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Preface

The creation of this book, the seventh in the series, started like the earlier six books.
After organizing the weeklong Dagstuhl workshop “Visualization and Processing
of Anisotropy in Imaging, Geometry, and Astronomy” (October 28–November
2, 2018, Dagstuhl, Germany), we decided to develop a book that would share with
our readers many of the wonderful research ideas and results reported at the
workshop or inspired by intriguing discussions at Dagstuhl. After a call for par-
ticipation, we received contributions from the attendees of the workshop as well as
from other researchers.

The central topic of this book is anisotropy. Objects, processes, and phenomena
that exhibit variations along different directions are omnipresent in science, engi-
neering, and medicine. The ability to analyze, model, and physically measure such
anisotropy in each of its application areas is a common theme that resonates with
mathematicians, engineers, scientists, and medical researchers. Accordingly, we
divide the thirteen chapters of our book into four coherent parts.

Our book starts with three chapters that constitute Part I, whose theme is
Foundations. The first chapter “Variance Measures for Symmetric Positive (Semi-)
Definite Tensors in Two Dimensions” considers fourth-order tensors that represent
the covariance of distributions of second-order tensors in two dimensions and have
the same symmetries as the elasticity tensor. A set of invariants is introduced, which
guarantees the equivalence of two such fourth-order tensors under coordinate
transformations. Chapter “Degenerate Curve Bifurcations in 3D Linear Symmetric
Tensor Fields” investigates fundamental bifurcations in three-dimensional linear
symmetric tensor fields, with potential applications in the study of time-varying
tensor fields with multi-scale topological analysis. The last chapter of Part I
“Continuous Histograms for Anisotropy of 2D Symmetric Piece-Wise Linear
Tensor Fields” proposes a method to compute iso-contours and continuous his-
tograms of the anisotropy of 2D tensor fields, using component-wise tensor inter-
polation. The authors show that the presented technique leads to accurate
anisotropy histograms. This chapter kindly provides the image on the book cover.
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The second part of the book contains four chapters on image processing and
visualization of different types of data. Chapter “Tensor Approximation for
Multidimensional and Multivariate Data” surveys the topic of data approximation in
computer graphics and visualization, focusing on tensor approximation
(TA) methods for multidimensional datasets. In addition, it studies how applying
TA to vector fields affects important properties such as magnitudes, angles, vor-
ticity, and divergence.

In image processing, anisotropic models can improve results by accounting for
the orientation of image structures, such as object boundaries. Chapter “Fourth-
Order Anisotropic Diffusion for Inpainting and Image Compression” introduces
such a model, a fourth-order partial differential equation that involves a fourth-order
diffusion tensor, generalizing anisotropic edge-enhancing diffusion. This model is
applied to repair damaged images and to reconstruct full images from a sparse
subset of pixels, which can serve as a foundation of image compression.

Chapters “Uncertainty in the DTI Visualization Pipeline” and “Challenges for
Tractogram Filtering” treat challenges in the processing and visualization of dif-
fusion magnetic resonance imaging (dMRI) data and are the first chapters on MRI
techniques to which the rest of the book is devoted. Chapter “Uncertainty in the
DTI Visualization Pipeline” places emphasis on diffusion tensor imaging (DTI) and
reviews the origins of uncertainty as well as the techniques developed for modeling
and visualizing uncertainty in DTI.

Upon adequate processing, anisotropy information can shed light on important
open problems. One such example, which has enjoyed a great deal of interest in
recent years, involves exploiting the anisotropy revealed by diffusion MRI to map
neural tracts, i.e., the white matter wiring of the brain. Recent studies have shown
that existing tractography methods suffer from artifactual connections. Chapter
“Challenges for Tractogram Filtering” reviews methods developed to filter out such
connections and discusses the associated challenges in this endeavor.

Part III of this book is devoted to the mathematical modeling of anisotropy, and
the fitting of such models to measured data. It starts with chapter “Single Encoding
Diffusion MRI: A Probe to Brain Anisotropy”, which surveys the state of the art in
modeling diffusion anisotropy within the human brain, as measured by
traditionally-encoded diffusion MRI featuring one pair of diffusion gradient pulses.
It provides a broad overview, discussing aspects of neural tissue structure, math-
ematical representations of the measured signal, and biophysical models and
challenges in the reliable estimation of their parameters.

It is well known that MR images are sensitive to ensemble-averaged molecular
displacements, and a concrete interpretation of diffusion MRI data in terms of
physical or structural parameters is challenging. Chapter “Conceptual Parallels
Between Stochastic Geometry and Diffusion-Weighted MRI” sheds light on this
problem by drawing a parallel of stochastic geometry, a concept that has found
much success in geology, astronomy, and communications. The authors review
important results from stochastic geometry and hypothesize how these could be
useful for a more robust modeling of MRI data.

vi Preface



Many specimens of interest comprise a distribution of microscopic, individually
anisotropic subdomains. An earlier work has shown that diffusion taking place
within each of such subdomains can be equivalently modeled by envisioning dif-
fusion to be taking place under a Hookean restoring force. The averaging of ani-
sotropic signal, either numerically, or naturally due to the presence of randomly
aligned pores, results in interesting residual features of the diffusion MRI signal that
are informative of the underlying microstructure. Chapter “Magnetic Resonance
Assessment of Effective Confinement Anisotropy with Orientationally-Averaged
Single and Double Diffusion Encoding” investigates these questions for
diffusion-encoding schemes featuring one as well as two pairs of pulses.

The last chapter of Part III, chapter “Riemann-DTI Geodesic Tractography
Revisited”, addresses again the open problem of mapping neural tracts from dif-
fusion MRI, now from a data modeling point of view. The authors propose a new
geodesic tractography paradigm by coupling the diffusion tensor to a family of
Riemannian metrics, governed by control parameters. The optimal controls, and
corresponding tentative tracts, show a good correspondence with tracts on simu-
lated data.

Finally, Part IV comprises two chapters which are primarily concerned with the
measurement of anisotropy using MRI. Chapter “Magnetic Resonance Imaging of
T2- and Diffusion Anisotropy Using a Tiltable Receive Coil” combines the now
well-established measurement of diffusion anisotropy with a quantification of
directionally-dependent transverse relaxation rates, which provide complementary
information on tissue microstructure. Protocols for reliable measurement of the
latter are a topic of ongoing research, and this chapter presents results obtained by
using a tiltable receive coil.

Finally, chapter “Anisotropy in the Human Placenta in Pregnancies Complicated
by Fetal Growth Restriction” reports experimental results from measuring diffusion
anisotropy in the human placenta, comparing pregnancies complicated by fetal
growth restriction with normal controls. Results suggest that diffusion MRI,
otherwise primarily used as a neuroimaging technique, can also provide valuable
information about placental microstructure and could thus help assess placental
function during pregnancy.

As you read this book, we hope that you not only enjoy it for its scientific merit
but also see it perhaps as a source of inspiration. During the review process, the
COVID-19 pandemic started and is still ongoing at this moment. The people
involved in the production of this book (authors, reviewers, and editors), many of
whom are university professors or students, had to work from home due to the need
for social distancing. In-person meetings have been replaced with online discus-
sions. For people who are parents of young children, it has been even more difficult
due to the added tasks of babysitting and/or homeschooling their children. Despite
all these challenges as well as the constant worry of contracting the virus and the
stress associated with social distancing, our reviewers strived to honor their com-
mitment to finish the reviews on time and provided high-quality, constructive
reviews that have made each one of the chapters stronger. Similarly, our con-
tributing authors were diligent in the revision of their work, ensuring a timely
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delivery of this book to the publisher. We wish to express our gratitude to them, for
not only making this book possible, but also making it possible during this difficult
period.

Last but not least, we would like to thank the editors of the Springer book series
Mathematics and Visualization, as well as Martin Peters and Leonie Kunz
(Springer, Heidelberg) for their support to publish this book, as well as the board
and staff of Schloss Dagstuhl, for their excellent support in organizing the
workshop. Dagstuhl once again created an enjoyable atmosphere for open inter-
disciplinary exchange between researchers from different fields. Without this
unique setting, many participants most likely never would have had the opportunity
to engage with each other’s work. Finally, we would like to thank the Department
of Mathematics and Computer Science of Eindhoven University of Technology for
making it possible to publish this book open access.

Linköping, Sweden Evren Özarslan
Bonn, Germany Thomas Schultz
Corvallis, Oregon, USA Eugene Zhang
Eindhoven, The Netherlands
July 2020

Andrea Fuster

viii Preface



Contents

Foundations

Variance Measures for Symmetric Positive (Semi-) Definite Tensors
in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Magnus Herberthson, Evren Özarslan, and Carl-Fredrik Westin

Degenerate Curve Bifurcations in 3D Linear Symmetric
Tensor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Yue Zhang, Hongyu Nie, and Eugene Zhang

Continuous Histograms for Anisotropy of 2D Symmetric Piece-Wise
Linear Tensor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Talha Bin Masood and Ingrid Hotz

Image Processing and Visualization

Tensor Approximation for Multidimensional and Multivariate Data . . . 73
Renato Pajarola, Susanne K. Suter, Rafael Ballester-Ripoll,
and Haiyan Yang

Fourth-Order Anisotropic Diffusion for Inpainting and Image
Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Ikram Jumakulyyev and Thomas Schultz

Uncertainty in the DTI Visualization Pipeline . . . . . . . . . . . . . . . . . . . . 125
Faizan Siddiqui, Thomas Höllt, and Anna Vilanova

Challenges for Tractogram Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Daniel Jörgens, Maxime Descoteaux, and Rodrigo Moreno

Modeling Anisotropy

Single Encoding Diffusion MRI: A Probe to Brain Anisotropy . . . . . . . 171
Maëliss Jallais and Demian Wassermann

ix



Conceptual Parallels Between Stochastic Geometry
and Diffusion-Weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Tom Dela Haije and Aasa Feragen

Magnetic Resonance Assessment of Effective Confinement
Anisotropy with Orientationally-Averaged Single and Double
Diffusion Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Cem Yolcu, Magnus Herberthson, Carl-Fredrik Westin,
and Evren Özarslan

Riemann-DTI Geodesic Tractography Revisited . . . . . . . . . . . . . . . . . . 225
Luc Florack, Rick Sengers, Stephan Meesters, Lars Smolders,
and Andrea Fuster

Measuring Anisotropy

Magnetic Resonance Imaging of T2- and Diffusion Anisotropy
Using a Tiltable Receive Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Chantal M. W. Tax, Elena Kleban, Muhamed Baraković,
Maxime Chamberland, and Derek K. Jones

Anisotropy in the Human Placenta in Pregnancies Complicated
by Fetal Growth Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Paddy J. Slator, Alison Ho, Spyros Bakalis, Laurence Jackson,
Lucy C. Chappell, Daniel C. Alexander, Joseph V. Hajnal,
Mary Rutherford, and Jana Hutter

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

x Contents



Foundations



Variance Measures for Symmetric
Positive (Semi-) Definite Tensors in Two
Dimensions

Magnus Herberthson, Evren Özarslan, and Carl-Fredrik Westin

Abstract Calculating the variance of a family of tensors, each represented by a sym-
metric positive semi-definite second order tensor/matrix, involves the formation of a
fourth order tensor Rabcd . To form this tensor, the tensor product of each second order
tensor with itself is formed, and these products are then summed, giving the tensor
Rabcd the same symmetry properties as the elasticity tensor in continuummechanics.
This tensor has been studied with respect to many properties: representations, invari-
ants, decomposition, the equivalence problem et cetera. In this paper we focus on the
two-dimensional case where we give a set of invariants which ensures equivalence
of two such fourth order tensors Rabcd and ˜Rabcd . In terms of components, such an
equivalence means that components Ri jkl of the first tensor will transform into the
components ˜Ri jkl of the second tensor for some change of the coordinate system.

1 Introduction

Positive semi-definite second order tensors arise in several applications. For instance,
in image processing, a structure tensor is computed from greyscale images that cap-
tures the local orientation of the image intensity variations [10, 17] and is employed
to address a broad range of challenges. Diffusion tensor magnetic resonance imaging
(DT-MRI) [1, 5] characterizes anisotropic water diffusion by enabling the measure-
ment of the apparent diffusion tensor, whichmakes it possible to delineate the fibrous
structure of the tissue. Recent work has shown that diffusion MR measurements of
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restricted diffusion obscures the fine details of the pore shape under certain exper-
imental conditions [11], and all remaining features can be encoded accurately by a
confinement tensor [19].

All such second order tensors share the same mathematical properties, namely,
they are real-valued, symmetric, and positive semi-definite. Moreover, in these dis-
ciplines, one encounters a collection of such tensors, e.g., at different locations of
the image. Populations of such tensors have also been key to some studies aiming to
model the underlying structure of the medium under investigation [8, 12, 18].

Irrespective of the particular application, let Rab denote such tensors,1 and we
shall refer to the set of n tensors as {R(i)

ab }i . Our desire is to find relevant descriptors
or models of such a family. One relevant statistical measure of this family is the
(population) variance

1

n

n
∑

i=1

(R(i)
ab − ̂Rab)(R

(i)
cd − ̂Rcd) =

(

1

n

n
∑

i=1

R(i)
ab R

(i)
cd

)

− ̂Rab ̂Rcd ,

where ̂Rab = 1
n

∑n
i=1 R

(i)
ab is the mean. (For another approach, see e.g., [8]). In this

paper,we are interested in thefirst term, i.e.,we study the fourth order tensor (skipping
the normalization)

Rabcd =
n

∑

i=1

R(i)
ab R

(i)
cd , R(i)

ab ≥ 0, (1)

where R(i)
ab ≥ 0 stands for R(i)

ab being positive semi-definite. It is obvious that Rabcd

has the symmetries Rabcd = Rbacd = Rabdc and Rabcd = Rcdab, i.e., Rabcd has the
same symmetries as the elasticity tensor [14] from continuum mechanics. The elas-
ticity tensor is well studied [13], e.g. with respect to classification, decompositions,
and invariants. In most cases this is done in three dimensions. The same (w.r.t. sym-
metries) tensor has also been studied in the context of diffusion MR [2].

In this paper we will focus on the corresponding tensor Rabcd in two dimensions.
First, there are direct applications in image processing, and secondly, the problems
posed will be more accessible in two dimensions than in three. In particular we study
the equivalence problem, namely, we ask the question: given the components Ri jkl

and ˜Ri jkl of two such tensors do they represent the same tensor in different coordinate
systems (see Sects. 2.1.2 and 4)?

1.1 Outline

Section 2 contains tensorial matters. We will assume some basic knowledge of ten-
sors, although some definitions are given for completeness. The notation(s) used is

1For the notation of tensors used here, see Sect. 2.1.
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commented on and in particular the three-dimensional Euclidean vector space V(ab)

is introduced.
In Sect. 2.1.2, we make some general remarks concerning the tensor Rabcd and

specify the problem we focus on. Section 2.1 is concluded with some remarks on the
Voigt/Kelvin notation and the corresponding visualisation in R3.

Section 2.2 gives examples of invariants, especially invariants which are easily
accessible from Rabcd . Also, more general invariant/canonical decompositions of
Rabcd are given.

In Sect. 3, we discuss how the tensor Rabcd can (given a careful choice of basis)
be expressed in terms of a 3 × 3 matrix, and how this matrix is affected by a rotation
of the coordinate system in the underlying two-dimensional space on which Rabcd is
defined.

In Sect. 4 we return to the equivalence problem and give the main result of this
work. In Sect. 4.1.1 we provide a geometric condition for equivalence, while in
Sect. 4.1.2, we present the equivalence in terms of a 3 × 3 matrix. Both these char-
acterisations rely on the choice of particular basis elements for the vector spaces
employed. In Sect. 4.1.3 the same equivalence conditions are given in a form which
does not assume a particular basis.

2 Preliminaries

In this section we clarify the notation and some concepts which we need. Section 2.1
deals with the (alternatives of) tensor notation and some representations. The equiv-
alence (and related) problems are also briefly addressed. Section 2.2 accounts for
some natural invariants, traces and decompositions of Rabcd .

Wewill assume some familiaritywith tensors, but to clarify the view on tensorswe
recall some facts.We start with a (finite dimensional) vector space V with dual V ∗. A
tensor of order (p,q) is then amulti-linear mapping V × V · · · × V

︸ ︷︷ ︸

q

× V ∗ × · · · × V ∗
︸ ︷︷ ︸

p

→ R. Moreover, a (non-degenerate) metric/scalar product g : V × V → R gives an
isomorphism from V to V ∗ through v → g(v, ·), and it is this isomorphism which
is used to ‘raise and lower indices’, see below. Indeed, for a fixed v ∈ V , g(v, ·) is a
linear mapping V → R, i.e., an element of V ∗.

2.1 Tensor Notation and Representations

There is a plethora of notations for tensors. Here, we follow thewell-adopted conven-
tion [16] that early lower case Latin letters (T a

bc) refer to the tensor as a geometric
object, its type being inferred from the indices and their positions (the abstract index
notation). gab denotes the metric tensor.When the indices are lower case Latin letters
from the middle of the alphabet, T i

jk , they refer to components of T a
bc in a certain
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frame. The super-index i denotes a contravariant index while the sub-indices j, k
are covariant. For instance, a typical vector (tensor of type (1, 0)) will be written
va with components vi , while the metric gab (tensor of type (0, 2)) has components
gi j . At a number of occasions, it will also be useful to express quantities in terms of
components with respect to orthonormal frames, i.e., Cartesian coordinates. This is
sometimes referred to as ‘Cartesian tensors’, and the distinction between contra- and
covariant indices is obscured. In these situations, it is possible (but not necessary) to
write all indices as sub-indices, and sometimes the symbol

·= is used to indicate that
an equation is only valid in Cartesian coordinates. For example Ti

·= Ti jkδ jk instead
of T i = T i

jkg jk = T ik
k . Often this is clear form the context, but we will sometimes

use
·= to remind the reader that a Cartesian assumption is made. Here, the Einstein

summation convention is implied, i.e., repeated indices are to be summed over, so

that for instance T i = T i
jkg jk = T ik

k =
n
∑

j=1

n
∑

k=1
T i

jkg jk =
n
∑

k=1
T ik

k if each index

ranges from 1 to n. We have also used the metric gi j and its inverse gi j to raise and
lower indices. For instance, since gi j vi is an element of V ∗, we write gi j vi = v j .

We also remind of the notation for symmetrisation. For a two-tensor T(ab) =
1
2 (Tab + Tba), while more generally for a tensor Ta1a2···an of order (0, n) we have

T(a1a2···an) = 1

n!
∑

π

Taπ(1)aπ(2)···aπ(n)

where the sum is taken over all permutations π of 1, 2, . . . , n. Naturally, this conven-
tion can also be applied to subsets of indices. For instance, Ha(bc) = 1

2 (Habc + Hacb).

2.1.1 The Vector Space of Symmetric Two-Tensors

In any coordinate frame a symmetric tensor Rab (i.e., Rab = Rba) is represented by
a symmetric matrix Ri j (2 × 2 or 3 × 3 depending on the dimension of the underly-
ing space). In the two-dimensional case, with the underlying vector space V a ∼ R

2

, this means that Rab lives in a three-dimensional vector space, which we denote
by V(ab). V(ab) is equipped with a natural scalar product: < Aab, Bab >= AabBab,
making it into a three-dimensional Euclidean space. Here AabBab = AabBcdgacgbd ,
i.e, the contraction of AabBcd over the indices a, c and b, d, and the tensor prod-
uct AabBcd itself is the tensor of order (0, 4) given by (AabBcd)vaubwcmd =
(Aabvaub)(Bcdw

cmd) together with multi-linearity.

2.1.2 The Tensor Rabcd and the Equivalence Problem

As noted above, Rabcd given by (1) has the symmetries Rabcd = R(ab)cd = Rab(cd)

and Rabcd = Rcdab, and it is not hard to see that this gives Rabcd six degrees of
freedom in two dimensions. (See also Sect. 2.1.3.) It is also interesting to note that
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Rabcd provides a mapping V(ab) → V(ab) through

Rab �→ Rabcd R
cd ,

and that this mapping is symmetric (due to the symmetry Rabcd = Rcdab). Given
Rabcd there are a number of questions one can ask, e.g.,

• Feasibility—given a tensor Rabcd with the correct symmetries, can it be written in
the form (1)?

• Canonical decomposition—given Rabcd of the form (1), can you write Rabcd as a
canonical sum of the form (1), but with a fixed number of terms (cf. eigenvector
decomposition of symmetric matrices)?

• Visualisation—since fourth order tensors are a bit involved, how can one visualise
them in ordinary space?

• Characterisation/relevant sets of invariants—what invariants are relevant from an
application point of view?

• The equivalence problem—in terms of components, how do we know if Ri jkl and
˜Ri jkl represent the same tensor when they are in different coordinate systems?

We will now focus on the equivalence problem in two dimensions. This problem
can be formulated as above: given, in terms of components, two tensors (with the
symmetries we consider) Ri jkl and ˜Ri jkl , do they represent the same tensor in the
sense that there is a coordinate transformation taking the components Ri jkl into the
components ˜Ri jkl? In other words, does there exist an (invertible) matrix Pm

i so that

Ri jkl = ˜Rmnop P
m
i P

n
j P

o
k P

p
l?

This problem can also be formulated when Ri jkl and ˜Ri jkl are expressed in Cartesian
frames. Then the coordinate transformationmust be a rotation, i.e., given by a rotation
matrix Qi

j ∈ SO(2). Hence, the problem of (unitary) equivalence is: Given Ri jkl and
˜Ri jkl , both expressed in Cartesian frames, is there a matrix (applying the ‘Cartesian
convention’) Qi j ∈ SO(2) so that

Ri jkl = ˜RmnopQmi Qnj QokQ pl?

2.1.3 The Voigt/Kelvin Notation

Since (in two dimensions) the space V(ab) is three-dimensional, one can introduce

coordinates, for example Ri j = ( x y
y z

) ∼
( x

y
z

)

and use vector algebra on R
3. This is

used in the Voigt notation [15] and the related Kelvin notation [6]. As always, one

must be careful to specify with respect to which basis in V(ab) the coordinates
( x

y
z

)

are taken. For instance, in the correspondence Ri j = ( x y
y z

) ∼
( x

y
z

)

, the understood

basis for V(ab) (in the understood/induced coordinate system) is {( 1 0
0 0

)

,
(

0 1
1 0

)

,
(

0 0
0 1

)}.
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Fig. 1 Left: the symmetricmatrices e(1)
ab , e(2)

ab , e(3)
ab (red) and e(1)

ab + e(3)
ab , e(2)

ab + e(3)
ab (blue) as vectors

inR3. The positive semi-definitematrices correspond to vectorswhich are inside/above the indicated
cone (including the boundary). Right: the fourth order tensors (e(1)

ab + e(3)
ab )(e(1)

cd + e(3)
cd ) and (e(2)

ab +
e(3)
ab )(e(2)

cd + e(3)
cd ) depicted in blue, and e(3)

ab e
(3)
cd shown in red are viewed as quadratic forms and

illustrated as ellipsoids (made a bit ‘fatter’ than they should be for the sake of clarity)

These elements are orthogonal (viewed as vectors in V(ab)) to each other, but not (all
of them) of unit length.

Since the unit matrix plays a special role, we make the following choice. Starting
with an orthonormal basis {ξ̂ , η̂} for V , (i.e., {ξ̂ a, η̂a} for V a) a suitable orthonormal
basis for V(ab) is {e(1)

ab , e(2)
ab , e(3)

ab } where e(1)
ab = 1√

2
(ξaξb − ηaηb), e

(2)
ab = 1√

2
(ξaηb +

ηaξb), e
(3)
ab = 1√

2
(ξaξb + ηaηb), i.e., in the induced basis we have

e(1)
i j = 1√

2

(

1 0
0 −1

)

∼ x̂, e(2)
i j = 1√

2

(

0 1
1 0

)

∼ ŷ, e(3)
i j = 1√

2

(

1 0
0 1

)

∼ ẑ. (2)

In this basis, we write an arbitrary element Mab ∈ V(ab) as Mi j = ( z+x y
y z−x

)

, which

means that Mab gets the coordinates Mi = √
2
( x

y
z

)

. Note that Mi j is positive definite

if z2 − x2 − y2 ≥ 0 and z ≥ 0. In terms of the coordinates of the Voigt notation, the
tensor Rabcd corresponds to a symmetric mapping R

3 → R
3, given by a symmetric

3 × 3 matrix, which also shows that the degrees of freedom for Rabcd is six.

