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Abstract
We introduce the notion of adaptive synchronisation for pushdown automata, in which there is
an external observer who has no knowledge about the current state of the pushdown automaton,
but can observe the contents of the stack. The observer would then like to decide if it is possible
to bring the automaton from any state into some predetermined state by giving inputs to it in
an adaptive manner, i.e., the next input letter to be given can depend on how the contents of
the stack changed after the current input letter. We show that for non-deterministic pushdown
automata, this problem is 2-EXPTIME-complete and for deterministic pushdown automata, we show
EXPTIME-completeness.

To prove the lower bounds, we first introduce (different variants of) subset-synchronisation and
show that these problems are polynomial-time equivalent with the adaptive synchronisation problem.
We then prove hardness results for the subset-synchronisation problems. For proving the upper
bounds, we consider the problem of deciding if a given alternating pushdown system has an accepting
run with at most k leaves and we provide an nO(k2) time algorithm for this problem.
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1 Introduction

The notion of a synchronizing word for finite-state machines is a classical concept in computer
science which consists of deciding, given a finite-state machine, whether there is a word which
brings all of its states to a single state. Intuitively, assuming that we initially do not know
which state the machine is in, such a word synchronises it to a single state and assists in
regaining control over the machine.

This idea has been studied for many types of finite-state machines [24, 22, 2, 9] with
applications in biocomputing [3], planning and robotics [10, 19] and testing of reactive
systems [18, 14]. In recent years, the notion of a synchronizing word has been extended
to various infinite-state systems such as timed automata [8], register automata [20], nested
word automata [7], pushdown and visibly pushdown automata [11, 12]. In particular, for the
pushdown case, Fernau, Wolf and Yamakami [12] have shown that this problem is undecidable
even for deterministic pushdown automata.
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17:2 Adaptive Synchronisation of Pushdown Automata

When the finite-state machine can produce outputs, the notion of synchronisation has
been further refined to give rise to synchronisation under partial observation or adaptive
synchronisation (See Chapter 1 of [5] and [17]). In this setting, there is an external observer
who does not know the current state of the machine, however she can give inputs to the
machine and observe the outputs given by the machine. Depending on the outputs of the
machine, she can adaptively decide which input letter to give next. In this manner, the
observer would like to bring the machine into some predetermined state. Larsen, Laursen
and Srba [17] describe an example of adaptive synchronisation pertaining to the orientation
of a simplified model of satellites, in which they observe that adaptively choosing the input
letter is sometimes necessary in order to achieve synchronisation. In this paper, we extend
this notion of adaptive synchronisation to pushdown automata (PDA). In our model, the
observer does not know which state the PDA is currently in, but can observe the contents of
the stack. She would then like to decide if it is possible to synchronise the PDA into some
state by giving inputs to the PDA adaptively, i.e., depending on how the stack changes after
each input. To the best of our knowledge, the notion of adaptive synchronisation has not
been considered before for any class of infinite-state systems.

This question is a natural extension of the notion of adaptive synchronisation from finite-
state machines to pushdown automata. Further, it is mentioned in the works of Lakhotia,
Uday Kumar and Venable as well as Song and Touili [21, 16] that several antivirus systems
determine whether a program is malicious by observing the calls that the program makes to
the operating system. With this in mind, Song and Touili use pushdown automata [21] as
abstractions of programs where a stack stores the calls made by the program and use this
abstraction to detect viruses. Hence, we believe that our setting of being able to observe the
changes happening to the stack can be practically motivated.

Our main results regarding adaptive synchronisation are as follows: We show that for
non-deterministic pushdown automata, the problem is 2-EXPTIME-complete. However,
by restricting our input to deterministic pushdown automata, we show that we can get
EXPTIME-completeness, thereby obtaining an exponential reduction in complexity.

We also consider a natural variant of this problem, called subset adaptive synchronisation,
which is similar to adaptive synchronisation, except the observer has more knowledge about
which state the automaton is initially in. We obtain a surprising result that shows that
this variant is polynomial-time equivalent to adaptive synchronisation, unlike in the case
of finite-state machines. Furthermore, for the deterministic case of this variant, we obtain
an algorithm that runs in time O

(
nck3

)
where n is the size of the input and k is the size

of the subset of states that the observer believes the automaton is initially in. This gives a
polynomial time algorithm if k is fixed and a quasi-polynomial time algorithm if k = O(log n).

Used as a subroutine in the above decision procedure, is an O
(

nck2
)

time algorithm to
the following question, which we call the sparse-emptiness problem: Given an alternating
pushdown system and a number k, decide whether there is an accepting run of the system
with at most k leaves. Intuitively, such a run means that the system has an accepting run in
which it uses only “limited universal branching”. We note that such a notion of alternation
with “limited universal branching” has recently been studied by Keeler and Salomaa for
alternating finite-state automata [15]. Our problem can be considered as a generalisation of
one of their problems (Corollary 2 of [15]) to pushdown systems. We think that this problem
and its associated algorithm might be of independent interest.
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Roadmap. In Section 2, we introduce notations. In Section 3, we discuss different variations
of the problem. In Sections 4 and 5 we prove lower and upper bounds respectively. Proofs
of some of our technical results can be found in the long version of this extended abstract
available on arXiv [1].

2 Preliminaries

Given a finite set X, we let X∗ denote the set of all words over the alphabet X. As usual,
the concatenation of two words x, y ∈ X∗ is denoted by xy.

