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Abstract

We show that a signature of the quantum nature of gravity is the quantum mechanical squeezing
of the differential motion of two identical masses with respect to their common mode. This is
because the gravitational interaction depends solely on the relative position of the two masses. In
principle, this squeezing is equivalent to quantum entanglement between the masses. In practice,
detecting the squeezing is more feasible than detecting the entanglement. To that end, we propose
an optical interferometric scheme to falsify hypothetical models of gravity.

1. Introduction

Beginning with the work of Bronstein in 1936, thought experiments have been a perennial tool in
understanding the quantum nature of gravity [1, 2]. In his critical comments at the Chapel Hill Conference
on The Role of Gravitation in Physics in 1957, Feynman concluded that a real problem in a quantum
mechanical theory of gravitation is the lack of experimental guidance. ‘In this field since we are not pushed
by experiments we must be pulled by imagination” he said [3]. That era may be about to close. The last few
years have witnessed increasing numbers of experimental proposals for detecting gravitational effects in
quantum systems [4—18]. There have followed several clarifications and analyses [19-31]. These presage the
aftermath of the Page—Geilker experiment in the previous generation [32—-35]. While the present proposals
are some years from being experimentally implemented and the precise implications of their predictions
still debated, it behooves us to seek the simplest and most transparent route for detecting gravitational
effects between masses in the quantum regime. In this paper, we show the gravitational interaction between
two identical masses leads to quantum mechanical squeezing of their differential mode of motion with
respect to its common mode. Its origin lies in a shift in the frequency of the former mode relative to the
latter. In turn, this motional squeezing is the genesis of the quantum entanglement between two masses
interacting gravitationally in the Newtonian limit [6, 7]. Experimentally, detecting the squeezing is less
challenging than detecting the entanglement. With that in mind, we propose an optical interferometric
scheme to test hypothetical models of gravity. We close by suggesting an electromagnetic version of our
scheme to hone the experimental techniques.

2. Principle—motional squeezing

We consider two identical simple harmonic oscillators A and B of mass m and angular frequency w,, each,
separated at equilibrium by a distance d, and located at g4, g with momenta p,, pp respectively. The
Hamiltonian, if the gravitational interaction between the two masses is quantum, in the Newtonian limit is,

. 2 Gm?
H= — (12 + 2 +mwm P4 at) — ’ . (1)
m (PA PB) B (‘JA QB) |d+ qs — as|
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Figure 1. Schematic of an optical interferometer for probing quantum signatures of the gravity in the differential motion of two
identical masses A, B. The masses also form the end mirrors of optical cavities. Quantum signatures of the gravitational
interaction can thus be detected optomechanically. For simplicity, we have omitted the local oscillator for the homodyne
measurement of the optical quadratures.

where [g;, pj] = ihdj; for i,j = A, B. If d > |qa — g/, expanding the gravitational interaction up to the
second order in g4 — gp, neglecting a constant and absorbing a linear term gives
. P omw? o,

A . P omwy, .,
H=H H =—"F+4+ — — 4+ —0aq, 2
+ + 2m+ 2 q++2m+ > q- (2)

for the common (+) and differential (—) modes defined as

. pa £ P R da £ q
b _PaTPps _ 42T 9B (3)

+ 7> q+ = 7,
and

2 G
w_ = wypV1— 0% 5:£, wg = d_T (4)
Wm

The gravitational interaction is captured by the characteristic angular frequency w¢ that depends on m and
d. If d is comparable to the size of the masses, wg is independent of the mass. Rather, it depends on the

WG = \/AGp, (5)

where A is of the order of unity determined by the geometry of the mass. For gold, wg /27 ~ 107> Hz,
implying § < 1 even for Hz scale oscillators.

As [H + H_] =0 from equation (2), the = modes are decoupled. The gravitational interaction affects
only the differential one and manifests itself as a shift in the frequency of that mode relative to the common
mode. An optical interferometric setup for monitoring the differential mode is presented in figure 1.

If the two masses are in thermal states of the simple harmonic Hamiltonian at temperature T at the
onset of the gravitational interaction, the differential mode is in a Gaussian state with covariance matrix

material density p as [15].

