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a b s t r a c t 

We propose a highly efficient and accurate valuation method for exotic-style options based 

on the novel Shannon wavelet inverse Fourier technique (SWIFT). Specifically, we derive 

an efficient pricing method for power options under a more realistic double exponential 

jump model with stochastic volatility and jump intensity. The inclusion of such innovations 

may accommodate for the various stylised facts observed in the prices of financial assets, 

and admits a more realistic pricing framework as a result. Following the derivation of our 

SWIFT pricing method for power options, we perform extensive numerical experiments to 

analyse both the method’s accuracy and efficiency. In addition, we investigate the sensi- 

tivities in the resulting prices, as well as the inherent errors, to changes in the underlying 

market conditions. Our numerical results demonstrate that the SWIFT method is not only 

more efficient when benchmarked to its closest competitors, such as the Fourier-cosine 

(COS) and the widely-acclaimed fast-Fourier transform (FFT) methods, but it is also robust 

across a range of different market conditions exhibiting exponential error convergence. 

© 2021 The Author. Published by Elsevier Inc. 
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1. Introduction 

A power (or leverage) option is an exotic derivative characterised by its payoff at maturity, whereby the underlying asset 

price is raised to some constant power. Such deviations from the typical plain vanilla option with a linear payoff allows for

the hedging of non-linear risk [30] . Moreover, power options can also be used as an effective leveraging tool. The leverage

can be magnified by allowing the power to be greater than 1, such that a small change in the underlying price will lead to a

significant change in the price of the option [34] . This can provide bullish traders of call options more benefits than simply

using a standard plain vanilla option. 

Power options are commonly traded in the financial market. For example, capped power options on forex was issued 

by the Bankers Trust in Germany. Additionally, power options whereby the final payoff at maturity is a polynomial func- 

tion of the Nikkei level was widely traded on the Tokyo Stock Exchange (see [10,23,30,31] ). However, despite its popularity
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and the aforementioned advantages, there is limited research for pricing of power options (see [12,17,18] for some exam- 

ples). In particular, to the best of our knowledge, there is a gap in the current literature on the efficient pricing of power

options, especially under a more realistic double-exponential jump framework for the underlying price. Notably, with the 

advent of high frequency trading in the financial market, efficient pricing methods to obtain option values become ever 

more prominent for practitioners and academics alike. In addition, under a more sophisticated framework of asset price 

dynamics, efficient pricing techniques are also required in practice to quickly calibrate the model parameters to the existing 

market data, which usually involves repeated pricing of a basket of options across a wide range of strikes. 

In this paper, we will explore the avenue of efficient pricing of power options under a framework whereby the underlying

asset price is governed by a double-exponential jump model. Specifically, we allow both the underlying volatility and the 

intensity of jumps to be driven by separate stochastic processes. The proposed asset price model is motivated by a wealth of

advantages. Firstly, embracing double-exponential jumps will allow us to capture events of extreme price movements, such 

as a financial crisis, as well as the asymmetry leptokurtic feature embedded in the distribution of financial asset returns 

[20,21] . Secondly, by incorporating stochastic volatility we may account for the volatility smile or smirk features commonly 

observed in the financial market [9,15] . Finally, allowing the jump intensity to follow its own mean-reverting stochastic 

process will accommodate for (i) switches in jump intensity over time [2] , (ii) the lack of correlation between the jump

intensity and the diffusive volatility [29] , as well as (iii) the mean-reverting property embedded in the jumps [13] . 

In our proposed work, we investigate the highly efficient Shannon wavelet inverse Fourier technique (SWIFT) option pric- 

ing method, introduced through the seminal work of [25] , and compare the resulting accuracy and computational efficiency 

to that of the widely-acclaimed fast Fourier transform (FFT) of [1] and its more recent alternative, the Fourier-cosine (COS)

method of [5] . While the FFT is a well-established method among practitioners and academics alike, the latter has received

recognition to be the more efficient alternative since its inception a decade ago. However, unlike the FFT, the COS method

does not depend on the selection of an arbitrary damping factor for convergence, albeit having restrictions of its own. Draw-

backs of the COS method include the choice of an appropriate integration bound in order to capture an adequate mass of

the underlying density function, which is critical given the heavy-tailed nature of the density functions that are commonly 

observed in finance. However, there is no existing algorithm to select the most suitable integration range for all asset price

processes, nor for the type of option to be priced. 

Our inclusion of the COS method as an additional benchmark model to measure accuracy and efficiency is consistent 

with the seminal work of [25] , as well as its extensions thereof (for instance, see [3,22,24] ). While the choice of the half-

range Fourier-cosine series (of the COS method) over the half-range Fourier-sine and the full-range Fourier-sine-cosine series 

is not immediately obvious, it is not without its merits. Notably, the fruitful work of [16] determined that the Fourier-sine

series approximation is the least effective of these three Fourier series algorithms. In addition, the full-range Fourier-sine- 

cosine series only outperforms the COS method when pricing out-of-the-money call options with short maturities (three 

months or less), albeit at the cost of imposing a relatively large approximation interval to recover the density function 

(see [16] ). It is also worthwhile emphasising that the COS method has attracted considerable attention and is more widely-

researched in comparison to its closest competitors. Consequently, the COS method’s robustness and effectiveness are also 

more evidently demonstrated through a wealth of existing literature (see, among others, [6,7,11,14,28,32,35,36] ). Hence, the 

natural consideration of the COS method as a benchmark to measure our pricing efficacy may be deemed appropriate in 

this scope of work. 

The SWIFT method belongs to a family of wavelet-based pricing techniques, which are generally more flexible and ac- 

curate for the valuation of options with longer time to expiry [24,25] . Indeed, the SWIFT method does not require prior

decisions on the truncation of the integration range, and can accurately price both long- and short-dated options. This is 

one of the main improvements over the COS method. In addition, since Shannon wavelets are smooth, we can expect an

accurate approximation of heavy-tailed density functions that often emerge in finance. The accuracy and error convergence 

of the SWIFT method, however, relies heavily on the selection of an appropriate scale of approximation. We shall explore 

three separate methods in our numerical examples to identify the most adequate choice of such a scale for the pricing of

power options. 

