycaemia and reduced body 

weight (Figure 1B,C), whereas the three treatments, at the doses chosen, affected 

only food and fluid intake (Figure 1D,E). Notably, the doses used compare well with 

daily human recommended doses, given the differences in the pharmacokinetics of 

the three drugs in the mouse and human systems [41-43]. 
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Islet mass, morphology, apoptosis and proliferation of β- and α-cells 

A side effect of the OHA therapy, lowering of the systemic glucagon in response to 

metformin (Figure 1F) is unlikely to reflect the depletion of the α-cell population due to 

its transdifferentiation or apoptosis, as α-cells are well in excess, in rodent islets 

[35,44]. The phenomenon could have stemmed from the elevation of circulating GLP-

1 levels, reported to be induced by metformin [45]. Another possible explanation for 

this effect is the activation of the intraislet GLP-1 secretion system [46-48], under the 

conditions of the STZ treatment [9,49]. The likely mechanism for that is the acquisition 

of the proconvertase PC1/3 activity by α-cells [46], with a subsequent shift in the α-

cell secretory output from glucagon to GLP-1. In line with the reported cytostatic effect 

of metformin [50] that, in our hands, stimulated apoptosis in α-cells (but, surprisingly, 

given earlier reports [51], not in β-cells, Figure 3A), the elevation of intra-islet and 

circulating GLP-1 could explain partial recovery of the ratio of β- and α-cells (Figure 

2B), presumably by upregulating β-cell proliferation [9,30]. Notably, rosiglitazone, 

reported to increase the β-cell mass by reversing the apoptosis [52], was not efficient 

in doing so in our model (Figure 3A). In our hands, it induced a 4-fold increase of the 

proliferating β-cells, in line with previous reports [52]. 

Effects of OHA on alpha cell transdifferentiation 

The STZ-induced β-cell injury per se resulted in a detectable expression of insulin and 

a loss of expression of glucagon by YFP+ cells (Figure 3C), reflecting the α-cell 

population before the STZ treatment. The fact that none of the OHA affected the co-

expression of insulin and YFP on a per-cell basis, suggests the lack of a role in 

regulating α-/β-cell transdifferentiation (Figure 3D).  
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In the present study, a small but detectable number of bi-hormonal [8] cells was 

evident after the STZ treatment, followed by administration of metformin (Figure 3D). 

This effect can be explained by non-pancreatic signals [53] that may induce α-cell 

trans-differentiation. On the contrary, the dedifferentiation of α-cells by tolbutamide 

(Figure 3C), likely to result from a direct effect on the KATP channels, was not 

associated with any β-cell phenotype.  

Relative merits of different OHAs 

Since sulphonylureas are actively prescribed for diabetes, further elucidation of their 

global effects on islet function is highly relevant. No previous study has reported, to 

our knowledge, on the effects of this drug class on islet cell transdifferentiation. Our 

data with tolbutamide are important in revealing that not only does the sulphonylurea 

lack beneficial effects on islet plasticity (unlike the two other classes of OHA) but that 

it exerts adverse effects on β-cell health and apoptosis. This can be viewed as a 

significant limitation of first-line sulphonylurea therapy and would suggest that incretin 

mimetics which have recently shown to have positive effects on β-cell 

transdifferentiation, apoptosis and proliferation [9,29] would be a better therapeutic 

option for direct β-cell actions. 

Conclusion 

Alongside peptide hormones [9,40], small molecules have been shown to induce 

transdifferentiation of pancreatic α-cells into β-cells. Metformin and rosiglitazone but 

not tolbutamide promoted the restoration of the β-cell pool via proliferation, with none 

of the three oral antidiabetic drugs affecting the α-cell transdifferentiation induced by 

the loss of β-cells. In contrary, metformin decreased the islet α-cell population via 

apoptosis, whereas tolbutamide, in turn, enhanced apoptosis in β-cells. Whether these 
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drugs impose similar effects in humans, alongside the reported antioxidant [54] and 

insulinotropic [55] activity, remains the matter of future research. 
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Figure legends 
Figure 1 Rosiglitazone, tolbutamide and metformin partially rescue the diabetic 

phenotype of the streptozotocin-treated mice. 

A: Experimental timeline. Antidiabetic treatment starts on day 0. Tamoxifen is fed to 

the animals 11 days prior to that to induce the tissue-specific expression of YFP in α-

cells. STZ is administered to model type 1 diabetes for five successive days, 4 days 

before the start of the treatment. The ability of the latter to improve the diabetic 

phenotype is then assayed. B, C, D, E: Non-fasting blood glucose (B), body weight 

(C), food (D) and fluid (E) intake of GluCreERT2;ROSA26-eYFP mice, following STZ 

treatment and the administration of antidiabetic drugs, as indicated, for groups of n=6 

mice each. ‘STZ’, streptozotocin; ‘Rosi’, rosiglitazone; ‘Tolb’, tolbutamide; ‘Metf’, 

metformin; ‘Ctl’, saline control. F: plasma insulin (red) and glucagon (black) G: 

pancreatic insulin (red) and glucagon (black) content. F, G measurements were done 

on day 10, in separate groups of mice. *p<0.05, **p<0.01 and ***p<0.001 compared 

to saline control group. Δp<0.05, ΔΔp<0.01, ΔΔΔp<0.001 compared to the STZ group.   
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Figure 2 Diabetic phenotype is associated with changes in the islet composition. 

