
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/158274  

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/478144196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/158274
mailto:wrap@warwick.ac.uk


Towards the Use of

Mini-Applications in Performance

Prediction and Optimisation of

Production Codes
by

Andrew Martin Buchanan Owenson

Thesis

Submitted to the University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

March 2020



Contents

List of Tables iv

List of Figures v

Acknowledgments viii

Declarations ix

Abstract x

Acronyms xiii

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Parallel computing and profiling 6

2.1 Parallel computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Vector processing . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Instruction-level parallelism . . . . . . . . . . . . . . . . . . . 8

2.1.3 Multi-core processing . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Performance profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Runtime metrics . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Performance counters . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Mini applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Characterising similarity . . . . . . . . . . . . . . . . . . . . . 16

2.4 Performance modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Performance projection . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Mechanistic modelling of superscalar processors . . . . . . . . 18

i



2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Computational Fluid Dynamics, Software and Hardware 21

3.1 HYDRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Unstructured grid . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 OPlus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 HYDRA performance engineering . . . . . . . . . . . . . . . . . . . . 25

3.2.1 HYDRA performance model . . . . . . . . . . . . . . . . . . 25

3.2.2 MG-CFD proxy-application . . . . . . . . . . . . . . . . . . . 27

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 4 Assessing and improving the proxy-application MG-CFD 33

4.1 Reviewing representativeness of MG-CFD . . . . . . . . . . . . . . . 33

4.1.1 Arithmetic intensity . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Data-safe parallel computation . . . . . . . . . . . . . . . . . 36

4.1.3 Validation of restored MG-CFD . . . . . . . . . . . . . . . . . 36

4.2 MPI strong scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 5 Performance model of MG-CFD 42

5.1 MG-CFD IPC investigation . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Performance model development . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Difference model . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 CPI estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Predicting strong scaling . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.1 Memory benchmarking . . . . . . . . . . . . . . . . . . . . . . 54

5.5.2 Predicting performance of HYDRA . . . . . . . . . . . . . . . 59

5.6 Vectorising unstructured grid compute . . . . . . . . . . . . . . . . . 62

5.6.1 Conflict avoidance . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.2 Vectorisation performance . . . . . . . . . . . . . . . . . . . . 63

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 6 Conclusion 67

6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Performance model improvements . . . . . . . . . . . . . . . 69

ii



6.2.2 MG-CFD strong scaling optimisation . . . . . . . . . . . . . . 71

iii



List of Tables

3.1 Significant constituents of HYDRA runtime, measured on a single

node of Xeon Broadwell with 28 MPI processes . . . . . . . . . . . . 22

3.2 Hardware/software configurations . . . . . . . . . . . . . . . . . . . . 32

5.1 Relative cost of double-precision FP DIV and SQRT instructions

relative to MUL, in clock cycles . . . . . . . . . . . . . . . . . . . . . 43

5.2 Single-thread compact-HYDRA runtime prediction errors of the three

described models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Model error statistics of predicted vflux compute strong scaling. . . 61

iv



List of Figures

2.1 5-stage pipeline of instruction fetch (IF), decode (ID), execute (EX),

memory read (MEM), write result (WB). Column of highlighted stages

are performed simultaneously. . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Instruction dispatch and issue stages of Xeon Skylake pipeline [28] . 9

2.3 Comparison of single-core (left) and multi-core (right) design. Single-

core designs have one integrated memory controller (IMC) and two

levels of cache. Multi-core typically has a third level of cache shared

by all cores, and server-grade designs have multiple IMCs for more

bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Comparison of structured and unstructured grid [62]. . . . . . . . . . 22

3.2 Visualisation of a rotor section from NASA’s SSME 2-stage fuel

turbine, similar to the meshes used in this work. . . . . . . . . . . . 24

3.3 Representation of a finite-volume decomposition mapped to an un-

structured grid over two multigrid levels. . . . . . . . . . . . . . . . . 25

3.4 HYDRA observed performance, before and after optimisation, and the

performance model predictions. Model highlighted sub-optimal per-

formance, caused by nonblocking asynchronous MPI communication

not overlapping with compute. Switching to nonblocking synchronous

MPI improved overlapping, matching model. . . . . . . . . . . . . . 27

3.5 Parallel efficiency of mini-HYDRA and compact-HYDRA on Xeon

Haswell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3.6 Plot of correlation between parallel efficiency loss and various PAPI

performance counters for MG-CFD and compact-HYDRA on Xeon

Haswell. The difference in correlation between MG-CFD and compact-

HYDRA is also plotted, which can exceed 1.0 for serious divergence

(worst case is ±2). Major divergence occurs with events relating to

L1-L2 data traffic. Negligible divergence (i.e. high similarity) in events

relating to L2-L3 traffic and pipeline utilisation. . . . . . . . . . . . . 31

4.1 Parallel efficiency of compact-HYDRA and numerically-corrected MG-

CFD, on Xeon Skylake with AVX-512 auto-vectorisation. Similar

scaling exhibited until compact-HYDRA hits its memory-bound near

12 threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Ratio of compact-HYDRA IPC / MG-CFD IPC, of single-threaded

execution across multiple instruction set architectures (ISAs) and ar-

chitectures. For MG-CFD to provide reliable performance assessment

this ratio should be invariant, but variance exists - intra-ISA (AVX512

on KNL vs Skylake) and intra-architecture (AVX2 vs AVX512 on

KNL (and Skylake) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Plot of correlation between parallel efficiency loss and various PAPI

performance counters for restored MG-CFD and compact-HYDRA on

Xeon Skylake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 MPI strong scaling parallel efficiency on Westmere cluster, of the

expensive HYDRA routine vflux and OP2-MG-CFD flux() routine . 39

4.5 MPI strong scaling parallel efficiency on Westmere cluster, of total

walltime of HYDRA and OP2-MG-CFD . . . . . . . . . . . . . . . . 40

5.1 Proportion of floating-point (FP) instructions in flux loop that are

relatively ‘slow’, meaning low throughput. . . . . . . . . . . . . . . . 44

5.2 Instruction dispatch and issue stages of Xeon Skylake pipeline [28] . 47

5.3 Ideal scheduling model of instructions to execution ports within Sky-

lake. Instructions with fewest compatible ports are scheduled first. . 48

5.4 Model prediction errors of single-threaded compact-HYDRA cycle

consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Relationship between multicore load and observed turbo GHz. Bold

line indicates when code is memory-bound, thin line when compute-

bound. When both codes are compute-bound they operate at similar

clock speed, important for model accuracy. . . . . . . . . . . . . . . 56

vi



5.6 Model prediction errors of compact-HYDRA strong scaling. A negative

error represents an under-prediction of actual performance. Bold line

indicates when predicted performance is memory-bound, thin line

when compute-bound. Cascade Lake sequence clipped at 24 threads

for brevity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Relationship between thread count and stalled cycles for compact-

HYDRA and MG-CFD, at compute-bound thread counts. Each kernel

encounters increasing penalty of similar size when approaching tb,

made clear by shifting MG-CFD datapoints. . . . . . . . . . . . . . . 58

5.8 Model error of predicted HYDRA vflux() compute strong scaling. . . 60

5.9 Vectorisation speedups with two conflict-avoidance schemes on Xeon

Skylake. Also shown is maximum speedup permitted by achievable

memory performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 MG-CFD GHz with and without vectorisation. Only with AVX512

does vectorisation reduce GHz . . . . . . . . . . . . . . . . . . . . . . 65

5.11 Changes to floating-point quantity and throughput in vectorised MG-

CFD. Increased quantity or lower throughput reduces achievable speedup 65

6.1 Critical path detection (pink) by OSACA tool, of Gause-Seidel loop on

TX2 architecture [34]. Path numbers are instruction latency (cycles-

per-instruction (CPI)), in-box numbers are disassembly line numbers.

Performance predicted to be bound mostly by floating-point execution. 70

vii



Acknowledgments

First and foremost, I must thank my supervisor, Prof. Stephen Jarvis, for the

opportunity to undertake this Ph.D., and for his confidence in me, his enthusiasm,

and his guidance and support throughout.

I also must thank past and present members of the High Performance and

Scientific Computing group, with special thanks to: Dr. Steven Wright, Dr. Richard

Bunt, Dr. James Davis, Prof. Gihan Mudalige, and Dean Chester. Thanks for the

mentoring, the discussions, and the prompt support.

This work would not be possible without outside collaboration and sponsorship.

I thank the opportunity to collaborate with Rolls-Royce, with special thanks to Dr.

Yoon Ho and Matthew Street for their critical support. I also wish to thank Intel for

initiating the collaboration, and their technical support throughout.

Lastly, I thank my family for support and encouragement throughout.

viii



Declarations

This thesis is submitted to the University of Warwick in support of my application

for the degree of Doctor of Philosophy. It has been composed by myself and has

not been submitted in any previous application for any degree. The work presented

(including data generated and data analysis) was carried out by the author except in

the cases outlined below:

• The initial development and validation of MG-CFD as a representative mini-

application of HYDRA, described in Chapter 3, was performed by Dr. Richard

Bunt. Where this thesis also develops MG-CFD, it is to address deficiencies

and improve representativeness.

Parts of this thesis have been previously published by the author in the following:

[44] A. Owenson, S. Wright, R. Bunt, S. Jarvis, Y. Ho, and M. Street. Developing

and using a geometric multigrid, unstructured grid mini-application to assess

many-core architectures. In 2018 26th Euromicro International Conference on

Parallel, Distributed and Network-based Processing (PDP), pages 68–76, 2018

[45] A. Owenson, S. Wright, R. Bunt, Y. Ho, M. Street, and S. Jarvis. An unstruc-

tured cfd mini-application for the performance prediction of a production cfd

code. Concurrency and Computation: Practice and Experience, 2019

ix



Abstract

Maintaining the performance of large scientific codes is a difficult task. To aid

in this task a number of mini-applications have been developed that are more tract-

able to analyse than large-scale production codes, while retaining the performance

characteristics of them. These “mini-apps” also enable faster hardware evaluation,

and for sensitive commercial codes allow evaluation of code and system changes

outside of access approval processes.

Techniques for validating the representativeness of a mini-application to a

target code are ultimately qualitative, requiring the researcher to decide whether

the similarity is strong enough for the mini-application to be trusted to provide

accurate predictions of the target performance. Little consideration is given to the

sensitivity of those predictions to the few differences between the mini-application

and its target, how those potentially-minor static differences may lead to each code

responding very differently to a change in the computing environment.

An existing mini-application, ‘Mini-HYDRA’, of a production CFD simulation

code is reviewed. Arithmetic differences lead to divergence in intra-node performance

scaling, so the developers had removed some arithmetic from Mini-HYDRA, but

this breaks the simulation so limits numerical research. This work restores the

arithmetic, repeating validation for similar performance scaling, achieving similar

intra-node scaling performance whilst neither are memory-bound. MPI strong scaling

functionality is also added, achieving very similar multi-node scaling performance.

The arithmetic restoration inevitably leads to different memory-bounds, and

also different and varied responses to changes in processor architecture or instruction

x



set. A performance model is developed that predicts this difference in response, in

terms of the arithmetic differences. It is supplemented by a new benchmark that

measures the memory-bound of CFD loops. Together, they predict the strong scaling

performance of a production ‘target’ code, with a mean error of 8.8% (s = 5.2%).

Finally, the model is used to investigate limited speedup from vectorisation despite

not being memory-bound. It identifies that instruction throughput is significantly

reduced relative to serial counterparts, independent of data ordering in memory,

indicating a bottleneck within the processor core.

xi



Sponsorships and Grants

This research is supported by

1. Rolls-Royce plc.

2. EU Horizon 2020 Clean Sky Project

3. UK Engineering and Physical Sciences Research Council (EPSRC)

4. Intel Corporation

Funding sources are: EP/S005072/1 - Strategic Partnership in Computational Science

for Advanced Simulation and Modelling of Engineering Systems (ASiMoV); EPSRC

Industrial CASE award 15220082

xii



Acronyms

ASiMoV Advanced Simulation and Modelling of Engineering Systems.

AVX advanced vector extensions.

BSP bulk synchronous parallel.

CFD computational fluid dynamics.

CISC complex instruction set computing.

CPI cycles-per-instruction.

DAG directed acyclic graph.

DNN deep neural network.

DSL domain-specific abstraction library.

DT data throughput.

FLOPs floating-point operations per second.

FMA fused multiply-accumulate.

FP floating-point.

FPGA field-programmable gate array.

FU functional unit.

GPGPU general purpose graphic processing unit.

GPU graphic processing unit.

HBM high-bandwidth memory.

HPC high-performance computing.

xiii



HT high-throughput.

IDQ instruction decode queue.

ILP instruction-level parallelism.

IMC integrated memory controller.

IP intellectual property.

IPC instructions-per-cycle.

ISA instruction set architecture.

KNL Knights Landing.

LT low-throughput.

MG multigrid.

MIMD multiple instruction, multiple data.

MSR model-specific register.

OSACA Open-Source Architecture Code Analyzer.

PAPI performance application programming interface.

PGAS partitioned global address space.

QAP quadratic assignment problem.

RFO read-for-ownership.

RISC reduced instruction set computing.

RK Runge-Kutta.

SIMD single instruction, multiple data.

SIMT single instruction, multiple thread.

SSE streaming SIMD extensions.

xiv



Chapter 1

Introduction

Computational simulation of physical phenomena have become an important com-

ponent of scientific discovery and engineering design. It can be cheaper and faster

than physical experiments, informing and directing early-stage research and design.

Simulation can also be necessary when real-world testing is highly challenging, such

as assessing aerodynamic performance of a full-scale airframe that is far too large for

a wind tunnel [23], or simply illegal. Achieving accurate simulations require the use

of a supercomputer, a computing system specialising in numerical computation with

performance several magnitudes greater than a typical household or office computer.

One industry quick to adopt computational simulation is aerospace engineering.

Initially adopted by national organisations for the design of space and military aircraft,

computational fluid dynamics (CFD) soon spread throughout the aerospace industry.

CFD has become an essential tool for the historic improvement of airframes and engine

turbomachinery, driving improvements to fuel economy and noise pollution [30] [40].

These improvements must continue into the future to further reduce emissions,

increasingly demanded by people and Governments, requiring further improvements

to the scope and performance of CFD simulations [22].

Early supercomputers consisted of a small number of complex processors

specalised at performing floating-point arithmetic, eagerly adopted by national

research and defense laboratories such as CERN in Europe and Los Alamos National

Laboratory in the United States [12]. This early system design culminated in

achieving approximately 1 billion floating-point operations per second (GFLOP/s),

but limits of the design and demand for more performance drove a transition to

more parallel systems, consisting of a large number of simpler processors executing in

parallel (often called a cluster). Economics drove a later transition to general-purpose

commodity processors. Processor performance steadily improved as transistors

1



shrunk, increasing operating frequency and density, but this Dennard scaling ended

around 2006 as heat and power leakage imposed physical limits - this accelerated the

transition into parallelism with multicore CPUs. The one PetaFLOP/s (1 million

GFLOPS/s) milestone was passed in 2008, sparking the discussion around how to

achieve the next 1000x increase in performance to one ExaFLOP/s. Incorporating

projections of expected technology progress, an exascale system would consume 100

MW, an unacceptable amount of power in terms of operating cost and pressure on

the local power grid [5]. The exascale challenge emerged with the primary goal of

achieving 1 ExaFLOP/s within a 20 MW power cap. This has led to a greater variety

of computing architectures, and greater heterogeneity in cluster configurations, in

the search for energy efficiency. Particularly, greater adoption of general purpose

graphic processing units (GPGPUs) and reduced instruction set computing (RISC)

CPU architectures - no supercomputer can meet the exascale challenge without being

primarily composed of one of these. More exotic architectures are available offering

even greater energy efficiency such as field-programmable gate arrays (FPGAs), but

these are difficult to program so remain experimental and areas of research.

The current high-performance computing (HPC) landscape of varied hard-

ware and heterogeneous clusters presents challenges to both cluster operators and

users. For operators purchasing an upgrade or new system, they face the complex

question of what hardware to select, and in which configuration. They must also

factor in the needs of their users, that the change in architecture does not cause

unacceptable frustration and prevent important research and simulations. Users

must be increasingly prepared to ‘port’ their software to new architectures and

parallelism technologies, meaning to tailor their code execution and data movement

to conform well to the architecture design; alternatively, they can select and integrate

an appropriate parallel programming abstraction or framework that performs this

tailoring behind-the-scenes (such as OpenCL/SYCL, Kokkos, or OP2).

For a simulation application to exploit the performance offered by a mod-

ern supercomputer it must be highly parallel, and increasingly incorporate new

optimisations and technologies. This is challenging for large legacy codes, as any

performance improvement is unknown until after significant time has been invested

in software development. Some of these codes face the additional challenge of being

proprietary or even classified, impeding the evaluation of potential computing system

upgrades – hardware evaluation prior to purchase is integral to system procurement,

as application performance depends on more than just the advertised FLOP/s rate.

These challenges have spurred the development of ‘mini-applications’, small codes

that capture the key performance characteristics of a target application, either by

2



containing critical portions of that application or consisting of measurably-similar

unrestricted code. This target code can also be referred to as the ‘parent’ of the

mini-application. Where the mini-application shares no code with its parent, but

through evaluation is verifed to still capture key characteristics, then it is useful to

refer to this instead as a proxy-application. The uses of a mini-application derive

from the code being much smaller than its parent code, so it is quicker to modify and

debug, and easier to compile on new systems. Common use cases are (i) implementing

a potential optimisation in code, such as rearranging how data is stored in memory,

(ii) evaluating a parallel programming abstraction, such as contrasting partitioned

global address space (PGAS) with MPI regarding usability and performance, and

(iii) porting to a new processor architecture. The goal of each is to improve the

performance of the parent code on current hardware, or to improve the transition of

the parent code to new hardware.

1.1 Motivation

Upon the outset of research, the goal was to use an existing proxy-application of a

production CFD code, named mini-HYDRA and HYDRA respectively, to address

two specific challenges faced by HYDRA. One is to use mini-HYDRA to collect

performance data to calibrate an existing performance model of HYDRA, then used

to generate performance predictions - this can inform supercomputer scheduling

decisions, and accelerate benchmarking of novel hardware. The second challenge is to

identify optimisation opportunities with mini-HYDRA that will transfer to HYDRA,

allowing it to better utilise the increasing complexity in processor architectures.