The reasons to explore the above-mentioned state-of-the-art numerical integration techniques is non-trivial, and we shall 

provide further justification in the sequel. Firstly, while the double-exponential jump framework may account for the various 

empirical features mentioned above, and allow pricing models to more accurately value financial derivatives as a result, it is 

worthwhile highlighting that, due to the additional level of complexity introduced under such a framework, a closed-form 

solution of the density function governing the underlying stochastic price process is not readily available. Hence, the clas- 

sical option valuation through the discounted expectation of the final payoff under the risk-neutral measure breaks down. 

However, since the associated characteristic function, defined as the Fourier transform of the density function, is more easily 

obtainable, pricing of the power option in question can be explored with numerical integration techniques in the Fourier 

space instead. Secondly, prior literature has demonstrated extensive that pricing in the Fourier domain may be more compu- 

tationally efficient (see, among others, [1,5,11–13,17,19,24–26] ), which addresses our above-mentioned concern regarding the 

necessity of implementing more efficient pricing methods in practice. Finally, to the best of our knowledge, while both the 

SWIFT and the COS method has been shown by prior research to be robust under common Lévy type models, a gap exists in

the current literature that explores the efficiency and robustness of these methods in a more realistic, albeit sophisticated, 

setting such as our proposed double-exponential jump framework. In addition, whether such valuation techniques remain 
2 



C.-S. Huang, J.G. O’Hara and S. Mataramvura Applied Mathematics and Computation 414 (2022) 126669 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rigorous when pricing more exotic-style derivatives will require further investigation. Hence, our contribution in this paper 

also forms a natural extension to the seminal work of both [5] and [25] . 

Specifically, the aforementioned extension includes further investigation and demonstration of the SWIFT and COS meth- 

ods’ tractability in pricing derivatives beyond the vanilla-type, such as exploring the exotic-styled power options justified 

above. More importantly, our proposed work examines the SWIFT and COS methods’ ability to value options accurately and 

efficiently under the more realistic double-exponential jump framework for the first time, while advocating for both the 

volatility and jump intensity processes to be stochastic in nature. The inclusion of such innovations will more accurately 

capture the various phenomena and stylised facts observed in the financial market, and will test the pricing methods’ per- 

formance when valuing derivatives in a more realistic setting. To the best of the authors’ knowledge, the proposed work 

investigates the SWIFT and COS methods’ robustness, accuracy and efficiency under such a framework for the first time. 

Our numerical experiments will focus on comparing the accuracy and efficiency of the SWIFT method to that of the novel

COS method in a setting whereby randomness is introduced in both the underlying volatility and jump intensity, particularly 

for the pricing of power options. Further to the pricing, we investigate the sensitivity of the resulting power option prices to

changes in the underlying parameters for model robustness. This work contributes to the body of knowledge in two main 

ways. Firstly, we provide strong evidence to demonstrate the superior efficiency of the proposed SWIFT method over the 

COS method, which has been shown in recent literature to be the preferred method over the widely-acclaimed FFT method. 

Secondly, we provide various numerical examples to analyse the resulting errors and price sensitivities to demonstrate the 

SWIFT method’s robustness and consistency across a wide range of market conditions. Our results further demonstrate that 

the SWIFT method does not suffer the same drawback as the COS method when truncating the required integration range 

and adequately captures the mass of the underlying density function. 

The rest of the paper is organised as follows. Section 2 introduces the proposed double exponential jump model with

stochastic volatility and jump intensity, and presents a brief derivation of the resulting characteristic function. The SWIFT 

methodology to price power options is developed in Section 3 , with our numerical experiments and sensitivity analysis 

conducted in Section 4 . Finally, Section 5 concludes. 

2. Model specification and characteristic function derivation 

We let (�, F t , Q ) be a complete probability space on which the Brownian motions W 

s 
t , W 

v 
t and W 

λ
t , for 0 ≤ t ≤ T , are

defined. The filtration F t is generated by the Brownian motions and the jump process, and Q is the risk-neutral probability

under which the underlying asset price S t , volatility process v t and the jump intensity λt are governed by the following

dynamics: 

dS t = (r − λt δ) S t dt + 

√ 

v t S t dW 

s 
t + S t (e Y − 1) dN t , 

dv t = (θv − αv v t ) dt + σv 
√ 

v t dW 

v 
t , 

dλt = (θλ − αλλt ) dt + σλ

√ 

λt dW 

λ
t , (1) 

where r represents the constant rate of interest. The long-term equilibrium mean levels for the stochastic volatility and 

jump intensity are all constant and denoted by θv and θλ, respectively. In addition, the mean-reverting rates, αv and αλ, 

and the volatility coefficients, σv and σλ, are all positive constants. N t represents a Poisson process whereby the stochas- 

tic jump intensity, λt , has an average jump amplitude of δ = E [ e Y − 1] under Q , and Y is a random variable denoting

the jump size. Furthermore, dW 

s 
t and dW 

v 
t are a pair of correlated Brownian motions with d W 

s 
t d W 

v 
t = ρd t , while W 

λ
t is

a Brownian motion independent of both W 

s 
t and W 

v 
t . Finally, suppose that Y follows an asymmetric double exponential

distribution h (Y ) , 

h (Y ) = p[ ηu e 
−ηu Y 1 (Y ≥0) ] + q [ ηd e 

ηd Y 1 (Y < 0) ] , (2) 

where p, q denotes the up-move and down-move probabilities, respectively, with p + q = 1 . Moreover, ηu > 1 , ηd > 0 are the

mean positive and negative jumps, respectively. Hence, δ = 

pηu 
ηu −1 + 

qηd 
ηd +1 − 1 . We further assume that N t and Y are indepen-

dent of the Brownian motions defined above. 

