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A B S T R A C T   

Coffee aroma is critical for consumer liking and enables price differentiation of coffee. This study applied 
hyperspectral imaging (1000–2500 nm) to predict volatile compounds in single roasted coffee beans, as 
measured by Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry and Gas Chromatography- 
Olfactometry. Partial least square (PLS) regression models were built for individual volatile compounds and 
chemical classes. Selected key aroma compounds were predicted well enough to allow rapid screening (R2 

greater than 0.7, Ratio to Performance Deviation (RPD) greater than 1.5), and improved predictions were 
achieved for classes of compounds - e.g. aldehydes and pyrazines (R2 ~ 0.8, RPD ~ 1.9). To demonstrate the 
approach, beans were successfully segregated by HSI into prototype batches with different levels of pyrazines 
(smoky) or aldehydes (sweet). This is industrially relevant as it will provide new rapid tools for quality evalu-
ation, opportunities to understand and minimise heterogeneity during production and roasting and ultimately 
provide the tools to define and achieve new coffee flavour profiles.   

1. Introduction 

Coffee is a highly traded agricultural commodity. Its price and 
quality are strongly dependent on the aroma obtained after roasting and 
brewing. Coffee aroma is therefore of great commercial interest and 
important for the enjoyment of the product by the consumer. The vol-
atile composition of roasted coffee is complex, with more than 800 
compounds identified. Whilst many attempts have been made to link the 
complex pattern of coffee volatile compounds to its sensory quality, the 
selection of “key aroma compounds” is most commonly used to identify 
compounds that contribute to the overall aroma (Sunarharum, Williams, 
& Smyth, 2014). However, coffee batches are not homogeneous and, in 
many cases, contain both within specification coffee beans and beans 
with unique flavour profiles. 

Coffee aroma is generated during roasting, which causes a compli-
cated pathway of reactions (Farah, Monteiro, Calado, Franca, & Trugo, 
2006), that can be both positive and negative (Giacalone, Degn, Yang, 
Liu, Fisk, & Münchow, 2019; Yang, Liu, Liu, Degn, Munchow, & Fisk, 
2016). These include the Maillard and Strecker reaction and degradation 
of proteins, sugars, trigonelline and chlorogenic acid (De Maria, Trugo, 
Neto, Moreira, & Alviano, 1996). Different types of coffee beans, 

including different varieties, geographical origins or post-harvest 
treatments, can lead to different aromas, even when they are roasted 
under identical conditions. 

It is generally accepted that a medium roasted coffee contains the 
highest amount of volatile compounds (Yeretzian, Jordan, Badoud, & 
Lindinger, 2002), and that a light roasted coffee gives rise to stronger 
notes of sweet, cocoa and nutty aroma, while a darker roast causes more 
intense notes of burnt, sour, pungent and roasted aroma (Bhumiratana, 
Adhikari, & Chambers, 2011). Examples of key aroma volatiles identi-
fied in roasted and ground coffee beans include 2-ethyl-3,5-dimethyl-
pyrazine, 3-mercapto-3-methylbutyl-formate, 2-furfurylthiol and 
β-damascenone. 

In addition to analysing variation in volatile compounds at a batch 
level, it is also relevant to look at variation within batches, including for 
individual coffee beans, but there have been relatively few studies of 
this. Caporaso et al. (2018) analysed the flavour profile of single beans 
by SPME GC–MS and reported a wide variation between beans even 
within the same batch, which depended on the chemical class of the 
volatile compounds. Fischer et al. (2014) used time-of-flight mass 
spectrometry (TOF-MS) to evaluate volatile release over time during 
roasting. The authors were tentatively able to link the volatile 
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compounds generated to the possible precursors. Pyridines were re-
ported to be generated from trigonelline, phenols from chlorogenic 
acids, furfuryl alcohol from carbohydrates, and 1,2-benzenediol, 
guaiacol, vinylguaiacol and ethylguaiacol from chlorogenic acids. This 
was further built on by Liu et al. (2019) through the addition of targeted 
flavour precursors to modify coffee aroma. However, further research is 
still required to fully understand volatile compound formation in coffee, 
and to link its presence to flavour precursors in green coffee (Dorfner, 
Ferge, Kettrup, Zimmermann, & Yeretzian, 2003). 

Despite the numerous analytical techniques available to measure the 
volatile composition of coffee beans, most are time-consuming and some 
use harmful chemicals. Near-Infrared (NIR) spectroscopy (NIRS) has 
been used for the evaluation of espresso coffee brew quality, by trying to 
correlate the spectral information to the sensory response of a panel of 
consumers (Esteban-Diez, González-Sáiz, & Pizarro, 2004). Good pre-
diction of several sensory attributes by NIRS was reported, with the best 
performance of R2 = 0.9 being achieved for perceived acidity. 

Other studies applied NIRS to assess coffee roasting degree and the 
changes in moisture, density and weight during roasting, but samples 
were scanned as ground material, thus losing the information related to 
possible within-batch variation (Alessandrini, Romani, Pinnavaia, & 
Dalla Rosa, 2008; Shan, Suzuki, Ogawa, & Kondo, 2015). Shan et al. 
(2015) demonstrated a promising prediction of roasting degree for a 
single Arabica coffee batch at increasing roasting time. The PLS 
regression had high R2 values, of 0.99 and 0.97 for the calibration and 
validation datasets, with root mean square error of cross-validation 
(RMSECV) of 0.81% (range: 2–18%). The spectral band at 1940 nm, 
mostly attributable to water, was described as the most important in the 
regression model. Alessandrini et al. (2008) and Barbin et al. (2014) 
demonstrated prediction of roasting degree by PLS regression for a wider 
range of roasting conditions. The spectral bands at 1450 and 1943 nm 
had the most influence on the model, indicating the first overtone of 
O–H stretching and the combination band of O–H stretching and O–H 
deformation, respectively. NIRS was applied by Santos et al. (2016) to 
measure titratable acidity over roasting, reporting good prediction 
ability for bulk samples (Rp

2 = 0.89 and RMSEP = 0.16 mL NaOH 0.1 
mol L-1 g− 1 of coffee). 

