
Framework for Composition of Domain
Specific Languages and the Effect of

Composition on Re-use of Translation
Rules

Ludvig Kihlman

A thesis submitted for the degree of Doctor of Philosophy

School of Computer Science and Electronic Engineering (CSEE)

University of Essex

August 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/478144276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

Domain-Specific Languages (DSLs) are programming languages that have been de-

signed to be used to solve problems in a specific domain. They provide constructs that

are high-level and domain-specific to make it easier to implement solutions in the given

domain. They frequently also limit the language to the domain, avoiding general purpose

constructs.

One of the main reasons for using a DSL is to reduce the amount of work required for

implementing new programs. To make the use of DSLs feasible, the cost of developing a

new DSL for a domain has to be less than the total amount of cost saved by having the DSL.

Thus, reducing the cost of developing new DSLs means that introducing DSLs becomes

feasible in more situations. One way of reducing costs is to use composition techniques,

where new languages are created from existing ones. This includes defining new language

constructs in terms of existing ones, combining the constructs from one or more existing

languages, and redefining existing constructs.

We present a framework for composing languages on the abstract level and discuss to

which degree one can ensure that languages produced by the composition language are valid.

In particular, we look at how translation rules for translating from a composed language to

a General Purpose Programming Language (GPL) are affected by the composition. That

is, to which degree can a language composed from other languages reuse the translation

rules of the languages it is composed from. We use a patience game suite as a case-study

to show how our composition techniques can be used and demonstrate the short-comings

of the techniques. We also show how a tool for composing languages can be created using

DSLs produced by composition. The implementations are all in Java.

Contents

1 Introduction 1

1.1 What is a DSL? . 3

1.2 Research . 5

1.3 Thesis Outline . 7

2 Composition and translation of Domain-Specific Languages 9

2.1 Introduction . 9

2.2 Domains . 9

2.3 Languages . 12

2.4 Domain-Specific Languages . 14

2.4.1 Composition . 23

2.4.2 Evaluation . 25

2.4.3 Other DSL concerns . 28

2.5 Related areas . 29

2.5.1 Ontologies . 29

2.5.2 Product Families . 29

3 Patience Games 31

3.1 Introduction . 31

3.2 Patience . 34

3.3 General Design of Patience Suite . 35

ii

CONTENTS iii

3.3.1 Software Product Lines and Domains 35

3.3.2 Implementation of Patience Suite 37

3.3.3 Existing Code-bases . 37

3.4 Use of Model . 43

3.4.1 Host Languages . 43

3.4.2 Patience Language . 44

3.4.3 Language Expressiveness . 47

3.4.4 Language Composition . 48

3.4.5 Language Analysis . 49

3.4.6 Language Evaluation . 50

3.5 Conclusions . 51

4 Basic framework for language composition 52

4.1 Introduction . 52

4.1.1 Motivating example . 56

4.2 Background . 57

4.3 Domain and language . 59

4.4 Abstract Language . 60

4.4.1 Composition of abstract language 65

4.4.2 Translation . 73

4.4.3 Individual composition operations effect on reusability of transla-

tion rules . 79

4.5 Examples . 81

4.5.1 Introduction of constructs . 82

4.5.2 Relaxing and restricting . 83

4.5.3 Combining and deleting . 85

4.5.4 Translation . 87

4.6 Limitations and solutions . 88

CONTENTS iv

4.7 Conclusion . 90

5 Composing Patience Games 91

5.1 Introduction . 91

5.2 Background . 94

5.3 Patience . 95

5.4 Patience Implementation . 96

5.5 Abstract Language Model . 101

5.6 The language . 102

5.6.1 Card Games . 105

5.6.2 Cards . 106

5.6.3 Games . 106

5.7 Translation to Java . 108

5.8 Translation to DSL . 109

5.8.1 Relation with existing code-base 110

5.9 Discussion . 112

6 A Self-Describing Domain-Specific Language for Translations 114

6.1 Introduction . 114

6.2 Method . 120

6.2.1 Construction of S and H . 121

6.2.2 The translation language . 124

6.3 Implementation of a translation language 128

6.3.1 Informally checking correctness of translation DSL 130

6.4 Example translation rules . 133

6.4.1 Reuse in the construction of TT H 141

6.5 Results and discussion . 144

6.6 Conclusion . 148

CONTENTS v

7 Comparison to the State of the Art 150

7.1 Introduction . 150

7.2 Background . 150

7.3 Comparison . 152

7.4 Conclusion . 154

8 Conclusion and future work 155

8.1 Introduction . 155

8.2 Big picture . 155

8.3 Contributions . 157

8.4 Shortcomings . 158

8.5 Future work . 161

References 163

List of Tables

2.1 DSL development phases and patterns according to (Mernik et al., 2005) . 17

3.1 Methods that a Patience Language needs to implement in our model. 43

4.1 To which degree translation rules can be reused under various conditions . . 79

5.1 Concepts in our patience implementation 96

5.2 Methods that a Patience Language needs to implement in our model. 97

5.3 Number of ASTs and rules needed for various methods of translation to GPL. 108

vi

List of Figures

2.1 A very general view of an interpreter, as given in (Aho et al., 2006) 13

2.2 A more detailed view of an interpreter . 13

3.1 UML diagram describing the Strategy Pattern 36

3.2 Introducing an interpreter for specifying Concrete Strategies 37

3.3 Feature Diagram for the patience domain based on PySolFC’s patience game

wizard . 38

3.4 UML diagram describing the main parts of a simple patience suite. Some

simplifications have been made to better fit the diagram. 39

3.5 UML diagram describing the domain that is relevant for our DSL, including

some example patience PF members (Klondike, Golf, and Yukon) 41

3.6 UML diagram describing an interpreted version of the patience game using

a DSL. The patience domain from figure 3.5 has been replaced by a package. 42

4.1 A diagram for concrete syntax being directly mapped to semantics, along

with domain types that are instantiated to domain objects that can then be

referenced by the semantic domain. 53

4.2 A diagram showing concrete syntax being parsed into abstract syntax, which

is then executed in the semantic domain. In this case, the concrete syntax

is decoupled from the domain types, which instead are referenced to in the

abstract syntax. 53

vii

LIST OF FIGURES viii

4.3 A diagram showing concrete syntax being parsed into abstract syntax which

is then translated into a different abstract syntax, which is then executed in

the semantic domain. The domain types also get translated between abstract

syntaxes. 53

5.1 UML diagram describing the main parts of a simple patience suite. Some

simplifications have been made to better fit the diagram. 97

5.2 UML diagram describing the domain that is relevant for our DSL, including

some example patience PF members (Klondike, Golf, and Yukon) 99

5.3 DSL hierarchy for games, card games and patience games being translated

to an inheritance hierarchy of GPL classes. 111

5.4 DSL hierarchy for games, card games and patience games being translated

to independent GPL classes. 111

5.5 DSL hierarchy for games, card games and patience games being translated

to a single GPL class. 113

6.1 A compiler taking a DSL as an input and producing a runnable application

as output. 128

6.2 A translator-generator producing a compiler that can take application code

as an input and produce a runnable application as output. 129

6.3 Three generations of generator, showing how each part of the generator af-

fect the next generation. 131

6.4 Three generations of generator with an imaginary -1st generator that pro-

duces the 0th generator. 133

Glossary

API Application Program Interface. viii, 26, 112

AST Abstract Syntax Tree. viii, 13, 20, 59, 60, 62, 63, 75, 76, 80, 90, 92, 108, 109, 119,

125–127, 137–139, 144, 147

BNF Backus-Naur Form. viii

COTS Commercial, Off The Shelf. viii

DSD Domain-Specific Description. viii

DSDL Domain-Specific Design Language. viii

DSEL Domain-Specific Embedded Language. viii, 3, 4, 55, 56

DSIL Domain-Specific Implementation Language. viii

DSL Domain-Specific Language. i, viii, 1–9, 11, 14, 16–23, 25–30, 52, 54, 55, 57–59, 68,

81, 89, 91–94, 96, 101–110, 112, 114–117, 119, 128–133, 136–139, 141, 142, 145,

147–152, 155–161

DSM Domain-Specific Modelling. viii

DSML Domain-Specific Modelling Language. viii, 19

DSP Domain-Specific Processor. viii

ix

Glossary x

DSSA Domain-Specific Software Architectures. viii, 11

DSVL Domain-Specific Visual Language. viii

EBNF Extended Backus-Naur Form. viii

eLOC effective Lines of Code. viii

FDL Feature Description Language. viii, 12

FODA Feature-Oriented Domain Analysis. viii, 11, 29

GPL General Purpose Programming Language. i, vi, viii, 1, 2, 4–6, 8, 11, 16, 18, 20, 21,

27, 58, 62, 92–94, 96, 104, 108, 112, 114–117, 125, 133, 135, 136, 138, 139, 141,

143, 147–149, 153, 155, 156, 158, 160

IDE Integrated Development Environment. viii, 156

MDE Model-Driven Engineering. viii

ODM Organization Domain Modeling. viii, 11

OOP Object-Oriented Programming. viii, 129

PF Product Family. viii, 2, 29, 30

SLE Software Language Engineering. viii, 155, 156

SPL Software Product-Line. viii, 11, 28, 29

Chapter 1

Introduction

Computers are ubiquitous, as are the programming languages used to create software for

them. Programming languages come in many forms, from very low level assembly lan-

guages to high-level interpreted languages, such as Python and Ruby. General Purpose Pro-

gramming Languages (GPLs) such as C/C++ and indeed assembly languages and Python

and Ruby are designed to solve any problem that one would want to solve with a computer.

Some specialise in efficient and close to the hardware code, such as C/C++ and others on

ease of use, such as Python, but they all provide a sense of general purpose computing.

Domain-Specific Languages (DSLs) have been used for some time now as a way of

improving software development process. The idea is to have a way of specifying solu-

tions in a language that is easier to use for the particular domain one is working in. This

often comes with the constraint that the language is unable or poorly equipped to describe

solutions outside the domain.

The motivating example for this research is a scenario where a software development

company, is developing a suite of patience games written in a GPL. As they are working

on it, they realise that parts of the code are repetitive. Rather than having to keep having

to write almost identical code, the software company would like to be able to define the

repetitive code once and then reuse it everywhere it is needed. So the company analyses the

repeating code and finds that the repetitive code can be defined as a set of methods which are

1

CHAPTER 1. INTRODUCTION 2

dependent on a limited set of types. They also find that each method can be implemented

using only a few different constructs. They conclude that these parts would be easier to

describe in a language custom-made to describe this part of the program, a DSL.

Their argument is that there are parts of the program that share a lot of similarities, but

vary slightly. Therefore, they find that it would be easier to use a language that only require

the user to specify the differences between the games, rather than having to use a GPL which

requires everything to be specified in much more detail.

They have a design of the domain of the program (i.e. a design that specifies what cards,

decks, piles and games of patience are) that they want to create a DSL for, but they need to

implement the DSL. This would normally include manually writing a parser and interpreter

for the language, as well as maintaining and updating that parser and interpreter should the

requirement for the DSL change. Rather than doing all this work manually, the company

would like to be able to create and maintain the DSL with as little manual input as possible.

There has been a lot of discussion on how to implement DSLs, such as embedding in an

existing GPL (Hudak, 1997a), using Product Families (PFs) (van Deursen and Klint, 2002)

ontologies (Čeh, Črepinšek, Kosar and Mernik, 2011) and even by analysing user interfaces

(Bačíková, 2014). There have also been several tools developed to aid DSL construction,

such as (Mernik et al., 2002; Eysholdt and Behrens, 2010; Efftinge et al., 2012). DSL

engineering is also the subject of several books, such as (Fowler, 2010; Parr, 2010; Völter,

2013a; Bettini, 2013)

In this thesis we will be investigating DSL composition (Erdweg et al., 2012; Völter,

2013a) and generative programming (Czarnecky, 1998) and in particular, the interaction

between the two approaches.

CHAPTER 1. INTRODUCTION 3

1.1 What is a DSL?

A DSL is a language, usually a programming language (van Deursen et al., 2000; Mernik

et al., 2005) though some argue that other, non-programming languages qualify too (Wile,

2001), such as musical notation.

The description given in (Mernik et al., 2005) is “Domain-Specific Languages (DSLs)

are languages tailored to specific application domains and offer users more appropriate nota-

tions and abstractions.” Note the specification of ‘application domain’, implying that being

meant for writing applications are inherent to being a DSL. In contrast, (Wile, 2001) states:

“Moreover, DSLs are not necessarily programming languages: they are languages tailored

to express something about the solution to a problem.” and “For example, music notation

constitutes a DSL for music; it is nearly irrelevant that modern computers can play the "pro-

gram" represented by the music.”

(Hudak, 1997a) gives intuitions on what DSLs are, such as, “They are more concise”,

“They are written more quickly”, “They are easier to maintain”, as well as “They are easier

to reason about” and notes “These advantages are the same as those claimed for programs

written in conventional high-level languages, so perhaps DSL’s are just very high-level lan-

guages?”. They also note “They [programs in a DSL] can be written by non-programmers”.

These properties are not shown to be true, but rather stated as an opinion.

(Consel and Marlet, 1998) says “In contrast to GPLs a la Java or C++, a DSL has a

narrow application scope and must be readable for domain experts.” and “In general, a

domain specific textual program is a concise set of high-level declarations, focusing on

what to compute, as opposed to how to compute it.”

We will in general not take a position on where the boundary of DSLs are, however, our

work is done with DSLs as programming languages in mind.

Some of the issues with DSLs include the “Tower of Babel" problem (having too many

different languages), slower code, and high initial costs. These are all discussed in (Hudak,

1997a), who argue for using Domain-Specific Embedded Languages (DSELs) to improve

CHAPTER 1. INTRODUCTION 4

some of these issues. DSELs are languages that use the constructs found in (some) GPL

languages to create a language contained inside the GPL language, using the GPL language

syntax and semantics to execute. Contrast this with External DSLs, that uses an independent

interpreter or compiler to produce executable code.

They note: “In summary, the DSEL approach creates a rich infrastructure that:”

1. Allows for rapid DSL design; if nothing else, it can be viewed as a way to prototype

a DSL.

2. Facilitates change, whether for experimentation, fault correction, or design evolution.

3. Provides a familiar look and feel, especially for several different DSLs embedded in

the same language. In other words, it reduces the size of the Tower of Babel.

4. Facilitates reuse of syntax, semantics, implementation code, software tools, documen-

tation, and other related artefacts.

Since then, there has been a lot of research done, in particular on reducing the initial

cost of DSL development, such as: (Nystrom et al., 2003; Kosar et al., 2008; Porubän et al.,

2010; Haber et al., 2015; Degueule, 2016).

One related field, in particular for External DSLs, is Generative Programming. (Consel

et al., 2005) says about Generative Programming “modeling and implementing system fam-

ilies in such a way that a given system can be automatically generated from specification

in one or more textual or graphical domain-specific languages” (paraphrasing (Czarnecki,

2005)) and ties it to DSLs: “When mapping a DSL to GPL, the higher level the DSL is, the

more program generation is needed to bridge the gap with the target execution environment.

... Not surprisingly, GPL-translated programs include rather large program templates. The

process of generating these templates can be quite complex, relying on various conditions,

and requiring a number of instantiations by computing and inserting constants. Without any

dedicated tool support, this process can be quite laborious and error-prone.”

CHAPTER 1. INTRODUCTION 5

1.2 Research

Now we will discuss the main purpose of this thesis. We are looking at creating a framework

for specifying DSLs that separates the domain and language parts of DSLs. Splitting up

DSLs by domain and language is relatively rare, but not unheard of. For example, in defining

DSLs, (Bilitchenko et al., 2011; Borodin et al., 2015; Burgy et al., 2005) all talk about

domain as something separate to the language, although not in any kind of formal manner.

Many authors do not specifically talk about the domain and language separately, such as

(Bravenboer and Visser, 2004; Consel et al., 2005; Diamond and Boyd, 2016; Dinkelaker

et al., 2010). This does not mean that the authors do not consider there to be a distinction,

they just do not discuss it in relation to their work.

Our work explore the how language composition (Erdweg et al., 2012) can be used

for DSL development using abstract syntax and translation from DSL to GPL as a way of

providing semantics. We will examine some of the different ways in which this has been

achieved before, and then discuss how language composition can be used to create language

families.

The composition techniques we will investigate are:

• introduction – introducing a construct to the language

• definition – Defining new constructs based on existing constructs

• sub-typing/restriction – create a new construct by restricting an existing construct

• super-typing/relaxation – create a new construct by loosening restrictions on an exist-

ing construct

• deletion – removing a construct from the language

• combination – combining constructs from two or more languages

These are quite different from Erdweg’s (Erdweg et al., 2012) extension, restriction,

unification, and self-extension, and we will argue for why we prefer our constructs in the

context of producing language families.

CHAPTER 1. INTRODUCTION 6

We also show how composition of abstract languages affect the reusability of translation

rules, that translate from the composed language to some existing host language. That is,

we investigate to which degree translation rules for the input languages to the composition

can be reused with the output language.

We will discuss abstract language and concrete language as two separate entities, to

allow an abstract language to have several different concrete languages defined for it.

The way we are going to evaluate our methodology is by providing proof of concept

DSLs that have been developed using our methodology. The two domains we will provide

DSLs for are patience games and a meta-language for translating DSLs using our techniques.

This research was approached as follows:

Defining a composition and translation framework for DSLs. This consists of defin-

ing a set of composition operations on abstract language types, as well as defining a transla-

tion operation for translating composed language types into another language.

Present the condition under which translation rules can be reused under compo-

sition. We discuss under which operations the translation rules are guaranteed to produce

valid output and when we may be able to reuse translation rules.

Verify these effects in two cases:

1. DSL Translation DSL. We show that using our composition and translation frame-

work we can define a language for translating other DSLs into host languages. We then show

how this language can define the translation rules for itself in order to make it executable.

2. Patience DSL. We define a DSL for defining Patience games. We show how the

patience DSL can be composed from existing DSLs as well as GPLs. We show how much

reuse is possible depending on the way the language has been composed and whether it is

composed from DSLs or GPLs.

The main contribution of this thesis are:

1. Exploring Patience Games as a toy example for DSL development. Patience

games are used throughout the thesis to provide examples of how the composition

CHAPTER 1. INTRODUCTION 7

and translation operations work. We do also consider it a good domain to use when

exploring DSL development, especially composition and we have therefore gone into

some depth describing the pros and cons of using it as an example domain.

2. A formal specification of composition and translation for abstract DSLs. Previous

work on DSL composition have focused more on concrete syntax, but we argue that

working on the abstract syntax has several benefits, including ease of reuse. Existing

work also tends to be in the form of tools, rather than formal mathematics, which

makes generalising about the work harder.

3. Exploration of when and how reuse of translation rules is possible under our

composition framework. We show how our approach can be used to reason about

when reuse of translation rules is possible and when new rules have to be created.

1.3 Thesis Outline

The thesis can roughly be broken up in three parts. First, there are two background chapters

to set the scene. Then in the middle, there are three chapters defining and demonstrating the

composition and translation framework, followed by two chapters of reflection on the work.

• Chapter 2 is the first background chapter and it serves as a way of breaking down the

relevant topics within the DSL research area, discussing the current state of the art in

DSL research.

• Chapter 3 argues for why the Patience game domain is a good test case for DSL

engineering and describe the domain, both for the purpose of serving as an example in

later discussion of DSL development and to allow it to be used in other DSL research.

• Chapter 4 describes our framework for language composition and translations. This

chapter gives formal definitions for our model of abstract languages, as well as defi-

nition of composition operations and translation rules.

CHAPTER 1. INTRODUCTION 8

• Chapter 5 describes the composition of a DSL for patience games. We provide an

example implementation based on the domain as described in chapter 3. We also

show how composition and translation is affected by use of other DSLs, such as game

description DSLs or use of GPLs, such as Java.

• Chapter 6 describes in more detail the implementation of a DSL capable of creating

translators for arbitrary DSLs using composition and translation. This DSL is then

used to define itself and we discuss the effect of further composition on the original

DSL on the translation rules defined in it.

• Chapter 7 compares our approach to the other approaches to DSL development out

there, especially DSL composition and code generation approaches. This builds on

the state of the art discussed in chapter 2.

• Chapter 8 gives the conclusion of the work, a general discussion on the benefits of

this work and the shortcomings, as well as future direction of the work and interesting

avenues to explore around composition and translation.

Chapter 2

Composition and translation of

Domain-Specific Languages

2.1 Introduction

This chapter will give an initial intuition of what is meant with domain and language in

the context of Domain-Specific Languages (DSLs) as well as implementation approaches to

languages.

Let us first consider how domains and computer languages are generally defined. There

are, as with DSLs, no formal definition of either (though individual programming languages

are usually formally defined, but we are discussing the general idea of a language, not spe-

cific languages). The idea with this section is to give an intuition of domains and languages,

not provide a definite definition.

2.2 Domains

In (Harsu, 2002), Maarit Harsu gives a couple of intuitions of what a domain is. For exam-

ple, Harsu cites (Schmid, 2000), who breaks down domains in four different areas: business,

collection of problems (problem domain), collection of applications (solution domain), and

9

CHAPTER 2. COMPOSITION AND TRANSLATION 10

area of knowledge with common terminology. Schmid also provides the following defini-

tion: “A domain is defined by the objects, operations, and relationships that domain experts

perceive to be important for developing systems for a certain area of functionality.” Harsu

also cites (Tracz, 1994) who defines a domain as: “A domain is defined by a set of ‘com-

mon’ problems or functions that applications in that domain can solve/do (hence the term

‘application domain’). Also, a domain is typically characterised by a common jargon or

ontology for describing problems or issues that applications in it address”.

Prieto-Díaz, Rubén (1990) defines a domain as: “Domain: In a broad context it is ‘a

sphere of activity or interest: field’ [Webster]. In the context of software engineering it is

most often understood as an application area, a field for which software systems are devel-

oped.” and gives as examples: “... airline reservation systems, payroll systems, communi-

cation and control systems, spread sheets, numerical control.”. They also note that: “Do-

mains can be broad like banking or narrow like arithmetic operations.” Kang et al. (1990)

makes a similar point: “A domain does not necessarily have to occur at a specific level of

software granularity, such as that of a system, Computer Software Component (CSC), or

Computer Software Configuration Item (CSCI).” and “Rather, a domain is a more general

concept which may be stretched to apply to most any potential class of systems. This class

is referred to as the target domain, which may have both higher-level domains to which it

belongs and sub-domains within it.”. They then gives the example “... different instances

of the same type of system (such as window management systems or relational database

management systems) can be grouped together to define a domain.” and notes: “In a similar

way a domain of data structures could be identified which would be at a much lower level

than that of entire systems, but could still constitute a target domain in its own right.”

Simos et al. (1995) definition of domain is similar to (Prieto-Díaz, Rubén, 1990): “A

software domain is defined here as an abstraction that groups a set of software systems or

functional areas within systems according to a domain definition shared by a community of

stake-holders.”

CHAPTER 2. COMPOSITION AND TRANSLATION 11

According to the above definitions, a domain can be seen as a collection of things that

experts in the field perceive as needed to develop programs for some area of functionality

(which is somewhat circular, a domain is defined by the things needed for describing the

domain). A domain could also be seen as a set of problems that are solved by a certain

solution (again, circular).

For our purposes, we can provide our own, slightly simpler view of what a domain is.

In general, a domain consist of things and relations between the things. For the domain to

be coherent, all things have to have some relation to other things in the domain. If two sets

of things in the domain share no relations, it makes more sense to view them as two distinct

domains.

In Object-Oriented terms, it would be convenient to define domains as classes defining

things and with attributes and method defining relationships between them.

In the literature, it is common to include domain analysis and domain specification

as part of the DSL development process (Mernik et al., 2005; Čeh, Črepinšek, Kosar and

Mernik, 2011; Bačíková, 2014). While having a well-defined domain is certainly important

for DSL production, it seems like domain specification is not a specific problem for DSLs.

In many cases, the domain may well have been defined for other purposes (such as General

Purpose Programming Language (GPL) implementations of the domain), and the DSL can

just re-use that specification. This is particularly true if one focuses on DSLs meant specifi-

cally for aiding software development of existing Software Product-Lines (SPLs), as we are

going to be doing in this thesis.

Some often used methods for creating and defining domains are Feature-Oriented Do-

main Analysis (FODA) (Kang et al., 1990), Organization Domain Modeling (ODM) (Simos,

1995), and Domain-Specific Software Architectures (DSSA) (Taylor et al., 1995) all identi-

fied by (Harsu, 2002) as the most well known methods for domain analysis. Since then, it

appears that FODA has taken over as the go-to method for domain analysis in the field of

DSLs (in so far as any method is used).

CHAPTER 2. COMPOSITION AND TRANSLATION 12

To describe domains, Feature Description Language (FDL) is often used (originally pro-

posed by (van Deursen and Klint, 2002)). Other ways of specifying domains is to use ontol-

ogy specification languages, such as OWL (W3C, 2012) as is the case in (Čeh, Črepinšek,

Kosar, Mernik, Henriques, Pereira, Cruz and Oliveira, 2011).

2.3 Languages

Programming languages are a way to for humans to describe program implementations to

machines and other humans. For example, (Aho et al., 2006) says “Programming Languages

are notations for describing computations to people and to machines.” In (Tucker and Noo-

nan, 2007), Tucker and Noonan compares programming languages to natural languages:

“Like natural languages, programming languages facilitate the expression and communica-

tion of ideas between people.” and makes a similar statement to Aho et al. “. . . program-

ming languages also enable the communication of ideas between people and computing

machines.” Interestingly, Tucker also mentions expressiveness, in regard to programming

and natural languages: “. . . programming languages have a narrower expressive domain

than natural languages”. Tucker somewhat sidesteps the issue of what expressiveness means

by qualifying with ‘expressive domain’. Parr has a slightly more pragmatic definition: “A

language is just a set of valid sentences” (Parr, 2010).

The general takeaway message is that languages are used to describe things. That is, one

would use a language to describe a domain, for example. In fact, the only way to express a

domain so that other people and machines can understand is through a common language.

This means that it is fairly easy to confuse the idea of a domain with the description of the

domain, as the only way we can ever communicate about a domain is by using some agreed

upon common language. Domains certainly exist without a language describing them, but

the only way we can define what a certain domain is, is by using a language.

It should be noted that languages can be seen as ‘things’ and relations. So one could say

CHAPTER 2. COMPOSITION AND TRANSLATION 13

Figure 2.1: A very general view of an interpreter, as given in (Aho et al., 2006)

Figure 2.2: A more detailed view of an interpreter

there is a ‘domain of languages’, which consist of all the things that make up languages. In

programming languages, we would expect this domain to consist of things like if-statements,

loops, names, and assignments, all of which help to define what a program should do when it

is executed. When we describe domains in an Object-Oriented fashion, our language needs

constructs to describe classes and attributes.

In figure 2.1 we show a very general representation of an interpreter (as shown in (Aho

et al., 2006)). In figure 2.2 we show a more detailed version of one way of implementing

an interpreter. It shows four stages of the interpretation process. First, the source-code is

parsed and turned into some intermediate representation (usually an Abstract Syntax Tree

(AST)). Then the interpreter transform that into some internal representation. That inter-

nal representation is then checked for consistency, before the execution can start. In real

interpreters, these steps may not be neatly compartmentalised like is shown in this figure.

It is also common to separate between abstract language and concrete language. Abstract

language describes the semantics of the language, and the concrete language describe the

CHAPTER 2. COMPOSITION AND TRANSLATION 14

syntax of the language (Kleppe, 2008).

To elaborate, the abstract language consist of the operations the language can perform,

and the concrete language consist of how we actually write sentences in the language. In

other terms, the abstract language define the domain that the language is capable of operating

in, and the concrete language defines how we express the operations. In other words, the

abstract language defines the semantics of the language, whereas the concrete language

defines the syntax.

The distinction between abstract and concrete programming languages is also conve-

nient when creating an implementation that can execute sentences in a given language. The

concrete definition of the language is used to construct a parser, that turns concrete sentences

into abstract sentences. The definition of the abstract language is used to define how those

sentences are executed.

A further convenience is that by separating the two, we can specify several different

syntaxes for the same language, without having to specify the semantics several times. This

is, however, not something we will be focusing on in this document.

2.4 Domain-Specific Languages

DSLs are languages that are tailored to a specific domain (Mernik et al., 2005).

The general consensus seem to be that a DSL is a language that describes solutions in

a particular domain. For example, (Fowler, 2010) defines it as “a computer programming

language of limited expressiveness focused on a particular domain” and (Thibault, 1998;

Thibault et al., 1999) gives an informal definition as “a DSL [is] a language that is specific

(i.e. restricted) to a particular application domain.” (Mernik et al., 2005) writes “Domain-

Specific Languages (DSLs) are languages tailored to specific application domains and offer

users more appropriate notations and abstractions.” What an application domain is in this

example is not defined. (van Deursen et al., 2000) gives a similar definition: “a programming

CHAPTER 2. COMPOSITION AND TRANSLATION 15

language or executable specification language that offers, through appropriate notations and

abstractions, expressive power focused on, and usually restricted to, a particular problem

domain.” (Hudak, 1997b) simply states that a DSL is “tailored to particular application

domains.”

van Deursen and Klint (1998); Kosar et al. (2010); Oliveira et al. (2009); Pereira et al.

(2008) all reference one of the above definitions instead of giving their own.

Some of the authors seem to think that it is the ’littleness’ of the language that makes

it domain-specific (e.g. Walton (1998) who says that DSL is “A small, usually declarative,

language expressive over the distinguishing characteristics of a set of programs in a partic-

ular problem domain”) whereas most of the authors emphasizes that it needs to adhere to

some domain to be a DSL (as shown above).

COBOL, FORTRAN are specified as GPLs by some (van Deursen et al., 2000) and

DSL by some (Sprinkle et al., 2009). Prolog is similarly controversial as (Wile, 2001)

unambiguously put it in the GPL section, but (Hudak, 1997b) lists it as a DSL (along with

VB). Hudak also include Tcl/Tk in the list of DSLs, while (Mernik et al., 2005) notes that

their DSLness is arguable.

Both van Deursen et al. (2000) (“Our definition inherits the vagueness of one of its defin-

ing terms: problem domain. Rather than attempting to define this volatile notion as well,

we list and categorize a number of domains for which DSLs have actually been built ...”)

and Mernik et al. (2005) (“We will not give a definition of what constitutes an application

domain and what does not”) explicitly decline to define what a domain is, which seem to be

the crux of what makes a DSL a DSL instead of a GPL. Presumably they either like the idea

of having some level of ambiguity of what a DSL is, or they do not think that it is worth the

trouble to try to give a concrete definition.

Mernik does go on to say “Leaving matters of definition aside, it is natural to think of

DSLs in terms of a gradual scale with very specialized DSLs such as BNF on the left and

GPLs such as C++ on the right ... Clearly, domain-specificity is a matter of degree.”. He

CHAPTER 2. COMPOSITION AND TRANSLATION 16

quotes Jones (1996)’s Function Point Languages Table as an example of such a scale.

DSLs are often classified into different types based on their characteristics. For exam-

ple, Fowler (2010) divides DSLs into external, internal and language workbench, depending

on whether they are implemented to be read from external files, embedded in GPL code,

or created using a special toolkit for language creation. On the other hand, Völter (2013a)

only recognises internal and external. In (Mernik et al., 2005) several more classifications

are provided (see table 2.1). Unlike Fowler, Mernik classify DSLs not only by how they are

implemented, but arranges classifications based on steps in the production process. Mernik

splits the classifications into decision, analysis, design, and implementation, representing

the different steps in the process of producing a DSL. Each step then has further classifica-

tions. For the implementation step (which corresponds to Fowler’s classifications), Mernik

provides seven different classifications: Interpreter, compiler/application generator, prepro-

cessor, embedding, extensible compiler/interpreter, commercial off-the-shelf (COTS), and

hybrid. The two first would be classified as external in Fowler’s system, while the second

to fourth would be internal and COTS would be classified as language workbench. Hybrid

does not fit in into Fowler’s system, as it can be a combination of several of the others. An

earlier attempt at classifying DSLs was published in Spinellis (2001) and Mernik provides

a mapping between Spinellis and the ones Mernik provides.

Interestingly, the term ‘expressiveness’ is used in two distinct ways in the DSL literature.

Sometimes it is used to mean how much can be expressed in how little code (similar to

‘succinctness’ as described in (Grohe and Schweikardt, 2003)), and other times it is used

to mean how much can be expressed total in the code. By the first definition, DSLs tend

to be more expressive than GPLs, by the second definition DSLs tend to be less expressive.

