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Embryonic development leads to the reproducible and ordered ap-
pearance of complexity from egg to adult. The successive differen-
tiation of different cell types, that elaborates this complexity, result
from the activity of gene networks and was likened by Waddington
to a flow through a landscape in which valleys represent alternative
fates. Geometric methods allow the formal representation of such
landscapes and codify the types of behaviors that result from sys-
tems of differential equations. Results from Smale and coworkers
imply that systems encompassing gene network models can be rep-
resented as potential gradients with a Riemann metric, justifying the
Waddington metaphor. Here, we extend this representation to in-
clude parameter dependence and enumerate all 3-way cellular de-
cisions realisable by tuning at most two parameters, which can be
generalized to include spatial coordinates in a tissue. All diagrams of
cell states vs model parameters are thereby enumerated. We unify a
number of standard models for spatial pattern formation by express-
ing them in potential form. Turing systems appear non-potential yet
in suitable variables the dynamics are low dimensional, potential,
and a time independent embedding recovers the biological variables.
Lateral inhibition is described by a saddle point with many unstable
directions. A model for the patterning of the Drosophila eye appears
as relaxation in a bistable potential. Geometric reasoning provides
intuitive dynamic models for development that are well adapted to fit
time-lapse data.

Morse-Smale | Waddington landscape | bifurcation | Turing model |
gene network

1. Introduction

Much of classical physics, chemistry, and by extension biol-
ogy is represented by differential equations. Particularly in
biology, the precise form of these equations and their param-
eters is poorly known. In addition, the long time behavior of
these systems is typically opaque and one resorts to a case by
case numerical solution. Mathematics sidesteps the question
of solving a particular equation by using geometric methods
to enumerate the discrete types of solutions. Then qualitative
features of the biology may select a type and mathematics in
some instances then supplies a minimal parameterization.

A most striking aspect of development is the extreme fi-
delity of the output in response to insults, which nicely aligns
with the mathematical notion of genericity, i.e., simply by
insisting all nearby systems are equivalent, eliminates excep-
tional cases that require parameter tuning and are unlikely to
be relevant to biology. The assumption of genericity strongly
constrains the dynamical behavior. Although the dynamics
appropriate for development are simple, expressing a model
in geometric language classifies its essential features. In par-
ticular Smale and his school have shown that models that
plausibly encompass development all admit a potential that
decreases as the system evolves. This potential derives from

a graph representing which critical or decision points can flow
to which others. Thus the potential is implicit in, and derived
from, the dynamics. Then the differential equation model can
be written effectively as a metric times the gradient of this po-
tential all defined on a Riemann manifold. Thus the Wadding-
ton metaphor for development, as flow down a landscape with
bifurcations signifying decisions between alternative cell fates,
is literally true.

Geometric reasoning will typically reduce a genetic model
to a few variables per cell, and thus the explicit connection
of variables to genes is lost. But the typical network for cell
communication involves tens of genes, and most gene centric
models include only a subset of these, thus are to some de-
gree phenomenological. Geometry takes this reduction to the
extreme, and will deliver the minimum number of parameters
that can not be eliminated by variable redefinitions, and the
minimal phase space for representing the dynamics surround-
ing a cellular decision.

The results of Smale and colleagues do not apply through
bifurcation points which is essential for applications. Thus we
extend their results to encompass bifurcations, both local and
global. We limit ourselves to at most three possible states per
cell to capture a progenitor cell giving rise to two alternative
fates. Within this class we enumerate all ways the cellular
states can be arranged by two parameters. Our topological
arguments yield global results in parameter and state spaces
that link together locally described bifurcations.

Geometric methods are well suited to fitting time lapse
data obtained when cells are poised among competing fates.
A minimal parameterized topographic model with the correct
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geometry is essential to extract model parameters from the
cells as they are transitioning. Merely enumerating terminal
fates looses this information. When dealing with many cells,
focusing on the saddle points that represent cellular decisions
quantifies similarities among all models that use inhibition to
define a pattern. Turing showed how chemical reactions plus
diffusion can generate patterns in an otherwise uniform sys-
tem. In geometric terms the Turing instability is represented
as a saddle point and the trajectory from it to the terminal
pattern can be represented by gradient dynamics in the tan-
gent space of the saddle composed with a time independent
sigmoid, thus revealing similarities to models of lateral inhi-
bition by long-range contacts or diffusing factors. Geometric
methods are optimal for bridging the time from the initiation
of a pattern to its saturation, and thus extracting the essential
dynamics of cell specification.

2. The mathematics of gene network models

A gene network model defines a differential equation that de-
scribes the changes on the system with time. The time in-
tegration of a differential equation or, equivalently a vector
field defines a flow x → φt(x) which tells us the state φt(x)
at time t if the initial state at time t = 0 was x. Off of the
bifurcation set, the restpoints p of these systems have well-
defined stable and unstable manifolds i.e. (stable manifold)
W s(p) = {x|φt(x) → p as t → ∞} and (unstable manifold)
W u(p) = {x|φt(x) → p as t → −∞}, Fig.1. Moreover, these
restpoints p are of three types: attractors (W u(p) empty,
they attract all nearby points), saddles (W s(p) & W u(p) not
empty) and repellors (W s(p) empty). We say a saddle has
index λ if its unstable manifold has dimension λ.

If a system is not on the bifurcation set then small per-
turbations of it do not change its qualitative form (i.e. there
is a homeomorphism of phase space sending the trajectories
of one system onto the other). We say that such a system is
structurally stable.

Relatively simple sufficient conditions have been found (1)
for systems with a finite number of restpoints and periodic
orbits to be structurally stable and these are called Morse-
Smale (MS) systems (2). These assumptions exclude chaos
but include models of development. In what follows, we ex-
clude periodic orbits and insist that trajectories can not es-
cape to infinity. This is entirely plausible for development
and makes the point at infinity a repeller which is needed for
certain topological arguments. In our applications the phase
space M is the n-dimensional Euclidean space Rn

The downhill structure of generic landscapes. The Wadding-
ton analogy of development to flow in a topography can be for-
malized mathematically. All MS systems possess a Liapunov
function (a.k.a. potential function) defined on the phase space
which decreases along trajectories and for which restpoints
(and periodic orbits) are critical points. This formalizes the
notion of height in a topography. We call such dynamical
systems gradient-like. It is commonly thought that this is
enough to specify dynamics but the Liapunov function is not
enough to determine where a cell will go when it escapes an
attractor, ie a small perturbation to Fig.1F will direct the un-
stable manifold from the upper saddle to either state B or C.
Therefore extra information about the dynamics is necessary.
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Fig. 1. Representations of Morse-Smale systems. A. The symbol set used con-
sistently to describe elements of the phase space or parameter space (flip and fold
bifurcation curves). B. A Morse-Smale system with three attractors and two sad-
dles showing the stable (red) and unstable (blue) manifolds of the saddles. Contours
of a potential are shown in grey. In this system the unstable manifolds meet at the
attractor B in a cusp like shape. C. In this Morse-Smale system which also has 3
attractors, the unstable manifolds of the saddles make up a smooth curve. D. (Top
row) Two examples of directed acyclic graphs (DAG) corresponding to the system in
B (left) and the compactified elliptic umbilic of Fig.5D (right). (Bottom row) The de-
cision structures associated with the DAGs above them. The filled circles represent
the attractors and a connection between attractor A and B means that a cell whose
state sits at A (resp. B) can transition to B (resp. A) via a saddle-node bifurcation
that destroys A (resp. B). Thus the connections characterize the escape routes
and possible decisions. The connections also correspond to the index 1 saddles in
the system that connect A and B. Some escape routes wrap around an index 2
saddle as shown and indicated by a triangle. To minimize the numbers of decision
diagrams we do not distinguish cases where multiple saddles connect the same two
fixed points (see SI). E,F. The two simplest bifurcations: the local saddle-node and
the global heteroclinic flip. These are the main events underlying decision-making
in our dynamical systems. E. A saddle-node or fold bifurcation. As θ increases
through 0 a saddle and an attractor are born which then separate with a distance of
order

√
θ. F. The configuration shown in A can flip to one where the saddle a is

connected to C instead of B via a heteroclinic flip. To do this it passes through
the intermediate state shown where there is a heteroclinic connection in which the
unstable manifold of the saddle a connects to the saddle at b. G. An example of
a compact landscape involving a repellor. We have taken a case where the attrac-
tor is close to the saddle to illustrate that the attractor can move around the circular
unstable manifold and collide undergoing a saddle-node bifurcation and turning the
unstable manifold into a limit cycle. This is called a SNIC bifurcation. Although it is
important to be aware of such bifurcations we do not consider them anymore since
the existence of a limit cycle moves us out of the gradient-like restpoint-only systems.

There are two essentially equivalent ways to specify the
missing information. One way is to supply the stable and un-
stable manifolds of the saddle points. The unstable manifolds
of the index one saddles for instance describe the transition
routes between attractors.

The other way to augment the Liapunov function, is to
note that MS systems are nearly gradient systems. In a gra-
dient system a potential f together with a Riemannian metric
gij completely defines the dynamical system:

ẋi = −
!

j

gij ∂f

∂xj
[1]

where (gij) = (gij)−1. The restpoints of such a vector field
are the critical points of f (gij is positive definite), and the
metric rotates and stretches the potential gradient so it coin-
cides with the vector field. Gradient-like MS systems are also

2 | Rand et al.



DRAFT

nearly gradient and the difference is just at the restpoints.
By making adjustments of the restpoints in arbitrarily small
neighbourhoods one can convert the system into a topologi-
cally equivalent gradient system ((3), SI App. A). The need
to adjust the restpoints is because at such points the gradi-
ent system has a special structure (e.g. the eigenvalues are
real), while the MS system allows complex eigenvalues with
nonzero real parts. In applications, the model with its metric
abstractly represents how signals distort the landscape and
direct cells to the available fates or attractors.

A directed acyclic graph organizes cellular decisions. Now
consider a MS system and the graph G whose vertices cor-
respond to the restpoints and where two vertices β and β′

are connected with a (downward) directional edge (denoted
β ≻ β′) if there is a trajectory going from β to β′, Fig.1D.
Then, the following non-trivial results hold (4): (i) it is
never true that β ≻ β; (ii) if β ≻ β′ and β′ ≻ β′′ then
β ≻ β′′ (thus ≻ is a partial ordering) (iii) if β ≻ β′ then
dim W s(β) ≤ dim W s(β′). The conditions (i-ii) that exclude
β ≻ β′ and β′ ≻ β are crucial and eliminate heteroclinic cy-
cles (these are not generic). By (iii) we can naturally attach
levels to the nodes of G using the index d = dim W u(β). The
attractors are at the bottom level (d = 0), the repellors at
the top and the index d saddles at level d. The graph G is a
directed acyclic graph which we shall refer to as the DAG.

Using this we can allocate heights hi to the restpoints
which for consistency must satisfy that hi > hj whenever
βi ≻ βj and then find a Liapunov function h that takes these
values at restpoints. Moreover, this function can be taken to
be a Morse function (5). This means that near each restpoint
βi there is a coordinate system x1, . . . , xn such that in these
coordinates h = hi +

"
±x2

i with the number of minuses
equalling the index of βi.

This height function is unique in the following sense (5).
If ĥ is another Liapunov function such that the heights
h′

i = ĥ(βi) are ordered in the same way as those of h, then h
and ĥ are qualitatively equivalent in the sense that there are
homeomorphisms, φ of the phase space and ψ of the reals R
such that ĥ(x) = ψ(h(φ(x))).

As we will see below a number of advantages flow from
these results. Since motion is always downhill it gives a hier-
archical structure to the dynamics and easier understanding
of the eventual fates. Secondly, there is a powerful classifica-
tion theory for the bifurcations of such systems that is aided
by the existence of the potential, and, finally, it allows a bet-
ter understanding of how complexity of such systems can be
built up.

Parameterised landscapes. Our dynamical systems depend
upon parameters that will be changed by the signals received
by the cell. Changes in the parameters may cause bifurca-
tions where the qualitative nature of the dynamics undergoes
a discontinuous change and these lead to transitions between
cell states.

For a given number of attractors or saddles there are a large
number of topologies of landscape potentials. However, if we
define a decision as the eventual attractor A reached after the
state is freed from its initial attractor B either by a bifurcation
destroying B or by stochastically escaping the basin of B then
we can associate to a DAG a unique connected simple graph
that we call decision structure (see Fig.1D) which encodes

the possible decisions. The number of these is much smaller
than the number of landscapes. All three and four-attractor
decision structures are shown in Fig. 1D and the SI Sec I.7
respectively.

For applications to biology, we consider situations where
a precursor cell decides between two alternative fates. Thus
we classify decisions among three or fewer states that depend
on two or fewer parameters. The fold bifurcations, Fig.1E,
divide the parameter space up into components in which the
restpoints vary smoothly with parameters. We call these MS-
components.

In what follows, we leverage the continuity of MS dynamics
within a MS component to arrive at global representation of
the parameter space. The component boundaries consist of
smooth fold bifurcation segments that meet in special points
that we can enumerate under assumptions of genericity. The
sequence of these points around the boundary of the MS-
component classifies the component. This classification for
gradient-like MS systems is global and, not only tells us what
to expect in detailed mechanistic models, but also provides
a class of archetypal models that can be parameterised and
compared to experimental data (6–8) as described below.

Universality and normal forms. It is very useful to contrast
our proposed construction of parameterized landscapes with
the ideas of a universal unfolding and normal forms that are
derived from Thom’s theorem (9, 10) that gave rise to Catas-
trophe Theory (Fig. 2). This subject assumes strictly gradient
dynamics. It then classifies, irrespective of the dimension of
state space, the generic local bifurcations in parameterised
dynamical systems where the number r of parameters θ (or
codimension) is ≤ 5 ,Fig. 2. By smooth variable changes any
function near the bifurcation can be reduced to a normal form
polynomial in one or two dimensions ,Fig. 2. The dynam-
ics in the other dimensions is just contraction onto the one
or two effective dimensions, thus proving strong dimensional
reduction. The parameters in the normal form are the mini-
mum necessary to represent the bifurcation to within variable
changes. On the other hand, in parallel with our discussion
above about needing to know more than the Liapunov func-
tion, it does not classify the global bifurcations in such sys-
tems arising from heteroclinic connections (2, 11, 12) which
need to be handled separately. Moreover, the results are local
in that they only apply close to a bifurcation point.

Fig. 2. The hierarchy of elementary catastrophes obtained by coupling two bistable
systems. These describe all generic local bifurcations of potentials depending on
r ≤ 4 parameters. If hθ is such a generic family then there are coordinates
(x1, . . . , xn) on phase space such that hθ = fθ(y)+

"n

ρ+1
εix2

i where fθ(y)
represents one of the elementary catastrophes in the figure, ρ = 1 or 2 and the re-
maining phase space variables can be reduced to a diagonal quadratic form where
εi = ±1. Several of these polynomials are prototypes for the parameterized land-
scapes below For a precise statement see (10).
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We aim for results that are global in phase and parameter
space and apply to generic parameterized families with a fi-
nite number of restpoints and no periodic orbits. Nevertheless
the catastrophes of higher codimension are biologically rele-
vant because even if the parameters that we can manipulate
to control fates (morphogens) are fewer in number than the
codimension, two-dimensional cuts through complete param-
eter space will occur in our enumeration. Figure 5A occurs as
part of the butterfly (codim. r = 4), and Fig. 5D is essentially
related to the elliptic umbillic (codim. r = 3).

In the following discussion we focus on generic systems and
bifurcations and do not treat non-generic situations that occur
because the system is restricted by, for example, invariant
boundaries (e.g. the Lotka-Volterra systems) or symmetries.

Building up complexity: the simplest bifurcations. Any
gradient-like MS system can be built up by using just three
simple bifurcation types (13). Only two of these are rele-
vant to our discussion: the fold (Fig. 1E), and the simplest
global bifurcation, the heteroclinic flip (Fig. 1F). As we will
see, these bifurcations are particularly important for devel-
opment and using them provides a powerful method to build
complexity that is available for evolution to work on (SI Sec
I.2).

The fold (a.k.a. the saddle-node) bifurcation results in the
appearance of an attracting or repelling restpoint and an in-
dex 1 saddle as a parameter θ is changed (supercritical case)
or the disappearance of the same (subcritical case). More
generally a fold results in the creation/destruction of a pair
of saddles of index i and i + 1. The fold is local in that all
the action takes place around a point in parameter and phase
space.

When a heteroclinic flip occurs, the outset of a saddle flips
between two different attractors by passing through a state
where the unstable manifold of one saddle is the inset of the
other i.e. we have a heteroclinic connection (Fig.1F).

Figure 3 shows the generic local ways we can build a sys-
tem with three attractors starting from a bistable one within
a two dimensional parameter space. Specifically we show all
the ways that folds (codimension-1) defined by a smooth curve
in the parameter space can intersect in codimension-2 cusps
or crossings Fig.3C-F. Then Fig. 3G-H shows the two ways in
which a curve of heteroclinic flips can terminate in a fold bifur-
cation curve, defining a second class of codimension-2 points
in parameter space. From these locally described bifurcation
sets, we can construct all 2d phase diagrams of MS systems.
(Catastrophe theory enumerates higher codimension points,
but all the codimension-2 points are contained in our list.)

Dimensional reduction characterizes transitions among land-
scapes. Repellors and higher index saddles can complicate the
classification in Fig.3 e.g., each index-1 saddle can be replaced
by two index-1 and one index-2 saddles. This is handled using
the following result (SI Appendix A). As we have seen above,
the developmental transitions and decisions are determined
by the disposition of the unstable manifolds of the index 1
saddle points relative to the attractors. Thus a first useful
result (see SI) is that for a MS system in our context one can
always find an attracting ball B in phase space with smooth
spherical boundary ∂B that contains all the N attractors,
N − 1 index 1 saddles connected to them and also captures
almost all the trajectories. There may be choices of B de-

pending on which index 1 saddles are included which in turn
define which decision structures are allowed within B.

A

C D

F

H

E

G

B

Fig. 3. Building complexity from bistable landscapes using one
and two-dimensional perturbations. Symbols follow the key in Fig.1A.(A)
We distinguish between these two 3-attractor systems even though they are topolog-
ically conjugate because in applications the allowed transitions are different. The red
attractor can not undergo a saddle-node bifurcation when the outsets of the saddles
merge in a cusp. The attractors represent biological states that are not equivalent, as
they would be under topological conjugacy. (Top) All the restpoints lie on a smooth
curve defined by the outsets of the saddles. (Bottom) The outsets of the saddles
meet at a central sink in a cusp with a common tangency. (B) Fold bifurcations add
an extra saddle-sink pair to the bistable system. The new attractor is marked in blue.
(C-H) The allowed bifurcation sets for three and fewer fixed points when two param-
eters are varied. The colored curves denote fold bifurcations where the like colored
attractor disappears. (C) Dual cusp. The new attractor in blue and saddle are in-
serted in the middle. For this to occur the fold bifurcation curve must contain at least
one cusp point. (D) Standard cusp. A bistable system has a third attractor added.
The cusps in (C,D) are defined by the discriminant of the same 3rd order polyno-
mial representing either a source and two saddles or a saddle and two attractors (cf
Fig.2). (E,F) Crossing points. Two fold bifurcation curves can intersect transversally
creating a region with a single attractor and a region where there are three attrac-
tors. (E). One of the two bifurcation curves involves the central attractor and then
the attractors must lie on a smooth curve. (F). In this case the curves correspond to
peripheral attractors and then both smooth and cusped unstable manifolds are possi-
ble. (G,H). There can be a (codimension 2) point on the fold bifurcation curve where
the outset of the top saddle undergoes a heteroclinic flip as shown. Generically these
heteroclinic flips occur on a curve (green). (G). When the source saddle bifurcates
away the flip curve in green intersects the fold bifurcation curve transversely. (H).
When the target saddle is destroyed in a fold bifurcation the flip curve generically
terminates in a cusp (see SI)

Under these conditions, we can find B above so that the
stable manifolds of the index 1 saddles transversally intersect
the spherical boundary of B in disjoint spheres of dimension
dimB −1 and divide B into regions each of which is the basin
of one of the attractors (see SI). The stable manifolds of the
saddles define the boundaries of the basins of attraction for
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each attractor. Two attractors in adjacent basins are joined
by the unstable manifold of the saddle. Thus the entire MS
component is controlled by its boundary

As a corollary, for such systems with 3 attractors, there
are two index 1 saddles that connect them and they have
a simple disposition: the unstable manifolds of each saddle
each connect to two of the attractors and they join at one
of the attractors (called the central attractor). It is fixed at
crossings and cusps Fig. 3C-F, but interchanges at flip points.
The other attractors are called peripheral. The union of the
unstable manifolds is called the connector. At the central
attractor, the unstable manifolds either join smoothly or in a
non-smooth fashion. If non-smooth and this attractor is close
to undergoing a fold bifurcation then the join has a cuspoidal
shape as in Fig. 3 (SI Sect. I1). In either case the DAG linking
the attractors is shown in Fig.1D (left).

The universal dimension independent topological structure
of the attractors, index-1 saddles, and their unstable mani-
folds that comes from the existence of B is a statement of di-
mensional reduction derived purely from the dynamics. The
restrictions on the orientation of the central attractor that
derive from B lead to the results in Fig. 4 and severely con-
strain the bifurcations that can occur in the boundary of a
MS component.

Global bifurcation structures. We want to understand the
structure of the bifurcations and transitions as the parameters
pass into and out of MS-components with ≤ 3 attractors. We
start by discussing the compact ones Ω i.e. ones which do not
intersect the boundary of the parameter domain. To get the
corresponding characterisation for noncompact versions one
just opens up the boundary of the MS component, ∂Ω at a
crossing point.

For our discussion it is necessary to consider the so-called
catastrophe manifold (SI Sec I.3),

M = {(x, θ)|x is a restpoint of φt
θ}.

Then, a key point is that, if the parameter space is d-
dimensional and the state-space n-dimensional, M is gener-
ically a submanifold of Rn × Rd having the same dimension
d as the parameter space (10, 15). Thus, here it is a surface
in n + 2 dimensions. For our systems the topology of M is
trivial (it is diffeomorphic to a disk, see SI Sec I.3) but the
way it sits in Rn × Rd and the non-trivial structure of the
projection χ(x, θ) '→ θ from M to parameter space is hugely
informative.

