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In this paper we compute the linear stability of similarity solutions of the breakup of viscous liquid
threads, in which the viscosity and inertia of the liquid are in balance with the surface tension. The
stability of the similarity solution is determined using numerical continuation to find the dominant
eigenvalues. Stability of the first two solutions (those with largest minimum radius) is considered.
We find that the first similarity solution, which is the one seen in experiments and simulations, is
linearly stable with a complex nontrivial eigenvalue, which could explain the phenomenon of break-
up producing sequences of small satellite droplets of decreasing radius near a main pinch-off point.
The second solution is seen to be linearly unstable. These linear stability results compare favorably
to numerical simulations for the stable similarity solution, while a profile starting near the unstable
similarity solution is shown to very rapidly leave the linear regime.

I. INTRODUCTION

Liquid threads or jets consist of cylindrical liquid matter, bounded by an interface with another fluid. The interfacial
energy (that is, surface tension) on such an interface makes it unstable to perturbations that result in the thread
breaking up; a typical everyday example is a column of water pouring from a kitchen tap forming into droplets some
distance from the tap, but there are countless applications in science and industry across orders of magnitude of spatial
scales, from the formation of galaxies, to pharmaceutical drug delivery, and inkjet printing [1]. In many industrial
applications, the breakup of the liquid thread is either undesirable, or the aim is to control the breakup to create a
field of very fine droplets of a similar size (a monodisperse field) [2, 3]. In the latter case, the dynamics of breakup
are very important, as complex break-up phenomena, for instance the creation of satellite and sub-satellite droplets,
can result in a wide distribution of droplet sizes.

A cylindrical thread or jet of liquid is unstable to interfacial perturbations due to the Plateau–Rayleigh instability,
driven by surface tension [1, 4]. Eventually non-linear effects take over and the liquid breaks up into droplets via
pinch-off singularities, at which the thread radius locally goes to zero. Both numerical simulations and experiments
indicate that universal self-similarity plays a crucial role near pinch-off. However, the dynamics near pinch-off can
be complex, including iterated structures and break-up into droplets of multiple sizes [5, 6]. The nature of the self-
similarity depends on the relative importance of effects such as the inertia and the viscosity of the ambient fluid. In a
single simulation or experiment, multiple regimes may be observed [7–9], with a complex picture of transitions across
multiple regimes tangled up with seemingly oscillatory convergence towards similarity solutions.

If the outer fluid and inertia are neglected, so that the dominant effects are viscosity of the inner fluid and surface
tension, then exact solutions exist for the countably infinite number of similarity solutions [4, 10]. The linear stability
of these solutions may also be determined exactly; in Eggers [11] it was shown that of the infinite number of solutions,
only one such solution (that with the largest minimum radius) is stable, while all other solutions are unstable. Indeed,
it is common more widely for partial differential equation (PDE) models that have a countable set of similarity
solutions or other invariant solutions for only one to be linearly stable: see, for example Witelski and Bernoff [12]
in the case of self-similar van der Waals rupture of thin films, Bernoff et al. [13] in the case of pinch-off by surface
diffusion, or Kessler and Levine [14], Bensimon [15], Tanveer [16] in the case of travelling Saffman–Taylor fingers in
Hele–Shaw flow.

If, however, inertia and viscosity are both in balance with surface tension, similarity solutions can only be computed
numerically. In addition, the computation is challenging because of a singular point in the equation, at which an
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FIG. 1. Schematic of a thin thread of viscous fluid. The system is modelled with two variables: the streamwise velocity v(z, t)
(uniform across the thread in the slender body approximation) and the thread radius h(z, t), each functions of the streamwise
coordinate z and time t.

extra condition is imposed by requiring that solutions be analytic. In the past, shooting methods that utilize a power
series expansion at the singular point have been used to successfully compute the first similarity solution [17, 18] that
agrees with numerical simulation of the PDEs, as well as a sequence of secondary similarity solutions, that are not
seen in the numerical simulations [19]. Brenner et al. [19] have conjectured that for viscous thread break-up with
inertia, all similarity solutions are linearly stable, and a difference in sensitivity to finite-size perturbations is why the
first similarity solution is the one that is generically seen in full numerical simulations.

In this article we examine the linear stability of these similarity solutions. As with the computation of the similarity
profiles themselves, the linear stability is computationally challenging due to the presence of the singular point, and has
never been attempted. Previously, numerical continuation has been successfully used to compute similarity solutions
of the thin film equation [20, 21] and determine their stability [22]. In this article we use numerical continuation,
starting from solutions to the equations on smaller domains generated by shooting, to construct the first two similarity
solutions for viscous-inertial thread break-up, and find the most unstable (nontrivial) eigenvalue to determine their
stability. Our chief finding is that the base similarity solution is linearly stable, but the second is linearly unstable,
counter to the prediction by Brenner et al. [19]. In both cases the dominant eigenvalue is complex. For the stable
solution, the effect of the dominant eigenvalue matches quantitatively with what is seen in numerical computation
of the PDE system, correctly predicting the frequency and decay rate of the perturbation around the base similarity
solution.