Given the stochastic price process in (1) above, we first solve for the moment generating function (MGF), M(
) , of

the log-asset price X T = ln S T . Thereafter, we can easily obtain the complex-valued characteristic function φ(u ) through the 

relationship φ(u ) = M(iu ) . Under measure Q , the MGF of X T can be determined by: 

M(
) = E [ e 
X T |F t ] = e −r(T −t) E [ e r(T −t) e 
X T | X t = x, v t = v , λt = λ] . (3)

Hence, the MGF can also be defined as a contingent claim with payoff e r(T −t)+
X T at final time T . By applying the generalised

form of the well-known Feynman-Kac formula (as provided in [4] ) to (3) above (see [13,26,33] ), we obtain the resulting

partial integral-differential equation (PIDE) for M(
) : 

− ∂M 

∂t 
+ 

(
r − λδ − v 

2 

)
∂M 

∂X 
+ 

1 
2 
v ∂ 2 M 

∂X 2 
+ ( θv − αv v ) ∂M 

∂v + 

1 
2 
σ 2 

v v ∂ 
2 M 

∂v 2 + ρσv v ∂ 
2 M 

∂ X∂ v + ( θλ − αλλ) ∂M 

∂λ
+ 

1 
2 
σ 2 

λ
λ ∂ 2 M 

∂λ2 

+ λ
∫ ∞ 

−∞ 

[ M ( X + Y ) − M ( X ) ] f ( Y ) dY = 0 . 
(4) 
3 
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The above PIDE can be solved by postulating a solution of the form: 

M(
) = e 
r(T −t)+ A (t,T )+ B (t,T )+ C(t,T ) v + D (t,T ) λ+
 ln S t , (5) 

with zero boundary conditions for A, B, C and D . First, we consider the integral term in (4) : 

λ

∫ ∞ 

−∞ 

[ M(X + Y ) − M(X )] f (Y ) dY = λ

∫ ∞ 

−∞ 

E [ e 
X ] E [ e 
Y − 1] f (Y ) dY 

= λM(
) δ1 , (6) 

where δ1 = 

pηu 
ηu −
 + 

qηd 
ηd +
 − 1 . It follows that by substituting Eqs. (5) and (6) into the PIDE (4) we obtain an equation that

holds for all t , X , v and λ. Hence, we can reduce the problem to solving the following system of five, much simpler, ordinary

differential equations: 

∂A (t, T ) 

∂t 
+ 

∂B (t, T ) 

∂t 
= θv C(t, T ) + θλD (t, T ) , (7) 

∂C(t, T ) 

∂t 
= 

1 

2 

(
2 − 
) − (αv − ρσv 
) C(t, T ) + 

1 

2 

σ 2 
v C 

2 (t, T ) , (8) 

∂D (t, T ) 

∂t 
= (δ1 − δ
) − αv D (t, T ) + 

1 

2 

σ 2 
λ D 

2 (t, T ) , (9) 

where 

∂A (t, T ) 

∂t 
= θv C(t, T ) , (10) 

∂B (t, T ) 

∂t 
= θλD (t, T ) . (11) 

From the above system of ODE’s, we can first solve for the Riccati Eq. (9) , whereby a general solution may be derived,

followed by solving for (11) . Thereafter, by analogy, we can solve for C(t, T ) and A (t, T ) , respectively. 

To solve for (9) , we will require a particular solution from which to derive the general solution for the Riccati equation.

Hence, we make the following substitution: 

D (t, T ) = 

−2 w 

′ (T − t) 

σ 2 
λ

w 

. (12) 

Substituting (12) into (9) above and simplifying we obtain the following ODE: 

w 

′′ (T − t) + αλw 

′ (T − t) − 1 

2 

σ 2 
λ (δ
 − δ1 ) w (T − t) = 0 , (13) 

which has a general solution of the form: 

w (T − t) = U 1 e 
1 
2 ζ−(T −t) + U 2 e 

1 
2 ζ+ (T −t) , (14) 

where ζ± = ϕ ∓ αλ and ϕ = 

√ 

α2 
λ

+ 2 σ 2 
λ
(δ
 − δ1 ) . Both U 1 and U 2 are constants to be determined from the initial conditions

w (0) = U 1 + U 2 and w 

′ (0) = 0 , since D (T , T ) = 0 . Solving for U 1 and U 2 , we obtain the following solution: 

U 1 = 

w (0) ζ+ 
2 ϕ 

and U 2 = 

w (0) ζ−
2 ϕ 

. 

Substituting U 1 and U 2 into (14) above, we find the exact solution to (9) : 

D (t, T ) = 2(δ
 − δ1 ) 

{
1 − e ϕ(T −t) 

ζ+ + ζ−e ϕ(T −t) 

}
. (15) 

Therefore, from (11) , together with (12) and the solution in (15) , we obtain: 

B ( t, T ) = θλ

∫ T 

t 

D ( t, s ) ds = − θλ

σ 2 
λ

{
ζ+ ( T − t ) + 2 ln 

[
ζ− + ζ+ e −ϕ ( T −t ) 

2 ϕ 

]}
. 

Finally, solving for ODE’s A (t, T ) and C(t, T ) by analogy, we obtain the following solutions: 

A (t, T ) = − θv 

σ 2 
v 

{
γ+ (T − t) + 2 ln 

[
γ− + γ+ e −ϑ(T −t) 

2 ϑ 

]}
, 

C(t, T ) = (
 − 
2 ) 

{
1 − e ϑ(T −t) 

γ+ + γ−e ϑ(T −t) 

}
. 
4 
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where 

γ± = ±(ρσv 
 − αv ) + ϑ, 

ϑ = 

√ 

(ρσv 
 − αv ) 2 + σ 2 
v (
 − 
2 ) . 