For example, Sonnenberg et al. (2011) writes “It [DSLs] offers expressive power through

appropriate notations and abstractions focused on – and usually restricted to – a particular

problem domain” (Referencing (van Deursen et al., 2000)). Kollar and Chodarev (2010)

similarly states “Domain-specific languages (DSL) are languages much more expressive

CHAPTER 2. COMPOSITION AND TRANSLATION 17

Development Phase Pattern
Decision Notation

AVOPT
Task automation
Product line
Data structure representation
Data structure traversal
System front-end
Interaction
GUI construction

Analysis Informal
Formal
Extract from code

Design Language exploitation
Language invention
Informal
Formal

Implementation Interpreter
Compiler/application generator
Pre-processor
Embedding
Extensible compiler/interpreter
COTS
Hybrid

Table 2.1: DSL development phases and patterns according to (Mernik et al., 2005)

and easy to use in its application domain by providing notations and constructs tailored

toward this domain” (citing (Mernik et al., 2005)). In Mernik (2012) Mernik keeps the same

definition: “Broad applicability often results in suboptimal expressiveness in any particular

application domain, hence the motivation for domain-specific languages, which sacrifice

generality in exchange for enhanced expressiveness in a particular domain.” All of these

use expressiveness to mean the amount that can be said in as little code as possible.

On the other hand, Hermans et al. (2009) clearly uses the second definition when writ-

ing “Using a DSL, domain specific features can be implemented compactly, however, the

language is specific to that domain and limits the possible scenarios that can be expressed.”

(discussing expressiveness as a success factor in using DSLs) and “To measure the expres-

siveness of ACA.NET we asked the subjects how often they had to deny a customer a feature,

CHAPTER 2. COMPOSITION AND TRANSLATION 18

because it could not have been implemented with ACA.NET (Q17) or how often they had

to write extra code to implement a feature (Q18). Answers to both questions are given by

a five-point Likert scale ranging” (discussing measurement of impact from expressiveness)

Interestingly, van Deursen is a co-author of this paper, even though van Deursen use the

first definition in both (van Deursen and Klint, 1998; van Deursen et al., 2000). Hermans is

not alone to interpret ‘expressiveness’ this way. Thielscher (2010) writes “In this paper, we

address the fundamental limitation of existing GDL to be confined to deterministic games

with complete information about the game state. To this end, we develop an extension of

GDL that is both simple and elegant yet expressive enough to allow to formalise the rules of

arbitrary (discrete and finite) n-player games with randomness and incomplete state knowl-

edge.”. Schmitt also seem to agree with this definitions in Schmitt et al. (2014): “As external

DSLs introduce a completely new syntax and semantics, in general, they are more flexible

and expressive than internal ones at the cost of a higher design effort.”

Several approaches to aiding the production of DSLs have been proposed. For exam-

ple, (van Deursen and Klint, 2002; Čeh, Črepinšek, Kosar and Mernik, 2011) explore how

languages can be developed from feature models. However, as noted in (Völter and Visser,

2011), while discussing feature models in their relationship with Product Line Engineering

(PLE), feature models are limited in their expressivity (in the sense of not as much can be

expressed). Their argument is that DSLs would be better for describing variability in PLE.

This of course only make sense if the DSLs are not themselves created using feature models.

They therefore provide an extended feature modelling formalism to overcome this. Further,

(Bačíková et al., 2013) notes: “However, the assumption for their solution is the existence

of an ontology designed for the given specific domain. Which is actually an equally difficult

problem compared to finding an existing DSL for the given specific domain.” They go on

to point out that there exist an abundance of GPL libraries already, which can be used as

a basis for the modelling the domain of a DSL. They then show how User Interfaces (UIs)

could be used to generate DSLs.

CHAPTER 2. COMPOSITION AND TRANSLATION 19

Parser generators such as Yacc (Johnson, 1975) and ANTLR (Parr and Quong, 1995)

can be used to create DSLs, however, they require quite a good understanding of Language

Engineering and are thus not easy to use for developers who are not previously familiar with

how to create languages. If one would be interested in using them, there are books such

as (Fowler, 2010) and (Parr, 2009) that describe in some detail how to create a DSL from

scratch, using a variety of techniques, including parser generators.

There have been quite a few general papers on how to design DSLs. For example, (Lu-

oma et al., 2004) provides a summary of the experiences of Domain-Specific Modelling

Language (DSML) practitioners at MetaCase. It describes four approaches to DSML devel-

opment and how those have been applied to a variety of different domains, and reflects on

the results of applying each approach.

(Sprinkle et al., 2009) is a paper discussing when it is feasible to introduce DSLs to a

project. It discusses what the prerequisites are (such as existence of a well-defined domain,

availability of domain experts and similar) and what the trade-offs are (effort to maintain the

DSL vs increased productivity and similar).

Karsai et al. (2014) identifies 26 design guidelines for DSLs in 5 different categories:

1. Language Purpose

2. Language Realization

3. Language Content

4. Concrete Syntax

5. Abstract Syntax

Note though that they give the caveat: “Please be aware that the subsequently discussed

guidelines sometimes are in conflict with each other and the language developer sometimes

has to balance them accordingly. Additionally, semantics is explicitly not listed as a separate

step as it should be part of the entire development process and therefore has an influence on

all of the categories above.”

CHAPTER 2. COMPOSITION AND TRANSLATION 20

There are also several books on the implementation of DSLs, such as (Fowler, 2010)

who gives general advice on how to implement DSLs and (Bettini, 2013) that discuss how

to implement DSLs in Xtext and Xtend, which are frameworks for the Eclipse IDE.

Some noteable DSLs, whose development has been described in detail in the literature,

include the Graphics Adaptor Language (GAL) (Thibault et al., 1999), which is a DSL for

specifying video device drivers and WebDSL (Visser, 2008), which is a DSL for specifying

web applications. Other interesting DSLs whose development is documented in the litera-

ture include The Tree Processing Language (TPL) (Papegaaij, 2007), which is a language

for processing trees, specifically ASTs. Dhouib et al. (2012) describes RobotML, a DSL for

specifying robots. Note that DSL for specifying robot behaviour is a common toy example

in the DSL literature (Pereira et al., 2008; Wu et al., 2009; Čeh, Črepinšek, Kosar, Mernik,

Henriques, Pereira, Cruz and Oliveira, 2011; Mernik, 2013), but those languages are not

related to (Dhouib et al., 2012).

Several different tools and techniques for creating DSLs have been discussed in the

literature. Early tools created for DSL development include the Jakarta Tool Suite (JTS)

and Bali (Batory et al., 1998) that builds on the GenVoca model of generators (Batory and

Geraci, 1997). JTS essentially provides additional operations to Java (and potentially other

languages) for processing code. In particular, it adds functionality to do lisp-style quoting

of code, turning Java snippets into ASTs. Bali is a tool for specifying grammars that can be

turned into Java code. JTS is implemented using Bali. JTS has since been superseded by

the AHEAD Tool Suite (ATS) (Batory, 2004) which provides similar functionality.

LISA (Mernik et al., 2002; Mernik, 2013) is another tool for creating DSLs and GPLs

using an interactive environment and attribute grammars.

Porubän et al. (2009, 2010) introduces YAJCo, a parser generator based on annotation.

According to Porubän et al., what sets YAJCo appart from other parser generators is that

it focuses on the abstract syntax instead of the concrete syntax. YAJCo is implemented as

annotations on Java methods and classes. YAJCo has received several updates since the

CHAPTER 2. COMPOSITION AND TRANSLATION 21

original paper, such as (Lakatos and Porubän, 2013; Chodarev et al., 2014) both introducing

different forms of composition to the original tool.

Erdweg et al. (2011) presents SugarJ, a tool for adding domain-specific syntax into Java

programs using ‘sugar’ libraries. The tool allows users to import in a java-file libraries

specifying DSLs that then allow the user to use the specified DSL in the java-file. The tool

then ‘desugars’ the files, generating plain java-code from the DSL code.

Dinkelaker et al. (2013) describe a tool for incrementally adding concrete syntax to

embedded DSLs, a similar use-case as (Erdweg et al., 2011), but without the explicit use of

libraries and with support of different host-languages (Dinkelaker et al. reference Groovy

and Java as supported languages, with notes for how to implement in other languages).

Another difference Dinkelaker et al. claims is that their approach allow concrete syntax to

be added incrementally, whereas they claim other approaches require the full syntax to be

provided immediately. Dinkelaker et al.’s tool is designed so that the backend is useable

without any concrete syntax being defined.

There have been several reviews of the literature, both informal and formal mapping

studies. An early paper that discusses the literature is (van Deursen et al., 2000), which

describes the general field at the time and includes an annotated bibliography covering what

van Deursen et al. thought was the most important publications on DSLs at the time. (Wile,

2001) is a review paper documenting some of the concerns in supporting DSL development.

It includes a review of various state-of-the-art approaches (at the time).

Spinellis (2001) reviews different design patterns for DSL development. The work was

significantly extended by (Mernik et al., 2005), which not only reviews design patterns, but

patterns for all stages of DSL development. An overview of (Mernik et al., 2005)’s patterns

was shown in table 2.1. In a similar vein, (Oliveira et al., 2009) reviews the advantages and

disadvantage of DSLs (as compared to GPLs), as discussed in the literature.

There have also been some Systematic Mapping Studies on DSLs published, such as

(do Nascimento et al., 2012) and (Kosar et al., 2016).

CHAPTER 2. COMPOSITION AND TRANSLATION 22

do Nascimento et al. (2012) surveyed the literature with the following questions in mind:

• Q1. Which techniques, methods and/or processes are used while working with DSLs,

i.e. creation, application, evolution and extension of DSLs?

• Q2. Which DSLs have been created and are available for use or are described in some

type of publication?

• Q3. In which domains are these DSLs being used?

• Q4. Which tools are used for the development and usage of DSLs and how such tools

support those activities?

in 1440 papers on DSLs published up until 2011.

Kosar et al. (2016) surveyed the literature with the following questions in mind:

• RQ1: What has been the research space of the literature within the field of DSLs since

the survey paper on DSLs [45] was published 10 years ago?

• RQ2: What have been the trends and demographics of the literature within the field

of DSLs after the survey on DSLs [45] was published 10 years ago?

where [45] refers to (Mernik et al., 2005) (Mernik is also a co-author on (Kosar et al., 2016)).

Kosar et al. found 1153 papers published between 2006 and 2012 (both inclusive).

CHAPTER 2. COMPOSITION AND TRANSLATION 23

2.4.1 Composition

Composition of DSLs is a technique for creating DSLs where new DSLs are built from

existing languages using composition operations. A common classification for different

composition operations is given in (Erdweg et al., 2012) who identifies the following types

of composition:

• Language extension – extending an existing language with new constructs

– Restriction – a special type of extension, where the extension restricts the new

language

• Language unification – combining two languages to form a new language

• Self extension – languages that are capable of defining their own extensions

• Composition of above – a combination of the above composition types

The goal of Erdweg’s classifications “... is to provide precise terminology for language

composition that enables effective communication on language composition and can serve

as a basis for comparing existing and future language-development systems.”

Erdweg’s classifications were developed as part of the work for SugarJ (Erdweg et al.,

2011), a tool for embedding DSLs into Java and have been used in several different tools

and frameworks, for example (Mernik, 2013) where the classifications are applied to the

language construction framework LISA (Mernik et al., 2002). It has also been applied to

YAJCo, a parser generator that work with abstract syntax in (Chodarev et al., 2014).

In (Degueule et al., 2015), Deguele presents Melange, a meta-language for modular and

reusable DSLs. They use the operators merge, slice and inherit, which they note are similar

to Erdweg’s extension, restriction, and merging respectively. Note that Erdweg considers

restriction to be a special case of extension, while Deguele have them as clearly separated

concepts.

Erdweg’s composition classifications are also used in Degueule’s PhD thesis (Degueule,

2016) on DSL composition.

CHAPTER 2. COMPOSITION AND TRANSLATION 24

Besides Erdwegs classifications, there are several other competing classifications. In

Lakatos and Porubän (2013), the following classifications are used:

• extension (full language is used and new concepts added)

• specialization (reuse of only some of the concepts of the language)

• insertion (code from one language is used inside other language)

– direct/embedding (full parts of code are used)

– referencing (only identifiers from other language are used)

Like Erdweg, Lakatos uses extension to mean that a language get extended with new

constructs, but that is the only classification that is the same. Lakatos sees specialisation

as its own operation, whereas the same operation (called restriction) in Erdweg is viewed

as a special case of extension. Erdweg also does not differentiate between extension and

insertion and Lakatos does not define anything similar to Self extension and extension com-

position.

In (Cazzola and Vacchi, 2016) a composition technique using Scala Traits to compose

parsers is presented. The author does not specifically work in any composition classifica-

tion framework, but does note that some of the work would fall under Erdweg’s language

extension and unification.

Other composition techniques that reference Erdweg include Diekmann and Tratt (2013)

who uses language boxes to mitigate the problem with clashes, where the introduction of

a new grammar rule causes the grammar as a whole to be ambiguous when composing.

Language boxes are a way of viewing a sentence in an embedded language as a single token

in the host language. Diekmann and Tratt’s approach requires a special editor that keeps

track of where the language boxes begin and end.

In (Chodarev and Kollar, 2016) an extensible host language that can be used for com-

position is presented. It identifies language extension and unification, and composition of

extensions as the operations supported by the framework.

CHAPTER 2. COMPOSITION AND TRANSLATION 25

In the work on MontiCore Haber et al. (2015) identifies all of Erdweg’s operations to be

supported, except for self-extension.

There are also several DSL composition approaches that either precedes Erdweg or were

published at the same time as Erdweg and therefore do not reference them.

In Dinkelaker et al. (2010), a technique for composing Embedded DSLs is explored.

There are no classification of composition operations included, though.

Völter’s self-published book (Völter, 2013a) describes DSLs in-depth. The book also

covers composition of DSLs, but the composition is different to Erdweg’s and does not

reference them either. Völter identifies:

• Referencing – concepts in a language references concepts in another language

• Extension – a language is based on another language, but includes new concepts

– Restriction – like Erdweg, Völter sees restriction as a special case of extension

• Reuse – a language reuses concepts in another language through indirection

• Embedding – a language is embedded in another language

Völter also explores these in earlier papers Völter and Solomatov (2010); Völter (2013b)

2.4.2 Evaluation

Evaluation of DSLs and DSL development processes is important to be able to determine if

a particular DSL or DSL development process actually provides the benefits that they claim

they provide.

There has not been a lot of quantitative evaluations in the field of DSLs and the one

studies that have been made have mostly been on individual DSLs, rather than DSLs in

general or DSL development tools. This means that as we want to evaluate our methodology

and tool, we do not have a lot of previous work to build on. We will in this section, however,

go through the state-of-the-art in evaluating DSLs and their tools, to then propose two ways

we are going to use to evaluate our approach empirically.

CHAPTER 2. COMPOSITION AND TRANSLATION 26

As noted in (Gabriel, Pedro and Goulão, Miguel and Amaral, Vasco, 2011), DSLs are not

often evaluated by the engineers that create them. They review 36 (out of 242 considered)

papers published between 2001 and 2008 to determine how DSLs have been assessed and

what the results have been. They found only 5 of the papers discussed a quantitative or

qualitative evaluation of DSLs.

Since this study was done, several more papers on the topic has been written. For ex-

ample, (Kosar et al., 2009) discusses the effect of domain-specific notation on program

understanding. They do it by comparing the DOT diagram drawing language (Koutsofios

et al., 1991) with a Application Program Interface (API) for constructing the DOT diagrams

within C. They evaluated the two approaches, asking users to perform certain tasks using

each approach. The tasks were split into three different categories, learn, perceive, and

evolve. Each of these categories have several tasks for the users to complete, 11 total. The

complete set of tasks are shown below.

• Learn

– Q1 Select syntactically correct statements.

– Q2 Select program statements with no sense (unreasonable).

– Q3 Select valid program with the given result.

• Perceive

– Q4 Select the correct result for the given program.

– Q5 Identify language constructs.

– Q6 Select program with the same result.

– Q7 Select the correct meaning for the new language construct.

– Q8 Identify language constructs in the program with comments.

CHAPTER 2. COMPOSITION AND TRANSLATION 27

• Evolve

– Q9 Expand the program with new functionality.

– Q10 Remove functionality from the program.

– Q11 Change functionality from the program.

Kosar et al. (2010, 2012) describe two additional studies that used different domains but

same approach and analysed the result of all three studies. They found that subjects were

significantly more likely to choose correct answers for DSLs compared to GPLs.

Barišić et al. (2011) performs a similar comparison between a DSL and a GPL library.

The DSL they were evaluating was Pheasant (PHysicist’s EAsy Analysis Tool) (Amaral

et al., 2003), “a declarative domain specific visual query language for HEP [High-Energy

Physics] data analysis” comparing it with C++. The participants were given four queries to

implement in each language, and then asked how well they thought they performed. They

measured time to train the subject in each language, amount of correct (or almost correct)

answers and time to complete the test. People who knew C++ from before got all the answers

‘essentially’ correct for both languages, but ‘uninformed’ participants did tend to get the

questions more correct when using Pheasant. The time to complete the test was also shorter

with Pheasant, for all participants.

Kahraman and Bilgen (2015) provides a long and in-depth description of how to evaluate

DSLs, covering multiple different aspects of DSLs such as usability, reliability, maintain-

ability and many more.

That is a very short summary of some of the work in evaluating DSLs using usability

methods. There are also some work on evaluating DSLs based only on their observable

properties, such as number of Lines of Code (LOC) for a particular implementation in dif-

ferent languages (Zeng et al., 2006; Merilinna and Pärssinen, 2007) and proposals for a

variety of other quality attributes to compare DSL on (Power and Malloy, 2004; Črepinšek

et al., 2010).

CHAPTER 2. COMPOSITION AND TRANSLATION 28

2.4.3 Other DSL concerns

One DSL research area is language families (Völter, 2008; Zschaler et al., 2010; Kühn et al.,

2015). A language family is a set of languages that are related to each other somehow. Völ-

ter (2008) describes how a family of languages for software architecture description can be

developed. Zschaler et al. (2010) presents the general idea of language families, an approach

to create language families using Domain-Specific Metamodelling Language (DSM2L) as

well as presenting three language families that have been implemented using DSM2L. Kühn

et al. (2015) proposes a bottom-up approach to automatically extract a feature model from a

set of language components. They motivate the usefulness of their work by commenting on

how the recent rise in constructing languages from components (such as through composi-

tion) has made a Software Product-Line (SPL) view of languages sensible: “ As a result, the

programming language becomes a family of programming languages created by a language

product line (LPL)”

Globalisation of DSLs Cheng et al. (2015) is an area of DSL research that focuses on

how to manage several DSLs that interact with each other. The paper (Bryant et al., 2015)

discusses the concerns related to DSL interaction, such as how languages can be related to

each other:

• Being variants of each other

• Being different versions of each other

• Having different viewpoints of the same domain

• Being composed of each other or from common components

Recent work on globalisation include (Ali, 2020) which introduces Perspectives for

Multi-Language Systems (PML) to “... facilitates consistency and reuse of an existing lan-

guage potentially across other languages and software systems.”.

CHAPTER 2. COMPOSITION AND TRANSLATION 29

2.5 Related areas

2.5.1 Ontologies

DSLs have been combined with ontologies. For example, (Walter and Ebert, 2009) describes

how a DSL for description of network devices (BEDSL) and FODA (Kang et al., 1990) was

combined with the ontology language OWL 2 (Motik et al., 2009) to each provide their own

view of the domain (this would be viewpoint relation as explained in the previous section).

The concept of using ontologies in this way has since been developed in (Walter et al., 2009,

2014)

In (Čeh, Črepinšek, Kosar and Mernik, 2011; Čeh, Črepinšek, Kosar, Mernik, Hen-

riques, Pereira, Cruz and Oliveira, 2011) tools and theory for creating DSLs based on on-

tologies in OWL (Lacy, 2005) is presented. The tool reads in an OWL specification and

applies a set of rules to it to produce a grammar for a DSL based on it. A similar tool is

also presented in (Fonseca et al., 2014) that builds on the same concept but improves it by

automating some of the steps.

2.5.2 Product Families

In (Parnas, 1976) Product Families (PFs) are described thus “We consider a set of programs

to constitute a family, whenever it is, worthwhile to study programs from the set by first

studying the common properties of the set and then determining the special properties of

the individual family members.” A PF is in other words a set of programs that share a

considerable amount of commonality with only some variation between the programs. This

implies that it is possible to save a lot of effort by implementing the common parts of all

programs in the family once, and then for each specific member of the family implement

the variable parts. PFs are also sometimes called SPL (in fact, this seems to be the more

common usage).

The relationship between DSLs and PFs has been explored on numerous occasions in

CHAPTER 2. COMPOSITION AND TRANSLATION 30

the DSL literature, both as a way of using DSLs to specify PFs (Völter and Visser, 2011;

Acher et al., 2013) and using PFs to aid DSL production (Batory, Johnson, MacDonald and

von Heeder, 2002; White et al., 2009; Rossel Cid, 2013). The relationship has also been

noted in other works that are not specifically about DSLs or PFs (Chen and Babar, 2011;

Wu et al., 2009; Vacchi et al., 2013).

PFs are not the primary interest in this project, however, we do find that viewing DSLs

in terms of PFs makes it easier to describe some features of DSLs. As has been hinted at, a

PF is a collection of (software) products that share a large part in common with each other.

Products in a PF are usually called members of that PF (Weiss and Lai, 1999). One can then

view a DSL as being an implementation language for members of a given PF. That is, DSLs

specify individual members of a given PF. One can argue about whether all DSLs fit this

definition; for example, do Make-scripts define members of a PF for compilation-pipelines

or if this is pushing the definition of PFs?

Viewing DSLs as implementation languages for members of PFs also gives an intuitive

notion of what it means for a language to be specific to a domain. A DSL is specific to the

domain described of the PF that the DSL specifies members for.

The idea of commonality and variability that is central to PFs (Weiss and Lai, 1999;

Vacchi et al., 2013) is also useful when discussing DSLs. In general, commonality of a DSL

can be seen as the ‘domain’ part of the DSL, whereas variability is part of the ‘language’ of

a DSL. That is the parts of a PF that is common roughly specifies the domain that the DSL

works in. The language uses those common parts to construct descriptions of members of

the PF. Thus, the language works in the variable part of the PF, given the common parts in

the domain.

Chapter 3

Patience Games

3.1 Introduction

Domain-Specific Languages (DSLs) have been studied for some time now as a way to im-

prove the development process by providing an easier way to specify solutions within a

specific problem domain (Mernik et al., 2005; Fowler, 2010; Kosar et al., 2016). The com-

mon reasons given for using DSLs are that they make development easier by making code

easier to comprehend and by reducing the amount of code that needs to be written, as well

as letting non-programmers use them.

When discussing the development of DSLs, it is useful to be able to refer to some model

domain to help clarify new ideas with concrete examples.

One such common model is the Robot language (Pereira et al., 2008; Wu et al., 2009;

Čeh, Črepinšek, Kosar, Mernik, Henriques, Pereira, Cruz and Oliveira, 2011; Mernik, 2013).

It does not appear to be an explicit model for trying out DSL techniques on as much as a

convenient domain to use in a variety of situations, as everyone has a good idea of what a

robot is and what it is expected to do. The language is also more of a toy language, that one

would not use for real-world robots.

Another common example is state machines (Crane and Dingel, 2005; Fowler, 2010;

Zdun, 2010). These are also well known and therefore one can focus on explaining the

31

CHAPTER 3. PATIENCE GAMES 32

problem and suggested solution, rather than explaining the example environment used to

showcase the problem. State machines are quite general and can be used in conjunction

with pretty much any domain as a way of managing flow of control. On their own they thus

lack a certain specificity that one might want to have when discussing languages specific to

a certain domain.

This chapter presents a different model that can be used to discuss ideas surrounding

the creation of DSLs. It uses the domain of patience games. The advantage of the patience

domain over the previously discussed domains, is that the languages produced for this model

can be used to describe real-world human-playable games. The domain of patience games

is also quite specific and it is relatively easy to tell what is and is not a patience game.

To the best of our knowledge, patience has not been used to in the DSL literature before.

Patience has been studied in other contexts though, especially the complexity of various

patience games (Yan et al., 2005; Longpré and McKenzie, 2009; Bjarnason et al., 2009).

We think that patience makes a good model for discussing various uses of DSLs, due to

some of the properties of patience games.

There are many different patience games, and they all share quite a bit in common. Thus,

one might want to have a language specific to specifying patience games. In other words,

there is a domain of patience, and in order to describe members of that domain (i.e. patience

games), one might want a language that is limited to the patience domains that makes it

easier to specify the games.

Besides being a domain that have the properties one would usually look for when con-

sidering creating a DSL, there are also other features of patience that make it interesting to

study.

For example, one can view the patience domain from different levels of generality. From

something very specific, like only considering Klondike-like patience games, to consider-

ing all patience games, to considering card games in general (and beyond!). This feature

might be used to measure the effect of ever more specific languages on the ease at which

CHAPTER 3. PATIENCE GAMES 33

games are implemented. It is also useful when considering language composition (Erdweg

et al., 2012); re-using languages for specifying general card-games to create languages for

specifying patience games specifically (as an example).

Using DSL to help analysis of domains is also one suggested reason to implement DSLs

(Thibault, 1998). There are at least two different things one might want to analyse in the

patience domain: the complexity of individual patience games and solving a given patience

game deal. Thus, patience games could serve as a way of showing different ways of using

DSLs for domain analysis.

To simplify the model, we are assuming a scenario where there is a pre-existing code-

base that the DSL have to interact with. We will discuss the design of this code-base in more

details later in the thesis.

The reason we have chosen to use a pre-existing code-base for this model is for one

that it is a likely real-world scenario, where one wants to provide a DSL for an existing

code-base. Secondly, it provides a natural execution platform for any DSLs developed, and

thirdly, when considering two alternative patience DSLs we do not have to worry about

potential confounding variables introduced from the environment.

The purpose of this chapter is not to show solutions to any of the issues discussed, but

rather to present the features that our particular patience model has, that can be used to

discuss concerns of DSL development.

We will start the chapter by discussing what patience is, in section 3.2. Then we will

go through the design of our patience suite in section 3.3. After that we will discuss DSL

issues we believe the patience model can be useful in covering in section 3.4. Finally, we

will provide some concluding remarks in section 3.5

This chapter is an extension of the paper (Kihlman, 2017), presented at the 9th Computer

Science & Electronic Engineering Conference in Colchester, 2017.

CHAPTER 3. PATIENCE GAMES 34

3.2 Patience

One of the first books on patience published in English is Lady Cadogan’s Illustrated Games

of Patience (Cadogan, 1874). She describes 24 different patience games, together with pic-

tures to show the layout of the games. Interestingly, the games described by Lady Cadogan

seem somewhat less formulaic than what one commonly see in modern patience suites.

Gibson (1993) defines patience games as “... any card game played by one person who

usually deals out cards and then assembles them in special groups according to established

rules.”

Morehead and Mott-Smith (2001) describes well over 100 patience games, in quite some

detail.

Patience games have one or more decks, and consist of one or more groups of piles,

usually called foundation, tableau, waste and reserves. For games that have a foundation,

the goal is usually to move all cards on to the foundation piles, in a game specific order. The

tableau is used to move around cards until one can move them up to the foundation. When

there are waste pile(s), they are used to deal new cards from the deck to. When there are no

waste piles(s), cards are dealt straight to the tableau or reserve. Usually, it is not possible

for the player to move any cards onto the waste. It may be possible to turn the waste back

into the deck in some games (possibly for a limited amount of times). The reserve are piles

that one can temporarily move any card to (though usually only one card per pile). In some

games, the whole deck is dealt at the beginning of the game, and no further dealing can

happen during the game. One of the most popular patience games, Klondike, is an example

of a game using foundation, tableau, waste and a deck that deals to the waste. FreeCell, on

the other hand, have a foundation, tableau and reserve piles, and the deck is completely dealt

to the tableau at the beginning of the game. Some games allow the movement of builds (i.e.

a subset of a pile where all cards are built according to the rules for that pile).

The different pile groups usually have different rules for how they are built. The founda-

tion and tableau piles are usually built by either same suit, same colour, alternating colours,

CHAPTER 3. PATIENCE GAMES 35

or different suit, in ascending or descending value order (or both). Empty piles can usually

either take an ace or a king, or any card. It is common for the foundation to be built in the

reverse order (and by different rules for suit) to the tableau (but this is not always the case).

The waste and reserves can usually not be built on, with the waste getting its cards from the

deck, and the reserves only being able to contain one card each.

Not all games have a foundation to build on. In some games, such as Pyramid, the goal

is to discard all cards. Cards are discarded by matching two (or more) cards, for example by

suit, value or (as is the case in Pyramid) by having the total of the value add up to a certain

number. Matching can either be done by selecting two adjacent cards for removal, or by

arbitrarily moving one card on top of another. In these types of games, cards are often dealt

straight to the tableau, requiring the player to first discard the top card, before being able to

play the lower cards.

3.3 General Design of Patience Suite

3.3.1 Software Product Lines and Domains

There is a close relationship between Software Product Lines (SPL) and DSLs. For example,

DSLs are often used to specify SPLs (Völter and Visser, 2011; Acher et al., 2013) and SPLs

can be used to aid the production of DSL (Batory, Johnson, MacDonald and von Heeder,

2002; White et al., 2009; Rossel Cid, 2013).

Here we are going to talk about the relation between SPLs and DSLs as one where the

DSL is used to specify members of a particular SPL (not to be confused with specifying

SPLs themselves). In a simplistic way, the SPL takes the role of the domain part of the DSL

and the DSL takes the role of the variability specification in the SPL.

There are many ways one can view the implementation of an SPL, but for our purposes,

we are going to assume that the common parts of the SPL has been implemented in a General

Purpose Language (GPL) and is part of a pre-existing code-base. That is, all the parts that

CHAPTER 3. PATIENCE GAMES 36

Figure 3.1: UML diagram describing the Strategy Pattern

members of the SPL have in common are implemented in an existing GPL code-base. We

also assume that the variability in the SPL is defined using the strategy pattern (Gamma et al.,

1994), as described in (Greenfield and Short, 2004, pp. 342). The idea is to have every point

of variability defined in terms of the strategy pattern (as shown in figure 3.1). The strategy

pattern consist of a class (the context), that delegates some of its logic onto an abstract class

(the strategy). That way, the same context can be instantiated with different logic (concrete

strategies) without changing the code of the context class. The task of creating a concrete

product that is part of the SPL is then reduced to choosing particular concrete strategies,

either from a collection of pre-existing strategies or by implementing a new one. If we

see SPLs this way, we can introduce a DSL for providing implementations for the concrete

strategies. This would then make the DSL an implementation language for products of a

particular SPL.

If we use an interpreter to execute the DSLs, we can introduce it as shown in figure 3.2.

Interpreted Strategies implements the Abstract Strategy as normal, but rather than executing

GPL-code, it passes on any messages to the inherited methods to the interpreter, which can

then execute the relevant code as defined in the DSL. The interpreter also needs to interact

with the rest of the code-base/SPL. This pattern does not necessarily need to be used, for

example, Domain-Specific Embedded Languages (DSEL) approaches would not need an

interpreter, and external DSLs could be compiled instead of interpreted. We discuss the

interpreter approach here to show how an interpreted external DSL could be implemented,

CHAPTER 3. PATIENCE GAMES 37

Figure 3.2: Introducing an interpreter for specifying Concrete Strategies

without insisting that all DSLs are implemented this way. Later we will discuss these options

in more details.

Our implementation of the core classes have been done in Java.

3.3.2 Implementation of Patience Suite

3.3.3 Existing Code-bases

There exist quite a few patience suites (i.e. programs that allow users to play several different

patience games). Some examples of open source patience suites include XPat (Eißfeldt and

Bischoff, n.d.), Ace-of-Penguins (Delorie, 2012) KPat (Team, n.d.), Aisleriot (Gnome, n.d.),

and PySolFC (PySolFC, n.d.). XPat, Ace-of-Penguins, and Aisleriot are all written in C.

KPat is written in C++ using KDE’s graphical libraries. PySolFC uses Python. The only

one of these that come close to using DSLs is Aisleriot, which uses SCM (scheme) as an

external scripting language to define the rules for each game. PySolFC provides a graphical

‘wizard’ to define rules for new games, although it is fairly limiting.

