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Preface 

This book is meant to look at the evidence behind the application of Therapeutic 
Hypothermia on patients with injury to the Central Nervous System, including both 
brain and spinal cord. Central nervous system injury includes ischemia reperfusion 
after cardiac arrest or asphyxiation, traumatic brain injury, acute ischemic stroke, 
hemorrhagic stroke, refractory intracranial hypertension, cerebral edema in acute liver 
failure, subarachnoid hemorrhage, as well as spinal cord injury (SCI). In the minutes to 
hours following injury, cascades of destructive events and pathophysiologic processes 
begin at the cellular level. These result in further neuronal injury and are termed the 
secondary injury. Cellular mechanisms of secondary injury include all of the 
following:  apoptosis, mitochondrial dysfunction, excitotoxicity, disruption in ATP 
metabolism, disruption in calcium homeostasis, increase in inflammatory mediators 
and cells, free radical formation, DNA damage, blood-brain barrier disruption, brain 
glucose utilization disruption, microcirculatory dysfunction and microvascular 
thrombosis. All of these processes in the brain and spinal cord are temperature 
dependent; they are all stimulated by fever, and can all be mitigated or blocked by 
mild to moderate hypothermia. As a result, there has recently been extensive interest 
in studying the application of Therapeutic Hypothermia (TH) to brain and spinal cord 
injured patients. This book will discuss the mechanisms by which therapeutic 
hypothermia can mitigate the pathophysiologies responsible for secondary brain 
injury, as well as the available evidence for the use of therapeutic hypothermia in 
multiple neurologic injuries (stated above). Recent studies have indicated that TH with 
a reduction of body core temperature (T) to 32 - 34 °C for 12 to 24 hours has improved 
survival and neurologic outcome in comatose out-of-hospital cardiac arrest patients. In 
this patient population, the evidence for TH is overwhelming leading to major 
international associations giving it a class I recommendation. However, the evidence 
for its application to patients with other forms of brain injury stated above and SCI is 
less overwhelming and still in progress. This book will describe the clinical human 
evidence behind therapeutic hypothermia for all of the above mentioned brain and 
spinal cord injuries, as well as the basic and animal studies that led to its clinical 
applications. This book will also describe how to apply hypothermia to patients with 
brain injury in the intensive care unit (ICU), methods of cooling and technologies used 
to induce and maintain therapeutic hypothermia, protocol development for hospitals 
and ICUs, as well as timing, depth, duration, and management of side-effects. 



XII Preface

Neuroprognostication of patients with brain injury and SCI is also significantly 
affected by the application of therapeutic hypothermia. This book will also describe 
how hypothermia can influence the ability to prognosticate these injured patients, as 
well as describe the current evidence to help clinicians offer the family the best and 
most honest discussion on prognosis of their loved ones. We will also describe how 
TH influences the metabolism of the most commonly used drugs in the ICU, and how 
this effect is also linked to prognostication of these patients with brain and spinal cord 
injury. It will also provide grounds for future directions in the application of and 
research with therapeutic hypothermia. 

Farid Sadaka, MD 
Clinical Associate Professor 

Critical Care Medicine/ NeuroCritical Care 
Medical Director, Trauma and Neuro ICU 

Mercy Hospital St Louis/ St. Louis University 
St. Louis,  

USA 



 

 

 
Section 1 

 

 
 
 

Therapeutic Hypothermia-General 

 

  



 

Chapter 1 

 

 

 
 

© 2013 Lakshmanan et al., licensee InTech. This is an open access chapter distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Therapeutic Hypothermia: 
Adverse Events, Recognition, Prevention  
and Treatment Strategies 
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1. Introduction 
Therapeutic hypothermia has been around for centuries, ancient Egyptians, Greeks, and 
Romans have used it. 

Hypothermia is any body temperature below 36 degree C. 

Therapeutic Hypothermia is induced hypothermia and can be mild (34-35.9 degree C), 
moderate (32-33.9 degree C), moderately deep (30.1-31.9 degree C) or deep (less than 
30degree C). 

 
 

 

Figure 1. Current indications for induced therapeutic hypothermia 

Cardiopulmonary resuscitation Class-I
Traumatic brain injury (ICP CONTROL) Class I
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Intraoperative hypothermia for intracerebral 
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Intraoperative hypothermia for thoraco-
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2. Cardiac arrest 

Despite advances in ICU care, cardiac arrest remains a significant cause of death in many 
countries. Mortality reports vary from 65 to 95% for out-of hospital cardiac arrest. I is a class 
–I recommendation now that  after return of spontaneous circulation in  out-of-hospital VF 
cardiac arrest , patients that remain comatose should be subjected to hypothermia at 32°C to 
34°C for 12 to 24 hours. This may also be applied to comatose adult patients with 
spontaneous circulation after OHCA from a non VF rhythm or in-hospital cardiac arrest.1 

Several unanswered questions however remain, due to lack of randomized studies. These in 
part, relate to time from initiation of therapy to achieving target temperature, and whether 
this is a significant predictor of outcome. The optimal rate of cooling is also an unanswered 
question, so is the optimal duration of TH in some settings, albeit in the setting of cardiac 
arrest, improved outcomes have been demonstrated with 12 and 24 hrs of TH at 32°C to 
34°C. Hypothermia for neonatal asphyxia is commonly performed for 72 hrs, while 
hypothermia for cerebral edema associated with liver failure has been reported for as long 
as 5 days. 2 

3. TBI 

Traumatic brain injury (TBI) is a leading cause of death and disability in young people in 
Western countries. The neuroprotectant effects are thought to be related to decreased 
metabolic rate, cerebral blood flow, decreased release of excitatory neurotransmitters, 
decreased apoptosis, cerebral edema, decreased cytokine response etc.3 

While studies have shown that Hypothermia is clearly effective in controlling intracranial 
hypertension (level of evidence: class I); it has been difficult to show that lowering ICP 
definitely improves outcomes. Few positive studies with regard to survival and improved 
neurological outcome have been shown mainly in tertiary referral centers with experience in 
use of hypothermia. Here again, as in cardiac arrest, more unanswered questions remain- 
duration, time of cooling and rewarming, type of rewarming. Currently, most centers 
perform it for at least 48 hours. Rewarming is typically done slowly, over at least 24 h (level 
of evidence: class IIa). 4 If there is evidence of ICP elevation during rewarming, again no 
definite recommendations are available, but most experts will proceed with repeat cooling.  
It could be that in traumatic brain injury, other therapies, including cerebrospinal fluid 
drainage, osmolar therapies, sedation, barbiturate coma, and decompressive craniectomy 
may confer additional benefits that may make it more difficult to prove that Therapeutic 
hypothermia is superior.  

4. Stroke 

Similar to Cardiac arrest and TBI there is evidence from animal studies that show benefits of 
therapeutic hypothermia in stroke. Use of hypothermia in stroke remains experimental, 
until large prospective randomized human clinical trials using hypothermia in acute stroke 
are completed. 5 
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5. MI 

Hypothermia may decrease infarct size in patients with acute myocardial infarction after 
emergency percutaneous coronary intervention 

6. Other indications 

Intraoperative hypothermia is used during neurological surgery but without strong 
evidence from randomized controlled trials. Indications are being studied in the areas of 
SAH, Neurosurgery, liver failure, Spinal cord injury. 

7. Induction of hypothermia 

Methods 6 

Both Invasive and non invasive cooling methods have been developed and used to induce 
hypothermia. The ideal cooling technique should offer efficacy, speed of cooling for target 
organs, and offer ease of use and transport. It should also have the ability to provide 
controlled rewarming. 

Surface cooling: Dine et al 

Surface cooling as a noninvasive method to induce hypothermia is easy to use, on the other 
hand requires more time to achieve the target temperature. There are two described 
methods: generalized cooling, and selective brain cooling. 

Generalized cooling is achieved through the use of cooling blankets, ice packs, and cooling 
pads. Care should be paid to prevent cold injury to the patient’s skin. This method has 
variability in time to cooling, ranging from 0.03 to 0.98 °C per hour and difficulty in titration 
of temperature.  

Pads that provide direct thermal conduction through the skin are also used; these are unlike 
conventional water blankets or wraps where heat transfer is by convection. The cooling rate 
is reported to be 1.5°C/hour or more. Hydrogel-coated pads in these circulate temperature-
controlled water under negative pressure, and are placed usually on the patient’s abdomen, 
back and thighs. 

Selective brain cooling is another non invasive method. The most commonly used methods 
are cooling caps and helmets that contain a solution of aqueous glycerol to facilitate heat 
exchange. Helmet devices do not appear to provide particularly significant protection to the 
brain, but they reduce core temperature slowly. 

Several other limitations exist in surface cooling methods. Through vasoconstriction, 
shivering, redirection of blood flow away from extremities, they create thermal energy.  
Overcooling occurs. In a study involving 32 patients where surface cooling was used to 
induce hypothermia, 63% of patients were overcooled, increasing the risk for adverse 
events. Another problem with surface cooling is cold injury, causing pressure ulcers and 
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skin breakdown. Surface cooling is less efficient in reducing the temperature of target 
organs, such as the brain and heart6 

Invasive cooling 

30 ml/kg Lactated Ringers solution that has been chilled to 4°C can be infused over 30 
minutes. No adverse effects of the rapid infusion of this volume of IV crystalloid fluid in a 
study by Bernard. This is followed by another method to maintain hypothermia. Different 
types of fluids can be used, including 0.9% sodium chloride injection, lactated Ringer's 
injection, and albumin. Studies have reported cooling rates of 0.8–1.2 °C per liter of fluid 
infused. Some experts caution that in patients unable to handle the fluid challenge, infusion 
of large volumes of intravenous fluids in the presence of pulmonary edema or chronic renal 
failure requiring dialysis may increase adverse events. However , several studies have 
shown that this process has not been associated with worsening pulmonary edema.7 

Endovascular cooling is another invasive method used. This is achieved by inserting central 
venous catheters, with an external heat exchange-control device that circulates cold 
intravenous fluid. The user sets a target temperature, and the device appropriately adjusts 
the fluid /water temperature. These devices can reduce temperatures at rates close to 4 °C 
per hour. In a study by Holzer and colleagues, looking at post cardiac arrest patients, 
endovascular cooling was found to improve survival and short-term neurologic recovery 
without higher rates of adverse events, compared with standard treatment. Furthermore, 
the constant rate of rewarming prevents elevations in ICP. As with any central venous 
catheters, insertion risks and infectious, bleeding complications may occur. The placement 
of catheters with associated risks and, and costs of placing them need to be factored. 8 

Other methods for invasive cooling that are reported include cold carotid infusions, single 
carotid artery perfusion with extracorporeal cooled blood, ice water nasal lavage, cold 
peritoneal and lung lavage and nasogastric and rectal lavage 

Monitoring temperature 

Temperature must be monitored continuously and accurately during TH. Peripheral and 
core temperatures may not always correlate, so two methods of monitoring are usually 
recommended. A true core temperature is obtained from a pulmonary artery catheter. 
Tympanic temperatures poorly reflect core temperature. Bladder temperatures are easily 
obtained by temperature-sensing indwelling urinary catheters. Studies have shown that 
bladder temperatures are continuous, safe and reliable, correlate well with fluctuations in 
core temperature. Clinicians must be mindful that in oliguric patients, bladder temperature 
may poorly reflect core temperature, and other monitoring sites should be used. There is 
also a delay in reflecting core temperature changes, before bladder temperature also 
changes, especially the more rapid the cooling rate. This is more of a problem with rectal 
temperatures. Education of the caregivers about this helps prevent undercooling or 
overcooling the patient, thereby helps to mitigate the risk of adverse events. Stone, Gilbert J et al 
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8. Phases of temperature modulation in therapeutic hypothermia2 

Temperature modulation during therapeutic hypothermia may be broken down into four 
phases: induction, maintenance, rewarming/ decooling, and normothermia. Each of these 
phases requires monitoring for and prevention of associated complications.(please refer to 
Figure 2 for an example of a therapeutic hypothermia protocol used in our institution for 
cardiac arrest patients). 

DO NOT SUBSTITUTE              STAT MEDICATION ORDER 
 PLEASE INCLUDE: PHYSICIAN NAME, NUMBER AND SIGNATURE 
 DATE TIME Hypothermia Induction Order Set                                                                            Page 1 of 2 
   Indication:                                                                                                            Patient weight:               kg 

    NS - 30 mL/kg IV of cold injection at a target of 4° Celsius STAT 

   
Initiate cooling with the appropriate hypothermia induction device according to Hypothermia 

Induction policy 
    Apply pads appropriate for patient weight(Apply Universal pads if Wt>= 220 LBs) 
    The Arctic Sun is preset to 33° Celsius 
    Start Magnesium Sulphate 4 Gm IV (in 100 ml injectable water ) over 4 hours 
   Nursing
    Continuous cardiac monitoring with pulse oximetry - monitor vital signs and record every hour 

   

 Consider target MAP ≥ 90mmHg or          mmHg to maintain Cerebral Perfusion Pressure (CPP) of 
____ 

   
 Goal CVP 8-12mmHg or               mmHg 
 Maintain ScvO2 > 70%.(if available) 

   
 Obtain bedside glucose every  1   hour. (See Adult Insulin order sheet if already initiated.)Maintain 
Accuchecks q 1 Hr until T=37° Celsius.(maintain BS=110-150) 

    ABG every           hour(s) 
    CBC, BMP, Magnesium, Phosphorus, PT/PTT every 6 hours 

    Consider blood cultures 12 hours after initiation of cooling 

    Initiate VAP Bundle Order Set, if not already begun 

    No sedation vacation if patient is receiving neuromuscular blockade infusion or in cooling phase  

   
 Consider Empiric Antimicrobial therapy if sepsis or immunosuppression is suspected(ex: 
neutropenia..) 

   Activity
    Bedrest 
    Skin assessment should be performed and documented every 4 hours 
    Turn patient every two hours unless contraindicated and ordered 
    PT/OT consults and treatment if not already ordered 
   Sedation/Analgesia/Control of Shivering

   

 Propofol (DIPRIVAN) drip initiated at 10mcg/kg/min. - titrate by 5mcg/kg/min for Ramsay of _____ 
to a max. of 80mcg/kg/min 

    Midazolam (VERSED) drip initiated at           mg/hour - titrate by 1mg/hr for Ramsay of _____ 
    Fentanyl infusion at           mcg/hour - titrate to              mcg/hour 
    Morphine infusion at                 mg/hour - titrate to                 mg/hour 
   If still shivering (physical assessment or trend indicator) give:
   Buspar  10mg/ 20mg PT TID(circle dose) 
 DATE TIME Hypothermia Induction Order Set                                                                           Page 2 of 2 
   If still shivering, consider neuromuscular blockade:

   
 Start with PRN dosing as ordered for shivering 
 If patient still shivering, consider continuous infusion.   
 Place “Neuromuscular Blockade in use” sign at head of bed.          

   

 Atracurium  Intermittent dosing__________________________(dose/route/interval) 
 Loading dose  (0.5 mg/kg) = ________ mg IV x one dose now 
 Infusion – begin at 4 mcg/kg/min IV to a max. of 12 mcg/kg/min 

   

 Vecuronium  Intermittent dosing__________________________(dose/route/interval) 
 Loading dose (0.1 mg/kg) = ________ mg IV x one dose now 
 Infusion – begin at 1 mcg/kg/min IV to a max. of 2 mcg/kg/min 
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skin breakdown. Surface cooling is less efficient in reducing the temperature of target 
organs, such as the brain and heart6 

Invasive cooling 

30 ml/kg Lactated Ringers solution that has been chilled to 4°C can be infused over 30 
minutes. No adverse effects of the rapid infusion of this volume of IV crystalloid fluid in a 
study by Bernard. This is followed by another method to maintain hypothermia. Different 
types of fluids can be used, including 0.9% sodium chloride injection, lactated Ringer's 
injection, and albumin. Studies have reported cooling rates of 0.8–1.2 °C per liter of fluid 
infused. Some experts caution that in patients unable to handle the fluid challenge, infusion 
of large volumes of intravenous fluids in the presence of pulmonary edema or chronic renal 
failure requiring dialysis may increase adverse events. However , several studies have 
shown that this process has not been associated with worsening pulmonary edema.7 

Endovascular cooling is another invasive method used. This is achieved by inserting central 
venous catheters, with an external heat exchange-control device that circulates cold 
intravenous fluid. The user sets a target temperature, and the device appropriately adjusts 
the fluid /water temperature. These devices can reduce temperatures at rates close to 4 °C 
per hour. In a study by Holzer and colleagues, looking at post cardiac arrest patients, 
endovascular cooling was found to improve survival and short-term neurologic recovery 
without higher rates of adverse events, compared with standard treatment. Furthermore, 
the constant rate of rewarming prevents elevations in ICP. As with any central venous 
catheters, insertion risks and infectious, bleeding complications may occur. The placement 
of catheters with associated risks and, and costs of placing them need to be factored. 8 

Other methods for invasive cooling that are reported include cold carotid infusions, single 
carotid artery perfusion with extracorporeal cooled blood, ice water nasal lavage, cold 
peritoneal and lung lavage and nasogastric and rectal lavage 

Monitoring temperature 

Temperature must be monitored continuously and accurately during TH. Peripheral and 
core temperatures may not always correlate, so two methods of monitoring are usually 
recommended. A true core temperature is obtained from a pulmonary artery catheter. 
Tympanic temperatures poorly reflect core temperature. Bladder temperatures are easily 
obtained by temperature-sensing indwelling urinary catheters. Studies have shown that 
bladder temperatures are continuous, safe and reliable, correlate well with fluctuations in 
core temperature. Clinicians must be mindful that in oliguric patients, bladder temperature 
may poorly reflect core temperature, and other monitoring sites should be used. There is 
also a delay in reflecting core temperature changes, before bladder temperature also 
changes, especially the more rapid the cooling rate. This is more of a problem with rectal 
temperatures. Education of the caregivers about this helps prevent undercooling or 
overcooling the patient, thereby helps to mitigate the risk of adverse events. Stone, Gilbert J et al 
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8. Phases of temperature modulation in therapeutic hypothermia2 

Temperature modulation during therapeutic hypothermia may be broken down into four 
phases: induction, maintenance, rewarming/ decooling, and normothermia. Each of these 
phases requires monitoring for and prevention of associated complications.(please refer to 
Figure 2 for an example of a therapeutic hypothermia protocol used in our institution for 
cardiac arrest patients). 

DO NOT SUBSTITUTE              STAT MEDICATION ORDER 
 PLEASE INCLUDE: PHYSICIAN NAME, NUMBER AND SIGNATURE 
 DATE TIME Hypothermia Induction Order Set                                                                            Page 1 of 2 
   Indication:                                                                                                            Patient weight:               kg 

    NS - 30 mL/kg IV of cold injection at a target of 4° Celsius STAT 

   
Initiate cooling with the appropriate hypothermia induction device according to Hypothermia 

Induction policy 
    Apply pads appropriate for patient weight(Apply Universal pads if Wt>= 220 LBs) 
    The Arctic Sun is preset to 33° Celsius 
    Start Magnesium Sulphate 4 Gm IV (in 100 ml injectable water ) over 4 hours 
   Nursing
    Continuous cardiac monitoring with pulse oximetry - monitor vital signs and record every hour 

   

 Consider target MAP ≥ 90mmHg or          mmHg to maintain Cerebral Perfusion Pressure (CPP) of 
____ 

   
 Goal CVP 8-12mmHg or               mmHg 
 Maintain ScvO2 > 70%.(if available) 

   
 Obtain bedside glucose every  1   hour. (See Adult Insulin order sheet if already initiated.)Maintain 
Accuchecks q 1 Hr until T=37° Celsius.(maintain BS=110-150) 

    ABG every           hour(s) 
    CBC, BMP, Magnesium, Phosphorus, PT/PTT every 6 hours 

    Consider blood cultures 12 hours after initiation of cooling 

    Initiate VAP Bundle Order Set, if not already begun 

    No sedation vacation if patient is receiving neuromuscular blockade infusion or in cooling phase  

   
 Consider Empiric Antimicrobial therapy if sepsis or immunosuppression is suspected(ex: 
neutropenia..) 

   Activity
    Bedrest 
    Skin assessment should be performed and documented every 4 hours 
    Turn patient every two hours unless contraindicated and ordered 
    PT/OT consults and treatment if not already ordered 
   Sedation/Analgesia/Control of Shivering

   

 Propofol (DIPRIVAN) drip initiated at 10mcg/kg/min. - titrate by 5mcg/kg/min for Ramsay of _____ 
to a max. of 80mcg/kg/min 

    Midazolam (VERSED) drip initiated at           mg/hour - titrate by 1mg/hr for Ramsay of _____ 
    Fentanyl infusion at           mcg/hour - titrate to              mcg/hour 
    Morphine infusion at                 mg/hour - titrate to                 mg/hour 
   If still shivering (physical assessment or trend indicator) give:
   Buspar  10mg/ 20mg PT TID(circle dose) 
 DATE TIME Hypothermia Induction Order Set                                                                           Page 2 of 2 
   If still shivering, consider neuromuscular blockade:

   
 Start with PRN dosing as ordered for shivering 
 If patient still shivering, consider continuous infusion.   
 Place “Neuromuscular Blockade in use” sign at head of bed.          

   

 Atracurium  Intermittent dosing__________________________(dose/route/interval) 
 Loading dose  (0.5 mg/kg) = ________ mg IV x one dose now 
 Infusion – begin at 4 mcg/kg/min IV to a max. of 12 mcg/kg/min 

   

 Vecuronium  Intermittent dosing__________________________(dose/route/interval) 
 Loading dose (0.1 mg/kg) = ________ mg IV x one dose now 
 Infusion – begin at 1 mcg/kg/min IV to a max. of 2 mcg/kg/min 
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   Paralytic Titration
    Monitor patient for ventilator compliance and shivering 

   
Continuous EEG(please choose one of the following):
 

    Start now and D/C when patient is rewarmed to 37° Celsius - page EEG tech  
    Start in am and D/C when patient is rewarmed to 37° Celsius - page EEG tech 

   

Respiratory:
 Maintain O2 Sats=95% 
 Maintain pCO2=40mmHg 

   Medications

   

 Artificial tears ophthalmic ointment (LACRILUBE or equivalent) – one ribbon in each eye every 12 
hours. 

    Maintenance IV Fluids:                          at                ml/hr.-Titrate to maintain equal to UO. 
   Rewarming - To start 24 hours after temperature of 33° Celsius is attained
    Continuous EKG for dysrhythmias 
    Stop all potassium infusions 

   
 Rewarm at 0.25° Celsius to 0.33° Celsius per hour -  
 Keep patient in goal temperature range of 36° Celsius to 37° Celsius for next 48 hours 

    May discontinue paralytic(if used) once goal temperature is obtained 
    Begin daily sedation vacation once paralytic has been discontinued 
   Once rewarmed, please maintain EUTHERMIA(~37° Celsius). 

Figure 2. Mercy Hospital St Louis In-HOSPITAL Therapeutic Hypothermia Protocol 

In the setting of cardiac arrest, based on animal and human data, initiation of cooling should 
be done as soon as possible after return of spontaneous circulation (ROSC). The induction 
phase can be initiated in the prehospital or in hospital setting. There are ongoing studies 
involving prehospital cooling. One should be mindful that if prehospital cooling is not 
followed by in hospital cooing, outcomes could be considerably worse, especially if patients 
are rewarmed quickly  

The maintenance phase usually occurs in an intensive care unit and hemodynamic 
parameters, electrolytes should be watched closely. For example, hypokalemia is a common 
occurrence, and can precipitate further arrests, so replacement is essential. Secondary insults 
such as hypercarbia, hypoxemia, glycemic shifts should be avoided. It is important to 
recognize that drug metabolism is altered in hypothermia, meticulous attention to 
medication dosing is needed and aggressive treatment of shivering, with sedation and 
neuromuscular blockade is often needed 

Fever in the first 72 hrs after ROSC is associated with poor outcome. Although unproven, an 
increasing body of evidence supports the cautious prevention and treatment of fever in the 
setting of critical neurological illness, and many clinicians attempt to maintain a core 
temperature of 36°C to 37.5°C until at least 72 hrs after ROSC 

Rewarming /Decooling is associated with electrolyte shifts, vasodilation, and the “post 
resuscitation” syndrome, many deaths occur in this phase due to hemodynamic instability 
and other complications. Rewarming / Decooling should not be treated casually. 

The “post resuscitation” syndrome which is characterized by elevated inflammatory 
cytokine levels, vasodilatory shock, intracranial hypertension, and thereby decreased 
cerebral perfusion pressure often compounds the myocardial dysfunction related to acute 
myocardial infarction, defibrillation injury or cardiomyopathy. The duration of cooling and 
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rewarming may vary depending on the indication, for instance, in post cardiac arrest, 
rewarming is usually begun 24 hours after the initiation of cooling, in intracranial 
hypertension, this is typically done later, after 48 hours. Patients should be rewarmed 
slowly so that it avoids rapid hemodynamic alterations, while preserving the 
neuroprotectant effects of hypothermia. The usual rate of rewarming is a goal rate of 0.2°C 
to 0.33°C per hour, in ICP elevations; the rate is sometimes slower, at 0.05 to 0.1 degrees C 
per hour. While the optimal rewarming rate remains unknown; the process usually takes 
about 8 hours. Careful hemodynamic monitoring is needed, patients may require additional 
hemodynamic support with fluid boluses, inotropes, and vasopressors to maintain adequate 
cerebral perfusion pressures, and mean arterial pressures during decooling, Sometimes, if 
significant hemodynamic instability or signs of elevated ICP occur, it may become necessary 
to slow or stop the temperature decooling process. Rewarming is typically  achieved 
through active or passive means through the use of heated-air blankets, or the removal of 
cooling methods allowing the patient's body temperature to increase over time. Paralysis 
and sedation should be maintained until the patient's temperature reaches 35 °C. Patients 
must be monitored closely, and all electrolyte infusions must be discontinued to avoid 
dangerous electrolyte shifts 

Physiological effects of hypothermia 

Hypothermia affects many intracellular processes. While some of these are directly related 
to its protective effects, hypothermia therapy is also known to be associated with a number 
of potential adverse events. These adverse effects generally do not pose a problem until core 
body temperatures are< 35°C. 

Many physiological, laboratory changes occur with induction of hypothermia.  Education of 
caregivers is key, so there is not only timely recognition of adverse events, but unnecessary 
interventions are minimized in case of routine changes that are seen. It is possible that in 
many studies especially in traumatic brain injury and hypothermia, the results may have 
been negatively impacted by adverse events related to hypothermia and /or failure to 
recognize and treat the physiological effects. 

Example, mild hypothermia is associated leucopenia, thrombocytopenia. Hyperglycemia is 
common due to decreased insulin sensitivity and increased insulin resistance. Decreases in 
cardiac output may be seen, also an increase in lactate levels and levels of serum 
transaminases, amylase. A common occurrence is increased urinary output (cold diuresis). 
These effects of hypothermia depend on the degree of hypothermia, age, comorbidities. A 
significant risk for severe arrhythmias occurs at temperatures below 28–30°C. These low 
temperatures are not typically used in current practice; the target temperature is usually 
mild –moderate hypothermia, although they are still practiced in major vascular and other 
neurosurgical procedures.4 

Hypothermia leads to a decrease in the metabolic rate. Metabolism is reduced by between 
5% and 7% per Celsius degree reduction in body temperature. Cerebral blood flow is 
decreased, but, this is offset by the decrease in metabolism. It decreases cerebral edema, 
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occurrence, and can precipitate further arrests, so replacement is essential. Secondary insults 
such as hypercarbia, hypoxemia, glycemic shifts should be avoided. It is important to 
recognize that drug metabolism is altered in hypothermia, meticulous attention to 
medication dosing is needed and aggressive treatment of shivering, with sedation and 
neuromuscular blockade is often needed 

Fever in the first 72 hrs after ROSC is associated with poor outcome. Although unproven, an 
increasing body of evidence supports the cautious prevention and treatment of fever in the 
setting of critical neurological illness, and many clinicians attempt to maintain a core 
temperature of 36°C to 37.5°C until at least 72 hrs after ROSC 

Rewarming /Decooling is associated with electrolyte shifts, vasodilation, and the “post 
resuscitation” syndrome, many deaths occur in this phase due to hemodynamic instability 
and other complications. Rewarming / Decooling should not be treated casually. 

The “post resuscitation” syndrome which is characterized by elevated inflammatory 
cytokine levels, vasodilatory shock, intracranial hypertension, and thereby decreased 
cerebral perfusion pressure often compounds the myocardial dysfunction related to acute 
myocardial infarction, defibrillation injury or cardiomyopathy. The duration of cooling and 
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rewarming may vary depending on the indication, for instance, in post cardiac arrest, 
rewarming is usually begun 24 hours after the initiation of cooling, in intracranial 
hypertension, this is typically done later, after 48 hours. Patients should be rewarmed 
slowly so that it avoids rapid hemodynamic alterations, while preserving the 
neuroprotectant effects of hypothermia. The usual rate of rewarming is a goal rate of 0.2°C 
to 0.33°C per hour, in ICP elevations; the rate is sometimes slower, at 0.05 to 0.1 degrees C 
per hour. While the optimal rewarming rate remains unknown; the process usually takes 
about 8 hours. Careful hemodynamic monitoring is needed, patients may require additional 
hemodynamic support with fluid boluses, inotropes, and vasopressors to maintain adequate 
cerebral perfusion pressures, and mean arterial pressures during decooling, Sometimes, if 
significant hemodynamic instability or signs of elevated ICP occur, it may become necessary 
to slow or stop the temperature decooling process. Rewarming is typically  achieved 
through active or passive means through the use of heated-air blankets, or the removal of 
cooling methods allowing the patient's body temperature to increase over time. Paralysis 
and sedation should be maintained until the patient's temperature reaches 35 °C. Patients 
must be monitored closely, and all electrolyte infusions must be discontinued to avoid 
dangerous electrolyte shifts 

Physiological effects of hypothermia 

Hypothermia affects many intracellular processes. While some of these are directly related 
to its protective effects, hypothermia therapy is also known to be associated with a number 
of potential adverse events. These adverse effects generally do not pose a problem until core 
body temperatures are< 35°C. 

Many physiological, laboratory changes occur with induction of hypothermia.  Education of 
caregivers is key, so there is not only timely recognition of adverse events, but unnecessary 
interventions are minimized in case of routine changes that are seen. It is possible that in 
many studies especially in traumatic brain injury and hypothermia, the results may have 
been negatively impacted by adverse events related to hypothermia and /or failure to 
recognize and treat the physiological effects. 

Example, mild hypothermia is associated leucopenia, thrombocytopenia. Hyperglycemia is 
common due to decreased insulin sensitivity and increased insulin resistance. Decreases in 
cardiac output may be seen, also an increase in lactate levels and levels of serum 
transaminases, amylase. A common occurrence is increased urinary output (cold diuresis). 
These effects of hypothermia depend on the degree of hypothermia, age, comorbidities. A 
significant risk for severe arrhythmias occurs at temperatures below 28–30°C. These low 
temperatures are not typically used in current practice; the target temperature is usually 
mild –moderate hypothermia, although they are still practiced in major vascular and other 
neurosurgical procedures.4 

Hypothermia leads to a decrease in the metabolic rate. Metabolism is reduced by between 
5% and 7% per Celsius degree reduction in body temperature. Cerebral blood flow is 
decreased, but, this is offset by the decrease in metabolism. It decreases cerebral edema, 
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decreases the excessive influx of Ca2+ into the cell, decreases the accumulation of glutamate, 
an excitatory neurotransmitter. It thereby is thought to decrease apoptosis. 

Hypothermia inhibits neutrophil and macrophage function, suppresses inflammatory 
reactions and inhibits the release of pro-inflammatory cytokines. While this may help 
contribute to hypothermia’s neuroprotective effects, this may occur at the expense of an 
increased the risk of infections.  

 
Figure 3. Adverse events of Hypothermia, prevention and management strategies: 

Shivering 

Shivering is the body’s physiological response to hypothermia. Both in the induction and 
maintenance of hypothermia, this can pose challenges, and shivering is sometimes more an 
issue when normothermia is the goal temperature. Shivering generates heat and increases 
the oxygen consumption and metabolic demands of tissues.  

Shivering is especially important in the extremes of age. It has been associated with a higher 
risk of adverse cardiac events and poor outcomes in the perioperative setting. The threshold 
for shivering is slightly higher in females. The process is regulated via the preoptic nucleus 
of the anterior hypothalamus. Through positive and negative feedback loops this helps 
minimize fluctuations, maintains core body temperature within 0.1°C– 0.2°C. 4 

Typically a shivering response is seen when core temperature decreases below 35.5°C, the 
“shivering threshold.” However, in febrile patients, and in brain injured patients, this 
regulation is altered and both the temperature “set point” and the shivering threshold 
increase. The hypothalamus then makes attempts to maintain the higher temperatures as it 

Shivering 
 

Increased 
muscle activity, increased oxygen 
consumption, increased rate of 
metabolism

Drug metabolism 
 

Altered clearance of various 
medications 

Cardiovascular EKG 
Manifestations 
 

prolonged P-R and Q-T 
intervals and widening of 
the QRS 

Arrhythmias tachycardia, and then 
bradycardia, atrial fibrillation 

Infection inhibits the release of 
various pro-inflammatory 
cytokines, inhibit 
neutrophil and 
macrophage function 

Coagulopathy increased bleeding time, increased 
APTT/CT, thrombocytopenia

Electrolyte disorders Hypokalemia, Hypomagnesemia 
during cooling, hyperkalemia 
during rewarming  

Insulin resistance hyperglycemia
 

 
Therapeutic Hypothermia: Adverse Events, Recognition, Prevention and Treatment Strategies 11 

does to maintain normal temperature or normothermia. This causes an increase in oxygen 
consumption, metabolic rate, and increases carbon dioxide production. At temperatures 
lower than 33-34°C, the shivering response decreases, therefore sedation and paralytics can 
be decreased at this point, if the clinical situation allows it. 

The Bedside Shivering Assessment Scale (BSAS) is a simple scale that was developed as a 
means to detect and quantify shivering and guide therapeutic interventions. The scale has 4 
levels. 9 

 

Score Description or observation Severity 
0 Absence of shivering on palpation of neck or pectoralis muscles None 
1 Localized to the neck and/or thorax Mild 
2  Involvement of the upper extremities with or without neck Moderate 
3 Generalized, whole-body involvement Severe 

Table 1. Bedside Shivering assessment Scale 

A non pharmacologic measure that has been shown to decrease shivering in some studies, 
mainly in healthy volunteers is called Surface counter warming. Studies have shown 
decreased shivering and improved metabolic profiles, and that is safe and effective, easy to 
use. Theoretically, an increase of 4°C in skin temperature could compensate for a 1°C 
decrease in core temperature, reducing the shivering response.9 

Numerous pharmacologic strategies have been used to control shivering. In the operating 
room, volatile anesthetics, including halothane, isoflurane and enflurane, are used to 
control post anesthetic shivering. In the intensive care unit, other agents are of more 
practical use. These agents are thought to be effective by various mechanisms. The agents 
act though serotonin manipulation, or are N-methyl-D-aspartate Antagonists, α2-agonists, 
Opioids, and others. Most studies involving these agents have been conducted in healthy 
volunteers. 

Buspirone is a serotonin (5-HT) 1A partial agonist that has been shown to be a good anti 
shivering agent. At a 60-mg dose, buspirone – a 5-HT1a partial agonist – reduced the 
shivering threshold by 0.7°C. A study in volunteers found that a 30-mg dose combined with 
low-dose meperidine produced a similar reduction in shivering threshold compared to a 
large dose of meperidine alone (2.3°C).Buspirone provides a good synergistic therapy when 
combined with other antishivering interventions. The main disadvantage of buspirone is 
that it needs to be administered enterally, no IV formulation is available. Bioavailability in 
the critically ill may not be reliable.10 

Meperidine is an opioid analgesic. Meperidine is probably the single most useful 
antishivering drug, but has significant adverse events. Meperidine acts on both mu and 
kappa receptors, is considered the most effective antishivering agent among the opioids. 
The mechanism behind meperidine’s antishivering action is not clearly known. It is thought 
that activation of [kappa]-opioid receptors, anticholinergic action, and N-methyl-d-aspartate 
antagonism all play a role. In studies, plasma concentrations near 1.3 µg/mL have been 
required to induce moderate hypothermia with meperidine alone, which could increase the 
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does to maintain normal temperature or normothermia. This causes an increase in oxygen 
consumption, metabolic rate, and increases carbon dioxide production. At temperatures 
lower than 33-34°C, the shivering response decreases, therefore sedation and paralytics can 
be decreased at this point, if the clinical situation allows it. 

The Bedside Shivering Assessment Scale (BSAS) is a simple scale that was developed as a 
means to detect and quantify shivering and guide therapeutic interventions. The scale has 4 
levels. 9 

 

Score Description or observation Severity 
0 Absence of shivering on palpation of neck or pectoralis muscles None 
1 Localized to the neck and/or thorax Mild 
2  Involvement of the upper extremities with or without neck Moderate 
3 Generalized, whole-body involvement Severe 

Table 1. Bedside Shivering assessment Scale 

A non pharmacologic measure that has been shown to decrease shivering in some studies, 
mainly in healthy volunteers is called Surface counter warming. Studies have shown 
decreased shivering and improved metabolic profiles, and that is safe and effective, easy to 
use. Theoretically, an increase of 4°C in skin temperature could compensate for a 1°C 
decrease in core temperature, reducing the shivering response.9 

Numerous pharmacologic strategies have been used to control shivering. In the operating 
room, volatile anesthetics, including halothane, isoflurane and enflurane, are used to 
control post anesthetic shivering. In the intensive care unit, other agents are of more 
practical use. These agents are thought to be effective by various mechanisms. The agents 
act though serotonin manipulation, or are N-methyl-D-aspartate Antagonists, α2-agonists, 
Opioids, and others. Most studies involving these agents have been conducted in healthy 
volunteers. 

Buspirone is a serotonin (5-HT) 1A partial agonist that has been shown to be a good anti 
shivering agent. At a 60-mg dose, buspirone – a 5-HT1a partial agonist – reduced the 
shivering threshold by 0.7°C. A study in volunteers found that a 30-mg dose combined with 
low-dose meperidine produced a similar reduction in shivering threshold compared to a 
large dose of meperidine alone (2.3°C).Buspirone provides a good synergistic therapy when 
combined with other antishivering interventions. The main disadvantage of buspirone is 
that it needs to be administered enterally, no IV formulation is available. Bioavailability in 
the critically ill may not be reliable.10 

Meperidine is an opioid analgesic. Meperidine is probably the single most useful 
antishivering drug, but has significant adverse events. Meperidine acts on both mu and 
kappa receptors, is considered the most effective antishivering agent among the opioids. 
The mechanism behind meperidine’s antishivering action is not clearly known. It is thought 
that activation of [kappa]-opioid receptors, anticholinergic action, and N-methyl-d-aspartate 
antagonism all play a role. In studies, plasma concentrations near 1.3 µg/mL have been 
required to induce moderate hypothermia with meperidine alone, which could increase the 
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risk of side effects. Meperidine is effective for postoperative shivering and, it inhibits 
shivering twice as much as vasoconstriction. 

Meperidine has major side effects; the more significant of them is lowering of seizure 
threshold. Other reported adverse events include arrhythmias, hyperreflexia, and 
myoclonus. The metabolite Normeperidine accumulates in patients with renal failure and 
could potentiate these adverse events.  

Fentanyl, morphine are pure mu opioid receptor agonists, and have had mixed results in 
studies. High doses may be needed to achieve this effect, and this may potentiate side 
effects11. 

The alpha2-receptor agonists are another important class of drugs used as pharmacologic 
measures to control shivering. Bradycardia and hypotension are the main adverse events 
with this class of drugs. Important to remember, they may also exacerbate the bradycardia 
induced by hypothermia. 
Clonidine decreases the vasoconstriction and shivering thresholds. Prophylactic use of 
clonidine lowered the threshold of vasoconstriction in healthy volunteers. 12, 13 In a trial 
comparing clonidine and meperidine, the average onset of action for meperidine and 
clonidine were 2.7 and 3.1 minutes, respectively. At least from these data, clonidine appears 
to be as effective as meperidine for postanesthetic shivering14 

Dexmedetomidine is another agent that has been shown to decrease postanesthetic 
shivering when compared to both placebo and Meperidine. In studies with 
dexmedetomidine in healthy volunteers, it showed a decrease in the vasoconstriction and 
shivering thresholds by similar amounts.15 

A small study looked at healthy volunteers and found that Meperidine and 
Dexmedetomidine were synergistic as well. 16, 17 

Magnesium is another anti shivering agent. It is thought to act as an antagonist of the 
NMDA receptors. In addition, hypothermia causes hypomagnesaemia commonly, and 
magnesium replacement is often required. Results on magnesium as a neuroprotectant have 
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authors concluded that it was not clinically significant in counteracting the shivering effect 
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decrease time to target temperature and increase patient comfort. Although the presence of 
shivering was recorded in this investigation, these data were not reported. 19 

Dantrolene is another agent that has been used for malignant hyperthermia. It acts on the 
skeletal muscle and interferes with the release of calcium from the sarcoplasmic reticulum, 
and inhibits the excitation-contraction coupling of skeletal muscles. It is a good adjunctive 
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antishivering agent. In a study with healthy volunteers, dantrolene decreased the gain of 
shivering. Dantrolene had no effect on the vasoconstriction threshold. Hepatitis is a 
complication of dantrolene, especially in people older than 35 years. The reaction can be 
dose dependent or idiosyncratic.20 

Propofol has been widely studied in Shivering control. It has been compared to Thiopental 
and isoflurane. Patients on propofol experienced less shivering compared to thiopental 
alone or thiopental plus isoflurane. Like other drugs, during hypothermia, the plasma 
concentration of propofol is increased by 30% due to reduced clearance. Clinicians should 
also be aware of propofol infusion syndrome.21 22 Propofol infusion syndrome is a rare 
complication of propofol infusion. Risk factors include administration of high doses (greater 
than 3-5 mg/kg per) and prolonged use, more than 48 hours, patients on catecholamines for 
vasopressor support, steroids. Additional proposed risk factors include a young age, critical 
illness, high fat and low carbohydrate intake, inborn errors of mitochondrial fatty acid 
oxidation. Patients present with cardiac dysrhythmias, metabolic acidosis, rhabdomyolysis, 
and renal failure. It can be associated with a high mortality. 

There is limited data on the use of other agents such as Ketamine, methylphenidate and 
doxapram as anti shivering agents in hypothermia. 

Drug metabolism 

By redistributing blood flow away from muscle, skin, and fat, hypothermia alters drug 
pharmacokinetics. Drugs with a large volume of distribution, in the setting of hypothermia 
distribute to reduced volume and thereby produce higher plasma concentrations. Due to 
reduced blood flow, these drugs may initially be sequestered in tissue, but subsequently 
with rewarming and vasodilation, these drugs now redistribute from tissues, leading to high 
plasma concentrations, thereby increasing the risk of toxicity.23 

Cardiovascular manifestations 

Cardiac output decreases, but this is offset by the decreased metabolic rate 

Common electrocardiographic findings during hypothermia include prolonged P-R and Q-T 
intervals and widening of the QRS complex as well as altered T waves and appearance of 
the J wave. (Osborne). These usually do not require interventions. 

Arrhythmias: Initially, hypothermia causes tachycardia, and then bradycardia ensues. The 
arrhythmias depend on the severity of hypothermia, more severe commonly occur at 
temperatures of < 28C. The bradycardia may be severe enough to warrant discontinuing 
hypothermia. This is compounded by the fact that the anti arrhythmics become less 
effective, and so does electrical defibrillation. Attempts at electrical defibrillation can initiate 
malignant arrhythmias.  

In the setting of a cardiac arrest, the myocardium in a deeply hypothermic patient is easily 
susceptible to manipulations such as CPR, defibrillation, and can predispose to arrhythmias. 
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While mild hypothermia can be protective by stabilizing membranes, severe hypothermia 
increases risk of malignant arrhythmias. 