We proceed by describing the formulation of the slender body Navier Stokes equations used to model the evolution of
the radius and fluid velocity of the liquid thread in Section II, then in Section III describe the numerical continuation
procedure used to find both the similarity solutions and the relevant dominant eigenvalues that determine their
stability. In Section IV we show how the stability results match with carefully performed numerical simulations.
Conclusions are presented in Section V.

II. FORMULATION AND SIMILARITY SOLUTIONS

After applying nondimensionalization and slender body theory to the Navier–Stokes equation inside the jet, with
kinematic and surface tension conditions on the interface, the system is modelled using two partial differential equations
describing the jet radius h(z, t), and fluid velocity v(z, t), as a function of position z and time t:

∂h

∂t
+ v

∂h

∂z
= −h

2

∂v

∂z
(1a)

∂v

∂t
+ v

∂v

∂z
= − ∂

∂z

(
1

h(1 + h2
z)

1/2
− hzz

(1 + h2
z)

3/2

)
+

1

h2

∂

∂z

(
h2 ∂v

∂z

)
. (1b)

(see for example Eggers [17]). Here we have excluded terms such as gravity that are negligible in the similarity
analysis near pinch-off, but have retained higher order contributions from the surface tension, which we include in the
numerical computation of solutions to (1) in Section IV. The system is parameter free as any implicit parameters are
in the initial and boundary conditions, which do not play a role in universal similarity solutions near pinch-off.

The jet pinches off when h→ 0 at a point z = z0 and finite time t = t0. We seek similarity solutions by choosing a
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reference frame that ‘zooms in’ on such a point[23], by defining

v(z, t) = (t0 − t)−1/2ψ(ξ, τ), h(z, t) = (t0 − t)φ(ξ, τ), ξ =
z − z0

(t0 − t)1/2
, τ = − log(t0 − t). (2)

This substitution results in the system

φτ + (ψ + ξ/2)φξ = (1− ψξ/2)φ (3a)

for (1a) and

ψτ + ψ/2 + ξψξ/2 + ψψξ = −
[

1

φ(1 + e−τφ2
ξ)

1/2
− e−τφξξ

(1 + e−τφ2
ξ)

3/2

]
ξ

+
1

φ2

[
φ2ψξ

]
ξ
.

for (1b). Note that the terms resulting from higher order contributions from the surface tension in this equation are
order t0− t = e−τ . These will prove to be negligible compared to the dynamics of interest in the limit t→ t0, resulting
in

ψτ + ψ/2 + ξψξ/2 + ψψξ =
φξ
φ2

+ 3ψξξ + 6
ψξφξ
φ

. (3b)

Steady states (φτ = ψτ = 0) of (3) satisfy the same system of ordinary differential equations that result from assuming
φ and ψ are functions of ξ only, and thus are similarity solutions of the original system (1). Including the dependence
on the logarithmic time variable τ allows us to examine the stability of these steady states, to determine which is seen
in practice, and the manner in which any such stable similarity solution is approached.

III. COMPUTATION OF SIMILARITY SOLUTIONS AND EIGENVALUES

To simplify the algebra slightly, we substitute ω = log φ, so that the system (3) is

ωτ + (ψ + ξ/2)ωξ = (1− ψξ/2) (4a)

ψτ + ψ/2 + ξψξ/2 + ψψξ = e−ωωξ + 3ψξξ + 6ψξωξ. (4b)

To investigate the linear stability, write ω(ξ, τ) = ω̄(ξ) + ω̃(ξ)eστ , and ψ(ξ, τ) = ψ̄(ξ) + ψ̃(ξ)eστ , where σ is the
eigenvalue. The base state, that is, the similarity solutions themeselves, satisfy

(ψ̄ + ξ/2)ω̄ξ = (1− ψ̄′/2) (5a)

ψ̄/2 + ξψ̄′/2 + ψ̄ψ̄′ = e−ω̄ω̄′ + 3ψ̄′′ + 6ψ̄′ω′, (5b)

and the equations for the perturbations are

σω̃ + (ψ̄ + ξ/2)ω̃′ + ψ̃ω̄′ = −ψ̃′/2 (6a)

σψ̃ + ψ̃/2 + ξψ̃′/2 + ψ̄ψ̃′ + ψ̄′ψ̃ = e−ω̄ω̃′ − e−ω̄ω̄′ω̃ + 3ψ̃′′ + 6ψ̄′ω̃′ + 6ω̄′ψ̃′. (6b)

We recover the base state and perturbation to the scaled radius φ from φ̄ = eω̄ and φ̃ = φ̄ω̃. We now consider the
computation of the base state and perturbation problems in more detail.

