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Abstract: 6 

This work examines the effect of Layered Double Hydroxides (LDHs), Expandable Graphite (EG) 7 

and Ammonium Polyphosphate (APP) on the thermal stability and behaviour under fire conditions 8 

of polyisocyanurate (PIR) insulation foams. Virgin materials  and char residues  morphologies 9 

were analyzed with a variety of experimental techniques including field emission scanning 10 

electron and optical microscopy along with Raman spectroscopy. Thermal stability and burning 11 

behaviour were examined using thermogravimetric (TGA) coupled with Fourier Transform 12 

Infrared (FTIR) spectrometer and cone calorimeter. TGA results suggested a decrease in 13 

degradation temperature upon introduction of fillers in PIR samples. FTIR spectra were used to 14 

determine the absorbance intensity of the different pyrolysis gases. Cone calorimeter data analysis 15 

established a limited effect on reducing the rate of heat release rate and smoke production with the 16 

inclusion of LDHs. However, EG or EG+APP addition, caused a considerable decrease in heat 17 

release rate, owing to the increased char strength and the release of non-combustible gases. The 18 

positive effect of EG or EG+APP in the fire behaviour of PIR foams was further supported by the 19 

morphological evaluation of their residual char samples.   20 
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1 Introduction 26 

A worldwide roll-out of near-Zero Energy Buildings drives the design of exterior wall systems 27 

with the purpose of achieving building sustainability and high energy efficiency. Energy efficient 28 

insulation materials usage in building envelopes is identified as the main practice, that can actively 29 

contribute towards achieving greenhouse gases emissions targets and energy consumption 30 

reductions [1, 2]. Recent advantages in the development of insulation materials have promoted the 31 

use of different types of insulations techniques for external walls. Currently, there is a wide range 32 

of insulation options comprising of non-combustible, limited combustible or combustible 33 

materials. Most commonly used foams, with or without flame retardants, in the family of 34 

polymeric insulation materials include extruded and expanded polystyrene, polyurethane foam 35 

(PUF) and polyisocyanurate (PIR) [3]. These inherently combustible and highly insulating 36 

materials are extensively used in most construction sectors for their high energy performance and 37 

cost benefit but should be designed not to compromise their fire safety. 38 

Recent studies on polymeric foams [e.g., 3-5] have established that their thermal decomposition 39 

consists of numerous decomposition pathways that mainly depend on their organic compound 40 

reactivity. Specifically, PIR consist of diisocyanates or prepolymers that form ring structures, also 41 

referred to as isocyanurate rings [6]. From a thermodynamic point of view, PIR materials are thus 42 

considered superior to PURs as they are more thermally stable compared to urethane bonds found 43 

in PUR foams. The thermal stability of PIR is demonstrated by the fact that they dissociate at 44 

higher temperatures at the range of 350 oC as opposed to 200 oC observed for urethanes [7]. 45 

Therefore, understanding how the use of reactive or additive flame retardants can modify, reduce, 46 

delay or even stop their combustion [3-12] is attracting considerable scientific interest. 47 

To further promote sustainable practices in the construction sector, a growing body of study has 48 

been lately devoted to examining the potential of substituting popular halogen-based flame 49 

retardants with second-generation eco-friendly substitutes. The study of eco-friendly flame 50 

retardants such as Layered Double Hydroxides (LDHs) [4, 5], is of great interest as they are found 51 

to increase the flame retardancy and thermal stability in polymers by suppressing smoke and 52 

reducing the release of volatile compounds [8]. The benefits of using them also derives from the 53 

fact that they may act in both gas and solid phases during polymer combustion. Non-flammable 54 