Mini-HYDRA had been validated using to a published technique that was previously

used to validate another unrelated proxy-application, where those original authors

then used their validated proxy-application to make predictive assessments of the

performance of its target code [59]. However it became clear that while mini-HYDRA

had been validated correctly, this technique is ultimately qualitative, as relatively

minor static differences between it and the production code can lead to predictive

assessments being significantly incorrect, e.g. of predicting no change in performance

from a change of instruction set when in fact the target code experiences a significant

slowdown.

Given that the proxy-application is more similar than it is different, this poses

the question of whether modelling can transform proxy-application performance

data to the target, allowing the proxy-application to provide accurate quantitative

performance prediction.

3



1.2 Contributions

This thesis makes the following contributions:

• Review mini-HYDRA, an existing proxy-application of the production CFD

code HYDRA. Restore arithmetic to correct its CFD, and repeat validation –

inevitably some similarity is lost due to different memory-bounds and arithmetic

constituents. Add MPI strong scaling, validation shows high similarity in multi-

node scaling.

• Presents a new performance projection model for HYDRA, accounting for

differences between it and its proxy-application (now called MG-CFD), with

which it is possible to project from MG-CFD to HYDRA performance on a

range of existing and emerging HPC architectures. This is highly significant

for Rolls-Royce plc. as they increase their use of virtual certification and

simulation-based engine design;

• Demonstrates that it is possible to use a proxy-application and performance

modelling to predict the performance of a production ‘target’ code, predicting

runtime of most expensive loop under strong scaling with a mean error of 8.8%

(s = 5.2%) ;

• Combine MG-CFD and the performance model to assess efficacy of auto-

vectorising unstructured grid compute. Identifies that vectorised floating-point

throughput is approximately half that of serial execution, independent of mesh

ordering, indicating a bottleneck within the processor core. Allows expectations

of achievable speedup of target application to be determined, not relying on

the theoretical maximum of e.g. 4×.

1.3 Thesis overview

Chapter 2 covers technical concepts regarding parallel computation and perform-

ance analysis. It describes techniques that processor manufacturers have

designed to provide parallel computation; modelling techniques for predicting

performance of a code; and tools for collecting relevant performance data.

Chapter 3 introduces Rolls-Royce ‘HYDRA’, a CFD simulation code, detailing

aspects of its design that makes HPC challenging. An overview of how HYDRA

currently achieves parallel execution is also provided. Finally, an existing

proxy-application of HYDRA is summarised, then named mini-HYDRA.

4



Chapter 4 reviews MG-CFD in detail (formerly named mini-HYDRA), discussing

particular challenges faced when designing a proxy-application. Prior modifica-

tions made to the CFD to improve a particular aspect of performance similarity

are reversed, as they undermine capture of the key computational property

influencing performance. This modified code is re-validated, and an alternative

solution to challenge is proposed. MG-CFD is further improved with MPI

strong scaling, for multi-node performance assessment

Chapter 5 delves deeper into the differences between HYDRA and its proxy-

application, and why these lead to difficulty relating performance from the

proxy-application to HYDRA loops. A performance model is developed, that

seeks to predict the performance difference between the proxy-application and

a HYDRA loop, from the known differences in code. Model prediction accuracy

is evaluated across several architectures and ISAs. Finally, the model is used

to explore the efficacy of vectorising this class of code, identifying that speedup

is limited by lower throughput of vectorised FP instructions.

Chapter 6 concludes this thesis with a summary of the work performed, revisiting

key arguments and outcomes. Limitations of the work in its current form are

discussed, and future work that can address these are detailed.

5



Chapter 2

Parallel computing and profiling

2.1 Parallel computing

With the end of Dennard scaling, further improvements in computation throughput

have been realised through increasing parallelisation. There are several ways by

which this can be achieved. Common approachs are instruction-level parallelism

(ILP), vector processing, and multi-core processors.

2.1.1 Vector processing

Vector processing, or single instruction, multiple data (SIMD) execution, is the

application of the same single operation on multiple data elements. The early vector

processors that appeared in supercomputers during the 1970s were essentially data

processors, designed to provide a steady stream of data into a scalar but pipelined

arithmetic functional unit. The 1974 CDC STAR-100 vector processor streamed

data direct from memory to the ALUs, so very wide vectors were needed to mask

the latencies and setup costs [18]. The 1976 CRAY-1 introduced vector registers, 64

words wide. A loop of several instructions over 64 words or less can achieve good

performance by chaining together a sequence of instructions, storing intermediate

results in the registers [51].

The 1990s transition to commodity hardware and massively parallel processor

clusters led to vector processing losing their importance, but slowly re-emerged

several years later in commodity processors. These were initially 1 word wide in

the MMX ISA and limited to integer operations, widening and supporting more

data types with successive ISAs: SSE introduced 128-bit FP SIMD, SSE2 added

double-precision FP, AVX extended to 256-bit, and AVX-512 extended further to

512-bit. These new SIMD operations differ to the early vector processors in one

6



fundamental way, they execute one instruction on multiple data elements in lockstep,

so as these vectors become wider the demand on memory performance increases

proportionally. The data streaming function that was explicitly performed by older

vector processors is now performed implicitly by hardware prefetchers that scan for

patterns in the memory accesses, and by explicit prefetch instructions inserted into

code.

SIMD instruction set architectures

An ISA is the interface between software and functional units within a processor.

Being an interface and not an implementation, different processor architectures are

free to implement the operations with different circuit designs, which can result in

different throughputs of the same instruction. One example of deviation could be

the decision of whether to add pipelining to the expensive FP division operation.

An ISA is constituted of three parts: the instruction set itself, defining the available

operations and their operands; the data types; the registers available for storing

state. A SIMD ISA is typically an extension of a base ISA such as x86-64, providing

additional operations and registers for vector computation. Recent major SIMD

ISAs are SSE4, AVX2, and AVX-512.

1. SSE4 provides 128-bit double-precision floating-point vector compute, suppor-

ted by 16× 128-bit vector registers.

2. AVX2 provides 256-bit versions of SSE4 instructions and registers, and also

switches from a two-operand to three-operand format which allows source code

to be compiled to fewer instructions.

3. AVX-512F extends further to 512-bit, and adds an additional 16 registers for

a total of 32.

Unlike previous SIMD ISAs, AVX-512 is composed of several subsets. AVX-512F

(foundation) and AVX-512CD (conflict detection) are universal sets, implemented

in all architectures that advertise any AVX-512 support. Then there are several

extensions that are specific to certain architectures:

1. Intel Xeon Phi Knights Landing (KNL) implements AVX-512 PF and ER,

providing new prefetch instructions and improved approximations of transcend-

ental functions.

2. Intel Xeon processors (Skylake and later) implements AVX-512 DQ, BW and

VL, support additional non-floating-point types and execution of AVX-512

instructions on sub-512-bit operands.

7



IF ID EX MEM WB     
 IF ID EX MEM WB    
  IF ID EX MEM WB   
   IF ID EX MEM WB  

        Cycles  0 1 2 3 4 5 6 7 
 

Figure 2.1: 5-stage pipeline of instruction fetch (IF), decode (ID), execute (EX),
memory read (MEM), write result (WB). Column of highlighted stages are performed
simultaneously.

Thus with AVX-512, a code that is auto-vectorised for different architectures that

implement AVX-512F but with different subsets is likely to generate different machine

code with differing performance.

2.1.2 Instruction-level parallelism

Fundamentally, all software is compiled to a linear sequence of instructions, generally

falling into the categories of data movement, branching, and arithmetic. In the typical

fetch-decode-execute instruction cycle, each individual instruction is fetched, decoded,

then executed. From early post-war computing efforts several ILP techniques were

developed. One is pipelining, which splits the instruction cycle into distinct stages

that are processed in a staggered fashion across several clock cycles. Although one

individual instruction requires more clock cycles to complete, the processor can

process different stages of different instructions simultaneously, increasing overall

throughput. This is illustrated in Figure 2.1, which presents the 5-stage pipeline of

fetch, decode, execute, memory read, write result, with 5 instructions being processed

at different stages simultaneously.

Another ILP technique exists in superscalar processors, which extends pipelin-

ing by supporting several parallel instances of each stage. The number of stage

instances is a decision of processor architecture design, constrained by the available

transistor budget and the need to balance throughput with the other stages. An

example is shown in Figure 2.2, which shows for the Xeon Skylake architecture the

pipeline portion regarding instruction dispatch to functional units, and memory

R/W [28]. The instruction decode queue (IDQ) receives up to 15 decoded µ-ops/cycle

from three distinct instruction decoders. µ-ops are a feature of complex instruction

set computing (CISC), where assembly-level instructions can be mapped to several

transistor-level micro-operations, for example to a memory load µ-op and an arith-

metic µ-op. The IDQ then dispatches up to 4 µ-ops/cycle to the scheduler, in turn

8



Scheduler

Instruction decode queue (IDQ)  [ holds 64 uops ]

Int ALU 
Vec ALU 
Vec Add 
Vec Mul 
Vec FMA 

Divide

Int ALU 
Vec ALU 
Vec Add 
Vec Mul 
Vec FMA

Int ALU 
Vec ALU 
Vec Shuf

Int ALU STD LD LD

L1D L1D L1D

Port 0 Port 1 Port 5 Port 6 Port 4 Port 2 Port 3

4 uops/cycle

up to 15 uops/cycle

Figure 2.2: Instruction dispatch and issue stages of Xeon Skylake pipeline [28]

dispatching to the appropriate functional units as they become free. The number

and distribution of functional units is another architecture design decision, also

constrained by the transistor budget and need to provide good performance to many

different codes. In this example two FP functional units (FUs) reside across ports 0

and 1, and four integer FUs reside across ports 0, 1, 5 and 6. Thus a code consisting

mostly of FP arithmetic and with a high arithmetic intensity will be bottlenecked

by these two ports to a maximum of 2 FP operations/cycle, despite the plethora

of other functional units and higher throughput of instruction decoding. Memory

load and store FUs typically reside on separate ports, in this example on ports 2, 3

and 4. Understanding how a particular code flows through a particular processor

pipeline can provide insight into how well it is utilising that architecture, and what

architectural changes would improve its throughput.

The first superscalar processor was the Cray CDC 6660 in 1964, and this

also introduced a third ILP technique - out-of-order execution. Complementing

superscalar execution, this is an instruction scheduling strategy that opportunistically

executes a sequence of instructions in a non-linear order to increase utilisation of

superscalar resources, reducing overall runtime. The first scheduling algorithm was

Thornton’s ‘scoreboard’, that tracks availability of functional units and registers [57].

Data dependencies between instructions are implicitly handled by tracking the

occupancy of registers. As resources become available, the scoreboard can dispatch

9



queued instructions for execution. The Tomasulo algorithm was proposed and

implemented several years later, improving the design with reservation stations

distributed across the functional units, replacing the single centralised scoreboard [58].

These abstract away registers - an instruction now operates on logical registers, and

the station selects whichever physical registers are available. Modern out-of-order

execution logic has not changed significantly from this, using larger buffers as

increasing transistor budgets permit, able to track approximately 50 instructions.

The logical complexity consumes significant transistor resources, so is generally not

present in low-cost or low-power processor designs.

2.1.3 Multi-core processing

Dennard scaling was the primary driver of improvements in performance of MOSFET

processors. This law states that as transistor size reduced, their power density was

unchanged, so that voltage and current consumption each reduced proportionally to

length [17]. This enabled chips to contain more transistors and operate at higher clock

frequencies without increasing total chip power consumption, which is typically a

hard limit. This law began to noticably break down as transistor lengths approached

65nm in 2005, as current leakage became a significant problem through wasting

50% of total power. Thus the useful power needed to be utilised more efficiently,

and as power was proportional to the square of frequency then frequency increases

had to end. New transistor designs and fabrication techniques were able to reduce

current leakage, but the increased headroom was used for more transistors. Post-

2005 processors continue to increase transistor counts, but have seen their operating

frequencies stagnate; to continue improving performance they transitioned from

single-core to multi-core designs.

Where a “single core” processor contains a single core (the instruction pipeline)

and one or two levels of cache memory, a multi-core processor contains multiples of

these within a single silicon package (an example of multiple instruction, multiple

data (MIMD)). A cache coherence protocol such as MESI is implemented to allow

multiple cores to safely read/write on the same data (cached in their respective

local caches) [46], and a typical multi-core processor has an additional level of cache

shared between the cores. Figure 2.3 illustrates a typical server-grade multi-core

processor, with many cores communicating over an interconnect bus, an additional

level of shared cache, and an additional IMC to increase memory bandwidth.

For a computational workload to utilise multiple cores to increase its through-

put, it must instantiate multiple and parallel strands of execution then distribute its

workload among them. The former can be achieved using lightweight threads, each

10



Core L1

L2

IMC

Memory

Memory

Core L1

L2

Core L1

L2

Shared L3 cache

IMC

Memory

IMC

Figure 2.3: Comparison of single-core (left) and multi-core (right) design. Single-core
designs have one IMC and two levels of cache. Multi-core typically has a third level
of cache shared by all cores, and server-grade designs have multiple IMCs for more
bandwidth.

executing on a separate core; threads share the same address space, which provides

an opportunity for greater data reuse; but this also limits them to reside within the

same operating system session, in practice meaning the same computing node. An

alternative to threads are processes, each of which has a separate and independent

address space; typically these are used when threading is not possible, such as in

a distributed memory system. Workload distribution requires that the input data

arrays be partitioned, and that each thread or process be allocated one partition.

Additionally, if the computation kernel is stencil-based, then data communication

must be performed between cores of adjacent partitions.

2.2 Performance profiling

Performance profiling is the targeted collection of fine-grained performance data

during code execution. Typically this is measurement of time duration using system

timers, known as walltime, but can also include hardware performance counters that

count events such as CPU cache hits and misses. There are two common methods

for collecting this data, with different tradeoffs – sampling profilers, or source code

instrumentation. A sampling profiler is particularly useful when source code is not

modifiable, or when a quick analysis is required. At frequent intervals the profiler

11



interrupts execution of the target code to record the executing function and its call

stack, and may also record performance counter values. With sufficient sampling, the

total runtime can be partitioned to the observed executing functions. Data accuracy

is dependent on the frequency of sampling, and commerical profilers such as Cray

CrayPat and Intel VTune use a default sampling interval of 10ms.

If fine accuracy or granularity is required but without the overhead issues of

very frequent sampling, then the alternative to the sampling profiler is source code

instrumentation. This is the insertion of data-collecting instrumentation directly into

the source code of a target application, typically consisting of additional function

calls to an external data aggregator that records provided data and finally writes

to file. The direct insertion allows (i) the collected performance data to be directly

associated with specific code blocks, (ii) for overhead costs to be controlled, and

(iii) for non-performance data to be collected such as array sizes and variable values.

Thus this provides the most accurate data, but for a comprehensive understanding

then significant code modification is required; for a large application, comprehensive

collection is only feasible with a tool that automatically inserts the instrumentation.

Consideration must be given to the overhead of the instrumentation, and so is

typically inserted around significant loops and pre-existing function calls rather than

within.

Whichever method is used, the collected data is at the fine granularity of

individual functions or loops, and for a parallel code the data is further broken

down to individual processes or threads. This enables an understanding of which

portions of the code are consuming the most time, and whether a parallel workload

is being evenly distributed across processes. Further, it enables the calculation of

performance metrics that concisely represent application performance, and enable

comparison with other codes.

2.2.1 Runtime metrics

When analysing runtime, or using it to inform a decision, it is typically compared

against a second runtime after a change in execution environment. This could be a

change in hardware such as a processor upgrade, or a change in the software such as

a data layout optimization or different parallel programming abstraction. The most

common metric here is runtime speedup, which for example is 2× if the runtime

reduced by 50%:

speedup =
runtimebefore
runtimeafter

(2.1)

12



This can also be applied to a change in parallel hardware resources assigned

to execution of a parallel code. Specifically, the speedup provided by N parallel

threads over one serial thread can be defined as:

S(N) =
runtime1

runtimeN
(2.2)

This can be generalised to measure the speedup of N parallel resources over

one; this resource can be one thread as describe above, or it can be one entire

compute node. A better metric for parallel performance incorporates the expectation

(or hope) that speedup will equal N. If the achieved speedup is less than N, then the

additional hardware resources are not being fully utilised. This metric is parallel

efficiency, and is calculated by dividing the speedup by N, giving a value between 0

and 1 (full efficiency):

efficiency(N) =
S(N)

N
(2.3)

There are two common reasons why parallel efficiency can be below 1.0,

otherwise known as parallel efficiency loss – resource contention and imperfect

workload decomposition. Most multicore systems have two shared hardware resources

- main memory, and the network interface. The total electricity consumption and

heat dissipation within a processor package can also be considered a shared resource.

This manifests as a problem in multicore processors with dynamic clock frequency

- as more cores are utilised then heat and power draw increases, and the clock

frequency is reduced to manage these. This is also known as thermal throttling, and

is particularly noticable with vectorised codes. For many HPC codes and systems,

contention for these shared resources is a significant problem and constrains parallel

performance.

The second reason for parallel efficiency loss relates to how a parallel workload

is distributed and synchronised among threads or processes. The goal with parallel-

ising a workload is that each parallel thread of execution receives an equal portion

of work, such that they complete at the same time - a perfectly balanced load. Any

inequality in the distribution results in some threads idling as they wait for other

threads to finish - load imbalance. Minimising load imbalance is particularly difficult

for some codes, and an important area of research. Most HPC codes that distribute

work among processes (rather than purely threads) will require frequent inter-process

communication to synchronise data. For example with iterative stencil loops where

an array value update requires neighbouring values, some of those neighbours will

reside on other processes requiring inter-process communication to transfer their

13



values. This synchronisation introduces additional work that can become significant

at high process counts.

2.2.2 Performance counters

Within processors there are hundreds of specific and varied hardware events. Some

common examples are a clock cycle, the retiring of an instruction, and a L1 cache

miss. There are more specific events, such as a clock cycle on which no instructions

were scheduled for execution, or a memory store instruction being retired. These

allow for a uniquely deep insight into performance of a code. To count occurrences

of these events a modern processor provides a much smaller number of specialised

registers. These counters are directly integrated into the architecture, so they count

events with zero overhead; only the configuration and later retrieval from user space

has overhead, albiet low at approximately 10,000 cycles, which for a benchmark code

like STREAM is 5% or less [50].