2.1.4 Visualization in R
3

Through the Voigt notation, any symmetric two-tensor (in two dimensions) can be
visualised as a vector in R

3. Using the basis vector given by (2), we note that e(1)
i j

and e(2)
i j correspond to indefinite quadratic forms, while e(3)

i j is positive definite. We

also see that e(1)
i j + e(3)

i j and e(2)
i j + e(3)

i j are positive semi-definite.
In Fig. 1 (left) these matrices are illustrated as vectors in R

3. The set of positive
semi-definite matrices corresponds to a cone, cf. [4], indicated in blue. When the
symmetric 2 × 2 matrices are viewed as vectors in R

3, the outer product of such
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a vector with itself gives a symmetric 3 × 3 matrix. Hence we get a positive semi-
definite quadratic form onR3, which can be illustrated by an (degenerate) ellipsoid in
R

3. In Fig. 1 (right) (e(1)
ab + e(3)

ab )(e(1)
cd + e(3)

cd ), (e(2)
ab + e(3)

ab )(e(2)
cd + e(3)

cd ) and e(3)
ab e

(3)
cd are

visualised in this manner. Note that all these quadratic forms correspond to matrices
which are rank one. (Cf. the ellipsoids in Fig. 2.)

2.2 Invariants, Traces and Decompositions

By an invariant, we mean a quantity that can be calculated from measurements,
and which is independent of the frame/coordinate system with respect to which the
measurements are performed, despite the fact that components, e.g., T i

jk themselves
depend on the coordinate system. It is this property that makes invariants important,
and typically they are formed via tensor products and contractions, e.g., T i

jkT k
il g jl .

Sometimes, the invariants have a direct geometrical meaning. For instance, for a
vector vi , the most natural invariant is its squared length vi vi . For a tensor T i

j of
order (1,1) in three dimensions, viewed as a linear mapping R

3 → R
3, the most

well known invariants are perhaps the trace T i
i and the determinant det(T i

j ). The
modulus of the determinant gives the volume scaling under the mapping given by
T i

j , while the trace equals the sum of the eigenvalues. If T i
j represents a rotation

matrix, then its trace is 1 + 2 cosφ, whereφ is the rotation angle. In general, however,
the interpretation of a given invariant may be obscure. (For an account relevant to
image processing, see e.g., [9]. A different, but relevant, approach in the field of
diffusion MRI is found in [20].)

2.2.1 Natural Traces and Invariants

From (1), and considering the symmetries of Rabcd , two (and only two) natural traces
arise. For a tensor of order (1, 1), e.g., Ri

j , it is natural to consider this as an ordinary
matrix, and consequently use stem letters without any indices at all. To indicate this

slight deviation from the standard tensor notation, we denote e.g., Ri
j by ¯̄R. Using

[·] for the trace, so that [ ¯̄R] = Tr( ¯̄R) = Ra
a , we then have

Tab = Rabc
c =

n
∑

i=1

R(i)
ab R

(i)
c

c =
n

∑

i=1

R(i)
ab [ ¯̄R(i)], (3)

and

Sab = Racb
c =

n
∑

i=1

R(i)
ac R

(i)
b

c
. (4)
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Hence, in a Cartesian frame, where the index position is unimportant, we have for

the matrices ¯̄T = Ti j ,
¯̄S = Si j

¯̄T =
n

∑

i=1

¯̄R(i)[ ¯̄R(i)], ¯̄S =
n

∑

i=1

¯̄R(i) ¯̄R(i).

To proceed there are two double traces (i.e., contracting Rabcd twice):

T = Ta
a = Ra

a
c
c =

n
∑

i=1

R(i)
a

a
R(i)
c

c =
n

∑

i=1

[ ¯̄R(i)]2 (5)

and

S = Sa
a = Rac

ac =
n

∑

i=1

R(i)
ac R

(i)ac =
n

∑

i=1

[( ¯̄R(i))2]. (6)

In two dimensions, the difference Tab−Sab is proportional to the metric gab. Namely,

Lemma 1 With Tab and Sab given by (3) and (4), it holds that (in two dimensions)

Tab − Sab =
n

∑

i=1

det( ¯̄R(i))gab.

Proof By linearity, it is enough to prove the statementwhen n = 1, i.e., when the sum
has just one term.Raising the second index, and using components, the statement then

is Ti j − Si j = det( ¯̄R(1))δi
j . Putting ¯̄R(1) = A, we see that Ti j − Si j = A[A] − A2

while det( ¯̄R(1))δi
j = det(A)I , and by the Cayley-Hamilton theorem in two dimen-

sions, A[A] − A2 is indeed det(A)I . �

From lemma 1, it follows that T − S = 2
∑n

i=1 det(
¯̄R(i)) ≥ 0. In fact the following

inequalities hold.

Lemma 2 With T and S defined as above, it holds that S ≤ T ≤ 2S. If T = S, all
tensors R(i)

ab have rank 1. If T = 2S, all tensors R(i)
ab are isotropic, i.e., proportional

to the metric gab.

Proof Again, by linearity it is enough to consider one tensor ¯̄R(1) = A. In an
orthonormal frame which diagonalises A, we have A = (

a 0
0 c

)

(with a ≥ 0, c ≥ 0,
a + c > 0). Hence

S = a2 + c2 ≤ a2 + c2 + 2ac = (a + c)2 = T = 2(a2 + c2) − (a − c)2 ≤ 2S.

The first inequality becomes equality when ac = 0, i.e., when A has rank one. The
second inequality becomes equality when a = c, i.e., when A is isotropic. �
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Definition 1 We define the mean rank, rm , by rm = T/S, with T and S as above.

Hence, in two dimensions, 1 ≤ rm ≤ 2.

2.2.2 A Canonical Decomposition

It is customary [3, 7] to decompose a tensor with the symmetries of Rabcd into a sum
where one term is the completely symmetric part:

Rabcd = Habcd + Wabcd , where Habcd = R(abcd),Wabcd = Rabcd − Habcd .

It is also customary to split Habcd into a trace-free part and ‘trace part’. We start by
defining Hab = Habc

c, H = Ha
a and then the trace-free part of Hab: H̊ab = Hab −

1
2Hgab so that Hab = H̊ab + 1

2Hgab. (These decompositions can be made in any
dimension, but the actual coefficients, e.g., 1

2 above and 1
8 and 3

8 et cetera below
depend on the underlying dimension.) It is straightforward to check that

H̊abcd = Habcd − g(abHcd) + 1
8Hg(abgcd) = Habcd − g(ab H̊cd) − 3

8Hg(abgcd)

is also trace-free. Hence we have the decomposition

Habcd = H̊abcd + g(abHcd) − 1
8Hg(abgcd) = H̊abcd + g(ab H̊cd) + 3

8Hg(abgcd).

Moreover, due to the symmetry of Rabcd , we find that

Habcd = 1
3 (Rabcd + Racbd + Radbc)

and therefore that
Wabcd = 1

3 (2Rabcd − Racbd − Radbc) (7)

which implies thatHab = Habc
c = 1

3 (Tab + 2Sab) andWab = Wabc
c = 2

3 (Tab − Sab).
The degres of freedom, which for Rabcd is six, is distributed, where Rabcd ∼

{H̊abcd , Hab,Wabcd}, as

Rabcd
(6)

∼ {H̊abcd
(2)

, Hab
(3)

,Wabcd
(1)

} ∼ {H̊abcd
(2)

, H̊ab
(2)

, H
(1)

,Wabcd
(1)

}.

For Hab (or the pair H̊ab, H ) this is clear. The total symmetry of H̊abcd leaves only
five components (in a basis), H̊1111, H̊1112, H̊1122, H̊1222, H̊2222. However, the trace-
free condition H̊abcdgcd = 0 imposes three conditions. (In an orthonormal frame,
H̊1122 = −H̊1111, H̊2222 = −H̊1122 and H̊1112 = −H̊1222.) That Wabcd has only one
degree of freedom follows from the following lemma.

Lemma 3 Suppose that Wabcd is given by (7), and put Wab = Wabcdgcd , W =
Wabgab. Then (in two dimensions)
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Wabcd = W
4 (2gabgcd − gacgbd − gadgbc)

Proof By linearity, it is enough to consider the case when Rabcd = Aab Acd for some
(symmetric) Aab. In terms of eigenvectors (to Aa

b) we can write Aab = αxaxb +
βya yb, where xaxa = ya ya = 1, xa ya = 0. In particular gab = xaxb + ya yb. From
(7) we then get

Wabcd = 1
3 (2Rabcd − Racbd − Radbc)

= 1
3 (2Aab Acd − Aac Abd − Aad Abc)

= 1
3 (2(αxaxb + βya yb)(αxcxd + βyc yd)

− (αxaxc + βya yc)(αxbxd + βyb yd)

−(αxaxd + βya yd)(αxbxc + βyb yc)) .

(8)

Expanding the parentheses, the components xaxbxcxd and ya yb yc yd vanish, leaving

αβ

3
(2xaxb yc yd + 2ya ybxcxd − xaxc yb yd

− ya ycxbxd − xaxd yb yc − ya yd xbxc)

=αβ

3
(2gabgcd − gacgbd − gadgbc) ,

(9)

where the last equality can be seen by inserting gab = xaxb + ya yb (for all indices)
and expanding. Taking one trace, i.e., contracting with gcd gives Wab = 2αβ

3 gab, and
another trace gives W = 4αβ

3 , which proves the lemma. �

3 Rabcd as a Quadratic Form on R
3

Through the orthonormal basis for the space of symmetric two-tensors (in two dimen-
sions) given by (2), the tensor Rabcd viewed as a quadratic form can be represented
by a 3 × 3-matrix. Here, we will restrict ourselves to an orthonormal basis for V(ab),
namely the basis {e(1)

ab , e(2)
ab , e(3)

ab } from Sect. 2.1.3, defined in terms of the orthonor-
mal basis {ξ a, ηa} for V a . Thus, given Rabcd , we associate the symmetric matrix Mi j ,
where (the choice of an orthonormal basis justifies the mismatch of the indices i, j)

Mi j
·= Rab

cde
(i)
ab (e

( j))cd , 1 ≤ i, j ≤ 3.

It is instructive to see how the various derived tensors show up in Mi j . In terms of
the basis (2) it is natural to look at the various parts of Mi j as follows

Mi j
·=

( × ×× × ××
× × ×

)

·=
(

A v
vt a

)

. (10)
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This splitting is natural for reasons which will become apparent in the next sections.
Note, however, that with this representation it is tempting to consider coordinate
changes in R

3, which is not natural in this case. Rather, of interest is the change of
basis in V a and the related induced change of coordinates in the representation (10).
See Sect. 3.2.

3.1 Representation of the Canonically Derived Parts of Rabcd

It is helpful to see how the components of the various tensors Tab, Sab, T , S, H̊abcd ,
H̊ab, H and W show up as components of Mi j . As for H̊ab, e.g., T̊ab denotes the
trace-free part of Tab. Immediate is M33:

M33
·= Rab

cde
(3)
ab (e(3))cd

·= 1

2
Rab

cdgabg
cd = 1

2
Tcdg

cd = 1

2
T . (11)

Similarly, for i = 1, 2 we have

Mi3
·= 1√

2
Rab

cde
(i)
ab g

cd ·= 1√
2
T abe(i)

ab
·= 1√

2
T̊ abe(i)

ab , (12)

where the last equality follows form the trace-freeness of e(1)
ab and e(2)

ab . This means
that the components of T̊ab (properly rescaled) goes into Mi j as the components
of v (and vt ) in (10). The same holds for S̊ab and H̊ab, as S̊ab = T̊ab by Lemma 1,
which then implies that also H̊ab = T̊ab = S̊ab. This latter relation follows from the
trace-free part of the relation Hab = 1

3 (Tab + 2Sab). Hence

Mi j
·=

⎛

⎝

A
−→̊
T

−→̊
T

t
1
2T

⎞

⎠

·=
⎛

⎝

σ
2 I + Å

−→̊
T

−→̊
T

t
1
2T

⎞

⎠ , (13)

where
−→̊
T =

−→̊
S =

−→̊
H encodes the two degrees of freedom in T̊ab = S̊ab = H̊ab. The

matrix A is decomposed as A = σ
2 I + Å where I is the (2 × 2) identity matrix and

Å is trace-free part of A. In particular, [A] = σ .
To investigate [Mi j ] = M11 + M22 + M33, i.e., the trace of Mi j we note that

for a general symmetric matrix Ri j
·= (

a b
b c

)

we have Ri j e
(1)
i j

·= a−c√
2
, Ri j e

(2)
i j

·=
2b√
2
, Ri j e

(3)
i j

·= a+c√
2
. When Mi j is constructed from Rabcd which is an outer prod-

uct RabRcd the trace is given by M11 + M22 + M33 = ( a−c√
2
)2 + ( 2b√

2
)2 + ( a+c√

2
)2 =

a2 + 2b2 + c2 and from (6) this is S. Together with linearity, this shows that
[M] = M11 + M22 + M33 = S also when Rabcd is formed as in (1). Taking trace
in (13), this gives

S = σ + 1
2T, i.e., σ = S − 1

2T .



14 M. Herberthson et al.

In addition, the relations below Eq. (7) show that

{

H = 1
3 (T + 2S)

W = 2
3 (T − S)

i.e.,

{

T = H + W

S = H − 1
2W

so that σ = 1
2H − W.

The two degres of freedom in Å corresponds to the two degrees of freedom in H̊abcd .

3.2 The Behaviour of Mi j Under a Rotation of the
Coordinate System in V a

The components ofMi j are expressed in terms of the orthonormal basis tensors given
by (2), and these in turn are based on the ON basis {ξ̂ , η̂} for V . Putting the basis
vectors in a row matrix

(

ξ̂ η̂
)

and the coordinates in a column matrix
(

ξ
η

)

so that

a vector u = ξ ξ̂ + ηη̂ = (

ξ̂ η̂
) (

ξ
η

)

, and considering only orthonormal frames, the

relevant change of basis is given by a rotationmatrix Q(v) = Qv =
(

cos v − sin v
sin v cos v

)

,

i.e., we consider the change of basis

(

ξ̂ η̂
) →

( ˆ̃
ξ ˆ̃η

)

= (

ξ̂ η̂
)

(

cos v − sin v
sin v cos v

)

= (

ξ̂ η̂
)

Q(v).

Thismeans that for a vectoru =
( ˆ̃
ξ ˆ̃η

)

(

ξ̃

η̃

)

= (

ξ̂ η̂
)

(

ξ

η

)

, the coordinates transform

as
(

ξ

η

)

→
(

ξ̃

η̃

)

= Q−1(v)

(

ξ

η

)

= Qt (v)

(

ξ

η

)

= Q(−v)

(

ξ

η

)

.

For the components of the basis vectors e(1)
ab , e(2)

ab , e(3)
ab we find (omitting the factor

1/
√
2)

(

1 0
0 −1

)

→
(

cos v sin v
− sin v cos v

)(

1 0
0 −1

)(

cos v − sin v
sin v cos v

)

=
(

cos 2v − sin 2v
− sin 2v − cos 2v

)

(

0 1
1 0

)

→
(

cos v sin v
− sin v cos v

)(

0 1
1 0

) (

cos v − sin v
sin v cos v

)

=
(

sin 2v cos 2v
cos 2v − sin 2v

)

(

1 0
0 1

)

→
(

cos v sin v
− sin v cos v

)(

1 0
0 1

) (

cos v − sin v
sin v cos v

)

=
(

1 0
0 1

)

,

(14)
and this means that the components Mi j transform as

Mi j
·=

(

A v
vt a

)

→ ˜Mi j
·=

(

Qt
2v AQ2v Qt

2vv
vt Q2v a

)

. (15)
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But this latter expression is just

(

Qt
2v 0

0
t

1

)

(

A v
vt a

)

(

Q2v 0

0
t

1

)

,

hence we have the following important remark/observation:

Remark 1 Viewing the matrix Mi j as an ellipsoid in R3, the effect of a rotation by
an angle v in V a corresponds to a rotation of the ellipsoid by an angle 2v around the
z-axis in R3 (where the z-axis corresponds to the ‘isotropic direction’ given by gab).

4 The Equivalence Problem for Rabcd

The equivalence problem for Rabcd can be formulated in different ways (for an
account in three dimensions, we refer to [3]). Given two tensors Rabcd and ˜Rabcd ,
bothwith the symmetries implied by (1), the questionwhether they are the sameor not
is straightforward as one can compare the components in any basis. However, Rabcd

and ˜Rabcd could live in different (but isomorphic) vector spaces, e.g. two tangent
spaces at different points, and the concept of equality becomes less clear. On the
other hand, in terms of components Ri jkl and ˜Ri jkl , one could ask whether there is a
change of coordinates which takes one set of components into the other. If so, one
can find a (invertible) matrix Pi

j so that

Ri jkl = ˜Rmnop P
m
i P

n
j P

o
k P

p
l ,

and the tensors are then said to be equivalent. As already mentioned, it is convenient
to restrict the coordinate systems to orthonormal coordinates. This means that two
different coordinate systems differ only by their orientation, i.e., the change of coor-
dinates are given by a rotation matrix Q ∈ SO(2). Under the ’Cartesian convention’
that all indices are written as subscripts, Rabcd and ˜Rabcd are equivalent if there is a
matrix Q ∈ SO(2) so that (their Cartesian components satisfy)

Ri jkl = ˜RmnopQmi Qnj QokQ pl .

4.1 Different Ways to Characterize the Equivalence of Rabcd

and ˜Rabcd

In this section, we will discuss three ways to determine whether two tensors Rabcd

and ˜Rabcd are equivalent or not. In Sects. 4.1.1 and 4.1.2we present two suchmethods
briefly, while Sect. 4.1.3, which is more complete, contains the main result of this
work.
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Fig. 2 Three identical (truncated) ellipsoids in R
3 with different orientations. The two leftmost

ellipsoids can be carried over to each other through a rotation around the (vertical in the figure)
z-axis, which implies that they represent the same tensor Rabcd (up to the meaning discussed). The
right ellipsoid, despite identical eigenvalues with the two others, represent a different tensor since
the rotation which carries this ellipsoid to any of the others is not around the z-axis

As mentioned in Sect. 1.1, the results of Sects. 4.1.1 and 4.1.2, which may be
used in their own rights, rely on particular choices of basis matrices for V(ab). The
formulation in Sect. 4.1.3 on the other hand, is expressed in the components of Rabcd

(in any coordinate system) directly.

4.1.1 Orientation of the Ellipsoid in R
3

Anecessary condition for Rabcd and ˜Rabcd to be equivalent is that their corresponding
3 × 3-matrices Mi j and ˜Mi j have the same eigenvalues. On the other hand, this is
not sufficient since the representation in R

3 should reflect the freedom in rotating
the coordinate system in V a ∼ R

2. With the coordinates adopted, this corresponds
to a rotation of the associated ellipsoid around the z-axis in R

3 (see Remark 1 in
Sect. 3.2). This is illustrated in Fig. 2 where three ellipsoids, all representing positive
definite symmetric mappings having identical eigenvalues, are shown. The two first
ellipsoids can be rotated into each other by a rotation around the z-axis. This implies
that the corresponding tensors Rabcd and ˜Rabcd are equivalent. The third ellipsoid
can also be rotated into the two others, but these rotations are around directions other
than the z-axis, which means that this ellipsoid represents a different tensor.

In the generic case, with all eigenvalues different, it is easy to test whether two
different ellipsoids can be transfered into each other through a rotation around the
z-axis. This will be the case if the corresponding eigenvectors (of Mi j and ˜Mi j ) have
the same angle with the z-axis. Hence it is just a matter of checking the z-components
of the three normalized eigenvectors and see if they are equal up to sign.

4.1.2 Components in a Canonical Coordinate System

In a sense, this is the most straightforward method. In a coordinate system which
respects e(3)

ab as the z-axis in V(ab) ∼ R
3, two tensors Rabcd and ˜Rabcd are equivalent

if there is a rotation matrix (in two dimensions) Q such that
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⎛

⎝

A
−→̊
T−→̊

T t 1
2T

⎞

⎠ =
⎛

⎝

Qt
˜AQ Qt

−→̊
˜T−→̊

˜T t Q 1
2
˜T

⎞

⎠ . (16)

Hence, equivalence can be easily tested by first checking that T = ˜T and that ||
−→̊
T || =

||
−→̊
˜T ||. If this is the case, (and if ||

−→̊
T || > 0) one determines the rotation matrix Q

which gives
−→̊
T = Qt

−→̊
˜T , and equivalence is then determined by if A = Qt

˜AQ or

not. If ||
−→̊
T || = ||

−→̊
˜T || = 0, the equivalence of A and ˜A can be determined directly,

i.e., by checking whether [A] = [˜A] and [A2] = [˜A2] or not.

4.1.3 Equivalence Through (algebraic) Invariants of Rabcd

If a solution is found, this is perhaps the most satisfactory way to establish equiva-
lence, in particular if the invariants are constructed by simple algebraic operations
only. (For instance, to a symmetric 3 × 3-matrix A one can take the three eigenvalues
as invariants or else for instance the traces of A, A2 and A3. The former set requires
some calculations, but the latter is immediate.)

Examples of invariants are T = Rabcdgabgcd , S = Rabcdgacgbd and the invariants
H = Habgab,W = Wabgab. To produce the invariants, we use the tensor Rabcd and
the metric gab. However, if we regard V a ∼ R

2 as oriented, so that the orthonormal
basis {ξ̂ , η̂} for V a also is oriented, then invariants can also be formed in another way.
Namely, since the space of symmetric 2 × 2 matrices is 3-dimensional, and since the
metric gab singles out a 1-dimensional subspace, it also determines a 2-dimensional
subspace L; all elements orthogonal to gab. This subspace is the set of all symmetric
2 × 2 matrices which are also trace-free. L can be given an orientation through an
area form, which in turn inherits the orientation from V a .

In general, with right-handed Cartesian coordinates x1, x2, the area form ε is
given by ε = dx1 ∧ dx2 where (ω ∧ μ)ab = ωaμb − ωbμa . With the orthonormal
basis {ξ̂ , η̂} ( for V a ) also right handed, we define, cf. (2),

e(1)
ab = 1√

2
(ξ̂ a ξ̂ b − η̂a η̂b), e(2)

ab = 1√
2
(ξ̂ a η̂b + η̂a ξ̂ b). (17)

The area form on L is then ε ∼ e(1) ∧ e(2), or

ε ∼ Eabcd = e(1)
ab e

(2)
cd − e(2)

ab e
(1)
cd . (18)

It is not hard to see that this definition is independent of the orientation of {ξ̂ , η̂}.
We observe that 2Eabcd = (ξ̂ a ξ̂ b − η̂a η̂b)(ξ̂ cη̂d + η̂c ξ̂ d) − (ξ̂ a η̂b + η̂a ξ̂ b)(ξ̂ c ξ̂ d −
η̂cη̂d). By replacing ξ̂ by ω̂ = cos v ξ̂ + sin v η̂ and η̂ by μ̂ = − sin v ξ̂ + cos v η̂,
i.e., a rotated orthonormal basis, it is straightforward to check that
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(ω̂aω̂b − μ̂aμ̂b)(ω̂cμ̂d + μ̂cω̂d) − (ω̂aμ̂b + μ̂aω̂b)(ω̂cω̂d − μ̂cμ̂d)

=(ξ̂ a ξ̂ b − η̂a η̂b)(ξ̂ cη̂d + η̂c ξ̂ d) − (ξ̂ a η̂b + η̂a ξ̂ b)(ξ̂ c ξ̂ d − η̂cη̂d)
(19)

so that Eabcd is well defined. We recollect that area form Eabcd is defined, through
the induced metric, on the plane L (which in turn is also defined through the metric
gab) and the orientation on V a . Hence Eabcd can be used when forming invariants.

We will now state the result of this work, namely the existence of six invariants
which can be used to investigate equivalence of two tensors Rabcd and ˜Rabcd . We
start by defining

S =Rabcdg
acgbd

T =Rabcdg
abgcd

J0 =Rabcd R
abcd

J1 =T abTab

J2 =RabcdT
abT cd

J3 =T abRabcd E
cde f Tef .

(20)

where Eabcd is defined by (17) and (18). Similarly, we define ˜S, ˜T , ˜J0, ˜J1, ˜J2 and
˜J3 as the corresponding invariants formed from ˜Rabcd . We make the remark that for
most of these invariants, their immediate interpretations still remain to be found.
Rather, their value lie in the fact that they form a set which can be used to establish
the equivalence in Theorem 1 below. On the other hand, some interpretations are
possible. In particular, the quotient T/S (see Definition 1) lies in the interval [1, 2]
and has the meaning given by Lemma 2.

