Abstract Word Count: 244

Tables: 1

Figures: 2

Supplemental Files: 4

Manuscript Word Count: 3575

ABSTRACT

Objectives: Current best evidence has reported that therapeutic exercise programs that are designed to treat patellofemoral pain (PFP) should include both hip and knee specific exercises. The purpose of this review was to 1) examine the quality/comprehensiveness of exercise reporting in this field; 2) quantify the extent to which individual exercises comprised task-specific elements (single limb stance; eccentric control of the hip; rotational z-axis control) most likely to address key pathomechanics associated with PFP.

Design: Systematic review: a systematic survey of RCTs

Methods: PubMed, CINAHL, Medline, Physiotherapy Evidence Database (PEDro) and SPORT Discus databases were searched for randomized controlled trials that addressed PFP utilizing a proximal control hip focused rehabilitation paradigm. The therapeutic exercise programs were evaluated, and each individual exercise was extracted for analysis. Quality assessments included the PEDro Scale and the Consensus on Exercise Reporting Template (CERT) was utilized to score the reporting of the interventions.

Results: 19 studies were included in the final analysis. 178 total exercises were extracted from the proximal hip and knee rehabilitation programs. The exercises were analyzed for the inclusion of elements that align with reported underlying biomechanical mechanisms.

Conclusions: The vast majority of the exercises were sagittal plane, concentric, non-weight bearing exercises, whereas multiplanar exercises, single limb weightbearing, and exercises where loading was directed around the longitudinal z-axis, were considerably under-represented. Current exercises for PFP utilize simplistic frameworks that lack progression into more task specific exercise, and are not reflective of the complex injury etiology.

Keywords: Exercise, Hip, Knee, Patellofemoral Pain, Proximal Muscle Rehabilitation, Sports

1. Introduction

Patellofemoral Pain (PFP) is a common condition affecting individuals of all ages and activity
levels.1-3 The prevalence of PFP varies by population but may be as high as 20-25% in active
populations.2,4 This condition affects females more than males, and almost two thirds of runners
with PFP are female.5

6

7 Exercise is a central component of PFP management.6-8 Initial interventions were limited to local 8 strengthening of the knee, 3.9 but have since progressed to incorporate 'proximal exercises' 9 targeting the hip and pelvis.2 Whilst randomized clinical trials (RCTs) show that proximal 10 rehabilitation often results in short term improvement to pain and function,10-13 the long-term 11 prognosis of PFP remains poor.14 Over 50% of patients with PFP have unfavorable recovery at 5-12 8 year follow ups,15 with others reporting that 90% of patients have residual pain and dysfunction 13 four years post-diagnosis.16 The effect of exercise rehabilitation on PFP patient's quality of life 14 (QOL) is also unclear and may be comparable to control interventions.15,17 15

PFP etiology is complex18-20 but a primary factor associated with its poor long-term prognosis, is the lack of consensus on an optimal exercise regimen.21 Many clinicians favor proximal exercises, but the clinical interpretation of 'proximal' varies considerably, from simple hip-focused strengthening exercises, to more generalized dynamic warm-up activities.21 There is a concern that either extreme is suboptimal, as they cannot fully address key pathomechanics associated with PFP,19,22,23 such as excessive or uncontrolled internal rotation of the femur (in relation to the patella), particularly under high load and/or single limb conditions [Fig. 1].2,20,24

23

Optimal rehabilitation requires a task specific approach, whereby exercises are progressed via specificity and optimal loading principles.²⁵ This would include addressing the muscular deficits affecting individuals with PFP, such as isometric, concentric and eccentric strengthening of the

27	hip and knee musculature.26 Also, specific neuromuscular control exercises to enhance the rate of
28	muscular force development,26 and isometric force steadiness focused training.27 It is therefore
29	pragmatic that PFP rehabilitation eventually exposes patients to conditions involving: single limb
30	loading, eccentric hip strengthening, external perturbations around multiple planes, particularly
31	about the z-axis.21 Although nearly 100 reviews on PFP management have been published none
32	have considered the individual content and design of each rehabilitation exercise.6 A recent study
33	stated that exercise prescriptions in RCTs for PFP are poorly reported, and the authors suggested
34	adding the Consensus on Exercise Reporting Template (CERT) in future reviews.28 The aim of
35	this systematic review is to include the CERT tool, in order to assess the exercise content
36	employed within randomized controlled trials (RCTs) implementing a proximal approach to the
37	treatment of PFP. Our key objectives were to:
38	1). examine the quality/comprehensiveness of exercise reporting in this field
39	2). quantify the extent to which individual exercises incorporate complex, task-specific elements
40	(single limb stance; eccentric control of the hip; rotational z-axis control) relevant to key
41	pathomechanics associated with PFP.
42	
43	2. Methods
44	A systematic literature review was conducted after consulting the Preferred Reporting Items for
4.5	

45 Systematic Reviews and Meta-Analysis (PRISMA) statement and the checklist completed.29 The

46 review was registered at PROSPERO (CRD42017076115). Since the time of registration several

47 deviations from the original submission to PROSPERO occurred. A systematic literature search

- 48 of the PubMed, CINAHL, Medline, Physiotherapy Evidence Database (PEDro) and
- 49 SPORTDiscus databases was performed in March 2020 to obtain relevant studies for the review.
- 50 The date ranges utilized for the review were from database inception to the date the search was
- 51 conducted. The search strategy included filters to only include publications in the English

Ianguage and including only human participants. In addition, the study archives of the authors were manually searched, and the reference lists of retrieved articles were hand searched for possible information on trials of interest. Search terms included keywords or utilized Medical Subject Headings (MeSH) where appropriate: "hip", "knee", "joint" combined with the terms "patellofemoral", "patella", "strength*". Google scholar was also searched using a combination of the aforementioned key words. The PRISMA flow document detailing the search can be found as an online Supplementary File 1.