2.1 Pushdown Automata
We recall the well-known notion of a pushdown automaton. A pushdown automaton (PDA)
is a 4-tuple P = (Q, Σ, Γ, δ) where Q is a finite set of states, Σ is the input alphabet, Γ is
the stack alphabet and δ ⊆ (Q × Σ × Γ) × (Q × Γ∗) is the transition relation. Alternatively,
sometimes we will describe the transition relation δ as a function Q × Σ × Γ 7→ 2Q×Γ∗ . We
will always use small letters a, b, c, . . . to denote elements of Σ, capital letters A, B, C, . . . to
denote elements of Γ and Greek letters γ, η, ω, . . . to denote elements of Γ∗.

If (p, a, A, q, γ) ∈ δ then we sometimes denote it by (p, A) a
↪−→ (q, γ). We say A is the top

of the stack that is popped and γ is the string that is pushed onto the stack. A configuration
of the automaton is a tuple (q, γ) where q ∈ Q and γ ∈ Γ∗. Given two configurations (q, Aγ)
and (q′, γ′γ) of P with A ∈ Γ, we say that (q, Aγ) a−→ (q′, γ′γ) iff (q, A) a

↪−→ (q′, γ′).
As is usual, we assume that there exists a special bottom-of-the-stack symbol ⊥ ∈ Γ, such

that whenever some transition pops ⊥, it pushes it back in the bottom-most position. A
PDA is said to be deterministic if for every q ∈ Q, a ∈ Σ and A ∈ Γ, δ(q, a, A) has exactly
one element. If a PDA is deterministic, we further abuse notation and denote δ(q, a, A) as a
single element and not as a set.

2.2 Adaptive Synchronisation
We first expand upon the intuition given in the introduction for adaptive synchronisation
with the help of a running example. Consider the pushdown automaton as given in Figure 1
where we do not know which state the automaton is in currently, but we do know that the
stack content is ⊥. To synchronise the automaton to the state 4 when the stack is visible,
the observer has a strategy as depicted in Figure 2. The labelling of the nodes of the tree
intuitively denotes the “knowledge of the observer” at the current point in the strategy and
the labelling of the edges denotes the letter that she inputs to the PDA. Initially, according to
the observer, the automaton could be in any one of the 4 states. The observer first inputs the
letter 2. If the top of the stack becomes •, then she knows that the automaton is currently
either in state 1 or 2. On the other hand, if the top of the stack becomes •, then the observer
can deduce that the automaton is currently in state 3 or 4. From these two scenarios, by
following the appropriate strategy depicted in the figure, we can see that she can synchronise
the automaton to state 4. However, if the stack was hidden to the observer, reading either 3
or 2 does not change the knowledge of the observer and therefore, there is no word that can
be read that would synchronise the automaton to any state.

We now formalize the notion of an adaptive synchronizing word that we have so far
described. Let P = (Q, Σ, Γ, δ) be a PDA. Given S ⊆ Q, a ∈ Σ and A ∈ Γ, let T a

S,A := {t ∈
δ | t = (p, a, A, q, γ) where p ∈ S}. Intuitively, if the observer knows that P is currently
in some state in S and the top of the stack is A and she chooses to input a, then T a

S,A is
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17:4 Adaptive Synchronisation of Pushdown Automata

1

2

4

3

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

2, pop •/•

3
• → ••
• → ••

2, ⊥ → •⊥

Figure 1 A label of the form a, A → γ

means that if the input is a and if the top of
the stack is A, then pop A and push γ.

{1, 2} {4}

{4}

{4} {3}

{4}

{1, 2, 3, 4}

{3, 4}

{3, 4}

{1, 2}

{3}

2

2

2

3

3

3

3

Figure 2 A synchroniser between
({1, 2, 3, 4},⊥) and state 4 for the PDA
in Figure 1.

the set of transitions that might take place. We define an equivalence relation ∼a
S,A on

the elements of T a
S,A as follows: t1 ∼a

S,A t2 ⇐⇒ ∃γ ∈ Γ∗ such that t1 = (p1, a, A, q1, γ)
and t2 = (p2, a, A, q2, γ). Notice that if t1 ∼a

S,A t2 then the observer cannot distinguish
occurrences of t1 from occurrences of t2. In our running example, if we take S = {3, 4},
a = 3 and A = •, it is easy to see that T a

S,A is {(3,3, •, 4, ••), (4,3, •, 3, ••)} and these two
transitions are not in the same equivalence class under ∼a

S,A.
The relation ∼a

S,A partitions the elements of T a
S,A into equivalence classes. If E is an

equivalence class of ∼a
S,A, then notice that there is a word γ ∈ Γ∗ such that all the transitions

in E pop A and push γ onto the stack. This word γ will be denoted by word(E). If we
define next(E) := {q | (p, a, A, q, word(E)) ∈ E}, then next(E) contains all the states that
the automaton can move to if any of the transitions from E occur. Now, suppose the observer
knows that P is currently in some state in S with A being at the top of the stack. Assuming
she inputs the letter a and observes that A has been popped and word(E) has been pushed,
she can deduce that P is currently in some state in next(E). In our running example of
S = {3, 4}, a = 3 and A = •, there are two equivalence classes E1 = {(3,3, •, 4, ••)}
and E2 = {(4,3, •, 3, ••)} with next(E1) = {3}, next(E2) = {4}, word(E1) = {••} and
word(E2) = {••}.

