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Abstract 

The present study investigates the maximum temperature and smoke back-layering length S in 

the downhill direction from the fire source in a tilted tunnel under natural ventilation. Numerical 

simulations were conducted using FDS to study the smoke flow behaviors for a fire in a tunnel with 

nine tunnel slopes of 0, 1%, 2%, 3%, 4%, 5%, 6%, 7% and 8%. It was found that, due to the stack 

effect, the smoke stagnated at a distance from the fire source in the downhill direction. The effects of 

tunnel slope,  , fire source heat release rate, Q , source-ceiling height H and tunnel width W on the 

maximum temperature and smoke back-layering length were studied. Results showed that the 

maximum temperature under the ceiling decreased with the increasing of tunnel slope or the 

decreasing of tunnel width. However, it increased with the increasing of heat release rate or the 

decreasing of source-ceiling height. A model was proposed for the maximum temperature rise. The 

smoke back-layering length S decreased with the increasing of the tunnel slope. Fire source heat 

release rate and tunnel width had no significant effect on the smoke back-layering length. And the 

smoke back-layering length decreased with the decreasing of source-ceiling height. Based on 

dimensional analysis, a simple model including the effects of both the tunnel slope and 

source-ceiling height H, was proposed to predict the smoke back-layering length. 

Key words: Tunnel fire; tunnel slope; smoke back-layering length; temperature; FDS. 

Nomenclature 
bf,0 area-equivalent radius (m) 

cp specific heat of air at constant pressure (kJkg-1K-1) 

D* characteristic fire diameter as shown in Eq. (5) (m) 

g gravitational acceleration (ms-2) 

h the thickness of the smoke layer at the stagnation point (m) 

H source-ceiling height (m) 
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Ht tunnel height (m) 

k constant in Eq. (16) 

Q  total heat release rate (kW)       

Q  non-dimensional heat release rate (Eq. (2b)) 

r distance from the fire source (m) 

S smoke back-layering length (m) 

Tmax maximum smoke temperature under the ceiling (K) 

Ts smoke temperature at the smoke stagnation point (K) 

Tx mean temperature at the distance x from the reference point (K) 

 ambient temperature (K)         

V longitudinal ventilation velocity (ms-1) 

V’ non-dimensional ventilation velocity (Eq. (1)) 

V 

 
non-dimensional ventilation velocity (Eq. (2c)) 

W tunnel width (m) 

Greek symbols 


 tunnel slope (%) 

s  smoke density at the smoke stagnation point (kgm-3) 

x  smoke density at the distance x from the reference point (kgm-3) 

 ambient air density (kgm-3) 

stackP
 

pressure difference caused by the stack effect (kgm-1s-2) 

staticP
 static pressure difference (kgm-1s-2) 

maxT
 maximum temperature rise (K) 

rT  temperature rise of the reference point at location of xr (K) 

sT
 temperature rise at the smoke stagnation point (K) 

xT  temperature rise at the distance x from the reference point (K) 

s
 

density difference between ambient air and the smoke stagnation point (kgm-3) 

  mesh size (m) 


 

tunnel inclination angle (°) 

1 2 3 4, , , ,   
 

non-dimensional quantities 

5 6,   

Subscript 

 ambient 

T
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1. Introduction  

Smoke temperature and back-layering length are two of the most important parameters in tunnel 

fires, and have been studied for decades. Most of the previous studies on the temperature profile and 

smoke back-layering length of tunnel fires were focused on a horizontal tunnel (Chen et al., 2013, 

2015; Hu et al., 2003, 2005, 2007, 2008; Kurioka et al., 2003; Li and Ingason, 2010, 2011, 2012; 

Tang et al., 2013; Tang et al., 2014). For the temperature profile under the ceiling of tunnel fires, Li 

and Ingason, 2011, 2012 proposed a widely used correlation for calculating the maximum 

temperature rise 
maxT  under the ceiling, as shown in Eq. (1) where two regions were defined based 

on a dimensionless ventilation velocity. 
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V is the longitudinal ventilation velocity, Q  is the heat release rate, 
 is the ambient air density, 

pc  is the specific heat of air at constant pressure, g  is the gravitational acceleration, T
 is the 

ambient air temperature, bf,0 is the area-equivalent radius, and H is the source-ceiling height. For 

smoke back-layering length S of a horizontal tunnel with logitudinal ventilation, the follwing 

corrleation was proposed (Li and Ingason, 2010): 
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It should be noted that, for a horizontal tunnel under natural ventilation, smoke will spread out of the 

tunnel from both ends of the tunnel, and therefore there is no smoke back-layering length.  