59

60 The inclusion criteria was as follows; the authors: 1) clearly stated that the therapeutic exercises 61 that were being prescribed were specific to the hip and/or surrounding lumbopelvic musculature; 62 2) studies with male or female participants who were diagnosed with patellofemoral pain 63 syndrome or anterior knee pain were included in this review; 3) Only randomized and/or 64 controlled trials (RCTs) utilizing proximal hip muscle exercises in combination with or without 65 knee exercises were included. Considering many hip focused exercises load the quadriceps 66 simultaneously (e.g. single leg squats, step ups)³⁰ the hip and knee exercises were analyzed 67 together in this review. Feasibility studies or protocol papers, post-surgical rehabilitation, 68 editorial letters, case reports, commentaries, abstracts without full text and articles without a 69 description of the exercises, and the authors could not be reached to identify the exercises utilized 70 were ultimately excluded.

71

The identification of relevant articles, titles and abstracts were downloaded into EndNote X8.2 (Thomson Reuters, USA), where duplicates were removed. To identify relevant articles, titles and abstracts of all the captured citations were independently screened by at least two authors (SLD, DTT, AAW) applying the *a priori* inclusion criteria. Full text articles were then retrieved if the abstract provided insufficient information to determine eligibility for inclusion. In the case of differing assessments of the retrieved studies between the reviewing authors, the specific study

78	was collaboratively discussed amongst the three authors. All criteria were again independently
79	applied by two authors (SLD, AAW) to the full-text of the articles that passed the initial
80	screening process. If a consensus could not be reached on the decision for final inclusion, a fourth
81	author (CMB) was consulted.
82	
83	Physiotherapy Evidence Database (PEDro) Scale
84	Two reviewers (SLD, DTT) independently assessed the methodological quality of each included
85	study using the Physiotherapy Evidence Database (PEDro) scale for randomized controlled
86	trials.31 The PEDro scale consists of 11 binary (yes/no) questions and it is a widely accepted
87	measurement tool for rating the methodological quality of randomized clinical intervention
88	studies.32 The tool has a maximum score of 10, as the first item is not given a point value. Any
89	discrepancies were resolved by utilizing a third reviewer (AAW) as needed. The PEDro scale of
90	each reviewed study was evaluated and reported in Supplementary File 2.
91	
92	Consensus on Exercise Reporting Template (CERT)
93	Two blinded reviewers (SLD, DTT) independently extracted intervention data from each included
94	study using the CERT reporting form with guidance from the Explanation and Elaboration
95	Statement document.33 The CERT is a 16-item checklist developed and endorsed by an
96	international panel of exercise experts designed to assess the quality/comprehensiveness of
97	reporting of exercise and contains seven categories: materials, provider, delivery, location,
98	dosage, tailoring and compliance.34 Following data extraction, any differences between reviewers
99	were discussed and a final score was reached via a consensus meeting, a third reviewer (AAW)
100	was consulted when consensus could not be met initially.
101	
102	All therapeutic exercises were extracted for data analysis from the included studies. The elements

103 of each exercise were chosen to reflect the underlying pathomechanics described earlier

including: single limb loading, eccentric hip strengthening, and external loading directed around
multiple planes, specifically about the z-axis.

106

107	Exercise analysis attempted to determine the authors exact intention for delivering a specific
108	exercise as accurately as possible based on provided exercise descriptions, corresponding figures,
109	and terminology. Three reviewers (SLD, AAW, DTT) with a combined 68 years of clinical
110	experience initially analyzed the exercises, and exercises that needed a fourth reviewer (CMB),
111	with 20 years of clinical experience, facilitated a final decision. The exercises were categorized
112	utilizing the following elements and the <i>a priori</i> definitions that were used to categorize each
113	element:

114 1. Multiplanar & Triplanar

115 The exercise must include primary movement within two or more of the three cardinal planes. If 116 an exercise was scored as multiplanar, then the two or three planes were also identified in the 117 analysis. Once identified as multiplanar, the multiplanar box was checked, and then the two or 118 three planes were then also identified in the analysis. The final score did not include the 119 "multiplanar" box, because the total number of planes included were tallied into the final score. If 120 all three cardinal planes were included in the primary purpose of the exercise, then a score of 3, 121 indicating a triplanar exercise, would be added to the remaining fields to be analyzed. 122 123 2. Sagittal Plane 124 The primary intent of the exercise utilized movement that occurred primarily within the sagittal

125 plane. A supine straight leg raise is an example of isolated movement about the sagittal plane.