Configuring of and access to most counters is performed via model-specific

registers (MSRs), which are only accessible from kernel space; the exception are

uncore (off-core) events that are configured via the PCI address space, but in Linux

this is also only accessible by the kernel. The perf interface in Linux provides

user access to this functionality, as both a command-line utility and through an

API of system calls. On top of this are built several libraries, the most popular

being the performance application programming interface (PAPI) library [7]. It

provides access to ‘preset’ events, which are a commonly-used subset of all available

CPU core events with architecture-agnostic and vendor-agnostic aliases; this set

includes the example hardware events listed earlier. It also provides access to all

‘native’ events, necessary when measuring uncore events such as those monitoring

main memory traffic. Listing 2.1 shows the ease with which PAPI allows several

performance counters to be monitored during execution of a code block, in this case

cycle consumption and number of instructions of a computation loop.

Listing 2.1: PAPI code to record cycles and instructions of ‘compute loop()’

int e v e n t s e t i d ;

PAPI create eventse t (& e v e n t s e t i d ) ;

PAPI add named event ( e v e n t s e t i d , ”PAPI TOT CYC” ) ;

PAPI add named event ( e v e n t s e t i d , ”PAPI TOT INS” ) ;

PAPI start ( e v e n t s e t i d ) ;

compute loop ( ) ;

long counts [ 2 ] ;

PAPI stop ( e v e n t s e t i d , counts ) ;

14



There are many events within a modern processor that can be monitored,

many of which have configurable options. A summary of the most useful events are

covered here, many of which relate to the cache hierarchy. The L1 cache typically

has a small number of events, for when a cache line is replaced. A line replacement

indicates that a load instruction requested data not in cache, or that the hardware

prefetcher pre-emptively loaded a new cache line. The remaining levels of cache

have more events, with fine granularity to provide a rich understanding of how the

cache hierarchy is being utilised. They differentiate between requests for code or

data, whether a request is to load data or read-for-ownership (RFO) (for writing),

whether a load/store instruction or prefetcher created the request, and whether the

requested data was present or missing. The core pipeline has various events being

monitored, in particular: cycle consumption, stalled cycles, and instruction counts.

2.3 Mini applications

There are numerous benchmarks and mini-applications representing the performance

of different classes of HPC applications, some of which have been released as compon-

ent parts of projects such as the Mantevo Project [25], the ECP Proxy Apps Suite [1],

and the UK Mini-App Consortium [14]. Mini-applications from these repositories

have been used in a variety of contexts.

One such example is miniMD, which has been used to explore the performance

of molecular dynamics codes on the Intel Xeon Phi Knights Corner architecture [47].

Using a combination of AVX intrinsics and algorithmic optimisations, e.g. overlapping

PCIe transfers with computation, the authors demonstrate a 5× speed-up for the

gather-scatter bottleneck typically present in MD codes.

Mallinson et al. compare the performance of two PGAS programming models

(OpenSHMEM and Co-Array Fortran) against MPI using CloverLeaf, an Lagrangian-

Eulerian hydrodynamics mini-application [36]. The authors demonstrate that Open-

SHMEM is able to outperform an equivalent MPI implementation by 7.78 iteration-

s/sec, at 4096 sockets, when using proprietary nonblocking operations from Cray

and 4 MB memory pages.

LULESH, a hydrodynamics mini-application representative of ALE3D, is used

to assess the suitability of emerging parallel programming models (e.g. Liszt and Loci)

along with more established models such as OpenMP [31], in terms of programmer

productivity, runtime performance and ease of optimisation. The reduced size of

LULESH when compared with ALE3D allowed the authors to examine eight parallel

programming models. Their conclusion highlights that while the emerging models

15



such as Chapel and Loci enable a high level of productivity, they cannot match the

performance of more established models such as MPI and OpenMP.

Similarly, Giles et al. examine the performance of OP2, a domain-specific

abstraction library (DSL) for unstructured grid codes using the AIRFOIL CFD mini-

application [48]. The authors demonstrate that they are able to achieve performance

within 6% of a hand-coded implementation.

The CFD code included in the Rodinia benchmark suite has been used

to examine the performance of a Graphic processing unit (GPU) when running

unstructured grid applications [15]. From the results, Corrigan et al. conclude that

GPUs show promise for this class of code given an increase in double precision

performance in the future.

2.3.1 Characterising similarity

A typical mini-application is designed around one or several key loops extracted

from a target application, i.e. it contains code from the application with minimal

‘boilerplate’ for execution (hence “mini”). Thus it can be assumed that the key

performance characteristics are captured, with some simple performance comparison

to verify this. But it is not always possible or desirable to share code with an

application, for example if that application is subject to intellectual property (IP)

restrictions that greatly limit portability – one important feature of a mini-application

is portability. For these scenarios, the mini-application will have to differ in code, but

still capture the key performance characteristics – this sub-class of mini-application

is referred to as a proxy-application. Then verification of similarity becomes more

important.

Research on verifying similarity is a relatively young field, with the earliest

known work in 2014. Most of this research has a common theme – quantify the

degree to which a proxy-application and its target application stress the same

parts of hardware, and design a metric to embody the similarities. Barrett et

al. proposed that if a proxy-application is similar to its target, then it should be

predictive of performance [4]. A direct interpretation of predictive is used, meaning

the performance metric (e.g. runtime) should simply match without transformation.

Tramm et al. first proposed using correlations between hardware performance

counters and parallel efficiency loss, where a strong correlation indicates a particular

hardware event is harming performance [59]. Where strong correlations are exhibited

(> 0.85), if both codes exhibit similar correlations for the same hardware events, then

the proxy-application can be considered to be similar to the target. A limitation

of this work is that the data processing is manual. Is 0.85 the right threshold for a

16



strong correlation? What size difference between the two correlations with an event

is needed to mean dissimilarity?

Islam et al. improved upon this approach with machine learning techniques,

automating feature selection and data analysis [29]. This enables two robust met-

rics: (i) the significance of a particular hardware resource (e.g. L2 cache) to the

selected performance attribute (e.g. parallel efficiency loss); (ii) the similarity of

this significance between proxy-application and target code. Aaziz et al. added

MPI metrics to the analysis – times, message sizes and counts, grouped by MPI

primitive type (send, recv, collective, wait) – and applied hierarchical clustering

directly to the metrics rather than correlate with runtime or scaling [2]. A standard

cluster similarity metric quantified similarity of a proxy-application, effectively for

in-core metrics, but struggled on their MPI metrics where the proxy-application used

different MPI primitives to its target. They later abstracted away from primitives

with a metric based on pair-wise communication, assisted by CrayPat profiler [3].

2.4 Performance modelling

The previous section summarised research on verifying proxy-applications. These are

important and useful contributions, adding robustness to the verification. But they do

not directly address whether or how a proxy-application can predict performance of

its target application. If a proxy-application is highly similar to its target application,

then it should be possible to use it to generate accurate performance predictions of

the target. Two relevant areas of research are reviewed here – performance projection,

and mechanistic modelling of processors.

2.4.1 Performance projection

Performance projection concerns the application of purely statistical or machine

learning techniques, to predict performance of one code from a variety of others.

Sharkawi et al. propose a technique of identifying surrogate codes that are quantifiably

similar to the target code according to 25 performance metrics [53]. These surrogates

are executed, and a genetic algorithm calculates a weighting based on how similarly

performance is affected by the hardware resources. Their weighted average is used

as a prediction of compute performance (excluding MPI), achieving a mean error

of 7.2% on a IBM Power6 and 10.5% on a Intel Core. In follow-up work they add

a performance model for MPI communications [54]. Hoste et al. apply a similar

technique but to microarchitecture-independent metrics, predicting the ranking of

machine performance with 0.89 mean rank correlation [27]. Shweta et al. seek

17



to achieve both goals, predict performance (not just ranking) but without system-

specific hardware metrics [52]. Similarity is calculated as in prior work, as Pearson

correlation of a performance metric across systems, but they use collaborative filtering

from social networks to identify similar benchmarks. Rather than predict runtime,

they predict instructions-per-second (IPS). They report RMSE values, calculated

across predictions – mostly these fall between 1 to 3, but the IPS values range 0.05

to 22.99, so for those applications near the low end of range this RMSE is very high.

No per-application errors are given. Wang et al. apply a deep neural network (DNN)

model to hardware features readily provided by manufacturers (cores, cache size, etc),

to predict performance on new Intel architectures and SKUs [64]. Evaluated with two

benchmark suites, SPEC and Geekbench, model error is 5% and 11% respectively.

2.4.2 Mechanistic modelling of superscalar processors

A mechanistic core model is an analytical performance model with structure derived

from the processor core architecture. In the context of modern superscalar processors,

this model typically focuses on throughput of instructions through, and bottlenecks

of, the various pipeline stages. These are intended to execute several magnitudes

faster than a cycle-accurate simulator.

Michaud et. al present the first mechanistic model relevant to a superscalar

processor, constructing a simple model of the interaction between branch mispredic-

tion rate and instruction fetch rate, exploring how this affects the achievable ILP

within the processor design space [38]. Despite its simplicity it provided useful insight

into processor design, indicating that to double ILP it is necessary to both double

the instruction fetch rate and reduce the branch misprediction rate by 4×. Taha

et. al extend this much further to cover more stages of the superscalar pipeline [56].

They also introduce the concept of the interval model, although they term this

macroblocks, where instructions are approximated as executing in blocks separated

by misprediction-induced stalls. They implement three specific extensions to capture

additional bottlenecks within a superscalar processor:

• limited throughput of functional units of each instruction class

• reorder buffer with limited size, which limits the scope for out-of-order execution

• limited instruction retirement bandwidth

The resulting analytical model does have a simulation aspect to estimate the ILP of

a code, treating this as an emergent property of the interaction between code and

architecture. This simulation tracks chunks of instructions flowing from the cache

18



through the queue, the reorder buffer, the functional units, then finally to retirement.

This approach is both coarse and abstracted, avoiding the computational costs of

cycle-accurate simulators. Transfer between each stage is bounded mechanistically;

of particular interest is the formulation for the functional unit bottleneck. This

states that the overall instruction issue rate (to functional units) is bounded by

that class of instruction which has the lowest ratio between number of compatible

functional units and proportion of executing code that is of that class. Validated

against a cycle-accurate processor simulator of a MIPS R12000 out-of-order processor

predicting the performance of the SPEC95 integer and floating-point benchmark

suite, the model completed 40,000× faster and diverged with mean absolute error

of 5.5%. Of particular interest are three of the SPEC95 floating-point benchmarks

that solve PDEs, as these are similar to the code that is the subject of this thesis.

For these benchmarks, the mean error is higher at positive 12.8% with a bias to

over-prediction.

Van den Steen et al. apply a similar mechanistic model to the Intel Nehalem

architecture [61]. Much of this work is to evaluate architecture-independent models

of cache and branch miss rates on an existing interval model [19], but they also

propose an improvement for functional unit modelling. One key difference in Nehalem

from the older MIPS 12000 is that it attaches multiple functional units to a single

port, in particular just two ports host 16 of the 20 of the arithmetic functional

units [28]. In contrast, within the MIPS 12000 architecture each functional unit is

located on a single dedicated port [65]. This introduces a new potential bottleneck,

which they model with no abstraction with the rule that each port can accept

at most one instruction per cycle, under the condition that the target functional

unit is idle. Validation against the SPEC CPU 2006 benchmark suite produced

similar accuracies as Taha et. al, with mean absolute error 7.6%, and for the four

floating-point benchmarks that solve PDEs mean error is positive 12.5% with a bias

to over-prediction.

19



2.5 Summary

This chapter provides an overview of the various degrees of parallelism within a

typical modern computing cluster node. Achieving a high proportion of the available

performance requires thought and consideration from the HPC programmer; it is

insufficient to rely on the compiler to extract all parallelism from a code. Particularly,

thought must be given to how data is mapped to the parallel hierarchy.

This chapter also covers tools and techniques that help navigate the complexity

in HPC. These evaluate whether a HPC code is extracting a good proportion of the

available parallelism. They also help to identify performance improvements, whether

through code optimisation or targeted hardware upgrades. Finally, it summarises

current research in performance prediction, which can improve the benchmarking

capability of these tools.

20



Chapter 3

Computational Fluid Dynamics,

Software and Hardware

CFD is the use of numerical analysis to solve a system of mathematical equations

that describes physical phenomena relating to fluid dynamics. The development of

CFD can be traced back to Los Alamos National Laboratory in the late 1950s, when

they received a sufficiently capable scientific computer [24]. CFD developed with

increasing computing capability, enabling the simulation of increasing complexity in

fluid flow and geometry.

3.1 HYDRA

HYDRA [33] is a suite of nonlinear, linear and adjoint solvers developed by Rolls-

Royce plc. in collaboration with a number of UK universities. These solvers target

airflow within turbomachinery, where the flow must be modelled as compressible,

viscous and turbulent. As such they solve the Reynolds-Averaged form of the

compressible Navier-Stokes equations, which embody conservations of mass, mo-

mentum and energy. Turbulence modelling is enhanced with the Spalart-Allmaras

one-equation model [55]. Equations are discretised using a MUSCL-based flux-

differencing scheme, then block Jacobi preconditioned [39]. An explicit 5-stage

Runge-Kutta scheme is applied to improve stability in high viscosity regions, and

convergence of the multigrid method [37].

3.1.1 Unstructured grid

When seeking to model fluid flow, there is a physical geometry which it flows

through or around, such as an airfoil or a turbine blade. A critical decision is

21



Table 3.1: Significant constituents of HYDRA runtime, measured on a single node of
Xeon Broadwell with 28 MPI processes

Loop Function Runtime %

VFLUX Viscous fluxes 35.8

GRAD Gradient 16.8

SRCSA Spalart-Allmaras source term 14.6

IFLUX Inviscid fluxes 10.7

UPDATE Update flow 7.3

JACOB Jacobi preconditioner matrices 6.8

— Other routines 8.0

Figure 3.1: Comparison of structured and unstructured grid [62].

whether to represent this geometry and surrounding space using a structured grid

or an unstructured grid, as it influences numerical accuracy and computational

performance.

A structured grid is generated by decomposing a spatial volume into cells

according to a fixed and regular topology that maps directly to array elements. Then

the spatial properties of an array element (position, volume etc) and its neighbours

can be determined solely from the topology, and do not need to be stored in memory.

Assuming a 3D space, then the simplest topology is a 3D arrangement of identical

cuboids that map directly to a 3D array. A structured grid has limited ability to

represent complex surfaces, if those surfaces can be accurately represented with

parametric curves or surfaces. For example in Figure 3.1 (left), a structured grid is

representing an aircraft nose and cockpit with parametric curves.

22



An unstructured grid uses no topology to decompose space. Instead, it

partitions space into polyhedra cells with no constraints on size, uniformity, nor

regularity. A mesh of nodes and edges is fitted to the cells, such that each mesh node

represent a cell and each mesh edge represents the shared face between a pair of

adjacent cells. With no topology restricting decomposition, an unstructured grid is

better able to represent complex geometries and adaptively increase grid resolution

in spatial regions where fluid flow is potentially more complex or of more importance.

An example is shown in Figure 3.1 (right). The cost of this freedom is greater

difficulty in achieving high-performance, particularly around memory utilisation.

Consider a typical CFD calculation, calculating and accumulating fluxes passing

into a cell through its faces – this can execute as a unit-stride loop over mesh nodes

(cells), that then must indirectly access data belonging to connected mesh edges

(cell faces) such as area and the flux. An indirect memory access occurs where the

memory address cannot be directly calculated from the loop iterator, but instead

is an arbitrary value stored in memory, for example v = e[n[i]]. This indirection

leads to irregular memory access, that reduces spatial locality and the effectiveness of

hardware prefetchers. A third approach is to use a hybrid grid, best thought of as an

unstructured grid of structured grids. This Thesis concerns a CFD application that

uses unstructured grid, and so further discussion or reference to grid representation

will focus on the purely unstructured variant.

In this work two different meshes are used of very different sizes, both multigrid

(MG). The smaller mesh is derived from the geometry of Whittle Laboratory’s low

pressure axial flow turbine rotor cascade, a mesh of 105 K nodes and 305 K edges

representing a single rotor root section (blade and hub connection) [26]. To aid

visualisation a rotor section of NASA’s SSME 2-stage fuel turbine is shown in

Figure 3.2, consisting of multiple root sections with similar structure to the mesh

used [42]. Three MG meshes are derived from the base mesh, introducing an

additional 118 K nodes and 439 K edges. Being a small mesh, this is particularly

useful for weak scaling where a larger mesh would exceed available memory.

The larger mesh used is the NASA Rotor 37 mesh of an axial compressor

rotor [49]. The geometry it represents is also similar to the example rotor shown

in Figure 3.2. This contains approximately 8.1 M nodes and 24 M edges, with an

additional three MG meshes that results in a total count of approximately 15.7 M

nodes and 53 M edges. This mesh is best used for strong scaling benchmarking, of

up to several hundred processes.

23



Figure 3.2: Visualisation of a rotor section from NASA’s SSME 2-stage fuel turbine,
similar to the meshes used in this work.

3.1.2 Multigrid

HYDRA employs multigrid methods which are designed to increase the rate of

convergence for iterative solvers, and possess a useful computational property – the

amount of computational work required is linear in the number of unknowns [60].

Multigrid applications operate on a hierarchy of grid levels; in this paper, we are

concerned with geometric multigrid, wherein each grid level has its own explicit mesh

geometry, and the coarse levels of the hierarchy are derived from the geometry of

the finest level. One method of constructing a coarse level is to join pairs of cell

volumes in the finer level, as shown in Figure 3.3. This chosen construction method

determines how information is transferred between cells of adjacent levels, with each

cell of the coarser level being linked to those cells in the finer level from which it was

derived.

Starting at the finest level, multigrid applications use an iterative smoothing

subroutine to reduce high frequency errors. Low frequency errors are then transferred

to the next coarsest level (restriction), where they appear as high frequency errors and

can thus be more rapidly smoothed by the same subroutine. Error corrections from

the smoothing of coarse levels are then transferred back to finer levels (prolongation).

The order in which prolongations and restrictions are applied is know as a cycle, of

which this paper considers a single type – the so-called V-cycle.

There are several performance implications of using a geometric multigrid

solver. First, there is the increased memory requirement of explicitly representing

the geometries of all levels of the multigrid. Second, there are the additional irregular

memory accesses from prolonging and restricting corrections between levels of the

multigrid. Third, the coarsened meshes have reduced spatial locality.

24



Level boundary

Edge

Node
L1

L0

Cell volume

Multigrid edge

Figure 3.3: Representation of a finite-volume decomposition mapped to an unstruc-
tured grid over two multigrid levels.