In real situations, there will be slopes in some tunnels. The stack effect of a titled tunnel has an 

important influence on smoke spread, which will further change the maximum temperature under the 

ceiling and smoke back-layering length, and some studies have been conducted on these two 

parameters of a tilted tunnel (Atkinson and Wu, 1996; Chow et al., 2015; Hu et al., 2013; Oka et al., 

2013; Shafee and Yozgatligil, 2018; Weng et al., 2016; Wu et al., 1997). For maximum temperature, 

on the basis of Li’s study (Eq. (1)), Hu et al., 2013 proposed the following equation based on 

experimental results using a small-scale tunnel model 
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For the smoke back-layering, Atkinson and Wu, 1996, Wu et al., 1997 conducted experiments using 

a small-scale tilted tunnel with various slopes, and the velocities to prevent smoke back-layering to 

various distances in the uphill direction from the fire source were obtained, and a correlation was 

developed for the critical velocity that was just able to prevent the formation of smoke back-layering 

length S. Chow et al., 2015 also performed experiments using a small-scale tilted tunnel with various 
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slopes, and an equation of critical velocity for S=0 in the uphill direction from the fire source was 

further proposed which was similar to that proposed in (Atkinson and Wu, 1996; Wu et al., 1997). 

Shafee and Yozgatligil, 2018 carried out experiments using a reduced-scale tilted tunnel model, and S 

of various ventilation velocities in the uphill direction from the fire source were obtained, and a 

correlation of critical velocity was also developed for S=0. Recently, Weng et al., 2016 proposed a 

theoretical model of the critical velocity for both uphill and downhill direction from the fire source 

based on non-dimensional analysis, and they found that the non-dimensional critical velocity was a 

1/3 power function of the non-dimensional heat release rate and proportional to the tunnel slope.  

The results in the above studies show that due to stack effect, the smoke movement in a tilted 

tunnel is different from the one in a horizontal tunnel. The specific smoke movements of tilted tunnel 

fires would make the maximum temperature and smoke back-layering length different from those of 

horizontal tunnel fires. Unfortunately, previous studies are mainly conducted with longitudinal 

ventilation, and little effort has been put with respect to the maximum temperature and smoke 

back-layering length of tilted tunnel with the absence of mechanical ventilation. The smoke 

movement will be dominated by the airflow induced by stack effect, and even for natural ventilation 

(when the ventilation system isn’t working) there would be smoke back-layering length in the 

downhill direction. Most of the models proposed in previous studies for longitudinal ventilation 

cannot be applied for any more (Ji et al., 2015). Oka et al., 2013 proposed the following equation for 

smoke back-layering length in the downhill direction based on data obtained from a small-scale tilted 

tunnel test under natural ventilation 

 
0.562

2 5
3.18

S

Q
 −=  (4) 

where   is the tunnel inclination angle (°). However, they have only examined two small heat 
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release rates (1.95 and 5.78 KW) in a small-scale tunnel (1/23.3-scale model tunnel), thus, the 

viability of the model proposed by them needs further validations for other conditions. In this work, 

numerical simulation is conducted for the maximum temperature and smoke back-layering length in 

a tilted tunnel under natural ventilation. The tunnel length is 500 m, and the tunnel height is set to be 

5 m. The tunnel width is varied in the range of 6 m ~ 12 m. The evolution behaviors of maximum 

temperature and smoke back-layering length for various slopes, heat release rates, source-ceiling 

heights and tunnel widths are studied. 