126

127 3. Frontal Plane

128	The primary movement of the exercise occurred within the frontal plane. An example of an
129	isolated exercise to the frontal plane would be a sidelying straight leg raise.
130	
131	4. <i>Transverse Plane</i>
132	The primary movement of the exercise occurred within the transverse plane. Seated external
133	rotation is an isolated transverse plane exercise. Exercises that are more difficult to categorize,
134	such as the "clam" were put into transverse and frontal if the author reported it as utilizing two
135	planes of motion, if not, it was scored as transverse plane only.
136	
137	5. Z-axis Rotation
138	The exercise needed to deliver a rotary perturbation that would induce an internal rotation of the
139	femur about the longitudinal z-axis of the body as illustrated in Figure 1. The hip and knee must
140	be in an extended position as if the body is in a upright weight bearing alignment. Hip external
141	rotation in a single leg stance, is an example of an isolated z-axis rotation exercise.
142	
143	6. Bilateral Weight Bearing
144	The primary movement of the exercise had both lower extremities contacting the ground in a long
145	axis position where the hip was in a position of extension with the acetabulum over the femur in
146	an upright bipedal position. Quadruped exercises were not considered bilateral weight-bearing for
147	this reason. A forward lunge was considered to be a bilateral weight bearing exercise because
148	both feet were on the ground during the intentional phase of the exercise.
149	
150	7. Single Limb Stance
151	The exercise was performed on one lower extremity that was full weight bearing and contacting
152	the ground. Several exercises were delivered in a sequential movement, whereas one foot moved

in a step by step fashion. These exercises were scored as having both phases of stance. An

154	exercise such as a side-stepping monster walk, was scored as having both bilateral and unilateral
155	weightbearing. A single leg squat was scored as a single limb stance exercise.

157 8. Eccentric Emphasis of the Hip

158 The authors of this review acknowledge that most any exercise or movement has both a 159 concentric and eccentric phase. The intent of the exercise being analyzed needed to explicitly 160 state that the exercise was to be performed in a deceleratory manner or other language that made 161 it clear that the goal was to accentuate or focus on the eccentric portion of the exercise. Exercises 162 with a commonly accepted clinical focus to be eccentric, such as lateral step downs, were scored 163 as having an eccentric focus at the hip. This analysis targets the deceleratory responsibility of the 164 hip, specifically femoral internal rotation of the lower extremity. The analysis is attempting to 165 identify if there was an emphasis placed on the eccentric control of the hip external rotators. 166 Although, the muscle group that was targeted with the eccentric focus of the intervention was also 167 noted during analysis (e.g. quadriceps, gluteus medius/maximus, external rotators of the hip). 168 169 As each exercise was analyzed it was determined how many of the above elements were 170 accounted for within each individual exercise. Each exercise was scored out of 6 total possible 171 points. The multiplanar column was not added into the final score for each individual exercise, 172 because each individual plane was accounted for in the total score. Similarly, if an exercise was 173 either bilateral or unilateral, only a score of 1 was given for being a weight bearing exercise. 174 175 3. Results

176 The initial search captured potentially relevant papers, and after removal of duplicates 2506 177 articles remained to be screened. After screening based on title and abstract, 2396 articles were 178 excluded. The remaining 110 full text articles were obtained and reviewed by two authors (SLD 179 & AAW). Ninety-one were excluded after review of the full text, leaving 19 studies fulfilling the180 eligibility criteria.

181

182 Physiotherapy Evidence Database (PEDro) Scale:

183 The scores on the PEDro scale for the 19 included RCTs ranged from three to ten, out of a

184 possible ten points. The most common limitation noted was the lack of blinding in the studies of

185 both subjects and therapists. The overall average score for the included studies was 6.2 indicating

a level of moderate to high quality for the included RCTs.2,35

187

188 Consensus on Exercise Reporting Template (CERT):

189 The CERT reporting form results (Supplementary File 3) ranged from 0 to 16 (19 total possible

190 points) with an average score of 8.0. Most shortcomings concerned item 2 (qualification of

191 exercise instructor), item 6 (motivation strategies), item 14b (how exercises are individualized),

and item 16a (assessment of fidelity). For calculation of the completeness of the exercise

descriptions, a single score was calculated for CERT for each study. Items 8 and 14a scored the

194 highest; exercise description(s) and generic or individually tailored, both scoring affirmative in 17

195 of the 19 studies. None of the studies completed all items in the checklist.

196

197 **4. Exercise Analysis**

198 The total number of extracted exercises from the included studies was 178 (Table 1). Multiplanar

199 exercises consisted of a total of 39/178, representing 21.9% of all exercises analyzed. The planes

200 that were most frequently incorporated into the multiplanar exercises were sagittal/frontal

201 representing 58.9% of all multiplanar exercises. Sagittal/transverse and frontal/transverse

202 represented only 5 and 6 exercises respectively. All three planes of movement, sagittal/

203 frontal/transverse, were included in 5 triplanar exercises. Sagittal plane exercises were the most

204 predominantly utilized and represented a total of 120 out of 178 and accounted for 67.4% of the

total exercises analyzed. The most common exercise isolated to the sagittal plane was standing
hip extension in the open kinetic chain. Exercises on the frontal plane represented a total of 69 out
of 178 exercises and accounted for 38.8% of all exercises analyzed. The most common exercise
prescribed that was isolated to the frontal plane was open chain hip abduction. The total number
of exercises in the transverse plane was 36 out of 178 representing 20.2% of the total exercises.
The most commonly prescribed exercise isolated to the transverse plane was a seated external
rotation exercise.