3.1.3 OPlus

Originally a sequential code, HYDRA incorporated the OPlus DSL to provide

parallel computation [11]. OPlus (Oxford Parallel Library for Unstructured Solvers)

is designed to be inserted into an existing codebase with minimal effort, if of course

that code is concerning computation over unstructured grids. The programmer adds

calls to OPlus routines around each compute loop, with the library itself managing

all parallel-related activities, namely the partitioning of the input grid, file I/O, and

inter-process data synchronisation. This enabled HYDRA to transition to the highly

parallel machines that began to emerge several years prior.

3.2 HYDRA performance engineering

3.2.1 HYDRA performance model

An analytical performance model of HYDRA has previously been developed, most

recently described in this publication [10]. It considers total runtime as being the

summation of the maximum runtime of each loop, adopting the bulk synchronous

parallel (BSP) model for loop execution across the MPI processes. Communication

is assumed to overlap with the independent portion of compute.

This model adopts a bottom-up approach in calculating expected runtime,

beginning with the average runtime of a single loop iteration known as grind time. As

HYDRA operates on multigrid meshes, typically consisting of four levels of distinct

25



meshes with increasingly irregular sparsity, then grind time of a loop operating on

different levels can (and often does) vary. Accordingly, each loop has four grind

times, one for each multigrid level. In the model formulation this is termed Wg,l (i.e.

Wgrind,level). Each process has Ni independent elements and Nd elements dependent

on neighbouring processes data, determined by the mesh partitioning. Then the time

spent in e.g. independent compute is simply Wg,lNi. A simple network latency and

bandwidth model is used to calculate the halo exchange time C for elements of size

B bytes, with variables primed by the Intel ping-pong MPI benchmark: latency α

and reciprocal bandwidth β. Then loop runtime Wl is the greatest of communication

time C or independent compute, plus dependent compute:

Wl = max(Ni,lWg,l , Cl) +Nd,lWg,l (3.1)

C = α+ βNdB (3.2)

The initial model predictions disagreed with observations, leading to the

identification that the communication was not fully overlapping with the compute.

Despite all MPI send and receive requests being initialised before computation, some

MPI messages were not transferring until after the sending processes had completed

their compute. The asynchronous MPI Isend was replaced with its synchronous

variant MPI Issend, and an additional MPI wait added, enforcing the behaviour that

a process must wait until all of its sends have begun transferring before computing

on its received dependent data. This modification provided a significant speedup,

and the resulting observed performance was in agreement with the model prediction,

shown in Figure 3.4.

Model limitations

The performance model has two limitations: the need to collect partitioning data,

and the need to measure Wg on a target system.

For parallel execution Ni and Nd are determined by the partitioner, and

although mesh partitioners aim to generate equal sized partitions, unpredictable

variance in Nd across the processes is unavoidable due to the unique connectivity and

geometry of the mesh. This variance is an increasing problem for predicting strong

scaling performance, as the size of the variance relative to Ni increases. Furthermore,

Ni of each multigrid mesh is determined by its relation to the partitioned finest mesh,

not directly by the partitioner, which is observed to lead to significantly unequal

partition sizes. Thus to generate model predictions, the mesh must be actively

26



12 24 48 96 192 384
0

50

100

150

Number of Processes

R
u

n
ti

m
e

(s
ec

on
d

s)

Observed (Orig.) Observed (Opt.) Predicted

Figure 3.4: HYDRA observed performance, before and after optimisation, and the
performance model predictions. Model highlighted sub-optimal performance, caused
by nonblocking asynchronous MPI communication not overlapping with compute.
Switching to nonblocking synchronous MPI improved overlapping, matching model.

partitioned at the desired process counts, requiring sufficient hardware resources

which may not be readily available.

Another limitation is that Wg must be measured, limiting this model to

predicting performance on those systems that have been cleared for receiving and

executing HYDRA.

3.2.2 MG-CFD proxy-application

A mini-application is a tool designed to capture one or several key performance

characteristics of a target application, or of a class of applications. MG-CFD is

one such tool, designed to capture the compute and scaling characteristics of the

unstructured grid computation in HYDRA [8]. In the original work this software was

named mini-HYDRA, only recently renamed to MG-CFD to emphasise that it does

not contain any source code of HYDRA. It is based on an existing open-source CFD

solver, rather than contain key CFD kernels from HYDRA, to avoid commercial

portability restrictions [15]. Thus this makes MG-CFD a proxy-application, a subclass

of mini-applications. This existing solver, now included in the Rodinia benchmark

suite [15] [13], implements a three-dimensional finite-volume discretisation of the

Euler equations for inviscid, compressible flow over an unstructured grid. HYDRA

differs to this solver in only two key areas: (1) Navier-Stokes equations for viscous

27



and turbulent flow are discretised and (2) multigrid techniques are used to accelerate

solution convergence. This existing code is written in C, and during adoption

it was extended with simple use of C++ Standard Library (such as vector and

string). This provides advantages over Fortran, as many contemporary HPC

software technologies support C/C++ before Fortran. A notable example is NVIDIA

CUDA, first released in 2007 with a C API with Fortran support following two years

later [20]. The addition of C++ has been limited to Standard Library to ensure it

retains the same degree of compiler portability as plain C.

Details

To capture the performance characteristics of multigrid in HYDRA, MG-CFD extends

the open-source solver with crude multigrid operators to transfer grid state between

levels. These operators are defined by Equations 3.3 and 3.4 which serve as restriction

(fine to coarse grid) and prolongation (coarse to fine grid) operators respectively [6].

Where ulj represents simulation property u of node j at level l, and N l
j is the set of

node indices which are linked to node j at level l from l − 1 of the grid.

ulj =

∑
i∈N l

j
ul−1
i

|N l
j |

(3.3)

ul−1
i∈N l

j

= ulj (3.4)

The restriction operator (Equation 3.3) primes the simulation properties with

an average across nodes from the finer grid level – this mapping between levels is

defined as part of the input deck. The prolongation operator (Equation 3.4) reverses

restriction by injecting the values from the coarse grid to the fine grid as dictated by

the mapping.

Validation

To enable validation of MG-CFD a mini-application was created, named compact-

HYDRA, which contains an actual flux calculation kernel from HYDRA that has

been ported from Fortran to C. Ideally the chosen kernel would be the viscous flux

calculation kernel vflux, as it typically accounts for approximately 35% of total

HYDRA runtime and is its single most expensive loop. However to simplify the

extraction and conversion task, the smaller inviscid flux kernel iflux is selected.

These two flux routines are computationally very similar, performing a calculation

and integration of cell volume surface fluxes, but the iflux kernel performs much less

28



3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

Threads

P
ar

al
le

l
E

ffi
ci

en
cy

Mini-HYDRA Compact-HYDRA

Figure 3.5: Parallel efficiency of mini-HYDRA and compact-HYDRA on Xeon
Haswell.

arithmetic and so easier to detach from HYDRA. MG-CFD and compact-HYDRA

differ only in the particular flux calculations performed – both loop over the same

unstructured grid mesh, use the same multigrid cycle, and use the same Runge-Kutta

time-stepping. This enables the attribution of any observed performance differences

(or lack thereof) to the flux kernels.

MG-CFD is validated by comparing its scaling performance to that of compact-

HYDRA. Firstly, parallel efficiency of each of the four multigrid levels is compared,

with that of the finest grid shown in Figure 3.5. At low thread counts there is

significant dissimilarity, with parallel efficiency of MG-CFD fluctuating with no trend

while that of compact-HYDRA falls steadily with increasing thread count. The reason

proposed was that MG-CFD is particularly sensitive to the available cache bandwidth,

evidenced by it performing 2-3× more L2 cache reads than compact-HYDRA and

that this fluctuation was not seen on the older Xeon Ivy Bridge architecture with

50% less cache bandwidth. At moderate and high thread counts both codes exhibit

similar parallel efficiency, falling to a minimum of approximately 0.25. The other

three grid levels exhibit a similar pattern.

The second validation method applied was to assess whether both codes share

the same cause of parallel efficiency loss. This calculates the correlation between

parallel efficiency loss and various hardware performance counters for each code, then

they are manually compared and assessed [59]. Figure 3.6 presents the correlations

on Xeon Haswell; for most counters, both codes exhibit a similar correlation, but there

are two classes of counters where the codes are dissimilar. The first are L2 request

counters (and L1 miss counters), where compact-HYDRA exhibits strong positive

correlation but MG-CFD exhibits weak positive or strong negative correlation; this

is attributed to both codes having different sensitivities to cache bandwidth. The

second class relate to cache coherence events, with compact-HYDRA exhibiting no

29



correlation but MG-CFD exhibiting moderate negative correlation. This was not

discussed, likely because the absolute values are below 0.8 and so not strongly related

to parallel efficiency loss.

3.3 Summary

This chapter introduced HYDRA, a CFD simulation code used by Rolls-Royce for

aerospace design engineering. CFD simulation is an important part of designing new

and improved turbomachinery, in terms of power and fuel efficiency, so investigating

HYDRA is beneficial. Its key performance characteristics are described – irregular

unstructured grid, and more irregular multigrid, that map poorly to modern processor

architectures, as these best process structured grid (simple arrays). An overview of

how HYDRA currently achives HPC is provided, via the OPlus DSL.

Existing work on developing performance tools for HYDRA are summarised.

An existing performance model of HYDRA can identify sub-optimal performance, and

explore alternative partitioners, but it requires accurate benchmarking data. A proxy-

application of HYDRA has also been developed and validated. Addressing limitations

of the proxy-application, and exploring its use in collecting the benchmarking data,

is the focus of this thesis.

30



−1 −0.5 0 0.5 1 1.5 2

Conditional BR
BR
Conditional BR mispredicted
Conditional BR not taken
Conditional BR correctly predicted
Conditional BR taken
Unconditional BR

Cache line invalidations
Cache line interventions
Snoops

L1 misses
L2 requests
L2 requests: code + data
L2 misses
L3 requests: code + data
L3 misses

L1 misses: data + RFO
L1 writebacks
L2 requests
L2 requests: data
L2 requests: load data
L2 RFOs
L2 misses: data + RFO
L2 misses: load data
L2 misses: prefetch
L2 misses: RFO
L3 misses: data
L3 misses: load data
L3 misses: load uops
L3 misses: RFO

L1 misses: code
L2 requests: code
L2 hits: code
L2 misses: code

Cycles
Instructions retired

Loads + stores
Data TLB misses
Code TLB misses

Cycles max uops retired
Cycles max uops issued
Cycles stalled on write
Cycles stalled
Cycles no uops retired
Cycles no uops issues

B
ranching

C
ache

coherence

C
ache

all

C
ache

data

C
ache

code

M
em

ory

Pipeline

Correlation with Parallel Inefficiency

CompactHYDRA MiniHYDRA difference

Figure 3.6: Plot of correlation between parallel efficiency loss and various PAPI
performance counters for MG-CFD and compact-HYDRA on Xeon Haswell. The
difference in correlation between MG-CFD and compact-HYDRA is also plotted,
which can exceed 1.0 for serious divergence (worst case is ±2). Major divergence
occurs with events relating to L1-L2 data traffic. Negligible divergence (i.e. high
similarity) in events relating to L2-L3 traffic and pipeline utilisation.

31



T
ab

le
3.

2:
H

ar
d

w
ar

e/
so

ft
w

ar
e

co
n

fi
gu

ra
ti

on
s

H
a
rd

w
a
re

A
rc

h
it

e
c
tu

re
In

te
l

W
es

tm
er

e
In

te
l

B
ro

ad
w

el
l

In
te

l
S

k
y
la

k
e

In
te

l
C

as
ca

d
e

L
ak

e
In

te
l

K
n

ig
h
ts

L
an

d
in

g

M
o
d

e
l

X
eo

n
X

56
50

X
eo

n
E

5-
26

60
v
4

X
eo

n
S

il
ve

r
41

16
X

eo
n

G
ol

d
62

52
X

eo
n

P
h

i
72

10

A
ll
-c

o
re

G
H

z
2
.8

2.
1

2.
7

3.
2

1.
3

C
o
re

s
1
2×

2
14
×

2
12
×

2
24
×

2
64

H
o
st

IS
A

S
S

E
4
.2

A
V

X
2

A
V

X
-5

12
A

V
X

-5
12

A
V

X
-5

12

M
e
m

o
ry

(G
B

)
2
4

12
8

96
38

4
16

H
B

M
+

96
D

D
R

S
o
ft

w
a
re

O
p

e
ra

ti
n

g
S

y
st

e
m

D
eb

ia
n

8,
L

in
u

x
4.

9.
0

C
o
m

p
il
e
r

In
te

l
18

.0
.2

T
o
o
ls

P
A

P
I

5.
5.

1

32



Chapter 4

Assessing and improving the

proxy-application MG-CFD

Designing a proxy-application to be representative of a large simulation code is

a challenging task. Without being able to simply extract the key loops from the

target, but instead have a different codebase, it becomes critical to verify that the

key performance characteristics have been captured. It is also important to consider

whether differences between the proxy-application and target can create divergent

results when implementing a code optimisation or hardware change.

This chapter reviews an existing proxy-application that has been validated

using methods taken from literature. A careful investigation identifies deficiencies

in the proxy-application that actually reduce its representativeness of the target

application. These are resolved, and the proxy-application further enhanced to

capture multi-node scaling characteristics.

4.1 Reviewing representativeness of MG-CFD

4.1.1 Arithmetic intensity

In the background Chapter 3.2.2 I presented the previous validation of the original

MG-CFD proxy-application, then named mini-HYDRA. This exhibited similar

parallel efficiency to compact-HYDRA, a Fortran-to-C port of a HYDRA loop

selected for its relative ease of extraction, indicating that MG-CFD had captured

the key scaling characteristics of unstructured grid compute. A necessary property

of MG-CFD for it to exhibit this high similarity, particularly at high thread counts,

is to have a similar arithmetic intensity as compact-HYDRA and so exhibit a similar

dependency on memory performance. The code from which MG-CFD is derived

33



1 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Threads

P
ar

al
le

l
E

ffi
ci

en
cy

MG-CFD compact-HYDRA

Figure 4.1: Parallel efficiency of compact-HYDRA and numerically-corrected MG-
CFD, on Xeon Skylake with AVX-512 auto-vectorisation. Similar scaling exhibited
until compact-HYDRA hits its memory-bound near 12 threads.

actually performs approximately 2× more arithmetic than compact-HYDRA, so

an unmodified MG-CFD would not scale similarly. This divergence can be seen

in Figure 4.1, which plots scaling performance on a Xeon Skylake node; initially

scaling is very similar, but diverges once compact-HYDRA becomes memory bound.

To equalise arithmetic intensity, the flux routine of MG-CFD had approximately

half of its arithmetic removed artificially, breaking the CFD simulation aspect of

the code. This then prevents its use for evaluating numerical optimisations such as

mixed-precision floating-point, and raises the question of why base MG-CFD on a

CFD code at all.

One solution is for MG-CFD to contain several variants of the flux kernel,

each with a different arithmetic intensity to match a particular HYDRA kernel of

interest; the generation of variants could be automated, so this could be a sensible

approach. But for this approach to work it requires the assumption that the ratio

between the instructions-per-cycle (IPC) rates of MG-CFD and the target kernel is

invariant to system changes, meaning that the individual rates are invariant or that

both codes are equally slowed-down (or sped-up). This is a reasonable assumption to

make, as both kernels operate on the same unstructured grid, use the finite-volume

method, and solve equations for inviscid fluid flow. However this assumption does

not hold.

34



KNL Skylake Broadwell
0

1

2
IP

C
ra

ti
o

SSE4.2 AVX2 AVX512

Figure 4.2: Ratio of compact-HYDRA IPC / MG-CFD IPC, of single-threaded
execution across multiple ISAs and architectures. For MG-CFD to provide reliable
performance assessment this ratio should be invariant, but variance exists - intra-ISA
(AVX512 on KNL vs Skylake) and intra-architecture (AVX2 vs AVX512 on KNL
(and Skylake)

Figure 4.2 shows the ratio between compact-HYDRA IPC and MG-CFD IPC

across three architectures - Intel Xeon KNL, Skylake and Broadwell - and several

ISAs. Varying both ISA and architecture increases the number of distinct execution

environments in which to compare MG-CFD and compact-HYDRA. Execution is

single-threaded to ensure it is assessing the architecture and not memory performance.

The greatest ratio variance is observed within KNL, when switching ISA from SSE4.2

to AVX-512 (unvectorised). MG-CFD experienced a doubling of its IPC rate but

compact-HYDRA experienced no change; an error of this magnitude when comparing

systems is highly significant. Variance is also seen when changing architecture, from

KNL to Skylake. Under AVX512, MG-CFD IPC increases by a modest 1.39× but

that of compact-HYDRA increases by 2.38×, a significant speedup that would be

missed if using only MG-CFD. A smaller but still significant disparity exists under

AVX2, with compact-HYDRA IPC increasing by 2.75× but MG-CFD increasing

by 3.69×, which would lead to MG-CFD overstating the benefit of a move from

KNL to either Skylake or Broadwell. No significant changes are observed when

switching from Broadwell to Skylake, which represents an incremental change in

architecture. Skylake is the successor to Broadwell, so is a similar architecture

with small tweaks regarding single-threaded execution, such as additional L2 cache

and slightly improved out-of-order execution. KNL however is a very different

architecture, based on Intel’s low-power Silvermont architecture extended with out-

of-order execution. Thus this indicates that while MG-CFD alone can accurately

assess incremental architecture changes, it can not be reliably used to assess very

different architectures, such as the Cavium ThunderX2 or AMD EPYC.

An alternative solution is to develop a performance model to describe the

variance of IPC and account for differing arithmetic intensity, in terms of the few

35



static differences that exist between MG-CFD and compact-HYDRA. This can also

provide deeper insight into performance than benchmarking, by highlighting those

hardware features that are strongly bottlenecking performance. This can be useful

in assessing the relevance of new features proposed in processor roadmaps, helping

to pinpoint those future architectures worth obtaining evaluation access to.