Impact of the administration of STZ to GluCreERT2;ROSA26-eYFP.mice and subsequent 

treatment with antidiabetic drugs, as indicated, on: islet number (black, n=150 islets 

from 6 mice) and islet area (red, n=150 islets from 6 mice) (A); β- (red, n=150 islets 

from 6 mice) and α-cell (black, n=150 islets from 6 mice) percentage among the islet 

cells (B). C: Representative immunostaining of mouse pancreatic sections for DAPI 

(blue), glucagon (green) and insulin (red). *p<0.05 and ***p<0.001 compared to the 

saline control group. Δp<0.05compared to streptozotocin treated group. Scale bars: 

50µm. 
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Figure 3  [35] 

A, B: Percentage of β-cells (red, n=60 islets from 6 mice) and α-cells (black, n=60 

islets from 6 mice) undergoing apoptosis (A), as determined by TUNEL staining, or 

proliferation (Β), ki67 staining, in response to the administration of STZ to 

GluCreERT2;ROSA26-eYFP.mice and subsequent treatment with antidiabetic drugs, as 

indicated. Grey bars in B represent the net difference in the proliferating fractions of 

α- and β-cells. C, D: Trans-differentiation of YFP+ cells within GluCreERT2;ROSA26-

eYFP.mice. The YFP expression, originally specifically induced in α-cells, was 

detectable within α-cells (C, red, n=60 islets from 6 mice), non-α-cells (C, black, n=60 

islets from 6 mice) and β-cells (D, red, n=60 islets from 6 mice) after to the 

administration of STZ and subsequent anti-diabetic treatment. In addition, double-

positive (insulin+glucagon+) cells were detectable (D, black, n=60 islets from 6 mice). 

*p<0.05, **p<0.01 and ***p<0.001 compared to saline control group. Δp<0.05 and 

ΔΔp<0.01, ΔΔΔp<0.001 compared to STZ-treated group. 
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Supplementary data 

Table S1 Primer sequence for PCR genotyping of GluCreERT2;ROSA26-eYFP mice 

 

Table S2 Primary and secondary antibodies used for immunohistochemistry 

 

Primers Sequence 

β-catenin (Housekeeping control, 
220BP) 

Forward:  AAGGTAGAGTGATGAAAGTTGTT 
Reverse:  CACCATGTCCTCTGTCTATTC 

iCre002/003 fragment (Cre lines, 
537BP) 

Forward:  GACAGGCAGGCCTTCTCTGAA 
Reverse:  CTTCTCCACACCAGCTGTGGA 

GLUCre-ERT2 (759BP) Forward: CCACCTTCTAGAATGTGCCTG 
Reverse: CATCTGCATGCAAAGCAATATAGC 

EYFP (442BP) Forward:  GACGTAAACGGCCACAAGTT 
Reverse: GGATCTTGAAGTTCGCCTTG 

Primary antibody Dilution Source 

Mouse anti-insulin 1:1000 Abcam, ab6995 

Guinea pig anti-glucagon 1:200 Raised in-house: PCA2/4 

Rabbit anti-GFP 1:1000 Abcam, ab6556 

Rabbit anti-Ki-67 1:200 Abcam, ab15580 

TUNEL enzyme 1:10 Sigma Aldrich 11684795910 

Secondary antibody Dilution Source 

Goat anti-mouse 1:400 Alexa Fluor 488, Invitrogen, UK 

Goat anti-mouse 1:400 Alexa Fluor 594, Invitrogen, UK 

Goat anti-guinea pig 1:400 Alexa Fluor 488, Invitrogen, UK 

Goat anti-guinea pig 1:400 Alexa Fluor 594, Invitrogen, UK 

Goat anti-rabbit 1:400 Alexa Fluor 488, Invitrogen, UK 

Donkey anti-rabbit   1:500 Alexa Fluor 594, Invitrogen, UK 
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Figure S1 Representative images showing immunostaining for: 

A: DAPI (blue), TUNEL (green) and insulin or glucagon (red) (see Figure 3A); B: DAPI 

(blue), Ki67 (green) and insulin or glucagon (red) (see Figure 3B); C: YFP (red), DAPI 

(blue) and insulin or glucagon (green) (see Figure 3C,D). D: insulin (red), DAPI (blue) 

and glucagon (green) (see Figure 3D).  Scale bars: 50 µm. 
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