2. CFD modeling 

2.1 The physical model 

In order to study the smoke back-layering length in the lower end of the tilted tunnel under 

natural ventilation, the total length of the tilted tunnel is set to be 500 m. The cross section of the 

tunnel is rectangular with height of 5 m, and the width of the tunnel is varied from 6 m to 12 m. The 

fire source is located at 350 m from the portal in the lower end as shown in Fig. 1 (on the 

longitudinal axis of the tunnel), and heptane is used as the fuel. The default values in FDS User 

Guide are used for the fire source (Fire Dynamics Simulator User’s Guide). The turbulence model is 

“constant Smagorinsky”. The simple chemistry, mixing-controlled combustion model (single-step) is 

used for the reaction, and specify energy release per unit mass oxygen of 1.31×104 kJ/kg. The 

material of the wall is specified as concrete with its thermal properties (conductivity is 1.8 W/(mK), 

density is 2280 kg/m3, specific heat is 1.04 kJ/(kgK)) available in the FDS (Version: 6.5.3) database 

document. The ambient temperature was 20°C, and the environmental pressure was set as ambient 

pressure of 101 kPa. The two ends of the tunnel are set to be open. All the simulation conditions are 

shown in Table 1. Two heat release rates (HRR), three source-ceiling heights (H), three tunnel widths 
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(W) and nine slopes   (%) are used. The heat release rates of 5 MW and 7.5 MW are considered to 

simulate a common fire scenario of one passenger car burning (Ko et al., 2010). For the effect of 

tunnel slope on the smoke temperature and back-layering length, nine slopes are considered. 

Considering the computational power and economy, for various heat release rates, source-ceiling 

heights and tunnel widths, tunnel slopes of 0, 1%, 2%, 4%, 6% and 8% are used in this study. The 

tunnel slope is obtained by decomposing the acceleration of gravity in the tunnel longitudinal 

direction and the tunnel height direction. For example, a slope of 8% is obtained by setting the 

acceleration of gravity in the tunnel longitudinal direction as 
1.0064

g
 and the acceleration of 

gravity in the tunnel height direction as 0.08
1.0064

g
. The simulation time is set to be 1200 s to 

reach a steady spread state of the smoke. Multiple mesh simulation with MPI parallel processing 

(number of MPI processes is 5, and number of OpenMP threads is 3) is used during the study. A 

series of thermocouples are used to measure the temperatures, and the distances between the 

thermocouples and the ceiling are set to be 0.1 m, 0.225 m, 0.35 m, 0.6 m, 0.85 m, 1.1 m, 1.6 m, 2.1 

m.  

 
 

 

Fig. 1: Physical model of the tilted tunnel and the mesh sizes (top view).  

Table 1 Summary of numerical simulation conditions.  

Test 

no. 

Q

(MW) 

W (m) H (m)  (%) Test 

no. 

Q

(MW) 

W (m) H (m)  (%) 

1 5 12 5 0 17 5 12 3 2 

2 5 12 5 1 18 5 12 3 4 

3 5 12 5 2 19 5 12 3 6 

Fire source -8m 8m 150m -350m 

0m 
Upward direction Downward direction 

=0.125m =0.25m=0.25m
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4 5 12 5 3 20 5 12 3 8 

5 5 12 5 4 21 5 12 2 1 

6 5 12 5 5 22 5 12 2 2 

7 5 12 5 6 23 5 12 2 4 

8 5 12 5 7 24 5 12 2 6 

9 5 12 5 8 25 5 12 2 8 

10 7.5 12 5 0 26 5 9 5 1 

11 7.5 12 5 1 27 5 9 5 2 

12 7.5 12 5 2 28 5 9 5 4 

13 7.5 12 5 4 29 5 9 5 6 

14 7.5 12 5 6 30 5 9 5 8 

15 7.5 12 5 8 31 5 6 5 2 

16 5 12 3 1 32 5 6 5 4 

2.2 The grid system  

For a numerical simulation, mesh size is an important factor to obtain viable results. For 

simulations involving buoyant plumes, the mesh size   near the fire is determined by a 

non-dimentional expression D   (Chen et al., 2015), where D  is a characteristic fire diameter 

as shown in Eq. (5) 

 

2 5

=
p

Q
D

c T g



 

 
 
 
 

 (5) 

For the heat release rates of the present study (Table 1), D  is in the range of 1.83 m ~ 2.15 m. 