A pseudo-configuration of the automaton P is a pair (S, γ) such that S ⊆ Q and
γ ∈ Γ∗. The pseudo-configuration (S, γ) captures the knowledge of the observer at any given
point. Given a pseudo-configuration (S, Aγ) and an input letter a, let Succ(S, Aγ, a) :=
{(next(E1), word(E1)γ), . . . , (next(Ek), word(Ek)γ)} where E1, . . . , Ek are the equivalence
classes of ∼a

S,A. Each element of Succ(S, Aγ, a) will be called a possible successor of (S, Aγ)
under the input letter a. The function Succ captures all the possible pseudo-configurations
that could happen when the observer inputs a at the pseudo-configuration (S, Aγ).

We now define the notion of a synchroniser which will correspond to a strategy for the
observer to synchronise the automaton into some state. Let I ⊆ Q, s ∈ Q and γ ∈ Γ∗. (The
I stands for Initial set of states, and the s stands for synchronising state). A synchroniser
between the pseudo-configuration (I, γ) and the state s, is a labelled tree T such that

All the edges are labelled by some input letter a ∈ Σ such that, for every vertex v, all its
outgoing edges have the same label.
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The root is labelled by the pseudo-configuration (I, γ).
Suppose v is a vertex which is labelled by the pseudo-configuration (S, Aη). Let a be
the unique label of its outgoing edges and let Succ(S, Aη, a) be of size k. Then v has k

children, with the ith child labelled by the ith pseudo-configuration in Succ(S, Aη, a).
For every leaf, there exists η ∈ Γ∗ such that its label is ({s}, η).

In addition, if all the leaves are labelled by ({s}, ⊥), then T is called a super-synchroniser
between (I, γ) and s. We use the notation (I, γ) =⇒

P
s (resp. (I, γ) sup==⇒

P
s) to denote that

there is a synchroniser (resp. super-synchroniser) between (I, γ) and s in the PDA P . (When
P is clear from context, we drop it from the arrow notation).

2.3 Different Formulations
We now formally introduce the problem which we will refer to as the adaptive synchronising
problem (Ada-Sync) and it is defined as the following:

Given: A PDA P = (Q, Σ, Γ, δ) and a word γ ∈ Γ∗

Decide: Whether there is a state s such that (Q, γ) ⇒ s

The Det-Ada-Sync problem is the same as Ada-Sync, except that the given pushdown
automaton is deterministic. Notice that we can generalise the adaptive synchronising problem
by the following subset adaptive synchronising problem (Subset-Ada-Sync): Given a PDA
P = (Q, Σ, Γ, δ), a subset I ⊆ Q and a word γ ∈ Γ∗, decide if there is a state s such that
(I, γ) ⇒ s. Similarly, we can define Det-Subset-Ada-Sync.
▶ Remark 1. One can also frame both of these problems in various other ways such as “Given
P, γ and q does (Q, γ) ⇒ q?” or “Given P, γ, I, is there a q such that (I, γ) sup==⇒ q” etc. We
chose this version, because this is similar to the way it is defined for the finite-state version
(Problem 1 of [17]). In order to make the lower bounds easier to understand, we introduce a
few different variants of Ada-Sync and Subset-Ada-Sync in Section 3 and conclude that
they are all polynomial-time equivalent with Ada-Sync. We defer a detailed analysis of the
different variants of this problem to future work.
▶ Remark 2. One can relax the notion of a synchroniser and ask instead for an adaptive
“homing” word, which is the same as a synchroniser, except that we now only require that if
(S, γ) is the label of a leaf then S is any singleton. Intuitively, in an adaptive homing word,
we are content with knowing the state the automaton is in after applying the strategy, rather
than enforcing the automaton to synchronise into some state. To keep the discussion focused
on the synchronising problem, in the main paper, we present only the results regarding
Ada-Sync and Subset-Ada-Sync. In the full version of the paper, we state the homing
word problem formally and prove that it is polynomial-time equivalent to Ada-Sync.

The main results of this paper are now as follows:

▶ Theorem 3. Ada-Sync and Subset-Ada-Sync are both 2-EXPTIME-complete. Det-
Ada-Sync and Det-Subset-Ada-Sync are both EXPTIME-complete.

3 Equivalence of Various Formulations

In this section, we show that the problems Ada-Sync and Subset-Ada-Sync are polynomial-
time equivalent to each other. A similar result is also shown for their corresponding
deterministic versions. We note that such a result is not true for finite-state (Moore)
machines (Table 1 of [17]) and so we provide a proof of this here, because it illustrates the
significance of the stack in the pushdown version.

CONCUR 2021



17:6 Adaptive Synchronisation of Pushdown Automata

▶ Lemma 4. Ada-Sync (resp. Det-Ada-Sync) is polynomial time equivalent to Subset-
Ada-Sync (resp. Det-Subset-Ada-Sync).

Proof. It suffices to show that Subset-Ada-Sync (resp. Det-Subset-Ada-Sync) can be
reduced to Ada-Sync (resp. Det-Ada-Sync) in polynomial time.

Let P = (Q, Σ, Γ, δ) be a PDA with I ⊆ Q and γ ∈ Γ∗. Let qI be some fixed state in
the subset I. Construct P ′ from P by adding a new stack letter # and the following new
transitions: Upon reading any a ∈ Σ, if the top of the stack is #, then any state q ∈ I

pops # and stays at q whereas any state q /∈ I pops # and moves to qI . Notice that P ′ is
deterministic if P is.