We could use one of these code-bases as a model, however, as none of them were de-

signed for DSLs, they do not necessarily make the best model environment for DSL con-

struction. Instead, we will provide a simple, purpose built patience suite environment.

CHAPTER 3. PATIENCE GAMES 38

Figure 3.3: Feature Diagram for the patience domain based on PySolFC’s patience game
wizard

Future work may look into working with one or more of these patience suites, to evaluate

how much effort it would take to convert a DSL written for one suite to work with another,

but this is beyond the scope of this chapter and the model we are discussing here.

This patience suite was originally developed for showing a particular way of implement-

ing external DSLs, as described in (Kihlman, 2015).

Our patience suite consist of a couple of core classes. One abstract class that define the

rules of individual games, a view class that displays the game, as well as control code to let

the user interact with the game. Of these, only the class that defines the rules is relevant for

the creation of the DSL; The view and controller are the same for all patience games, and

individual games are independent of the working of them.

Here we define the type of things that exist in the domain of patience games, as well as

examine the relationships between the things. In figure 3.4 we show a very simple design

for a patience suite described in a UML class diagram. It consist of cards, piles, groups of

piles, and decks, as well as an abstract patience game class and a view class. In the terms of

SPLs, the abstract class defines the variability of the domain, and everything else is part of

the commonality of the patience SPL. This is in line with how (Greenfield and Short, 2004,

CHAPTER 3. PATIENCE GAMES 39

Figure 3.4: UML diagram describing the main parts of a simple patience suite. Some sim-
plifications have been made to better fit the diagram.

pp. 342) suggest managing variability, through the use of the strategy pattern (Gamma et al.,

1994).

Gamma et al. describe the intent of the strategy pattern as “Define a family of algorithms,

encapsulate each one, and make them interchangeable. Strategy lets the algorithm vary

independently from clients that use it.” The pattern consist of context, strategy, and concrete

strategies. The context is the client using the strategy. The strategy defines an interface

for the client to use, and the concrete strategies define the various implementations of the

strategy.

In our example, the patience view represents the context, the abstract patience game

class represents be the strategy, and patience game implementations (concrete sub-classes

to the abstract patience game class) represents the concrete strategies.

So, in the view of SPLs, the patience SPL is defined by the class-diagram in figure

3.4 and individual members are defined by providing a concrete sub-class to the abstract

patience game class.

CHAPTER 3. PATIENCE GAMES 40

If we consider DSLs as being implementation languages for members of specific SPLs,

then a DSL for patience games would consist of a language for specifying sub-classes of the

abstract patience game class.

In figure 3.5, we show the domain for the patience DSL, including some concrete strate-

gies (Klondike, Golf, and Yukon). We have removed the view class, as it does not affect the

implementation of the strategies and thus is not needed in the DSL.

The domain consist of cards, piles, group of piles and deck(s) of cards. Cards have suit

and value, as well as colour (which is completely dependent on suit). Piles are collections

of cards. They support adding one or more cards on top and removing one or more cards

from the top. Groups of piles are collections of piles. Their purpose is to allow specifying

different rules for different set of piles. Decks of cards support dealing a card for the top,

shuffling, and repopulating the deck from a pile.

Finally, there is the class defining the rules. Each rule is implemented as an abstract

method, to signify that individual patience games need to provide their own definition for

these rules. The rules that the class should define is: rules for how a card can be moved on

to a pile, moving a group of cards onto a pile, whether the game is in a win-state, the game’s

initial setup, dealing new cards, and what to do when the deck is empty (i.e. how to do a

re-deal). We ignore having a rule for a losing state, as it in general is quite hard to compute

whether a given game is in a losing state or not.

If one uses a interpreter, a DSL specified member of the patience domain may look

something similar to figure 3.6. This shows a concrete sub-class for the abstract patience

game class. This sub-class is responsible for implementing all domain members imple-

mented using the DSL. To do this, it uses the interpreter class that is capable of reading and

executing the DSL code. A compiler would output separate classes for each domain mem-

ber, in the same way as a non-DSL implementation would do (as is shown in figure 3.5). A

DSEL could, for example, be implemented by providing a special concrete strategy builder

that is used to define a concrete strategy through standard DSEL techniques (Fowler, 2010).

CHAPTER 3. PATIENCE GAMES 41

Figure 3.5: UML diagram describing the domain that is relevant for our DSL, including
some example patience PF members (Klondike, Golf, and Yukon)

So, what we want to do is create a sub-class for the abstract patience game class that

interfaces with an interpreter which is capable of executing DSL code statements. Now,

we need to define the type of statements that the interpreter can execute, in order for the

sub-class to be able to correctly implement a member of the domain.

The methods that need to be implemented are described in table 3.1. We could support

other possible methods, such as hasLost (are we in a losing state?), or shouldTurnCard

(should a given card be turned face-up/face-down?), but calculating whether a game is in a

losing state can be quite hard, and may likely require a general purpose language to work.

Most patience games also follow a simple rule for whether a card should be turned; If it is on

the top of the pile, it should face up, and cards that face-up, should stay face-up. Thus, there

is not much point to force users to implement either method. A possible alternative would

CHAPTER 3. PATIENCE GAMES 42

Figure 3.6: UML diagram describing an interpreted version of the patience game using a
DSL. The patience domain from figure 3.5 has been replaced by a package.

be to let the methods have default implementations, and then allow users to override the

defaults for patience games that have an easier way of determining losing state, or games

that have a different rule for turning cards. By default, the hasLost method would return

false, and the shouldTurn method would return as mentioned above.

Beyond the methods, each patience game also have to define what pile groups it uses

(such as foundation, waste, tableau) and how many piles are in each group. These can be

implemented as attributes of the concrete strategies.

One issue when it comes to creating DSL for a code-base such as the one in this chapter

is that the code-base itself may not be flexible enough to allow all patience game to be

implemented. In this case, it does not necessarily matter how expressive the DSL is, if the

underlying framework does not allow specifying certain rules. One obvious limitation of

our code-base is that there is no way to specify how many decks that are available, and the

game logic assumes that there is only one. The underlying code-base might thus have to be

CHAPTER 3. PATIENCE GAMES 43

Operation Description
canMove(Card, Pile) Can a card or a pile be moved

on top of another pile?
canMove(Pile, Pile)

hasWon() Is the game in a win-state?
deal() Deal a card, taking a card/-

cards of the deck and putting
it on relevant piles.

redeal() If available, reset the deck
with unused cards.

initialise() Initialise the game, dealing
the first cards to the correct
piles

Table 3.1: Methods that a Patience Language needs to implement in our model.

updated if any such issues arise.

3.4 Use of Model

This section will go through how the model is intended to be used and what considerations

there are when using it.

3.4.1 Host Languages

Host languages are languages that the DSL is using for its implementation (Mernik et al.,

2005). This is most often discussed in the context of DSELs, where the host language is the

language that the DSL is embedded in, but has also been used to describe languages used

in generative approaches (Zdun and Strembeck, 2009). This subsection goes through some

intuitions about considerations when choosing a host language.

Since we are specifically talking about a case where there is an existing code- base, we

have to have a way of interacting with the code-base. In the case of using an interpreter as

discussed above, host languages are rather irrelevant, as long as there is a parser that can

turn DSL code into a format the interpreter can understand, and the interpreter itself is able

CHAPTER 3. PATIENCE GAMES 44

to interact with the code-base.

For compiled languages, the only real option is to compile down to a binary compatible

language the code-base is written in.

As with compiled languages, embedded languages need the host language to be com-

patible with the language the code-base is used in. For example, Scala could be used to

define a DSL, if the code-base is written in Java. This can be convenient, as while it is quite

possible to define DSELs in Java, languages such as Scala offers a lot more options for the

implementation of the DSEL, by providing a more powerful reflection framework (Schmitt

et al., 2014).

The above discusses using GPLs as host languages, but what if one wants to use an ex-

isting DSL as a host language? For example, what if one wanted to use a Game Description

Language (like (Love et al., 2008)) or a Card Game Description Language (like (Font et al.,

2013))?

As discussed, there are several patience suites, written in a variety of languages. The

question of how one can port a DSL written to work with a host language for one suite to

make it work with another host language in another suite is essentially a question of how

one can switch out the host language while keeping the DSL the same.

The central questions for choosing host language in our model is ‘to which degree is it

possible to select host language freely, and to which degree our we stuck with the language

that the code-base is written in’ and ‘what can be done to integrate an otherwise incompatible

host language’.

3.4.2 Patience Language

There are some existing DSLs for defining games in general (Love et al., 2008; Thielscher,

2010) and for card games in particular (Font et al., 2013) (though none of these seem to

identify their own work as DSLs), but they are not aimed towards single player games and

include a lot of generality that is not required for the specific case of patience games.

CHAPTER 3. PATIENCE GAMES 45

Now let us talk about the kind of languages we want to create in order to define members

of the patience domain. As mentioned, in our example, this means creating concrete sub-

classes to the abstract patience game class. A patience language thus needs to provide a way

of implementing each method in the abstract patience game class. The language also need

a way of specifying the pile groups, which can be seen as attributes of the patience game

class.

In listing 1 we show how the canMove method might be implemented in our code-base

language, Java. While our DSLs do not strictly speaking have to compile down to Java

(as discussed above), assuming that the DSL represents something equivalent to what is

presented in the listing makes it easier to discuss the considerations for when creating DSLs

for implementing the Patience Strategy.

Listing 1 An example of how the canMove method might be implemented in Java.
boolean canMove(Card card, Pile pile) {

if (foundation.contains(pile)) {
if (pile.isEmpty()) {
return card.value == 1;

} else {
return card.value == pile.top().value + 1 &&

card.colour == pile.top().colour;
}

}
if (tableau.contains(pile)) {

if (pile.isEmpty()) {
return card.value == 13;

} else {
return card.value == pile.top().value - 1 &&

card.colour != pile.top().colour;
}

}
//...

}

Regardless of how expressive one creates the DSL, it should be able to define similar

logic to what is shown in 1. So, foundation order-by increasing-value should be

translated (at least conceptually) to something like if (foundation.contains(pile))

CHAPTER 3. PATIENCE GAMES 46

return card.value == pile.top().value + 1; The most complicated part in this ex-

ample is to ensure that the right variables are referenced in the translated version (that is, that

foundation, card, and pile exists and actually refer to the things we want them to refer to).

For more complicated examples, other concerns show up as well. If the DSL we have created

allow the rules for individual pile groups to be defined in parts, such as foundation order-

by increasing-value ; foundation base-card Ace, then we do not want code such

as:

if (foundation . contains (pile))

return card.value == pile.top (). value + 1;

if (foundation . contains (pile))

if (pile. isEmpty ()) return card.value == 13;

to be generated, as it the base-card condition will never fire. Issues such as these are in

general covered in the generative programming literature (Czarnecki and Eisenecker, 2000).

Based on the feature diagram in figure 3.3, one could create an abstract language looking

something like what is shown in listing 2. This is somewhat inspired by the work of (Čeh,

Črepinšek, Kosar and Mernik, 2011).

Listing 2 A small sample of the abstract grammar for a DSL extracted from 3.3
Deck-Count ::= <INT> ;
Deal-Type ::= All | Waste | Tableau | Reserves | Spider ;
Number-of-Redeals ::= 0 | 1 | 2 | 3 | Unlimited ;
Foundation-Order ::= SameSuit | AltColor | SameColor | ... ;
Foundation-Base :order:= Ace | King | Any ;
Tableau-Order ::= SameSuit | AltColor | SameColor | ... ;
Tableau-Base ::= Ace | King | Any ;
Reserve-Order ::= SameSuit | AltColor | SameColor | ... ;
Reserve-Base :order:= Ace | King | Any ;
Waste-Order ::= SameSuit | AltColor | SameColor | ... ;
Waste-Base :order:= Ace | King | Any ;

An example of how one might implement Klondike in a concrete language based of the

abstract grammar is shown in listing 3.

CHAPTER 3. PATIENCE GAMES 47

Listing 3 An example of what an implementation might look like if it was implemented in
a DSL based of the feature diagram presented in figure 3.3
deal to waste;
foundation has base-card Ace, order by SameSuit, Ascending;
tableau has base-card King, order by AltColour, Descending;
deck-count is 1;
redeals is unlimited;

There is of course a wide variety of what a patience DSL might look like. Our model

only requires that the language can interact with the code-base in some way. Thus, many

different versions of patience languages can be written and examined using our model.

3.4.3 Language Expressiveness

As alluded to in the previous section, DSLs can be designed with various levels of expres-

siveness. For example, we might create a DSL that allow all the usual GPL constructs, such

as if-statements, loops and assignment, but only allow them to be used for implementing the

given methods in the PatienceGame class (that is, no new methods/classes can be defined).

This would allow for a lot of potential ways of implementing any given patience game, but

would not provide much of the usual benefits of DSLs, such as domain-specific terminology.

For it to be more DSL-like, one would like to introduce domain-specific constructs.

Instead of using if-statements and loops, one could use statements such as foundation

ordered-by card.value == pile.top().value - 1 or even more specific, founda-

tion ordered-by decreasing-value and alternating-colors.

We can be even more specific. As mentioned above, PySolFC patience suite allow the

user to define their own patience games using a simple GUI ‘wizard’. As shown in (Bačíková

et al., 2013), GUIs like the one in PySolFC can be used to extract DSLs. This would create

a very simple DSL, as there is no expression language involved. Each rule can simply have

one of a limited set of alternative values. This makes it very straightforward to create new

patience games, but at the expense of not allowing as many alternatives.

CHAPTER 3. PATIENCE GAMES 48

One question that can be explored using our patience models is what kind of constructs

are useful for the patience language? That is, what are good constructs, that support the

goal of creating easy to write DSLs for the patience domain. This should be weighed up

against not making the DSL so constrained that some games cannot be described at all. For

example, the grammar in listing 2 could not be used to specify patience games where the

goal is to match cards instead of build on the foundations.

3.4.4 Language Composition

Besides the topics discussed above, our patience model also have some features where lan-

guage composition techniques (Erdweg et al., 2012; Mernik, 2013) could be useful. In short,

language composition is about combining existing languages and language-features to form

new languages. For example, one might extend an existing language with a new feature, or

combine two distinct languages into one.

In the case of our patience language, there are several parts where these kinds of oper-

ations would be useful. We already discussed how one might want to use an existing game

specification language to define the patience language, but this is not the only case where

composition could be used.

For example, one might want to create sub-languages of the patience language, that can

only specify certain variation of a particular patience game (for example, Klondike has a lot

of different variations).

One might also look in the other direction. Instead of defining more specific languages,

can one take the patience language and make it more general, thus creating a card specifi-

cation language (such as the one described in (Font et al., 2013)). This is almost certainly

not possible without also changing the code-base, so it is not likely to be useful in situations

where one is not able to do so. However, if the code-base can be changed (maybe itself

through composition (Batory, Lopez-Herrejon and Martin, 2002)), then it might be a way of

bottom-up creation of ever more complex languages.

CHAPTER 3. PATIENCE GAMES 49

And if we can provide more specific languages and more general languages, then we

should be able to use composition to turn the patience language to a language for specifying

two-player card games (for example). That is, one can first use composition to extend the

patience games to create a language that can specify any card games, and then restrict that

language to only be able to specify two-player card games.

The questions then are how can one provide more specific languages for variations of

particular patience games? And how can one extend a patience language to be used as a

more general language? Another possible question is what does need changing in the code-

base in order for it to support more general language?

3.4.5 Language Analysis

One benefit of DSLs is that it can make analysis of the code easier. As stated in (Thibault,

1998): “A DSL has a syntax which ... is restricted in a way that enables automatic program

analysis and the further reuse of program design.” So what are some of the things we might

want to analyse in the domain of patience games?

One common feature that patience suites have is the existence of automatic solvers. To

what extent is it possible to take a patience game written in a patience DSL and automatically

provide a solver for the game? To what extent can a solver use different DSLs that all define

the same patience game? Finally, if it is not possible to create a solver from the patience

DSL code on its own, what additional rules would be needed/useful for creating a solver,

and how do they relate to the original patience DSL?

Another area where analysis of a patience DSL might be of interest is in measuring the

complexity of patience games. The complexity of Klondike has been discussed in (Longpré

and McKenzie, 2009; Bjarnason et al., 2009). To what extent is it possible to determine

the complexity of patience games given a description in a patience DSL. This is likely to be

quite hard, as (Yan et al., 2005) says “It is one of the embarrassments of applied mathematics

that we cannot determine the odds of winning the common game of solitaire.”, as quoted in

CHAPTER 3. PATIENCE GAMES 50

(Bjarnason et al., 2009).

A related, but slightly different analysis problem is finding non-playable games. Games

that are either too hard/impossible to solve, or games that are too easy to solve, or have

some other feature that makes them not very interesting to play. This could aid patience

game developers by notifying them that the rules they specified are not playable.

Lastly, analysis can be used to find bugs in the implementation of particular games.

There are of course many ways of debugging code, but in this context we are in particular

interested in features of the patience domain that provides ways of debugging that is specific

to patience games.

3.4.6 Language Evaluation

Evaluation of DSLs is also an important part of DSL development (Gabriel, Pedro and

Goulão, Miguel and Amaral, Vasco, 2011; Kosar et al., 2012). The most common way of

evaluating a DSL is by using a usability study. This is done by having subjects perform

tasks using different DSLs and/or GPLs and measuring the success rate for each task. For

example, (Kosar et al., 2009) measure the subjects’ ability to learn, perceive and evolve

programs written in different languages (but for the same domain). This can of course

be applied to the patience domains as well, using our model as a framework for different

DSLs to be built on. In (Kosar et al., 2008), rather than measuring DSLs, methods for

constructing DSLs were measured. The patience model could also be used for this kind of

study, measuring different approaches to developing patience DSLs.

Beyond these, there are two other ways in which DSLs can be measured in the patience

model, related to the expressiveness of the DSLs. One way of measuring the quality of a

DSL is by measuring how many correct patience games a given DSL can implement. The

easiest way of determining this is through the use of a standard list of well-known patience

games that the DSLs ought to be able to implement. Such a list can be obtained from either

a rule-book (such as (Gibson, 1993; Morehead and Mott-Smith, 2001)) or through existing

CHAPTER 3. PATIENCE GAMES 51

patience suites (such as KPat (Team, n.d.), Aisleriot (Gnome, n.d.)). There are well over

100 patience games described in these various sources, though, so creating and maintaining

such a list could be quite cumbersome, and might thus not be worth the effort, unless one

can show that there would be a significant advantage in using such an approach.

The second way to measure the DSLs is by measuring how many non-patience games

that can be implemented. This is not as an important feature of a DSL, as the fact that

one can implement things that are not patience games, does not necessarily impact on the

quality of the DSL. It is also harder to measure, as one cannot simply create a list of all

implementations that are not patience games. It is therefore not likely to be a fruitful area of

exploration.

3.5 Conclusions

We have in this chapter presented a simple model to use when considering DSL composition.

We have shown the outline of an implementation of a patience suite that is used as a base for

the model. The aim with creating this model is to provide a common, executable framework

for showing how different DSL development techniques can be used. These ranges from

questions about host-languages to the use of composition as a way of creating DSL, as well

as questions regarding using DSLs to analyse domains and evaluation of DSLs. The main

aim is to provide a platform on which future work can rest and we hope that this model will

be able to aid future research into the areas of DSL development discussed in this article.

The patience model has already been used once to discuss a development technique for

DSLs (Kihlman, 2015).

Chapter 4

Basic framework for language

composition

4.1 Introduction

This chapter presents a basic framework for language composition and how it can be used

to define Domain-Specific Languages (DSLs). It is to a large degree inspired by the work

in (Erdweg et al., 2012) as well as subsequent work such as (Mernik, 2013; Völter, 2013a;

Chodarev et al., 2014; Degueule et al., 2015).

Language composition consists of creating new languages by composing them from ex-

isting languages. That is, a new language is created by combining elements of existing

languages using a set of predefined composition operations. The benefit of using language

composition is that creating a new language can in general be difficult and language compo-

sition makes the process easier by allowing existing language features to be reused in new

languages.

The framework we present here specifically deals with composition of abstract lan-

guages, as well as translation of one abstract language to another. We view languages as

consisting of concrete syntax, abstract syntax, and semantics. The concrete syntax consists

52

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 53

Figure 4.1: A diagram for concrete syntax being directly mapped to semantics, along with
domain types that are instantiated to domain objects that can then be referenced by the
semantic domain.

Figure 4.2: A diagram showing concrete syntax being parsed into abstract syntax, which is
then executed in the semantic domain. In this case, the concrete syntax is decoupled from
the domain types, which instead are referenced to in the abstract syntax.

of the grammar that defines valid (concrete) sentences in the language. The abstract syntax

describes a structure of the language which contains only the information required to distin-

guish two statements in the language (unlike concrete syntax, which usually have so called

‘syntactic sugar’ associated with it). The semantics describes the meaning of the abstract

syntax structures.

Figure 4.3: A diagram showing concrete syntax being parsed into abstract syntax which
is then translated into a different abstract syntax, which is then executed in the semantic
domain. The domain types also get translated between abstract syntaxes.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 54

Since we work with DSLs; languages that are specific to particular domains, we also

need to consider how the domain is modelled in all of this. In general, we take a pragmatic

approach to how we model the domain, and view it in terms of types or classes and instantia-

tions of those types or classes. In some examples, in particularly in this chapter, we also use

mathematical sets to describe domains. In general, our approach should be fairly agnostic

to how the domain is modelled, as long as it is possible to have well-defined subtypes and

supertypes of members in the domain.

In figure 4.1 we show how our language and domain model would work in the case of

a direct translation from concrete syntax to a semantic domain. Here, the domain types are

declared in the syntactic side and their instantiations are referred to in the semantic domain.

As we work with abstract language, we need to add the abstract syntax in between

concrete syntax and semantics. This is shown in figure 4.2. In this case, the declarations and

references to the domain types is moved to the abstract language, as the concrete language

only serves as a translation layer between the human input and the abstract representation in

the machine that processes the code. Other than that, the system works the same.

Lastly, as we work with translations of the abstract language, we show in figure 4.3

how a translation works in our system. Here, we have two different abstract syntaxes, one

coming from the concrete syntax, and one being defined by the semantics, with a translation

in between them. When we translate between abstract languages, we may also have to

translate the domain types in some manner. The domain types that one abstract language

works on may be different in the abstract language that the first language is translated into.

The second language might, for example, use a more complex typing system. This is not

necessarily the case, though, and the types in the first language might well be completely

compatible with the types in the second, without translation. For the purpose of this chapter

we will assume this is the case. We do think it is important for future work to point out the

possible need for domain translation as well as language translation.

One of the benefits of using an abstract language in between the concrete syntax and

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 55

the semantic domain is that we can then provide multiple concrete syntaxes for the same

abstract syntax, without worrying about changing the semantics. It also allows us to provide

multiple semantic definitions of the abstract language without worrying about the concrete

syntax. This means that once you have an executable language (that is, one with defined

semantics), that language can be used with multiple different concrete syntaxes which will

only require the mapping to the abstract language. Then, if a new semantics is added, all

defined concrete syntaxes are immediately executable in the new semantic domain.

Another benefit of abstract language is that it is easier to compose than concrete syntax,

as it is easier to ensure unambiguousness in abstract language than in concrete language.

Thus, the effect of operations on abstract language is easier to reason about than operations

on concrete language. To create the full language, one will eventually need to define the

concrete syntax though, and when doing so similar pitfalls in regard to ensuring unambigu-

ousness as when composing. Our approach thus relies on the hope that defining a concrete

syntax after composition of abstract language is easier than ensuring unambiguousness dur-

ing composition of concrete languages. We do not show that this is the case, though.

Another issue that needs clarification is the difference between compiler and interpreter.

This work is partly about translating between abstract languages, which would generally

be considered compiling or transpiling. Compiled DSLs are one among several ways

to implement DSLs, as given in for example (Mernik et al., 2005). According to (Kosar

et al., 2016), who base their classifications on (Mernik et al., 2005), found that around

28% of papers published between 2006 and 2013 (which is the years the study looked at)

were discussing compiled languages. Around 8% were interpreted languages, 15% were

pre-processor languages and around 34% where Domain-Specific Embedded Languages

(DSELs).

We argue that our approach, though closest to compiled DSLs, can be used for inter-

preted languages just as well, and with some extra work can also work with pre-processor

languages. It could also be used to model DSELs, however, as one of the reason for using

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 56

embedded languages is to avoid using external tools (Hudak, 1997a), using our framework

would probably be counterproductive (a DSEL modelled in our framework would be equiv-

alent to a pre-processor language that consists only of host to host translations).

We will here discuss compiled and interpreted languages, and will later on discuss pre-

processor languages and comment on DSELs. The distinction between compilers and in-

terpreters is nowadays somewhat blurred, especially with the introduction of Just-In-Time

(JIT) compilers into interpreters, and so it can be a bit hard to discuss what difference each

approach makes. We discussed the use of an executable language to define the semantics

and for our purposes it does not matter whether the executable language is one that is inter-

preted, or one that compiles into machine code. As such, the distinction between them does

not matter.

4.1.1 Motivating example

Imagine that we have an execution environment Eh, capable of executing sentences in some

language Lh, and we have a language L1 that is, at least in part, composed from Lh, how

much extra effort do we need in order to make L1 executable in Eh?

The way we make L1 executable in Eh is through translating sentences in L1 into sen-

tences in Lh. Thus, what we want to do is minimise the effort to create a translator T1h

which translates sentences in L1 into sentences in Lh. Inevitably, there are many ways of

translating sentences in one language to another language, and each way may require a dif-

ferent amount of effort. We determine whether less effort is needed is by considering the

case when there is no known relation between L1 and Lh, and we thus have to translate

everything. We then consider something to require less effort, if we can provide a way to

reduce the amount of translation without knowing anything about the original translation

rules. Thus, we only consider simplifications that do not require any knowledge of the orig-

inal translation rules. Thus, we know for certain that our translation requires less effort than

any original translation, regardless of how simple or complex that translation is.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 57

4.2 Background

There exist several DSL composition frameworks, such as (Erdweg et al., 2012; Völter,

2013a; Lakatos and Porubän, 2013; Degueule et al., 2015). They tend to discuss compo-

sition of concrete language, but some, like (Chodarev et al., 2014), discuss composition of

abstract language. For a more in-depth discussion on the different approaches, see chapter

2, subsection 2.4.1.

We will mainly compare our work to Erdweg et al., who defines the following composi-

tion operations:

• Language extension – extending an existing language with new constructs

– Restriction – a special type of extension, where the extension restricts the new

language

• Language unification – combining two languages to form a new language

• Self extension – languages that are capable of defining their own extensions

• Composition of above – a combination of the above composition types

The main operations we will discuss are given in the list below, though we will also

mention some more general operations in subsection 4.4.1.1.

• Introduction

– Declaring the structure of a construct.

• Restriction of construct

– i.e. sub-typing an existing construct

• Relaxation of construct

– i.e. super-typing an existing construct

• Deletion

– i.e. creating new language by removing an existing construct

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 58

• Combination

– The union of two languages

• Translation

– Defining the meaning of a construct in terms of other constructs.

Of these, the first three are on individual constructs, and the last three on languages as

a whole. Note that the combination operation is similar to Erdweg’s language unification

and language extension classifications. Restriction in our case share the name with Erd-

weg’s restriction, but Erdweg defines restriction as a special case of extension and Erdweg’s

classifications tend to be more on the language as a whole than on individual parts of the lan-

guage. Relaxation is similar to extension, but again, our relaxation operation is for specific

constructs whereas Erdweg’s extension is on a language as a whole.

One type of composition that Erdweg describes is self-extension. This is not possible

within our framework, as we view each operation as creating a new language, thus the idea

of being able to extend itself makes no sense (as the output of the extension would be a

new language, not the old language with a new operation). A similar argument can be made

about Erdweg’s extension composition, though as long as one sees the output of an extension

composition as a new language, that is like the old language, but with an extension, the

classification could apply to our operations as well.

Erdweg’s focus is also more on concrete syntax than abstract syntax (though there is no

distinction being made in Erdweg’s work, and the classifications can be applied to either)

whereas we specifically target abstract syntax.

While we discuss these operations as in the terms of DSLs, there is no reason they could

not also apply to General Purpose Programming Languages (GPLs).

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 59

4.3 Domain and language

We will in this chapter distinguish between domain and language. There is no absolute

definition of what a domain is and what a language is in the context of DSLs, and to some

degree it does not affect the general discussion on DSLs. In our case, however, we see a

benefit in distinguishing the two.

Schmid (2000) provides the following definition for a domain: “A domain is defined by

the objects, operations, and relationships that domain experts perceive to be important for

developing systems for a certain area of functionality.”

In general, domains are made up of ‘things’ and relations between the things. Lan-

guages on the other hand describe those things and their relations. To complicate this a bit,

languages are themselves part of the ‘domain of languages’ and thus some languages de-

scribe the domain of languages and thus (potentially) describe themselves. Languages that

work in the domain of languages are called meta-languages.

A stumbling block when thinking about the distinction between domains and languages

is that we cannot discuss domains without a language to describe the things in the domain.

Take for example this ‘1’. It represents the concept of ’one’, but is not itself that concept,

just a way of representing that concept.

We see domains as a set of types, and their relations are, for example, functions that

operate on those types. Languages are then represented by a special set of types, which

we call language constructs. Instances of these types are Abstract Syntax Trees (ASTs).

Language constructs are either atomic constructs, or compound constructs consisting of

one or more member constructs. Thus, language constructs only refer to other language

constructs.

The way language constructs describe domain types is through side-effects. So, for ex-

ample, the sentence class ClassName {...} would as a side-effect introduce a domain

type by the name ‘ClassName’ in the current scope. Note that ‘class’ is a compound lan-

guage construct, and ‘ClassName’ is an atomic language construct. The ellipsis represents

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 60

the body of the type, also specified using different language constructs.

Thus, domain types are not directly referred to, but can be determined from the side-

effects that the language constructs have.

Another common side-effect that language constructs have is the ‘evaluates-to’ side-

effects. This represents the case when a language construct produces as a side-effect a value

of a domain-type, that may then be operated on by other language constructs.

A meta-language would in this logic be a language where the side-effects also refers

to language constructs. So, a language that has constructs that evaluates to other language

constructs.

In this chapter we only look at composition and translation of language types, though

similar logic could be applied to domain types as well. For this reason, we will only briefly

discuss side-effects and how they fit in with the rest of the framework.

4.4 Abstract Language

For our approach, we view abstract languages as being made up of a set of abstract lan-

guage constructs. The language constructs are made up of the name of the construct and the

definition of the structure of the constructs. This is like the irregular heterogeneous AST

combined with homogeneous AST as described in (Parr, 2010). This is either a set of mem-

bers with names and types, or a list with the type of elements, or a type for a single value.

Some constructs can be root constructs, which are constructs that appear at the root of the

ASTs that these constructs describe.

For the language to be consistent, there has to be at least one construct from which one

can reach all the others, either by having one of the members/list-type directly refer to the

language construct type, or indirectly through sub-typing. Language construct types that are

not reachable can not be part of any sentence and are thus pointless. There cannot be any

references to non-existing constructs either. A direct reference is when a construct is being

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 61

explicitly specified in another construct. Indirect references are constructs that are subtypes

of constructs that are directly referenced.

A complete language is a language that is consistent and has at least one root construct

from which all other constructs are reachable. If a language is consistent, but not complete,

then it is a language fragment. Language fragments are not executable, but can be used to

build up more complex and executable languages.

Another type of language is a language that contains a construct using ‘Any’, which have

no subtypes without the ‘Any’ specifier. The ‘Any’ specifier is used to allow the specification

of language constructs where the structure of the construct does not matter. The ‘Any’

specifier is the supertype of all language structures and does not have an instantiation. It

is useful for specifying expressions, for example E := Any → x would mean that subtypes

of E contain all language constructs that evaluate to x, regardless of their structure. A

complete language that has such a specifier that has no subtypes without the specifier can

not be executed, as there is at least one construct referenced that can not be instantiated, as

it has no specified structure. Such languages can be useful for providing general structures,

without providing all the concrete operations. The simplest of such languages is a general

expression language Expr := Any →Value where Expr is a root construct and value is any

value in any domain.

The subtyping rules for the constructs are similar to subtyping rules for record types.

We use nominal subtyping, as constructs have meaning beyond their structure and using

only structural subtyping would thus be misleading in some instances, where two constructs

that have the same structure mean quite different things.

The rules for x is a subtype of y, where x and y are language constructs, are:

• x and y are value constructs and x is declared to be a subtype of y.