From the above, we use φ(u ) = M(iu ) to obtain the required characteristic function of ln S T : 

φ(u ) = e iur(T −t)+ ̄A (t,T )+ ̄B (t,T )+ ̄C (t,T ) v + ̄D (t,T ) λ+ iu ln S t , (16) 

where 

Ā (t, T ) = − θv 

σ 2 
v 

[ 
γ+ (T − t) + 2 ln 

(
ξγ

2 ϑ 

)] 
, 

B̄ (t, T ) = − θλ

σ 2 
λ

[ 
ζ+ (T − t) + 2 ln 

( ξζ

2 ϕ 

)] 
, 

C̄ (t, T ) = (iu + u 

2 ) 
1 − e ϑ(T −t) 

γ+ + γ−e ϑ(T −t) 
, 

D̄ (t, T ) = 2(iuL 2 − L 1 ) 
1 − e ϕ(T −t) 

ζ+ + ζ−e ϕ(T −t) 
, 

ξγ = γ− + γ+ e −ϑ(T −t) , 

ξζ = ζ− + ζ+ e −ϕ(T −t) , 

γ± = ±(iuρσv − αv ) + ϑ, 

ζ± = ϕ ∓ αλ, 

ϑ = 

√ 

(iuρσv − αv ) 2 + σ 2 
v (iu + u 

2 ) , 

ϕ = 

√ 

α2 
λ

+ 2 σ 2 
λ
(iuL 2 − L 1 ) , 

L 1 = 

pηu 

ηu − iu 

+ 

qηd 

ηd + iu 

− 1 , 

L 2 = 

pηu 

ηu − 1 

+ 

qηd 

ηd + 1 

− 1 . 

3. Shannon wavelet inverse Fourier technique (SWIFT) 

The point of departure for the SWIFT method, as with other numerical integration techniques, is the discounted expec- 

tation of the option payoff at maturity under the risk-neutral measure Q , i.e. 

f (x, t) = e −r(T −t) E 

Q [ f (y, T ) | x ] = e −r(T −t) 

∫ 
R 

f (y, T ) g(y | x ) dy, (17)

where x and y are state variables at initial time t and maturity T , respectively. g(y | x ) is the conditional density under

the risk-neutral measure, and r the risk-free rate of interest. If we define the log-asset state prices by x := ln S 
β
t /K and

y := ln S 
β
T 
/K , where K denotes the strike price and β the constant power term, then the final payoff function, f , can be

expressed as 1 : 

f (y, T ) = 

{
[ K(e y − 1) ] + for a power call option, 
[ K(1 − e y ) ] + for a power put option. 

(18) 

While the COS method of [5] replaces the density function in (17) by its Fourier-cosine series expansion, the SWIFT

method approximates density g by making use of a finite combination of Shannon scaling functions, at some chosen 

level (or scale) of approximation, m , then recovering the density coefficients of the approximation from its Fourier trans- 

form, i.e., the associated characteristic function. Hence, following the detailed derivations in [25] , we have g(x ) ≈ P m 

g(x ) =∑ 

k ∈ Z c m,k ψ m,k (x ) , where the projection P m 

g(. ) converges to g(. ) as m → ∞ . ψ m,k (y ) = 2 m/ 2 sinc (2 m y − k) is the Shannon

scaling function, with c m,k (x ) = 

∫ 
R 

g(x ) ψ m,k (x ) dx denoting the scaling or density coefficients. Given the above, our pricing

Eq. (17) then follows with 

f (x, t) ≈ e −r(T −t) 

∫ 
D m 

f (y, T ) g m 

(y | x ) dy = e −r(T −t) 
k 2 ∑ 

k = k 1 
c m,k (x ) · V m,k , (19)
1 The scaling of the log-asset prices to the strike price will allows us to price a basket of options in just a single calculation with a vector of strikes. We 

shall demonstrate this in the numerical experiments. 

5 
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where g(y | x ) ≈ g m 

(y | x ) = 

∑ k 2 
k = k 1 c m,k (x ) ψ m,k (y ) , 2 and V m,k are the payoff coefficients defined as 

V m,k := 

∫ 
D m 

f (y, T ) ψ m,k (y ) dy. (20) 

The infinite integration can be truncated to a finite range D m 

= [ k 1 / 2 
m , k 2 / 2 

m ] without significant loss of density mass for

accurately chosen k 1 and k 2 values. One such truncation method is to utilise the cumulants, μn , as proposed in [5,24,25] ,

and define the range [
x + μ1 − L 

√ 

μ2 + 

√ 

μ4 ; x + μ1 + L 
√ 

μ2 + 

√ 

μ4 

]
, (21) 

where, typically, L = 10 ; 12 . 3 Note that the 4th cumulant, μ4 , is included to account for heavy tails and excess kurtosis

exhibit in the density function of our proposed model in (1) . 

We emphasise at this point that the choice of parameter L is not immediately obvious, and the potential pricing errors

as a result. This is particularly the case with call options, whereby the payoff function is generally unbounded and grows 

exponentially with respect to the log-asset price. Consequently, significant approximation errors may emerge when truncat- 

ing the integration domain of the risk-neutral formula with large values of L . However, since put options are bounded by

the strike price K, they do not suffer the same setback. Hence, we can utilise the put-call parity to obtain call option values

once the put option prices are determined. This may provide slight improvements to the pricing accuracy [5] . In the sequel,

we present a set of error analyses to demonstrate the convergence of call prices to increase in parameter L . This allows us

to determine an appropriate choice of the parameter. 

Given our payoff function f , as presented in (18) , and the scaling function ψ m,k (y ) = 2 m/ 2 sinc (2 m y − k) , the payoff coef-

ficients (20) may be expressed as: 

V m,k = 

{∫ 
D m [ K(e y − 1)] + · 2 

m/ 2 sinc(2 

m y − k)dy for a power call option, ∫ 
D m [ K(1 − e y )] + · 2 

m/ 2 sinc(2 

m y − k)dy for a power put option, 

= 

{∫ 
D m ∩ [0 , + ∞ ) K(e y − 1) · 2 

m/ 2 sinc(2 

m y − k)dy for a power call option, ∫ 
(−∞ , 0] ∩D m K(1 − e y ) · 2 

m/ 2 sinc(2 

m y − k)dy for a power put option. 