A point x = (x, θ) in M corresponds to a restpoint x
of the parameterised landscape at θ and we will be particu-
larly interested in the subset where x is either a fold or cusp
point. Generically this consists of smooth curves C (called
fold curves) which can either be open and connecting to the
boundary of M or they can be circles (called fold circles). The
part of the bifurcation set corresponding to folds and cusps
consists of the sets BC = χ(C) in parameter space, called fold
bifurcation curves, where χ is the projection defined above.
Although C is smooth, BC will typically have cusp points as
in Figs.3 and 5. A smooth piece of a fold bifurcation curve is
called a fold bifurcation segment. If C is a fold circle then BC
is a closed curve without self-intersections (SI Sec II.3).

Now a key result that will lead to our characterisation of
MS-components is the following: If x = (x, θ) ∈ M is on a
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Fig. 4. Legend as in Figs.1A and 3. A. Over part of the boundary ∂P of a
2-dimensional domain of parameter space P we assume we have an S-shaped
bistable section and that the system is monostable over the rest of ∂P . Then it
follows that under very mild conditions (SI Sect. I4E) inside P there must be at least
one cusp (see (14) for n = 1 case). This is because there must be a fold curve
joining the two folds shown and on this fold curve the two folds shown have opposite
orientations. (B-G) Local rules governing the disposition of cusps and crossings in
the boundary of a 3-attractor MS component. X is always the central attractor, P ,
P ′ peripheral. B. The orientation of the fold bifurcation involving the central attrac-
tor determines the possible transverse crossings of the fold bifurcation curve. On
the black fold bifurcation curve the central attractor bifurcates with the saddle to its
right (connected to red), thus the only allowed crossing is the bifurcation of the yellow
attractor with its saddle. C. The peripheral attractor involved in the fold constrains
the possible crossings of the fold bifurcation curve. D. Standard cusp. Fold
bifurcation curves crossing the cusp’s branches satisfy the conditions in (B) and (C).
. E. Dual cusp. Fold bifurcation curves crossing the cusp’s branches satisfy the
conditions in (B) and (C) and the crossings imply the existence of the cusp. F. The
opposite orientations of the folds of the central attractor on the two fold bifurcation
curves as shown imply the existence of a cusp. G. If Q − Q′ is a single fold bifur-
cation curve, certain consecutive crossings are not possible. By (B) Q = P but P

can not intersect itself, so if Q′ = X then the next intersection can only be with P ′

via (D).

fold curve C then through x there is a center manifold (2) and
as x moves along C the tangent ℓ(x) to this center manifold
varies in a smooth fashion. At x the time evolution determines
a definite positive direction and orientation on ℓ(x) (Fig. 4B).
Generically, as x moves along a fold curve C this orientation
flips only at cusps and so counting orientation flips gives the
number of cusps in C (SI Sec. I.4).

From this observation we readily get all the results in Fig.
4 and these provide tight constraints on what can happen in
the boundary of a 3-attractor MS-component (Ω in param-
eter space) as we now explain. By definition the attractors
vary smoothly in Ω with the parameters and maintain their
identity.

As one proceeds around ∂Ω there is a sequence of codi-
mension 2 points θ1 . . . θN with θN = θ1 as described in Fig.3,
namely cusps, dual cusps, crossings and the two types of end-
points of flip curves. If we know these then we know all the
bifurcation structures associated with Ω and ∂Ω. The points
θi and θi+1 are joined by a smooth fold bifurcation segment ℓi.
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attractor repellor

A B

C D

Fig. 5. Minimal 3-attractor MS-components (light blue). Legend as
in Fig. 1A or 3. The color of a fold bifurcation curve indicates the attractor that bifur-
cates on it. (A) The minimal MS-components containing a dual cusp. The inset figure
shows the minimal system involving a dual and standard cusp. The MS components
with ≤ 2 attractors are a subset of this for the dual cusp case. (B) Minimal MS-
component for a standard cusp. Inset in pink box shows a simple alternative configu-
ration replacing the red curve at the bottom of the cusp. (C) Ditto for a standard cusp
and a flip curve. Note that for parameters near a cusp point the connector among the
three attractors will be smooth. The intersection of the flip curve (green) is cusped
when it hits the fold for the central attractor and transverse when the peripheral,
red, attractor disappears. There is a second curve emanating from the cusp in the
flip curve where the connector changes from smooth to cusped. (D) The compact-
ified elliptic umbilic. Inside the MS component boundary and outside the triangular
hypocycloid BC there are three attractors and two saddles. This dynamical system
can be obtained by taking the gradient dynamical system of the potential associated
with the potential fθ(x, y) = x4 + y4 + x3 − 2xy2 + a(x2 + y2) + θ1x + θ2y.
with respect to a generic Riemannian metric. The term x4 + y4 is added to the
usual polynomial for Thom’s elliptic umbilic in order to make the dynamical system
compact. It has the effect of adding the three attractors and the outer fold bifurcation
curves to the 3 saddles. The sign of the parameter a controls whether the central
rest point is an attractor or repellor. By the MS inequalities (4) this is a minimal effect.

The bifurcations on this segment involve one of the attractors
Xi and we say that the attractor identity of ℓi is Xi.

Figure 5 contains the simplest MS-components that involve
all three attractors and are not decomposable into two attrac-
tor systems. Panel A is the minimal system with a dual cusp
(SI Sec. I.5). In this case, if the parameters are inside Ω and
the state starts in the central attractor (blue), then it stays
there unless the parameters cross the curves through the cusp.
Then it transitions to either peripheral attractor depending
upon the branch crossed. For this reason we regard this as
an all or nothing landscape because a population of cells with
their initial state at the central attractor would all transition
to the same new state upon bifurcation. An intimately re-
lated minimal MS component is shown in the Fig. 5A(inset).
This involves a dual and a standard cusp joined together.

The simplest MS-components containing a standard cusp
are those in Fig. 5B,C. The difference between them is the
existence of the flip curve (green) shown in Fig. 5C. The tran-
sitions allowed using the landscape in Fig. 5B are rather lim-
ited. If parameters start in Ω one can only transition between
a peripheral attractor and the central one or visa-versa.

The transitions are richer with the flip curve as it enables
bifurcations that can change the central attractor and the

escape routes available to cells. On this curve there is a het-
eroclinic connection from the saddle connected to the red pe-
ripheral attractor (the source) to the other saddle (the target).
The flip curve joins tangentially to the side of the cusp where
the central attractor (blue) and target saddle disappear in a
fold. The flip curve must either terminate on the same fold bi-
furcation segment or end on the fold bifurcation curve where
the source saddle and red peripheral attractor disappear as
in Fig.5C. If one considers populations of cells in each of the
three attractors, then on the boundaries of Ω transitions out of
red are possible and between blue and yellow but not into red.
This landscape illustrates a downhill flexible choice. Near the
lower, red, fold bifurcation curve, a signal that repositioned
the flip curve would control the fractions that populated the
other two attractors (SI Sec. 5).

More complex structures involving combination of these
cusps and more crossing points are possible but these also
are highly constrained as described in the SI. These more
complex versions are unlikely to occur in experiment since
morphogens are apt to act monotonically on cell fates, and
the new complexity is just multiple appearances of the same
fold bifurcation.

Finally, we need to consider the case where there are no
cusps in the MS component boundary ∂Ω; then only crossing
points are involved. The case of two crossing points is trivial
and is decomposable in the sense that it is a 2-attractor MS-
component with a non-bifurcating attractor added. However
the case of three crossing points is already extremely interest-
ing.

This gives the configuration shown in Fig. 5D with three
smooth fold bifurcation curves corresponding to each of the
attractors. The simplest example with such a MS compo-
nent boundary is what we call the compactified elliptic um-
bilic (CEU) (Fig. 5D) and one can show that any 3-attractor
MS component with such a boundary consisting of smooth
fold bifurcation curves is just a more complex version of the
CEU. It automatically has non-trivial monodromy because if
one traces around a simple closed curve γ just inside of this
boundary the two saddles are interchanged. Together with an
analysis of the curves of heteroclinic connections that must oc-
cur, this implies that γ contains a bifurcation curve ΩC where
C is a fold circle containing an odd number of cusps in three
groups corresponding to the three cusps in the CEU (SI I.6).

We emphasize that these results follow from the properties
of a gradient-like MS system, we do not assume a gradient
system.

Note that biology takes place around M. Thus in the
vicinity of the cusp in Figs.4A, 5B it is possible to find a path
in parameter space along which a population of cells in one
attractor transitions smoothly to a second attractor without
crossing a fold bifurcation curve. Thus although one is cross-
ing a fold point in parameter space, if there are no cells at the
attractor that disappears, it is invisible in an experiment.

3. Models for fate specification and embryonic pattern-
ing

The parameter spaces of a number of published 3-state mod-
els exemplify the categories in Fig.5. A model for the mouse
blastocyst places a weakly stable inner cell mass state be-
tween the primitive endoderm and epiblast (16). They find
a dual cusp in the parameter space comprising the growth

6 | et al.



DRAFT

factor FGF that can be tuned externally, and one of many
parameters defining the mutual inhibition between the two
terminal states (their Fig. S4). The development of the vulva
in C.elegans is a clear example of three cell fates and an elliptic
umbillic, (6), and also fit as Fig.5C in (7). The specification
of embryonic stem cells into neural and mesodermal fates was
described by Fig.5A coupled to a sector of Fig.5D (8).

We next explicitly solve a gene network model for mutual
inhibition among three states to show specifically that it con-
forms to Fig.5D. We then recast in potential form, a number
of models for patterning an array of cells, to illustrate how
our results extend to interacting cells with details in SI Sec
II.

A. Three state system has elliptic-umbillic parameter space.
The discussion surrounding Fig.5, envisioned multiple states
for one cell. But the examples would apply equally well to a
model of three interacting cells each with a single binary state
with mutual repression among the active forms. The mathe-
matics is agnostic to the biological interpretation, Fig.6. We
chose to work around a point in parameter space with permu-
tation symmetry in the three cells to simplify the parameter
search, but the result persists so long as the three boundary
curves have the topology shown, Fig.5D.

B

C

Fig. 6. A symmetric three cell or gene network with mutual repulsion and the elliptic
umbillic conformation Fig.5D. The outer colored lines are the fold curves when one
of the states disappears (three attractors become two). At the points A,B,C there is
one stable restpoint and four with eigenvalues ∼ (−1, 0, −1) (ie the intersection of
two fold lines). The inner black contour consists of three fold lines and inside it is an
index 2 saddle, three index 1 saddles and three attractors.

B. A flow defines a potential. Consider a typical two variable
activator-inhibitor system, ȧ = fa(a, h) − νa, ḣ = fh(a) − h,
which are ubiquitous in signaling pathways. They pose an
ostensible challenge to represent in potential form since we
have ∂afh > 0, the activator turns on h; while ∂hfa < 0, the
inhibitor represses a. Thus the cross derivatives have opposite
sign, so it’s of interest to reduce these to potential form. The
system has two stable fixed points and a saddle. There is a
general construction which defines the potential as Euclidean
distance near the fixed points, insets and outsets of saddles
and then glues the various functions together (17). A more
intuitive construction in 2D is given by defining the potential
to be the vector field integrated along the trajectory to the
stable fixed points and then making the two functions smooth
across the inset to the saddle. This is shown in Figure 7. The
inverse metric is defined as the sum of two projection opera-
tors, one which projects the potential stream lines along the
direction of the flow and one which projects it in a direction
tangent to the contour (SI Sec II.2). Together they define a
proper metric that aligns the potential gradient to the flow,

except near the restpoints where a separate construction is
necessary and the two pieces then glued together.

Fig. 7. The system has two stable fixed points and a saddle in between with flows
shown in green. Contours of the potential, which is defined as the integral of the
vector field along the trajectory to the stable fixed point, are shown going from low
(blue) to high (red) potential. The red arrows on one of the contour lines show the
flow from the potential gradient. Evidently, the inverse metric is needed to rotate the
flow which derives from the potential into the actual flow. The construction does not
work near the fixed points but the potential can be defined there locally and glued
to the global potential. Plots of the contour lines in red and flow magnified near the
upper fixed point and the saddle are also shown.

C. Patterning by lateral inhibition. Inhibition is ubiquitous in
biology and is manifest on the epidermis of many animals as
a sparse array of hairs, feathers, or sensory bristles . How are
these patterns established? A recent model for sensory bristle
patterns in a fly (18) nicely illustrates the organization of
restpoints into the DAG of Fig. 1D, and the process of gluing
local potential representations around critical points to model
the complete system.

Each cell i is described by a single variable 0 ≤ ai ≤ 1
where the value 1 corresponds to the neural fate that will
develop into a bristle. In the terminal state the bristles are
spaced by 4-5 cell diameters in all directions. Cells are ini-
tialized with ai ∼ 0 and are confined to a strip by inhibition
from the surroundings so that the initial pattern formation
is one dimensional along the strip and then extends laterally.
We generalize Fig.6, three cells that mutually inhibit, to a pe-
riodic ring of N cells with long range inhibition represented
as:

ȧi = σ(ai − hi) − ai,

hi =
!

j ∕=i

Ki,jd(aj) [2]

where σ(a) and d(a) are sigmoidal functions of their argu-
ments varying between 0 and 1. The kernel Ki,j is a Gaussian
function of the distance between cells i, j, so the sum hi is the
net inhibition seen by cell i.

The qualitative behavior of the model can be understood
from Fig.8a. When h < 0.37 only a = 1 is stable while for
h > 0.63 only a = 0 is stable, with bistability in between.
Initially h = 0, all the ai grow from 0, and cells inhibit their
neighbors with the result that trajectories peal off from a
common envelope. Which cells turn on is a sensitive function
of initial conditions and noise, but the kernel will keep neural
precursor cells well separated.
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The first ‘decision’ is defined by the principal saddle point
on the diagonal ai = a, where a varies from ∼ 0.9 for N = 2
cells to ∼ 0.51 for N large. At this point the number of un-
stable directions scales ∼ N . For N = 8 in Fig. 8B, there
are 5 unstable directions with nearly identical eigenvalues, 3
stable ones and the Jacobian matrix is symmetric. Proceed-
ing down the DAG from the most unstable saddle, we find a
state ∼ (1, 1, 1, 0, 1, 1, 1, 0) that has 4 unstable directions, as
does a second less symmetric state with only cells 4, 7 off and
the others on to varying degrees. States with fewer unstable
directions and various patterns of ON/OFF cells can all be
found. Thus for very physical reasons this model generates a
rich DAG. There are also stable terminal states that are not
reflection invariant on the circle such as ∼ (1, 0, 0, 1, 0, 0, 0, 0),
but these were not found as the endpoint of the dynamics
when initializing with small randomized ai.

B

Fig. 8. Behavior of Eq. 2. (A) Values of inhibition h for which the ȧ equation has
saddle-node bifurcations. When h from neighboring cells is < 0.37 only the a = 1
state is stable, bistability persists for 0.37 < h < 0.63, and only the a = 0 state
exists for larger h. The diagonal is shown in black. (B) Eight cells on the circle with
a kernel chosen to allow only two cells with a = 1 at the end. The time to reach
steady state can vary by 2x depending on whether a third cell hangs close to the
saddle point as seen here vs Fig.9

To reproduce the flow around the principle saddle point on
the diagonal from a potential, we propose what is essentially
an antiferromagnet but with a diagonal inverse metric (n.b.
d(a) in Eq. 3 is identical to Eq. 2)

ȧi = −g(ai)∇ai F,

F =
!

i

V (ai) + 1
2

!

i ∕=j

d(ai)Ki,jd(aj). [3]

In the SI we show that we can match both the location of
the principle saddle point on the diagonal, ai = ā(N), and the
Jacobian for any number of cells N by fixing two functions
of a single variable, g and V . The solution for g near the
origin behaves as g(a) ∼ a in contrast to the Eq. 2 where the
velocity is O(1) (compare Fig. 8b with Fig. 9. But since the
saddle point is restricted to a > 0.51 we can easily correct the
inverse metric for smaller a.

The dynamics derived from these potential models are
shown in Fig. 9 where it is obvious comparing with Fig. 8b
that we have corrected the dynamics around the origin with
the two part inverse metric, at the expense of now making
the decrease of single ai in response to the antiferromagnetic
repulsion too abrupt. But that can plausibly be fixed by ad-
justing the metric in a separate region of the phase space.

Putting the original model in potential form shows the
extent to which the entire pattern formation process is con-
trolled by the saddle point on the diagonal. Analytic cal-
culations for how small differences amplify are facilitated by
knowing the stable and unstable manifolds of the saddle.

We started from a very idealized model, but if it were
elaborated to include a more realistic description of the Notch-

A B

Fig. 9. Two potential models for Eq. 2 run with the same initial conditions. (A) The
potential in Eq. 3 with the inverse metric extending to the origin. (B) The inverse
metric near the origin now matches Eq. 2.

Delta signaling that is responsible for the inhibition or a more
complete account of the neural fate, we suspect that the prin-
cipal saddle point will retain its unstable directions but add
many more stable ones. The best estimate for how much those
additional details disappear from the dynamics is in fact the
stable eigenvalues at the saddle point.

One may object that any model with contact inhibition
is unrealistic since signals have to travel diffusively. That
point is somewhat debated in Drosophila after cellularization
(19, 20), but nevertheless we show in the next section, when
diffusion is responsible for communication between cells, the
underlying potential models have the structure discussed here.
Finally representing a biological ‘decision’ as a saddle point
in a high dimensional space applies during mesoscopic times,
from when the pattern first emerges, to when it is close to
saturation.

D. The Turing Model in potential form. While the terminology
‘Turing system’ and reaction-diffusion are used somewhat in-
terchangeably, we focus in this section on the narrow use of
the term to mean an activator inhibitor pair a, h where the
inhibitor diffuses much more rapidly than the activator. The
system is formally infinite dimensional since the fields are de-
fined in continuous space, so not strictly a MS system, but
practically so, as we will see. The crucial property is exis-
tence of a saddle point for uniform non-zero values of a, h
that evolves into a nonuniform state where concentrated re-
gions of a produce inhibitor that spreads rapidly and confines
the activator. In a truly homogeneous-isotropic system there
is a huge degeneracy of patterns all with a common character-
istic scale, with very slow rearrangements among them. This
space-time scale is of no biological relevance, and again we
wish to focus our modeling effort on mesoscopic times, after
some small biases trigger the basic instability and until the
localized patches of activator are stably formed, i.e., the un-
stable manifold or Waddington valley leading from the initial
stability to the terminal patch of activator. Thus it suffices to
consider Turing systems on a circle with parameters that give
a single localized state, modulo symmetries. The question is
how to describe the dynamics on the unstable manifold of the
saddle point as it tends to the stable state.

Consider a system of the form,

ȧ(x, t) = fa(a, h) − νa + Da∂2
xa,

ḣ(x, t) = fh(a) − h + Dh∂2
xh.

[4]

The spatially uniform version of this model was the subject
of the example in Sec 3B that derived a potential from the
flow in spite of the fact that the cross derivative have opposite
sign.
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Any matrix with real eigenvalues can be represented as the
product of two symmetric matrices one positive definite (21).
However for Eq. 4 at the saddle point, that would require
the inverse metric to contain the Laplace operator which we
consider overly cumbersome (SI Sec II.4). Fortunately the
resolution of the cross derivative problem in the continuum is
both more interesting and useful in fitting data.

To be most explicit, consider a discrete version of Eq. 4
with N cells and a Laplacian obtained by differentiating an
expression of the form

"
i
Dy(yi − yi+1)2/2, where y = a, h.

With Da,h = 0 the phase space for fixed x was shown in
Fig.7, where we made the origin stable by assuming fa,h ∼ a2

in Eq. 4. This definition separates the linear Turing insta-
bility caused by the diffusive coupling when Dh ≫ Da from
the patterning system defined by the lateral inhibition model
where the activator in all cells increased from 0 at a constant
rate.)

Now linearize around the saddle point of the discrete form
of Eq. 4. There will be 2N modes that generally occur in pairs
when reflection symmetry connects two inequivalent states
that vary in space (i.e., with cell index i). Due to the large
value of Dh/Da there will be N − 1 very stable modes cen-
tered on the hi, one modestly stable one for uniform h. In
the a sector of the spectrum, the uniform mode is stable by
the definition of a Turing system (the first unstable mode is
nonuniform and defines the scale of the terminal pattern) and
among the remaining, a few will be positive in pairs. The
most stable eigenvalue for both a and h may be a singleton
or in a pair depending on whether N is even or odd.

Figure 10 shows the case of N = 7 with one unstable pair of
modes. The dynamics can be projected on the (linear) tangent
space of the unstable modes at the saddle point. The unstable
manifold is 7-fold symmetric, compact, and flat enough that
its projection onto the tangent space is 1:1. At the boundary
of the unstable manifold there are 7 fixed points, related by
rotational symmetry, and between them 7 saddles each with
one unstable direction Fig. 10.

Fig. 10. A sector of the tangent plane to the unstable manifold at the saddle for a
discrete version of Eq. 4 with N = 7 cells. The blue arrows show the trajectories of
the potential fit with different initial conditions chosen at equally spaced angles. The
red arrows show the projection of the actual equations on the tangent plane. Arrows
are plotted at equal times and so give the approximate velocity.

The dynamics on the tangent plane can be accurately pa-
rameterized in polar coordinates relative to the central saddle
by the system:

ṙ = λr − βr3,

θ̇ = g(r) sin(7(θ − θ0)),
[5]

where g(r) is a Gaussian tightly centered at
#

λ/β, the sys-
tem is 2π/7 periodic, and θ0 is a phase shift. The Eqs.5 are
potential with g(r) acting as an inverse metric. However, the
precise form of g(r) is not crucial since as N increases, the
number of fixed points increases accordingly and the angle
dependence disappears leaving an invariant circle on which
the radial motion terminates.