A. Base state

First we examine the base state, which has previously been shown to have discretely selected (and presumably a
countably infinite number of) solutions, indexed (say) by decreasing size of φ0 [17–19]. Rearranging for the derivative
terms explicitly:

ω̄′ =
1− ψ̄′/2
ψ̄ + ξ/2

(7a)

ψ̄′′ =
1

3

[
ψ̄

2
+
ξψ̄′

2
+ ψ̄ψ̄′ − e−ω̄ω̄′ − 6ψ′ω̄′

]
(7b)
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As a third order problem, we require three conditions. Two come from the far field ξ → ±∞; per the stationarity
condition (that is, that the unscaled velocity remains finite away from the singularity) we must have

ψ̄ + ξψ̄′ → 0 ⇒ ψ̄ ∼ C±ξ−1, ξ → ±∞ (8)

where C± are constants that must be determined as part of the solution. The third comes from the requirement
that the solution be analytic near the singular point ξ0 where ψ = −ξ0/2. This requirement is sensitive as it is a
relatively high order noninteger power in the series expansion around ξ0 that can lead to nonanalyticity. Performing
the following expansions

ω̄ =

∞∑
n=0

cn(ξ − ξ0)n, ψ̄ =

∞∑
n=0

dn(ξ − ξ0)n, (9)

we have two free parameters, φ0 = φ(ξ0) and ξ0, with

d0 = −ξ0/2, d1 = 2, c0 = log φ0 (10a)

c1 =
φ0ξ0

12φ0 − 4
(10b)

d2 = −5c1
2

(10c)

c2 = − c
2
1 + 6φ0

36φ0 − 2
(10d)

d3 = −2c1d2 + 10c2
3

(10e)

and so on. A solution exists when φ0 and ξ0 are such that both far field conditions are satisfied.
The boundary value problem is solved in the numerical continuation package AUTO07p [24]. We treat (7) as two

separate boundary value problems from ξ0 + δξ to L+ � 1, and from ξ0 − δξ− to −L− with L− � 1. An initial
approximation is made by starting with the values of φ0 and ξ0 close to those given in [19], and shooting an O(1)
distance in each direction. The power series is used as boundary conditions near the singular point. After shooting
the far field conditions (8) are not satisfied, a fact that can be quantified using error terms ε±:

ψ̄± + ξψ̄′± = ε±, ξ = ±L±. (11)

Using numerical continuation we decrease each error ε± to zero, allowing ξ0 and φ0 to vary, and then increase L±
until the finite domain size no longer has a significant effect on the accuracy.

It is important to note that singularities occur when φ0 is such that the denominator in one of the power series
coefficients (10) is zero. At these values, no power series solution exists near ξ0 (instead, the series will presumably
have power-log terms). Brenner et al. [19] observed that these singular values of φ0 occur at

φ∗0 =
1

15n− 12
=

1

3
,

1

18
,

1

33
, . . . . (12)

The value of φ0 corresponding to the first similarity solution, φ
(1)
0 = 0.030432 . . ., is very slightly larger than the

singular value φ∗0 = 1/33, while the value of φ0 for the second similarity solution φ
(2)
0 = 0.0107854 . . . is slightly larger

than the singular value φ∗0 = 1/93. Brenner et al. [19] argue that the selected values of φ0 lie close to the singular
values (12). For this reason it is particularly important to have an appropriate initial approximation for ξ0 and φ0 for
each similarity solution. In addition, the first nonanalytic term in the series solution of (7) near ξ0 can be determined

to be of order ξ(φ−1
0 +12)/15. The selection of the analytic solution is equivalent to requiring that the coefficient on this

term must be zero. Given (12), this exponent is marginally less than 3 for the first similarity solution, and marginally
less than 7 for the second one. Terms up to these orders are then needed in the power series to resolve the selection
of the first solution. Higher branches of solutions require even further terms. We go up to 14 terms in this power
series expansion (and one term less for the perturbation terms), with the expressions for the coefficients (10) found
automatically using the symbolic Python library SymPy [25].

In Fig. 2 we plot the first two similarity solutions thus computed (that is, the two solutions to (7) with the largest
values of φ0), which we refer to as the first solution (the solution found by Eggers [17], which we expect to be linearly
stable), and the second solution.



5

−30 −20 −10 0

ξ

−4

−2

0

2

4
(a)

First solution

ψ

ω

−20 −15 −10 −5 0

ξ

−6

−4

−2

0

2

4

6

(b)

Second solution

ψ

ω

−30 −20 −10 0

ξ

0.0

0.5

1.0

1.5

2.0
(c)

First solution

φ

−20 −15 −10 −5 0

ξ

0.00

0.02

0.04

0.06

0.08

0.10
(d)

Second solution

φ

FIG. 2. (a, c) The first (stable) similarity profile, and (b, d) the second (unstable) similarity profile, solutions to (7) found by
the numerical continuation procedure described in Section III A. In (c) and (d), the scaled radius φ is given by eω.