Limited data exist on the efficacy of various antiarrhythmics. Bretylium, the most commonly 
studied agent, has been recommended as the drug of choice during moderate-to-severe 
hypothermia  

Observational data from humans and experimental animal models have looked at 
Bretylium. Bretylium is a parenteral Class III antiarrhythmic agent. However, Bretylium is 
no longer available in the US secondary to lack of availability of raw materials needed to 
produce the drug, as well as declining usage in clinical practice. Amiodarone has been 
studied in an animal model. Stoner et al looked at thirty anesthetized dogs and induced 
hypothermic VF. They compared defibrillation rates after drug therapy with amiodarone, 
bretylium, and placebo. In this study, neither amiodarone nor bretylium was significantly 
better than placebo in improving the resuscitation rate.24, 25.The benefits of amiodarone 
during hypothermia have not been clearly established in humans. In the Bernard study 
looking at hypothermia after cardiac arrest, Lidocaine was administered for 24 hrs. 
Clinically significant cardiac arrhythmias occurred with less frequency in the Australian 
study compared to the European study, where no lidocaine was employed. 6 

Coronary blood flow has been shown to decrease during mild hypothermia in patients with 
coronary artery disease. Evidence from animal studies has shown a 10% reduction in 
myocardial infarct size for every 1°C decrease in body temperature. 26 

Dixon et al looked at a randomized study of 42 patients with acute myocardial infarction 
and where cooling was maintained for 3 hours after reperfusion (core temperature target 33 
degrees C.)There were no significant adverse hemodynamic events with cooling; however, 
the median infarct size was not significantly smaller in those that were cooled compared 
with the control group27 

Other clinical studies of therapeutic hypothermia in patients with acute myocardial 
infarction who are undergoing primary PCI have not shown any beneficial effects.  

Despite these data, hypothermia can potentially cause hypotension and myocardial 
dysfunction. It induces a cold diuresis and induces hypovolemia. This is through increased 
venous return, stimulation of atrial natriuretic peptide, decreased anti diuretic hormone 
levels, and renal tubular dysfunction. 

Patients with severe Traumatic brain injury may also receive mannitol for hyperosmolar 
therapy for raised intracranial pressures or may have diabetes insipidus, which can further 
contribute to hypovolemia.4 

Infection 

Infectious complications occur frequently in ICU patients, especially after cardiac arrest. The 
increasing use of therapeutic hypothermia has raised awareness about increased infectious 
complications. In a retrospective review of a single institution cohort, Mongardon et al 
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found that pneumonia as the most common source, and Staphylococcus aureus was the 
main causative agent. Duration of hypothermia was associated with increased infection 
rates. ICU survival and neurologic outcome were not affected. 28A numbers of studies, 
especially in patients with stroke or TBI, have reported higher risks of pneumonia when 
therapeutic hypothermia is used over longer periods of time (48–72 h) However, other 
studies using hypothermia for prolonged periods in patients with TBI reported no increase 
in infection rates. 

Evidence from clinical and in vitro studies shows that hypothermia can impair immune 
function. Hypothermia inhibits the release of various pro-inflammatory cytokines, inhibit 
neutrophil and macrophage function.  Kimura and colleagues found that the peak release of 
interleukin-6, interleukin-1, and other proinflammatory cytokines was significantly delayed 
at 33 °C compared with 37 °C 29, 30 Hypothermia reduces gastrointestinal motility, and 
cardiac dysfunction in post arrest patients, therefore, it may increase risk of mucosal 
ischemia and breakdown. This may cause bacterial translocation. The insulin resistance and 
hyperglycemia associated with hypothermia may further predispose the patient to infection. 
The normal host responses to infection like leukocytosis may not be noted in hypothermic 
patients, so careful surveillance is needed. The threshold to initiate antibiotic treatment 
should be low. Fever in these patients should be treated aggressively to prevent further 
neurologic injury. 

Many institutions perform blood cultures and sputum cultures at the time of initiation of 
hypothermia, and periodic surveillance cultures to detect early bacteremia. In patients 
developing infections after hypothermia treatment, fever should be treated aggressively, to 
mitigate new or additional neurological injuries  

Seizures 

In a retrospective observational study involving neonates, moderate cooling decreased 
seizures recorded by EEG.31 Seizures after cardiac arrest and TBI are common; the detection 
of seizures is an important aspect of a neurointensivist in the care of therapeutic 
hypothermia patients.  Many of these patients are under neuromuscular blockade, and 
convulsive movements are absent. The incidence of seizures after cardiac arrest is around 
24%, with some studies showing a higher incidence than others. Continuous EEG 
monitoring should be used when available over intermittent EEG, because seizures could be 
no convulsive as well as convulsive in these patients. The disadvantage of continuous EEG 
is that is not always available, is expensive, labor intensive, and subject to misinterpretation. 
No clear guidelines exist to guide therapy of EEG findings like PLEDS. 

Intravenous benzodiazepines are used the initial medical treatment of status epilepticus. If 
the patient fails first line therapy and is considered to be in refractory status epilepticus, 
there is no firm data to guide subsequent management. The VA cooperative study showed 
that early control with a first line agent is important, because, if the first line agent fails, the 
success of subsequent second and third line agents is marginal. In the VA cooperative trial, 
the treatment success rate with the first drug was 55% in the overt status group and 15% in 
the subtle status group.32, 33   
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Many experts recommend continuous intravenous antiepileptic drugs at this stage. 
Midazolam is the safest anesthetic agent in treating SE. Doses as high as 3 to 5 mg/kg/h may 
be necessary to maintain seizure suppression in the most refractory cases. Tachyphylaxis is 
often encountered when prolonged infusions are used. The other agents used to treat SE are 
propofol, and barbiturates (Thiopental or pentobarbital). Barbiturates produce hypotension, 
and myocardial depression, this may pose further challenges in the post cardiac arrest 
setting. Other side effects include ileus, hepatotoxicity, increased susceptibility to infections 
and very prolonged sedation. Propofol can be associated with propofol infusion syndrome 
as discussed earlier. Valproic acid, levetiracetam, are emerging as alternative agents. 
Fosphenytoin is an antiepileptic that is often added in these patients. Fosphenytoin is a 
prodrug of phenytoin and its preparation does not include propylene glycol. It can be 
administered faster than IV phenytoin, and has less adverse cardiac events with IV infusion 
compared to phenytoin. It is much less likely to produce local tissue reactions, and it can be 
infused faster than phenytoin.34 As with status epilepticus from other causes, it is not clear 
whether burst suppression on EEG is superior to seizure suppression. No data on seizure 
prophylaxis after hypoxic ischemic encephalopathy are available 

9. Coagulation 

Bleeding diatheses occur in the setting of mild therapeutic hypothermia. For every 1 °C 
decrease in temperature, coagulation-factor function is decreased by 10%. Watts et al 
showed that in trauma patients, enzyme activity alteration, platelet dysfunction and changes 
in fibrin pathways occur. Clinically significant bleeding is rarely a significant problem, even 
in traumatic brain injury patients. Schefold et al. in a prospective observational study of 31 
patients with AMI and mild induced hypothermia and primary PCI found no excessive 
bleeding  risk with cooling/PCI.35,36  

Values of standard coagulation tests such as prothrombin time and partial thromboplastin 
times are usually normal, because these tests are usually performed at 37°C in the lab. Tests 
will be prolonged only if they are performed at the patient’s actual core temperature 

10. Pressure ulcers 

Skin integrity should be assessed carefully and frequently. The surface cooling, 
vasoconstrictive response to cooling can increase skin breakdown in hypothermic patients.6 

11. Gastrointestinal dysfunction 

Hypothermia patients have GI dysmotility, ileus. Caution needs to be exercised with 
promotility agents like Erythromycin, metoclopramide, neostigmine, as they can induce 
arrhythmias. Increased serum amylase levels are common, but patients rarely have 
significant pancreatitis. Enteral nutrition can help decrease risk of bacterial translocation. 
Gaussorgues P, et al. Bacteremia following cardiac arrest and cardiopulmonary 
resuscitation. Intensive Care Med 1988; 14(5):575-7. 
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12. Hypovolemia, fluid balance and electrolytes, glycemia 

A common problem is severe electrolyte disorders hypokalemia, hypomagnesemia, 
hypophosphatemia during induction of cooling. These may cause further arrhythmias in 
post-arrest patients. Hypothermia decreases insulin sensitivity and insulin secretion, which 
often leads to hyperglycemia. Tight control of glucose levels may decrease morbidity and 
mortality in ICU patients, but the exact levels at which glycemia needs to be maintained is 
controversial. During rewarming, glucose levels tend to drop, and therefore, insulin may 
need to be decreased or discontinued. Likewise, hyperkalemia and hypermagnesemia are 
common during rewarming, and cardiac arrests have occurred when the clinician s unaware 
of this phenomenon. Hypothermia also induces a metabolic acidosis by increased synthesis 
of glycerol, free fatty acids, ketones and lactate. These changes are normal metabolic 
consequences of hypothermia and should not be attributed to complications such as bowel 
ischemia.4 

Hypotension can occur  through hypovolemia, the cold diuresis, that occurs in hypothermia, 
and the use of agents like mannitol in TBI or diuretics in the setting of cardiomyopathies can 
further  exacerbate this. If this is unrecognized, the problem is worse in the rewarming 
phase when vasodilatation often occurs, and profound shock ensues. Cueni-Villoz N, et al.  

13. Summary 

In conclusion, hypothermia is becoming increasingly used across many intensive care units, 
and the applications could expand well beyond the current indications. It is important to use 
safe, effective cooling methods, recognize, prevent and treat various adverse events that 
could occur, so we can improve the survival of these patients. 
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safe, effective cooling methods, recognize, prevent and treat various adverse events that 
could occur, so we can improve the survival of these patients. 
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1. Introduction 

In the era before Therapeutic Hypothermia (TH) was recommended and used as a 
therapeutic modality for out-of-hospital cardiac arrest (OHCA) patients, reported data 
suggests in-hospital mortality exceeded 58%.[1,2,3,4,5,6] Mortality after a sudden and 
unexpected cardiac arrest (CA) is high, and the chance of survival to hospital discharge has, 
until recently, remained unchanged.[7] In one report, OHCA in the U.S. has a mortality rate 
greater than 90% which results in more than 300,000 deaths per year.[8] Those who survive 
the devastating event, often retain a hypoxic brain injury and a permanently incapacitating 
neurologic deficit.[9] Studies of patients who survived to ICU admission but subsequently 
died in the hospital, brain injury was the cause of death in 68% after out-of-hospital cardiac 
arrest and in 23% after in-hospital cardiac arrest.[10,11] Therapeutic hypothermia, or targeted 
temperature management,  is a therapeutic intervention that is intended to limit neurologic 
injury after a patient’s resuscitation from cardiac arrest. 

2. Mechanisms of neuroprotection 

A cascade of destructive events and processes begins at the cellular level in the minutes to 
hours following an initial injury. These processes, the result of ischemia and reperfusion, 
may continue for hours to many days after the initial injury.[12] It is crucial to note that all of 
these processes after ischemic-reperfusion injury in the brain are temperature dependent; 
they are all stimulated by fever, and can all be mitigated or blocked by hypothermia. Since 
most of these processes start within minutes to hours after the injury, then application of 
hypothermia earlier might be even more beneficial than conventional later application. 

2.1. Slowing of brain metabolism 

When hypothermia was first used in a clinical setting it was presumed that its protective 
effects were due purely to a slowing of cerebral metabolism, leading to reduced glucose and 
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oxygen consumption. Cerebral metabolism decreases by 6% to 10% for each 1°C reduction 
in body temperature during cooling.[13,14] This could play a therapeutic effect, but only 
partially. This mechanism is not the only explanation for the dramatic difference seen 
despite the positive role of metabolic slowing in neuroprotection. 

2.2. Inhibition of apoptosis 

Therapeutic hypothermia can also effectively inhibit apoptosis [15-17 ]Hypothermia inhibits 
the early stages of the programmed cell death process.[16] Thus, inhibiting apoptosis is 
another mechanism by which therapeutic hypothermia could influence the ischemia 
reperfusion injury or secondary injury early on in the disease process.  

2.3. Inhibition of excitotoxicity 

Excitatory processes play a major role in the pathophysiology of secondary injury post-
cardiac arrest.[13] Evidence suggests that hypothermia inhibits these harmful excitatory 
processes occurring in brain cells during ischemia–reperfusion. Ischemic insult to the brain 
leads to decrease in Adenosine triphosphate (ATP) supplies.[13] This culminates into an 
influx of calcium (Ca) into the cell through prolonged glutamate exposure inducing a 
permanent state of hyperexcitability in the neurons (excitotoxicity). All these processes are 
inhibited  by hypothermia very early after injury. Some animal experiments suggest that 
neuroexcitotoxicity can be blocked or reversed only if the treatment is initiated in the very 
early stages of the neuroexcitatory cascade.[18-24] 

2.4. Antiinflammatory role and decrease in free radical formation 

Acute inflammation early after return of spontaneous circulation (ROSC) plays a harmful 
role in postcardiac arrest, including cytokines, macrophages, neutrophils, and complement 
activation , leading to free radical formation. Multiple animal experiments and few clinical 
studies have shown that hypothermia suppresses all these ischemia-induced inflammatory 
reactions, leading to a significant reduction in free radical formation. [25-28]  

2.5. Protection of blood-brain barrier 

Ischemia–reperfusion can also lead to significant disruptions in the blood– brain barrier, 
which can facilitate the subsequent development of brain edema. Mild hypothermia 
significantly reduces blood– brain barrier disruptions, and also decreases vascular 
permeability following ischemia–reperfusion, further decreasing edema formation.[29-31]  

2.6. Antithrombotic role 

The coagulation cascade is also activated with ischemia-reperfusion injury leading to  
intravascular clot formation resulting in microvascular thrombosis in the brain.[32,33] 
Therapeutic Hypothermia could be beneficial in this instance since platelets number and 
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function are decreased with temperatures <35°C, and some inhibition of the coagulation 
cascade develops at temperatures <33°C.[34,35] Vasoconstriction , mediated mainly by 
thromboxane and endothelin plays a pivotal role in the secondary injury as well. This could 
also be mitigated by hypothermia [36-38]  

3. Clinical evidence 

3.1. Out of hospital and ventricular fibrillation cardiac arrest  

The first major clinical trials that provided direct evidence of a benefit of therapeutic 
hypothermia were published in 2002. These studies have indicated that TH with a reduction 
of body core temperature (T) to 33 °C over 12 to 24 hours has improved survival and 
neurologic outcome in OHCA patients. The European Hypothermia after Cardiac Arrest 
Study Group demonstrated an improvement in survival from witnessed V-fib cardiac arrest 
from 41% to 55% and an improvement in favorable neurologic outcome among survivors 
from 39% to 55% when TH of 32-34°C was maintained for the first 24 hours post cardiac 
arrest.39 Bernard demonstrated similar neurologic outcome benefits from 12 hours of TH at 
32-34°C induced on the same patient population in Australia.40 Recently, a meta-analysis 
showed that therapeutic hypothermia is associated with a risk ratio of 1.68 (95% CI,1.29-
2.07) favoring a good neurologic outcome when compared with normothermia. The meta-
analysis concluded the number needed to treat (NNT) to produce one favorable 
neurological recovery was 6.41 This would translate to improved neurological recovery in > 
10,000 patients per year in the U.S.41 Findings were also reviewed from recent literature on 
the postresuscitation care of cardiac arrest patients using therapeutic hypothermia as part of 
nontrial treatment. Although varied in their protocols and outcome reporting, results from 
published investigations confirmed the findings from the landmark randomized controlled 
trials, in that the use of therapeutic hypothermia increased survival and favorable 
neurologic outcome.[42]  

3.2. In hospital and non-ventricular fibrillation cardiac arrest 

Although ROSC rates are higher in patients with VF and these represent the majority of 
patients transported to the hospital, many patients still present to the hospital comatose 
after resuscitation from non-VF arrest. Patients with an initial cardiac rhythm of asystole 
have a lower rate of survival than patients with VF, because total absence of rhythm is 
associated with worse underlying causes. Some evidence has now shown that the treatment 
may be beneficial in cases with non-VF initial rhythm.[43-47] However, other studies involving 
this patient population did not show outcome benefit. In a recent study of TH after 
inhospital cardiac arrest (IHCA), 91%of patients had an arrest rhythm of asystole or 
pulseless electrical activity. No difference in neurological outcome at discharge was detected 
in these non-shockable IHCA patients treated with TH.48 Given this increased severity of 
neurological injury in non-VF arrest patients, the possible role of TH remains uncertain. 
Given such low rates of recovery after non-VF arrest with the use of TH, a prospective study 
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function are decreased with temperatures <35°C, and some inhibition of the coagulation 
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thromboxane and endothelin plays a pivotal role in the secondary injury as well. This could 
also be mitigated by hypothermia [36-38]  
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Study Group demonstrated an improvement in survival from witnessed V-fib cardiac arrest 
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analysis concluded the number needed to treat (NNT) to produce one favorable 
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neurologic outcome.[42]  

3.2. In hospital and non-ventricular fibrillation cardiac arrest 

Although ROSC rates are higher in patients with VF and these represent the majority of 
patients transported to the hospital, many patients still present to the hospital comatose 
after resuscitation from non-VF arrest. Patients with an initial cardiac rhythm of asystole 
have a lower rate of survival than patients with VF, because total absence of rhythm is 
associated with worse underlying causes. Some evidence has now shown that the treatment 
may be beneficial in cases with non-VF initial rhythm.[43-47] However, other studies involving 
this patient population did not show outcome benefit. In a recent study of TH after 
inhospital cardiac arrest (IHCA), 91%of patients had an arrest rhythm of asystole or 
pulseless electrical activity. No difference in neurological outcome at discharge was detected 
in these non-shockable IHCA patients treated with TH.48 Given this increased severity of 
neurological injury in non-VF arrest patients, the possible role of TH remains uncertain. 
Given such low rates of recovery after non-VF arrest with the use of TH, a prospective study 
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comparing TH with normothermia in patients with an initial cardiac rhythm asystole or 
PEA would require very large numbers of patients to get enough power to show improved 
outcomes, and thus is unlikely that such trials will be conducted. 

3.3. Asphyxial causes of cardiac arrest 

Suffocation is the second leading cause of death from suicide in the United States, 
accounting for 22.5% of the 33 300 suicide-related deaths.[49] Victims of near-hanging may 
carry a poor prognosis even if cardiac arrest has not occurred. Those who suffer cardiac 
arrest, present with a Glasgow Coma Scale (GCS) of 5 or less, and experience a longer 
hanging time have the worst prognosis.[50,51]Nearhanging is defined as an unsuccessful 
attempt at hanging. Victims of near-hanging suffer from strangulation with cerebral 
ischemia-reperfusion injury rather than a fatal cervical spine injury. Therapeutic 
Hypothermia has not been prospectively studied in this patient population, and it is 
doubtful that large randomized, controlled trials comparing TH with normothermia will be 
conducted. There are few retrospective reviews and case reports and case series on 
asphyxiated patients with or without cardiac arrests  who had good neurologic recovery 
after therapeutic hypothermia.[52-55] Although it would be difficult to conduct good 
prospective studies, the compiling case studies, anecdotal evidence, and extrapolated data 
support the use of therapeutic hypothermia for asphyxial cardiac arrest until more evidence 
can be obtained. 

4. Guidelines 

In 2005, guidelines for resuscitation and emergency cardiac care of the European 
Resuscitation Council and the American Heart Association  recommended that the core 
body temperature of unconscious adult patients with spontaneous circulation after a VF 
OHCA should be lowered to 32 to 34°C (Class IIA recommendation).[56] Cooling should be 
started as soon as possible after the arrest and should be continued for at least 12 to 24 
hours. 

The guidelines note that patients who have had a cardiac arrest due to nonshockable 
rhythms and patients who have had a cardiac arrest in the hospital may also benefit from 
induced hypothermia (Class IIB recommendation).56  

With more evidence and trials showing the feasibility and the evidence supporting TH for 
cardiac arrest patients, the new guidelines by European Resuscitation Council and the 
American Heart Association in 2010 recommend that comatose (ie, lack of meaningful 
response to verbal commands) adult patients with ROSC after out-of-hospital VF cardiac 
arrest should be cooled to 32°C to 34°C (89.6°F to 93.2°F) for 12 to 24 hours (Class I).[57] 
Induced hypothermia also may be considered for comatose adult patients with ROSC after 
in-hospital cardiac arrest of any initial rhythm or after out-of-hospital cardiac arrest with an 
initial rhythm of pulseless electrical activity or asystole (Class IIb).[57] Active rewarming 
should be avoided in comatose patients who spontaneously develop a mild degree of 
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hypothermia (32°C [89.6°F]) after resuscitation from cardiac arrest during the first 48 hours 
after ROSC. (Class III).[57] 

5. Cooling methods 

5.1. Methods for induction of therapeutic hypothermia 

Bernard et al., reported the results of a clinical trial of the rapid infusion of large-volume (30 
ml/kg), ice-cold (4°C) lactated ringer’s solution in comatose survivors of OHCA. This study 
found that this approach decreased core temperature by 1.6°C over 25 minutes with no 
adverse events.[58] Polderman, et al., used in addition to surface cooling, 30ml/kg (mean 2.3 
liters) of cold normal saline over 50 minutes that showed similar results.[59] Several small 
randomized trials, and nonrandomized observational and retrospective trials, looked at pre-
hospital cooling initiation for patients with OHCA with large-volume ice-cold (4°C) fluids 
(discussed in more detail in a separate chapter: Prehospital Therapeutic Hypothermia for 
Cardiac Arrest).[60-68] All these studies documented the safety and feasibility if ice-cold fluids 
for the rapid induction of therapeutic hypothermia. Other promising methods for induction 
of hypothermia include transnasal cooling device [69], self-adhesive cooling pads [70], and 
cranial cooling caps.[71] 

5.2. Methods for maintenance of therapeutic hypothermia 

An ideal cooling method would be one that will help with rapid induction of cooling, cost-
effective, easily implemented, safe, effective, and able to maintain the temperature with 
minimal variations. 

5.2.1. Surface cooling 

Ice packs are still used in some centers for induction and maintenance of hypothermia, by 
applying them to the head, neck, torso and extremities. Disadvantages of this method 
include slow cooling rate, labor-intensive for the nurses, and wide fluctuations with 
overshooting and undercooling or unintentional rewarming.[40,72,73] 

An effective surface cooling system uses cooling blanket (Arctic Sun, Medivance, Louisville, 
CO, USA). This technology can cool as fast as 1.2°C per hour through especially designed 
pads, is radiolucent (can be used during cardiac catheterization),  has minimal temperature 
variation (operates with feedback control),  and can perform active controlled rewarming.  
The pads can be applied easily by the nurses. Disadvantages include expense, possible skin 
sloughing, and slower cooling rates in very obese people.[72,74] 

A promising technology is the Thermosuit System (Life Recovery Systems, Kinnelon, NJ, 
USA), which surrounds patients directly with cool water and also possesses a feedback 
control mechanism. Animal studies suggest that it provides a cooling rate of 9.7°C per hour 
in 30-kg pigs, versus 3.0°C per hour in humans. Disadvantages include expense and 
hindering appropriate physical exams.[75,76] 



 
Therapeutic Hypothermia in Brain Injury 26 

comparing TH with normothermia in patients with an initial cardiac rhythm asystole or 
PEA would require very large numbers of patients to get enough power to show improved 
outcomes, and thus is unlikely that such trials will be conducted. 

3.3. Asphyxial causes of cardiac arrest 

Suffocation is the second leading cause of death from suicide in the United States, 
accounting for 22.5% of the 33 300 suicide-related deaths.[49] Victims of near-hanging may 
carry a poor prognosis even if cardiac arrest has not occurred. Those who suffer cardiac 
arrest, present with a Glasgow Coma Scale (GCS) of 5 or less, and experience a longer 
hanging time have the worst prognosis.[50,51]Nearhanging is defined as an unsuccessful 
attempt at hanging. Victims of near-hanging suffer from strangulation with cerebral 
ischemia-reperfusion injury rather than a fatal cervical spine injury. Therapeutic 
Hypothermia has not been prospectively studied in this patient population, and it is 
doubtful that large randomized, controlled trials comparing TH with normothermia will be 
conducted. There are few retrospective reviews and case reports and case series on 
asphyxiated patients with or without cardiac arrests  who had good neurologic recovery 
after therapeutic hypothermia.[52-55] Although it would be difficult to conduct good 
prospective studies, the compiling case studies, anecdotal evidence, and extrapolated data 
support the use of therapeutic hypothermia for asphyxial cardiac arrest until more evidence 
can be obtained. 

4. Guidelines 

In 2005, guidelines for resuscitation and emergency cardiac care of the European 
Resuscitation Council and the American Heart Association  recommended that the core 
body temperature of unconscious adult patients with spontaneous circulation after a VF 
OHCA should be lowered to 32 to 34°C (Class IIA recommendation).[56] Cooling should be 
started as soon as possible after the arrest and should be continued for at least 12 to 24 
hours. 

The guidelines note that patients who have had a cardiac arrest due to nonshockable 
rhythms and patients who have had a cardiac arrest in the hospital may also benefit from 
induced hypothermia (Class IIB recommendation).56  

With more evidence and trials showing the feasibility and the evidence supporting TH for 
cardiac arrest patients, the new guidelines by European Resuscitation Council and the 
American Heart Association in 2010 recommend that comatose (ie, lack of meaningful 
response to verbal commands) adult patients with ROSC after out-of-hospital VF cardiac 
arrest should be cooled to 32°C to 34°C (89.6°F to 93.2°F) for 12 to 24 hours (Class I).[57] 
Induced hypothermia also may be considered for comatose adult patients with ROSC after 
in-hospital cardiac arrest of any initial rhythm or after out-of-hospital cardiac arrest with an 
initial rhythm of pulseless electrical activity or asystole (Class IIb).[57] Active rewarming 
should be avoided in comatose patients who spontaneously develop a mild degree of 

 
Therapeutic Hypothermia for Cardiac Arrest 27 

hypothermia (32°C [89.6°F]) after resuscitation from cardiac arrest during the first 48 hours 
after ROSC. (Class III).[57] 

5. Cooling methods 

5.1. Methods for induction of therapeutic hypothermia 

Bernard et al., reported the results of a clinical trial of the rapid infusion of large-volume (30 
ml/kg), ice-cold (4°C) lactated ringer’s solution in comatose survivors of OHCA. This study 
found that this approach decreased core temperature by 1.6°C over 25 minutes with no 
adverse events.[58] Polderman, et al., used in addition to surface cooling, 30ml/kg (mean 2.3 
liters) of cold normal saline over 50 minutes that showed similar results.[59] Several small 
randomized trials, and nonrandomized observational and retrospective trials, looked at pre-
hospital cooling initiation for patients with OHCA with large-volume ice-cold (4°C) fluids 
(discussed in more detail in a separate chapter: Prehospital Therapeutic Hypothermia for 
Cardiac Arrest).[60-68] All these studies documented the safety and feasibility if ice-cold fluids 
for the rapid induction of therapeutic hypothermia. Other promising methods for induction 
of hypothermia include transnasal cooling device [69], self-adhesive cooling pads [70], and 
cranial cooling caps.[71] 

5.2. Methods for maintenance of therapeutic hypothermia 

An ideal cooling method would be one that will help with rapid induction of cooling, cost-
effective, easily implemented, safe, effective, and able to maintain the temperature with 
minimal variations. 

5.2.1. Surface cooling 

Ice packs are still used in some centers for induction and maintenance of hypothermia, by 
applying them to the head, neck, torso and extremities. Disadvantages of this method 
include slow cooling rate, labor-intensive for the nurses, and wide fluctuations with 
overshooting and undercooling or unintentional rewarming.[40,72,73] 

An effective surface cooling system uses cooling blanket (Arctic Sun, Medivance, Louisville, 
CO, USA). This technology can cool as fast as 1.2°C per hour through especially designed 
pads, is radiolucent (can be used during cardiac catheterization),  has minimal temperature 
variation (operates with feedback control),  and can perform active controlled rewarming.  
The pads can be applied easily by the nurses. Disadvantages include expense, possible skin 
sloughing, and slower cooling rates in very obese people.[72,74] 

A promising technology is the Thermosuit System (Life Recovery Systems, Kinnelon, NJ, 
USA), which surrounds patients directly with cool water and also possesses a feedback 
control mechanism. Animal studies suggest that it provides a cooling rate of 9.7°C per hour 
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5.2.2. Intravascular cooling 

The CoolGard System (Alsius, Irvine, CA, USA) is one of the products that uses 
Intravascular devices. This technology works by exchanging heat through a catheter 
containing circulating saline at a controlled temperature with a feedback of patient 
temperature. This technology can cool as fast as 1 to 1.5 °C per hour, is very good at 
maintaining goal temperature (feedback mechanism) and cal also provide active controlled 
rewarming. Disadvantages are those of central venous catheters (risks of bleeding, vessel 
thrombosis, and catheter-related infection). It also requires placement by a physician, which 
if not readily available, may delay initiation of this important and timely therapy.[77.78] 

Although many devices are available to achieve and maintain therapeutic hypothermia, 
there are no current data recommending one method over another, or comparing them 
against each other. Several factors need to be taken into consideration, such as patient 
factors, nursing factors and nurse to patient ratios, and institutional factors when making a 
decision regarding the optimal method. 

6. Conclusion 

On the basis of current evidence, comatose (ie, lack of meaningful response to verbal 
commands) adult patients with ROSC after out-of-hospital VF cardiac arrest should be 
cooled to 32°C to 34°C (89.6°F to 93.2°F) for 12 to 24 hours, as fast as possible. Therapeutic 
Hypothermia should be strongly considered for other rhythms, for inhospital arrests, and 
for cardiac arrest secondary to asphyxia. Intensivists should be familiar with techniques to 
induce, maintain, and rewarm from therapeutic hypothermia, and select the most 
appropriate method for a given patient, and institution. Research questions for the future 
are whether very early cooling, or longer cooling periods (eg, 72 h), or both can further 
improve outcome. 
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1. Introduction 

In the era before Therapeutic Hypothermia (TH) was recommended and used as a 
therapeutic modality for out-of-hospital cardiac arrest (OHCA) patients, reported data 
suggests in-hospital mortality exceeded 58%.[1,2,3,4,5,6] Mortality after a sudden and 
unexpected cardiac arrest (CA) is high, and the chance of survival to hospital discharge has, 
until recently, remained unchanged.[7] In one report, OHCA in the U.S. has a mortality rate 
greater than 90% which results in more than 300,000 deaths per year.[8] Those who survive 
the devastating event, often retain a hypoxic brain injury and a permanently incapacitating 
neurologic deficit.[9] Studies of patients who survived to ICU admission but subsequently 
died in the hospital, brain injury was the cause of death in 68% after out-of-hospital cardiac 
arrest and in 23% after in-hospital cardiac arrest.[10,11]  

Recent studies have indicated that TH with a reduction of body core temperature (T) to  
33 °C over 12 to 24 hours has improved survival and neurologic outcome in OHCA patients. 
In 2002, the European Hypothermia after Cardiac Arrest Study Group demonstrated an 
improvement in survival from witnessed V-fib cardiac arrest from 41% to 55% and an 
improvement in favorable neurologic outcome among survivors from 39% to 55% when TH 
of 32-34°C was maintained for the first 24 hours post cardiac arrest.[12] Bernard 
demonstrated similar neurologic outcome benefits from 12 hours of TH at 32-34°C induced 
on the same patient population in Australia.[13] Recently, a meta-analysis showed that 
therapeutic hypothermia is associated with a risk ratio of 1.68 (95% CI,1.29-2.07) favoring a 
good neurologic outcome when compared with normothermia. The meta-analysis 
concluded the number needed to treat (NNT) to produce one favorable neurological 
recovery was 6.[14] This would translate to improved neurological recovery in > 10,000 
patients per year in the U.S.[14] Also, recent evidence has now shown that the treatment is 
beneficial in cases with non-VF initial rhythm.[15,16,17,18,19]. 
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1. Introduction 

In the era before Therapeutic Hypothermia (TH) was recommended and used as a 
therapeutic modality for out-of-hospital cardiac arrest (OHCA) patients, reported data 
suggests in-hospital mortality exceeded 58%.[1,2,3,4,5,6] Mortality after a sudden and 
unexpected cardiac arrest (CA) is high, and the chance of survival to hospital discharge has, 
until recently, remained unchanged.[7] In one report, OHCA in the U.S. has a mortality rate 
greater than 90% which results in more than 300,000 deaths per year.[8] Those who survive 
the devastating event, often retain a hypoxic brain injury and a permanently incapacitating 
neurologic deficit.[9] Studies of patients who survived to ICU admission but subsequently 
died in the hospital, brain injury was the cause of death in 68% after out-of-hospital cardiac 
arrest and in 23% after in-hospital cardiac arrest.[10,11]  

Recent studies have indicated that TH with a reduction of body core temperature (T) to  
33 °C over 12 to 24 hours has improved survival and neurologic outcome in OHCA patients. 
In 2002, the European Hypothermia after Cardiac Arrest Study Group demonstrated an 
improvement in survival from witnessed V-fib cardiac arrest from 41% to 55% and an 
improvement in favorable neurologic outcome among survivors from 39% to 55% when TH 
of 32-34°C was maintained for the first 24 hours post cardiac arrest.[12] Bernard 
demonstrated similar neurologic outcome benefits from 12 hours of TH at 32-34°C induced 
on the same patient population in Australia.[13] Recently, a meta-analysis showed that 
therapeutic hypothermia is associated with a risk ratio of 1.68 (95% CI,1.29-2.07) favoring a 
good neurologic outcome when compared with normothermia. The meta-analysis 
concluded the number needed to treat (NNT) to produce one favorable neurological 
recovery was 6.[14] This would translate to improved neurological recovery in > 10,000 
patients per year in the U.S.[14] Also, recent evidence has now shown that the treatment is 
beneficial in cases with non-VF initial rhythm.[15,16,17,18,19]. 
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Current resuscitation guidelines of the International Liaison Committee on Resuscitation 
(ILCOR) recommend induction of TH in post-cardiac arrest patients.[7] In 2005 and then 
upgraded in 2010, the American Heart Association Advanced Cardiac Life Support 
Guidelines recommended that “unconscious adult patients with ROSC after out-of-hospital 
cardiac arrest should be cooled to 32 to 34°C for 12-24 hours….”[20,21]. The guidelines 
identified the need for cooling to occur in the pre-hospital arena, noting that hypothermia 
“should probably be initiated as soon as possible after ROSC….” 

2. Basic science 

A cascade of destructive events and processes begins at the cellular level in the minutes to 
hours following an initial injury. These processes, the result of ischemia and reperfusion, 
may continue for hours to many days after the initial injury.[22] 

When hypothermia was first used in a clinical setting it was presumed that its protective 
effects were due purely to a slowing of cerebral metabolism, leading to reduced glucose and 
oxygen consumption. Cerebral metabolism decreases by 6% to 10% for each 1°C reduction 
in body temperature during cooling.[23,24] This could play a therapeutic effect, but only 
partially. Therapeutic hypothermia can also effectively inhibit apoptosis. [25-27]Hypothermia 
inhibits  the early stages of the programmed cell death process.[26] Thus, inhibiting apoptosis 
is another mechanism by which therapeutic hypothermia could influence the ischemia 
reperfusion injury or secondary injury early on in the disease process. Excitatory processes 
play a major role in the pathophysiology of secondary injury post-cardiac arrest.[23] Evidence 
suggests that hypothermia inhibits these harmful excitatory processes occurring in brain 
cells during ischemia–reperfusion. Ischemic insult to the brain leads to decrease in 
Adenosine triphosphate (ATP) supplies.[23] This culminates into an influx of calcium (Ca) 
into the cell through prolonged glutamate exposure inducing a permanent state of 
hyperexcitability in the neurons (excitotoxicity). All these processes are inhibited  by 
hypothermia very early after injury. Some animal experiments suggest that 
neuroexcitotoxicity can be blocked or reversed only if the treatment is initiated in the very 
early stages of the neuroexcitatory cascade.[28-34] Acute inflammation early after ROSC plays 
a harmful role in postcardiac arrest, including cytokines, macrophages, neutrophils, and 
complement activation, leading to free radical formation. Multiple animal experiments and 
few clinical studies have shown that hypothermia suppresses all these ischemia-induced 
inflammatory reactions, leading to a significant reduction in free radical formation. [35-38] 
Ischemia–reperfusion can also lead to significant disruptions in the blood– brain barrier, 
which can facilitate the subsequent development of brain edema. Mild hypothermia 
significantly reduces blood– brain barrier disruptions, and also decreases vascular 
permeability following ischemia–reperfusion, further decreasing edema formation.[39-41] The 
coagulation cascade is also activated with ischemia-reperfusion injury leading to  
intravascular clot formation resulting in microvascular thrombosis in the brain. [42,43] 
Therapeutic Hypothermia could be beneficial in this instance since platelets number and 
function are decreased with temperatures <35°C, and some inhibition of the coagulation 
cascade develops at temperatures <33°C.[44,45] Vasoconstriction, mediated mainly by 
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thromboxane and endothelin plays a pivotal role in the secondary injury as well. This could 
also be mitigated by hypothermia [46-48]  

It is crucial to note that all of these processes after ischemic-reperfusion injury in the brain 
are temperature dependent; they are all stimulated by fever, and can all be mitigated or 
blocked by hypothermia. Since most of these processes start within minutes to hours after 
the injury, then application of hypothermia earlier might be even more beneficial than 
conventional later application. This has been the premise behind prehospital cooling. 

3. Animal studies 

Animal studies demonstrate a benefit of very early cooling either during CPR or within 15 
minutes of ROSC when cooling is maintained for only a short duration (1 to 2 hours). 
Equivalent neuroprotection was produced in a rat model of cardiac arrest when a 24-hour 
period of cooling was either initiated at the time of ROSC or delayed by 1 hour. In a gerbil 
forebrain ischemia model, sustained neuroprotection was achieved when hypothermia was 
initiated at 1, 6, or 12 hours after reperfusion and maintained for 48 hours; however, 
neuroprotection did decrease when the start of therapy was delayed. Mice receiving intra-
arrest cooling had more favorable hemodynamic and neurological outcomes compared with 
normothermic controls with earlier reperfusion time. In another model, Dogs that received 
hypothermia treatment within 10 minutes of onset of VF had significantly better 
neurological outcomes than those that received it after 20 minutes of VF. [49-53] 

4. Human studies 

Bernard et al., reported the results of a clinical trial of the rapid infusion of large-volume (30 
ml/kg), ice-cold (4°C) lactated ringer’s solution in comatose survivors of OHCA. This study 
found that this approach decreased core temperature by 1.6°C over 25 minutes with no 
adverse events.[54] Polderman, et al., used in addition to surface cooling, 30ml/kg (mean 2.3 
liters) of cold normal saline over 50 minutes that showed similar results.[55] Several small 
randomized trials56-59, and nonrandomized observational and retrospective trials [60-66], 
looked at pre-hospital cooling initiation for patients with OHCA.  

The first randomized controlled trial (RCT) of pre-hospital cooling using large volume ice 
chilled fluid (LVICF) was reported by Kim et al. in 2007. Adult victims of non-traumatic 
cardiac arrest regardless of the initial rhythm were randomized either to field cooling or 
conventional treatment. In EMS before hospital arrival, patients assigned to the treatment 
group were infused up to 2L of 4°C normal saline as soon as possible after resuscitation 
from out-of-hospital cardiac arrest. A total of 125 patients were randomized to receive 
standard care with or without intravenous cooling. Among survivors to hospital admission, 
a significant esophageal temperature decrease of 1.24°C was observed in the treatment 
group compared to a 0.10°C increase in the control group. The authors report no increase in 
the number of adverse events associated with field cooling.[56] Kämäräinen et al conducted a 
similar safety trial in 2009; patients were cooled using LVICF and compared to patients  
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Current resuscitation guidelines of the International Liaison Committee on Resuscitation 
(ILCOR) recommend induction of TH in post-cardiac arrest patients.[7] In 2005 and then 
upgraded in 2010, the American Heart Association Advanced Cardiac Life Support 
Guidelines recommended that “unconscious adult patients with ROSC after out-of-hospital 
cardiac arrest should be cooled to 32 to 34°C for 12-24 hours….”[20,21]. The guidelines 
identified the need for cooling to occur in the pre-hospital arena, noting that hypothermia 
“should probably be initiated as soon as possible after ROSC….” 

2. Basic science 

A cascade of destructive events and processes begins at the cellular level in the minutes to 
hours following an initial injury. These processes, the result of ischemia and reperfusion, 
may continue for hours to many days after the initial injury.[22] 

When hypothermia was first used in a clinical setting it was presumed that its protective 
effects were due purely to a slowing of cerebral metabolism, leading to reduced glucose and 
oxygen consumption. Cerebral metabolism decreases by 6% to 10% for each 1°C reduction 
in body temperature during cooling.[23,24] This could play a therapeutic effect, but only 
partially. Therapeutic hypothermia can also effectively inhibit apoptosis. [25-27]Hypothermia 
inhibits  the early stages of the programmed cell death process.[26] Thus, inhibiting apoptosis 
is another mechanism by which therapeutic hypothermia could influence the ischemia 
reperfusion injury or secondary injury early on in the disease process. Excitatory processes 
play a major role in the pathophysiology of secondary injury post-cardiac arrest.[23] Evidence 
suggests that hypothermia inhibits these harmful excitatory processes occurring in brain 
cells during ischemia–reperfusion. Ischemic insult to the brain leads to decrease in 
Adenosine triphosphate (ATP) supplies.[23] This culminates into an influx of calcium (Ca) 
into the cell through prolonged glutamate exposure inducing a permanent state of 
hyperexcitability in the neurons (excitotoxicity). All these processes are inhibited  by 
hypothermia very early after injury. Some animal experiments suggest that 
neuroexcitotoxicity can be blocked or reversed only if the treatment is initiated in the very 
early stages of the neuroexcitatory cascade.[28-34] Acute inflammation early after ROSC plays 
a harmful role in postcardiac arrest, including cytokines, macrophages, neutrophils, and 
complement activation, leading to free radical formation. Multiple animal experiments and 
few clinical studies have shown that hypothermia suppresses all these ischemia-induced 
inflammatory reactions, leading to a significant reduction in free radical formation. [35-38] 
Ischemia–reperfusion can also lead to significant disruptions in the blood– brain barrier, 
which can facilitate the subsequent development of brain edema. Mild hypothermia 
significantly reduces blood– brain barrier disruptions, and also decreases vascular 
permeability following ischemia–reperfusion, further decreasing edema formation.[39-41] The 
coagulation cascade is also activated with ischemia-reperfusion injury leading to  
intravascular clot formation resulting in microvascular thrombosis in the brain. [42,43] 
Therapeutic Hypothermia could be beneficial in this instance since platelets number and 
function are decreased with temperatures <35°C, and some inhibition of the coagulation 
cascade develops at temperatures <33°C.[44,45] Vasoconstriction, mediated mainly by 
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thromboxane and endothelin plays a pivotal role in the secondary injury as well. This could 
also be mitigated by hypothermia [46-48]  

It is crucial to note that all of these processes after ischemic-reperfusion injury in the brain 
are temperature dependent; they are all stimulated by fever, and can all be mitigated or 
blocked by hypothermia. Since most of these processes start within minutes to hours after 
the injury, then application of hypothermia earlier might be even more beneficial than 
conventional later application. This has been the premise behind prehospital cooling. 

3. Animal studies 

Animal studies demonstrate a benefit of very early cooling either during CPR or within 15 
minutes of ROSC when cooling is maintained for only a short duration (1 to 2 hours). 
Equivalent neuroprotection was produced in a rat model of cardiac arrest when a 24-hour 
period of cooling was either initiated at the time of ROSC or delayed by 1 hour. In a gerbil 
forebrain ischemia model, sustained neuroprotection was achieved when hypothermia was 
initiated at 1, 6, or 12 hours after reperfusion and maintained for 48 hours; however, 
neuroprotection did decrease when the start of therapy was delayed. Mice receiving intra-
arrest cooling had more favorable hemodynamic and neurological outcomes compared with 
normothermic controls with earlier reperfusion time. In another model, Dogs that received 
hypothermia treatment within 10 minutes of onset of VF had significantly better 
neurological outcomes than those that received it after 20 minutes of VF. [49-53] 

4. Human studies 

Bernard et al., reported the results of a clinical trial of the rapid infusion of large-volume (30 
ml/kg), ice-cold (4°C) lactated ringer’s solution in comatose survivors of OHCA. This study 
found that this approach decreased core temperature by 1.6°C over 25 minutes with no 
adverse events.[54] Polderman, et al., used in addition to surface cooling, 30ml/kg (mean 2.3 
liters) of cold normal saline over 50 minutes that showed similar results.[55] Several small 
randomized trials56-59, and nonrandomized observational and retrospective trials [60-66], 
looked at pre-hospital cooling initiation for patients with OHCA.  