It is clear that if (I, γ) =⇒
P

s for some state s, then (Q, #γ) ==⇒
P′

s. We now claim that
the other direction is true as well. To see this, suppose there is a synchroniser in P ′ (say
T ) between (Q, #γ) and some state s. It is easy to see that, irrespective of the label of the
outgoing edge from the root of T , there is only one child of the root which is labelled by
(I, γ). Now, no transition pushes # onto the stack and so nowhere else in the synchroniser
does # appear in the label of some vertex. It is then easy to see that if we remove the root
of T , we get a synchroniser between (I, γ) and s in P. ◀

Lemma 4 allows us to introduce a series of problems which we can prove are poly-time
equivalent to Ada-Sync. The reason to consider these problems is that lower bounds for
these are substantially easier to prove than for Ada-Sync. The three problems are as follows:
1. Given-Sync: Given a PDA P , a subset I, a word γ and also a state s, check if (I, γ) ⇒ s.
2. Super-Sync has the same input as Given-Sync, except we ask if (I, γ) sup==⇒ s.
3. Special-Sync is the same as Super-Sync but restricted to inputs where γ is ⊥.

▶ Lemma 5. Subset-Ada-Sync, Given-Sync, Super-Sync and Special-Sync are all
poly. time equivalent. Further the same applies for their corresponding deterministic versions.

Because of this lemma, for the rest of this paper, we will only be concerned with the
Special-Sync problem, where given a PDA P, a subset I and a state s, we have to decide
if (I, ⊥) sup==⇒ s.

4 Lower Bounds

To prove the lower bounds, we introduce the notion of an alternating extended pushdown
system (AEPS), which is an extension of pushdown systems with Boolean variables and
alternation.

4.1 Alternating Extended Pushdown Systems
An alternating extended pushdown system (AEPS) A is a tuple (Q, V, Γ, ∆, init, fin) where Q

and V are finite sets of states and Boolean variables respectively, Γ is the stack alphabet,
init, fin ∈ Q are the initial and final states respectively. A has no input letters but it has a
stack to which it can pop and push letters from Γ. Each variable in V is of Boolean type and
a transition of A can apply simple tests on these variables and depending on the outcome,
can update their values. A configuration of A is a tuple (q, γ, F ) where q ∈ Q, γ ∈ Γ∗ and
F : V → {0, 1} is a function assigning a Boolean value to each variable.

Let test denote the set of tests given by {v
?= b : v ∈ V, b ∈ {0, 1}} and let cmd

denote the set of commands given by {v → b : v ∈ V, b ∈ {0, 1}}. A consistent com-
mand is a conjunction of elements from cmd such that for every v ∈ V , both v → 0 and
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v → 1 are not present in cmd. The transition relation ∆ consists of transitions of the form
(q, A, G) ↪→ {(q1, γ1, C1), . . . , (qk, γk, Ck)} where q, q1, . . . , qk ∈ Q, A ∈ Γ, γ1, . . . , γk ∈ Γ∗, G

is a conjunction of elements from test and each Ci is a consistent command. Intuitively, at
a configuration (q, Aγ, F ) the machine non-deterministically selects a transition of the form
(q, A, G) ↪→ {(q1, γ1, C1), . . . , (qk, γk, Ck)} such that the assignment F satisfies the conjunc-
tion G and then forks into k copies in the configurations (q1, γ1γ, F [C1]), . . . , (qk, γkγ, F [Ck])
where F [Ci] is the function obtained by updating F according to the command Ci. With
this intuition in mind, we say that a transition (q, A, G) ↪→ {(q1, γ1, C1), . . . , (qk, γk, Ck)} is
enabled at a configuration (p, Bγ, F ) iff p = q, B = A and F satisfies all the tests in G.

A run from a configuration (q, η, H) to a configuration (q′, η′, H ′) is a tree satisfying
the following properties: The root is labelled by (q, η, H). If an internal node n is la-
belled by the configuration (p, Aγ, F ) then there exists the following transition: (p, A, G) ↪→
{(p1, γ1, C1), (p2, γ2, C2), . . . , (pk, γk, Ck)} which is enabled at (p, Aγ, F ) such that the chil-
dren of n are labelled by (p1, γ1γ, F [C1]),. . . , (pk, γkγ, F [Ck]), where F [Ci](v) = b if Ci

contains a command of the form v → b and F [Ci](v) = F (v) otherwise. Finally all the leaves
are labelled by (q′, η′, H ′). If a run exists between (q, η, H) and (q′, η′, H ′) then we denote
it by (q, η, H) ∗−→

A
(q′, η′, H ′). An accepting run from a configuration (q, η, H) is a run from

(q, η, H) to (fin, ⊥, 0) where 0 is the zero function. An accepting run of an AEPS is simply
an accepting run from the initial configuration (init, ⊥, 0). The emptiness problem is then
to decide whether a given AEPS has an accepting run.

By a simple adaptation of the EXPTIME-hardness proof for emptiness of alternating
pushdown systems which have no Boolean variables (Theorem 5.4 of [6], Prop. 31 of [23])
we prove that

▶ Lemma 6. The emptiness problem for AEPS is 2-EXPTIME-hard.