Many studies on coffee aroma have focused on ground material 
(Baqueta, Coqueiro & Valderrama, 2019; Chang et al., 2021). Whilst it 
provides a good representative measurement of bulk properties, it does 
not provide information on heterogeneity. For example, Baqueta et al. 
(2019) used NIR spectroscopy on commercial ground coffee roasted at 
different roasting degrees, reporting promising results in terms of coffee 
cup quality. 

Hyperspectral imaging (HSI) combines the non-destructive and fast 
nature of NIRS with imaging, providing spatially resolved spectra that 
enables sample heterogeneity to be studied. It has been applied to many 
other commodities (Caporaso, Whitworth, & Fisk, 2018a, 2018b; 
Caporaso, Whitworth, Fowler, & Fisk, 2018) and high value foods (Ni, 
Liu, Liu, Sun, Pan, Fisk & Liu, 2020), but there have been relatively few 
studies for coffee beans. Fiore et al. (2008) used blends of Arabica and 
Robusta at four roasting degrees, and scanned the samples as ground 
coffee by HSI in the spectral region 400–1000 nm. Principal component 
analysis (PCA) showed good clustering between Arabica and Robusta 
green coffees, while medium and dark roasted samples could not be 
clearly differentiated. Linear Discriminant Analysis (LDA) was applied 
and 75–95% correct classification was achieved on ground roasted 
coffee to both differentiate the coffee species and the amount of Arabica 
in the blend. A study on the application of HSI for the assessment of 
whole roasted coffee beans to understand the consistency of roasted 
batches has been published by Nansen et al. (2016), using one batch of 
coffee only, roasted under different conditions and building a classifi-
cation model to discriminate these roasting conditions (termed “roasting 
defects”), although no quantitative prediction of degree of roast was 
made. Chang et al. (2021) recently applied HSI to classify ground 
roasted coffee lots clustered into seven categories based on their flavour 

and reported an accuracy ranging from 70 to 77%. 
HSI has been also applied to whole green coffee beans to study 

chemical composition (Caporaso, Whitworth, Grebby, & Fisk, 2018a, 
2018b; Nogales-Bueno, Baca-Bocanegra, Romero-Molina, Martínez- 
López, Rato & Heredia, 2020) or to detect insect infestation (Chen, 
Chang, Ou, & Lien, 2020), however literature is lacking on its use to 
estimate aroma potential from roasted beans. Therefore, the aim of this 
paper was to determine, for the first time, the feasibility of HSI to predict 
coffee aroma by scanning roasted coffee beans on an individual coffee 
bean basis. 

2. Materials and methods 

2.1. Coffee samples and chemicals 

Samples of commercial Arabica and Robusta green coffee were 
sourced from UK and European importers with the aim to obtain a wide 
geographical and botanical distribution of batches. A total of 25 coffee 
batches were used, and from each batch 10 beans were randomly 
selected. The batches were commercial samples from several growing 
locations, namely Brazil, Colombia, Costa Rica, Ethiopia, India, Mexico, 
Honduras, Kenya, Nicaragua, Uganda, Rwanda and Vietnam. The 
dataset included samples that had been treated using both the wet 
(~60%) and dry (~40% of the total batches) post-processing tech-
niques, in order to include all possible variation expected on new real 
samples on the market. As soon as the samples were received, they were 
stored in a storage room at controlled temperature (~10 ◦C) and hu-
midity. These coffee beans represented the samples individually ana-
lysed in the current experiment. Reference chemical compounds for the 
volatile compounds analysed by GC–MS were obtained from Sigma- 
Aldrich (Steinheim, Germany), and Fluka (Buchs, Switzerland). The 
following compounds were used as standards for the GC–MS analysis: 
2,3-pentanedione (97%), hexanal (98%), 1-methyl-1H-pyrrole (98%), 2- 
methyl-pyrazine (99%), 3-hydroxy-2-butanone, 2,5-dimethylpyrazine 
(98%), 2,6-dimethylpyrazine (98%), ethylpyrazine (98%), 2,3-dime-
thylpyrazine (99%), 2-ethyl-6-methylpyrazine (95%), 2-ethyl-5-methyl-
pyrazine (98%), 2-ethyl-3-methylpyrazine (98%), acetic acid (99.5%), 
acetoxyacetone (98%), 2-ethyl-3,5-dimethylpyrazine (47.5%), 5-meth-
ylfurfural (99%), 2-furanmethanol (98%), 3-methyl-butanoic acid 
(98%), guaiacol (98%), 4-ethylguaiacol (98%) and 4-vinylguaiacol 
(98%). 

2.2. Sample preparation and roasting 

Samples were roasted using a Fracino Roastilino roaster (Fracino, 
Birmingham, UK). This is a fluid-bed type and was chosen as it gives 
uniform roasting conditions and was suitable for roasting of single 
beans. Preliminary tests were conducted to identify the best time-
–temperature profile to give a medium–high roasting level to all beans. 
This comprised running experiments in the time range 2–6 min and at 
160–230 ◦C, always in isothermal conditions. Based on these trials, in-
dividual coffee beans were roasted using a standard time/temperature 
profile of 210 ◦C for 3 min. After roasting, beans were cooled, hyper-
spectral images were taken and the roasted coffee beans were then 
stored frozen at − 20 ◦C until the point of grinding. The beans were 
removed from the freezer, ground using a manual grinder (Devo, 
Holland) and re-frozen for analysis in 1.5 mL Eppendorf tubes at − 80 ◦C 
prior to SPME-GC–MS analysis. This second freezing step immediately 
after grinding was necessary to prevent the loss of compounds with high 
volatility before the GC–MS analysis. 