The first randomized controlled trial (RCT) of pre-hospital cooling using large volume ice 
chilled fluid (LVICF) was reported by Kim et al. in 2007. Adult victims of non-traumatic 
cardiac arrest regardless of the initial rhythm were randomized either to field cooling or 
conventional treatment. In EMS before hospital arrival, patients assigned to the treatment 
group were infused up to 2L of 4°C normal saline as soon as possible after resuscitation 
from out-of-hospital cardiac arrest. A total of 125 patients were randomized to receive 
standard care with or without intravenous cooling. Among survivors to hospital admission, 
a significant esophageal temperature decrease of 1.24°C was observed in the treatment 
group compared to a 0.10°C increase in the control group. The authors report no increase in 
the number of adverse events associated with field cooling.[56] Kämäräinen et al conducted a 
similar safety trial in 2009; patients were cooled using LVICF and compared to patients  
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Trial Cooling 
method 

Randomized-
controlled 

Number 
of patients

Temperature 
measurement site 

Complications 

Kim et al 2007 LVICF YES 125 esophageal No difference 
Kämäräinen 
et al 2009 

LVICF YES 37 nasopharyngeal No difference 

Bernard et al 
2010 

LVICF YES 234 Tympanic No difference 

Bernard et al 
2011 

LVICF YES 163 Tympanic No difference 

Castren et al 
2010 

Transnasal 
cooling 

YES 200 Tympanic and core No difference 

Callaway et al 
2002 

Ice Packs NO 22 Nasopharyngeal 
esophageal 

No 

Virkkunen et 
al 2004 

LVICF NO 13 Esophageal 1 hypotension 

Uray et al 
2008 

Cooling 
pads 

NO 15 Esophageal No 

Hammer et al 
2009 

LVICF NO 99 Rectal No difference 

Storm et al 
2008 

Cooling cap NO 45 Tympanic No 

Kämäräinen 
et al 2008 

LVICF NO 17 Nasopharyngeal 5 Re- arrests 

Bruel et al 
2008 

LVICF NO 33 Esophageal 1 Pulmonary 
edema 

Garrett et al 
2011 

ICF 
(2000ml) 

NO 551 Core No difference 

LVICF; large volume ice chilled fluid,  ICF; ice chilled fluid 

Table 1. Clinical Trials on prehospital cooling 

received conventional fluid therapy. Of 44 patients screened, 19 were cooled using LVICF 
and 18 patients received conventional fluid therapy. LVICF resulted in a mean decrease in 
nasopharyngeal temperature of 1.5 °C. At the time of hospital admission, the mean 
nasopharyngeal temperature was markedly lower in the hypothermia group compared to 
the control group; 34.1°C vs. 35.2°C, respectively. Otherwise, there were no significant 
differences between the groups regarding safety parameters.57 Bernard et al, in 2010, 
randomized 234 patients with an initial rhythm of Ventricular fibrillation (VF) to treatment 
group to receive 2L of LVICF by paramedics or to the control group to be cooled after 
hospital admission.[58] Patients allocated to paramedic cooling received a median of 1900 mL 
of ice-cold fluid. This resulted in a mean decrease in core temperature of 0.8°C. However, 
patients in both prehospital TH and control groups had equivalent temperatures at 60 
minutes after hospital arrival (34.7°C). They did not demonstrate any improvement in 
survival to hospital discharge among prehospital-cooled patients when compared with 
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patients receiving TH initiated in the hospital. In a subsequent study, Bernard et al 
randomized 163 patients with an initial rhythm of non-VF to either pre-hospital cooling 
using a rapid infusion of LVICF or cooling after hospital admission.[59] Patients allocated to 
prehospital cooling received a median of 1500 ml of ice-cold fluid. This resulted in a mean 
decrease in core temperature of 1.4°C compared with 0.2°C in hospital cooled patients. 
Although the planned duration of TH in both groups was 24 hours, both groups received a 
mean of 15 hours cooling in the hospital and only 7 patients in each group were cooled for 24 
hours. There was no difference in outcomes at hospital discharge with favorable outcome in 
the pre-hospital cooled patients, compared with in the hospital cooled patients. In another 
randomized, controlled trial in 2010, Castren et al examined the use of transnasal cooling in the 
prehospital setting after ROSC, using an experimental portable delivery device.[60] They 
showed that transnasal cooling was safe and effective during arrest, with a rapid onset of TH 
in the prehospital setting. Although they did not demonstrate a statistically significant 
difference in survival to hospital discharge, there was a trend to increased survival in the 
transnasal cooling group compared with the control group (43.8% vs. 31.0%; p = 0.26). In a 
subset of patients who had CPR initiated within 10 minutes of collapse, there was a statistically 
significant difference in those who survived in the cooled group versus the control group 
(56.5% vs. 29.4%; p = 0.04) and those who were neurologically intact (43.5% vs. 17.6%; p = 0.03). 

Callaway et al in 2002 applied ice to the heads and necks of 9 patients during CPR, and 
compared this to a control group of 13 patients.[61] There was no difference in the rate of 
cooling in this study. Virkkunen et al, in 2004 reported a feasibility study using post ROSC 
infusion of 30 ml/kg LVICF after ROSC. In this cohort of thirteen patients, a significant 
decrease in esophageal temperature was observed, with a mean decrease of 1.9°C compared 
to the temperature prior to the onset of infusion.[62] A transient episode of hypotension was 
observed in one patient, but otherwise the treatment was well tolerated. In 2008, Uray et al 
used self-adhesive cooling pads to induce cooling in the prehospital setting after ROSC in 15 
patients.[63] The rate of cooling was 3.3 °C/h; the target temperature (33 to 34°C) was reached 
in hospital after approximately 91 minutesfrom the time of  ROSC. This study also showed 
that prehospital cooling was feasible and no adverse events were observed. In a 
retrospective review of 22 patients cooled using LVICF in the prehospital setting following 
ROSC compared to 77 conventionally treated patients in 2009, Hammer et al showed 
prehospital cooling to be easible and safe with a mean cooling rate of -1.7 C/h and no 
significant increase in the rate of adverse effects in the cooling group compared to the 
conventional group. [64] Storm et al, in 2008, studied the feasibility of a cranial cooling cap in 
the prehospital setting initiated after ROSC in 20 patients compared to 25 patients serving as 
a non-randomized control group.[65] A 1.1°C decrease in tympanic temperature was 
observed in the treatment group. Also, in 2008, Kämäräinen et al enrolled 17 patients in a 
nonrandomized study where paramedics initiated cooling using LVICF during CPR and 
after ROSC with a target temperature of 33°C.66 The mean infused volume was 1571 ± 517 ml 
and resulted in a mean admission temperature of 33.83 ± 0.77°C (1.34°C decrease compared 
to initial nasopharyngeal temperature). There were no major adverse events. In a similar 
study, Bruel et al enrolled 33 patients out of whom 20 patients had ROSC.67 A mean 
esophageal temperature decrease of 2.1°C was observed. Pulmonary edema occurred in one 
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Trial Cooling 
method 

Randomized-
controlled 

Number 
of patients

Temperature 
measurement site 

Complications 

Kim et al 2007 LVICF YES 125 esophageal No difference 
Kämäräinen 
et al 2009 

LVICF YES 37 nasopharyngeal No difference 

Bernard et al 
2010 

LVICF YES 234 Tympanic No difference 

Bernard et al 
2011 

LVICF YES 163 Tympanic No difference 

Castren et al 
2010 

Transnasal 
cooling 

YES 200 Tympanic and core No difference 

Callaway et al 
2002 

Ice Packs NO 22 Nasopharyngeal 
esophageal 

No 

Virkkunen et 
al 2004 

LVICF NO 13 Esophageal 1 hypotension 

Uray et al 
2008 

Cooling 
pads 

NO 15 Esophageal No 

Hammer et al 
2009 

LVICF NO 99 Rectal No difference 

Storm et al 
2008 

Cooling cap NO 45 Tympanic No 

Kämäräinen 
et al 2008 

LVICF NO 17 Nasopharyngeal 5 Re- arrests 

Bruel et al 
2008 

LVICF NO 33 Esophageal 1 Pulmonary 
edema 

Garrett et al 
2011 

ICF 
(2000ml) 

NO 551 Core No difference 

LVICF; large volume ice chilled fluid,  ICF; ice chilled fluid 

Table 1. Clinical Trials on prehospital cooling 

received conventional fluid therapy. Of 44 patients screened, 19 were cooled using LVICF 
and 18 patients received conventional fluid therapy. LVICF resulted in a mean decrease in 
nasopharyngeal temperature of 1.5 °C. At the time of hospital admission, the mean 
nasopharyngeal temperature was markedly lower in the hypothermia group compared to 
the control group; 34.1°C vs. 35.2°C, respectively. Otherwise, there were no significant 
differences between the groups regarding safety parameters.57 Bernard et al, in 2010, 
randomized 234 patients with an initial rhythm of Ventricular fibrillation (VF) to treatment 
group to receive 2L of LVICF by paramedics or to the control group to be cooled after 
hospital admission.[58] Patients allocated to paramedic cooling received a median of 1900 mL 
of ice-cold fluid. This resulted in a mean decrease in core temperature of 0.8°C. However, 
patients in both prehospital TH and control groups had equivalent temperatures at 60 
minutes after hospital arrival (34.7°C). They did not demonstrate any improvement in 
survival to hospital discharge among prehospital-cooled patients when compared with 
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patients receiving TH initiated in the hospital. In a subsequent study, Bernard et al 
randomized 163 patients with an initial rhythm of non-VF to either pre-hospital cooling 
using a rapid infusion of LVICF or cooling after hospital admission.[59] Patients allocated to 
prehospital cooling received a median of 1500 ml of ice-cold fluid. This resulted in a mean 
decrease in core temperature of 1.4°C compared with 0.2°C in hospital cooled patients. 
Although the planned duration of TH in both groups was 24 hours, both groups received a 
mean of 15 hours cooling in the hospital and only 7 patients in each group were cooled for 24 
hours. There was no difference in outcomes at hospital discharge with favorable outcome in 
the pre-hospital cooled patients, compared with in the hospital cooled patients. In another 
randomized, controlled trial in 2010, Castren et al examined the use of transnasal cooling in the 
prehospital setting after ROSC, using an experimental portable delivery device.[60] They 
showed that transnasal cooling was safe and effective during arrest, with a rapid onset of TH 
in the prehospital setting. Although they did not demonstrate a statistically significant 
difference in survival to hospital discharge, there was a trend to increased survival in the 
transnasal cooling group compared with the control group (43.8% vs. 31.0%; p = 0.26). In a 
subset of patients who had CPR initiated within 10 minutes of collapse, there was a statistically 
significant difference in those who survived in the cooled group versus the control group 
(56.5% vs. 29.4%; p = 0.04) and those who were neurologically intact (43.5% vs. 17.6%; p = 0.03). 

Callaway et al in 2002 applied ice to the heads and necks of 9 patients during CPR, and 
compared this to a control group of 13 patients.[61] There was no difference in the rate of 
cooling in this study. Virkkunen et al, in 2004 reported a feasibility study using post ROSC 
infusion of 30 ml/kg LVICF after ROSC. In this cohort of thirteen patients, a significant 
decrease in esophageal temperature was observed, with a mean decrease of 1.9°C compared 
to the temperature prior to the onset of infusion.[62] A transient episode of hypotension was 
observed in one patient, but otherwise the treatment was well tolerated. In 2008, Uray et al 
used self-adhesive cooling pads to induce cooling in the prehospital setting after ROSC in 15 
patients.[63] The rate of cooling was 3.3 °C/h; the target temperature (33 to 34°C) was reached 
in hospital after approximately 91 minutesfrom the time of  ROSC. This study also showed 
that prehospital cooling was feasible and no adverse events were observed. In a 
retrospective review of 22 patients cooled using LVICF in the prehospital setting following 
ROSC compared to 77 conventionally treated patients in 2009, Hammer et al showed 
prehospital cooling to be easible and safe with a mean cooling rate of -1.7 C/h and no 
significant increase in the rate of adverse effects in the cooling group compared to the 
conventional group. [64] Storm et al, in 2008, studied the feasibility of a cranial cooling cap in 
the prehospital setting initiated after ROSC in 20 patients compared to 25 patients serving as 
a non-randomized control group.[65] A 1.1°C decrease in tympanic temperature was 
observed in the treatment group. Also, in 2008, Kämäräinen et al enrolled 17 patients in a 
nonrandomized study where paramedics initiated cooling using LVICF during CPR and 
after ROSC with a target temperature of 33°C.66 The mean infused volume was 1571 ± 517 ml 
and resulted in a mean admission temperature of 33.83 ± 0.77°C (1.34°C decrease compared 
to initial nasopharyngeal temperature). There were no major adverse events. In a similar 
study, Bruel et al enrolled 33 patients out of whom 20 patients had ROSC.67 A mean 
esophageal temperature decrease of 2.1°C was observed. Pulmonary edema occurred in one 
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patient. No other major adverse events occurred. In 2011, Garrett et al performed a 
retrospective analysis of individuals experiencing OHCA  whereby six months into the 
study a prehospital intraarrest TH (IATH) protocol was instituted.68 In this protocol, patients 
received  2000 ml of ICF directly after obtaining intravenous access. 551 patients were 
analysed. Rates of prehospital ROSC were 36.5% versus 26.9% (OR 1.83; 95% CI 1.19–2.81) in 
patients who received IATH versus normothermic resuscitation respectively. While the 
frequency of survival to hospital admission and discharge were increased among those 
receiving IATH, the differences did not reach statistical significance.The secondary analysis 
found a linear association between the amount of cold saline infused and the likelihood of 
prehospital ROSC. They concluded that the infusion of 2000 ml of ICF during the intra-
arrest period may improve rate of ROSC. 

These  studies are either underpowered or due to study design do not allow conclusions 
regarding effects on outcome to be drawn, but the safety and  feasibility of early cooling was 
demonstrated. Another major limitation in most of these studies is that TH is not 
systematically continued in the post resuscitation care occurring in-hospital. Therefore, it is 
not possible to evaluate the benefits of pre-hospital cooling alone, as the effect of TH has 
been shown to necessitate a cooling period of at least 12 to 24 hours. 

5. Methods for induction of prehospital therapeutic hypothermia 

Most of the trials described above (Table 1) used LVICF for induction of TH in the 
prehospital setting. All the studies that used LVICF showed that this method for cooling is 
safe and feasible. However, LVICF may portend some potential problems. In one study on 
cold fluids, it was shown that chilled fluids begin to warm during transit through intravenous 
tubing, but the rate was not rapid enough to be deemed potentially clinically significant.69 In 
addition, in some instances, time to transport from the field to the emergency department may 
be too short for LVICF to have a significant cooling effect. In a study by Spaite et al on 
prehospital cardiac arrest, the time to transport from the field to the hospital was about 7 
minutes.70  In the study by Bernard et al above, 52% of the patients did not receive the goal 
of 2 L chilled saline because the transport time to the hospital was < 20 minutes.58 EMS 
systems with short transport times may not benefit from prehospital TH methods, esp 
chilled fluids, as much as systems that need longer time to get to their respective facilities. 
Another cooling method, used by Castren et al was transnasal cooling, with a machine that 
employs evaporation of an inert liquid sprayed in the posterior nasopharynx.[60] They did 
show that this method of transnasal cooling was safe and effective during arrest, with a 
rapid onset of TH in the prehospital setting. However, it is expensive and not widely 
available at this point. Another method used was cooling pads by Uray et al.[63] They used 
prechilled cooling pads that were stored in an insulated box with a cooling battery. They 
were able to achieve target temperature within about 50 minutes with only mild dermal 
erythema, which resolved soon after removal of the pads. Storm et al used cooling caps that 
proved feasible and with no significant adverse events.[65] Other promising new technologies 
include chilled perfluorocarbons  and saline/ice ‘‘slurries’’, that are still at level of animal 
experimentation.[71,72] 
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6. Complications and problems with prehospital therapeutic 
hypothermia 

The usual side effects pertaining to therapeutic hypothermia in general like arrhythmias, 
electrolyte abnormalities, bleeding, infection and other complications could also happen 
here, however these are discussed in a previous chapter. In this section, I will discuss the 
complications and problems pertinent to the prehospital phase of hypothermia induction. 
Overcooling is a potential problem in the field. It is very important to avoid overcooling 
below the target range because adverse events likely increase when patients are cooled to < 
32°C.[73,74] In a retrospective review, investigators showed that unintentional overcooling 
below target temperature is common, and concluded that improved mechanisms for 
temperature control are required to prevent potentially deleterious complications of more 
profound hypothermia.[75] I also add that effective and accurate methods for prehospital 
temperature monitoring is important, such as tympanic or esophageal temperature 
monitors. Another important complication is shivering, especially in the EMS with some 
limitations on use of antishivering medications, such as neuromascular blockers and some 
sedatives. One important potential problem is the interference of inducing TH in the field 
with the actual CPR and ACLS ongoing on the patient. Some providers believe that basic 
resuscitation care should be prioritized over induction of TH, especially with no proven 
outcome benefit of prehospital TH. A survey of EMS physicians on the implementation rate 
of prehospital cooling in the United States reported that the most common barriers to 
prehospital hypothermia are the lack of ideal equipment and space in EMS vehicles to store 
the equipment that is used to initiate cooling, lack of credentialing for the use of paralytic 
agents, and difficulty in prioritizing for training and patient care.[76] Another problem noted 
from some of the clinical studies addressed above is that after induction of hypothermia in 
the field, some patients were transported to hospitals where TH is not systematically 
continued in the post resuscitation care occurring in-hospital. If a patient is cooled only to be 
rewarmed soon after transport to a facilty, then this may actually be worse than not cooling 
the patient to begin with, as this might reverse and maybe even cause a rebound in all of the 
mechanisms of secondary injury (ischemia-reperfusion) discussed above. Hence, it is very 
important that these patients be transported to a facilty staffed and equipped with the 
ability to continue inhospital therapeutic hypothermia for at least 12-24 hours in addition to 
the other bundles of resuscitative care.[7]  

7. Conclusion 

Animal and laboratory data have suggested that there is significantly decreased 
neurological injury if cooling is initiated as soon as possible after resuscitation. Human 
clinical studies are either underpowered or due to study design do not allow conclusions 
regarding effects on outcome to be drawn, but the safety and  feasibility of early cooling was 
strongly demonstrated. Prehospital cooling comes with its own logistic challenges, such as 
limitation of EMS vehicle space, lack of ideal equipment for induction of hypothermia and 
for temperature monitoring, lack of credentialing for use of paralytic agents by EMS teams 
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patient. No other major adverse events occurred. In 2011, Garrett et al performed a 
retrospective analysis of individuals experiencing OHCA  whereby six months into the 
study a prehospital intraarrest TH (IATH) protocol was instituted.68 In this protocol, patients 
received  2000 ml of ICF directly after obtaining intravenous access. 551 patients were 
analysed. Rates of prehospital ROSC were 36.5% versus 26.9% (OR 1.83; 95% CI 1.19–2.81) in 
patients who received IATH versus normothermic resuscitation respectively. While the 
frequency of survival to hospital admission and discharge were increased among those 
receiving IATH, the differences did not reach statistical significance.The secondary analysis 
found a linear association between the amount of cold saline infused and the likelihood of 
prehospital ROSC. They concluded that the infusion of 2000 ml of ICF during the intra-
arrest period may improve rate of ROSC. 

These  studies are either underpowered or due to study design do not allow conclusions 
regarding effects on outcome to be drawn, but the safety and  feasibility of early cooling was 
demonstrated. Another major limitation in most of these studies is that TH is not 
systematically continued in the post resuscitation care occurring in-hospital. Therefore, it is 
not possible to evaluate the benefits of pre-hospital cooling alone, as the effect of TH has 
been shown to necessitate a cooling period of at least 12 to 24 hours. 

5. Methods for induction of prehospital therapeutic hypothermia 

Most of the trials described above (Table 1) used LVICF for induction of TH in the 
prehospital setting. All the studies that used LVICF showed that this method for cooling is 
safe and feasible. However, LVICF may portend some potential problems. In one study on 
cold fluids, it was shown that chilled fluids begin to warm during transit through intravenous 
tubing, but the rate was not rapid enough to be deemed potentially clinically significant.69 In 
addition, in some instances, time to transport from the field to the emergency department may 
be too short for LVICF to have a significant cooling effect. In a study by Spaite et al on 
prehospital cardiac arrest, the time to transport from the field to the hospital was about 7 
minutes.70  In the study by Bernard et al above, 52% of the patients did not receive the goal 
of 2 L chilled saline because the transport time to the hospital was < 20 minutes.58 EMS 
systems with short transport times may not benefit from prehospital TH methods, esp 
chilled fluids, as much as systems that need longer time to get to their respective facilities. 
Another cooling method, used by Castren et al was transnasal cooling, with a machine that 
employs evaporation of an inert liquid sprayed in the posterior nasopharynx.[60] They did 
show that this method of transnasal cooling was safe and effective during arrest, with a 
rapid onset of TH in the prehospital setting. However, it is expensive and not widely 
available at this point. Another method used was cooling pads by Uray et al.[63] They used 
prechilled cooling pads that were stored in an insulated box with a cooling battery. They 
were able to achieve target temperature within about 50 minutes with only mild dermal 
erythema, which resolved soon after removal of the pads. Storm et al used cooling caps that 
proved feasible and with no significant adverse events.[65] Other promising new technologies 
include chilled perfluorocarbons  and saline/ice ‘‘slurries’’, that are still at level of animal 
experimentation.[71,72] 
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6. Complications and problems with prehospital therapeutic 
hypothermia 

The usual side effects pertaining to therapeutic hypothermia in general like arrhythmias, 
electrolyte abnormalities, bleeding, infection and other complications could also happen 
here, however these are discussed in a previous chapter. In this section, I will discuss the 
complications and problems pertinent to the prehospital phase of hypothermia induction. 
Overcooling is a potential problem in the field. It is very important to avoid overcooling 
below the target range because adverse events likely increase when patients are cooled to < 
32°C.[73,74] In a retrospective review, investigators showed that unintentional overcooling 
below target temperature is common, and concluded that improved mechanisms for 
temperature control are required to prevent potentially deleterious complications of more 
profound hypothermia.[75] I also add that effective and accurate methods for prehospital 
temperature monitoring is important, such as tympanic or esophageal temperature 
monitors. Another important complication is shivering, especially in the EMS with some 
limitations on use of antishivering medications, such as neuromascular blockers and some 
sedatives. One important potential problem is the interference of inducing TH in the field 
with the actual CPR and ACLS ongoing on the patient. Some providers believe that basic 
resuscitation care should be prioritized over induction of TH, especially with no proven 
outcome benefit of prehospital TH. A survey of EMS physicians on the implementation rate 
of prehospital cooling in the United States reported that the most common barriers to 
prehospital hypothermia are the lack of ideal equipment and space in EMS vehicles to store 
the equipment that is used to initiate cooling, lack of credentialing for the use of paralytic 
agents, and difficulty in prioritizing for training and patient care.[76] Another problem noted 
from some of the clinical studies addressed above is that after induction of hypothermia in 
the field, some patients were transported to hospitals where TH is not systematically 
continued in the post resuscitation care occurring in-hospital. If a patient is cooled only to be 
rewarmed soon after transport to a facilty, then this may actually be worse than not cooling 
the patient to begin with, as this might reverse and maybe even cause a rebound in all of the 
mechanisms of secondary injury (ischemia-reperfusion) discussed above. Hence, it is very 
important that these patients be transported to a facilty staffed and equipped with the 
ability to continue inhospital therapeutic hypothermia for at least 12-24 hours in addition to 
the other bundles of resuscitative care.[7]  

7. Conclusion 

Animal and laboratory data have suggested that there is significantly decreased 
neurological injury if cooling is initiated as soon as possible after resuscitation. Human 
clinical studies are either underpowered or due to study design do not allow conclusions 
regarding effects on outcome to be drawn, but the safety and  feasibility of early cooling was 
strongly demonstrated. Prehospital cooling comes with its own logistic challenges, such as 
limitation of EMS vehicle space, lack of ideal equipment for induction of hypothermia and 
for temperature monitoring, lack of credentialing for use of paralytic agents by EMS teams 
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that are not staffed by physicians, transport to facilities that are not equipped to continue 
inhospital therapeutic hypothermia and postresuscitation care, the potential for overcooling 
and shivering, and interference with basic resuscitation efforts in the field. Intraarest and 
postarrest bundles of care that include therapeutic hypothermia, as well as training of EMS 
teams, EMS physicians, emergency room staff, cardiologists and cardiac catheterization lab 
staff, and intensive care unit physicians  and staff on these protocols and bundles are crucial 
for the success of these bundles and the implementation of this important therapy, whether 
cooling is initiated in the field or in the hospital setting. Clearly, large prospective 
randomized controlled trials of prehospital therapeutic hypothermia preferably as part of a 
cardiac arrest bundle of care are needed. 
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that are not staffed by physicians, transport to facilities that are not equipped to continue 
inhospital therapeutic hypothermia and postresuscitation care, the potential for overcooling 
and shivering, and interference with basic resuscitation efforts in the field. Intraarest and 
postarrest bundles of care that include therapeutic hypothermia, as well as training of EMS 
teams, EMS physicians, emergency room staff, cardiologists and cardiac catheterization lab 
staff, and intensive care unit physicians  and staff on these protocols and bundles are crucial 
for the success of these bundles and the implementation of this important therapy, whether 
cooling is initiated in the field or in the hospital setting. Clearly, large prospective 
randomized controlled trials of prehospital therapeutic hypothermia preferably as part of a 
cardiac arrest bundle of care are needed. 
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1. Introduction 

Stroke is the second most common cause of death and a major cause of serious long-term 
disability in adults in industrialized countries. Approximately 90% of strokes are ischemic 
and the rest are hemorrhagic.[1] Unfortunately, few effective treatments can be offered 
during the acute and subacute phases. Since the introduction of tissue plasminogen 
activator (tPA) in 1995, there are no other medical treatments for ischemic stroke besides the 
use of antiplatelets for primary and secondary prevention. Moreover, the clinical treatments 
for hemorrhagic stroke are also limited.  

In ischemic stroke most of therapies aim to recanalize the vessel and restore flow through 
pharmacological or endovascular treatments. However, another approach to preserve brain 
tissue is through the interruption of catalytic pathways triggered by ischemia. Rapid 
restoration of oxygen and glucose by thrombolysis will always provide the most effective 
neuroprotection, but directly targeting the brain parenchyma to confer neuroprotection may 
be a viable alternative, particularly in conjunction with thrombolysis. Multiple 
pharmacological attempts have failed in finding an ideal neuroprotective agent. Over 1000 
neuroprotective agents have been tested in basic stroke studies with many showing 
promise.[2] However, to date no neuroprotective agent has successfully transitioned from 
bench or animal studies into clinical use. Although cooling may be unable to salvage neural 
tissue that has irreversibly progressed to infarction, hypothermia minimizes the extent of 
secondary injury as an acute or subacute treatment strategy. Hypothermia is increasingly 
being used, especially since therapeutic mild hypothermia has demonstrated to positively 
influence neurological outcome in humans following acute brain injuries, namely, global 
ischemic brain injury due to cardiac arrest and hypoxic-ischemic encephalopathy in 
neonates.[3, 4]  

Catalytic cascades are generated in the brain tissue surrounding a blood clot after 
intracerebral hemorrhage (ICH). Hypothermia may also be used as a neuroprotection 
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treatment in these circumstances. Hypothermia has the potential to minimize secondary 
injury resulting from insufficient cerebral perfusion pressure or mechanical compression 
from herniation by ICH. Hypothermia preserves autoregulation of the cerebral vasculature 
and reduces cytotoxic edema around the hemorrhagic clot.[5]  

2. Pathophysiology of ischemic brain injury  

Ischemic brain injury is composed by the initial ischemic cascade and reperfusion 
injury.[6] During cerebral ischemia, cessation of blood flow and hypoxia trigger a complex set 
of metabolic and biochemical processes that comprise the ischemic cascade. An initial event in 
the ischemic cascade is the depletion of adenosine triphosphate (ATP), which is generated by 
oxygen-dependent phosphorylation in the central nervous system. ATP depletion leads to 
neurolemma depolarization secondary to derangement of Na+ and K+ gradients and, 
consequently, inappropriate accumulation of intracellular Ca2+ resulting from both Ca2+ influx 
and release from intracellular Ca2+ stores.[7] Increased intracellular Ca2+ concentration causes 
promiscuous activation of multiple intracellular enzyme systems, including protein kinase C, 
protein kinase B, calcium/calmodulin-dependent protein kinase II, mitogen-activated protein 
kinases, and phospholipases A2, C, and D. Prolonged elevations in intracellular 
Ca2+ concentration trigger the release of neurotrasmitters, which couples with the activation of 
multiple enzyme systems, inevitably leading to necrotic cell death through membrane 
dissolution if ischemia continues. In dogs, when ischemic brain is reperfused within 3 to 12 
minutes, neuronal ATP production appears to recover rapidly, with replenishment of baseline 
cellular levels within 6 minutes.[8] However, after 30 minutes of ischemia, the replenishment 
of ATP to baseline levels takes significantly longer (~36 minutes).[9] Furthermore, even after 3 
hours of reperfusion after intracranial thrombus injection, brain ATP levels still may not return 
to baseline levels.[10] Therefore, timely reperfusion is paramount, and after reperfusion is 
established, the direct cytotoxic effects of the ischemic cascade likely continue for minutes to 
hours until cellular ATP levels recover sufficiently. 

3. Hypothermia at the cellular level  

Hypothermia is neuroprotective through several mechanisms. The effects of hypothermia 
include a wide range of biological processes which include decreasing excitatory amino acid 
release, reducing free radical formation, enhancing small ubiquitin-related modifier-related 
pathways, attenuating protein kinase C activity and slowing cellular metabolism.[11-13] 
Hypothermia has little effect on the core of infarcted tissue, but acts on tissue at risk in the 
penumbra by modulating different mechanisms that lead to cellular injury and death.[14] A 
marked reduction in the metabolic demand of penumbral tissue with induced hypothermia 
may prevent damage due to oxidative stress and energy failure. Cooling also results in 
reduced proteolysis and excitotoxic damage caused by glutamate toxicity, and reduction in 
neuronal calcium influx.[15, 16]  

For every 1 °C reduction in brain temperature, the cerebral metabolic rate decreases in 6%. 
[17] Under stress conditions, hypothermia decreases high energy organic phosphates losses, 
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slows the rates of metabolite consumption and lactic acid accumulation and reduces cerebral 
metabolic oxygen consumption, while improving glucose utilization.[11]  

Hypothermia not only protects the brain by reducing cerebral metabolism during conditions 
of reduced substrate and shift to anaerobic glycolysis. Hypothermia also suppresses the 
accumulation and release of glutamate.[18] ATP loss during ischemia leads to ions flowing 
down their concentration gradients, and eventual efflux of potassium and influx of sodium 
and calcium.[19] Calcium influxes lead to direct neurotoxicity as well as extracellular 
accumulation of glutamate, which are neurotoxic. Experimental studies have shown that 
mild to moderate hypothermia attenuates the initial and delayed rise of extracellular 
potassium and prevents intracellular calcium accumulation, thus leading to decreased 
glutamate efflux and finally neuroprotection.  

Numerous studies have shown that hypothermia reduces the generation of reactive oxygen 
species, decreases brain edema, and prevents blood-brain barrier breakdown.[18] One 
potential mechanism is that hypothermia inhibits matrix metalloproteinases and preserves 
basal lamina proteins after stroke.[20-22] Moreover, a clinical study of 10 patients with large 
strokes who underwent mild hypothermia demonstrated lower levels of matrix 
metalloproteinase than normothermic patients.[23] Serum metalloproteinases are a good 
marker of blood-brain barrier breakdown.[20]  

Hypothermia has been documented by numerous investigators to alter gene expression 
normally observed after brain ischemia. Whereas a majority of genes are downregulated by 
hypothermia, a number of genes are also upregulated. [24] Interestingly, many 
proinflammatory and proapoptotic genes tend to be downregulated.[25-27] Whereas those 
genes that contribute to cell survival seem to be upregulated. [28-32]  

Additionally, hypothermia has been shown to inhibit activation of the inflammatory 
transcription factor nuclear factor kappa B via temperature-dependent inhibition of its 
inhibitor protein’s kinase. Other studies indicate that hypothermia has antiapoptotic effects 
such as reduction of cytochrome C release, and inhibition of caspases and proapoptotic 
genes.[33-37] 

4. Cooling temperatures 

Therapeutic hypothermia is defined as an intentionally induced, controlled reduction of a 
patient’s core temperature below 36°C. Further classification includes mild (34°C–35.9°C), 
moderate (32°C–33.9°C), moderate/deep (30°C–31.9°C), and deep (< 30°C) hypothermia. [38] 

In general, hypothermia appears to be effective whether the brain is cooled to 33°C or 28°C, 
but temperatures on the lower end appeared to be most effective according to a recent meta-
analysis of the experimental literature.[39] However, lower temperatures are associated with 
a higher incidence of complications, require more sedation and sometimes even induction of 
paralysis accompanied by intubation and ventilatory support.  
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5. Hypothermia in ischemic stroke 

Body temperature is increased in 4% to 25 % of patients with acute ischemic stroke within 
the rst six hours after symptom onset.[40] The pathophysiology of this increase in body 
temperature is not completely understood. Higher body temperature may be a natural 
consequence of brain infarction. However, animal studies have suggested that higher body 
temperatures may increase the damage induced by cerebral ischemia.[41] Observational 
studies in patients with acute stroke have established the influence of body temperature on 
the clinical outcome of stroke. For each 1 °C increase in body temperature, the relative risk 
of poor outcome worsens more than two times.[42] This association may be limited to the 
first 12 to 24 hours from stroke onset.[42] These studies therefore suggest that control of 
body temperature and fever prevention may improve functional outcome after stroke.  

In a systematic review of animal studies, therapeutic hypothermia reduced infarct size by 
44% (95% condence interval 40 to 47%). The best results were obtained with lower 
temperatures (≤ 31 °C), when treatment was started before or at the onset of ischemia, and in 
temporary rather than permanent ischemia models. However, a reduction in infarct volume 
by about one third was also observed with temperature reduction to 35 °C, with initiation of 
treatment between 90 and 180 minutes, and in permanent ischemia models.[39] The effects 
of hypothermia on functional outcome were broadly similar.[39] This suggests that 
temperature-lowering therapy might be effective for large numbers of patients with 
ischemic stroke. 

6. Human studies of hypothermia in ischemic stroke 

Clinical studies of induced hypothermia were conducted on humans based on successful 
cerebral ischemia animal models. One of the first studies cooled 17 patients with stroke 
admitted within 12 hours from symptom onset (mean 3.25 hours) for 6 hours.[43] 
Hypothermia was induced (35.5° C) with cooling blankets and shivering was treated with 
meperidine. Mortality at 6 months after stroke was 12% in the hypothermia group versus 
23% in historical matched-controls. Unfortunately, no benefit in terms of outcome was 
observed. It has been suggested that a longer hypothermia duration of 48–72 h may be 
required to reduce the formation of cerebral edema which usually occurs during the first 72-
h after symptom onset.  

Another study by Keller and collaborators measured the cerebral blood flow (CBF) and 
cerebral metabolic rate of oxygen consumption (CMRO2) in six patients with middle cerebral 
artery (MCA) strokes treated with hypothermia.[44] Patients were intubated and cooled 
with cooling blankets for 48 to 96 hours. A total of 19 measurements of CBF and jugular bulb 
O2 saturation were performed. This preliminary study suggested that moderate 
hypothermia (33° C) seems to reduce CBF and CMRO2 in humans.  

A small study evaluated the feasibility of inducing and maintaining moderate hypothermia 
with the use of endovascular rather than surface cooling.[45] Six patients with severe acute 
ischemic stroke were treated with moderate hypothermia. The pace of cooling was 1.4 +/- 
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0.6º C/h, and target temperature was reached after 3 +/- 1 h (range, 2 to 4.5 h). During 
hypothermia, the maximal temperature observed was 33.4º C, and the minimal temperature 
was 32.2º C. Every patient developed pneumonia and hypotension. This small study 
demonstrated that induction and maintenance of hypothermia with an intravenous cooling 
device was feasible.  

Cooling for acute ischemic brain damage (COOL-AID), was one of the first studies to 
evaluate hypothermia in ischemic stroke after thrombolysis.[46] This was a 
nonrandomized study that used surface cooling to achieve a cooling temperature of 32 ± 
1°C for 12 to 72-h. To prevent shivering, all patients undergoing hypothermia were 
intubated, sedated, and pharmacologically paralyzed. The study demonstrated that 
hypothermia is technically feasible and safe for patients with acute ischemic strokes who 
are undergoing thrombolytic therapy. However, the study was too small (10 patients) to 
determine any solid conclusions.  

A later version of the same study, evaluated and intravascular cooling device in the 
treatment of stroke through the induction of hypothermia. The second COOL-AID was a 
randomized controlled study of 40 patients presenting within 12- h of symptom onset. 
Eighteen patients were cooled and 22 received standard medical management, which 
included thrombolysis in 13 patients. Shivering was suppressed using a forced-air warming 
blanket, buspirone and meperidine. Eight patients in the hypothermia group required 
intubation during their hospitalization, one patient was intubated during the maintenance 
phase of hypothermia and the other for various reasons not related to cooling. Most patients 
tolerated hypothermia, and clinical outcomes were similar in both groups although there 
was a trend of reduced lesion growth on diffusion-weighted imaging in the group treated 
with hypothermia.[47] Side effects included pneumonia, cardiac arrhythmia, and deep vein 
thrombosis. The main lessons from these two studies (COOL-AID one and two) were that 
mild hypothermia can be achieved in awake patients with the appropriate cooling and anti-
shivering protocols; and that endovascular cooling achieves target temperature faster than 
surface cooling.  

ICTuS is another nonrandomized clinical trial that cooled 18 acute stroke patients using an 
endovascular cooling device.[48] Patients were cooled within 12 hours of symptom onset. 
An anti-shivering regimen with buspirone and meperidine was administered 
prophylactically. Overall, patients tolerated cooling well and the incidence of cerebral 
hemorrhage did not increase among patients (n=5) who received intravenous (IV) tPA. This 
trial confirmed that endovascular cooling with a proactive anti-shivering regimen can be 
accomplished in awake stroke patients. A later brain CT analysis of patients who were 
effectively cooled (n=7) versus those who were not (n=11), suggested that endovascular 
hypothermia decreases acute post-ichemic cerebral edema. [49] At the end of the cooling 
and rewarming period (36–48 h), patients who were effectively cooled had signicantly 
decreased cerebral edema compared to patients who were either ineffectively cooled or not 
cooled at all. The effect disappeared by 30 days, as might be expected given the natural 
course of post-infarction cerebral edema. 
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A follow-up randomized, controlled study of endovascular cooling in awake patients after 
stroke (ICTuS-L), studied hypothermia with thrombolysis in patients presenting with acute 
ischemic stroke < 6 h from symptom onset.[50] Twenty eight patients were randomized to 
receive hypothermia and 30 to normothermia. There were no differences in outcome or 
incidence of adverse events comparing patients who were treated with tPA and hypothermia 
with those who were not cooled. For safety concerns, endovascular hypothermia with 
placement of the femoral cooling catheter was not begun until 30 to 180 minutes after 
completion of the tPA infusion, delaying cooling. Pneumonia was more frequent after 
hypothermia, although the occurrence of pneumonia did not significantly affect outcome at 
90 days. The study used meperidine, oral buspirone, and surface skin warming to prevent 
shivering in awake patients. This study demonstrated the feasibility and preliminary safety of 
combining endovascular hypothermia after stroke with intravenous thrombolysis, similarly 
to what the COOL AID study demonstrated previously.[46] 

The experience in the use of hypothermia with thrombolysis is limited in stroke patients. In 
the first COOL-AID study that used surface cooling, 4 of 10 patients received intra-arterial 
thrombolysis, and 2 received IV therapy.[46] In the second study, 3 of 18 patients were 
treated with intra-arterial therapy, and 10 received IV thrombolysis.[47] One patient who 
was treated with hypothermia and intra-arterial thrombolysis experienced retroperitoneal 
hemorrhage.[47] In the ICTuS-L trial, the rate of ICH was similar among patients who 
received tPA with hypothermia and those treated with tPA alone.[51] 

Hypothermia has also been studied with other neuroprotective agents in the treatment of 
acute ischemic stroke. Twenty patients with acute ischemic stroke were treated with 
caffeinol (caffeine 8-9 mg/kg + ethanol 0.4 g/kg intravenously x 2 hours, started by 4 hours 
after symptom onset) and hypothermia (started by 5 hours and continued for 24 hours (33-
35º C), followed by 12 hours of rewarming).[52] IV tPA was given to 16 patients within 3 
hours of symptom onset. Meperidine and buspirone were used to suppress shivering. 
Cooling was successfully achieved in 16 patients via endovascular and surface approaches. 
All patients reached target temperature, on average within 2 hours and 30 minutes from 
induction and 6 hours and 21 minutes from symptom onset. Three patients died: one from 
symptomatic hemorrhage, one from malignant cerebral edema, and one from unrelated 
medical complications. No adverse events were attributed to caffeinol.  

A small study evaluated the use of ice-cold saline for the induction of mild hypothermia in 10 
patients with acute ischemic stroke.[53] Ice-cold saline at 4°C (25 mL/kg body weight) was 
administered one time to induce mild hypothermia. Patients received buspirone and 
meperidine to prevent and treat shivering. Tympanic temperature dropped significantly by a 
maximum of 1.6 ± 0.3°C at 52 ± 16 minutes after ice-cold saline was started. The procedure was 
well tolerated, however, hypothermia was not maintained after the infusion of ice-cold saline.  

7. Hypothermia and thrombolysis  

Theoretically, the combination of hypothermia with pharmacological thrombolysis to 
restore blood flow and provide neuroprotection is a very promising strategy. However, 
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many serine proteases are affected by temperature, and the activity of tPA may be reduced 
in hypothermia.[54] In vitro analysis shows that cooling to 30°C to 33°C decreases tPA 
activity by 2% to 4%.[55] Moreover, it has been reported that the response to tPA may be 
related to body temperature at stroke presentation.[56] Investigators studied 111 acute 
stroke patients given tPA and found that patients presenting with a higher body 
temperature were more likely to have a favorable outcome compared with patients 
presenting with lower body temperatures. The authors suggested that this surprising 
finding might be explained by the benefit of im proved clot lysis by tPA at higher 
temperatures compared with the potential neuroprotective benefit of lower body 
temperature. 

A recent analysis of 5586 patients with acute ischemic stroke (1980 patients received tPA) 
determined that tPA treatment effect was not associated with baseline temperature.[57] 
Point estimates showed benefit of tPA treatment across 35.5°C to 37.5°C but showed a 
negative trend >37.5°C. Temperature profiles did not influence tPA effectiveness over 72 
hours after stroke. 