B. Computation of eigenvalues

We also find the eigenvalues σ using numerical continuation. Rearranging (6) for derivatives:

ω̃′ = − ψ̃
′/2 + ω̄′ψ̃ + σω̃

ψ̄ + ξ/2
(13a)

ψ̃′′ =
1

3

[
σψ̃ + ψ̃/2 + ξψ̃′/2 + ψ̄ψ̃′ + ψ̄′ψ̃ − e−ω̄(ω̃′ − ω̄′ω̃)− 6(ψ̄′ω̃′ + ω̄′ψ̃′)

]
(13b)

Again we require three conditions. The far field conditions are

(2σ + 1)ψ̃ + ξψ̃′ → 0 ⇒ ψ̃ ∼ C̃±ξ−(2σ+1), ξ → ±∞ (14)

for some constants C̃±, and again we require analyticity at ξ0. Expanding the perturbation variables as power series:

ω̃ =

∞∑
n=0

c̃n(ξ − ξ0)n, ψ̃ =

∞∑
n=0

d̃n(ξ − ξ0)n, (15)
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we find the d̃0 and c̃0 are arbitrary, while the next terms in the power series are found sequentially:

d̃1 = −2c̃0σ − 2d̃0c1 (16a)

c̃1 = −2d̃0φ0σ + d̃0φ0(24c2 + 5) + 2c̃0c1
12φ0σ + 6φ0 − 2

(16b)

d̃2 = −2c̃1σ + 4d̃0c2 + 2c1d̃1 + 5c̃1
2

(16c)

c̃2 = −φ0d̃1σ + 36d̃0φ0c3 + 2d̃0φ0d2 + (12φ0d̃1 + 2c̃0)c2 + 5φ0d̃1 + 2c1c̃1 − c̃0c21
12φ0σ + 36φ0 − 2

(16d)

d̃3 = −2c̃2σ + 6d̃0c3 + 2c1d̃2 + 2c̃1d2 + 10c̃2 + 4d̃1c2
3

(16e)

and so on. Expressions for these coefficients up to 14th order are again found with SymPy [25].
When considering the equations for the perturbations, the base state is fixed, thus φ0 is a given value, and the

effect of varying σ must be considered. In a similar manner to the leading order case, the perturbation problem has
no analytic solution when a denominator in the power series coefficients for ω̃, that is, (16b,d), etc., is zero. These
occur at specific values σ = σ∗:

σ∗ =
1

6

(
φ−1

0 − (15n− 12)
)
, n = 1, 2, 3, . . . . (17)

Based on the value φ
(1)
0 = 0.030432, the singular values of σ for the first solution occur at

σ∗(1) = 4.976630, 2.476630,−0.023370,−2.523370, . . . , (18a)

while on the second solution, φ
(2)
0 = 0.107854 and thus the singular values of σ are

σ∗(2) = 14.953041, 12.453041, 9.953041, 7.453041, 4.953041, 2.453041,−0.046959, . . . . (18b)

The system (13) is coded into AUTO alongside the system for computation of the base state, with (14) and (15)

as boundary conditions, but allowing c̃0 = c̃0± and d̃0 = d̃0± to take different values on either side of ξ0 in the power

series. As the perturbation problem is linear, the scale invariance must be removed by fixing either of c̃0 and d̃0. If d̃0

is fixed, then for given σ, c̃0± is determined by satisfying each far field condition. The artificial degree of freedom in
allowing c̃0 to take different values on each side of the singular point allows us to vary σ via continuation, and detect
discrete eigenvalues by the criterion c̃+− c̃− = δc̃ = 0 (that is, when δc̃ = 0, the two solutions on either side of ξ0 have

been connected in a continuous and smooth fashion). Conversely, if c̃0 is fixed, we detect eigenvalues by allowing d̃±
to vary, and then the values of σ such that δd̃ = d̃0+ − d̃0− = 0 correspond to eigenvalues.

1. Eigenvalues on the real line

We start by computing real eigenvalues σ for both first and second solutions. Due to invariance in space and time
of the original problem, respectively, we expect trivial unstable eigensolutions:

σX =
1

2
, ω̃X = ω̄′, ψ̃X = ψ̄′, (19a)

σT = 1, ω̃T = ξω̄′ − 2, ψ̃T = ψ̄ + ξψ̄′, (19b)

up to a scalar constant of multiplication in the eigenfunctions [e.g. 12, 23]. In addition, there is a stable eigenvalue due
to Galilean invariance under constant-speed translation, i.e. h(z, t) 7→ h(z−ε(t− t0), t), v(z, t) 7→ v(z−ε(t− t0), t)+ε.
Under this translation we find the eigensolution

σV = −1

2
, ω̃V = ω̄′, ψ̃V = 1 + ψ̄′. (19c)

While these eigenvalues do not play a role in the stability of similarity solutions (these instabilities are removed by
correctly choosing the time and location of the break-up point), and (as we will see) real eigenvalues do not play a
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FIG. 3. Selection of eigenvalues σ on the real line: (a) the first solution, and (b) the second solution. We see the three trivial
eigenvalues at σT = 1, σX = 1/2, and σV = −1/2, as well as the singular values σ∗ (18), where a coefficient in the power series
expansion for the perturbation (16) becomes singular, and therefore do not correspond to an analytic solution.

role in the stability of the similarity solutions we consider here, the accurate computation of the trivial eigenvalues
provides a useful check on the accuracy of our method.