(22) 

By approximating the cardinal sinus function (see [8] ), together with the cosine product-to-sum identity of [27] , we have 

V m,k ≈ V 

∗
m,k := 

{ 

K2 m/ 2 

2 J−1 

∑ 2 J−1 

j=1 

[ 
�1 ,k 

(
k̄ 1 
2 m 

, 
k 2 
2 m 

)
− �2 ,k 

(
k̄ 1 
2 m 

, 
k 2 
2 m 

)] 
if k 2 > 0 , 

0 if k 2 ≤ 0 , 

for a power call option, and 

V m,k ≈ V 

∗
m,k := 

{ 

−K2 m/ 2 

2 J−1 

∑ 2 J−1 

j=1 

[ 
�1 ,k 

(
k 1 
2 m 

, 
k̄ 2 
2 m 

)
− �2 ,k 

(
k 1 
2 m 

, 
k̄ 2 
2 m 

)] 
if k 1 > 0 , 

0 if k 1 ≥ 0 , 

for a power put. Where k̄ 1 := max (k 1 , 0) and k̄ 2 := min (k 2 , 0) , and both functions �1 ,k and �2 ,k are given by Proposition 1

below. 

Proposition 1. The payoff coefficients, �1 ,k , of a function H(y ) = e y on [ c, d] is given by 

�1 ,k (c, d) := 

∫ d 

c 

e y cos (χ j (2 

m y − k )) dy, (23) 

and the payoff coefficient, �2 ,k , of another function H(y ) = 1 on [ c, d] is given by 

�2 ,k (c, d) := 

∫ d 

c 

cos (χ j (2 

m y − k )) dy, (24) 

where χ j = 

2 j−1 

2 J 
π , are both known analytically. 

Proof. Firstly, as with the derivation of the density coefficients, the classical Vieta formula allows us to express the cardinal

sinus function as an infinite product of cosine terms (see [8] ). By truncating the infinite product to a domain with J fac-

tors only, the cosine product-to-sum identity allows us to approximate the cardinal sinus function as sinc(x) ≈ sinc ∗(x) :=
2 The infinite summation in projection P m g(x ) can be accurately approximated by g m (x ) := 

∑ k 2 
k = k 1 c m,k ψ m,k (x ) for appropriately chosen k 1 and k 2 values 

(see Lemma 1 of [25] ) 
3 justifications for the choice of L is further provided in Section 4. 
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c − k ) 
))] 

, 

 

 

 

 

 

 

 

 

1 
2 J −1 

∑ 2 J −1 

j=1 cos 

(
2j −1 

2 J 
πx 

)
(see [27] ). Hence, by replacing the sinc functions in (22) with the approximation above, and defining 

χ j = 

2 j−1 

2 J 
π , we can obtain the following expressions: 

�1 ,k (c, d) := 

∫ d 

c 

e y cos (χ j (2 

m y − k )) dy, 

and 

�2 ,k (c, d) := 

∫ d 

c 

cos (χ j (2 

m y − k )) dy. 

Thereafter, a straight forward calculation of the above integrals show that 

�1 ,k ( c, d ) = 

χ j 2 
m 

1+ ( χ j 2 m ) 
2 

[ 
e d sin 

(
χ j ( 2 

m d − k ) 
)

− e c sin 

(
χ j ( 2 

m c − k ) 
)

+ 

1 
χ j 2 m 

(
e d cos 

(
χ j ( 2 

m d − k ) 
)

− e c cos 
(
χ j ( 2 

m 

and 

�2 ,k (c, d) = 

1 

χ j 2 

m 

(
sin (χ j (2 

m d − k )) − sin (χ j (2 

m c − k )) 
)
. 

�

Finally, since the cardinal sinus function can be approximated by a finite sum of cosine terms (see proof of Proposition

1 above), we can also approximate the scaling coefficients, c m,k , by: 

c m,k ≈ ˜ c m,k = 

2 

m/ 2 

2 

J−1 

2 J−1 ∑ 

j=1 

∫ 
R 

g(x ) cos 

(
2 j − 1 

2 

J 
π(2 

m x − k ) 

)
dx, 

= 

2 

m/ 2 

2 

J̄ −1 
Re 

[
2 J̄ −1 ∑ 

j=0 

φ∗
(

(2 j + 1) π2 

m 

2 

J̄ 

)
e 

2 π ik j 

2 J̄ e 
ikπ

2 J̄ 

]
, (25) 

where 
∫ 
R 

g(x ) cos (ux ) dx = Re [ φ∗(u )] , with Re [ ·] denoted the real part of the argument, and φ∗(u ) is the Fourier transform of

the density function g associated with the scaled log-asset price y = ln S 
β
T 
/K , which may be obtained via (16) and Proposition

2 below. 4 

Noticeably, a change in the number of summation terms in (25) is possible if we assume φ∗( (2 j+1) π2 m 

2 J̄ 
) = 0 for

j = 2 J̄ −1 , . . . , 2 J̄ − 1 . Hence, we can compute ˜ c m,k efficiently via the FFT algorithm. This will also require the selection of

a constant J = J̄ (instead of a varying J) for each value of k . 5 

Proposition 2. Given the moment generating function, M X (u ) , of X = ln S T , then for constants β, K > 0 , the moment generating

function of Y = ln 

(
S 
β
T 
K 

)
is given by M Y (u ) = e −u ln K M X (ω) , where ω = uβ , and the resulting characteristic function is given by

φY (u ) = e −iu ln K φX (ω) . 

Proof. The MGF of Y is given by M Y (u ) = E 

(
e u ln (S 

β
T 

/K) 
)

= e −u ln K M X (ω) , since e uβ ln S T is a monotonic function of X = ln S T .