8. Hypothermia in the treatment of large MCA strokes 

Hypothermia has also been evaluated in the treatment of cerebral edema after large MCA 
infarctions. Schwab and collaborators induced moderate hypothermia in 25 patients with 
large MCA strokes.[58] Hypothermia was induced within 14 ± 7 hours after stroke onset by 
external cooling with cooling blankets, cold infusions, and cold washing. Hypothermia at 
33°C body-core temperature was maintained for 48 to 72 hours, and intracranial pressure 
(ICP), cerebral perfusion pressure, and brain temperature were continuously monitored. 
Elevated ICP values were significantly reduced during hypothermia. Herniation caused by a 
secondary rise in ICP after rewarming was the cause of death in most patients. The most 
frequent complication of moderate hypothermia was pneumonia in 10 of the 25 patients 
[40%). Authors concluded that moderate hypothermia can help to control critically elevated 
ICP values in severe space-occupying edema after MCA stroke. This and a similar study by 
the same group were pivotal in demonstrating that hypothermia was safe and effective in 
the treatment of increased ICP after malignant MCA infarction.[59]  

A prospective study performed by the same group, induced hypothermia in 50 patients 
with cooling blankets as well as alcohol and ice bags within 22 ± 9 hours after stroke 
onset.[59] Hypothermia was maintained for 24 to 72 hours and passive rewarming 
performed over a mean duration of 17 hours. Time required for cooling to < 33°C varied 
from 3.5 to 11 hours. The most frequent complications of hypothermic therapy were 
thrombocytopenia (70%). Faster rewarming (< 16 hours) was associated with rebound 
increased ICP, and most deaths occurred during the rewarming period. Further data in 
MCA infarct patients suggests that controlled rewarming rates of ≤ 0.1 per hour allow for 
improved control of ICP when compared with patients in whom rewarming is achieved in 
an uncontrolled fashion.[60] 
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A follow-up randomized, controlled study of endovascular cooling in awake patients after 
stroke (ICTuS-L), studied hypothermia with thrombolysis in patients presenting with acute 
ischemic stroke < 6 h from symptom onset.[50] Twenty eight patients were randomized to 
receive hypothermia and 30 to normothermia. There were no differences in outcome or 
incidence of adverse events comparing patients who were treated with tPA and hypothermia 
with those who were not cooled. For safety concerns, endovascular hypothermia with 
placement of the femoral cooling catheter was not begun until 30 to 180 minutes after 
completion of the tPA infusion, delaying cooling. Pneumonia was more frequent after 
hypothermia, although the occurrence of pneumonia did not significantly affect outcome at 
90 days. The study used meperidine, oral buspirone, and surface skin warming to prevent 
shivering in awake patients. This study demonstrated the feasibility and preliminary safety of 
combining endovascular hypothermia after stroke with intravenous thrombolysis, similarly 
to what the COOL AID study demonstrated previously.[46] 

The experience in the use of hypothermia with thrombolysis is limited in stroke patients. In 
the first COOL-AID study that used surface cooling, 4 of 10 patients received intra-arterial 
thrombolysis, and 2 received IV therapy.[46] In the second study, 3 of 18 patients were 
treated with intra-arterial therapy, and 10 received IV thrombolysis.[47] One patient who 
was treated with hypothermia and intra-arterial thrombolysis experienced retroperitoneal 
hemorrhage.[47] In the ICTuS-L trial, the rate of ICH was similar among patients who 
received tPA with hypothermia and those treated with tPA alone.[51] 

Hypothermia has also been studied with other neuroprotective agents in the treatment of 
acute ischemic stroke. Twenty patients with acute ischemic stroke were treated with 
caffeinol (caffeine 8-9 mg/kg + ethanol 0.4 g/kg intravenously x 2 hours, started by 4 hours 
after symptom onset) and hypothermia (started by 5 hours and continued for 24 hours (33-
35º C), followed by 12 hours of rewarming).[52] IV tPA was given to 16 patients within 3 
hours of symptom onset. Meperidine and buspirone were used to suppress shivering. 
Cooling was successfully achieved in 16 patients via endovascular and surface approaches. 
All patients reached target temperature, on average within 2 hours and 30 minutes from 
induction and 6 hours and 21 minutes from symptom onset. Three patients died: one from 
symptomatic hemorrhage, one from malignant cerebral edema, and one from unrelated 
medical complications. No adverse events were attributed to caffeinol.  

A small study evaluated the use of ice-cold saline for the induction of mild hypothermia in 10 
patients with acute ischemic stroke.[53] Ice-cold saline at 4°C (25 mL/kg body weight) was 
administered one time to induce mild hypothermia. Patients received buspirone and 
meperidine to prevent and treat shivering. Tympanic temperature dropped significantly by a 
maximum of 1.6 ± 0.3°C at 52 ± 16 minutes after ice-cold saline was started. The procedure was 
well tolerated, however, hypothermia was not maintained after the infusion of ice-cold saline.  

7. Hypothermia and thrombolysis  

Theoretically, the combination of hypothermia with pharmacological thrombolysis to 
restore blood flow and provide neuroprotection is a very promising strategy. However, 
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many serine proteases are affected by temperature, and the activity of tPA may be reduced 
in hypothermia.[54] In vitro analysis shows that cooling to 30°C to 33°C decreases tPA 
activity by 2% to 4%.[55] Moreover, it has been reported that the response to tPA may be 
related to body temperature at stroke presentation.[56] Investigators studied 111 acute 
stroke patients given tPA and found that patients presenting with a higher body 
temperature were more likely to have a favorable outcome compared with patients 
presenting with lower body temperatures. The authors suggested that this surprising 
finding might be explained by the benefit of im proved clot lysis by tPA at higher 
temperatures compared with the potential neuroprotective benefit of lower body 
temperature. 

A recent analysis of 5586 patients with acute ischemic stroke (1980 patients received tPA) 
determined that tPA treatment effect was not associated with baseline temperature.[57] 
Point estimates showed benefit of tPA treatment across 35.5°C to 37.5°C but showed a 
negative trend >37.5°C. Temperature profiles did not influence tPA effectiveness over 72 
hours after stroke. 

8. Hypothermia in the treatment of large MCA strokes 

Hypothermia has also been evaluated in the treatment of cerebral edema after large MCA 
infarctions. Schwab and collaborators induced moderate hypothermia in 25 patients with 
large MCA strokes.[58] Hypothermia was induced within 14 ± 7 hours after stroke onset by 
external cooling with cooling blankets, cold infusions, and cold washing. Hypothermia at 
33°C body-core temperature was maintained for 48 to 72 hours, and intracranial pressure 
(ICP), cerebral perfusion pressure, and brain temperature were continuously monitored. 
Elevated ICP values were significantly reduced during hypothermia. Herniation caused by a 
secondary rise in ICP after rewarming was the cause of death in most patients. The most 
frequent complication of moderate hypothermia was pneumonia in 10 of the 25 patients 
[40%). Authors concluded that moderate hypothermia can help to control critically elevated 
ICP values in severe space-occupying edema after MCA stroke. This and a similar study by 
the same group were pivotal in demonstrating that hypothermia was safe and effective in 
the treatment of increased ICP after malignant MCA infarction.[59]  

A prospective study performed by the same group, induced hypothermia in 50 patients 
with cooling blankets as well as alcohol and ice bags within 22 ± 9 hours after stroke 
onset.[59] Hypothermia was maintained for 24 to 72 hours and passive rewarming 
performed over a mean duration of 17 hours. Time required for cooling to < 33°C varied 
from 3.5 to 11 hours. The most frequent complications of hypothermic therapy were 
thrombocytopenia (70%). Faster rewarming (< 16 hours) was associated with rebound 
increased ICP, and most deaths occurred during the rewarming period. Further data in 
MCA infarct patients suggests that controlled rewarming rates of ≤ 0.1 per hour allow for 
improved control of ICP when compared with patients in whom rewarming is achieved in 
an uncontrolled fashion.[60] 
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Georgiadis and collaborators compared hypothermia with hemicraniectomy in the 
treatment of more than 2/3 of the MCA infarction.[61] Seventeen patients underwent 
hemicraniectomy and 19 were treated with moderate hypothermia (33°C), which was 
induced with cooling blankets and endovascular devices. Hypothermia was induced for 71 ± 
21 hours (range, 24 - 116 hours), whereas duration of rewarming varied between 25 and 34 
hours. Prolongation of hypothermia >72 hours was always related to raised ICP during 
rewarming attempts. Mortality was 12% in the hemicraniectomy group and 47% in the 
hypothermia group; one patient treated with hypothermia died as a result of cooling 
complications (sepsis) and three patients died of ICP crises that occurred during rewarming. 

Another small prospective study with 25 patients compared hypothermia with 
hemicraniectomy and hemicraniectomy alone in the treatment of patients with large MCA 
strokes.[62] Hemicraniectomy was performed within 15 +/- 6 h after the ischemic event, 
followed by hypothermia. There were no severe side effects of hypothermia. Patients treated 
with hemicraniectomy plus moderate hypothermia had a tendency to better outcome after 6 
months when compared to patients treated with hemicraniectomy alone.  

9. Human studies of hypothermia in hemorrhagic stroke 

ICH accounts for approximately 10% of strokes and the 30-day mortality rate is 
approximately 52%.[63] After the acute phase of ICH, high morbidity and mortality are 
essentially caused by the evolution of a peri-hemorrhagic, space-occupying edema 
associated with gradually increasing ICP.[64] Although the natural course of edema 
formation is still not fully understood, edema mostly increases during the first week and 
reaches its maximum during the second week after bleeding onset.[65, 66] Animal studies 
have suggested that hypothermia may have a neuroprotective role after ICH in reducing 
edema formation by various mechanisms.[67, 68]  

One of the first experiences with hypothermia in the treatment of ICH was reported by 
Howell and collaborators in 1956.[69] Hypothermia between 30°C to 32°C was induced in 
eight patients with spontaneous ICH. Although signs of herniation improved in all patients, 
six patients died from systemic complications, most commonly aspiration. Anecdotally, 
hypothermia was induced with ice bags, alcohol, and even opening the windows in the 
middle of the Canadian winter.  

Kollmar and collaborators treated twelve patients with supratentorial large ICH (> 25 mL) 
with hypothermia (35°C) for 10 days.[5] In the hypothermia group, edema volume 
remained stable during 14 days, whereas edema significantly increased in the control 
group. However, pneumonia was more frequent in the hypothermia group. Based on 
these results, the same investigators planned the Cooling in Intracerebral Hemorrhage 
(CINCH) trial. [70] This is a prospective multicenter trial that WILL enroll 50 patients 
with large ICH and randomly assign them to mild hypothermia versus conventional 
medical management.  
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Georgiadis and collaborators compared hypothermia with hemicraniectomy in the 
treatment of more than 2/3 of the MCA infarction.[61] Seventeen patients underwent 
hemicraniectomy and 19 were treated with moderate hypothermia (33°C), which was 
induced with cooling blankets and endovascular devices. Hypothermia was induced for 71 ± 
21 hours (range, 24 - 116 hours), whereas duration of rewarming varied between 25 and 34 
hours. Prolongation of hypothermia >72 hours was always related to raised ICP during 
rewarming attempts. Mortality was 12% in the hemicraniectomy group and 47% in the 
hypothermia group; one patient treated with hypothermia died as a result of cooling 
complications (sepsis) and three patients died of ICP crises that occurred during rewarming. 

Another small prospective study with 25 patients compared hypothermia with 
hemicraniectomy and hemicraniectomy alone in the treatment of patients with large MCA 
strokes.[62] Hemicraniectomy was performed within 15 +/- 6 h after the ischemic event, 
followed by hypothermia. There were no severe side effects of hypothermia. Patients treated 
with hemicraniectomy plus moderate hypothermia had a tendency to better outcome after 6 
months when compared to patients treated with hemicraniectomy alone.  

9. Human studies of hypothermia in hemorrhagic stroke 

ICH accounts for approximately 10% of strokes and the 30-day mortality rate is 
approximately 52%.[63] After the acute phase of ICH, high morbidity and mortality are 
essentially caused by the evolution of a peri-hemorrhagic, space-occupying edema 
associated with gradually increasing ICP.[64] Although the natural course of edema 
formation is still not fully understood, edema mostly increases during the first week and 
reaches its maximum during the second week after bleeding onset.[65, 66] Animal studies 
have suggested that hypothermia may have a neuroprotective role after ICH in reducing 
edema formation by various mechanisms.[67, 68]  

One of the first experiences with hypothermia in the treatment of ICH was reported by 
Howell and collaborators in 1956.[69] Hypothermia between 30°C to 32°C was induced in 
eight patients with spontaneous ICH. Although signs of herniation improved in all patients, 
six patients died from systemic complications, most commonly aspiration. Anecdotally, 
hypothermia was induced with ice bags, alcohol, and even opening the windows in the 
middle of the Canadian winter.  

Kollmar and collaborators treated twelve patients with supratentorial large ICH (> 25 mL) 
with hypothermia (35°C) for 10 days.[5] In the hypothermia group, edema volume 
remained stable during 14 days, whereas edema significantly increased in the control 
group. However, pneumonia was more frequent in the hypothermia group. Based on 
these results, the same investigators planned the Cooling in Intracerebral Hemorrhage 
(CINCH) trial. [70] This is a prospective multicenter trial that WILL enroll 50 patients 
with large ICH and randomly assign them to mild hypothermia versus conventional 
medical management.  
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Table 1. Main studies of the use of hypothermia in the treatment of acute stroke.  
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Hypothermia has also been evaluated in the management of subarachnoid hemorrhage 
(SAH). Gasser and collaborators treated 21 patients with poor grade SAH and cerebral 
edema with long-term hypothermia (>72 hrs).[71] Nine patients were treated for <72 hrs and 
12 for >72 hrs. Functional independence at 3 months was achieved in 48% of patients, but 
the outcome did not differ with the group of patients treated without hypothermia. The 
most common form of complication was infection in both groups.  

10. Complications of hypothermia 

Induced therapeutic hypothermia is an intensive care procedure that has to be performed 
under continuous monitoring. Since most patients who are cooled are critically ill, they may 
be more prone to develop complications. These complications appear to be associated with 
de degree of hypothermia, with the risk of side effects being correlated with prolonged 
hypothermia and lower temperatures. In general, hypothermia is well tolerated, but 
complications may include: 1) cardiac: arrhythmias, bradycardia, reduced ventricular 
contractility, and hypotension; 2) immunologic: immunosuppression; 3) hematologic: 
thrombocytopenia and mild coagulopathy; and 4) metabolic: shivering, hyperglycemia, 
hypokalemia, ileus, and cold-induced diuresis. The most common complication in reported 
studies is pneumonia, followed by asymptomatic bradycardia, cardiac arrhythmias and 
thrombocytopenia (table).[14] 

Pneumonia appears to occur more frequently in intubated patients who undergo cooling. 
Endovascular cooling with use of warm blankets to reduce shivering and prevent intubation 
is an alternative to surface cooling and may reduce the rate of pneumonia.  

The most dangerous phase of induced hypothermia is the rewarming period. Particular care 
is required in stroke patients with intracranial mass effect and elevated ICP. Overly rapid 
rewarming can lead to a systemic inflammatory response syndrome; with systemic 
vasodilatation, hypotension, and reflex ICP elevation.[14] As a general rule, hypothermia 
patients with increased ICP should undergo active controlled rewarming (or “decooling”) at 
a rate of 0.1°C per hour. Faster rates of 0.25°C to 0.33°C per hour can be tolerated in patients 
without ICP issues.[72-74] This high ICP rebound has especially been observed in patients 
with malignant MCA infarctions.[75] 

One common complication of hypothermia that usually is overlooked is sedation. It has 
been demonstrated that patients who undergo hypothermia are more likely to receive 
sedation than those who are not treated with hypothermia.[76] Sedation in hypothermia 
patients may linger longer in the system, confounding neurological examination and 
prognostication.[77] This becomes a relevant issue in stroke patients who require daily 
neurological assessments.  

11. Conclusion and recommendations 

Despite the many potential neuroprotective effects of hypothermia seen in animal stroke 
models and the benefit of hypothermia observed in humans following cardiac arrest, there is 
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Table 1. Main studies of the use of hypothermia in the treatment of acute stroke.  
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Hypothermia has also been evaluated in the management of subarachnoid hemorrhage 
(SAH). Gasser and collaborators treated 21 patients with poor grade SAH and cerebral 
edema with long-term hypothermia (>72 hrs).[71] Nine patients were treated for <72 hrs and 
12 for >72 hrs. Functional independence at 3 months was achieved in 48% of patients, but 
the outcome did not differ with the group of patients treated without hypothermia. The 
most common form of complication was infection in both groups.  

10. Complications of hypothermia 

Induced therapeutic hypothermia is an intensive care procedure that has to be performed 
under continuous monitoring. Since most patients who are cooled are critically ill, they may 
be more prone to develop complications. These complications appear to be associated with 
de degree of hypothermia, with the risk of side effects being correlated with prolonged 
hypothermia and lower temperatures. In general, hypothermia is well tolerated, but 
complications may include: 1) cardiac: arrhythmias, bradycardia, reduced ventricular 
contractility, and hypotension; 2) immunologic: immunosuppression; 3) hematologic: 
thrombocytopenia and mild coagulopathy; and 4) metabolic: shivering, hyperglycemia, 
hypokalemia, ileus, and cold-induced diuresis. The most common complication in reported 
studies is pneumonia, followed by asymptomatic bradycardia, cardiac arrhythmias and 
thrombocytopenia (table).[14] 

Pneumonia appears to occur more frequently in intubated patients who undergo cooling. 
Endovascular cooling with use of warm blankets to reduce shivering and prevent intubation 
is an alternative to surface cooling and may reduce the rate of pneumonia.  

The most dangerous phase of induced hypothermia is the rewarming period. Particular care 
is required in stroke patients with intracranial mass effect and elevated ICP. Overly rapid 
rewarming can lead to a systemic inflammatory response syndrome; with systemic 
vasodilatation, hypotension, and reflex ICP elevation.[14] As a general rule, hypothermia 
patients with increased ICP should undergo active controlled rewarming (or “decooling”) at 
a rate of 0.1°C per hour. Faster rates of 0.25°C to 0.33°C per hour can be tolerated in patients 
without ICP issues.[72-74] This high ICP rebound has especially been observed in patients 
with malignant MCA infarctions.[75] 

One common complication of hypothermia that usually is overlooked is sedation. It has 
been demonstrated that patients who undergo hypothermia are more likely to receive 
sedation than those who are not treated with hypothermia.[76] Sedation in hypothermia 
patients may linger longer in the system, confounding neurological examination and 
prognostication.[77] This becomes a relevant issue in stroke patients who require daily 
neurological assessments.  

11. Conclusion and recommendations 

Despite the many potential neuroprotective effects of hypothermia seen in animal stroke 
models and the benefit of hypothermia observed in humans following cardiac arrest, there is 
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still no solid evidence demonstrating improved outcomes in stroke patients. In addition, a 
systematic review found no definitive evidence that either physical or chemical cooling 
interventions improve outcomes after acute ischemic stroke.[78] The total number of 
participants included in the studies reviewed in this chapter is far to small and the 
interventions too heterogeneous for definitive conclusions (table). Moreover, all studies 
were designed to test safety and feasibility, and allowed rather long time periods between 
stroke onset and start of cooling, which may lower the likelihood of observing a treatment 
effect.  

Stroke studies have used surface and endovascular cooling systems for induction and 
maintenance of hypothermia (table). Goal temperatures usually range from 33° to 35°C. IV 
infusion of ice-cold saline [25 mL/kg body weight) has been shown to induce hypothermia 
rapidly and may be used as an initial cooling method in stroke patients who are initially 
assessed in the field.[53]  

Pharmacologic agents like meperidine and buspirone, and concurrent skin warming inhibit 
shivering and allow patients to tolerate treatment with less sedation. Moreover, these anti-
shivering protocols have allowed the induction and maintenance of mild and moderate 
hypothermia in awake patients.[47] Recent studies have demonstrated that endovascular 
cooling is more accurate in keeping patients in the target temperature range than surface 
cooling with ice bags and cooling blankets.[79, 80] Endovascular cooling also allows for 
concurrent use of surface warming to reduce shivering. However, endovascular cooling 
implies accessing the femoral vein to place the cooling catheter, increasing the risk of 
procedural complications and infection. In general, each center should choose the cooling 
method that is more familiar to the personnel and easier to implement.  

Similar uncertainty exists on the optimal treatment duration. In animal models of focal 
cerebral ischemia, pathophysiological processes exert their deleterious effects over various 
time courses, extending from the rst hours to several days after vessel occlusion.[81] Such 
observations may imply that temperature lowering therapy should be more effective when 
used for prolonged time. On the other hand, longer treatment was not associated with 
improved outcomes in a meta-analysis of hypothermia in animal models of focal cerebral 
ischemia. Moreover, the risk of side effects such as infections may increase with longer 
cooling times.[39] In clinical trials of cardiac arrest, hypothermia was maintained for 12 or 24 
hours.[3] Most recent studies of hypothermia in acute ischemic stroke aim for 12 – 24 hours 
of cooling (table).  

For unknown reasons, patients with massive brain injuries may experience rebound 
intracranial hypertension when rapidly rewarmed after prolonged periods of mild to 
moderate hypothermia. Whether this occurs in experimental stroke models has not been 
widely studied. Previous stroke studies suggest that controlled rewarming seems to prevent 
rebound brain edema and is the standard protocol in most recent trials.[14] Trials using 
milder hypothermia [35°C) and slower rewarming periods have reported lower 
complication rates.[62] For practical purposes, a 24-hour cooling period followed by a >12-
hour slow rewarming, such as 0.1° C/h is advised.[82] 
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1. Introduction 

As described previously in this book, hypothermia likely has many positive effects on 
injured brain and spinal cord to limit the damage caused by secondary injury. This 
secondary injury has multiple mechanisms, including inflammation, excitotoxicity, calcium 
homeostasis, blood brain barrier damage, release of toxic intermediates including free 
radicals, as well as cell necrosis & apoptosis (1). Hypothermia has been shown to be an 
effective treatment for comatose survivors of out of hospital cardiac arrest to both improve 
mortality and neurologic outcomes (2, 3). Much less is known about the role of hypothermia 
for treating patients that have suffered an intracerebral or subarachnoid hemorrhage. 
Experience and literature on the subject is quite limited. The same is true for hypothermia in 
the treatment of acute spinal cord injury. In fact, data on this topic is even more limited. 

However, in the coming years it is likely that we will see more research on this important 
topic. The technology available to clinicians for achieving the treatment goals of this strategy 
has rapidly expanded in the past decade. Additionally, its ease of use and increasing 
familiarity amongst clinicians and intensive care unit staff will only help in growing the 
field. The basic science background, while not extensive, is at least encouraging and it is 
expanding. The clinical use, or at least consideration of this therapy is slowly beginning to 
expand as well. Options for medical therapy to improve outcomes in ICH, SAH & SCI are 
limited. Hopefully this continued work will improve upon that. This chapter will explore 
what has been published on these topics to this point. 

2. Therapeutic hypothermia for acute spinal cord injury 

In the 1960’s and 1970’s, multiple investigators published data examining the possibility of 
employing hypothermic therapy to improve outcomes in acute spinal cord injury. At that 
time, most of the studies focused on local cooling via the administration of cold saline to the 
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field. The basic science background, while not extensive, is at least encouraging and it is 
expanding. The clinical use, or at least consideration of this therapy is slowly beginning to 
expand as well. Options for medical therapy to improve outcomes in ICH, SAH & SCI are 
limited. Hopefully this continued work will improve upon that. This chapter will explore 
what has been published on these topics to this point. 
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In the 1960’s and 1970’s, multiple investigators published data examining the possibility of 
employing hypothermic therapy to improve outcomes in acute spinal cord injury. At that 
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spinal cord during decompressive laminectomy and durotomy (4-6). However, these studies 
were not rigorous randomized controlled trials and were fraught with multiple 
confounders, such as the concomitant administration of corticosteroids and the potential 
effects of surgery itself (7,8). This, combined with the technical difficulty and invasive nature 
of local cooling, lead to the general abandonment of the idea. 

As technology improved and our understanding of the possible beneficial effects of systemic 
hypothermia grew, so did interest in applying this strategy to the acute spinal cord injury 
patient (9,10). Multiple animal studies have suggested a positive effect of either locally or 
systemically applied therapeutic hypothermia (9). However, clinical experience in the 
modern era is minimal. In 2010, there was a high-profile case of an NFL football player 
suspected to have a spinal cord injury who was treated with systemic hypothermia (11). 
This case garnered the attention of the mass media in addition to the medical community. 
However, it is important to recognize that it is impossible to discern if this patient’s excellent 
outcome can be in any way attributed to therapeutic hypothermia. That case does add to the 
literature describing the safe use of targeted temperature therapy in acute spinal cord injury. 
The largest and most often quoted case series for therapeutic hypothermia in this patient 
population is a retrospective review described by Levi et al in 2009 (12). This group 
describes their institutional experience with therapeutic hypothermia in 14 adult patients 
with acute, complete cervical spinal cord injury who presented to their institution over a 
two year period. Only complete cervical spinal cord injury patients with a GCS 15 were 
considered for their hypothermia treatment protocol. An intravascular cooling device was 
used to achieve and maintain a core body temperature of 33C over a 48 hour period. 
Corticosteroids were not used. All patients underwent surgical intervention. Patients were 
then rewarmed over a 24-32hr period. This group of patients averaged 39.4 years old from a 
range of 16-62years. Induction of hypothermia began within 9.17+/-2.24hr and time to target 
temperature was 2.72+/-0.42hr. They documented a strong correlation between temperature 
and heart rate. Additionally, in one patient, CSF temperature was measured and found to 
closely approximate core temperature. Importantly, none of the 14 patients suffered a life-
threatening adverse event attributable to therapeutic hypothermia. The adverse events 
described were primarily respiratory and closely approximated the type and rate of adverse 
events experienced in an historical control cohort. In a follow-up manuscript, Levi et al 
describe the clinical outcomes of this patient cohort (13). All 14 patients were American 
Spinal Injury Association and International Medical Society of Paraplegia Impairment Scale 
(AIS) A on admission. 8/14 patients remained so, but 3 improved to B, 2 to C and one patient 
had dramatic improvement to AIS D. Importantly, none of the patients worsened. A control 
group of patients only had 3/14 patients improve AIS grade compared with the six in the 
hypothermia group, a non-statistically significant difference. While the low number of 
patients, strict inclusion criteria, observational nature of study and use of an historical 
control may temper enthusiasm for these results, they are nonetheless intriguing and 
provide an excellent basis for developing future studies. 

As mentioned previously, medical therapies for acute spinal cord injury are extremely limited. 
However, with future study, perhaps therapeutic hypothermia’s role in treating the 11,000-
12,000 spinal cord injury patients per year in the United States can further be defined (14). 
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3. Therapeutic hypothermia for intracerebral hemmorhage 

Intracerebral hemorrhage (ICH) accounts for approximately 10% of all cerebral vascular 
accidents in the United States and carries a mortality rate of up to 50% (15,16). Options for 
medical therapy are extremely limited and are primarily focused on supportive therapy (17). 
Mayer et al investigated the potential use of rFVIIa for improving outcome and established 
that this therapy may in fact improve hematoma volume, but its impact on outcomes was 
limited (18). Hematoma volume & growth does correlate with various outcome measures 
(19-21), but so does perihemorrhagic edema (22-25). ICH is associated with secondary injury 
characteristics that are similar to ischemia and ischemia-reperfusion, including blood-brain 
barrier disruption, inflammation and edema. The edema progresses through three phases 
related initially to hydrostatic forces & clot retraction, then activation of the coagulation 
cascade and thrombin formation and later, via RBC lysis and hemoglobin-induced neuronal 
toxicity (26). This edema – termed perihemorrhagic edema – has been associated with poor 
outcomes (22, 23, 25). Data from animal models of ICH suggest that hypothermia can 
improve these injurious processes, but not outcomes (27-33).  

There is a suggestion that the application of therapeutic hypothermia may be beneficial in 
preventing the progression of periphemorrhagic edema and improving outcomes in patients 
who suffer intracranial hemorrhage (34). In a pilot study by Kollmar et al, hypothermia was 
determined to be safe as well as potentially provide a positive effect on ICH 
perihemorrhagic edema (25). This was a comparison of 12 patients w/ supratentorial ICH 
>25mL in volume cooled with an intravascular cooling device to 33 degrees C with 12 
historical controls. Amongst the control cohort, there were more patients with uncontrolled 
intracranial hypertension, perihemorrhagic edema progression and death. In a followup 
study by the same group, Staykov et al described similar findings with 25 patients with 
large ICH as compared with an historical control group (35). Again, perihemorrhagic edema 
remained mostly unchanged in the hypothermia group, but steadily increased in the 
historical control group, with a statistically significant difference in perihemorrhagic edema 
volume. This difference was also associated with a suggestion of mortality difference, but 
with such a small sample size it was not statistically significant. The mortality rate was 8.3% 
in the hypothermia cohort, 16.7% in the control group at 3 months and 28% vs 44% at one 
year. There is a prospective, multicenter, randomized controlled phase II trial currently 
underway to more formally evaluate this question using a similar protocol (36). 

4. Therapeutic Hypothermia for Subarachnoid Hemorrhage 

As in all neurocritical care related illnesses, fever control may be important for minimizing 
secondary injury (37). In subarachnoid hemorrhage, this is particularly true. As many as 
72% of all SAH patients may experience fever (38). Infection should always be ruled out and 
treated aggressively (39); however, the fever needs to be controlled whether it is secondary 
to infection or not. Fever in SAH is strongly linked to poor outcome and increased length of 
stay (40), as well as vasospasm (41, 42), ischemic injury (43), cerebral edema and worsened 
intracranial hypertension (44). Even a single episode of fever has been associated with 
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spinal cord during decompressive laminectomy and durotomy (4-6). However, these studies 
were not rigorous randomized controlled trials and were fraught with multiple 
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literature describing the safe use of targeted temperature therapy in acute spinal cord injury. 
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range of 16-62years. Induction of hypothermia began within 9.17+/-2.24hr and time to target 
temperature was 2.72+/-0.42hr. They documented a strong correlation between temperature 
and heart rate. Additionally, in one patient, CSF temperature was measured and found to 
closely approximate core temperature. Importantly, none of the 14 patients suffered a life-
threatening adverse event attributable to therapeutic hypothermia. The adverse events 
described were primarily respiratory and closely approximated the type and rate of adverse 
events experienced in an historical control cohort. In a follow-up manuscript, Levi et al 
describe the clinical outcomes of this patient cohort (13). All 14 patients were American 
Spinal Injury Association and International Medical Society of Paraplegia Impairment Scale 
(AIS) A on admission. 8/14 patients remained so, but 3 improved to B, 2 to C and one patient 
had dramatic improvement to AIS D. Importantly, none of the patients worsened. A control 
group of patients only had 3/14 patients improve AIS grade compared with the six in the 
hypothermia group, a non-statistically significant difference. While the low number of 
patients, strict inclusion criteria, observational nature of study and use of an historical 
control may temper enthusiasm for these results, they are nonetheless intriguing and 
provide an excellent basis for developing future studies. 

As mentioned previously, medical therapies for acute spinal cord injury are extremely limited. 
However, with future study, perhaps therapeutic hypothermia’s role in treating the 11,000-
12,000 spinal cord injury patients per year in the United States can further be defined (14). 
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poorer outcomes. However, one can only definitively say that fever is associated with 
worsened outcomes, it may not be causative. In other words, it may simply be a marker of 
bad outcomes (45).  

Whether fever is simply a marker for bad outcomes or something more, there is a suggestion 
that controlling fever may actually be neuroprotective. Oddo et al demonstrated that 
induced normothermia in 18 SAH patients resulted in a lower lactate-pyruvate ratio, fewer 
metabolic crises and lower ICP (46). But what about therapeutic hypothermia as a primary 
treatment modality – not just for fever control? Mild hypothermia has been shown to 
decrease cytotoxic edema, lactate accumulation and improve the metabolic stress response 
to SAH in rats (47). It has also been shown to lower ICP and improve outcomes in rats, 
including decreased neurologic deficits (48). In a dog model of SAH, therapeutic 
hypothermia decreased cerebral vasospasm, possibly by decreasing the rise in endothelin-1 
and lessening the decrease of NO in CSF and the blood (49). In patients with SAH treated 
with therapeutic hypothermia, Kawamura used PET scans to demonstrate that hypothermia 
did decrease cerebral blood flow and oxygen metabolic rate (50). Seule et al. treated 100 
patients with SAH who developed intracranial hypertension, symptomatic cerebral 
vasospasm or both, with mild therapeutic hypothermia (51). The majority of these patients 
had poor-grade SAH. 90 patients were evaluated at follow-up, 32 (35.6%) had survived with 
good neurologic outcome (Glasgow Outcome Scale 4 or 5) and 43 (47.8%) died. Side effects 
were common, including electrolyte disorders, pneumonia, thrombocytopenia and septic 
shock. From this study, the authors conclude that therapeutic hypothermia is a viable “last-
resort option”, but side effects are common and potentially severe.  

One of those common side effects of this therapy, shivering, can be detrimental to patients. 
Similar to any condition for which therapeutic hypothermia is employed, shivering should 
be avoided if possible and treated aggressively if present. Shivering has been associated 
with higher oxygen consumption, reduced PbtO2, higher ICP and lower CPP and higher 
resting energy expenditure (52-54). A substudy of the Intraoperative Hypothermia 
Aneurysm Surgery Trial revealed that bradycardia, a common and expected side effect of 
hypothermia, was associated with a higher 3-month mortality rate after SAH. “Relative 
tachycardia” and nonspecific ST-T wave changes, also common with hypothermia therapy, 
were also associated with a mortality difference. The implications of these findings are not 
clear, but should be kept in mind when using this therapeutic approach (55). 

5. Conclusion 

Therapeutic hypothermia has already been shown to have a positive impact on survival and 
neurologic outcome for survivors of out-of-hospital cardiac arrest (2, 3). That benefit likely is 
related to hypothermia’s impact on the multiple mechanisms of secondary brain injury. 
There is certainly potential for therapeutic hypothermia to reduce the secondary injury that 
results from brain and spinal cord injury as well. Many animal studies, but to this point only 
limited clinical studies, have suggested such an effect in treating patients that have suffered 
spinal cord injury, intracerebral hemorrhage or subarachnoid hemorrhage. Fortunately, the 
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technology available to help us achieve and maintain the goals of targeted temperature 
management has made it easier to do so. The availability of that technology and increasing 
familiarity with its use will only serve to help investigators understand the potential impact 
of this therapy in brain and spinal cord injury. Medical therapy for these conditions is 
limited. Hopefully, future studies will clarify the potential role of therapeutic hypothermia 
in improving outcomes for these potentially devastating conditions. 
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poorer outcomes. However, one can only definitively say that fever is associated with 
worsened outcomes, it may not be causative. In other words, it may simply be a marker of 
bad outcomes (45).  

Whether fever is simply a marker for bad outcomes or something more, there is a suggestion 
that controlling fever may actually be neuroprotective. Oddo et al demonstrated that 
induced normothermia in 18 SAH patients resulted in a lower lactate-pyruvate ratio, fewer 
metabolic crises and lower ICP (46). But what about therapeutic hypothermia as a primary 
treatment modality – not just for fever control? Mild hypothermia has been shown to 
decrease cytotoxic edema, lactate accumulation and improve the metabolic stress response 
to SAH in rats (47). It has also been shown to lower ICP and improve outcomes in rats, 
including decreased neurologic deficits (48). In a dog model of SAH, therapeutic 
hypothermia decreased cerebral vasospasm, possibly by decreasing the rise in endothelin-1 
and lessening the decrease of NO in CSF and the blood (49). In patients with SAH treated 
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were also associated with a mortality difference. The implications of these findings are not 
clear, but should be kept in mind when using this therapeutic approach (55). 
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neurologic outcome for survivors of out-of-hospital cardiac arrest (2, 3). That benefit likely is 
related to hypothermia’s impact on the multiple mechanisms of secondary brain injury. 
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results from brain and spinal cord injury as well. Many animal studies, but to this point only 
limited clinical studies, have suggested such an effect in treating patients that have suffered 
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technology available to help us achieve and maintain the goals of targeted temperature 
management has made it easier to do so. The availability of that technology and increasing 
familiarity with its use will only serve to help investigators understand the potential impact 
of this therapy in brain and spinal cord injury. Medical therapy for these conditions is 
limited. Hopefully, future studies will clarify the potential role of therapeutic hypothermia 
in improving outcomes for these potentially devastating conditions. 
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1. Introduction 

Traumatic brain injury (TBI) is a major source of death and severe disability worldwide. In 
the USA alone, this type of injury causes 290,000 hospital admissions, 51,000 deaths, and 
80,000 permanently disabled survivors [1,2]. Intracranial hypertension develops commonly 
in acute brain injury related to trauma [3,4]. Raised Intracranial pressure (ICP) is an 
important predictor of mortality in patients with severe TBI, and aggressive treatment of 
elevated ICP has been shown to reduce mortality and improve outcome [4-11]. Guidelines 
for the Management of Severe TBI, published in the Journal of Neurotrauma in 2007 [12] 
make a Level II recommendation that ICP should be monitored in all salvageable patients 
with a severe TBI (Glasgow Coma Scale [GCS] score of 3–8 after resuscitation) and an 
abnormal computed tomography (CT) scan. ICP monitoring is also recommended in 
patients with severe TBI and a normal CT scan if two or more of the following features are 
noted at admission: age over 40 years, unilateral or bilateral motor posturing, or systolic 
blood pressure < 90 mm Hg (Level III recommendation). Furthermore, ICP should be 
maintained less than 20 mmHg and cerebral perfusion pressure (CPP) between 50 and 70 
mmHg (Level III). 

As in ischemia –reperfusion injuries, the acute post-injury period in TBI is characterized by 
several pathophysiologic processes that start in the minutes to hours following injury and 
may last for hours to days. These result in further neuronal injury and are termed the 
secondary injury. Cellular mechanisms of secondary injury include all of the following: 
apoptosis, mitochondrial dysfunction, excitotoxicity, disruption in ATP metabolism, 
disruption in calcium homeostasis, increase in inflammatory mediators and cells, free 
radical formation, DNA damage, blood-brain barrier disruption, brain glucose utilization 
disruption, microcirculatory dysfunction and microvascular thrombosis [13-50]. All of these 
processes are temperature dependent; they are all aggravated by fever and inhibited by 
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hypothermia [13-50]. In addition, several studies have shown that development of fever 
following TBI is closely linked to intracranial hypertension and worsened outcome [51-53].  

Clinical trials of hypothermia and temperature management for severe traumatic brain 
injury are divided into trials in which hypothermia is used to treat elevated intracranial 
pressure and those in which hypothermia is intended as a neuroprotectant, irrespective of 
intracranial pressure. In this article, we will review the current clinical evidence behind 
therapeutic hypothermia for the treatment of intracranial hypertension (ICH) in severe TBI 
patients, as well as therapeutic hypothermia as a neuroprotectant in severe TBI.  

2. Methods 

We queried the Medline database with the MeSH terms “Hypothermia, induced,” “Fever”, 
“Intracranial Hypertension”, and “Traumatic Brain Injury” from 1993 till 2011. We utilized 
both PubMed and OVID to maximize database penetration. We searched the Cochrane 
Database of Systematic Reviews. We also hand searched bibliographies of relevant citations 
and reviews. Inclusion criteria were double-blind, placebo-controlled, randomized 
controlled trials (RCTs), observational studies or meta-analysesof therapeutic 
hypothermia for TBI patients in which ICPs are monitored.We limited the search to human 
literature; We did not limit language, but we extracted studies that involved only adult 
subjects excluding studies on the pediatric population. Information extracted included 
number of patients, ICP, length of cooling, length of re-warming, outcome, complications, 
methods used to control ICP and the quality of each study. We reviewed the literature 
pertaining to pathophysiology of Traumatic Brain Injury. We also reviewed the literature 
pertaining to major published guidelines in this area.  

3. Intracranial hypertension in TBI 

In comatose TBI patients with an abnormal CT scan, the incidence of ICH was 53–63% [75]. 
Patients with a normal CT scan at admission, on the other hand, had a relatively low 
incidence of ICH (13%). However, within the normal CT group, if patients demonstrated at 
least two of three adverse features (age over 40 years, unilateral or bilateral motor posturing, 
or systolic BP < 90 mm Hg); their risk of ICH was similar to that of patients with abnormal 
CT scans [75]. ICP is a strong predictor of outcome from severe TBI [5,6, 9,76-78]. Because of 
this, ethically a randomized trial of ICP monitoring with and without treatment is unlikely 
to be carried out. Similarly, a trial for treating or not treating systemic hypotension is not 
likely. Both hypotension and raised ICP are the leading causes of death in severe TBI. 
Furthermore, several studies have shown that patients who do not have ICH or who 
respond to ICP-lowering therapies have a lower mortality than those whose ICH does not 
respond to therapy [4-11, 79-82]. As a result, Guidelines for the Management of Severe TBI 
recommend that treatment should be initiated with ICP thresholds above 20 mm Hg (level 
II) as well as target a cerebral perfusion pressure (CPP) within the range of 50-70 (level III) 
[12]. Prevention and/or treatment of ICH is commonly accomplished by employing a  
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progression of therapeutic approaches that are efficacious in controlling ICP and uniformly 
believed to be easily applied with minimal or rare negative side effects. These measures 
include elevation of the head of the bed , avoiding hypotension, hypoxia, and hypercapnea 
or prolonged hypocapnea, intravenous sedation and analgesia, episodic administration of 
hyperosmolar agents (mannitol, hypertonic saline), and CSF drainage [12]. Reviewing the 
evidence behind all these aforementioned therapies is beyond the scope of this review, but 
the evidence of efficacy for all of these treatments is variable at best. They are recommended 
not so much because there is clear-cut proof of morbidity or mortality benefit but because 
they are deemed treatments without significant downside. 

4. Therapeutic hypothermia for ICP control 
We identified a total of 18 studies involving hypothermia for control of ICP; 13 were 
randomized clinical trials and 5 were observational studies as shown in tables 1 and 2 
respectively [54, 58-74]. In all studies, the patient populations were comprised of TBI patients 
with GCS < 9 and an abnormal CT scan. ICP monitors were inserted in all patients to measure 
ICP. Individual study sizes ranged from 9 to 396 patients; a total of 1,773 patients were 
included in this review. Only three studies were multicenter [54,72,74]. The goals of therapy 
were stabilization or improvement of the patient’s neurological condition, and maintenance of 
an ICP of 20 mmHg or less (normal value in healthy subjects: ≤15 mmHg) and a cerebral 
perfusion pressure (CPP = MAP– ICP) of 60 mmHg or more or 70 mmHg or more. In patients 
with ICP higher than 20 mmHg, initial (standard) treatment included appropriate sedatives, 
narcotics, treatment with neuromuscular blockers (for ICP control and/or shivering) and 
administration of hyperosmolar therapy. Neurosurgical interventions were undertaken when 
necessary to evacuate subdural lesions or large intracerebral lesions [58, 61, 63, 64, 66-74]. In 
nine studies, there was no mention of the use barbiturates for ICP control [60, 62, 64, 68, 69, 71-
74]. In five of the studies, therapeutic hypothermia was applied after elevated ICP failed to 
respond to adequate sedation, hyperosmolar therapy and barbiturates [58, 63, 65-67]. In the 
other four studies [54,59, 61,70], patients were randomized to hypothermia or normothermia 
irrespective of ICP, with the goal of studying hypothermia’s role as a neuroprotectant 
(discussed below). ICP control was looked at as a secondary outcome in these four studies.  

Target temperature (320C – 34 0C) was achieved very quickly in most studies. Therapeutic 
hypothermia was maintained from 24 hrs up to 14 days depending on the study protocols. 
Some studies achieved re-warming passively over 10- 24 hrs [67,70, 71,73], but most studies 
achieved slow active rewarming over 12- 24 hrs as shown in tables 1 and 2. In one study, 
hypothermia maintenance for five days was associated with less rebound ICH than 
hypothermia for two days [72]. Therapeutic hypothermia was effective in controlling ICH in 
all studies as shown in tables 1 and 2 and figure 1. In the 13 RCT, ICP in the therapeutic 
hypothermia group was always lower than ICP in the normothermia group, and this 
difference always reached statistical significance as evidenced in table 1 and figure 1. In the 
5 observational studies, ICP during hypothermia was always lower then prior to inducing 
hypothermia; this difference also always reached statistical significance as shown in table 2. 
Therapeutic hypothermia also improved neurologic outcome and survival in eleven of the 
studies as can be seen in table 1.  
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GOS = Glascow Outcome Score 

Table 2. Effects of Hypothermia on intracranial pressure and outcome in patients with severe 
Traumatic Brain Injury: Nonrandomized Observational Trials 



 
Therapeutic Hypothermia in Brain Injury 84 

 
 
 

 
 
 
 
Reference: In Jiang 06, the comparison is between 2 days of hypothermia (red) and 5 days of hypothermia (blue) 

Figure 1. Effect of Hypothermia on Intracranial Pressure (ICP).  

5.Therapeutic hypothermia as a neuroprotectant 

The premise of the use of TH as a neuroprotectant in TBI is based on the fact that early 
administration of TH could halt the secondary injury processes discussed above, and thus 
possibly improve outcome. We identified a total of 9 studies where TH is used as a 
neuroprotectant in TBI, 5 of the studies designed to deliver TH as a neuroprotectant [54-
56,61,70], and 4 of the studies designed to deliver TH for neuroprotection and ICP control 
[48,64,72,73] (Table 3). In all studies, the patient populations were comprised of TBI patients 
with GCS < 9 and an abnormal CT scan. ICP monitors were inserted in all patients to 
measure ICP. Individual study sizes ranged from 26 to 392 patients. In the 4 studies 
designed to deliver hypothermia for ICP control and as a neuroprotectant, ICP in the TH 
group was always lower than ICP in the normothermia group, and this difference always 
reached statistical significance. Outcome was better in the hypothermia group in all of these 
4 studies.  