The real eigenvalues for both the first and second similarity solutions are found as follows. Starting with an initial
guess of zero for the eigenfunctions and a given value of σ, the parameter d̃0 is brought from zero to unity, while
allowing c̃0+ to vary, as well as the difference δc̃ between the values on each side of ξ0. By varying σ and computing
the corresponding value for δc̃0, we construct a selection curve; when δc̃0 = 0, we have a candidate eigenvalue. Note
that by fixing d̃0, we remove the arbitrary constant in the linear problem, at the cost of introducing singularities when
a solution requires d̃0 = 0. We build a complete curve by choosing values of σ on either side of each singularity to
continue from. If we instead fix the value of c̃0 and let d̃0± be free, the singularities occur in different places, while
the same zeros (corresponding to the eigenvalues) are found.

The resultant selection curve is shown in Fig. 3 for both the first and second solutions, and showing the results
both of fixed c̃ and of fixed d̃. As expected, the three trivial eigenvalues (19) at σ = 1/2, 1 and −1/2 are observed. In
Fig. 3 we plot the results between σ = −1 and σ = 6, showing no other real eigenvalues exist in this region; we have
continued for larger values up to σ = 100 and not found any other eigenvalues, and have no reason to suspect they
may exist, given the absence of the large exponential growth this would predict in the simulations (see section IV).
Negative real eigenvalues may exist for σ < −1, but these are not important compared to the complex eigenvalues we
describe in the next section.

We also note the existence of apparent eigenvalues at the values σ∗ (17), at which point the power series for the
perturbation solution at ξ0 does not exist. These points must be discounted as the eigenfunction is not analytic at ξ0
for these values (the continuation method has managed to pass through these points numerically). More generally, any
method of analyzing the linear stability of this problem is likely to come up with these spurious values, demonstrating
that care must be taken in interpreting the computation of such points with regard to the actual linear stability.
As will become apparent when comparing with numerical solutions, these singular values σ∗ do not correspond to
unstable modes.

2. Complex eigenvalues

All of the eigenvalues found thus far are trivial, and will not determine the stability of a similarity solution. Instead,
we must look for eigenvalues in the complex σ-plane. We now search for complex eigenvalues by assuming ω̃, ψ̃ (and

thus c̃0 = c̃0R + ic̃0I and d̃0 = d̃0R + d̃0I) and σ = σR + iσI to be complex, and solving both real and imaginary parts
of the equations (13), as well as conditions (14) and (15).

To locate complex eigenvalues, we fix d̃0R and d̃0I = 0, and then must find σR and σI such that both c̃0R and c̃0I
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FIG. 4. Curves defined by the real part of the error parameter <(δc̃) = δc̃R = 0 and eigenvalues (where both real and
imaginary parts of δc̃ vanish) for the (a) first solution at σ = −0.670 + 2.246i (b) second solution at σ = −0.552 + 3.015i,
and σ = 3.695 + 4.905i. In both cases, the eigenvalues are found by continuing σ from real values in the positive imaginary
direction, until the real part of the error δc̃0R is zero, then continuing into the complex plane (holding δc̃0R at zero) to find the
curves defined by this equation. At points on these curves where the error δc̃0I is also zero, the corresponding value of σ is an
eigenvalue.

vanish. To accomplish this, we start with a range of real values of σ, and d̃0 is again increased to a fixed value to fix
the arbitrary constant in the eigenfunction. Then, σI is increased until the real part of the error δc̃0R = 0, at which
point the curves defined by δc0R = 0 are traced out to find points where the imaginary part of the error δc̃0I = 0 as
well. This point then corresponds to a complex eigenvalue. By starting with a large number of values of σR, we can
be confident of finding all such curves and eigenvalues in some region near the real line.

These curves and eigenvalues are plotted in Fig. 4. For the first similarity solution, the eigenvalue with largest real
part thus found occurs at σ ≈ −0.670 + 2.246i (of course, the complex conjugate is also an eigenvalue). The location

of this eigenvalue is plotted in Fig. 4 along with the continuation path taken to find it, while the eigenfunctions ω̃, ψ̃
themselves are plotted in Fig. 5. Since this eigenvalue has negative real part, the first similarity solution is linearly
stable. This conforms with numerous previous numerical observations[17–19]); in Section IV we show the complex
value of σ accurately predicts both the frequency and decay rate of the original system (1) as the stable similarity
solution is approached. In addition, since the real part of this eigenvalue is greater than −1, the effect of this eigenvalue
is dominant over the effect of higher order contributions to the surface tension (proportional to (t0 − t) = e−τ ) that
were neglected in deriving the system (3b).