 

gases, including water and carbon dioxide, that are released during their combustion can further 55 

dilute flammable gases, thus reducing endothermic decomposition of metal hydroxides and 56 

promote surface charring of polymers. 57 

The use of different binary and ternary LDHs in various polymeric insulating materials has been 58 

investigated by numerous authors; those LDHs include ZnAl and MgAl carbonates, MgAl stearate 59 

and ZrP with contents, ranging from 0.2% to 6%, [4, 5, 9]. Despite their effectiveness, LDHs up 60 

to now have not met commercial success due to the inherent difficulty to uniformly disperse and 61 

distribution in polymers, [4]. Whilst so far, most studies [4, 5, 8] were concerned with fire 62 

retardancy effects of LDHs on PUF, recent studies [9, 10, 11] investigated the effect of lamellar 63 

inorganic [9] and organic LDHs [11] on flame retardancy of PIR. It has been demonstrated that 64 

lamellar inorganic LDHs [9] enhanced the fire retardancy of PIR as initial degradation temperature 65 

was increased, degradation was decelerated, and significant char formation was observed. 66 

Improved char properties 67 

content. Organically modified nanoclay LDHs [11] improved flame retardancy and stability of 68 

rosin based PIR foam and showed synergistic effect with other flame retardants. During the 69 

combustion process, some of the most efficient LDHs proved to be the Expanded Graphite (EG) 70 

and Diethyl Ethylphosphonate. The reason was LDHs  promotion of a reinforced char layer that 71 

could provide a more effective thermal barrier against heat and oxygen as well as more effective 72 

suppression of smoke and flammable gases. 73 

The synergistic effect of LDHs and other flame retardants, such as EG or Ammonium 74 

Polyphosphate (APP), were further investigated [11-17] and recent evidence revealed that the fire 75 

behavior of PIR [10, 18] and PUR [19, 20] foams can be substantially improved. This was 76 

attributed to the fact that, EG is a graphite intercalation compound with a special layered structure, 77 

which is found to expand when exposed to heat forming a huge insulation layer that can further 78 

enhance PIR fire resistance [11, 21]. EG having a boiling point above 3000 oC is able to maintain 79 

its integrity as it mainly acts in the condensed phase both in terms of smoke suppression and 80 

insulation [19]. This insulation char layer is characterized by a -like appearance which, 81 

results from the expansion of H2SO4 that is intercalated between graphite layers and the release of 82 

CO2, H2O and SO2 gases [22, 23]. APP consists of a high molecular weight polyphosphate chain 83 

and it mainly acts in the condensed phase by contributing to increased char formation [19, 21]. 84 



 

Furthermore, studies revealed that APP and EG can further improve char formation due to the 85 

synergy of the phosphoric acid with graphite [19, 22]. 86 

Despite previous extensive research on the flammability of PIR and PUR foams [4-12, 18-23], few 87 

researchers [11, 18] have investigated the interaction of LDHs with nanometric particles and 88 

phosphorous based materials in PIR foams and how they affect their flame retardancy. Therefore, 89 

this work aims to extend existing work on polymer flammability [4, 5, 6, 7, 9] and specifically, 90 

experimentally investigate the thermal stability and fire behavior of PIR foams containing a range 91 

of lamellar inorganic smart fillers, namely LDHs, EG and APP. Emphasis is given on the 92 

interaction of LDHs with both APP and EG and how their synergy is contributing towards 93 

improved PIR foam flame retardancy. Fire properties and thermal stability of the samples were 94 

assessed using cone calorimetry and thermogravimetry techniques coupled with FTIR 95 

spectrometry. Virgin materials and char residues morphology was analyzed with a variety of 96 

experimental techniques including field emission scanning electron and optical microscopy along 97 

with Raman spectroscopy. Post-burning and cellular morphology characterization of the residual 98 

materials was also conducted using both field emission scanning microscopy and Raman analysis. 99 

 100 

2 Experimental investigation 101 

2.1 Preparation of materials 102 

PIR samples with an isocyanate index (NCO/OH) of 3.0 were produced at SELENA Labs as 103 

described in the previous authors  [9, 10]. Main components of the samples, including the 104 

polyol, the catalysts, the stabilizer and blowing agent (methylal), were initially premixed for up to 105 

3 minutes at 1500 rpm. 25 oC was measured below 500 106 

mPa.s and below 260 mPa.s for isocyanate. Fillers were then added to the mix of each different 107 

sample and all PIR samples were further mixed for 5 min at 2500 rpm. All fillers used, i.e., Layered 108 