An AEPS A is called a non-deterministic extended pushdown system (NEPS) if every
transition of A is of the form (p, A, F ) ↪→ {(q, γ, C)}. By Theorem 2 of [13] we have that

▶ Lemma 7. The emptiness problem for NEPS is EXPTIME-hard.

▶ Remark 8. The hardness result for AEPS could also be inferred from Theorem 10 of [13].
Because we use a different notation, for the sake of completeness, we provide the proofs of
both of these lemmas in the full version of the paper.

4.2 Reduction from Alternating Extended Pushdown Systems
▶ Theorem 9. Special-Sync, Subset-Ada-Sync and Ada-Sync are all 2-EXPTIME-hard.
Det-Special-Sync, Det-Subset-Ada-Sync and Det-Ada-Sync are all EXPTIME-hard.

In this subsection, we provide the proof sketches of Theorem 9 by a reduction from the
emptiness problem for AEPS to Special-Sync. Let A = (Q, V, Γ, ∆, init, fin) be an AEPS.
Without loss of generality, we can assume that if (q, A, G) ↪→ {(q1, γ1, C1), (q2, γ2, C2), . . . ,

(qk, γk, Ck)} ∈ ∆, then γi ≠ γj for i ̸= j. (This can be accomplished, by prefixing new
characters to each γi, moving to some intermediate states and then popping the new characters
and moving to the respective qi’s). Having made this assumption, the reduction is described
below.

From the given AEPS A, we now construct a pushdown automaton P as follows. The
stack alphabet of P will be Γ. For each transition t ∈ ∆, P will have an input letter
in(t). P will also have another input letter end. The state space of P will be the set
Q ∪ (V × {0, 1}) ∪ {qacc, qrej}, where qacc and qrej are two states, which on reading any input
letter, will leave the stack untouched and simply stay at qacc and qrej respectively.
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17:8 Adaptive Synchronisation of Pushdown Automata

,

q1 q2 q3

v1, 0 v2, 0 v3, 0

qacc qrej

v1, 1 v2, 1 v3, 1

q1 q2 q3

v1, 0 v2, 0 v3, 0

qacc qrej

v1, 1 v2, 1 v3, 1

q1 q2

v1, 0 v2, 0 v3, 0

qacc qrej

v1, 1 v2, 1 v3, 1⊥
A
B

A

⊥
A
B

⊥
A
B

B

A q3

Figure 3 Let t be the transition (q1, A, [v1? = 0, v3? = 1]) ↪→{(q2, AB, [v1←1, v2←0]), (q3, ϵ, [v2←
0])} in A. In A, using t, the configuration C1 := (q1, ABA⊥, [v1 = 0, v2 = 1, v3 = 1]) can fork into
C2 := (q2, ABBA⊥, [v1 = 1, v2 = 0, v3 = 1]) and C3 := (q3, BA⊥, [v1 = 0, v2 = 0, v3 = 1]).

We now give an intuition behind the transitions of P . Given an assignment F : V → {0, 1}
of the Boolean variables V , and a state q of A, we use the notation [q, F ] to denote the
subset {q} ∪ {(v, F (v)) : v ∈ V } of states of P. Intuitively, a configuration (q, γ, F ) of A is
simulated by its corresponding pseudo-configuration ([q, F ], γ) in P.

▶ Example 10. The caption of Figure 3 describes an example, where there is a transition
t in A, and a configuration C1 forks into two configurations C2 and C3 in A by using
t. The diagram in Figure 3 illustrates the simulation of the forking on the corresponding
pseudo-configurations of C1, C2, C3 that the automaton P will achieve when reading the letter
in(t). The shaded part along with the stack content on the left before the arrow denotes the
pseudo-configuration of C1 and upon reading in(t) from this pseudo-configuration, we get
two possible successors, each of which correspond to the pseudo-configurations of C2 and C3
respectively.

Now we give a formal description of the transitions of P. Let t = (q, A, G) ↪→
{(q1, γ1, C1), . . . , (qk, γk, Ck)} be a transition of A. Let p ∈ Q. Upon reading in(t), if
p ≠ q then p immediately moves to the qrej state. Further, even state q moves to the qrej
state if the top of the stack is not A. However, if the top of the stack is A, then q pops A

and non-deterministically pushes any one of γ1, . . . , γk onto the stack and if it pushed γi,
then q moves to the state qi.

Let (v, b) ∈ V × {0, 1}. Upon reading in(t), if the test v
?= (1 − b) appears in the guard

G, then (v, b) immediately moves to the qrej state. (Notice that this is a purely syntactical
condition on A). Further, if the top of the stack is not A, then once again (v, b) moves to
qrej . If these two cases do not hold, then (v, b) pops A and non-deterministically picks an
i ∈ {1, . . . k} and pushes γi onto the stack. Having pushed γi, if Ci does not update the
variable v, it stays in state (v, b); otherwise if Ci has a command v → b′, it moves to (v, b′).

Finally, upon reading end, the states in [fin, 0] move to the qacc state and all the other
states in Q∪ (V ×{0, 1}) move to the qrej state. Notice that there are no outgoing transitions
from qrej and so there is no way to move from qrej to qacc.

The following two facts can be easily inferred from the construction of P:

Fact A: Suppose t is a transition of A which is not enabled at the configuration
(q, Aγ, F ). Then, upon reading in(t), there is at least one possible successor (S, η) of
the pseudo-configuration ([q, F ], Aγ) such that qrej ∈ S.