For the second similarity solution, complex eigenvalues are found in the same way. The two nontrivial eigenvalues
with largest real part are thus found, one at σ = −0.552 + 3.015i, and one at σ = 3.695 + 4.905i. The presence of an
eigenvalue with positive real part indicates the second similarity solution is linearly unstable. The eigenfunctions are
again plotted in Fig. 5. These results comprise the first direct evidence that it is purely linear stability considerations
that are the reason that only the first similarity solution is seen in reality and numerical simulations, and not finite-size
effects as conjectured by [19]. An important property of the unstable eigenfunction (Fig. 5b,d) is that it is localized
near the region where the gradient of the base velocity is large, and the gradients of the eigenfunctions are themselves
large. Since the WKB analysis in [19] presupposes gently sloping φ, ψ, with a relatively large wavenumber, it is not
surprising that their analysis does not detect this instability. A discussion on the convergence of the eigenvalues with
respect to the numerical parameters, particularly δξ, is included in Appendix A.
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FIG. 5. The complex eigenfunction for each of (a, c) the stable first similarity solution at the complex eigenvalue σ =

−0.670 + 2.246i, and (b, d) the unstable second similarity solution at σ = 3.695 + 4.905i. (a) and (c) plot the perturbations ψ̃
to the self-similar velocity profiles ψ, while (b) and (d) are the perturbations w̃ to the self-similar profile of the log-radius w.
The unstable eigenfunctions on the second solution are localized in the region near zero which includes both the singular point
and the region in which the base solution (depicted in Fig. 2b,d) have large gradients.

IV. COMPARISON WITH NUMERICAL SIMULATION

A. Numerical scheme

We now show that the numerical solution demonstrates the validity of the linear stability results. The numerical
solutions of full nonlinear lubrication equations (1) are computed using a second-order finite difference scheme in both
time and space. The time-integration method is an adaptive Runge–Kutta scheme, where the time step is adjusted
so that second-order temporal derivative in the Taylor expansion < 10−3. The spatial grids are highly non-uniform,
with corresponding finite-difference weights calculated by Fornberg algorithm [26], which enables high resolution of
the region near the rupture point. When necessary, additional mesh points are added to the grid at points where the
minimum height is smaller than a specified percentage of the local grid size, with the solution interpolated onto the
new grid using cubic splines.
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B. Decay to stable similarity solution

In Fig. 6 we plot the result for a generic initial condition, showing (Fig. 6a) the oscillatory decay to the stable
similarity solution, and (Fig. 6b) the asymptotic agreement with the similarity profile. By plotting log(dhmin/dt) as
a function of log hmin in Fig. 6a, we observe the convergence to the similarity solution without having to estimate
the break-up time and location explicitly, as has been exploited in previous studies [8]. In terms of the similarity
variables, hmin occurs at a point ξ∗(τ), where

hz(z, t) = (t0 − t)1/2φξ(ξ
∗(τ), τ) = 0. (20)

As the singularity is approached for a stable solution, τ → ∞ and ξ∗(τ) converges toward the minimum ξ̄∗ of the
similarity profile φ̄(ξ). Note that ξ̄∗ is close to, but not equal to the singular point ξ0. Assume in accordance with

linear stability that φ ∼ φ̄(ξ) + ce−στ φ̃(ξ) (plus complex conjugate), where c ∈ C. We then have

ξ∗(τ) ∼ ξ̄∗ + ce−στ ξ̃∗, ξ̃∗ = − φ̃
′(ξ̄∗)

φ̄′′(ξ̄∗)
, (21)

and

dhmin

dt
∼ −φ̄(ξ̄∗) +Ah−σmin.+ c.c. = −φmin +A1h

−σR

min cos (σI log(hmin) +A2) , A1, A2 ∈ R (22)

where

A = A1e−iA2 = c(σ − 1)φ̄(ξ̄∗)σφ̃(ξ̄∗). (23)

Note that since A = 0 when σ = 1 the instability due to time invariance (19b) is suppressed, while the instability due
to translation invariance (19a) and the (stable) perturbation due to velocity invariance (19c) are suppressed since the

corresponding eigenfunctions have φ̃ = φ̄ω̃ = φ̄′ = 0 at ξ = ξ̄∗. Thus the dominant behavior is due to the nontrivial
eigenvalue with largest real part.

The amplitude A1 and phase A2 in (22) are not predicted from linear stability, but the decay rate and frequency
are given by the real and imaginary parts of the eigenvalue σ. In Fig. 6 we plot the predicted curve (22), with A1,A2

suitably fitted. The agreement between the linear stability result and the numerical computation is excellent, and it
is indeed the complex eigenvalue computed in Section III that dominates the dynamics as the similarity solution is
approached.

A challenge of comparing numerical solutions to similarity solutions representing finite-time singularities (such as
the pinch-off in the system (1)) is that any small but finite (and hence beyond linear stability analysis) source of
error, such as the spatial discretization, becomes increasingly important as the singularity time is approached. In
our numerical scheme we found that the effect of the error is to destabilize the stable similarity solution; however,
we observe that the time that this destabilization becomes appreciable can be made arbitrarily close to the pinch-off
time by decreasing the mesh size, thus the destabilization is a property of the numerical scheme and not of the PDE
system (1) itself. This is however reminiscent of the observation that physically, any finite-size noise, for example due
to thermal fluctuations ([27, 28]) will destabilize the similarity solution at very small scales [5].