Fig. 11. The continuous Turing PDE is solved and projected on to the variables z1
and z2 in Eq. 6 by simply doing a linear projection onto the Fourier modes (zi =
rieiθi ). (A) The streamlines of Eq. 6 in the space of the two radii with the angles
set to 0 showing a 2 dimensional projection of the 4 dimensional unstable manifold.
The call outs show the terminal profiles of a(x) at the saddle with two peaks and the
fixed point with one. The initial condition is a(x) = 0.01 cos(2x) + 0.001 cos(x)
(B). Equation. 6 implies that the angles stably lock together with 2θ1 − θ2 = 0 .
This is shown with blue dots for the actual Turing model and red for the potential
fit for various initial conditions. (C) A saturation function is required to match the
solution in the tangent space in (a,h) to a(x) in physical space x. The solution of
the continuous system (blue) is compared with a sigmoidal saturation of the tangent
space flow (red) for the red cross-over trajectory in (a).

Of greater interest is that we have reduced the dynamics
from the 2N dimensions to the two dimensions of Fig. 10,
with a rate parameter λ and a limiting radius. All the com-
plexity of fa,h in Eq. 4 is reduced to these two numbers, and
manifestly could not be made any simpler. This describes
the entire unstable manifold from the linear instability to the
finite amplitude stable state. Still missing is the embedding
of the radius variable r in the tangent space into the fields
a, h that we will deal with after properly treating the con-
tinuous case. However this embedding is by definition time
independent, all the dynamics lives in r, and we thus have a
very compact representation of a time dependent field with
accuracy at the few percent level, more than adequate for
biology.

Guided by the discrete case we represent the continuum
equations around the saddle point as a linear term that we
can Fourier transform on the circle and a nonlinear term local
in position that we expand to third order. Our restriction
to mesoscopic times makes it entirely reasonable to work on
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a compact space. Call the most unstable Fourier mode k1
and if we close the system with cubic nonlinearity within this
space we must obtain an equation of the form ż1 = λ1z1 +
f3z1|z1|2 where z1 is the complex coefficient of that Fourier
mode. If a second unstable mode |k2| = 2|k1| exists then we
find couplings between the modes as in:

ż1 = λ1z1 − βz1(|z1|2 + 2|z2|2) − 2γz∗
1 z2,

ż2 = λ2z2 − βz2(|z2|2 + 2|z1|2) − γz2
1 .

[6]

The k2 mode describes two incipient blobs on the circle
that under our assumptions are unstable to a single blob (i.e.,
the k1 mode grows faster). The unstable manifold is now
four dimensional and goes to a fixed point through a series of
saddle points each with one less unstable mode. The first and
second of these saddles correspond to a state with two blobs
and is inaccessible for typical initial conditions. Thus we have
described the dynamics of the cross over between two blobs
and one on the circle with four modes and dynamics derived
from a potential. One consequence of these equations is that
the angles of the two modes are locked as shown in Fig 11.
We note that the model is potential with trivial metric only
to cubic order and higher order Taylor series would induce a
nontrivial metric.

To map the modes z1,2 back to the continuum a, h we
have to interpolate between the Fourier modes for the linear
system and the static solution for a which is a single blob.
The simplest way to model this constraint is to simply add
the Fourier modes linearly and saturate them with a sigmoidal
function σ(x) at medium and late times reflecting the high and
low values of a. Thus one needs to fit the parameters in Eq. 6
as well as the sigmoidal function shape as a function of z1 and
z2 to map our potential to continuum a. The comparison is
plotted in Fig11c with details in SI.

To illustrate the utility of this reduced representation for
fitting experimental data consider a 2-d continuum periodic
rectangular system which leads to the formation of three
blobs. Each of these blobs are slightly different because of a
long range gradient as well as randomness in the microscopic
equations. However, our reduced representation captures the
essential nature of the dynamics and the different blobs can
be fit to with different parameter in the radial mode in Eq.5
as shown in Fig. 12.

When presented with time-lapse data for a Turing system,
we would take the radial profile of each blob as a function of
time and fit to a single time independent sigmoidal function
composed with a solution to ṙ in Eq. 5, with parameters and
initial conditions specific to each blob. We expect this proce-
dure will collapse considerable variability among the dynamics
of the blobs to universal functions with minimal parameters
as in Fig.12.

We conclude this section by generalizing the lateral inhi-
bition model, Eq. 2 to one with a diffusing inhibitor which is
instructive to compare with the Turing system. Consider the
system for N cells periodically continued (suppressing con-
stants),

ȧi = fa(ai) − hid
′(ai),

ḣi = d(ai) − hi + Dh(hi+1 + hi−1 − 2hi).
[7]

where d(a) is again a sigmoidal function mapping a into the
interval [0, 1]. There is no loss of generality in making the

Fig. 12. (A) A model in 2 spatial dimensions leads to the formation of three blobs
each of which are slightly different because of randomness in the parameters and
initial conditions. The blobs are shown at two different time points demonstrating
that the left and right end form at different times. Since the blobs have spherical
symmetry, the profile is first averaged over angles and then projected on to the Bessel
Function J0(R) being the first term in a Fourier-Bessel series, where R is a scaled
radial coordinate in space. (B) The simulated 2D dynamics is projected onto the
tangent plane (dots) for the left (red) and right (blue) blobs in (A). The data is fit very
well by the radial part of Eq. 5 (curve) with parameters specific to each blob. The
space-time profiles in (A) are then fit by a sigmoid depending on r(t) from Eq. 5 and
J0(R) (SI Sec II.4)

coupling between h and a in ȧi the derivative of the source
of h in ḣi since we can redefine a to make this true. For
illustration we assume fa(a) ∼ a around the origin to make
that point unstable. If we solve ḣi = 0 for hi, substitute into
the ȧi equation, we obtain the contact (rapid diffusion) form
of the equations with the Greens function appropriate to the
circle i.e., Eq. 3. The cross derivatives ∂hȧ and ∂aḣ are equal
and opposite in sign as we expect for inhibition.

For an example with all constants order one, and the Dh

adjusted to produce the desired spacing between the active
cells; there is again a saddle point along the diagonal with
∼ N stable directions corresponding to the hi and a few
additional ones with weight in the ai directions. A few of
the stable eigenvalues can be complex reflecting the nonzero
antisymmetric terms in the Jacobian matrix. The unstable
eigenvalues are numerically very close to those of the system
with hi eliminated and the dynamics within the ai subspace
is identical for practical purposes (SI).

So in comparison with the Turing system, there are now
many unstable modes all deriving from the same saddle point
along the diagonal in ai. The origin is unstable rather than
stable and the dynamic competition that generates the pat-
tern derives from the saddle point on the diagonal. We believe
the geometric view point provides the clearest characteriza-
tion of these two systems with diffusing inhibitors.

E. Spreading the pattern by a wave. When a two dimensional
area is to be patterned, the process often proceeds from a
boundary which provides the template. One such system is
the morphogenic furrow in the fly eye. It moves as a wave
with constant velocity from posterior to anterior across the
eye imaginal disk, leaving behind the hexagonal crystal of
ommatidia that characterize the insect eye (22).

We follow the ideas of (23) who modeled this system with
effectively three modes: a cell localized activator a, an in-
termediate range inhibitor that is responsible for the spacing
between successive rows of ommatidia, and a long range ac-
tivator, b, that destabilizes the a = 0 state ahead of the fur-
row to allow the cells to compete as described in Eq. 7. We
will replace the dynamic inhibitor in our reformulation with
static lateral inhibition which we just showed to be function-
ally equivalent.

We can directly formulate our model as a potential since

10 | et al.
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there is no sign conflict when integrating two activators. We
thus propose in one dimension,

u(a, b) = v(a) + (b − a2)2/2 − ab,

U =
N!

i=1

u(ai, bi) + Db(bi − bi−1)2/2 + 1
2

!

i ∕=j

d(ai)Ki,jd(aj)

[8]
where constants are omitted, v(a) is a bistable potential, and
the double sum copies Eq. 2. The boundary conditions are
open, and we fix b0 = 1 so the left end of the lattice is ac-
tivated and the wave propagates towards i = N . The only
condition on the one cell potential u(a, b) is that the origin
a, b = 0 is stable and the saddle point occurs around a, b ∼ 0.1
in units where the final state shows a ∼ 1 in the active cells,
zero elsewhere, and b ∼ 1, i.e., the value of the saddle point
is small but not tiny and stabilizes the cells at a = 0 un-
til the leading edge of the wave of b arrives by diffusion and
kicks them over the saddle. The static inhibition controls the
spacing between the active cells, and the diffusion constant
governs the speed within limits, Fig. 13.

a1 a5 a9 a13 a17 a21 a25

20 40 60 80 100 120 140

0.5

1.0

1.5

Time

Fig. 13. Dynamics for the 1D morphogenic furrow from Eq. 8 for N=30 where every
4th cell is active. The wave appears to slow towards the end since the long range
activator b is diffusing out the right hand boundary. For the same reason the plateau
in ai is a bit lower at the end.

The potential formulation makes it obvious that the mov-
ing solution in Fig. 13 is just an instance of relaxational dy-
namics for a field with two minima, the simplest instance
being,

$
x
(sa − a2/2 + a4/4 + D(∂xa)2/2), s ≪ 1 where an

interface between locally stable solutions at a ∼ ±1 moves to
replace the higher potential solution with the lower potential
one, and does so with constant velocity. For the parameters
of Fig. 13 all solutions of period 2 to 5 have negative poten-
tial U and thus lie below the initial conditions with U > 0.
However only the period 4 solutions is realized as the wave
spreads.

F. A static morphogen gradient and adaptive systems. We
note in closing two instances where the components are few
enough in number and well enough characterized that gene
centric models are informative and quantitative, yet the geo-
metric viewpoint poses questions that are often neglected (see
SI).

A morphogen is a diffusible factor whose level defines cell
fate. Morphogen systems like any other dynamical model

may be multistable implying hysteresis in the pattern. An
informative geometrical representation is given in the SI.

An adaptive system has one variable that responds to an
external signal, yet whose value is signal independent under
static conditions. Adaptation is common in biology from sen-
sory systems to signaling pathways where its a more rapid
way to connect position to fate than reading a static signal
(24). This property is succinctly expressed in the form of a
potential and metric (SI Sec II.7).

4. Discussion

We have given a tight argument that in the absence of periodic
behavior, robust (i.e. structurally stable) gene regulatory dy-
namics satisfy the Morse-Smale assumptions and thus can be
described by a downhill gradient-like system where the rest-
points can be organized into a directed acyclic graph (DAG)
defining the allowed transitions between them. Moreover, we
observed that such dynamics can reasonably be represented
as a true gradient system given by a potential and a Rieman-
nian metric. The mathematics achieves such sweeping results
by imposing genericity: system properties are unchanged in a
neighborhood of the system in question. In analogy, embry-
onic development is robust against environmental noise.

In geometric terms, the inhibition among cells that pro-
duces a sparse array of neural progenitors, is simply a high
index saddle point that initiates the DAG. Turing pattern for-
mation begins from the linear instability of a uniform state,
making it a saddle point. Its nonlinear development is just the
unstable manifold of the saddle that we represented as a MS
system. There was a cascade of saddle points with decreasing
index to the terminal pattern.

A representation of the flow as a metric and potential con-
tinues to work around saddle node bifurcations and hetero-
clinic flips, the two operations needed to grow any MS system
from the trivial one (13). These operations are thus the only
topology changing ’mutations’ that are needed to computa-
tionally evolve gene regulatory networks(25).

The results of Catastrophe Theory (CT) are clearly of rel-
evance to our analysis but they are local and, since they only
study the potential, they do not capture the stable and unsta-
ble manifolds of the dynamics or the heteroclinic flips. Our
study shows that the latter are crucial to understanding de-
velopmental dynamics and the study of them opens up new
ways to extend the theory from local to global.

In particular, we borrowed from the mathematics that
Smale developed for his proof of the high-dimensional
Poincare conjecture, to rigorously deduce a new form of di-
mensional reduction in which for generic systems like ours
the topological relationship between index 1 saddles and at-
tractors is effectively independent of dimension and can be
represented by 2-dimensional systems. The canalization of
Waddington is simply the focusing of the dynamics onto the
unstable manifolds of the saddles. The results in Fig.5 depend
upon this understanding which is very different to the dimen-
sion reduction that CT supplies which only applies locally in
state and parameter space.

A network model represented by activating and inhibitory
arrows among genes has little relation to the geometry of the
flow, that is the ultimate representation of the dynamics. We
expect that such models with two parameters and ≤ 3 attrac-
tors will produce the bifurcation diagrams in Fig. 5.
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Recent examples of modeling development have taken a
more geometric approach from the start. The first several
steps in the differentiation of mouse embryonic stem cells were
decomposed into two coupled three way decisions. The first
involving an all or nothing decision that deposits all cells into
either adjoining state depending on a morphogen used the
landscape in Fig. 5A. The second used a flip bifurcation to
flexibly allocate cells to one of two attractors (8), correspond-
ing to part of 5D. In (26) the so called triple points in the
phase diagram of the C. Elegans vulva plausibly correspond
to Fig.5D, and a related study (7) used Fig.5C. If embryonic
stem cells can transition directly to ectoderm, mesoderm, and
endoderm, then Fig.5D is a possible model with the pluripo-
tent state being the fourth attractor in the center.

Cartoons of development commonly represent the succes-
sion of fates as a binary tree, suggesting the existence of three
attractor systems at the nodes. Left implicit is a developmen-
tal clock that biases fate progression in one direction. This
could be a competence window that limits the response to sig-
nals to a temporal interval combined with epigenetic changes.

There is no reason that our analysis cannot be generalized
to periodic systems where the structurally stable dynamics
are also MS. All the key ingredients regarding MS systems
are available (with obvious changes such as a constant poten-
tial on the periodic orbit) (5), but the generic bifurcations are
more numerous and complex and that makes this a substan-
tially more challenging task. When a developmental system
is subject to an autonomous periodic signal, such as might be
the case with the cell cycle, the relevant dynamics is repre-
sented by a map rather than by a flow as we have assumed so
far, and opens up a richer corpus of behavior.

In applications the states in question are rarely terminal,
thus parameters are not static. When systems are not steady,
do all the other degrees of freedom have time to relax to the
two dimensions necessary to represent all three way decisions?
This question can only be resolved by fitting data, and in ex-
amples we have seen that high index saddles can also have
multiple stable directions, which is then the recipe for quan-
tifying the neglected variables.

The geometric description is compact since all reference to
specific genes is lost, yet experiments commonly mutate genes
and observe changes in patterning dynamics and outcomes.
Clearly each mutant requires at least one parameter to fit,
but is there any way to predict a double mutant from each of
the single ones? An interesting ansatz was used in (6), where a
single vector sigmoid function was wrapped around the non-
compact polynomial equations for the dynamics. A linear
force added to the sigmoid rendered the dynamics bounded,
but the dependence on the two morphogens was entirely lin-
ear inside of the sigmoid. The double mutant was thus the
sum of the single ones. Nevertheless the model captured the
essential genetic interactions. While the qualitative details of
the problem dictates the geometry, how it is parameterized is
very germane for applications.

We have concerned ourselves exclusively with representing
gene networks as potentials, but not with morphogenesis for
which forces and potentials are natural. Morphogenesis and
fate assignment are tightly coupled in development as exem-
plified the ordered expression of the HOX genes during the
unfolding of the anterior-posterior axis (27), but it is as yet
unclear how to unify potentials for fates and forces.
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Supplementary Information
This manuscript was compiled on May 25, 2021

In the following, we provide technical details and various
supplementary illustrations to those provided in the main pa-
per that hereafter is referred as I.
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Part I
Mathematical concepts
Throughout this note we restrict attention to the generic case.
A generic property is one that holds for almost all systems.
This means that the systems for which the property holds
form an open and dense subset of the relevant function space.
We will be a little cavalier in not mentioning the function
spaces we are using but generally it should be clear.

1. Morse-Smale Systems

The time integration of a differential equation ẋ = X(x) or,
equivalently the vector field X defines a flow x → ϕt

X(x) on
the phase space P . If x ∈ P then ϕt(x) is the solution with
initial condition x.

Throughout we shall be considering vectorfields X and
their associated flows ϕt

X(x) on a domain P ⊂ Rn in which
there is a globally attracting ball B i.e. a region B which is a
n-dimensional ball (i.e. diffeomorphic to {x ∈ Rn : ||x|| < 1})
with a boundary ∂B that is a smooth∗ sphere (i.e. diffeo-
morphic to {x ∈ Rn : ||x|| = 1}) such that every trajectory
of X starting in P outside B enters B eventually and X is
transverse to ∂B.

A point x of P is called chain recurrent for the flow pro-
vided that for any T, ε > 0 there are points xi ∈ P and real
numbers ti > T , i = 0, 1, . . . , N , such that x = x0 = xN , and
d(ϕti (xi), xi+1) < ε.

A Morse-Smale (MS) flow is one satisfying the following
properties:

(a) the set of chain recurrent points consists of a finite num-
ber of hyperbolic rest points and hyperbolic closed orbits
(see (1) for definitions);

∗Throughout smooth means C2 .
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(b) the unstable manifold of any closed orbit or rest point
has transversal intersection with the stable manifold of
any closed orbit or rest point.

We study generic parameterised families in which the
structurally stable systems are MS flows X that only have
rest points. We call these gradient-like Morse-Smale flows be-
cause by (2) they always have a smooth Liapunov function
i.e. a function L : P → R such that its derivative is zero at
rest points and X(L) < 0 otherwise, where X(L) = dL · X.

A. Saddle-attractor configurations. Consider for a moment
the planar case where n = 2 and the above conditions apply
so that the boundary of P is a smooth simple closed curve
and the flow is inwardly transverse to it. Then one can al-
ways find a smooth simple closed curve γ such that the flow
is inward transverse to γ and so that the interior Ω of γ con-
tains all the m attractors of the system, m − 1 saddles and
no other rest points. Moreover, γ can be chosen so that the
stable manifolds of the saddles inside γ intersect the bound-
ary in two points and do so transversally. They thus divide
Ω into m components each of which is the basin of one of
the attractors and, moreover, the unstable manifold of each
saddle intersects the basin of two attractors. The possibilities
with m = 3, 4 are shown in Fig. S1(A-C) and we see that the
m = 3 case is particularly simple.

D

A B C

E

attractor
saddle

fold po��t

sta�le �a��fold
��sta�le �a��fold

m � � m � � m � �

Fig. S1. (A-C) These illustrate some of the different possibilities (the most important
for us) for the configuration of the stable manifolds of the saddles in the attractor disk
region R defined above which is represented by the interior of the circle. All cases
for 3 and 4 attractors are shown. (D-E) These illustrate the smooth (D) and cuspoidal
(E) versions of the connector (blue curve) which is made up of the unstable manifolds
of the two saddles in each case. Other non-smooth configurations are possible such
as with a spiral due to non-real eigenvalues at the central attractor.

There is a corresponding decomposition in n dimensions.
In Appendix A we explain the following result: For a gradient-
like MS system on a region P in Rn with attracting ball B as
above one can always find an attracting n-dimensional disk
R in P with smooth spherical boundary ∂R that contains all
the m attractors plus m − 1 index 1 saddles but no other rest
points. It captures almost all the trajectories in the follow-
ing sense: if W s is the union of all stable manifolds of rest
points outside R and x ∈ R \ W s then for t large ϕt(x) ∈ R.
Moreover, R has the property that the stable manifolds of the
index 1 saddles inside R transversally intersect the spherical

boundary of R in disjoint spheres of dimension n − 2 and di-
vide R into regions each of which is the basin of attraction of
one of the attractors.

We are interested in regions like R above because in ap-
plications to developmental biology the index 1 saddles play
a particularly important role: their unstable manifolds deter-
mine the escape routes by which cells change their state by
escaping one attractor and moving to another.

As a corollary to the above result, for such systems with
3 attractors, associated with the 3 attractors are two saddles
s1 and s2 with a disposition as in Fig. S1D,E i.e. we can label
the attractors A, B and C so that s1 ≻ A, B and s2 ≻ B, C
where s ≻ X means that the unstable manifold of s intersects
the stable manifold of X.

Thus the unstable manifolds of these two saddles join at
one of the attractors. The attractor at the joint is called
the central attractor and the other attractors are said to be
peripheral. The union of the parts of the unstable manifolds
which connect the attractors is called the connector. The joint
can either be smooth (Fig. S1D) so that the connector is a
smooth curve or it can be non smooth (e.g. as in Fig. S1E).

Consider such a situation where we have two index 1 sad-
dles s1 and s2 whose unstable manifolds intersect the stable
manifold of an attracting rest point at x. If the latter is close
to undergoing a fold or cusp bifurcation then there is a line
ℓ through x and a n − 1-dimensional submanifold W ss (the
strong stable manifold) intersecting ℓ tranversally at x such
that all trajectories starting near x and not starting in W ss

approach x in a direction tangent to ℓ. Consequently, it is
generic that the unstable manifolds of the two saddles in the
connector approach x tangent to ℓ. If they approach in oppo-
site directions relative to ℓ then the connector is smooth (Fig.
S1D) but if they approach from the same direction relative
to ℓ then the connector is not smooth and has what we call a
cuspoidal structure (Fig. S1E).

If the attractor x is not close to a fold then there can be
other non-smooth connectors. One obvious example is where
the linearisation of the system about x has eigenvalues with
non-zero imaginary part so that the unstable manifolds spiral
into x. The reader should note that in order to keep our
figures to a minimal size we never illustrate such cases but we
do take them into account in our arguments.

In Lemma 6 of Appendix B we show that if the joint is
cuspoidal at an attractor then that attractor cannot undergo
a fold bifurcation involving either of the saddles s1 and s2.
For the other non-smooth cases this is obvious. Thus such a
joint involving s1, s2 and x can only undergo a fold bifurcation
involving x and s1 or s2 if the joint is smooth.

2. Fold and cusp bifurcations

We consider the bifurcations between gradient-like MS sys-
tems in families of differential equations given by a family of
vector fields Xθ parameterised by θ ∈ Rc. Throughout this
discussion we restrict to the case c = 2.

When c = 2 for gradient-like systems the only local bifur-
cations that can occur generically are the fold (or saddle-node)
and the cusp bifurcation. There are other codimension 2 bi-
furcations for dynamical systems (1, 3) such as the Takens-
Bogdanov bifurcation but these introduce periodic orbits and
therefore move us outside gradient-like systems that we focus
on here.
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At such a fold or cusp bifurcation point θ there is an invari-
ant 1-dimensional smooth center manifold W c(x0) through
the point x0 in phase space where the bifurcation is taking
place and the system on this submanifold may be transformed
into one of the following families via a CN(r) change of coor-
dinates ((3) Chap. 1, Sect. 3 and Chap. 2, Sect. 5.7):

(fold) ẋ = ±x2 + θ1 [1]

or
(cusp) ẋ = ±x3 + θ1x + θ2. [2]

In fact, if the original system is C∞ then for each r > 1 one
can find a neighbourhood U of x such that there is a Cr center
manifold of x in U .