212

213 Exercises that met the a priori definition for the integration of the z-axis was the least represented 214 component in all of the exercises. The total number of exercises that included a z-axis component 215 was 12, representing 6.7% inclusion in all analyzed exercises. A closer look at the integration of 216 the z-axis into the exercises found it was the lone component utilized within 3 exercises; coupled 217 with single leg stance in 8 exercises; eccentric quadriceps for 1 exercise; and it was coupled with 218 eccentric hip external rotators in a single leg stance for 2 exercises. These 2 exercises met 5/6 219 criteria. Each of the exercises were only on two planes (sagittal/transverse and frontal/transverse) 220 and not considered to be triplanar. Almost half of the exercises analyzed (47%) only contained 221 one of the six possible elements, exercises that contained 5/6 represented 7% and not a single 222 exercise represented all 6 elements.

223

Eccentric exercises totaled 20/178, representing 11.2%. The analysis of the 20 eccentric exercises found the most represented muscle group that had an eccentric focus was of the quadriceps (12), gluteus medius (5), and hip external rotators (3). Bilateral weight bearing and single limb stance each had 43 total exercises, representing 24.2% for each category respectively. Figure 2 offers a visual representation of the results of the exercise analysis.

229

5. Discussion

231 The aim of this systematic review is to describe the exercise content employed within randomized 232 controlled trials (RCTs) implementing a proximal approach to the treatment of PFP. Previous 233 reviews have classified hip focused rehabilitation programs based on broad parameters such as 234 open vs. closed chain and exercise dosages;2,7,36 the next logical step was to analyze the content of 235 individual exercises. To our knowledge this was the first review to quantify the extent to which 236 individual exercises comprised task-specific elements (single limb stance; eccentric control of the 237 hip; rotational z-axis control) most likely to address key pathomechanics associated with PFP. 238 We analyzed an aggregate of 178 exercises, extracted from 19 RCTs. The number of exercises 239 employed within each trial varied considerably, with a range of 2-21 and a median of 6 exercises 240 per program. Most exercises reflected an isolated, reductionist approach to rehabilitation, with the 241 majority based on sagittal plane movements with concentric loading, undertaken in a non-weight 242 bearing position.

243

244 During walking or running, the hip musculature must quickly (50-200ms)₂₆ decelerate the lower 245 limb, and plays a key role in controlling the internally rotating femur.24.37-39 Weakness and/or 246 delayed activation of the hip and pelvis musculature is common in PFP,2,26,40-45 and may 247 contribute to uncontrolled or excessive internal rotation of the femur during single limb loading. 248 Female individuals with PFP demonstrate lower maximal muscle strength and decreased rate of 249 force development at the hip and knee.26 That said, it is pragmatic that PFP rehabilitation should 250 therefore include strengthening of the proximal hip musculature, with a specific focus on 251 neuromotor control,27,46 speed of contractions,26,46 and eccentrically loading the gluteals and the 252 deep hip lateral rotators.47 However, our review found that most strengthening exercises were 253 limited to open chain and were concentric, with only three exercises out of 178 (< 0.0%)254 challenging the hip external rotators with an eccentric emphasis. We also found that strengthening 255 was typically undertaken in either the sagittal (hip extension) or frontal plane (hip abduction), 256 with transverse plane exercises (rotation) being the least represented (20.2%).

258	Although open chain, concentric strengthening represents an important stage of PFP
259	rehabilitation, exercise interventions must be progressed to reflect the nature of the intended
260	task.46,48 Failing to maximally challenge PFP patients, might explain the often poor long-term
261	prognosis associated with this condition.14-16,46 Future interventions must incorporate more task
262	specific loading of the hip musculature.46 Primarily, this should include more intensive exercises
263	designed to increase power46, as well as, additional eccentric loading across all planes of
264	movement.37,49-53 Establishing triplanar control of the hip and pelvis is essential to improving both
265	task specific neuromotor control of the proximal muscles,27,46 and will limit contralateral pelvic
266	drop, femoral adduction and internal rotation.52 It is also essential that PFP rehabilitation include
267	hip rotation, as this specifically reflects loading forces and can enhance the activity of key
268	musculature such as the gluteus medius and minimis.54
269	