Hence, we have 

M Y (u ) = e −u ln K M X (ω) , (26) 

where ω = uβ . Finally, substituting iu for u in (26) above completes the proof. �

Following [25] , the SWIFT power option pricing formula for a vector of strikes, K , can be expressed as: 

f ( x , t ) = e −r ( T −t ) 2 m K 

2 J + ̃ J −2 
× ∑ k 2 

k = k 1 Re 

[ 
e 

ik π

2 J 
∑ 2 J −1 

j=0 φ
∗( ( 2 j+1 ) π2 m 

2 J 
; 0 

)
e 

− i ( 2 j+1 ) π2 m 

2 J 
·x 

e 
2 π ikj 

2 J 

] 
˜ V 

∗
m,k 

, 
(27) 

where 

˜ V 

∗
m,k := 

{ ∑ 2 J−1 

j=1 

[ 
�1 ,k 

(
k̄ 1 
2 m 

, 
k 2 
2 m 

)
− �2 ,k 

(
k̄ 1 
2 m 

, 
k 2 
2 m 

)] 
if k 2 > 0 , 

0 if k 2 ≤ 0 , 
4 Note that for the SWIFT method we consider a probability density function g of the log-asset price y in L 2 (R ) and its associated Fourier transform 

φ∗(u ) = 

∫ 
R 

e −iuy g(y | x ) dy . 
5 We define the constant J by J̄ :=  log 2 (π�m ) � , where �m := max k 1 <k<k 2 �m,k , with k 1 and k 2 fixed indices, and  x � denoting the smallest integer greater 

than x . We define �m,k := max (| 2 m a − k | , | 2 m a + k | ) for some constant a such that h (−a ) + 1 − h (a ) < ε for ε > 0 (see Theorem 1 of [25] ). 
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Table 1 

Number of terms used in SWIFT approximation based 

on size of interval determined by L with scale of ap- 

proximation m = 5 and power β = 1 . 

L 10 12 14 18 26 

k 1 −131 −156 −182 −233 −339 

k 2 128 153 179 230 336 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for a power call option, and 

˜ V 

∗
m,k := 

{ ∑ 2 J−1 

j=1 

[ 
�1 ,k 

(
k 1 
2 m 

, 
k̄ 2 
2 m 

)
− �2 ,k 

(
k 1 
2 m 

, 
k̄ 2 
2 m 

)] 
if k 1 < 0 , 

0 if k 1 ≥ 0 , 

for a power put. This is possible since we have φ∗(u ; x ) = φ∗(u ; 0) · e −iux . 

Notably, the above simplification in (27) relaxes each 

˜ V ∗
m,k 

from its dependence on the option strike prices, K, thus re-

quiring only a single computation for each k = k 1 , . . . , k 2 . Hence, we may price a basket of options across a range of strikes

in a single numerical experiment through the expression above. It is also possible to further reduce the computational com- 

plexity of V ∗
m,k 

by choosing an appropriate constant J = 

˜ J value over all k , where ˜ J :=  log 2 (πN) � and N := max (| k 1 | , | k 2 | ) .
Subsequently, the FFT algorithm may then be applied to speed up the computation (see Appendix B of [25] ). 

Finally, it is also worthwhile highlighting that one major advantage of utilising Shannon scaling functions is the conve- 

nience of determining the area under the approximated density function with minimal effort s once the coefficients c m,k are

calculated. The approximated area may then be determined by (see [25] ): 

˜ H = 

1 

2 

m/ 2 

(
c m,k 1 

2 

+ 

∑ 

k 1 <k<k 2 

c m,k + 

c m,k 2 

2 

)
, (28) 

where ˜ H ≈ 1 . Adequate determination of indices k 1 and k 2 with the cumulants, as discussed previously, are presented in our

numerical experiments in Section 4 . The closer the estimated area is to one, the more accurate our approximation of the

target density function. 

4. Numerical results 

Our numerical experiments are carried out as follows. Firstly, we determine the appropriate choice for the scale of ap- 

proximation, m , as well as the truncation range parameter, L , through three different methods by examining the convergence

of the resulting approximation errors. Thereafter, we examine the pricing of power options with the SWIFT method, and 

compare the resulting prices to that of a Monte Carlo simulation as a benchmark to validate the method’s pricing accuracy.

To investigate the computational efficiency, we compare the CPU times required by the SWIFT method to that of the al-

ternative COS and FFT methods. Finally, we demonstrate the model’s robustness by exploring the sensitivity of the SWIFT 

option prices to changes in the parameters of our proposed stochastic model. 

4.1. Integration range and scale of approximation 

Following [13] for pricing comparisons, we utilise the initial parameters at time t = 0 : S 0 = 1 , v 0 = 0 . 15 , λ0 = 3 , r =
0 . 05 , d = 0 . 05 , θv = 0 . 18 , αv = 0 . 3 , σv = 0 . 1 , θλ = 3 , αλ = 5 , σλ = 0 . 3 , ρ = −0 . 25 , ηu = 33 . 33 , ηd = 7 . 69 , T = 0 . 5 . We begin by

identifying the truncation of the integration range required for both the SWIFT and COS methods in order to obtain the

payoff coefficients. As mentioned in Section 3 , this will require the cumulants of the scaled log-asset price ln (S 
β
T 
/K) , where

the jth cumulant, μ j , is calculated via the jth derivative of the MGF (3) evaluated at 0. Hence, following [5] , the truncation

domain to approximate the option prices is given by (21) , where, typically, L = 10 ; 12 . The choice of truncation parameter

L is not immediately obvious, and further discussions and justifications for our choice are provided in the numerical ex- 

periments to follow. Readers can also refer to the seminal work of [5] for detailed discussions on the choice of cumulants

to include in the truncation range, as well as the choice of the truncation parameter L . Table 1 presents the corresponding

number of terms required in the SWIFT method approximation given a chosen value of L with β = 1 . The equivalent number

of terms required in the alternative COS method can also be determined. 6 

An adequate choice for the scale of approximation, m , upfront is important given that it cannot be re-adjusted at a later

stage without recalculating all approximation terms. Hence, along the lines of [24] , we utilise the Fourier transform, φ∗(u ) ,

of the density function to determine the appropriate choice of wavelet scale, m , in analytical form. This is possible since our

stochastic process of interest (1) satisfies the following condition: ∣∣φ∗(u ) 
∣∣ = 

∣∣∣e �(u )(T −t) 