1
E— 0 1 hw
Ua - hNth MWy, > Nth - E COth <2k r;.,) 5 (6)
0 mMw,, B

where kg is Boltzmann’s constant. As § < 1, after time 7 the differential mode evolves under
U_ = exp(—iTH_/h) to
1 + 6% sin®(w,,7) 62

— sin(2w,,, T)
o = hNyp ) mwy, 2 . (7)

5 sin(2w,,T) mw,, (1 -5 sinz(me))

The fundamental signature of the quantum nature of the gravitational interaction at the Newtonian limit is
thus a squeezing of the differential momentum and an equivalent anti-squeezing of the differential position
quadrature. Additionally, the gravitational interaction generates correlations between the two quadratures.
All these signatures are proportional to 4> and oscillate at double the frequency of the original harmonic
potential. Note that these signatures are a consequence of the frequency shift of the differential mode
relative to the common one which remains in its original thermal state for the entire evolution.

Any effort to detect the minuscule quantum mechanical squeezing of the differential motional mode in
the laboratory will be marred by decoherence. Its specific nature will depend on the details of the
experimental setup and its regime of operation. For instance, under the Caldeira—Leggett model of
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decoherence for an ohmic spectral density with an infinite cutoff, the steady-state covariance matrices of the
differential and common motions are given by

1 1
_ — 0 + 0
o, = hNy, | mw_ , ol = ANy | mw,, , (8)
0 Mw_ 0 Mw,,

showing that the only remnant of the quantum aspect of gravity is the altered variances or quantum
mechanical squeezing of the differential motional mode—a direct consequence of its shifted frequency due
to the gravitational interaction.

Interestingly, this squeezing of the differential motion manifests itself as the entanglement between the
two masses upon transformation as per equation (3). Mathematically, the entanglement of the two masses
A, B is determined by the product of the two smallest eigenvalues of the covariance matrix of the common
and differential modes [36]. Physically, this is identical to the creation of two-mode entanglement by
interfering a squeezed and an unsqueezed thermal mode on a balanced beam splitter. The condition for
achieving steady-state quantum entanglement is identical (see equation (29)), to within a factor of two, to
that for observing squeezing.

Observing this squeezing requires, for § < 1,

wo 1 Fiw 52
Np— < =, th({ — )| <1 -6 ~1+—. 9
oS3 or  co (2@T) ( ) +5 )
This, in turn, requires
kg T 1

S (4[5’ o
which may seem impossible to achieve. However, as this steady-state behaviour does not depend on the
mechanical damping or the mechanical quality factor Q,,, feedback [37, 38] or optomechanical [39, 40]
cooling can be invoked to reduce the effective temperature to T/Q,,. Consequently, final condition for
observing the squeezing becomes

hw,, — In(4/62)
This is within the reach of current technology using masses of gold or tungsten with
p=193x10°Kgm>, A =2, T= 10 mK, w,,/27 = 10 Hz, and Q,, = 10°. However, low frequency
mechanical noise is expected to be a challenge. To that end, we now estimate the impacts of gravity-gradient
and seismic noise on our proposal.

Gravity-gradient noise due to seismically-induced matter density fluctuation is quite small at 10 Hz.
Even for Advanced LIGO, this is substantially smaller than thermal noise [41, figure 2]. A much larger
contribution comes from anthropic activity, such as a person walking close to the experiment. This was
analysed in the context of the gravitational wave detector [42]. Converting the strain noise to acceleration,
and then force noise on a 1 g mass gives 1.0 x 1071 N (v/Hz) ! at 10 Hz for a person is moving 1 m away
from the experiment. This is more than one order of magnitude larger than the thermal Langevin force
noise of about 6.0 x 107 N (v/Hz) ! at 10 mK and 10 Hz. This may be mitigated by restraining anthropic
activity in the laboratory during data collection.