• x and y are list constructs and the list type of x is a subtype of the list type of y

• x and y are member constructs and they have the same members and one or more of

the members of x are subtypes of corresponding members in y.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 62

Constructs can also have side-effects, which are things that happen when the construct is

executed, aside from the main effect of execution. These include introduction of new type-

references and evaluating to a value. The side-effects are used to model things in languages

that are not easily modelled through the structure of the language construct. Each type of

side-effect has different rules for how subtyping it works.

To summarise, our model of the abstract language consists of a set of abstract language

constructs (or abstract language types) that consist of a name, a structure and side-effects.

The instance of these language types are ASTs.

We write the abstract language types as shown in equation 4.1. The side-effect can be

labelled, as is shown in equations 4.2, 4.3. The labels that we are going to discuss are

global, local, and labels beginning with ‘:’. The global level means the side-effect affects

the entire program, such as inserting a symbol in the global scope, for example a class or

function declaration in the global scope in most GPLs. The local label means the side-effect

affects the local context. For example, variable declarations in a function. Labels beginning

with ‘:’ are internal and only affect the children of the construct in question. An empty ‘:’

(that is a colon on its own) means it affects all children. Leaving out the label gives the

special meaning of ‘evaluates to’. That is, the side-effect only exists right at the end of the

execution of the construct and ceases to exist after the next construct is executed. This is

the same as expression evaluation in most languages. The most general of all expressions is

simply Expr := Any → Type (that is, an expression of any structure that evaluates to some

type). All other expressions are subtypes of this Expr.

Name := Structure −→ Side-effect (4.1)

Name := Structure
global−−−→ Side-effect (4.2)

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 63

Name := Structure :lhs−−→ Side-effect (4.3)

The structure part of the construct is either a labelled set of language types, or a list of

ASTs of language type, or without structure. We write this as is shown in equation 4.4.

Structure =

{label1 : Type1...labeln : Typen}

{Type}

ε

(4.4)

The side-effects we are going to discuss are either a labelled type, meaning the side-

effect inserts a symbol with the label as name and with the specified type in the relevant

context, or is simply a type, which is only used for the ‘evaluates to’ side-effect and it

means that the construct evaluates to the given type. Note that here type refers to a domain

type, not a language type, as was the case in the structure.

Side−E f f ect =

label : Type

Type
(4.5)

For example, in equation 4.6 we show an example of how we use this. Here we define a

construct E, with two members n of type F and m of type G, which as a side-effect evaluates

to a domain type T.

E := {n : F,m : G}→ T (4.6)

If we are not interested in every part of the construct we simply leave the uninteresting

part out, as seen in equations 4.7, 4.8, 4.9, if we are only interested in the name and side-

effect, structure and side-effect or name and structure. We can also just specify the individual

parts on their own, as E, {n : F,m : G}, and → T (note that the arrow and side-effect type are

always together, as they both provide meaning to the side-effect as a whole). If E refers to an

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 64

already specified language type, then equation 4.7 should be read as ‘E with the previously

defined side-effect, here named T’. Likewise for the equation 4.9.

E → T (4.7)

{n : F,m : G}→ T (4.8)

E := {n : F,m : G} (4.9)

We also need to consider some subtyping rules for the language constructs. Two list

constructs’ structure are subtypes of each other if their list-types are subtypes of each other,

as shown in equation 4.10.

T1 ≤: T2
{T1} ≤: {T2} (4.10)

Two labelled constructs’ structure are subtypes of each other, if they have the same

members and they are all (non-strict) subtypes of each other, as shown in equation 4.11.

T1 ≤: U1...Tn ≤: Un
{n1 : T1...nn : Tn} ≤: {n1 : U1...nn : Un} (4.11)

Structureless constructs are always equal in their structure (as they all have none), which

means they are always non-strict subtypes of each other.

With the side-effects we are discussing in this chapter, we have two different cases, one

for internal and evaluates to and one for global and local side-effects. The evaluates to

side-effect is a subtype of another evaluates to side-effect if their types are subtypes. This is

shown in equation 4.12.

Internal side-effects do not affect the subtyping, since when a construct is replaced, so

is its entire internal structure. Thus, only side-effects that affects the surrounding language

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 65

construct affects the substitutability of the construct.

T ≤: U
−→ T ≤:−→U (4.12)

For global and local side-effects, it is not possible to determine subtypes in general. In

fact, we are unaware of any global or local side-effect that can be subtyped.

As discussed earlier, we use nominal subtyping throughout this thesis. One way to look

at is to view the name, structure, and side-effect as being three separate parts. The case

when the structures and side-effects are subtypes was discussed above. For the names to

be subtypes, we have to declare them to be subtypes. Of course, declaring the names to

be subtypes only makes sense if the structure and side-effect are also subtypes. In short, a

construct is a subtype of another construct if the structure and side-effects are subtypes, and

if they have been declared to be subtypes of each other.

For the remainder of this chapter, we will ignore side-effects, as our main concern is on

the composition of the structure of the language constructs. To consider the composition of

side-effects, we would have to consider the composition of domain-types, which are outside

of the scope of this chapter (and thesis as a whole) as it would at the very least double the

amount of work needed to do it justice.

4.4.1 Composition of abstract language

When we compose new languages, we want to ensure that the new languages are consistent.

We also want to keep track of the sub/super type relations between languages as a whole as

well as the individual constructs within the languages being composed.

Equation 4.13 shows the condition for a language to be valid. All constructs in L refer-

ence only other constructs in L.

∀e ∈ L∀t ∈ types(e)|t ∈ L (4.13)

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 66

Before we continue the discussion, we need to define what we mean by reachable. This

is shown in equation 4.14. Here t is reachable from e in the language L, if

• e is equal to t

• t is a subtype of e

• t is reachable from any of the member types of e

• there is a subtype of e from which t is reachable

This is shown in formal notation in equation 4.14.

reachable(e, t) :=

e = t

t ≤: e

∃n ∈ types(e)|reachable(n, t)

∃ f ∈ L| f ≤: e∧ reachable(f , t)

(4.14)

Equation 4.15 shows the condition for a language to be consistent. A language is con-

sistent if all constructs in it are reachable from at least one other construct.

∀e ∈ L∃ f ∈ L|e ̸= f ∧ reachable(f ,e) (4.15)

Equation 4.16 shows the condition for a language being complete. A language is com-

plete if all constructs in it are reachable from at least one other construct that is a root

construct.

∃e ∈ L|is_root(e)∧∀t ∈ L|reachable(e, t) (4.16)

In equations 4.17 and 4.18 we show what we mean by direct and indirect references

respectively. A direct reference is a reference where one construct has a member that is the

type of the other construct, an indirect reference is when one construct has a member that is

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 67

a subtype of the other construct.

t ∈ types(e) (4.17)

∃ f ∈ types(e)|t ̸= f ∧ t ≤: f (4.18)

When we compose our languages, there is a choice between two approaches. We can

either first completely specify the structure of the language, and then declare the relations

of the language to another language. Or we can take an existing language and use our

composition techniques to construct a new language out of the existing one. That is, we

allow the declared constructs to be recomposed at a later time if need be, so it is possible to

state that an existing construct should be treated as being composed from another construct.

The composition operations can either be used to state that some new construct C′ is

the result of some composition operation on some set of existing constructs {C1...Cn} or we

can say that the existing construct C should be treated as if it was the result of an existing

operation on some set of existing constructs {C1...Cn}.

The reason we allow both approaches is that we might want to reuse the structure of

a composed language, but recompose onto another language, in order to benefit from the

properties of the new language. That is, we want to be able to map a single language onto

several different domains, while being able to reuse the translation rules for languages that

work in those domains. By allowing recomposition of language construct based on different

languages, we can reuse the translation rules for those languages.

The first operation we are going to describe is the introduction operation, which was

shown above in equation 4.1. This simply declares the name and structure of a language

construct. Strictly speaking, it is not a composition operation, but we include it in order to

be able to construct languages that are not completely composed from existing languages.

For the language to remain consistent, the constructs referenced in the introduced con-

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 68

struct needs to exist in the language that the new construct is being introduced into and the

new construct needs to be a root construct or else referenced (directly or indirectly) from an

existing construct. The last case is not possible to achieve in one go, so with introduction of

non-root constructs, the best we can achieve is eventual consistency.

The next operation is restriction of a construct. This creates a new construct (or recom-

poses an existing one) by changing the type of some of the members or the list type with a

subtype. The new construct is a subtype of the existing construct. A language under restric-

tion, remains consistent if the type being replaced by a subtype is still being referenced from

a different construct. Thus, we cannot completely restrict away a construct in the language.

Together with the deletion operation, we can achieve eventual consistency in all cases of

restriction.

The reason to use restrict is to have constructs that are closer to the intended domain (as

opposed to being close to the implementation domain). That is, we want the construct to

match the preferred abstraction level of the domain (as described in (Kahraman and Bilgen,

2015)).

Restricting might also make it easier to analyse programs written in the DSL by remov-

ing constructs that are difficult to reason about. It might also reduce the error surface, by

reducing the amount of things that can produce errors. Another possible benefit might be

that it is easier to optimise more constrained constructs. We will not discuss these properties

in this thesis, though.

E ′ = E := {n : E1}∩{n : E2}|E1 :≥ E2 =⇒ E ′ ≤: E (4.19)

In equation 4.19 a new construct E ′ is created by restricting a construct E with a child ‘n’

of type E1 is restricted by setting the ‘n’ child to type E2. Assuming that E1 is a subtype of

E2 (which is required for the restriction operation), E ′ will be a subtype of E. List and side-

effect restriction works similarly, as shown below. Atomic constructs do not have anything

to restrict, so no equation is shown for them. They are simply declared to be subtypes if

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 69

needed.

E ′ = E := {E1}∩{E2}|E1 :≥ E2 =⇒ E ′ ≤: E (4.20)

E ′ = E → E1∩→ E2|E1 :≥ E2 =⇒ E ′ ≤: E (4.21)

Relaxation, which is the reverse of restriction, can be also be done, where the members

are replaced by a supertype, which makes the new construct a supertype of the existing one.

This can be useful if an existing language is too restricted for what you need it to be. The

relaxation composition always produces an inconsistent language, as the new construct can

neither be directly referenced (due to being a new construct) nor indirectly referenced (it is

a supertype of a construct, but not a subtype of any construct).

The relax operation exists mostly to provide symmetry with the restriction operation, but

there may be cases where creating a supertype construct may make sense, for example if one

wants to create a common base language from two existing languages that share similarity,

but not enough to have one be the base of the other. The common base language can then

be used to define all the common parts of the two languages, so that the original languages

do not both need to have defined their own versions of these parts.

E ′ = E := {n : E1}∪{n : E2}|E1 ≤: E2 =⇒ E ′ :≥ E (4.22)

As can be seen in equation 4.22, relaxation works in the same way as restriction, but E1

has to be a subtype of E2 and the result is that E ′ is a supertype of E. The same applies for

list and side-effect relaxation.

E ′ = E := {E1}∪{E2}|E1 ≤: E2 =⇒ E ′ :≥ E (4.23)

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 70

E ′ = E → E1∪→ E2|E1 ≤: E2 =⇒ E ′ :≥ E (4.24)

The combination operation is used to take two sets of constructs from different languages

and combine them into a new language. For the language to remain consistent, the constructs

need to, in some way, be able to refer to each other, either directly or indirectly. This might

either be due to them both referring to the same existing common language constructs or

through the addition of constructs that bind the two languages together.

L′ = L1 ⊎L2|∀e ∈ L′ : e ∈ L1 ∨ e ∈ L2 (4.25)

We can delete a construct, as long as it is not directly referenced by any of the other

constructs. That is, only indirectly referenced constructs can be deleted while keeping the

language consistent. Restriction can be used to remove references from a language, which

can be used in combination with the delete composition to completely remove a construct

from a language, while keeping the language consistent. Note that while the relaxation com-

position never completely removes a reference, it can be used to create an indirect reference,

which can then be removed from the language (assuming no direct references remains).

L′ = L1 ⊖E|(∀e ∈ L′ : e ∈ L1)∧ (∀e ∈ L1 : e = E ∨ e ∈ L′)∧E /∈ L′ (4.26)

4.4.1.1 Higher/more abstract level

There are some additional operations that we could use, but for various reasons we will not

discuss in detail. Here we will discuss some of them.

First, we could have a replace operator (as seen in equation 4.27, with list constructs).

This operator creates a new construct by replacing one of the members of an existing con-

struct. If the replaced member is a subtype of the original, it is equivalent to the restrict

operator and if it is a supertype it is equivalent to the relax operator. The problem with this

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 71

operator is that it does not give us any way of reasoning about the relationship between the

original construct and the composed one. It is essentially just a more convenient introduction

operator for our purposes.

E ′ = E := {E1}⊙{E2} (4.27)

Another type of operators are those that add or delete members to structured constructs.

These are shown in equations 4.28 and 4.29. These could be used in our framework, where

the add operation creates a subtype and the delete operation creates a supertype, but they

were left out for simplicity’s sake and due to the fact that reuse of translation rules, while

working for the add operator, makes little sense, as any reused translation rule will ignore

the added member, which is probably not what is wanted. In other words, more work is

needed to for it to make sense to include these operators in our framework.

E ′ = E ⊕{n′ : E2} (4.28)

E ′ = E ⊖{n′ : E2} (4.29)

There are also some convenience operators, such as the equality operator that declares

two constructs to be the same, as shown in equation 4.30. This implies that anything that

can be done with one of the constructs can also be done with the other.

E1 ∈ L,E2 ∈ L : E1 = E2 (4.30)

The rename operator changes the name of a construct to a new name. This can be

modelled using the equality operator and the global replace operator as shown in equation

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 72

4.31.

E1 ∈ L : E2 = E1 ∧E1 ↕ E2 (4.31)

The last operation is a one-line composition, which includes combination, deletion, and

composition of individual constructs into one. It is mostly a conceptual operation, the point

of it being that the result is a complete (or at least consistent) language, without having

any inconsistent languages ‘created’ in between. The operation consists of first combining

together all existing languages from which the new language will be created, then listing

all additional single construct compositions, including equating any constructs that exist in

both languages, then renaming anything that needs renaming. At the end, any construct

that is not needed gets deleted. This is shown in equation 4.32. We have no general way

of guaranteeing that the output language is complete or consistent, but checking it after

composition is straightforward.

L′ = ((L1 ⊎L2) : Ey ⊙Ex...Ea ⊙Eb)⊖ (E1...En) (4.32)

Sometimes the restriction and relaxation operations can be used to introduce new con-

structs. That is, if we have an existing language L in which we want to restrict some con-

structs in with a construct/set of constructs from another language L2, we would normally

first construct a new language L′ := L⊎L2 and then specify which constructs are restricted

with constructs from L2. When we talk about this kind of combined operations on a higher

level, where we don’t care about the details of which constructs get restricted/relaxed, we

use the restrictions/relaxation operator on the language level. That is, if L1 and L2 are lan-

guages, the sentence L1 ∩L2 means construct a new language based on L1 where some of

the constructs are restricted to constructs in L2. This also implies that the constructs in L2

do not already exist in L1. Similarly, if C is a construct, the sentence L1∩C means construct

a new language based on L1 where at least one construct is restricted by C.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 73

4.4.2 Translation

The translation operation consists of a set of rules setting out how to turn constructs in

one language into constructs in a target language. This can be done manually for each

new language created, but since we are composing languages from already existing ones,

we could benefit from reusing the rules used by the existing languages from which our

new language is composed. This assumes that there exist rules for translating the existing

languages into our chosen target language. Given the existence of the rules, we also have to

ensure that they do not conflict when applied to the new composed language.

In general, it is impossible to guarantee that the rules do not conflict, as general transla-

tion is not closed under composition. It is, however, possible to constrain the translation to

allow us to create a translation operation that is closed under composition.

Under what circumstances can we guarantee that the translation is valid? The translation

is valid if all valid sentences in the composed language can be translated into valid sentences

in the target language. To determine this, we need to not only have a description of the

composed language, but also the target language. We also need to have a way to determine

whether the output of the translation rules describes valid sentences in the target language.

We view the translation rules as a set of rules of the format C ::= Texpr where C is the lan-

guage construct in the composed language and Texpr is a translation expression, specifying

how the construct should be translated. To determine validity, we need to check that each

Texpr generates a valid sentence in the target language, and that the combination of several

different Texpr also produces valid sentences. To ensure that the combination of the rules

also produces valid sentences, we start with the root construct in the composed language,

which needs to produce a root construct in the target language. As our translation rules

encode the output type, we can require that only translation rules that produces output that

is valid in the context that the translation rule is used are allowed, thus ensuring that all the

children of the root construct are translated into valid sentences and that they only occur in

places where they are allowed within the root construct.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 74

The rules for determining validity of the output of individual Texpr rules is more compli-

cated. A Texpr always consists of one root construct, which determine the overall type of the

Texpr and thus the type of the C ::= Texpr rule.

To ensure that the sentences in the target language will type-check under composition, it

needs to be possible to fully type-check each Texpr without considering any other translation

rule. That is, it has to be possible to do all type-checking locally. In general, type-checking

tends to be non-local, such as references to types or functions in global scope. As discussed

in (Eden et al., 2006), composition is not possible in general when there exist non-local

dependencies. Thus, to allow composition in general, only type-checking rules that are local

can be allowed in the target language. It may in some cases be possible to circumvent non-

local dependencies, but in general type-checking can not be guaranteed when non-local type-

checking dependencies exist. Even with non-local type-checking, it may still be possible to

translate composed languages while reusing translation rules, but we cannot guarantee that

the translated sentences will type-check.

The subtyping rules for translations are similar to function subtypes. A translation rule

C ::= Texpr is similar to a function T (C)→ Texpr. C1 ::= T1expr is a subtype of C2 ::= T2expr if

C1 is a supertype of C2 and T1expr is a subtype of T2expr . Note the inverse relationship between

C1 and C2. Since we normally want the same input to produce the same output, we usually

require T1expr to be equal to T2expr . While all the logic works the same in either case, if we do

not require equality, then there will be some input values that are the same for the subtype

and supertype translation, but will get translated to different outputs. This makes it harder

to reason about the output, when translation rules get substituted.

Since the argument to the translation rule has the inverse relationship to the rule itself,

we can always replace the translation rule for a subtype construct with that of a supertype

construct. This makes intuitive sense, since the supertype can take all the values the subtype

can take, and so can always provide a translation for any value the subtype can take.

If we have a translation rule for a subtype construct, we can create a rule for the supertype

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 75

by creating a translation rule T2(s ∈ C2) ::= T1(s),s ∈ C1;T ′(s),s /∈ C1. That way we only

need to provide the translation for cases where the construct is not in C1. This also ensures

that the same input is translated to the same output in both rules.

The Texpr part of the translation rule can take many forms. The simplest is for it to consist

of a construct instance (AST) of the output language, with additional expand statements

that show where a given member of the input construct should be expanded in the output

construct. It could also be more complex, with conditional expansion, or arbitrary expansion

with additional helper functions and records to keep track of what has been expanded before

and then to expand the next construct bases on some arbitrary decision.

To keep the translation rules for languages compatible, we would ideally want the prop-

erty c1 <: c2 ⇒ T1(c1) <: T2(c2) to always hold. If this property does not hold, it is likely

that translation rules that depend on the T2 translation will break and not produce valid ASTs

if c2 is replaced by c1 in the input AST. When we combine constructs from many different

languages, it is inevitable that at least some translation rules will not conform to this rule,

unfortunately.

Before we move on, we will quickly define some functions that we use when describing

the rest of the composition framework.

• name(c: Construct) - given a language construct, return the name of the language

construct

• members(c: Construct) - return the names of all members in a language construct

• types(c: Construct) - return the types for the members’ language construct

• member_types(c: Construct) - return a tuple of names and type for all members in a

language construct

• reachable(from: Construct, to: Construct) - determines if the second argument is

reachable from the first argument

• is_labelled(c: Construct) - returns true if the language construct is a labelled construct

• is_list(c: Construct) - returns true if the language construct is a list

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 76

• is_atom(c: Construct) - returns true if the language construct is an atomic construct

• list_type(c: Construct) - returns the containing type of a list construct

• side_effects(c: Construct) - returns the side-effects

• eval_to(c: Construct) - returns type for the evaluate to side-effect

All of these can also be used with instances of construct (i.e. ASTs).

We now want to show that if a rule for translation exists for a supertype, it can be reused

by a subtype without breaking the translated program. This is not possible for a general

translation function as shown in equation 4.33, so we shall construct a simple translation

expression language that has this property. The type for the translation expression is shown

in equation 4.34.

T (s ∈ S)→ H (4.33)

E :=

{n1 : (E1 → H1)...nn : (En → Hn)}→ H is_labelled(H)∧

n1...nn ∈ members(H)∧

H{n1} :≥ H1...H{nn} :≥ Hn

{E1 → H1}→ H is_list(H)∧

Hl ≤: list_type(H)

ε → H is_atom(H)

T ′(s ∈ S)→ H S1 ≤: S2 =⇒ T ′(S1)≤: T ′(S2)

(4.34)

This is the same as equations 4.35, where Elabel , Elist , Eε , and Egeneral are all subtypes

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 77

of E.

E :=Any → H

Elabel :={n1 : (E1 → H1)...nn : (En → Hn)}→ Hlabel

Elist :={E1 → H1}→ Hlist

Eε :=ε → Hε

Egeneral :=T ′(s ∈ S)→ Hgeneral

(4.35)

In both 4.34 and 4.35 we specify that a translation expression is one of

• labelled construct

• list construct

• structureless construct

• a general translation function

Labelled constructs that evaluates to a domain type H, where H is a labelled construct,

which contains all the members of the E construct, and the evaluation types for each member

in E are subtypes of the corresponding member in H. List constructs evaluate to domain type

H, with list type of E → Hl , where H is a list type construct and Hl is a subtype of the list

type of H. Atom types evaluate to H, where H is an atomic construct type. Lastly, the general

construct consists of any function that evaluates to a domain type H, as long as the output is

a subtype when the input is a subtype.

We will now consider a translation function where each translation rule is a construct in

the input language associated with an E construct, where the E construct contain references

to the children of each construct in S and the E expression is used to generate sentences in

H. We consider the case where the property expressed in equation 4.36 holds.

T (s ∈ S1) = E1 ∧T (s ∈ S2) = E2 ∧S1 ≤: S2 =⇒ E1 = E2 (4.36)

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 78

That is, if the input to T is subsets, then the E construct used is the same. In other words,

subtypes share the same rule.

Let us first discuss how the constructs in E are evaluated to produce the output con-

structs. They are evaluated are by replacing the values of all the children with the result of

their evaluation. Since each E construct has the same children as the H construct they are

evaluating to and each child of the E constructs evaluates to the type of the corresponding

child in the H construct, this will correctly generate the structure of the H construct. If we

only had E constructs for labelled, list and atomic constructs, then this would be enough to

always correctly generate the structure of the H construct. However, as we want to be able

to construct our output constructs based on the structure of the input constructs and as the

label, list and atomic E constructs have no way of referencing the structure of the input, we

provide the T’ function to allow us to construct translations that references the children of

the input constructs.

The T function represents all constructs whose evaluates-to side-effect is dependent on

the children of the construct being translated. A simple example of such a construct would

be a translate construct translate := child : ID → H which takes the identifier for a child

of one of the input constructs and looks up the translation rule for translating the child and

applies it to the child and returns the result. So, if we have the input constructs S1 := n : S2

and S2 := ε and the translation rules S1 ::= translate(n) and S2 ::= 1, then the translation

rule for S1 would translate to the translation of S2 (which we arbitrarily set to translate to

the integer 1). The type the translate construct translates to is dependent on the type that is

passed to it.

As we have mentioned, the T function has to have the property that T (S1) <: T (S2)

when S1 <: S2. For the translate construct, this is easy to show, as we have restricted us to

always use the same translation rule for all subtypes and as the same translation rule will

always translate to the same type (or a subtype) for any subtype.

To show that the label, list and atomic translation constructs translates to subtypes when

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 79

one of the children is a subtype, consider the simple translation rules used above. If we

added two new constructs, S3 which is a subtype of S2 and S4 = S1 ∩ n : S3, making S4 a

subtype of S1, then the translation rule for S1 used above would work for S4 as the translate

construct would still pick up the translation rule for S2 and still translate to the same output.

Since the children of subtypes are also subtypes, as long as the T function translates subtypes

in S to subtypes in H, translation rules that depend on T will translate to subtypes in H for

subtypes in S. For translation rules like Sn ::= T (Schild), the rule will work for subtypes of Sn

per our definition of T. For rules like Sn ::= {c1 : T (Schild)} the rule will work for subtypes

of Sn as {c1 : T (Schild)} will produce a subtype of the output construct when one of the

children is replaced by a subtype. The same is true for the list and the atomic translation

constructs. We can add any construct to T, as long as we can show that this property holds,

like we showed for the translation construct above.

Note that since the translation function we described above always evaluate to a language

construct, the language that implement it would be a meta-language, as described in section

4.3 above.

4.4.3 Individual composition operations effect on reusability of trans-

lation rules

Composition technique Reuse possible
Introduce No reuse

Restrict Full reuse
Relax Partial reuse

Combine Sometimes reuse
Delete Full reuse

Table 4.1: To which degree translation rules can be reused under various conditions

Now that we have covered what it means for the translation rules to be valid, we can

discuss how the composition operations affect the reuse of translation rules. An overview of

this is shown in table 4.1.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 80

For the introduction operation, we always have to create a new translation rule. As the

newly declared construct has no relation to any existing construct, we cannot reuse any rules.

If we later recompose the construct, we can reuse translation rules based on the composition

operation used for recomposing.

For the Restriction operation, we can always reuse, as the Restriction operation creates

a subtype of the original construct. Any translation operation that works on the supertype

will also work on the subtype.

The relaxation operation creates a supertype. At first it might seem that we need to

re-specify the translation rule for relaxed constructs, and we do to some extent. But we

only need to specify the parts that are ‘new’ in the relaxed construct. That is, we can reuse

the existing rule for all ASTs that are members of the subtype construct we relaxed. Our

translation framework does not support this at this moment, though, and translation rules for

relaxed constructs have to be manually specified.

When combining two languages together, we can reuse any existing rules for the two

languages we are combining, as long as they do not clash in their output. For example, if

s1 ∈ L1 and s2 ∈ L2 and s1 <: s2, but T1(s1) <:> T2(s2) then reusing T1(s1) would cause

problems in translations where a subtype of the translation T2(s2) is expected. In this case

we can just drop the T1 rule and use T2(s1) instead. Another issue can arise if the same

construct exists in both languages, in which case one of the rules has to be chosen. This

might not always be possible if the rules translate to different types.

The Delete operation removes a construct, which means we can simply drop the trans-

lation rule for that construct and thus we do not need to create any new rules for languages

under deletion composition.

When translating to a language that itself is composed of other languages/language frag-

ments, the newly composed L1 language might share language fragments with the Lh lan-

guage we want to translate to. In that case, no translation is needed, but to make this explicit

we can provide an id-translation rule, which simply translates the construct to itself.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 81

Similarly, if a construct in L1 is a subtype of a construct in Lh, we can simply treat it as

its supertype and do not need to provide a separate translation rule for it. This can again be

done using a special upcast translation rule, that converts the subtype construct instance to

a supertype construct instance. A situation like this might occur either if the L1 language

construct is composed from a Lh language construct directly using restriction, or if as with

the id example above it is composed from a mutual language fragment.

4.5 Examples

We now give some examples to show how the composition we are going to use an expression

language as well as the patience domain. Using expression languages is common in the DSL

literature and the suitability of the patience domain as an example domain for discussing

DSL was discussed in chapter 3.

The expression language we are going to use consists of operator constructs such as sum,

sub as well as references to literals, such as NUM, INT. The expression language we use is

a fragment languages, that is, it does not have a root construct, and can thus not be used as

a language on its own.

For the patience domain, we will look at the specific example of describing a rule for a

valid move. Valid moves in patience games consist of the type of pile (a.k.a. pile group) that

a card is being moved on, as well as an expression over the value and suit of the card and

the content of the pile.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 82

4.5.1 Introduction of constructs

The introduction of constructs is straightforward. The expression language can be defined

as follows:

expr := Any → Value

sum := {lhs : expr, rhs : expr}→ Value

sub := {lhs : expr, rhs : expr}→ Value

NUM := ε → R

INT := ε → Z

These define a general expression as being anything that evaluates to a value. It also defines

the constructs sum and sub, which are structured constructs with two members that are

expressions and they evaluate to a value. We also have two structureless constructs, NUM

and INT , which evaluate to real numbers and integers respectively. Here we assume that

Value can reference any value in the domain. Each of these constructs can be declared

subtypes of the expr construct as they all are structural subtypes (by definition of Any) and

their side-effects are also all subtypes (by definition of Value).

The constructs for the move rule in patience can be defined as follows:

Rule := {group : pilegroup,rule : RuleExpr}

RuleExpr := Any → B

pilegroup := ε → PileGroup

pile := ε → Pile

card := ε →Card

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 83

In := {pile : pile, pilegroup : pilegroup}→ B

Value := {card : Any →Card}→ {2...10,Jack,Queen,King,Ace}

Suit := {card : Any →Card}→ {Hearts,Diamonds,Clubs,Spades}

Top := {pile : pile}→Card

Bottom := {pile : pile}→Card

Empty := {pile : pile}→ B

Here we have a move rule, which is a structured construct with an ‘group’ member that

references a pilegroup and a ‘rule’ member that references a RuleExpr. A RuleExpr is any

construct that evaluates to a boolean (shown as B in the equations) and could as such be

replaced with a bool_expr. The advantage of having a specific construct for the RuleExpr

is that then we can limit which constructs can actually be used to ones that are relevant

to moving cards. The pilegroup, pile, and card are structureless constructs that evaluate to

PileGroup, Pile, or Card respectively. These are used to refer to the card being moved, the

pile the card is moving to, as well as which pilegroup the pile is in. The remaining constructs

could be implemented in the domain rather than the language, as functions/methods on the

PileGroup, Pile, and Card types. In that case we would need constructs for calling the

functions/methods.

Note that this language cannot be instantiated as it uses a construct with Any that has no

subtypes. Thus, there are no constructs that can be instantiated for the rule member of the

Rule construct.

4.5.2 Relaxing and restricting

We can create expression constructs specifically for numbers and integers, by restricting the

side-effect of the general expression to reals, integers, and bools respectively.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 84

num_expr := expr∩ (→ R)

int_expr := num_expr∩ (→ Z)

bool_expr := expr∩ (→ B)

Note that the NUM and INT constructs from earlier could be declared subtypes of the

num_expr and INT could be declared a subtype of the int_expr construct.

We can create instantiable constructs for the move rule above by restricting the RuleExpr

to some specific structure. The Rule for moving cards above already specifies the pile group

which contains the pile the card is being moved onto. Now we might want to split the rule

member into the cases where the pile is empty and non-empty. This can be done as:

PileRule := RuleExpr∩{is_empty : RuleExpr,else : RuleExpr}

We might then want to create a new rule where all rules are implemented using the

PileRule we defined above:

Rule′ := Rule∩{rule : PileRule}

The relaxing operation ∪ works similarly, but in the reverse. So the expr construct could

be derived by any of the restricted expression constructs above. For example:

expr := num_expr∪ (→Value)

Similarly, Rule can be derived from Rule′ as:

Rule := Rule′∪{rule : RuleExpr}

As discussed, restricting creates subtypes and relaxing creates supertypes. On its own,

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 85

the completeness of a language is closed under the restriction operation. That is, if a lan-

guage is complete, then using restriction on one of the language constructs yields another

language that is also complete. This is due to the fact that the construct being restricted has

to be reachable from the root for the original language to be complete, and restriction creates

a subtype which creates an indirect reference between the original and the new construct,

which means the root construct also reaches the new construct.

On the other hand, a complete language is never closed under the relaxing operator. The

relaxing operator (almost) always creates a new construct that is neither directly referenced

(as it is new, none of the existing constructs could possibly reference it) nor an indirect

reference, as it is a supertype of an existing construct, not a subtype. The only exception

is when the construct being relaxed is a root construct that already references all the other

constructs. In this case, the new construct can serve as the new root that can reach all other

roots, as the original root is reachable through indirect reference and all other constructs are

reachable from there. In some other cases it might be possible to declare the new construct a

subtype of some other construct already in the language (thus completing the language), but

in general there needs to either be a new construct created that is the subtype of an existing

construct that directly or indirectly references the relaxed construct, or the constructs need

to be relaxed all the way to the root.