2.3. Solid Phase microextraction – Gas Chromatography - Mass 
spectrometry of single coffee beans 

Volatiles from individual beans were analysed by SPME-GC–MS. 
Coffee volatile compound sampling conditions followed the approach of 
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Caporaso, Genovese, Canela, Civitella, and Sacchi (2014). The SPME 
fibre was a 1 cm 50/30 μm DVB/Carboxen/PDMS StableFlex (Supelco, 
Sigma Aldrich, UK) and was pre-equilibrated at 40 ◦C for 10 min. Fibre 
exposure was 20 min and injection time was 5 min. A trace 1300 series 
Gas-Chromatograph coupled with the Single-Quadrupole Mass Spec-
trometer (Thermo Fisher Scientific, Hemel Hemptead, UK) was used for 
analysis. The GC conditions were chosen based on Akiyama et al. 
(2007), slightly adapted to the type of column available. The column 
used was a 30 m length Zebron ZB-WAX capillary column (Phenomenex, 
Macclesfield, UK), with 0.25 mm internal diameter and 1.00 µm film 
thickness. The initial column temperature was 40 ◦C, which was held for 
5 min, followed by a 3 ◦C min− 1 temperature ramp to 180 ◦C, then a 
temperature ramp of 10 ◦C min− 1 to 250 ◦C which was then maintained 
for 5 min. A constant carrier gas flow of 1.6 mL min− 1 was applied. Mass 
spectra were acquired in the electron impact mode at 70 eV, using a m/z 
range of 50–650 with a 2 s scan time. Compound identification was 
conducted using reference compounds, where available, and by 
comparing the resulting mass spectra with a database (NIST). Identifi-
cation was further confirmed by comparing linear retention indices 
(LRI) of volatiles under the experimental conditions reported above with 
literature data. The concentration of volatile compounds was expressed 
as the peak area as a proportion of the total GC–MS peak area. The 
quantification was carried out based on the internal standard used, 
while for those volatile compounds for which pure standards were 
available a proper quantification was carried out using calibration 
curves. 

2.4. Gas Chromatography – Olfactometry of roasted coffee 

For better identification of those volatile compounds that are more 
odour active, ground coffee (3 g) was placed into GC headspace vials 
(20 mL, 22.5 mm × 75.5 mm, Sigma-Aldrich, UK). 3-Heptanone was 
used as internal standard (15 μL, 0.01% 3-Heptanone (Sigma, Saint 
Louis, USA) in methanol (Laboratory reagent grade, Fisher Scientific, 
UK)) to calibrate for any instrument drift. 

Aroma sampling conditions were conducted according to Liu et al. 
(2019). For GC-O nasal impact frequency (NIF) analysis, a splitter was 
fitted to the end of the ZB-WAX column, and approximately half of the 
flow was diverted to an ‘odour sniffing port’ via a fused silica capillary 
passing within a heated transfer line, set at a temperature of 200 ◦C. Six 
panellists (four males and two females aged between 24 and 35 years) 
were used to conduct the GC-O NIF analysis. During each GC run, the 
panellist placed their nose close to the top of the sniffing port and 
recorded the time, duration and description of odours perceived (Pol-
lien, Ott, Montigon, Baumgartner, Muñoz-Box, & Chaintreau, 1997). As 
the GC runs were 40 min long, two assessors were used to sniff each 
chromatogram, swapping over half-way, to avoid fatigue. 

2.5. Hyperspectral image acquisition, data treatment and statistical 
analysis 

Roasted coffee beans were scanned on both sides using the HSI in-
strument described by Caporaso et al. (2018a, 2018b). Data for beans 
belonging to each batch were acquired in the same hypercube and 
treated as previously described by Caporaso et al. (2017). 

The HSI system was supplied by Gilden Photonics Ltd. (Glasgow, U. 
K.), and the sensing technology was a SWIR spectral camera (Specim 
Ltd., Oulu, Finland) acquiring in the spectral range ~ 900–2500 nm, 
with a spectral resolution of about 6 nm. The camera included a cooled 
14 bit 320 × 256 pixel mercury‑cadmium-telluride (HgCdTe) detector 
and N25E spectrograph. The samples were placed on a black high den-
sity polyethylene tray whose movement was controlled by a stepper 
motor via the software at a speed of 10.9 mm s− 1, and they were at a 
distance of 220 mm from the HSI camera. Illumination was provided by 
two 500 W halogen lamps. After each sample acquisition, a dark current 
image was acquired by closing the camera shutter and acquiring about 

100 frames. At periodic intervals, a white reference was acquired by 
using a PTFE reference material with approximately 100% reflectance. 
SpectralCube 3.0041 software (Specim) was used for the acquisition, 
and statistical analysis of the single bean spectra was carried out using 
The Unscrambler (CAMO, Norway). PLS regression models were built 
for total content of volatile compounds and sensory scores; specifically, 
PLS2 was used, so that more response variables could be modelled, one 
for each volatile compound. A k-fold approach using 20 segments was 
used to select the samples to be used as the test dataset. To reduce the 
number of responses, volatile compounds were grouped according to 
either their chemical groups or their sensory descriptors from the liter-
ature, following our previous work aiming to understand the correlation 
of volatile compounds in roasted coffee, and thus identifying clusters to 
group them taking into account their chemical classes and sensory de-
scriptors (Caporaso et al., (2018). Minitab 18 (Pennsylvania, USA) was 
also used to analyse the data of volatile compounds by PCA as a 
dimensionality reduction technique to understand possible sample 
grouping, and to perform correlation analysis using Pearson correlation, 
at a significance level of p < 0.05. Grouping according to the sensory 
descriptors would be similar to the creation of “aromatic series” or 
“odorant series” as recently reported for other food products (Genovese 
et al., 2019). 

2.6. GC–MS analysis of batches of segregated coffee beans 

As an additional test, a manual segregation trial was carried out to 
validate whether HSI predictions of coffee volatile aroma compounds or 
aroma profiles (predicted “nutty”, “roasted”, “sweet” and “spicy” scores) 
can be used to separate out individual beans into prototype production 
batches with distinctly different volatile aroma profiles. The HSI models 
developed to predict roasted coffee beans aroma were applied to one 
batch of Arabica and one batch of Robusta coffees as a further valida-
tion. Beans were roasted individually under the same conditions (3 min 
at 210 ◦C) of the calibration samples, and beans were scanned by HSI to 
then apply the calibration models. Beans were manually sorted into 
batches of beans with the highest 10% and lowest 10% of predicted 
values of the target attribute (volatile compound or analytically pre-
dicted sensory attribute). Success of segregation was evaluated by 
analysis of resultant batches by SPME-GC–MS as described previously. 