To counter seismic noise, the experiment can be seismically isolated to a level close to 1072 m (/Hz) !
at 10 Hz using a commercial active isolation platform (e.g., Accurion) in a reasonably quiet lab
(10719 m (v/Hz) ! at 10 Hz). Furthermore, the resonant frequency of two masses can be well matched such
that a significant part of the seismic noise acts on the common mode of the masses without affecting the
differential mode. To estimate the latter, a difference Aw in the frequency of two masses will induce on the
differential mode an effective force noise of 2mw_ Awxgnp, where xgnp is the seismic motion. The
corresponding single-sided power spectral density is 4m%*w? (Aw)2S,y, where S, is the single-sided power
spectral density of the seismic motion. Setting this to, say, 1% of the thermal Langevin force noise spectral
density Spr = 4hmy,,w_Nu, where v, = W/ Q,,, gives

(11)

Am*w? (Aw)?*S,, = ﬁSFF. (12)
A seismic noise of 1072 m (v/Hz) ! from active isolation gives Sy, = 1072* m? Hz '. A 1 g, 10 Hz oscillator
with Q,, = 10%, then requires Aw ~ 5 pHz, which is about 80 times the mechanical linewidth

v,, = 63 nHz. It is also about 10 times the frequency stability of 0.4 ;/Hz required to observe optical
squeezing by integrating over one month (see next section). Achieving this Aw may require experimental
innovation and development.
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The outstanding challenge is resolving quantum squeezing on the order of §* ~ 10~° for a 10 Hz
mechanical oscillator. We address this next.

3. Practice—optomechanical squeezing

A possible route to detecting this minuscule motional squeezing is via optical interferometry that detects
the relative frequency shift, as illustrated in figure 1.

For low-frequency simple harmonic oscillators, the cavity bandwidth can be much larger than the
mechanical frequency—a regime amenable to feedback cooling. This regime also allows the cavity mode
can be eliminated adiabatically, resulting in the input—output relation for the differential optical mode [43]

Xout() = X(¢), (13)
YU (r) = Y(¢) + (a/R) (1), (14)

where X_ (Y_) is the amplitude (phase) quadrature in the two-photon formalism [44],
a = 84/hPwy/(c*t2,) with P the intra-cavity power, wy the laser frequency, and #,, the amplitude
transmissivity of the input mirror of the optical cavity. The equation of motion of the masses’ differential
mode is ) _

ma—(t) + myuq—(t) + mw? g_(t) = a X™(t) + Fu(t), (15)

where Fy, is the Langevin force with a spectrum consistent with the Caldeira—Leggett model.
Solving equations (13)—(15) in the frequency domain gives

X)) _ |, ! O TXin(w) AN
[?out(w):| - |« X,(o.)) 1 ?T(UJ) + aX—(W) Fth(w)> (16)
h h
where y_(w) = [—m(w? + i ymw — w?)] 7! is the mechanical susceptibility of the differential motion. The
corresponding covariance matrix for the spectral densities is
a?x*
|:SXX(W) SXY(W)] _ 21 . (17)
Syx(w)  Syy(w) 04;(7 14 ‘th | (0 + Sir)

where Sgr results in the steady-state covariance in equation (8) for the differential motion. The correlation
between the amplitude and phase quadrature leads to optomechanical squeezing [45, 46] of the differential
optical mode.

The common optical mode has a similar covariance matrix with the mechanical susceptibility
X+ (W) = [—m(w? + iyw — w?)] 7!, that is with the mechanical resonance at w,, rather than w_. The
quantum nature of gravity thus manifests itself as the difference in the ponderomotive squeezing for the
common and differential modes of the optical field.

This ponderomotive squeezing can be read out using a homodyne measurement. It measures a general
quadrature X() = X cos  + Y sin 6 determined by 6, the phase of the local oscillator. The corresponding
spectral density is S(0, w) = Sxx cos® 6 + (Sxy + Syx)sin 6 cos 6 + Syy sin® 6, where we have suppressed the
w argument on the rhs for brevity. Its minimum value is

Sxx +Svy V(Sxy + Syx)? + (Sxx — Syy)?

Smin —_
w) 2 2

(18)
For the common optical mode, Sxy + Syx = 0 at w = w,,, whereby
an(wm) > 1. (19)

It thus shows no squeezing at the mechanical resonance. This is an instance of the blindness of homodyne
measurements to complex squeezing that is ponderomotively generated [47].