According to the studies in the literatures, the value of D   should be 4 ~ 16 (Shafee and 

Yozgatligil, 2018; Wang et al., 2019). Therefore, the mesh size of   is in the range of 0.11 m ~ 0.54 

m. Then, the mesh size is set to be 0.125 m near the fire source (8 m from the fire center in both the 

downhill direction and uphill direction), and 0.25 m in other places as shown in Fig. 1, and the 

number of mesh for each condition is in the range of 1836000 (W=6 m) ~ 3304800 (W=12 m). It is 

noted that many numerical studies have been carried out using FDS for a full scale tunnel fire 

(Harish and Venhatasubbaiah, 2014; Meng et al., 2014; Shafee and Yozgatligil, 2018; Wang et al., 

2016; Weng et al., 2016), and similar mesh size were used in these studies with the accuracy 
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valadited by mesh size sensitivity analysis and comparison with experimental results (Oka et al., 

2013; Wu et al., 1997).  

In this work, mesh size sensitivity analysis and validation of the FDS prediction have also been 

conducted, and numerical simulation with smaller mesh size has been carried out. Figure 2a shows a 

typical comparison between two mesh systems (the number of mesh increases from 2570400 to 

4590000) for 5MWQ = , W=9 m, H=5 m, =2% . Figure 2a shows that there is no significant 

difference of maximum temperature betwwen the two mesh systems. For the larger mesh size (near 

fire source =0.125m , other places =0.25m ), it takes about 9 days with 5 MPI processes for one 

case. For the smaller mesh size (near fire source =0.1m , other places =0.2m ), we have to use 21 

MPI processes to save time, and even so, it takes about 6 days for one case. Considering saving time 

and resources, the mesh size is set to be 0.125 m near the fire source, and 0.25 m in other places. 

Figure 2b shows the comparison of temperature rise between this study and the model proposed in 

Hu, 2006 for horizontal tunnel fire. xT  is the temperature rise at the distance x-xr from the 

reference point. 
rT  is the temperature rise of the reference point at location of xr. It is noted that in 

Hu’s model, xT  and 
rT  are mean smoke temperature rise of the transverse section. Figure 2b 

shows that the FDS predictions match well with Hu’s model which is validiated by full scale 

experimental results.  
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Fig. 2: Validation of the FDS prediction.  
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3. Results and discussion 

Figure 3 shows the typical smoke spread behavior of 7.5 MW, W=12 m, H=5 m and  =2%. It 

can be seen that after 320 s, it reaches steady spread state and the smoke back-layering in the 

downhill direction from the fire source has no significant change anymore. The maximum 

temperature and the smoke back-layering length reported in the following sections are the averaged 

values in the steady spread state. The simulation results show good repeatability.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Smoke spread behavior for 7.5 MW, W=12 m, H=5 m and  =2%. 

3.1 Maximum temperature rise under the ceiling 

Figures 4 ~ 6 show the maximum temperature Tmax and temperature rise 
maxT  (average value 

of 50 s over the steady state) of the fire plume under the ceiling with various tunnel slopes, heat 

release rates, source-ceiling heights and tunnel widths. In order to give a better visualization of the 
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results plotted at Fig. 4a, Fig. 5a and Fig. 6a, only some slopes are shown in these figures. From Fig. 

4, we can see that the maximum temperature decreases with the increasing of the tunnel slope. Wang 

et al., 2020 and Chen et al., 2020 point out that the air flow velocity induced by the stack effect 

increases with the tunnel slope. The fire plume will be deflected by the air flow (Hu, 2017) induced 

by the stack effect. At the same time, the airflow enhances the entrainment of gas. It is also noted that 

with the increasing of the tunnel slope, the distance from the fire source to the tunnel ceiling above 

the fire is increased, which results in a decrease in the maximum temperature. Figure 5 also shows 

that the maximum temperature increases with the increasing of heat release rate and the decreasing 

of source-ceiling height. The above results are consistent with the experimental results in (Hu et al., 

2013). However, the correlation proposed in (Hu et al., 2013) (Eq. (3)) can’t predict the decrease in 

the maximum temperature with decreasing tunnel width as shown in Fig. 6. It is noted that only one 

tunnel width is used in (Hu et al., 2013), and the effect of tunnel width is not included in their model. 