4.5.3 Combining and deleting

Combination ⊎ is straightforward. If Lint is a language for integer expressions, Lbool is a

language for boolean expression then

Lint ⊎Lbool

is a language containing integer and boolean expressions. Note that though they are both ex-

pression languages and they both contain constructs that are derived from the expr construct,

the combine operator does not generate consistent (and therefore not complete) languages.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 86

To make the output of the combine operator consistent, at least one construct from one of

the languages has to be declared equal or a supertype to a construct from the other lan-

guage from which all other constructs in that language can be reached. Alternatively, a new

construct could be introduced that fulfils the same purpose. For example:

Lint ⊎Lbool : exprint = exprbool

creates a consistent language if exprint is a construct in the Lint that can reach all the con-

structs in Lint and exprbool is a construct in the Lbool that can reach all the constructs in

Lbool .

The delete operator ⊖ is straightforward in its use as well.

Lint ⊖ sub

would for instance create a new integer expression language without a sub operator from

the integer expression language declared above. Complete languages are not closed under

the delete operator. The delete operator does create a complete language from a complete

language if the construct being deleted is only ever indirectly referenced and does not refer-

ence any construct that is not reachable from the root through any other construct other than

the one being deleted. If the construct being deleted is directly referenced, then the resulting

language references a non-existing construct. If there is a construct that is only reachable

through the construct being deleted, then the resulting language ends up with a construct

that is no longer reachable from the root.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 87

4.5.4 Translation

The expression language is found in most languages, and can therefore often simply be

translated to itself. For example, the sum construct

sum := {lhs : expr, rhs : expr}→Value

can have a translation rule like

sum := (sum $lhs $rhs)

Here the left-hand side of the ‘:=’ operator identifies the name of the construct to be

translated, and the right-hand side gives the output to be generated. The right-hand side is

here in the form of an s-expression, where the members of the construct being translated

are represented with a $-sign. Note that the ‘sum’ on the left-hand side refers to the sum

construct in the input language, whereas the sum on the right-hand side refers to the sum

construct in the output language. To generate the output, each node with a $ needs to be

translated using the appropriate translation rules. The exact way in which this is achieved is

beyond the discussion in this chapter, but will be discussed in more detail in chapter 6.

For the patience example, we might have translation rules like

Rule′ := (If ($In $pilegroup $pile) $rule))

PileRule := (If ($Empty $pile) (Return $empty) (Return $else)))

to translate move rules into some other language. Here we assume that the output language

has an ‘If’ construct and that $ nodes get translated using an appropriate translation rules. In

this example, $In, $Empty, and $pile refers to the In, Empty, and pile constructs discussed

above, and $pilegroup, $rule, $empty, and $else refers to the members of the Rule′ construct.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 88

The In and Empty constructs might be translated as

In := (Call (Member $pilegroup "contains") $pile))

Empty := (Call (Member $pile "isEmpty"))

if the output language contains the constructs Call (which calls a function with zero

or more arguments) and Member (which accesses a member of an object, in these cases,

methods).

4.6 Limitations and solutions

When translating from one language to another, type errors may occur. It is not possible

to completely avoid type-errors in composition, as type systems are non-local and it is thus

not possible to compose without a possibility of error (Eden et al., 2006). It is in some

cases possible to reduce the chances of errors occurring. Our approach allows for arbitrary

‘side-effects’ of language constructs, which can be used to describe typing behaviour. For

example, some language constructs might have the effect of introducing a symbol into the

global scope, or the local scope, or in the context of the children of the language construct.

This would allow for type-checking the input language. Then we could introduce translation

rules for these side-effects, and construct them in such a way that if the input language type-

checks correctly, then so will the output language. This wouldn’t cover all cases, but would

help in many common cases. This could be done for many different typing cases, where

side-effects would be introduced in the input language, a type-checker to check that those

side-effects are used correctly would also have to be constructed, and finally translation rules

that translates the side-effects from input to output language would have to be written.

As mentioned, this work does not cover the composition and translation of side-effects.

Future work to cover this would allow for more complex translation of languages, as our

framework as presently defined assumes that the side-effects in the input language can sim-

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 89

ply be copied over to the output language. As side-effects are the way we refer to (non-

language) domain types, composition of side-effects would probably also require a frame-

work for composing domain types. There are various approaches to domain composition

but we would probably choose something similar to our approach for language definitions,

as we have stated, language is a domain, so language composition should be viewable as a

subset of domain composition.

Beyond side-effects and domain composition, we could also introduce translation rule

composition. As briefly discussed in previous sections, there are cases where with the cur-

rent framework we have to rewrite a translation rule completely, even when we could reuse

an existing rule for parts of the new rule. This is, for example, the case when we have a

new supertype rule created using the relaxing operation. With translation composition, we

could compose a new translation rule from the existing rule and then add any additional

rules required to handle the supertype construct.

We mention interpreters and compilers as the primary use for this framework, but with

some modifications it could apply to pre-processor languages as well. If we have a DSL L0

and a host language Lh, then a pre-processor language can be constructed as L1 = L0 ⊎Lh,

potentially with some additional ‘glue’ constructs that combines them together. It should

then be possible to add the translation rules for L0 to translation rules that translates Lh to

itself, and that should create a compiler that pre-processes L1 into Lh. A similar argument

can be done for embedded DSLs, though in that case it would simply be using Lh, which

does not seem meaningful.

CHAPTER 4. BASIC FRAMEWORK FOR LANGUAGE COMPOSITION 90

4.7 Conclusion

In this chapter we have presented a framework for composing languages from existing lan-

guages and shown how composition affects the translation of the composed language into

other languages. To do this, we have discussed the differences between domain and lan-

guages, concrete syntax and abstract syntax, abstract syntax types as well as translations.

We have also discussed other similar approaches and how ours differs from them.

In discussing the composition framework, we also showed how concepts such as con-

sistent languages and language fragments play a role in language composition and ensure

that new languages can be translated into existing executable languages. We also showed

how meta-languages can be defined within our approach as languages that, when executed,

produces a language definition as output.

We have also discussed some of the complications in our approach, such as non-local

type-references. While our approach can be shown to translate into structurally correct

ASTs, we cannot guarantee that the output type-checks correctly. An approach for improv-

ing the translation of type-rules within our framework is a possible future addition. Similar

work has already been done in Lorenzen and Erdweg (2016), though they use lambda cal-

culus for their approach and our framework is designed around a procedural paradigm and

it is not clear how well lambda calculus would fit into our framework.

Chapter 5

Composing Patience Games

5.1 Introduction

There has been a lot of research into how Domain-Specific Languages (DSLs) can improve

the development process by providing an easier way to specify solutions within a specific

problem domain Mernik et al. (2005); Fowler (2010); Kosar et al. (2016).

Some of the common reasons given for why using DSLs improve development are that

DSLs makes the code easier to understand, they reduce the development time, and makes it

easier to write correct programs. (Kosar et al., 2009)

A common problem with adoption of DSLs is that implementing a new DSL takes a lot

of time and effort (Cazzola and Vacchi, 2016). In chapter 4 we have presented a technique

for making it easier to develop new DSLs from existing languages.

We have discussed how our composition technique can be used to create a language for

describing composition and translation in chapter 6 and we have discussed how patience

games can be used as a model for discussing DSL development techniques in chapter 3. We

now want to show that our composition techniques work on other domains than language

creation, and so we will use our composition techniques to create a DSL for the patience

domain.

The main thing we want to show with this is that languages other than meta-languages

91

CHAPTER 5. COMPOSING PATIENCE GAMES 92

can be created using our technique. This will include translation of our DSL both into other

DSLs and into a General Purpose Programming Language (GPL) (Java). We also talk about

how our technique can be used to manage abstraction level. That is, we will show how to

increase and decrease the abstraction level of a DSL, which is useful if there already exists

a language that either works on too high a level, or a language that is too low level for the

required use case. We show this by showing how a DSL for describing card games in general

can be made into a sub-language, specific to the patience domain. We also show how one

can go in the other direction, creating a more general language from a specific one.

How can we evaluate whether our technique is suited for patience games?

• Based on functionality of the end product (i.e. is the constructed DSL able to actually

define patience games)

• based on the amount of code needed to turn the DSL into a GPL

• interfacing with GPL code

– Amount of glue code required

• Different levels of abstraction in the DSL

– Range of patience games that can be implemented vs. code required for imple-

mentation

Of these, we only use the amount of code needed to turn the DSL into a GPL as a

measure, as it is the most straightforward one to use. We count the code by counting the

amount of Abstract Syntax Trees (ASTs) that are needed to specify the translation between

DSL and GPL. Without modification, this method is not suitable to reason about the differ-

ence between a DSL implementation of patience and a GPL implementation. As our goal

is to compare different ways of implementing DSL translation rules, not whether the DSL

approach is better than a GPL only approach, it is not within the scope of this study. For

comparisons between DSL vs. GPL implementations on a variety of domains, see (Kosar

et al., 2010, 2012).

CHAPTER 5. COMPOSING PATIENCE GAMES 93

One of the things we can do is provide translations to an intermediate language. The

reasons one might want to do this is to make the translation rules simpler by not having to

translate as far down the abstraction pyramid. It also decouples the translations from the

final implementation language. That is, if the intermediate language has translation rules for

multiple implementation languages, we can translate down to any of those languages with

only translation rules for the intermediate language. We compare this approach to straight

translation into a GPL using the above-mentioned method.

It should be noted that even if we already have definitions from our DSL to the GPL, we

unfortunately need to rewrite all the translation rules if we employ an intermediate language.

There is also no guarantee that the intermediate language will interface with the same code-

base that the DSL to the GPL translations interfaced with. As such, the introduction of

intermediate languages should only be undertaken if there are long-term advantages to it (as

there are no short-term ones, potential long term discussed above). This also implies that

there is an advantage early on to recognise and introduce adequate intermediate languages.

This gives all the long term advantages of using intermediate languages without the short-

term penalty of having to rewrite the rules.

Some of the things one might look for in an intermediate language are:

• Platform independence, that is, a language that has translation rules for multiple GPL

languages.

• Compatibility with other DSLs, that is, there are several other DSLs that have local-

only translations to the intermediate language.

• Analysability, that is, the intermediate language has some properties that make it easy

to analyse.

CHAPTER 5. COMPOSING PATIENCE GAMES 94

5.2 Background

As discussed in chapter 3, patience games have some properties that make them an inter-

esting case study for DSL development purposes. We will focus on defining a DSL for

specifying (a subset of) patience games and show how these can be translated to a GPL as

well as a toy game description language.

There exists some Game Description Languages (like (Love et al., 2008)) as well as

Card Game Description Language (like (Font et al., 2013)), but we will use a simpler toy

language for the examples provided in this chapter. This is both to simplify the translation

rules and due to all of the existing languages being designed for two or more player games.

To the best of our knowledge, there are no existing patience DSLs, not in the published

literature nor as part of any existing patience games suite. The closest thing are suites such

as Aisleriot (Gnome, n.d.) which uses Scheme to specify the games while the suite itself is

written in C and PySol (PySolFC, n.d.), which provides a GUI wizard for specifying custom

rules to games (though it is very restrictive).

The patience framework we are going to use was described in chapter 3. It consists of all

the classes necessary to describe the domain of patience. The rules for particular patience

games are implemented as sub-classes to an abstract class PatienceGame. Each type of rule

(move rules, win condition, etc) are implemented as methods in the PatienceGame class.

Thus, to write a DSL for patience games using this framework means writing a language

that can be translated into a subclass of PatienceGame.

We will also discuss a theoretical game framework for general games to show how pa-

tience games could be implemented as a special case of a general game. We do not provide

implementation for this, though, as a general game suite would be too complex and out of

scope to implement for this work.

We will use the DSL composition framework described in chapter 4 to implement the

patience DSL.

CHAPTER 5. COMPOSING PATIENCE GAMES 95

5.3 Patience

Gibson (1993) defines patience games as “... any card game played by one person who

usually deals out cards and then assembles them in special groups according to established

rules.”.

In general, patience games tend to consist of one or more decks, and groups of piles,

such as foundation, tableau, waste and reserves. In some games, the deck is completely

dealt out at the beginning of the game, in other games the player is able to deal from the

deck as the game proceeds.

We go through patience in more detail in chapter 3 and will here only sum up the differ-

ent concepts:

• Deck – one or more card decks from which cards are dealt to one of the pile groups

• Card – a single card, either in the deck or a pile

• Pile – a single pile of cards, belonging to one of the pile groups

• Pile group – a group of piles with distinct rules for how cards can be placed

– Tableau – where cards are often initially dealt

– Foundation – where cards are supposed to be moved in the right order to win the

game

– Waste – when present, cards from the deck is dealt to it

– Reserve – a place to temporary store cards to open up new moves on the tableau

– Discard pile – place to store cards that are no longer in play

• Build – the rules for how cards can be placed on top of other cards in a given pile

group

– By-Value – cards are built by their value, ascending or descending

CHAPTER 5. COMPOSING PATIENCE GAMES 96

Concept Properties Examples
card value, suit, colour 2, Ace, King; diamonds, clubs; red,

black
pile in(), top(), bottom() in(card, pile); card == pile.top()

pilegroup in(), pile_at(), tableau, foundation,
waste

in(pile, foundation), in(card,
tableau.pile_at(1))

deck deal_to(), shuffle(), fill_from() deck.deal_to(waste), deck.shuffle(),
deck.fill_from(waste)

Table 5.1: Concepts in our patience implementation

– By-Suit – cards are built by their suit (hearts, diamonds, clubs, spades)

– By-Colour – cards are built by their colour (red, black)

– By-Alternating-Colour – cards are built by alternating colours

– Combination of above

5.4 Patience Implementation

To help the discussion on translation from a DSL to a GPL, we will quickly consider how

a patience suite (that is, a program that allows the user to play several different patience

games within the same program) could be implemented.

Patience games consists of cards, piles, groups of piles, decks and rules for how these

interact. A quick rundown of these can be found in table 5.1.

The rules describe how cards are related to the (groups of) piles and decks, as well as

what the win condition is etc. The full set of operations can be seen in table 5.2.

Our patience suite consists of a couple of core classes: one abstract class that defines the

rules of individual games, a view class that displays the game, as well as control code to let

the user interact with the game. Of these, only the class that defines the rules is relevant for

the creation of the DSL; The view and controller are the same for all patience games, and

individual games are independent of the working of them.

Here we define the type of entities that exist in the domain of patience games, as well as

CHAPTER 5. COMPOSING PATIENCE GAMES 97

Operation Description
canMove(Card, Pile) Can a card or a pile be moved on top of another pile?
canMove(Pile, Pile)

hasWon() Is the game in a win-state?
deal() Deal a card, taking a card/cards of the deck and putting it

on relevant piles.
redeal() If available, reset the deck with unused cards.

initialise() Initialise the game, dealing the first cards to the correct piles

Table 5.2: Methods that a Patience Language needs to implement in our model.

Figure 5.1: UML diagram describing the main parts of a simple patience suite. Some sim-
plifications have been made to better fit the diagram.

CHAPTER 5. COMPOSING PATIENCE GAMES 98

examine the relationships between the entities. In figure 5.1 we show a very simple design

for a patience suite described in a UML class diagram. It consists of cards, piles, groups of

piles, and decks, as well as an abstract patience game class and a view class.

In figure 5.2, we show the domain for the patience DSL, including some concrete strate-

gies (Klondike, Golf, and Yukon). We have removed the view class, as it does not affect the

implementation of the strategies and thus is not needed in the DSL.

The domain consists of cards, piles, group of piles and deck(s) of cards. Cards have suit

and value, as well as colour (which is completely dependent on suit). The suits are hearts,

diamonds, clubs and spades, and the colours are red (hearts, diamonds) and black (clubs,

spades). Piles are collections of cards. They support adding one or more cards on top and

removing one or more cards from the top. Groups of piles are collections of piles. Their

purpose is to allow specification of different rules for different sets of piles. Decks of cards

support dealing a card for the top, shuffling, and repopulating the deck from a pile.

Finally, there is the class defining the rules. Each rule is implemented as an abstract

method, to signify that individual patience games need to provide their own definition for

these rules. The rules that the class should define are: rules for how a card can be moved on

to a pile, moving a group of cards onto a pile, whether the game is in a win-state, the game’s

initial setup, dealing new cards, and what to do when the deck is empty (i.e. how to do a

re-deal). We ignore having a rule for a losing state, as it is in general quite hard to compute

whether a given game is in a losing state or not.

For the game Klondike, the canMove(card, pile) function would be implemented as

shown in listing 4.

If the pile is part of the foundation, then if it is empty, the card is movable if it is a King.

If the pile is not empty, then the card is movable if the value of the card is one less than the

top card on the pile, and the colour of the card is different to the colour of the top card on the

pile. For the tableau, the rule is similar, except that empty piles accept Aces, and non-empty

requires the card value to be one more than the top of the pile value, and for the suit to be

CHAPTER 5. COMPOSING PATIENCE GAMES 99

Figure 5.2: UML diagram describing the domain that is relevant for our DSL, including
some example patience PF members (Klondike, Golf, and Yukon)

the same. There are no other piles that can be moved to.

The canMovePile(from, to) is similar, except all the references to card would be

replaced with from.bottom().

The hasWon() method for Klondike would look something like what is shown in listing

5.

If any pile does not have a King on the top, then the game is not in a win-condition, else

it is. As cards can only be moved onto the foundation if they follow the correct order, we do

not need to check if the final piles are correctly ordered, as they cannot be anything else.

CHAPTER 5. COMPOSING PATIENCE GAMES 100

Listing 4 Rough Python code for Klondike (partial) canMove function

def canMove (card: Card , pile: Pile):
if pile in foundation :

if pile. is_empty ():
return card.value == Ace

else:
return card.value == pile.top (). value + 1 and

card.suit == pile.top (). suit

if pile in tableau :
if pile. is_empty ():

return card.value == King
else:

return card.value == pile.top (). value - 1 and
card.colour != pile.top (). colour

return False

Listing 5 Rough Python code for Klondike hasWon function

def hasWon ():
for pile in foundation :

if pile.top (). value != King then
return False

return True

CHAPTER 5. COMPOSING PATIENCE GAMES 101

5.5 Abstract Language Model

We presented our framework for composition in chapter 4. Here we will summarise how it

works. We model abstract language as a set of constructs that are either labelled constructs,

list constructs or structureless/atomic constructs. How we write them are shown in equations

5.1, 5.2, and 5.3 respectively.

Name := {child1 : Type1, ...childN : TypeN} −→ Side-effect (5.1)

Name := {Type} −→ Side-effect (5.2)

Name := ε −→ Side-effect (5.3)

The labelled constructs represent constructs with named members, list-constructs repre-

sents lists, where the type specifies the kind of constructs the list-construct can contain. The

structureless constructs represent leaf-nodes that contain no additional information except

their name.

In addition to the above, the constructs can also specify side-effects of their execution,

that is, they can specify what happens when they execute. We are in particular interested

in the evaluates-to side-effect. This specifies that a particular construct, when executed,

produces an object of the specified type.

To construct our patience DSL we use language composition. The composition opera-

tions we will use are introduce :=, restrict ∩, relax ∪ , delete ⊖, and combine ⊎.

We also need to consider how translation rules behave. For example, when can we

substitute one translation rule for another, and how do construct subtypes fit in with this?

A translation rule is essentially a function T (c : C1) → C2, where C1 is a construct in

CHAPTER 5. COMPOSING PATIENCE GAMES 102

our input language and C2 is a construct in our output language. Thus, translation rules

behave like functions in the case of subtyping. So for T1(c : C1) → C2 to be a subtype of

T2(d : D1) → D2, C1 (the covariant) needs to be a supertype (or same type) of D1 and C2

(the variant) needs to be a subtype (or same type) of D2.

So, T1 can replace T2 if they both translate to the same type, and T1 takes a construct

that is a supertype of the construct taken by T2. This means that we can reuse the translation

rules of supertype constructs when we create a subtype construct, as the translation rule for

the supertype construct is a subtype of the translation rule for the subtype construct.

5.6 The language

Let us now discuss a language for describing patience games for the patience suite described

above. To be used with the patience suite, the language needs to describe subclasses to

PatienceGame.

Since we use the DSL composition framework described in chapter 4, we are going to

be describing translation rules that translate sentences in the patience DSL to methods in the

PatienceGame subclass. We are also going to discuss how the other composition techniques

can be used to increase reuse.

As shown in listing 6, the language consists of rules for moving cards, moving piles, win

condition how to deal cards, how to redeal cards (resetting the deck), and the initial setup.

The move rules can be specified by stating the pile group they apply to, the rule for

moving a card to an empty pile in the given pile group and the rule for moving a card to a

non-empty pile in the pile group. Rules for moving to piles are similar, except instead of a

card, it is a pile that gets moved.

The methods that will implement these in the patience framework are methods taking a

Card and a Pile as input and returning a boolean value, and a method taking two Pile objects

and returning a boolean respectively.

CHAPTER 5. COMPOSING PATIENCE GAMES 103

Listing 6 Patience DSL constructs

Patience := {
name: ID ,
moveRules : { MoveRule },
movePileRules : { MoveRule },
winCondition : WinExpr ,
deal: DealExpr ,
redeal: RedealExpr ,
init: InitExpr ,
pilegroups : { PileGroup }

}
PileGroup := {name: PileGroupId , piles: INT}
MoveRule := {

pile: PileID ,
emptyCond : PGBool ,
elseCond : PGBool

}
WinExpr := PGBool
DealExpr := {to: { PileGroupId }}
RedealExpr := {from: { PileGroupId }}
InitExpr := { InitPileExpr }
InitPileExpr := {

piles: PileGroupId ,
first_pile : INT ,
last_pile : INT

}

FlipExpr := RedealExpr ∩ {}
ShuffleExpr := RedealExpr ∩ {}

The win condition is specified as a condition on each pile in one or more of the pile

groups. Each condition is specified given a pile in the pile group as well as the index of

that pile. The win condition is implemented as a method that takes no input and returns a

boolean in the framework,

The deal rule specifies where to deal the cards from the deck to. The redeal rule specifies

from which pile group the deck should be restocked from, and the initial setup rule specifies

how the cards should be dealt initially. They are all implemented as void methods with no

arguments in the framework, so the DSL rules can be translated to a method with arbitrary

CHAPTER 5. COMPOSING PATIENCE GAMES 104

code, which does not return anything.

Further to this, the language also specifies the available pile groups and how many piles

are in each group, as shown in listing 7.

Listing 7 Additional Patience DSL constructs

CardExpr := Any → Card
PileExpr := Any → Pile
PGBool := Any → Bool
PGExpr := PGBool
PGCmp := {lhs: PGAttrExpr , rhs: PGAttrExpr }→ Bool
PGInPG := {lhs: PileExpr , rhs: PileGroupId }→ Bool
PGInP := {lhs: CardExpr , rhs: PileExpr }→ Bool
PGAttr := {object: Any , attr: ID} → AnyType

PileAttr := PGAttr ∩ {object: PileExpr }
CardAttr := PGAttr ∩ {object: CardExpr }
PGAnd : PGBool ∩ {lhs: PGBool , rhs: PGBool}
PGOr : PGBool ∩ {lhs: PGBool , rhs: PGBool}
PGNot : PGBool ∩ {value: PGBool}
PGAttrExpr := IntExpr ∩ {lhs: PGAttr , rhs: PGAttr}
PGEq : PGCmp ∩ {}
...

At first this looks like it is going to need a lot of translation rules, but with composi-

tion we can reuse most of the translation rules. With a couple of exception, they can all be

reused from a standard expression languages. For example, the PGBool expression can be

composed from a standard library for boolean expression using restriction. The subtypes of

PGBool (PGAnd, PGOr, PGNot) can be composed from standard And, Or, Not expressions.

Subtypes of PGCmp, representing comparison operators can be constructed similarly, as can

subtypes of PGAttr, represented by the ‘dot’ operator in most GPLs. Our framework cur-

rently does not have any way of specifying that one construct is a subtype of another, so

instead we use the restriction operator ∩ with an empty construct to specify subtypes, as is

seen in some of the definitions in Listings 6 and 7.

The constructs that might not be possible to are the PGInPg and PGInP, representing

checking if a pile is in a pilegroup and if a card is in a pile respectively. Since this operation

CHAPTER 5. COMPOSING PATIENCE GAMES 105

would often involve calling a method on a collection (such as ‘contains’ in Java), it would

not be possible to reuse a translation rule as calls have a completely different structure to the

PGIn* constructs. In languages such as Python, which does have a separate ‘in’ operator,

these constructs could reuse its translation rule.

We use PGBool here to represent boolean expressions in the patience game. We could

also have used BoolExpr to represent general boolean expressions, but we decided to use to

use PGBool to highlight that the constructs specifically represent boolean expressions that

work on cards, piles and pile groups.

5.6.1 Card Games

Since patience games are a type of card game, we will consider what a general card game

DSL might look like. Since card games are very heterogeneous, we will leave the language

quite general, and not have any specific constructs in it .

Listing 8 Card game DSL constructs

CardGame := {
name: ID ,
players : NUM ,
moveRules : { MoveRule },
winCondition : Any → Bool ,
deal: DealExpr ,
init: InitExpr ,

}
MoveRule := Any → Bool
DealExpr := Any
InitExpr := Any

A card game, much like a patience game, consists of rules defining valid moves, what

the win condition is, how to deal cards, and the initial setup. Unlike patience, general card

games also have to deal with multiple players (Patience games also technically have players,

but it always only one player, so there is no reason to keep track of players in patience). As

games are very heterogeneous, we cannot provide any specific constructs for implementing

CHAPTER 5. COMPOSING PATIENCE GAMES 106

dealing, moving, win conditions and initial setup rules. We have to define these as possibly

having any implementation. Specific card game families can then restrict these to something

that is specific to that card game family’s domain.

5.6.2 Cards

Cards can be viewed as their own domain, outside of the games that use them. The main

benefit in our case of separating them is that it allows us to separate two slightly different

concerns, namely the rules from what the rules operate on. Arguably, the card language

specified here is inherently part of the card game language discussed above, as all card

games inevitably needs to specify operations on cards. However, it should be noted that

as the two languages are currently defined, combining them would result in an inconsistent

language, as neither the card nor the card game language refer to each other as currently

defined.

The card language consists of ways to specify individual cards, decks of cards and op-

erations on a deck (such as deal), Piles (and operations, like top, bottom), Groups of piles

(that is, a set of piles that are closely related somehow). Card expressions, pile expressions,

group expressions and deck expressions are small expression languages that consist of all

the possible operations on the respective constructs. As mentioned in section 5.6, our frame-

work does have a way of specifying subtypes other than through restrictions. This is seen in

the last eight definitions in Listing 9.

5.6.3 Games

We can go one step further, and consider a general (turn based) game DSL, that describe

games in general. This is inevitably even more heterogeneous than card games, and thus

even less specific construct can exist.

In our language, shown in listing 10, general games consist of players, rules for what

players can do during their turn, rules for win condition and rules for how the game is

CHAPTER 5. COMPOSING PATIENCE GAMES 107

Listing 9 Card DSL constructs

Card := {kind: Kind , value: Value}
Kind := Any
Value := NUM
Deck := {Card}
Pile := {Card}
Group := {Pile}
CardExpr := Any
CardKindExpr := CardExpr ∩→ Kind
CardValueExpr := CardExpr ∩→ Value
PileExpr := Any
PileCardExpr := PileExpr ∩→ Card
GroupExpr := Any
GroupPileExpr := GroupExpr ∩→ Pile
DeckExpr := Any
DeckCardExpr := DeckExpr ∩→ Card
Top := PileExpr ∩ {pile: Pile}
Bottom := PileExpr ∩ {pile: Pile}

Hearts := Kind ∩ {}
Diamonds := Kind ∩ {}
Clubs := Kind ∩ {}
Spades := Kind ∩ {}
Ace := Value ∩ {}
King := Value ∩ {}
Queen := Value ∩ {}
Jack := Value ∩ {}

initially setup. These constructs that one would expect in all types of games, without any

constructs for specific games. All specific expression constructs have to be composed in.

Note that the Game, Card Game and Patience Game languages are intentionally con-

structed to resemble each other, roughly how they would be created if they were restricted

or relaxed from each other. This is to create an ideal situation for composition, though in

the real world it would probably not be feasible to implement the Game and Card Game

languages like this.

CHAPTER 5. COMPOSING PATIENCE GAMES 108

Listing 10 Game DSL constructs

Game := {
name: ID ,
players : NUM ,
moveRules : { MoveRule },
winCondition : Any → Bool ,
init: InitExpr ,

}
MoveRule := Any → Bool
InitExpr := Any

Translation method Number of ASTs in translation Number of Rules
Without reuse 247 29

With subtyping and reuse 228 20

Table 5.3: Number of ASTs and rules needed for various methods of translation to GPL.

5.7 Translation to Java

For translation to Java, we want to translate our DSL code into a class in Java that an existing

code base can use to represent the game in some form. We do not try to create a general

purpose translation that could be used for any code base. Instead, we describe one particular

way of implementing a patience suite in Java and then describe how we can provide a DSL

for describing patience games for that particular patience suite. This does mean that our

translation rules will only work for this one particular implementation, but modifying the

rules to fit other ways of implementing a patience suite should not be too difficult. To reduce

the chance of designing the patience suite to the needs of the DSL, the Java code was written

before the DSL was designed.

In table 5.3 we show how many AST nodes and translation rules are required to specify

the translation from the patience DSL to Java. As can be seen, the number of ASTs is fairly

close, while the number of rules is reduced by almost a third. This is due to the fact that a lot

of the ASTs in non-reusable rules are used for boilerplate code, whereas the reusable rules

often requires only a handful of ASTs. Almost a half of the ASTs appears in the translation

CHAPTER 5. COMPOSING PATIENCE GAMES 109

rule for the root AST “Patience".

5.8 Translation to DSL

Though there does exist some Game Description Languages (Love et al., 2008) as well as

Card Game Description Languages (Font et al., 2013), we will use our own toy card game

DSL and game DSL here for simplicity.

It is worth noting that the Patience DSL is not necessarily a subtype of the Card Game

DSL, which in turn is not necessarily a subtype of the Game DSL. It should be, at least

theoretically, possible to create such a relationship between the three DSLs, in which case

no extra translation rules would have to be written for the Card Game and Patience DSLs to

fully translate them.

It may make sense to not have subtype relationships between the DSLs, as it constrains

what can be expressed in the Card Game and Patience DSL, it likely requires more effort

to ensure everything that needs to be expressible is expressible, and different translations

might be needed regardless (as is shown in the next section).

As the card game DSL and the general DSL both only have one construct that does not

reference the Any construct, there is only one possible construct whose translation rule can

be reused (as constructs containing Any cannot be instantiated nor have translation rules as-

sociated with them). However, the card DSL does have several constructs whose translation

rules can be reused. Thus, the card game DSL (when combined with the card DSL) does

offer reuse beyond what translating straight to Java does, whereas the game DSL does not.

This is a consequence of how we have chosen to model the game and card game DSLs and

it could be possible to find constructs that can be instantiated both in general games and in

patience games, we just could not come up with any.

CHAPTER 5. COMPOSING PATIENCE GAMES 110

5.8.1 Relation with existing code-base

In order for the DSL to be executable, it will have to be translated to an executable language.

So that the executable language can interface with the code generated from the DSL, it is

convenient to have abstract classes in the code-base that the DSL generate subclasses for

(Kihlman, 2015).

When we compose our patience DSL from other DSLs, we get several different options

for how to translate the language to its final executable form. In our example we assume we

have a patience language composed from a card game language, which in turn is composed

from a game language.

In this case we might have constructed our code-base so that we have a base Game class,

which is extended by a CardGame class, which is extended by the PatienceGame class. In

this case, the DSLs can be translated to the relevant class, as shown in figure 5.3. This is a

structure we might get if we know beforehand that we are going to employ a DSL for each

of the different domains and so the code-base is structured to take that into account.

It is also possible that there is no relation between the different classes, and that each

DSL gets translated to a completely separate class in potentially separate code-bases. This

is shown in figure 5.4. This is something that might happen if each code-base is developed

separately, and only afterwards DSLs are added and composed from each other.

Lastly, we might only use the Game class, and have all the other DSLs generate code

for that class. This is shown in figure 5.5. This might happen if the Game class is sufficient

for card game programs and patience game programs not to need specialised versions of the

class.

CHAPTER 5. COMPOSING PATIENCE GAMES 111

Figure 5.3: DSL hierarchy for games, card games and patience games being translated to an
inheritance hierarchy of GPL classes.