Double Hydroxides containing MgAlCO3 (LDH), Expanded Graphite (EG) and Ammonium 109 

Polyphosphate with high (APP1) and low degree of polymerization (APP2); final formulations 110 

were prepared at SELENA Labs. In more details, EG, provided by Asbury Graphite Mills Inc., has 111 

a nominal size greater than 75 m and Carbon content above 80 % w/w, Sulfur above 3 % w/w 112 



 

and an expansion ratio of 60:1 cc/g. Carbonate form of MgAl LDH, Mg4Al2(OH)12(CO3)*6H2O, 113 

was supplied by Prolabin and Tefarm Srl. Due to its layered structure it is easily employed as an 114 

active filler able to improve the efficacy of the main PIR formulation. Ammonium Polyphosphate, 115 

NH4PO3 with high degree of polymerisation (APP1), (average degree of polymerisation n>1000), 116 

was used in crystal phase II. It is largely insoluble in water and completely insoluble in organic 117 

solvents containing 31-32 % w/w Phosphorus and 14-15 % w/w Nitrogen. APP1 was provided by 118 

Clariant Produkte GmbH. It is colourless, non-hygroscopic and non-flammable. It is suitable as a 119 

non-halogenated flame retardant for polyurethane foams. It is also biodegradable as it breaks down 120 

to naturally occurring phosphate and ammonia with decomposition temperature above 275 oC. It 121 

has a high heat stability, however to prevent APP1 from settling, it was stirred into the mixture. 122 

Ammonium Polyphosphate, NH4PO3 with low degree of polymerisation (APP2), n>50, was used 123 

in crystal phase I and supplied by Shandong Chenxu New Material Co. Ltd. P2O5 content was 124 

above 69 % w/w and Nitrogen above 13 % w/w. 125 

In total, four formulations were examined, and their fire performance was evaluated against plain 126 

PIR samples (REF). Research on LDH and APP additives in PIR revealed that their incorporation 127 

in polyurethane composites in a range of concentrations from 0.5 % to 8 %, improved their thermal 128 

properties flame retardancy resulting in a decreased HRR [9]. Three different concentration of 129 

LDH have been studied, namely 2 %, 4 % and 6 % and the research group decided to use 2 % LDH 130 

in order to secure both low price and high efficiency-to-price ratio. EG and APP concentrations 131 

were chosen according to scientific literature [11, 12, 13, 18, 20132 

our research group previous experience [9, 10]. In that respect, three different formulae flame 133 

retardants were used: the first set contained MgAlCO3 at 2 % wt (PL), the second one contained 134 

additionally 5.1 % wt EG (PLE) and the third set contained 3.6 % wt APP1 (PLEAPP1) or 3.6 % 135 

wt APP2 (PLEAPP2) as depicted in Table 1. The physical and mechanical characteristics of all 136 

the samples are presented in Table 1, namely, density, average cell diameter, closed cell 137 

percentage, thermal conductivity, compressive strength and tensile strength.  138 

 139 



 

2.2 Test methods 140 

2.2.1  Morphology and cellular structure 141 

Morphological evaluation of PIR foam samples was conducted at 500 m with the use of optical 142 

microscopy. To provide elemental identification, virgin and charred PIR samples cell structure 143 

was further investigated using a field emission scanning electron microscopy (FESEM, Hitachi 144 

SU 5000) at 15 kV accelerating voltage. Raman characterization was also used to assess the quality 145 

and uniformity of residual chars using an excitation wavelength of 532 nm (RL532C laser source) 146 

at a Renishaw Invia Qontor system. 147 

 148 

2.2.2 TGA - FTIR 149 

Thermogravimetric analysis (TGA) was performed on a Mettler Toledo instrument under both 150 

reactive (air) and inert (N2) atmosphere from 20 oC to 700 oC at a heating rate of 20 oC/min with 151 

sample sizes of 10±1 mg in an no lid aluminum sample cup at a 150 ml/min gas flow. Thermal 152 

stability was evaluated by determining for each sample the initial degradation temperature 153 

corresponding at 5% weight loss (T5%), the weight (Wi) and corresponding temperature (Tmax,i) at 154 