The decreasing tunnel width increases the smoke thickness as well as the heat transfer between the 

wall and smoke layer, which leads to the decreasing of maximum temperature (Hu, 2006).  
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(b) Maximum temperature rise 

Fig. 4: Maximum plume temperature rise under the ceiling of various tunnel slopes for

 5MW, =12m, =5mQ W H= . 
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(b) Maximum temperature rise 

Fig. 5: Maximum plume temperature rise under the ceiling of various heat release rates and 

source-ceiling heights for W=12 m. 
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(b) Maximum temperature rise 

Fig. 6: Maximum temperature rise under the ceiling of various tunnel widths for

5MW, =5mQ H= . 

Equation (3) shows that the dimensionless temperature rise max

max 0

T

T



 ，

 (where 
max 0T ， is the 

maximum temperature rise of a horizontal tunnel, i.e., zero tunnel slope) is proportional to tunnel 

slope. In Fig. 7, we further plot max

max 0

T

T



 ，

 against the tunnel slope for the same tunnel width (W=12m) 

and source-ceiling height (H=5m) but two heat release rates (5 and 7.5 MW). It shows that max

max 0

T

T



 ，

 

has the following relationship with the tunnel slope: 

 ( )2max

max 0

=0.73exp 0.13 0.27, 8
T

T
 


− +    

 ，

 (6) 

It is noted that, only the effect of heat release rate (with same tunnel width and source-ceiling height) 

on the non-dimensional maximum temperature rise 
max max 0T T  ，  is examined in Fig. 7. Equation 

(6) shows that the heat release rate has no effect on the non-dimensional maximum temperature rise 

(the effect of heat release rate on the maximum temperature rise is included in 
max 0T ，). More work 

is needed for various tunnel width and source-ceiling height to validate Eq. (6).  

Slopes  (%) 

maxT
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Fig. 7: Non-dimensional maximum temperature rise under the ceiling of various tunnel slopes 

for  5MW, =12m, =5mQ W H=  and  7.5MW, =12m, =5mQ W H= . 

3.2 Smoke back-layering lengths 

Figure 8 shows the smoke spread of various tunnel slopes for 5MW, =5m, 12mQ H W= = at 

the steady spread state. It can be seen that for the horizontal tunnel (tunnel slope =0), the smoke 

spread out of the tunnel from both two ends. With the increasing of the tunnel slope, the smoke 

stagnates at a distance from the fire source due to the stack effect in the downhill direction from the 

fire source, and the smoke back-layering length (S) in this direction decreases with the increasing of 

the tunnel slope as shown in Fig. 8. This is because that the increasing tunnel slope increases the 

stack effect. 
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Fig. 8: Smoke spread of various tunnel slopes with 5MW, =5m, 12mQ H W= = . 

Figure 9 shows the smoke spread of various heat release rates for tunnel slopes of 1%, 2%, 4%, 

6% and 8% with a source-ceiling height of 5 m. The comparisons between two heat release rates in 

Fig. 9 show that for a given tunnel slope, source-ceiling height and tunnel width, the heat release rate 

has no significant effect on the smoke back-layering length, especially for large tunnel slope. In (Ji et 

al., 2015), numerical studies on the smoke spread of a tilted tunnel with tunnel length of 60 m and 

slopes of 5% ~ 15% were conducted, and their results (Figs. 4 and 6 in Ji et al., 2015) also showed 

that the heat release rate had no significant effect on the smoke back-layering length (in Ji et al., 

2015, S was defined as the horizontal distance at the centerline from the fire source to the location 

with sharp temperature decrease). 
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Fig. 9: Effect of heat release rate on the smoke back-layering length.  

Then, we further considering the effect of the source-ceiling height H on the smoke 

back-layering length. Figure 10 shows the smoke spread of various source-ceiling heights for tunnel 

slopes of 1%, 2%, 4%, 6% and 8% with a heat release rate of 5 MW and a tunnel width of 12 m. The 

comparisons between different source-ceiling heights in Fig. 10 show that for a given tunnel slope, 

heat release rate and tunnel width, the smoke back-layering length decreases with the decreasing of 

the source-ceiling height. 
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Fig. 10: Effect of source-ceiling height on the smoke back-layering length.  