The differential optical mode, on the contrary, does exhibit squeezing at the w = w,, due of the
gravity-induced frequency shift on the differential motional mode. Mathematically, as o > 1,
Syy >> Sxy, Syx from equation (17), and o >> Sgr in a regime where the quantum radiation pressure
dominates the thermal fluctuation,

Re[y_(wn)]|? 1
X-(wm) | 1+Q8*

S ) Al ‘ (20)

4
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Estimating this squeezing in practice requires repeating the experiment—that is reaching steady state and
measuring v times. This gives an estimate with variance S™"(w,,) /v which must equal 1 — S™"(w,,) to
provide an SNR of unity. Thereby, total time for the experiment is

v 1

= ry_m B wQO64’ @)

after which time, the differential optical squeezing (in dB) is
S_ = —10log, [S™™(wm)] = 10log,, [1 + Q3,6'] . (22)

Both S_ and t are solely determined by the mechanical, and not the optical properties of the setup. For the
representative experimental parameters chosen after equation (11), S_ ~ 9 dB and ¢ &~ 1 mon. This is
challenging, but not prohibitive. Indeed, its experimental accessibility is aided by the lack of any thermal
fluctuation limitations in a regime dominated by the quantum radiation pressure. An observation of this
squeezing shall provide an experimental witness of the quantum nature of gravity—as we illustrate next for
a semiclassical model of gravity.

4. Semiclassical gravity

A hypothetical model of gravity is a semiclassical one—where a classical spacetime structure is sourced by
matter of quantum nature. The Hamiltonian for two identical harmonically trapped masses interacting as

per the non-relativistic version of such a model—known as the Schrodinger—Newton equation [48] is given
by

. 1 mw?
AN (2 1 p2) + mo(p2 4 a2
m (PA PB) > (QA QB) (23)
= Ci(ga — q8) — Co ((qa — (g8)* + (@5 — (qa))?) -
where C,, are constants depending on m, d. Using equation (3),
HN =" ﬁer“}é”2 o = wy [1— 22 (24)
2m y Bi), o " mw?,’

i=+

In this case, both the common and differential motional modes undergo identical frequency shifts with
respect to w,, and quantum squeezing. There will be no relative frequency shift between the two modes,
both of which after time 7 will have identical covariance matrices given by equation (7) with

0 = /2C,/mw?,. Consequently, there will be no quantum mechanical squeezing in the differential mode
relative to the common mode. The quantum squeezing and correlations are transferred unchanged to the
motional quadratures of the two masses, as has been discussed in terms of the transfer of quantum
information and uncertainty [48]. Crucially, there will be no quantum entanglement between the motional
states of the masses—as is the case if two identically squeezed thermal states are interfered on a balanced
beam splitter.

5. Conclusions

This paper has three—the first two holding if the gravitational interaction between two masses, as given by
the last term in equation (1), is sufficient to test the quantum nature of gravity.

Firstly, the quantum nature of the gravitational interaction between two masses can be probed via the
squeezing of their differential motional mode. This is an alternative to the experimental detection of
quantum entanglement generated by gravity [6-9, 12, 14, 17] which, as is to be expected, is also
proportional to 6*. Which one is more fundamental depends on which side of equation (3) one considers
more intrinsic.

Secondly, the signature of the quantum nature of gravitational interaction is imprinted in the relative
frequency shift of the differential motional mode. In principle, such a frequency shift may be inferred from
a standard transfer function measurement by introducing a strong classical force to drive the masses. In
practice, the optical squeezing provides direct evidence of the quantum correlation between the optical
fields in the two cavities meditated by gravity [15]. This being absent for some hypothetical models of
gravity such as the Schrédinger—Newton model allows them to be falsified experimentally.