If the system is n-dimensional then the dynamics near x0
are topologically conjugate to

(fold) ẋ = x2 + ε1(θ); [3]
v̇ = −v; ẇ = w;

or

(cusp) ẋ = ±x3 + ε1(θ)x + ε2(θ); [4]
v̇ = −v; ẇ = w

where v ∈ Rns , w ∈ Rnu and ns (resp. nu) is the number
of eigenvalues of the linearisation of the system at x0 with
negative (resp. positive) real part.

Consider the set of eigenvalues λi, i = 1, . . . , n, of the
linearisation ẋ = Ax of the system ẋ = X(x) at an equilibrium
x∗ and let ri be the real part of λi. A resonance is a relation
of the form rs =

!
i
miri with the mi positive integers with!

i
mi ≥ 2. We say this equilibrium is non-resonant if no

such resonance exists.
Consider a fold x0 as above in n dimensions. Then if it is

non-resonant for r > 2 one can find Cr coordinates (x, y) ∈
R×Rn−1 on some neighbourhood U of the fold point in which
the differential equation takes the form

ẋ = ±x2 + a(θ)x3 + θ1 [5]
ẏ = A(x, θ)y

((3) Part I, Chap. 2, Sect. 5.7). Without loss of generality
we can assume that the bifurcation takes place at θ = 0. In
the systems we study the y direction is stable and the matrix
A(0, 0) has all its eigenvalues with negative real parts.

A. Center manifolds. Center manifolds will play a key role in
our considerations. Our use of the term center manifold will
be a little more general than usual as normally it is discussed
when the systems is at a bifurcation and we will want to use
it when we are only near a bifurcation. For example, we want
to be able to associate a center manifold to an attractor that
is close to undergoing a fold bifurcation. Also we need to con-
sider the smoothness of the variation in the center manifold
as parameters are changed.

For relevant information about center manifolds see (4)
Sect. 5A. In particular note that by Theorem 5A.3 of (4),
if W c is a center manifold through a rest point x and W
is a backward invariant set containing x then, near x, W is
contained in W c. Thus, for example, if the unstable manifold
of a saddle is asymptotic to a fold point, then close to the
fold point it is in the center manifold. Center manifolds are

not necessarily unique but their tangent space is. We will use
this fact below.

We now consider what we call pseudo-hyperbolic rest points
x. At such rest points x there is a > b > 0 such that
the Jacobian of the vector field at x has eigenvalues λ that
either have their real part ≤ −a or ≥ −b. Then pseudo-
hyperbolic index 1 saddles and attractors have 1-dimensional
center manifolds W c(x) that vary smoothly with parameters
(Sect. 5 (4), especially Theorems 5.1, 5.5 and 5A.1). If ϕt

is the flow, this manifold is characterised by the fact that
z ∈ W c(x) ⇐⇒ ||ϕ−t(z) − x||/ect → 0 as t → ∞ for
any c with a > c > b. There is a complementary sub-
manifold W ss(x) transversal to W c(x) at x characterised by
z ∈ W ss(x) ⇐⇒ ||ϕt(z) − x||/e−ct → 0 as t → ∞ for such
a c. This we call the strong stable manifold. Note that our
use of the term center manifold is a little more general than
usual as in that case one commonly takes b = 0.

Index 1 saddles are always pseudo-hyperbolic and attrac-
tors are if they are close to having a fold bifurcation. For an
index 1 saddle, part of the unstable manifold containing the
saddle can be taken for a center manifold.

According to Theorems 5.1 of (4), W c(x) has Cr depen-
dence upon parameters provided ejb−a < 1 for 1 ≤ j ≤ r.
Thus the center manifold for saddles always is smooth and
that for attractors is smooth provided they are close enough
to having a fold bifurcation. The later point is true because
the closer an attractor is to being a fold, the closer one can
take b to zero.

3. Catastrophe Manifold

bifurcation
set

catastrophe
manifol�

�

�

fol� cur�e

cusp
x

θ�

θ�

Fig. S2. The catastrophe manifold M for the cusp catastrophe. Notice that although
the bifurcation set has a cusp and hence is not smooth the corresponding fold curve
in M is smooth.

We now consider a family of flows parameterised by θ ∈ Rc

given by the family of vector fields Xθ = Xθ(x). The catas-
trophe manifold is defined as

M = {(x, θ) : x is a rest point of Xθ}.

Generically, (see (3), I Sect. 1.4), this is a c-dimensional sub-
manifold of Rn × Rc. We denote by χ : M → Rc the projec-
tion x = (x, θ) ,→ θ and let S denote the set of singularities
of χ i.e. the set of points x ∈ M where χ is not a local
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diffeomorphism. Then B = χ(S) is the set of local bifurca-
tion points. In the generic case this consists of fold and cusp
points and the only other bifurcation points are where het-
eroclinic connections occur. The latter are considered to be
global bifurcations because their effect is not restricted to a
small neighbourhood.

Since in our discussion c = 2, M will be a surface in Rn+2

and χ will be a projection into the plane. Fig. S2 is useful to
see the form of cusps and folds in this case.

If θ ∈ R2 is a fold bifurcation point and x ∈ Rn is the
corresponding rest point then x = (x, θ) is in M and, by
(3), I Sect. 1.4 (cf. Theorem 8.1 of (5)), generically there is a
smooth curve C in M through x that consists of fold points.
At x there are local coordinates (x1, x2) on M and (θ1, θ2) on
R2 such that χ is locally given by (θ1, θ2) = (x2

1, x2).
A universal unfolding† of the cusp is ẋ = ±x3 + θ1x + θ2

and, in the minus sign case the catastrophe manifold M is
given by x3 − θ1x − θ2 = 0. Therefore, the map (θ1, x) ,→
(x, θ1, θ2 = −θ1x + x3) from R2 to M parameterises M in
terms of x and θ1. Thus, in this parameterisation χ is given by
(θ1, x) ,→ (θ1, θ2 = −θ1x + x3) and this is singular when θ1 =
3x2 which defines a smooth curve C in M. The bifurcation
set BC is its image under χ, which is the set of points given
by θ1 = 3x2, θ2 = −2x3 i.e. 4θ3

1 = 27θ2
2. The + case is entirely

analogous.
In Appendix C we prove the following result telling us that

in a broad range of cases of interest to us the catastrophe
manifold has trivial topology. On the other hand, as we will
demonstrate, the mapping χ has a highly non-trivial struc-
ture.

Proposition 1. Suppose there are no bifurcation points near
the boundary of the parameter domain P and that P is diffeo-
morphic to a 2 dimensional disk. Then the connected compo-
nents of M are diffeomorphic to the disk D2.

Standing hypothesis 1. We therefore assume throughout
that the connected components of M are diffeomorphic to 2
dimensional disks. This is the case for a far more general set
of circumstances than those given in Prop. 1.

It follows from this hypothesis that any simple closed curve
Γ in one of these components M0 separates M0 into two
connected components, one of which contains the boundary
of M0. This component we call the exterior of Γ and the
other component the interior.

In the discussion below we often lift to the catastrophe
manifold M smooth curves of the form θ = γ(t), 0 ≤ t ≤
τ0 in the parameter space that do not meet any bifurcation
points. A lift is a curve x = Γ(t) such that χ(Γ(t)) = γ(t)
and to ensure it is uniquely determined we will need to fix a
point Γ(t0) such that χ(Γ(t0)) = γ(t0). Often the curve will
be closed so that γ(0) ≡ γ(τ0) and then Γ can be taken to
be closed although one may have to extend the domain of t
because the period of Γ is a multiple of τ0. The lifts exist
because γ meets no bifurcation points.

In some other cases we are able to lift curves from parame-
ter space to M even though they intersect bifurcation curves.
An example is the lift of curves around a cusp in Sect. D,
p. 5 and Fig. S3. These lifts can be carried out because the
process is local and we can use the universal unfolding of the
bifurcation to check that the lift is possible.

†See (5) for a definition of universal unfolding.

A. Fold curves and bifurcation sets. It follows from the above
(cf. (5), Theorem 8.1, (3), I Sect. 1.4) and the fact that our pa-
rameters are 2-dimensional that generically the set of singular-
ities of χ (i.e. S) consists of a finite number of 1-dimensional
submanifolds of M. Moreover, if C is one of these subman-
ifolds then every point on C is either a fold point or a cusp
point. We call these submanifolds fold curves and those that
are circles fold circles. Clearly, since the closure of M is com-
pact, a fold curve that does not meet the boundary of M
must be a fold circle.
Standing hypothesis 2. We always assume that our pa-
rameterised system is generic in the sense discussed above i.e.
that the fold curves are smooth curves in M.
Proposition 2. Generically, if C is a fold circle then the
associated bifurcation set BC = χ(C) is a closed curve without
any self crossings and χ|C : C → BC has degree one. It is
smooth except possibly at a finite number of cusp points and
BC separates R2 into exactly two components, one of which
(denoted Bint

C ) is a disk.
Proof. See Appendix D for details.
Terminology 1. The bifurcation set is the subset in param-
eter space of all bifurcation points. A bifurcation curve is
any curve contained in the bifurcation set. A fold curve is
a smooth curve of fold points in the catastrophe manifold M
and this is called a fold circle iff it is a closed curve. A fold
bifurcation curve is any set of the form BC = χ(C) where C
is a fold curve. A bifurcation segment or segment of a bifur-
cation curve is a connected smooth curve contained in a set
of the form BC = χ(C) where C is a fold curve.

A very useful construct associated with fold curves and
circles that we will use a number of times involves an analysis
of their neighbourhoods. Suppose C is a fold circle. Con-
sider a small tubular neighbourhood N of C. By definition
of a tubular neighbourhood there is a retraction q : N → C
making (q, N, C) a vector bundle whose zero section is the
inclusion C → N . Then N \ C has two components one of
which is contained in the interior of C. We denote this com-
ponent by N int

C . If N is sufficiently small then N int
C meets no

other fold circles and χ|N int
C is injective. This injectivity fol-

lows from the fold structure given by equation (5). Let Next
C

denote the other component of N \ C.
The following result follows from this discussion.

Lemma 1. If C is a fold circle then χ restricted to the inte-
rior C̆ of C has degree 1 and at all points in C̆ near C, χ is
injective.

B. Heteroclinic connections and flips. We will be interested
in systems where there are two or more index 1 saddles. In
such a system a codimension 1 global bifurcation that can
occur involves a heteroclinic connection. This occurs when
the unstable manifold of one of the saddles s1 intersects the
stable manifold of another saddle s2. In this case we call s2
the target saddle and s1 the source saddle. If this occurs at
a parameter θ then we call this parameter value a flip point
and we refer to such bifurcations as flip bifurcations or just
flips.

Generically, in 2-parameter families these bifurcations oc-
cur on smooth curves which we call flip curves and these
curves end on fold bifurcation curves in ways described be-
low in Sect. B.
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4. Counting cusps on fold curves & circles

A. The fold orientation. Consider the fold equation (1). Close
to x = 0 the ẋ is always ≥ 0 or ≤ 0. Thus close to a fold
point there is a definite direction of flow on a center manifold
and this induces an orientation on the center manifold and
its tangent space ℓ(x). Moreover, ℓ(x) varies smoothly with
x ∈ C.

Using this smoothness we have that this orientation is lo-
cally consistent on any segment of a fold curve C which con-
tains no cusp points but it switches at cusp points as can be
verified by looking at the normal form (2). Thus we have the
following proposition.

Proposition 3. Consider a fold curve C whose endpoints
are not cusps. Then, for a generic parameterised system,
the number of cusps in C equals the number of orientation
switches in C.

B. Saddle & near-fold bundles. Now consider a smooth closed
curve Γ in M such that, for each point x = (x, θ) ∈ Γ, x is
either an index 1 saddle point or a pseudo-hyperbolic attract-
ing rest point (Sect. A). In this case we say that such a curve
Γ is pseudo-hyperbolic.

Then we can associate to such a point x the 1-dimensional
tangent space Ec(x) to the center manifold W c(x) of the rest
point at x. These vary smoothly with x and so we have a
bundle π : Ec

Γ → Γ over Γ with fibre the line Ec(x). Clearly
this bundle Ec

Γ must be either a cylinder or a Möbius band and
the topology of this bundle encodes important information.

C. Fold circle bundle. For the special case where Γ is a fold
circle C we call the bundle Ec

C the fold circle bundle and
denote it CC .

Now if C is a fold circle and we start at a point x ∈ C
which is not a cusp point and traverse the circle, when we
arrive back at x the orientation will have changed a number
of times. If this number is odd when we arrive back at x,
the orientation will be the opposite to when we started out.
Thus for the fibres of CC to glue smoothly at x and for the
orientation to be constant on fibres near to ℓ(x) (since x is
not a cusp point), CC must be a Möbius band. Conversely,
if CC is a Möbius band then the number of switches must be
odd. Thus, for a generic parameterised system, we have the
following.

Proposition 4. If C is a fold circle, CC is a Möbius band if
and only if C contains an odd number of cusps.

We call such fold circles Möbius fold circles.

D. Conditions for a fold circle to be Möbius. We now investi-
gate the immediate neighbourhood of a Möbius fold circle in
M. In particular, we demonstrate that a simple closed curve
Γ in M has the bundle Ec

Γ a Möbius band if and only if it
contains an odd number of Möbius fold circles, and we show
that, if C is a Möbius fold circle, then on the exterior of C
close to C, χ has degree two. As a corollary we see that al-
though a fold circle can contain simple fold circles, it cannot
contain a Möbius one.

Proposition 5. Suppose that Γ is a smooth simple closed
pseudo-hyperbolic curve in M with Ec

Γ a Möbius band. Then
in the generic situation, Γ contains an odd number of Möbius

fold circles in its interior. Moreover, if C is one of these
Möbius fold circles one can find another such curve Γ′ such
that C is the only fold circle contained in the interior of Γ′

except possibly for simple fold circles contained in the interior
of C.

Proof. See Appendix E.
Now consider a Möbius fold circle C. Then C contains an

odd number of cusps. Suppose that the folds in C involve a
saddle and an attractor with the interior of C consisting of
points x = (x, θ) where x is an attractor. Let Bint

C be the
open disk bounded by BC .

Now consider a closed curve γ that has one self intersection
inside BC near each cusp (temporarily called nodes), loops
around the cusps as shown in Fig. S3C, and otherwise lies
entirely in the interior Bint

C of BC near to BC . Provided it is
sufficiently close to BC this curve can be lifted to a smooth
curve Γ in M so that (i) χ(Γ) = γ, and (ii) if (x, θ) ∈ Γ, x is
an attractor of Xθ which we denote by x(θ).

A B

C

saddle
a		
a�	�


Fig. S3. This shows how the disposition of the rest points involved in a standard cusp
vary as one follows the projection into parameter space under χ of a closed curve
(red) of attractors in M which approximates the fold curve giving the cusp. Since
the red curve is close to the bifurcation set there is a center manifold through the red
attractor. The grey arrow shows the orientation on the center manifold. The cusp
shown is a standard one and going round the loops swaps the attractors; for a dual
cusp the roles of saddles and attractors are interchanged.

Since the curve γ lies close to BC , the attractor x(θ), θ ∈
γ, lies on a smoothly changing center manifold. Since the
center manifold varies smoothly, we can give it a consistent
orientation O for all θ ∈ γ. At each node and at all points of
γ in Bint

C , the unstable manifold of the saddle intersects the
stable manifold of the attractor created in the fold bifurcation
of BC .

We define the relative orientation of the saddle at θ ∈
γ ∩ Bint

C to be the relative orientation of the saddle to the
attractor using the orientation O. Note that although the
orientation O is constant the relative orientation of the sad-
dle can change. In fact, this relative orientation is constant
along any segment of γ wholly inside Bint

C but flips as θ moves
around the loops going from the node around the cusp (Fig.
S3A). As a consequence, if there are an odd number of cusps
then starting from a node and doing one revolution around γ
back to that node results in a flip in the relative orientation.
But at the node θ, since it is in Bint

C and is close to the cusp,
the system has two attractors and a saddle. Thus traversing
γ results in the attractors swapping.

A similar picture holds for dual cusps with the roles of
the attractors and saddles interchanged and with the unsta-
ble manifold of the saddle replacing the role of the center
manifold.
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Now let UC be an open set in M that contains C in its
interior and meets no other fold curves in the exterior of C and
consider χ1 = χ|UC . The choice of nodes above was arbitrary
apart from being in Bint

C close to a cusp. Consequently, we
deduce that there is a neighbourhood U of the node such that
χ−1

1 (U) consists of two disks on each of which χ1 is orientation
preserving (for reasons given below). Consequently, χ1 has
degree 2. This gives the following lemma and its very useful
corollary.

Theorem 1. Consider the following conditions on a fold cir-
cle C. (i) C is a Möbius fold circle; (ii) C contains an
odd number of cusps; (iii) there is a simple closed pseudo-
hyperbolic curve Γ in M that contains in its interior C and
no other fold circles that are in the exterior of C such that (a)
under χ, Γ double covers a curve γ in the parameter space and
(b) Ec

Γ is Möbius; and (iv) C is contained in an open disk G
in M on which χ has degree 2. Generically, (i) ⇐⇒ (ii)
⇐⇒ (iii) ⇒ (iv).

Proof. We already proved (i) ⇐⇒ (ii) in Prop. 4. That (i)
implies (iii) follows from the above discussion. The curve Γ
discussed there double covers the curve γ (cf. Fig. S3). More-
over, since γ can be taken arbitrarily close to BC , Γ can be
taken arbitrarily close to C. Thus the fibres of the bundles CC

and Ec
Γ will be close and consequently CC and Ec

Γ will both
have the same Möbius band topology.

To see that (iii) implies (i) we need to use Prop. 5. This
asserts that we can modify the curve Γ in (iii) so that it con-
tains in its interior the fold curve C and no other fold points
in the exterior of C. Then the modified Γ is homotopic to
curves Γ′ arbitrarily close to C but exterior to C. Since they
are connected by a homotopy, Ec

Γ and Ec
Γ′ are homeomorphic,

and since Γ′ is close to C, Ec
Γ′ and CC are homeomorphic.

To see that (iii) implies (iv) note that χ is a local diffeo-
morpism at points of Γ and, moreover, since there are no fold
points on Γ the sign of the Jacobian of χ at two points on Γ
is the same. It follows immediately that if Γ′ is any simple
closed curve containing Γ in its interior then χ has degree 2
on the interior of Γ′ which is a disk.

Corollary 1. If C is a fold circle then there are no Möbius
fold circles contained in its interior.

Proof. This follows from part (iv) of the Theorem and the
fact that the restriction of χ to the interior of a fold circle has
degree 1 by Lemma 1.

More generally, if G is a subset of M diffeomorphic to a
disk and χ|G has degree 1 then G contains no Möbius fold
circles.

E. Cusps and bifurcation diagrams. In applications it is com-
mon to plot bifurcation diagrams in which the position of the
rest points is plotted against a single bifurcation parameter
θ1. For example for bistable systems one obtains a S or Z
shaped multivalued graph over the parameter. If there is an-
other parameter θ2 involved in the system it is then of interest
to know whether the 2-parameter bifurcation system contains
cusps.

Now we extend the cusp index for use in such a situation
to determine the number of cusps. We restrict to fold bifur-
cations between attractors and index 1 saddles but it will be
clear that it applies to other fold bifurcations.

saddle
fold po	
�

Fig. S4. The black and red curve is a curve in the catastrophe manifold such as
that over the line AB in Fig. S2. The red part corresponds to saddles. The left
hand fold point determines the orientation on the center manifold shown using the
hollow arrow. This induces the corresponding orientation on the saddle points in the
systems corresponding to the points along the red curve. Then all the systems on
the red curve close to the right hand fold point have the opposite orientation to that
fold point. This implies that on any fold curve joining the two fold points shown there
are an odd number of cusps.

Suppose that Γ(t), 0 ≤ t ≤ 1 is a smooth curve in M that
connects two fold points xi, i = 1, 2, and except at its end-
points consists of index 1 saddles. Suppose moreover that the
tangent Eu(x) to the unstable manifold of these saddles x
varies smoothly as t varies.

Given this, we can compare the orientation of ℓ(x1) with
that of ℓ(x2). Use the orientation of ℓ(x1) at the fold point x1
to put an orientation on Eu(Γ(t)) for t close to 0 using the fact
that Eu(Γ(t)) converges to ℓ(x1) as t tends to 0 and extend
this to all 0 ≤ t ≤ 1 by continuity. Since Eu(Γ(t)) converges
to ℓ(x2) as t tends to 1 this produces an orientation O on
ℓ(x2) and the question is whether this is the same as that O′

induced by the fold at x2 (see Fig. S4).

parameter space P

fold with
attractor
below

fold with
attractor
abo�e

fold
c�r�e
C�

c�sp i�
bif�� set bif�rcatio� set

c�sp poi�tcatastrophe ma�ifold o�er �P

Fig. S5. Over part of the boundary ∂P of a 2-dimensional domain of parameter
space P we assume we have an S-shaped bistable section and that the system is
monostable over the rest of ∂P . Then if Condition (*) holds it follows that inside
P there must be at least one cusp. This is because there must be a fold curve
joining the two folds shown and on this fold curve the two folds shown have opposite
orientations.

Proposition 6. If x1 and x2 are on a common fold curve C
and the orientations O and O′ of ℓ(x2) are incoherent then
there is an odd number of cusps on C between x1 and x2.