3. Results and discussion 

3.1. Reference analysis of volatile compounds 

A total of 50 volatile compounds were identified by SPME-GC–MS in 
the roast and ground coffee samples (Table 1). Of the compounds 
identified, 26 were shown in this study to be key aroma compounds in 
coffee by GC-O and are annotated in the table, 11 had previously been 
shown in similar coffee systems to be odour active and the remaining 13 
had been previously reported to be important in the volatile compound 
profile of coffee and were therefore also included. The main chemical 
classes of the compounds identified were ketones and pyrazines. In total 
there were 12 ketones, 12 pyrazines, 5 aldehydes, 4 phenols, 4 acids and 
a smaller number of other groups. The relative contribution of a volatile 
aroma compound to the overall flavour of coffee depends on its con-
centration, but also the individual detection threshold for the compound 
and its synergistic activity with other compounds (Caporaso et al., 2014; 
Genovese, Caporaso, Civitella, & Sacchi, 2014; Grosch, 1998, 2001a; 
Semmelroch & Grosch, 1996), its volatility and ease of extraction from 
the matrix. Therefore, it is important to consider compounds from a 
broad range of coffee types when trying to understand the link between 
coffee chemistry and potential perceived flavour for a wide range of 
current and future applications. 

Whilst many the compounds present are similar, it is known that 
there are differences between the relative abundance of volatile aroma 
compounds in Robusta and Arabica roasted coffee beans (Caporaso 
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et al., (2018). Robusta is recognised to elicit more intense “roasted/ 
smoky” and “sweet” sensory notes and in Arabica more “floral” notes are 
found. In our study, roasted Robusta coffee beans had a higher con-
centration of pyrazines, and a lower concentration of aldehydes, which 
would link to the expected sensory difference in the two coffee species. 

3.2. HSI prediction of single volatile compounds from roasted coffee 

Two approaches were tested to build prediction models for the 
concentration of volatile compounds in roasted coffee beans based on 
HSI scans of single roasted beans. Firstly, prediction models were built 
on all volatile compounds individually, while a second approach used a 
data reduction strategy to cluster compounds according to their chem-
ical groups (aldehydes, ketones, pyrazines, acids, etc.), or according 

their odour impact, i.e. sensory descriptors (section 3.3). 
Table 1 reports the results of the PLS regression models for individual 

volatile compounds in single roasted coffee beans by HSI, showing the 
coefficient of determination R2 and the root mean square error (RMSE) 
for the calibration and cross-validation datasets, as well as the ratio to 
performance deviation (RPD). 

In general terms, compounds belonging to the pyrazine group had 
the best prediction performance compared to other chemical classes, 
with 2-methylpyrazine, ethylpyrazine, 2,6-dimethylpyrazine, 2-ethyl-6- 
dimethylpyrazine and 2-ethyl-5-dimethylpyrazine demonstrating R2 

values in single roasted coffee beans of approximately 0.6–0.7 for the 
calibration dataset and above 0.5 for the cross-validation one. Similarly, 
furaneol, a ketone described in the literature with sweet and caramel 
odour notes, and furfural, organoleptically described as “sweet, woody, 

Table 1 
Performance of PLS2 regression model to predict individual volatile compounds in single coffee beans, by HSI scanning of roasted coffee beans.  

Compound Calibration Cross-validation RPD Chemical class 

R2 RMSE R2 RMSE 

acetaldehyde (2)  0.220  0.160  0.120  0.170  1.37 Aldehyde 
2-methylfuran (1A) (1R)  0.313  0.092  0.249  0.097  1.13 Furan 
3-methylbutanal (1A) (1R) (3)  0.080  0.02  0.000  0.020  1.22 Aldehyde 
2,3-butanedione (1A) (1R)  0.285  0.065  0.188  0.070  1.16 Ketone 
2,3-pentanedione (1A) (1R) (3)  0.384  0.057  0.299  0.061  1.31 Ketone 
hexanal (1A) (3)  0.197  0.017  0.046  0.019  0.84 Aldehyde 
1-methyl-1H-pyrrole (1A) (3)  0.331  0.098  0.164  0.108  1.57 Heterocyclic N 
pyridine (2)  0.417  1.906  0.236  2.193  1.72 Heterocyclic N 
pyrazine (1R) (2)  0.608  0.416  0.479  0.482  1.27 Pyrazine 
2-methyl-pyrazine (2) (3)  0.689  1.841  0.552  2.222  1.48 Pyrazine 
acetoin (1A)  0.367  0.049  0.257  0.054  1.09 Ketone 
acetol (4)  0.427  0.346  0.319  0.379  1.27 Ketone 
2,5-dimethylpyrazine (1A) (1R) (3)  0.606  0.790  0.441  0.951  1.47 Pyrazine 
2,6-dimethylpyrazine (1A) (1R) (3)  0.646  0.843  0.512  0.992  1.43 Pyrazine 
ethylpyrazine (1A) (1R)  0.755  0.339  0.631  0.418  1.62 Pyrazine 
2,3-dimethylpyrazine (3)  0.378  0.235  0.229  0.263  1.08 Pyrazine 
1-hydroxy-2-butanone (1A) (1R)  0.484  0.028  0.378  0.031  1.34 Ketone 
3-ethylpyridine (2)  0.362  0.040  0.160  0.046  1.85 Heterocyclic N 
2-ethyl-6-methylpyrazine (1A) (1R) (3)  0.645  0.414  0.538  0.478  1.51 Pyrazine 
2-ethyl-5-methylpyrazine (1A) (1R) (3)  0.666  0.259  0.534  0.308  1.46 Pyrazine 
2-ethyl-3-methylpyrazine (3)  0.602  0.182  0.459  0.214  1.26 Pyrazine 
2,3-diethylpyrazine (4)  0.657  0.001  0.509  0.003  1.36 Pyrazine 
3-ethyl-2,5-dimethylpyrazine (3)  0.438  0.366  0.321  0.405  1.27 Pyrazine 
acetic acid (1A)  0.386  3.618  0.146  4.299  1.04 Acid 
furfural (1A) (1R)  0.642  1.928  0.520  2.242  1.59 Aldehyde 
acetoxyacetone (4)  0.630  0.081  0.542  0.091  1.53 Ketone 
furfurylmethyl sulphide (4)  0.390  0.036  0.320  0.038  1.39 Sulphide 
2-ethyl-3,5-dimethylpyrazine (4)  0.090  0.001  0.010  0.001  1.82 Pyrazine 
furaneol (4)  0.572  0.085  0.481  0.094  1.38 Ketone 
2-acetylfuran (4)  0.584  0.282  0.505  0.309  1.54 Furan 
ethyl propanoate (3)  0.651  0.074  0.580  0.082  1.54 Ester 
2-furanmethanol acetate (1A) (1R) (3)  0.565  0.262  0.518  0.276  1.74 Acetate 
propanoic acid (2)  0.576  0.241  0.470  0.270  1.34 Acid 
5-methylfurfural (3)  0.690  1.038  0.578  1.226  1.67 Aldehyde 
2,3-butanediol (4)  0.120  0.020  0.040  0.020  0.91 Alcohol 
2-formyl-1-methylpyrrole (1R) (4)  0.180  0.120  0.090  0.120  1.29 Pyrrole 
γ-butyrolactone (4)  0.200  0.080  0.100  0.090  1.13 Ketone 
2-furanmethanol (1A)  0.210  2.19  0.190  2.390  1.11 Alcohol 
3-methyl-butanoic acid (1A)  0.284  0.257  0.210  0.271  1.16 Acid 
N-acetyl-4(H)-pyridine (1A) (1R)  0.320  0.054  0.238  0.058  1.35 Heterocyclic N 
3-hydroxy-4.5-dimethyl-2(5H)-furanone (4)  0.598  0.053  0.529  0.057  1.43 Ketone 
3-methoxy-5-methyl-2-cyclopenten-1-one (4)  0.362  0.015  0.255  0.017  1.07 Ketone 
3-methyl-2-butenoic acid (1A) (1R)  0.443  0.002  0.333  0.002  1.26 Acid 
3-methyl-1,2-cyclopentanedione (3)  0.090  0.180  0.000  0.19  1.03 Ketone 
guaiacol (1R) (3)  0.559  0.161  0.486  0.175  1.87 Phenolic 
2-(1H-pyrrol-2-yl)-ethanone (4)  0.501  0.130  0.441  0.138  1.34 Ketone 
2-formylpyrrole (4)  0.446  0.213  0.352  0.231  1.30 Phenolic 
phenol (1A) (1R)  0.273  0.225  0.307  0.237  1.70 Heterocyclic N 
4-ethylguaiacol (1A) (1R) (3)  0.507  0.0005  0.434  0.0005  1.36 Phenolic 
4-vinylguaiacol (1A) (1R) (3)  0.483  0.118  0.423  0.126  1.25 Phenolic 