Theorem 1 Suppose that Rabcd = ∑n
i=1 R

(i)
ab R

(i)
cd , with R(i)

ab ≥ 0 and that Ri jkl are
the components of Rabcd in some basis. Suppose also that ˜Rabcd = ∑ñ

i=1
˜R(i)
ab

˜R(i)
cd ,

with ˜R(i)
ab ≥ 0 and that ˜Ri jkl are the components of ˜Rabcd in some, possibly unrelated,

basis. If (and only if) S = ˜S, T = ˜T , J0 = ˜J0, J1 = ˜J1, J2 = ˜J2, J3 = ˜J3, then there
is a transformation matrix Pi

j such that

Ri jkl = ˜Rmnop P
m
i P

n
j P

o
k P

p
l .

Proof Since the invariants are defined without reference to any basis, it is sufficient
to consider the components expressed in an orthonormal frame, and in that case we
must prove the existence of a rotation matrix Q ∈ SO(2) so that

Ri jkl = ˜RmnopQmi Qnj QokQ pl .

Since
Rabcd = Mi je

(i)
abe

( j)
cd , (21)

we can consider the invariants formed from the components of
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Mi j =
(

A u
ut c

)

and ˜Mi j =
(

˜A ˜u
˜u
t
c̃

)

(22)

and we must demonstrate the existence of a rotation matrix Q = Q2v such that

˜A = Qt
2v AQ2v, ˜u = Qt

2vu, c̃ = c. (23)

We make the ansatz

Mi j =
⎛

⎝

σ
2 + a b
b σ

2 − a
x
y

x y c

⎞

⎠ , ˜Mi j =
⎛

⎝

σ̃
2 + ã ˜b

˜b σ̃
2 − ã

x̃
ỹ

x̃ ỹ c̃

⎞

⎠ . (24)

Through (21) it is straightforward to see that

S = σ + c, T = 2c, J0 = 2(a2 + b2) + c2 + σ 2/2 + 2(x2 + y2),
J1 = 2(c2 + x2 + y2)

so if S = ˜S, T = ˜T , J0 = ˜J0, J1 = ˜J1, it follows that σ = σ̃ , c = c̃, a2 + b2 = ã2 +
˜b2 and x2 + y2 = x̃2 + ỹ2. Since the isotropic part of A, i.e., σ

2 I is unaffected by

a rotation of the coordinate system, we consider the traceless parts Å = (

a b
b −a

)

,
˚̃A =

(

ã ˜b
˜b −ã

)

, and the task is to assert a rotation matrix Q such that

(

a b
b −a

)

= Qt

(

ã ˜b
˜b −ã

)

Q,

(

x
y

)

= Qt

(

x̃
ỹ

)

,

if also J2 = ˜J2, J3 = ˜J3. Again it is straightforward to calculate the remaining invari-
ants, and we find

J2 = 4bxy + 2a(x2 − y2) + 2c3 + (4c + σ)(x2 + y2)
J3 = 4axy − 2b(x2 − y2) .

and similarly for ˜J2, ˜J3. Hence, (since σ = σ̃ , c = c̃)

a2 + b2 = ã2 +˜b2

x2 + y2 = x̃2 + ỹ2

2bxy + a(x2 − y2) = 2˜bx̃ ỹ + ã(̃x2 − ỹ2)
2axy − b(x2 − y2) = 2̃ax̃ ỹ −˜b(̃x2 − ỹ2) .

(25)

Suppose first that x2 + y2 > 0. The equality x2 + y2 = x̃2 + ỹ2 then guarantees the
existence of the rotationmatrix Q which is determined via the relation

( x
y
) = Qt

(

x̃
ỹ

)

.
This can also be expressed as Qt

1

( x
y
) = Qt

2

(

x̃
ỹ

)

for some rotation matrices Q1, Q2,
where Q = Q2Qt

1. We now choose the rotation matrix Q1 so that in the untilded
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coordinates, y = 0. Similarly we choose Q2 so that for the tilded coordinates, we
get a frame where ỹ = 0. The equalities between the invariants in (25) then become

a2 + b2 = ã2 +˜b2

x2 = x̃2

ax2 = ã x̃2

−bx2 = −˜bx̃2 ,

so that a = ã, b = ˜b. This proves the theorem when x2 + y2 > 0. When x2 + y2 =
x̃2 + ỹ2 = 0, i.e., x = y = x̃ = ỹ = 0, the remaining equality a2 + b2 = ã2 +˜b2 is
sufficient since we can again choose frames in which b = ˜b = 0 and a > 0, ã > 0.
It then follows that a = ã. �

5 Discussion

In this work, we started with a family of symmetric positive (semi-)definite tensors
in two dimensions and considered its variance. This lead us to a fourth order tensor
Rabcd with the same symmetries as the elasticity tensor in continuum mechanics.
After listing a number of possible issues to address, we focused on the equivalence
problem. Namely, given the components of two such tensors Rabcd and ˜Rabcd , how
can one determine if they represent the same tensor (but in different coordinate
systems) or not? In Sect. 4, we saw that this could be investigated in different ways.
The result of Theorem 1 is most satisfactory in the sense that it is expressible in terms
of the components of the fourth order tensors directly.

There are two natural extensions and/or ways to continue this work. The first is to
apply the result to realistic families of e.g., diffusion tensors in two dimensions. The
objective is then, apart from establishing possible equivalences, to investigate the
geometric meaning of the invariants. The other natural continuation is to investigate
the corresponding problem in three dimensions. The degrees of freedom of Rabcd will
then increase from 6 to 21, leaving us with a substantially harder, but also perhaps
more interesting, problem.
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Degenerate Curve Bifurcations in 3D
Linear Symmetric Tensor Fields

Yue Zhang, Hongyu Nie, and Eugene Zhang

Abstract 3D symmetric tensor fields have a wide range of applications in medicine,
science, and engineering. The topology of tensor fields can provide key insight into
their structures. In this paper we study the number of possible topological bifur-
cations in 3D linear tensor fields. Using the linearity/planarity classification and
wedge/trisector classification, we explore four types of bifurcations that can change
the number and connectivity in the degenerate curves as well as the number and
location of transition points on these degenerate curves. This leads to four types of
bifurcations among nine scenarios of 3D linear tensor fields.

1 Introduction

Tensor field visualization is an important topic in visualization, with many applica-
tions in medical imaging, solid and fluid mechanics, material science, earthquake
engineering, and computer graphics.

Recent advances on tensor field visualization focus in topology-driven analy-
sis and visualization of 3D symmetric tensor fields. Degenerate curves are one of
the most fundamental topological features in a tensor field, and much research has
focused on the understanding and efficient extraction of degenerate curves from
piecewise linear tensor fields defined on a tetrahedral mesh [6–8].
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In the book chapter, we focus on a problem that has received relatively little
attention: bifurcations in tensor field topology. To make our investigation effective
with potential application to real datasets, we focus on 3D linear tensor fields. We
explore all the theoretically possible bifurcations. Moreover, we have conducted
experiment to verify whether these bifurcations can occur.

The rest of the paper is structured as follows. Section 2 reviews past research
in topology-driven analysis of symmetric tensor fields. In Sect. 3 we review relevant
mathematical background and results on tensor fields. In Sect. 4we report the findings
of our exploration before concluding in Sect. 5.

2 Previous Work

Much research exists on 2D and 3D symmetric tensor fields, and we refer the readers
to the survey by Kratz et al. [4] and Zhang et al. [11] for a more comprehensive
review. In this book chapter we only refer to the research that is most relevant.

Delmarcelle and Hesselink [1] introduce the notion of degenerate points for
2D symmetric tensors, where eigenvector directions are not well-defined. Zhang
et al. [12] explore the physical meanings of degenerate points in the stress tensor and
strain tensor from continuum mechanics.

Hesselink et al. later extend this work to 3D symmetric tensor fields [3] and study
the degeneracies in such fields. Zheng and Pang [16] point out that triple degen-
eracies are structurally unstable features. That is, an arbitrarily small perturbation
to the field will remove such degenerate points. Zheng and Pang further show that
double degeneracies, i.e., only two equal eigenvalues, form lines in the domain. In
this work and subsequent research [18], they provide a number of degenerate curve
extraction methods based on the analysis of the discriminant function of the tensor
field. Furthermore, Zheng et al. [17] point out that near degenerate curves the tensor
field exhibits 2D degenerate patterns and define separating surfaces which are exten-
sions of separatrices from 2D symmetric tensor field topology. Tricoche et al. [9]
convert the problem of extracting degenerate curves in a 3D tensor field to that of
finding the ridge and valley lines of an invariant of the tensor field, thus leading to a
more robust extraction algorithm.More recently, Palacios et al. [6] extract degenerate
curves using an algorithm for algebraic surface extraction method called A-patches.
Palacios et al. [5] introduce a number of topological editing operations with which
a 3D tensor field can be edited for graphics applications.

Zhang et al. [13] describe a number of important properties of 3D linear tensor
fields. They [15] show that in a 3D linear tensor field, there are at least two and at
most four degenerate curves. Roy et al. [8] develop a parameterization with which all
degenerate points in a 3D piecewise linear tensor field can be extracted efficiently and
at any given accuracy. Zhang et al. [14] show that there are at most eight transition
points in a 3D linear tensor field.
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3 Background on Tensors and Tensor Fields

In this section we review the most relevant background on 2D and 3D symmetric
tensors and tensor fields [14].

3.1 Tensors

A K -dimensional (symmetric) tensor T has K real-valued eigenvalues: λ1 ≥ λ2 ≥
... ≥ λK . The largest and smallest eigenvalues are referred to as themajor eigenvalue
and minor eigenvalue, respectively. When K = 3, the middle eigenvalue is referred
to as the medium eigenvalue. An eigenvector belonging to the major eigenvalue is
referred to as a major eigenvector. Medium and minor eigenvectors can be defined
similarly. Eigenvectors belonging to different eigenvalues are mutually perpendicu-
lar.

The trace of a tensorT = (Ti j ) is trace(T) = ∑K
i=1 λi .T can be uniquely decom-

posed as D + A where D = trace(T)

K I (I is the K -dimensional identity matrix) and
A = T − D. The deviatorA is a traceless tensor, i.e., trace(A) = 0. Note thatT and
A have the same set of eigenvectors. Consequently, the anisotropy in a tensor field
can be defined in terms of its deviator tensor field. Another nice property of the set of
traceless tensors is that it is closed under matrix addition and scalar multiplication,
making it a linear subspace of the set of tensors.

The magnitude of a tensor T is ||T|| =
√∑

1≤i, j≤K T 2
i j =

√∑K
i λ2

i , while the

determinant is |T| = ∏K
i=1 λi .

A tensor is degenerate when there are repeating eigenvalues. In this case, there
exists at least one eigenvalue whose corresponding eigenvectors form a higher-
dimensional space than a line. When K = 2 a degenerate tensor must be a multiple
of the identity matrix.

3.2 Tensor Field Topology

We now review tensor fields, which are tensor-valued functions over some domain
� ⊂ R

K . A tensor field can be thought of as K eigenvector fields, corresponding
to the K eigenvalues. A hyperstreamline with respect to an eigenvector field ei (p)
is a 3D curve that is tangent to ei everywhere along its path. Two hyperstreamlines
belonging to two different eigenvalues can only intersect at the right angle, since
eigenvectors belonging to different eigenvalues must be mutually perpendicular.

Hyperstreamlines are usually curves. However, they can occasionally consist of
only one point, where there is more than one choice of lines that correspond to
the eigenvector field. This is precisely where the tensor field is degenerate. A point



26 Y. Zhang et al.

Fig. 1 A wedge (left) and a trisector (right)

p0 ∈ � is a degenerate point if T(p0) is degenerate. One important topological
feature of a tensor field consists of its degenerate points.

In 2D, the set of degenerate points of a tensor field consists of isolated points
under numerically stable configurations, when the topology does not change given
sufficiently small perturbation in the tensor field. An isolated degenerate point can
be measured by its tensor index [10], defined in terms of the winding number of
one of the eigenvector fields on a loop surrounding the degenerate point. The most
fundamental types of degenerate points are wedges and trisectors, with a tensor
index of 1

2 and − 1
2 , respectively. Let LTp0(p) be the local linearization of T(p) at a

degenerate point p0 =
(
x0
y0

)

, i.e.,

LTp0(p) =
(
a11(x − x0) + b11(y − y0) a12(x − x0) + b12(y − y0)
a12(x − x0) + b12(y − y0) a22(x − x0) + b22(y − y0)

)

(1)

Then δ =
∣
∣
∣
∣

( a11−a22
2 a12

b11−b22
2 b12

)∣
∣
∣
∣ is invariant under the change of basis [2]. Moreover,

p0 is a wedge when δ > 0 and a trisector when δ < 0. When δ = 0, p0 is a higher-
order degenerate point. A major separatrix is a hyperstreamline emanating from a
degenerate point following the major eigenvector field. Aminor separatrix is defined
similarly.

The total tensor index of a continuous tensor field over a two-dimensional mani-
fold is equal to the Euler characteristic of the underlying manifold. Consequently, it
is not possible to remove one degenerate point. Instead, a pair of degenerate points
with opposing tensor indexes (a wedge and trisector pair) must be removed simul-
taneously [10]. Figure 1 shows a wedge pattern (left) and a trisector pattern (right),
respectively.
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In 3D, a degenerate point can have either two or three eigenvalues being the same,
the latter of which is structurally unstable. Structurally stable degenerate points have
two eigenvalues being the same. These eigenvalues are the repeating eigenvalues,
while the third eigenvalue is the dominant eigenvalue.When the dominant eigenvalue
is the major eigenvalue, the degenerate point is a linear degenerate point (L). On the
other hand, when the dominant eigenvalue is the theminor eigenvalue, the degenerate
point is a planar degenerate point (P). We refer to this linear/planar classification
of a degenerate point as its L/P classification. Along a degenerate curve, its L/P
classification does not change.

A degenerate point can also be classified in a different way, by projecting the
tensor field onto the plane passing through the degenerate point and perpendicular to
its dominant eigenvector. The degenerate point is also a degenerate point in the 2D
projected tensor field. Consequently, the original 3D degenerate point is classified as
either awedge (W) or a trisector (T) based on theW/T type of the 2Ddegenerate point.
Note that the projection of the 3D tensor field onto other planes not perpendicular
to the dominant eigenvector does not necessarily have the same W/T classification.
Along a degenerate curve, the W/T type can change, separated by degenerate points
that are neither wedges nor trisectors. Such points are transition points.

Figure 2 illustrates these concepts with one example tensor field. The combination
of the L/P and W/T classifications of a degenerate point leads to four combinations:
LW(green), LT (blue), PW(yellow), andPT (red).Note that along a degenerate curve,
the L/P classification is constant while theW/T classification can change. Therefore,
a degenerate curve can consist of either green and blue segments, or yellow and
red segments, but not other combinations of colors. Linear transition points appear
between green and blue segments, while planar transition points separate yellow and
red segments.

The projected tensor fields onto the plane of repeating eigenvalues are shown along
the degenerate curve. Notice that at a W type point, the projected pattern shows a
wedge, while at a T type point, the projected pattern shows a trisector. At a transition
point, the projected pattern shows neither a wedge pattern nor a trisector pattern.

3.3 3D Linear Tensor Fields

A 3D linear tensor field is a 3D symmetric tensor field whose tensor entries are linear
functions of the XYZ coordinates of the points in the domain. It has the following
form:

T (x, y, z) = T0 + xTx + yTy + zTz (2)

where T0, Tx , Ty , and Tz are 3D symmetric tensors. A 3D linear tensor field has
all the aforementioned properties of a general tensor field. However, there are some
important properties specific to 3D linear tensor fields.
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Fig. 2 Along a degenerate curve, the projection of the tensor field onto the repeating planes can
exhibit 2D degenerate patterns such as a trisector (a) or a wedge (c). Between segments of wedges
(yellow) and trisectors (red), transition points can appear (b)

First, there are either two or four degenerate curves in a 3D linear tensor field [15].
Half of these curves are L, and the other half are P.

Second, there are either zero, two, four, six, or eight transition points in a 3D
linear tensor field [14].

As pointed out [8], the set of degenerate points in a 3D linear tensor field (including
their asymptotic limits at infinity) is homeomorphic to a topological circle (a loop).
Figure 3 illustrates this bijective map. The loop is situated on the unit sphere where
the location of a degenerate point on the loop corresponds to its unit dominant
eigenvector. Since eigenvectors have a sign ambiguity, there are two such loops.
Every degenerate point corresponds to exactly one pair of antipodal points on the
sphere. While L/P cannot change along a degenerate curve, such a switch can occur
at infinity, which two degenerate curves approach in opposite directions. The number
of such switch points, called ∞ points, is the same as the number degenerate curves
in the field. Note that ∞ points are neither L nor P. On the other hand, they can be
either W or T. This leads to nine scenarios [14]: (1) two WW curves, (2) two WT
curves, (3) two TT curves, (4) four WW curves, (5) two WW curves and two WT
curves, (6) one WW curve, two WT curves, and one TT curve, (7) four WT curves,
(8) two WT curves and two TT curves, and (9) four TT curves.

Along a WW or T T curve, there must be an even number of transition points,
while on a WT curve there must exist an odd number of transition points.

The color of the sphere represents the sign of the discriminant of the projected
tensor field onto the planewhose normal is the displacement vector of the point on the
sphere from the center of the sphere. The color is cyan if the discriminant is positive
(wedge type) and magenta if the discriminant is negative (trisector type). Note the
W/T classification of a degenerate point must match the sign of the discriminant on
the sphere. That is, green and yellow segments must appear in the cyan region, while
blue and red segments must appear in the magenta region. A transition point must
appear on the boundary between cyan and magenta regions.
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Fig. 3 This figure shows the parameterization of all degenerate points in a 3D linear tensor field
by a topological circle. In the left are the degenerate curves of a 3D linear tensor field, and in
the right is the topological circle superimposed on the unit sphere. Between the yellow and green
segments are∞ points. In addition, transition points occur either between yellow and red segments,
or between green and blue segments. Moreover, we color a point in the sphere (right: representing
a unit vector) cyan if the tensor projected onto the plane perpendicular to this vector has a wedge
degenerate point. On the other hand, the point is colored magenta if the projected tensor field has
trisector degenerate point. Notice that the transition points on the degenerate curves (between blue
and green segments and between yellow and red segments) are precisely on the boundary between
the cyan and magenta regions

4 Bifurcations

We now describe our findings of bifurcations in 3D linear tensor fields.
First, there can be either two or four degenerate curves. This means that some

bifurcations can change the number of degenerate curves in the field. We refer to
those bifurcations which reduce the number of degenerate curves from four to two
as degenerate curve removal and those increase the number from two to four as
degenerate curve generation.

Second, even when the number of degenerate curves does not change, the way
the ∞ points are connected can change. We refer to this as degenerate curve recon-
nection, which is consistent with the topological editing operation of the same name
from [5].Note that twodegenerate curves of oppositeL/P types cannot be reconnected
as this would generate a degenerate curve with changing L/P type. Consequently,
when there are only two degenerate curves in the field, they cannot be connected.
Degenerate curve reconnection can only occur for four degenerate curves.

Third, the number of transition points in the tensor field can change. Since this
number must be even, we refer to such bifurcations as either transition point pair
cancellation if the number is decreased by two or transition point pair generation if
the number is increased by two.

Finally, even when the number of transition point does not change in a field, it
is possible that some transition point has been moved from one degenerate curve to
another. We refer to such a bifurcation as a transition point relocation.

Belowwe consider these bifurcations in the context of the nine scenarios described
earlier.
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4.1 Degenerate Curve Removal and Generation

Note that a degenerate curve generation bifurcation must be the inverse of a degen-
erate curve removal bifurcation, and vice versa. Consequently, we consider them
together in this section.

Figure 4 lists all theoretically possible degenerate curve generation bifurcations
and their inverse bifurcations. There is a total of nine scenarios, each of which is
represented as an ellipse (topological disk) with the ∞ points marked along with
their W/T types. A degenerate curve removal bifurcation must take a scenario with
four degenerate curves (four ∞ points on the ellipse) to one with two degenerate
curves (two ∞ points). Conversely, a degenerate curve generation bifurcation must
take a scenario with two degenerate curves to one with four degenerate curves.
In addition, when two degenerate curves are removed, two adjacent ∞ points are
removed and two ∞ points remain. Each of the ∞ point is written as either W or T
(called a symbol on the ellipse). This means that not any four-symbolled ellipse can
connect with any two-symbolled ellipse. For example, while the box with four W ’s
can be mapped to either one with twoW ’s or one with oneW and one T , it can not be
connected with one with two T ’s. Similarly, the box with oneW and three T ’s cannot
be mapped to one with twoW ’s. Furthermore, when two symbols are removed, they
need to be adjacent symbols. Consequently, it is not possible to connect the ellipse
with two W ’s and two T ’s that are interleaved to one with two W ’s or the one with
two T ’s.

These constraints give rise to a total of ten theoretically possible bifurcations,
each of which is given as an edge in Fig. 4. The following figures provide examples
of degenerate curve removal bifurcations.

In Fig. 5 (left), there are initially four TT curves, two of which are linear (blue)
and two planar (red). After the bifurcation (right), the two linear degenerate curves
become connected by a linear wedge segment (green), which replaces the lost planar
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Fig. 4 This diagram shows all the theoretically possible degenerate curve removal and generation
bifurcations in a 3D linear tensor field
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Fig. 5 This figure shows a degenerate curve removal bifurcation from the case of four TT curves
(left) to two TT curves (right). The top-middle shows the non-repeating eigenvector manifold for
the left, while the bottom-middle shows the non-repeating eigenvector manifold for the right. The
inverse bifurcation, a degenerate curve generation exists, which swaps the before and after scenarios.
Note that in these bifurcations the number of segments do not change after the bifurcation

Fig. 6 Another degenerate curve removal bifurcation takes the case of two WW curves and two
WT curves (left) to two WW curves (right). Note that the number of segments is decreased by two
after the bifurcation, i.e. two transition points are lost as a result of the bifurcation

TT curve (red). Furthermore, two transition points appear on the newly connected
linear degenerate curve.

The middle column compares the two fields using their parameterization: (upper-
middle) corresponding to the field in the left, and (lower-middle) corresponding to
the tensor field in the right. Through the bifurcation, two infinity points are replaced
by two transition points, resulting in the switch of a red segment (middle-top) to a
green segment (middle-bottom), which leads to the loss of two degenerate curves
and the creation of two transition points.

Figure 6 provide an additional example of such types of bifurcations. Note that
in this example, the loss of two degenerate curves also results in the loss of two
transition points, i.e. the loss of two colored segments. This is a different way of
achieving degenerate curve removal than the example bifurcation in Fig. 5, in which
the number of segments does not change.
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4.2 Degenerate Curve Reconnection

Degenerate curve reconnection bifurcations do not change the number of degenerate
curves. Instead, they change how the ∞ points are connected. As mentioned earlier,
two degenerate curves can be connected only if they have the same L/P type. When
there are only two degenerate curves, one is L and the other P, which cannot be con-
nected after reconnection. Consequently, degenerate curve reconnection bifurcations
only occur for the case of four degenerate curves.

There is a total six scenarios with four degenerate curves, as shown in Fig. 7. Since
degenerate curve reconnection bifurcations do not change the number and type of∞
points, there is at least one theoretically possible bifurcation that connects a scenario
to itself. Furthermore, the two scenarios with two W ’s and two T ’s are connected
through reconnection bifurcations.

However, it is worth noting that when reconnection occurs, the ∞ points on
the two degenerate curves to be reconnected cannot be arbitrarily connected after
bifurcation. For an example, consider the case of two W ’s and two T ’s that appear
on the ellipse in an alternating fashion (the lower-middle ellipse) in Fig. 7. Suppose
the top and bottom segments are to be reconnected while the left and right segment
remain. Then one cannot connect the upper-left W ∞ point with the lower-left T
∞ point, as it would cause the ellipse to be broken into two topological disks, a
structurally unstable case. This means that it is not possible to have a reconnection
bifurcation that takes this scenario to itself. Instead, the only way to reconnect is to
connect the upper-left W ∞ point with the lower-right W ∞ point and connect the
upper-right T ∞ point with the lower-left T ∞ point, leading to the scenario of two
adjacent W and two adjacent T ∞ points on the ellipse (the upper-middle ellipse).

In fact, the above argument is true in general. That is, when reconnecting, the
upper-left ∞ point must be connected to the lower-right ∞ point, and the upper-
right ∞ point must be connected to the lower-left ∞ point. This analysis shows
that there are five degenerate curve reconnection bifurcations that takes one scenario
to itself, and there are two more that occur between two different scenarios (the
upper-middle ellipse and the lower-middle ellipse).