270 Optimal rehabilitation is underpinned by progression, whereby exercises become increasingly 271 challenging by adding new stimuli.48 However, we found that the PFP literature is mainly 272 comprised of basic, controlled versions of popular rehabilitation exercises in this field (eg. 273 standing or sidelying hip abduction, seated hip external rotation), where patients focus primarily 274 on single plane tasks or movements. By manipulating more key variables, such as speed, power 275 and neuromotor control, PFP rehabilitation can cumulate in more complex challenges; this is 276 more likely to improve the muscular deficits associated with PFP, lower limb alignment, reduce 277 patellofemoral joint loads and maintain tissue homeostasis.19,26,46 We would suggest that a key 278 challenge for PFP is progressing rehabilitation to the point where exercise can be optimized by 279 concomitantly providing the missing elements illustrated in the Venn diagram in Fig. 2: single 280 limb loading, eccentric hip strengthening, external loading directed around triplanar demand, and 281 particularly about the z-axis (Supplementary File 4).55

282

283 Lastly, reporting of exercise programs being utilized to treat PFP needs improvement. CERT 284 scoring of the included studies revealed an average score of 8.0, indicating below average 285 reporting across a number of domains, including fidelity and individualization of exercise 286 programs. Future studies should prioritize reporting on these domains to improve homogeneity 287 and interpretation of studies, and most importantly, to increase the success of replicating exercise 288 programs in the clinic. Future studies may wish to employ technology for more accurate 289 translation of exercises utilizing pictures and video formats to increase the implementation 290 clinically. In order for research to reach clinical treatment strategies, it is relied upon that research 291 be reported with sufficient detail to replicate the intervention. We recommended that future trials 292 should publish details of the intervention in sufficient detail to enable clinicians to apply these in 293 clinical practice, possibly as supplementary files.25

294

295 **6. Limitations**

296 The primary focus of this review was to determine the nature and content of hip focused 297 rehabilitation exercises used for PFP. Our key finding was that the majority of research in this 298 field is limited to more simplistic exercise training. This is indicative of many areas of 299 musculoskeletal rehabilitation; whereby simplistic frameworks are applied to complex injury 300 pathologies.56 Whilst it is pragmatic that more clinically appropriate interventions would be 301 associated with greater magnitudes of effect, this must be verified in future randomized studies. It 302 is also possible that optimization of proximal exercises may create other limitations. 303 Implementation of a more complex task-specific approach may require increased supervision, 304 potentially making home exercises more difficult, consequently, affecting fidelity. Our results 305 indicate that there is currently insufficient study data to consider a meta-regression, whereby key 306 exercise variables (e.g. z axis) are included as moderator variables. Additionally, the authors 307 acknowledge that there are likely some subjective interpretations in the categorization of existing 308 exercise elements. Also of note are the deviations from the original PROSPERO registration.

309	There was a title change, two authors dropped out and one new author added, the meta-analysis
310	was not submitted with this manuscript, and the aim was slightly altered to where the exercises
311	that were extracted were compared to task specific movements related to the PFP injury etiology.
312	
313	The authors of this review acknowledge the multidimensional nature of PFP etiology, and the
314	complex interactions between anatomical, biomechanical, neurophysiological and
315	biopsychosocial factors, and how these impairments intertwine with pain science.19,42,57-64 This
316	review only focuses on a small portion of the exercise therapy and methods that may potentially
317	optimize a hip focused rehabilitation for PFP.
318	
319	Indeed, there is evidence that incorporating exercises involving more complex task repetition
320	with feedback is the most effective for correcting aberrant running patterns associated with PFP.65
321	Although this review did not assess feedback specifically, future research may attempt to include
322	a complex task specific exercise approach as suggested with this review and include the
323	appropriate feedback mechanisms in future trials.
324	
325	7. Conclusion
326	This review suggests that most of the rehabilitation exercises within the current evidence base
327	may be too simplistic to address key pathomechanics associated with PFP. The inclusion of
328	exercises targeting muscle deficits in hip muscle strength, power, and neuromotor control are
329	crucial exercise progressions. Including these missing elements could potentially optimize PFP
330	exercise therapy and potentially improve longer term outcomes with more complex and task
331	specific intervention strategies. Ultimately, any newly developed exercises designed to optimize
222	
332	exercise therapy for PFP should be exposed to high quality prospective pragmatic and