The PLS2 regression model was built on the HSI spectra pre-treated using 2nd derivative treatment. The RMSE values are expressed as peak percentage (%) over the 
total peak area. The compounds are listed according to their GC elution order. Compounds identified with (1A) or (1R) are identified as key aroma compounds in coffee 
by GC-O as described in the methods section for Arabica or Robusta coffee respectively. Compounds numbered (2):Mahmud et al. (2020) and (3): Caporaso et al. (2018) 
are those considered as potent odorants in roasted coffee, based on literature data, and compounds numbered (4): Caporaso et al. (2018) have previously been 
identified in coffee and are important marker compounds. 
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almond”, were successfully predicted with acceptable performance for 
screening purposes. Ethylpyrazine, ethylpropanoate, 5-methylfurfural, 
2-methyl pyrazine, acetoxyacetone, 2-ethyl-5-methylpyrazine and 2- 
ethyl-6-methylpyrazine were the compounds showing the highest 
cross-validation R2 values. 

The lowest RMSECV values were obtained for 2-ethyl-3,5-dimethyl-
pyrazine, 4-ethylguaiacol, 2,3-diethylpyrazine and 3-methyl-2-butenoic 
acid. The prediction error by itself, however, is not a good indicator of 
which compound was predicted with the best performance, as the range 
of concentrations at which each compound was found should be also 
taken into account. For example, despite the low prediction error of 
hexanal, this compound was poorly predicted as it had an R2 value close 
to zero and RPD value of 0.84. The ratio of performance to deviation 
(RPD) value may therefore be a better indicator of the model perfor-
mance, but it should still be considered alongside the calibration and 
prediction R2 values. The RPD is defined as the ratio of the model’s 
prediction error to the standard deviation of the reference target com-
pound(s) and is often used as an indicator of how well a prediction 
model performs in relation to the observed variation of the analytes of 
interest. The individual models that had the higher RPD values were 
guaiacol, 3-ethylpyridine, 2-ethyl-3,5-dimethylpyrazine and 2-furanme-
thanol acetate. However, despite the high RPD values obtained for 3-eth-
ylpyridine and 2-ethyl-3,5-dimethylpyrazine, these compounds were in 
fact poorly predicted (validation R2 of 0.16 and 0.01, respectively). The 
pyrazine compounds, with exceptions (2,3-dimethyl pyrazine and 2- 
ethyl-3,5-dimethylpyrazine), showed the best prediction perfor-
mances. In addition, good prediction was obtained for guaiacol (RPD =
1.87), 2-furanmethanol acetate (RPD = 1.74), 5-methylfurfural (RPD =
1.67) and furfural (RPD = 1.59). 

Additional Fig. 1 shows the plot of cross-validation error (RMSECV) 
in relation to the number of Latent Variables (LV), for all single volatile 
compounds. This graph is useful to display the expected prediction error 
and was used to select the optimal LV. The large difference in the pre-
diction error among volatile compounds was attributed to the different 
concentrations at which they are found in coffee headspace, as some of 
them were present at 10–20% of total volatile GC area, while others 
were far below 1%. Some of the volatiles showing the best performances 
are shown as predicted versus reference plots in Additional Fig. 1. 
Generally, the concentration of all volatile compounds showed a good 
spread across the observed range, not displaying gaps and therefore the 
range of variation was fully covered. 

It might seem that the number of optimal LVs used for some volatile 
compounds or some models were quite large. However, this number was 
optimised by cross-validation in order to avoid both under-fitting or 
over-fitting of the models. In the case we verified no significant 
improvement in terms of cross-validation error when increasing the 
number of LVs we chose the lowest possible one such that we optimised 
for model robustness rather than model’s performance and avoid 
overfitting. 

The results obtained by HSI models for single volatile compounds 
showed that generally compounds with very similar chemical structure 
had similar performance, with exceptions, and similar strong absor-
bance bands as per their β-regression plots, despite differences in the 
concentration of the target volatile compounds. 