In a number of applications of CT (e.g. (6)) one is given
the behaviour on the boundary of the parameter domain and
one wants to deduce the bifurcation behaviour inside. By
far the most considered situation in this regard is where the
boundary behaviour is as in Fig. S5(Left) i.e. one has a pa-
rameter space P which is a 2-dimensional disk-like region and
the catastrophe manifold over the boundary ∂P is bistable
over part of ∂P . In this case one would like to know if there
is a cusp inside P .
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Suppose the boundary ∂P is given by θ = θ(s), 0 ≤ s ≤ 1,
and that the interval where there is bistable behaviour is given
by θ(s), s1 ≤ s ≤ s2, so that there are folds at s = s1 and
s = s2. To obtain the required result about cusps we need the
following condition on the two attractors involved in the two
folds: (*) for at least one of these attractors, the attractor
varies smoothly with s in (s1, s2) and for all s in (s1, s2) the
unstable manifold of the saddle point intersects the basin of
this attractor. This condition is automatic if the state space
is 1-dimensional but not so in higher dimensions. To under-
stand why see Fig. S17 in Appendix F. Note that we are not
assuming that the saddle and attractors that are involved in
the fold bifurcations are all the rest points in the system. If
they are then Condition (*) is redundant. An example of a
bistable 1-parameter system that swaps orientation but where
the two folds are not on a common fold curve is given by tak-
ing a straight line in the parameter space in Fig. S10 which is
roughly parallel to one of the boundary curves and does not
meet the deltoid B. Then we have the following theorem:

Theorem 2. If the two fold points in M corresponding to the
two folds at θ = θ(s1) and θ = θ(s2) are on a common fold
curve in M and condition (*) holds then generically there are
an odd number of cusps in P .

Proof. By Condition (*), as s moves between the folds at
s1 and s2 the unstable manifold of the saddle must intersect
the basin of the smoothly varying attractor. The identity of
this attractor remains constant for all s and we call it A. The
unstable manifold can also be involved in heteroclinic bifur-
cations but, in generic systems, for all but a finite number of
s values, it will also intersect the basin of a different attrac-
tor of the system at θ(s) which we denote by B(s). At these
finite number of s values the identity of B(s) may change.
In the generic case when s in (s1, s2) is close to s1 or s2 the
attractors A and B(s) vary smoothly and they are connected
by the unstable manifold of the saddle. If for x1 in Prop. 6 we
take the fold involving A, then O points away from A when s
is near the bifurcation value. Since the unstable manifold of
the saddle and A vary smoothly, O remains doing this for all
s ∈ (s1, s2) and therefore is incompatible with the orientation
at the fold involving B(s) since this orientation points away
from B(s). Thus the odd number of cusps follows from Prop.
6.

Historical Note. Results similar to Theorem. 2 for the case
where n = 1 were obtained by Stewart in (7) using entirely
different methods based on singularity theory. Ian Stewart
pointed out to us a paper of Tim Poston (8) that discusses
the problem in Theorem. 2 and mentions a preprint by E. C.
Zeeman (A boundary value problem involving cusps) in which
this problem is treated. However, in Poston’s discussion the
need to check the incompatibility of the orientations O and
O′ is not mentioned. If it existed this manuscript seems to
have disappeared and is not listed in the Zeeman Archive
(www.lms.ac.uk/2015/zeeman_archive). One of us (DAR)
recalls Zeeman mentioning that someone else had proved this
result but we cannot trace such a paper.

5. Characterising 3-attractor MS components

θ₁

θ₄
θ₆

θ₇

θ�

θ�

θ�

ℓ₁

ℓ�
ℓ�

ℓ� ℓ₄

ℓ₇

ℓ₆

Fig. S6

Now we consider 3-attractor MS components Ω in 2-
parameter systems with compact dynamics. Our aim is to
understand the bifurcations in the boundary of Ω and we will
do this by deducing a set of rules for the way in which cusps,
crossings and flip end points are disposed around the bound-
ary.

We denote the attractors by A, B and C. Since they do
not bifurcate in Ω they vary smoothly with the parameters
and maintain their identity.

As one proceeds around the boundary ∂Ω of Ω there is
a sequence of codimension 2 points θ1 . . . θN with θN = θ1
as described in Fig. 2 of I, namely cusps, dual cusps, and
crossings (see Fig. S6). (The other relevant codimension 2
points, namely, the two types of endpoints of flip curves are
dealt with in Sect. B.) If we know these then we know all the
bifurcation structures associated with ∂Ω. The points θi and
θi+1 are joined by a smooth fold bifurcation curve segment ℓi.
The bifurcations on this segment involve one of the attractors
X ∈ {A, B, C} and we denote this by ℓi ∈ LX or say that
the attractor identity of ℓi is X. For a sequence ℓi, . . . , ℓi+j

with ℓk having attractor identity Xk we write ℓi, . . . , ℓi+j ∈
LXi,...,Xi+j . There are strong constraints on what sequences
can occur as we now describe.

A. Crossings of bifurcation curves. In general when two bi-
furcation curves cross, the two bifurcations may be completely
independent. However, this is not the case when the corre-
sponding rest points are both on the same smooth connector
and are adjacent. This is because, when it is smooth, the
connector is contained in any center manifold of a fold point
on the connector and hence the fold orientations (Sect. A) of
the two folds provide orientations for the connector that must
be the same for the simultaneous bifurcations to be allowed.
See Figs. S7 and S8.

Now consider the case where the system has 3 attractors
P1, P2 and X, and two saddles, where X is the central attrac-
tor. Assume all these are on a smooth connector.

Firstly, note that there is only one possibility for the ori-
entation of a fold involving a peripheral attractor. The vector
field near the fold point must point along the connector to-
wards the other rest points on the connector. In particular,
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the orientations O1 and O2 of folds involving the two pe-
ripheral attractors P1 and P2 are opposite. Given this, when
considering a fold curve or fold bifurcation curve involving the
central attractor X we say the fold of X is compatible with Pi

(with i = 1 or 2) to indicate that the orientation of the fold
involving X is Oi.

Now consider two smooth segments ℓ1 and ℓ2 of fold bifur-
cation curves that cross each other. Suppose that the segment
ℓi, i = 1, 2, involves the attractor Ai ∈ {P1, P2, X}. Then the
following lemma follows immediately from the above discus-
sion.

A B

C D

attractor saddle fold poi�t

✔

✔

Fig. S7. (A) If at the central attractor the connector has a cuspoidal structure then a
fold bifurcation of this attractor is impossible. This is proved in Lemma 6 Appendix
B and basically follows from the incoherence of the two arrows on the branches
approaching the fold point. (B-D) This illustrates examples of what dynamics on the
connector are possible and impossible at points where bifurcation curves cross. The
orientations of two folds at adjacent rest points must be the same. There are no
restrictions on the way the blue connector approaches the red attractor. (B) allowed
since the arrows are consistent, (C) allowed since the folds are not adjacent, (D) not
allowed as center and bifurcating peripheral have opposite orientations.

Lemma 2. The only restrictions on crossings concern the
case where one of the Ai is the central attractor X. In this
case the folds on ℓ1 and ℓ2 all have the same orientation.

A.1. Crossings near cusps. A key fact in this section is that since
a bifurcation curve BC is the image of a single fold curve in
M, as one moves along BC , either the attractor or the saddle
that is bifurcating remains constant.

The bifurcation curve through a cusp is the projection un-
der χ of a fold curve in M. Near the cusp point the bifurcation
curve in parameter space Ω consists of two smooth segments
ℓ and ℓ′ joined at the cusp. In a neighbourhood of the cusp
point in Ω there is a smooth center manifold containing the
rest points involved in the bifurcation because at the cusp
point the central manifold is normally hyperbolic and hence
varies smoothly with the parameters and contains the bifur-
cating rest points.

Q' = P'

Q = P' or X

Q = P

Q' = P'
Q

P X

Q'

standard cusp

Q

XX

dual cusp

Q'

Q

A

C

FE

�
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Q = P

X

Q
Q = P'

Q =
or

P X

X P'

Q X

X Q'
X P

Fig. S8. Illustration of Lemma 2 and Theorem 3. A. The orientation of the fold
bifurcation involving the central attractor determines the possible crossings of the
fold curve. B. The peripheral attractor involved in the fold constrains the possible
crossings of the fold curve. C. Standard cusp. Fold curves crossing the cusp’s
branches satisfy the conditions in (A) and (B). . D. Dual cusp. Fold curves
crossing the cusp’s branches satisfy the conditions in (A) and (B) and the crossings
imply the existence of the cusp. E. The orientations of the folds of the central attrac-
tor imply the existence of a cusp. F. Certain consecutive crossing are not possible.
Legend: A diamond shape denotes a fold bifurcation of the specified attractor.
Bifurcation curves are coloured accordingly.

For a dual cusp the folds along both of the segments ℓ
and ℓ′ involve the central attractor and they have opposite
orientations on the two segments (Fig. S8D). For a standard
cusp the two smooth segments either side of the cusp corre-
spond to a common saddle and two different attractors. One
of them is the central attractor X ∈ {A, B, C} and the other
a peripheral attractor P ∈ {A, B, C} (Fig. S8C).

As a corollary of Lemma 2, if C is a fold curve with such a
standard cusp involving P and X compatible with the other
peripheral attractor P ′, then a fold curve crossing the P side
involves the bifurcation of P ′ or X compatible with P , and a
fold curve crossing the X side involves the bifurcation of P ′

(Fig. S8C).
Now consider a fold curve C in M such that BC = χ(C) is

contained in the boundary of a 3-attractor MS component and
which is such that moving out of the component across BC

involves the loss of an attractor. Suppose that the attractors
in the MS component are (central) X, (peripheral) P1 and P2.
Suppose that on BC there are two crossing points at θ1 and
θ2 and none in between them and suppose the fold bifurcation
curves which cross at these points are ℓ1 and ℓ2 respectively.

Theorem 3. 1. ℓ1 and ℓ2 are associated with different pe-
ripheral attractors if and only if C is a fold curve for X and
it contains an odd number of dual cusps (Fig. S8D).
2. If the folds in ℓ1 at θ1 and in BC at θ2 involve the cen-
tral attractor X and the former (resp. latter) have orientation
compatible with P1 (resp. P2) then there is an odd number of
standard cusps in BC between θ1 and θ2 and the fold in ℓ2 at
θ2 involves P2 (Fig. S8E).
3. It is not possible that the fold in ℓ1 at θ1 involves X with
orientation compatible with P1 and the one in ℓ2 at θ2 involves
P1 (Fig. S8F).

Proof. Proof of 1. If C is a fold curve for X and it contains
an odd number of dual cusps, then the orientation of the X
fold is different at x1 = (x, θ1) and x2 = (x, θ2). Hence, by
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lemma 2 the crossing curves involve the bifurcation of different
peripheral attractors.

Conversely, assume that the crossing curves involve dif-
ferent peripheral attractors and in particular that ℓ1 at θ1
involves P1. Then, BC at θ1 involves either X compatible
with P1 or P2. Assume that it is P2. Since the fold in ℓ2 at θ2
involves P2 there must be a cusp in C that changes the bifur-
cating attractor. This cusp is a standard cusp that involves
X compatible with P1, which again can not cross ℓ2 at θ2.
Therefore, C at θ1 involves X compatible with P1. Similarly,
C at θ2 involves X compatible with P2. Therefore, C is a
curve of X folds with different orientations at θ1 and θ2 and
therefore it contains an odd number of cusps between these
two points.

Proof of 2. By lemma 2 the fold along BC near θ1 in-
volves P1 and the fold along ℓ2 near θ2 involves P2. Therefore
BC contains an odd number of dual cusps between these two
points.

Proof of 3. The condition at θ1 implies that at that point
in BC the saddle between P1 and X bifurcates with P1. Thus
there cannot be a crossing by P1 at θ2 as this would also have
to involve the same saddle to create the additional fold.

B. Heteroclinic bifurcations (flips) and flip curves. Before
proceeding we need to discuss flip curves and how they end.
This relates to the question of whether or not the connec-
tor is smooth. As one moves along a bifurcation curve such
smoothness can change. This happens at certain endpoints of
flip curves.

source sadd	e


ar�e
 sadd	e

Fig. S9. This shows how a generic flip curve (black) meets a fold curve (yellow) when
the fold occurs at the central attractor. See (9).

B.1. Target saddles. The first way that flip curves can end is by
a bifurcation of the corresponding target saddle.

Proposition 7. Consider a smooth fold bifurcation segment ℓ
involving the attractor X ∈ {A, B, C}. Suppose that at a point
θ0 on ℓ the connector changes from smooth to non-smooth.
Then, generically, X is central at θ0 which is the end-point
of a flip curve where the target saddle is destroyed in a fold
bifurcation with X. There is a neighbourhood U in ℓ of such
a point θ0 such that for θ in one component of U \ {θ0} the
connector is smooth and X is central, while for θ in the other
component the connector is non-smooth and another attractor
Y is central. The third attractor Z is the source attractor. In
this situation the only fold bifurcation curves that can cross
the U \ {θ0} must involve the attractor Z.

Proof. For the first part of the proposition see Theorem I.3
and Corollary I.4 of (9). Strictly speaking the results quoted
are for gradient systems but it is clear that the arguments
used apply to our situation. According to this, the generic
situation is as follows. On a neighbourhood of θ0 there are
coordinates (µ1, µ2) such that θ0 is given by µ1 = 0, µ2 = 0,
the fold bifurcation curve through θ0 is given by µ2 = 0 and
the flip curve is given by µ2 = µ2

1, µ1 ≥ 0. Along µ2 = 0 the
connector is smooth for µ1 > 0 and non-smooth otherwise.

To see the result about crossing fold bifurcation curves
note that in the component of U \ {θ0} where the connector
is smooth, the orientation at the fold is compatible with Z
and not Y . In the other component, the central attractor is
Y which is therefore not able to undergo a fold bifurcation.
Thus any crossing must be by a curve involving Z.

It follows that if there are no flip curves then the connector
is always smooth or always non-smooth. Also a corollary is
that in terms of its connections with crossing points and cusps
such a bifurcation segment with a single such target flip curve
endpoint behaves exactly as one that has a smooth connector
all along its length.

The above result raises the question of how the transition
from a smooth to a cuspoidal connector takes place in the
region where there are three attractors. If the attractors in-
volved are as in Fig. S9 then the transition involves the yellow
attractor i.e. the attractor that is close to bifurcation. When
the system is sufficiently close to the fold curve the yellow
attractor x has a center manifold and a strong stable man-
ifold W ss(x) as described in Sect. A. The transition takes
place when the unstable manifold from the source saddle sS

intersects W ss(x) and flips from joining smoothly at x to the
unstable manifold of the other saddle, to having a cuspoidal
joint to it at x.

B.2. Source saddles. The other way a flip curve can end is via a
fold bifurcation that destroys the source saddle. This is more
straightforward and needs no special consideration. It meets
the fold curve transversally.

B.3. Crossings sequences. Recall that if the connector is not
smooth at the point where two fold bifurcation curves cross
then the two crossing curves must involve both peripheral
attractors as a fold bifurcation of the central attractor is im-
possible in this case (see Appendix B).

Lemma 3. Consider an adjacent pair of crossing points in-
volving the smooth segments ℓi−1, ℓi and ℓi+1 where these
respectively involve the attractors Y , X and Z. Assume that
for each segment, if it contains more than one target flip curve
endpoint then they all involve the same target saddle. Then
if X is central at some point on ℓi, Y = Z ∕= X.

Proof. Firstly, suppose that there are no flip curves along
ℓi. Then as you move along the fold curve ℓi the central
attractor remains the same and the orientation O of the fold
at the central attractor stays constant. At a crossing of ℓi by
a fold bifurcation curve corresponding to P the orientation
induced by the bifurcation of P must be compatible with O
and this is the case for only one peripheral attractor. If there
is a flip curve ending then the result follows from Prop. 7.

Lemma 4. With the same assumption as in the previous
lemma, suppose that ℓi, . . . , ℓi+j is a sequence of crossing

PNAS | May 25, 2021 | vol. XXX | no. XX | 9



DRAFT

points and Xi, . . . , Xi+j is the corresponding sequence of at-
tractors. Then if we replace all triples of the form P XP
(where X is central and P peripheral) by P , the resulting se-
quence just alternates between P and P ′ where P ′ is the other
peripheral attractor.

Proof. This follows from the fact that by Lemma 3 if ℓ ∈ LX

has X central for some θ ∈ ℓ then the crossings are of the form
P XP . Thus replacing the P XP triples by P s removes all Xs.
Moreover, a P XP triple is adjacent either to a XP pair or a
P ′. So repeating this process produces a sequence alternating
between P and P ′.

C. Simplest/minimal MS components. Given the constraints
outlined above it is clear that for a given configuration of cusps
the first four of the following give the minimal complexity
examples. The fourth is more complex (see Sect. 6). In the
first three the connector is always smooth and there are no
flip curves. The first two can be obtained as a 2 dimensional
section through the butterfly catastrophe.

1. With a dual cusp and no other cusps: I Fig. 5A.

2. With a dual cusp and a standard cusp: I Fig. 5A(inset).

3. With a standard cusp and no other cusps: I Fig. 5B.

4. With a standard cusp and a flip curve: I Fig. 5C.

5. With no cusps and only smooth bifurcation segments: I
Fig. 5D & see Sect. 6 below.

6. Topological charge and the elliptic umbilic

Our goal in this section is to explain why the boundary be-
haviour in Fig. S10 necessitates the complex dynamics inside.
This is a particularly striking boundary value problem and
we introduce the notion of a phase or topological charge into
the analysis. In physics an optical vortex has a topological
charge. This is observed by interfering an optical vortex with
a plane wave of light. This reveals the spiral phase of the vor-
tex as concentric spirals. The number of arms in the spiral
equals the topological charge.

In our case the topological charge of a fold circle is the
number of cusps it contains. It is topological because when
measured mod 2 the even and odd cases correspond to the
topology of the various line bundles we have introduced. One
can recognise the presence or not of mod 2 charge by topol-
ogy. Lastly, non-zero mod 2 charge is rigid and cannot be
perturbed or homotoped away while zero charge fold curves
can.

We are concerned with a system where the boundary be-
haviour is as shown in Fig. S10, and described as follows:
Compact Elliptic Umbilic boundary behaviour as-
sumption is that there are three smooth curves ℓA, ℓB , and
ℓC which intersect as shown in Fig. S10 and on which the indi-
cated attractor undergoes a fold bifurcation that destroys the
attractor. On a neighbourhood of the three curves we have
the bistable and monostable behaviour shown in Fig. S10.

We denote by ∆ the open region enclosed by ℓA, ℓB , and
ℓC . Clearly, it is diffeomorphic to the 2-dimensional disk.
Since we are interested in characterising 3-attractor MS com-
ponents we also assume that inside ∆ we have three attractors
A, B and C that have smooth dependence upon the parame-
ters.

We show that given this boundary behaviour the system in
∆ contains all the ingredients of the compact elliptic umbilic
(CEU) that we now introduce.

attractor repellor

ℓA

ℓCℓB

Fig. S10. The compact elliptic umbilic. See text for description.

A. The compact elliptic umbilic. This is the set of gradient
systems associated with the potential

fθ(x1, x2) = x4
1+x4

2+x3
1−2x1x2

2+θ3(x2
1+x2

2)+θ1x1+θ2x2. [6]

These parameterised families of gradient systems are given by
ẋi = −

!
j

gij∂fθ/∂xj where gij is a Riemannian metric and
(gij) = (gij)−1.

We illustrate the case where θ3 is fixed at 0.1 but we will
see this provides a ubiquitous landscape structure. There are
three curves ℓA, ℓB , and ℓC in the parameter space R2 of
fold bifurcations as shown in Fig. S10. For X ∈ {A, B, C}
the curve ℓX is where the attractor X is destroyed in a fold
bifurcation. These curves enclose a triangular shaped region
which we denote by ∆. There is a hypocycloid B with three
cusps (a deltoid) inside ∆ such that for θ inside ∆ but outside
B the system has three attractors that we label A, B, and C
plus two saddles. Inside B it has an extra saddle and either
an extra attractor (if θ3 > 0) or an extra repellor.

For a given Riemannian metric gij the corresponding gra-
dient system also has three flip curves in ∆ as shown on Fig.
S10 on which heteroclinic bifurcations occur. These start on
ℓA, ℓB , and ℓC and end on the hypocycloid B. The configu-
rations shown are for a generic metric; for the standard one
the situation is not generic and the curves end at a cusp point
(10).

Let M be the catastrophe manifold over ∆ i.e. M = {x =
(x, θ) : x a critical point of fθ, θ ∈ ∆}. Since the attractors
A, B and C vary smoothly, the components MA, MB and
MC of M corresponding to them are graphs over ∆ that
form disjoint components. Thus we focus on M0 which is the
remaining component of M after MA, MB and MC have
been removed. Let χ0 = χ|M0.

If Bint denotes the interior of B then M1 = χ−1
0 (∆ \ Bint)

is an annulus that under χ0 double covers the annulus ∆\Bint
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i.e χ0|M1 is equivalent to the map: S1 × (−1, 1) ∋ (θ, t) ,→
(2θ mod 2π, t) ∈ S1 × (−1, 1).

To obtain M0 we take the inner boundary of M1 which
is a circle and glue in to it a disk correponding to the new
non-saddle rest point that is created by the fold bifurcation
that occurs on B. This M0 is diffeomorphic to a disk but the
mapping χ0 is non-trivial.

B. Boundary conditions. Now we show that if we have the
same boundary conditions as for the CEU then we have dy-
namics closely similar to those of the CEU inside. Indeed the
only change is the possible addition of one or more simple fold
circles inside the Möbius fold circle corresponding to B that
then add extra rest points to the dynamical system that bi-
furcate in and out maintaining the architypal CEU structure.

For the rest of this section we assume the CEU boundary
behaviour defined above in Sect. A.

Since there is a neighbourhood U of ∂∆ that contains no
bifurcation points in U ∩ ∆, then by Proposition 1, each con-
nected component of M over ∆ is diffeomorphic to a disk.
As above, since the attractors A, B and C vary smoothly, the
components MA, MB and MC of M corresponding to them
are graphs over ∆ that form separate components. We denote
by M0 the remaining component of M after MA, MB and
MC have been removed. Let χ0 = χ|M0. This is the con-
nected component of the catastrophe manifold that involves
the saddles.

In the following sections we will deduce the following re-
sults which mirror similar results for the CEU. We now show
that close to ∂∆ it has the same double covering annular
structure as this CEU. This will involve analysis of the flip
curves in ∆. From this we will deduce the existence of a
Möbius fold circle C in M. Further analysis of the flip curves
will show that C is unique and that BC = χ(C) plays the role
of the deltoid B of the CEU and has a 3-fold cusp structure.