334 Acknowledgments

335 There has been no financial assistance with this review article.

336

337	1.	Dorotka R, Jimenez-Boj E, Kypta A, Kollar B. The patellofemoral pain syndrome in
338		recruits undergoing military training: a prospective 2-year follow-up study. Military
339		Medicine. 2003;168(4):337-340.
340	2.	Lack S, Barton C, Sohan O, Crossley K, Morrissey D. Proximal muscle rehabilitation
341		is effective for patellofemoral pain: a systematic review with meta-analysis [with
342		consumer summary]. British Journal of Sports Medicine 2015 Nov;49(21):1365-1376.
343	3.	Bolgla LA, Boling MC. An update for the conservative management of
344		patellofemoral pain syndrome: A systematic review of the literature from 2000-2010.
345		International Journal of Sports Physical Therapy. 2011;6(2):112-125.
346	4.	Witvrouw E, Callaghan MJ, Stefanik JJ, et al. Patellofemoral pain: consensus
347		statement from the 3rd International Patellofemoral Pain Research Retreat held in
348		Vancouver, September 2013. Br J Sports Med. 2014;48(6):411-414.
349	5.	Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD.
350		A retrospective case-control analysis of 2002 running injuries. Br J Sports Med.
351		2002;36(2):95-101.
352	6.	Saltychev M, Dutton RA, Laimi K, Beaupre GS, Virolainen P, Fredericson M.
353		Effectiveness of conservative treatment for patellofemoral pain syndrome: A
354		systematic review and meta-analysis. Journal of rehabilitation medicine. 2018;50(5):393-
355		401.
356	7.	Harvie D, O'Leary T, Kumar S. A systematic review of randomized controlled trials
357		on exercise parameters in the treatment of patellofemoral pain: what works? Journal
358		of multidisciplinary healthcare. 2011;4:383-392.
359	8.	Collins NJ, Barton CJ, van Middelkoop M, et al. 2018 Consensus statement on
360		exercise therapy and physical interventions (orthoses, taping and manual therapy) to
361		treat patellofemoral pain: recommendations from the 5th International
362		Patellofemoral Pain Research Retreat, Gold Coast, Australia, 2017. Br J Sports Med.
363		2018;52(18):1170-1178.
364	9.	Papadopoulos K, Stasinopoulos, D. A systematic review of reviews in patellofemoral
365		pain syndrome. Exploring the risk factors, diagnostic tests, outcome measurements
366		and exercise treatment. The Open Sports Medicine Journal. 2015;9:7-17.
367	10.	Dolak KL, Silkman C, McKeon JM, Hosey RG, Lattermann C, Uhl TL. Hip
368		strengthening prior to functional exercises reduces pain sooner than quadriceps
369		strengthening in females With patellofemoral pain syndrome: A randomized clinical
370		trial. Journal of Orthopaedic & Sports Physical Therapy. 2011;41(8):560-570.
371	11.	Ferber R, Bolgla L, Earl-Boehm JE, Emery C, Hamstra-Wright K. Strengthening of
372		the hip and core versus knee muscles for the treatment of patellofemoral pain: a
373		multicenter randomized controlled trial. J Athl Train. 2015;50(4):366-377.
374	12.	Khayambashi K, Mohammadkhani Z, Ghaznavi K, Lyle MA, Powers CM. The
375		effects of isolated hip abductor and external rotator muscle strengthening on pain,
376		health status, and hip strength in females with patellofemoral pain: a randomized
377		controlled trial. J Orthop Sports Phys Ther. 2012;42(1):22-29.
378	13.	Baldon Rde M, Lobato DF, Carvalho LP, Wun PY, Santiago PR, Serrao FV. Effect
379		of functional stabilization training on lower limb biomechanics in women. Med Sci
380		Sports Exerc. 2012;44(1):135-145.

381 382 383	14.	Collins NJ, Bierma-Zeinstra SM, Crossley KM, van Linschoten RL, Vicenzino B, van Middelkoop M. Prognostic factors for patellofemoral pain: a multicentre observational analysis. <i>Br J Sports Med.</i> 2013;47(4):227-233.
384 385 386	15.	Lankhorst NE, van Middelkoop M, Crossley KM, et al. Factors that predict a poor outcome 5-8 years after the diagnosis of patellofemoral pain: a multicentre observational analysis. <i>Br J Sports Med.</i> 2016;50(14):881-886.
387 388	16.	Stathopulu E, Baildam E. Anterior knee pain: a long-term follow-up. <i>Rheumatology</i> (<i>Oxford, England</i>). 2003;42(2):380-382.
389 390 391	17.	Coburn SL, Barton CJ, Filbay SR, Hart HF, Rathleff MS, Crossley KM. Quality of life in individuals with patellofemoral pain: A systematic review including meta- analysis. <i>Phys Ther Sport.</i> 2018;33:96-108.
392 393	18.	Willy RW, Hoglund LT, Barton CJ, et al. Patellofemoral Pain. <i>J Orthop Sports Phys</i> <i>Ther.</i> 2019;49(9):CPG1-CPG95.
394 395 396	19.	Willy RW, Meira EP. Current concepts in biomechanical interventions for patellofemoral pain. <i>International Journal of Sports Physical Therapy</i> . 2016;11(6):877-890.
397 398 399	20.	Barton CJ, Lack S, Hemmings S, Tufail S, Morrissey D. The 'Best Practice Guide to Conservative Management of Patellofemoral Pain': incorporating level 1 evidence with expert clinical reasoning. <i>Br J Sports Med.</i> 2015;49(14):923-934.
400 401 402	21.	Dischiavi SL, Wright AA, Hegedus EJ, Ford KR, Bleakley C. Does 'proximal control' need a new definition or a paradigm shift in exercise prescription? A clinical commentary. <i>Br J Sports Med.</i> 2017.
403 404	22.	Willy RW, Davis IS. The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. <i>J Orthop Sports Phys Ther.</i> 2011;41(9):625-632.
405 406	23.	Finch C. A new framework for research leading to sports injury prevention. <i>Journal</i> of science and medicine in sport. 2006;9(1-2):3-9; discussion 10.
407 408	24.	Baldon RdM, Lobato DFM, Carvalho LP, Wun PYL, Presotti CV, Serrão FV. Relationships between eccentric hip isokinetic torque and functional performance.
409 410 411 412 413	25.	Journal of Sport Rehabilitation. 2012;21(1):26-33. Crossley KM, van Middelkoop M, Callaghan MJ, Collins NJ, Rathleff MS, Barton CJ. 2016 Patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 2: recommended physical interventions (exercise, taping, bracing, foot orthoses and combined interventions).
414 415 416 417	26.	<i>Br J Sports Med.</i> 2016;50(14):844-852. Ferreira AS, de Oliveira Silva D, Barton CJ, et al. Impaired isometric, concentric, and eccentric rate of torque development at the hip and knee in patellofemoral pain. <i>Journal of Strength & Conditioning Research.</i> 2019;Apr 29.
417 418 419 420	27.	Ferreira AS, de Oliveira Silva D, Ferrari D, et al. Knee and hip isometric force steadiness are impaired in women with patellofemoral pain. <i>Journal of Strength & Conditioning Research.</i> 2019.
421 422 423	28.	Holden S, Rathleff MS, Jensen MB, Barton CJ. How can we implement exercise therapy for patellofemoral pain if we don't know what was prescribed? A systematic review. <i>Br J Sports Med.</i> 2018;52(6):385.
424 425 426	29.	Moher D, Liberati A, Tetzlaff J, Áltman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. <i>BMJ.</i> 2009;339:b2535.
427 428 429	30.	Ayotte NW, Stetts DM, Keenan G, Greenway EH. Electromyographical analysis of selected lower extremity muscles during 5 unilateral weight-bearing exercises. <i>J Orthop Sports Phys Ther.</i> 2007;37(2):48-55.