3.3. Roasted coffee: Prediction of chemical groups and sensory impact 

During roasting of complex food materials such as coffee, the kinetics 
and direction of roasting reactions are dependent on the presence and 
availability of flavour precursors. As each coffee bean differs, both in 
levels of these precursors, but also in available solvent (water) and 
microchemistry (pH), the resultant flavour compounds will also vary 
individually on a bean to bean basis. However, due to the complexity of 
the interacting reactions (Maillard chemistry, oxidation, pyrolysis, etc.) 
measuring and following each of these reactions simultaneously is 
almost impossible. Understanding how groups of compounds are 

formed, by each chemical class, will therefore offer insight into the 
overall rate of the different roasting reactions and grouping compounds 
by their predicted sensory attributes will offer insight into the resultant 
potential flavour differences (Caporaso et al., (2018). Clustering volatile 
compounds is also a strategy to reduce the number of responses in the 
statistical model thereby providing a more practical and usable model 
for commercial and research applications. 

Individual volatile compounds were therefore grouped according to 
their chemical classes and new PLS regression models were built. This is 
presented in Table 2, which compares different spectral pre-processing 
techniques for HSI scans of single roasted coffee beans. The two spec-
tral pre-treatments tested were standard normal variate (SNV) and 2nd 
derivative by the Savitzky–Golay algorithm. These spectral pre- 
treatments gave similar results, with the former resulting in slightly 
better prediction of phenols and heterocyclic nitrogen compounds. 
Although the prediction accuracy is lower than SNV in some cases, it 
uses fewer LVs, and thus might be preferred. Aldehydes and pyrazines 
were predicted with the highest accuracy among all chemical groups, 
showing R2 values of approximately 0.8 for calibration and 0.7 for cross- 
validation dataset. 

An additional aroma indicator is the ratio between aldehydes and 
pyrazines, as the former is linked to fruity and sweet notes, and the latter 
to roasted, nutty and smoky aroma. The ratio between aldehydes and 
pyrazines was also well predicted by HSI, with an RPD value of 1.7. The 
best RPD values for aldehydes and for pyrazines were 1.87 and 1.88, 
respectively, thus indicating sufficient accuracy for screening purposes. 
The RPD value for chemical groups was above 1.5 for pyrazines, ketones 
and the ratio aldehydes/pyrazines. Previous authors (Bellon-Maurel, 
Fernandez-Ahumada, Palagos, Roger, & McBratney, 2010; Davey, Saeys, 
Hof, Ramon, Swennen, & Keulemans, 2009; Ncama, Opara, Tesfay, 
Fawole, & Magwaza, 2017) suggested that RPD values between 1.4 and 
2 could be considered as fairly reliable, while for quantification, values 
above 2 are desired. The predicted versus reference plots for aldehydes, 
pyrazines, phenols and aldehydes/pyrazine ratio are shown in Fig. 1. 

Table 3 reports the performance of the models built using the second 
approach for data reduction, grouping the volatile compounds into 
“sensory groups” according to the main odour descriptor for each 
compound. In this way, an indication of the possible sensory impact can 
be obtained. Spectral pre-treatments gave improvement for all the 
models tested, except “fruity” and “musty”, where little improvement 
was obtained. The descriptors predicted with the highest accuracy were 
those of “nutty”, “sweet” and “spicy”, which had calibration R2 values 
greater than 0.7, and 0.812 for nutty. The cross-validation R2 was 0.717 
for nutty, and 0.63–0.64 for sweet and spicy. The poorest performance 
was for the fruity descriptor, for which the RPD value was below 1.0. 
Generally, lower performances were obtained for the prediction of 
odour impact in roasted coffee beans, compared to the use of chemical 
groups. The RPD values for sweet and spicy suggests the model has 
applicability for screening purposes (1.73 and 1.76, respectively). As 
observed in the case of chemical groups, the 2nd derivative pre- 
treatment gave a similar performance to SNV, while it made use of 11 
LVs instead of 16. Although a large number of LVs were used, the models 
are not overfitted, as verified by checking the prediction error versus the 
number of LVs used. In addition, the model using the lowest number of 
LVs was preferentially used, in this case the one using the 2nd derivative 
treatment. SNV spectral pre-processing also led to slightly better cali-
bration and validation errors compared to the 2nd derivative treatment. 
The predicted versus reference plots for the odour characteristics of 
nutty, roasted, sweet and spicy are shown in Fig. 2. 

3.4. SPME GC–MS validation of coffee bean segregation 

As an example of the capability of the HSI approach, a single batch of 
Arabica coffee beans was roasted and HSI models applied for A) pyr-
azines and B) analytically predicted “nutty”. Beans were then manually 
segregated according to the prediction (high and low) and the resultant 
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sorted batches analysed by GC–MS and directly compared to the residual 
material (Fig. 3). 

Sorting for predicted pyrazine content (High Pyrazine, HP) resulted 
in a batch of roasted coffee beans with an increased concentration of 
pyrazines compared to the original “batch” material, this difference was 
statistically significant (p < 0.05) (Fig. 3A). Total pyrazines increased 
from 24.63 % ± 1.46 % to 32.72 % ± 2.57 % of total volatiles measured 
(Fig. 3A). Sorting for pyrazines led to a reduction in ketones and an 
increase in heterocyclic nitrogen-based compounds (p < 0.05). There 
was also an increase in analytically predicted “nutty” and analytically 

predicted “sour” (p < 0.05) (Fig. 3B). 
Sorting for analytically predicted “nutty” resulted in two batches of 

roasted coffee beans which, whilst not statistically different to the 
reference material, were significantly different from each other, having 
higher analytically predicted “nutty” and lower analytically predicted 
“nutty” (Fig. 3B). The segregated batches also contained significantly 
different concentrations of pyrazines and heterocyclic nitrogen (p <
0.05) (Fig. 3A). 

Table 2 
Results of PLS2 prediction of volatile compounds as chemical groups, using different spectral pre-treatment, on HSI spectra acquired on single roasted coffee beans.  