Figure 8 shows the reconnection in the scenario of four WW curves, in which
two linear degenerate curves (green) are reconnected, resulting in two linear degen-
erate curves. The two planar degenerate curves (yellows) are not reconnected. This
bifurcation does not increase or decrease the number of transition points.

Figure 9 presents another degenerate curve reconnection bifurcation in which two
planar WT degenerate curves are reconnected into one planar WW degenerate curve
and one planar TT degenerate curve. As a result of this bifurcation, two transition
points are removed, which leads to a decrease in the total number of transition points
in the field.Notice the order of colored segments (middle columnof Fig. 9) is changed
due to the reconnection.
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Fig. 7 This diagram shows all the possible degenerate curve reconnection bifurcations in a 3D
linear tensor field

Fig. 8 This figure shows a degenerate curve reconnection bifurcation from the case of four WW
curves (left) to four WW curves (right). The number of transition points does not change after the
bifurcation

Fig. 9 Another degenerate curve reconnection bifurcation takes the case of one WW curve, 2WT
curves, and one TT curve (left) to four WT curves (right). In this case, the number of degenerate
curve bifurcation is decreased by two
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4.3 Transition Point Pair Cancellation and Generation

The total number of transition points in a 3D linear tensor field is an even number
between zero and eight. That means that any fundamental bifurcation that changes
the number of total transition points must either increase it by two or decrease it by
two. The former is the degenerate curve pair generation bifurcation, and the latter
degenerate curve pair cancellation bifurcation. They are inverse bifurcations and
thus discussed together in this section.

Two examples of transition point pair cancellation bifurcations are shown in
Figs. 11 and 12, for the cases of two degenerate curves and four degenerate curves,
respectively. The transition point pair cancellation and generation bifurcations do
not change the scenario. Consequently, for each of the nine scenarios, there is a
bifurcation that takes this scenario to itself, as shown in Fig. 10. There is a total
of nine transition point pair cancellation bifurcations and nine transition point pair
generation bifurcations.
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Fig. 10 This diagram shows all the possible transition pair cancellation and generation bifurcations
in a 3D linear tensor field for one degenerate curve

Fig. 11 A transition point pair cancellation bifurcation that removes two transition points and
one blue segment from one of the two degenerate curves (left), resulting in the same number of
degenerate curves with two fewer transitions points (right)
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Fig. 12 A transition point pair cancellation operation (from to right) occurs in the case of four
degenerate curves
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Fig. 13 This diagram shows all the possible transition point relocation bifurcations in a 3D linear
tensor field. Note that these bifurcations have the effect of switching one W symbol to one T
symbol, or vice versa. Consequently, there are only eight possible such bifurcations, all observed
in our experiment

4.4 Transition Point Relocation

Transition points, along with ∞ points, divide the degenerate curves into segments
of pure L/P andW/T types. While the total number of transition points in a 3D linear
tensor field is eight, its distribution is not uniform among the degenerate curves.

Transition point relocation refers to moving one transition point from one degen-
erate curve to another degenerate curve of the opposite L/P type. From the viewpoint
of the parameterization, this is the swap of the positions of the transition point with
one adjacent infinity point on the ellipse in the counterclockwise order. This results
in one fewer transition point on the original degenerate curve and onemore transition
point on the new degenerate curve but keeps the total number of transition points
constant. Moreover, the W/T type of the segment also changes. Consequently, the
segment between the transition point and infinity point will change its L/P type but
maintains its W/T type, thus will change colors between red and green, or between
yellow and blue. Figures 14 and 15 provide two examples of this type of bifurcations
that involve respectively two degenerate curves and four degenerate curves.
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Fig. 14 This figure shows a transition point relocation bifurcation from the case of twoWW curves
(left) to two WT curves (right)

Fig. 15 Another transition point relation bifurcation takes the case of four TT curves (left) to two
TT and two WT curves (right)

Figure 13 shows the possible transition point relation bifurcations. Note that these
bifurcations result in a switch of a W infinity point to a T type of infinity point, or
vice versa. Note that each edge in this diagram corresponds to two transition point
relocation bifurcations. As there are eight edges in the diagram, there is a total of 16
bifurcations, all of which have been observed during experiment.

5 Conclusion

Degenerate curves and transition points play an important role in describing the
behavior of a 3D tensor field. In this book chapter, we study possible bifurcations
for any 3D linear tensor field.

This is done based on the realization that there is a total of nine scenarios and four
types bifurcations. Theoretically, we have identified ten degenerate curve removal
bifurcations, ten degenerate curve generation bifurcations, seven degenerate curve
reconnection bifurcation, nine transition point pair cancellation bifurcations, nine
transition point pair generation bifurcations, and 16 transition point relation bifurca-
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tions. This leads to a total of 61 topological bifurcations for 3D linear tensor fields,
all of which have been observed.

There are a number of future research directions.
First, the number of transition points can further divide each scenario into sub-

scenarios. For example, for the scenario of two WW curves, there can be zero, two,
four, six, or eight transition points. Furthermore, transition points are not evenly dis-
tributed on degenerate curves. This leads tomultiple cases per scenario. Enumerating
of all bifurcations from any sub-scenario to any other sub-scenario can lead to deeper
insight about the topology of 3D symmetric tensor fields.

Second, the bifurcations among 3D tensor fields can be used to generate a multi-
scale framework for the topological analysis of these objects, such as degenerate
curve clustering and removal. Such a framework has the potential of enabling users to
inspect the topology of their tensor field data at various scales. We plan to investigate
this possibility in our future research.

Third, simulation data sets usually involve piecewise linear tensor fields, which
can have potentially more types of bifurcations than linear tensor fields that we
investigate in this paper. This is a future direction that can lead to more practical
applications for tensor field topology.

Fourth, neutral surfaces are the other important constituent of 3D tensor field
topology. Enumerating the scenarios of neutral surfaces and bifurcations of these
different scenarios can provide insight into the structure of a tensor field. We will
explore this direction.
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Continuous Histograms for Anisotropy
of 2D Symmetric Piece-Wise Linear
Tensor Fields

Talha Bin Masood and Ingrid Hotz

Abstract In this chapter we present an accurate derivation of the distribution of
scalar invariants with quadratic behavior represented as continuous histograms. The
anisotropy field, computed from a two-dimensional piece-wise linear tensor field, is
used as an example and is discussed in all details. Histograms visualizing an approx-
imation of the distribution of scalar values play an important role in visualization.
They are used as an interface for the design of transfer-functions for volume render-
ing or feature selection in interactive interfaces. While there are standard algorithms
to compute continuous histograms for piece-wise linear scalar fields, they are not
directly applicable to tensor invariants with non-linear, often even non-convex behav-
ior in cells when applying linear tensor interpolation. Our derivation is based on a
sub-division of the mesh in triangles that exhibit a monotonic behavior. We compare
the results to a naïve approach based on linear interpolation on the original mesh or
the subdivision.

1 Introduction

Iso-contours or iso-surfaces of scalar fields, defined as the pre-image of an iso-value,
play a central role in visualization. There is a large body of work centered around
iso-contour computation and analysis with many applications. A prominent exam-
ple is the contour tree, which keeps track of topological changes of iso-contours
when changing the iso-value [5]. It provides a structural overview of the data, see
Sect. 2.3 for more details. Complementary information is provided by the continuous
histogram, which is an extension of the discrete histogram to encode the distribution
of the scalar values of continuous functions, see Sect. 2.1. It can serve as a valuable
quantitative signature [2] of a data set. Both structures are frequently used for inter-
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Fig. 1 An example demonstrating the behavior of the anisotropy field in a simple tensor field
given on a triangulated domain. The ellipses at the vertices represent the tensors defining the field.
The total rotation of the eigenvector when moving once around the domain is 2π . The white lines
represent iso-contours. a The anisotropy is linearly interpolated within the original mesh. It only
has one minimum and no zeros or isotropic points. b The consistent anisotropy assuming linear
interpolation of tensor components has three minima and two isotropic points. The respective join
trees for the anisotropy fields are shown next to the meshes. All zero-leaves, marked in red, in the
tree represent isotropic points of the tensor field. c The histograms for anisotropy using the two
approaches in comparison

action and filtering, for example, to determine interesting iso-values or for transfer
function design [19]. Histograms have also been applied for tensor field visualization
and exploration to display the distribution of scalar invariants derived from tensor
fields [13]. This distribution can also be understood as statistics of iso-contours. Note
that we use the term iso-contour to refer to the complete level set of a 2D scalar field
for a given iso-value, not one of its connected component which is the case in some
of the related contour tree literature.

There are many standard algorithms to compute and analyze iso-contours, which
are mostly based on piece-wise linear or multi-linear behavior. This assumption is,
however, often violated for tensor invariants when using component-wise tensor
interpolation, for example, various anisotropy definitions or the determinant of the
tensor. An illustrative example of the behavior of the contours of the anisotropy
in piece-wise linear tensor field in comparison to a linear approximation of the
anisotropy is shown in Fig. 1. It is important to note that, there is no continuous
tensor field interpolating the tensors at the vertices exhibiting the piece-wise linearly
interpolated anisotropy in Fig. 1a when assuming that the tensor field is fixed on
the boundary of the domain. The number of rotations of the eigenvector field when
moving once around the domain (Poincaré index) is a topological invariant that
determines the minimum number of isotropic points in the field. In this example,
there is a total rotation of 2π of the eigenvectors, which results in two zeros in
the anisotropy field. These zeros in the anisotropy field are not present in the linear
anisotropyfield corrupting its histogram,Fig. 1c.Therefore, it is important to consider
an anisotropy field which is consistent with the chosen tensor field interpolation
when analyzing its behavior. Here we have chosen a piece-wise linear interpolation
of tensor components as an example. In the following we refer to the anisotropy
field resulting from this interpolation as the consistent anisotropy. In this chapter, we
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present the derivation of an exact closed-form expression for continuous histograms
for quadratic tensor invariants that is consistent with a piece-wise linear interpolation
of a tensor field given over a two-dimensional triangulated domain.

Here, we are especially interested in the analysis of the anisotropy, an important
characteristic in many applications, defined as the difference between major and
minor eigenvalue. While there are many other definitions of anisotropy, this version
has a distinguished meaning when analyzing the stability of the critical points and
isotropic points, when perturbing the tensor field using the Frobenius norm to mea-
sure the deviation of the tensor field [18]. Further, it is frequently used in mechanical
engineering applications to analyze the failure of materials. The join tree, a subset
of the contour tree, of this anisotropy can be used for a topology-preserving simpli-
fication of 2d tensor fields [11].

Our main contributions are:

• Framework for the analysis of scalar invariants that is consistent with a piece-wise
linear interpolation of the tensor components. This includes topologically correct
iso-contours, the contour tree, and continuous histograms.

• A generic closed-form formulation of histograms for continuous data based on a
generalization of the cumulative histogram. This approach neither requires explicit
computations of the length of iso-contours nor the computation of the gradient.

• Explicit solution for the histogram for piece-wise quadratic functions with positive
Hessian over a two-dimensional domain. The anisotropy over a piece-wise linear
component interpolation provides a relevant example.

• Comparison to naïve approaches using a linear interpolation of the anisotropy and
a discussion of the results.

The relevant context and related work are summarized in Sect. 2, then an overview
of the problem and its solution is given in Sect. 3. Fundamental definitions and nota-
tions are introduced in Sect. 4. A general expression for the anisotropy is developed
in Sect. 5 and used in Sect. 6 to subdivide the domain in monotonous triangles.
Section 7 derives the accurate histogram. After some notes on the implementation
in Sect. 7.1 the results are discussed in Sect. 8.

2 Context and Related Work

In this section, we first summarize the development of the concept of histograms
from a signature of discrete data to continuous fields. Then we summarize some
aspects of tensor interpolation and invariants that motivated our work.
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2.1 Continuous Histograms

Originally,histogramshavebeendeveloped for discrete data. Theygoback toPearson
and refer to a graphical representation displaying the frequency of the data items as
bars over the data range [10]. As such, a histogram provides a summary of the data
and they are also used to compare and characterize data sets. Formally, the histogram
for a discrete set of data values F = { fi |i ∈ 1, · · · ,m} is a one-dimensional bar chart
displaying the frequency of each distinct element f ∈ F as a bar with height

h( f ) =
∑

i

δ( f − fi )

where δ is the delta function which is equal to one if f = fi and zero otherwise. A
related concept applicable to ordered data is the cumulative histogram which counts
the cumulative number of data values smaller than a given value f ∈ F . This results
in values

c( f ) =
∑

fi≤ f

h( fi ).

Today, the term is often not only used for the graphical representation but also for
the concept capturing the distribution of function values by binning the function
range and counting the frequency of data samples within these bins. The resulting
histograms, however, are strongly dependent on the binning size and the sampling
strategy of the function in the domain. The continuous nature of the function between
the sample points is not represented. For these reasons several concepts to extend
histograms to continuous functions have been proposed resulting in a distribution of
the function values. Bajaj et al. [2] have introduced the contour spectrum as a data-
signature to find interesting iso-values for volume rendering. The contour spectrum
assigns the geometric measures of the contour length or surface area to each scalar
value. In addition, they consider areas and volumes of regions below or above a
given iso-value. Bajaj et al. also propose a method to compute these values exactly
under the assumption of a piece-wise linear interpolation and a piece-wise constant
gradient. Later Carr et al. [4] investigated the relation between histograms and the
contour spectrum based on a nearest-neighbor interpolation. Scheidegger et al. [16]
completed this work and introduced a natural generalization of histograms to the
continuous setting as the distribution given by the contour spectrum weighted by the
local isosurface density expressed as the inverse gradient magnitude. Given a scalar
field f and scalar value t the distribution is given as

π f (t) =
∫

f −1(t)
|∇ f (x)|−1dS

For the derivation of the distributions, they refer to Coarea formula that provides a
relationship between the sum of area integrals and a global volume integral as used
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by Mullen et al. [14]. For piece-wise linear functions, this yields a more or less good
approximation of the real distribution.

Similar concepts have also been considered for multivariate fields, for example,
generalizations of scatterplotts [1] and parallel coordinates [9] to continuous data.
In both cases, the mathematical model is based on mass conservation of a map-
ping from the function range to the scatterplot space and the parallel coordinates
space respectively. The continuous histogram is a special case considering a one-
dimensional range. While the mathematical model is generic, the proposed compu-
tational algorithms are limited to specific interpolation models in the spatial domain.
The algorithm by Bachthaler et al. [1] assumes a linear interpolation in tetrahedral
cells.

In our work, we focus on invariants with a quadratic behavior and propose an
exact solution pursuing a slightly different approach than most of the previous meth-
ods. Instead of directly generalizing the concept of histograms, we start with the
generalization of the cumulative histogram. This approach requires neither surface
area/length of iso-contours nor gradient approximations and thusmakes it possible to
compute an accurate distribution for more complex interpolation schemes, demon-
strated here for quadratic interpolations. The continuous histogram or scalar value
distribution then follows as a derivative of the cumulative histogram.

2.2 Notes on Tensor Field Interpolation

In this section, we briefly summarize some notes related to tensor field interpolation
without going much into detail. This has been a frequently discussed topic in many
applications and it is agreed that this is a challenging topic.

While many theories and visualization models assume data given as fields on
continuous domains, the data-reality are data sets sampled at discrete locations.
Depending on the origin of the data this can be voxel-based data from imaging or
meshes for simulation data. In any case, it is necessary to approximate and reconstruct
the field from these samples. Thereby the most commonly used methods for tensor
fields are based on a component-wise interpolation. Similar to other applications
and other data types these are linear, bi-, or tri-linear interpolation depending on the
grid type. Concerning such interpolations, a frequently discussed topic is the non-
linear dependency of most tensor invariants on the tensor components [12]. There
have been many methods proposed which explicitly try to preserve certain tensor
characteristics [3, 17]. Recently there appeared a survey on interpolation methods
for positive definite tensors [8].

We will, however, stay with the most simple interpolation methods, linear
component-wise interpolation within tetrahedra which is also often the basis for
finite element simulations. The non-linear dependence of the tensor invariants can
lead to a non-convex behavior of the invariants inside the cells. An example we are
especially interested in is the behavior of the anisotropy, defined as the difference
between the maximum andminimum eigenvalue, which is typically decreased inside
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the cells. Sometimes this is referred to as “swelling-artifact”, but we rather argue that
this is a fundamental property of tensor behavior. It reflects the fact that the anisotropy
is linked to the directional behavior of the tensor. This is expressed by the fact that
the anisotropy is always zero at degenerate points. These are points where the eigen-
values are the same and there is no uniquely determined eigenvector direction. The
number of degenerate points is a topological invariant of the field when fixing the
boundary and thus determines the minimum number of zeros in the anisotropy field,
see Fig. 1 for an example. Therefore the analysis of the anisotropy field must be
handled consistently with the chosen interpolation method for the tensor field. This
concerns the computation of iso-contours, the contour tree and also histograms.

For our consideration in this work, we assume that we have a continuous tensor
field given on a two-dimensional triangulated domain. We further assume a piece-
wise linear, component-wise linear interpolation of the tensor field within these
triangles. The anisotropy then has a quadratic behavior in the triangle. One can
observe similar behavior for other invariants, for example, the determinant too. All
the above-proposed methods for histogram computations fail when the interpolation
of the data is not convex. Similarly, typical iso-contour or contour tree computation
is also based on convex interpolation.

2.3 Contour Trees, a Topological Summary of Scalar
Functions

The contour tree keeps track of the changes of sub- and super-level sets of a function,
bounded by iso-contours, and thus provides a valuable summary of the function,
compare Fig. 2. It can be assembled from the join tree tracing the changes in iso-
contours when the function value is increased from −∞ to ∞ and the split tree one
where the function value is decreased from ∞ to −∞. In more detail, the join tree
tracks the creation and merging of sub-level sets, which are recorded in a tree. At
the local minima of the function, new branches are created. As the function value
increases, branches are extended and merged at saddle points where two sub-level

Fig. 2 For the scalar field on the left, the join tree, split tree and the contour tree are shown
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sets merge. The global maximum of the function becomes the root of the tree. The
split tree is constructed similarly while traversing the field from ∞ to −∞. The
most commonly used algorithm for contour tree computation assumes a piecewise
linear interpolation of the scalar field where all critical points are located at the
cell vertices [5]. In the case of the anisotropy, we are especially interested in the
join tree, a sub-tree of the contour tree, since many of the minima correspond to the
degenerate points in the tensor field. The join tree can be used to quantify the stability
of these points [18]. For consistent results, assuming a specific interpolation, a join
tree computation based on the quadratic behavior or the anisotropy is essential.

3 Problem Statement and Solution Overview

Given a tensor field sampled over a 2D triangular mesh, our goal is to compute the
accurate contour-tree and histogram of the tensor anisotropy consistent with linear
interpolation of tensor components. Anisotropy is a quadratic function under this
interpolation.

Figure 3 gives an overview of our solution approach. For each triangle in the input
mesh, we first determine the coefficients of the quadratic function for the anisotropy
based on tensor values at the triangle vertices. We show that anisotropy is a special
quadratic function which either has a single minimum equal to zero and elliptical
iso-contours, or in a degenerate case, minima along a line and the iso-contours are

Fig. 3 Solution overview: First, the coefficients of the quadratic function are determined. Then a
transformation is applied such that the minimum is at the origin and the iso-contours are circular,
followed by a sub-division intomonotonous triangles. For eachmonotonous triangle, the cumulative
anisotropy histogram is computed using sub-level set areas, which are added to get the cumulative
histogram for the original triangle. Finally, the derivative of the cumulative histogram yields the
anisotropy histogram
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pairs of parallel lines, refer to Sect. 5. The first step is the subdivision of the triangle
into monotonous sub-triangles, which is the basis for the iso-contour extraction, the
contour tree computation and the derivation of the histogram.Weobtain the histogram
as the derivative of the cumulative histogram, which is computed first from the area
of the sub-level set for the isovalues. To compute the explicit area of the sub-level
sets we apply a linear transformation to the coordinate system such that elliptical
iso-contours become circular centered at the origin, refer to Sect. 5.1.

4 Background and Notations

In this section, we provide the notations and a brief mathematical background
required for the proposed method discussed in sections later. First, in Sect. 4.1 we set
up the notations for tensors and the invariant of interest to us that is tensor anisotropy.
Then in Sect. 4.2, we describe the barycentric interpolation within a triangle, since
this approach is used for linear interpolation of tensors within a triangle. Lastly, in
Sect. 4.3, we discuss the general bi-variate quadratic function, its critical point, and
the shape of its iso-contours.

4.1 Second Order Symmetric Tensors and Anisotropy

For a second order symmetric tensor, T =
(
e f
f g

)
, the two eigenvalues are:

λ,μ = 1

2
(e + g) ±

√
(e + g)2

4
− (eg − f 2)

Depending on the application different measures for anisotropy are used. For positive
definite tensors, relative measures like the fractional anisotropy are common. In
mechanical engineering a typicalmeasure is the differencebetween themaximumand
the minimum eigenvalues α(T ) = λ − μ = √

(e + g)2 − 4(eg − f 2). It has been
shown that this value is also related to the stability of degenerate points in tensor
field topology [11] and is the measure we are mostly interested in. In the following,
we will however consider the squared value of α(T ), which has the same topological
characteristics but simplifies the computations a lot.

ν(T ) = α2(T ) = (λ − μ)2

= (e − g)2 + 4 f 2 (1)
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4.2 Barycentric Coordinates and Piece-Wise Linear
Interpolation

For all our considerations in this paper we use a component-wise linear interpolation
of the tensor field. We use barycentric coordinates for interpolation in the triangle.
Since we require an explicit representation of the the tensor field for the derivation
of the exact histogram we briefly review the main definitions and formulas in this
section.

Refer to Fig. 4, for a triangle with vertices p1 = (x1, y1), p2 = (x2, y2) and p3 =
(x3, y3), the barycentric coordinates (β1, β2, β3) of an arbitrary point p = (x, y)
within a triangle are given by

β1 = (y2 − y3)(x − x3) + (x3 − x2)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)
,

β2 = (y3 − y1)(x − x3) + (x1 − x3)(y − y3)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)
,

β3 = (y1 − y2)(x − x2) + (x2 − x1)(y − y2)

(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)
.

We assume that some scalar function s is sampled at the vertices of the triangle with
scalar values s1, s2 and s3 at vertices p1, p2 and p3. Then, the scalar value s at an
arbitrary point p = (x, y) within the triangle can be determined as

s(x, y) = β1s1 + β2s2 + β3s3.

This function s(x, y) is linear in x and y, and can be alternatively written as

s(x, y) = sx x + sy y + sc,

Fig. 4 Barycentric coordinates and interpolation. The point p within the triangle �p1 p2 p3
can be represented using barycentric coordinates (β1, β2, β3), where β1 = Area(�pp2 p3)/
Area(�p1 p2 p3), β2 = Area(�pp1 p3)/Area(�p1 p2 p3) and β3 = Area(�pp1 p2)/Area
(�p1 p2 p3). Let s be some scalar quantity sampled on the vertices p1, p2 and p3 as s1, s2
and s3 respectively. Then the value of s at any point p inside the triangle is given by
s(p) = β1s1 + β2s2 + β3s3
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with

sx = (y2 − y3)s1 + (y3 − y1)s2 + (y1 − y2)s3
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

sy = (x3 − x2)s1 + (x1 − x3)s2 + (x2 − x1)s3
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

sc = (x2y3 − x3y2)s1 + (x3y1 − x1y3)s2 + (x1y2 − x2y1)s3
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

4.3 Bivariate Quadratic Functions and Their Critical Points

As the anisotropy, as defined in Eq. (1), is a quadratic function we summarize some
general facts about quadratic functions and define the notation that we will use later
in the paper. In the following we assume that the quadratic function is not identical
to zero.