430 431	31.	Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi apparents. <i>I Clin Enidemial</i> 1008:51(12):1225-1241
432 433 434	32.	by Delphi consensus. <i>J Clin Epidemiol.</i> 1998;51(12):1235-1241. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. <i>Aust J Physiother.</i> 2009;55(2):129-133.
435 436	33.	Slade SC, Dionne CE, Underwood M, Buchbinder R. Consensus on Exercise Reporting Template (CERT): Explanation and Elaboration Statement. <i>Br J Sports</i>
437 438	34.	<i>Med.</i> 2016;50(23):1428-1437. Slade SC, Dionne CE, Underwood M, et al. Consensus on Exercise Reporting
439 440	35.	Template (CERT): Modified Delphi Study. <i>Phys Ther.</i> 2016;96(10):1514-1524. Moher D, Jadad AR, Tugwell P. Assessing the quality of randomized controlled
440 441	55.	trials. Current issues and future directions. <i>Int J Technol Assess Health Care</i> .
442		1996;12(2):195-208.
443	36.	Thomson C, Krouwel O, Kuisma R, Hebron C. The outcome of hip exercise in
444		patellofemoral pain: A systematic review. Man Ther. 2016;26:1-30.
445	37.	Glaviano NR, Bazett-Jones DM, Norte G. Gluteal muscle inhibition: Consequences
446		of patellofemoral pain? Med Hypotheses. 2019;126:9-14.
447	38.	Park J, Denning WM, Pitt JD, Francom D, Hopkins JT, Seeley MK. Effects of
448		experimental anterior knee pain on muscle activation during landing and jumping
449	• •	performed at various intensities. J Sport Rehabil. 2017;26(1):78-93.
450	39.	Baldon RdM, Lobato DFM, Carvalho LvP, Santiago PRP, Benze BGo, Serrão
451		FbV. Relationship between eccentric hip torque and lower-limb kinematics: gender
452 453	40	differences. Journal of Applied Biomechanics. 2011;27(3):223-232.
455 454	40.	Souza RB, Draper CE, Fredericson M, Powers CM. Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging
455		analysis. J Orthop Sports Phys Ther. 2010;40(5):277-285.
456	41.	Barton CJ, Rathleff MS. 'Managing My Patellofemoral Pain': the creation of an
457		education leaflet for patients. BMJ Open Sport Exerc Med. 2016;2(1):e000086.
458	42.	Crossley KM, van Middelkoop M, Barton CJ, Culvenor AG. Rethinking
459		patellofemoral pain: Prevention, management and long-term consequences. Best
460		practice & research Clinical rheumatology. 2019;33(1):48-65.
461	43.	Cronström A, Creaby M, Nae J, Ageberg E. Modifiable factors associated with knee
462		abduction during weight-bearing activities: A systematic review and meta-analysis.
463		Sports Medicine. 2016;46(11):1647-1662.
464	44.	Boling MC, Padua DA, Alexander Creighton R. Concentric and eccentric torque of
465		the hip musculature in individuals with and without patellofemoral pain. <i>J Athl Train</i> .
466	15	2009;44(1):7-13. Baldan Bda M. Nahagawa TH. Munia TB. Amarin CE. Masial CD. Samaa EV.
467 468	45.	Baldon Rde M, Nakagawa TH, Muniz TB, Amorim CF, Maciel CD, Serrao FV. Eccentric hip muscle function in females with and without patellofemoral pain
469		syndrome. <i>J Athl Train.</i> 2009;44(5):490-496.
470	46.	Barton CJ, de Oliveira Silva D, Patterson BE, Crossley KM, Pizzari T, Nunes GS. A
471	10.	proximal progressive resistance training program targeting strength and power is
472		feasible in people with patellofemoral pain. <i>Phys Ther Sport.</i> 2019;38:59-65.
473	47.	Connelly CM, Moran MF, Grimes JK. Comparative analysis of hip muscle
474		activation during closed-chain rehabilitation exercises in runners. Int J Sports Phys
475		Ther. 2020;15(2):229-237.
476	48.	Blanchard S, Glasgow P. A theoretical model for exercise progressions as part of a
477		complex rehabilitation programme design. Br J Sports Med. 2019;53(3):139-140.