Fact B: Suppose the configuration (q, Aγ, F ) forks into the following configurations
(q1, γ1γ, F1), . . . , (qk, γkγ, Fk) using the transition t in the AEPS A. Then, the possible
successors from the pseudo-configuration ([q, F ], Aγ) upon reading in(t) in the PDA
P are ([q1, F1], γ1γ), . . . , ([qk, Fk], γkγ).
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Using these 2 facts, we can then prove that A has an accepting run iff there is a super-
synchroniser in P between ([init, 0], ⊥) and qacc. Intuitively, if we have an accepting run
of A, then the observer, using Fact B, has a strategy to force P into one of the states in
([fin, 0]) with the stack content being ⊥. Once she does that, she can input the letter end
and synchronise to the state qacc.

For the reverse direction, with a little case-analysis, we can show that in any super-
synchroniser between ([init, 0], ⊥) and qacc, all non-leaf nodes must be a pseudo-configuration
of some configuration in A, and all the parents of a leaf must be labelled by ([fin, 0], ⊥)
Intuitively, then by Facts A and B, such a super-synchroniser must be a simulation of a run
in A (similar to Figure 3) and hence, we can translate it back to an accepting run in A.

Notice that P is deterministic if A is non-deterministic. Hence, by Lemmas 6 and 7, we
obtain Theorem 9.

5 Upper Bounds

In this section, we will give algorithms that solve Special-Sync and Det-Special-Sync.
We first give a reduction from Special-Sync to the problem of checking emptiness in
an alternating pushdown system, which we define below. Then, we show that for Det-
Special-Sync, the same reduction produces alternating pushdown systems with a “modular”
structure, which we exploit to reduce the running time.

5.1 Adaptive Synchronisation for Non-deterministic PDA
An alternating pushdown system (APS) is an alternating extended pushdown system which
has no Boolean variables. Since there are no variables, we can suppress any notation
corresponding to the variables, e.g., configurations can be just denoted by (q, γ). It is known
that the emptiness problem for APS is in EXPTIME (Theorem 4.1 of [4]). We now give an
exponential time reduction from Special-Sync to the emptiness problem for APS.

Let P = (Q, Σ, Γ, δ) be a PDA with I ⊆ Q, s ∈ Q. Construct the following APS
AP = (2Q, Γ, ∆, I, {s}) where ∆ is defined as follows: Given S ⊆ Q, a ∈ Σ and A ∈ Γ, let
E1, . . . , Ek be the equivalence classes of the relation ∼a

S,A as defined in subsection 2.2. Then,
we have the following transition in AP :

(S, A) ↪→ {(next(E1), word(E1)), (next(E2), word(E2)), . . . , (next(Ek), word(Ek)} (1)

The following fact is immediate from the definition of a super-synchroniser and from the
construction of AP .

▶ Proposition 11. Let S ⊆ 2Q, γ ∈ Γ∗. Then a labelled tree T is a super-synchroniser
between (S, γ) and s in P if and only if T is an accepting run from (S, γ) in AP .

By Theorem 4.1 of [4], emptiness for APS can be solved in exponential time and so

▶ Theorem 12. Special-Sync is in 2-EXPTIME

5.2 Adaptive Synchronisation for Deterministic PDA
Let P = (Q, Σ, Γ, δ) be a deterministic PDA with I ⊆ Q, s ∈ Q. We have the following
proposition, whose proof follows from the fact that P is deterministic.

▶ Proposition 13. Suppose S ⊆ Q, a ∈ Σ, A ∈ Γ and suppose E1, . . . , Ek are the equivalence
classes of ∼a

S,A. Then, |S| ≥
∑k

i=1 |next(Ei)|.

CONCUR 2021
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Now, given P, consider the APS AP = (2Q, Γ, ∆, I, {s}) that we have constructed in
subsection 5.1. By Proposition 13, we now have the following lemma.

▶ Lemma 14. For any S ∈ 2Q, γ ∈ Γ∗, any accepting run of AP from the configuration
(S, γ) has at most |S| leaves.

The following corollary follows from the lemma above.

▶ Corollary 15. Any accepting run of AP has at most |I| leaves.

▶ Example 16. Let P be the deterministic PDA from Figure 1. Figure 4 shows an example
of an accepting run in the corresponding APS AP from I := {1, 2, 3, 4}. Notice that there
are |I| = 4 leaves in this run.

Corollary 15 motivates the study of the following problem, which we call the sparse
emptiness problem for APSs (Sparse-Empty):

Given: An APS A and a number k in unary.
Decide: Whether there exists an accepting run for A with at most k leaves

We prove the following theorem about Sparse-Empty in the next section.

▶ Theorem 17. Given A and k, the Sparse-Empty problem can be solved in time O(|A|ck2)
for a fixed constant c.

Now, because of Proposition 13 and because of the structure of the transitions of AP (as
given by equation (1)), it is sufficient to restrict the construction of AP to only those states
which have cardinality at most |I| and hence, it can be assumed that |AP | ≤ |P|4|I|. This
fact, along with Proposition 11, Corollary 15 and Theorem 17 implies the following theorem.

▶ Theorem 18. Given an instance (P, I, s) of Det-Special-Sync, checking if (I, ⊥) sup==⇒
P

s

in time O(n4ck3) where n = |P| and k = |I| and c is some fixed constant.

▶ Remark 19. Note that the algorithm to solve Det-Special-Sync on an instance (P, I, s),
although in EXPTIME, is polynomial if |I| is fixed and quasi-polynomial if |I| is O(log |P|).