A general quadratic function in two variables can be written as s(x, y) = Ax2 +
Bxy + Cy2 + Dx + Ey + F or in matrix form as

s(x, y) = (x, y) · M ·
(
x
y

)
+ T ·

(
x
y

)
+ F (2)

with M =
(

A B/2
B/2 C

)
and T =

(
D
E

)
. The critical point of the scalar function s is

a point p = (x, y) where the gradient ∇s(x, y) = 0 is zero. The partial derivatives
of s(x, y) with respect to the two variables is:

∂s/∂x = 2Ax + By + D (3)

∂s/∂y = 2Cy + Bx + E (4)

The location of the critical point pc = (xc, yc) of s can be obtained after solving
the linear equations ∂s/∂x = 0 and ∂s/∂y = 0 using Eqs. (3) and (4). The resulting
coordinates are

xc = −2CD + BE

4AC − B2
, yc = −2AE + BD

4AC − B2
. (5)

The function s and its critical point can be classified based on the sign of the
determinant of the Hessian, H

H = 4AC − B2. (6)

If H > 0, then the critical point is either a maximum or minimum and the iso-
contours are ellipses, compare Fig. 5a, b. The type of the critical point depends on
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Fig. 5 The possible cases for a general quadratic function. a The critical point is a minimum and
the iso-contours are elliptical. b The critical point is a maximum and the iso-contours are ellipses.
c The critical point is a saddle and the iso-contours are hyperbolas. d The critical point does not
exist and the function has a minimum value along a line, while the iso-contours are a pair of parallel
lines. e The other case when the iso-contours are a pair of parallel lines, again the critical point does
not exist but the function has a maximum value along a line. f The case when the critical point does
not exist and the iso-contours are parabolic. We show that only the cases (a) and (d) are possible
for the quadratic function for tensor anisotropy, the other four cases shown here are not possible

the sign of A and C . If A,C > 0, then the critical point is a minimum, otherwise it
is a maximum. In the other case when H < 0, then the critical point is a saddle and
the iso-contours are hyperbolas.

For the case when H = 0, there are no isolated critical points and the iso-contours
are either parabolas, parallel or coincident lines. Note that it is possible that there are
degenerate lines. The type of the iso-contour when H = 0 depends on the invariant
I defined as

I = BDE − AE2 − CD2. (7)

If I �= 0, the iso-contours are parabolic, compare Fig. 5f, otherwise they are pair
of parallel lines, compare Fig. 5d, e.
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5 Anisotropy for 2D Piece-Wise Linear Tensor Fields

In this section, we have a closer look at the anisotropy function for a linear tensor
field. The main observation is in the non-degenerate case, that the anisotropy always
has exactly one minimum with a value of zero. This corresponds to the fact that the
tensor field always has exactly one critical point. All iso-contours are ellipses.

Given a triangle with vertices p1 = (x1, y1), p2 = (x2, y2) and p3 = (x3, y3). Let
the tensors at these vertices be T1, T2 and T3, respectively. Let the components of the
tensors be

T1 =
(
e1 f1
f1 g1

)
, T2 =

(
e2 f2
f2 g2

)
, T3 =

(
e3 f3
f3 g3

)
. (8)

The barycentric coordinates can be used for linear interpolation of the tensor field
within the triangle. Tensor T at an arbitrary point p = (x, y) within the triangle can
be found as:

T (p) = T (x, y) =
(
e(x, y) f (x, y)
f (x, y) g(x, y)

)
(9)

As described earlier in Sect. 4.2, the tensor components e, f and g linearly inter-
polated within the triangle as can be written as

e(x, y) = ex x + ey y + ec, (10)

f (x, y) = fx x + fy y + fc, (11)

g(x, y) = gx x + gy y + gc. (12)

The function, we are interested in is the anisotropy ν, the explicit expression for
which can be obtained by substituting the linear expressions for tensor components
in Eq. (1) yielding

ν(T ) =(
(ex − gx)

2 + 4 f 2x
)
x2 + 2

(
(ex − gx)(ey − gy) + 4 fx fy

)
xy

+ (
(ey − gy)

2 + 4 f 2y
)
y2 + 2

(
(ex − gx)(ec − gc) + 4 fx fc

)
x

+ 2
(
(ey − gy)(ec − gc) + 4 fy fc

)
y + (

(ec − gc)
2 + 4 f 2c

)
. (13)

Comparing Eq. (13) with the general quadratic Eq. (2), we obtain the coefficients of
the quadratic function in dependence of the tensor components:

A = (
(ex − gx)

2 + 4 f 2x
) ≥ 0, (14)

B = 2
(
(ex − gx)(ey − gy) + 4 fx fy

)
, (15)

C = (
(ey − gy)

2 + 4 f 2y
) ≥ 0, (16)

D = 2
(
(ex − gx)(ec − gc) + 4 fx fc

)
, (17)

E = 2
(
(ey − gy)(ec − gc) + 4 fy fc

)
, (18)

F = (
(ec − gc)

2 + 4 f 2c
)
. (19)
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Substituting the above equations in Eq. (6), we derive the determinant of Hessian for
the anisotropy to be (for derivation refer to Appendix A):

H =16
(
fx (ey − gy) − fy(ex − gx)

)2 ≥ 0. (20)

From Eq. (20), we can conclude that the iso-contours of anisotropy function are
never hyperbolic. In most cases, when H is strictly greater than 0, the contours are
elliptical. Moreover, in that scenario, from Eqs. (14) and (16), we can deduce that
the type of the critical point is always a minimum.

Appendix A contains the detailed analysis of ν. We show that the bi-variate
quadratic function ν is a special function that has elliptical iso-contours or in some
cases a pair of parallel lines, ruling out the possibility of hyperbolic or parabolic
iso-contours.

5.1 Field Normalization Using Coordinate Transformations

In the following, we derive a coordinate transformation such that the bivariate
quadratic scalar function determined for a triangle has a standard format. This allows
for the application of a unified strategy for further analysis.

Equation (13) gives the expression of anisotropy in general bivariate quadratic
form. We have also established that iso-contours of this function will are elliptical.
Therefore we first transform the coordinates such that elliptical iso-contours are
centered at the origin and aligned to the axes. This can be achieved by applying a
translation and rotation, both rigid-body transformations preserving areas. Then, a
transformation is applied such that iso-contours of the bivariate quadratic function
become circles rather than ellipses. This can be achieved by applying a non-uniform
scaling, a linear transformation which distorts the area by a constant factor given
by the determinant of the transformation matrix. The approach described above is
illustrated in Fig. 6.

Refer to Eqs. (13)–(19) for the detailed expression of anisotropy and refer to
Eq. (2) for the general quadratic equation in matrix form. After translation such that
the minimum pc = (xc, yc) falls into the origin, the expression for anisotropy can be
written as

ν(xt , yt ) = (xt , yt ) · M ·
(
xt
yt

)
+ Ft (21)

with the translated coordinates xt = x − xc, yt = y − yc and Ft = F +
(BDE−AE2−CD2)

4AC−B2 .UsingEqs. (14)–(19), it can be shown that Ft = 0 for ν. This implies
that minimum value of ν is zero at the critical point and this point is a degenerate
point in the tensor field. Equation (21) becomes

ν(xt , yt ) = (xt , yt ) · M ·
(
xt
yt

)
(22)
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Fig. 6 Field normalization using coordinate transformations. a The original quadratic function,
f (x, y) = x2 + xy + y2 + 0.4x + 0.5y + 0.07. b The function after applying translation such that
the minimum is at the origin, f (xt , yt ) = x2t + xt yt + y2t . c After applying rotation such that ellip-
tical iso-contours are axes aligned, f (xr , yr ) = 0.5x2r + 1.5y2r . d After scaling such that elliptical
iso-contours are transformed into circular iso-contours, f (xs , ys) = x2s + y2s

Now, we apply a rotation O = (EV1|EV2) to align the elliptic iso-contours with
the axis using the eigenvectors EV1 and EV2 of the matrix M

(
xr
yr

)
= O ·

(
xt
yt

)
, (23)

which results in the diagonal representation of the anisotropy

ν(xr , yr ) = λ1x
2
r + λ2y

2
r (24)

where λ1 and λ2 are the eigenvalues of M .
Lastly, we apply non-uniform scaling to obtain circular iso-contours:

ν(xs, ys) = x2s + y2s where xs = √
λ1xr , ys = √

λ2yr . (25)

The area distortion because of this scaling is given by the factor
√

λ1λ2.

6 Subdivision in Monotonous Sub-triangles

We consider a triangle with vertices p1 = (x1, y1), p2 = (x2, y2) and p3 = (x3, y3)
and the tensors at these vertices are T1, T2 and T3. The tensors are linearly interpolated
within the triangle and the anisotropy is a quadratic function. For the extraction of
iso-contours, the computation of the contour tree as well as for the histogram we
require piece-wise monotonous behavior inside the triangles, which is given in this
chapter. Similar, subdivisions have also been proposed by Dillard et al. [6] and by
Nucha et al. [15]. There are five different cases depending on the location of the
global minima and the local minima at the edges. Especially the cases when the
minimum pc lies within the triangle or outside the triangle need a different treatment
for the computation of the anisotropy histogram.
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Fig. 7 All the possible cases and the corresponding sub-divisions into monotonous triangles. a, b
The casewhen theminimum is inside the triangle.We can subdivide the triangle into sixmonotonous
triangles. c, d The case when the minimum is outside the triangle, but the function restricted to the
triangle edges has a minimum on all the edges. Four monotonous triangles can be generated. e, f
The case when two of the edges have minima, three monotonous triangles are generated. g, h The
case when only one triangle edge has a minimum, two monotonous triangles are created. i, j The
case when none of the edges has a minimum, no triangle subdivision is required. k, l Lastly, the
degenerate case when the function does not have a point minimum but has a degenerate minimum
along a line. In this case, the iso-contours are a pair of parallel lines

Case A. The minimum pc is within the triangle. In this case, the input triangle can
be partitioned into six sub-triangles such that ν behaves monotonously
within the triangle. See Fig. 7b.

Case B. The minimum pc is outside the triangle. Here, we have four possibilities:

1. No triangle edge has an edge minimum. See Fig. 7i.
2. One triangle edge has an edge minimum. See Fig. 7g.
3. Two triangle edges have edge minima. See Fig. 7e.
4. All three triangle edges have edge minima. See Fig. 7c.

In all these cases, the triangle can be sub-divided into an appropriate number of
monotonous triangles as described in Lines 14–30 of Algorithm 1. Although these
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sub-divided triangles are monotonous and look similar to Case A, an important
difference is that in general none of the vertices lies at the origin.

7 Computation of the Histogram for ν

In this section, we derive the exact continuous histogramof the anisotropy for linearly
interpolated tensor fields. We use the term histogram here not strictly as it has been
originally introduced but in the sense of the distribution of function values. It can
also be considered as the weighted contour spectrum using the terminology of Bajaj
et al. [2] as introduced by Scheidegger et al. [16]. In contrast to previous methods,
we approach the problem by first computing the cumulative histogram CH and
then derive the histogram from it by computing its derivative. This makes the exact
computation of the histogram much more feasible.

CH(ν0) = Area(ν ≤ ν0) =
∑

�i

Areai (ν ≤ ν0)

where Areai (ν ≤ ν0) is the area of the sublevel set in triangle �i . Specifically, we
consider here the anisotropy with its quadratic behavior, however the method also
directly applies for linear fields.

In our derivation of Areai (ν ≤ ν0) we consider the following setting. Given is a
triangle �ABC with vertices A = p1 = (x1, y1), B = p2 = (x2, y2) and C = p3 =
(x3, y3) and respective tensors T1, T2 and T3, which are linearly interpolated within
the triangle. Further we ordered the vertices such that the anisotropy values are
ν1 < ν2 < ν3, using simulation of simplicity [7] to resolve the ties if required. To
obtain the contribution of the triangle to the cumulative histogram at the value ν

we compute the area of the sublevel set at ν within the triangle. In the following,
we assume that anisotropy is monotonous within the triangles resulting from the
subdivision introduced in Sect. 6. We further assume that the transformations as
described in Sect. 5.1 have been applied. This means that the anisotropy has the form
as given in Eq. (25) with a global minimum pc = (0, 0) at the origin and the level sets
that are circles. The area within the transformed triangle is distorted by a constant
factor, which can be appropriately multiplied to get the exact areas for the original
triangle. We consider two cases depending on whether the vertex A of the triangle
vertex lies at the origin or not.

Case 1: The global minimum pc lies at one triangle vertex

Let’s assume that the global minimum pc lies in vertex A = p1 of the triangle ABC .
Then the shape of the sublevel set for ν can have two different types depending on
whether ν is smaller or larger than ν2 = r2AB . If ν ≤ ν2 the sublevel set is a sector of
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a circle with radius r = √
ν and opening angle θA, as shown in Fig. 8. The area of

the sublevel set for ν ∈ [ν1, ν2] is then given by

Area(ν) = θAν

2
. (26)

where θA is angle between the edges AB and AC . The rate of change of the area is
given by

∂Area(ν)

∂ν
= θA

2
, (27)

which is a constant not depending on the specific value of ν.
If the isovalue ν is greater than ν2 and less than ν3, the iso-contour is composed

of a circular sector and an additional more complex shape DBFE as illustrated in
Fig. 8. This region is enclosed by two circular segments DB and EF and two line
segments DE and BF and can be computed as

Area(BDEF) = Area(BGHF) + Area(FHE) − Area(BGD)

=
(

(rAB sin θA + r sin θ)(r cos θ − rAB cos θA)

2

)

+
(

θr2

2
− r2 sin θ cos θ

2

)
−

(
θAr2AB
2

− r2AB sin θA cos θA

2

)

= θr2 − θAr2AB
2

+ rrAB

(
sin θA cos θ − cos θA sin θ

2

)
.

Fig. 8 A triangle with monotonous function behaviour where the global minimum pc lies on one
vertex A = p1. Due to the normalization of the triangle, pc is at the origin and the iso-contours are
circular. If ν ≤ ν2 the sublevel set is a subset of the light blue area. If ν > ν2 the sublevel area is
composed of the complete light blue region and the area is highlighted in darker blue
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With r2 = ν and r2AB = ν2 this results in

Area(BDEF) = θν − θAν2

2
+ √

νν2
sin(θA − θ)

2
. (28)

In the expression above, the given value of ν determines the values of θ .

Case 2: The global minimum pc does not lie at any triangle
vertex

These triangles are the more generic case, we still assume that the anisotropy is
monotonous inside the triangle and the vertices such that the anisotropy values are
ν1 < ν2 < ν3. The triangles look similar to Case 1, but none of the vertices lie at the
origin, compare Fig. 9. To compute the area of a sublevel set ABFE within these
triangles, we considering the sublevel sets in two triangles where we can use the
algorithm of Case 1. In Fig. 9 they are the triangles �DBC and �DHC . For the
final area, we have in addition to consider the area of triangle �AHB which has to
be added or subtracted depending on the exact position of A.

Area(ABFE) = Area(DBFG) − Area(DHEG) ± Area(�AHB) (29)

K

F

G

H

B=p2

A=p1

C=p3

D

E

Fig. 9 A triangle�ABC with monotonous function behaviour where the global minimum pc does
not lie on any vertex
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7.1 Implementation

We compute the cumulative histogram of anisotropy by computing the sublevel set
area. The detailed algorithm is provided in Algorithm 1. For a given tensor mesh, we
pre-process all the triangles to determine the coefficients of the quadratic function
for anisotropy within the triangle, compare Sect. 5. Each triangle is appropriately
subdivided into monotonous triangles, compare Sect. 6. Then for each anisotropy
value in the histogram bin, we compute the sublevel set area by adding up the sub-
level set area in all monotonous triangles. We also handle triangles with degenerate
minimum appropriately.

Parallelization. The algorithm described in Algorithm 1 has lots of options for
parallelization. The loops at Lines 4 and 38 are embarrassingly parallel because
each triangle in the mesh can be pre-processed in parallel. Similarly, each bin in
the histogram can be computed in parallel. Further, with atomic add operations,
the computation of the sublevel set area for anisotropy value ν corresponding to a
particular histogram bin can be parallelized over the set of monotonous triangles.
These are the loops at Lines 41 and 44 in Algorithm 1.

Numerical issues. Since there are a few floating-point operations and checks
involved in the Algorithm 1, floating-point errors can be introduced which may prop-
agate to the output resulting in a wrong histogram. We handle these errors by intro-
ducing reasonable checks, for example making sure that the cumulative histogram
thus obtained is always a monotonically increasing function and sums up to the total
area of the domain for the largest value of anisotropy. However, a deeper study of
the errors and more robust computation is left for future work. We are confident that
using a multi-precision library for computation will remove the floating-point errors.

Run times.We implemented theAlgorithm 1 as a prototype in Java 1.8. This proof of
concept implementation does not include extensive code and memory optimizations.
The experiments reported in following Sect. 8 were performed on a workstation with
12 core Intel Xeon processor and 32 GB of RAM.

The running time depends on the size of the input mesh and the number of bins
in the output histogram. For all the experiments we chose 500 as the number of bins
in the histogram. The synthetic data used in Sect. 8.1 is a small data set with the
mesh containing only 32 triangles. It took about 0.02 s to compute the continuous
histogram for the meshes in this ensemble. The histogram computation for the two
point load data reported in Sect. 8.2 took 0.2 s. This triangle mesh contained 1682
triangles. The run time improved to 0.1 s when using multi-threading. Lastly, for the
DTI data set containing 722 triangles (Sect. 8.3), it took 0.09 and 0.17 s to compute
the histogram for brain and noisy regions respectively. The times improved by a
factor of 2 for both cases when using multi-threading.



58 T. B. Masood and I. Hotz

Algorithm 1: Compute cumulative histogram
Data: A tensor mesh M, and histogram resolution B
Result: Cumulative histogram CH

1 Initialize histogram CH to zeros;
2 Initialize monotonous triangle list MT to be empty;
3 Initialize degenerate triangle list DT to be empty;
4 foreach triangle t in M do in parallel
5 Compute the quadratic function coefficients A, B,C, D, E, F ;
6 H = 4AC − B2;
7 if H > 0 then
8 Compute the location of minimum pc = (xc, yc);
9 Compute the number and locations of edge minima;

10 if pc is inside t then
11 Generate six monotonous triangles from t and add toMT;
12 else
13 switch Number of edge minima do
14 case 0
15 Add t to MT;
16 case 1
17 Add an edge from edge minimum to opposite triangle vertex;
18 This divides t in two monotonous triangles;
19 Add the two monotonous triangles toMT;
20 case 2
21 Add an edge between the two edge minima;
22 Add an edge from lowest valued edge minimum to opposite vertex;
23 These two edges divide t into three monotonous triangles;
24 Add the monotonous triangles toMT;
25 case 3
26 Find the lowest valued edge minimum pm ;
27 Add edges between pm and the two other edge minima;
28 Add an edge from lowest valued edge minimum to opposite vertex;
29 These three edges divides t in four monotonous triangles;
30 Add the monotonous triangles toMT;
31 endsw
32 endsw
33 end
34 else
35 Add t to DT;
36 end
37 end
38 for i ← 1 to B do in parallel
39 ν ← Range(MT)/ i ;
40 CH [i] ← 0;
41 foreach monotonous triangle t in MT do in parallel
42 CH [i] ← CH[i]+ GetSubLevelSetArea (t, ν);
43 end
44 foreach degenerate triangle t in DT do in parallel
45 CH [i] ← CH[i]+ GetSubLevelSetArea (t, ν);
46 end
47 end
48 return CH;
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8 Results

We apply the proposed approach of computing anisotropy histograms to three dif-
ferent case studies. We show results for synthetic, simulation and experimental data.
For all the case studies we compute the continuous histograms for three different
interpolations of the anisotropy.

• Interpolation [a]: Linear interpolation of the anisotropy within the original trian-
gulation.

• Interpolation [b]: Linear interpolation of the anisotropy within the sub-divided
monotonous triangles, compare Sect. 6.

• Interpolation [c]: Anisotropy based on the linear interpolation of the tensor com-
ponents, resulting in a quadratic behavior or the anisotropy, compare Sect. 5.When
using the term accurate we always refer to accuracy with respect to this interpo-
lation.

The resulting anisotropy fields are directly shown using a color map where dark blue
refers to an anisotropy value of zero and red assigned to the maximum value.We also
show a set of iso-contours in these images as white lines. In addition, we computed
the join tree for all cases, which are always the same for interpolation [b] and [c].
Finally, we computed the continuous histogram where the results for one data set are
plotted in one image, interpolation [a] displayed as a red curve, interpolation [b] as
a green curve and interpolation [c] as a black curve.

8.1 Synthetic Data

The first example is a synthetic data set where tensors with user specified tensor
components are placed at grid locations of a 5 × 5 grid. This grid is triangulated to
provide a mesh with 32 triangles. This simple example is well suited to demonstrate
the differences between the histogram of the consistent anisotropy field [b], and the
methods utilizing a linear approximation of the anisotropy on the original mesh [a],
and on the subdivided mesh with monotonous triangles [b], as shown in Fig. 10. It
can immediately be seen that for interpolation [a] the topology of the iso-contours is
not in accordance with the tensor field. While the iso-contours based on the tensor
interpolation differ between interpolation, they have the same topology [b] and [c].
This is also reflected in the corresponding join trees, which are the same for both
fields, for more details see Sect. 8.

In the next step, we randomly perturb the directions of the tensors at the vertices
without changing their eigenvalues to generate an ensemble of four tensor fields.Note
that since we do not change the eigenvalues, the anisotropy at the vertices of themesh
remains unchanged after perturbation. Hence, for interpolation [a] all the fields, the
iso-contours, the join trees, and their histograms will be the same as evident from
Fig. 11a.However, ifwe use quadratic function resulting form the tensor interpolation
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Fig. 10 Comparison of the behavior of the anisotropy field in a synthetic dataset. The anisotropy
is linearly interpolated within the original mesh [a], and the subdivided monotonous triangles [b].
The anisotropy assuming linear interpolation of tensor components [c]. The upper row shows the
resulting field as a color-map superimposed with contour lines. The ellipses at the vertices represent
the tensors defining the field. The second row shows the respective join trees for the three anisotropy
fields. The red squares correspond to the zeros inside of the original triangles. All zero-leaves in
the tree represent degenerate points of the tensor field topology

[c] of anisotropy, we clearly observe the differences within the ensemble members as
shown in Fig. 11c. Similarly, the histograms for the ensemble members are different
as shown by black curves in the plots in Fig. 11d. While for interpolation [b], the
subdivision into monotonous triangles helps in identifying the differences, Fig. 11b,
the histograms are still not accurate and have a bias toward larger anisotropy values,
Fig. 11d. The respective contour trees are shown in Fig. 12. The contour tree for the
interpolation [a] is the same for all 4 fields and already given in Fig. 11a, so we only
show the trees for the sub-division in monotonous triangles. The degenerate points
of the tensor field where the anisotropy is zero appear also as minima in the join
tree and are highlighted in red. The join trees provide an overview of the possible
cancellations of degenerate points and thus their stability [18]. Comparing the trees
it can be seen that the four data sets vary significantly for their topological structure
and stability of its degenerate points. The join tree for the linear anisotropy, Fig. 11a,
has no zero and is thus not consistent with the direction fields given by the tensors.
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Fig. 11 Random directions tensor dataset with constant eigenvalues. a The original mesh with
anisotropy computed at the mesh vertices and linearly interpolated within the triangles. b The sub-
dividedmeshwithmonotonous triangles. Anisotropy is linearly interpolated within themonotonous
triangles. c The anisotropy resulting from linear interpolation of tensor components. d summarizes
all histograms with red curves for interpolation [a], green curves for interpolation [b] and black
curves for interpolation [c]

8.2 Simulation Data

The difference between the three different interpolations for the anisotropy field
gave significantly different results for the synthetic data. In the next step, we want to
investigate the impact of these differences on real-world data. At first, we consider a
simulation data set from mechanical engineering. It is a well-known data set, often
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Fig. 12 The join trees for the four ensemble members shown in Fig. 11. The trees summarize the
hierarchical structure of the minima in the anisotropy field and the degenerate points in the tensor
field topology. Degenerate points inside the triangles are marked as red nodes in the tree

Fig. 13 Two-point load data: simulation of the stresses inside a solid block upon applying two
forces. a shows a schematic of the set-up of the simulation, b shows the eigenvector directions in
one slice, c is a close up with color showing the signed anisotropy using bi-linear interpolation on
the original mesh

referred to as two-point load, that represents a stress field in a solid block resulting
from the application of two external forces, Fig. 13. The data is given on a cubic
mesh. The anisotropy measure used so far corresponds to the squared von Mises
stress, which plays an important role in failure analysis of mechanical components.
The direction field in one slice is shown in Fig. 13b. In our analysis, we consider
a section of this slice, which is shown in Fig. 13c displaying one eigenvector field.
Color represents the anisotropy using a bi-linear interpolation in the original mesh.
In our analysis, we use a triangulated version of the data.