The 5 Trials designed with early administration of hypothermia for neuroprotection are 
described as such: 
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Marion et al in 1997 enrolled 82 patients of ages 16–75 years where patients assigned to 
hypothermia were cooled to 330C a mean of 10 hours after injury, kept cool for 24 hours, and 
rewarmed over 24 hours [61]. At 1 year followup, 38 % of the patients in the hypothermia 
group and 62% of those in the normothermia group had poor outcomes (p = 0.05). The 
reported effect was exclusively in patients with admission GCS 5–7 [61]. Clifton in 2001 
enrolled 392 patients ages 16–65 years with target temperature of 330C reached by a little 
more than 8 hours after injury and maintained for 48 hours [54]. Rewarming was started at 
48 hours irrespective of ICP, at a rate of 0.50C every 2 hours. Outcome at 6 months was poor 
in 57% of patients in both groups. In subgroup analyses, adverse outcome was associated 
with hypothermia induction in patients older than 45 years of age, and better outcome was 
associated with maintenance of hypothermia in patients who were already hypothermic 
(<350C) on admission [54]. In this study, TH was started fairly late and cooling was slow 
(average time to target temperature >8 h), and there were problems with hypotension, 
hypovolemia, electrolytes, and hyperglycaemia. Hypotensive episodes lasting for more than 
2 h occurred three times more frequently in the hypothermia group than in the control 
group. Since even very brief episodes of hypotension or hypovolemia can adversely affect 
outcome in TBI, these problems might have greatly affected the results of this trial. In 2001, 
Shiozaki et al enrolled 91 patients who did not have elevated ICP in a study comparing the 
effect of 48 hours of hypothermia with normothermia [55]. There was no difference in 
outcome, with 53% of patients in the hypothermia group and 51% of patients in the 
normothermia group having poor outcomes. The incidences of pneumonia, meningitis, 
thrombocytopenia, leukocytopenia, hypernatremia, hypokalemia, and hyperamylasemia 
were higher in the hypothermia than in the normothermia group [55]. In 2005, Smrcka et al. 
reported a study of 72 patients in whom hypothermia maintained for 72 hours was 
compared to normothermia [70]. There was no difference in outcome between the two 
groups. However, patients treated with hypothermia with extracerebral hematomas but not 
diffuse brain injury had a significantly better Glasgow Outcome Score at 6 months than 
patients treated at normothermia [70]. In 2011, Clifton et al. started hypothermia in transit to 
or in the emergency department in a study enrolling 97 patients with TBI [56]. Hypothermia 
was maintained for 48 hours and patients rewarmed at 0.50C every 2 hours. A protocol of 
aggressive fluid expansion during rewarming and low dose morphine was used to prevent 
the hypotension that had complicated use of hypothermia in the group’s first study (above). 
Overall, there was no improvement in outcome at 6 months, but there was a difference in 
outcomes of patients with diffuse brain injury and those with evacuated hematomas ( p = 
0.001). Fewer patients with evacuated hematomas treated with hypothermia had poor 
outcomes (hypothermia - 33%, normothermia - 69%, p = 0.02), whereas more patients with 
diffuse brain injury treated with hypothermia had poor outcomes (hypothermia - 70%, 
normothermia - 50%, p = 0.09). Patients treated with hypothermia had a higher number of 
total episodes of elevated ICP, especially during rewarming [56]. Again, in this study, 
hypothermia was maintained for a fixed duration of only 48 hrs, and ICP elevations mainly 
occurred during and after rewarming. In addition, there were deviations from the protocol 
in this study, for example the decision to advance the interim analysis, and thus the 
enrollment of a smaller number of patients than planned. 
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Reference 
No. of 
patients

ICP 
control 

Neuro-
protection 

Length of 
cooling 

Outcome 

      

Abiki  
et al,2000 

26 yes yes 3 – 5 days positive 

Jiang  
et al,2000 

87 yes yes 3-14 days positive 

Jiang  
et al,2006 

215 yes yes 2 or 5 days positive 

Qui  
et al, 2007 

80 Yes Yes 4 days positive 

Marion  
et al,1997 

82  Yes 24 hours positive 

Clifton  
et al,2001 

392  Yes 48 hours No improvement 

Shiazaki  
et al,2001 

91  Yes 48 hours No improvement 

Smrcka  
et al,2005 

72  Yes 72 hours No improvement 

Clifton  
et al,2011 

97  Yes 48 hours No improvement 

Table 3. Studies where Therapeutic Hypothermia is used as a neuroprotectant. 

6. Side effects of therapeutic hypothermia in TBI 

Complications from hypothermia included electrolyte imbalances, increase in incidence of 
infections, thrombocytopenia, coagulopathy, arrhythmias (especially bradycardia), 
pancreatitis, and rebound ICH (during re-warming) as presented in tables 1 & 2. Particular 
consideration should be given to the rate of rewarming. In one extensive review [84], 
Povlishock et al showed that posttraumatic hypothermia followed by slow rewarming 
appeared to provide maximal protection in terms of traumatically induced axonal damage, 
microvascular damage and dysfunction, contusional expansion, intracranial hypertension, 
and neurocognitive recovery. In contrast, hypothermia followed by rapid rewarming not 
only reversed the protective effects associated with hypothermic intervention, but 
exacerbated the traumatically induced pathology and its neurologic consequences. 
Povlishock’s review concluded that the rate of posthypothermic rewarming is an important 
variable in assuring maximal efficacy following the use of hypothermic intervention. Two 
meta-analyses [12, 85] as well showed that duration >48 h and slow rewarming were 
associated with improved outcome. 
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7. Discussion 

Multiple trials, albeit observational or small single center randomized controlled studies, 
show that mild to moderate hypothermia consistently lowers high ICP in severe TBI 
patients as shown in figure 1. It is an accepted premise in the care of severe TBI patients that 
control of ICP improves survival and possibly neurologic outcome. It follows therefore that 
induced hypothermia in patients with poorly controlled ICP may be a reasonable 
therapeutic strategy when routine sedation, analgesia and neuromuscular paralysis fail. This 
benefit would be relevant regardless of any cellular or metabolic neuroprotective effect. 
Indeed, the additional potential neuroprotective benefits suggest that therapeutic 
hypothermia if without negative side effects should be implemented as a part of routine ICP 
control rather than as rescue therapy. It is puzzling why barbiturates with the well-known 
negative side effects are recommended while hypothermia with its known efficacy in 
controlling ICH is not. The reasons for this may be the relative inexperience with TH, 
complexity of TH implementation, concerns for adverse reactions, and the need for 
sophisticated technology [86,87]. In 2002, studies have indicated that TH with a reduction of 
body core temperature (T) to 33 °C over 12 to 24 hours has improved survival and 
neurologic outcome in cardiac arrest patients [88, 89]. A meta-analysis showed that 
therapeutic hypothermia for cardiac arrest patients was associated with a risk ratio of 1.68 
(95% CI, 1.29-2.07) favoring a good neurologic outcome when compared with normothermia 
[90]. The number needed to treat (NNT) to generate one favorable neurological recovery 
was 6. Subsequently, the International Liaison Committee on Resuscitation [91] and the 
American Heart Association [92] recommended the use of TH after sudden cardiac arrest. 
As a result, intensivists and neurointensivists have become much more familiar with the 
methodology (following cardiac arrest) so that the process is now familiar. And with 
appropriate hypothermia protocols, order sets, and education programs, mild hypothermia 
can be accomplished with very few side effects. It is important to note, however, that there 
are important differences between short duration hypothermia following cardiac arrest and 
long term hypothermia in TBI patients with ICH who frequently also have extracranial 
injuries and extra attention to the above mentioned side effects should be applied. 
Hypothermia should no longer be viewed as avant guard or dangerous, and we believe that 
it should take the place of barbiturates as the best modality for refractory ICH. Indeed, there 
is an argument, pending large scale studies, to consider it an extension of standard 
treatment. Pending large multicenter, randomized, controlled trials evaluating the effect of 
hypothermia on ICP control and outcome, the available data suggests that therapeutic 
hypothermia deserves at least a level II evidence recommendation for the treatment of 
refractory ICH.  

As for trials classified as designed for neuroprotection, although single-center studies 
were encouraging, multicenter trials with early administration of hypothermia for a 
defined period of time irrespective of ICP have almost uniformly been negative except 
maybe for patients undergoing craniotomy for hematoma evacuations. However, 
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hypothermia was maintained for a fixed duration of only 48 hrs, and ICP elevations 
mainly occurred during and after rewarming. These results suggest that a period of 48 
hours of hypothermia may be too short to have a beneficial effect on outcome. A 
standardized one size fit all may be inappropriate. The rate of rewarming plays an 
important role as well as pointed above. The rebound increase in ICP during and after 
rewarming in these studies and the encouraging outcomes from the randomized studies 
that induced hypothermia early and continued it throughout the period of ICP point to 
the realization that individualizing the duration of hypothermia to fit a patient’s ICP in 
future trials may be a better strategy than a predetermined period of hypothermia 
regardless of ICP. Another important finding is the differential effect of hypothermia in 
patients with surgical lesions versus those with diffuse injuries. This could be explained 
by the ability for volume expansion after surgery and thus less rebound ICP during and 
after rewarming. However, no final answer on this differential effect can be given at this 
stage, especially with the low number of patients studied so far. As a result, there is no 
reason to exclude patients with diffuse injury from future trials. 

8. Conclusion 

Preliminary evidence points to the effectiveness of mild to moderate therapeutic 
hypothermia in controlling ICH in severe TBI patients. The experience with induced 
hypothermia in the treatment of post cardiac arrest patients has demonstrated an acceptable 
safety profile when the modality is applied in specialized units by experienced personell 
according to a defined protocol. In addition, the above mentioned studies of therapeutic 
hypothermia in TBI patients show that the adverse effects of hypothermia are reasonable 
and managable when hypothermia is done in specialized and experienced ICUs. Pending 
results from large multicenter studies evaluating the effect of therapeutic hypothermia on 
ICH and outcome, therapeutic hypothermia should be included as a therapeutic option to 
control ICP in severe TBI patients. The most challenging issue appears to be rebound ICP 
during re-warming. We suggest that re-warming only be considered if the patient’s ICP is 
stable and <20mmHg for at least 48 hours, and, thereafter implemented at a rate not faster 
than 0.25°C per hour. As for future of hypothermia as a neuroprotectant in TBI patients 
irrespective of ICP, Individualizing the duration of hypothermia to fit a patient’s ICP in 
future trials is a better strategy than a predetermined period of hypothermia regardless of 
ICP. Design of these trials should also consider both the mechanism being tested and the 
differential effect between patients with evacuated hematomas and those with diffuse brain 
injury. 
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1. Introduction 

Acute liver failure (ALF), the manifestation of severe hepatocellular injury in the absence of 
pre-existing liver disease is a catastrophic and frequently fatal disorder. Though the injury is 
potentially reversible, the clinical course often culminates in multiple organ failure which is 
associated with a poor prognosis. The incidence is between 1 and 6 per million population 
per year [1]. However this data is predominantly from developed countries, data from 
developing countries where the etiology of ALF is very different is virtually absent. The 
most common etiologies in the developing world are hepatotrophic viruses (Hepatitis A, B 
and E) in comparison to drug induced liver failure which predominates in developed 
countries [2]. Amongst drugs, acetaminophen is the leading cause of acute liver failure and 
accounts for approximately 50% of the cases in the US [3]. Other etiologies include other 
viral infections and drugs, ischemic hepatitis, Wilson’s disease, autoimmune hepatitis, 
pregnancy related liver disorders and a large sero-negative cohort where no inciting cause 
can be identified.   

 Originally the definition of acute liver failure encompassed the development of 
coagulopathy and encephalopathy within 8 weeks of the original hepatic insult [4]. Newer 
definitions differentiate between, hyper-acute, acute and sub-acute liver failure contingent 
on the time period between the onset of jaundice and the onset of encephalopathy [5]. 
Regardless of definition used, the onset of hepatic encephalopathy especially Grade III/IV 
encephalopathy defines a turning point in the clinical course of this disease [6]. Occurrence 
of hepatic encephalopathy or coma in ALF is a poor prognostic sign and is associated with 
the development of cerebral edema, intracranial hypertension and subsequent mortality 
from brain herniation [7]. Though advances in the care of the patient with ALF have led to 
both a decrease in the incidence and associated mortality of persons developing cerebral 
edema and intracranial hypertension [7], careful vigilance should be exercised because 
development and progression of encephalopathy can be rapid and fatal. Further data on the 
declining incidence and mortality are from a single tertiary care academic center with 
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immediate access to transplantation services. Such expertise may not be readily available at 
other facilities and therefore the outcomes at such centers could be considerably different. 
Moreover, cerebral edema and raised intracranial pressure in persons with ALF accounts for 
substantial mortality (between 25 and 50%) as well as neurocognitive sequalae in survivors. 

Given the devastating consequences of development of raised ICP in patients with ALF, it is 
imperative that early recognition and effective therapies be promptly instituted. 
Unfortunately prognosis in the absence of liver transplantation is dismal. Medical therapies 
are frequently utilized to control ICP as bridge to transplant. Often however medical 
therapies fail to adequately control ICP. Application of induced therapeutic hypothermia 
has shown promise in controlling ICP when medical therapies have failed. An increasing 
number of centers have incorporated hypothermia into their armamentarium of therapies to 
treat raised ICP associated with ALF as a bridge to liver transplant [8]. Emerging data also 
suggests that this modality of treatment can successfully be used as a strategy to allow for 
hepatocellular regeneration and bridge patients with ALF and cerebral edema to recovery 
[9, 10]. Timing of institution, identification of sub groups that benefit and guidelines for use 
in this condition remain unclear. This aim of this review is to highlight the pathogenesis of 
cerebral edema and attempt to elucidate the role of hypothermia is patients with ALF. 

2. Pathophysiology of cerebral edema and intracranial hypertension in 
acute liver failure 

2.1. Development of cerebral edema 

The exact pathophysiological mechanisms responsible for the occurrence of cerebral edema 
as a devastating complication of ALF are not completely elucidated. Cytotoxic edema 
appears to be the major mechanism involved in the development of cerebral edema [11, 12], 
though newer data suggest a role for vasogenic edema as well [13, 14]. Cytotoxic injury 
secondary to cellular energy failure, impaired cellular metabolism and osmoregulation 
culminates in swelling of cellular elements and accumulation of water mainly in grey 
matter. These changes involve astrocytes, microglia and neurons; however astrocyte 
swelling is a common neuropathological feature of cerebral edema in ALF. Vasogenic 
edema results as a consequence disruption of the blood brain barrier leading to leakage of 
plasma into the interstitial space and water accumulation in white matter.  

Ammonia is thought to play a central role for cytotoxic injury in this regard and is thought to 
be the most important factor leading to the formation of brain edema [15]. In animal models, 
the inhibition of glutamine synthetase, the primary brain enzyme capable of metabolizing free 
ammonia prevents formation of cerebral edema, despite further increases in brain and plasma 
ammonia levels [16]. In conditions of acute liver failure, ammonia levels rise in the plasma and 
astrocytes. In the astrocytes by the process of amidation, ammonia combines with glutamate to 
produce glutamine, a reaction catalyzed by glutamine synthetase [17]. Accumulation of 
glutamine along with hyperammonemia in astrocytes leads to osmotic alterations, oxidative 
stress, changes in the mitochondrial permeability transition, free radical production and 
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alterations in brain glucose metabolism. Together these mechanisms lead to accumulation of 
brain water and astrocyte swelling [18]. Though the aforementioned cytotoxic mechanisms 
predominate, an increasing role of vasogenic edema contributing to increased brain water and 
consequent raised intracranial pressure has been recently recognized. Although structurally 
normal the blood brain barrier becomes selectively leaky to certain polar molecules through 
subtle perturbations of the tight junctions [19]. 

2.2. Cerebral blood flow 

Cerebral blood flow is often dysregulated in ALF. Loss of auto-regulation [20] and cerebral 
hyperemia [21] are two common manifestations of ALF and encephalopathy. Systemic 
inflammatory response syndrome, particularly tumor necrosis factor has been shown to 
correlate with development of encephalopathy and raised intracranial pressure [22]. 
Cerebral hyperemia may also contribute to the development of cerebral edema. 

2.3. Raised intracranial pressure 

The combination of cerebral edema and increased cerebral blood volume from dysregulated 
cerebral blood flow lead to increased intracranial pressure in ALF.  

2.4. Clinical correlates 

Arterial ammonia concentrations greater than 100 umol/L predict the onset of hepatic 
encephalopathy [23] and concentrations greater than 200 umol/L are associated with the 
development of intracranial hypertension and subsequent brain herniation [24]. Younger 
age, development of renal failure, hyponatremia, inflammatory response and the need for 
hemodynamic support for cardiovascular collapse are additional risk factors associated with 
the development of intracranial hypertension [24]. Similarly higher cerebral blood flow rates 
are seen in patients with cerebral edema and intracranial hypertension and are associated 
with higher mortality [21].  

3. The role of hypothermia 

A growing body of experimental data and clinical data promotes the concept that induction 
of mild hypothermia (between 32 and 35 degrees centigrade) is an important therapy in the 
armamentarium against the development of cerebral edema and intracranial hypertension 
in fulminant hepatic failure. Hypothermia has been shown to either attenuate or reverse 
most pathophysiological pathways involved in the development of cerebral edema in ALF.  

3.1. Mechanism of hypothermia 

In the context of liver injury, hypothermia was first shown to be efficacious in 1962 against 
the toxicity of acute ammonia loading in mice [25]. Thereafter, Traber et al demonstrated 
that spontaneous development of hypothermia in a rat model of ALF was associated with 
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significant reductions in both cerebral edema and the time to develop encephalopathy in 
comparison to rats maintained at normal temperature [26]. This phenomenon has now been 
demonstrated in a variety of other animal models of ALF [27]. The ability of hypothermia to 
favorably affect multiple pathways of injury is probably responsible for its remarkable and 
reproducible effects on reductions of cerebrovascular complications of experimental ALF.  

The major explanatory mechanisms for the efficacy of hypothermia probably involve 
reductions in systemic and brain ammonia concentrations as well as reductions in cerebral 
blood flow. Nevertheless a variety of systemic and cerebrovascular beneficial effects have 
been proposed. 

3.2. Cerebrovascular effects 

Hypothermia, in the absence of changes in circulating concentrations of ammonia, 
independently causes lowering of brain and cerebrospinal fluid ammonia levels in mice [28]. 
Hyperammonemia in the brain causes abnormal brain metabolism of glucose, increased 
glutamine synthesis and increased oxidative stress. Abnormalities in glucose metabolism 
lead to flux down the glycolytic pathway and increased synthesis of lactate. In an animal 
model of ALF, inducing hypothermia eliminated the increased lactate and alanine 
production before decreasing cerebral edema [29]. These observations suggest that 
hypothermia mitigates abnormalities of glucose metabolism in the brain [30]. Although 
glutamine has been proposed to be the key metabolite of ammonia metabolism responsible 
for osmotic disturbances and water accumulation in the brain, prevention of brain edema by 
hypothermia was not accompanied by reductions in brain glutamine in experimental 
models of ALF. However other disturbances in other osmolytes such as myo-inositol, 
taurine, glutamate, lactate and alanine were significantly improved, leading to a better 
osmotic environment in the brain [28, 29]. Hypothermia in animal models has also lead to 
the decrement of glutamate and other amino acids in the extracellular compartment of the 
brain. Brain glutamate is known to increase in both patients [31] and in experimental ALF 
[32]. Additionally hypothermia has important anti-inflammatory properties. Inflammatory 
mediators may incrementally enhance the toxicity of ammonia resulting in worsening 
cerebral edema. Protein and m-RNA markers of a variety of pro-inflammatory cytokines 
such as IL-1 beta, TNF alpha and IL-6 have been reported to be increased in the brain of rats 
with hepatic devascularization at the time of cerebral edema [33]. Hypothermia has been 
associated with the diminution of brain efflux of such cytokines in patients and attenuation 
of cytokine production and brain edema in animals [34]. Finally reductions in body 
temperature have led to reduced markers of brain oxidative and nitrosative stress in animal 
models of ALF [35]. 

Adverse consequences of ALF on cerebrovascular hemodynamics include increased cerebral 
blood flow and loss of cerebrovascular auto-regulation. Increases in cerebral blood flow are 
both absolute as well as relative to cerebral metabolic demand. These alterations play a role 
in the development of cerebral edema and increased ICP in ALF. Therapeutic hypothermia 
reverses the increments in cerebral blood flow and restores auto-regulation in patients with 
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ALF. Hypothermia in patients with cerebral edema and raised ICP refractory to 
conventional medical therapy not only lowered ICP but also restored cerebrovascular auto-
regulation to changes in mean arterial pressure and reestablished the vasodilatory response 
to changes in partial pressure of carbon dioxide [36].  

3.3. Systemic effects 

Hypothermia consistently lowers circulating ammonia concentrations in humans and in 
animal models of ALF. In one experimental model, systemic ammonia concentrations were 
lowered by hypothermia even when hepatic detoxification was bypassed. These observation 
suggest that production of ammonia is reliant on temperature and that mechanisms of 
production are perhaps more sensitive to hypothermia than are those involved in 
detoxification.  

ALF is characterized by distributive physiology leading to elevated cardiac output and low 
systemic vascular resistance [37]. Activation of the systemic inflammatory response syndrome 
plays a pivotal role in the hemodynamic derangements of ALF [38]. Inflammation acts 
synergistically with ammonia in the development of high ICP in persons with ALF possibly 
through modulation of cerebral blood flow [39]. Hypothermia decreases systemic pro-
inflammatory cytokines in animal models as well as patients with ALF.  Hypothermia also has 
beneficial effects on systemic hemodynamics; a clinical investigation in persons with ALF and 
high ICP revealed that induction of hypothermia reduced cardiac output and raised systemic 
vascular resistance leading to diminished vasopressor requirements [40]. Thus by its potential 
of affecting both systemic hemodynamics and inflammation, hypothermia attenuates adverse 
consequences of these derangements on cerebrovascular hemodynamics. 
 

Beneficial Effects Potential Deleterious Effects 
 Improvement in cerebral edema and 

decreases in intracranial pressure 
 Decreases in brain ammonia concentration 

and uptake 
 Attenuation of brain osmolyte imbalances, 

oxidative stress and inflammatory markers 
 Decreases in cerebral blood flow and 

prevention of cerebral hyperemia 
 Restoration of cerebral blood flow auto-

regulation 
 Decreases in systemic circulating ammonia 

concentration and inflammatory markers 
 Improvements in systemic hemodynamic 

alterations 
 Attenuation of deleterious effects of 

ischemia reperfusion injury to liver 
 Decreased inter-organ ammonia production 

and trafficking  

 Increases in cerebral blood flow and 
rebound increases in ICP especially during 
rewarming phases 

 Increased risk of infections 
 Increased risk of bleeding complications 
 Cardiac arrhythmias 
 Fluid and electrolyte shifts 
 

Table 1. Brief Summary of the Effects of Hypothermia 
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significant reductions in both cerebral edema and the time to develop encephalopathy in 
comparison to rats maintained at normal temperature [26]. This phenomenon has now been 
demonstrated in a variety of other animal models of ALF [27]. The ability of hypothermia to 
favorably affect multiple pathways of injury is probably responsible for its remarkable and 
reproducible effects on reductions of cerebrovascular complications of experimental ALF.  

The major explanatory mechanisms for the efficacy of hypothermia probably involve 
reductions in systemic and brain ammonia concentrations as well as reductions in cerebral 
blood flow. Nevertheless a variety of systemic and cerebrovascular beneficial effects have 
been proposed. 

3.2. Cerebrovascular effects 

Hypothermia, in the absence of changes in circulating concentrations of ammonia, 
independently causes lowering of brain and cerebrospinal fluid ammonia levels in mice [28]. 
Hyperammonemia in the brain causes abnormal brain metabolism of glucose, increased 
glutamine synthesis and increased oxidative stress. Abnormalities in glucose metabolism 
lead to flux down the glycolytic pathway and increased synthesis of lactate. In an animal 
model of ALF, inducing hypothermia eliminated the increased lactate and alanine 
production before decreasing cerebral edema [29]. These observations suggest that 
hypothermia mitigates abnormalities of glucose metabolism in the brain [30]. Although 
glutamine has been proposed to be the key metabolite of ammonia metabolism responsible 
for osmotic disturbances and water accumulation in the brain, prevention of brain edema by 
hypothermia was not accompanied by reductions in brain glutamine in experimental 
models of ALF. However other disturbances in other osmolytes such as myo-inositol, 
taurine, glutamate, lactate and alanine were significantly improved, leading to a better 
osmotic environment in the brain [28, 29]. Hypothermia in animal models has also lead to 
the decrement of glutamate and other amino acids in the extracellular compartment of the 
brain. Brain glutamate is known to increase in both patients [31] and in experimental ALF 
[32]. Additionally hypothermia has important anti-inflammatory properties. Inflammatory 
mediators may incrementally enhance the toxicity of ammonia resulting in worsening 
cerebral edema. Protein and m-RNA markers of a variety of pro-inflammatory cytokines 
such as IL-1 beta, TNF alpha and IL-6 have been reported to be increased in the brain of rats 
with hepatic devascularization at the time of cerebral edema [33]. Hypothermia has been 
associated with the diminution of brain efflux of such cytokines in patients and attenuation 
of cytokine production and brain edema in animals [34]. Finally reductions in body 
temperature have led to reduced markers of brain oxidative and nitrosative stress in animal 
models of ALF [35]. 

Adverse consequences of ALF on cerebrovascular hemodynamics include increased cerebral 
blood flow and loss of cerebrovascular auto-regulation. Increases in cerebral blood flow are 
both absolute as well as relative to cerebral metabolic demand. These alterations play a role 
in the development of cerebral edema and increased ICP in ALF. Therapeutic hypothermia 
reverses the increments in cerebral blood flow and restores auto-regulation in patients with 
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ALF. Hypothermia in patients with cerebral edema and raised ICP refractory to 
conventional medical therapy not only lowered ICP but also restored cerebrovascular auto-
regulation to changes in mean arterial pressure and reestablished the vasodilatory response 
to changes in partial pressure of carbon dioxide [36].  

3.3. Systemic effects 

Hypothermia consistently lowers circulating ammonia concentrations in humans and in 
animal models of ALF. In one experimental model, systemic ammonia concentrations were 
lowered by hypothermia even when hepatic detoxification was bypassed. These observation 
suggest that production of ammonia is reliant on temperature and that mechanisms of 
production are perhaps more sensitive to hypothermia than are those involved in 
detoxification.  

ALF is characterized by distributive physiology leading to elevated cardiac output and low 
systemic vascular resistance [37]. Activation of the systemic inflammatory response syndrome 
plays a pivotal role in the hemodynamic derangements of ALF [38]. Inflammation acts 
synergistically with ammonia in the development of high ICP in persons with ALF possibly 
through modulation of cerebral blood flow [39]. Hypothermia decreases systemic pro-
inflammatory cytokines in animal models as well as patients with ALF.  Hypothermia also has 
beneficial effects on systemic hemodynamics; a clinical investigation in persons with ALF and 
high ICP revealed that induction of hypothermia reduced cardiac output and raised systemic 
vascular resistance leading to diminished vasopressor requirements [40]. Thus by its potential 
of affecting both systemic hemodynamics and inflammation, hypothermia attenuates adverse 
consequences of these derangements on cerebrovascular hemodynamics. 
 

Beneficial Effects Potential Deleterious Effects 
 Improvement in cerebral edema and 

decreases in intracranial pressure 
 Decreases in brain ammonia concentration 

and uptake 
 Attenuation of brain osmolyte imbalances, 

oxidative stress and inflammatory markers 
 Decreases in cerebral blood flow and 

prevention of cerebral hyperemia 
 Restoration of cerebral blood flow auto-

regulation 
 Decreases in systemic circulating ammonia 

concentration and inflammatory markers 
 Improvements in systemic hemodynamic 

alterations 
 Attenuation of deleterious effects of 

ischemia reperfusion injury to liver 
 Decreased inter-organ ammonia production 

and trafficking  

 Increases in cerebral blood flow and 
rebound increases in ICP especially during 
rewarming phases 

 Increased risk of infections 
 Increased risk of bleeding complications 
 Cardiac arrhythmias 
 Fluid and electrolyte shifts 
 

Table 1. Brief Summary of the Effects of Hypothermia 
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Hypothermia may also attenuate liver injury. Hepatoprotective effects of hypothermia have 
consistently been demonstrated in hepatic ischemia perfusion models [41]. Reductions in 
metabolic demand, tempering of free radical production, lessening of inflammatory 
cytokines, preservation of sinusoidal cell function and improvements in the hepatic 
microcirculation are some of hepatoprotective mechanisms mediated by hypothermia. 
Similarly in a mouse model of acetaminophen induced liver injury, hypothermia attenuated 
hepatocyte damage and improved survival [42]. A brief summary of the effects of 
hypothermia is given in Table 1. 

3.4. Clinical correlates 

Despite the wealth of animal data, there has never been a randomized control trial of 
hypothermia for ALF. Most reports are from a single center and have small numbers of 
patients [9, 10, 36-40, 43, 44]. Jalan et al first reported a series of 7 patients with ALF who 
underwent hypothermia to control ICP that was refractory to medical therapy [43]. Survival 
was 75% (3/4) in patients who received a liver transplant while none of those who did not 
progress to transplant survived. However the 3 patients that were deemed unsuitable for 
receipt of a liver transplant were only cooled for 8 hours and were then rewarmed to 
baseline temperature in one hour. The same group of investigators in 2004 reported a series 
of 14 patients who were awaiting liver transplantation and had cerebral edema with 
increased ICP refractory to medical therapy. Therapeutic hypothermia was initiated and 
maintained during the surgical period. Remarkably the survival of this group of patients 
was 70% and the neurological recovery was reported to be complete [40]. Jalan et al have 
also reported a series of 16 patients undergoing liver transplantation out of which 5 had 
high ICP uncontrolled by conventional therapy [44]. The patients with high uncontrolled 
ICP underwent hypothermia which was maintained during the transplant surgery. 
Interestingly, all patients transplanted under normothermic conditions developed surges of 
high ICP during the dissection and reperfusion phases of the surgery related to cerebral 
hyperemia, whereas, this phenomenon was not observed in the hypothermia group. These 
observations are encouraging and support the use of therapeutic hypothermia in at least 
persons who develop cerebral edema as a complication of ALF and have raised ICP 
unresponsive to medical therapy. However confirmation of benefit requires a well done 
randomized controlled trial.  

The first ever RCT was recently present in abstract form in 2011 [45]. In this trial, Larsen at 
al. included 54 patients with ALF, in whom a clinical decision for ICP monitoring (imminent 
brain edema) had been made. Patients were randomized to receive standard therapy or 
therapeutic hypothermia plus standard therapy. Hypothermia was continued for 3 days. 
The authors reported no differences in outcomes of mortality, complications or the number 
of patients who developed high ICP at some point during their clinical course 
(approximately 50%). Reconciliation of these results, with results of observational studies 
suggesting major benefit, arises from the fact that persons in this study were randomized to 
hypothermia prior to the development of uncontrolled intracranial hypertension as a pre-
emptive measure. It is prudent to await the final results of this trial to provide important 
clinical direction in regards to defining the place of hypothermia in ALF.  
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The previous sections discussed the role of hypothermia in either patients who are 
candidates for liver transplantation and have high ICP that is poorly responsive to 
conventional medical therapy or in patients who are at high risk of developing 
intracranial hypertension associated with ALF. In such persons, hypothermia is used as a 
bridge to transplant. However, some reports are now emerging that suggest that this 
therapy maybe potentially be useful as a bridge to recovery in patients who are not 
candidates for liver transplantation or are at places where organs and/or transplant 
expertise is unavailable [9]. In previous investigations, rapid rewarming from 
hypothermia has been uniformly associated with rebound of high ICP, clinical 
deterioration and death [43]. Therefore instituting hypothermia as a bridge to recovery 
typically requires prolonged duration of therapy (> 100 hours) till liver recovery occurs 
and slow rewarming thereafter [9]. It should be the safety and efficacy of hypothermia is 
this particular group of patients has not been established and the evidence for use is 
circumspect at best. A summary of clinical studies examining the role and effect of 
hypothermia in acute liver failure is given in Table 2.  

 
Reference Description of Study Outcome
Jalan R et al: Lancet 
1999 

ALF with refractory elevation of ICP (> 
25 mm Hg). Total of 7 patients with 4 
listed for transplant. Hypothermia (32-
33.5 C) performed for 8-14 hours. Those 
not suitable for transplant were 
rewarmed over 1 hour to 37 C. Those 
suitable for transplant cooled through 
the transplant procedure 

3/3 unsuitable candidates for 
transplant died after 
rewarming. 1/4 transplant 
candidates died. Hypothermia 
was effective in controlling ICP 
in all patients and during 
hypothermia there were no 
significant relapses of increased 
ICP 

Jalan R et al: 
Hepatology 2001 

ALF with uncontrolled intracranial 
hypertension. 9 patients were cooled and 
cerebral hemodynamics were evaluated 
pre and 4 hours post hypothermia 
(cerebral blood flow and its auto-
regulation, reactivity to carbon dioxide 
and intracranial pressure) 

Hypothermia significantly 
lowered ICP and cerebral blood 
flow. Hypothermia restored 
defective cerebral blood flow 
auto-regulation and loss of 
reactivity to carbon dioxide that 
were observed in all patients 
pre hypothermia 

Jalan R et al: 
Transplantation 
2003 

16 patients undergoing liver transplant 
were studied and divided into three 
groups pre transplant: Group I - No 
therapy required for ICP (ICP < 15), 
Group II - ICP controlled with medical 
therapy and Group III - ICP uncontrolled 
by medical therapy and requiring 
induction of hypothermia pre transplant. 
Normothermia was maintained during 
transplant in Groups I and II and 
hypothermia (median temperature 33.4 
C) for the Group III (n=5) 

Significant increases in ICP 
were observed during the 
dissection and re-perfusion 
phase of transplant in Groups I 
and II accompanied by an 
increase in cerebral blood flow. 
In Group III neither increases in 
ICP nor cerebral blood flow 
were observed.  



 
Therapeutic Hypothermia in Brain Injury 104 

Hypothermia may also attenuate liver injury. Hepatoprotective effects of hypothermia have 
consistently been demonstrated in hepatic ischemia perfusion models [41]. Reductions in 
metabolic demand, tempering of free radical production, lessening of inflammatory 
cytokines, preservation of sinusoidal cell function and improvements in the hepatic 
microcirculation are some of hepatoprotective mechanisms mediated by hypothermia. 
Similarly in a mouse model of acetaminophen induced liver injury, hypothermia attenuated 
hepatocyte damage and improved survival [42]. A brief summary of the effects of 
hypothermia is given in Table 1. 

3.4. Clinical correlates 

Despite the wealth of animal data, there has never been a randomized control trial of 
hypothermia for ALF. Most reports are from a single center and have small numbers of 
patients [9, 10, 36-40, 43, 44]. Jalan et al first reported a series of 7 patients with ALF who 
underwent hypothermia to control ICP that was refractory to medical therapy [43]. Survival 
was 75% (3/4) in patients who received a liver transplant while none of those who did not 
progress to transplant survived. However the 3 patients that were deemed unsuitable for 
receipt of a liver transplant were only cooled for 8 hours and were then rewarmed to 
baseline temperature in one hour. The same group of investigators in 2004 reported a series 
of 14 patients who were awaiting liver transplantation and had cerebral edema with 
increased ICP refractory to medical therapy. Therapeutic hypothermia was initiated and 
maintained during the surgical period. Remarkably the survival of this group of patients 
was 70% and the neurological recovery was reported to be complete [40]. Jalan et al have 
also reported a series of 16 patients undergoing liver transplantation out of which 5 had 
high ICP uncontrolled by conventional therapy [44]. The patients with high uncontrolled 
ICP underwent hypothermia which was maintained during the transplant surgery. 
Interestingly, all patients transplanted under normothermic conditions developed surges of 
high ICP during the dissection and reperfusion phases of the surgery related to cerebral 
hyperemia, whereas, this phenomenon was not observed in the hypothermia group. These 
observations are encouraging and support the use of therapeutic hypothermia in at least 
persons who develop cerebral edema as a complication of ALF and have raised ICP 
unresponsive to medical therapy. However confirmation of benefit requires a well done 
randomized controlled trial.  

The first ever RCT was recently present in abstract form in 2011 [45]. In this trial, Larsen at 
al. included 54 patients with ALF, in whom a clinical decision for ICP monitoring (imminent 
brain edema) had been made. Patients were randomized to receive standard therapy or 
therapeutic hypothermia plus standard therapy. Hypothermia was continued for 3 days. 
The authors reported no differences in outcomes of mortality, complications or the number 
of patients who developed high ICP at some point during their clinical course 
(approximately 50%). Reconciliation of these results, with results of observational studies 
suggesting major benefit, arises from the fact that persons in this study were randomized to 
hypothermia prior to the development of uncontrolled intracranial hypertension as a pre-
emptive measure. It is prudent to await the final results of this trial to provide important 
clinical direction in regards to defining the place of hypothermia in ALF.  

 
Hypothermia in Acute Liver Failure 105 

The previous sections discussed the role of hypothermia in either patients who are 
candidates for liver transplantation and have high ICP that is poorly responsive to 
conventional medical therapy or in patients who are at high risk of developing 
intracranial hypertension associated with ALF. In such persons, hypothermia is used as a 
bridge to transplant. However, some reports are now emerging that suggest that this 
therapy maybe potentially be useful as a bridge to recovery in patients who are not 
candidates for liver transplantation or are at places where organs and/or transplant 
expertise is unavailable [9]. In previous investigations, rapid rewarming from 
hypothermia has been uniformly associated with rebound of high ICP, clinical 
deterioration and death [43]. Therefore instituting hypothermia as a bridge to recovery 
typically requires prolonged duration of therapy (> 100 hours) till liver recovery occurs 
and slow rewarming thereafter [9]. It should be the safety and efficacy of hypothermia is 
this particular group of patients has not been established and the evidence for use is 
circumspect at best. A summary of clinical studies examining the role and effect of 
hypothermia in acute liver failure is given in Table 2.  

 
Reference Description of Study Outcome
Jalan R et al: Lancet 
1999 

ALF with refractory elevation of ICP (> 
25 mm Hg). Total of 7 patients with 4 
listed for transplant. Hypothermia (32-
33.5 C) performed for 8-14 hours. Those 
not suitable for transplant were 
rewarmed over 1 hour to 37 C. Those 
suitable for transplant cooled through 
the transplant procedure 

3/3 unsuitable candidates for 
transplant died after 
rewarming. 1/4 transplant 
candidates died. Hypothermia 
was effective in controlling ICP 
in all patients and during 
hypothermia there were no 
significant relapses of increased 
ICP 

Jalan R et al: 
Hepatology 2001 

ALF with uncontrolled intracranial 
hypertension. 9 patients were cooled and 
cerebral hemodynamics were evaluated 
pre and 4 hours post hypothermia 
(cerebral blood flow and its auto-
regulation, reactivity to carbon dioxide 
and intracranial pressure) 

Hypothermia significantly 
lowered ICP and cerebral blood 
flow. Hypothermia restored 
defective cerebral blood flow 
auto-regulation and loss of 
reactivity to carbon dioxide that 
were observed in all patients 
pre hypothermia 

Jalan R et al: 
Transplantation 
2003 

16 patients undergoing liver transplant 
were studied and divided into three 
groups pre transplant: Group I - No 
therapy required for ICP (ICP < 15), 
Group II - ICP controlled with medical 
therapy and Group III - ICP uncontrolled 
by medical therapy and requiring 
induction of hypothermia pre transplant. 
Normothermia was maintained during 
transplant in Groups I and II and 
hypothermia (median temperature 33.4 
C) for the Group III (n=5) 

Significant increases in ICP 
were observed during the 
dissection and re-perfusion 
phase of transplant in Groups I 
and II accompanied by an 
increase in cerebral blood flow. 
In Group III neither increases in 
ICP nor cerebral blood flow 
were observed.  
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Reference Description of Study Outcome
Jalan R et al: 
Gastroenterology 
2004 

14 patients awaiting liver transplantation 
with increased ICP refractory to medical 
therapy. Hypothermia (32 – 33 C) 
performed for a median of 32 hours 
(range 10 – 118 hours) as a bridge to liver 
transplant.  

13/14 patients successfully 
bridged to transplant. 1/14 taken 
of transplant list and 
subsequently died. Significant 
decline in ICP within first hour 
of cooling that was maintained 
at 24 hours. After transplant 
10/13 patients alive at 3 months 
and had complete neurological 
recovery. 

Jacob et al: 
Neurocritical care 
2009 

Single case report of ALF and cerebral 
edema secondary to acetaminophen 
toxicity with increased ICP refractory to 
medical therapy. Hypothermia induced 
for 5 days as a bridge to liver recovery.  

Sustained decrease in ICP 
with induction of hypothermia 
that was maintained over the 
duration of hypothermia. 
Complete hepatic and 
neurological recovery 
reported  

Castillo et al: 2009 Single case report of acute liver failure 
secondary to hepatitis A virus with 
cerebral edema and elevated ICP 
refractory to medical therapy. 
Hypothermia induced for 122 hours as 
bridge to liver transplant. 

Decrease in ICP with successful 
bridge to and survival after liver 
transplant 

Holena DN et al: 
American Journal of 
Critical Care 2012 

Single case report of acetaminophen 
induced ALF who developed cerebral 
edema and elevated ICP refractory to 
medical therapy treated with 
hypothermia as a bridge to liver 
transplant. 

Decrease in ICP with 
hypothermia, improvement 
in neurological examination and 
bridge to liver transplant. 
Re-transplanted secondary to 
acute rejection and made 
complete neurological 
recovery 

Table 2. Clinical Studies Examining the Effect of Therapeutic Hypothermia in Acute Liver Failure 

Unlike cardiac arrest several questions about the induction, maintenance and rewarming 
phases of hypothermia in ALF are unanswered. Though the general principles of adequate 
sedation, avoidance of shivering, hemodynamic and other organ system monitoring as well 
as attention to fluid and electrolyte shifts remain the same, there are many issues unique to 
the patient with ALF. Particularly appropriate patient selection, risks of ICP monitoring, 
severe coagulopathy in ALF that may potentially be worsened by hypothermia, risks of 
infection, worsening cardiovascular instability and the potential deleterious effect of 
hypothermia on liver regeneration are some of the challenges faced by the clinician prior to 
instituting this therapy. If hypothermia is instituted as a bridge to liver recovery and 
subsequent resolution cerebral edema, the authors suggest that hypothermia with ICP 
monitoring be continued till there is evidence of liver recovery and that rewarming proceed 
at no more than 0.1 degrees centigrade every 2-3 hours. 
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4. Conclusions 

There is a growing body of pre-clinical and clinical literature on the utility of therapeutic 
hypothermia to control raised ICP associated with ALF. Hypothermia may be used either as 
a bridge to liver transplant or a bridge to liver recovery. However based on evidence at 
hand, it can only be recommended for control of intracranial hypertension that is 
unresponsive to conventional medical therapy. Well-designed clinical investigations are 
required to clarify the role of hypothermia in ALF. 
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Reference Description of Study Outcome
Jalan R et al: 
Gastroenterology 
2004 

14 patients awaiting liver transplantation 
with increased ICP refractory to medical 
therapy. Hypothermia (32 – 33 C) 
performed for a median of 32 hours 
(range 10 – 118 hours) as a bridge to liver 
transplant.  

13/14 patients successfully 
bridged to transplant. 1/14 taken 
of transplant list and 
subsequently died. Significant 
decline in ICP within first hour 
of cooling that was maintained 
at 24 hours. After transplant 
10/13 patients alive at 3 months 
and had complete neurological 
recovery. 

Jacob et al: 
Neurocritical care 
2009 

Single case report of ALF and cerebral 
edema secondary to acetaminophen 
toxicity with increased ICP refractory to 
medical therapy. Hypothermia induced 
for 5 days as a bridge to liver recovery.  

Sustained decrease in ICP 
with induction of hypothermia 
that was maintained over the 
duration of hypothermia. 
Complete hepatic and 
neurological recovery 
reported  

Castillo et al: 2009 Single case report of acute liver failure 
secondary to hepatitis A virus with 
cerebral edema and elevated ICP 
refractory to medical therapy. 
Hypothermia induced for 122 hours as 
bridge to liver transplant. 