Figure 5.4: DSL hierarchy for games, card games and patience games being translated to
independent GPL classes.

CHAPTER 5. COMPOSING PATIENCE GAMES 112

5.9 Discussion

In this chapter, we have designed the DSLs to fit into a particular model for how the DSLs

will be run eventually. We have assumed that a particular GPL Application Program Inter-

face (API) exists that we will translate our DSL into. This has informed some of the design

decisions we have made for our DSL definitions. It would be interesting to see what dif-

ference it would make to how we define our DSLs if we had a completely different API,

or if we instead of running the DSL code wanted to analyse it. Both in terms of the actual

structure of the DSL and how it would affect translation rules.

CHAPTER 5. COMPOSING PATIENCE GAMES 113

Figure 5.5: DSL hierarchy for games, card games and patience games being translated to a
single GPL class.

Chapter 6

A Self-Describing Domain-Specific

Language for Translations

6.1 Introduction

This chapter will present the implementation of a translation language that translates the

abstract syntax of a source language to the abstract syntax of a host language and discuss the

interaction between Domain-Specific Language (DSL) composition and translation between

languages. We will also show how this DSL can be used to describe the translation of itself

into a General Purpose Programming Language (GPL), thus showing it is self-describing.

DSLs are used, among other reasons, to make it easier and quicker to program by having

languages that operates on a higher level than regular GPLs (Kosar et al., 2016). Creating

DSLs is complicated though and whether it makes sense to employ a DSL in any particular

situation depends on the amount of investment into development and maintenance of the

DSL which is required (Walter et al., 2014; Chodarev and Kollar, 2016). One way of reduc-

ing the development and maintenance is by using DSL composition (Erdweg et al., 2012;

Völter, 2013b).

114

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 115

Mernik et al. (2005) identifies seven different ways of implementing DSLs:

• interpreter

• compiler

• preprocessor

• embedding

• extensible compiler/interpreter

• Commercial Off-The-Shelf (COTS)

• hybrid

The first two are the usual meanings within computer science, the DSL is either interpreted

or compiled using a custom-made interpreter or compiler. Embedded DSLs (sometimes

called EDSLs or DSELs) are embedded into GPLs, often by utilising reflection and other

advanced features of high-level GPLs. Preprocessor DSLs are similar, in that the DSL

code is combined with host language code, but requires an external program to preprocess

the files, turning the DSL code into host language code. Extensible compiler/interpreter are

similar to compiler and interpreter, except they use existing compilers/interpreters that allow

extensions to be added to the compiler/interpreter. COTS are pre-existing tools for creating

DSLs. Hybrid approaches are combinations of the above. These classifications are fairly

common in the literature and were used among other places as in the systematic mapping

study presented in (Kosar et al., 2016).

In (Fowler, 2010) on the other hand, DSL implementation is divided into external, in-

ternal and language workbench, depending on whether they are implemented to be read

from external files, embedded in GPL code, or created using a special toolkit for language

creation. In this classification, Mernik et al.’s embedded and preprocessor DSLs would

be embedded languages in Fowler’s classifications. The (extensible) Compiler/interpreter

would usually be classified as external in Fowler’s classifications and COTS would likely be

classified as language workbench. The hybrid classification in Mernik et al.’s classifications

does not really map to anything specific in Fowler’s classifications.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 116

We think the work covered in this chapter would most likely be useful as part of compil-

er/interpreter tools, which as mentioned Fowler would classify as external DSLs. From here

on, when we use embedded we use Fowler’s usage of the term, and we use external to refer

to compiled/interpreted DSLs. Thus, though there are good reasons to separate between

embedded (in Mernik et al.’s sense) and preprocessor languages, we group them together

like Fowler.

When a new DSL is created, there needs to be a way to execute the new language.

Embedded DSLs (besides preprocessor) are inherently executable as they use the language

they are embedded in to execute. External DSLs (as well as preprocessor DSLs) need to

have an interpreter or compiler that translates the instructions in the DSLs into instructions

that are executable.

In embedded DSLs, the language the DSL is embedded in is called the host language

(Mernik et al., 2005). We also use host language to describe a GPL that an external DSL is

translated to, or interpreted in.

There are many different ways of implementing external DSLs, from hand-coded inter-

preters/compilers to a variety of different tools (Erdweg et al., 2015). Our approach builds

on the idea of composition (Erdweg et al., 2012), but unlike Erdweg, whose system works

on concrete syntax, we compose on the abstract syntax.

Language composition consists of creating new languages by composing them from

existing languages. That is, a new language is created by reusing elements of existing lan-

guages. Several different ways of composing DSLs have been discussed in the literature,

(Erdweg et al., 2012; Völter, 2013a; Lakatos and Porubän, 2013; Chodarev et al., 2014;

Degueule et al., 2015) and we have discussed them in chapter 2, subsection 2.4.1.

In the previous chapter (chapter 4) we discuss a novel way of approaching composition.

We define a set of composition operators that work on abstract syntax types. The operations

are:

• Introduction

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 117

– Declaring the structure of a construct.

• Restriction of construct

– i.e. sub-typing an existing construct

• Relaxation of construct

– i.e. super-typing an existing construct

• Deletion

– i.e. creating new language by removing an existing construct

• Combination

– The union of two languages

• Translation

– Defining the meaning of a construct in terms of other constructs.

The two main questions we want to answer in this chapter are firstly: whether our frame-

work, in particular the translation part of our framework, is powerful enough to describe the

translations needed to define its own semantics using an arbitrary GPL as a host language;

and secondly to what degree we can reuse existing translation rules when we define our

translation language.

In this chapter, we will go through the translation operations in more detail, and show

how a translation program can be built using a translation DSL defined using itself by mak-

ing use of our composition framework. A DSL for translations used to define a translation

from itself to a GPL is a difficult concept. The language consists of rules for translating each

construct in the DSL into equivalent GPL code, but the DSL constructs it is translating are

the same constructs that are used to express the translation. This also provides us with an

executable GPL version of the translation DSL, which is capable of turning other translation

specifications written in the DSL into executable GPL versions. We use this to provide a

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 118

check on the correctness of the implementation, which we will discuss later. We will also

show how composition affects translation in the context of translator translation.

Our model of the abstract language consists of a set of abstract language constructs (or

abstract language types) that consist of a name, a structure and side-effects. The structure is

either a labelled set of member types, a list with a specified list type or without any structure.

We write this as Name := Structure→ Side-Effects. We show the different types of structure

in equation 6.1.

T := {n1 : T1...nn : Tn}→ S

T := {T1}→ S

T := ε → S

(6.1)

The side-effects consist of the scope (global, local, evaluation, internal) and a specifi-

cation of the actual side-effect (for example, introduce symbol of type T, evaluate to type

T).

The subtyping rules for lists are shown in equation 6.2 and for labelled constructs are

shown in equation 6.3. Structureless constructs are always equal in their structure(lessness),

and are therefore always (non-strict) subtypes of each other.

T1 ≤: T2
{T1} ≤: {T2} (6.2)

T1 ≤: U1...Tn ≤: Un
{n1 : T1...nn : Tn} ≤: {n1 : U1...nn : Un} (6.3)

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 119

We model translations as shown in equation 6.4.

E :=

{n1 : E...nn : E}→ H

{E}→ H

ε → H

T ′(s ∈ S)→ H

(6.4)

that is, we define a translation language type that evaluates to a host language type and

consists of either:

• a labelled construct where all member types are themselves a translation language

type which evaluates to a structure construct in the host language

• a list construct where the list type is a translation language type

• a structureless construct

• a set of translation functions from the source language to the host language

We have named the set of translation functions T ′ to distinguish from the general trans-

lation function T (S)→ H, which we implement using the translation language type.

We have shown in chapter 4, subsection 4.4.2, that the translation function T has the

property S1 ≤: S2 =⇒ T (S1) ≤: T (S2) when S1 ≤: S2 =⇒ T ′(S1) ≤: T ′(S2) is true (that

is, we showed that all but T ′ has this property, as T ′ is assumed to have this property).

In this chapter we introduce some additional functions for T ′, show that they satisfy the

property and then show how we can construct a DSL for translating other DSLs from a

source language to a host language and what happens when the translation specification for

that language is processed by itself. We also show how composition of the language can

facilitate reuse.

So far we have discussed the language types, but we will in this chapter also have to

use the instantiations of those types. The instantiation of a language type is an Abstract

Syntax Tree (AST). We will use a slightly modified s-expression to write these out. The

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 120

modification is to add label:value in each labelled construct, to be able to distinguish be-

tween labelled types and list types more easily. So an instantiation of a language type

Add := {lhs : Z,rhs : Z}→ Z could be written as (Add lhs:2 rhs:2).

6.2 Method

Our approach to constructing a translation language consists of composing a new language

out of three existing languages. The first language is a language consisting of general con-

structs to aid translation, which we make specific to specify source language translations

into the host language. The translation language consists of constructs for the general struc-

ture of the translation rules (list of rules, rules) as well as some operations that can be used

in the translation expression.

Now, the translation language we are constructing does not use the source and host

language directly. Instead, it uses constructs that are based on the source language and

constructs based on the host language. This is because we do not need to write sentences in

the source or host language when we specify translations, we write sentences that translate

from source to host language. The constructs derived from the source language we call S

and the constructs derived from the host language we call H. The construction of S and H is

fairly straightforward and we will discuss it in the next section.

In general terms, the translation language that translates input sentences in S to output

sentences in H can be viewed as the composition T ∩(S⊎H). That is, the general translation

language T is restricted to the combination of languages S and H. For short, we will write

this as TSH .

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 121

6.2.1 Construction of S and H

There are a couple of different ways we can view the construction of S from the source

language.

The naive way is to create the language such that it contains constructs for each type

in the source language that evaluates to the corresponding construct in the source language.

The attributes for each construct in the source language would be constructs in S that evalu-

ate to the value of that particular attribute.

The problem with this approach is that it completely decouples the constructs from their

attributes and would make it possible to refer to attributes of other constructs in translation

rules, which would make no sense and could not type-check.

Instead, we can construct S in such a way that every construct in S is a sub-type of the

Rule construct in T. The left-hand side would be the respective type in the source language.

The attributes would then be symbols in the right-hand side of the rule. An example of this

is shown in listing 14.

For example, imagine a source language consisting of arithmetic operations and num-

bers. So valid sentences might be (add lhs:1 rhs:2) and (sub lhs:2 rhs:5). Then

we have a host language consisting of push statements and call statements along with iden-

tifiers for functions to call as well as numbers that can be pushed. We then get an S that

consists of identifiers add, sub, as well as numbers. Assuming the parameters for add and

sub are lhs and rhs in both operations, we also get those as identifiers, referencing the

respective values provided to the arithmetic operations. For the language H we get the con-

struct push that evaluates to the push and call operation in the host language as well as

numbers that evaluate to themselves in the host language.

Both the source language and the host language use numbers (NUM) and they mean the

same thing in both languages, so the translation rule for NUM is just a rule that generates

the original number. For add and sub, more complicated translation rules are needed.

In listing 11 we show the source language and host language that we want to translate

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 122

Listing 11 Definition of source and host language. ID references any identifier, such as
‘add’ or ‘sub’.

Source := (ADD := {lhs:NUM , rhs:NUM }) ⊎
(SUB := {lhs:NUM , rhs:NUM }) ⊎
NUM

Host := (Push := {value:Any }) ⊎
(Call := { operator :ID) ⊎
NUM ⊎
ID

between. Note that the host language would normally have many more constructs, like

pop, and a construct for defining new operations. The ID construct represents all possible

identifiers and is meant to capture operations defined elsewhere. We only use these four

constructs here to avoid unnecessary complexity.

Listing 12 A simple definition of T, the general translation language. THost references
constructs that represent the output language (i.e. host) of the translation.

T := (TRules := {TRule}) ⊎
(TRule := {name: ID , rule: Texpr }) ⊎
(Texpr := Any → THost) ⊎
(THost := Any) ⊎
ID

In listing 12 we show a simple definition of the translation language T. We will discuss

some more constructs, but this is a minimal working definition of T. Note that THost is de-

fined simply as Any. We use THost to highlight that Texpr specifically evaluates to constructs

in the host language, without having to specify what the host language is. Without THost ,

Texpr could evaluate to any constructs, and thus we could not guarantee that the output of

the translation is a valid sentence in the host language. For this method to work, all host

constructs have to be declared to be subtypes of THost . For the rest of this chapter, we will

assume that this the case.

In listing 13 we show the definition of H for the host language defined in listing 11.

As can be seen, each construct in H is identical to the corresponding construct in the host

language, except that each child construct is replaced with a Texpr and they all evaluate to

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 123

Listing 13 Full listing of H for host language. Constructs that have Host are constructs from
the host language.

H := (Push := {value: Texpr}→PushHost) ⊎
(Call := { operator :Texpr}→CallHost)⊎
NUM := ε →NUMHost ⊎
ID := ε →IDHost

the corresponding construct in the host language.

Listing 14 Full listing of S for source language.

S := (ADD := TRule ∩ ({ name: ADD}
:rule−−→(lhs: NUM)
:rule−−→(rhs: NUM))) ⊎

(SUB := TRule ∩ ({ name:SUB}
:rule−−→(lhs: NUM)
:rule−−→(rhs: NUM))) ⊎

(NUM TRule ∩ {name: NUM })

In listing 14 we show the definition of S for the source language defined in listing 11.

Here we define our add, sub, and NUM constructs as restricted versions of the TRule construct,

with the name child set to a static value (ADD, SUB, and NUM respectively) and with the

symbols lhs and rhs being introduced into the rule child’s scope. Note that our framework

does not support restrictions to static values (as will be discussed later) but for now consider

the static values as being constructs that only consist of one possible instantiation (ADD, SUB

and NUM in our cases).

Another way to view S is not to have it as a language, but just instantiations of the TRules

for each construct in the source language. This would mean not using the static value, but it

would also mean that there is no relationship between the source language and the TRule and

we would not be able to introduce the members of the source construct into the rule child

of the TRule. In our implementation we are forced to use the latter approach because we are

not supporting the introduction of static values, but our discussion mostly assumes that the

former approach is used.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 124

Listing 15 Example translation in a Lisp-like syntax

(ADD rule :(List
(Push lhs)
(Push rhs)
(Call function :add)

)
)

An example of a translation is shown in listing 15, which translates code such as (Add 1

3) into (List (push 1) (push 4) (Call function:add)). That is, it turns pre-order

function calls into stack-machine/post-order calls.

6.2.2 The translation language

The language for specifying these translations can have its semantics defined in itself. That

is, one can specify the semantics of T in terms of H using T. This language would consist of

the composition T ∩ (T ⊎H) or TT H . The output of a translation can then itself be used to

translate the specification in T into a specification in H. Technically, we would actually be

using T ∩ (T ∩ (T1 ⊎H1)⊎H) or TTT1H1H as the source language is itself the full translation

language including source and host constructs (though it does not need to be the exact same

source and host languages). Note that no further composition or subscripting of T1 is neces-

sary; we only need to provide translations for the constructs in T1 and H1. For simplicity’s

sake, we will use T ∩ (T ⊎H) or TT H from here on, though, as this distinction only matters

when the translation (or host) language used to describe the translations is different from the

translation (or host) language being passed into the translator. In our case, the translation

language and host language remains the same to allow passing the definition of the translator

to itself to translate. As such, the distinction does not matter in this chapter.

For our translation language we are going to introduce some new constructs that are

subtypes of the Texpr construct. Most of them we are only going to go through quickly

here and only use the most important ones throughout the remainder of the chapter. The

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 125

important ones are:

• expand := {ast : ID}→ Host

• AST := {name : ID,children : {AST}}→ {Host}

The expand construct is used to expand an AST in the source language to a construct

in the host language. The AST construct is used to construct an AST in the host language.

Since the only identifiers that are available in our language are ones introduced by the side-

effect in S, the expand construct is essentially limited to expanding children of the construct

in S whose rule is currently being considered. It is important to note that the AST operator

produces code in the host language that represents an AST, but the AST it represents can

be arbitrary. This means that the host language must be able to represent ASTs somehow,

which should not be a problem for GPLs. If a translation to a host language Host is being

defined, then we need to check that each use of AST defines a valid AST in Host. Thus, the

name child of the AST construct is technically limited to only identifiers naming constructs

in Host, and the children must correspond to the child-types of the respective constructs

named by the name child. This is not something our framework can specify at this time, but

it is possible to define the translation rules so that this is still ensured.

Additionally, we have the following constructs that can make it easier to write the trans-

lation rules. Here S, B, D, refer to strings, booleans, and arbitrary domain types respectively.

• template := {ast : ID → Source, template : Texpr}→ Host

– a construct that takes an identifier for a source constructs and then uses the Texpr

to provide an alternative way of translating this particular source AST rather

than using the normal translation rule.

• concat := {Texpr →{Host}}→ {Host}

– a construct that takes a list of Texpr that evaluates to list types of Host constructs

and combines them together as one single list of Host constructs.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 126

• concat := {Texpr → S}→ S

– similar to above, but combines together a list of strings.

• name := ε → S

– a construct that evaluates to the name of the current source AST being translated.

• members := ε → set(S)

– a construct that evaluates to the names of the children of the current source AST

being translated. This only makes sense for labelled constructs.

• types := ε → set(D)

– a construct that evaluates to the types of the children of the current source AST

being translated. This only makes sense for labelled constructs.

• member_types := ε → set(tuple(S,D))

– a construct that evaluates to the names and types of the children of the current

source AST being translated. This only makes sense for labelled constructs.

• is_labelled := ε → B

– evaluates to true if the current AST being considered is a labelled construct.

• is_list := ε → B

– evaluates to true if the current AST being considered is a list construct.

• is_atom := ε → B

– evaluates to true if the current AST being considered is a structureless construct.

• list_type := ε → D

– a construct that evaluates the type of the current source AST being translated.

This only makes sense for list constructs.

• side_e f f ects := ε → set(tuple(S,D))

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 127

– a construct that evaluates to the side-effects of the children of the current source

AST being translated.

• eval_to := ε → D

– a construct that evaluates to the evaluates-to side-effect of the children of the

current source AST being translated.

Note that constructs that do not evaluate to constructs in Host cannot be subtypes of Texpr

and can therefore not be used directly in a translation rule. There needs to be a construct

that evaluates to constructs in Host that has a child-type compatible with the respective

evaluates-to types for these constructs to be used. These might be more general constructs

such as conditionals, comparisons and loops, or some other construct-specific translations.

For this chapter, we are not interested in a general discussion on translating from S to H,

but rather how to translate from T to H. To do this, we need to write translation rules for T

to H in our language TT H . Thus, we need to define translation rules for the constructs TRules

, TRule, expand, AST and the constructs in H. This is shown in listing 16.

Listing 16 Expansions rules we need to define in TT H

(TRules
(T_TRules rule :(expansion -in -TT H))
(T_TRule rule :(expansion -in -TT H))
(T_expand rule :(expansion -in -TT H))
(T_AST rule :(expansion -in -TT H))
(H_ ... rule :(AST ...))

)

Here the H_... represent all the various constructs in H. As they all have the same

structure, an AST with “name" child set to the name of the relevant H construct and the

child names the same as the ones in the H construct, and their value an expansion of the

corresponding child AST, we do not show them here.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 128

Figure 6.1: A compiler taking a DSL as an input and producing a runnable application as
output.

6.3 Implementation of a translation language

To make code executable, we need to pass it through a compiler (or interpreter) that then

produces executable code (and/or run it in one go). This is shown in figure 6.1. In our case,

the ‘App DSL’ is the specification of a translator. This will output a new translator that can

then be used to translate other (or the same) DSL translation specification. This is shown in

figure 6.2. Here, the 0th generation translator is a manually constructed translator, while the

1st generation translator is generated from the translator DSL. The next generation is then a

translator for some arbitrary application DSL.

As the translator is itself a type of translator that translates between specifications for

how to translate between S and T into a program that implements these translations, we

can pass the specifications for how to translate between the specifications and the translator

as input to the 0th generation translator and produce a 1st generation translator that takes

the same specifications and produces translators from them (i.e. we have recreated the 0th

generation). This can of course be done forever, producing new (nearly) identical genera-

tors. There are some interesting features to consider when supplying the translator with the

specification for itself in the first few generations.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 129

Figure 6.2: A translator-generator producing a compiler that can take application code as an
input and produce a runnable application as output.

In the discussion that follows, we will use the term ‘next translator’ to mean the translator

that is produced by the ‘current translator’, that is the translator that we are discussing at

the moment. We will also use the term ‘previous translator’ to specify the translator that

produced the current translator.

There are endless possibilities for implementations of our translator, but we will go

through one sensible approach that should apply in most cases.

If we consider the 0th generation, it will consist of some structural code, such as function

definitions, classes (if in an Object-Oriented Programming (OOP) language), if-statements

and loops. These do not directly influence the output, they are just the scaffolding that any

program needs in order to run.

There are also generative statements that does generate code for the next generation, but

that code is itself structural. We will call these static generative statements. Finally, there

are generative statements that generate code in the next generation depending on the DSL

specification input, we will call these dynamic generative statements.

In a well-behaved translator, the static generative statements need to create only struc-

tural code. That is, they cannot create any code that generates code. There are two reasons

for this, first, the output of a translator should be based on the input translation specifica-

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 130

tion. Since the static generative statements are not dependent on the input, the translator that

is generated would generate code that is not specified in the translation specification. Not

generating the translator according to the specification is generating it wrong.

The other reason that static generative statements cannot generate generative statements

is that the output (as well as input) language of a translator is given in the translation DSL

specification. Any translator knows only what language it is supposed to output (or take as

input), it cannot know what the next generation of translator is supposed to output, without

knowing the DSL specification for the next generation. As static generative statements does

not have this specification by definition, they can thus not know what language the next

generation is supposed to output.

The dynamic generative code is then responsible for all the generative code in the next

generator. These can not produce any structural code in the next generator. In the same

way as the static generator code does not know the input and output language for the next

generator, the dynamic generator code does not know the output language that the current

generator translates to. A specification for a translation DSLs (as well as any other DSL)

can be passed through any translator that can understand the language the specification is

written in, regardless of what language the translator outputs.

Which part is produced by what is shown in figure 6.3.

6.3.1 Informally checking correctness of translation DSL

The scheme presented in the previous section, allow us to create a way of testing that the

system works as intended. As is seen in figure 6.3, the 2nd generation is fully dependent

on the DSL specification. Generation 1 structure is dependent on the 0th generation’s static

generative statements, which are not dependent on the DSL specification. The static genera-

tive statements in the 1st generation are dependent on the DSL specification though, as they

are generated by the 0th generation’s dynamic generative statements. In the 2nd generation,

the structure is generated by the static generative statements in the 1st generation, which are

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 131

Figure 6.3: Three generations of generator, showing how each part of the generator affect
the next generation.

dependent on the DSL specification. The generative statements are similarly dependent on

the DSL specification.

Thus, regardless of how the 0th generation is producing code, the 2nd generation will

always be the same (given the same DSL specifications), assuming the 0th generation is

working correctly. This also means that if the 2nd generation is called with the same DSL

specification, it will produce an exact copy of itself (as the 3rd generation is also fully depen-

dent on the input DSL). So, if we generate until the 2nd generation, and then check that the

output of the 2nd generation is identical to itself, we can be pretty sure that the 0th generation

is producing correctly (as well as subsequent generators) and that the DSL specification is

correct.

While it is possible to produce a 0th generation that is capable of generating a 2nd and

3rd generation that are the same, but do not generate according to the specifications, it is

unlikely to happen by accident. Any mistakes in either the 0th generation translator or the

translator DSL specification are likely to cause the output to not be a valid code, as it requires

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 132

a certain amount of precision to generate code that runs. Even if the 0th generation manages

to produce a running (but faulty) 1st generation, the 2nd generation is again unlikely to run,

and even less likely to produce a copy of itself for the 3rd generation.

The one exception to this is if the 0th generation is a Quine, that is, a program that

reproduces itself when run. In that case, the 2nd and 3rd generation will be the same, but

the translator will be absolutely useless in translating translator specifications. From our

own experiences, we can say that it is possible to accidentally produce a Quine as a 0th

generation, if one does not pay enough attention when writing the logic for how the dynamic

generative statements generate the next generation.

It is possible that some features that are not needed when reproducing itself get lost in

translation. To check this, the different translators should be supplied with various other

DSL specifications for other languages. In this case, they should all produce translators that

behave the same, and the 1st translator and subsequent translators should produce identical

code. Here we can’t simply rely on the fact that the code behaves the same to verify if the

translation worked, we also have to check that the generated translator works as expected.

Otherwise, all the 0th translator could do is to generate a translator that always produces the

same output regardless of input and the test would still pass.

The 0th generation can be produced through manual coding, or from some other type

of translator-translator. This is shown in figure 6.4. The -1st generation is any translator-

translator, including a purely imagined one (if the 0th translator is coded manually). This

also means we can check translator-translators that translates to different languages. If we

have a translator-translator that translates to language H, we can check it by providing it with

the specifications for translating to language G, then treat the output as the 0th generation

and run the test as described above. We can then redo the test by passing the specification

for a translator translating to H to the 0th generation and redo the test on the output. This

provides some confidence that both the specification for translating to G and to H are correct.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 133

Figure 6.4: Three generations of generator with an imaginary -1st generator that produces
the 0th generator.

6.4 Example translation rules

As translation rules for real world GPLs tend to require a fair bit of code, we will here

describe what a translation of a translation DSL specification would look like using a sim-

plified toy GPL, let us call it P for pseudo. The participating languages are thus T , P, and

the translation specification DSL. If we name the H language for P HP, then our translator

language would be TT HP (or more precisely TTT HP HP). We thus need to provide translations

for all constructs in TT HP into constructs in P. Using our translation specification DSL that

we described earlier in this chapter, we do this by implementing a TRule for each construct

in TT HP , with the rule for how to translate it specified using the Texpr in HP and T .

Because the input language is the same language as the rules are written in, it can be-

come a bit difficult to tell the difference between the two. In the examples below, we have

prepended the input language constructs with a "T_" to make it easier to tell them apart.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 134

Listing 17 Expansion rules we need to define in TT H

(TRules
(T_TRules rule :(Function name: do_expand params :(List ast)

code :(List
(expand ast:$0)
...
(expand ast:$n)

)))
(T_TRule rule :(If cond :(Eq lhs :(Dot lhs:ast rhs:type)

rhs:$type)
code :(Return expand($rule))

))
(T_expand rule :(Call

fun: do_expand
args :(List

(Call fun :(Dot lhs:ast rhs:get)
args :(List $ast))

)))
(T_$ID rule :(Call

fun :(Dot lhs:ast rhs:get)
args :(List <ID >)

))
(T_AST rule :(AST

type :" Call",
children :(List

"AST",
AST (" List", (List

(expand ast:$0)
...
(expand ast:$n)

))
)

))
(T_If rule :(AST type:If children :(List

(expand ast:$cond)
(expand ast:$body)

))
(T_Return rule :(AST type:Return children :(List

(expand ast:$value)
))
...

)

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 135

Listing 18 Expansion rule translations in GPL, first half

function do_expand (ast) {
if ast.type == "T_TRules":

return AST (" Function ", " do_expand ", [" ast"], [
do_expand (ast.get (0)) ,
...
do_expand (ast.get(n)),

])
if ast.type == "T_TRule":

return AST ("If , AST ("Eq",
AST (" Dot", "ast", "type "),
AST (" Call",

AST (" Dot", "ast", "get"),
[" type "]

)
),
[AST (" Return",

do_expand (ast.get (" rule "))
)]

)
if ast.type == " T_expand ":

return AST (" Call",
" do_expand ",
[AST (" Call",

AST (" Dot", "ast", "get"),
[ast.get (" ast ")]

)]
)

if ast.type == "T_$ID":
return AST (" Call",

AST (" Dot", "ast", "get"),
[ast.value]

)

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 136

Listing 19 Expansions rule translations in GPL, continued

if ast.type == "T_AST ":
return AST (" Call", [" AST", [

ast.get (" type "),
AST (" List",

do_expand (ast.get (0))
...
do_expand (ast.get(n))

)
]])

if ast.type == "T_If ":
return AST (" Call", [" AST", [

"If",
AST (" List",

do_expand (ast.get (" cond ")),
do_expand (ast.get (" body "))

)
]])

if ast.type == " T_Return ":
return AST (" Call", [" AST", [

"Return",
AST (" List",

do_expand (ast.get (" value "))
)

]])
...

}

In listing 17 we show the rules for translating our translator written in the translation

DSL. In listings 18, 19 we show what the output would be when supplied to a translator

for translating the translation DSL specifications into our toy GPL. In the translation DSL,

we use Function to represent functions in the GPL, Dot represent member access (e.g.

ast.type, Eq represents equality test ("=="), List represents a list of something, Call

represent function calls, and Return represents return statements. We use $<ID> in order to

refer to symbols introduced by side-effects. In order to keep these examples at a reasonable

length, some additional simplifications have been made. In particular, in places where loops

would be required, we simply used the first and last element, with an ellipsis in between.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 137

As can be seen, especially in listing 19 the translated rules can become quite large, which

is why we show simplified code in this chapter.

There are a couple of things we want to point out before we go through how the trans-

lation is made. First, the rules for T_$ID should ideally be governed by side-effect transla-

tions. The constructs that the T_$ID translates are all introduced through side-effects and

so it would be cleaner to have separate rules for how to translate such side-effects. The rule

as it stands essentially says that an identifier in the input language corresponds to a member

access of the AST being translated in the output language.

Another thing to clarify here is the expected type of all the different translation rules. All

the rules translates to sentences in the output language, but the type of sentences can be split

up into three main types. The translation rules for constructs in T translates into structural

code. That is, they translate to arbitrary sentences in P, except for statements that generate

code. The exception has to be manually enforced, as there is technically nothing preventing

a generative statement from being specified in the translation rule.

Translation rules for HP translate into static generative statements that generate sen-

tences in P. Remember, constructs in HP are all constructs that generate constructs in P, as

per our definition in section 6.2.1. This has to remain true both in the input language and

the output language, which is why the translated rule is always a generative statement that

generates an AST corresponding to the type of the PH construct being translated.

Finally, the T _AST construct translates to a dynamic generative statement, that can gen-

erate arbitrary output code in any language. This is the statement that allows the user to

specify generative statements in the translation DSL specification to create translation rules

for the output language. As can be seen in listing 17, the translation rule for T_Return, rep-

resenting the Return construct in HP uses an AST statement for its specification. Likewise,

every other construct in HP will have a similar translation rule; an AST instance with the type

set to the corresponding type and with the children of the AST being each of the children of

the construct expanded.

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 138

In short, sentences in T generate structural code, sentences in HP generate code that

generate sentences in P and the AST construct generates code that generates arbitrary code.

This needs to be reflected in the translation rules for each of the constructs.

Let us go through how the translation rules in listing 17 would get translated by the

translator in listings 18, 19 by examining how a couple of the rules would get translated.

In this explanation, we will use generation 0 to refer to the initial GPL translator that is

translating the translator DSL specification into generation 1 GPL code.

First, all the rules in the translator DSL specification are contained in an AST of type

T_TRules. When the generation 0 translator sees this AST, it outputs an AST representing

a function that takes an AST as input, where each of the statements in the body are the

translation of the rules that make up the translation DSL specification.

Each one of these rules is represented by an AST of type T_TRule. When the trans-

lator sees the T_TRule AST, it translates it to an AST representing an if-statement. The

if-statement condition checks if the type of the ast variable that generation 1 will be trans-

lating matches the type of the T_TRule that generation 0 is currently translating. The body of

the if-statement consists of an AST representing a return-statement, where the value of the

return-statement is the translation of the T_TRule ASTs ‘rule’ child. As such, the T_TRule

statements are translated into guarded commands (Dijkstra, 1975).

This is a point where it is easy to get confused, as there are two different ‘ast’ being

referred to here. The first one is the ‘ast’ that is the parameter given to the translator function

in the generation 1 translator that we are generating, which could be any type of AST. The

other ‘ast’ refers to the AST that is currently being translated which, if we are at this point

in the code, is always a T_TRule AST. Note that all the constructs that start with T_ (in our

example) are of type T_TRule, as described in 6.2.1.

When translating the ‘rule’ child of a T_TRule AST, we call do_expand of generation 0

to generate an AST representing code that generates ASTs according to the specifications

in the ‘rule’ child. If the ‘rule’ child contains a If AST, for example, then the do_expand

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 139

will go to the relevant guarded command and return the AST specified there. In this case it

would reach the if-statement for the T_If AST shown in listing 19. As can be seen, even

though the if-statement is a fairly simple construct, the translation rule is quite complex.