4.1.2 Data-safe parallel computation

Another caveat with MG-CFD as originally designed is that its validation used

strong scaling data, but ordinarily the indirect writes of unstructured grid codes

would prevent data-safe parallel computation without a mesh partitioner. To address

this, the original authors modified the flux routines of both MG-CFD and compact-

HYDRA to write directly to a new intermediate array, with the indirect writes

moved to a new subsequent sequential routine. This serves to reduce the similarity

between MG-CFD and HYDRA, as HYDRA performs both flux calculations and

accumulations together in the same loop. Specifically, this alters the interaction

between the cores and the memory hierarchy, as direct writes map well to the memory

structure which read/write entire cache lines, whereas indirect writes waste much of

the available write bandwidth with written cache lines being mostly unchanged data.

In the interest of ensuring that scaling performance data collected by MG-CFD is

representative of HYDRA strong scaling, restoring these indirect writes is essential.

To obtain data-safe scaling data without a partitioner, MG-CFD then must be weakly

scaled, meaning that each thread of execution has one (or several) whole copies of

the input mesh. At low thread counts, each thread may be given two or three copies

of the mesh to ensure that cache locality effects do not disproportionally benefit

their performances over many threads.

4.1.3 Validation of restored MG-CFD

To ensure that after these restorations that MG-CFD continues to be representative

of compact-HYDRA, and by extension HYDRA, the validation process is repeated.

As weak scaling is important here, then the mesh used is the smaller of the two

meshes described in Chapter 3. This contains 105 K nodes and 305 K edges in the

base mesh, and an additional 118 K nodes and 439 K edges in the MG meshes.

The PAPI library is used to collect performance counter data, which provides

easy access to available performance counters and additionally defines a set of

108 “preset” counters that include performance counters typically found in many

processors [7]. Figure 4.3 shows the correlation between each PAPI preset performance

36



−1 −0.5 0 0.5 1

Conditional BR
BR
Conditional BR mispredicted
Conditional BR not taken
Conditional BR correctly predicted
Conditional BR taken
Unconditional BR

Cache line interventions
Snoops

L1 misses
L2 requests
L2 requests: code + data
L2 misses
L3 requests: code + data
L3 misses

L1 misses: data + RFO
L2 requests
L2 requests: data
L2 requests: RFO
L2 hits: RFO
L2 misses: data + RFO
L2 misses: load data
L2 misses: prefetch
L2 misses: RFO
L3 misses: data
L3 misses: load data
L3 misses: load uops
L3 misses: RFO

L1 misses: code
L2 hits: code
L2 misses: code

DP FP ops
Cycles (norm. to non-turbo)
Cycles
Instructions retired
DP FP instructions

Loads
Loads + stores
Stores
Data TLB misses
Code TLB misses

Cycles max uops retired
Cycles max uops issued
Cycles stalled on write
Cycles stalled
Cycles no uops retired
Cycles no uops issues

B
ranch

C
ache

coherence

C
ache

all

C
ache

data

C
ache

code

M
em

ory

Pipeline

Correlation with Parallel Inefficiency

compact-HYDRA MG-CFD difference

Figure 4.3: Plot of correlation between parallel efficiency loss and various PAPI
performance counters for restored MG-CFD and compact-HYDRA on Xeon Skylake.

37



counter and parallel inefficiency. To account for variance of performance counters

between runs the mean of three measurements is used. For most of these events the

difference in correlation between MG-CFD and compact-HYDRA is less than 0.1,

indicating that both codes share many performance characteristics, but there are

several differences in correlations which we address here. The correlations for the

memory events loads and stores differ by 0.2, with the correlation being stronger

for compact-HYDRA. These events count store and load micro-ops, so compact-

HYDRA being more sensitive to these is in agreement with it having the lower

arithmetic intensity. A similar difference between correlations can be seen in the

branching events, but neither code performs branching operations within the loop

body so these are considered to be false positives. The only large difference is with

events relating to L1 cache misses (L1 misses, and L2 hits: RFO), for which a

strong correlation is only present with MG-CFD. This makes sense with knowledge

that MG-CFD has register spilling, but not compact-HYDRA. With spilled registers

effectively reserving some of the L1 cache, that leaves less for reuse of mesh data.

The additional correlation with L2 hits rather than with all requests to L2 indicates

that additional mesh data reuse is occurring from L2 not L1.

Where the correlation between a performance counter and parallel efficiency

loss is greater than 0.8, this indicates that the corresponding hardware activity

that triggers the counter has a strong influence on scaling performance. A strong

correlation is seen with RFO requests and misses throughout the cache hierarchy. In

the context of unstructured compute, this is an indication that the memory hierarchy

is less able to adequately prefetch the destination arrays in advance of the indirect

writes at higher thread counts. This in turn is an indication of contention in the

memory hierarchy that is present with both codes. Other notable events are Loads

and Stores which count store and load micro-operations and so is another indication

of pressure on the memory hierachy.

4.2 MPI strong scaling

To achieve true strong scaling, with multiple threads of execution operating on parts

of the same mesh, then mesh partitioning and exchange is required. Were the input

a structured grid this would be simple, as the data arrays could simply be sliced.

But with an unstructured grid, and particularly more so when that is multigrid,

greater care is required to ensure that all of the indirect references are correct after

partitioning and distribution.

38



1 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Compute nodes

P
ar

al
le

l
E

ffi
ci

en
cy

HYDRA vflux() MG-CFD flux()

Figure 4.4: MPI strong scaling parallel efficiency on Westmere cluster, of the expensive
HYDRA routine vflux and OP2-MG-CFD flux() routine

To reduce development time, an existing abstraction library designed for un-

structured grid is used – OP2 DSL [41]. The key code integration point between OP2

and MG-CFD is the declaration of mappings between mesh elements – between edges

and nodes, and between multigrid levels. Also for each loop, the data accessed and

whether indirection mappings are used are declared to OP2. Then OP2 partitions the

mesh using the selected partitioner (several are supported), distributes across parallel

processes (or threads), and maintains data synchronisation during execution. OP2

DSL also includes a Python code generator for targeting other parallel programming

APIs, such as CUDA and SYCL. Further justifying the selection of OP2 is that its

developers also had significant involvement in developing the OPlus library used in

HYDRA, which also partitions and distributes the mesh. The continued similarity

in code should result in continued similarity in scaling performance of MG-CFD and

HYDRA.

This version of MG-CFD with OP2 integrated will be referred to as OP2-MG-

CFD. With strong scaling in place, then validation can take place across a cluster of

nodes rather than a single node. The particular cluster used here is consists of 12

nodes connected by Infiniband, and each node contains 12 Intel Westmere cores –

full node details are detailed in Table 3.2. With more cores, it is appropriate to use

a larger mesh than was used in the previous validation – the Rotor 37 MG mesh

with approximately 24 M nodes and 77 M edges across four MG levels.

This validation is performed directly against HYDRA, rather than compact-

HYDRA. Parallel efficiency is also calculated slightly differently; rather than use one

39



1 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Compute nodes

P
ar

al
le

l
E

ffi
ci

en
cy

HYDRA MG-CFD

Figure 4.5: MPI strong scaling parallel efficiency on Westmere cluster, of total
walltime of HYDRA and OP2-MG-CFD

thread/process for the baseline performance, instead one fully-populated cluster node

is used, with multi-node scaling being compared. First comparing specific kernels,

Figure 4.4 shows the parallel efficiencies of (i) the flux routine in OP2-MG-CFD, and

(ii) the vflux routine in HYDRA, its most expensive loop. The iflux routine in

HYDRA is also shown, which was previously ported into compact-HYDRA. Across all

cluster node counts, OP2-MG-CFD flux() and vflux achieve a very similar parallel

efficiency, and at the highest count the difference is small enough to fall within

variance. The same high similarity is seen when comparing parallel efficiency of

total walltime of each code, shown in Figure 4.5. This high degree of similarity is

expected, as both codes were operating on the same mesh geometry, which through

the partitioner determines the load imbalance and communication pattern.

40



4.3 Summary

This chapter identifies the issues that can arise when using a proxy-application to

make inferences of the expected performance of a target application. Relatively minor

differences in the code content can result in significant differences in performance

when assessing new architectures. With the use of mini-HYDRA to directly infer

performance of compact-HYDRA, this issue manifested in two ways: (a) different

overall IPC, and (b) different memory-bounds. These manifestations would greatly

impair the ability to predict speedup of a new architecture or computing node. In

the original development of MG-CFD, then named mini-HYDRA, these issues were

addressed by removing arithmetic. This fundamentally breaks the mathematics

and prevents the proxy-application from exploring numerical optimisations such as

reduced precision. Further it only achieves similarity to that one HYDRA loop,

but others are more significant contributors to runtime. The indirect writes were

also removed from the primary CFD loop to ease collection of scaling performance

data, but this reduces mini-HYDRA’s similarity to HYDRA loops which perform

the indirect writes with the CFD.

The restoration of indirect writes and the arithmetic leads to expected and

specific differences in intra-node performance. Performance becomes memory-bound

at different thread counts, but before that point both codes scale similarly. MG-CFD

has increased sensitivity to L1 cache performance from increased register spilling,

but sensitivity to the whole cache hierarchy remains similar. MG-CFD is further

extended with MPI strong scaling with the OP2 DSL, and resulting parallel efficiency

across a cluster of compute nodes is very similar.

Faced with the same issues as the original proxy-application developers, of

specific performance differences to the target code, the next chapter will explore

a different solution to the problem. This will be to use performance modelling to

account for the difference, predicting the change in performance from the change in

instruction content.

41



Chapter 5

Performance model of MG-CFD

The previous chapter identified that the proxy-application MG-CFD had a signific-

antly different arithmetic intensity to the target loop compact-HYDRA. This led to

MG-CFD becoming memory-bound at different core counts. It also complicated the

task of benchmarking hardware, as the arithmetic intensity is sensitive to changes

in ISA, and the effect of the difference is sensitive to the architecture. Thus it is

insufficient to assume that the target loop of HYDRA would run at some fixed factor

of MG-CFD’s runtime. This is likely an issue faced by other proxy-applications of

scientific modelling application with significant arithmetic components.

MG-CFD is designed to be very similar to HYDRA loops, operating on

unstructured grid and performing CFD, differing only in the quantity and composition

of floating-point arithmetic. This raises the question of whether the observed variance

in arithmetic intensity can be quantitatively explained by this limited code difference,

enabling runtime prediction of HYDRA loops without execution. This chapter seeks

to answer that question, developing a performance model that predicts the difference

in runtime that results from the difference in arithmetic relative to MG-CFD.

This chapter will begin with an investigation into the observed variance in

IPC rates of MG-CFD and compact-HYDRA. It then designs a performance model

to explain this, using approaches from mechanistic modelling, as it is necessary

to understand how floating-point instructions are executed by the corresponding

execution units within the target architecture. Model development adopts two

goals - have minimal complexity, and require minimal technical information of the

target architecture which may be novel with limited information. Complexity is

progressively introduced only as simplifying assumptions are proven to prevent

accurate prediction. This increases the likelihood that the model will be applicable

to other architectures beyond those used for validation.

42



Table 5.1: Relative cost of double-precision FP DIV and SQRT instructions relative
to MUL, in clock cycles

Arch Scalar SSE4 AVX2 AVX512

Broadwell 4-5x 4-5x 7-9x -

Skylake 3-4x 3-4x 3-4x 6-7x

KNL 7x 5-6x 5-6x 5-6x

5.1 MG-CFD IPC investigation

As both MG-CFD and compact-HYDRA operate on the same unstructured grid, then

the observed variation in IPC is likely due to the arithmetic differences between them.

To accurately quantify this difference it is best to analyse the compiler-generated

assembly code, as these will be the instructions actually executed. The main flux

compute loops in both codes are simple one-dimensional loops over an unconditional

sequence of arithmetic, so disassembling the object files and identifying the loop is

mostly trivial. An exception is when the loop has been vectorised, as the compiler will

generate an additional remainder loop with slightly different length, and potentially

a second peel loop for data alignment. In this situation the detected loops within

the disassembly are cross-referenced with the performance counter for executed

instructions, selecting that assembly loop which is in agreement. In addition to

identifying the instructions, the number of memory loads and stores are counted.

This calculation is defined as the number of memory loads that are in addition to the

minimum necessary to read in the unstructured grid data, which can be determined

from source code analysis. To automate this loop identification and quantification

process a lightweight Python tool has been written [43].

The instructions within the identified loop are categorised by throughput

and type: low-throughput (LT) FP, high-throughput (HT) FP, and integer. Having

a separate category for LT FP instructions is important as these have significant

cost; for example one division or square root costs 3× to 9× more than a multiply

instruction. A full breakdown is given in Table 5.1. Any significant change in the

ratio of LT and HT FP instructions will alter overall IPC, so this must be quantified.

Figure 5.1 presents the proportion of FP instructions that are LT for compact-

HYDRA and MG-CFD. For compact-HYDRA this is approximately 5.5% under the

AVX ISAs, and 1.2% lower at 4.3% under SSE. MG-CFD on CPU architectures

exhibits the same pattern only doubled - approximately 11% under the AVX ISAs,

and 2.6% lower at 8.4% under SSE4. The two codes diverge significantly when

43



compact-HYDRA MG-CFD
0%

5%

10%

15%

S
lo

w
F

P
%

SSE4 AVX2 AVX512-CPU AVX512-KNL

Figure 5.1: Proportion of FP instructions in flux loop that are relatively ‘slow’,
meaning low throughput.

switching from Skylake to KNL under AVX-512; while compact-HYDRA has no

change in instruction content, MG-CFD has a significant reduction in the proportion

of LT FP, due to both a doubling of the number of HT instructions and a 38%

reduction of LT instructions. Thus while both codes execute at a lower IPC on KNL,

MG-CFD’s reduction is partly offset by the increase in HT % FP. This explains the

reduction of compact-HYDRA IPC relative to MG-CFD shown earlier in Figure 4.2.

5.2 Performance model development

The performance model for MG-CFD will be of the form of a mechanistic model

focused on throughput through the processor FUs. It is expected that the compute

bottleneck of both MG-CFD and compact-HYDRA will be the FP FUs, as these

codes consist mostly of FP instructions and to my knowledge all processors are

designed to decode instructions at a greater rate than they can pass through the

FP FUs. Focus on the FUs also allows for the bottleneck residing on the load

and store FUs, which may be the case if the code has a high quantity of register

spilling. Being a parallel code, the bottleneck of parallel computation may shift to

the achievable memory bandwidth, inter-process communication, or a combination

of both. This is determined by the unstructured grid dataset, as the grid-specific

indirect lookups determined by the ordering of the edges within arrays and numbering

of the nodes constrain data throughput. Typically a publicly-available mesh is used

by Rolls-Royce to assess unsecured systems, such as the NASA Rotor 37 mesh of

an axial compressor [49], so this can be used to directly measure the bounds of

memory and communication performance. Only the compute performance of the

commercially-sensitive loops within HYDRA, such as compact-HYDRA, need to

be predicted. An “unsecured” system in this context does not mean it is known to

be infected or vulnerable, instead it means a system which has not been explicitly

approved and configured for securely hosting sensitive IP such as HYDRA.

44



5.2.1 Difference model

The first model will aim to predict the performance difference between MG-CFD

and compact-HYDRA that results from the difference in instruction content. This

model considers performance in terms of clock cycle consumption, named Cmgcfd for

MG-CFD and Ccompact for compact-HYDRA. The model will focus on predicting the

cycle consumption of a single loop iteration of compact-HYDRA, named Cg,compact,

from Cg,mgcfd of MG-CFD.

Once Cg,compact has been estimated, then runtime prediction for thread count

T is trivial given the number of iterations and clock frequency. The number of loop

iterations performed is independent of hardware, as it is determined by the chosen

mesh partitioner. It is also specific to each executing thread or process, as each

can receive a different-sized partition, so the term iterst is introduced where t is

the thread identifier. Compact-HYDRA is assumed to execute at the same clock

speed as MG-CFD due to the high similarity between them, so the frequency term

HzT is also independent of code. The cycle consumption of a particular thread of

compact-HYDRA is calculated as:

Ct,compact = Cg,compact · iterst (5.1)

Then the walltime of compact-HYDRA, Wcompact, is calculated from the largest

value of Ccompact,t across all threads:

Wcompact =
maxT

t=1Ccompact,t

HzT
(5.2)

Superscalar execution

To predict the resulting change in cycle consumption of the change in instruction

content ∆I requires a model of superscalar execution to reflect the complexity in

modern architectures. A simple model is initially adopted, where each instruction

category is scheduled to a single dedicated execution port, and each category is

executed in parallel with, and independently of, other categories. The change in

instruction content is assumed to be large enough such that when added to a kernel,

the compiler is able to optimise the placement of individual instructions to maintain

ILP, and so inter-instruction dependencies are ignored. Memory loads and stores

are treated in a similar manner, with each mapping to a single dedicated port. For

brevity, a memory load or store operation will be referred to as an instruction. There

45



are five instruction categories in this simple model: LT FP, HT FP, integer, loads,

and stores. The change in instruction content is stored in the vector ∆I, where

∆Ii is the difference in quantity of instructions in category i between MG-CFD and

compact-HYDRA.

To begin calculating cycle consumption from instruction counts, the cost

in cycles of each category is required. This is encoded in the vector c , where ci

is the CPI estimate for category i (this estimation procedure is described later in

Section 5.3). Now the core concept of the performance model can be introduced –

port cycle consumption. This quantifies the cycle consumption of instructions in one

category processed by the corresponding port; for brevity in model formulation and

description, the port is treated as the consumer of clock cycles. Thus the term pi

can be introduced, the cycle consumption of port i. Given the known difference in

instructions of category i, and the estimate of CPI, then pi is calculated as:

pi = (∆Ii)ci (5.3)

The predicted change in total cycle consumption between MG-CFD and compact-

HYDRA is the maximum port cycle consumption, is formulated as:

∆C =
5

max
i=1

pi (5.4)

Then Ccompact is given by:

Ccompact = Cmgcfd −∆C (5.5)

Contention

The model is extended further by considering hardware contention between different

instruction categories. Figure 5.2 shows the portion of the Skylake microarchitecture

pipeline related to instruction scheduling. It shows seven ports, four of these receiving

integer or FP instructions, two receiving load instructions, and one receiving store

instructions. Technically these ports receive µ-ops, but for simplicity these are referred

to as instructions. On each clock cycle the scheduler can assign at most one instruction

to each port. Ports 0 and 1 can receive both integer and FP instructions, revoking

the prior assumption that each instruction category is scheduled to a dedicated port.

Thus there is the possiblity of contention between different instruction categories.