Figure 11 shows the smoke spread of various tunnel widths for tunnel slopes of 1%, 2%, 4%,  

6% and 8% with heat release rate of 5 MW and source-ceiling height of 5 m. From Fig. 11, we can 

see that the tunnel width has no significant effect on the smoke back-layering length S, especially for 

large tunnel slope. The results in Wang et al., 2020 show that the air flow velocity induced by the 

stack effect hold almost constant with the tunnel width. Therefore, the tunnel width has no significant 

effect on S.    

 

 

 

 

-350m -200m -100m 0m 

( )h =4%, 5MW, =3m, 12mQ H W = =

( )d m, =2%, 5MW, =5mW Q H =  =

( )j =6%, 5MW, =5m, 12mQ H W = =

( )k =6%, 5MW, =3m, 12mQ H W = =

( )m =8%, 5MW, =5m, 12mQ H W = =

( )n =8%, 5MW, =3m, 12mQ H W = =

( )c m, =2%, 5MW, =5mW Q H = =

( )a m, =1%, 5MW, =5mW Q H = =

( )b m, =1%, 5MW, =5mW Q H =  =

( )i =4%, 5MW, =2m, 12mQ H W = =

( )l =6%, 5MW, =2m, 12mQ H W = =

( )o =8%, 5MW, =2m, 12mQ H W = =
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Fig. 11: Effect of tunnel width on the smoke back-layering length.  

Then, the averaged smoke back-layering lengthes at the smoke steady spread state are obtained 

from smokeview results for all the numerical simulation cases as shown in Fig. 12.  
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Fig. 12: Smoke back layering lengths of various tunnel slopes ( ), heat release rates (Q ), 

source-ceiling heights (H) and tunnel widths (W).  
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( )e m, =2%, 5MW, =5mW Q H =  =

( )f = m, =4%, 5MW, =5mW Q H  =

( )g = m, =4%, 5MW, =5mW Q H  =

( )h = m, =4%, 5MW, =5mW Q H  =

( )i 12m, =6%, 5MW, =5mW Q H = =

( )j 9m, =6%, 5MW, =5m W Q H = =

( )k 12m, =8%, 5MW, =5mW Q H = =

( )l 9m, =8%, 5MW, =5m W Q H = =
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3.3 Prediction model of smoke back-layering length in a tilted tunnel 

The smoke back-layering length in a tilted tunnel is mainly determined by the stack effect and 

the static pressure difference. Neglecting the internal friction with the ceiling, stack effect caused by 

the temperature difference between the smoke layer and air gives the following equation in a tilted 

tunnel (Chow et al., 2015, 2016) 

 ( )cos d
S

stack x
r

P g x    = −   (7) 

where arctant = , S is the smoke back-layering length along the tunnel in a tilted tunnel, r is the 

location of the reference point，   is the tunnel slope defined as the ratio of uphill height to 

horizontal length of tunnel， 
 is the ambient air density, 

x  is the mean density of the transverse 

section at the distance x from the reference point. The static pressure difference given by the density 

difference between ambient air and the smoke 
S  and the thickness of the smoke layer h at the 

stagnation point can be expressed as (Chow et al., 2015; Wang et al., 2016) 

 
1

2
static SP gh =   (8) 

In the downhill direction from the fire source of a tilted tunnel, the static pressure difference 

staticP  is the driving force of the smoke movement, however, the stack effect 
stackP  is against the 

direction of smoke movement. At the smoke stagnation point for a tilted tunnel under natural 

ventilation, static pressure 
staticP  has to be equal to the pressure difference caused by stack effect 

stackP  (Chow et al., 2015; 2016) 

 
static stackP P =   (9) 

From the ideal gas law (Wang et al., 2016; Chow et al., 2016), we have  

 x

x

T

T








=    (10) 



22 
 

where 
xT  is the mean temperature of the transverse section at the distance x from the reference 

point. Equation (7) can be rearranged as  

 cos 1 d =cos 1 d
+

S S

stack
r r

x x

T T
P g x g x

T T T
      

 



   
 = − −   

   
   (11) 

The location of the smoke stagnation point depends on the temperature difference 
xT . For the static 

pressure difference,  

 ( )
1 1 1 1

2 2 2 2

S
static S S

S S

TT
P gh gh gh gh

T T
     

   