the maximum weight loss rate of each degradation step (i) and the percentage of the char residue 155 

at a temperature of 700 oC. A Bruker Tensor 27 FTIR spectrometer was coupled with the TGA 156 

apparatus to analyze the gaseous emission released real time during each TGA test. Each infrared 157 

spectrum was recorded in a wavenumber range of 4000 740 cm-1 using 1.0 cm-1 spectral resolution 158 

and 64 scans. Results were analyzed using OPUS 8.2 spectroscopy software. 159 

 160 

2.2.3 Cone calorimeter 161 

Cone calorimeter (CC) tests were performed according to the ISO 5660-1 [24], utilizing a Dark 162 

Star Research Ltd (UK) apparatus. The samples sizes were 100 mm x 100 mmx 24 mm and were 163 

horizontally placed in a stainless-steel metal holder. The back and sides of the sample were 164 

insulated with 2 sheets of 3 mm thick high temperature vitreous wool Insulfrax® Paper having a 165 



 

nominal density of 150 kg/m3 and conductivity 0.098 W/mK at 400 oC, coated with 0.07 mm 166 

AT502 30 Micron aluminum foil tape, Category 1 according to BS476 Part 6 and 7 [25, 26]. All 167 

samples were conditioned before testing according to ISO 554 [27] at 23oC+/-2 oC at 50 % +/- 5 168 

% relative humidity. The tests were repeated at least twice for each formulation to check 169 

reproducibility. To avoid preheating effects, the surface of each sample was carefully insulated 170 

before exposure to heat. The following parameters were investigated for each sample: time to 171 

ignition (TTI); Combustion Time (CT); Total HRR (THR); peak HRR (p-HHR); average HRR 172 

(Av-HRR); average mass loss rate (Av-MLR), smoke production rate (SPR); smoke and CO yield. 173 

Specimen burning and smoke color observations were recorded by positioning two digital cameras 174 

facing and sideways of the test apparatus. Two heat flux levels were used to examine the fire 175 

performance of the samples at both low (20 kW/m2) and high (50 kW/m2) heat fluxes. The 176 

uncertainty of the measurements conformed to ISO 5660 [28]. 177 

 178 

2.2.4 Thermal conductivity 179 

Plane Source method was used to measure the 180 

22007-2 [29] at 10 oC was reduced from 31.5 mW/mK for neat PIR to 25.6 mW/mK and 24.8 181 

mW/mK for PLEAPP1 and PLEAPP2 samples respectively, Table 1. 182 

 183 

3 Results and discussion 184 

3.1 Optical Microscopy and FE-SEM  185 

Optical microscopy and FE-SEM, Figures 1 and 2, were used to evaluate the morphology and 186 

cellular structure for selected PIR formulations. Figure 1 shows that LDHs do not significantly 187 

alter the morphology of the PIR samples. The FE-SEM results indicate that the average cell 188 

diameters of REF, PL, PLE, PLEAPP1 and PLEAPP2 samples are presented in Table 1. A slight 189 

decrease in the average cell diameter with fillers addition was observed.  190 

 191 



 

3.2 Thermogravimetric analysis and gas phase flame retardancy 192 

Combined FTIR/TGA analysis was used to understand the pyrolysis of the PIR samples by 193 

identifying the gases evolved at different stages of their pyrolysis. Figures 3 and 4 present the 194 

weight and derived weight loss rate of all samples under N2 and Air atmospheres respectively.  A 195 

summary of the results is provided in Table 2. TGA analysis revealed that degradation temperature 196 

of filler layered PIR samples decreases, when compared to the virgin PIR samples (REF). PIR 197 

samples containing APP degrade in two steps, under both inert and reactive atmospheres. Those 198 

two steps are associated with the degradation of the hard segment urethane-urea linkages and of 199 

the polyol derived products from isocyanurate. During those processes low calorific combustion 200 

products are initially released during the first degradation step and later higher calorific 201 

combustion products are produced due to the polyol derived products of the second degradation 202 

step. With the addition of APP, an additional degradation step was observed at around 530 oC 203 

associated with the degradation of APP. Combination of such phosphorus containing additives, 204 

e.g. APP, with LDHs has been shown to improve the additives dispersion within the polymer mix. 205 