Decrease in ICP with successful 
bridge to and survival after liver 
transplant 

Holena DN et al: 
American Journal of 
Critical Care 2012 

Single case report of acetaminophen 
induced ALF who developed cerebral 
edema and elevated ICP refractory to 
medical therapy treated with 
hypothermia as a bridge to liver 
transplant. 

Decrease in ICP with 
hypothermia, improvement 
in neurological examination and 
bridge to liver transplant. 
Re-transplanted secondary to 
acute rejection and made 
complete neurological 
recovery 

Table 2. Clinical Studies Examining the Effect of Therapeutic Hypothermia in Acute Liver Failure 

Unlike cardiac arrest several questions about the induction, maintenance and rewarming 
phases of hypothermia in ALF are unanswered. Though the general principles of adequate 
sedation, avoidance of shivering, hemodynamic and other organ system monitoring as well 
as attention to fluid and electrolyte shifts remain the same, there are many issues unique to 
the patient with ALF. Particularly appropriate patient selection, risks of ICP monitoring, 
severe coagulopathy in ALF that may potentially be worsened by hypothermia, risks of 
infection, worsening cardiovascular instability and the potential deleterious effect of 
hypothermia on liver regeneration are some of the challenges faced by the clinician prior to 
instituting this therapy. If hypothermia is instituted as a bridge to liver recovery and 
subsequent resolution cerebral edema, the authors suggest that hypothermia with ICP 
monitoring be continued till there is evidence of liver recovery and that rewarming proceed 
at no more than 0.1 degrees centigrade every 2-3 hours. 
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4. Conclusions 

There is a growing body of pre-clinical and clinical literature on the utility of therapeutic 
hypothermia to control raised ICP associated with ALF. Hypothermia may be used either as 
a bridge to liver transplant or a bridge to liver recovery. However based on evidence at 
hand, it can only be recommended for control of intracranial hypertension that is 
unresponsive to conventional medical therapy. Well-designed clinical investigations are 
required to clarify the role of hypothermia in ALF. 
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1. Introduction 

There are over 300,000 out-of-hospital cardiac arrests (OHCA), and 200,000 in-hospital 
cardiac arrests (IHCA), annually in the U.S. alone. Of these, the survival rate is only 6.4% 
and 17% respectively (1). Sasson et al. reviewed 75 studies of OHCA, including over 140,000 
patients, and found that the pooled survival rate to hospital admission was only 24%, and 
pooled survival to hospital discharge was only 7.6% (2). Also noted, via the Get With The 
Guidelines Registry (GWTG-R), was that the rate of survival to hospital discharge after 
IHCA was 18% for ventricular fibrillation and pulseless ventricular tachycardia, 12% for 
pulseless electrical activity (PEA), and 13% for asystole (2). During and post cardiac arrest, 
patients undergo profound systemic ischemia followed by reperfusion. This leads to what is 
now known as post cardiac arrest syndrome (PCAS), which is comprised of four entities: 
brain injury, myocardial dysfunction, ischemic/reperfusion response, and the precipitating 
disease (3). As many as 30% of cardiac arrest survivors will suffer from permanent brain 
injury (4). The percentage of survivors from the initial cardiac arrest, that subsequently die, 
is fairly comparable around the world, around 65-75%. Most of these patients die within the 
first month after return of spontaneous circulation (ROSC). Although the components 
leading up to survival from cardiac arrest are very important (early access, early CPR, early 
defibrillation and early advanced care), the main entity that limits ultimate recovery is brain 
injury from hypoxia. This chapter is mainly concerned with the post cardiac arrest brain 
injury that occurs and how to prognosticate its recovery. The only treatment that has been 
proven to improve mortality and neurological outcome is therapeutic hypothermia (TH). 
Before the utilization of therapeutic hypothermia, many of these post cardiac arrest 
survivors succumbed to anoxic brain damage (5). As therapeutic hypothermia continues to 
become standard practice across the world for post cardiac arrest patients, the new question 
that arises is when and how best to prognosticate both the survivors and non-surviovors of 
therapeutic hypothermia.Multiple studies have shown that prognostication within 24-48 hrs 
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after rewarming from TH, does not provide reliable resuts (3). In this chapter, we will 
review the background of prognostication in comatose patients after cardiac arrest, realizing 
that these recommendations were all made using studies that did not include patients 
treated with therapeutic hypothermia. It is fundamental to understand the history of 
prognostication, in order to appreciate the changes that are needed with the advent of 
therapeutic hypothermia. The remainder of the chapter will review the most recent 
literature available regarding prognostication of post cardiac arrest victims having 
undergone therapeutic hypothermia. We will review the utility of the neurological 
examination, various electroencephalography (EEG) modalities, somatosensory evoked 
potentials (SSEP’s), biomarkers, and bispectral index monitoring for prognostication. Finally 
we will provide some guidelines for the timeline of prognostication post cardiac arrest and 
which methods will provide the best results.  

2. Prognostication 
When we talk about prognostication with regards to comatose survivors post cardiac arrest, 
we are looking for tools that are both reliable and accurate. In order to help families 
determine how best to take care of their loved ones, the literature shows that it is difficult to 
determine which patients will have fully functional outcomes, as this may takes weeks, to 
months, to years. What is more helpful is to provide families with information regarding 
situations where there is no chance of functional recovery with data that is fairly robust. 
With this type of situation, we are looking for studies and modalities that achieve a false 
positive rate (FPR) equal to or very closely approaching zero (6). It is known that many 
patients that survive their initial cardiac arrest event tend to have impairment of their 
consciousness (7). Many, if not all, of these patients require intensive care. Those that sustain 
the most damage require the most resources. Because of this situation, strain is added to an 
already frail healthcare system. Thus, it is paramount to develop guidelines that allow for 
better prognostication post cardiac arrest, in order to guide both physicians and families 
with regards to appropriate care for their loved ones. Studies have shown that 
prognostication plays a significant role in withdrawal of life supporting measures for 
families and physicians. Keeping all this in mind, one must pay attention to the definition of 
good and bad outcome that each study has chosen to use. In the studies discussed 
throughout this chapter, most used either the Glasgow Outcome Scale (GOS) or the 
Glasgow Pittsburgh Cerebral Performance Categories scale (CPC) (see Table 1). Some 
studies used the modified Rankin Scale. Table 1 differentiates the three outcomes scales. In 
basic terms, outcome can be broken down into three groups: 1) survival or death, 2) 
presence or absence of consciousness, and 3) with or without return to normal social 
activity. Depending on how authors define outcome in their studies, the CPC/GOS 
categories they use to define ‘poor’ outcome will vary (8). In many studies, poor outcome 
ranges between inability to be independent of activities of daily living (ADL) for a few 
months, to persistent coma/vegetative state, to death (9). Meadow et al. showed that 
patient.’s chances of survival decreased the longer they stayed in the ICU.Surprisingly, they 
also found that even in patients with unanimous predictions of death for > 3 days, 12% of 
patient’s survived (10).  
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 Glasgow Outcome 
Scale                

CPC*                   mRS**     

Dead 1 5 0 
Comatose or 
Vegetative 

2 4 1,2 

Severe Disability 
(Conscious but Disabled) 

3 3 3,4 

Moderate Disability 
(Disabled but Independent) 

4 2 5 

Good Recovery 5 1 6 
*cerebral performance category 
**modified Rankin Score 

Table 1. Glasgow Outcome Scale; CPC*; mRS**   

In order to understand the newest prognostication literature, one must have an 
understanding of from where the current guidelines stem. In 1981, Levy et al. developed an 
algorithm, which was the mainstay for prognostication for many years (11). The algorithm 
basically assured no chance of good recovery if a patient had absent corneal or pupillary 
reflexes at any time after cardiac arrest, or motor response no better than extension at 72 hrs 
post cardiac arrest. The algorithm that Levy et al. provided us with in 1981 was replicated in 
2012 by Greer et al. and produced similar results (12). As did Levy et al., Greer et al. 
collected clinical data on days 0, 1, 3, and 7, on nontraumatic coma patients in the 
emergency department, neuro ICU, medical ICU and cardiac ICU. These algorithms are 
fundamental to understanding prognostication and the neurological examination. Both of 
these studies have shown that the clinical neurological exam is necessary for determining 
prognosis in nontraumatic coma, however, it would be helpful if these algorithms were 
specific to therapeutic hypothermia patients. Greer et al. plan to perform a subgroup 
analysis from their data specific to TH patients, which should shed some light on this area.  

The current guidelines being used were produced in 2006 by the American Association of 
Neurology (AAN) (13). The 25 years between the algorithm of Levy et al. and the 2006 AAN 
guidelines, provided ample amounts of research studies, most of which suggested that the 
neuro exam should be complemented by ancillary tests. The AAN guidelines can be 
summarized as follows: 1) Patients with absent corneal reflexes or absent papillary reflexes, 
or no better than extension motor responses, 3 days after cardiac arrest, have a poor 
prognosis, 2) Patients with myoclonus status epilepticus within the first 24 hrs of ROSC 
have a poor prognosis, 3) Patients with burst suppression on EEG, or generalized 
epileptiform discharges are predicted to have a poor prognosis, 4) Patients with bilaterally 
absent N20 response on SSEP’s, between 24 to 72 hrs post cardiac arrest, have a poor 
prognosis, and 5) Patients with serum levels of neuron specific enolase (NSE) > 33 ug/L 
between 24 to 72 hrs post cardiac arrest have a poor prognosis. Unfortunately, the AAN 
guidelines were being written at the same time that the landmark TH articles were coming 
out, thus providing us with guidelines that did not incorporate therapeutic hypothermia. 
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that these recommendations were all made using studies that did not include patients 
treated with therapeutic hypothermia. It is fundamental to understand the history of 
prognostication, in order to appreciate the changes that are needed with the advent of 
therapeutic hypothermia. The remainder of the chapter will review the most recent 
literature available regarding prognostication of post cardiac arrest victims having 
undergone therapeutic hypothermia. We will review the utility of the neurological 
examination, various electroencephalography (EEG) modalities, somatosensory evoked 
potentials (SSEP’s), biomarkers, and bispectral index monitoring for prognostication. Finally 
we will provide some guidelines for the timeline of prognostication post cardiac arrest and 
which methods will provide the best results.  

2. Prognostication 
When we talk about prognostication with regards to comatose survivors post cardiac arrest, 
we are looking for tools that are both reliable and accurate. In order to help families 
determine how best to take care of their loved ones, the literature shows that it is difficult to 
determine which patients will have fully functional outcomes, as this may takes weeks, to 
months, to years. What is more helpful is to provide families with information regarding 
situations where there is no chance of functional recovery with data that is fairly robust. 
With this type of situation, we are looking for studies and modalities that achieve a false 
positive rate (FPR) equal to or very closely approaching zero (6). It is known that many 
patients that survive their initial cardiac arrest event tend to have impairment of their 
consciousness (7). Many, if not all, of these patients require intensive care. Those that sustain 
the most damage require the most resources. Because of this situation, strain is added to an 
already frail healthcare system. Thus, it is paramount to develop guidelines that allow for 
better prognostication post cardiac arrest, in order to guide both physicians and families 
with regards to appropriate care for their loved ones. Studies have shown that 
prognostication plays a significant role in withdrawal of life supporting measures for 
families and physicians. Keeping all this in mind, one must pay attention to the definition of 
good and bad outcome that each study has chosen to use. In the studies discussed 
throughout this chapter, most used either the Glasgow Outcome Scale (GOS) or the 
Glasgow Pittsburgh Cerebral Performance Categories scale (CPC) (see Table 1). Some 
studies used the modified Rankin Scale. Table 1 differentiates the three outcomes scales. In 
basic terms, outcome can be broken down into three groups: 1) survival or death, 2) 
presence or absence of consciousness, and 3) with or without return to normal social 
activity. Depending on how authors define outcome in their studies, the CPC/GOS 
categories they use to define ‘poor’ outcome will vary (8). In many studies, poor outcome 
ranges between inability to be independent of activities of daily living (ADL) for a few 
months, to persistent coma/vegetative state, to death (9). Meadow et al. showed that 
patient.’s chances of survival decreased the longer they stayed in the ICU.Surprisingly, they 
also found that even in patients with unanimous predictions of death for > 3 days, 12% of 
patient’s survived (10).  

 
Prognostication in Post Cardiac Arrest Patients Treated with Therapeutic Hypothermia 115 

 Glasgow Outcome 
Scale                

CPC*                   mRS**     

Dead 1 5 0 
Comatose or 
Vegetative 

2 4 1,2 

Severe Disability 
(Conscious but Disabled) 

3 3 3,4 

Moderate Disability 
(Disabled but Independent) 

4 2 5 

Good Recovery 5 1 6 
*cerebral performance category 
**modified Rankin Score 

Table 1. Glasgow Outcome Scale; CPC*; mRS**   

In order to understand the newest prognostication literature, one must have an 
understanding of from where the current guidelines stem. In 1981, Levy et al. developed an 
algorithm, which was the mainstay for prognostication for many years (11). The algorithm 
basically assured no chance of good recovery if a patient had absent corneal or pupillary 
reflexes at any time after cardiac arrest, or motor response no better than extension at 72 hrs 
post cardiac arrest. The algorithm that Levy et al. provided us with in 1981 was replicated in 
2012 by Greer et al. and produced similar results (12). As did Levy et al., Greer et al. 
collected clinical data on days 0, 1, 3, and 7, on nontraumatic coma patients in the 
emergency department, neuro ICU, medical ICU and cardiac ICU. These algorithms are 
fundamental to understanding prognostication and the neurological examination. Both of 
these studies have shown that the clinical neurological exam is necessary for determining 
prognosis in nontraumatic coma, however, it would be helpful if these algorithms were 
specific to therapeutic hypothermia patients. Greer et al. plan to perform a subgroup 
analysis from their data specific to TH patients, which should shed some light on this area.  

The current guidelines being used were produced in 2006 by the American Association of 
Neurology (AAN) (13). The 25 years between the algorithm of Levy et al. and the 2006 AAN 
guidelines, provided ample amounts of research studies, most of which suggested that the 
neuro exam should be complemented by ancillary tests. The AAN guidelines can be 
summarized as follows: 1) Patients with absent corneal reflexes or absent papillary reflexes, 
or no better than extension motor responses, 3 days after cardiac arrest, have a poor 
prognosis, 2) Patients with myoclonus status epilepticus within the first 24 hrs of ROSC 
have a poor prognosis, 3) Patients with burst suppression on EEG, or generalized 
epileptiform discharges are predicted to have a poor prognosis, 4) Patients with bilaterally 
absent N20 response on SSEP’s, between 24 to 72 hrs post cardiac arrest, have a poor 
prognosis, and 5) Patients with serum levels of neuron specific enolase (NSE) > 33 ug/L 
between 24 to 72 hrs post cardiac arrest have a poor prognosis. Unfortunately, the AAN 
guidelines were being written at the same time that the landmark TH articles were coming 
out, thus providing us with guidelines that did not incorporate therapeutic hypothermia. 
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They did, however, include in the guidelines a recommendation that once hypothermia 
became standard of care, the guidelines would need revision. There does not appear to be 
one single criterion that can invariably predict poor prognosis (14). Hence the need exists for 
a multimodality approach to prognostication. Table 2 summarizes the salient points of the 
2006 AAN guidelines for prognostication. 
 

Neuroclinical Exam
Strong evidence (Level A) The prognosis is invariably poor in comatose 

patients with absent pupillary or corneal 
reflexes, or no better than extensor motor 
responses, at 3 days after cardiac arrest 

Good evidence (Level B) Myoclonic status epilepticus within 24 hrs of 
primary circulatory arrest has a poor prognosis 

Electrophysiological Studies
Good evidence (Level B) Bilaterally absent cortical SSEPs (N20 response) 

between days 1 to 3, can guide a poor prognosis 
Weak evidence (Level C) Burst suppression or generalized epileptiform 

discharges on EEG predict poor outcomes but 
with insufficient accuracy 

Biomarkers 
Good evidence (Level B) Serum NSE levels > 33ug/L at days 1 to 3 post

cardiac arrest accurately predict poor outcome 
Insufficient evidence Inadequate data exists to support or refute the

use of S100-B or CKBB for prognostic value 
Insufficient evidence Inadequate data exists to support or refute the

use of ICP monitoring for prognostic value 

Table 2. Summary of 2006 AAN Guidelines for Prediction of Outcome in Comatose Survivors After 
Cardiopulmonary Resuscitation 

Another important aspect regarding many of these prognostication studies  entails the ‘self-
fulfilling’ prophecy (14). These trials have a common bias that is often seen in prognosis 
determining trials, in which early withdrawal of support occurs in patients who present 
with certain findings that have previously been associated with poor prognosis. This makes 
it very hard to determine the appropriate amount of time to wait post TH, in order to 
achieve a FPR of zero for various modalities.  

Perman et al. performed a retrospective review of charts from two academic hospitals, and 
found that more than half of the comatose survivors of cardiac arrest were assigned the 
prognosis of ‘poor’ by their physicians (1). It was also shown in this review that there exists 
a large variation in the timing of determining prognosis and in the modalities used to make 
this determination. It should also be noted that in this study, the use of the term ‘poor’ 
prognosis was found in many patients even before the TH protocol was completed. The 
placement of the term ‘poor’ prognosis into a patient’s chart can have a domino effect on the 
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opinions of other medical personnel, and should only be used once objective data has been 
found. This study provides a great example of why specific guidelines regarding timing and 
modalities for prognostication in post cardiac arrest patients, who have undergone TH, is of 
paramount importance.  

Oddo et al. performed a prospective study looking at clinical criteria that may help predict 
outcome in comatose survivors of cardiac arrest having received therapeutic hypothermia 
(15). This study suggested that patients that take longer to regain ROSC after cardiac arrest, 
even when treated with TH, have worse outcomes. Another smaller study by Wolff et al. 
found that patients reaching their target temperature quicker, along with those patients who 
started at a lower temperature, had better short term neurological outcomes post TH. In 
2012, a group created the CASPRI (Cardiac Arrest Survival Postresuscitation In-Hospital) 
score. This group utilized the GWTG-R, and assessed patients that survived IHCA using 
prearrest CPC scores (16). This study utilized approximately 28,000 patients for the 
derivation cohort and approximately 14,000 patients for the validation cohort. The CASPRI 
score utilizes age, initial arrest rhythm, prearrest CPC score, location, duration of resuscitation, 
and preexisting organ dysfunctions, to predict favorable neurological survival. This simple 
prediction tool can be used to help facilitate discussions with families, especially in those 
patients with relatively high scores suggestive of poor outcomes. Unfortunately, this study did 
not evaluate the use of TH, and hopefully the study can be replicated using only patients that 
have undergone TH, as that is now the standard of care. This study found that patient factors 
played little role in outcome, however factors surrounding the cardiac arrest – duration, initial 
rhythm, and defibrillation time – were very strong predictors of outcome. 

Samaniego et al. prospectively studied 85 post cardiac arrest patients, 53 of whom 
underwent therapeutic hypothermia (17). They found that the patients undergoing TH were 
more likely to have received sedative agents around the 72 hr post cardiac arrest mark, as 
opposed to the non-TH patients. Of the six different findings tested, absent corneal reflexes 
at 72 hrs, no better than extensor posturing at 72 hrs, and peak serum NSE >33 ug/L at any 
time within 72 hrs, each failed to accurately predict poor outcome. On the other hand, status 
myoclonus epilepticus within 72 hrs, absence of pupillary response at 72hrs and absence of 
N20 response after 72 hrs, all accurately predicted poor outcome. It becomes very clear that 
the amount of medications used to perform TH will also complicate prognostication, since all 
six findings were able to accurately predict poor outcome in patients that did not receive any 
sedation. Keeping in mind that TH affects drug metabolism and clearance, Fukokua et al. 
found that there was a five-fold increase in midazolam levels in TH patients compared to 
normothermic patients (18). It is also known that propofol concentrations can increase up to 
30% in hypothermia treated patients, and fentanyl clearance also decreases significantly. All of 
this goes to show that one needs to be very mindful of the types and amounts of analgesia, 
sedation and neuromuscular blockade agents given to TH patients, along with the amount 
time passing since complete discontinuation of these medications, when attempting to perform 
prognostication on these patients.  
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opinions of other medical personnel, and should only be used once objective data has been 
found. This study provides a great example of why specific guidelines regarding timing and 
modalities for prognostication in post cardiac arrest patients, who have undergone TH, is of 
paramount importance.  

Oddo et al. performed a prospective study looking at clinical criteria that may help predict 
outcome in comatose survivors of cardiac arrest having received therapeutic hypothermia 
(15). This study suggested that patients that take longer to regain ROSC after cardiac arrest, 
even when treated with TH, have worse outcomes. Another smaller study by Wolff et al. 
found that patients reaching their target temperature quicker, along with those patients who 
started at a lower temperature, had better short term neurological outcomes post TH. In 
2012, a group created the CASPRI (Cardiac Arrest Survival Postresuscitation In-Hospital) 
score. This group utilized the GWTG-R, and assessed patients that survived IHCA using 
prearrest CPC scores (16). This study utilized approximately 28,000 patients for the 
derivation cohort and approximately 14,000 patients for the validation cohort. The CASPRI 
score utilizes age, initial arrest rhythm, prearrest CPC score, location, duration of resuscitation, 
and preexisting organ dysfunctions, to predict favorable neurological survival. This simple 
prediction tool can be used to help facilitate discussions with families, especially in those 
patients with relatively high scores suggestive of poor outcomes. Unfortunately, this study did 
not evaluate the use of TH, and hopefully the study can be replicated using only patients that 
have undergone TH, as that is now the standard of care. This study found that patient factors 
played little role in outcome, however factors surrounding the cardiac arrest – duration, initial 
rhythm, and defibrillation time – were very strong predictors of outcome. 

Samaniego et al. prospectively studied 85 post cardiac arrest patients, 53 of whom 
underwent therapeutic hypothermia (17). They found that the patients undergoing TH were 
more likely to have received sedative agents around the 72 hr post cardiac arrest mark, as 
opposed to the non-TH patients. Of the six different findings tested, absent corneal reflexes 
at 72 hrs, no better than extensor posturing at 72 hrs, and peak serum NSE >33 ug/L at any 
time within 72 hrs, each failed to accurately predict poor outcome. On the other hand, status 
myoclonus epilepticus within 72 hrs, absence of pupillary response at 72hrs and absence of 
N20 response after 72 hrs, all accurately predicted poor outcome. It becomes very clear that 
the amount of medications used to perform TH will also complicate prognostication, since all 
six findings were able to accurately predict poor outcome in patients that did not receive any 
sedation. Keeping in mind that TH affects drug metabolism and clearance, Fukokua et al. 
found that there was a five-fold increase in midazolam levels in TH patients compared to 
normothermic patients (18). It is also known that propofol concentrations can increase up to 
30% in hypothermia treated patients, and fentanyl clearance also decreases significantly. All of 
this goes to show that one needs to be very mindful of the types and amounts of analgesia, 
sedation and neuromuscular blockade agents given to TH patients, along with the amount 
time passing since complete discontinuation of these medications, when attempting to perform 
prognostication on these patients.  
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3. Neuro exam 

Al Thenayan et al. in 2008 reviewed 282 charts, and found 37 patients that fulfilled the 
criteria of patients having survived cardiac arrest and having undergone TH(19). They 
reviewed neuro exam findings for 6 days post cardiac arrest. This study found that motor 
response no better than extensor posturing at 72 hrs was not a reliable predictor of poor 
outcome. It also found that while absent corneal reflexes had a FPR of zero, motor responses 
no better than extension had a FPR of 14%. In 2007, Yannopoulos et al. published a case 
series of four patients that provided evidence that predictions based on neuro exam alone 
are insufficient before 72 hrs (20). In their review, these four patients were determined by a 
board certified neurologist to have poor neurological outcome, at the time of rewarming. At 
time of discharge, which was over 72 hrs post cardiac arrest, three of the four patients 
regained full consciousness, and the remaining patient achieved a GCS of 10 (from 6). A 
retrospective chart review of patients between 2005-2009 by Rittenberger et al. analyzed 
both TH and non-TH patients, and looked at clinical examination at admission, 24 hrs and 
72 hrs post admission (21). The results of this review showed that the neuro exam was 
definitely not sufficient to make prognostication at 24 hrs. However, at 72 hrs post arrest, the 
absence of corneal or pupil responses was highly predictive of poor outcome. This was true 
for both TH and non-TH patients. In the Post-Cardiac Arrest Care 2010 American Heart 
Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular 
Care (6), it has been written that no study had shown that any neuro examination findings 
were able to predict poor outcome in less than 24 hrs after cardiac arrest. A review was 
performed by Oddo et al. in 2011, which discussed various studies and their findings (22). 
Rossetti et al. showed that TH provided discrepant results with regards to neurological 
exam findings, when compared to the guidelines suggested by the 2006 AAN paper. In the 
study by Rossetti et al. there was a FPR of 24% for motor response no better than extension, 
4% FPR for absent brainstem reflexes, and 3% FPR for myoclonus. Other studies have also 
shown FPR’s > 0% when looking at motor responses no better than extension. Oddo et al. 
made recommendations to wait 5-6 days post cardiac arrest and ROSC, before 
prognostication, as both TH and the medications used during TH can cause elevated FPR’s. 
They also recommended to not rely on motor reactions alone. From the paper by Blondin et 
al. it was very clear that sedation and neuromuscular blockade used during TH make the 
clinical exam unreliable (14). Usually these medications are weaned, but some sedatives and 
analgesia are continued for more than 72 hrs post cardiac arrest. These medications can 
confound the clinical exam as hypothermia decreases renal and hepatic clearance of these 
drugs, leading to higher serum levels and prolonged effects. Blondin et al’s review paper 
found that corneal and papillary light reflexes appeared to retain their predictive value at 72 
hrs post cardiac arrest in TH patients. Although there are studies that have shown an FPR of 
0% when dealing with absent pupillary response at 72 hrs post cardiac arrest with TH there 
have been cases where patients with absent corneals and poor motor responses did regain 
consciousness. From the evidence that Blondin et al. reviewed, their recommendations were 
that absent corneal reflexes and absent pupillary reflexes at 72 hrs are better for poor 
prognostication, but should not be used alone. They also stated that poor motor response 
was not effective at predicting poor outcome at 72 hrs. We have now seen that Al Thenayan, 
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Rossetti, and Blondin et al., agree that the neurological exam alone is not sufficient to 
reliably prognosticate post cardiac arrest patients treated with TH. On the other hand, 
Fugate et al. performed a prospective study, which contradicts this viewpoint(23). This 
study showed that the majority of cardiac arrest survivors (91%), who were treated with 
hypothermia and regained consciousness, did so within the first three days post cardiac 
arrest. Of course, when looking closely at the study, the range did vary from two to eight 
days for regaining of consciousness, which always makes one hesitate to fully prognosticate 
within a set amount of time. This paper by Fugate et al. does suggest that therapeutic 
hypothermia does not delay awakening, in cases where there are no confounding variables. 
When we talk about confounding variables, we are mainly alluding to sedation, analgesia 
and neuromuscular blockade. It is clearly shown in studies that when sedatives are used in 
TH, the FPR of poor neurological exams increases. As described earlier, the inclusion of 
patients in these studies that undergo withdrawal of life sustaining therapies becomes a self 
fulfilling prophecy, in the sense that delayed awakenings of these specific patients will go 
unrecognized. With regards to scores that utilize the neuro exam, the mainstay that has been 
used is the Glasgow coma scale (GCS). Recently, a more comprehensive score has been 
developed, known as the FOUR score – Full Outline of UnResponsiveness. Fugate et al. 
utilized this score to determine if it was able to predict outcome in patients after cardiac 
arrest (24). They assessed both TH and non-TH patients. For all comers in this study, the 
majority of patients that scored > 8 on their FOUR score, on days 3-5 post cardiac arrest, 
survived to discharge. They found similar if not better sensitivity and specificity when 
compared to GCS prognostication.  

4. EEG 

Walker et al. showed that close to one out of every twelve normothermic comatose ICU 
patients had nonconvulsive status epilepticus(25). It has also been shown that up to 44% of 
post cardiac arrest patients can suffer from seizures (26). In a case report by Hovland et al., 
they described a 53 year old female suffering from an OHCA secondary to STEMI, who 
underwent TH (27). Almost 90 hrs after admission, and after analgesia, sedation and NMB’s 
were weaned off, the patient exhibited status epilepticus on EEG. After day 17, the patient 
was able to dress herself. She required multiple AE’s during her admission to control her SE, 
which may have been recognized earlier had continuous EEG monitoring been used. This 
case report, and other studies, stresses the importance of monitoring post cardiac arrest 
patients undergoing TH for seizures. Utilizing EEG post cardiac arrest allows us to evaluate 
how much of the cortex has been damaged. Ongoing brain damage may occur as seizure 
activity leads to neuronal necrosis and apoptosis. The 2006 AAN guidelines stated that 
epileptiform complexes on a flat background, burst-suppression pattern with generalized 
epileptiform activity/periodic, or generalized background suppression less than 20 uV, seen 
within 3 days of cardiac arrest, predicted poor outcome with a FPR of 3% (22). However, as 
stated earlier, these guidelines were with respect to patients that had not undergone TH. It 
should be known that there are a few common EEG findings seen after cardiac arrest (14). 
These patterns include extremely low voltage, continuous, discontinuous burst-suppression, 
and electrographic status epilepticus with recurrent epileptiform activity. In addition, the 
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activity leads to neuronal necrosis and apoptosis. The 2006 AAN guidelines stated that 
epileptiform complexes on a flat background, burst-suppression pattern with generalized 
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use of TH can also cause very low voltage EEG backgrounds, which may be due in part to 
neurogenic medications. Of the various coma patterns that can be seen post cardiac arrest, 
burst-suppression patterns with little or no reactivity carry the worst prognosis (28). Alpha 
coma patterns can be seen in 10-15% of patients suffering from anoxic brain injury. Another 
important aspect of the EEG is the reactivity that can be seen when evaluating patients. This 
reactivity correlates with the activity of the reticular activating system. One can determine 
reactivity by providing a noxious stimulus and noting the reactivity of the EEG pattern. This 
aspect of reactivity will be discussed later in the chapter. The American Heart Association 
has recommended an early one-time EEG or continuous EEG monitoring to look for seizures 
in TH patients post cardiac arrest. The reason for this is due to clinical seizures being 
obscured by neuromuscular blockade or high doses of sedatives. It should also be 
recognized that seizures during TH can be mistaken as shivering (27). Prior animal studies 
have shown that TH is protective against seizures, and Orlowski et al. (29) and Corry et al. 
(30) have shown that TH can be used to successfully treat seizures in adult and pediatric 
patients alike. One of the proposed mechanisms for this protective effect is that hypothermia 
increases the epileptogenic threshold, making it more difficult for seizures to occur. On the 
one hand, although therapeutic hypothermia and sedative therapy may protect against 
seizures, the use of neuromuscular blockade may mask seizures and hamper their diagnosis 
and treatment (26).  

There have been multiple different grading scales proposed with regards to EEG in order to 
help predict the outcomes of comatose survivors of cardiac arrest (31). Most popular of these 
was developed in 1965 by Hockaday et al. With this scale, the EEG was divided into 5 
distinct grades. The grades were based upon both the dominant frequency of the EEG and 
whether unfavorable patterns were present. It has since been shown that unfavorable 
patterns on EEG correlate with poor prognosis. As stated earlier, the patterns seen most 
frequently to correlate with poor prognosis are burst suppression and electrocerebral 
silence. Studies have shown that comatose survivors of cardiac arrest, who initially have 
poor EEG grades, eventually shift to better EEG grades over time. This presents an 
important component of EEG monitoring, in which the changes are dynamic, and can 
progress either favorably or unfavorably over time. In the past, one of the most agreed upon 
poor prognosis EEG patterns, when present greater than 24 hrs post cardiac arrest, was 
electrocerebral silence. It should be known that this is very difficult to achieve in an ICU 
setting due to electrical interference from multiple sources. This being said, when 
electrocerebral silence is present, it is very significant for poor prognosis. Unfortunately, the 
data regarding electrocerebral silence comes from pre-TH studies.  

When evaluating the EEG findings in TH patients, one can divide the patterns into 
malignant, benign and uncertain (9). When discussing malignant patterns, we are mainly 
concerned with suppression, burst suppression, nonreactivity, and generalized periodic 
complexes. The difficulty with using EEG consistently throughout ICU’s is the lack of a 
consistent classification system and the lack of consistency regarding how soon and how 
frequent EEG’s should be performed post cardiac arrest. Many times after anoxic injury, 
periodic patterns such as periodic lateralized epileptiform discharges (PLEDs) and bilateral 
independent lateralized epileptiform discharges (BiPLEDs) are seen on EEG (28). It is 
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important to be able to differentiate between these periodic epileptiform patterns and actual 
seizures, as intensive treatment of seizures can improve patient outcomes. When reviewing 
the EEG patterns, one must make sure that there are no concomitant medication effects. 
Sufficient time after cessation of medications should be given before using EEG changes for 
prognostication. Since as many as 44% of post-cardiac arrest patients can suffer from seizures, 
it becomes hard to tell whether seizures are the contributing factor of poor prognosis, or if the 
seizures are markers of irreversibly damaged brains (32). Mani et al. retrospectively looked at 
38 comatose post cardiac arrest patients that underwent TH, and found that those patients that 
exhibited seizures did so within 24 hours. Many of these patients had their seizures during the 
maintenance phase of TH. The seizures were refractory to treatment and associated with poor 
short term neurological outcome. From this study, not only did it suggest that early 
epileptiform activity can help with prognostication of comatose post cardiac arrest patients in 
the first 24-36 hrs post arrest, but also suggested that early monitoring of these patients for 
seizure activity is a necessity. It should be noted that the incidence of seizures in post cardiac 
arrest TH patients is probably underestimated as many of the medications used for TH have 
antiepileptogenic properties. A small study by Rossetti et al. looked at six patients that 
developed post anoxic status epilepticus (PSE) after cardiac arrest and treatment with TH, who 
eventually improved beyond a vegetative state (33). PSE is comprised of prolonged myoclonic 
or convulsive seizures or nonconvulsive status epilepticus. This study suggested that when 
these patients retain their brainstem reflexes, cortical SSEP, and background reactivity (will be 
discussed in later paragraphs), PSE can be associated with improvement beyond a vegetative 
state. In another study by Legriel et al., 19 out of 51 patients treated with TH exhibited 
myoclonus (26). As has been reported in the past, patients that are rewarmed too quickly may 
develop rebound seizures, and this may have been the case in this study. There were also five 
patients in this study that developed electrographical status epilepticus (ESE), and all five 
passed away. This is consistent with prior studies showing poor prognosis in patients post TH 
exhibiting ESE. In these five patients, the ESE was very recalcitrant to antiseizure therapy. 
Once again, this study provided more evidence that seizures may be masked by medications 
used with TH, which was most likely neuromuscular blockade in this study.  

When using EEG in post cardiac arrest patients treated with TH, the question arises whether 
to use continuous (cEEG) monitoring versus spot monitoring. A few studies will be 
discussed that show positive findings in support of continuous monitoring. Cloostermans et 
al. looked at 56 patients having undergone TH post cardiac arrest (34). They found that of 
the 29 patients that had poor outcomes, those  with CPC scores between 3-5 all died. This 
study utilized continuous EEG monitoring on the patients, and found that prognostication 
could be differentiated by analyzing whether the patient had a continuous pattern on the 
EEG or low voltage, isoelectric, or burst suppression patterns. Those patients that 
succumbed in this trial did not display continuous patterns on their cEEG. Rossetti et al. 
looked at 34 post cardiac arrest TH patients receiving cEEG monitoring (35). They found 
that the survivors in this study, all 19 out of 34, had reactive backgrounds. As stated earlier, 
this can be elicited with a noxious stimulus during cEEG, and observing the background 
activity. Nonreactivity of EEG background in this study was predictive of 100% mortality. 
Rossetti et al. studied 111 consecutive TH treated comatose patients, and found that 
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use of TH can also cause very low voltage EEG backgrounds, which may be due in part to 
neurogenic medications. Of the various coma patterns that can be seen post cardiac arrest, 
burst-suppression patterns with little or no reactivity carry the worst prognosis (28). Alpha 
coma patterns can be seen in 10-15% of patients suffering from anoxic brain injury. Another 
important aspect of the EEG is the reactivity that can be seen when evaluating patients. This 
reactivity correlates with the activity of the reticular activating system. One can determine 
reactivity by providing a noxious stimulus and noting the reactivity of the EEG pattern. This 
aspect of reactivity will be discussed later in the chapter. The American Heart Association 
has recommended an early one-time EEG or continuous EEG monitoring to look for seizures 
in TH patients post cardiac arrest. The reason for this is due to clinical seizures being 
obscured by neuromuscular blockade or high doses of sedatives. It should also be 
recognized that seizures during TH can be mistaken as shivering (27). Prior animal studies 
have shown that TH is protective against seizures, and Orlowski et al. (29) and Corry et al. 
(30) have shown that TH can be used to successfully treat seizures in adult and pediatric 
patients alike. One of the proposed mechanisms for this protective effect is that hypothermia 
increases the epileptogenic threshold, making it more difficult for seizures to occur. On the 
one hand, although therapeutic hypothermia and sedative therapy may protect against 
seizures, the use of neuromuscular blockade may mask seizures and hamper their diagnosis 
and treatment (26).  

There have been multiple different grading scales proposed with regards to EEG in order to 
help predict the outcomes of comatose survivors of cardiac arrest (31). Most popular of these 
was developed in 1965 by Hockaday et al. With this scale, the EEG was divided into 5 
distinct grades. The grades were based upon both the dominant frequency of the EEG and 
whether unfavorable patterns were present. It has since been shown that unfavorable 
patterns on EEG correlate with poor prognosis. As stated earlier, the patterns seen most 
frequently to correlate with poor prognosis are burst suppression and electrocerebral 
silence. Studies have shown that comatose survivors of cardiac arrest, who initially have 
poor EEG grades, eventually shift to better EEG grades over time. This presents an 
important component of EEG monitoring, in which the changes are dynamic, and can 
progress either favorably or unfavorably over time. In the past, one of the most agreed upon 
poor prognosis EEG patterns, when present greater than 24 hrs post cardiac arrest, was 
electrocerebral silence. It should be known that this is very difficult to achieve in an ICU 
setting due to electrical interference from multiple sources. This being said, when 
electrocerebral silence is present, it is very significant for poor prognosis. Unfortunately, the 
data regarding electrocerebral silence comes from pre-TH studies.  

When evaluating the EEG findings in TH patients, one can divide the patterns into 
malignant, benign and uncertain (9). When discussing malignant patterns, we are mainly 
concerned with suppression, burst suppression, nonreactivity, and generalized periodic 
complexes. The difficulty with using EEG consistently throughout ICU’s is the lack of a 
consistent classification system and the lack of consistency regarding how soon and how 
frequent EEG’s should be performed post cardiac arrest. Many times after anoxic injury, 
periodic patterns such as periodic lateralized epileptiform discharges (PLEDs) and bilateral 
independent lateralized epileptiform discharges (BiPLEDs) are seen on EEG (28). It is 
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important to be able to differentiate between these periodic epileptiform patterns and actual 
seizures, as intensive treatment of seizures can improve patient outcomes. When reviewing 
the EEG patterns, one must make sure that there are no concomitant medication effects. 
Sufficient time after cessation of medications should be given before using EEG changes for 
prognostication. Since as many as 44% of post-cardiac arrest patients can suffer from seizures, 
it becomes hard to tell whether seizures are the contributing factor of poor prognosis, or if the 
seizures are markers of irreversibly damaged brains (32). Mani et al. retrospectively looked at 
38 comatose post cardiac arrest patients that underwent TH, and found that those patients that 
exhibited seizures did so within 24 hours. Many of these patients had their seizures during the 
maintenance phase of TH. The seizures were refractory to treatment and associated with poor 
short term neurological outcome. From this study, not only did it suggest that early 
epileptiform activity can help with prognostication of comatose post cardiac arrest patients in 
the first 24-36 hrs post arrest, but also suggested that early monitoring of these patients for 
seizure activity is a necessity. It should be noted that the incidence of seizures in post cardiac 
arrest TH patients is probably underestimated as many of the medications used for TH have 
antiepileptogenic properties. A small study by Rossetti et al. looked at six patients that 
developed post anoxic status epilepticus (PSE) after cardiac arrest and treatment with TH, who 
eventually improved beyond a vegetative state (33). PSE is comprised of prolonged myoclonic 
or convulsive seizures or nonconvulsive status epilepticus. This study suggested that when 
these patients retain their brainstem reflexes, cortical SSEP, and background reactivity (will be 
discussed in later paragraphs), PSE can be associated with improvement beyond a vegetative 
state. In another study by Legriel et al., 19 out of 51 patients treated with TH exhibited 
myoclonus (26). As has been reported in the past, patients that are rewarmed too quickly may 
develop rebound seizures, and this may have been the case in this study. There were also five 
patients in this study that developed electrographical status epilepticus (ESE), and all five 
passed away. This is consistent with prior studies showing poor prognosis in patients post TH 
exhibiting ESE. In these five patients, the ESE was very recalcitrant to antiseizure therapy. 
Once again, this study provided more evidence that seizures may be masked by medications 
used with TH, which was most likely neuromuscular blockade in this study.  

When using EEG in post cardiac arrest patients treated with TH, the question arises whether 
to use continuous (cEEG) monitoring versus spot monitoring. A few studies will be 
discussed that show positive findings in support of continuous monitoring. Cloostermans et 
al. looked at 56 patients having undergone TH post cardiac arrest (34). They found that of 
the 29 patients that had poor outcomes, those  with CPC scores between 3-5 all died. This 
study utilized continuous EEG monitoring on the patients, and found that prognostication 
could be differentiated by analyzing whether the patient had a continuous pattern on the 
EEG or low voltage, isoelectric, or burst suppression patterns. Those patients that 
succumbed in this trial did not display continuous patterns on their cEEG. Rossetti et al. 
looked at 34 post cardiac arrest TH patients receiving cEEG monitoring (35). They found 
that the survivors in this study, all 19 out of 34, had reactive backgrounds. As stated earlier, 
this can be elicited with a noxious stimulus during cEEG, and observing the background 
activity. Nonreactivity of EEG background in this study was predictive of 100% mortality. 
Rossetti et al. studied 111 consecutive TH treated comatose patients, and found that 
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unreactive EEG background was a strong and independent risk factor for poor prognosis 
and mortality (5). One important factor that makes this study stand out from others is that it 
was exempt from the ‘self-fulfilling prophecy’. Background EEG reactivity was not part of 
the decision making process of the physicians managing these patients, thus proving 
reactivity to be robust prognosticator. What may be of even more use in the era of TH is the 
use of amplitude integrated EEG (aEEG). aEEG is simple to apply in critical care patients 
and also easy to learn how to read. Rundgren et al. conducted studies in 2006 and 2010 
utilizing aEEG. In 2006, they showed that all patients with continuous pattern on aEEG 
regained consciousness. Those with mixed patterns (continuous and discontinuous) did not 
all regain consciousness (36). The 2010 study was a prospective observational study in 
which they assessed 95 patients treated with TH post cardiac arrest with both EEG and 
aEEG (37). The underlying need for this study stemmed from previous evidence showing 
that TH patients often receive sedatives, analgesics, and muscle relaxants, whose effects are 
prolonged due to TH itself. It is known that TH decreases the metabolic rate of the body and 
the clearance of these drugs. Because of this effect, TH patients do not have a reliable exam 
during the first 24-72 hrs post cardiac arrest. In studies that claim to be able to prognosticate 
based on the neurological exam within the first 24 hrs, one must take into consideration that 
these patients may have received less neurogenic medications. With the use of these 
medications in TH patients, as written earlier, clinical seizures may be masked. In this study 
by Rundgren et al., continuous EEG pattern was defined as a pattern showing continuous 
cortical activity, with delta and/or theta and/or alpha frequency waveforms in the original 
EEG. In this study, patients that started out with, or developed into, a continuous EEG pattern 
had a higher propensity to recover their consciousness. They also found that patients 
exhibiting a burst suppression pattern at any time during their monitoring were more likely to 
succumb to death or continue their comatose state. In this study, having or developing a 
continuous pattern on EEG/aEEG during therapeutic hypothermia has a PPV of 87-91%. The 
reason flat EEG/aEEG pattern was not associated with a poor prognosis in this study, was due 
to 3 patients recovering neurological function with flat aEEG patterns. All 22 patients 
exhibiting burst suppression pattern at any time during their admission on their EEG either 
remained unconscious or passed away. In this study, ESE was observed in 27% of the patients. 
It has been described in the literature that postanoxic status epilepticus has mortality rates that 
are close to 100%. The patients with ESE that recovered consciousness showed that the ESE 
arose from a continuous background, which possibly suggests that a continuous background 
portends to a favorable prognosis, even if ESE arises from it. Lastly, myoclonic status 
epilepticus (MSE) is a common finding post cardiac arrest (14). It appears clinically as either 
spontaneous or constant myoclonus. Various studies have found conflicting results, with some 
patients never regaining consciousness after MSE, and others actually regaining consciousness. 
From these findings, MSE can not be used to invariably predict poor prognosis.  