Figure 14 shows the anisotropy fields using the three different interpolations in
comparison. In Fig. 14a one can observe the asymmetry introduced by the triangu-
lation but is similar to Fig. 13c. The anisotropy fields in Fig. 14b, c are both based
on the monotonous subdivision and are very similar to each other but differ strongly
from Fig. 14a. The asymmetry due to the triangulation is largely reduced. The min-
ima inside the original triangles in the field capture the locations of the degenerate
points of the direction field. The corresponding histogram can be seen in Fig. 14d, e.
As expected they differ strongly for very small values but are rather similar for large
values of the anisotropy.
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Fig. 14 Two point load simulation data with focus region around one of the loading points. a The
original mesh with anisotropy computed at the mesh vertices and linearly interpolated within the
triangles. b The subdivided mesh with monotonous triangles. Anisotropy is linearly interpolated
within the monotonous triangles. c The anisotropy resulting from linear interpolation of tensor
components. The isotropic points in the tensor field are highlighted by small red spheres. d the
three cumulative histograms and (e) the histograms. The red curves correspond to (a), the green
curves to (b) and the black curve to (c)

8.3 Measurement Data

As the last example, we examine two sections of a slice of 3D Diffusion Tensor
Imaging data. Specifically, we compute and compare the anisotropy histograms of
noisy regions outside the brain and a region inside the brain. The 2D slice from the
data along with selected regions is shown in Fig. 15.

Figure 16 shows the histograms computed for the noisy region. With the interpo-
lation approach [c] for computing histograms, we can observe a high contribution of
anisotropy values near zero, which hints at the existence of a lot of degenerate points
in the noisy region. This is not captured by the histogram computed with interpo-
lation approach [a]. It should be noted that interpolation [b] (green plot) although
yields better results than interpolation [a] (red plot), it is still quite different than the
accurate histogram based on component-wise tensor interpolation (black plot). We
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Fig. 15 Two segments selected from Diffusion Tensor Imaging data. The 20 × 20 2D grid shown
in red outline is chosen from noisy region of the data while the selection shown in black outline is
chosen from the region occupied by the brain. We plot the histograms for these selections in Figs.
16 and 17 respectively

did the same experiment for a region that is within the brain and hence contains less
noise. The results are shown in Fig. 17. Here we observe, that histograms are very
similar whether we use the accurate quadratic function for anisotropy of linearly
interpolate it within the triangles.

9 Conclusions

In this paper, we explore the behavior of the anisotropy, as an example for a nonlinear
derived tensor invariant, when applying a linear component-wise interpolation of the
tensor field. We demonstrate that a linear interpolation of the invariant itself, the
interpolation approach [a], leads to a topology of iso-contours that in many cases
is not consistent with any tensor interpolation and leads to a bias in the histogram.
With this analysis, we want to emphasize the importance of being consistent with
the chosen interpolation in all analysis steps. For our analysis, we have chosen a
linear interpolation of tensor components, which is the most commonly used method
in simulations and provides a valid continuous field. We do not want to make a
statement about the quality or suitability of different interpolationmethods in specific
applications, however we want to point out that the independent interpolation of
the direction field and the anisotropy violates in many cases the preservation of
topological invariants and does not result in a valid tensor field.
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Fig. 16 Anisotropy fields in a small noisy subset of brain dataset. a Linear interpolation in the
original mesh. b Linear interpolation within the subdivided mesh with monotonous triangles. c
The anisotropy resulting from linear interpolation of tensor components. d The comparison of
cumulative histograms under these settings. e The comparison of the corresponding histograms
with red (a), green (b), and black (c)

More specifically we have presented a derivation for the computation of iso-
contours and histograms in this setting. Component-wise linear interpolation of ten-
sor components results in a quadratic function for anisotropy. The method is based
on a subdivision of the mesh into triangles with monotonous behavior. This subdivi-
sion with a linear interpolation of the anisotropy, interpolation approach [b], already
results in iso-contours that are topologically equivalent to the iso-contours based on
the derived anisotropy field.However, the histograms are not accurate and showa bias
towards larger anisotropy values. This is especially prominent in regions with many
degenerate points. In areas of high anisotropy, interpolation [b] provides a good
approximation. The method described in this chapter, the interpolation approach
[c], can be used to compute an accurate continuous histogram for anisotropy using
component-wise tensor interpolation.
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Fig. 17 Asmall subset ofDTI brain dataset is selectedwithin the brain region. aLinear interpolation
in the originalmesh,bLinear interpolation inmonotonous triangles. c The anisotropy resulting from
linear interpolation of tensor components. d and e display the respective cumulative histograms and
histograms as (a) red, (b) green, (c) black plots

All derivations in this chapter are given for the anisotropy defined as the difference
between themajor andminor eigenvalue, for 2D tensor fields.Althoughnot trivial, the
extension of this work to 3D tensor fields is feasible. An extension to the determinant,
which is also quadratic but not elliptic, would be possible in a similar way. A general
extension to other non-linear tensor invariants, however, might not be possible in
a closed form and will require a good approximation schema. Therefore, we plan
to explore methods for efficient approximations to the distributions with clear error
bounds. Also, computing continuous scatterplots to visualize the space of multiple
invariants at once is an interesting topic and will be subject of future work.
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Appendix A

A. Detailed Analysis of Anisotropy and Its Iso-Contours

Proof of H ≥ 0

Substituting the Eqs. (14)–(19) in Eq. (6), we can analyse the determinant of Hessian
for anisotropy ν:

H = 4AC − B2

= 4
(
(ex − gx)

2 + 4 f 2x
)(

(ey − gy)
2 + 4 f 2y

) − 4
(
(ex − gx)(ey − gy) + 4 fx fy

)2

= 4
(
(ex − gx)

2(ey − gy)
2 + 4 f 2x (ey − gy)

2 + 4 f 2y (ex − gx)
2 + 16 f 2x f 2y

)

− 4
(
(ex − gx)

2(ey − gy)
2 + 8 fx fy(ex − gx)(ey − gy) + 16 f 2x f 2y

)

= 16
(
f 2x (ey − gy)

2 + f 2y (ex − gx)
2 − 2 fx fy(ex − gx)(ey − gy)

)

H = 16
(
fx (ey − gy) − fy(ex − gx)

)2 ≥ 0 (30)

Since H ≥ 0, we have shown that the iso-contours of νare never hyperbolic.

Proof of I = 0 when H = 0

Let us analyze the case when H = 0 to complete the analysis of behaviour of
anisotropy in all cases.

H =16
(
fx (ey − gy) − fy(ex − gx)

)2 = 0

or, fx (ey − gy) − fy(ex − gx) = 0

or,
ey − gy
ex − gx

= fy
fx

or, ey − gy = fy
fx

(ex − gx) (31)

Substituting (31) in (16) and using (14):

C = (
(ey − gy)

2 + 4 f 2y
)

= f 2y (ex − gx)2

f 2x
+ 4 f 2y

= f 2y
f 2x

(
(ex − gx)

2 + 4 f 2x

)

or, C = f 2y
f 2x

A (32)
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Substituting (31) in (18) and using (17):

E = 2
(
(ey − gy)(ec − gc) + 4 fy fc

)

= 2

(
fy(ex − gx)(ec − gc)

fx
+ 4 fy fc

)

= fy
fx

· 2((ex − gx)(ec − gc) + 4 fx fc
)

or, E = fy
fx
D (33)

From Eqs. (32) and (33):

C

A
= E2

D2
= f 2y

f 2x
(34)

or, AE2 = CD2 (35)

Substituting (31) in (15) and using (16):

B = 2
(
(ex − gx)(ey − gy) + 4 fx fy

)

= 2

(
fx (ey − gy)2

fy
+ 4 fx fy

)

= 2
fx
fy

(
(ey − gy)

2 − 4 f 2y

)

or, B = 2
fx
fy
C (36)

Multiplying Eqs. (33) and (36), we obtain:

BE = 2CD (37)

Let us evaluate the Eq. 7 now:

I = BDE − AE2 − CD2

I = BDE − 2CD2 using (35)

I = D(BE − 2CD)

I = D(0) = 0 using (37) (38)

From Eq. (38), we conclude that when H is 0, I is also 0. This means that the
iso-contours of ν are never parabolic.

To conclude, based on Eqs. (30) and (38), we deduce that the contours of
anisotropy ν and hence α are either ellipses or a set of parallel lines.
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Tensor Approximation for
Multidimensional and Multivariate Data

Renato Pajarola, Susanne K. Suter, Rafael Ballester-Ripoll, and Haiyan Yang

Abstract Tensor decompositionmethods andmultilinear algebra are powerful tools
to cope with challenges around multidimensional and multivariate data in computer
graphics, image processing and data visualization, in particular with respect to com-
pact representation and processing of increasingly large-scale data sets. Initially
proposed as an extension of the concept of matrix rank for 3 and more dimensions,
tensor decomposition methods have found applications in a remarkably wide range
of disciplines. We briefly review the main concepts of tensor decompositions and
their application to multidimensional visual data. Furthermore, we will include a first
outlook on porting these techniques to multivariate data such as vector and tensor
fields.

1 Introduction

Data approximation is widely used in the fields of computer graphics and scientific
visualizations. One way to achieve it is to decompose the data into a more compact
and compressed representation. The general idea is to express a dataset by a set of
bases,which are used to reconstruct the dataset to its approximationwhen needed (see
Fig. 1). More specifically, such a representation usually consists of the actual bases
and the corresponding coefficients describing the relationship between the original
data and the actual bases. Typically, such compact representations consist of less
data than the original dataset, capture the most significant features, and, moreover,
describe the data in a format that is convenient for adaptive data loading and access.
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AA decompose reconstruct

bases +
cients

compact data representation

Fig. 1 Compact data representation for a 3rd-order tensorA (a volume) by bases and coefficients
that can be used to reconstruct the data to its approximation ˜A

Bases for compact data representation can be classified into two types: pre-defined
and learned bases. Pre-defined bases comprise a given function or filter, which is
applied to the datasetwithout any a-priori knowledge of the correlations in the dataset.
In contrast, learned bases are generated from the dataset itself. Established examples
of the former are the Fourier transform (FT) and the wavelet transform (WT). Well-
knownexamples of the latter are the principal component analysis (PCA), the singular
value decomposition (SVD) and vector quantization. Using predefined bases is often
computationally cheaper, but learned bases potentially remove more redundancy
from a dataset.

Generally, PCA-like methods are able to extract the main data direction of the
dataset and represent the data in another coordinate system such that it makes it
easier for the user to find the major contributions within the dataset. To exploit
this, PCAs higher-order extension—tensor approximation (TA)—can be used for
multidimensional datasets. The first occurrence of TAwas in [21]. The idea of multi-
way analysis, however, is generally attributed to Catell in 1944 [11]. It took a few
decades until tensor approximations received more widespread attention, namely by
several authors in the field of psychometrics [10, 19, 52].

1.1 Higher-Order Data Decompositions

The matrix SVD works on 2D data arrays and exploits the fact that the dataset can
be represented with a few highly significant coefficients and corresponding recon-
struction vectors based on the matrix rank reduction concept. The SVD, being a
multilinear algebra tool, computes (a) a rank-R decomposition and (b) orthonormal
row and column vector matrices. Unlike for 2D, the extension to higher-orders is not
unique and these two main properties are captured by two different models that are
both called tensor approximations : the Tucker model [14, 15, 25, 49, 52] preserves
the orthonormal factor matrices while the CP model (from CANDECOMP [10] and
PARAFAC [19]) preserves the rank-R decomposition.

Generally speaking, a tensor is a term for a higher-order generalization of a vector
or a multidimensional array. In TA approaches, a multidimensional input dataset in
array form, i.e., a tensor, is factorized into a sum of rank-one tensors or into a product
of a core tensor (coefficients that describe the relationship to input data) and matrices
(bases), i.e., one for each dimension. This factorization process is generally known
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as tensor decomposition, while the reverse process of the decomposition is the tensor
reconstruction.

Tensor decompositions have beenwidely studied in other fields andwere reviewed
[13, 25, 34] and summarized [27, 44]. Since TA was emerging from various disci-
plines, it was developed under multiple names. The CP model was independently
developed under the terms CANDECOMP and PARAFAC, therefore, it is some-
times referenced with a single name. The Tucker model takes its name from Tucker,
who initially worked on the three-mode factor analysis (3MFA), which is sometimes
referred to as the Tucker3 model, also called the three mode PCA (3MPCA) [27, 28,
49]. Similarly the model was referenced to as n-mode PCA [23] since it is equivalent
to applying PCA n times, each time along a different mode of the tensor. In [14]
all these previous works were captured and written down as generalization of the
SVD as multilinear singular SVD, which is usually termed as higher-order SVD or
HOSVD. Furthermore, it was also called n-mode SVD in [54, 55].

Given an input tensor, different decompositions capture different types of struc-
tures and result in varying numbers of coefficients. For a given accuracy, the number
of CP ranks required to decompose a tensor is usually much larger to that of Tucker
ranks. On the other hand, CP’s storage cost grows only linearly with respect to its
ranks, whereas that relationship becomes exponential in the case of Tucker. In sum,
there is no silver bullet: CP is more suitable than Tucker for certain types of data,
and vice versa. As a rule of thumb:

• Dense tensors ofmoderate dimensionalityn over continuous variables, for example
n = 3 or n = 4 including spatial and temporal axes, can often be compressedmore
compactly via the Tucker model.

• Tensors with categorical variables, sparse tensors, and tensors of higher dimen-
sionality (say, n ≥ 5) often benefit more from the CP model.

The data sets addressed in this chapter fit in the first category, and sowe restrict our
experiments to the Tucker model. To further illustrate the usual advantage of Tucker
over CP for spatial visual data, see Fig. 2, we compare the number of coefficients
and root mean squared error (RMSE) obtained with CP vs. Tucker using different
numbers of ranks for a 256 × 256 × 256 CT scan of a bonsai.

1.2 TA Applications in Graphics and Visualization

TA approaches have been applied to a wide range of application domains. Starting
from psychometrics, in recent years, TA has been applied to visual data. A highly
studied area is TA used for image ensembles [20, 35, 42, 43, 54, 58–60, 63] and/or
TA used for pattern recognition, e.g., [17, 32, 40, 41, 43, 59]. In (real-time) ren-
dering, tensor decompositions have been used as a method for global illumination
models, e.g., for bidirectional reflectance distribution functions (BRDFs) [9, 45] or
precomputed radiance transfer (PRT) [45, 50, 51]. Furthermore, TAs have success-
fully been used in graphics in the context of bidirectional texture functions (BTFs) [3,
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Fig. 2 RMSE achieved after CP vs. Tucker compression at different ranks R. For Tucker we take
R1 = R2 = R3 = R. The dataset used is a bonsai CT scan of size 2563

18, 38, 39, 51, 55, 61, 62], texture synthesis [62], time-varying visual data [61, 62],
3D face scanning [56] and compression in animation [29, 31, 33, 36, 37, 53, 57].

In scientific visualization, TA methods have first been introduced for interactive
multiresolution and multiscale direct volume rendering [6–8, 46–48]. Additionally,
their compact representation power has been exploited for 3D volume data compres-
sion [4, 6] with notable advantages over other approaches at extreme compression
ratios [2]. In this work, we explore the multiscale feature expressiveness of TAmeth-
ods for the first time on vector fields, i.e. multidimensional multivariate data . Hence
we interpret the vector field as a 4D array, or as a 4th-order data tensor. However,
the rank-reduction of TA is only applied to the three spatial dimension.

1.3 Motivation and Contributions

In the results section (Sect. 9) we demonstrate that the feature sensitive approxi-
mation power of TA methods carries over from scalar to vector fields. These first
results are promising and encourage the extension of tensor compression techniques
tomultivariate data fields, e.g. for compact storage and quick visualization at variable
feature scales of large vector data in the fields of computational fluid dynamics or
biomedicine.Moreover, based on the compression-domain data filtering and process-
ing capabilities demonstrated in [5], we expect that important vector-field operators
such as divergence or vorticity as well as other feature extraction operations can be
analyzed and performed directly in the compressed TA format.
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2 Singular Value Decomposition

The SVD is a widely used matrix factorization method to solve linear least-square
problems. The SVD can be applied to any square or rectangular matrix A ∈ R

M×N .
Hence, the decomposition is always possible. The aim of the SVD is to produce a
diagonalization of the input matrixA. Since the input matrixA is not symmetric, two
bases (matrices) are needed to diagonalizeA. Therefore, the SVD produces a matrix
factorization into two orthogonal bases U ∈ R

M×M and V ∈ R
N×N and a diagonal

matrix � ∈ R
M×N , as expressed in Eq. (1) (matrix form) or Eq. (2) (summation

form).

A = U�VT (1)

amn =
R
∑

r=1
umrσrvnr (2)

The basesU andV contain orthogonal unit length vectors u j and v j , respectively,
and represent a r -dimensional column space (RM ) and a r -dimensional row space
(RN ). Hence, the bases U and V are even orthonormal. The diagonal matrix � con-
tains the singular valuesσr ,whereσ1 ≥ σ2 ≥ · · · ≥ σR ≥ 0,where R = min(M, N ).
A singular value and a pair of singular vectors of a square or rectangular matrix A
correspond to a non-negative scalar σ and two non-zero vectors u j and v j , respec-
tively. The vectors u j are the left singular vectors, and the vectors v j are the right
singular vectors (see Fig. 3). The number of non-zero singular values determines the
rank R of the matrix A.

In applications truncated versions of the SVD are frequently desired. That is,
only the first K singular values σ1 . . . σK and the corresponding K singular vectors
u1 . . . uK and v1 . . . vK are used for the reconstruction. This approach is referred to as
low-rank approximation of a truncated SVD. Basically, each weighted outer vector-
product term σ j · u j ◦ v j corresponds to a rank-one component (see also Fig. 4), and
the SVD of matrices or images consequently represents a 2D data array eventually
as a sum of such rank-one components.

Fig. 3 Visualization of the summed form of the SVD as shown in Eq. (2)—illustrating the singular
values with the corresponding left and right singular vector pairs
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Fig. 4 Simple 2D functions can be represented as an outer product of two 1D functions, and more
complex ones as a weighted sum of several such components

3 Tensor Approximation Notation and Definitions

The notation taken here is mostly taken from De Lathauwer et al. [13, 14], Smilde
et al. [44], as well as Kolda and Bader [25], who follow the notation proposed by
Kiers [24]. To illustrate higher-order extensions we mostly make examples of order
three.

3.1 General Notation

A tensor is a multidimensional array (or an N -way data array): a 0th-order tensor
(tensor0) is a scalar, a 1st-order tensor (tensor1) is a vector, a 2nd-order tensor is a
matrix, and a 3rd-order (tensor3) is a volume, see Fig. 5. We consistently use the
letter ‘a’ to represent the data, following the notation of, e.g., [14, 15, 51, 61, 62].
We use lower case letters for a scalar a, lower case boldface letters for a vector a
in RI1 , capital boldface letters for a matrix A in RI1×I2 , and calligraphic letters for a
3rd-order tensor A in RI1×I2×I3 .

A

Fig. 5 A tensor is a multidimensional array: a 2nd-order tensor is a matrixA and a 3rd-order tensor
is a volume A
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Fig. 6 Slices of a 3rd-order tensor A

The order of a tensor is the number of data directions, also referred as ways or
modes. Along a mode n, the index in runs from 1 to IN . By using lower script indices
for the modes, we can extend the index scheme to any order, i.e., I1, I2, I3, I4, . . . .
The i th entry of a vector a is denoted by ai , an element (i1, i2) of a matrix A is
denoted by ai1i2 , and an element (i1, i2, i3) of a 3rd-order tensor A is denoted by
ai1i2i3 .

The general term fibers is used as a generalization for vectors taken along different
modes in a tensor. A fiber is defined by fixing every index but one. A matrix column
is thus a mode-1 fiber and a matrix row is a mode-2 fiber. 3rd-order tensors have
column, row, and tube fibers, denoted by ai1 , ai2 , and ai3 , respectively. Sometimes,
fibers are also called mode-n vectors.

Slices are two-dimensional sub-sections of a tensor (e.g., one fixed index in a 3rd-
order tensor). For a 3rd-order tensor A, there are, for example, frontal, horizontal,
and lateral slices, denoted by Ai3 ,Ai1 , and Ai2 , respectively as illustrated in Fig. 6.

For computations, a tensor is often reorganized into a matrix what we denote
as tensor unfolding (sometimes called matricization). There are two main unfold-
ing strategies, backward cyclic unfolding [14] and forward cyclic unfolding [24] as
shown in Fig. 7. An unfolded tensor in matrix shape is denoted with a subscript in
parentheses, e.g., A(n).

3.2 Computing with Tensors

While manymore operations on tensors exist, here we only outline themost common
products used within the scope of this work.

• An N th-order tensor is defined as A ∈ R
I1×I2×···×IN .

• The tensor product is denoted here by ⊗: however, other symbols are used in the
literature, too. For rank-one tensors, the tensor product corresponds to the vector
outer product (◦) of N vectors b(n) ∈ R

In and results in an N th-order tensorA. The
tensor product or vector outer product for a 3rd-order rank-one tensor is illustrated
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Fig. 7 Forward cyclic
unfolding [24] of a 3rd-order
tensor

in Fig. 8: A = b(1) ◦ b(2) ◦ b(3), where an element (i1, i2, i3) of A is given by
ai1i2i3 = b(1)

i1
b(2)
i1
b(3)
i3
.

• The inner product of two same-sized tensors A,B ∈ R
I1×I2×···×IN is the sum of

the products of their entries, i.e., Eq. (3).

(A,B) =
I1

∑

i1=1

I2
∑

i2=1

. . .

IN
∑

iN=1

ai1i2...iN bi1i2...iN (3)

• The n-mode product [14] multiplies a tensor by a matrix (or vector) in mode n.
The n-mode product of a tensor B ∈ R

I1×I2×···×IN with a matrix C ∈ R
Jn×In is

denoted by B ×n C and is of size I1 × · · · × In−1 × Jn × In+1 × · · · × IN . That
is, element-wise we have Eq. (4).

(B ×n C)i1...in−1 jn in+1...iN =
In

∑

in=1

bi1i2...iN · c jnin (4)

Each mode-n fiber is multiplied by the matrix C. The idea can also be expressed
in terms of unfolded tensors (reorganization of a tensor into a matrix as described
in Sect. 3.1).

The n-mode product of a tensor with a matrix is related to a change of basis in
the case when a tensor defines a multilinear operator [25]. The n-mode product is
the generalized operand to compute tensor times matrix (TTM) multiplications,
and can best be illustrated using unfolded tensors as in Fig. 9.
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Fig. 8 Three-way outer
product for a 3rd-order
rank-one tensor
A = b(1) ◦ b(2) ◦ b(3)

Fig. 9 TTM multiplication
C · B(n), multiplying the
unfolded 3rd-order tensor
B(n) with the matrix C

A = B ×n C ⇔ A(n) = CB(n) (5)

• The norm of a tensorA ∈ R
I1×I2×···×IN is defined analogously to thematrix Frobe-

nius norm ‖A‖F and is the square root of the sum squares of all its elements, i.e.,
Eq. (6).

‖A‖F =
√

√

√

√

I1
∑

i1=1

I2
∑

i2=1

. . .

IN
∑

iN=1

a2i1i2...iN (6)

3.3 Rank of a Tensor

In order to describe the definitions of the tensor rank, the definition for the matrix
rank is recaptured. Thematrix rank of a matrixA is defined over its column and row
ranks, i.e., the column and row matrix rank of a matrix A is the maximal number
of linearly independent columns and rows of A that can be chosen, respectively. For
matrices, the column rank and the row rank are always equal and, a matrix rank is
therefore simply denoted as rank(A). A tensor rank is defined similarly to the matrix
rank, however, there are differences. In fact, the extension of the rank concept is not
uniquely defined in higher orders and we review the definitions for the tensor ranks
from [14] here.

• The n-rank of a tensor A, denoted by Rn = rankn(A), is the dimension of the
vector space spanned by mode-n vectors, where the mode-n vectors of A are
the column vectors of the unfolding A(n), and rankn(A) = rank(A(n)). Unlike
matrices, the different n-ranks of a tensor are not necessarily the same.
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• A higher-order tensor has a so calledmultilinear rank (R1, R2, . . . , RN ) [21] if its
mode-1 rank (row vectors), mode-2 rank (column vectors) until its mode-n rank
are equal to R1, R2, . . . , RN , e.g., giving rise to a multilinear rank-(R1, R2, R3)
for a 3rd-order tensor.

• A rank-one tensor is an N -way tensor A ∈ R
I1×I2×···×IN under the condition that

it can be expressed as the outer product of N vectors, as in Eq. (7) (see also [12,
30]). A rank-one tensor is also known under the term Kruskal tensor.

A = b(1) ◦ b(2) ◦ · · · ◦ b(N ) (7)

• The tensor rank R = rank(A) is the minimal number of rank-one tensors that
yieldA in a linear combination (see [12, 14, 25, 30]). Except for the special case
of matrices, the tensor rank is not necessarily equal to any of its n-ranks, but it
always holds that Rn ≤ R.