A major advantage of their combination is also the observed reduction in the overall additive 206 

concentration required to achieve satisfactory flame-retardant properties in thermoplastics [30]. 207 

The initial degradation temperature, T5%, is 258 oC for pure PIR. T5% decreases slightly with the 208 

addition of LDH compared to neat PIR foam, whereas much more substantially EG-containing 209 

formulations (w/wo APP). The first pyrolysis step observed in between 200 oC and 400 oC, is 210 

identified as the primary mass loss step [31, 32]. 211 

The temperature at the maximum degradation rate, Tmax,1, is slightly decreased with the LDH filler, 212 

whereas it is substantially decreased with the incorporation of EG or EG with APP. This behaviour 213 

is owed to the degradation of the hard segment [33] and the residual weight of this first reaction is 214 

denoted as W1. The degradation of the polyol derived products, second decomposition stage, 215 

resulted in lower residual weight denoted as W2 and was observed between 400 oC and 600 oC. 216 

Maximum degradation temperature during this step, Tmax,2, is 457 oC and residue mass, 25.4 % 217 

were observed for PIR samples under air atmosphere. EG addition resulted in Tmax,2 and mass 218 

residue decrease due to fillers degradation at lower temperatures. The former decrease is more 219 

substantial with the addition of EG and APP [13, 14, 15]. It is also important to note that the final 220 

residue of APP containing formulations is significantly higher than that of other formulations, 221 



 

indicating that APP is a very effective charring agent. Results are in line with earlier findings from 222 

the literature [30, 34, 35] indicating that APP additives decompose at elevated temperatures and 223 

produce phosphoric and polyphosphoric acids. Those acids are known to promote charring via 224 

formation of reactive polymer fragments cross-linkages that prevent or slow down heat transfer. 225 

Oxygen and combustible volatiles cannot easily transfer into the pyrolysis zone due the formation 226 

of this carbonized char network. The combination of EG, LDH and APP results in a third 227 

degradation step after 500 oC. Addition of EG and LDH with APP serves to reduce 228 

depolymerization and enhanced char formation perhaps due to synergistic interactions [30]. For 229 

samples PLEAPP1 and PLEAPP2 the final residue is about 37 % in both atmospheres. 230 

Gaseous emissions FTIR spectrums are displayed in Figure 5 for all samples in both atmospheres 231 

and at various temperatures. The characteristic bands of degradation of pure PIR can be identified 232 

as hydrocarbons (3000-2850 cm-1), aromatic compounds (1638 cm-1), CO2 (2400-2300 cm-1), -233 

NCO compounds (2300-2200 cm-1), CO (2181 cm-1) and ethers (1153 cm-1). The degradation of 234 

the polymer polyol and urethane is visible in the changes of the spectra between 1000-1500 cm-1 235 

wavelengths, clearer under N2 atmosphere, consistent to the literature [33]. PIR samples containing 236 

EG, APP1 And APP2 release similar pyrolysis products to pure PIR samples. 237 

Utilising the FTIR spectra, we performed integration over specific wavenumber ranges and 238 

determine the absorbance intensity of the different pyrolysis gases. Figure 6 demonstrates a 239 

comparison of the absorbance of ethers, -NCO, CO and CO2 over time for all samples in air. CO 240 

was detected between 200 oC and 650 °C with a maximum value at 500 °C, under air atmosphere 241 

and from 100 oC to 1000 °C with a second maximum value at 950 °C for samples containing APP1 242 

and APP2 under inert atmosphere. Carbon dioxide emissions show one peak between 350 °C and 243 

700 °C with a maximal value at 600 °C under inert atmosphere. Two peaks are observed under air 244 

atmosphere and the maximal values are recorded at a lower temperature of 500 °C. Gaseous 245 

emissions pattern detected in this work are consistent with previous results [5-7, 36] regarding the 246 

thermal degradation and carbonization performance of PIR with different fire-retardant fillers. 247 