46



Scheduler

Instruction decode queue (IDQ)  [ holds 64 uops ]

Int ALU 
Vec ALU 
Vec Add 
Vec Mul 
Vec FMA 

Divide

Int ALU 
Vec ALU 
Vec Add 
Vec Mul 
Vec FMA

Int ALU 
Vec ALU 
Vec Shuf

Int ALU STD LD LD

L1D L1D L1D

Port 0 Port 1 Port 5 Port 6 Port 4 Port 2 Port 3

4 uops/cycle

up to 15 uops/cycle

Figure 5.2: Instruction dispatch and issue stages of Xeon Skylake pipeline [28]

Accordingly, the model is extended to capture this contention, while maintaining a

level of abstraction.

To implement this task, modelling makes two assumptions. These are made

for the same reason, to avoid constructing the directed acyclic graph (DAG) of

instruction execution from assembly, and to avoid the additional cost of repeatedly

identifying the critical path in the CPI estimation process. The validity of these

assumptions will be determined by the accuracy of the model predictions. A low

error justifies excluding the additional modelling of inter-instruction dependencies.

The first assumption is that while an FU is occupied then so is its resident

port, blocking all other FUs on it. The second assumption is of an ideal instruction

scheduler that can schedule in bulk the cycle consumptions of all instructions,

scheduling first those instructions with the fewest compatible ports and with the

objective to minimise the maximum clock cycle consumption across the ports. This

process is visualised in Figure 5.3, configured for the Skylake architecture. This figure

also states the instruction categories to be used by the model, which contains two more

instruction categories than the earlier discussion regarding assembly categorisation.

These have been created to improve the fit of model to architecture, and to better

discriminate between sets of instructions that may execute at different throughputs.

The FP shuf category contains those instructions that map specifically to the Vec

Shuf FU on port 5, unlike most other FP instructions that map to ports 0 and 1.

47



Sheet1

Page 1

1)
P0 P1 P5 P6 P4 P2 P3

FP Div FP Shuf

2)

P0 P1 P5 P6 P4 P2 P3

FP Div FP Shuf

FP Add, Mul, FMA

3)

P0 P1 P5 P6 P4 P2 P3

FP Div FP Shuf

FP Add, Mul, FMA

SIMD Integer

4)

P0 P1 P5 P6 P4 P2 P3

FP Div FP Shuf

Stores Loads
FP Add, Mul, FMA

SIMD Integer

Integer

cycles

Figure 5.3: Ideal scheduling model of instructions to execution ports within Skylake.
Instructions with fewest compatible ports are scheduled first.

The SIMD Integer category is created from the more general integer category as it

maps to one less port, and being vectorised may have a lower throughput than its

serial counterpart.

This model seeks to predict the change in performance that results from the

change in instructions from MG-CFD to match compact-HYDRA. The first stage

is to predict how those modified instructions were scheduled to ports, using the

previously stated assumptions. This produces an allocation matrix A, where Ap,i is

an allocation of some or all instructions of category i to port p, with the following

structure:

A =

DIV FP Shuf Load Store FP SIMD Int Int



d − − − f2 v3 i4 P0

− − − − f1 v2 i3 P1

− − − − − v1 i2 P5

− p − − − − i1 P6

− − l2 − − − − P2

− − l1 − − − − P3

− − − s − − − P4

48



The ideal instruction scheduler fills this matrix from left to right, prioritising

those instruction categories with the fewest available ports, seeking to minimise the

maximum port cycle consumption. Then cycle consumption of port i is the vector

dot product between its allocated instructions and their respective CPI estimates

(i.e. different categories with a port are summed together, not treated as parallel):

pi = Ai · c (5.6)

Then the observed change in clock cycle consumption is equal to the greatest cycle

consumption of a single port. Where Np is the number of ports:

∆C =
Np

max
i=1

[pi] (5.7)

A flaw in this formulation is the assumption that any change in any instruction

category will lead to an observed change in clock cycle consumption determined

by properties of just that category. Trivial counterexamples show this to be false.

Consider a kernel dominated by LT FP instructions executing in the example Skylake

architecture, as shown in Figure 5.2. Performance would be bound by throughput

of these instructions through execution port 0; any HT FP instructions would be

modelled as executing through port 1, as this would be under utilised. Removal of a

single HT FP instruction would have no measurable effect on runtime, as performance

is bound by port 0 throughput. Consider another kernel which is dominated by HT

FP instruction, rather than LT. If a single LT instruction was removed, a reduction

in runtime is expected but will be determined by properties of both LT and HT

instructions, specifically the cost of the former and the scheduling of the latter.

49



The solution is to model the total cycle consumption of MG-CFD, then of

compact-HYDRA, and use their difference as the prediction of ∆C. Note that these

predictions of total cycle consumption are not required to be accurate, only their

difference is required to be accurate. For MG-CFD, its total cycle consumption is

modelled much like previously described, except to use its total instruction content

rather than difference:

Cmodel,mgcfd =
Np

max
p=1

[Amgcfd,p · c] (5.8)

Similarly for compact-HYDRA:

Cmodel,compact =
Np

max
p=1

[Acompact,p · c] (5.9)

Then the revised calculation of ∆C becomes:

∆C = Cmodel,mgcfd − Cmodel,compact (5.10)

The final calculation for Ccompact is unchanged:

Ccompact = Cmgcfd −∆C (5.11)

5.3 CPI estimation

Critical to calculating the cycle consumption of the aggregate instructions is having

an accurate measurement of their individual cost of cycles, CPI. This is treated as

an unknown that must be estimated through benchmarking with MG-CFD, for three

reasons:

• For novel architectures these values may not be public knowledge, unlike for

older architectures which have been thoroughly assessed [21]

• FUs for expensive operations can be pipelined, such as FP division, allowing for

their full cost to be masked by ILP. This ILP is partly a property of the code

being executed, specifically of the data dependencies between instructions, so

the achieved CPI values will have some specificity to the code being executed.

It is assumed that the class of CFD codes have similar ILP, meaning MG-CFD’s

CPI measurements will translate to compact-HYDRA and to other kernels in

HYDRA.

50



• The model being an abstraction of FU scheduling may require the flexibility

to fit to the observed data

Collecting varied performance data is critical to avoid overfitting and thus poor

accuracy when predicting HYDRA kernels. This requires distinct variants of the MG-

CFD flux routine each with different proportions of FP instructions. To create these,

the combinatorial enabling of four arithmetic optimisations missed by the compiler

produces approximately eleven distinct kernels, with the exact number depending on

the compiler used. These variants contain different quantities of division, square-root,

all other FP operations, and integer operations, while producing the same numerical

result. Additional variants are created by also using different compilers, in this case

the Intel and GNU C++ compilers. Between these two compilers and arithmetic

optimisations, twenty distinct variants of the MG-CFD flux routine are created,

but they span a relatively narrow range with the difference between most and least

expensive variant being approximately 30 instructions (17% of total). To increase

this range an additional kernel is created, derived from the flux routine but with

≈ 50% arithmetic instructions removed. This resulting kernel does not correctly

implement the flux accumulation, requiring another correct variant to be executed

to maintain solver convergence, however it enables the range to be extended greatly.

This larger range produces better CPI estimates that greatly reduce prediction error

of Cg,compact.

An appropriate optimisation technique is required to fit the execution model

to the MG-CFD performance data. Note that the use of max across multiple linear

equations in Equation 5.7 renders the function for C nondifferentiable despite the

individual equations for pi being differentiable. This means that direct application

of a numerical minimisation method is unlikely to find the global optimal set of CPI

values. A stochastic technique ideally suited to this problem is basin-hopping [63].

Like simulated annealing, it ‘hops’ through the parameter space to escape local

minima, but unlike simulated annealing it then performs local gradient minimisation

at each hop. Domain knowledge is applied to the parameter space to constrain CPI

estimates to have a minimum of 1.0. This technique is implemented in the Python

SciPy library within the optimize module.

51



Table 5.2: Single-thread compact-HYDRA runtime prediction errors of the three
described models.

Model mean (%) SD (%) max (%)

Equal IPC 63.2 50.4 166.0

Constant Rc 26.8 30.1 88.4

Difference model 13.9 9.6 35.6

5.4 Model validation

To justify the development of this model, its predictive accuracy will be contrasted

with two naive models. The constant-Rc model assumes that the ratio of Cg,compact

to Cg,mgcfd, defined as Rc, is constant across architectures and ISAs (ignoring bounds

imposed by memory performance). The equal-IPC model assumes that both MG-

CFD and compact-HYDRA execute with the same rate of IPC, so cycle consumption

is directly proportional to the number of instructions executed.

Each model is evaluated by its ability to accurately predict single-threaded

cycle consumption of compact-HYDRA. Assessment is performed across a range of

different CPU architectures and instruction sets, spanning nine years of development,

that will test the robustness of each model. These architecture are Intel’s Xeon’s

Westmere, Broadwell, Skylake, Cascade Lake, and KNL. Full hardware details are

provided in Table 3.2 in Chapter 3. The ISAs are AVX512, AVX2 and SSE42. AVX

and SSE41 are ignored as their differences to AVX2 and SSE42 are very minor. Rc

is measured for Broadwell AVX2 and then assumed to be constant for all other

combinations of systems and ISAs.

Figure 5.4 presents accuracies of each model, with accompanying statistics

listed in Table 5.2. The equal-IPC model produces predictions of poor accuracy;

of the twelve predictions, seven have error exceeding 40%, and only one error is

below 20%. This is clear evidence that MG-CFD and compact-HYDRA can, and

often do, execute at significantly different overall IPC rates. The constant-Rc model

performs better, generating seven predictions with below 20% error. Of particular

note is that for architectures that have a high degree of similarity to that used

for calibrating Rc, errors are consistently low. Specifically, with Xeon Broadwell

used for calibration, predictions of its successors Skylake and Cascade Lake show

low errors of mean 15.3%. Skylake can be considered an architectural tweak of

Broadwell, exploiting a greater transistor budget to widen the superscalar pipeline

and add new instructions, but not make large fundamental changes. Cascade Lake is

52



SSE42
0%

20%
40%
60%
80%

100%

er
ro

r

(a) Xeon Westmere

SSE42 AVX2
0%

20%
40%
60%
80%

100%

er
ro

r

(b) Xeon Broadwell

SSE42 AVX2 AVX512x1
0%

20%
40%
60%
80%

100%

er
ro

r

(c) Xeon Skylake

SSE42 AVX2 AVX512x1
0%

20%
40%
60%
80%

100%

er
ro

r

(d) Xeon Cascade Lake

SSE42 AVX2 AVX512x1
0%

20%
40%
60%
80%

100%

er
ro

r

Equal IPC Constant Rc Difference model

(e) Xeon KNL

Figure 5.4: Model prediction errors of single-threaded compact-HYDRA cycle con-
sumption.

53



simply a transistor node shrink of Skylake, with unchanged architecture and higher

clock frequency, so model predictions for it are expected to closely match Skylake.

However, predictions for the significantly different architectures Westmere and KNL

have high errors; Westmere prediction has 86.7% error, and KNL predictions have

mean error 43.7% and maximum error 88.3%. The Westmere architecture predates

Broadwell by two generations (with Sandy Bridge between them), designed during

Intel’s transition away from the Pentium 4 architecture to Sandy Bridge which

required fundamental architectural rewrites; KNL architecture is derived from the

low-power Atom architecture, with greatly reduced superscalar and out-of-order

capabilities relative to Xeon CPUs. These results indicate that when the target

architecture is significantly different to that used for calibration, the constant-Rc

model becomes unreliable. In contrast to the previous models, the difference model

does produce predictions of low error across all tested architectures, with mean

error 13.0% and maximum error 39.6%. The variance of the errors is also low,

with a standard deviation of 9.6%, indicating that the model can be relied upon to

accurately predict performance on new architectures.

5.5 Predicting strong scaling

5.5.1 Memory benchmarking

In order to predict compute performance across multiple cores with a single node, it is

necessary to account for the interaction between the kernel code and memory hierarchy

performance. As more processor cores are utilised in a multicore system, demand on

the shared resource of main memory increases. Depending on the arithmetic intensity

of the kernel, its scaling performance may be ultimately bounded by data throughput

of the hierarchy, when memory demand exceeds its capacity to deliver. Although a

memory system is specified with a maximum theoretical read/write throughput, this

is unlikely to be achieved. A kernel that performs constant-stride memory accesses

will trigger optimal performance from the hardware prefetcher, and fully utilise all

fetched cache lines, will achieve nearest to the theoretical bandwidth. For example,

vendor-optimised versions of the STREAM benchmark achieve 80% of the maximum

theoretical bandwidth [16]. The irregular memory accesses of unstructured grid

codes greatly reduce achievable bandwidth, by hindering the hardware prefetcher,

and not fully utilising fetched cache lines.

To measure the maximum bandwidth achievable by unstructured grid codes,

a new data throughput (DT) kernel is added to MG-CFD that encodes the same

memory access pattern (determined by the input grid), but with minimal arithmetic

54



computation to be inherently memory-bound. It is not feasible for this kernel to

perform no arithmetic at all, as then any sensible compiler optimiser would remove

the entire kernel. The quantity of arithmetic remaining is expected to be less than

that of any other possible kernel that performs useful work on the same dataset,

thus establishing a bound on achievable memory performance; for example, when

compiled to the AVX2 ISA, the DT kernel performs just 13 floating-point operations

across 20 memory loads and 10 memory stores. With such a low flop/byte ratio, it

is expected that this kernel will establish the maximum speed at which any given

system can traverse through an unstructured grid, thus establishing the memory

bound of codes operating on that grid. To confirm the earlier claim that unstructured

grid codes have a lower achievable bandwidth than STREAM, execution of this

DT kernel on Xeon CPU systems achieves between 52% and 62% of the bandwidth

achieved by STREAM. The empirical memory bound is incorporated into the model

using a simple classification. Predicted performance of compact-HYDRA at thread

count t is classified as being memory-bound if predicted compute runtime Tt,compact

is less than the measured Tt,DT ; if true, then predicted compact-HYDRA runtime

will be raised to Tt,DT . The term tb is introduced, which is the lowest thread count t

at which compact-HYDRA is expected to be memory-bound on a particular system.

Another dynamic property of a multicore system to consider is the variable

clock frequency of its processor cores. Modern processors operate at a variable and

clock frequency, controlled dynamically in real-time by processor logic according

to circuitry temperature and power draw, primarily determined by the particular

instruction mix and throughput of the executing code. The variance in clock frequency

can be significant; for example in the Xeon Broadwell node, single core execution

of MG-CFD operates at 3.19 GHz, which drops by 34.8% to 2.08 GHz when all

cores are utilised. Such large variance can introduce large errors into the model

predictions, particularly when predicting compute-bound runtime, so it is essential

to know the frequency that compact-HYDRA will execute at at any particular

thread count. This is expected to be equal to MG-CFD at any identical thread

count due to the similarity between the codes. To confirm this, scaling frequency of

both codes is measured on Xeon Westmere and Cascade Lake, distinctly different

architectures. Xeons Broadwell and Skylake behave similarly to Cascade Lake, and

KNL has little variance due to a lower base clock, so these are excluded. Presented in

Figure 5.5, both codes do execute at similar clock frequencies when compute-bound,

with the difference not exceeding 6%. It is not necessary that frequencies match

when execution is memory-bound, as predicted performance will be determined by

the memory hierarchy not core architecture and so the empirical runtime of the DT

55



5 10 15 20 25 30 35 40 45
2.5

3

3.5

4

Threads

G
H

z

(a) Xeon Cascade Lake

1 2 3 4 5 6 7 8 9 10 11 12
2.5

3

3.5

Threads

G
H

z

MG-CFD Compact-HYDRA

(b) Xeon Westmere

Figure 5.5: Relationship between multicore load and observed turbo GHz. Bold line
indicates when code is memory-bound, thin line when compute-bound. When both
codes are compute-bound they operate at similar clock speed, important for model
accuracy.

kernel will be used.

Figure 5.6 presents model accuracies of multicore predictions for compact-

HYDRA grind time, for the same systems as used for single-core model validation.

This error can be negative or positive, indicating when the model prediction is below

or exceeds actual runtime (respectively, to better present the effect of thread count on

model prediction. The relationship between prediction accuracy of compute-bound

runtime and thread count is similar on each system, of the error falling in value as the

thread count approaches tb of each respective system. Any positive error will reduce

towards zero, then become an increasingly negative error until predicted performance

is memory-bound. This is attributed to Cg,compact increasing as compact-HYDRA

approaches tb, a behaviour not considered by the model which assumes constant cycle

consumption for compute-bound execution. For most systems this behaviour begins

immediately from t = 1; only on KNL is model error constant across a range of thread

counts, due to tb being much higher than for the other systems; this is evidence that

when compact-HYDRA is far from being memory-bound then Cg,compact is constant.

The observed trend of Cg,compact increasing near its memory-bound is explored

further, as for some configurations it leads to relatively large changes in error; for

example on Xeon CPU systems it often leads to a 15% increase in absolute error,

56



1 2 4 6 8 10 12
−10%

0%

10%

20%

30%

er
ro

r

(a) Xeon Westmere

1 2 4 6 8 10 12 16 20 24 28
−30%

−20%

−10%

0%

10%

er
ro

r

(b) Xeon Broadwell

1 2 4 6 8 10 12 16 20 24
−20%

−10%

0%

10%

er
ro

r

(c) Xeon Skylake

1 2 4 6 8 10 12 16 20 24
−20%

−10%

0%

10%

er
ro

r

(d) Xeon Cascade Lake

12 4 8 12 16 24 32 40 48 56 64
−20%

0%

20%

Threads

er
ro

r

AVX512x1 AVX2 SSE4.2

(e) Xeon KNL

Figure 5.6: Model prediction errors of compact-HYDRA strong scaling. A negative
error represents an under-prediction of actual performance. Bold line indicates when
predicted performance is memory-bound, thin line when compute-bound. Cascade
Lake sequence clipped at 24 threads for brevity.

57



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

5

10

15

Threads

S
t,
l

Compact-HYDRA MG-CFD MG-CFD (shifted left)

(a) Xeon Cascade Lake

Figure 5.7: Relationship between thread count and stalled cycles for compact-
HYDRA and MG-CFD, at compute-bound thread counts. Each kernel encounters
increasing penalty of similar size when approaching tb, made clear by shifting MG-
CFD datapoints.

resulting in a near 30% error on Xeon Broadwell. This increase in cycles is attributed

to stalling of execution from saturation of memory throughput, as there is no change

in the quantity of computation nor change in the architecture as a result of increased

thread count. For clarity the term Cg,t is introduced, which is the clock cycle

consumption of one loop iteration of either compact-HYDRA or MG-CFD on Then

the number of stalled cycles Sg,t at thread count t is defined as:

Sg,t = Cg,t − Cg (5.12)

Further investigation is performed on the Xeon Cascade Lake system, as this is the

only system on which MG-CFD becomes memory-bound. Sg,t for both compact-

HYDRA and MG-CFD is plotted for t ≤ tb in Figure 5.7. Both codes exhibit a similar

behaviour of increasing Sg,t, both in terms of magnitude and the range of thread

counts, ony differing by the thread count at which the behaviour begins. This is made

clear by shifting the datapoints of MG-CFD to overlay those of compact-HYDRA.