4 Tensor Decompositions

In tensor decompositions an input tensorA ∈ R
I1×I2×···×IN is decomposed into a set

of factor matrices U(n) ∈ R
In×Rn and coefficients B ∈ R

R1×R2×···×RN that describe
the relationship/interactivity between A and the set of U(n).

Historically, as seen earlier, tensor decompositions are a higher-order extension
of the matrix SVD. The nice properties of the matrix SVD, i.e., rank-R decompo-
sition and orthonormal row-space vectors and column-space vectors, do not extend
uniquely to higher orders. The rank-R decomposition can be achieved with the so-
called CP model, while the orthonormal row and column vectors are preserved in the
so-called Tucker model. An extensive review of the two models and further hybrid
models can be found in [25]. Here, we only outline the Tucker model that we apply
in our experiments.

4.1 Tucker Model

The Tucker model is a widely used approach for tensor decompositions. As given
in Eq. (8), any higher-order tensor is approximated by a product of a core tensor
B ∈ R

R1×R2×···×RN and its factor matrices U(n) ∈ R
In×Rn , where the products ×n

denote the n-mode product as outlined in Sect. 3.2. This decomposition can then
again be reconstructed to its approximation ˜A. The missing information of the input
tensor A that cannot be captured by ˜A is denoted with the error e. The Tucker
decomposition is visualized for a 3rd-order tensor in Fig. 10. Equivalently, a Tucker
decomposition can also be represented as a sum of rank-one tensors as in Eq. (9) and
illustrated in Fig. 11.
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Fig. 10 Tucker 3rd-order tensor:A = B ×1 U(1) ×2 U(2) ×3 U(3) + e

Fig. 11 Tucker 3rd-order tensor as a sum of rank-one tensors:A = ∑R1
r1=1

∑R2
r2=1

∑R3
r3=1 br1r2r3 ·

u(1)
r1 ◦ u(2)

r2 ◦ u(3)
r3 + e

A = B ×1 U(1) ×2 U(2) ×3 · · · ×N U(N ) + e (8)

A =
R1

∑

r1=1

R2
∑

r2=1

. . .

RN
∑

rN=1

br1r2...rN · u(1)
r1 ◦ u(2)

r2 ◦ · · · ◦ u(N )
rN + e (9)

The column vectors u(n)
rn of the factormatricesU(n) ∈ R

In×Rn are usually orthonor-
mal and can be thought of as principal components Rn in each mode n [25].
The core tensor B ∈ R

R1×R2×···×RN represents a projection of the original data
A ∈ R

I1×I2×···×IN onto its factor matrices and is always of the same order as the
input data. The core tensor is computed in general, as shown in Eq. (10), and for
orthogonal factor matrices as in Eq. (11). The element-wise core tensor computation
is denoted in Eq. (12). In other words, the core tensor coefficients br1r2...rN represent
the relationship between the Tucker model and the original data.

B = A ×1 U(1)(−1) ×2 U(2)(−1) ×3 · · · ×N U(N )(−1)
(10)

B = A ×1 U(1)	 ×2 U(2)	 ×3 · · · ×N U(N )	 (11)

B =
I1

∑

i1=1

I2
∑

i2=1

. . .

IN
∑

iN=1

ai1i2...iN · u(1)
i1

	 ◦ u(2)
i2

	 ◦ · · · ◦ u(N )
iN

	
(12)

The Tucker decomposition is not unique, which means that we can modify the
core tensor B without affecting the model fit as long as we apply the same changes
to the factor matrices (so-called core tensor rotations), for more details see [25].
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Often, we are interested in compact models, which enable a compression of the
input data. For example, after computing a (full) Tucker decomposition the core
tensor B has the same size as the original input A and all the factor matrices are
square. However, we are more interested in reduced-size, approximative Tucker
decompositions, where B is an element of RR1×R2×R3 with R1 < I1, R2 < I2 and
R3 < I3. Using so-called rank-reduced tensor decompositions or truncated tensor
decompositions one can directly obtain more compact decompositions.

5 Tensor Rank Reduction

As seen in Sect. 3.3, the extension of the matrix rank concept to higher orders is not
unique and we will mostly follow the rank-(R1, R2, . . . , RN ) tensor decomposition
and reduced-rank approximation of the Tucker model here.

5.1 Rank-R and Rank-(R1, R2, . . . , RN) Approximations

Asimple rank-one approximation is defined as ˜A = λ · u(1) ◦ u(2) · · · ◦ u(N ) from the
rank-one tensor (vector) product (◦) of its N basis vectors u(n) ∈ R

In and a weight
factor λ. Hence a tensorA could be approximated by a linear combination of many
rank-one approximations as in Eq. (13). This approximation, also known as a CP
model, is called a rank-R approximation.

˜A =
R

∑

r=1

λr · u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N )
r (13)

Alternatively, if we allow all weighted tensor (vector) products u(1)
i1

◦ u(2)
i2

◦ · · · ◦
u(N )
iN

of any arbitrary index combinations i1i2 . . . iN , we end upwith the Tuckermodel
of Sect. 4.1 and Eq. 12 where the weight factors for all index combinations form the
core tensor B. Choosing R1,...,N < I1,...,N we end up with a rank-(R1, R2, . . . , RN )

approximation of A, which is given by a decomposition into a lower-rank tensor
˜A ∈ R

I1×I2×···×IN with rankn(˜A) = Rn ≤ rankn(A). The approximated tensor ˜A
is the n-mode product ×n of factor matrices U(n) ∈ R

In×Rn and a core tensor B ∈
R

R1×R2×···×RN in a given reduced rank space (Eq. (14)). This rank-(R1, R2, . . . , RN )

approximation was previously introduced as the Tucker model.

˜A = B ×1 U(1) ×2 U(2) ×3 · · · ×N U(N ) (14)

In general, a rank-reduced approximation is sought such that the least-squares
cost function of Eq. (15) is minimized.
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˜A = argmin
˜A

‖A − ˜A‖ 2 (15)

Given that (R1, R2, . . . , RN ) are sufficiently smaller than the initial dimensions
(I1, I2, . . . , IN ), the core coefficients B ∈ R

R1×R2×···×RN and the factor matrices
U(n) ∈ R

In×Rn can lead to a compact approximation of ˜A of the original tensor A.
In particular, the multilinear rank-(R1, R2, . . . , RN ) is typically explicitly chosen to
be smaller than the initial ranks in order to achieve a compression of the input data
(see also [2, 4, 6]).

5.2 Truncated Tensor Decomposition

Similar to matrix SVD, tensor rank reduction can be used to generate lower-rank
reconstructions ˜A of the inputA. The tensor rank parameters Rn are chiefly respon-
sible for the number of TA bases and coefficients that are used for the reconstruction
and hence are responsible for the approximation level. In higher orders, the CP
decomposition is not directly rank-reducible, however, the truncation of the Tucker
decomposition is possible due to the all-orthogonality property of the core tensor.

For a 3rd-order tensor, all-orthogonality means that the different horizontal matrix
slices of the coreB (the first index i1 is kept fixed, while the two other indices, i2 and
i3, are free) are mutually orthogonal with respect to the scalar product of matrices
(i.e., the sum of the products of the corresponding entries vanishes). The same holds
for the other slices with fixed indices i2 and i3 (see [14]). Therefore, given an initial
sufficiently accurate rank-(R1, R2, R3) Tucker model, we can progressively choose
lower ranks Kn < Rn for reduced quality reconstructions. As indicated in Fig. 12, the
ranks Kn indicate how many factor matrix columns and corresponding core tensor
entries are used for the reconstruction.

Note that the ordering of the coefficients in the Tucker core tensorB is not strictly
decreasing in contrast to the decreasing singular values in the matrix SVD case.
However, in practice it can be shown that progressive tensor rank reduction in the
Tucker model works very well for adaptive reconstruction of the data at different
accuracy levels.

Fig. 12 Illustration of a rank reducedTucker tensor reconstruction:A reduced range of factormatrix
columns with corresponding fewer core tensor entries reconstructs a lower quality approximation
but at full resolution
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6 Tucker Decomposition Algorithms

There are various strategies for how to compute and generate a tensor decomposition.
The most popular and widely used group of algorithms belongs to the alternating
least squares (ALS) algorithms, the other group of algorithms uses various Newton
methods. The respective algorithms differ for the computation of the different tensor
models, and we will mainly focus on the Tucker model in our review.

For the Tucker model, the first decomposition algorithms used were a simple
higher-order SVD (HOSVD) (see [14]), the so-called Tucker1 [52], a three-mode
SVD. However, the truncated decompositions of higher orders are not optimal in
terms of best fit, which is measured by the Frobenius norm of the difference. Starting
from a HOSVD algorithm, tensor approximation ALS algorithms [26, 28] were
developed,where one of the first TuckerALSwas the so-calledTUCKALS [49]. Later
various improvements accelerated [1] or optimized the basicTUCKALSmethod. The
higher-order orthogonal iteration (HOOI) algorithm [15] is an iterative algorithm
that performs a better fit for a truncated HOSVD version.

Newtonmethods are also used for the Tucker decomposition or rank-(R1, R2, . . . ,

RN ) approximation. They typically start with aHOOI initialization and then converge
faster to the final point. [16] developed a Newton-Grassman optimization approach,
which takes much fewer iterations than the basic HOOI - even though one single iter-
ation is more expensive due to the computation of theHessian.While theHOOI is not
guaranteed to converge, theNewton-Grassmann Tucker decomposition is guaranteed
to converge to a stationary point. Another Newton method was proposed by [22],
who developed a differential-geometric Newton algorithm with a fast quadratic con-
vergence of the algorithm in a neighborhood of the solution. Since this method is
not guaranteed to converge to a global maximum, they support the method by start-
ing with an initial guess of several HOOI iterations, which increases the chances of
converging to a solution.

7 Tensor Reconstruction

The tensor reconstruction from a reduced-rank tensor decomposition can be achieved
in multiple ways. One alternative is a progressive reconstruction: Each entry in the
core tensorB is considered asweight for the outer product between the corresponding
column vectors in the factor matrices U(n). This gives rise to Eq. (16) for the Tucker
reconstruction.

˜A =
R1

∑

r1=1

R2
∑

r2=1

. . .

RN
∑

rN=1

br1r2...rN · u(1)
r1 ◦ u(2)

r2 ◦ · · · ◦ u(N )
rN (16)

This reconstruction strategy corresponds to forming rank-one tensors and cumu-
latively summing them up. The accumulated weighted subtensors then form the
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approximation ˜A of the original data A. In particular for the Tucker model, this is
an expensive reconstruction strategy since it involves multiple for-loops to run over
all the summations, for a total cost of O(RN · I N ) operations.

7.1 Element-Wise Reconstruction

A simple approach is to reconstruct each required element of the approximated
dataset individually, which we call element-wise reconstruction. Each element ãi1i2i3
is reconstructed, as shown in Eq. (17) for the Tucker reconstruction. That is, all core
coefficients multiplied with the corresponding coefficients in the factor matrices are
summed up (weighted sum).

ãi1i2...iN =
∑

r1r2...rN

br1r2...rN · u(1)
i1r1

· u(2)
i2r2

· . . . · u(N )
iN rN

(17)

Element-wise reconstruction requires O(RN ) operations on average. It can be
beneficial for applications where only a sparse set of reconstructed elements are
needed.

7.2 Optimized Tucker Reconstruction

A third reconstruction approach—applying only to the Tucker reconstruction—is to
build the n-mode products along every mode, which leads to a TTM multiplication
for each mode, e.g., TTM1 along mode 1, (see also Eq. (5)). This is analogous to
the Tucker model given by Eq. (14). The intermediate results are then multiplied
along the next modes, e.g., TTM2 and finally TTM3. In Fig. 13 we visualize the
TTM reconstruction, and the intermediate results B′ and B′′ as well as the final
approximation ˜A, applied to a 3rd-order tensor using n-mode products.

Fig. 13 Forward cyclic TTM multiplications after [24] along the three modes (n-mode products)
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Since it exploits matrix multiplications, this optimized algorithm is much faster
than progressive reconstruction (Eq. (16)). Its cost is dominated by O(R1 · I N ).
In 3D, in particular, it takes O(R1 · I1 · I2 · I3 + R1 · R2 · I2 · I3 + R1 · R2 · R3 · I3)
operations.

8 Useful TA Properties for Scientific Visualization

As stated in the introduction, TA is the higher-order generalization of thematrix SVD,
which can offer either properties of (a) rank-R decomposition or (b) orthonormal
row-space and column-space vectors. In higher orders, the orthonormal row and
column vectors are preserved in the Tucker model which thus supports progressive
rank-reduced approximations and reconstructions.

8.1 Spatial Selectivity and Subsampling

The Tucker model (Sect. 4.1) consists of one factor matrix per mode (data direction)
U(n) ∈ R

In×Rn and one core tensor B ∈ R
R1×R2×···×RN . The core tensor B is in effect

a projection of the original dataA onto the basis of the factor matrices U(n). In case
of a volume, the Tucker model has three modes, as illustrated in Fig. 10, and defines
an approximation ˜A = B ×1 U(1) ×2 U(2) ×3 U(3) of the original volume A (using
n-mode products ×n).

The row and column axes of the factor matrices represent two different spaces:
(1) the rows correspond to the spatial dimension in the corresponding mode, and
(2) the columns to the approximation quality. These two properties can be exploited
for multiresolution modeling (spatial selection and subsampling of rows) and mul-
tiscale approximation (rank reduction on the columns) (see also Fig. 14). In [5, 47]
we demonstrated how these features can be exploited for multiresolution and multi-
scale reconstruction as well as filtering of compressed volume data in the context of
interactive visualization.

Fig. 14 Factor matrix
properties along the vertical
axis supporting: (1.1) spatial
selectivity, (1.2) spatial
subsampling, and (2)
low-rank approximation
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8.2 Approximation and Rank Reduction

As described earlier, the Tucker model defines a rank-(R1, R2, R3) approximation,
where a small Rn corresponds to a low-rank approximation (with details removed)
and a large Rn corresponds to a more accurate approximation of the original. The
highest rank Rn for the initial Tucker decomposition has to be given explicitly.
However, rank reductions can be applied after the initial decomposition (similar to
the rank reduction in matrix SVD). Even though the core tensor coefficients are not
guaranteed to be in decreasing order, as in matrix SVD, in practice it can be shown
that progressive tensor rank reduction in the Tucker model works well for adaptive
visualization of the data at different feature scales [2, 4–6, 47].

As illustrated in Fig. 12 in Sect. 5.2, the ranks indicate how many factor matrix
columns and corresponding core tensor entries are used for a desired reconstruction.
Thus, given a rank-(R1, R2, R3) Tucker model, we can specifically or progressively
choose lower ranks Kn < Rn for a reduced quality reconstruction, at the original
spatial output resolution given by In (or also subsampled).

Figure 15 shows the progressive rank reduction from an initial rank-(256, 256,
256) Tucker decomposition of an original 5123 example volume. Shown are the
visual results and the data reduction of the approximation at variable reduced-rank
reconstructions. The numbers of coefficients include all core tensor and factor matrix
entries that are used, e.g. a rank-(32, 32, 32) reconstruction corresponds to 323 + 3 ·
512 · 32 = 81′920 coefficients. The data reduction ratio can be derived by dividing
the number of coefficients by 5123, which for R = 32 results in using only 0.06%
of the original amount of data. In particular, Fig. 15 demonstrates the power of low-
rank tensor approximations that can be used for multiscale feature visualization or
progressive image refinement in volume rendering.

Fig. 15 Multiscale volume visualization by tensor rank reduction, corresponding to 0.02, 0.06,
0.27, 1.71 and 12.79% of the original amount of data used for R = 16, 32, 64, 128, 256
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9 Application to Multivariate Data

Encouraged by the data reduction power and the approximation quality of tensor
approximations as shown in Fig. 16, we have extended the Tucker decomposition
and reduced rank reconstruction to vector field data. Compared to scalar 3D volumes
(e.g. fromMRI or CT scans), a 3D vector fieldV (e.g. of velocities from aweather or
fluid simulation) can be interpreted as a multivariate data field with D-dimensional
vector-valued entries at each position in a I1 × I2 × I3 grid. Thus we can interpretV
as a 4th-order tensor V ∈ R

I1×I2×I3×D . Note that the TA rank-reduction (Sect. 5) is
only applied to the three spatial dimension aswe are not interested in a dimensionality
reduction of the vector-valued field value itself.

9.1 Dataset

For our first experiments we used a data set from the Johns Hopkins Turbulence
Database http://turbulence.pha.jhu.edu/ representing a direct numerical simulation
of incompressible magnetohydrodynamic (MHD) equations (see also Fig. 17). The
data set contains, among other output variables, 3 velocity components that we used,
hence D = 3, covers a 3D grid of 2563 cells (downsampled subset from the original
10243), hence I1 = I2 = I3 = 256, and is the first time step from the output of the
simulation.

The vector field therefore covers a 3D cube which we visualize using direct vol-
ume and streamline rendering techniques with color-coding of velocity, divergence,
vorticity or error magnitudes in ParaView. Transparency is used to reduce clutter
and opacity such as to focus the visualizations on the high-magnitude value regions.
Note that this cubic vector field is dense and rendered over a black background, thus
always appearing as a cube like object in the images.

Fig. 16 a A 5123 isotropic turbulence volume of 512MB, b visually identical compression result
using 51.2MB and c result after extreme compression down to only 1.71MB using the TTHRESH
method [2]. All the visualizations are generated using ParaView

http://turbulence.pha.jhu.edu/
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9.2 Vector Field Magnitude and Angle

As can be seen in Fig. 17, the velocitymagnitude and structure of the flowdirections is
very well maintained down to fairly course reconstructions using R = 32. Especially
the (important) regions with larger velocity magnitudes are very well preserved with
respect to their flow orientation as visible from the streamline visualization. The
rendering applies an opacity transfer function setting which is almost linear, slight
curve below the diagonal, to the vector field magnitude, highlighting the important
high-velocity regions.

To see how many details are lost after rank reduction of the velocity field data
set, we calculated and visualized the error information for both magnitude and angle
deviation in Figs. 18 and 19, respectively. For themagnitude, we normalized the error
to be the percentage relative to the local vector field magnitude value. The rendering
uses an opacity mapping which is almost linear, slight curve below the diagonal,
to the vector field magnitude. This makes low magnitude and low opacity areas,
and their errors, transparent or dark and highlights any errors in the more critical
high-velocity regions. The completely dark images in Fig. 18e–h demonstrate that
the magnitude error after rank reduction using Tucker decomposition is close to zero
even with for R = 16, which is 1/16 of the original full rank of 256. The barely
noticeable dark blue regions in Fig. 18a–d correspond to low errors in high-velocity
regions, with errors in the range of less than 10% down to 10−8% (with 60% being
white).

Compared to the almost negligible relative magnitude errors of the velocity field,
however, the angular error of the same data set after rank reduction ismore prominent
as shown in Fig. 19. The maximum angular error π = 180◦ is shown in red while
small errors are shown in dark blue (0◦). The rendering applies an opacity setting
almost linear to the angle offset, hence in Fig. 19 large angular errors are highlighted.

Fig. 17 Scalar velocity magnitude (top) and vector field streamline (bottom) visualization of the
forced MHD turbulence simulation at variable reduced rank reconstructions R = 32, 64, 128, 256
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Fig. 18 Relative magnitude error (in %) of the velocity field with reduced rank reconstructions
R = 1, 2, 4, 8, 16, 32, 64, 128

Fig. 19 Absolute angular error [0◦, 180◦] of the velocity field with reduced rank reconstructions
R = 1, 2, 4, 8, 16, 32, 64, 128

However, this does not relate to the local strength of the vector field since large
angle differences in low-magnitude areas are not that important. Directly comparing
Figs 17 and 19, which have the same viewing configuration, one can observe that
large angular errors occur mostly in very low-velocity areas and may thus not be
that relevant. In particular, since for very short vectors small errors can cause large
angular changes.
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9.3 Vorticity and Divergence

We also inspected the influence of low-rank tensor compression on the two most
fundamental features of vector field data: divergence and vorticity. As can be seen
in Fig. 20, the global structure of the magnitude from both the divergence field and
the vorticity field are still very well preserved with rank R = 64, which is 1/4 of the
original full rank of 256.The values are given in their absolute ranges of [0.36,−0.43]
and [0.52, 10−5] for the divergence and vorticity respectively. The rendering applies
an opacity setting which is almost linear, slight curve below the diagonal, to the
magnitude values, highlighting the important regions.

For the vorticity vector field, we also calculated the relative magnitude error as
for the velocity vector field data shown in Fig. 18, thus as percentage of the vorticity
magnitude, and similar conclusions can also be drawn here for the results shown in
Fig. 21. All errors are very low, and barely noticeable for rank-reductions down to
R = 16, which corresponds to 1/16 of the original data volume.

Additionally, we also computed the absolute angular error for the vorticity vector
field, in this case applying an opacity proportional to themagnitude of the raw vector
field, and the results are shown in Fig. 22. We can observe that the angular error
almost everywhere is in the color range of dark to light blue which maps to errors
from 0 up to 45◦ in this plot, and thus the directional vorticity information seems to
be well preserved.

Fig. 20 Magnitude of the vector field’s divergence (top) and vorticity (bottom) at variable reduced
rank reconstructions R = 32, 64, 128, 256
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Fig. 21 Relative magnitude error (in %) of the vorticity field with reduced rank reconstructions
R = 1, 2, 4, 8, 16, 32, 64, 128

Fig. 22 Absolute angular error [0◦, 130◦] of the vorticity field with reduced rank reconstructions
R = 1, 2, 4, 8, 16, 32, 64, 128

10 Conclusions

In the analysis conducted in this first study on vector fields, we have shown that tensor
approximation methods are not only very useful for multidimensional scalar fields
but can also be applied to multivariate data, thus extending to vector and possibly
tensor fields. In general we can observe that for the important high-velocity vector
field regions, the low-rank reconstructions maintain the important overall structures
of the flow features, in particular also the vorticity. Furthermore, we note that the
MHD simulation model in theory should be divergence-free and thus the numerical
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results report very low divergence numbers. Therefore, we are very satisfied with
the result that the low-rank tensor reconstructions do not result in an unexpected
and uncontrolled enlargement of these divergence values, keeping them within the
numerical range of the simulation.
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Fourth-Order Anisotropic Diffusion
for Inpainting and Image Compression

Ikram Jumakulyyev and Thomas Schultz

Abstract Edge-enhancing diffusion (EED) can reconstruct a close approximation
of an original image from a small subset of its pixels. This makes it an attractive foun-
dation for PDE based image compression. In this work, we generalize second-order
EED to a fourth-order counterpart. It involves a fourth-order diffusion tensor that is
constructed from the regularized image gradient in a similar way as in traditional
second-order EED, permitting diffusion along edges, while applying a non-linear
diffusivity function across them. We show that our fourth-order diffusion tensor
formalism provides a unifying framework for all previous anisotropic fourth-order
diffusion based methods, and that it provides additional flexibility. We achieve an
efficient implementation using a fast semi-iterative scheme. Experimental results on
natural and medical images suggest that our novel fourth-order method produces
more accurate reconstructions compared to the existing second-order EED.

1 Introduction

The increased availability and resolution of imaging technology, including digital
cameras and medical imaging devices, along with advances in storage capacity and
transfer bandwidths, have led to a proliferation of large image data. Thismakes image
compression an important area of research. Image compression techniques can be
divided into two main groups: Lossy and lossless compression. Lossless compres-
sion techniques permit restoration of the full, unmodified image data, which however
limits the achievable compression rates. Our work is concerned with lossy compres-
sion, which achieves much higher compression rates by replacing the original image
with an approximation that can be stored more efficiently.
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We continue a line of research that has explored the use of Partial Differential
Equations (PDEs) for lossy image compression [12, 13, 23, 28]. This approach is
based on storing only a small subset of all pixels, and interpolating between them in
order to restore the remaining ones. There is a strong similarity between that inter-
polation process and image inpainting, whose goal it is to reconstruct missing or
corrupted parts of an image. PDE-based methods for image inpainting and compres-
sion are inspired by the physical phenomenon of heat transport. It is described by
the heat diffusion equation

∂t u = div(D · ∇u) , (1)

which relates temporal changes in a heat concentration ∂t u to the divergence of
its spatial gradient ∇u. When diffusion takes place in an isotropic medium, the
diffusivity D is a scalar that determines the rate of heat transfer. In an anisotropic
medium, heat spreads out more rapidly in some directions than in others. In those
cases, D is a diffusion tensor, i.e., a symmetric matrix that encodes this directional
dependence.