  
 =  = − = − = 

 
 (12) 

where S  is the smoke density at the smoke stagnation point, ST  is the smoke temperature at the 

smoke stagnation point. Then, we have 

 
1

cos 1 d =
+ 2

S
S

r
x S

TT
g x gh

T T T
   

 



  
− 

 
  (13) 

Equation (13) shows that the temperature decay profile and the smoke thickness at the smoke 

stagnation point are required to predict the smoke back-layering length in the downhill direction 

from the fire source of a tilted tunnel. The temperature decay profile is related to the heat release rate, 

the source-ceiling height and the dimensions of the tunnel (Zhang et al., 2014, 2019). However, to 

the best knowledge of the authors, no research has been done on the two parameters for a strong fire 

plume (with large heat release rate) in a tilted tunnel (Chen et al., 2018). Next, we propose a 

semi-empirical model for the smoke back-layering length based on dimensional analysis. 

According to the above analysis (Eqs. (7)-(13)), the most important parameters controlling the 

smoke back-layering length are heat release rate Q , tunnel width W, tunnel length Lt, tunnel height 

Ht (5 m in this study), source-ceiling height H (distance between the fire source exit and the ceiling, 

2 m, 3 m and 5 m in this study as shown in Table 1), air density  , gravity acceleration g, specific 

heat of air cp, ambient air temperature T
 and the tunnel slop  . In this work, the tunnel length has 
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a constant value of 500 m. So, it is not included in the following dimensional analysis. The above 

parameters have the dimensions as Q  [ML2T-3], W [L], Ht [L], H [L],   [ML-3], g [LT-2], cp [L
2T-2

 -1], T
 [  ] and   [-], accordingly. Then, we have the following function 

 ( ), , , , , , , , 0t pf Q W H H g c T S          =  (14) 

Here we take H,  , cp and g as the fundamental quantities. Then six dimensionless quantities are 

obtained as 1 1 1 1 1
=

a b c d

p

Q

H c g

 , 
2 2 2 2 2
=

a b c d

p

W

H c g

 ,
3 3 3 3 3
= t

a b c d

p

H

H c g

  
4 4 4 4 4
=

a b c d

p

S

H c g

 , 

5 5 5 5 5
=

a b c d

p

T

H c g




 , 
6 = . Based on the Principle of Dimensional Homogeneity, we have 

  
1 1 112 3 3 2 2 1 2

b c da
ML T L ML L T LT− − − − −       =          (15a) 

    
2 2 22 3 2 2 1 2

b c da
L L ML L T LT− − − −     =        (15b) 

    
3 3 33 3 2 2 1 2

b c da
L L ML L T LT− − − −     =        (15c) 

    
4 4 44 3 2 2 1 2

b c da
L L ML L T LT− − − −     =        (15d) 

    
5 5 55 3 2 2 1 2

b c da
L ML L T LT− − − −      =        (15e) 

According to Eq. (15), a1=7/2, b1=1, c1=0, d1=3/2; a2=1, b2=0, c2=0, d2=0; a3=1, b3=0, c3=0, 

d3=0; a4=1, b4=0, c4=0, d4=0; a5=1, b5=0, c5=-1, d5=1. Then Eq. (14) is rearranged as 

 
7 2 3 2 1

= , , , ,t

p

H TS Q W
f

H H g H H Hc g





−



 
       

 

 (16) 

Eq. (16) can be further rearranged as  

 
7 2 3 2 1

= , , ,
t p

TS Q W
f

H H g H Hc g





−



 
       

 

 (17) 

According to the numerical results (Figs. 9 and 11), heat release rate and tunnel width have no 

significant effect on the smoke back-layering length. So, for the smoke back-layering length, we 

have  
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 ( )1
=

k

p

TS
f

H Hc g


−

 
  
 

 (18) 

Since the smoke back-layering length decreases with the decreasing of the source-ceiling height H as 

shown in Fig. 10, k is a constant smaller than 1. However, the form of ( )f   is still unknown.  