This similarity indicates that the effect is independent of kernel size, and that its

importance diminishes with increasing kernel size. It also indicates that the effect

could be measured with a sufficiently-low flop/byte ratio variant of MG-CFD (to

ensure it encounted memory-bound on target system), and then directly added to

current model predictions.

Returning to Figure 5.6, another model divergence is that for memory-bound

thread counts soon following tb, the model often underpredicts compact-HYDRA

runtime; as thread count continues to increase, the error converges to a near-zero

underprediction with increasing thread count. This is despite having empirically

58



measured the runtime of the data movement. This indicates that the core architecture

is not able to fully overlap computation with data movement, but that this effect

diminishes as thread count further increases and compute becomes a lesser percentage

of runtime. As with the stalled cycles during compute-bound execution, this imperfect

overlap could be measured and used to adjust the model prediction, but considered

relatively unimportant for further application of the model.

5.5.2 Predicting performance of HYDRA

Having validated the predictive ability of MG-CFD and performance model, attention

is directed to the most significant HYDRA kernel, vflux. This is the single most

expensive loop in HYDRA; for 28 MPI processes on Xeon Broadwell, it accounts

for 35.8% of the walltime. Accordingly its arithmetic intensity is several times that

of MG-CFD, posing a significant challenge to the projection model. In contrast,

its data access pattern is very similar to that of compact-HYDRA, performing the

same single loop over edges, and only differing significantly in the quantity of data

associated with each node (cell).

For this prediction task a different dataset is used that is typical for a HYDRA

workload, the NASA Rotor 37 mesh of an axial compressor rotor [49]. This contains

approximately 8.1 M nodes and 24 M edges, with an additional three MG meshes

that results in a total count of approximately 15.7 M nodes and 53 M edges. Thus,

this is a significant size for assessing single-node performance. Further, as HYDRA

implements strong scaling, enabled by the invocation of mesh partitioning routines,

then each individual MPI process will be operating on a different mesh structure.

This is in contrast to MG-CFD being executed in a weak scaling manner on a mesh

26.4× smaller.

As performed for the compact-HYDRA predictions, the assembly code of the

vflux loop is extracted from the compiler-generated object file and its constituent

instructions categorised. The set of MG-CFD variants are executed on each target

system, providing empirical data for estimation of CPI rates. The projection model

is applied to provide an estimate of Cg,vflux, the cycle consumption of a single vflux

loop iteration. MG-CFD also measures clock speed, allowing Cg,vflux to be converted

into grind time, the runtime of a single loop iteration. The grind time is passed into

a pre-existing performance model of HYDRA, which combines it with knowledge of

mesh partitioning and a function call trace to produce a prediction of total compute

runtime for each HYDRA kernel [9]. For more details on this pre-existing HYDRA

performance model, not to be confused with the novel MG-CFD performance model,

refer back to Section 3.2.1 in Chapter 3.

59



1 2 4 6 8 10 12
0%

10%

20%

30%

er
ro

r

(a) Xeon Westmere

1 2 4 8 12 16 20 24 28
0%

10%

20%

30%

er
ro

r

(b) Xeon Broadwell

1 2 4 8 12 16 20 24
0%

10%

20%

30%

er
ro

r

(c) Xeon Skylake

1 2 4 8 12 16 20 24 28 32 36 40 44 48
0%

10%

20%

30%

Number of MPI processes

er
ro

r

AVX2 SSE4.2

(d) Xeon Cascade Lake

Figure 5.8: Model error of predicted HYDRA vflux() compute strong scaling.

60



Table 5.3: Model error statistics of predicted vflux compute strong scaling.

System ISA mean (%) SD (%) max (%)

Westmere SSE4.2 21.2 4.5 25.8

Broadwell AVX2 9.0 3.0 13.4

Broadwell SSE42 12.3 3.9 17.5

Skylake AVX2 5.4 2.0 8.3

Skylake SSE4.2 8.6 1.8 10.7

Cascade Lake AVX2 5.2 1.5 7.9

Cascade Lake SSE4.2 5.9 2.8 10.1

Overall 8.8 5.5 25.8

Predictions are made of strong scaling of vflux compute; time spent halted

on MPI synchronisation routines are ignored as this is determined mostly by mesh

workload imbalance rather than CFD calculations. Let Vl,r be the time that MPI

rank r spends within the compute loop of vflux on MG level l. Then model error

is calculated as the sum of absolute error of predicted Vl,r across ranks and levels,

rather than real (signed) error, to ensure that a mix of under- and over-predictions

do not cancel out and give the illusion of a highly-accurate model:

model error % =

∑levels
l=1

∑ranks
r=1 |errorl,r|∑levels

l=1

∑ranks
r=1 Vl,r

(5.13)

This model error is plotted for several Xeon CPU systems, shown in Figure 5.8, and

accompanying statistics listed in Table 5.3. Predictions for the AVX-512 ISA are

missing due to a segfault bug within the Intel compiler, that prevents MG-CFD from

being compiled with aggressive floating-point optimisations disabled when targeting

AVX-512, necessary to match HYDRA’s compilation configuration; this bug did not

affect data collection during the prior model validation as aggressive floating-point

optimisations were enabled, not disabled. Across all systems and rank counts, mean

model error is 8.8% with a standard deviation of 5.5% and maximum error 25.8%.

These errors are lower than when predicting compact-HYDRA performance, despite

the greater differences between MG-CFD and HYDRA’s vflux routine, and also

that vflux is approximately 3-4× more expensive than MG-CFD. This could be

attributed to the model assumptions holding better for a kernel with more assembly

instructions, specifically the assumption that MG-CFD and the target kernel contain

sufficient instructions for the processor instruction scheduler to maintain a similar

level of ILP, allowing any inter-instruction dependences to be ignored.

61



5.6 Vectorising unstructured grid compute

One of the primary uses for mini-applications is the assessment of optimisations and

novel architectures. One particular feature of interest are floating-point vector units,

increasingly used by vendors to highlight the peak compute capability of their new

systems. Indeed, vector units do have the potential to greatly reduce runtime of

simulation codes, but obtaining good performance from them is not always simple.

This is a particular problem for unstructured grid codes, where their indirect memory

accesses prevent the naive use of the vector units. MG-CFD is used to assess two

schemes for safely vectorising unstructured grid compute, and then with the new

performance model the achieved performanced is analysed.

5.6.1 Conflict avoidance

To vectorise the indirect writes of unstructured grid compute, it is necessary to

ensure that either (a) conflicting writes do not occur or (b) that they are handled

safely. A conflict here means that at the end of a vectorised iteration, two or more

independent writes are destined for the same memory address. Two strategies exist to

avoid this. One is to vectorise the compute but serialise the indirect memory writes,

as used by the OP2 library [41]. This requires the programmer to manually and

sequentially unpack each vector register, constraining processor pipeline throughput.

It may also be necessary to manually pack if no gather instructions are present in

the architecture. A variant of the serial-write strategy is to use specialised hardware

to detect conflicts at runtime, generating a vector mask that allows safe writes to be

vectorised, then use the mask inverse to serialise the conflicting writes. An example

implementation can be found within the AVX-512-CD instructions, implemented

in KNL, Xeon Skylake and Xeon Cascade Lake architectures. While requiring no

additional developer effort, this solution still results in the compiler generating longer

loops to accommodate the new masked-write loops.

The second strategy is to reorder the loop iterations to guarantee that within

any vector write there are no conflicts, which allows the compiler and processor

architecture to optimise the memory writes. This is achieved by treating the mesh

as a graph and colouring the edges by their connectivity, then packing each vector

with edges of equal colour. In MG-CFD a greedy sequential colouring algorithm is

used, where the uncoloured edges are processed in descending order of their degree

of coloured edges. Then a greedy reordering algorithm is applied, packing each

vector-sized block with edges of colour equal to the first unpacked edge. Note that

this reordering disturbs the spatial locality in proportion to the number of colours

62



required, which does increase through the multigrid. This scheme contrasts with

one that reorders all edges of a colour together, which would further reduce spatial

locality. Colouring and reordering is performed once during initial data load, and

is inexpensive relative to MG-CFD’s compute. If during packing of a vector block

there are insufficient edges of equal colour to fully pack the block, then those edges

are processed serially in a remainder loop.

5.6.2 Vectorisation performance

The two described software-based schemes are implemented in MG-CFD. The manual

scheme is that which serialises the indirect writes, and the colour scheme is that

which colours and reorders the edges. Vectorised code is generated by an auto-

vectoriser, rather than hand-coding intrinsics; hand-coding would be inherently

non-portable, negating the rapid benchmarking ability of MG-CFD. To ensure that

both the flux computation kernel and DT kernel are performing the same data

movement, it is necessary that the auto-vectoriser maps each to the same vector

width. Any sensible compiler would not do this, as each loop has a very different

flop/byte ratio. To force equal width the OpenMP SIMD API is used, by inserting

omp simd simdlen(INT) pragmas.

Performance data is collected on the Xeon Skylake node (details in Table 3.2),

using the Intel compiler, and targeting both AVX512 and AVX2 ISAs. This particular

Skylake architecture contains two non-vectorised FP units, two 256-bit vector units

supporting AVX2, but only one 512-bit vector unit supporting AVX512. Then it

could be expected with either ISA that optimal MG-CFD vectorised performance

would achieve a 4× speedup for double-precision (64-bit) floating-point compute.

Speedups are measured and calculated across the full range of thread counts,

using the DT kernel performance to bound the maximum achievable speedup by

memory performance. These are shown in Figure 5.9. Targeting AVX2, each scheme

achieves a similar speedup at each thread count, ranging from 1.7× single-threaded

down to 1.4× at 24 threads. With AVX512 any speedup is negligible, and the manual

scheme results in a small slowdown of approximately 1.2×. These are far from the

desired 4× speedup, and at low thread counts are far from the memory-bound.

There are several confounding factors that each reduce the achievable speedup.

To better understand these, the single-threaded performance will be investigated.

One factor is the clock frequency that the processor operates at during execution.

This responds to heat and power consumption, which increases with wider vector

units and typically leads to lower frequencies. Table 5.10 shows the clock frequency

that each code configuration executes at. Vectorised AVX2 frequency changes little

63



1 2 4 6 8 10 12 16 20 24
1

2

3

sp
ee

d
u

p

(a) AVX2

1 2 4 6 8 10 12 16 20 24

1

2

sp
ee

d
u

p

Colour Manual Memory bound

(b) AVX512

Figure 5.9: Vectorisation speedups with two conflict-avoidance schemes on Xeon
Skylake. Also shown is maximum speedup permitted by achievable memory perform-
ance.

64



Figure 5.10: MG-CFD GHz with and without vectorisation. Only with AVX512
does vectorisation reduce GHz

ISA Serial Colour Manual

AVX2 2.99 2.89 2.89 (97%)

AVX512 2.99 1.8 1.8 (60%)

Figure 5.11: Changes to floating-point quantity and throughput in vectorised MG-
CFD. Increased quantity or lower throughput reduces achievable speedup

Scheme Fast FP Fast FP IPC Slow FP IPC FP cycles/iter

None 112 0.60 0.16 269

Manual 152 (1.36×) 0.33 (54%) 0.10 (64%) 595 (2.21×)

Colour 112 0.29 (48%) 0.05 (35%) 626 (2.32×)

AVX2

at 3.3% slower, but vectorised AVX512 clock speed is 40% slower. This is another

near-50% reduction in the achievable speedup of AVX512 vectorisation, which when

added to the loss from port fusion leaves a peak theoretical speedup of just 2×, half

that of AVX2.

To complete the identification of confounding factors, the disassembly analysis

tool is applied to extract the instructions constituting the main vectorised loop,

and the MG-CFD performance model is used to estimate the CPI rates of the

instruction classes (and by extension their inverse IPC rates). These numbers are

presented in Table 5.11. The additional serialised ‘increment’ loops performed by the

manual conflict avoidance significantly increase the number of fast FP instructions,

by 1.36× with AVX2. Both schemes exhibit reduced floating-point throughput;

fast FP is reduced to approximately 50% for both schemes, and slow FP reduced

to 64% and 35% for the manual and colour schemes respectively. If there is any

potential for improving the speedup obtained by either scheme, it is in increasing

these throughputs to match unvectorised floating-point IPC, and should be the focus

of further investigation. The net result on the cost of the floating-point workload

per loop iteration is a 2.21× increase with the manual scheme, and 2.32× with the

colour scheme.

65



5.7 Summary

This chapter identifies the issues that can arise when using a proxy-application to

make inferences of the expected performance of a target application. Relatively minor

differences in the code content can result in significant differences in performance when

assessing new architectures. With the use of MG-CFD to directly infer performance

of compact-HYDRA, this issue manifested in two ways: (a) different overall IPC,

and (b) different memory-bounds. These manifestations would greatly impair the

ability to predict speedup of a new multicore nore and/or new architecture.

It is then shown how the similarity between such a proxy-application and its

target enables the use of a relatively simple performance model to bridge the divide,

to account for the differences in observed performance that result from the few

static differences between them. With MG-CFD, this is a simple execution model of

instruction throughput that can ignore inter-instruction dependencies. This approach

is validated by the accurate prediction of compute performance of HYDRA’s vflux

loop, with mean error 8.8%, despite being approximately 3-4x more expensive and

operating on different mesh structures.

Finally, the model is used to explore the efficacy of vectorising unstructured

grid compute. Of the theoretical maximum speedup of 4×, only 1.7× was achieved.

This is attributed not to hitting a memory-bound, but to throughput of vectorised

FP instructions being significantly less than of their serial counterparts.

66



Chapter 6

Conclusion

This research has explored an issue with the use of proxy-applications, of the reliab-

ility of the performance assessments they make regarding their target application on

new architectures or instructions sets (ISAs). Focusing on one particular pairing, the

production CFD simulation code HYDRA and its proxy-application MG-CFD, signi-

ficant discrepancies were identified between their performances on certain hardware

and ISA combinations. This introduces uncertainty into the accuracy of HYDRA

performance predictions produced by MG-CFD.

Recognising that the code differences between key HYDRA loops and MG-

CFD are few, a performance model is proposed that predicts the difference in runtime

between the two codes that results from those code-level differences. Specifically,

this model predicts the effect on MG-CFD’s runtime of adding or removing a bulk

quantity of assembly instructions to the compiled MG-CFD’s flux computation

kernel, where that addition or removal would result in a kernel matching the desired

target kernel. This is a high-level model, considering throughputs of classes of

instructions (measured empirically), and ignores inter-instruction dependencies. This

model accurately predicts performance of two distinct HYDRA kernels, one with

much lower arithmetic intensity and a second with much higher, with mean errors of

13.9% and 8.8% respectively. This research hopefully serves as motivation to other

proxy-application developers, to consider constructing an accompanying performance

model to account for those static differences, providing confidence in performance

assessments made by the proxy-application.

Further, this model provides a framework for evaluating more elaborate code

changes, such as a transformation into a vectorised loop. Analysing specifically auto-

vectorisation on a Xeon Skylake node, poor speedups were obtained of approximately

1.7× with AVX2 and negligible change with AVX512. Model IPC estimation identified

67



that floating-point throughput had approximately halved, independent of the mesh

ordering; this indicates a computational bottleneck within the processor pipeline

that limits the speedup obtainable by unstructured grid compute. This analysis

allows expectations of achievable speedup of target application to be set realistically,

away from the ideal 4×.

6.1 Limitations

A key limitation of the applicability of the performance model is the need for

disassembly of the target kernel, eg vflux, generated to target the potentially-

unsecure system of interest. Obtaining this assembly would require access to the

vendors compiler and executing it locally to the source code, within the secure firewall

where the source code resides. This would be a problem if the vendor requires that the

compiler be executed in their system, possibly because they consider the disassembly

to be sensitive because it discloses architectural or compiler details under a NDA. I

am unaware of technical issues that would prevent the generation of disassembly, as

all typical compilers allow for specific instruction sets to be targeted regardless of

what system the compiler is executing on. The four compilers considered typical are

GNU, Intel, Clang, and Cray.

Another limitation is the need for a performance counter library to exist and

function on the vendor system of interest. This is in order to precisely instrument

two particular loop in MG-CFD, that of flux computation and that of DT, and

measure their instruction and clock cycle consumption. Without such a library, the

only easy means to collect performance counter data is with the Linux utility perf,

but this monitors across the entire binary. Such a solution would require modifying

MG-CFD execution such that one particular loop comprises near-100% of runtime.

Finally, the performance model has only been validated on CPU processors,

albeit including many-core. GPGPUs are increasingly important in achieving high-

performance computing, particularly in the push for exascale and energy-efficient

computing. Thus for the model to not currently support prediction of GPGPU

performance is a significant limitation.

68



6.2 Future Work

This section provides an overview of future extensions to the work presented in this

thesis. One strand of work is with the superscalar performance model, exploring

improvements that may reduce outlier error and validating on more diverse architec-

tures. The second strand of work is with the proxy-application MG-CFD, further

validating MPI strong scaling, and identify optimisations for HYDRA.

6.2.1 Performance model improvements

In the design of the performance model, there was significant discussion around how

to handle inter-instruction dependencies. To maintain simplicity in design, and avoid

costly model training, it was decided to ignore all such dependencies. The resulting

model provided generally good accuracy, but on the old architecture Westmere

the errors of compute-bound predictions were high (20 % to 30 %). It would be

very interesting to explore how an alternate strategy that explicitly models the

dependencies performs, both in accuracy and in time to train. This work would use

the recently released Open-Source Architecture Code Analyzer (OSACA) tool [34],

intended as an open-source replacement of the end-of-life Intel tool IACA. This

too models superscalar execution with port contention, but rather than estimate

CPI values it uses pre-measured values, thus on its own may be unsuitable for

novel architectures. It can identify the critical path of a sequence of instructions

executing through a particular superscalar processor, using hard-coded CPI values. A

visualisation is provided in Figure 6.1. Being open-source, their critical path detection

could be ported into the model fitting process, greatly reducing development time;

their use of pre-measured CPI values would be replaced with the model estimations.