C. Linear instability of second solution

In Fig. 7 we plot the result of the numerical simulation with initial condition given by the unstable similarity
solution plotted in Fig. 2(b,d). By equating h(x, 0) with φ(ξ) and v(x, 0) with ψ(ξ), the time to rupture would (if the
solution remained at the similarity solution) be t0 = 1.

A quantitative comparison with the linear stability prediction is challenging, for a number of reasons; the full
numerical solution includes the nonzero contribution from the higher order surface tension from (1), which does not
appear in the similarity solution, which will have an effect at early time, and since the minimum of φ is close to zero
while the real part of the eigenvalue is large, we expect the solution to rapidly leave the linear regime. In Fig. 7a we
plot hmin against its time derivative, with a fit of the predicted behavior according to (22). A meaningful fit can only
be made over a relatively short range (the inset of Fig. 7(a)), which, although inconclusive, is expected for the above
reasons.

The solution (scaled according to the similarity variables) are plotted in Fig. 7b. The profiles remain close to the
unstable base state for some time, before rapidly thinning near the minimum in φ.
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FIG. 6. Convergence of a generic initial condition to the stable similarity solution: (a) By plotting hmin against its time derivative
and comparing to (22) the decay rate and frequency predicted by the dominant nontrivial eigenvalue σ ≈ −0.670 + 2.246i can
be clearly observed (the values A1 = 0.25 and A2 = 2 are fitted); (b) The profiles asymptote to the stable similarity solution
as time tends to the pinch-off time (the profiles are shifted by the point ξmin where φ is at its minimum, so the shifted profiles
all have their minimum at zero).
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FIG. 7. Departure of the numerical solution to (1) from an initial condition equal to the second similarity solution. (a) the
plot of hmin against its derivative shows the solution leaving the neighborhood of the unstable solution and settling to the
stable solution (where dhmin/dt ≈ −0.0304). The inset shows a short-lived, but reasonable, match to the linear stability
approximation (22). (b) The profiles show the oscillations grow first near the minimum in φ.

V. DISCUSSION

In this article we have shown by explicit computation of the linear stability problem in the appropriate self-similar
coordinate system (3) that the first solution (ordered by largest minimum thickness) is linearly stable, while the
second solution is linearly unstable. The linear stability computations accurately determine the trivial eigenvalues
that are known to exist, and match with the behavior of numerical solutions, providing further evidence of their
accuracy. Although we have only computed the linear stability properties of the first two similarity solutions, there
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is no reason to believe that the more extreme solutions found by [19] will be linearly stable, as they are also not seen
in simulations.

The existence of an oscillatory decay to the stable similarity solution was first noted in Li and Sprittles [8], who
conjectured the existence of the dominant complex eigenvalue we have found in this study. As noted in Li and
Sprittles [8], this oscillatory decay has not been emphasized in most experimental and numerical studies, even where
it is likely to be present, as it is not obvious when plotting the minimum radius against time to pinch-off, rather than
the time derivative of minimum radius against minimum radius, as in Fig. 6a. In addition, most experiments start in
a regime where the inertial or viscous effects are dominant, and it is only in the stages very close to pinch-off that the
viscous-inertial regime is reached.

However, our linear stability analysis does suggest the oscillatory decay is the generic behavior as a solution evolves
from another profile (for instance, as it would when transiting from the viscous to the viscous-inertial regime), and at
least one or two oscillations could have a large enough amplitude to have an important physical effect. One intriguing
possibility is that it is these decaying oscillations that are the cause of small bumps or oscillations that are sometimes
observed on the ‘micro-threads’ close to pinch-off (see Fig. 8 of Kowalewski [29]). These small bumps cause very small
satellite droplets to be created when a larger droplet pinches off [6, 7]. A reason to believe this possibility is that the
small bumps do not exhibit a well-defined critical wavelength, as might be expected from a Rayleigh-Plateau type
of instability in non-self-similar coordinates, and the small droplets decrease in size the closer they are to the main
pinch-off location. We note that as the oscillations are decaying in the self-similar coordinate system, we would not
expect the droplets created to be strictly geometrically decreasing in size, as might occur if a periodic solution in
self-similar coordinates existed (as occurs in the thin film equation of Dallaston et al. [22], for example). However, the
presence of oscillations could create further pinch-off locations that lead to a large distribution of final droplet sizes.

It is hoped that this study will help to clarify what parts of the dynamics of near-pinch-off behavior of liquid threads
can be explained by the continuum dynamics described by the system (1), and what parts would require extra effects
such as the viscosity of the ambient fluid, or thermal or other small scale fluctuations, to explain. We have also outlined
how numerical continuation may be used to numerically compute challenging linear stability problems, particularly
those that have singular points in the domain interior.
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Appendix A: Convergence of eigenvalues with respect to δξ

We found the solutions to both the base state (7) and perturbation problems (13) to be well converged with a
value of the distance from the singular point at which the power series is applied δξ = 0.2 and domain size L− = 50,
L+ = 10 for the first branch, and δξ = 0.3 and L− = 10 and L+ = 5 for the second branch (these have been sometimes
increased for the sake of illustration). For these values, even the least accurately determined of the trivial eigenvalues
(σV = −1/2 on the second branch) was correct to three decimal places, with the other trivial eigenvalues found with
greater accuracy.