The rule consists of an AST representing a call to an AST function, where the first pa-

rameter is "If" (i.e. the name of the AST to be created) and the second parameter is a List

AST containing the translation of the ‘cond‘ and ‘body’ children. It is thus an AST rep-

resenting the creation of an AST for an if-statement in the output language. If this was

the if-statement specified for the T_TRule, then the ‘body’ child would contain a return-

statement, which would be translated in a similar manner to the if-statement, as shown in

listing 19.

The expand ASTs that appear in the various rules are translated as an AST representing a

call to a ‘do_expand’ function, with the specified child of the generation 1 ast as a parameter.

This ‘do_expand’ function is the generation 1 function that translates ASTs, which is the

same function that is generated by the T_TRules translation specified in listing 18.

The last rule we will look at is the one for translating the AST construct. It might be

tempting to think that the AST construct should be translated as AST(ast.get("type"),

[do_expand(ast.get (0))...do_expand(ast.get(n))]), but that would generate a

generation 1 translator with code written in the output language of generation 1, which is

(potentially) different from the language generation 1 is implemented in (as generation 1

is written in the output language of generation 0 and there is no guarantee that they will

be the same). That is why the AST construct is being translated to a AST representing

a construction of an AST in generation 1. That is, the translation of the AST construct

produces an AST that represents an AST, rather than an AST that represents arbitrary code.

As mentioned above, the AST construct is thus generating dynamic generative code.

There are a couple of ways that the translation can go wrong. Firstly, one might acci-

dentally view the code in the ‘rule’ child of the translation rules in the translation DSLs as

being GPL code rather than being code that generates the GPL code. For example, in the

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 140

rule:

(T_TRule rule :(If cond :(Eq lhs :(Dot lhs:ast rhs:type)

rhs:$type)

code :(Return (expand $rule))))

the translation could accidentally be viewed as a literal if-statement in the output language,

generating the code:

if ast.type == "T_TRule":

return if ast.type == ast.get (" type ")

return do_expand (ast.get (" node "))

which is both semantically and syntactically (at least in most languages) wrong. It is also

possible to go wrong in the other direction, generating all code as ASTs of ASTs of code.

The previous rule would in this case be generated as

AST ("If", AST ("Eq", AST (" Dot", [" ast", "type "]), "T_TRule")

AST (" Return", AST (" AST", ["If",

AST (" AST", ["Eq", AST (" Dot", [" ast", "type "]),

AST (" Call", [AST (" Dot",

[" ast", "get "]),

"type "])]) ,

AST (" AST", [" Return", AST (" Call",

[" do_expand ", AST (" Call",

[AST (" Dot", [" ast", "get "]),

"node "])

])

])

]))

)

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 141

This may be syntactically valid in languages that allow function calls in the global scope,

but it is not what we want semantically, as it does not produce a function we can call to

translate languages.

Beyond these two types of errors, any mistakes in the generative statements (or the

translation DSL specification) would of course also produce erroneous output. The errors

might appear either in the next generation or two generations ahead of the current generation

of the GPL translator, depending on whether the error is in the code that produces static

statements or generative statements. The errors can either be present in the translation DSL

specification (in which case it will appear in two or three generations) or the generation 0

GPL translator.

6.4.1 Reuse in the construction of TT H

Listing 20 Translating to functions

function do_expand (ast: T_TRules) {
return AST (" List",

do_expand (ast. children [0]) ,
...
do_expand (ast. children [n])

)
}
function do_expand (ast: T_TRule) {

return AST (" Function ", " do_expand ",
[AST (" Param", "ast", ast.get (" type "))] , [
AST (" Return", do_expand (ast.get (" rule ")))

])
}
...

Let us consider how translation rules can be reused to reduce the number of rules that

need to be written for any one translation DSL. Firstly, the output language rules can both be

generated automatically from the output language, and are also always the same regardless

of input language/translation specific language constructs. As such, the output language

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 142

translation constructs need only be generated once and can then be reused in all translation

DSLs.

For the other constructs, reuse is a bit more complicated. For example, we could view

the rule construct as a restricted if-statement. The first issue we encounter is that we have

called the children of the rule construct "type" and "rule", whereas an if-statement would

have children called something like "condition" and "block" (or "true_block", "false_block"

if it is an if-else statement). Our framework does not have a facility for restricting constructs

with differently named children, though we could simply rename the children of the rule

construct to make them match the if-statement. It is not a neat solution, but it is what we are

forced to do if we want to reuse the translation rule for if-statements.

The next issue is that the "type" child would need to be of type BoolExpr and the "rule"

would need to be of type List of Statements. The "type" child can simply be declared as

a subtype of BoolExpr, as long as it is declared with the evaluates-to boolean value side-

effect (which is not necessarily an intuitive way of declaring the "type", after all, the "type"

child is supposed to be referencing a construct in the input language, not a boolean value).

Similarly, the "rule" child can be declared as a list of statements, as long as the constructs

that generate the output language are also declared as statements, as well as any translation

specific constructs that are to be used in the "rule" child. Note that it is still necessary to

provide translation rules for the constructs used in the "type" child and the "rule" child, as

neither BoolExpr construct nor statements have any general translation rules.

Some languages support function overloading, where the multiple functions share the

same name, but have different arguments and implementation. In such languages, we can

construct our rules as functions that each handle a different type of construct, as seen in

listing 20. In this scenario, we could see rules as a restriction of a function. In this case, the

same issue with different child names occurs, but we also have another issue. The function

has a name associated with it, and the rule construct has no equivalent child. This could

be mitigated by having a composition that allowed the insertion of static children to yield a

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 143

subtype relation between two constructs. Unfortunately, our composition framework does

not have such a composition and it is thus not possible to restrict a function as a way of reuse

for the rule construct. It should be noted, though, that if we were able to do the restriction,

the "type" child of the rule construct would be referencing an input AST type rather than

a boolean as is the case for the if-statement. This suggests that functions might be a better

approximation of the rule constructs, besides the missing "name" child.

We can do a similar thing with the root construct, Expansions. The expansions construct

can either be viewed as a list construct consisting of the rules for the individual transla-

tions or a labelled construct, with additional children containing, for example, information

about intended input and output languages and a specific child containing all the rules. The

labelled construct will yield the same issues with misnamed and missing children, but it

also causes another issue. As the Expansions construct is a root construct, it needs to be

translated into a root construct in the output language, but a function on its own is rarely

considered a root construct in GPLs. In GPLs the root tends to be a list of statements, which

of course could be a list containing just one function declaration, but this is structurally very

different from a function declaration on its own.

The list construct would be directly, without changes, restricted from a root list of state-

ments construct, though this only make sense if the rules are translated as functions (or

other constructs allowed in the global scope) as described above. If the rules were trans-

lated to if-statements, reusing the translation rule for list of statements would generate code

with nothing but if-statements in the global scope (which, granted, is valid code in some

languages).

Note that the above only matters when we want to reuse existing translation rules, and

none of the mentioned issues prevents a manually created translation rule from being cre-

ated.

The expand construct can be restricted from a function call operator that calls the do_ex-

pand function. Here again, the structure of the expand needs to have an equivalent structure

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 144

to the call construct for this to work. The child specifying the AST to be expanded also

needs to be an expression that evaluates to an AST. This should not be an issue, as that is

exactly what is expected for the expand construct.

It should be noted that when we talk about reusing existing translation rules, we are not

talking about the rules for the H language, but rather the constructs from the output language

of the current translator.

As is apparent by now, reuse through restriction is not straightforward, at least not for

our example in this chapter. Reuse through combination on the other hand allows us to

reuse the entirety of the H-language in all translators that use it. There are however issues

that arises from using combination to facilitate reuse. If we wanted to reuse translation

constructs from another language, they would have to respect the naming conventions used

in the translation for the Expansions and Expansion construct, such as the name of the do_-

expand function and the variable ast. Some of this can be mitigated by properly using

side-effects and side-effect translations as discussed in chapter 4, it is not always possible to

ensure that no clashes occur, as it is in general a non-local concern (Eden et al., 2006).

6.5 Results and discussion

We have shown how our translation framework can be used to define the semantics of it-

self using translations and discussed some of the implications of doing so. We have also

shown how using composition techniques can reduce the number of translation rules that

are required to be implemented for any one translator, which makes the construction of new

translators more feasible.

We have also shown the effect of passing a translator specification to a translator over

several generations and how this can be used to reason about the correctness of the imple-

mentation. The test for correctness we presented is very much a required but not sufficient

test for whether a translator (and translator specification) is correctly implemented. The test

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 145

relies on the fact that after two generations, the generated code is wholly dependent on the

translator specification, and no artefacts from the original translator should remain. Thus,

after two generations, the code that is generated should always be identical for the same

translator specification. This test fails to be useful if the original translator is a quine (or

generates a quine). If the original translator either is a quine or generates a quine, then the

test will pass, even though the translator itself is useless for anything other than generating

itself. Accidentally creating a quine is possible if too much of the original translator is hard-

coded, completely removing input-dependant code-generation from it. It is straightforward

to check that the translator is not producing quines by passing it a non-translator DSL speci-

fication and ensuring that the generated translator correctly translates the non-translator DSL

(and does not translate the translator DSL). Other errors in either the original translator or

the translator specification will in general cause errors, with the exception of errors that are

specifically designed to pass this test, something we do not worry about. Note that this test,

in the best of cases, only covers the constructs used by the translator specification, which

may not be all the constructs provided by the translator DSL. Thus, it is important to test the

translator in different ways as well, such as by translating DSLs with well known behaviour

to ensure that the translator translates these correctly. These DSLs can be translated both by

the 0th generation translator and the 2nd generation translator, for extra assurance that the

translator translates correctly.

Another result we found was that in practice (at least in the case of the translator DSL),

reuse through restriction is tricky. The main issues found are structural mismatches between

constructs, missing child constructs and mismatches between root constructs. One possible

explanation for these issues is that there is too large an abstraction distance between the

input and output language, making it difficult to reconcile them through restriction. Some

of these issues can be mitigated with further expansion of the composition framework, in

particular by adding support for restriction facilitated by renaming of child constructs and

restriction facilitated by adding static children to the restricted construct. In the former case,

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 146

we essentially create a new construct, that has the same child-types, but with child-names

matching our preferred construct to restrict from. The exact names of child constructs have

some arbitrariness to them, as they serve more as mnemonics for the programmer than any

semantic purpose in the language. This means that a lot of time allowing renaming of

child constructs is quite sensible, assuming that the languages being worked on are already

finalised, and it is therefore not possible to change the original construct’s definition. There

are of course many cases where two constructs are modelling completely different things,

and in those cases it makes little sense to force the children to have the same name, as reusing

the translation for both constructs will likely lead to the wrong code being generated.

In the case of adding static children, the aim is to fill in missing child constructs with

a static value, in order to be able to reuse translation rules that require that child construct

to exist. The motivation for such a composition operator is that in certain cases, a child

construct in a construct subtype becomes redundant, as all instances of the construct have

the same value for that child. For example, a construct that only models people called ‘Pete’

does not require a ‘name’ child construct, as it will be the same for all instances. On the

other hand, a construct modelling people more generally would require the ‘name’ child. In

this case, we would need to add the ‘name’ child back in so that we can reuse the translation

rule for the more general construct (assuming the translation depends on the ‘name’ child

being present).

Note that it is possible that the effort required to reconcile mismatching construct might

actually be greater than simply writing a new translation rule from scratch. Unfortunately,

we are not at this time able to reason about the effort each approach requires, as the frame-

work we are using does not support either of these composition operations.

One place where the composition framework reduces the number of translation rules

needed is in using the combination operator to combine the general translation constructs

(T) with constructs derived from the input language (S) and the output language (H). The H

language tends to be very large, as it contains a construct for each construct in the output

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 147

language, which is often a GPL. Through combination, the translation rules for H can be

reused in any translator specification that translates to the output language from which H

is derived. Other translation frameworks often get around having to specify the rules for

the output language by allowing arbitrary strings to represent the output. The benefit of

composing the translation language in our way is that we can type-check the rules and

guarantee that the generated code is valid (as long as there are no non-local references,

anyway). We thus get the benefit of early detection of errors in the translation without

adding a lot of extra work.

Finally, a note on the AST construct first described in subsection 6.2.2 and referenced

throughout this document. As described in section 6.3, an important property of the trans-

lation language is that static generative statements only generates structural code and that

all code for generative statements in the output translator are fully defined in the transla-

tion DSL the translator is translating. That is, on its own, a translator should only generate

structural code, no generative code, and all generative code is defined only in the input

DSL. After finishing this chapter, we noticed that the AST construct could not adhere to this

property. In order for the AST construct to function properly, it needs to generate not just

structural code, but also generate generative code. The generative code it has to generate

is code that construct an AST in the output translator. The effect of this is that the output

translator gets locked into the output language it can translate to. In a correct translator, the

output translator should be able to translate from any input language, to any output language

as long as the translation rules are written in the correct translation DSL. With the AST con-

struct, the output can only ever be in one language, whichever language the statements for

constructing ASTs are written in.

In our case, where we repeatedly feed the generated translator with its own translation

definition, it does not matter, as the input and output language remains the same. This

is why the problem with the AST construct was not noticed earlier. The AST construct was

introduced to simplify the rules for translating host language constructs and it is still possible

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 148

to achieve the same result, it just requires more code to be written.

6.6 Conclusion

In this chapter we have discussed how translations in our framework work in detail and

we have shown how a translation DSL can be created using our composition framework

and translations. We have also shown some of the issues that arise when trying to reuse

translation rules using our composition framework.

At the start of this chapter, we said there are two questions we want to answer: whether

our frame-work is powerful enough to describe the translations needed to define its own

semantics using an arbitrary GPL as a host language; and to what degree we can reuse

existing translation rules when we define our translation language.

The first question, whether we can define the translation part of our framework in itself,

is clear from the fact that we did just that in this chapter. In this chapter we showed the

implementation by explaining a selection of the operations in the translation framework in

detail and then more broadly explained the rest of the operations. The framework has also

been fully implemented in Java, to verify that it works with real programming languages as

well as the pseudo-language used in this chapter.

For the second question, the answer is more complicated. We showed that our frame-

work is unable to reuse translation rules for several of the constructs we discussed. The

solutions for some of these inadequacies is to introduce more operations to our framework.

We briefly discussed two possible operations, one for adding static child-nodes to the con-

structs, and one for renaming child-nodes. These additions would, however, not solve all

the problems with reuse that we uncovered. One possible reason for the inability to reuse

constructs in the host-language could be that the source-language and host-language have

too big an abstraction gap between them.

The one case where reuse was possible without modification is for the combination

CHAPTER 6. DOMAIN-SPECIFIC LANGUAGE FOR TRANSLATIONS 149

operator. By separating out the different parts of the translation language, we can reuse the

constructs that produce the constructs of the output language. It is worth noting that these

constructs can only really be used for other translation languages that translates to the same

output language, but it does mean that it is possible to create translators with different input

languages but the same output language more easily. It should also be noted that the reuse

through combination works due to none of the translation rules for the constructs having

any non-local dependencies. Any reference to symbols outside of the translation rule could

potentially cause conflicts. This issue will always exist as in general it is impossible to use

composition in the presence of global constraints (Eden et al., 2006).

In the future, it would be interesting to continue investigating the effects of composi-

tion on translations of translation DSLs, but using several different GPL host languages and

cross-compiling between them. This could provide more robust ways of validating transla-

tion DSL implementation using the method described in section 6.3.1.

This chapter only covers the translation part of our framework and in the future it would

be good to cover the entire framework. This would include a language for defining the

structure of a language using composition and translation rules for turning sentences in that

language into sentences in a GPL. This way of having multiple DSLs all working together

is called globalisation and presents with it some additional challenges (Cheng et al., 2015).

All in all, this chapter shows that complicated self-referential systems can be built using

our framework for composition and translation of DSLs, while also showing some of the

short-comings and potential improvements to the system.

Chapter 7

Comparison to the State of the Art

7.1 Introduction

In order to reason about the contributions of this thesis, we will in this chapter review what

other similar work has been published in the literature and how our approach compares to

the existing literature.

7.2 Background

Composition has been used for constructing new Domain-Specific Languages (DSLs) for

well over a decade now (Cleenewerck, 2003; Estublier et al., 2005). The goal is to be able

to easily create new DSLs by reusing existing DSLs.

Several different techniques for composing DSLs have been suggested, such as As-

pect Oriented Programming techniques (Estublier et al., 2005; Dinkelaker et al., 2010),

using inheritance (Ghosh, 2010; Völter and Solomatov, 2010; Mernik, 2013), functional/-

monad composition (Ghosh, 2010), Traits (Cazzola and Vacchi, 2016), as well as manual

approaches (Erdweg et al., 2011). For the most part, these techniques work on the concrete

syntax of the language, often with the abstract syntax and semantics being tightly coupled

and not considered on their own. This is not always the case, though, with for example

150

CHAPTER 7. COMPARISON TO THE STATE OF THE ART 151

(Chodarev et al., 2014) discussing composition of the abstract syntax.

In terms of the type of composition operations that can be used to construct DSLs,

(Erdweg et al., 2012) gives a popular set of definitions:

• Language extension – A language is extended with additional concepts

• Language unification – Two languages are combined to form a third one

• Self extension – A language that is able to extend itself

• Extension composition – A combination of the above

These definitions are used by (Mernik, 2013) to discuss how the language workbench

LISA (Mernik et al., 2002) handles the different types of composition. In (Chodarev et al.,

2014) show how they can be mapped to composition of abstract syntax, and (Cazzola and

Vacchi, 2016) also refer to these definitions when discussing the types of compositions sup-

ported by their tool.

Erdweg’s definitions are not formally defined, which make it easier to use them to de-

scribe the operations in existing DSL composition framework, but makes it harder to reason

about the consequences of applying them when constructing DSLs.

Besides Erdweg’s classifications, there are several other competing classifications. In

Lakatos and Porubän (2013), the following classifications are used:

• extension (full language is used and new concepts added)

• specialization (reuse of only some of the concepts of the language)

• insertion (code from one language is used inside other language)

– direct/embedding (full parts of code are used)

– referencing (only identifiers from other language are used)

(Völter, 2013a) describes composition of DSLs which is different to Erdweg’s. Völter

identifies

• Referencing – concepts in a language references concepts in another language

CHAPTER 7. COMPARISON TO THE STATE OF THE ART 152

• Extension – a language is based on another language, but includes new concepts

– Restriction – like Erdweg, Völter sees restriction as a special case of extension

• Reuse – a language reuses concepts in another language through indirection

• Embedding – a language is embedded in another language

Some of the problems with composition include grammars not being closed under com-

position (Erdweg et al., 2012; Chodarev and Kollar, 2016), and non-local dependencies in

generated code (Cleenewerck, 2003; Dinkelaker et al., 2013). Erdweg et al. also discusses

the complications in implementing language unification, and ascribes it to the lack of com-

mon backend for the languages. Finally, when code is generated, it is preferable if the gener-

ated code type-checks and is compilable, as the user of the DSL will otherwise be presented

with unintelligible errors from a language different to the one they are implementing their

code in. This is addressed in (Lorenzen and Erdweg, 2013, 2016) using lambda calculus.

7.3 Comparison

Our work touches on all of these problems in our attempt to provide a formal technique

for composing DSLs and investigate composition’s effect on the reuse of translation rules

from the composed language to some pre-existing language. We specifically look at the

case when there exists a language L′ that has been composed from some existing languages

L1..n and the languages L1..n all have rules for how they are to be translated into some host-

language Lh. The question is to which degree the translation rules can be reused in order to

translate sentences in L′ into valid sentences in Lh.

As we specifically work with abstract syntax, we only provide some short thoughts on

how one might deal with composition of grammars in the context of our composition tech-

nique. One of our main focuses in this work is to which extent translation rules can be

reused. As part of this, we show how translation rules that have only local dependencies can

safely be reused. We also discuss some of the ways that some non-local dependencies can

CHAPTER 7. COMPARISON TO THE STATE OF THE ART 153

be mitigated. As far as we know, such in-depth discussion on the effect of composition on

the reusability of translation rules has not been published before, and we believe that our

approach provides a useful understanding of the limits of compositional techniques abilities

to allow for reuse of code.

In our work we also separate out concerns in ways that are less common in the literature.

We separate between concrete and abstract syntax, which as (Chodarev et al., 2014) notes is

not too common in the field. Unlike, for example (Erdweg et al., 2012), we view composed

languages as completely new languages. Whereas Erdweg et al. speaks about extending

a language by using composition, we would view the end result of composition as a new

and separate language. We also separate between the abstract syntax which we view as the

(abstract) structure of the language, and the semantics of the language, which is in our case

provided by the translation rules. Thus, the composition techniques we define work on the

abstract language, and our goal is then to map pre-existing semantic definitions back into

the newly created language.

The problem with directly comparing our approach to existing approaches is that the

majority of existing approaches are often tightly coupled with an existing tool, framework

or General Purpose Programming Language (GPL), whereas our approach is based on math-

ematical constructs. The advantage of using existing technology is that the technology usu-

ally comes with existing features that enhance the development approach. The downside is

that the approach then only works with one specific tool.

As far as we are aware, there has not been any earlier work on examining the extent

to which composition affects translation of languages, whether on the concrete syntax or

abstract syntax level.

CHAPTER 7. COMPARISON TO THE STATE OF THE ART 154

7.4 Conclusion

While there has been a lot of work on composition so far, our approach differs from other

approaches by being based in mathematical constructs and not being tied to any particular

tool or language. Ours is also the only work we know of that has specifically investigated

the effect composition has on translation of languages.

Chapter 8

Conclusion and future work

8.1 Introduction

In this thesis, we have presented a framework for composition of Domain-Specific Lan-

guages (DSLs) and discussed the way composition affects the reuse of translation rules

when translating a composed DSL into a General Purpose Programming Language (GPL).

It builds on previous work on DSL composition, as presented in (Erdweg et al., 2012;

Völter, 2013a) among others. Our work focuses on composing abstract languages using

a novel approach and showing how our approach can be used to reason about reuse, in

particular reuse of translation rules for translating a composed DSL into a GPL.

Our work includes the definition of our framework for composing abstract languages, the

definition of our translation framework between languages defined using our composition

framework and then shows the framework in use, as well as evaluates how much reuse can

be achieved within the context of translation rules.

8.2 Big picture

The work discussed in this thesis covers only a small part of DSL development. The larger

field it works in is Software Language Engineering (SLE), the field of creating software lan-

155

CHAPTER 8. CONCLUSION AND FUTURE WORK 156

guages (Kleppe, 2008). The field of SLE is large and our work is mostly confined to a small

portion of it, of defining structure and meaning of abstract languages through composition

and translation. The work is thus limited both in the implementation method used and the

specific part of languages we work with.

There are numerous different ways of implementing DSLs (as well as GPLs) and the aim

of composition as an implementation strategy is to leverage reusable language components

to simplify the construction of new languages (Chodarev and Kollar, 2016).

Software languages are often split up into concrete syntax, abstract syntax, and seman-

tics (Kleppe, 2008), (Völter, 2013a, p. 26), though sometimes it is only split up into (con-

crete) syntax and semantics (Turner, 2017).

Translation is one of four common ways of specifying the semantics of a language, as

given by (Kleppe, 2008): denotational, pragmatic, translational, and operational.

Outside of implementation, DSL development phases includes decision, analysis, de-

sign, and implementation as given by (Mernik et al., 2005) and domain engineering, design,

implementation, testing, deployment, evolution, recovery and retirement as given in (Barišić

et al., 2012).

There are also other concerns surrounding the DSL development process, such as imple-

menting common Integrated Development Environment (IDE) features such as error high-

lighting, help texts, syntax highlighting, and debuggers (Zdun and Strembeck, 2009).

As mentioned, our work is specifically about implementing the abstract syntax of lan-

guages using composition, as well as the translation of such languages into other languages.

In the future, our work could be extended to include concrete syntax, as part of turning the

framework into a full-featured tool for DSL development. As it stands today, the frame-

work’s main purpose is to investigate what is theoretically possible when using composition

and translation to create an abstract syntax for a DSL.

One of the benefits of working on the abstract syntax is that it removes the complexities

of context-free grammars. This lets us focus on ensuring that the composition and translation

CHAPTER 8. CONCLUSION AND FUTURE WORK 157

generates structurally correct code without having to consider the effects on the concrete

grammar. For a complete language composition framework, it is necessary to consider

concrete grammar too, but as we are interested in only a specific subset of the issues involved

in composing languages, not worrying about grammars lets us focus on the parts that are of

interest to us.

8.3 Contributions

Our main contribution in this thesis is the work around a framework for composing DSLs

using formal methods. In particular, we investigate how the composition technique interacts

with translation rules between languages. That is, we investigate to which degree translation

rules for a language can be reused for a language composed from the original language.

There are several frameworks that uses composition to ease DSL development, such as

(Dinkelaker et al., 2010; Völter and Solomatov, 2010; Erdweg et al., 2012; Mernik, 2013;

Chodarev et al., 2014; Cazzola and Vacchi, 2016) but none of them take a formal approach,

nor do they discuss translation of languages in any depth. For a longer discussion on the

similarities and differences between our approach and other approaches, see chapter 7.

What sets our approach apart from other existing approaches is that the existing ap-

proaches we have reviewed are tied to specific tools, while the approach we present is in the

form of mathematical constructs that could be used in a variety of tools. As far as we know,

no other approach allows for judgements about subtypes in the way that our work does.

As such, other approaches do not allow for judgements on relationships between composed

languages to the degree that our approach allows. Due to constraints on the research, only

some of the effects of these relationships were explored, specifically the effect that compo-

sition has on reuse of translation rules. As far as we can tell, doing the same with any of

the existing tools would not be possible, as our analysis hinges on judgements on subtypes,

which other tools do not explicitly give.

CHAPTER 8. CONCLUSION AND FUTURE WORK 158

To test the power of our approach, we show how our composition technique can be

used to describe itself. That is, how we can create a DSL for specifying composition and

translation rules, and how that DSL then can be used to describe itself. We show that the

approach works by repeatedly feeding its own description to itself to create a copy of itself

and verifying that each new iteration works the same.

We also show that our composition technique can be used to create a DSL for patience

games. We used this to show how our technique can reduce the amount of work needed

to define a translation from a newly composed DSL to an existing DSL or GPL. We also

compared the translation to GPL to translation to DSLs in a similar domain. We verified the

patience DSL by showing it can be used to describe a wide range of games.

While this thesis only explores a small part of the potential uses of our framework, it

does provide a solid ground for future research.

8.4 Shortcomings

In chapter 3 we introduced the patience domain and showed how it can be used to reason

about various concerns that arise when developing DSLs. While the chapter does provide a

good enough base for working with the patience domain, there are still several improvements

that could be made. One of the shortcomings is the lack of any proper formal domain

analysis, such as described in (Kang et al., 1990; Simos, 1995). The chapter does provide a

definition of the domain using a Feature Diagram (Kang et al., 1990) based on the patience

construction ‘wizard’ that is included in the patience game suite PySolFC (PySolFC, n.d.),

but it is very constrained. The design of the patience GPL code-base presented in chapter 3

could also be improved, as it currently does not support specifying the layout of the piles and

it does not quite support all types of patience games (such as games with multiple decks).

Finally, it would be good to have an ontology of patience games, describing a wide range of

different common patience games that could be used to verify that a patience DSL is able to

CHAPTER 8. CONCLUSION AND FUTURE WORK 159

describe a wide range of patience games.

In chapter 4 we introduced our DSL composition framework for abstract syntax. It

describes the operators in our composition framework, the rules for subtyping, as well as

how we translate from one language to another and under which circumstances translation

rules from one language can be reused in another. The chapter presents side-effects as part

of the model of abstract languages we use. We did not go into how these side-effects work

when composing and translating, though. One of the consequences of this is that proper

type-checking of input and output languages in translators is not possible, as a lot of the

type information is specified in the side-effects in the context of our framework.

In chapter 6 we showed how our framework can be used to create a self-describing trans-

lator DSL. As we do not discuss side-effects and domains in detail in chapter 4, we cannot

discuss how to handle translation of these in chapter 6. This also means that our tool does

not perform any type-checking of the translation rules. This short-coming is particularly

problematic, as one of the main benefits of our approach is that it allows to type-check the

translation rules and determine (with some caveats) whether the output of applying the trans-

lations will type-check. This only works with properly implemented side-effects, though.

The tool also only works with translations, not compositions. That is, there is a DSL for

specifying translations between already composed languages, but no DSL for specifying the

composition itself. Work is underway to provide the composition DSL, but it is not yet ready

to be published.

In chapter 5 we showed how our framework can be used in creating a DSL for the

patience domain. One of the short-comings of chapter 5 is that we use our own intermediate

DSL languages when discussing the possibility of using intermediate languages. While this

makes it easier to showcase the potential for using intermediate languages, by allowing us

to ignore some of the complexities found in existing DSLs, it does mean that some of the

conclusions drawn are not necessarily applicable to using existing DSLs.

Another short-coming in that we do not much discuss how appropriate the DSL we con-

CHAPTER 8. CONCLUSION AND FUTURE WORK 160

structed for the patience domain is for the purpose of describing patience games. What

it means to be good at describing a certain domain (such as the patience domain) is a bit

difficult to define, but a good start is that it should require less effort than some other com-

mon approach (such as using a GPL) and the percentage of valid patience games it can

implement. Measuring effort is not completely straightforward and depends on a variety of

variables, such as the approach we compare to, the implementation details of the domain,

and what experience the person making the effort has. Measuring the percentage of valid

patience games it can implement is not easy either, as what counts as a valid patience game

is not well-defined. It can be rephrased as how many patience games out of a list of known

patience games can be defined, which is the best we can do without a formal definition of

what a patience game is.

Lastly, we will discuss some general short-comings. The current version of the compo-

sition techniques is constrained to only work well with local translations. Outside of this, it

cannot guarantee that a set of translation rules produces sensible results (even with properly

implemented side-effects). The approach has also so far only been tested on itself and the

patience games domain.

There is no quantitative tests of our approach, this is in part because creating a good

quality quantitative test takes a lot of resources, and they were not available. On top of that,

our work is focusing on the abstract syntax, and most of the quantitative testing that is done

in the DSL is done on concrete syntax. So we would have to set up a completely new test

framework, which would have meant extra resources and no way to compare to previous

work.

Finally, the composition technique works only on the abstract syntax, whereas it is usu-

ally the concrete syntax that one wants to construct, as without a concrete syntax, there is

no way to actually write sentences in the language. In this work we have overcome this by

using a lisp-like syntax whenever we needed to specify sentences using the abstract syntax.

CHAPTER 8. CONCLUSION AND FUTURE WORK 161

8.5 Future work

For the future, the composition techniques should be extended with side-effect composition

and domain composition. This would involve investigating the type of side-effects that are

commonly found in languages, and provide composition and translation rules for those side-

effects. The domain composition would involve rules for creating domain types in such a

way that it becomes easy to translate a newly constructed domain type into an existing

language. Both of these are dependent on the output language, so any work on this front

will likely have to provide a way to translate differently depending on the output language.

The tool presented in chapter 6 needs to be completed with support for specifying com-

positions and for that to be integrated with the translations. This work is currently underway

and will hopefully be publishable soon. To truly complete the tool, it also needs to imple-

ment side-effects and domains, as described in the previous paragraph.

How to integrate the composition of the abstract language with concrete languages is

also an interesting question we have not yet answered. Ideally, when a new abstract lan-

guage is constructed, a concrete language could be derived from existing concrete language

definitions. However, as (Chodarev and Kollar, 2016) notes, concrete languages are not

closed under composition, so it is not in general possible to completely automatically gener-

ate the grammars from the abstract language definition. Ideally, the creation of the concrete

grammar would work similar to how our work handles translation rules, where some parts

can be automatically derived from the abstract language composition, and some parts would

have to be manually specified. Crucially, there needs to be a way of determining whether

any particular composition requires new grammar rules to be specified or if they allow for

existing ones to be reused.

There are also several other concerns that are generally considered to be part of a DSL

construction environment, such as tools for debugging languages in the constructed DSL,

translations into artefacts other than runnable code (such as generation of highlighting rules

for the DSL), as well as analysis tools in general for the DSLs . Our system supports none

CHAPTER 8. CONCLUSION AND FUTURE WORK 162

of this right now, but it would be interesting to see how this could be integrated with the

composition techniques. That is, in the same way that we have investigated how translation

behaves under composition, we could investigate how debugging/analysis behaves under

composition.