Thirdly, the proposed experiment in figure 1 for detecting the squeezing of the differential optical mode
is less demanding than one for detecting entanglement—either in the motional or the optical modes. The
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Table 1. Experimental requirements necessary to detect signatures of the
quantum nature of gravity. Squeezing corresponds to that of the differential
mode while entanglement is between the two masses. Only the optical
squeezing imposes no restrictions on the temperature. Thus, in principle, the
experiment can be performed at room temperature if the radiation pressure
limited regime can be achieved with low frequency, high quality factor
mechanical oscillators.

Probe \ Signature Squeezing Entanglement
Motional Equation (11) Equation (30)
Optical Equation (21) Equation (26)

physical reason lies in the negligibility of the thermal fluctuations in the quantum radiation pressure
dominated regime. An exhaustive mathematical argument is hindered by the variety of experimental setups
for detecting gravitationally-induced entanglement. Consequently, we illustrate this conclusion by
considering the entanglement between the optical fields in the two cavities identified with the two masses in
figure 1.

We begin by defining effective single-mode optical quadratures at w,, as [15]
X, = Xk(wm)\/Aw/ﬂ', YV = ?k(wm)\/Aw/ﬂ, such that [X, )A),T(,] = 2idyp and X (Yy) are the amplitude
(phase) quadratures of cavity k = A, B. The bandwidth Aw is determined by the integration time and
smaller than v,,. The entanglement between the optical fields in the A, B cavities is determined solely by the
off-diagonal block of the optical covariance matrix o°?* for {.93 4> :)7 1 X B> 573} quadratures, that is

2 0 : (wm) - *_(wm)
A * . (25)

T T3 e lem) = x- () (s Gl = - wm)P)

Evidently, it is the difference in the mechanical susceptibilities of the common and differential motion that
generates the entanglement’. The condition for entanglement between the optical modes, as per the
logarithmic negativity, gives

A kT Qud* + 1\
h < Qud’, e L el I I 2
cot <2kBT> Q0 or oo, [n (Qm52 — 1)} (26)

Once again, this is solely determined by the mechanical, and not the optical properties of the setup. More
importantly, this condition on the temperature is ‘exponentially’ more demanding than equation (11) as
well as equation (21), substantiating our third conclusion. The experimental requirements are summarised
in table 1.

Finally, the scheme in figure 1 accumulates the quantum information about ¢ in the squeezing of the
optical differential mode quantum mechanically, while the conditional squeezing in reference [15] combines
that same quantum information from the readouts of two optomechanical cavities classically. The
coherence of our scheme leads to a well-known improvement in the detection of ¢ by a factor of /2. Given
the quartic dependences in equations (21) and (22), our scheme offers a very consequential four-fold
improvement over reference [15]*.

Nevertheless, the experiment proposed here is an exacting one. We therefore suggest, as a point of
embarkation, an endeavour to detect the relative frequency shift between the common and differential
modes due to an electromagnetic interaction between the masses. Given its strength, larger values of §
would be possible with significantly higher w,,. This will enable the identification—and suppression, of
various noise sources as the electromagnetic strength and w,, are progressively reduced. A course to
experimentally detecting signatures of the quantum nature of gravity may thus be charted.
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Appendix. Quantum entanglement between the two masses:

The steady-state covariance matrix of the masses A, B, that is for {g4, pa, s, pp} quadratures, is

+
o= [‘“ ”AB} =M {”00 02“] M, (27)

oA O3 0,0 o

where the transformation matrix M is given by

mMw,y, Mwm
0 — 0
h h
0 ! 0 !
M — — hmw,y, — hmw,y, ) (28)
m m
0 — 0
h h
0 ! 0 !
L hmw,, V' himew,, |

The quantum entanglement of this bipartite system, as per the logarithmic negativity [49], is
En = max {—(1/2)log2 [(E -V - 4deta’) /2] , 0}, where ¥ = deto 4 + detop — 2 det o 45. Using

equation (8), &y = max {—log2 [ZNth(l — )Y/ 4] , 0}. Achieving steady-state quantum entanglement thus
requires

T 52
th{ = | <(1—-6) V14 —, 29
co ( szT> ( ) +7 (29)
which matches equation (9) to within a factor of 2. Invoking feedback or optomechanical cooling leads to
kg T -
AL~ Q (30)

hm  In(8/52)
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