∣∣∣ ≤ Ce − ˜ d (T −t) | u | κ , (29) 
6 For example, a choice of L = 14 will required N ≈ 360 
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Fig. 1. Tail Mass of Characteristic Function Not Recovered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with κ = 2 and constants C, ˜ d > 0 . 7 �(u ) the characteristic exponent of (1) . From (29) , it can be shown through integration

that the mass of the tails of the characteristic function, A (2 m π) , is bounded by 

A (2 

m π) ≤ C 
πκ( ̃  d (T − t)) 1 /κ

�
(

1 

κ
, ˜ d (T − t)(2 

m π) κ
)

=: εm 

, (30) 

where � represents the incomplete gamma function, and 

εm 

∼ C(2 

m π) 1 −κ

πκ ˜ d (T − t) 
e − ˜ d (T −t)(2 m π) κ , (31) 

for large values of 2 m π (see [24] ). Note that (31) holds uniformly for all u . From (31) , it can also be observed that εm 

converges exponentially with respect to m . However, since parameters C and 

˜ d are not available in most cases, we overcome

the drawback by allowing the substitution of Ce − ˜ d (T −t) | u | κ ∼ | φ∗(±2 m π) | into (31) . Hence, εm 

can we approximated by, 

εm 

∼ (2 

m π) 1 −κ

2 πκ(T − t) 

(∣∣∣φ∗(−2 

m π) 

∣∣∣ + 

∣∣∣φ∗(2 

m π) 

∣∣∣). (32) 

Using (32) above, we may efficiently compute the approximation error for a particular choice of wavelet scale, m , without

a significant amount of CPU time. Hence, we can carry out a straight forward iterative procedure, through choosing m =
0 , 1 , 2 , . . . until εm 

is less than a tolerance level, T OL , determined a priori. 

From Fig. 1 we observe that, by setting a tolerance level of T OL = 10 −99 , say, then the iterative procedure with

(32) through choices of m = 0 , 1 , 2 , . . . would identify m = 5 as an adequate wavelet scale of approximation. Notably, a lower

choice of tolerance level by the user may deem m = 3 , say, as an appropriate choice for the scale of approximation. It is also

worthwhile noting that the CPU time required almost doubles, without significant recovery of the density mass lost, when 

increasing the scale of approximation from m = 5 to m = 6 . 

In addition to the above, we demonstrate that the rate of convergence of the SWIFT option prices to increasing wavelet

scale of approximation, m , is exponential for both the vanilla European calls and puts (see Fig. 2 ). Moreover, similar findings

across a range of power, β , are illustrated in Fig. 3 . In both cases, we define the relative error as the percentage of absolute

price differences for each option when referenced to a benchmark price with m = 8 . 

Recall that a major advantage of utilising Shannon scaling function is the ability to determine the area under the approx-

imated density function with minimal effort s once the coefficients c m,k are calculated (see Section 3 ). The approximated

area may then be determined by (28) . Figure 4 presents the error convergence in the density approximation with the SWIFT

method. Evidently, the error convergence in the density approximation is also exponential, with negligible differences for 

m > 5 . 

Finally, to further complement the findings of [5,25] , justifications for our choice of the truncation parameter, L , when

identifying an appropriate truncation range, may be provided by conducting a numerical experiment to evaluate the price 

convergence in the parameter L . We demonstrate this in Fig. 5 , which shows robustness for the choice of L = 10 ∼ 12 across

different scales of approximation, m . 
7 Note that κ may take on different values depending on the expression of φ∗(u ) . 
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Fig. 2. SWIFT option price error convergence on increasing scale of approximation ( m ). 

Fig. 3. SWIFT power option price convergence with increasing scale of approximation ( m ). 

 

 

 

 

 

 

4.2. Power option pricing 

Utilising the model parameters introduced at the beginning of Section 4.1 above, we price power call options with the 

SWIFT method across different powers, β , and compare our results to the corresponding option prices from the FFT and COS

methods. Figure 6 presents the prices of a basket of power call options across a range of strikes. Additionally, we reveal the

option price differences between the SWIFT and that of the COS method. When benchmarked to the COS prices, we observe

that the SWIFT method is accurate and robust with minimal pricing errors across different moneyness of the option, as 

well as the various powers for the option payoff. In terms of efficiency, the COS method consumes 3.1 milliseconds on

average, while the SWIFT method takes a mere 0.63 milliseconds to obtain the option prices. 8 All numerical experiments 

were conducted on a 3.9GHz quad-core Intel Core i7 machine with 16GB RAM. 

Our results are further benchmarked against the option prices from a set of Monte Carlo simulations with 10 6 sample

paths to confirm the accuracy in the pricing. It is also worthwhile noting that for sophisticated stock price processes, such

as the proposed (1) above, situations may arise whereby consistent prices between the various Fourier-based methods are 

realised even though errors may exist in the computation of the characteristic function. Hence, including a comparison to 

methods that are independent of the characteristic function may provide further evidence of pricing accuracy. 
8 Note: computing times were averaged over 10 4 iterations. 
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Fig. 4. Convergence of density mass lost from approximation under the SWIFT method. 

Fig. 5. SWIFT option price error convergence on increasing truncation range parameter L . 

 

 

 

 

In order to carry out the Monte Carlo simulations, we first discretise the asset price dynamics (1) as follows: 

ln S t+�t = ln S t + (r − d − λt δ)�t + 

√ 

v t E 1 
√ 

�t + (e Y − 1) ln S t (N t+�t − N t ) , 

v t+�t = v t + (θv − αv v t )�t + σv 
√ 

v t (ρE 1 + 

√ 

1 − ρ2 E 2 ) 
√ 

�t , 

λt+�t = λt + (θλ − αλλt )�t + σλ

√ 

λt E 3 
√ 

�t , 

where t is the current time step, and �t represents the length of time per simulated step. The terms E 1 , E 2 , and E 3 are

independent random variables sampled from a standard normal distribution. Option values can be obtained once the various 

sample paths for the final asset price at maturity T have been simulated with the discretisation above. The valuation then

follows with the usual discounted expectation of the final option payoff. Resulting price comparisons, across different power 

values, β , are shown in Tables 2–4 . 