5.3 “Sparse Emptiness” Checking of Alternating Systems
This subsection is dedicated to proving Theorem 17. We fix an alternating pushdown

system A = (Q, Γ, ∆, init, fin) and a number k for the rest of this subsection. A k-accepting
run of A is defined to be an accepting run of A with at most k leaves. We now split the
desired algorithm for Sparse-Empty into three parts. Finally, we give its runtime analysis.

Compressing k-accepting runs of A

We define a non-deterministic pushdown system (NPS) to be a non-deterministic extended
pushdown system which has no Boolean variables. From A, we can derive a NPS obtained
by deleting all transitions which produces a universal branching, i.e, of the form (q, A) ↪→
{(q1, γ1), . . . , (qk, γk)} with k > 1. We will denote this NPS by N . Emptiness of NPS is
known to be solvable in polynomial time (Theorem 2.1 of [4]). To exploit this fact for our
problem, we propose the following notion of a compressed accepting run of A. Intuitively, a
compressed accepting run is obtained from an accepting run of A by “compressing” a series of
transitions belonging to the non-deterministic part N , into a single transition. An intuition
of a compressed accepting run is captured by Figure 5, which is obtained by compressing the
run depicted in Figure 4.



A. R. Balasubramanian and K. S. Thejaswini 17:11

{1, 2}

{3}

{4}

{1, 2, 3, 4}

{3, 4}

{3, 4}

{1, 2}

{3}

{4}

{4}

{4}

{4}

{4}

{4}

{4}{4}

{4}

{4}

{4}

{4}

{4}

Figure 4 An accepting run of AP for the
deterministic PDA P given in Figure 1.

{3}
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{3, 4}

{3, 4}

{1, 2}

{3}

{4}

{4}
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{4}

{4}
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Figure 5 A compressed accepting run
of AP for the deterministic PDA P given
in Figure 1, obtained by compressing the
run from Figure 4.

Given a tree, we say that a vertex v in the tree is simple if it has exactly one child
and otherwise we say that it is complex (Note that all leaves are complex). A compressed
accepting run of A from the configuration (p, η) is a labelled tree such that: The root is
labelled by (p, η). If v is a simple vertex labelled by (q, γ) and u is its only child labelled
by (q′, γ′) then u is a complex vertex and (q, γ) ∗−→

N
(q′, γ′). If v is a complex vertex

labelled by (q, Aγ) and v1, . . . , vk are its children with k > 1, then there is a transition
(q, A) ↪→ {(q1, A1), . . . , (qk, Ak)} in A such that the label of vi is (qi, Aiγ). Finally, all the
leaves are labelled by (fin, ⊥). A compressed accepting run of A is a compressed accepting
run from (init, ⊥) and a k-compressed accepting run is a compressed accepting run with at
most k leaves. We now have the following lemma.

▶ Lemma 20. There is a k-accepting run of A from a configuration (p, η) iff there is a
k-compressed accepting run of A from (p, η).

Searching for k-compressed accepting runs

To fully use the result of Lemma 20, we need some results about non-deterministic pushdown
systems, which we state here. Recall that N is an NPS over the states Q and stack
alphabet Γ obtained from the APS A. We say that M = (QM , Γ, δM , F M ) is an N -
automaton if M is a non-det. finite-state automaton over the alphabet Γ with accepting
states F M such that for each state q ∈ Q, there is a unique state qM ∈ QM . The set
of configurations of A that are stored by M (denoted by C(M)) is defined to be the set
{(q, γ) : γ is accepted in M from the state qM }. In the above definition, note that QM can
potentially have more states other than the set {qM | q ∈ Q}.
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17:12 Adaptive Synchronisation of Pushdown Automata

▶ Example 21. Let us consider the pushdown automaton in Figure 1, and let N be the NPS
obtained by ignoring the input alphabets 2 and 3. Then observe that from all the states
1,2,3 and 4, with any content on the stack, one can reach state 4 with an empty stack, by
popping out all the elements. So, the set of configurations from wich there is an accepting
run is {(i, γ) | i ∈ {1, 2, 3, 4}, γ ∈ ⊥ · {•, •}∗}. One can define the N -automaton M for it, as
an automaton with five states {q1, q2, q3, q4, qf } where qf is a final state and each of q1, q2, q3
and q4 on reading ⊥ goes to qf and stays in qf on reading • or •. It is easy to see that this
automaton accepts all words of the form ⊥ · {•, •}∗.

▶ Theorem 22 (Section 2.3 and Theorem 2.1 of [4]). Given an N -automaton M , in time
polynomial in N and M , we can construct an N -automaton M ′ which has the same states
as M such that M ′ stores the set of predecessors of M , i.e., C(M ′) = {(q′, γ′) : ∃(q, γ) ∈
C(M) such that (q′, γ′) ∗−→

N
(q, γ)}.

We say that an unlabelled tree is structured, if the child of every simple vertex is a
complex vertex. An ℓ-structured tree is simply a structured tree which has at most ℓ leaves.
Notice that the height of an ℓ-structured tree is O(ℓ) and since it has at most ℓ leaves, it
follows that a ℓ-structured tree can be described using a polynomial number of bits in ℓ.
Hence, the number of ℓ-structured trees is O(2ℓc) for some fixed c.