Spectra pre-treatment LV Parameter Calibration Validation RPD 

R2 RMSE R2 RMSE 

Log(1/R) 17 Aldehydes  0.717  2.83  0.633  3.22  1.61   
Pyrazines  0.774  4.28  0.662  5.30  1.56   
Ketones  0.562  0.59  0.452  0.66  1.32   
Phenols  0.509  0.30  0.381  0.34  1.37   
Acids  0.375  3.83  0.208  4.36  1.10   
Heterocyclic N  0.385  2.58  0.221  2.93  1.26   
Aldehydes/Pyrazines  0.693  0.19  0.596  0.22  1.50 

SNV 17 Aldehydes  0.793  2.33  0.701  2.77  1.87   
Pyrazines  0.807  3.61  0.726  4.39  1.88   
Ketones  0.600  0.55  0.497  0.60  1.45   
Phenols  0.544  0.26  0.439  0.29  1.61   
Acids  0.368  3.73  0.208  4.24  1.13   
Heterocyclic N  0.396  2.14  0.198  2.49  1.48   
Aldehydes/Pyrazines  0.750  0.17  0.666  0.19  1.74 

2nd derivative 11 Aldehydes  0.776  2.42  0.676  2.85  1.82   
Pyrazines  0.808  3.65  0.699  4.65  1.78   
Ketones  0.556  0.57  0.433  0.64  1.37   
Phenols  0.589  0.23  0.542  0.25  1.87   
Acids  0.361  3.69  0.182  4.26  1.12   
Heterocyclic N  0.376  1.79  0.263  1.95  1.89   
Aldehydes/Pyrazines  0.769  0.16  0.669  0.19  1.74 

LV = number of latent variables; R2 
= coefficient of determination; RMSE = root mean square error; RPD = ratio to performance deviation; SNV = standard normal 

variate. 

Fig. 1. Predicted versus reference plots of some chemical groups predicted by HSI on single roasted coffee beans. Pre-treatment: 2nd derivative (LV = 11).  
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3.5. Discussion 

The results shown in this paper demonstrate the successful prediction 
of volatile compounds from single coffee beans by HSI and demonstrate 
its application for screening purposes. Differences in the prediction 
ability were obtained even for compounds with very similar chemical 
structures, and the relative concentration was not a critical factor in 
terms of prediction ability. This is explained not only by the chemical 
structure of the molecules, but it is more likely linked to the biochemical 
origin of these volatile compounds. Generally, compounds belonging to 
the pyrazine class showed the strongest prediction. Pyrazines are het-
erocyclic aromatic compounds that are described as nutty, roasted, 
peanut, coffee-like and earthy, and many pyrazines are described as 
potent odorants in roasted coffee (Czerny & Grosch, 2000; Grosch, 
2001b; Scheidig, Czerny, & Schieberle, 2007). The similarity of some 
models predicting specific volatile compounds could be attributed to the 
common origin of these compounds, which might explain the better 
performance of models obtained by grouping compounds belonging to 
the same chemical class. 

The regression vectors, i.e. the coefficients of the PLS regression 
models, for aldehydes and pyrazines shared the most important ab-
sorption peaks and were negatively correlated. Some of the most intense 
absorption wavelengths for several models were attributed to the 1st 
overtone of O–H and N–H, which was previously reported to be 
important wavelengths for the prediction of “bitterness” in coffee 
assessed by sensory analysis (Ribeiro, Ferreira, & Salva, 2011). Ab-
sorption wavelengths previously associated with the overall “flavour” 
were those around 1975 and ~ 1435 nm, while those at 2276 and 2088 
nm were important for acidity and bitterness, respectively (Ribeiro 
et al., 2011). Spectral bands at ~ 2050 nm likely show the absorbance of 
the 1st overtone of C––O and O–H combination; those around ~ 2300 
nm have been described as due to N–H and O–H combination or C–H 
combination. 1680 nm is likely attributed to the 1st overtone of C–H, 
while the region 1950–1980 nm is related to the 2nd overtone of C––O 
stretching. The absorption around 2000–2100 nm is due to both 1st 
overtone of C––O and O–H combination bands, while the region 
1400–1450 nm shows the 1st overtone of O–H and N–H. 

Table 3 
Results of PLS2 prediction of volatile compounds as expected odour impact in 
terms of sensory odour descriptors from GC–MS analysis, using different spectral 
pre-treatment, by HSI acquired on single roasted coffee beans.  

Spectra pre- 
treatment 

LV Parameter Calibration Validation RPD 

R2 RMSE R2 RMSE 

Log(1/R) 19 Fruity  0.410  0.426  0.212  0.496  0.90 
Nutty  0.725  2.949  0.573  3.69  1.47 
Roasted  0.549  2.168  0.368  2.583  1.23 
Sweet  0.721  2.20  0.589  2.692  1.50 
Sour  0.390  3.523  0.216  4.020  0.95 
Spicy  0.724  1.069  0.588  1.314  1.40 
Musty  0.647  2.698  0.513  3.192  0.68 
Positive/ 
Negative  

0.504  0.241  0.335  0.280  1.05 

SNV 16 Fruity  0.380  0.35  0.206  0.39  1.15 
Nutty  0.799  2.432  0.707  2.998  1.81 
Roasted  0.604  2.000  0.448  2.245  1.42 
Sweet  0.757  1.983  0.648  2.334  1.73 
Sour  0.280  3.240  0.130  3.65  1.05 
Spicy  0.762  0.895  0.686  1.042  1.76 
Musty  0.466  1.590  0.329  1.783  1.22 
Positive/ 
Negative  

0.467  0.214  0.323  0.246  1.19 

2nd 
derivative 

11 Fruity  0.268  0.458  0.091  0.509  0.88 
Nutty  0.812  2.433  0.717  3.060  1.78 
Roasted  0.575  2.077  0.426  2.433  1.31 
Sweet  0.743  2.033  0.632  2.374  1.70 
Sour  0.335  3.250  0.130  3.768  1.02 
Spicy  0.729  0.984  0.637  1.155  1.59 
Musty  0.358  1.900  0.225  2.084  1.05 
Positive/ 
Negative  

0.490  0.220  0.319  0.259  1.14 

LV = number of latent variables; R2 = coefficient of determination; RMSE = root 
mean square error; RPD = ratio to performance deviation; SNV = standard 
normal variate. The reference values for these aroma descriptors were derived 
from the GC–MS data, by grouping individual volatile compounds according to 
their odour descriptors (Caporaso et al., 2018a). The value “Positive/negative” 
indicates the fraction of volatile compounds reported with positive descriptors 
over those reported in the literature with negative descriptors. 