5. SSEP 

The second electrophysiological application that has shown usefulness in prognostication 
for post cardiac arrest TH patients is somatosensory evoked potentials (SSEP). SSEP consists 
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of a series of waveforms and reflects neural structures. SSEP recordings are noninvasive and 
can be easily recorded at the bedside in ICU settings (38). Normally, SSEP requires a 
stimulus that provides an ipsilateral thumb twitch. With the use of TH and the concomitant 
muscle relaxants used, the intensity of the stimulus needs to be stronger, such that an 
ipsilateral supraclavicular response is elicited, as opposed to the normal ipsilateral thumb 
twitch. There are three main stimulation 1 sites to elicit SSEP: median nerve at wrist, 
common peroneal nerve at knee, and posterior tibial nerve at the ankle. Abnormal SSEP’s 
can signify dysfunction at various points along the neural axis, including peripheral nerve, 
plexus, nerve root, spinal cord, brain stem, thalamocortical projections, and primary 
somatosensory cortex. With regards to post cardiac arrest brain injury, SSEP’s are used to 
mainly evaluate the latter three. SSEP’s are noted by their deflection and their latency, 
where positive deflection is denoted as P and negative as N. The number following the 
deflection notation signifies the latency of the evoked potential. When dealing with 
prognostication, the objective of SSEP is to determine if there will be return of cerebral 
function. The N20 peak is felt by most to represent the hand area of the somatosensory 
cortex. It originates in the posterior bank of the central sulcus and is not influenced by drugs 
and metabolic derangements.  

With regards to TH and the median nerve N20 response, more studies are being published 
each year, proving its utility. Prior to these studies, the AAN guidelines stated that bilateral 
absence of median nerve N20 response between 24 to 72 hrs post cardiac arrest accurately 
predicted poor outcomes. In 2010, the AHA post cardiac arrest care guidelines stated the 
same, for patients greater than 24 hrs post cardiac arrest; however, both of these guidelines 
were based on non-TH studies. These findings were confirmed by Zandbergen et al. in their 
own analysis in non-TH patients, from which they recommended that outcome predictions 
be made at least 72 hrs after onset of coma. (28). In 2000, Rothstein et al. performed a meta-
analysis of 16 studies, covering 572 patients (39). Of these, 229 patients had absent N20 
responses, and none of them regained wakefulness. Although multiple studies have shown 
that absent N20 response is associated with poor outcome, it should be noted that the 
presence of N20 response does not always correlate with arousal from coma (9). Tiainen et 
al. performed a prospective, randomized controlled trial, looking at 60 patients, which was a 
substudy of the landmark European Hypothermia After Cardiac Arrest study in 2002 (38). 
In this small study of 60 patients, SSEP was compared between TH and non-TH patients. It 
was found that although TH increases the latency of the median nerve SSEP, the N20 SSEP 
is preserved in TH. Fortunately the cortical N20 response is only abolished at a temperature 
of 20 degrees Celsius. Leithner et al. retrospectively studied 112 post cardiac arrest patients 
treated with TH and having undergone SSEP testing (40). The SSEP.’s were recorded 24 hrs 
post resuscitation, and of the 36 patients that had absent bilateral N20 responses, 35 had 
poor outcomes. One patient recovered and one patient had barely detectable N20 responses. 
Both of these patients had good outcomes and recovered their N20 responses, which brings 
up the issue of when SSEP testing is most appropriate post cardiac arrest. In the patient with 
absent N20 responses and good outcome, the patient had severely prolonged peripheral 
SSEP’s, that were felt due to the patient’s underlying alcoholism and peripheral neuropathy. 
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unreactive EEG background was a strong and independent risk factor for poor prognosis 
and mortality (5). One important factor that makes this study stand out from others is that it 
was exempt from the ‘self-fulfilling prophecy’. Background EEG reactivity was not part of 
the decision making process of the physicians managing these patients, thus proving 
reactivity to be robust prognosticator. What may be of even more use in the era of TH is the 
use of amplitude integrated EEG (aEEG). aEEG is simple to apply in critical care patients 
and also easy to learn how to read. Rundgren et al. conducted studies in 2006 and 2010 
utilizing aEEG. In 2006, they showed that all patients with continuous pattern on aEEG 
regained consciousness. Those with mixed patterns (continuous and discontinuous) did not 
all regain consciousness (36). The 2010 study was a prospective observational study in 
which they assessed 95 patients treated with TH post cardiac arrest with both EEG and 
aEEG (37). The underlying need for this study stemmed from previous evidence showing 
that TH patients often receive sedatives, analgesics, and muscle relaxants, whose effects are 
prolonged due to TH itself. It is known that TH decreases the metabolic rate of the body and 
the clearance of these drugs. Because of this effect, TH patients do not have a reliable exam 
during the first 24-72 hrs post cardiac arrest. In studies that claim to be able to prognosticate 
based on the neurological exam within the first 24 hrs, one must take into consideration that 
these patients may have received less neurogenic medications. With the use of these 
medications in TH patients, as written earlier, clinical seizures may be masked. In this study 
by Rundgren et al., continuous EEG pattern was defined as a pattern showing continuous 
cortical activity, with delta and/or theta and/or alpha frequency waveforms in the original 
EEG. In this study, patients that started out with, or developed into, a continuous EEG pattern 
had a higher propensity to recover their consciousness. They also found that patients 
exhibiting a burst suppression pattern at any time during their monitoring were more likely to 
succumb to death or continue their comatose state. In this study, having or developing a 
continuous pattern on EEG/aEEG during therapeutic hypothermia has a PPV of 87-91%. The 
reason flat EEG/aEEG pattern was not associated with a poor prognosis in this study, was due 
to 3 patients recovering neurological function with flat aEEG patterns. All 22 patients 
exhibiting burst suppression pattern at any time during their admission on their EEG either 
remained unconscious or passed away. In this study, ESE was observed in 27% of the patients. 
It has been described in the literature that postanoxic status epilepticus has mortality rates that 
are close to 100%. The patients with ESE that recovered consciousness showed that the ESE 
arose from a continuous background, which possibly suggests that a continuous background 
portends to a favorable prognosis, even if ESE arises from it. Lastly, myoclonic status 
epilepticus (MSE) is a common finding post cardiac arrest (14). It appears clinically as either 
spontaneous or constant myoclonus. Various studies have found conflicting results, with some 
patients never regaining consciousness after MSE, and others actually regaining consciousness. 
From these findings, MSE can not be used to invariably predict poor prognosis.  

5. SSEP 

The second electrophysiological application that has shown usefulness in prognostication 
for post cardiac arrest TH patients is somatosensory evoked potentials (SSEP). SSEP consists 
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of a series of waveforms and reflects neural structures. SSEP recordings are noninvasive and 
can be easily recorded at the bedside in ICU settings (38). Normally, SSEP requires a 
stimulus that provides an ipsilateral thumb twitch. With the use of TH and the concomitant 
muscle relaxants used, the intensity of the stimulus needs to be stronger, such that an 
ipsilateral supraclavicular response is elicited, as opposed to the normal ipsilateral thumb 
twitch. There are three main stimulation 1 sites to elicit SSEP: median nerve at wrist, 
common peroneal nerve at knee, and posterior tibial nerve at the ankle. Abnormal SSEP’s 
can signify dysfunction at various points along the neural axis, including peripheral nerve, 
plexus, nerve root, spinal cord, brain stem, thalamocortical projections, and primary 
somatosensory cortex. With regards to post cardiac arrest brain injury, SSEP’s are used to 
mainly evaluate the latter three. SSEP’s are noted by their deflection and their latency, 
where positive deflection is denoted as P and negative as N. The number following the 
deflection notation signifies the latency of the evoked potential. When dealing with 
prognostication, the objective of SSEP is to determine if there will be return of cerebral 
function. The N20 peak is felt by most to represent the hand area of the somatosensory 
cortex. It originates in the posterior bank of the central sulcus and is not influenced by drugs 
and metabolic derangements.  

With regards to TH and the median nerve N20 response, more studies are being published 
each year, proving its utility. Prior to these studies, the AAN guidelines stated that bilateral 
absence of median nerve N20 response between 24 to 72 hrs post cardiac arrest accurately 
predicted poor outcomes. In 2010, the AHA post cardiac arrest care guidelines stated the 
same, for patients greater than 24 hrs post cardiac arrest; however, both of these guidelines 
were based on non-TH studies. These findings were confirmed by Zandbergen et al. in their 
own analysis in non-TH patients, from which they recommended that outcome predictions 
be made at least 72 hrs after onset of coma. (28). In 2000, Rothstein et al. performed a meta-
analysis of 16 studies, covering 572 patients (39). Of these, 229 patients had absent N20 
responses, and none of them regained wakefulness. Although multiple studies have shown 
that absent N20 response is associated with poor outcome, it should be noted that the 
presence of N20 response does not always correlate with arousal from coma (9). Tiainen et 
al. performed a prospective, randomized controlled trial, looking at 60 patients, which was a 
substudy of the landmark European Hypothermia After Cardiac Arrest study in 2002 (38). 
In this small study of 60 patients, SSEP was compared between TH and non-TH patients. It 
was found that although TH increases the latency of the median nerve SSEP, the N20 SSEP 
is preserved in TH. Fortunately the cortical N20 response is only abolished at a temperature 
of 20 degrees Celsius. Leithner et al. retrospectively studied 112 post cardiac arrest patients 
treated with TH and having undergone SSEP testing (40). The SSEP.’s were recorded 24 hrs 
post resuscitation, and of the 36 patients that had absent bilateral N20 responses, 35 had 
poor outcomes. One patient recovered and one patient had barely detectable N20 responses. 
Both of these patients had good outcomes and recovered their N20 responses, which brings 
up the issue of when SSEP testing is most appropriate post cardiac arrest. In the patient with 
absent N20 responses and good outcome, the patient had severely prolonged peripheral 
SSEP’s, that were felt due to the patient’s underlying alcoholism and peripheral neuropathy. 
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It should be noted that the reason for these patients having good outcomes may not be due 
to truly absent N20 responses, but may be attributed to interobserver variability of SSEP 
readings, where it may be difficult to truly differentiate between absent and severely 
reduced responses. In 2009, Bouwes et al. performed a prospective multicenter cohort study 
to determine if absent N20 response during TH remains absent upon rewarming (41). In this 
study, poor outcome was defined by a GOS of 1-2. Out of 77 patients studied, 56% had poor 
outcome, and of the 13 patients with absent N20 responses, all had poor outcomes. 10 of the 
13 patients with absent N20 response survived to normothermia, and all ten of them 
retained the finding of absent N20 responses. This small study suggests that utilizing SSEP 
testing earlier during the TH process may be helpful in prognosticating for families. 
Although this small study showed that the absent N20 responses are retained after 
rewarming, it should also be known that the presence of a median nerve N20 response can 
be lost after cardiac arrest. This is most likely due to post CPR delayed hypo-perfusion. 
After cardiac arrest, the cerebral blood flow can drop by as much as 50%, which leads to 
secondary ischemia and necrosis. Thus, initially present N20 responses may vanish when 
tested > 24 hrs after cardiac arrest. These issues suggest that repeat SSEP testing should be 
done on post cardiac arrest patients treated with TH. From the literature that is available 
with the use of TH, it seems apparent that median nerve N20 SSEP testing is a robust tool in 
prognostication, but once again, should be used in conjunction with other modalities.  

6. Biomarkers 

With regards to prognostication and post cardiac arrest patients, there are two biomarkers 
that have been studied the most – neuron specific enolase (NSE) and S100-B. S-100B is a 
homodimer protein found in glia and Schwann cells that binds calcium (42). It regulates 
apoptosis, outgrowth, and differentiation of neurons. S-100B is part of the S-100 calcium 
binding protein family, whose name is derived from the fact that it is 100% soluble in 
ammonium sulfate at neutral pH. It is known to induce the release of inflammatory 
cytokines which propagate brain damage. NSE on the other hand is a gamma gamma 
isomer of enolase. It is a cytoplasmic enzyme of glycolysis, and is released into the blood 
stream when brain damage occurs via damage to the blood brain barrier. Based on these 
properties of these biomarkers, it follows suit that decreasing S-100B levels suggest 
improved outcome presumably due to decreased release of inflammatory cytokines, and 
rising NSE levels are suggestive of poor outcome due to larger amounts of brain damage. 
NSE is the most studied of these two biomarkers. The 2006 AAN guidelines stated that 
serum levels of NSE > 33 ug/L at days 1 to 3 predicted poor outcome, in non-TH treated 
patients. Cronberg et al. looked at 111 consecutive TH patients in 2011 and found that all 17 
of the patients that did not regain consciousness had a NSE > 33ug/L (43). At the same time, 
in 2011, Blondin et al. provided a review article of the data available from prognostication 
studies, showing that with the use of TH, the cutoff levels for NSE varied, and the 
previously accepted level for 33ug/L was no longer valid (14). TH has been shown to 
decrease NSE levels, which correlates with improved outcomes. Multiple studies have 
attempted to find a ‘one size fits all’ cutoff level for NSE, but have yet to be successful, 
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mainly due to the small number of patients in these studies. Another issue is that NSE levels 
can be affected by time, laboratory assay, hemolysis, and hypothermia. The one aspect  most 
of these studies have in common is that a rising NSE level in TH patients does correlate with 
poor prognosis, and may be useful with other modalities to make life support decisions. 
Wolff et al. showed that patients that had quicker times to achieve goal temperature for TH 
had lower maximal NSE levels, supporting evidence that has shown that this approach to 
TH is beneficial to post cardiac arrest patients (44). One study that showed that S-100B may 
be superior to NSE for prognostication purposes was conducted by Shinozaki et al. in 2009 
(42). This multicenter prospective observational study followed blood samples taken 
immediately after admission, 6hrs post and 24 hrs post cardiac arrest. Bottiger et al. previously 
showed that post cardiac arrest patients exhibited hourly variation of S100-B (45). Although 80 
patients were found eligible for this study, only 45 of them received TH, making this study’s 
conclusions less valid for the current TH atmosphere. What this study showed was that ‘poor’ 
outcome patients had rising NSE levels, and steady S100-B levels. Those patients that had 
‘favorable’ outcomes had dropping S100-B levels. Oksanen et al. looked at 90 patients having 
suffered OHCA due to witnessed ventricular fibrillation, who underwent TH, and found that 
the formerly accepted cutoff level of < 33ug/L for NSE was only able to predict ‘poor’ outcome 
100% of the time at > 48 hrs post cardiac arrest (46). The cutoff level they found at 24 hrs was 
higher, 41 ug/L. From the data that this group gathered, they also found that the rise in NSE 
levels between 24 and 48 hrs could provide a moderate sensitivity for ‘poor’ prognostication. 
In 2009, Rundgren et al. studied a group of TH patients for 72 hrs post normothermia and 
found that a rise of NSE > 2ug/L between hrs 24 and 48 was indicative of poor outcome (47). 
Almaraz et al. provided a nice review of the current literature available regarding NSE cutoff 
levels and prognostication (48). They also noticed that there are limited studies available, 
various factors contribute to difficulty in finding a specific cut-off level for prognostication 
including different study populations, different definitions of poor outcome, difference in the 
laboratory assays and the timing of the when the levels are drawn. The range of cut-off values 
in studies to date range from 25 to 80 ug/L. One of the largest studies to date, by Reisinger et 
al., which included 227 patients, only had 20 patients that underwent TH, thus making it not 
applicable to current practices (49). Lastly, it should be known that reasons do exist for falsely 
elevated NSE levels including any process that destroys cells both intrinsic and extrinsic, as 
well as seizures (48).  

7. Bispectral index 

Bispectral index monitoring (BIS) is a processed EEG monitoring tool. It is a statistically 
based, empirically derived complex parameter that is based on EEG sub parameters. It 
provides a score between 0-100, where zero is electrocerebral silence and 100 is fully awake. 
For general anesthesia, the typical goal is 40-60 on BIS monitoring. Stammet et al. looked at 
45 patients in 2009 through a prospective, observational, unblinded study, and found that of 
the 14 patients that had a BIS of zero all had poor CPC scores (50). Although the BIS of zero 
correlated very well with poor prognosis, there were 16 patients without a BIS of zero, of 
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It should be noted that the reason for these patients having good outcomes may not be due 
to truly absent N20 responses, but may be attributed to interobserver variability of SSEP 
readings, where it may be difficult to truly differentiate between absent and severely 
reduced responses. In 2009, Bouwes et al. performed a prospective multicenter cohort study 
to determine if absent N20 response during TH remains absent upon rewarming (41). In this 
study, poor outcome was defined by a GOS of 1-2. Out of 77 patients studied, 56% had poor 
outcome, and of the 13 patients with absent N20 responses, all had poor outcomes. 10 of the 
13 patients with absent N20 response survived to normothermia, and all ten of them 
retained the finding of absent N20 responses. This small study suggests that utilizing SSEP 
testing earlier during the TH process may be helpful in prognosticating for families. 
Although this small study showed that the absent N20 responses are retained after 
rewarming, it should also be known that the presence of a median nerve N20 response can 
be lost after cardiac arrest. This is most likely due to post CPR delayed hypo-perfusion. 
After cardiac arrest, the cerebral blood flow can drop by as much as 50%, which leads to 
secondary ischemia and necrosis. Thus, initially present N20 responses may vanish when 
tested > 24 hrs after cardiac arrest. These issues suggest that repeat SSEP testing should be 
done on post cardiac arrest patients treated with TH. From the literature that is available 
with the use of TH, it seems apparent that median nerve N20 SSEP testing is a robust tool in 
prognostication, but once again, should be used in conjunction with other modalities.  

6. Biomarkers 

With regards to prognostication and post cardiac arrest patients, there are two biomarkers 
that have been studied the most – neuron specific enolase (NSE) and S100-B. S-100B is a 
homodimer protein found in glia and Schwann cells that binds calcium (42). It regulates 
apoptosis, outgrowth, and differentiation of neurons. S-100B is part of the S-100 calcium 
binding protein family, whose name is derived from the fact that it is 100% soluble in 
ammonium sulfate at neutral pH. It is known to induce the release of inflammatory 
cytokines which propagate brain damage. NSE on the other hand is a gamma gamma 
isomer of enolase. It is a cytoplasmic enzyme of glycolysis, and is released into the blood 
stream when brain damage occurs via damage to the blood brain barrier. Based on these 
properties of these biomarkers, it follows suit that decreasing S-100B levels suggest 
improved outcome presumably due to decreased release of inflammatory cytokines, and 
rising NSE levels are suggestive of poor outcome due to larger amounts of brain damage. 
NSE is the most studied of these two biomarkers. The 2006 AAN guidelines stated that 
serum levels of NSE > 33 ug/L at days 1 to 3 predicted poor outcome, in non-TH treated 
patients. Cronberg et al. looked at 111 consecutive TH patients in 2011 and found that all 17 
of the patients that did not regain consciousness had a NSE > 33ug/L (43). At the same time, 
in 2011, Blondin et al. provided a review article of the data available from prognostication 
studies, showing that with the use of TH, the cutoff levels for NSE varied, and the 
previously accepted level for 33ug/L was no longer valid (14). TH has been shown to 
decrease NSE levels, which correlates with improved outcomes. Multiple studies have 
attempted to find a ‘one size fits all’ cutoff level for NSE, but have yet to be successful, 
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mainly due to the small number of patients in these studies. Another issue is that NSE levels 
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of these studies have in common is that a rising NSE level in TH patients does correlate with 
poor prognosis, and may be useful with other modalities to make life support decisions. 
Wolff et al. showed that patients that had quicker times to achieve goal temperature for TH 
had lower maximal NSE levels, supporting evidence that has shown that this approach to 
TH is beneficial to post cardiac arrest patients (44). One study that showed that S-100B may 
be superior to NSE for prognostication purposes was conducted by Shinozaki et al. in 2009 
(42). This multicenter prospective observational study followed blood samples taken 
immediately after admission, 6hrs post and 24 hrs post cardiac arrest. Bottiger et al. previously 
showed that post cardiac arrest patients exhibited hourly variation of S100-B (45). Although 80 
patients were found eligible for this study, only 45 of them received TH, making this study’s 
conclusions less valid for the current TH atmosphere. What this study showed was that ‘poor’ 
outcome patients had rising NSE levels, and steady S100-B levels. Those patients that had 
‘favorable’ outcomes had dropping S100-B levels. Oksanen et al. looked at 90 patients having 
suffered OHCA due to witnessed ventricular fibrillation, who underwent TH, and found that 
the formerly accepted cutoff level of < 33ug/L for NSE was only able to predict ‘poor’ outcome 
100% of the time at > 48 hrs post cardiac arrest (46). The cutoff level they found at 24 hrs was 
higher, 41 ug/L. From the data that this group gathered, they also found that the rise in NSE 
levels between 24 and 48 hrs could provide a moderate sensitivity for ‘poor’ prognostication. 
In 2009, Rundgren et al. studied a group of TH patients for 72 hrs post normothermia and 
found that a rise of NSE > 2ug/L between hrs 24 and 48 was indicative of poor outcome (47). 
Almaraz et al. provided a nice review of the current literature available regarding NSE cutoff 
levels and prognostication (48). They also noticed that there are limited studies available, 
various factors contribute to difficulty in finding a specific cut-off level for prognostication 
including different study populations, different definitions of poor outcome, difference in the 
laboratory assays and the timing of the when the levels are drawn. The range of cut-off values 
in studies to date range from 25 to 80 ug/L. One of the largest studies to date, by Reisinger et 
al., which included 227 patients, only had 20 patients that underwent TH, thus making it not 
applicable to current practices (49). Lastly, it should be known that reasons do exist for falsely 
elevated NSE levels including any process that destroys cells both intrinsic and extrinsic, as 
well as seizures (48).  

7. Bispectral index 

Bispectral index monitoring (BIS) is a processed EEG monitoring tool. It is a statistically 
based, empirically derived complex parameter that is based on EEG sub parameters. It 
provides a score between 0-100, where zero is electrocerebral silence and 100 is fully awake. 
For general anesthesia, the typical goal is 40-60 on BIS monitoring. Stammet et al. looked at 
45 patients in 2009 through a prospective, observational, unblinded study, and found that of 
the 14 patients that had a BIS of zero all had poor CPC scores (50). Although the BIS of zero 
correlated very well with poor prognosis, there were 16 patients without a BIS of zero, of 
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which 11 died and 6 had poor neurological outcomes. Seder at al in 2010 looked at 83 TH 
patients, and evaluated both BIS and suppression ratio (51). Suppression ratio (SR) is the 
amount of isoelectric activity that is present. Poor outcome in this study was defined as a 
CPC score of 3-5, and patients that had low BIS values along with high SR values were 
associated with poor outcomes. Lastly, Leary et al. studied post cardiac arrest patients 
treated with TH after their neuromuscular blockade was in effect, in order to obtain accurate 
BIS levels (52). BIS values were taken at the initiation of TH, and at 12 and 24 hrs afterwards. 
Of the 62 patients studied, 16 of them had a BIS of zero within 24 hrs of TH and all 16 died. 
These studies suggest that for poor prognostication, BIS values of zero may be useful; 
however more robust studies are needed for validation.  

8. Conclusion 

As stated earlier, the parameters found in the AAN recommendations from 2006 were all 
determined in patients that did not undergo TH. From the literature thus far in the post TH 
era, the optimal timing for prognostication has yet to be fully elucidated. However, the 
literature reviewed in this chapter should be used as a new baseline regarding when and 
how to prognosticate post cardiac arrest patients having undergone TH. It must be 
recognized that drug clearance is reduced at lower core body temperatures. It should also be 
recognized that during TH, in order to prevent shivering and decrease cerebral metabolic 
rate, the use of analgesia, sedatives, and paralytics are standard of care and will delay 
prognostication due to delayed clearance (1). Friberg and Rundgren et al. have suggested 
that the neurological exam for prognostication post cardiac arrest be supplemented by at 
least one other modality, and be performed 72 hrs post arrest (53). The AHA guidelines also 
recommend that a minimum of 72 hrs should transpire post cardiac arrest and return of 
spontaneous circulation before utilizing any modalities for prognostication in patients 
having undergone TH (6). Fugate et al. have shown in their studies that a majority of their 
patients ultimately wake up by day 3, which poses a question regarding the minority of 
patients that do not awaken (23). How long should one wait post cardiac arrest and post TH 
before being able to provide accurate prognostication? It would seem that waiting at least 72 
hours post rewarming and 72 hours post cessation of any analgesia, sedation, or 
neuromuscular blocking agents, is a good start, however, as stated in multiple studies thus 
reviewed, the neurological exam must be accompanied by at least one other modality. EEG 
has a robust amount of evidence with regard to prognostication in the post cardiac arrest 
TH patients (27,34,35). It can be safely stated that EEG should be performed as early as 
possible post cardiac arrest, and electrographical seizures should be treated aggressively 
(14). The use of aEEG appears to have a solid place in prognostication of TH treated 
patients, and is simple modality to adopt in the neurocritical care setting (36,37). Biomarkers 
such as NSE and S-100B, in the post TH era, do not seem to be able to accurately predict 
outcome consistently, seen with multiple studies having various cutoff levels for 
prognostication (48). Finally the possibility exists for BIS monitoring to play a role in early 
prognostication during hypothermia, but more studies are needed at this time to consider 
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this technique standard of care (50-52). A concern that arises with setting specific time limits 
for prognostication is regarding the case reports of patients that have regained 
consciousness well over 72 hrs post cardiac arrest. When assessing these case reports, the 
specifics regarding the modalities that were used for prognostication need to be ascertained, 
in order to take these case reports at their face value. Making changes in guidelines for 
prognostication based on case reports and/or studies with small numbers of patients can 
cause significant strain on the healthcare system with little benefit for the patient and their 
families. Thus, there still needs to be larger, more robust studies, to validate the optimal 
timing and the various prognostication modalities discussed in this chapter.    
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treated with TH after their neuromuscular blockade was in effect, in order to obtain accurate 
BIS levels (52). BIS values were taken at the initiation of TH, and at 12 and 24 hrs afterwards. 
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These studies suggest that for poor prognostication, BIS values of zero may be useful; 
however more robust studies are needed for validation.  
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literature reviewed in this chapter should be used as a new baseline regarding when and 
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least one other modality, and be performed 72 hrs post arrest (53). The AHA guidelines also 
recommend that a minimum of 72 hrs should transpire post cardiac arrest and return of 
spontaneous circulation before utilizing any modalities for prognostication in patients 
having undergone TH (6). Fugate et al. have shown in their studies that a majority of their 
patients ultimately wake up by day 3, which poses a question regarding the minority of 
patients that do not awaken (23). How long should one wait post cardiac arrest and post TH 
before being able to provide accurate prognostication? It would seem that waiting at least 72 
hours post rewarming and 72 hours post cessation of any analgesia, sedation, or 
neuromuscular blocking agents, is a good start, however, as stated in multiple studies thus 
reviewed, the neurological exam must be accompanied by at least one other modality. EEG 
has a robust amount of evidence with regard to prognostication in the post cardiac arrest 
TH patients (27,34,35). It can be safely stated that EEG should be performed as early as 
possible post cardiac arrest, and electrographical seizures should be treated aggressively 
(14). The use of aEEG appears to have a solid place in prognostication of TH treated 
patients, and is simple modality to adopt in the neurocritical care setting (36,37). Biomarkers 
such as NSE and S-100B, in the post TH era, do not seem to be able to accurately predict 
outcome consistently, seen with multiple studies having various cutoff levels for 
prognostication (48). Finally the possibility exists for BIS monitoring to play a role in early 
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this technique standard of care (50-52). A concern that arises with setting specific time limits 
for prognostication is regarding the case reports of patients that have regained 
consciousness well over 72 hrs post cardiac arrest. When assessing these case reports, the 
specifics regarding the modalities that were used for prognostication need to be ascertained, 
in order to take these case reports at their face value. Making changes in guidelines for 
prognostication based on case reports and/or studies with small numbers of patients can 
cause significant strain on the healthcare system with little benefit for the patient and their 
families. Thus, there still needs to be larger, more robust studies, to validate the optimal 
timing and the various prognostication modalities discussed in this chapter.    
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1. Introduction 

1.1. Overview of drug disposition and response in critically ill patients  

Therapeutic hypothermia has been growing in use over the past several years. Proven 
efficacy of therapeutic hypothermia in pediatric hypoxic-ischemic encephalopathy (HIE) 
patients and adult out-of-hospital cardiac arrest (CA) patients has led to expanding clinical 
implementation in both large and small hospitals. Furthermore, its use to control 
intracranial pressure (ICP) in brain injured patients, as well as ongoing experimental studies 
for a variety of other conditions, have led to increased use of therapeutic hypothermia in the 
intensive care unit (ICU). With increased implementation comes a growing need to 
understand the ramifications of therapeutic hypothermia on other important factors of ICU 
care. One such factor is drug disposition and efficacy changes in the hypothermic patient. 
Specifically, clinical practitioners have postulated the question, “Should drug doses be 
altered during or after cooling in patients receiving therapeutic hypothermia?” The purpose 
of this chapter is to explore this question and present the current understanding of the 
effects of mild therapeutic hypothermia on the processes of absorption, distribution, 
metabolism and excretion, as well as provide specific evidence of drugs with altered and 
unaltered pharmacokinetics.  

The question of altered drug disposition and response in patients receiving therapeutic 
hypothermia is particularly important due to the wide array of drugs used in critically ill 
patients. Critically ill patients are known to have a high rate of adverse drug events. This 
high rate of adverse drug events is due, in part, to the plethora of medications used for 
analgesia/sedation, paralysis, control of seizure activity, blood pressure, treatment of 
arrhythmias, control of blood clotting, antibiotics, and delirium prevention. Table 1 provides 
a list and details the pharmacokinetic characteristics of the medications commonly 
administered to critically ill patients organized by class of compound. From this table, it is 
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clear that many of these drugs have large volumes of distribution, are extensively bound to 
plasma proteins, and require hepatic metabolism as a primary mechanism of elimination. 

2. Physiologic effects of therapeutic hypothermia  
Before discussing the specific effects of therapeutic hypothermia on drug disposition and 
response, it is important to first recognize the general physiologic changes that occur in 
therapeutic hypothermia patients during induction, maintenance, and rewarming. In a 
broad sense, therapeutic hypothermia is defined as a core temperature less than 35.0C. 
Moreover, there are different degrees of hypothermia which incur a range of 
neuroprotection and adverse physiologic effects. Hypothermia can be divided based on the 
degree of cooling and include mild hypothermia, moderate hypothermia, and severe 
hypothermia. It is generally accepted that mild hypothermia occurs when a subject is cooled 
to a temperature of 32-34C whereas moderate hypothermia is at a temperature range of 30 – 
32C. Severe, or “deep” hypothermia, is defined as cooling to a temperature below 30C. 
Furthermore, therapeutic hypothermia undergoes different lengths of cooling depending on 
the subject population. Adult cardiac arrest patients typically undergo therapeutic 
hypothermia for 24-48 hours, whereas neonates with HIE are cooled for 72 hours. The 
duration of cooling is largely based on the design of randomized control trials which 
demonstrated outcome benefits. 

Although these temperatures tend to be generally accepted, it is important to note that these 
categories can be arbitrary across studies and require verification of temperature and 
duration in the currently published literature. In order to normalize the temperatures 
discussed in this chapter, we have focused predominately on the effects seen within mild 
hypothermia (32-34C), since this is the clinically relevant temperature range that has been 
proven to afford neuroprotection without adverse physiologic consequences to patients in 
the ICU.  

a. Cardiovascular effects 

Hemodynamic Effects: Hypothermia has been linked to changes in myocardial function. Mild 
hypothermia induces a decrease in heart rate, but produces an overall increase in the 
contractility of the heart in sedated patients. Systolic function will improve, but diastolic 
function may decrease. Some patients may experience an increase in blood pressure while 
others may see no change in blood pressure. Overall, cardiac output will decrease along 
with the heart rate. However, the subsequent hypothermia-induced decrease in metabolic 
demand tends to equal or exceed the decrease in cardiac output, thus keeping the balance 
between supply and demand constant. Generally, cold diuresis occurs early during cooling 
and is of a relatively short duration.  

In some cases, the heart rate may be artificially increased by drugs or external pacing. 
However, the effect of hypothermia on myocardial contractility has convoluted results 
under artificial stimulation. Two pre-clinical studies showed that under normothermic 
conditions an increase in heart rate led to an increase in cardiac output and myocardial 
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contractility. In contrast, when heart rate was increased under mild hypothermic conditions 
there was a decrease in myocardial contractility. The same results were reported in a clinical 
study in patients undergoing cardiac surgery. When heart rate was not increased artificially, 
mild hypothermia improved myocardial contractility. Thus, in most patients heart rate 
should be allowed to decrease with temperature without any serious adverse complications. 

Electrocardiographic Effects: Mild hypothermia has also been associated with abnormal heart 
rhythms. During cooling, hypothermia causes an increase in plasma norepinephrine levels 
and activation of the sympathetic nervous system. This leads to constriction of peripheral 
vessels and a shift of the blood from small, peripheral veins to centrally located veins in the 
core compartment of the body. Ultimately, this results in an increase in venous return which 
leads to mild sinus tachycardia. As temperature continues to drop even further below 35C, 
the heart rate begins to slow to a below normal rate eventually leading to what is known as 
sinus bradycardia. The heart rate will continue to decrease progressively as temperature 
drops to 33C and below. The mechanism behind this is a decrease in the rate of 
spontaneous depolarization of cardiac cells in combination with prolonged duration of 
action potentials. These electrocardiogram changes usually do not require treatment and in 
most cases a patient’s heart rate should be allowed to decrease with cooling. 

Furthermore, some studies have linked hypothermia to an increased risk for arrhythmias. 
However, hypothermia-induced arrhythmias generally only apply to moderate to deep 
hypothermia, particularly when temperatures reach less than 30°C. During deep 
hypothermia, a patient is at higher risk to develop atrial fibrillation or ventricular fibrillation 
if temperatures reach as low as 28°C. Since temperatures are maintained at greater than 
30°C in the ICU, few cases of hypothermia-induced arrhythmias have been observed in 
clinical trials evaluating the safety of mild therapeutic hypothermia.  

b. Renal effects 

Therapeutic hypothermia also has physiologic effects on renal function. During cooling, an 
increase in urinary output, known as cold diuresis, may occur. Cold diuresis results from a 
combination of an increase in venous return, a decrease in antidiuretic hormone, tubular 
dysfunction, and decreased levels of antidiuretic hormone and renal antidiuretic hormone 
receptor levels. 

Renal elimination can be divided into passive filtration, active tubular secretion and active 
tubular reabsorption. Passive glomerular filtration does not seem to be affected by 
therapeutic hypothermia. One clinical study investigated the effects of mild hypothermia on 
renal filtration by measuring serum creatinine levels and creatinine clearance in subjects 
with and without hypothermic treatment. The study found no change in creatinine 
clearance between the two groups and concluded that cooling does not impair renal 
filtration.  

Although passive processes of renal filtration do not seem to be significantly altered, some 
published evidence does suggest that the active processes of tubular secretion and 
reabsorption may be altered by mild hypothermia. To date, the effect of therapeutic 
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contractility. In contrast, when heart rate was increased under mild hypothermic conditions 
there was a decrease in myocardial contractility. The same results were reported in a clinical 
study in patients undergoing cardiac surgery. When heart rate was not increased artificially, 
mild hypothermia improved myocardial contractility. Thus, in most patients heart rate 
should be allowed to decrease with temperature without any serious adverse complications. 

Electrocardiographic Effects: Mild hypothermia has also been associated with abnormal heart 
rhythms. During cooling, hypothermia causes an increase in plasma norepinephrine levels 
and activation of the sympathetic nervous system. This leads to constriction of peripheral 
vessels and a shift of the blood from small, peripheral veins to centrally located veins in the 
core compartment of the body. Ultimately, this results in an increase in venous return which 
leads to mild sinus tachycardia. As temperature continues to drop even further below 35C, 
the heart rate begins to slow to a below normal rate eventually leading to what is known as 
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reabsorption may be altered by mild hypothermia. To date, the effect of therapeutic 
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hypothermia on the active process of tubular secretion has only been studied preclinically in 
rats. This study used fluorescein isothiocyanate (FITC)-dextran to measure glomerular 
filtration and phenolsulfonphthalein (PSP) to measure renal tubular secretion in mildly 
hypothermic versus normothermic rats. The results showed no change in FITC-dextran 
clearance, but a significant change in the renal clearance of PSP. These results provide 
further evidence that the passive process of renal filtration is unaffected by mild 
hypothermia, whereas, active renal tubular secretion is decreased during cooling. There are, 
however, a limited number of studies published to date and whether or not these initial 
evaluations remain true clinically will depend on more extensive assessments of the effects 
of mild hypothermia on renal drug elimination processes. 

c. Electrolyte effects 

Therapeutic hypothermia also alters electrolyte levels such as magnesium, potassium, and 
phosphate. During cooling, electrolytes shift from the bloodstream to the intracellular 
compartment. The low level of electrolytes remaining in the bloodstream increases a 
patients risk for hypokalemia. During rewarming, the opposite effect is seen and potassium, 
as well as other electrolytes, is released back into the bloodstream from the intracellular 
compartment. If the patient is rewarmed too quickly, potassium levels will increase abruptly 
in the bloodstream and the patient may become hyperkalemic. To avoid hyperkalemia, a 
slow and consistent rewarming period is necessary to allow the kidneys to excrete the excess 
potassium. Furthermore, frequent lab electrolyte assessments are needed to account for 
shifts in systemic electrolyte concentrations.  

d. Body metabolism & drug clearance effects 

Hypothermia has been shown to decrease the metabolic rate by approximately 8% per 1C 
drop in body temperature. A similar decrease in oxygen consumption and carbon dioxide 
production is observed. This decrease in metabolic rate arises from a global decrease in the 
rate of drug metabolism by the liver because the majority of the metabolic reactions in the 
liver are enzyme-mediated. The rate of these enzyme-mediated reactions is highly 
temperature sensitive; thus the rate of these reactions is significantly slowed during 
hypothermia. Hypothermia-induced reductions in clearance have been shown for a number 
of commonly used ICU sedatives such as propofol; opiates such as fentanyl and morphine; 
midazolam; neuromuscular blocking agents such as vecuronium and rocuronium; and other 
drugs such as phenytoin (Refer to Table 1). The specific alterations in drug metabolism and 
clearance will be further addressed in the upcoming sections of this chapter.  

e. Gastrointestinal effects 

Gastrointestinal (GI) motility decreases with mild hypothermia. In some cases, decreased 
motility leads to mild ileus which typically occurs at temperatures less than 32°C. Other 
physiological factors play a large role in the extent to which drugs and nutrients are 
absorbed across the gut wall. As with drug excretion in the kidney, drug absorption across 
the intestinal membranes depends primarily on passive diffusion with significant 
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contribution by active transport mechanisms for some drugs. Also similar to the kidney, 
cooling was shown to affect active drug transport via the ABCB1 transporter, more 
commonly known as P-glycoprotein, in vitro. However, no affect of cooling has been 
reported on passive diffusion, thereby, suggesting that passive processes are unaltered and 
active drug transport may be impaired during cooling. Further physiological factors that 
affect absorption include the pH of various biological compartments and the blood flow at 
the site of absorption. The physiochemical properties of the drug, such as its pKa and lipid 
solubility, in combination with the compartmental pH, will influence the extent of which the 
drug will distribute into a given compartment. It is expected that some drugs will have 
increased absorption while others may have decreased absorption during cooling 
depending on pH, lipophilicity, and primary site of GI absorption; however, no studies to 
date have thoroughly evaluated if these anticipated changes occur in vivo under mild 
hypothermic conditions. The effects of hypothermia on drug disposition and response will 
be further addressed in the next section. 