Now let us come back to the problem of searching for k-accepting runs of A. By
Lemma 20 it suffices to search for a k-compressed accepting run of A. Notice that if we take a
k-compressed accepting run and remove its labels, we get a k-structured tree. Now, suppose
we have an algorithm Check that takes a k-structured tree T and checks if T can be labelled
to make it a k-compressed accepting run of A. Then, by calling Check on every k-structured
tree, we have an algorithm to check for the existence of a k-compressed accepting run of A.
Hence, it suffices to describe this procedure Check which is what we will do now.

The algorithm Check

Let T be a k-structured tree. For each vertex v in the tree T , Check will assign a N -automaton
Mv such that Mv will have the following property:

Invariant (*) : A configuration (q, γ) ∈ C(Mv) iff all the vertices of the subtree rooted
at v can be labelled such that the resulting labelled subtree is a compressed accepting
run of A from (q, γ).

The construction of each Mv is as follows: Let Q be the states and ∆ be the transitions
of the alternating pushdown system A.

Suppose vertex v is a leaf. We let Mv be an automaton such that C(Mv) = {(fin, ⊥)}.
Notice that such a Mv can be easily constructed in polynomial time.
Suppose vertex v is simple and u is its child. We take Mu and use Theorem 22 to
construct the N -automaton Mv. Note that Mv has the same set of states as Mu.
Suppose v is complex and suppose v1, . . . , vℓ are its children. For each 1 ≤ i ≤ ℓ

and for every configuration (q, γ) of A, let δi(qMvi , γ) denote the set of states that the
automaton Mvi will be in after reading γ from the state qMvi . To construct Mv first do
a product construction Mv1 × Mv2 × · · · × Mvℓ

, so that the resulting product automaton
stores precisely the set of configurations which are stored by each of the individual
automata Mv1 , . . . , Mvℓ

. Then, for each q ∈ Q, add a state qMv . Then for each transition
(p, A) ↪→ {(p1, γ1), . . . , (pℓ, γℓ)} in ∆, add a transition in Mv, which upon reading A, takes
pMv to any of the states in δ1(p1

Mv1 , γ1) × δ2(p2
Mv2 , γ2) × · · · × δl(pℓ

Mvℓ , γℓ). Intuitively,
we accept a word Aγ from the state pMv if for each i, the word γiγ can be accepted from
the state pi

Mvi .
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▶ Proposition 23. For each vertex v of the tree T , Mv satisfies invariant (*)

Finally, we accept iff (init, ⊥) ∈ C(Mr) where r is the root of the tree. The correctness of
Check follows from the proposition above.

Running time analysis

Let us analyse the running time of Check. Let T be a k-structured tree and therefore T has
O(k2) vertices. Check assigns to each vertex v of T an automaton Mv. We claim that the
running time of Check is O(k2 · |A|ck2) (for some fixed constant c) because of the following
facts:
1) By induction on the structure of the tree T , it can be proved that, there exists a constant

d, such that if hv is the height of a vertex v and lv is the number of leaves in the sub-tree
of v, then the number of states of Mv is O(|A|dhvlv ) (Recall that hvlv is at most O(k2)).

2) If an N -automaton has n states, then the number of transitions it can have is O(|A| · n2).
3) For a vertex v with children v1, . . . , vℓ, Mv can be constructed in polynomial time in the

size of |Mv1 | × |Mv2 | × . . . |Mvℓ
| and |A|.

Notice that everything else apart from Fact 1) is easy to see. To prove Fact 1), we
proceed by bottom-up induction on the structure of the tree T . For the base case when the
vertex v is a leaf, notice that we can easily construct the required automaton Mv with at
most O(|A|) states. Suppose, v is a simple vertex and u its only child. By Theorem 22,
Mv has the same set of states as Mu. By induction hypothesis, the number of states of Mu

is O
(
|A|dhulu

)
and so the number of states of Mv is O

(
|A|dhvlv

)
. Suppose v is a complex

vertex and v1, . . . , vℓ are its children. Let h be the maximum height amongst the vertices
v1, . . . , vℓ. By induction hypothesis, the number of states of each Mvi

is O
(
|A|dhlvi

)
. It is

then clear that the number of states of Mv is O
(∏ℓ

i=1 |A|dhlvi + |A|
)

= O
(
|A|dhlv + |A|

)
=

O
(
|A|d(h+1)lv

)
= O

(
|A|dhvlv

)
.

Now the final algorithm for Sparse-Empty simply iterates over all k-structured trees
and calls Check on all of them. Since the number of k-structured trees is at most f(k) where
f is an exponential function, it follows that the total running time is O

(
f(k) · k2 · |A|ck2

)
=

O(|A|ek2) for some constant e.

6 Conclusion

Our results can be considered as a step in the research direction recently proposed by Fernau,
Wolf and Yamakami in [12], in which the authors prove that the synchronisation problem for
PDAs is undecidable when the stack is not visible. They also suggest looking into different
variants of synchronisation for PDAs with a view towards the decidability and complexity
frontier. Within this context, we believe we have proposed a natural variant of synchronisation
in which the observer can see the stack and given decidability and complexity-theoretic
optimal results for both the non-deterministic and the deterministic cases.

As future work, it might be interesting to consider the adaptive synchronising problem
for subclasses of pushdown automata such as one-counter automata and visibly pushdown
automata. It might also be interesting to consider the problem of looking for short adaptive
synchronisers, i.e., adaptive synchronisers whose size is not bigger than a given bound.
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