C. Using flip curves.

C.1. Flips ending on ℓA, ℓB and ℓC . In the following subsections
X, Y and Z are always distinct elements of {A, B, C}.

Proposition 8. The CEU boundary behaviour assumption
implies that

1. there is a neighbourhood U of ℓY ∩ ℓZ such that if θ ∈
U ∩ ∆ then X is the central attractor.

2. there is a neighbourhood V of ℓX such that for all θ ∈
V ∩ ∆ either there is a heteroclinic connection or the
system is MS with X a peripheral attractor.

Proof. Firstly, note that the CEU boundary behaviour as-
sumption implies that there is a neighbourhood U of the
boundary such that if θ ∈ U ∩ ∆ then Xθ has three attractors
and two saddles all of which vary smoothly with θ ∈ U ∩ ∆.

Since the curves ℓX , ℓY , and ℓZ are smooth and since ℓY

meets both ℓX , and ℓZ then Y is peripheral along ℓY by Lem-
mas 2 and 3. Similarly, Z is peripheral along ℓZ . Thus at
ℓY ∩ ℓZ , X is central. It follows that X is also central close
to ℓY ∩ ℓZ for θ ∈ ∆ and X is peripheral for all θ in ∆ near
to ℓX .

Corollary 2. The CEU boundary behaviour assumption im-
plies that for X ∈ {A, B, C} there are generically an odd num-
ber of flip curves starting on the intersection of ℓX with the

closure of ∆. On each of these the central attractor changes
from Y to Z or vice-versa.

Proof. The result follows because in moving along ℓX from
ℓX ∩ℓY to ℓX ∩ℓZ is to move from Z being the central attractor
to Y being central.

r1 r2 r�
B

A

Fig. S11. A series of flips that results in the saddles swapping. The ri are all
reflections in the thin blue line that is shown.

C.2. Algebra of three-way flips. To each generic configuration of
three attractors and two saddles as above we can associate
a triangle with vertices marked A, B and C. We label the
saddles g (green) and y (yellow). See Fig. S11A. Then we
associate to each MS 3-attractor system the corresponding
marked equilateral triangle as in Fig. S11B. The vertices cor-
respond to the attractors A, B and C and we mark an edge
with green or yellow if the corresponding unstable manifold
of g or y joins the corresponding two attractors. The meaning
of the red arrows in Fig. S11 is explained below.

To each flip we can associate a corresponding reflection as
shown in Fig. S11. This is an element of the Dihedral group
D3 which can be represented as the group of symmetries of
the equilateral triangle consisting of reflections and rotations
through 2π/3 radians.

Thus, consider an oriented loop γ(t) in ∆ with a given
orientation and starting point (not in a flip curve), that does
not meet any fold or cusp points and which is transversal to
the flip curves. To this we can associate a sequence σγ of
elements of D3. This is the product rkrk−1 · · · r1 where ri is
the reflection that occurs when the curve crosses the ith flip.
The reduction of this product is rir rir−1 · · · ri1 which is what
is left when we iteratively delete all products in the product
of the form rir

−1
i or r−1

i ri. It is then easy to see that the
resulting product is

rσ(1)rσ(2)rσ(3) · · · rσ(1)rσ(2)rσ(3) = (rσ(1)rσ(2)rσ(3))k

for some cyclic permutation σ of {1, 2, 3} and some k ≥ 0.
This is because the starting and ending configurations are
the same and since once all the terms rir

−1
i or r−1

i ri have
been removed the sequence of indices must be periodic of the
form · · · σ(1)σ(2)σ(3)σ(1)σ(2)σ(3) · · · since only two ris can
be applied to any given configuration and if that configuration
has been achieved then the inverse of one of these was applied
to get it.

We call (σ, k) the flip index of γ. Note that k does not
depend on the starting point and that, for k even, when eval-
uated the product is the identity and otherwise is a non-trivial
reflection.
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When the unstable manifolds of the saddles undergo the
transformations shown in Fig. S11 the unstable manifolds un-
dergo interesting changes in orientation. Similar things occur
for the stable manifolds but we only consider unstable man-
ifolds here as we are interested in index 1 saddles and then
the unstable manifold is 1-dimensional even in n-dimensional
systems.

Put an orientation on the two saddles. This is indicated in
Fig. S11 by the red arrow. As the flips occur this orientation
is propagated as shown. (Note that this is not what you get
by applying the geometric reflections. Instead follow what is
happening in the top row.) After applying them once, the
two saddles have switched and one of the unstable manifolds
has opposite orientation. From this we see that applying the
flips corresponding to rσ(1)rσ(2)rσ(3) twice we reverse the ori-
entation of both unstable manifolds and the saddles switched
twice. Thus we have the following result.

Proposition 9. Suppose that γ is a closed curve in ∆ that
contains no fold or cusp bifurcation points. Put an orientation
on the unstable manifolds of the two saddles. The flip index
of γ has k odd if and only if this orientation is reversed in
one of the unstable manifolds when γ is traversed once.

Consider a simple closed curve γ(t) in ∆ that has a lift
Γ(t) = (x(t), θ(t)) 0 ≤ t ≤ 1 to a smooth closed curve in
M0. Assume that it meets no fold points. Then the unstable
manifold W u(x(t)) of the saddle x(t) varies smoothly with t.
Thus as t → 1 from below W u(x(t)) converges as a point set
to W u(x(0)). Thus if we fix an orientation on W u(x(0)) and
use the smooth dependence of W u(x(t)) on t to propagate
this orientation to all W u(x(t)) we can ask whether as t → 1
from below the orientation on W u(x(t)) converges to that on
W u(x(0)). Clearly, this is the case if and only if the saddle
bundle of Γ is a cylinder.

On the other hand, from the above discussion, this is not
the case if the flip index of Γ has k odd and is the case oth-
erwise. Thus we deduce the following result

Proposition 10. The flip index of Γ is odd if and only if the
bundle Ec

Γ is Möbius.

Proof. By the above, the flip index is odd if and only if a
complete revolution around Γ causes any orientation put on
the unstable manifolds of the saddles to be reversed and this
is the case if and only if the bundle Ec

Γ is Möbius.

C.3. Flips at ∂∆ imply a Möbius fold circle. Cor. 2 above tells us
that there are an odd number of flip curves along each of the
edges ℓX , X ∈ {A, B, C}, and these flip curves induce the
same element or its inverse when calculating the flip index of
a simple closed curve γ close to ∂∆. We denote the corre-
sponding element rX . If the curve is sufficiently close to ∂∆
then the elements must alternate between rX and r−1

X with
a total contribution of rX . Thus, in the notation analogous
to Cor. 2, the resulting product for the whole curve is of the
form rσ(Z)rσ(Y )rσ(X) and we deduce that k = 1.

Since γ is a closed curve we can parameterise it as θ = γ(t),
t ∈ R, with γ(t + 1) ≡ γ(t). Since there are no bifurcation
points in ∆ close to ∂∆, we can lift this to a closed curve
x = Γ(t) in M so that if Γ(t) = (x(t), θ(t)) then x(t) is one
of the two saddles. If 0 ≤ t < 1 it follows from the above
discussion that Γ(t) and Γ(t + 1) are two distinct points in
M that are interchanged when t is increased by one. This

is because k = 1 and therefore going once round γ flips the
saddles as explained in Sect. C.2. Let M0 be the connected
component of M containing Γ and χ0 = χ|M0.

Proposition 11. There is a neighbourhood U of ∂∆ such
that U ∩ ∆ and χ−1

0 (U ∩ ∆) are annuli and the latter is a
double cover of the former on which χ0 has degree 2.

Proof. Take a small tubular neighbourhood NX of each curve
ℓX , X ∈ {A, B, C} so that (i) there are no bifurcation points
in N other than in ∂∆ and (ii) so that if N = NA ∪ NB ∪ NC

then U = N ∩ ∆ is an annulus and such that for any point
θ ∈ U there is a curve γ as above with θ ∈ γ. Then χ is
a local diffeomorphism and, from the above discussion every
point in U has two preimages in V = χ−1

0 (U) under χ0. Put
an orientation on V so that the degree of χ is non-negative.
Then if x1 and x2 are the two preimages of θ, since we can
move from x1 to x2 by moving along a closed curve in U , χ0
is orientation preserving at both points. Thus the degree of
χ0|V is two.

Now we can prove one of our main results.

Theorem 4. Suppose that the configuration of the smooth
bifurcation curves ℓA, ℓB, and ℓC is as in the CEU boundary
behaviour assumption (cf. Fig. S10) and that ∆ is the open
region enclosed by these curves. Then ∆ contains BC = χ(C)
where C is a Möbius fold circle.

Proof. Let γ be a smooth simple closed curve in ∆ close to
the boundary of ∆. Lift γ to a closed curve Γ in M0. Then
by Cor. 2 the flip index of γ is odd and therefore the same is
true for Γ. Therefore, by Prop. 10, the bundle Ec

Γ is Möbius.
It follows by Theorem 1 that there is a Möbius fold circle C
in the interior of Γ. Since C is in the interior of Γ, BC is
contained in ∆.

C.4. Flip curves in M. In order to understand the way in which
flip curves end on fold bifurcation curves in the parameter
space we need to lift the flips to M0. Whereas in M a lift
of a flip curve can only meet fold curves at its end points, in
parameter space a flip curve can meet a fold bifurcation curve
at other points (see e.g. Fig. S10).

If θ ∈ ∆ is a flip point then we associate to it two points
x = x(θ) = (x, θ) ∈ M0 where x is either the target saddle
xT or the source saddle xS . Thus a flip curve θ = ϕ(t),
0 ≤ t ≤ 1, in ∆ can be lifted to two smooth curves x = ΦT (t)
and x = ΦS(t) in M0 that we respectively call the target flip
curve and source flip curve.

If such a flip curve in M0 meets a fold curve in M0 it in-
volves a fold in which the target or source saddle is destroyed.
It follows that a flip curve in M0 only meets fold curves at its
end points. As we will see this is different from flip curves in
∆ which can cross fold bifurcation curves. We call a flip curve
a target-source one if one end point is a target one and the
other a source one. Source-source and target-target curves
are possible but here we are only interested in target-source
ones

If Γ is a lift to M0 of a closed curve γ in ∆ then there
is a 1-1 correspondence of points where they meet target flip
curves and the intersections are ordered identically as in γ.
Therefore, if one defines the flip index of such a closed curve
Γ in M0 analogously to that of γ but only using the target
flip curves in M0, then the flip indices of Γ and γ are equal.
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Of course, instead of using target flip curves one could use
source flip curves.

Now suppose that the closed smooth curve Γ′ is obtained
from Γ by a smooth homotopy and that both are transverse
to the flip curves. Assume also that the homotopy does not
cross any fold curves.

Proposition 12. The reduced products (rσ(1)rσ(2)rσ(3))k ob-
tained from Γ and Γ′ are the same.

Proof. The homotopy Γt can be chosen so that the curve Γt is
always transversal to the flip curves except at a finite number
of t and at these it touches a single flip curve quadratically.
The only changes in the sequence of flips occur at such t but
then this just adds or removes a term of the form r−1

i ri and
therefore does not change the reduced form.

Consider a closed curve Γ in M that contains a fold circle
C in its interior. Suppose, moreover, that C is the only fold
circle contained in the interior of Γ′ except possibly for fold
circles contained in the interior of C. We call such a curve Γ
a primary flip container for C.

Proposition 13. The fold circle C is Möbius if and only if
there is a primary flip container Γ for C for which the flip
index has k odd.

Proof. Let N be a tubular neighbourhood of a fold curve
and r be the associated retraction. One can use a homotopy
to move Γ into N \ C so that the new curve Γ′ has degree 1
with respect to r. Moreover, by Prop. 12, Γ′ has k odd if and
only if Γ does.

If N is sufficiently small, C is Möbius ⇐⇒ its cusp bundle
is a Möbius band ⇐⇒ Eu

Γ′ is a Möbius band ⇐⇒ k is
odd.

Theorem 5. Suppose that Γ is a smooth simple closed curve
in M consisting of index 1 saddles. If its flip index is odd
then in the generic situation, Γ contains an odd number of
Möbius fold circles in its interior. Moreover, if C is one of
these Möbius fold circles one can find a primary flip container
Γ′ for C for which the flip index has k odd.

Proof. One uses a construction as in Appendix E to show
that if Γ is a simple closed curve in M then it contains at
least one fold circle and that Γ can be modified so that it
only contains any one of these that is Möbius. One firstly
removes the fold circles with k even and then pairs of fold
circles with k odd. Having modified Γ in this way one can use
a homotopy to move it arbitrarily close to C and use Prop.
12.

Corollary 3. Under the CEU boundary behaviour assump-
tion, ∆ contains a unique Möbius fold circle.

Proof. By Cor. 2 the lift Γ to M0 of any closed curve in ∆
close to ∂∆ has k odd. Thus by Theorem 5 there is a Möbius
fold circle C in the interior of Γ and a primary flip container
Γ′ for C for which the flip index has k odd. This means that
for each X ∈ {A, B, C} there is a flip curve ℓ′

X connecting the
boundary component ℓX to Γ′. If C′ were another Möbius
fold circle in the interior of Γ it would also have a primary
flip container Γ′′ with similar connections ℓ′′

X to ℓX . Since ℓ′
X

and ℓ′′
X cannot meet as they are flip curves, this is impossible.

Thus C is unique.
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7. Decision structures

We identify a cell state with an attractor in the dynamical
system. We say that a cell takes a decision when it changes
state and transitions to another attractor. This transition
happens when the cell crosses an index 1 saddle and follows
the corresponding unstable manifold towards another attrac-
tor. Therefore, we identify a decision with an index 1 saddle
and its unstable manifold, which connects two attractors: the
two options for the decision.

The complete dynamical system can be represented by a
DAG as explained in I. Since we want to focus only on the
decisions, we will simplify the DAG in order to retain only
the information on the possible decisions as per our definition
above (that is, attractors and index 1 saddles).

Given a DAG we define the decision graph (see Fig. S12)
as the undirected graph with as many nodes as attractors in
the dynamical system and an edge connecting two nodes (or
a node to itself) if there is a saddle whose unstable manifold
connects the corresponding two attractors (or the attractor to
itself). The loops in this graph correspond to index 2 saddles
in the DAG (in the dynamical system).

If the edges in the decision graph define a loop, then there
is an index two saddle in the dynamical system that connects
to the index 1 saddles that define it. This a consequence of
the Morse-Smale inequalities for the n-sphere. A compact dy-
namical system (with a repeller at infinity) needs to satisfy
M − s + m ≥ 1 where M is the number of index 2 saddles,
s is the number of index 1 saddles and m is the number of
attractors. If a dynamical system defines a loop in the deci-
sion graph, then s = m and therefore M ≥ 1. Hence,there
is an index two saddle and in particular, if the system is pla-
nar, there is a repeller that connects to those saddles. We
mark with a triangle the loops in the graph to emphasize the
existence of such a higher index rest point.

A B �

A

B

�

Decision graphDynamical system D��

Fig. S12. Example of the correspondence between Dynamical systems, DAGs and
decision graphs.

The decision graph may not be a simple graph, that is,
it may have self-edges and parallel edges. We can remove
the self-edges and keep only one edge from a set of parallel
edges (see Fig. S13) and obtain the simple graph associated
to a decision graph. An edge connecting a node to itself does
not define a proper decision as we defined it since there is
no change of states in such transition. Several parallel edges
are defining the same decision, so they are redundant in this
context.

We call a decision structure a simple decision graph. Its
nodes correspond to attractors, the edges to unstable mani-
folds connecting them, and the loops correspond to index 2
saddles in the dynamical system. It encodes the essential in-
formation regarding the decision making process. Note that
we will not specify the correspondence between attractors and

Considered 	s red
nd	n��
A saddle connecting an
attractor to itself

Multi�le saddles connecting
t�e sa�e �air of attractors

�nde� � �addle
�nde� � �addle
Attractor

Fig. S13. Types of edges modified when computing a decision structure from a
decision graph or DAG.

nodes, hence the same decision structure corresponds to any
dynamical system with three attractors and two saddles ir-
respective of the particular central attractor. Any decision
graph can be reduced to a unique decision structure graph
as explained above. The possible decision structures given a
number of attractors are in one-to-one correspondence with
the connected simple graphs with that number of nodes (see
Fig. S14). Decision structures define equivalence classes for
decision graphs and they are the simplest representatives of
the different classes.

The different decision structures correspond to a dynami-
cal system structure that can correspond to several potential
functions. The decision graph is independent of the specific
saddle hierarchy in any possible potential structure associated
with it. Note that as shown in (2) we can find a potential
function corresponding to any decision structure such that all
saddles have the same height (first column in example poten-
tials). Figure S15 shows examples of dynamical structures
and potentials corresponding to the decision structures with
2, 3 or 4 attractors.
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Index 1 sad - attractor bif
Index 1 sad - Index � sad bif

Fig. S14. Decision structures with 2, 3 or 4 nodes. The possible decision struc-
tures with a given number of attractors are in one-to-one correspondence with the
connected simple graphs with that number of nodes.

Decision
structure

Dynamical
system

Exam�le �otentials

Fig. S15. Dynamical structure and potential functions examples for the decision
structures with 2, 3 or 4 nodes. Legend as in Figure S13.

PNAS | May 25, 2021 | vol. XXX | no. XX | 15



DRAFT

Appendices

A. Existence of decision regions R

This result relies on some results in Smale’s proof of the higher
dimensional Poincaré conjecture (11) and his h-cobordism
theory (12) as expounded in Milnor (13).

It will be important that for the studied vectorfields X
there is a region B with spherical boundary ∂B such that the
X is transversal to ∂B and all trajectories cross ∂B into B.

The following lemma that is taken from (14) will be partic-
ularly useful. In it we are particularly interested in controlling
the changes in the connection between the index 1 saddles σi,
i = 1, . . . , M and the attractors αj , j = 1, . . . , m. Consider an
index 1 saddle p = σi with unstable manifold W u(p). Then
W u(p) \ p has two components. Let γ be one of these, and
assume γ is asymptotic to the attractor αj . We call such
curves connecting trajectories of σi to αj . The set of all such
pairs (i, j) is denoted by CX and the corresponding connecting
trajectory is denoted by γi,j .

Lemma 5. Suppose that X is a gradient-like MS vectorfield
with attracting region B as above and that we are given a
small neighbourhood Uk of each rest point βk and a small
neighbourhood Ui,j of γi,j for all (i, j) ∈ CX . Then for any
ε > 0 one can find smoothly varying MS vectorfields Xt, 0 <
t < 1 with X0 = X such that (i) the Xt all have the same
rest points and they all agree outside the Uk for all k; (ii) for
some 0 < t0 < 1, X0 only differs from Xt0 inside the Ui and
this is by less than ε in the C1 topology; (iii) the connections
(i, j) ∈ CXt do not vary with t and the connecting trajectories
γi,j are inside Ui,j for all t; and (iv) X1 is a gradient vector
field with a smooth potential.

This lemma allows us to modify a gradient-like MS X in a
controlled way in small neighbourhoods of each rest point so
as to produce a gradient vectorfield, at the same time control-
ling how the unstable manifolds of the index 1 saddles change.
If f is a smooth Liapunov function for X, then one can do
the modification so that X1 is the gradient flow for f with
respect to some Riemannian metric g.
Proof. This is Lemma 2 of (14). The fact that the Xt all
agree outside the neighbourhood Ui is not stated in the lemma
but is clear from the proof.

To see why the results about connectors are true, consider
the process used to modify the dynamics at the rest point p
in the last paragraph of the proof of Lemma 2 in (14). The
vectorfields ξt constructed there all have the same stable man-
ifold inside the neighbourhood ϕ−1U2 used there and they are
independent of t outside ϕ−1U2. This is because (in the nota-
tion of the proof in (14)) in U2, ϕ−1

∗ ξt is a linear combination
of ϕ−1

∗ X1 and Xt both of which are tangent to the curve
x = 0 in the coordinates (x, y) used there. As a consequence
the connecting trajectory is independent of t. Therefore, the
only perturbations to it occur when (in the notation of (14))
the vectorfield X1 is modified so that it is equal to its linear
part near p (an ε-small amount in the C1-topology) and in-
side the region when the corresponding attractor is modified.
Thus we deduce that the constructed family of vectorfields
has the required property.

Proposition 14. Suppose that X is a gradient-like MS flow
on Rn with an attractor region B as above with a smooth
spherical boundary on which X is inward transverse. There

is an open subset R in phase space with smooth boundary ∂R
with the following properties (i) the flow is inward transverse
on ∂R which is a sphere; (ii) R contains all the attractors
of the flow and no rest points of index > 1; (iii) the stable
manifolds of the index 1 saddles in R intersect ∂R in disjoint
spheres of dimension n − 2. These index 1 saddles escape to
two distinct attractors contained in distinct connected compo-
nents of R\W s where W s is the union of the stable manifolds
of the index 1 saddles in R.

Proof. Denote the M saddles and m attractors of X by σi

and αj as above.
This step is only necessary if the number M of index 1

saddles is greater than m. Fix such an index 1 saddle s of
X and let Σ be a set of M − m + 1 saddles that does not
contain s. By (15) we can find a Liapunov smooth function
LΣ for X that takes the value 0 at attractors, 1 at the saddles
in Σ and 1/2 at all the saddles not in Σ. Let RΣ denote the
region in phase space given by LΣ < η where 1/2 < η < 1
is a regular value of LΣ. Then RΣ contains all the attractors
and the m − 1 index 1 saddles not in Σ together with their
unstable manifolds. Moreover, X is transverse to the smooth
codimension 1 submanifold ∂RΣ. Let Rs,Σ be the connected
component of the intersection of the RΣ for which Σ does
not contains s. This is open and contains s and its unstable
manifold.

We use Lemma 5 to modify our vectorfield X to obtain the
vectorfields Xt given by Lemma 5. For the index 1 saddles
σi we choose the Ui,j , (i, j) ∈ CX , so that they are contained
in Rσi and so that Ui ⊂ Ui,j and Uj ⊂ Ui,j where Uk is
the modification region of the saddle σi and the attractor
αj respectively. This ensures that the modifications of the
saddle σi and the attractor αj do not affect ∂RΣ for all Σ not
containing σi. We also want to ensure that the modification
of the rest points do not change the vectorfields near any of
the submanifolds RΣ. So we choose the Ui,j so that they meet
none of these.