 248 



 

3.3 Cone calorimetry  249 

HRR and SPR histories of all formulations at 20 kW/m2 and 50 kW/m2 are depicted in Figures 7 250 

and 8. It is worth noting that all formulations (except PLEAPP1 at 20 kW/m2) ignited almost 251 

immediately after being exposed to the heat source, due to their low density and high flammability. 252 

Neat PIR has the highest HRR and SPR as expected. Fissures were observed on the final char 253 

residue at the end of the test along with detachment and exfoliation of the upper layer surface as 254 

highlighted in Table 3. The trends of SPR are similar to those of HRR, and consequently we will 255 

focus our discussions on the HRR. With the addition of LDH alone, there is a small decrease in 256 

the first HRR peak with a more substantial reduction in the second HRR peak. The char also 257 

appears stronger than that of the neat PIR. APP addition to PIR samples resulted in lower PHRR 258 

values or no ignition at the lower heat flux. Simultaneous presence of LDH and APP in PIR 259 

samples can successfully promote char formation. This concurs well with previous research on 260 

chemical interaction of APP and LDH in polystyrene [30]. With  a further inclusion of EG, the 261 

HRR is reduced further, however, it is interesting to note that APP2 has limited effect on the HRR 262 

compared to EG alone, whereas  PLEAPP1 achieves the lowest HRR and SPR, most likely because 263 

of the increased strength of the char layer as shown in Table 3. This strengthened char layer 264 

provides a resilient barrier, preventing heat and oxygen penetration to the material and release of 265 

non-combustible gases. At the same time, it can effectively suppress smoke and gases during the 266 

combustion process. The present results demonstrate that the degree of polymerization has a very 267 

important effect on the fire retardancy of the composites as shown in both Figures 7, 8 and Table 268 

3. 269 

Another important finding is that LDH decreases smoke and CO yields compared to neat PIR 270 

(REF). Improved fire behaviour when EG and APP2 fillers are used, is evident as the flame-271 

retardant properties of PLEAPP2 sample are improved significantly. Both the p-HRR and Av-272 

HOC are decreased with additions of fillers. EG having considerably lower values of heat of 273 

combustion than REF or PL confirms that it also acts in the gaseous phase in suppressing 274 

combustion [17]. One other important observation is that all the fillers have either similar or lower 275 

smoke or CO yields compared to neat PIR, highlighting one of their main advantages of these type 276 

of fire retardants in comparison to halogenated fire retardants.  277 



 

 278 

3.4 SEM and Raman residual char characterization 279 

Figure 9 presents the char residue of all samples after CC testing under both heat fluxes. Fillers 280 

were found to promote the formation of more rigid and hardened residual char layer. In virgin PIR 281 

samples, the char was brittle and non-uniformly distributed. In addition, detachment and 282 

exfoliation of the upper layer surface was also observed. A clear difference in appearance was 283 

observed in the residual char for PLEAPP1 and PLEAPP2, which were intact and spongy. Clearly, 284 

the strength and integrity of the char plays a very important role in reducing the burning rate/heat 285 

release rate for meso- to large-scale samples, in which internal heat and mass transfer becomes 286 

important, as opposed to the mg samples used in TGA. Plain PIR char residues show a looser 287 

structure, which indicates inefficient barrier protection for underlying layers. PL char residue was 288 

more coherent. The addition of EG resulted in a more compact char structure although minor 289 

cracks in the surface could still be observed. Comparing to the rest of the char residue 290 

morphologies, the char residues PLEAPP1 samples were more compact than the rest of the samples 291 

and no cracks appeared on the surface. 292 

Char residues were further evaluated in terms of field mission SEM analysis to explore the specific 293 

mechanisms. Char samples investigated were taken after performing CC at high heat flux of 50 294 

kW/m2. In Figure 10 (a)-(c), it can be observed that cells were severely broken, and an open cell 295 

polyhedral structure was dominant in virgin PIR samples. With the addition of 2 % LDH, Figure 296 