In order to propose the correlation for smoke back-layering length, the numerical simulation 

results are used and the constant k is found to be 0.7, which is valid for all the data for the same 

tunnel slope as shown in Fig. 13. Then a correlation for the smoke back-layering length in the 

downhill direction from the fire source of a tilted tunnel is proposed as shown in Eq. (19) 

 ( )
0.7

1
= 0.33+31.52 0.5 , 8

p

TS

H Hc g

 

−

 
      

 

 (19) 

To validate Eq. (19), the calculated smoke back-layering lengths using Eq. (19) are compared to the 

simulated smock back-layering lengths and the comparison results are shown in Fig. 14. It can be 

seen that in Fig. 14 that Eq. (19) can predict the smoke back-layering lengths well.   
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Fig. 13: Correlation for the smoke back layering lengths of various tunnel slopes, heat release 

rates, source-ceiling heights and tunnel widths.  
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Fig. 14: Comparison of numerically measured values of S with the predictions by Eq. (19).  

It is noted that Eq. (19) is applicable for the numerical conditions of this study, i.e. heat release 

rates of 5 MW ~ 7.5 MW, source ceiling heights of 2 m ~ 5 m, tunnel widths of 6 m ~ 12 m and 

tunnel slopes of 1% ~ 8%. We can imagine that for very large tunnel slope, there would be no smoke 

back-layering length. It is necessary to investigate larger tunnel slopes in the future. At the same time, 

another very important parameter for the smoke back-layering length in a tilted tunnel is the tunnel 

length Lt which has significant effect on the stack effect. However, in this work, only one tunnel 

length is considered, and as a result the tunnel length is not included in Eq. (19). It would be an 

interesting and important future work to extend Eq. (19) to various tunnel lengths.  

 

4. Conclusions 

This paper investigates numerically the maximum temperature and smoke back-layering length 

in the downhill direction from a fire source in a tilted tunnel under natural ventilation by using FDS. 

Major findings include: 

(1) The maximum temperature under the ceiling of tilted tunnel decreases with the increasing of 
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tunnel slope or the decreasing of tunnel width. However, it increases with the increasing of heat 

release rate or the decreasing of source-ceiling height. A model was proposed for the maximum 

temperature rise (Eq. (6)). 

(2) The smoke back-layering length decreases with the increasing of the tunnel slope (Fig. 8). 

Fire source heat release rate and tunnel width have no significant effect on the smoke back-layering 

length (Figs. 9 and 11). And the smoke back-layering length decreases with the decreasing of 

source-ceiling height (Fig. 10). 

(3) Based on dimensional analysis, a simple model, which includes the effects of the tunnel 

slope   and source-ceiling height H, is proposed to correlate the data of this study (Fig. 13; Eq. 

(19)). 
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Figure captions 

Fig. 1: Physical model of the tilted tunnel and the mesh sizes (top view). 

Fig. 2: Validation of the FDS prediction. 

Fig. 3: Smoke spread behavior for 7.5 MW, W=12 m, H=5 m and  =2%. 

Fig. 4: Maximum plume temperature rise under the ceiling of various tunnel slopes for

5MW, =12m, =5mQ W H=  . 

Fig. 5: Maximum plume temperature rise under the ceiling of various heat release rates and 

source-ceiling heights for W=12 m. 

Fig. 6: Maximum plume temperature rise under the ceiling of various tunnel widths for

5MW, =5mQ H= .  

Fig. 7: Non-dimensional maximum temperature rise under the ceiling of various tunnel slopes for 

5MW, =12m, =5mQ W H=   and 7.5MW, =12m, =5mQ W H=  . 

Fig. 8: Smoke spread of various tunnel slopes with 5MW, =5m, 12mQ H W= = .  

Fig. 9: Effect of heat release rate on the smoke back-layering length. 

Fig. 10: Effect of source-ceiling height on the smoke back-layering length.  

Fig. 11: Effect of tunnel width on the smoke back-layering length.  

Fig. 12: Smoke back layering lengths of various tunnel slopes ( ), heat release rates ( Q ), 

source-ceiling heights (H) and tunnel widths (W).  

Fig. 13: Correlation for the smoke back layering lengths of various tunnel slopes, heat release rates, 

source-ceiling heights and tunnel widths.  

Fig. 14: Comparison of numerically measured values of S with the predictions by Eq. (19). 
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Table captions 

Table 1 Summary of numerical simulation conditions. 

 

 

 

 