 
ANALGESICS 
/SEDATIVE 

Primary Route of 
Elimination 

Pathway(s) of 
Elimination 

Volume of 
Distribution

Protein 
Binding 

Half-
life 

Fentanyl Hepatic: 75%  CYP3A4 4 - 6 L/kg 80-85% 3-12 hrs 
Propofol Hepatic: 90% CYP2B6/UGT 60 L/kg 95-99% 30-60 

mins 
Dexmedetomidine Hepatic: 95%  CYP2A6 118 - 152 L/kg94% 2-2.67 

hrs 
Remifentanil Hepatic: 90% Metabolized by  

esterases in blood  
and tissue 

0.35 L/kg 92% 3-10 
mins 

Midazolam Hepatic: 63 - 80%  CYP3A4  1 - 3.1 L/kg 
 

95% 1.8-6.4 
hrs 

Lorazepam Hepatic: 88%  Conjugation 1.3 L/kg 91%  9-19 hrs 
Ketamine Hepatic CYP3A4 (major), 

CYP2B6 & CYP2C9 
(minor) 

2 - 3 L/kg 47% 2-3 hrs 

Morphine Hepatic: 90% UGT2B7, CYP2C, 
CYP3A4 

1 - 4.7 L/kg 30-40% 2-3 hrs 

PARALYTICS      
Vecuronium Bile: 30 – 50% Renal:  

3 – 35% Hepatic: 15% 
CYP3A4 0.2 - 0.4 L/kg 60 - 80% 51-80 

mins 
Rocuronium Bile:  Extensive 

Renal:  33% 
Hepatic:   Minimal 

CYP2D6/Renal 0.25 L/kg  30% 84-131 
mins 

Pancuronium Renal:  50 – 70% Hepatic:  
15%  Bile:  5 – 10% 

Renal elimination & 
Bile 

0.19 L/kg 77-91% 1.5-2.7 
hrs 

ANTI-ARRYTHMICS      
Lidocaine Hepatic: 90% CYP1A2 (major), 

CYP3A4 (minor) 
1.5 L/kg 60-80% 1.5–2.0 

hrs 
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hypothermia on the active process of tubular secretion has only been studied preclinically in 
rats. This study used fluorescein isothiocyanate (FITC)-dextran to measure glomerular 
filtration and phenolsulfonphthalein (PSP) to measure renal tubular secretion in mildly 
hypothermic versus normothermic rats. The results showed no change in FITC-dextran 
clearance, but a significant change in the renal clearance of PSP. These results provide 
further evidence that the passive process of renal filtration is unaffected by mild 
hypothermia, whereas, active renal tubular secretion is decreased during cooling. There are, 
however, a limited number of studies published to date and whether or not these initial 
evaluations remain true clinically will depend on more extensive assessments of the effects 
of mild hypothermia on renal drug elimination processes. 

c. Electrolyte effects 

Therapeutic hypothermia also alters electrolyte levels such as magnesium, potassium, and 
phosphate. During cooling, electrolytes shift from the bloodstream to the intracellular 
compartment. The low level of electrolytes remaining in the bloodstream increases a 
patients risk for hypokalemia. During rewarming, the opposite effect is seen and potassium, 
as well as other electrolytes, is released back into the bloodstream from the intracellular 
compartment. If the patient is rewarmed too quickly, potassium levels will increase abruptly 
in the bloodstream and the patient may become hyperkalemic. To avoid hyperkalemia, a 
slow and consistent rewarming period is necessary to allow the kidneys to excrete the excess 
potassium. Furthermore, frequent lab electrolyte assessments are needed to account for 
shifts in systemic electrolyte concentrations.  

d. Body metabolism & drug clearance effects 

Hypothermia has been shown to decrease the metabolic rate by approximately 8% per 1C 
drop in body temperature. A similar decrease in oxygen consumption and carbon dioxide 
production is observed. This decrease in metabolic rate arises from a global decrease in the 
rate of drug metabolism by the liver because the majority of the metabolic reactions in the 
liver are enzyme-mediated. The rate of these enzyme-mediated reactions is highly 
temperature sensitive; thus the rate of these reactions is significantly slowed during 
hypothermia. Hypothermia-induced reductions in clearance have been shown for a number 
of commonly used ICU sedatives such as propofol; opiates such as fentanyl and morphine; 
midazolam; neuromuscular blocking agents such as vecuronium and rocuronium; and other 
drugs such as phenytoin (Refer to Table 1). The specific alterations in drug metabolism and 
clearance will be further addressed in the upcoming sections of this chapter.  

e. Gastrointestinal effects 

Gastrointestinal (GI) motility decreases with mild hypothermia. In some cases, decreased 
motility leads to mild ileus which typically occurs at temperatures less than 32°C. Other 
physiological factors play a large role in the extent to which drugs and nutrients are 
absorbed across the gut wall. As with drug excretion in the kidney, drug absorption across 
the intestinal membranes depends primarily on passive diffusion with significant 
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contribution by active transport mechanisms for some drugs. Also similar to the kidney, 
cooling was shown to affect active drug transport via the ABCB1 transporter, more 
commonly known as P-glycoprotein, in vitro. However, no affect of cooling has been 
reported on passive diffusion, thereby, suggesting that passive processes are unaltered and 
active drug transport may be impaired during cooling. Further physiological factors that 
affect absorption include the pH of various biological compartments and the blood flow at 
the site of absorption. The physiochemical properties of the drug, such as its pKa and lipid 
solubility, in combination with the compartmental pH, will influence the extent of which the 
drug will distribute into a given compartment. It is expected that some drugs will have 
increased absorption while others may have decreased absorption during cooling 
depending on pH, lipophilicity, and primary site of GI absorption; however, no studies to 
date have thoroughly evaluated if these anticipated changes occur in vivo under mild 
hypothermic conditions. The effects of hypothermia on drug disposition and response will 
be further addressed in the next section. 
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ANALGESICS 
/SEDATIVE 

Primary Route of 
Elimination 

Pathway(s) of 
Elimination 

Volume of 
Distribution

Protein 
Binding 

Half-
life 

Amiodarone Hepatic:  Extensive CYP3A4, CYP2C8 60 L/kg 33-65% 15-142 
days 

Digoxin Renal: 55 – 80%  
Bile: 6 – 8% 

glomerular filtration, 
PGP Transporter 

4 - 7 L/kg 25% 36-48 
hrs 

Diltiazem Hepatic: Extensive CYP450s 3 - 13 L/kg 77-93% 3-6.6 
hrs 

ANTI-
HYPERTENSIVE 

     

Verapamil Hepatic:  65 – 80% CYP3A4, CYP2C9/19; 
PGP Transporter 

3.8 L/kg 90% 3-7 hrs 

Enalapril Hepatic: 60 - 70% Hydrolyzed in liver, 
OATP/MRP2 
Transporter 

0.2 – 0.4 L/kg 50-60% 11 hrs 

Metoprolol Hepatic: 95% CYP2D6 5.6 L/kg 15% 3-7 hrs 
Valsartan Feces: 83%  

Hepatic: 7-13% 
Primarily excreted as 
unchanged drug; 
OATP/MRP2 
Transporter 

17 L/kg 95% 6 hrs 

Pressors and Iontropes      
Epinephrine Hepatic & other tissues Metabolized by MAO 

& COMT 
N/D N/D 2 mins 

Norepinephrine Hepatic & other tissues Metabolized by MAO 
& COMT 

N/D N/D 2 mins 

Phenylephrine GI Tract:  Extensive Metabolized by MAO 
& sulfotransferase 

40 L/kg N/D 2-3 hrs 

Milrinone Renal: 80 - 85% Primarily excreted as 
unchanged drug; 
Active tubular 
secretion  

0.3 - 0.47 L/kg70% 1-3 hrs 

Dopamine Hepatic: 80% Metabolized by MAO 
& COMT 

1.8 - 2.5 L/kg N/D 9 mins 

Vasopressin Hepatic and Renal:  
Extensive 

Metabolized by 
vasopressinases  

N/D N/D 10-20 
mins 

ANTI-CONVULSANT      
Phenytoin Hepatic:  Extensive   CYP2C9, CYP2C19; 

UGT Transporter 
0.5 - 1.0 L/kg 90% 7-42 hrs 

Phenobarbital Hepatic CYP2C9; UGT 
Transporter 

0.5 – 1.9 L/kg 20-45% 2–7 
days 

Carbamazepine Hepatic: 72% 
Feces: 28% 

CYP3A4, CYP2C9; 
PGP/UGT 
Transporters 

0.8 - 2 L/kg 76% 25-65 
hrs 

Keppra Renal: 66% Hepatic:  
minimal 

Primarily excreted as 
unchanged drug; 
some enzymatic 
hydrolysis 

0.7 L/kg < 10% 6-8 hrs 
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ANALGESICS 
/SEDATIVE 

Primary Route of 
Elimination 

Pathway(s) of 
Elimination 

Volume of 
Distribution

Protein 
Binding 

Half-
life 

ANTI-PLATELET/
CLOTTING 

     

Warfarin  Hepatic: 92% Primarily CYP2C9 
but also CYP2C19, 
CYP1A2, CYP2C8 & 
CYP3A4 

0.14 L/kg 99.5% 20-60 
hrs 

Heparin Hepatic Metabolized by 
heparinise; cleared 
via 
reticuloendothelial 
system 

0.07 L/kg N/D 1-2 hrs 

Dalteparin Hepatic:  extensive Primarily by 
desulfation and 
depolymerization 

0.04 – 0.06 
L/kg 

Low 3-5 hrs 

Aspirin Hepatic Hydrolyzed by 
esterases in the liver 
to active metabolite 

0.15 L/kg 50-80% 4.7-9 
hrs 

Clopidogrel Hepatic:  Extensive CYP2C19, CYP3A4, 
CYP1A2 and 
esterases 

 98% 6 hrs 

Rivaroxaban Hepatic: Extensive  
Renal:  36% 

CYP3A4/5 & CYP2J2 50 L/kg 92-95% 5-9 hrs 

Dabigatran Hepatic: 80%  esterases and 
glucuronidation  

50-70 L/kg 35% 12-17 
hrs 

MISCELLANEOUS      
Quetiapine Hepatic: 70 - 73% CYP3A4 6 - 14 L/kg 83% 6 hrs 
Haloperidol Hepatic: 50-60%  

Feces: 15% 
Glucuronidation; 
CYP3A4 

9.5 - 21.7 L/kg90% 18 hrs 

Gentamicin  
Renal: 80 - 100% 

glomerular filtration 0.2 - 0.3 L/kg <30% 1.5-3 
hrs 

Piperacillin / 
Tazobactam 

Renal:  70 - 90% glomerular filtration 
and tubular secretion

0.18 - 0.3 L/kg16% 36-80 
mins 

Vancomycin Renal:  40 - 100% glomerular filtration 0.2 - 1.25 L/kg30-55% 4 – 6 
hrs 

Pravastatin Hepatic:  Extensive Extensive first pass 
extraction by the liver

0.46 L/kg 43-55% 2.6-3.2 
hrs 

Pantoprazole Hepatic: 71% 
Feces: 18% 

CYP2C19/CYP3A4 11 - 24 L/kg 98% 1 hr 

Famotidine Renal: 25 - 70% glomerular filtration 
and tubular secretion

1 L/kg 15-20% 8-12 hrs 

Corticosteroids Hepatic CYP3A4 Varies Varies Varies 

Abbreviations:  N/D: not determined; mins: minutes; hrs: hours; PGP: P-glycoprotein; UGT: UDP-galactose 
transporter; MAO: monoamine oxydase; COMT: catechol-O-methyltransferase; OATP: organic anion transporter; 
MRP2: Multidrug resistance protein 2. 

Table 1. Pharmacokinetic characteristics of commonly used medications in critically ill patients 
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Table 1. Pharmacokinetic characteristics of commonly used medications in critically ill patients 
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3. The effects of therapeutic hypothermia on drug pharmacokinetics  
In general, hypothermia can affect drug disposition in various ways. We have previously 
discussed the physiological changes induced by hypothermia. These effects generally 
include decreases in active transport processes of drug absorption and excretion, no 
alteration in passive processes of drug disposition, and a general reduction in the overall 
rate of drug metabolism. Although these are general alterations, it is important to note that 
each of these alterations have been shown to be drug specific and requires particular 
evaluations of drug disposition in the cooled patient. In addition, hypothermia is also 
known to alter the different phases of drug pharmacokinetics. These phases can be broken 
up into absorption, distribution, metabolism and transport, and excretion. This section will 
highlight the effect of therapeutic hypothermia on each of these four phases, and the current 
research in the area. A summary of the current clinical studies on drug disposition is given 
in Table 2. In addition, Figure 1 summarizes the known physiologic and drug disposition 
effects of hypothermia and provides a statement of the level of evidence that currently exists 
in the published literature.  

a. Drug absorption effects 

Most drugs in the ICU are administered intravenously. However, some drugs are given 
non-intravenously, typically via oral administration. Drugs that are administered orally are 
subject to many factors that influence the rate and amount of drug that can be absorbed 
before it reaches the bloodstream. Some of these factors, such as disintegration and 
dissolution, are drug dependent and will vary among drugs based on their dosage form 
(tablet, capsule, etc) as well as the components that make up the drug (active ingredient, 
excipients, etc). Physiochemical properties of the drug, such as the pKa, lipophilicity, and 
solubility, will also influence the total amount of drug absorbed.  

As previously addressed in the physiology section, gastrointestinal motility is known to 
decrease with mild hypothermia. Furthermore, a decrease in temperature can decrease 
blood flow at the site of absorption, and increase or decrease the gastric and duodenal pH, 
all factors that will ultimately affect a drug’s absorption.  

Pre-clinical studies investigated the effects of moderate hypothermia on these physiological 
factors. Hypothermia is associated with a decrease in passive transport via ABCB1. Results 
demonstrated a 30-44% decrease in the absorption rate constant, ka, of pentobarbital, 
levodopa and uracil. However, these pre-clinical studies induced moderate or severe 
hypothermia. Therefore, the decrease in drug absorption may be more pronounced than 
what would be observed clinically under mild hypothermia.  

Overall, the effect of hypothermia on drug absorption may lead to a decreased rate and 
prolonged time to reach maximal concentration for some drugs. Furthermore, the time of 
onset may be delayed and the magnitude of the pharmacological response, due to these 
reduced concentrations, may be diminished. However, current studies do not accurately 
reflect the range of temperature cooling in vivo and further clinical studies need to be done 
to determine if the magnitude of alterations in drug absorption is clinical relevant. 
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Study Group Subject Population/
Temperature Cooled

Drug Route of 
Elimination

Concentration & PK 
Parameters 

Preclinical 
Studies 

 

Tortorici et al. 
[26] 

CA rats/30C Chlorzoxazone CYP2E1 ↓ CLs, t1/2, ke. ↑ Vd 

Koren et al. [45] Piglets/31.6C Fentanyl CYP3A4 ↑ Plasma 
concentrations, ↓ CLs,  
↓ Vd, ↑ half-life, 

Bansinath M. et 
al. [38] 

Dog/30C Morphine UGT, CYP2C, 
CYP3A4 

↑ Plasma 
concentrations, ↓ CL 
70%,t1/2β ↑ 2-fold, Vd↓ 

Satas S. et al. [40] Hypoxia newborn 
pig/35°C

Gentamicin Renal Filtration No change in CL 

Nishida K. et al. 
[19] 

Rats/32°C PSP Renal Tubular 
Secretion 

Total CL↓ 42%, plasma 
AUC↑ 2-fold, renal 
secretion ↓ 

Jin J et al. [39] In vitro kidney 
epithelial cell/32C 

Digoxin Renal Filtration Direction from B to A ↓ 
50% 

  

Clinical Studies  

Fukuoka N. et al. 
[32] 

TBI Patients/32-34C Midazolam CYP3A4 Plasma concentration↑, 
Vd↑ 83%, CL↓, Ke↓ 

Beaufort A. M. 
et al. [46] 

Neurosurgical 
Patients/30.4C

Rocuronium CYP2D6/Renal CL↓ to 51% 

Roka A. et al. 
[37] 

HIE Infants/33-34C Morphine UGT, CYP2C, 
CYP3A4

CL↓

Hostler D. et al. 
[33] 

Healthy 
volunteers/35.5-36.5°C

Midazolam CYP3A4 CL↓ 11% per degree 

Iida Y. et al. [25] Brain Damage 
Patients/34°C 

Phenytoin CYP2C9 & 
CYP2C19 

AUC↑ 180%, CL↓ 67% 
and Ke↓ 50% 

Liu X. et al. [20] HIE Infants/33.5°C Gentamicin Renal Filtration No change in CL 

Caldwell J. E. et 
al. [35] 

Volunteers/<35, 35-
35.9,36-36.9°C

Vecuronium CYP450s CL↓ 11.3% per degree 

  

Abbreviations: CL: Systemic clearance; AUC: Area under curve; Ke: Elimination rate; Vd: Volume of distribution; T1/2: 
Half- life. 

Table 2. Summary of the findings of clinical studies evaluating the effects of therapeutic hypothermia 
on drug disposition. 
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3. The effects of therapeutic hypothermia on drug pharmacokinetics  
In general, hypothermia can affect drug disposition in various ways. We have previously 
discussed the physiological changes induced by hypothermia. These effects generally 
include decreases in active transport processes of drug absorption and excretion, no 
alteration in passive processes of drug disposition, and a general reduction in the overall 
rate of drug metabolism. Although these are general alterations, it is important to note that 
each of these alterations have been shown to be drug specific and requires particular 
evaluations of drug disposition in the cooled patient. In addition, hypothermia is also 
known to alter the different phases of drug pharmacokinetics. These phases can be broken 
up into absorption, distribution, metabolism and transport, and excretion. This section will 
highlight the effect of therapeutic hypothermia on each of these four phases, and the current 
research in the area. A summary of the current clinical studies on drug disposition is given 
in Table 2. In addition, Figure 1 summarizes the known physiologic and drug disposition 
effects of hypothermia and provides a statement of the level of evidence that currently exists 
in the published literature.  

a. Drug absorption effects 

Most drugs in the ICU are administered intravenously. However, some drugs are given 
non-intravenously, typically via oral administration. Drugs that are administered orally are 
subject to many factors that influence the rate and amount of drug that can be absorbed 
before it reaches the bloodstream. Some of these factors, such as disintegration and 
dissolution, are drug dependent and will vary among drugs based on their dosage form 
(tablet, capsule, etc) as well as the components that make up the drug (active ingredient, 
excipients, etc). Physiochemical properties of the drug, such as the pKa, lipophilicity, and 
solubility, will also influence the total amount of drug absorbed.  

As previously addressed in the physiology section, gastrointestinal motility is known to 
decrease with mild hypothermia. Furthermore, a decrease in temperature can decrease 
blood flow at the site of absorption, and increase or decrease the gastric and duodenal pH, 
all factors that will ultimately affect a drug’s absorption.  

Pre-clinical studies investigated the effects of moderate hypothermia on these physiological 
factors. Hypothermia is associated with a decrease in passive transport via ABCB1. Results 
demonstrated a 30-44% decrease in the absorption rate constant, ka, of pentobarbital, 
levodopa and uracil. However, these pre-clinical studies induced moderate or severe 
hypothermia. Therefore, the decrease in drug absorption may be more pronounced than 
what would be observed clinically under mild hypothermia.  

Overall, the effect of hypothermia on drug absorption may lead to a decreased rate and 
prolonged time to reach maximal concentration for some drugs. Furthermore, the time of 
onset may be delayed and the magnitude of the pharmacological response, due to these 
reduced concentrations, may be diminished. However, current studies do not accurately 
reflect the range of temperature cooling in vivo and further clinical studies need to be done 
to determine if the magnitude of alterations in drug absorption is clinical relevant. 
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Study Group Subject Population/
Temperature Cooled

Drug Route of 
Elimination

Concentration & PK 
Parameters 

Preclinical 
Studies 

 

Tortorici et al. 
[26] 

CA rats/30C Chlorzoxazone CYP2E1 ↓ CLs, t1/2, ke. ↑ Vd 

Koren et al. [45] Piglets/31.6C Fentanyl CYP3A4 ↑ Plasma 
concentrations, ↓ CLs,  
↓ Vd, ↑ half-life, 

Bansinath M. et 
al. [38] 

Dog/30C Morphine UGT, CYP2C, 
CYP3A4 

↑ Plasma 
concentrations, ↓ CL 
70%,t1/2β ↑ 2-fold, Vd↓ 

Satas S. et al. [40] Hypoxia newborn 
pig/35°C

Gentamicin Renal Filtration No change in CL 

Nishida K. et al. 
[19] 

Rats/32°C PSP Renal Tubular 
Secretion 

Total CL↓ 42%, plasma 
AUC↑ 2-fold, renal 
secretion ↓ 

Jin J et al. [39] In vitro kidney 
epithelial cell/32C 

Digoxin Renal Filtration Direction from B to A ↓ 
50% 

  

Clinical Studies  

Fukuoka N. et al. 
[32] 

TBI Patients/32-34C Midazolam CYP3A4 Plasma concentration↑, 
Vd↑ 83%, CL↓, Ke↓ 

Beaufort A. M. 
et al. [46] 

Neurosurgical 
Patients/30.4C

Rocuronium CYP2D6/Renal CL↓ to 51% 

Roka A. et al. 
[37] 

HIE Infants/33-34C Morphine UGT, CYP2C, 
CYP3A4

CL↓

Hostler D. et al. 
[33] 

Healthy 
volunteers/35.5-36.5°C

Midazolam CYP3A4 CL↓ 11% per degree 

Iida Y. et al. [25] Brain Damage 
Patients/34°C 

Phenytoin CYP2C9 & 
CYP2C19 

AUC↑ 180%, CL↓ 67% 
and Ke↓ 50% 

Liu X. et al. [20] HIE Infants/33.5°C Gentamicin Renal Filtration No change in CL 

Caldwell J. E. et 
al. [35] 

Volunteers/<35, 35-
35.9,36-36.9°C

Vecuronium CYP450s CL↓ 11.3% per degree 

  

Abbreviations: CL: Systemic clearance; AUC: Area under curve; Ke: Elimination rate; Vd: Volume of distribution; T1/2: 
Half- life. 

Table 2. Summary of the findings of clinical studies evaluating the effects of therapeutic hypothermia 
on drug disposition. 
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Figure 1. This figure depicts the known effects of therapeutic hypothermia on drug abosrption, 
distribution, metabolism, excretion and response. Also depicted is the quality of the current data with 
respect to each of these processes. 

b. Drug distribution effects 

When a drug is absorbed into the bloodstream, it distributes throughout the body into 
various tissues and organs. Generally, the space that the drug distributes into the body, or 
the volume of distribution (Vd), is important for drug dosing since it affects important 
pharmacokinetic parameters such as the loading dose and the half-life (t1/2) of the drug. The 
factors that influence drug distribution include protein binding, blood pH and lipophilicity. 
As previously stated, many of the drugs used in the ICU have relatively large volumes of 
distribution (Table 1), which implies that the drug compounds preferentially distribute into 
the tissues over the blood. With drugs that have large volumes of distribution it is common 
for this distribution to first occur into the easily perfused tissues, followed by a more 
delayed distribution into more difficult to perfuse tissues. 

Much of the effect of hypothermia on plasma protein binding is still largely unknown. Two 
in vivo studies (chlorzoxazone in rats and phenytoin in humans) showed unchanged plasma 
protein binding during hypothermia, whereas in vitro studies of sulfanilamide and lidocaine 
did show changes in the plasma protein binding. Sulfanilamide showed a 65% increase in 
plasma protein binding when cooled to 17C while lidocaine showed a 24% decrease in 
plasma protein binding when cooled to 24C [50]. A possible explanation for the discrepancy 
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between in vitro and in vivo results could be the difference in cooling temperature. The in 
vitro studies cool to a much lower temperature than is possible in vivo (17C and 24C versus 
31C) and therefore may demonstrate a greater change in protein binding. To date, studies 
have not reported altered protein binding over the mild therapeutic hypothermia 
temperature range. 

Another factor that is influenced by hypothermia is the pH of the blood. As temperature 
decreases, the partial pressure of carbon dioxide decreases and the pH increases. For every 
10 degree change in temperature, the blood pH increases from 7.40 to 7.55. Depending on 
the pKa of the drug, more or less of the drug will be ionized after the shift in pH. 
Consequently, more or less of the drug will be able to pass through permeable membranes. 
Theroretically, drugs like Lidocaine (pKa 7.9) that have a pKa between 7 and 8 may be most 
susceptible by these slight changes in blood pH [50]. In vivo cooling is usually no more than 
a 6 - 7C change. Thus, blood pH would be expected to change in small increments and the 
clinical effects of these changes remain to be elucidated.  

Finally, hypothermia may alter the lipid solubility and tissue binding of drugs. Preliminary 
studies demonstrate that hypothermia induced a decrease in transfer processes in water/n-
octanol systems of atenolol and pindolol. Furthermore, phenytoin was shown to have 
increased tissue binding in rats at higher temperatures potentially due to temperature- 
mediated changes in protein conformation, leading to an altered tissue binding capacity 
[50].  

Although hypothermia has been shown to have mixed effects on protein binding, blood pH, 
and lipophilicity at moderate to severe hypothermia, more studies are needed to determine 
the clinical magnitude and effects during mild hypothermia in patients. A change in any of 
these factors during mild hypothermia has the potential to alter the Vd of the drug. The 
limited number of published studies to date suggest no significant alteration in drug 
disposition during mild cooling, however, only a small number of drugs have been 
evaluated with respect to changes in distribution.  

c. Hepatic drug metabolism  

Many drugs that are administered to critically ill patients undergo extensive hepatic 
metabolism. These drugs are predominately metabolized by cytochrome P (CYP) enzymes. 
Various isoforms of the CYP450 enzyme family are involved in metabolism to varying 
degrees. These isoforms include CYP3A, CYP2C9 and CYP2C19, CYP2D6, and CYP2E1. Of 
these isoforms, CYP3A is one of the most important in hepatic drug metabolism in part due 
to its broad substrate specificity which allows for it to metabolize a wide range of 
compounds. Drugs commonly used in the ICU that are metabolized by CYP3A include 
midazolam, fentanyl, lidocaine, and vecuronium. 

Midazolam is a well-known CYP3A4 substrate that has been most extensively studied in 
therapeutic hypothermia. One clinical study looked at the effect of cooling on midazolam 
pharmacokinetics in patients with TBI. The normothermic group achieved a steady state 



 
Therapeutic Hypothermia in Brain Injury 140 

 
Figure 1. This figure depicts the known effects of therapeutic hypothermia on drug abosrption, 
distribution, metabolism, excretion and response. Also depicted is the quality of the current data with 
respect to each of these processes. 

b. Drug distribution effects 

When a drug is absorbed into the bloodstream, it distributes throughout the body into 
various tissues and organs. Generally, the space that the drug distributes into the body, or 
the volume of distribution (Vd), is important for drug dosing since it affects important 
pharmacokinetic parameters such as the loading dose and the half-life (t1/2) of the drug. The 
factors that influence drug distribution include protein binding, blood pH and lipophilicity. 
As previously stated, many of the drugs used in the ICU have relatively large volumes of 
distribution (Table 1), which implies that the drug compounds preferentially distribute into 
the tissues over the blood. With drugs that have large volumes of distribution it is common 
for this distribution to first occur into the easily perfused tissues, followed by a more 
delayed distribution into more difficult to perfuse tissues. 

Much of the effect of hypothermia on plasma protein binding is still largely unknown. Two 
in vivo studies (chlorzoxazone in rats and phenytoin in humans) showed unchanged plasma 
protein binding during hypothermia, whereas in vitro studies of sulfanilamide and lidocaine 
did show changes in the plasma protein binding. Sulfanilamide showed a 65% increase in 
plasma protein binding when cooled to 17C while lidocaine showed a 24% decrease in 
plasma protein binding when cooled to 24C [50]. A possible explanation for the discrepancy 

 
Therapeutic Hypothermia: Implications on Drug Therapy 141 

between in vitro and in vivo results could be the difference in cooling temperature. The in 
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susceptible by these slight changes in blood pH [50]. In vivo cooling is usually no more than 
a 6 - 7C change. Thus, blood pH would be expected to change in small increments and the 
clinical effects of these changes remain to be elucidated.  

Finally, hypothermia may alter the lipid solubility and tissue binding of drugs. Preliminary 
studies demonstrate that hypothermia induced a decrease in transfer processes in water/n-
octanol systems of atenolol and pindolol. Furthermore, phenytoin was shown to have 
increased tissue binding in rats at higher temperatures potentially due to temperature- 
mediated changes in protein conformation, leading to an altered tissue binding capacity 
[50].  

Although hypothermia has been shown to have mixed effects on protein binding, blood pH, 
and lipophilicity at moderate to severe hypothermia, more studies are needed to determine 
the clinical magnitude and effects during mild hypothermia in patients. A change in any of 
these factors during mild hypothermia has the potential to alter the Vd of the drug. The 
limited number of published studies to date suggest no significant alteration in drug 
disposition during mild cooling, however, only a small number of drugs have been 
evaluated with respect to changes in distribution.  

c. Hepatic drug metabolism  

Many drugs that are administered to critically ill patients undergo extensive hepatic 
metabolism. These drugs are predominately metabolized by cytochrome P (CYP) enzymes. 
Various isoforms of the CYP450 enzyme family are involved in metabolism to varying 
degrees. These isoforms include CYP3A, CYP2C9 and CYP2C19, CYP2D6, and CYP2E1. Of 
these isoforms, CYP3A is one of the most important in hepatic drug metabolism in part due 
to its broad substrate specificity which allows for it to metabolize a wide range of 
compounds. Drugs commonly used in the ICU that are metabolized by CYP3A include 
midazolam, fentanyl, lidocaine, and vecuronium. 

Midazolam is a well-known CYP3A4 substrate that has been most extensively studied in 
therapeutic hypothermia. One clinical study looked at the effect of cooling on midazolam 
pharmacokinetics in patients with TBI. The normothermic group achieved a steady state 
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concentration of midazolam which was maintained during the 216 hours. Conversely, the 
hypothermic group never reached a steady state concentration and midazolam concentrations 
were about five-fold higher than the normothermic group. Further studies by Hostler et al. also 
saw a reduction in the clearance of midazolam during hypothermia. In this study normal, 
healthy volunteers were infused with cold saline and plasma samples were obtained to 
determine midazolam levels and clearance. A significant difference was observed in the 
overall metabolism of midazolam under mild hypothermic conditions. Furthermore, this 
study determined that midazolam clearance is reduced by 11% per degree Celsius change in 
temperature. Similarly, another preclinical study reported about a 17% decrease in midazolam 
clearance at steady state in hypothermic rats versus normothermic rats after cardiac arrest.  

Vecuronium, which is given as a muscle relaxant in the ICU, is another CYP3A4 substrate. 
The effect of hypothermia on vecuronium was studied in healthy human volunteers. 
Similarly to midazolam, the clearance of vecuronium was also decreased during cooling. 
Similarly, these studies demonstrated that an 11% reduction in vecuronium clearance is 
observed per degree Celsius change in body temperature. Furthermore, a preclinical study 
by Zhou et al demonstrated that hypothermia alters CYP3A activity, however the significant 
changes in CYP450 activity were isoform specific with significant alterations in CYP3A and 
CYP2E1 with no significant alteration in CYP2D or CYP2C probe metabolism. Collectively, 
these studies indicate that drugs which rely on CYP3A metabolism have decreased 
clearance during mild hypothermia, however, the reduced P450 activity appears to be 
isoform and potentially drug specific.  

In addition to CYP450 enzymes, Phase II enzymes also play an important role in the 
metabolism of many drugs used in critical care. Phase II enzymes include UDP-
glucuronosyltransferases (UGT), glutathione S-transferases, methyltransferases, 
sulfotransferases, and N-acetyltransferases. Of these enzymes, UGT is one of the only 
studied phase II enzymes and metabolizes a large number of drugs given in the ICU, such as 
morphine, propofol, phenobarbital, propranolol, aspirin, and acetaminophen. Of these, the 
effects of hypothermia on morphine have been most extensively studied. 

Morphine, a commonly administered analgesic in the ICU, is predominately metabolized by 
UGT2B7 with almost no metabolism by Phase I enzymes. One study measured morphine 
concentrations in neonates with hypoxic-ischemic encephalopathy (HIE). This randomized 
study compared peak serum morphine concentrations in neonates with HIE who were 
randomly assigned to either a hypothermic or normothermic group. After 72 hours, six of 
the seven neonates in the hypothermic group had morphine concentrations greater than 300 
ng/mL compared to one of six neonates in the normothermic group. Further, the clearance of 
morphine in the hypothermic group was significantly decreased. As previously mentioned, 
neonates undergo a longer, 72 hour duration of cooling. A pre-clinical animal study also 
showed a significant decrease in morphine clearance in the hypothermic model as compared 
to the normothermic model. These studies demonstrate a reduced clearance of midazolam 
during cooling. One possible explanation could be a decrease in UGT activity. Additional 
studies are needed on other UGT substrates to validate these results. 
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Digoxin is a calcium channel blocker used to treat arrhythmias in the ICU. A pre-clinical 
study of ABCB1 transport of digoxin showed that during mild hypothermia the rate of 
active transport was decreased. No difference in passive diffusion or tight junction activity 
was seen. The same group also studied the ABCB1-mediated transport of quinidine, another 
antiarrhythmic drug. In this study, no net effect was seen on quinidine transport during 
cooling. The authors propose that quinidine is also a substrate for the OATP transporter 
which may have influenced the results of temperature effects. Although these studies 
indicate that hypothermia may alter the active transport of drugs by ABCB1, further studies 
need to be completed to determine the in vivo relevance of these changes and explore the 
effects on other drug transporters.  

To date, most of the clinical and pre-clinical studies demonstrate a decrease in hepatic 
metabolism particularly with the CYP enzyme system during therapeutic hypothermia. 
Although there is a general reduction in drug metabolism, the magnitude of these 
alterations appears to be pathway specific and therefore, not all hepatically eliminated drugs 
will have reduced metabolism. In addition, many of these current clinical studies are small 
and underpowered. Additional studies still need to be performed to determine the extent of 
hepatic metabolism on drug concentrations and how clinicians can best dose patients 
receiving therapeutic hypothermia.  

d. Renal drug excretion  

Renal drug elimination is a common route of elimination for hydrophilic drugs. Renal 
elimination can be divided into filtration, tubular secretion and reabsorption. Filtration is a 
passive process, whereas tubular secretion is an active process of renal elimination. To date, 
few clinical studies exist that investigate the effect of hypothermia on renal drug 
elimination. A small number of preclinical studies have explored how cooling affects renal 
filtration and secretion.  

Gentamicin is a commonly administered drug in the ICU to treat infections, and 
predominately eliminated via passive filtration with little to no tubular secretion. Liu et al. 
showed that gentamicin concentrations remained unchanged in hypothermic neonates with 
HIE compared to normothermic neonates. This demonstrated that the clearance of 
gentamicin was not changed during mild hypothermia. Another study investigated the 
pharmacokinetics of gentamicin in piglets during mild hypothermia. They observed no 
change in gentamicin pharmacokinetics in hypoxic piglets versus normothermic piglets. 
These combined gentamicin studies coupled with the aforementioned evidence indicating 
no alterations in creatinine clearance suggest that mild hypothermia does not affect the 
passive process of renal filtration.  

In conclusion, these studies suggest that the passive processes of renal filtration are 
unaffected by mild hypothermia, whereas the active processes of renal tubular secretion 
may be decreased. However, these conclusions are based off of a single preclinical study in 
rats that investigated the active process of tubular secretion (previously discussed in renal 
physiology section). To accurately assess the effect of hypothermia on renal excretion, 
further studies in humans are needed. 



 
Therapeutic Hypothermia in Brain Injury 142 

concentration of midazolam which was maintained during the 216 hours. Conversely, the 
hypothermic group never reached a steady state concentration and midazolam concentrations 
were about five-fold higher than the normothermic group. Further studies by Hostler et al. also 
saw a reduction in the clearance of midazolam during hypothermia. In this study normal, 
healthy volunteers were infused with cold saline and plasma samples were obtained to 
determine midazolam levels and clearance. A significant difference was observed in the 
overall metabolism of midazolam under mild hypothermic conditions. Furthermore, this 
study determined that midazolam clearance is reduced by 11% per degree Celsius change in 
temperature. Similarly, another preclinical study reported about a 17% decrease in midazolam 
clearance at steady state in hypothermic rats versus normothermic rats after cardiac arrest.  

Vecuronium, which is given as a muscle relaxant in the ICU, is another CYP3A4 substrate. 
The effect of hypothermia on vecuronium was studied in healthy human volunteers. 
Similarly to midazolam, the clearance of vecuronium was also decreased during cooling. 
Similarly, these studies demonstrated that an 11% reduction in vecuronium clearance is 
observed per degree Celsius change in body temperature. Furthermore, a preclinical study 
by Zhou et al demonstrated that hypothermia alters CYP3A activity, however the significant 
changes in CYP450 activity were isoform specific with significant alterations in CYP3A and 
CYP2E1 with no significant alteration in CYP2D or CYP2C probe metabolism. Collectively, 
these studies indicate that drugs which rely on CYP3A metabolism have decreased 
clearance during mild hypothermia, however, the reduced P450 activity appears to be 
isoform and potentially drug specific.  

In addition to CYP450 enzymes, Phase II enzymes also play an important role in the 
metabolism of many drugs used in critical care. Phase II enzymes include UDP-
glucuronosyltransferases (UGT), glutathione S-transferases, methyltransferases, 
sulfotransferases, and N-acetyltransferases. Of these enzymes, UGT is one of the only 
studied phase II enzymes and metabolizes a large number of drugs given in the ICU, such as 
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effects of hypothermia on morphine have been most extensively studied. 
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4. The effects of therapeutic hypothermia on drug response 
In addition to the effects of therapeutic hypothermia on drug disposition and 
pharmacokinetics, hypothermia has also been associated with changes in drug response. 
The remainder of this section addresses drugs based on their therapeutic class and the 
current research showing changes in drug response. A summary of the clinical effects of 
hypothermia on drug response is given in Table 3. 
 

Study Group Subject population/ 
Temperature Cooled 

Drug Drug Response & PD 
Estimates 

Heier T. et al. [43] Patients undergoing 
surgery/34.5°C 

Vecuronium ↑Duration of Action PK 
mediated, ↑Recovery Time 

Leslie K. et al. [44] Healthy volunteers/34°C Atracurium ↑Response, ↑Duration of 
Action PK mediated 

Beaufort A.M. et al. [46] Neurosurgical 
patients/30.4°C 

Rocuronium ↑Duration of Action PK 
mediated 

Liu M. et al. [42] Children/ 34, 31°C Isoflurane ↓Dose Requirement 
Puig M.M. et al. [41] Guinea pig ileum/30°C Morphine ↓Affinity to receptor 
Bansinath M. et al. [38] Dog/30°C Morphine ↑Hypotension incidence  

Table 3. Summary of the findings of clinical studies evaluating the effects of therapeutic hypothermia 
on drug response.   

Analgesics/Sedatives. Medications given for analgesia and sedation are largely hepatically 
metabolized and are one of the most commonly used class of drugs in the ICU. We previously 
mentioned in the drug metabolism section that morphine is one of the most extensively 
studied analgesics and undergoes predominately Phase II enzyme metabolism by UGT2B7. 
The effect of hypothermia on morphine response was evaluated in a dog model. In the 
hypothermic group, a significant decrease in mean arterial pressure was observed, whereas no 
change in mean arterial pressure was seen in the normothermic group. Another in situ study 
measured the potency of morphine in guinea pig ileum. This study saw a decrease in the 
affinity of morphine for its target μ-receptor when the temperature was decreased from 37°C 
to 30°C. In addition, this study reported an increase in morphine affinity for its receptor when 
the temperature was raised from 37C to 40C. This study indicates that during cooling, 
morphine affinity for the μ-receptor is decreased; therefore, it is likely that morphine receptor 
response would be reduced during hypothermia even though the concentrations of morphine 
are likely to be elevated due to reduced morphine clearance.  

Another study evaluated the effect of hypothermia on the drug response to isoflurane in 
children. Liu et al. noted that the isoflurane requirement in children decreased by 5.1% per 
degree Celsius. Furthermore, the isoflurane minimum alveolar concentration values decreased 
from 1.69±0.14% to 1.22±0% at 37°C and 31°C, respectively. The pharmacokinetic properties of 
isoflurane were not evaluated in this study so the overall pharmacokinetic change relative to 
the drug response and dosage is not known so it is unclear if these alterations are due to 
altered pharmacokinetics or pharmacodynamics. Isoflurane is metabolized predominately by 
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CYP2E1 and preclinical studies have demonstrated reduced CYP2E1 activity in the rat model 
during hypothermia. Thus, it is reasonable to postulate that the effects on isoflurane are likely 
due to pharmacokinetics. Future studies should investigate whether a decrease in CYP2E1 
activity is responsible for the decrease in isoflurane response.  

Paralytics. Drug response for the neuromuscular blocking agent vecuronium has been 
studied during therapeutic hypothermia. Mild hypothermia increased the duration of action 
of the second infusion of vecuronium in patients undergoing elective surgery. Another 
study saw a similar increase in the duration of action of vecuronium in healthy volunteers 
during mild hypothermia. An increased duration of action was also seen in atracurium 
during mild hypothermia. In these studies the increase in duration of action was due to 
increase concentrations of the paralytics due to reduced drug clearance (i.e. 
pharmacokinetics). No alteration in the pharmacodynamic response was observed under 
hypothermic conditions. Therefore, unlike morphine response, it appears that the 
pharmacodynamic response to paralytics is not altered during mild hypothermia.  

In summary, therapeutic hypothermia has been shown to affect the drug response of 
analgesics, sedatives, and paralytics. A reduction in drug metabolism and clearance may 
explain part of the response change particularly with paralytics. Conversely, a reduced 
affinity of morphine for the μ-receptor has been reported. Careful pharmacotherapeutic 
monitoring in the clinic during hypothermia treatment may be necessary to prevent a 
potential therapy-drug interaction caused by changes in both drug concentration and in 
drug response during cooling.  

5. Prospectus and future directions 
Therapeutic hypothermia has been shown to be a beneficial neuroprotective therapy in critical 
care. In addition to the benefits for therapeutic hypothermia, there are potential side effects 
that can also occur. The effect of hypothermia on drug metabolism and clearance can lead to 
elevations in drug concentrations. Recent studies have reported that the effect of hypothermia 
on drug metabolism and the degree of change can be specific for the metabolism and 
elimination route. A small number of studies have investigated the effect of hypothermia on 
drug response including analgesics, sedatives and paralytics. The effect on drug response may 
be due to pharmacokinetic and pharmacodynamics alterations during hypothermia.  

However, the effect of therapeutic hypothermia on drug disposition and response is still 
significantly understudied. To date, little is still understood as to how therapeutic 
hypothermia affects the wide array of drugs administered to critically ill patients in the ICU. 
In order to safely use this therapy in patients, it is imperative that we further evaluate the 
potential alterations on drug metabolism and response. Larger clinical trials in humans are 
necessary before we can fully understand the effects of therapeutic hypothermia on drug 
pharmacokinetics. Ultimately by understanding the physiological effects of hypothermia, 
awareness of hypothermia’s effect on drug pharmacokinetics, and learning the potential 
side effects, we will be able to more safely and effectively use this neuroprotective strategy 
in a wide range of critically ill patients.  
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mediated, ↑Recovery Time 

Leslie K. et al. [44] Healthy volunteers/34°C Atracurium ↑Response, ↑Duration of 
Action PK mediated 

Beaufort A.M. et al. [46] Neurosurgical 
patients/30.4°C 

Rocuronium ↑Duration of Action PK 
mediated 

Liu M. et al. [42] Children/ 34, 31°C Isoflurane ↓Dose Requirement 
Puig M.M. et al. [41] Guinea pig ileum/30°C Morphine ↓Affinity to receptor 
Bansinath M. et al. [38] Dog/30°C Morphine ↑Hypotension incidence  

Table 3. Summary of the findings of clinical studies evaluating the effects of therapeutic hypothermia 
on drug response.   

Analgesics/Sedatives. Medications given for analgesia and sedation are largely hepatically 
metabolized and are one of the most commonly used class of drugs in the ICU. We previously 
mentioned in the drug metabolism section that morphine is one of the most extensively 
studied analgesics and undergoes predominately Phase II enzyme metabolism by UGT2B7. 
The effect of hypothermia on morphine response was evaluated in a dog model. In the 
hypothermic group, a significant decrease in mean arterial pressure was observed, whereas no 
change in mean arterial pressure was seen in the normothermic group. Another in situ study 
measured the potency of morphine in guinea pig ileum. This study saw a decrease in the 
affinity of morphine for its target μ-receptor when the temperature was decreased from 37°C 
to 30°C. In addition, this study reported an increase in morphine affinity for its receptor when 
the temperature was raised from 37C to 40C. This study indicates that during cooling, 
morphine affinity for the μ-receptor is decreased; therefore, it is likely that morphine receptor 
response would be reduced during hypothermia even though the concentrations of morphine 
are likely to be elevated due to reduced morphine clearance.  

Another study evaluated the effect of hypothermia on the drug response to isoflurane in 
children. Liu et al. noted that the isoflurane requirement in children decreased by 5.1% per 
degree Celsius. Furthermore, the isoflurane minimum alveolar concentration values decreased 
from 1.69±0.14% to 1.22±0% at 37°C and 31°C, respectively. The pharmacokinetic properties of 
isoflurane were not evaluated in this study so the overall pharmacokinetic change relative to 
the drug response and dosage is not known so it is unclear if these alterations are due to 
altered pharmacokinetics or pharmacodynamics. Isoflurane is metabolized predominately by 
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CYP2E1 and preclinical studies have demonstrated reduced CYP2E1 activity in the rat model 
during hypothermia. Thus, it is reasonable to postulate that the effects on isoflurane are likely 
due to pharmacokinetics. Future studies should investigate whether a decrease in CYP2E1 
activity is responsible for the decrease in isoflurane response.  

Paralytics. Drug response for the neuromuscular blocking agent vecuronium has been 
studied during therapeutic hypothermia. Mild hypothermia increased the duration of action 
of the second infusion of vecuronium in patients undergoing elective surgery. Another 
study saw a similar increase in the duration of action of vecuronium in healthy volunteers 
during mild hypothermia. An increased duration of action was also seen in atracurium 
during mild hypothermia. In these studies the increase in duration of action was due to 
increase concentrations of the paralytics due to reduced drug clearance (i.e. 
pharmacokinetics). No alteration in the pharmacodynamic response was observed under 
hypothermic conditions. Therefore, unlike morphine response, it appears that the 
pharmacodynamic response to paralytics is not altered during mild hypothermia.  

In summary, therapeutic hypothermia has been shown to affect the drug response of 
analgesics, sedatives, and paralytics. A reduction in drug metabolism and clearance may 
explain part of the response change particularly with paralytics. Conversely, a reduced 
affinity of morphine for the μ-receptor has been reported. Careful pharmacotherapeutic 
monitoring in the clinic during hypothermia treatment may be necessary to prevent a 
potential therapy-drug interaction caused by changes in both drug concentration and in 
drug response during cooling.  

5. Prospectus and future directions 
Therapeutic hypothermia has been shown to be a beneficial neuroprotective therapy in critical 
care. In addition to the benefits for therapeutic hypothermia, there are potential side effects 
that can also occur. The effect of hypothermia on drug metabolism and clearance can lead to 
elevations in drug concentrations. Recent studies have reported that the effect of hypothermia 
on drug metabolism and the degree of change can be specific for the metabolism and 
elimination route. A small number of studies have investigated the effect of hypothermia on 
drug response including analgesics, sedatives and paralytics. The effect on drug response may 
be due to pharmacokinetic and pharmacodynamics alterations during hypothermia.  

However, the effect of therapeutic hypothermia on drug disposition and response is still 
significantly understudied. To date, little is still understood as to how therapeutic 
hypothermia affects the wide array of drugs administered to critically ill patients in the ICU. 
In order to safely use this therapy in patients, it is imperative that we further evaluate the 
potential alterations on drug metabolism and response. Larger clinical trials in humans are 
necessary before we can fully understand the effects of therapeutic hypothermia on drug 
pharmacokinetics. Ultimately by understanding the physiological effects of hypothermia, 
awareness of hypothermia’s effect on drug pharmacokinetics, and learning the potential 
side effects, we will be able to more safely and effectively use this neuroprotective strategy 
in a wide range of critically ill patients.  
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