To further ensure the accuracy of the nontrivial complex eigenvalues, we have checked the convergence with respect
to the numerical parameters, in particular δξ: the distance from the singularity at which the power series expansions
(10) and (16) are applied. The convergence in this parameter is complicated by the sensitivity of the selection of
solutions (i.e., that it is the existence of higher derivatives that determine the existence of a solution), particularly
the second solution. For small δξ, accuracy is lost due to numerical round-off error in the calculation of coefficients
in (10) and (16), as the terms responsible for selection become too small. In Fig. 8 we plot the unstable eigenvalue
on the second solution as this parameter is varied. This plot shows that accuracy is lost if this parameter is too big
or small, but as demonstrated, for a range of values between δξ = 0.2 to 0.6, the eigenvalue has converged to three
decimal places.
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[3] A. Gañán Calvo and J. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett. 87,
274501 (2001).

[4] J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys 69, 865 (1997).
[5] M. P. Brenner, X. D. Shi, and S. R. Nagel, Iterated instabilities during droplet fission, Phys. Rev. Lett. 73, 3391 (1994).
[6] M. Latikka, M. Backholm, A. Baidya, A. Ballesio, A. Serve, G. Beaune, J. V. I. Timonen, T. Pradeep, and R. H. A. Ras,

Ferrofluid microdroplet splitting for population-based microfluidics and interfacial tensiometry, Adv. Science 7, 2000359
(2020).

[7] J. R. Castrejón-Pita, A. A. Castrejón-Pita, S. S. Thete, K. Sambath, I. M. Hutchings, J. Hinch, J. R. Lister, and O. A.
Basaran, Plethora of transitions during breakup of liquid filaments, Proceedings of the National Academy of Sciences 112,
4582 (2015).

[8] Y. Li and J. Sprittles, Capillary breakup of a liquid bridge: identifying regimes and transitions, J. Fluid Mech. 797, 29
(2016).

[9] A. Lagarde, C. Josserand, and S. Protière, Oscillating path between self-similarities in liquid pinch-off, Proc. Nat. Acad.
Sci. USA 115, 12371 (2018).

[10] D. T. Papageorgiou, On the breakup of viscous liquid threads, Phys. Fluids 7, 1529 (1995).
[11] J. Eggers, Stability of a viscous pinching thread, Phys. Fluids 24, 072103 (2012).
[12] T. Witelski and A. Bernoff, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids 11,

2443 (1999).
[13] A. J. Bernoff, A. L. Bertozzi, and T. P. Witelski, Axisymmetric surface diffusion: dynamics and stability of self-similar

pinchoff, J. Stat. Phys. 93, 725 (1998).
[14] D. A. Kessler and H. Levine, Stability of finger patterns in Hele–Shaw cells, Phys. Rev. A 32, 1930 (1985).
[15] D. Bensimon, Stability of viscous fingering, Phys. Rev. A 33, 1302 (1986).
[16] S. Tanveer, Analytic theory for the linear-stability of the Saffman–Taylor finger, Phys. Fluids 30, 2318 (1987).
[17] J. Eggers, Universal pinching of 3D axisymmetric free surface flow, Phys. Rev. Lett. 71, 3458 (1993).
[18] J. Eggers, Theory of drop formation, Phys. Fluids 7, 941 (1995).
[19] M. P. Brenner, J. R. Lister, and H. A. Stone, Pinching threads, singularities and the number 0.0304, Phys. Fluids 8, 2827

(1996).
[20] D. Tseluiko, J. Baxter, and U. Thiele, A homotopy continuation approach for analysing finite-time singularities in thin

liquid films, IMA J. Appl. Math. 78, 762 (2013).
[21] M. Dallaston, D. Tseluiko, Z. Zheng, M. Fontelos, and S. Kalliadasis, Self-similar finite-time singularity formation in

degenerate parabolic equations arising in thin-film flows, Nonlinearity 30, 2647 (2017).
[22] M. Dallaston, M. Fontelos, D. Tseluiko, and S. Kalliadasis, Discrete self-similarity in interfacial hydrodynamics and the

formation of iterated structures, Phys. Rev. Lett. 120, 034505 (2018).
[23] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of seminlinear heat-equations, Comm. Pure Appl. Math. 38,

297 (1985).
[24] E. J. Doedel, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Y. A. Kuznetsov, B. Oldeman, R. C. Paffenroth, B. Sandstede,

X. J. Wang, and C. H. Zhang, Auto-07p, Montreal Concordia University (2007), http://indy.cs.concordia.ca/auto/.



14
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