10 (d)-(f), PL became loose and permeable and this was an indication 297 

that the flame shield created was not as strong. Numerous bright amorphous regions scattered 298 

across the image are identified as residual fillers. In the rest of the samples containing EG, Figure 299 

10 (g)-(h), (j)-(k), (m)-(n) -  char regions are observed and scattered throughout their 300 

porous sheeted structure as also reported in [37]. The addition of APP1 and APP2 results in a 301 

tighter and denser morphology than the materials added with only expandable graphite, in 302 

accordance to previous studies [38]. The fact that the combination of APP, EG and LDH can 303 

promote the formation of an intumescent residue with superior barrier properties compared to 304 

samples containing only APP is likely due to the combination of a reduced heat and mass transfer 305 

due to intumescence and reduced permeability of the residue [30]. 306 



 

The graphitic structure of PLE, PLEAPP1 and PLEAPP2 char residue samples was investigated 307 

with Raman spectroscopy, Figure 11. The G peak at 1580 cm-1 corresponds to vibrations of in 308 

plane sp2 carbon atoms in graphite. The D peak at 1350 cm-1 is associated with the vibration of 309 

carbon atoms in disordered graphitic structures [38]. The graphitized structure, acts as a physical 310 

barrier and is an indication of increased thermal stability. D and G intensity band ratio (ID/IG) was 311 

utilized for estimating the degree of graphitization in residual char; a higher degree of 312 

graphitization is associated with decreased ID/IG values [39]. PLE sample exhibited the lowest  313 

ID/IG value of 0.12, hence the highest degree of graphitization, followed by samples PLEAPP1 and 314 

PLEAPP2, which exhibited values of 0.40 and 0.48 respectively. 315 

 316 

4 Flame retardant mechanism of LDH, EG and APP additives on flame retardancy  317 

Figure 12 represents the proposed mechanism of LDH, EG and APP additives on flame retardancy 318 

of PIR. APP, EG and LDH can promote the formation of an intumescent residue with superior 319 

barrier properties [10, 12, 13, 14, 15, 17]. It is attributed to the combination of a reduced mass and 320 

heat transfer mechanism, due to reduced permeability residue and intumescent [12]. 321 

As it is depicted, the existence of a resilient char layer is crucial for guarantying the flame 322 

retardancy of the underlying PIR matrix. Cone calorimetry and thermogravimetric analysis 323 

revealed that a strong char layer can prevent penetration of heat and oxygen and thus reducing PIR 324 

thermal degradation, decreasing HRR and pyrolysis gas release. Formation of a resilient char layer 325 

also shields the rest of the sample underneath it from radiation. The diffusive gases navigate around 326 

LDH and APP nanofillers that act as barriers preventing pyrolysis gases to move towards the 327 

exposed surface. APP was found to act in the condensed phase and acts in a beneficial way as it 328 

promotes sample dehydration and carbon-forming. 329 

During thermal decomposition, LDH fillers lose the interlayer water. The decomposition of the 330 

intercalated anions and metal hydroxide produces water vapor and gases, e.g. CO2, which 331 

eventually reduce the availability of combustible fuel vapors resulting in decreased heat release 332 

and promotion of char formation. 333 



 

Cone calorimetry revealed that smoke and CO yields values of all formulations containing LDH, 334 

APP and EG are similar, lower than those of virgin PIR. This is a strong indication that neither of 335 

the fillers promote pyrolysis gases production. It can also be speculated that the samples containing 336 

APP were more cohesive and formed more compact char layer. Intumescence of the char in 337 

PLEAPP1 and PLEAPP2 samples is stabilized and improved as the right proportion of LDH 338 

crosslink with APP; further to that, they present increased viscosity due to higher molecular weight 339 