Then X1 is a MS gradient flow with the same rest points
as X and with the same connections between index 1 saddles
and attractors as X all of which are held in a Ui,j for some
(i, j) ∈ C.

Choose a small n-disk Dj around each attractor αj with
boundary Vj = ∂Dj a smooth n − 1 sphere so that the flow is
transverse on Vj towards αj and so that there are no other rest
points in Dj . If the Uj of Lemma 5 were chosen sufficiently
small we can assume that the closure of Uj is contained in
Vj . Then since X and X1 agree outside the Uj they are both
inward transverse on the boundary of the Vj .

Let V ′ = ∂B, the flows of X and X1 are also inward
transverse on this since they agree there. Let W = B \ D0.
Then W has boundary V0 ∪ V ′ and in the terminology of
(13) (W, V0, V ′) is a cobordism with trivial relative (singular)
homology H∗(W, V0) = H∗(W, V ′) = 0.

Now we consider the flow of the gradient system X1. Using
Theorem 8.1 of (13) and its proof we deduce that for each of
the attractors αj , j = 1, . . . , m, there is an index 1 saddle sj =
σi(j) such that the unstable manifold of the saddle intersects
Vj .

Since the flow is inward towards the attractor on each Vj

this intersection point is unique. Let γ denote the part of
the unstable manifold between the saddle sj and αj . We can
then use Morse’s cancellation lemma (Theorem 5.4 of (13))
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to modify X1 in an arbitrary small neighbourhood Wj of γ
contained in Ui(j),j to remove this attractor-saddle pair so
that (i) the modified flow X2 has no rest points in Wj and
every trajectory that enters Wj also leaves it, and (ii) so that
the modified flow X2 is a gradient-like MS flow that equals
X1 outside Wj . As noted in (13) there is no restriction on
dimensionality for connections between index 1 saddles and
attractors. This process essentially involves a fold bifurcation.

We firstly do this for j = m. As a result we end up with
a MS system with one less saddle-attractor pair that equals
the original system X1 outside Ui(j),j . Applying Theorem
8.1 of (13) again we have that for each of the attractors αj ,
j = 1, . . . , m − 1 there is an index 1 saddle such that the
unstable manifold of the saddle intersects Vj . Now we can use
Morse’s cancellation lemma again and continue inductively
until all the attractors α1, . . . αm are removed. We end up
with the single attractor α0 remaining and this is inside the
ball D0.

If this process does not delete all the index 1 saddles (i.e.
M > m − 1) then proceed as follows. Let Σ denote the set of
index 1 saddles that have not been deleted and let R be RΣ.
Since all modifications to bifurcate away the attractors took
place inside sets Ui,j where the saddle was not in Σ, X1 and
X2 agree on a neighbourhood of ∂RΣ. It follows from The-
orem 3.4 of (13) that the cobordism (R \ D0, ∂R, ∂D0) is a
product cobordism and therefore that ∂R and ∂D0 are diffeo-
morphic. Consequently, ∂R is a smooth (n − 1)-dimensional
sphere.

Since all modifications to X to produce X1 took place in
the Ui, X and X1 agree on a neighbourhood of ∂R and we
have found an appropriate smooth sphere containing the ap-
propriate rest points.

If M = m − 1 we take a Liapunov function L for X that
takes the value i at each rest point of index i and take for R
the connected component of L < η for 1 < η < 2 a regular
value of L and demand that the Ui and Ui,j for (i, j) ∈ C have
closures in R. Then we deduce that ∂R is a smooth sphere in
a similar fashion.

In either case we obtain a smooth sphere ∂R on which
the flow is inward transverse and which contains all the m
attractors of the flow, m − 1 index 1 saddles and no rest
points of index > 1. We also obtain a Liapunov function L
for X for which ∂R is a level manifold.

The stable manifolds of the index 1 saddles in R intersect
∂R transversally in spheres of dimension n − 2 since in some
neighbourhood of each index 1 saddle point p the level curve
L(x) = L(p) + ε intersects the stable manifold of p in an
n − 2 dimensional sphere Sε when ε > 0 is small. As t →
−∞ every trajectory on Sε leaves R and hence intersects ∂R
transversally (since ∂R a level surface of L) at a single point.
The points on the intersection of the unstable manifold with
∂R are connected to those of Sε by the trajectories of X and
this provides a diffeomorphism between them.

A. Four attractor configurations. When there are four attrac-
tors there are two possible configurations. There will be three
cancelling saddles and the stable manifolds of these will in-
tersect the (n − 1)-sphere ∂R in three (n − 2)-spheres, S1, S2
and S3. Each of the Si will separate ∂R and clearly for two
of them, say S1 and S2, ∂R is separated into two components
one of which Di, i = 1, 2, does not intersect S3. In this case,
Di is a (n − 1)-disk and is contained in the basin of one of

the attractors Ai with A1 ∕= A2. The third (n − 2)-sphere S3
may or may not have this property.

If it does, then there is a (n − 1)-disk D3 with similar
properties. In this case the saddle si in the stable manifold
W s

i corresponding to Si, i = 1, 2, 3 does not escape to Aj for
j = 1, 2, 3, j ∕= i. Since every saddle escapes to two different
attractors, every saddle si must escape to the fourth attractor
A4. Thus the configuration in phase space is that there is an
attractor A such that each of the three saddles escapes to
A and also to one other of the three other attractors. We
call this configuration EU-like since it is what occurs in the
compact elliptic umbilic.

In the other configuration one of the components of ∂R\S3
contains S1 and the other S2. Let Qi denote the component of
R \ W s

3 containing Si, i = 1, 2. Then Qi contains the unique
saddle si in W s

i , the attractor Ai and one other attractor
Bi that si escapes to. Since Bi ∈ Qi, B1 ∕= B2. It follows
that the saddle s3 in W s

3 must escape to the attractors B1
and B2. Thus in this configuration the saddles are ordered so
that A1 ≺ s1 ≻ B1 ≺ s3 ≻ B2 ≺ s2 ≻ A2. We call this the
linear configuration.

B. No folds at cuspoidal joining attractors

Lemma 6. Consider a 3-attractor system as in Sect. A. If the
connector is not smooth then a fold bifurcation of the central
attractor is impossible.

Proof. We need to check that there cannot be a fold at
a cuspoidal join. If there is a fold there it is at a point θ
on a fold bifurcation curve BC . In the generic case we can
move θ an arbitrary small amount in BC to ensure that the
eigenvalues at the fold point are non-resonant. if the move
is small enough the connection will still be non-smooth and
cuspoidal.

Note that this new fold point in n dimensions for r >
2 one can find Cr coordinates (x, y) ∈ R × Rn−1 in which
the differential equation takes the form of equation (5) ((3)
Sect. 5.7). Without loss of generality we can assume that
this bifurcation takes place at θ = 0. Consider the case +x2.
Then for θ > 0 small there are two saddles s1 and s2 only one
of which (say s1) is involved in the bifurcation. The unstable
manifold of these are asymptotic to the attractor taking part
in the fold bifurcation where they meet cuspoidally. Because
they meet in this way we must have that for points starting
on the unstable manifold of s2, ẋ(t) < 0 as they converge
onto the attractor. However, from equation (5) ẋ(t) ≥ 0 in
a neighbourhood of x = 0, y = 0 which gives a contradiction.

C. Proof that the connected components of M are
disks

A. The interior of a fold circle is a disk. If xi = (xi, θi), i = 1, 2
are in M write x1 ∼ x2 if there exists a connected neighbour-
hood U in M containing both points and not intersecting
any fold curves. This is clearly an equivalence relation and
the equivalence class of a point x ∈ M, which we denote by
[x], is connected.

Take a small tubular neighbourhood N of C and consider
the two components of N \ C. Any two points in one of
these are equivalent under ∼ and not equivalent if they are in
different components.
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If one of the components Next contains in its closure a
boundary point of M we say C that is at depth 0. Then, if
N int is the other we denote by MC and VC the equivalence
classes of x ∈ Next and x ∈ N int. We are thinking of VC as
being part of the inside of C.

Now for an arbitrary fold circle C we define depth, MC

and VC by induction: C has depth n > 0 if for some tubular
neighbourhood N the equivalence class of one of the compo-
nents of N \ C is VC′ for a fold curve C′ of depth n − 1. Then
that equivalence class is denoted MC and VC is the other
equivalence class.
Proposition 15. Each fold curve C separates M into two
components. One of them IC is a disk with boundary C and
is such that χ|IC is injective on a neighbourhood of C in IC .
The other has the property that it contains in its closure either
boundary points of M or singularities of χ which are not in
C.
Proof. We prove this by induction on height.

Suppose C has height 0 by which we mean that VC con-
tains no other fold points. Then χ : VC → UC = χ(VC) is
injective. Consequently, by invariance of domain χ|VC is a
homeomorphism between VC and UC and χ(C) separates R2

into two components only one of which is bounded. It follows
that this is UC and that it and VC are disks.

Now suppose the height is n. Then for each fold circle
C′ in the closure of VC of height n − 1, IC′ is a disk with
boundary C′ and χ|IC′ is injective on a neighbourhood of C′

in IC′ . Moreover, VC is a surface with boundary C and the
union of the C′ in VC of height n − 1. Therefore, to obtain
IC one just glues the disks IC′ into VC to obtain a disk with
boundary C.

B. Proof of Prop. 1. Consider a connected component M0 and
let J(x) be the Jacobian of χ at x and let M1 denote the set of
points x ∈ M0 where J > 0. Since J > 0 on a neighbourhood
of the boundary, it follows by Prop. 15 that, in the generic
case, the sets where J < 0 are disks bounded by fold circles.
Therefore, if M0 is not orientable M1 must contain a Möbius
band. But that is impossible as then χ must have a singularity
in M1 contradicting J > 0.

To show that M0 is a disk we must prove that M1 does
not contain any handles. Then the result follows from the
classification of surfaces (e.g. (16)).

Suppose that there is a handle. Then there is an embed-
ding f : S0 ×D2 → M0 such that the handle is given by using
f to glue the cylinder K = D1 × S1 into M0 \ f(K). But
then the induced orientation on K induces an orientation on
1 × D2 that is opposite to that on −1 × D2. Hence the two
circles bounding these have opposite orientations. It follows
that χ|M0 has singularities as otherwise it would map the
handle to an annulus and induce opposite orientations on its
inner and outer boundary circles.

D. Bifurcation curves: Proof of Prop. 2

We use the fact that every connected component of M is dif-
feomorphic to a disk. One can prove the results of this section
without this assumption using ideas such as those employed
in Sect. A. From this assumption it follows that we can talk
about the interior and exterior of a fold circle and we have
that the restriction of χ to the interior of a fold circle is in-
jective.

That BC is smooth except at cusp points follows from the
generic local structure of fold points as described above.

Suppose that BC has a self-intersection. By genericity the
intersection will be transverse. Then there are two points
x1, x2 ∈ C such that χ(x1) = χ(x2) and that there is an open
segment γ in C that has x1 and x2 as its end points such that
χ|γ is an embedding. γ might contain cusp points. Let N
be a small tubular neighbourhood of C and let N int be the
connected component of N \ C contained in the interior of
C. If N is small enough χ|N int is injective. Because of the
transversality of the intersection the thin ribbon χ(N int) in
R2 has self-intersection and so there are distinct points in N int

with the same image under χ. This contradicts the injectivity
of χ on N int.

Now the result follows from the Jordan-Brouwer Separa-
tion Theorem which implies that R2 \ BC has exactly two
components, one of which is bounded and the other not.

E. Proof of Prop. 5

Γ

!

Γ''

Γ''
Γ''

Γ''
N1

C'

�

�

N� Γ''

Fig. S16. (A) We connect C′ (red) to Γ (black) and then take a small neighbourhood
N1 ∪ N2 as shown (light blue). Then we take the black curve in N1 ∪ N2 as shown
that joins the two orange points on Γ either side of γ. By following the black arrows
instead of the pink ones we get a loop Γ′′′ that has an odd index as Γ (because the
index round the new part is even) but now has C′ in the exterior part. (B) How to
move two odd index fold circles to the exterior.

Proof. Let G be the interior of Γ. Let C′ be a fold circle
in G that is not contained in any other fold circle and is such
that CC′ is trivial. We firstly prove that we can find a simple
closed curve whose interior contains exactly the fold circles
that are in G except for C′.

Let M0 be the connected component of M that contains
Γ and let γ in M0 be a curve that connects C′ to Γ (see Fig.
S16A). Since all fold points inside G must be on fold curves
we can choose γ so that it intersects no other fold points.
Also choose γ so that the endpoint on C′ is not a cusp point.
Let N1 be a small annular tubular neighbourhood of C′ and
N2 a small annular tubular neighbourhood of γ and let N =
(N1 ∪N2)\(C′ ∪γ). Choose a point in each of the components
of N ∩ Γ and let Γ′ denote the short part of Γ between them.
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Then there is a curve Γ′′ in N that connects these points. Let
Γ′′′ be the closed curve obtained by combining Γ \ Γ′ with
Γ′′. Moreover, since N encloses a disk, Γ′′′ separates M into
two components as required. But now C′ is in the exterior
component. Now Γ′ ∪Γ′′ is a closed curve for which the saddle
bundle is trivial. Since Γ′′′ = (Γ \ Γ′) ∪ Γ′′ it follows that if
Γ′ is short enough the saddle bundle of Γ′′′ is a Möbius band.
Moreover, Γ′′′ separates M0 into two components and one of
the components contains less fold circles with trivial saddle
bundle than G did.

Repeating this process for all such fold circles we obtain
a closed curve which must contain in its interior component
a fold circle since it has a Möbius saddle bundle but which
contains no non-Möbius fold circles at top level.

To see that one can also remove any even number of Möbius
fold circles note that one can find a closed curve Γ′′ around any
two Möbius fold circles with the property that its bundle Ec

Γ′′

is a cylinder (see Fig. S16B). Then one can proceed as above
to use Γ′′ to adjust Γ to obtain a curve with a Möbius saddle
bundle whose interior component does not contain these two
fold circles.

Note that this proof also shows that any curve Γ0 satisfying
the conditions of the proposition contains an odd number of
Möbius fold circles.

F. Justification of Condition (*) for Theorem 2

Fig. S17. This shows how over a 1-dimensional parameter space one can have a
seemingly bistable Z shaped system which does not flip the orientation of the folds.
This involves generic flip bifurcations and violates Condition (*) thus illustrating why
bistability is not sufficient in Theorem 2. Note that the lines could cross depending
on the projection considered.
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Part II
Examples
1. Three state system has elliptic-umbillic parameter

space

For three cells or genes i, j = 1..3 define mutual repression
among them by the rational functions

ẋi = 2
"

j ∕=i
(1 +

xn
j

kn
i,j

)
− xi,

ki,j = 1 + ci − cj

[7]

with the Hill exponent n = 4 (n = 2 does not generate 7
restpoints at the symmetry point).

Each of the ci favors xi by dividing xi by a number smaller
than 1 and xj ∕=1 by a number larger than 1. We confine
ourselves to a two dimensional parameter space by impos-
ing

!
i
ci = 0 and then projecting onto two orthogonal di-

rections such that permutation among the i corresponds to
a rotation by 2π/3. Rational functions are technically use-
ful in this example since Mathematica routines are guaran-
teed to find all the rest points, and one can also include
the zero Jacobian condition to find the fold lines. We be-
lieve the same phase diagram would emerge from Eq.11 for
N = 3 but the root finding is more difficult with tran-
scendental functions. We again emphasize that imposing
the 3-fold symmetry simplifies the parameter search but the
phase diagram is invariant in a neighborhood in the com-
plete parameter space. One presumably would find the same
phase diagram if the interactions were completely symmetric
and the parameters controlled the degradation rates. With
an exponent n = 4 the states are reasonably close to bi-
nary, i.e., at the corners A in Fig.6b the stable point is at
xi = (2.00, 0.03, 0.03) + permu, while along the inner black
curve the stable points are xi ∼ (2.00, 0.2, 0.2) + permu and
the saddle point is at (1.00, 1.00, 0.44)

2. A flow defines a potential

We use the flows which are later used for the activator-
inhibitor pair showing Turing patterns.

ȧ = a2

(1 + a2)(1 + h) − νa + Da∂2
xa, [8]

ḣ = ρ
a2

1 + a2 − h + Dh∂2
xh. [9]

Parameter values, which are also used later, are ν = 0.2 and
ρ = 5. There are two stable fixed points on either side of the
inset. The potential is defined as

# ∞
0 (ȧ2 +ḣ2)dt in accordance

with the one dimensional definition i.e. it is the integral of
the of the vector field along the trajectory. To define the
metric, we need to project the flows given by the potential
onto the actual flow. This can be done with a projection
operator, which, however is not a proper metric because it
has determinant zero. Let 3a = (ȧ, ḣ) represent the vector
flows. Let 3u be the flows which derive from the derivative of
the constructed potential. Let 3uP be the vector perpendicular
to 3u with the same magnitude. Now define the inverse metric
as the sum of two projection operators

g = 1
(3u.3a)

$
3a3aT + 3uP 3uT

P

%
[10]

Evidently, when operating on 3u, this gives 3a. Though these
two independently have determinant zero, their sum can be
shown to have positive determinant as long as the angle be-
tween them is less than π/2 i.e. 3u.3a > 0. Other linear com-
binations of these two operators are possible reflecting the
redundancy in the definition of the metric.

Fig. S18. Contours of the potential defined in the text are shown going from low
(blue) to high (red). The flow defined by the potential multiplied by the metric is
shown in green as streamlines.

Near the fixed points, this construction chooses the poten-
tial to be the symmetric part of the Jacobian. In two dimen-
sions, it can be shown that a matrix cannot be written as the
product of two symmetric matrices where the second matrix
is the symmetric part of the matrix being represented. There-
fore, the potential and the metric need to be defined indepen-
dently near the fixed points. Near the fixed point, one can ap-
proximate the dynamics by its linear part. The Jacobian ma-
trix is not symmetric but can be written as the product of two
symmetric matrices, one of which is positive definite. Hence,
we can approximate the metric as constant and the potential
as parabolic near the fixed points and glue this together with
the global construction above. The gluing is done with a sig-
moidal function 1/(1 + exp(((a − a0)2 + (h − h0)2 − m)/c). a0
and h0 are just the value at the fixed points whereas m and
c are chosen to be 0.001 and 0.00001 in this example but can
be chosen appropriately.

3. Patterning by lateral inhibition

The model in question describes a field of cells, subject to
mutual inhibition via the Notch-Delta pathway (17). Each
cell is described by a single variable a between 0−1 and when
a cell is ON it forces its neighbors to be OFF. The biological
data consists of the time course of expression beginning with
all cells off and ending when a sparse random subset are on.
An elegant minimal model describing this situation reads:

τ ȧi = σ(ai − hi) − ai,

σ(a) = (tanh(4a) + 1)/2,

hi =
&

j ∕=i

Ki,jd(aj),

d(a) = 0.05a + 2.85a4

1 + 2a2

[11]

where Ki,j is a Gaussian function of the spacing between cells
i, j and d(a) maps the interval [0, 1] onto itself. The system
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is initialized with all ai ∼ 0 and positive. In the terminal
configuration only a sparse set of the ai ∼ 1 with a spacing
set by the Ki,j and the rest are zero. The mean field inhibi-
tion hi from the neighbors of i slides the sigmoid function σ
along the axis giving rise to two saddle-node bifurcations that
destabilize the upper and lower fixed points.

The behavior of the system is most easily understood by
solving it in one dimension for cells uniformly positioned
around a circle Fig. S19. We have omitted additive Gaus-
sian noise to better understand the underlying dynamics.

A B

Fig. S19. Solution ai(t) for the model of Eq.11 for 8 cells evenly spaced around a
circle with slightly different initial conditions shown in (A) and (B). The range of the
inhibitory interactions is adjusted to allow only two cells to be on in the final state,
which are always on opposite sides of the circle.

Note the cells all rise together and then when a ∼ 0.5 cells
peal off. Most go to zero but a few persist to larger a when
they too peal off leaving the two survivors. The intuitive
reason for this is already apparent when observing the flow
field with just two cells Fig. S20.

A B

Fig. S20. Vector field and stream lines from Eq.11 for (A) two cells and (B) three
cells with a1 on the x-axis and a2 ≡ a3

In fact for any number of particles there is a saddle point
along the diagonal in a space at a ≈ 0.89 for two cells which
decreases down to a ≈ 0.51 (for K0,1 ≈ 0.841) when the num-
ber of cells N exceeds the range of interactions. There is one
strongly stable eigenvalue along the diagonal and O(N) unsta-
ble directions. The pattern repeats as suggested in Fig. S20B,
namely for N = 3 there are secondary saddle points around
3a ≈ (0, 0.89, 0.89) + permu with two stable and one unsta-
ble directions. Thus the dynamics in Fig. S19 is qualitatively
explained by a tree or star-burst of saddle points with an
increasing number of stable directions.

Can we capture the essentials of this behavior in a potential
model of the form of Eq.12 where both Ki,j and d(a) agree
with Eq.11?

ȧi = −g(ai)∇ai F

F =
&

i

s(ai) + 1
2

&

i ∕=j

d(ai)Ki,jd(aj) [12]

We first impose that the location of the critical point along
the diagonal in a space agrees with Eq.11:

s′(a) + d′(a)h(a) = 0 ⇔ σ(a − h(a)) = a where

h(a) ≡
&

j

K0,jd(a) = a − 1
8 ln( a

1 − a
) [13]

where the expression involving ln in Eq.13 is the inverse of σ
in Eq.11. Thus we have an explicit expression for s′(a)/d′(a)
in terms of a at the critical point which falls in the range
0.51 − 0.89 depending on N .

To make the Jacobians Ji,j = ∂ȧi/∂aj agree compare the
expressions in Eq.11 and Eq.12:

Ji,j =δi,j(σ′(a − h(a)) − 1) − (1 − δi,j)σ′(a − h(a))∂hi/∂aj

Ji,j = − δi,jg(a)(s′′(a) + d′′(a)h(a))
− (1 − δi,j)g(a)d′(a)∂hi/∂aj

[14]
Note at the critical point the term involving the derivative
of the inverse metric vanishes, and we can calculate σ′(a −
h(u)) = 8a(1 − a). Thus the off diagonal terms are equivalent
if g(a)d′(a) = 8a(1 − a), and it can be shown the diagonal
ones follow, as we also checked numerically. Thus we have
determined both s′(a) and g(a) in Eq.12 in terms of d(a)
and explicit functions of a.The vector field for N=2 and the
dynamics for N=8 are shown in Fig. S21. The most obvious
problem is that the potential model has vanishing velocity in
the neighborhood of the origin since g(a) ∼ a.