List of References

Acher, M., Collet, P., Lahire, P. and France, R. B.: 2013, Familiar: A domain-specific lan-

guage for large scale management of feature models, Science of Computer Programming

78(6), 657–681.

Aho, A., Lam, M., Sethi, R. and Ullman, J.: 2006, Compilers: Principles, techniques and

tools.

Ali, H.: 2020, Multi-language systems based on perspectives to promote modularity,

reusability, and consistency, Proceedings of the 23rd ACM/IEEE International Confer-

ence on Model Driven Engineering Languages and Systems: Companion Proceedings,

MODELS ’20, Association for Computing Machinery, New York, NY, USA.

URL: https://doi.org/10.1145/3417990.3419489

Amaral, V., Helmer, S. and Moerkotte, G.: 2003, A visual query language for hep analysis,

2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515),

Vol. 2, pp. 829–833 Vol.2.

Bačíková, M.: 2014, Domain analysis of graphical user interfaces of software systems,

Information Sciences and Technologies 6(4), 17.

Bačíková, M., Poruban, J. and Lakatos, D.: 2013, Defining Domain Language of Graphical

User Interfaces, 2nd Symposium on Languages, Applications and Technologies, Dagstuhl

Publishing, pp. 187–202.

163

LIST OF REFERENCES 164

Barišić, A., Amaral, V., Goulão, M. and Barroca, B.: 2011, Quality in use of domain-specific

languages: A case study, Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation

and Usability of Programming Languages and Tools, PLATEAU ’11, ACM, New York,

NY, USA, pp. 65–72.

URL: http://doi.acm.org/10.1145/2089155.2089170

Barišić, A., Amaral, V., Goulao, M. and Barroca, B.: 2012, How to reach a usable dsl?

moving toward a systematic evaluation, Electronic Communications of the EASST 50.

Batory, D.: 2004, Feature-oriented programming and the ahead tool suite, Proceedings. 26th

International Conference on Software Engineering, IEEE, pp. 702–703.

Batory, D. and Geraci, B. J.: 1997, Composition validation and subjectivity in genvoca

generators, IEEE Transactions on Software Engineering 23(2), 67–82.

Batory, D., Johnson, C., MacDonald, B. and von Heeder, D.: 2002, Achieving extensibility

through product-lines and domain-specific languages: A case study, ACM Trans. Softw.

Eng. Methodol. 11(2), 191–214.

URL: http://doi.acm.org/10.1145/505145.505147

Batory, D., Lofaso, B. and Smaragdakis, Y.: 1998, Jts: Tools for implementing domain-

specific languages, Fifth International Conference on Software Reuse, pp. 143–153.

Batory, D., Lopez-Herrejon, R. E. and Martin, J. P.: 2002, Generating product-lines of

product-families, Proceedings 17th IEEE International Conference on Automated Soft-

ware Engineering, pp. 81–92.

Bettini, L.: 2013, Implementing Domain-Specific Languages with Xtext and Xtend, Packt

Publishing Ltd.

Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson, J. C. and

Densmore, D.: 2011, Eugene a domain specific language for specifying and constraining

LIST OF REFERENCES 165

synthetic biological parts, devices, and systems, PLOS ONE 6(4), 112.

URL: http://dx.doi.org/10.1371/journal.pone.0018882

Bjarnason, R., Fern, A. and Tadepalli, P.: 2009, Lower bounding klondike solitaire with

monte-carlo planning., ICAPS.

Borodin, A., Kiselev, Y., Mirvoda, S. and Porshnev, S.: 2015, On Design of Domain-Specific

Query Language for the Metallurgical Industry, Springer International Publishing, Cham,

pp. 505–515.

Bravenboer, M. and Visser, E.: 2004, Concrete syntax for objects: domain-specific language

embedding and assimilation without restrictions, ACM SIGPLAN Notices, Vol. 39, ACM,

pp. 365–383.

Bryant, B., Jézéquel, J.-M., L ammel, R., Mernik, M., Schindler, M., Steinmann, F., Tolva-

nen, J.-P., Vallecillo, A. and V olter, M.: 2015, Globalized Domain Specific Language

Engineering, Springer International Publishing, Cham, pp. 43–69.

Burgy, L., Consel, C., Latry, F., Lawall, J., Palix, N. and Réveillere, L.: 2005, Telephony

software engineering: A domain-specific approach, Technical report, Research Report

RR-5548, INRIA, Bordeaux, France.

Cadogan, A.: 1874, Illustrated Games of Patience, Sampson Low, Marston, Low, and

Searle.

Cazzola, W. and Vacchi, E.: 2016, Language components for modular dsls using traits,

Computer Languages, Systems & Structures 45, 16 – 34.

URL: http://www.sciencedirect.com/science/article/pii/S1477842415300208

Čeh, I., Črepinšek, M., Kosar, T. and Mernik, M.: 2011, Ontology driven development of

domain-specific languages, Computer Science and Information Systems 8(2), 317–342.

LIST OF REFERENCES 166

Čeh, I., Črepinšek, M., Kosar, T., Mernik, M., Henriques, P., Pereira, M. J. a., Cruz, D. and

Oliveira, N.: 2011, Tool-supported building of dsls from owl ontologies, INForum’11,

Simpósio de Informática (CoRTA’11 track).

Chen, L. and Babar, M. A.: 2011, A systematic review of evaluation of variability man-

agement approaches in software product lines, Information and Software Technology

53(4), 344–362. Special section: Software Engineering track of the 24th Annual Sympo-

sium on Applied Computing Software Engineering track of the 24th Annual Symposium

on Applied Computing.

URL: http://www.sciencedirect.com/science/article/pii/S0950584910002223

Cheng, B. H. C., Combemale, B., France, Robert B.and Jézéquel, J.-M. and Rumpe, B.:

2015, On the Globalization of Domain-Specific Languages, Springer International Pub-

lishing, Cham, pp. 1–6.

Chodarev, S. and Kollar, J.: 2016, Extensible host language for domain-specific languages,

Computing and Informatics 35(1), 84–110.

Chodarev, S., Lakatoš, D., Porubän, J. and Kollár, J.: 2014, Abstract syntax driven approach

for language composition, Open Computer Science 4(3), 107–117.

Cleenewerck, T.: 2003, Component-based dsl development, in F. Pfenning and Y. Smarag-

dakis (eds), Generative Programming and Component Engineering, Vol. 2830 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg, pp. 245–264.

URL: http://dx.doi.org/10.1007/978-3-540-39815-8_15

Consel, C., Latry, F., Réveillere, L. and Cointe, P.: 2005, A generative programming ap-

proach to developing dsl compilers, Generative Programming and Component Engineer-

ing, Springer, pp. 29–46.

Consel, C. and Marlet, R.: 1998, Architecture software using: a methodology for language

development, Principles of Declarative Programming, Springer, pp. 170–194.

LIST OF REFERENCES 167

Crane, M. L. and Dingel, J.: 2005, Uml vs. classical vs. rhapsody statecharts: Not all models

are created equal, MoDELS, Vol. 3713, Springer, pp. 97–112.

Črepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R. and Rousell, G.: 2010, On au-

tomata and language based grammar metrics, Computer Science and Information Systems

7(2), 309–329.

Czarnecki, K.: 2005, Overview of generative software development, Unconventional Pro-

gramming Paradigms, Springer, pp. 326–341.

Czarnecki, K. and Eisenecker, U. W.: 2000, Generative programming, Edited by G. Goos,

J. Hartmanis, and J. van Leeuwen p. 15.

Czarnecky, K.: 1998, Generative Programming: Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component Mod-

els, PhD thesis, PhD thesis, Technische Universit at Ilmenau, Department of Computer

Science.

Degueule, T.: 2016, Composition and Interoperability for External Domain-Specific Lan-

guage Engineering, PhD thesis, Universite de Rennes.

Degueule, T., Combemale, B., Blouin, A., Barais, O. and Jézéquel, J.-M.: 2015, Melange:

A meta-language for modular and reusable development of dsls, Proceedings of the 2015

ACM SIGPLAN International Conference on Software Language Engineering, SLE 2015,

ACM, New York, NY, USA, pp. 25–36.

URL: http://doi.acm.org/10.1145/2814251.2814252

Delorie, D.: 2012, Ace of penguins.

URL: http://www.delorie.com/store/ace/

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T. and Ziane, M.: 2012, RobotML, a Domain-

Specific Language to Design, Simulate and Deploy Robotic Applications, Springer Berlin

LIST OF REFERENCES 168

Heidelberg, Berlin, Heidelberg, pp. 149–160.

URL: http://dx.doi.org/10.1007/978-3-642-34327-8_16

Diamond, S. and Boyd, S.: 2016, Cvxpy: A python-embedded modeling language for con-

vex optimization, Journal of Machine Learning Research 17(83), 1–5.

Diekmann, L. and Tratt, L.: 2013, Parsing composed grammars with language boxes, Work-

shop on Scalable Language Specifications.

Dijkstra, E. W.: 1975, Guarded commands, nondeterminacy and formal derivation of pro-

grams, Commun. ACM 18(8), 453457.

URL: https://doi.org/10.1145/360933.360975

Dinkelaker, T., Eichberg, M. and Mezini, M.: 2010, An architecture for composing em-

bedded domain-specific languages, Proceedings of the 9th International Conference on

Aspect-Oriented Software Development, AOSD ’10, ACM, New York, NY, USA, pp. 49–

60.

URL: http://doi.acm.org/10.1145/1739230.1739237

Dinkelaker, T., Eichberg, M. and Mezini, M.: 2013, Incremental concrete syntax for em-

bedded languages with support for separate compilation, Science of Computer Program-

ming 78(6), 615–632. Special section: The Programming Languages track at the 26th

{ACM} Symposium on Applied Computing (SAC 2011) & Special section on

Agent-oriented Design Methods and Programming Techniques for Distributed Comput-

ing in Dynamic and Complex Environments.

URL: http://www.sciencedirect.com/science/article/pii/S0167642312002134

do Nascimento, L. M., Viana, D. L., Silveira Neto, P. A. M., Martins, D. A. O., Garcia1, V. C.

and Meira, S. R. L.: 2012, A systematic mapping study on domain-specific languages,

The Seventh International Conference on Software Engineering Advances (ICSEA 2012),

pp. 179–187.

LIST OF REFERENCES 169

Eden, A. H., Hirshfeld, Y. and Kazman, R.: 2006, Abstraction classes in software design,

IEE Proceedings-Software 153(4), 163–182.

Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hasselbring, W. and

Hanus, M.: 2012, Xbase: Implementing domain-specific languages for java, SIGPLAN

Not. 48(3), 112–121.

URL: http://doi.acm.org/10.1145/2480361.2371419

Eißfeldt, H. and Bischoff, M.: n.d., Xpat.

Erdweg, S., Giarrusso, P. G. and Rendel, T.: 2012, Language composition untangled, Pro-

ceedings of the Twelfth Workshop on Language Descriptions, Tools, and Applications,

LDTA ’12, ACM, ACM, New York, NY, USA, pp. 7:1–7:8.

URL: http://doi.acm.org/10.1145/2427048.2427055

Erdweg, S., Rendel, T., Kästner, C. and Ostermann, K.: 2011, Sugarj: Library-based syn-

tactic language extensibility, SIGPLAN Not. 46(10), 391–406.

URL: http://doi.acm.org/10.1145/2076021.2048099

Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W. R., Gerritsen,

A., Hulshout, A., Kelly, S., Loh, A., Konat, a., Molina, P. J., Palatnik, M., Pohjonen, R.,

Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser, E., Vlist, K. v. d., Wachsmuth,

G. and Woning, J. v. d.: 2015, Evaluating and comparing language workbenches, Com-

puter Languages, Systems & Structures 44, 24 – 47. Special issue on the 6th and 7th

International Conference on Software Language Engineering (SLE 2013 and SLE 2014).

URL: http://www.sciencedirect.com/science/article/pii/S1477842415000573

Estublier, J., Vega, G. and Ionita, A. D.: 2005, Composing domain-specific languages for

wide-scope software engineering applications, in L. Briand and C. Williams (eds), Model

Driven Engineering Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidel-

berg, pp. 69–83.

LIST OF REFERENCES 170

Eysholdt, M. and Behrens, H.: 2010, Xtext: Implement your language faster than the quick

and dirty way, Proceedings of the ACM International Conference Companion on Object

Oriented Programming Systems Languages and Applications Companion, OOPSLA ’10,

ACM, New York, NY, USA, pp. 307–309.

URL: http://doi.acm.org/10.1145/1869542.1869625

Fonseca, J., Pereira, M. and Henriques, P.: 2014, Converting Ontologies into DSLs, 3rd

Symposium on Languages Technologies and Applications, Dagstuhl Publishing, pp. 0–7.

Font, J. M., Mahlmann, T., Manrique, D. and Togelius, J.: 2013, A card game description

language, Vol. 7835 of Lecture Notes in Computer Science, Springer.

URL: http://dx.doi.org/10.1007/978-3-642-37192-9_26

Fowler, M.: 2010, Domain-Specific Languages, Addison Wesley.

Gabriel, Pedro and Goulão, Miguel and Amaral, Vasco: 2011, Do software languages engi-

neers evaluate their languages?, CoRR abs/1109.6794.

URL: http://arxiv.org/abs/1109.6794

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: 1994, Design patterns: elements of

reusable object-oriented software, Pearson Education.

Ghosh, D.: 2010, DSLs in Action, 1st edn, Manning Publications Co., Greenwich, CT, USA.

Gibson, W. B.: 1993, Hoyle’s Modern Encyclopedia of Card Games, Selecta Book.

Gnome: n.d., Aisleriot.

URL: https://wiki.gnome.org/action/show/Apps/Aisleriot

Greenfield, J. and Short, K.: 2004, Software Factories, Wiley Publishing, Inc.

Grohe, M. and Schweikardt, N.: 2003, Comparing the succinctness of monadic query lan-

guages over finite trees, International Workshop on Computer Science Logic, Springer,

pp. 226–240.

LIST OF REFERENCES 171

Haber, A., Look, M., Perez, A. N., Nazari, P. M. S., Rumpe, B., Völkel, S. and Wort-

mann, A.: 2015, Integration of heterogeneous modeling languages via extensible and

composable language components, 2015 3rd International Conference on Model-Driven

Engineering and Software Development (MODELSWARD), pp. 19–31.

Harsu, M.: 2002, A survey on domain engineering, Citeseer.

Hermans, F., Pinzger, M. and van Deursen, A.: 2009, Domain-specific languages in practice:

A user study on the success factors, Model driven engineering languages and systems,

Springer, pp. 423–437.

Hudak, P.: 1997a, Domain-specific languages, Handbook of Programming Languages

3, 39–60.

Hudak, P.: 1997b, Domain-specific languages, Handbook of Programming Languages

3, 39–60.

Johnson, S. C.: 1975, Yacc: Yet another compiler-compiler, Vol. 32, Bell Laboratories Mur-

ray Hill, NJ.

Jones, C.: 1996, Programming languages table, release 8.2, Software Productivity Research,

Burlington, MA .

Kahraman, G. and Bilgen, S.: 2015, A framework for qualitative assessment of domain-

specific languages, Software & Systems Modeling 14(4), 1505–1526.

URL: http://dx.doi.org/10.1007/s10270-013-0387-8

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. and Peterson, A. S.: 1990, Feature-

oriented domain analysis (foda) feasibility study, Technical report, DTIC Document.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M. and Völkel, S.:

2014, Design guidelines for domain specific languages, arXiv preprint arXiv:1409.2378

LIST OF REFERENCES 172

abs/1409.2378.

URL: http://arxiv.org/abs/1409.2378

Kihlman, L.: 2015, Producing domain-specific languages from strategy patterns, Computer

Science and Electronic Engineering Conference (CEEC), 2015 7th, pp. 9–12.

Kihlman, L.: 2017, A test model for domain-specific language developement, Computer

Science and Electronic Engineering Conference (CEEC), 2017 9th.

Kleppe, A.: 2008, Software Language Engineering, Pearson Education, Inc.

Kollar, J. and Chodarev, S.: 2010, Extensible approach to dsl development, Journal of In-

formation, Control and Management Systems 8(3).

Kosar, T., Bohra, S. and Mernik, M.: 2016, Domain-specific languages: A systematic map-

ping study, Information and Software Technology 71, 77 – 91.

URL: http://www.sciencedirect.com/science/article/pii/S0950584915001858

Kosar, T., Martı, P. E., Barrientos, P. A., Mernik, M. et al.: 2008, A preliminary study on

various implementation approaches of domain-specific language, Information and Soft-

ware Technology 50(5), 390–405.

URL: http://www.sciencedirect.com/science/article/pii/S0950584907000419

Kosar, T., Mernik, M. and Carver, J. C.: 2012, Program comprehension of domain-specific

and general-purpose languages: comparison using a family of experiments, Empirical

software engineering 17(3), 276–304.

Kosar, T., Mernik, M., Crepinsek, M., Henriques, P., da Cruz, D., Pereira, M. and Oliveira,

N.: 2009, Influence of domain-specific notation to program understanding, Computer

Science and Information Technology, 2009. IMCSIT ’09. International Multiconference

on, pp. 675–682.

LIST OF REFERENCES 173

Kosar, T., Oliveira, N., Mernik, M., Pereira, V. J. a. M., Črepinšek, M., Da, C. D. and

Henriques, R. P.: 2010, Comparing general-purpose and domain-specific languages: An

empirical study, Computer Science and Information Systems 7(2), 247–264.

Koutsofios, E., North, S. et al.: 1991, Drawing graphs with dot, Technical report, Technical

Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ.

Kühn, T., Cazzola, W. and Olivares, D. M.: 2015, Choosy and picky: Configuration of

language product lines, Proceedings of the 19th International Conference on Software

Product Line, SPLC ’15, ACM, New York, NY, USA, pp. 71–80.

URL: http://doi.acm.org/10.1145/2791060.2791092

Lacy, L. W.: 2005, OWL: Representing information using the web ontology language, Traf-

ford Publishing.

Lakatos, D. and Porubän, J.: 2013, Patterns for composition of domain-specific languages,

Journal of Computer Science and Control Systems 6(1), 62.

Longpré, L. and McKenzie, P.: 2009, The complexity of solitaire, Theoretical Computer

Science 410(50), 5252–5260. Mathematical Foundations of Computer Science (MFCS

2007).

URL: http://www.sciencedirect.com/science/article/pii/S0304397509006100

Lorenzen, F. and Erdweg, S.: 2013, Modular and automated type-soundness verification for

language extensions, SIGPLAN Not. 48(9), 331–342.

URL: http://doi.acm.org/10.1145/2544174.2500596

Lorenzen, F. and Erdweg, S.: 2016, Sound type-dependent syntactic language extension,

SIGPLAN Not. 51(1), 204–216.

URL: http://doi.acm.org/10.1145/2914770.2837644

Love, N., Hinrichs, T., Haley, D., Schkufza, E. and Genesereth, M.: 2008, General game

playing: Game description language specification.

LIST OF REFERENCES 174

Luoma, J., Kelly, S. and Tolvanen, J.-P.: 2004, Defining domain-specific modeling lan-

guages: Collected experiences, 4 th Workshop on Domain-Specific Modeling.

Merilinna, J. and Pärssinen, J.: 2007, Comparison between different abstraction level pro-

gramming: Experiment definition and initial results, Proceedings of the 7th OOPSLA

Workshop on Domain-Specific Modeling (DSM07), Montréal, Candada.

Mernik, M.: 2012, Formal and Practical Aspects of Domain-Specific Languages: Recent

Developments: Recent Developments, IGI Global.

Mernik, M.: 2013, An object-oriented approach to language compositions for software lan-

guage engineering, Journal of Systems and Software 86(9), 2451–2464.

URL: http://www.sciencedirect.com/science/article/pii/S0164121213001271

Mernik, M., Heering, J. and Sloane, A. M.: 2005, When and How to Develop Domain-

Specific Languages., ACM Computing Surveys 37(4), 316–344.

Mernik, M., Lenič, M., Avdičaušević, E. and Žumer, V.: 2002, Lisa: An interactive envi-

ronment for programming language development, International Conference on Compiler

Construction, Springer, pp. 1–4.

Morehead, A. and Mott-Smith, G.: 2001, The Complete book of Solitaire and Patience,

foulsham.

Motik, B., Patel-Schneider, P. F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra,

R., Horrocks, I., Ruttenberg, A., Sattler, U. et al.: 2009, Owl 2 web ontology language:

Structural specification and functional-style syntax, W3C recommendation 27(65), 159.

Nystrom, N., Clarkson, M. R. and Myers, A. C.: 2003, Polyglot: An extensible com-

piler framework for java, International Conference on Compiler Construction, Springer,

pp. 138–152.

LIST OF REFERENCES 175

Oliveira, N., Pereira, M. J. a., Henriques, P. and Cruz, D.: 2009, Domain specific languages:

A theoretical survey, Proceedings of the 3rd Compilers, Programming Languages, Re-

lated Technologies and Applications (CoRTA’2009), Faculdade de Ciências da Universi-

dade de Lisboa, pp. 35–46.

Papegaaij, E.: 2007, The tree processing language: Defining the structure and behaviour of

a tree, Master’s thesis, University of Twente.

URL: http://essay.utwente.nl/705/

Parnas, D.: 1976, On the design and development of program families, Software Engineer-

ing, IEEE Transactions on SE-2(1), 1–9.

Parr, T.: 2009, Language Implementation Patterns: Create Your Own Domain-Specific and

General Programming Languages, 1st edn, Pragmatic Bookshelf.

Parr, T.: 2010, Language implementation patterns: create your own domain-specific and

general programming languages, Pragmatic Bookshelf.

Parr, T. J. and Quong, R. W.: 1995, Antlr: A predicated-ll(k) parser generator, Software:

Practice and Experience 25(7), 789–810.

URL: http://dx.doi.org/10.1002/spe.4380250705

Pereira, M. J. a. V., Mernik, M., Henriques, P. R. et al.: 2008, Program comprehension for

domain-specific languages, Computer Science and Information Systems 5(2), 1–17.

Porubän, J., Forgáč, M. and Sabo, M.: 2009, Annotation based parser generator, 2009 In-

ternational Multiconference on Computer Science and Information Technology, IEEE,

pp. 707–714.

Porubän, J., Sabo, M., Kollár, J. and Mernik, M.: 2010, Abstract syntax driven language

development: Defining language semantics through aspects, Proceedings of the Interna-

tional Workshop on Formalization of Modeling Languages, pp. 1–5.

LIST OF REFERENCES 176

Power, J. F. and Malloy, B. A.: 2004, A metrics suite for grammar-based software, Journal of

Software Maintenance and Evolution: Research and Practice 16(6), 405–426. This is the

postprint version of the published article, which is available at DOI: 10.1002/smr.v16:6.

URL: http://eprints.maynoothuniversity.ie/6419/

Prieto-Díaz, Rubén: 1990, Domain analysis: An introduction, SIGSOFT Softw. Eng. Notes

15(2), 47–54.

URL: http://doi.acm.org/10.1145/382296.382703

PySolFC: n.d., Pysolfc.

URL: http://pysolfc.sourceforge.net/

Rossel Cid, P. O.: 2013, Software product line model for the meshing tool domain, PhD

thesis, Universidad de Chile.

Schmid, K.: 2000, Scoping software product lines, Software Product Lines, Springer,

pp. 513–532.

Schmitt, C., Kuckuk, S., Kostler, H., Hannig, F. and Teich, J.: 2014, An evaluation of

domain-specific language technologies for code generation, Computational Science and

Its Applications (ICCSA), 2014 14th International Conference on, pp. 18–26.

Simos, M. A.: 1995, Organization domain modeling (odm): Formalizing the core domain

modeling life cycle, Proceedings of the 1995 Symposium on Software Reusability, SSR

’95, ACM, New York, NY, USA, pp. 196–205.

URL: http://doi.acm.org/10.1145/211782.211845

Simos, M., Creps, R., Klingler, C. and Lavine, L.: 1995, Software technology for adaptable

reliable systems (stars). organization domain modeling (odm) guidebook, version 1.0.,

Technical report, DTIC Document.

Sonnenberg, C., Huemer, C., Hofreiter, B., Mayrhofer, D. and Braccini, A.: 2011, The rea-

dsl: A domain specific modeling language for business models, Proceedings of the 23rd

LIST OF REFERENCES 177

International Conference on Advanced Information Systems Engineering, CAiSE’11,

Springer-Verlag, Berlin, Heidelberg, pp. 252–266.

URL: http://dl.acm.org/citation.cfm?id=2026716.2026743

Spinellis, D.: 2001, Notable design patterns for domain-specific languages, Journal of Sys-

tems and Software 56(1), 91–99.

URL: http://www.sciencedirect.com/science/article/pii/S0164121200000893

Sprinkle, J., Mernik, M., Tolvanen, J. and Spinellis, D.: 2009, Guest editors’ introduction:

What kinds of nails need a domain-specific hammer?, Software, IEEE 26(4), 15–18.

Taylor, R. N., Tracz, W. and Coglianese, L.: 1995, Software development using domain-

specific software architectures: Cdrl a011—a curriculum module in the sei style,

SIGSOFT Softw. Eng. Notes 20(5), 27–38.

URL: http://doi.acm.org/10.1145/217030.217034

Team, K.: n.d., Kpat.

URL: https://games.kde.org/game.php?game=kpat

Thibault, S.: 1998, Domain-specific languages: Conception, implementation and applica-

tion, PhD thesis, PhD thesis, IRISA/University of Rennes 1.

Thibault, S. A., Marlet, R. and Consel, C.: 1999, Domain-specific languages: from design

to implementation application to video device drivers generation, Software Engineering,

IEEE Transactions on 25(3), 363–377.

Thielscher, M.: 2010, A general game description language for incomplete information

games., AAAI, Vol. 10, Citeseer, pp. 994–999.

Tracz, W.: 1994, Domain-specific software architecture (dssa) frequently asked questions

(faq), ACM SIGSOFT Software Engineering Notes 19(2), 52–56.

LIST OF REFERENCES 178

Tucker, A. B. and Noonan, R. E.: 2007, Programming Languages: Principles and

Paradigms, 2nd edn, McGraw-Hill.

Turner, R.: 2017, The Philosophy of Computer Science.

URL: https://stanford.library.sydney.edu.au/entries/computer-science/

Vacchi, E., Cazzola, W., Pillay, S. and Combemale, B.: 2013, Variability support in domain-

specific language development, in M. Erwig, R. F. Paige and E. van Wyk (eds), Software

Language Engineering, Vol. 8225 of Lecture Notes in Computer Science, Springer Inter-

national Publishing, pp. 76–95.

URL: http://dx.doi.org/10.1007/978-3-319-02654-1_5

van Deursen, A. and Klint, P.: 1998, Little Languages: Little Maintenance?, Journal of

Software Maintenance 10, 75–92.

van Deursen, A. and Klint, P.: 2002, Domain-Specific Language Design Requires Feature

Descriptions, Computing and Information Technology 10(1), 1–17.

van Deursen, A., Klint, P. and Visser, J.: 2000, Domain-specific languages: An annotated

bibliography., Sigplan Notices 35(6), 26–36.

Visser, E.: 2008, WebDSL: A Case Study in Domain-Specific Language Engineering., Lec-

ture Notes in Computer Science, Vol. 5235, Springer, pp. 291–373.

Völter, M.: 2008, A family of languages for architecture description, 8th OOPSLA Work-

shop on Domain-Specific Modeling (DSM), pp. 86–93.

Völter, M.: 2013a, DSL Engineering, CreateSpace Independent Publishing Platform.

URL: http://dslbook.org

Völter, M.: 2013b, Language and IDE Modularization and Composition with MPS, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 383–430.

URL: http://dx.doi.org/10.1007/978-3-642-35992-7_11

LIST OF REFERENCES 179

Völter, M. and Solomatov, K.: 2010, Language modularization and composition with pro-

jectional language workbenches illustrated with mps, Software Language Engineering,

SLE 16.

Völter, M. and Visser, E.: 2011, Product line engineering using domain-specific languages,

Software Product Line Conference (SPLC), 2011 15th International, pp. 70–79.

W3C: 2012, OWL 2 Web Ontology Language Document Overview (Second Edition).

URL: http://www.w3.org/TR/owl2-overview/

Walter, T. and Ebert, J.: 2009, Combining dsls and ontologies using metamodel integration,

IFIP Working Conference on Domain-Specific Languages, Springer, pp. 148–169.

Walter, T., Parreiras, F. S. and Staab, S.: 2014, An ontology-based framework for domain-

specific modeling, Software & Systems Modeling 13(1), 83–108.

Walter, T., Silva Parreiras, F. and Staab, S.: 2009, OntoDSL: An Ontology-Based Frame-

work for Domain-Specific Languages, in A. Schürr and B. Selic (eds), Model Driven

Engineering Languages and Systems: 12th International Conference, MODELS 2009,

Denver, CO, USA, October 4-9, 2009. Proceedings, Vol. 5795 of Lecture Notes in Com-

puter Science, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 408–422.

URL: http://dx.doi.org/10.1007/978-3-642-04425-0_32

Walton, L. A.: 1998, Generating the parser-pretty-printer isomorphism.

Weiss, D. M. and Lai, C. T. R.: 1999, Software Product-Line Engineering: A Family-Based

Software Development Process, Addison Wesley.

White, J., Hill, J. H., Gray, J., Tambe, S., Gokhale, A. S. and Schmidt, D. C.: 2009, Improv-

ing domain-specific language reuse with software product line techniques, IEEE Software

26(4), 47–53.

LIST OF REFERENCES 180

Wile, D. S.: 2001, Supporting the DSL Spectrum, CIT. Journal of computing and informa-

tion technology 9(4), 263–287.

Wu, H., Gray, J. and Mernik, M.: 2009, Unit testing for domain-specific languages, in

W. Taha (ed.), Domain-Specific Languages, Vol. 5658 of Lecture Notes in Computer Sci-

ence, Springer Berlin Heidelberg, pp. 125–147.

URL: http://dx.doi.org/10.1007/978-3-642-03034-5_7

Yan, X., Diaconis, P., Rusmevichientong, P. and Roy, B. V.: 2005, Solitaire: Man versus

machine, Advances in Neural Information Processing Systems, pp. 1553–1560.

Zdun, U.: 2010, A dsl toolkit for deferring architectural decisions in dsl-based software

design, Information and Software Technology 52(7), 733–748.

Zdun, U. and Strembeck, M.: 2009, Reusable architectural decisions for dsl design, 14th

European Conference on Pattern Languages of Programs (EuroPLoP).

Zeng, J., Mitchell, C. and Edwards, S. A.: 2006, A domain-specific language for generating

dataflow analyzers, Electronic Notes in Theoretical Computer Science 164(2), 103–119.

Zschaler, S., Kolovos, D. S., Drivalos, N., Paige, R. F. and Rashid, A.: 2010, Domain-

Specific Metamodelling Languages for Software Language Engineering, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp. 334–353.

	Introduction
	What is a DSL?
	Research
	Thesis Outline

	Composition and translation of Domain-Specific Languages
	Introduction
	Domains
	Languages
	Domain-Specific Languages
	Composition
	Evaluation
	Other DSL concerns

	Related areas
	Ontologies
	Product Families

	 Patience Games
	Introduction
	Patience
	General Design of Patience Suite
	Software Product Lines and Domains
	Implementation of Patience Suite
	Existing Code-bases

	Use of Model
	Host Languages
	Patience Language
	Language Expressiveness
	Language Composition
	Language Analysis
	Language Evaluation

	Conclusions

	Basic framework for language composition
	Introduction
	Motivating example

	Background
	Domain and language
	Abstract Language
	Composition of abstract language
	Translation
	Individual composition operations effect on reusability of translation rules

	Examples
	Introduction of constructs
	Relaxing and restricting
	Combining and deleting
	Translation

	Limitations and solutions
	Conclusion

	Composing Patience Games
	Introduction
	Background
	Patience
	Patience Implementation
	Abstract Language Model
	The language
	Card Games
	Cards
	Games

	Translation to Java
	Translation to DSL
	Relation with existing code-base

	Discussion

	A Self-Describing Domain-Specific Language for Translations
	Introduction
	Method
	Construction of S and H
	The translation language

	Implementation of a translation language
	Informally checking correctness of translation DSL

	Example translation rules
	Reuse in the construction of TTH

	Results and discussion
	Conclusion

	Comparison to the State of the Art
	Introduction
	Background
	Comparison
	Conclusion

	 Conclusion and future work
	Introduction
	Big picture
	Contributions
	Shortcomings
	Future work

	References