APP and the presence of EG. The fact that samples containing EG have considerably lower values 340 

of heat of combustion than REF or PL samples confirms that EG also acts in the gaseous phase in 341 

accordance to bibliography [17]. 342 

 343 

5 Conclusions 344 

Fire-reaction properties and thermal stability of PIR form with smart fillers including LDHs, EG 345 

and APPs were evaluated using thermogravimetry and cone calorimetry. Optical microscopy and 346 

scanning electron microscopy measurements were also performed for the samples, which verified 347 

that the fillers were exfoliated in the PIR samples. Post-burning characterization and 348 

morphological assessment of the residual materials revealed that all fillers stimulate the formation 349 

of a reinforced char layer. LDHs alone have limited effect on reducing the HRR or SPR since they 350 

only act in the solid phase. With the addition of EG or EG+APP, the HRR is further decreased 351 

owing to the increased char strength as well as the release of non-combustible gases that during 352 

combustion adequately suppress smoke and gases production. There are strong indications that 353 

additives studied in this work can effectively slow down or even prevent depolymerization of PIR 354 

and simultaneously promote char formation. The best performance was achieved by PLEAPP1 355 

with high degree of polymerization that resulted in resilient char formation, decreased heat release 356 

values, smoke generation and CO production. This result confirms that the degree of 357 

polymerization of fire retardants is significant in its fire performance. 358 

The present results clearly indicate that the use of smart fillers (LDH, EG and APP) in PIR foams 359 

can significantly increase their thermal stability and fire behaviour, which is of great importance 360 

in the development of safe and highly efficient insulation products that can be used in the building 361 

industry, and especially in cost-effective building envelopes in order to bring opaque components 362 



 

of curtain wall b -363 

scale samples in this work, it is worth noting that preliminary tests of selected formulations in 364 

single-burning-item (SBI) have been carried out with promising results. Further assessment of the 365 

fire performance of the foams incorporated into a complete façade system will also be conducted 366 

in furnace tests in the near future. 367 
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FIGURE CAPTIONS 489 

 490 

 scale) of REF (a) and Pl 491 

(b) samples. 492 

 493 

Figure 2: SEM images  scale) of PLE (a), PLEAPP1 (b), PLEAPP2 (c) samples. 494 

 495 

Figure 3: TGA (left) and DTGA (right) of all the formulations in N2 atmosphere. 496 

 497 

Figure 4: TGA (left) and DTGA (right) of all the formulations in air atmosphere. 498 

 499 

Figure 5: Real time FTIR spectra of (a) and (f) REF, (b) and (g) PL, (c) and (h) PLE, (d) and (i) 500 

PLEAPP1, (e) and (j) PLEAPP2 samples, in N2 (a)-(e), and air, (f)-(j) atmosphere. 501 

 502 

Figure 6: Temporal absorbance of pyrolysis products of all samples: (a) ethers (1133 cm-1), (b) 503 

NCO (2279 cm-1), (c) CO (2181 cm-1), (d) CO2 (2352 cm-1) samples under air atmosphere. 504 

 505 

Figure 7: Comparisons of HRR at 20 kW/m2 (left) and 50 kW/m2 (right) of all formulations. 506 

 507 

Figure 8: Comparisons of SPR at 20 kW/m2 (left) and 50 kW/m2 (right) of all formulations. 508 

Figure 9: Digital photos of charred samples of (a) and (f) REF, (b) and (g) PL, (c) and (h) PLE, 509 

(d) and (i) PLEAPP1, (e) and (j) PLEAPP2  after  CC testing at 20 kW/m2, (a)-(e), and 50 510 

kW/m2, (f)-(j). 511 

 512 



 

Figure 10: SEM images of (a)-(c) REF, (d)-(f) PL, (g)-(i) PLE, (j)-(l) PLEAPP1 and (m)-(o) 513 

PLEAPP2 charred samples. 514 

 515 

Figure 11: Raman spectra for a) PLE, b) PLEAPP1 and c) PLEAPP2 samples.  D, G and 2D 516 

represent the characteristic bands of expandable graphite. 517 

 518 

Figure 12: Diagrammatic illustration of the flame-retardant mechanism of LDH, EG and APP 519 

additives in PIR samples. 520 
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TABLES CAPTIONS 522 

 523 

Table 1. Samples composition, physical and mechanical characteristics. 524 

 525 

Table 2. TG/DTG results of all formulations. 526 

 527 

Table 3. Cone calorimetry data for PIR samples at 20 kW/m2 and 50 kW/m2. 528 



























  



  



  