478 479 480	49.	Boling M, Padua D. Relationship between hip strength and trunk, hip, and knee kinematics during a jump-landing task in individuals with patellofemoral pain. <i>Int J</i>
480 481 482 483	50.	Sports Phys Ther. 2013;8(5):661-669. Nakagawa TH, Moriya ÃTU, Maciel CD, Serräo FbV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. <i>Journal of</i>
484		Orthopaedic & Sports Physical Therapy. 2012;42(6):491-501.
485	51.	Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle
486 487		activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):12-19.
487	52.	Dischiavi SL, Wright AA, Hegedus EJ, Bleakley CM. Rethinking dynamic knee
489	52.	valgus and Its relation to knee injury: normal movement requiring control, not
490		avoidance. J Orthop Sports Phys Ther. 2019;49(4):216-218.
491	53.	Nunes GS, de Oliveira Silva D, Pizzari T, Serrao FV, Crossley KM, Barton CJ.
492		Clinically measured hip muscle capacity deficits in people with patellofemoral pain.
493		Phys Ther Sport. 2019;35:69-74.
494	54.	Moore D, Semciw AI, Wisbey-Roth T, Pizzari T. Adding hip rotation to therapeutic
495		exercises can enhance gluteus medius and gluteus minimus segmental activity levels -
496		An electromyography study. Phys Ther Sport. 2020;43:157-165.
497	55.	Dischiavi SL, Wright, A.A., Hegedus, E.J., Thornton, E.P., Bleakley, C.M.
498		Framework for optimizing ACL rehabilitation utilizing a global systems approach.
499		International Journal of Sports Physical Therapy. 2020;15(3):478-485.
500	56.	Bekker S. Shuffle methodological deck chairs or abandon theoretical ship? The
501		complexity turn in injury prevention. <i>Inj Prev.</i> 2019;25(2):80-82.
502	57.	Silva NC, Silva MC, Guimaraes MG, Nascimento MBO, Felicio LR. Effects of
503		neuromuscular training and strengthening of trunk and lower limbs muscles in
504		women with Patellofemoral Pain: A protocol of randomized controlled clinical trial,
505 506	58.	blinded. <i>Trials.</i> 2019;20(1):586. Neal BS, Lack SD, Lankhorst NE, Raye A, Morrissey D, van Middelkoop M. Risk
500 507	50.	factors for patellofemoral pain: a systematic review and meta-analysis. Br J Sports
508		Med. 2019;53(5):270-281.
509	59.	Powers CM, Witvrouw E, Davis IS, Crossley KM. Evidence-based framework for a
510	07.	pathomechanical model of patellofemoral pain: 2017 patellofemoral pain consensus
511		statement from the 4th International Patellofemoral Pain Research Retreat,
512		Manchester, UK: part 3. Br J Sports Med. 2017;51(24):1713-1723.
513	60.	Vicenzino B, Maclachlan L, Rathleff MS. Taking the pain out of the patellofemoral
514		joint: articulating a bone of contention. Br J Sports Med. 2019;53(5):268-269.
515	61.	de Oliveira Silva D, Barton CJ, Briani RV, et al. Kinesiophobia, but not strength is
516		associated with altered movement in women with patellofemoral pain. Gait Posture.
517		2019;68:1-5.
518	62.	Smith BE, Hendrick P, Logan P. Patellofemoral pain: Challenging current practice -
519		A case report. <i>Man Ther.</i> 2016;22:216-219.
520	63.	Rabelo N, Lucareli PRG. Response the letter to the editor for the masterclass: Do hip
521		muscle weakness and dynamic knee valgus matter for the clinical evaluation and
522		decision-making process in patients with patellofemoral pain? <i>Braz J Phys Ther.</i>
523	64	2018;22(5):432-433. Dethleff MS, Deterson KK, Arondt Nielson L. Therberg K. Crower, Nielson T.
524 525	64.	Rathleff MS, Petersen KK, Arendt-Nielsen L, Thorborg K, Graven-Nielsen T.
525 526		Impaired conditioned pain modulation in young female adults with long-standing patellofemoral pain: A single blinded cross-sectional study. <i>Pain Med.</i> 2016;17(5):980-
520 527		988.
541		/00.

528	65.	Willy RW, Scholz JP, Davis IS. Mirror gait retraining for the treatment of	
529		patellofemoral pain in female runners. Clin Biomech (Bristol, Avon). 2012;27(10):1045-	
530		1051.	