Our numerical experiments demonstrate that the SWIFT method is highly accurate in the pricing of power options un- 

der our proposed asset price framework. This is clearly illustrated from the marginal price differences between the SWIFT 

method and the Monte Carlo simulations across a range of strikes (see Tables 2–4 ). In addition, the consistency of such

marginal price differences are observed across different powers, β , which further advocates the method’s accuracy and ro- 

bustness. Moreover, the minimal price differences when compared to other state-of-the-art methods, such as the FFT and 

COS, further displays the high accuracy of the SWIFT method. 

Further to the above-mentioned, the error analysis from our numerical examples in Section 4.1 demonstrate the SWIFT 

method’s ability to price accurately in our proposed framework even without tight restrictions, such as the need for a 

relatively large integration range (through truncation range parameter, L ), or a high scale of approximation, m . This is evident

from the fast convergence of the resulting errors across the different scenarios of relaxing the above restrictions, as depicted 

in Figs. 1–5 . 
11 
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Fig. 6. Power call option prices under the SWIFT method, and the resulting price differences between SWIFT and COS methods. 

Table 2 

Power call price differences and relative error between SWIFT vs FFT / COS / M.C. methods for 

β = 1 . 

Power call option prices 

Strike SWIFT FFT % diff. COS % diff. M.C. % diff. 

85 20.3618 20.3618 1.0781e-06 20.3618 1.1061-06 20.3809 0.0938 

90 17.3847 17.3847 1,0843e-06 17.3847 1.0844e-06 17.3737 0.0630 

95 14.7344 14.7344 1.6057e-06 14.7344 1.6058e-06 14.7571 0.1541 

100 12.4025 12.4025 3.8129-06 12.4025 3.8130e-06 12.4089 0.0511 

105 10.3731 10.3730 4.6265-06 10.3730 4.6266e-06 10.3555 0.1689 

110 8.62449 8.6245 7.9017-06 8.6245 7.9018e-06 8.6310 0.0753 

115 7.13180 7.1318 1.3375-05 7.1318 1.3375e-05 7.1601 0.3967 

Table 3 

Power call price differences and relative error between SWIFT vs COS / 

M.C. methods for β = 0 . 95 . 

Power call option prices 

Strike SWIFT COS % difference M.C. % difference 

85 7.0773 7.0773 3.3158e-06 7.0849 0.1063 

90 5.4957 5.4957 6.7267e-06 5.4874 0.1509 

95 4.2264 4.2264 1.3436e-05 4.2376 0.2634 

100 3.2224 3.2224 2.6464e-05 3.2233 0.0279 

105 2.4382 2.4382 5.1459e-05 2.4255 0.5205 

110 1.8324 1.8324 9.8886e-05 1.8325 0.0016 

115 1.3691 1.3691 1.8795e-04 1.3739 0.3476 

 

 

 

 

4.3. Price sensitivity to changes in model parameters 

Finally, we evaluate the sensitivity of SWIFT power option prices to changes in the underlying model parameters. Fig. 7 (a)

demonstrates the changes in option prices to increases in the mean-reversion rate of jump intensity. By setting the long term 

intensity to 3, option prices with initial intensity less than the long term intensity increases with increasing rate of reversion,

and the opposite is true for higher initial intensity values. This is reasonable as increases (decreases) in the number of jumps

increases (decreases) the variability in the underlying asset price, and increases (decreases) the resulting call value. Similar 

evidence is found in Fig. 7 (b) when evaluating a long term volatility of 0.15. Faster rates of reversion increases the value of
12 
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Table 4 

Power call price differences and relative error between SWIFT vs COS / M.C. 

methods for β = 1 . 02 . 

Power call option prices 

Strike SWIFT COS % difference M.C. % difference 

85 28.1385 28.1385 6.3596e-06 28.1731 0.1232 

90 24.6862 24.6862 2.8151e-06 24.7104 0.0981 

95 21.5221 21.5221 1.7005e-06 21.5539 0.1475 

100 18.6517 18.6517 1.6471e-06 18.6392 0.0670 

105 16.0729 16.0729 2.2506e-06 16.1128 0.2488 

110 13.7771 13.7771 3.5048e-06 13.7782 0.0080 

115 11.7507 11.7507 5.6329e-06 11.7389 0.1001 

Fig. 7. Power call option price sensitivity to changes in underlying model parameters with β= 0.95. 

Fig. 8. Power call option price sensitivity to changes in underlying model parameters with β= 1.01. 

 

 

 

calls with a lower initial volatility, and the opposite is true for higher initial volatility values. Lastly, Fig. 7 (c) demonstrate

the changes in power call option prices to changes in the volatility of volatility. 

In addition to the above, we analyse the consistency in the model sensitivities for changes in power β , and present

our findings in Fig. 8 . Our results demonstrate similar sensitivity patterns to those observed in the case where β = 0 . 95 ,

providing further evidence in support of model robustness with the SWIFT method across a wide range of market conditions 

under our proposed framework. 
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5. Conclusion 

In this paper, we proposed a highly efficient pricing method for power options using Shannon wavelets. In particular we 

advocate the use of a double exponential jump model with stochastic volatility and jump intensity for the underlying asset 

price dynamics. The characteristic function required for the SWIFT method pricing is derived through applying the gener- 

alised Feynman-Kac formula, and solving the resulting PIDE with a straight forward calculation. Results from our numerical 

experiments suggest that the SWIFT method is both accurate and robust, and more efficient than the novel Fourier-cosine 

method. Finally, we performed a set of sensitivity analyses to demonstrate the stability of the SWIFT method to changes in

the underlying model parameters. The findings show that the resulting power option price responds reasonably to changes 

in the underlying model parameters, hence suggesting model robustness across different market conditions and advocating 

the use of our proposed stochastic model. Further studies may include the investigation of the SWIFT method in pricing 

early exercise exotics with our proposed asset price framework. 
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