The performance model also needs to be evaluated on more varied architec-

tures, in particular the Fujitsu A64FX, and NVIDIA GPUs, that are architectures

with high-bandwidth memory (HBM) well suited for HPC. Evaluating the A64FX

should only require adding a new port model to the performance model, easily de-

termined by official public documentation [35]. In all other respects, the A64FX can

be modelled just like the Intel processors used in this thesis. NVIDIA GPU modelling

has the potential to pose a challenge. One key difference to CPUs in regards to the

modelling is what happens when an instruction requests data not in cache. In a

CPU, the instruction will stall, and only ILP and hyperthreading can mask that stall.

The cost of these stalls is captured in the estimation of CPI. In a NVIDIA GPU,

which through its single instruction, multiple thread (SIMT) approach schedules

‘warps’ (i.e. batches) of work to CUDA cores, upon a data miss that entire warp

69



Figure 6.1: Critical path detection (pink) by OSACA tool, of Gause-Seidel loop
on TX2 architecture [34]. Path numbers are instruction latency (CPI), in-box
numbers are disassembly line numbers. Performance predicted to be bound mostly
by floating-point execution.

70



is de-scheduled, and another warp scheduled for execution. It is possible that the

current CPI estimation process can capture the cost of this rescheduling, thus not

requiring further model development. The accuracy of the predictions will confirm

if this is the case. If the error is high then the warp rescheduling will have to be

explicitly modelled, but there is a plethora of CUDA GPGPU modelling research to

draw from dating back to 2009 [32].

6.2.2 MG-CFD strong scaling optimisation

One of the improvements to MG-CFD in Chapter 4 is adding strong scaling func-

tionality. This was validated to be very representative of HYDRA on a small cluster,

and so should be validated further on a larger cluster. But as discussed then, due to

the codes operating on the same mesh, and that this mesh through the partitioner

determines load imbalance and communication pattern, then further validation is

expected to succeed without issue. Thus thoughts can go immediately to exploring

communication optimisation possibilities. One interesting avenue is considering

carefully how the individual mesh partitions are allocated to processes, in terms of

the physical cores on which they reside. With all HPC codes operating on multicore

clusters, it is desirable to minimise the proportion of inter-process communication

that occurs between different cluster nodes, and maximise communication between

cores within the same node. There are two general approaches to this: (i) make

the partitioner aware of the cluster topology, and (ii) reallocate partitions to ranks

afterwards in a topology-aware manner. There is a variety of research on how to

achieve this, but one paper in particular has investigated this specifically for unstruc-

tured CFD ??. They model inter-node communication as costing 10× more than

intra-node, then formulate the mapping problem as a quadratic assignment problem

(QAP) seeking to minimise total communication cost. An NP-hard problem, they

describe two low-cost heuristics that provide significant improvements to parallel

efficiency.

71



Bibliography

[1] Ecp proxy apps suite. https://proxyapps.exascaleproject.org/

ecp-proxy-apps-suite/ (accessed March 13, 2019).

[2] Omar Aaziz, Jeanine Cook, Jonathan Cook, Tanner Juedeman, David Richards,

and Courtenay Vaughan. A methodology for characterizing the correspondence

between real and proxy applications. In 2018 IEEE International Conference

on Cluster Computing (CLUSTER), pages 190–200, 2018.

[3] Omar Aaziz, Jeanine Cook, Jonathan Cook, and Courtenay Vaughan. Ex-

ploring and quantifying how communication behaviors in proxies relate to

real applications. In 2018 IEEE/ACM Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems (PMBS), pages 12–22,

2018.

[4] R.F. Barrett, P.S. Crozier, D.W. Doerfler, M.A. Heroux, P.T. Lin, H.K.

Thornquist, T.G. Trucano, and C.T. Vaughan. Assessing the role of mini-

applications in predicting key performance characteristics of scientific and

engineering applications. Journal of Parallel and Distributed Computing, 75:

107–122, 2015.

[5] K Bergman, S Borkar, D Campbell, W Carlson, W Dally, M Denneau, P Franzon,

W Harrod, K Hill, J Hiller, et al. Exascale computing study: Technology

challenges in achieving exascale systems. Defense Advanced Research Projects

Agency Information Processing Techniques Office (DARPA IPTO), Tech. Rep,

15, 2008.

[6] W. L. Briggs. Multigrid Tutorial. SIAM, Philadelphia, PA, 1987. ISBN

0898712211.

[7] S. Browne, C. Deane, G. Ho, and P. Mucci. Papi: A portable interface to

hardware performance counters. Proceedings of Department of Defense HPCMP

Users Group Conference, June 1999.

72

https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/


[8] R. A. Bunt. Performance Engineering Unstructured Mesh, Geometric Multigrid

Codes. PhD thesis, The University of Warwick, September 2016.

[9] R. A. Bunt, S. J. Pennycook, S. A. Jarvis, L. Lapworth, and Y. K. Ho. Model-

led optimisation of a geometric multigrid application. Proceedings of the 15th

High Performance Computing and Communications (HPCC’13), pages 742–753,

November 2013.

[10] R. A. Bunt, S. A. Wright, S. A. Jarvis, M. Street, and Y. K. Ho. Predictive

evaluation of partitioning algorithms through runtime modelling. Proceedings

of The 23rd IEEE International Conference on High Performance Computing,

Data, and Analytics, pages 351–361, 2016.

[11] D. A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework for

unstructured grid solvers. In Programming Environments for Massively Parallel

Distributed Systems, pages 97–106. Birkhäuser Basel, 1994.

[12] P. E. Ceruzzi. A history of modern computing. MIT press, 2003. ISBN

0262532034.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skad-

ron. Rodinia: A benchmark suite for heterogeneous computing. 2009 IEEE

International Symposium on Workload Characterization (IISWC), pages 44–54,

2009.

[14] UK Mini-App Consortium. Uk mini-app consortium. http://uk-mac.github.

io/papers.html (accessed March 6, 2016), 2016.

[15] A. Corrigan, F. F. Camelli, R. Löhner, and J. Wallin. Running unstructured

grid-based cfd solvers on modern graphics hardware. International Journal for

Numerical Methods in Fluids, 66(2):221–229, 2011.

[16] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. Gpu-

stream v2.0: Benchmarking the achievable memory bandwidth of many-core

processors across diverse parallel programming models. In Michela Taufer, Bernd

Mohr, and Julian M. Kunkel, editors, High Performance Computing, pages 489–

507, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46079-6.

[17] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.

Design of ion-implanted mosfet’s with very small physical dimensions. IEEE

Journal of Solid-State Circuits, 9(5):256–268, 1974.

73

http://uk-mac.github.io/papers.html
http://uk-mac.github.io/papers.html


[18] Roger Espasa, Mateo Valero, and James E Smith. Vector architectures: past,

present and future. In Proceedings of the 12th international conference on

Supercomputing, pages 425–432. ACM, 1998.

[19] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A

mechanistic performance model for superscalar out-of-order processors. ACM

Transactions on Computer Systems, 27(2):3:1–3:37, May 2009.

[20] Massimiliano Fatica and Gregory Ruetsch. Chapter 1 - introduction. In

Massimiliano Fatica and Gregory Ruetsch, editors, CUDA Fortran for Scientists

and Engineers, pages 3–30. Morgan Kaufmann, Boston, 2014.

[21] A. Fog. Instruction tables: Lists of instruction latencies, throughputs and

micro-operation breakdowns for intel, amd and via cpus. Technical report,

University of Denmark, 2018. [Online; accessed 17-July-2018].

[22] European Union Funding for Research and Innovation. Clean sky. https:

//www.cleansky.eu, 2019. [Online; accessed 21-June-2019].

[23] K. Fuji. Progress and future prospects of cfd in aerospace – wind tunnel and

beyond. Progress in Aerospace Sciences, 41(6):455–470, 2005.

[24] Francis H. Harlow. Fluid dynamics in group t-3 los alamos national laboratory:

(la-ur-03-3852). Journal of Computational Physics, 195(2):414–433, 2004. ISSN

0021-9991.

[25] M. Heroux and R. Barrett. Mantevo project. https://mantevo.org/ (accessed

March 3, 2016), March 2016.

[26] H. P. Hodson and R. G. Dominy. Three-dimensional flow in a low-pressure

turbine cascade at its design condition. Journal of Turbomachinery, 109(2):

177–185, April 1987.

[27] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De

Bosschere. Performance prediction based on inherent program similarity.

Proceedings of the 15th International Conference on Parallel Architectures and

Compilation Techniques (PACT’06), pages 114–122, 2006.

[28] Intel®. Intel® 64 and ia-32 architectures optimization reference manual.

Technical report, Intel®, June 2016.

74

https://www.cleansky.eu
https://www.cleansky.eu
https://mantevo.org/


[29] Tanzima Z. Islam, Jayaraman J. Thiagarajan, Abhinav Bhatele, Martin

Schulz, and Todd Gamblin. A machine learning framework for perform-

ance coverage analysis of proxy applications. In SC ’16: Proceedings of

the International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 538–549, 2016.

[30] F. T. Johnson, E. N. Tinoco, and N. J. Yu. Thirty years of development and

application of cfd at boeing commercial airplanes, seattle. Computers & Fluids,

34(10):1115–1151, 2005.

[31] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,

R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still. Ex-

ploring traditional and emerging parallel programming models using a proxy ap-

plication. Proceedings of the 27th IEEE International Parallel and Distributed

Processing Symposium 2013 (IPDPS’13), pages 919–932, May 2013.

[32] Kishore Kothapalli, Rishabh Mukherjee, M. Suhail Rehman, Suryakant Patidar,

P. J. Narayanan, and Kannan Srinathan. A performance prediction model for the

cuda gpgpu platform. In 2009 International Conference on High Performance

Computing (HiPC), pages 463–472, 2009.

[33] L. Lapworth. Hydra-cfd: A framework for collaborative cfd development.

Proceedings of the International Conference on Scientific and Engineering

Computation 2004 (IC-SEC’04), June 2004.

[34] Jan Laukemann, Julian Hammer, Georg Hager, and Gerhard Wellein. Auto-

matic throughput and critical path analysis of x86 and arm assembly kernels.

In 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation

of High Performance Computer Systems (PMBS), pages 1–6, 2019. doi:

10.1109/PMBS49563.2019.00006.

[35] Fujitsu Limited. Fujitsu a64fx documentation. https://github.com/fujitsu/

A64FX, 2019.

[36] A. C. Mallinson, S. A. Jarvis, W. P. Gaudin, and A. J. Herdman. Experiences at

scale with pgas versions of a hydrodynamics application. Proceedings of the 8th

International Conference on Partitioned Global Address Space Programming

Models 2014 (PGAS’14), pages 9–20, October 2014.

[37] L. Martinelli and A. Jameson. Validation of a multigrid method for the reynolds

averaged equations. AIAA Journal, 1988.

75

https://github.com/fujitsu/A64FX
https://github.com/fujitsu/A64FX


[38] P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-fetch bandwidth re-

quirement in wide-issue superscalar processors. In 1999 International Conference

on Parallel Architectures and Compilation Techniques (Cat. No.PR00425),

pages 2–10, Oct 1999.

[39] P. Moinier, J. Müller, and M. B. Giles. Edge-based multigrid and preconditioning

for hybrid grids. AIAA Journal, 40(10):1945–1953, October 2002.

[40] M. Molinari and W. N. Dawes. Review of evolution of compressor design process

and future perspectives. Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, 220(6):761–771, 2006.

[41] GR Mudalige, MB Giles, I Reguly, C Bertolli, and PHJ Kelly. Op2: An

active library framework for solving unstructured mesh-based applications on

multi-core and many-core architectures. In 2012 Innovative Parallel Computing

(InPar), pages 1–12, May 2012.

[42] NASA. Tcgrid v. 400. https://www.grc.nasa.gov/www/5810/rvc/tcgrid.

htm (accessed November, 8th 2017).

[43] A. Owenson. assembly loop extractor. https://github.com/warwick-hpsc/

assembly-loop-extractor (accessed August 21, 2019), 2018.

[44] A. Owenson, S. Wright, R. Bunt, S. Jarvis, Y. Ho, and M. Street. Developing

and using a geometric multigrid, unstructured grid mini-application to assess

many-core architectures. In 2018 26th Euromicro International Conference on

Parallel, Distributed and Network-based Processing (PDP), pages 68–76, 2018.

[45] A. Owenson, S. Wright, R. Bunt, Y. Ho, M. Street, and S. Jarvis. An unstruc-

tured cfd mini-application for the performance prediction of a production cfd

code. Concurrency and Computation: Practice and Experience, 2019.

[46] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution

for multiprocessors with private cache memories. In Proceedings of the 11th

Annual International Symposium on Computer Architecture (ISCA ’84), pages

348–354. ACM, 1984.

[47] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis. Exploring simd

for molecular dynamics, using intel® xeon® processors and intel® xeon phi

coprocessors. Proceedings of the 27th International Parallel and Distributed

Processing Symposium 2013 (IPDPS’13), pages 1085–1097, May 2013.

76

https://www.grc.nasa.gov/www/5810/rvc/tcgrid.htm
https://www.grc.nasa.gov/www/5810/rvc/tcgrid.htm
https://github.com/warwick-hpsc/assembly-loop-extractor
https://github.com/warwick-hpsc/assembly-loop-extractor


[48] I. Z. Reguly, G. R. Mudalige, and M. B. Giles. Design and development of

domain specific active libraries with proxy applications. Proceedings of Cluster

Computing 2015 (CLUSTER’15), pages 738–745, September 2015.

[49] L. Reid and R. D. Moore. Design and overall performance of four highly loaded,

high speed inlet stages for an advanced high-pressure-ratio core compressor.

Technical report, NASA Lewis Research Center, Cleveland, OH, 1978.

[50] T. Röhl, J. Treibig, G. Hager, and G. Wellein. Overhead analysis of perform-

ance counter measurements. In 2014 43rd International Conference on Parallel

Processing Workshops, pages 176–185, Sep 2014.

[51] Richard M. Russell. The cray-1 computer system. Commun. ACM, 21(1):63–72,

January 1978.

[52] Shweta Salaria, Aleksandr Drozd, Artur Podobas, and Satoshi Matsuoka. Pre-

dicting performance using collaborative filtering. In 2018 IEEE International

Conference on Cluster Computing (CLUSTER), pages 504–514, 2018. doi:

10.1109/CLUSTER.2018.00066.

[53] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor, and

X. Wu. Performance projection of hpc applications using spec cfp2006 bench-

marks. 2009 IEEE International Symposium on Parallel Distributed Processing,

pages 1–12, May 2009.

[54] Sameh Sharkawi, Don DeSota, Raj Panda, Stephen Stevens, Valerie Taylor,

and Xingfu Wu. Swapp: A framework for performance projections of hpc

applications using benchmarks. In 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops PhD Forum, pages 1722–1731,

2012.

[55] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerody-

namic flows. AIAA Journal, pages 5–21, 1994.

[56] T. M. Taha and S. Wills. An instruction throughput model of superscalar pro-

cessors. In 14th IEEE International Workshop on Rapid Systems Prototyping,

2003. Proceedings., pages 156–163, June 2003.

[57] James E. Thornton. Parallel operation in the control data 6600. In Proceedings

of the October 27-29, 1964, Fall Joint Computer Conference, Part II: Very High

Speed Computer Systems, AFIPS ’64 (Fall, part II), page 33–40. Association

for Computing Machinery, 1964.

77



[58] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.

IBM Journal of Research and Development, 11(1):25–33, 1967.

[59] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz. Xsbench-the development

and verification of a performance abstraction for monte carlo reactor analysis.

Proceedings of the Role of Reactor Physics Toward a Sustainable Future 2014

(PHYSOR’14), pages 1–12, September 2014.

[60] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Elsevier, Amster-

dam, The Netherlands, 2001. ISBN 978-0127010700.

[61] S. Van den Steen, S. Eyerman, S. De Pestel, M. Mechri, T. E. Carlson, D. Black-

Schaffer, E. Hagersten, and L. Eeckhout. Analytical processor performance and

power modeling using micro-architecture independent characteristics. IEEE

Transactions on Computers, 65(12):3537–3551, Dec 2016.

[62] P. P. Walatka, J. Clucas, R. K. McCabe, T. Plessel, and R. Potter. Fast user

guide. Technical report, NASA Ames Research Center, 1994.

[63] David J. Wales and Jonathan P. K. Doye. Global optimization by basin-hopping

and the lowest energy structures of lennard-jones clusters containing up to 110

atoms. The Journal of Physical Chemistry A, 101(28):5111–5116, 1997.

[64] Yu Wang, Victor Lee, Gu-Yeon Wei, and David Brooks. Predicting new workload

or cpu performance by analyzing public datasets. 15(4), January 2019.

[65] K. C. Yeager. The mips r10000 superscalar microprocessor. IEEE Micro, 16(2):

28–41, April 1996.

78


	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Acronyms
	Chapter Introduction
	Motivation
	Contributions
	Thesis overview

	Chapter Parallel computing and profiling
	Parallel computing
	Vector processing
	Instruction-level parallelism
	Multi-core processing

	Performance profiling
	Runtime metrics
	Performance counters

	Mini applications
	Characterising similarity

	Performance modelling
	Performance projection
	Mechanistic modelling of superscalar processors

	Summary

	Chapter Computational Fluid Dynamics, Software and Hardware
	HYDRA
	Unstructured grid
	Multigrid
	OPlus

	HYDRA performance engineering
	HYDRA performance model
	MG-CFD proxy-application

	Summary

	Chapter Assessing and improving the proxy-application MG-CFD
	Reviewing representativeness of MG-CFD
	Arithmetic intensity
	Data-safe parallel computation
	Validation of restored MG-CFD

	MPI strong scaling
	Summary

	Chapter Performance model of MG-CFD
	MG-CFD IPC investigation
	Performance model development
	Difference model

	CPI estimation
	Model validation
	Predicting strong scaling
	Memory benchmarking
	Predicting performance of HYDRA

	Vectorising unstructured grid compute
	Conflict avoidance
	Vectorisation performance

	Summary

	Chapter Conclusion
	Limitations
	Future Work
	Performance model improvements
	MG-CFD strong scaling optimisation


	Insert from: "WRAP_Coversheet_Theses_PhD.pdf"
	http://wrap.warwick.ac.uk/158274