Fig. 2. Predicted versus reference plots of some odour predictions by HSI on single roasted coffee beans. The spectral pre-treatment applied was 2nd derivative (LV 
= 11). 
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The understanding of coffee quality using vibrational spectroscopy 
methods is challenging due to the low concentrations of compounds that 
exert a sensory impact, in terms of both aroma and taste. Some taste- 
active compounds are found at relatively high concentrations, exam-
ples of which would include acids and caffeine in roast and ground 
coffee (Farah, 2012), and it therefore might be possible to detect them 
directly by NIR. In contrast, the concentration of volatile compounds is 
relatively low and therefore unlikely to be directly predicted. For these 
reasons, other authors have previously attempted to build NIR models to 
predict some sensory characteristics of the coffee beverage instead of 
quantifying specific compounds. Ribeiro, Ferreira, & Salva (2011) 
applied cup testing to bulk ground and roasted coffee and built NIR 
models (1100–2500 nm) to predict sensory parameters such as acidity, 
bitterness, flavour, cleanliness, body and “overall quality” while Este-
ban-Díez et al. (2004) reported PLSR models for the sensory attributes of 
body, acidity, bitterness and appearance. Both of these studies webre 
carried out on batches of roast and ground coffee (i.e. not single coffee 
bean), which has limitations that were overcome in our research as we 
have demonstrated that volatile compounds that represent coffee aroma 
can be predicted for individual beans with sufficient accuracy to allow 
screening. 

Ultimately, the application of this insight could enable better 
standardisation of roast coffee quality, removal of defect beans and even 
selection of the most distinctive batches of coffee beans for special target 
markets. 

Previous research has shown the possibility of predicting coffee 

aroma using NIR-based techniques, whilst more limited research has 
been done using HSI. Previous authors have applied NIR spectroscopy to 
predict coffee cup quality (Tolessa, Ramaker, De Baets & Boeckx, 2016), 
or the roasting degree (Alessandrini et al., 2008) as well as the ratio 
between Arabica and Robusta (Bertone, Venturello, Giraudo, Pellegrino 
& Geobaldo, 2016), or the sensory properties of the brewed coffee 
(Esteban-Díez et al., 2004). A recent book chapter Baqueta, Caporaso, 
Coqueiro & Vanderrama, (2020) describes the potential of NIR spec-
troscopy for coffee quality evaluation and describes some successful 
research carried out for coffee cup classification. Regarding coffee 
aroma analysed by sensory panels showed promising results by using 
PLS on NIR data obtained on ground coffee lots even using miniaturised 
NIR instruments (Baqueta et al., 2019), however applications at a single 
coffee bean level or using HSI to predict for coffee aroma are lacking. 

A recent review summarises the current research related to predict-
ing food minor compounds using these techniques, including volatile 
compounds (Tahir et al., 2019). The authors reported some applications 
of conventional NIR spectroscopy to predict volatile compounds in olive 
oil, wine and lavender oil, as well as one publication on cheese, while 
only three research papers attempted to predict minor constituents in 
food products, i.e. anthocyanin in wine, total phenolic content in grapes, 
and total phenolic content in cocoa beans, while no research has been 
conducted to investigate volatile compounds. This confirms the novelty 
of the research herein presented. 

By comparing the outcome of our research with previous publica-
tions based on NIR spectroscopy but on other food products, we can state 

Fig. 3. Impact of coffee bean segregation 
trials after sorting beans for the top 10% (H) 
or lowest 10% (L) concentration of A) pre-
dicted pyrazines or B) analytically predicted 
“nutty”, indicated in bold, on the relative 
abundance of 4 groups of volatile compounds 
(pyrazines, aldehydes, ketones and hetero-
cyclic nitrogen) and analytical predicted 
“nutty”, “fruity”, “sour” and “roasted”. Pri-
mary segregation targets are highlighted in 
bold. Different letters indicate a statistically 
significant difference among the samples by 
ANOVA, p < 0.05, Tukey’s HSD test.   
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that HSI has a similar performance as it leads to similar values of 
regression coefficients and prediction error values. However, a direct 
comparison cannot be made due to the obvious influence of the other 
compounds in those food matrices. Generally, however, whilst this 
approach seems promising, it is likely due to the detection of 
biochemical precursors or intermediates found at a higher concentra-
tions, or to some secondary correlation among compounds rather than 
an direct quantification of specific volatile compounds. 

Future research on the topic could investigate the following: i) Se-
lection of the most influential spectral bands in order to build multi- 
spectral imaging models and to verify whether and to what extend the 
prediction ability changes; ii) Application of these models to new coffee 
batches, including those from new geographical origins or different 
coffee species to understand whether the findings can be generalised or 
whether it is more appropriate to use species-specific calibrations; iii) 
investigation of the general ability of HSI or other vibrational spec-
troscopy technologies to differentiate and quantify volatile compounds; 
iv) investigation of the potential difference that different brewing 
techniques can bring to the brewed coffee (Caporaso et al., 2014) and 
build models the brewed coffees. 

4. Conclusions 

We have presented effective hyperspectral imaging prediction 
models for roast coffee aroma on a single roasted bean basis. To the best 
of the authors’ knowledge, this is the first study to achieve this. Pre-
dictions have been presented for single volatile compounds, compounds 
grouped by chemical class and compounds grouped by their analytically 
predicted odour properties. The predictive ability of the model was 
validated by segregating beans into batches (top 10% and bottom 10%) 
based on HSI predictions of groups of volatile compounds (pyrazines) 
and analytical predicted sensory traits (nutty). The resultant batches of 
beans were shown by SPME-GC–MS to have significantly different pro-
files of volatile flavour compounds and analytically predicted odour 
properties. This work demonstrates that the inherent variations in 
chemical profiles of individual coffee beans can be exploited, and by 
using HSI as a non-destructive evaluation tool, individual beans can be 
segregated, thereby producing batches of coffee with unique and distinct 
blends of volatile flavour compounds. This is of relevance to the coffee 
industry as it will provide new tools for quality evaluation, opportunities 
to understand and minimise heterogeneity during production and 
roasting processes and ultimately provide the tools to define and achieve 
new flavour profiles of coffee. 
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