A B

Fig. S21. The potential model from Eq.12 with a metric satisfying g(a)d′(a) =
8a(1 − a). (A) The vector field and streamlines (B) The dynamics. Note the dynam-
ics around the origin are not correct as is clear in both (A) and (B).

The origin is a completely unstable critical point well re-
moved from the saddle on the diagonal which is restricted
to a > 0.51. So in particular we can define the metric for
a ≥ 0.5 as before, but modify the definition for a < 0.5 so
that τ ȧ = 1

2 at a = 0 to agree with Eq.11. For instance the
following choice illustrates the idea:

g(a) = 8a(1 − a) − (1 − 2a)4(4/ ln(a) + 8a(1 − a))η(1
2 − a)

[15]
where expression involving the step function η is C4 around
a = 1

2 (η(x < 0) = 0) and the ln(a) term subtracts the
singularity in s′(a) near the origin that’s implicit in Eq.13.
Its overall coefficient together with the singular expression
for h(a) in Eq.13, guarantees the desired value at a = 0
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A B

Fig. S22. The potential model from Eq.12 with the metric from Eq.15. (A) The vector
field and stream lines. (B) The dynamics.

Inspection of Fig. S22 reveals that the velocity field is
nearly 2x too large around 3a ≈ ( 1

2 , 1
2 ) and that ȧ1 is too large

for 3a ≈ (a1 < 0.6, 1) which affects how the curves tend to 0 for
times larger than two. This problem can also be fixed within
the context of Eq.12 if we smoothly interpolate between two
values of s′(a) for a ≪ 1 and a ∼ 1 as in Eq.15, and make a
consistent choice of the two free constants to get appropriate
values of 3a around the origin and (0, 1). The choices are now
dependent on N and we will not go further in matching a
potential model to Eq.11, since at this stage the agreement is
better than the fit of Eq.11 to the corresponding data, which
unfortunately for the system in question does not yet include
quantitative time lapse data. With such data, one can hope
to initialize the model specifically to each embryo and then
follow the dynamics for some period of time and compare
trajectories. We suggest that our potential and metric for-
mulation will be a more principled way to fit dynamic data.
Note that we got rather far with a diagonal metric.

4. The Turing Model in potential form

The model we use relies on local activation by an activator a
and long range inhibition by an inhibitor h. The dynamical
equations are

ȧ = a2

(1 + a2)(1 + h) − νa + Da∂2
xa, [16]

ḣ = ρ
a2

1 + a2 − h + Dh∂2
xh. [17]

We have modified the classic Gierer-Meinhardt form of the
model (18) to remove the singularity at h = 0 and saturate
the production of a. Parameters have been rescaled or set
to 1 so that the behavior of the model depends only on two
parameters ν and ρ along with the diffusion coefficients Da

and Dh. The typical behavior of the model is to produce a
bump in a and h as shown in in Figure S23.

This matrix can not be written as the product of a metric
and a potential without introducing k2 into the metric. The
expression for the Jacobian matrix at the homogenous fixed
point is quite involved. The essence of the argument can be
seen by taking the limit of small ν (i.e. dynamics of h being
quicker than dynamics of a).

'
2ν2 − Dak2 −2ν2

1/(2ν) −1 − Dhk2

(
[18]

It is easy to show that the opposite signs on the off-diagonal
elements implies an off-diagonal metric. One can therefore

Fig. S23. The typical behavior of a (blue) and h (red) in the model. Parameter values
are ν = 0.2, ρ = 5, Da = 0.02, Dh = 2.

take the generic form of a metric inverse times a potential

g.V =
'

g11 g12
g12 g22

( '
V11 + U11k2 V12 + U12k2

V12 + U12k2 V22 + U22k2

(
[19]

Setting this expression to be equal to the Jacobian and
solving the equations and matching the k2 terms leads to a
contradiction: there is no solution of these equations with
the components of g independent of k2 with Da ∕= Dh and
g12 ∕= 0 which we require to fix the sign problem. Making the
metric a function of k2 is not disallowed but it is an overly
cumbersome route which we do not pursue.

Another alternative is to saturate the production of h
which gives h = ρ

)
a2/(1 + a2). Treating this equation as

a constraint, one can write down a long range potential for a

V (a(x), h) =
*

dx(ν a(x)2

2 + H(a(x)) + Da

2 (∂xa(x))2

− 1
2a(x)2h + 2ρa(x)2

+
dx′a(x′)2) + ν

h2

4 [20]

where H(a) =
#

da a2/(1+a2). What this does in essence is to
put a long range anti-ferromagnetic potential to compensate
for the h which is introduced into the potential with the wrong
sign thus resolving the sign difficulty. This works in practice
but is biologically implausible and does not get us much more
than the original formulation of the problem.

Finally, the solution as discussed in the main text is to
focus only on the unstable manifold where it is much easier
to write down a potential formulation. We can do the analysis
in a general form (19) writing the equations as

3̇a(k) = M(k)3a(k) + 3f( 3a(k)), [21]

where we have combined the variables into the vector 3a ≡
(a−a∗, h−h∗). We assume that we are working in coordinates
around the homogeneous fixed point and the linearization is
given by the matrix M(k) which is dependent on the Fourier
mode k. 3f contains all nonlinearities. We can find eigen-
vectors of the matrix M(k) which we denote by 3uj

k where
the index on top denotes the eigenvector and k denotes the
Fourier coefficient. Let us make the decomposition

3a(x) =
&

j

&

k

3zj
keikx. [22]

3a is real, so 3zj
k = (3zj

−k)∗. Then, putting this form in the
expression above, we get

&

j,k

3̇zj
keikx = M(k)

&

j,k

3zj
keikx + 3f( 3a(k)). [23]
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We have two eigenvectors for each value of k, one of which has
a large and negative eigenvalue (corresponding to relaxation
of h) and the other has an eigenvalue which is relatively small
but either positive (if the mode is unstable) or negative (if
the mode is stable). We can neglect the large and negative
eigenvalue and convert the above vector equation into a scalar
equation with the understanding that scalar z and scalar f
refer to the dominant eigenvectors and the component of the
nonlinearity in its direction respectively. Then we get the
equation

&

k

żkeikx =
&

k

λkzkeikx + f(
&

k′

zk′ eik′x). [24]

We can project out the coefficient k with the operator
1/(2π)

)
dxe−ikx on both sides

żk = λkzk + 1
2π

+
dxe−ikxf(

&

k′

zk′ eik′x). [25]

Let the nonlinearity be of the form f(x) = f̃2x2/2+ f̃3x3/3 to
cubic order. Further, using the fact that 1

2π

)
e−ikxdx = δk,

we get

żk =λkzk +
&

k′,k′′

f̃2

2 zk′ zk′′ δk′+k′′−k

+
&

k′,k′′,k′′′

f̃3

3 zk′ zk′′ zk′′′ δk′+k′′+k′′′−k. [26]

Consider now a single mode k = 1 to be unstable with all
other modes stable. Evidently there are no quadratic terms
possible. A single cubic term is possible with k′ = 1, k′′ =
−1, k′′′ = 1 and corresponding permutations. This gives the
equation

ż1 = λ1z1 + f̃3z1|z1|2. [27]
Now, suppose there are two unstable modes k = 1, 2. At cubic
order it is now possible to have k′ = 1, k′′ = −2, k′′′ = 2 with
permutations in the equation for z1. There are twice as many
permutations of this than with k′ = 1, k′′ = −1, k′′′ = 1. At
the quadratic order, it is possible to have k′ = 2, k′′ = −1 in
the equation for z1. One can thus count all possibilities to get
the equation

ż1 = λ1z1 + f̃3z1(|z1|2 + 2|z2|2) + 2f̃2z∗
1 z2, [28]

ż2 = λ2z2 + f̃3z2(|z2|2 + 2|z1|2) + f̃2z2
1 . [29]

Notice that this happens to be potential, not requiring a met-
ric. We can rename parameters to put them in the same form
as in the main text.

ż1 = λ1z1 − βz1(|z1|2 + 2|z2|2) − 2γz∗
1 z2,

ż2 = λ2z2 − βz2(|z2|2 + 2|z1|2) − γz2
1 .

[30]

For our simulations, we start with initial conditions close
to the homogenous state with a few Fourier modes added with
small random coefficients. The a(x, t) obtained for several dif-
ferent initial conditions is linearly projected on to exp(ix) and
exp(2ix) to obtain our numerical approximation to z1 and z2.
We then fit to the parameters λ1, λ2, β and γ which are inde-
pendent of the initial conditions by fitting our projection to
the dynamics in Equation 30. These parameters are not diffi-
cult to fit for they are directly related to the linear growth rate

and the height of the final stable equilibrium. With these val-
ues of the parameters, we can then approximate the continu-
ous dynamics as the real part of z1(t) exp(ix)+z2(t) exp(2ix).
Note that we are using a very simple linear projection on to
Fourier modes as an approximation to the unstable manifold
which is quite flat. For early times, our approximation suf-
fices.

For mid to late times, the inaccuracies in our Fourier ap-
proximation have to do with the other modes, and higher
order terms in Equation 30. There are several different pos-
sibilites to improve the fit. The final stable state is given
by a Jacobi Elliptic function which also have a natural in-
terpolation from trigonometric functions. It is possible to
use some such interpolation but in practice, we find that
an adequate solution is simply to saturate our sum of two
modes with a simple sigmoidal function. The sigmoidal func-
tion is made a function of the real radial part of z1 and z2
which we denote by r1 and r2. It is defined as σ(y, r1, r2) =
σ0(r1, r2)/(1 + exp(−Λ(r1, r2)(y − y0(r1, r2))) + 1) whose pa-
rameters Λ, σ0 and y0 are functions of r1 and r2 and are fit as
explained below. Note that y0 and σ0 simply reflect the center
and the height of the function. Hence our final approximation
to the function a(x) is σ(Re[z1(t) exp(ix) + z2(t) exp(2ix)])
with parameters in σ a function of r1 and r2. The sigmoidal
function ensures that the function remains positive and was
empirically found to fit well. While the final form of the fit
may look complicated to do exactly, it can be approximated
in practice as follows.

First we take the linear form of the fit mentioned above
for one initial condition which gives us an approximation
al(x, t) = Re[z1(t) exp(ix) + z2(t) exp(2ix)]. We then plot the
actual value of the function a(x, t) for the same initial condi-
tion as a function of al(x, t) for a particular time point t. This
data can be fit to a sigmoidal function σ(y) as defined above.
We can then find the parameters of the sigmoidal function as
a function of t for discrete time points chosen appropriately.
The parameters can then be plotted as a function of r1 and r2
by using our known form for r1(t) and r2(t) from our linear
fit. We can then approximate the parameters as functions of
r1 and r2. In practice we found that σ0 could be taken to be
constant. The parameter y0 was either kept constant (done
when fitting either 1 or 2 modes in one spatial dimension) or
taken to linearly vary with radius (done when fitting 1 mode
in 2 spatial dimensions). Finally the parameter Λ was also
fit as a polynomial in r1 and r2. Details for the particular
cases considered in the paper are given in the captions. We
emphasize that our fits are only meant for the precision of
a few percent which suffices for the biology under consider-
ation. It is possible that other functional forms may work
equally well or even better but in essence we require a map-
ping from the abstract coordinates z1 and z2 to the physical
coordinates where the only time-dependence enters through
z1 and z2 themselves. For the case of just one unstable mode,
the discussion is entirely analogous to the one above. In sum-
mary, we have reduced a very high dimensional problem to
a relatively simple fitting exercise in two dimensions involv-
ing only Fourier coefficients and a simple sigmoidal saturation
function.

If a different set of Fourier modes are unstable, then one
could work out the equations as above. Some couplings be-
tween the two modes depend on the specific wave number but
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others are allowed for all pair of modes.
For the two spatial dimensional version of the problem, we

use a slightly different set of equations

ȧ = a2

(1 + Ka2)(1 + h) − νa + Da(∂2
xa + ∂2

ya) − αas(y),

[31]
ḣ = ρ(x, y)a2 − h + Dh(∂2

xh + ∂2
yh) − αhs(y) [32]

equal diffusion coefficients in x and y. The system has
length Lx = 6π in the x direction and Ly = 2π in the
y direction both with the center at 0. There are peri-
odic boundary conditions in the x and y directions albeit
with a sink at the y boundaries to localize the blobs. Pa-
rameter values are Da = 0.032, Dh = 5, ν = 0.2, K =
0.2, α = 0.005, s(y) = exp(−(L2

y − y2)) and ρ(x, y) = 5 +
ε
!7

n=5 an/n cos(2πnx) exp(−y2) with ε = 0.1 and an ran-
domly chosen from a uniform distribution between −1 and
1. For the projection and fitting, we first average over the
angular variable from the center of each blob. We then fit the
function to a Fourier-Bessel series keeping only the first mode.
The comparison between the fit and the actual dynamics is
shown in Figure S25.

Fig. S24. A comparison between having one unstable mode or multiple unstable
modes shown for random initial conditions. The simulated Turing system is shown in
blue and the potential fit is shown in red. (A) There are three unstable modes in the
actual system with Da = 0.01 but a model with 2 unstable modes does a good job
of fitting it. Other parameter values are ν = 0.2, ρ = 5, Dh = 20. The parameters
for the potential fit are α = 0.128, α2 = 0.0796, γ = 0.042, β = 0.125.
The saturation function is chosen to have σ0 = maximum of a(x), y0 = σ0/2,

Λ(r1, r2) = 1,
,

r2
1 + r2

2 <= 0.52 and Λ(r1, r2) = 1 + 4(
,

r2
1 + r2

2 −
0.52)2 otherwise. (B) There is only one unstable mode with Da = 0.05. The
parameters for the potential fit are α1 = 0.061, β = 0.155. Here the saturation
function has parameters values σ0 = 1.27, y0 = 0.66 and Λ = 1.26 + 0.46r1.

Fig. S25. A comparison is shown between the actual dynamics and the potential
fit to the two dimensional Turing system. A) The first blob is shown on top at time
t = 70 along with the comparison to the potential fit at the same time below it. B)
The radial cross-section is shown at three different times. The actual data is shown
at discrete time point in blue and the potential fit is shown in red. The function fit is of
the form 0.8+r1(t)σ(1.5J0(r)) where r is the radial coordinate in physical space,
r1(t) is the abstract radius and σ is the saturation function as defined in the text.
For the saturation function we use y0 = 1.26 + 0.5r1(t) and Λ = 1 + 0.2r1(t).

5. Spreading the pattern by a wave

The model solved in Fig. 13 is defined by

u(a, b) =
*

a

(a(a − s)(a − p1)) + p2(b − a2)2/2 − p3ab,

U =
N&

i=1

u(ai, bi) + Db

n+1&

1

(bi − bi−1)2/2

+ p4

2
&

i ∕=j

d(ai)Ki,jd(aj),

Ki,j = exp(−(i − j)2/(2σ2)).

[33]

where s = 0.3, p1,2,3,4 = (2, 0.3, 0.2, 0.5), Db = 4, σ2 = 2.
There are a total of 7 possible parameters modulo rescal-

ings in the functional form of Eq.33 and it is fairly simple to
adjust them. The origin is a stable point of u(a, b) so we im-
pose sp1p2 − p2

3 > 0; σ controls the spacing between the cells
with a ∼ 1; p1 > 1 increases the value of a in active cells and
thus makes the potential in the symmetry broken state more
negative (making p3 larger has the same effect but is limited
by the determinant condition. The p2 parameter weights the
induction of h by a. Too large a value damps b and prevents
the wave from propagating, a low value of 0.05 activates ex-
tra sites. A larger value of s destroys the wave since cells do
not get over the saddle to activate, too small a value and the
sites well ahead of the furrow are susceptible to noise. The
diffusion constant should be increased until the wave begins
to propagate. The parameters shown in Fig. 13 were adjusted
by inspection following these rules.

The flow around the saddle controls how the diffusive
spreading of b interacts with the repulsion from the previ-
ous active cell to select the next active cell. The inset to the
saddle can be substantially manipulated by a constant met-
ric, Fig. S26. If we lower its intersection with the b axis for
a ∼ 0 less diffusive transport of b is required to trigger the
ON state.
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BA

Fig. S26. The flow around the saddle point defined by u(a, b) in Eq.33 for two values
of the metric, g = (1, 1) in (A), and (10,1) in (B) for the same potential. The saddle
point occurs at a, b ∼ (0.17, 0.14) and the upper fixed point for u at (2, 7, 9.2). In
the coupled system a, b ! (1.5, 1) so the diffusion has a substantial impact on the
realized levels.

6. Morphogen models

An embryo has to solve the problem of expressing the genes
that define cellular fates in the correct position. A classic
model for establishing a one dimensional pattern posits a
static protein gradient that activates target genes as a func-
tion of concentration (aka "French flag") (20) . Within this
simple paradigm are several different dynamical models as
we now enumerate in the minimal case of three target genes,
X, Y, Z that are positioned from high to low morphogen re-
spectively.

The simplest model assumes the morphogen activates all
three genes with different thresholds and in addition X in-
hibits Y, Z and Y inhibits Z i.e.,

ẋ = Mn

Mn + 1 − x,

ẏ = Mn

Mn + λn

1
1 + ( x

λ
)n

− y,

ż = Mn

Mn + λ2n

1
(1 + ( x

λ2 )n)(1 + ( y
λ

)n) − z.

[34]

that we solve with n = 5 and λ = 1
4 . The inhibition is neces-

sary in Eq.34 so that the gene most sensitive to the morphogen
is only expressed furthest away from the morphogen source.
The scale factors are organized to make the domains of x, y, z
occupy equal regions in log(M) or position assuming an ex-
ponential profile of morphogen as has been accurately shown
for Bicoid in the fly blastoderm (21). Thus the scale at which
x inhibits z is the square of the point at which x inhibits y.
The result is shown in Fig.S27,

Dynamically the model in Fig.S27 is very boring, there is
a single fixed point that is pushed around in three dimensions
by the morphogen. New phenomena arise when the interac-
tions among targets of the morphogen interact to generate
bi or multi-stability. One such model for the mouse neural
tube, (22), considers three genes patterned as a function of
distance from a ventral signaling source. To fit their data
which includes mutating the gene Y positioned at interme-
diate morphogen levels, they needed to include more cross
repressions that resulted in bistability at intermediate mor-
phogen levels. As a result they observed hysteresis, so that
the boundaries in the final pattern depend on the temporal
profile of the morphogen. Their model is,

A B

Fig. S27. Expression of three genes in an exponential morphogen gradient. (A)
Expression as a function of position which is equivalent to log of the morphogen. (B)
The same data as in (A) shown in three dimensions with the points uniformly spaced
in morphogen level from 0.1 to 2 giving a sense of the ‘speed’ of the orbit in the
configuration space.

ẋ = 5M

M + 1
1

1 + y + z
− x,

ẏ = 5M

M + 1
1

1 + x5 − y,

ż = 3
1 + x6 + y2 − z.

[35]

where x, y, z represent the genes Nkx2.2, Olig2, and Pax6.
Figure S28 represents the solution. The bistability is a

function of the coupled system, hence in a plot of gene level vs
morphogen the saddle node bifurcations appear at the same
abscissa for all genes. From the plot we infer that large X
strongly inhibits Y, Z and Y inhibits the other two. We can
directly replot plot Fig.S28A in 3D as three curves param-
eterized by the morphogen. However it is more informative
to represent the the two dimensional stable manifold of the
saddle point, which divides the basins of the high and low X.
Then as the morphogen changes, this surface and the two at-
tracting fixed points move as does the state of the cell, which
may transit between basins. An impression for the basins of
attraction at fixed morphogen is conveyed by intersecting the
two dimensional inset to the saddle with the plane defined by
the saddle and two fixed points. It does not suffice to com-
pute the stable and unstable manifold of the saddle restricted
to this plane since in the case shown in Fig.S28B the planar
equations have 9 restpoints in contrast to the 3 restpoints in
the complete system. We thus adapt the expedient of just
showing a projection.

A B

Fig. S28. Three genes in a morphogen gradient with bistability, Eq.35. (A) The
branch extending from low morphogen disappears at 1.91, while the upper branch
disappears at 0.75. The unstable solution is shown dashed. (B) For the morphogen
equal to 1.5, the two fixed points (dots) and the saddle (X) define a plane. The 1D
unstable manifold of the saddle (dashed), and the most stable mode of the saddle
(black) are projected onto the plane.
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is the paradigm gene regulatory network, and the control of
the gap genes by the anterior morphogen Bicoid has been the
subject of several modeling papers (23–25). Only the second
of these makes any mention of bistability. We consider multi-
stability or its absence a salient feature of any gene network
model.

7. Adaptive systems

One would be hard pressed to find a static morphogen gradi-
ent in the early developmental stages in any vertebrate sys-
tem. However, in the embryo positional information can per-
fectly well be transmitted to the cell by morphogen spread-
ing from a source if the cellular response is adaptive, i.e., a
smoothed time derivative (26–28).

In mathematical terms an adaptive system is one with a
single attracting fixed point at which one of the variables is
independent of a parameter representing the external input
and the others act as a buffer. A simple example from (29)
will fix the ideas,

ȧ = 1 − sa,

ḣ = sa − h.
[36]

where s is a time dependent signal and h is the adaptive re-
sponse and a the buffer. When s is constant, h = 1 irrespec-
tive of s. The system is linear so by matrix manipulations
it can be written as the product of a positive definite metric
times the gradient of a quadratic polynomial. But in the case
of Eq.36 rewriting it in this way will put s in both the metric
and potential, thereby obscuring the simplicity of Eq.36. Bet-
ter is to write families of adaptive systems based on Eq. 36
by using the potential U = a − sa2/2 + (1 − h)2 and a metric
with an off diagonal term. The potential naturally makes the
fixed point of h independent of s, and the metric couples a
and h when they vary.
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