When applied to image processing, the gray value at a certain location is inter-
preted as the heat concentration u. In diffusion-based image inpainting, Eq. (1) is
used to propagate information from the known pixels, whose intensity is fixed, to the
unknown pixels which will ultimately reach a steady state in which their intensity is
determined by their surrounding known pixels. In this sense, Eq. (1) has a filling-in
effect that can be exploited for image compression.

Different choices of the diffusivity function D lead to different kinds of diffu-
sion. Linear diffusion [20] and nonlinear diffusion [24] were widely used for image
smoothing and image enhancement. Edge structures in images can be enhanced by
employing a diffusion tensor which allows diffusion in the direction perpendicu-
lar to the local gradient, while applying a nonlinear diffusivity function along the
gradient direction. This idea has led to the development of anisotropic nonlinear
edge-enhancing diffusion (EED) [34]. Among the six variants that were evaluated
for image compression by Galić et al. [13], EED led to the most accurate reconstruc-
tions. Subsequently, this idea was applied to three-dimensional data compression
[25], and combined with motion compensation in order to obtain a framework for
video compression [2]. When combined with a suitable scheme for selecting and
storing the preserved pixels, a few additional optimizations, and at sufficiently high
compression rates, anisotropic diffusion has been shown to beat the quality even of
JPEG2000 [27].

In this paper, we introduce a novel fourth-order PDE that generalizes second-order
EED, and achieves even more accurate reconstructions. We build on prior works that
proposed fourth-order analogs of the diffusion equation, and used them for image
processing [10, 19, 21, 22, 26, 35]. In particular, we extend a work by Gorgi Zadeh
et al. [15], who introduced the idea of steering anisotropic fourth-order diffusion
with a fourth-order diffusion tensor. However, their method focuses on the curvature
enhancement property of nonlinear fourth-order diffusion [10] in order to better
localize ridge and valley structures. Deriving a suitable PDE for image inpainting
requires a different definition of the diffusion tensor, more similar to the one in edge-
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enhancing diffusion [34]. Two anisotropic fourth-order PDEs for inpainting were
previously introduced by Li et al. [21]. However, they only apply them to image
restoration tasks in which small parts of an image are missing (such as in Fig. 8),
not to the reconstruction from a small subset of pixels. Moreover, we demonstrate
that the fourth-order diffusion tensor based framework is more general in the sense
that it can be used to express anisotropic fourth-order diffusion as it was described
by Hajiaboli [19] or by Li et al. [21], while providing additional flexibility.

2 Background and Related Work

We will now formalize the above-mentioned idea of diffusion-based inpainting
(Sect. 2.1), and review twoconcepts that play a central role in ourmethod:Anisotropic
nonlinear diffusion (Sect. 2.2) and fourth-order diffusion (Sect. 2.3). Further details
can be found in works by Galić et al. [13] and Weickert [34], respectively. Finally,
we provide additional context with a brief discussion of alternative approaches to
image compression (Sect. 2.4).

2.1 Diffusion-Based Inpainting

In order to apply Eq. (1) to image smoothing, we have to restrict it to the image
domain �, and specify the behavior along its boundary ∂�. It is common to assume
that no heat is transferred through that boundary (homogeneous Neumann boundary
condition). Moreover, the positive real line (0,∞) is typically taken as the time
domain. The resulting PDE can be written as

∂t u = div(D · ∇u), � × (0,∞) ,

∂nu = 0, ∂� × (0,∞) ,
(2)

where n is the normal vector to the boundary ∂�. The original image f : � → R is
used to specify an initial condition u = f at t = 0. For increasing diffusion time t ,
u will correspond to an increasingly smoothed version of the image.

In image inpainting, we know the pixel values on a subset K ⊂ � of the image,
and aim to reconstruct plausible values in the unknown regions. A diffusion-based
model for inpainting can be derived from the one for smoothing, by modeling the set
of locations at which the pixel values are known with Dirichlet boundary conditions.
In this case, f : K → Rwill be used to model the known values. In inpainting-based
image compression, K will consist of a small fraction of the pixels in the original
image. With this, we obtain the following model for inpainting:
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∂t u = div(D · ∇u), �\K × (0,∞) ,

∂nu = 0, ∂� × (0,∞) ,

u = f, K × [0,∞)

(3)

In this case, the diffusion process spreads out the information from the known
pixels to their spatial neighborhood. For time t → ∞, image smoothing and inpaint-
ing both converge to a steady state, i.e., limt→∞ ∂t u = 0. However, the steady-state
of smoothing is trivial (u approaches a constant image with average gray value),
while the Dirichlet boundary conditions in the inpainting case ensure a non-trivial
steady-state, which is taken as the final inpainting result: uinpainted = limt→∞ u.

2.2 From Linear to Anisotropic Nonlinear Diffusion

So far, we assumed that the diffusion coefficient D is a scalar and constant, indepen-
dent from the location within the image. This results in an inpainting model based
on linear homogeneous diffusion [20]. With D = 1, it can be written as

∂t u = �u, �\K × (0,∞) . (4)

In this and all remaining equations in this section, the same boundary conditions
are assumed as specified in Eq. (3). Despite its simplicity, it has been demonstrated
that using this inpainting model for image compression can already beat the JPEG
standard when applied to cartoon-like images, and selecting the retained pixels to be
close to image edges [23].

When the diffusion coefficient is a scalar but depends on u, i.e., D = g(u), then
we call the model inpainting based on nonlinear isotropic diffusion [24]. A common
variant is to make D depend on the local gradient magnitude, i.e.,

∂t u = div(g(||∇uσ ||2)∇u), �\K × (0,∞) , (5)

where g is a decreasing nonnegative diffusivity function, e.g., the Charbonnier
diffusivity

g(s2) = 1√
1 + s2

λ2

, (6)

and λ is a contrast parameter separating low from high diffusion areas [8]. In order
to localize edges better and to make the problem well-posed, the image is pre-
smoothed with a Gaussian before taking its gradient, i.e., g(||∇uσ ||2) is used instead
of g(||∇u||2) [6].
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In the above-discussed models, the diffusion occurs only in the gradient direction.
This can be changed by replacing the scalar diffusivity with a second-order diffusion
tensor, i.e., a symmetric positive definite matrix. This is the basis of anisotropic
nonlinear diffusion [34],

∂t u = div(D · ∇u), �\K × (0,∞) . (7)

In edge-enhancing diffusion (EED), the diffusion tensor D is defined as

D = g(||∇uσ ||2) · v1vT1 + 1 · v2vT2 , (8)

where v1 = ∇uσ

||∇uσ ||2 and v2 = ∇u⊥
σ

||∇uσ ||2 . This means that diffusion across the edge (v1)
is decreased depending on the gradient magnitude, while diffusion along the edge
(v2) is allowed. Examples of EED based inpainting are included in our experimental
results. In general, EED based inpainting results in better interpolated images than
linear homogeneous or nonlinear isotropic PDEs. This makes it a current state-of-
the-art choice for PDE-based image compression.

2.3 From Second to Fourth Order Diffusion

All models discussed above, as well as several others that have been proposed for
inpainting [36], share a common property: They rely on second order PDEs. In
image denoising, higher-order PDEs have a long history, going back to work by
Scherzer [26]. You and Kaveh [35] propose fourth-order PDEs as a solution to the
so-called staircasing problem that arises in edge-enhancing second-order PDEs, such
as the filter proposed by Perona and Malik [24]: While the second-order Perona-
Malik equation creates visually unpleasant step edges from continuous variations
of intensity, corresponding fourth-order methods move these discontinuities into the
gradients, where they are less noticeable to the human eye [16]. Subsequently, other
fourth-order PDE-based models have been introduced, and have mostly been applied
for denoising [18, 19, 22].

For a specific family of higher-order diffusion filters, Didas et al. [10] have shown
that, in addition to preserving average gray value, they also preserve higher moments
of the initial image. Moreover, depending on the diffusivity function, they can lead to
adaptive forward and backward diffusion, and therefore to the enhancement of image
features such as curvature. Gorgi Zadeh et al. [15] made use of this property in order
to enhance ridges and valleys, by steering fourth-order diffusion with a fourth-order
diffusion tensor. Ourwork adapts theirmethod in order to achieve accurate inpainting
and reconstruction from a small subset of pixels.
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2.4 Alternative Approaches to Image Compression

The dominant lossy image compression techniques today are JPEG and JPEG2000.
They are based on the discrete cosine transform (DCT) andwavelet transform, respec-
tively. However, they are not sensitive to the geometry of an image, i.e. those stan-
dards are not tailored to their geometrical behavior [5]. Especially, the JPEG standard
involves dividing the image into small square blocks. This can cause a degradation
called “blocking effect” [30], and can result in unsatisfactory reconstructions espe-
cially at high compression rates.

It is an ongoing research trend to apply machine learning methods to image com-
pression, such as convolutional and recurrent neural networks [3, 31, 32]. Learning
based approaches tend to perform very well on the specific class of images on which
they were trained, but require a huge amount of data. For example, Toderici et al.
[33] used for training a dataset of 6 million 1280 × 720 images taken from the web.

3 Method

We will now introduce our novel PDE (Sect. 3.1), investigate its relationship to
previously proposed anisotropic fourth-order diffusion (Sect. 3.2), and comment on
our chosen discretization, as well as numerical stability (Sect. 3.3).

3.1 Anisotropic Edge-Enhancing Fourth Order PDE

Our fourth-order PDE builds on amodel that was proposed byGorgi Zadeh et al. [15]
for ridge and valley enhancement. It can be stated concisely using Einstein notation,
where summation is implied for indices appearing twice in the same expression:

∂t u = −∂ j i
[D(Hρ(uσ )) : H(u)

]
i j (9)

In this equation, H(u) denotes the Hessian matrix of image u. The “double dot
product” T = D : H indicates that matrix T is obtained by applying a linear mapD
to H, and the square bracket notation [T]i j indicates taking the (i, j)th component:

[T]i j = [D(Hρ(uσ )) : H(u)
]
i j = [D(Hρ(uσ ))

]
i jkl [H(u)]kl (10)

Since D maps matrices to matrices, it is a fourth-order tensor. Since its role is
analogous to the second-order diffusion tensor in Eq. (7), it is referred to as a fourth-
order diffusion tensor.
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The diffusion tensor D in Eq. (9) is a function of the local normalized Hessian
Hρ(uσ )which contains the information that is relevant to achieve curvature enhance-
ment. For image inpainting, we propose to instead steer the fourth-order diffusion
in analogy to edge-enhancing diffusion, i.e., as a function of the structure tensor
J(uσ ), which is obtained from image u after Gaussian pre-smoothing with band-
width σ . We construct our fourth order diffusion tensor D from its eigenvalues μi

and eigentensors Ei via the spectral decomposition:

D (J(uσ )) = μ1E1 ⊗ E1 + μ2E2 ⊗ E2 + μ3E3 ⊗ E3 + μ4E4 ⊗ E4 (11)

The eigenvalues and eigentensors are defined as

μ1 = g(λ1), E1 = v1 ⊗ v1 ,

μ2 = 1, E2 = v2 ⊗ v2 ,

μ3 = √
g(λ1), E3 = 1√

2
(v1 ⊗ v2 + v2 ⊗ v1) ,

μ4 = 0, E4 = 1√
2
(v1 ⊗ v2 − v2 ⊗ v1) ,

(12)

where g is a nonnegative decreasing diffusivity function, λi and vi are eigenvalues
and eigenvectors of the structure tensor J(uσ ) = ∇uσ∇uTσ , i.e., λ1 = ||∇uσ ||22, v1 =

∇uσ

||∇uσ ||2 and λ2 = 0, v2 = ∇u⊥
σ

||∇uσ ||2 . The above-defined eigentensors are orthonormal

with respect to the dot product A : B = trace(BTA) [15].
Combining this new definition of the fourth-order diffusion tensor with Dirichlet

boundary conditions as in Eq. (3) results in our proposed model:

∂t u = − ∂ j i [D(J(uσ )) : H(u)]i j , �\K × (0,∞) ,

u = f, K × [0,∞)
(13)

As it is customary in PDE-based inpainting, we allow Eq. (13) to evolve until
a steady state has been reached, i.e., the time derivative becomes negligible. In our
numerical implementation, we use a Fast Semi-Iterative Scheme (FSI) [17] to greatly
accelerate convergence to a large stopping time.

In the definition of our fourth-order diffusion tensor D, the choice of μ1 and μ2

is analogous to anisotropic edge enhancing diffusion [34]. However, two additional
terms occur in the fourth-order case, μ3 and μ4. As noted in [15], μ4 is irrelevant,
since the corresponding eigentensorE4 is anti-symmetric, and the dot productE4 : H
with the Hessian of any sufficiently smooth image will be zero due to its symmetry.
To better understand the role of μ3, we observe that
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E3 : H = 1√
2

(
vT1Hv2 + vT2Hv1

)

= 1√
2

(
u(

v1+v2√
2

)(
v1+v2√

2

) − u(
v1−v2√

2

)(
v1−v2√

2

)
)

,

(14)

which amounts to a mixed second derivative of u, in directions along and orthogonal
to the regularized image gradient ∇uσ

||∇uσ ||2 or, equivalently, to the difference of second
derivatives in the directions that are exactly in between the two. This term vanishes if
theHessian is isotropic, or if the gradient is parallel to one of theHessian eigenvectors.
Therefore, the role of μ3 can be seen as steering the amount of diffusion in cases
of a Hessian anisotropy that goes along with a misalignment between gradient and
Hessian eigenvectors.

Gorgi Zadeh et al. [15] simply set μ3 to the arithmetic mean of μ1 and μ2. In our
work, we empirically evaluated several alternative options for μ3 by reconstructing
the test image shown in Fig. 1a, which contains one rectangle, one circle, and two
stars, from a randomly selected subset of 5% of its pixels. In this experiment, we
compare EED based inpainting with our novel fourth-order edge enhancing diffusion
(FOEED) with different settings ofμ3: Specifically, μ3 = 1 corresponds to the max-

(a) Original test image of size
300 × 300

(b) Randomly chosen 5% of
pixel values

(c) Second-order EED inpaint-
ing based on (b)

(d) Fourth-order EED inpaint-
ing with µ3 = 1

(e) Fourth-order EED inpaint-
ing with µ3 =

µ 1+µ 2
2

(f) Fourth-order EED inpaint-
ing with µ3 = √µ1µ2

Fig. 1 Reconstruction of a synthetic test image (a) from 5% of its pixels (b) based on second-order
diffusion (c) and fourth-order diffusion with different coefficients for the mixed term μ3 (d–f).
Visually, the reconstruction in (f) is most similar to the original image
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Table 1 Numerical reconstruction errors on the test image (Fig. 1)

Errors EED FOEED (μ3 = 1) FOEED
(μ3 = μ1+μ2

2 )
FOEED
(μ3 = √

μ1μ2)

MSE 647.183 660.588 634.321 533.987

AAE 5.043 4.581 4.505 4.140

imum of μ1 and μ2 (Fig. 1d), μ3 = (1 + g(λ1)) /2 corresponds to their arithmetic
mean (Fig. 1e), and μ3 = √

g(λ1) corresponds to their geometric mean (Fig. 1f). In
all cases, we used the Charbonnier diffusivity (Eq. (6)), which is popular for image
compression [13], the same contrast parameter (λ = 0.1) and smoothing parameter
(σ = 1). The only difference is time step size, where second-order EED permitted a
stable step size of 0.25, while a smaller step size of 0.05 was chosen for FOEED. A
more detailed theoretical and empirical analysis of stability will be given in Sect. 3.3.

A numerical comparison of the results is given in Table 1. For evaluation, we
used the well-known mean squared error (MSE) and average absolute error (AAE)
between original and reconstructed images. For two-dimensional gray-valued images
u and v with the same dimensions m × n, the MSE and AAE are defined as

MSE(u, v) = 1

mn

∑
i, j

(ui, j − vi, j )
2 ,

AAE(u, v) = 1

mn

∑
i, j

|ui, j − vi, j | .

(15)

According to Table 1, the most accurate results are achieved by setting μ3 to
the geometric mean of μ1 and μ2. Fourth-order EED with this setting produces
higher accuracy than second-order EED. Visually, Fig. 1 supports this conclusion.
Specifically, fourth-order EED with μ3 = √

μ1μ2 is the only variant that correctly
connects the thin bar at the top of the test image, and it leads to a straighter shape of
the thicker bar below, which is more similar to its original rectangular shape. In all
subsequent experiments, we set μ3 = √

μ1μ2.

3.2 A Unifying Framework for Fourth-Order Diffusion

Several fourth-order diffusion PDEs have been used for image processing previously.
We can better understand how they relate to our newly proposed PDE by observing
that the fourth-order diffusion tensorD introduces a unifying framework for fourth-
order diffusion filters. In particular, given its coefficients di jkl , we can expand Eq. (9)
by using Einstein notation as

∂t u = −∂ j i [di jklukl] (16)
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Effectively, the fourth-order diffusion tensor allows us to separately set the diffu-
sivities for all 24 = 16 fourth-order derivatives of the two-dimensional image u. We
will now demonstrate how several well-known fourth-order PDEs can be expressed
in this framework, starting with the You-Kaveh PDE [35]

∂t u = −�(g(|�u|)�u) , (17)

which can be rewritten as

∂t u = −∂xx [g(|�u|)uxx + 0 · uxy + 0 · uyx + g(|�u|)uyy]
−∂yx [0 · uxx + 0 · uxy + 0 · uyx + 0 · uyy]
−∂xy[0 · uxx + 0 · uxy + 0 · uyx + 0 · uyy]

−∂yy[g(|�u|)uxx + 0 · uxy + 0 · uyx + g(|�u|)uyy] .

(18)

Here and in all subsequent examples, many terms have zero coefficients. For
brevity, we will omit them from now on.

Hajiaboli’s anisotropic fourth-order PDE [19] is

∂t u = −�
(
g(||∇u||)2uNN + g(||∇u||)uTT

)
, (19)

where N and T are unit vectors parallel and orthogonal to the gradient, respectively.
It can be rewritten as

∂t u = −∂xx

[(
g(||∇u||)2u2x + g(||∇u||)u2y

u2x + u2y

)
uxx +

(
g(||∇u||)2uxuy − g(||∇u||)uxuy

u2x + u2y

)
uxy

+
(
g(||∇u||)2uxuy − g(||∇u||)ux uy

u2x + u2y

)
uyx +

(
g(||∇u||)2u2y + g(||∇u||)u2x

u2x + u2y

)
uyy

]

−∂yy

[(
g(||∇u||)2u2x + g(||∇u||)u2y

u2x + u2y

)
uxx +

(
g(||∇u||)2uxuy − g(||∇u||)uxuy

u2x + u2y

)
uxy

+
(
g(||∇u||)2uxuy − g(||∇u||)ux uy

u2x + u2y

)
uyx +

(
g(||∇u||)2u2y + g(||∇u||)u2x

u2x + u2y

)
uyy

]

(20)

From this method, Li et al. [21] derived two anisotropic fourth-order PDEs that, to
our knowledge, are the only anisotropic fourth-order models that have been applied
to inpainting previously. We will refer to them as Li 1

∂t u = −�(g(||∇u||)uNN + uTT ) (21)

and Li 2
∂t u = −�(uTT ) . (22)
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Li 1 can be re-written as

∂t u = −∂xx

[(
g(||∇u||)u2x + u2y

u2x + u2y

)
uxx +

(
g(||∇u||)uxuy − uxuy

u2x + u2y

)
uxy

+
(
g(||∇u||)uxuy − uxuy

u2x + u2y

)
uyx +

(
g(||∇u||)u2y + u2x

u2x + u2y

)
uyy

]

−∂yy

[(
g(||∇u||)u2x + u2y

u2x + u2y

)
uxx +

(
g(||∇u||)uxuy − uxuy

u2x + u2y

)
uxy

+
(
g(||∇u||)uxuy − uxuy

u2x + u2y

)
uyx +

(
g(||∇u||)u2y + u2x

u2x + u2y

)
uyy

]
,

(23)

while Li 2 becomes

∂t u = −∂xx

[(
u2y

u2x + u2y

)
uxx +

( −uxuy

u2x + u2y

)
uxy +

( −uxuy

u2x + u2y

)
uyx +

(
u2x

u2x + u2y

)
uyy

]

−∂yy

[(
u2y

u2x + u2y

)
uxx +

( −uxuy

u2x + u2y

)
uxy +

( −uxuy

u2x + u2y

)
uyx +

(
u2x

u2x + u2y

)
uyy

]
.

(24)

We observe that Li 1 is based on a similar idea as our proposed PDE: It permits
fourth-order diffusion along the edge, while applying a nonlinear diffusivity function
across the edge. However, expressing Li et al.’s models in terms of fourth-order
diffusion tensorsD1 andD2 reveals that our approach is more general. In particular,
we can observe that

D1 : H = g(||∇u||)uNN I + uTT I ,

D2 : H = uTT I ,
(25)

where I is the 2 × 2 identity matrix. In our model, D : H can yield arbitrary
anisotropic tensors. In this sense, our model more fully accounts for anisotropy
compared to the ones by Hajiaboli and Li et al.

The fourth-order Eq. (16) involves inner second derivatives of the image, which
then get scaled by diffusivities, before outer second derivatives are taken.We observe
that, in both cases, our model accounts for mixed derivatives that are ignored by
previous approaches to anisotropic fourth-order diffusion: In the outer derivatives,
this can be seen from the fact that Eq. (9) involves mixed derivatives, while Hajiaboli
and Li et al. only consider the Laplacian.

Similarly, our definition of a fourth-order diffusion tensor D accounts for mixed
derivatives also in the inner derivatives. Following Eq. (14), we obtain

D : H = μ1(E1 ⊗ E1) : H + μ2(E2 ⊗ E2) : H + μ3(E3 ⊗ E3) : H
= μ1uv1v1E1 + μ2uv2v2E2 + μ3√

2

(
u(

v1+v2√
2

)(
v1+v2√

2

) − u(
v1−v2√

2

)(
v1−v2√

2

)
)
E3 .

(26)
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Comparing Eqs. (25) and (26) reveals differences in the considered directions:
First, N and T are derived from the unregularized gradient, while the corresponding
directions v1 and v2 in our model include a Gaussian pre-smoothing. A second
difference is that our model involves an additional term, which is steered by μ3, and
accounts for the directions in between the regularized gradient and its orthogonal
vectors, i.e.,

( v1+v2√
2

)
and

( v1−v2√
2

)
. As it was demonstrated in the previous section,

this term can have a noticeable effect on the outcome. Overall, we conclude that our
newly proposed model is more general than the previously published ones.

3.3 Discretization and Stability

When discretizing Eq. (13) with standard finite differences

uxx ≈ (ui−1, j − 2ui, j + ui+1, j )

(�x)2
,

uyy ≈ (ui, j−1 − 2ui, j + ui, j+1)

(�y)2
,

uxy ≈ (ui−1, j−1 + ui+1, j+1 + ui−1, j+1 + ui+1, j−1)

4(�x)(�y)
,

uyx = uxy ,

(27)

we can write it down in matrix-vector form as in [15],

uk+1 = uk(I − τ Pk) , (28)

where uk is an mn dimensional image vector at iteration k. m, n are image width
and height respectively; �x and �y are the corresponding pixel edge lengths. Pk

is a positive semi-definite matrix that, with step size τ , leads to the system matrix
(I − τ Pk). The notation Pk indicates that it is iteration dependent, i.e., Pk = P(uk).

Stability of fourth-order PDEs for image processing is typically formalized in an
L2 sense, i.e., a time step is chosen such that

||uk+1||2 ≤ ||uk ||2 . (29)

In an inpainting scenario, it depends on our initialization of the unknown pixels
whether we can expect Eq. (29) to hold. Therefore, we rely on a stability analysis of
the smoothing variant of our proposed PDE. This variant is obtained by removing the
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Dirichlet boundary conditions and instead solving a standard initial value problem.
In this case, the stability analysis presented by Gorgi Zadeh et al. [15] carries over.
It ensures that time step sizes

τ ≤ 2

16(�x)2 + 16(�y)2 + 2(�x�y)
(30)

are stable in the L2 sense. For a spatial discretization �x = �y = 1, this yields
τ ≤ 1/17 ≈ 0.0588. In inpainting, we empirically obtained a useful steady state
with a time step size τ ≤ 0.066, independent of the initialization. The fact that this
slightly exceeds the theoretical step size reflects the fact that Eq. (30) results from
deriving a sufficient, not a necessary condition for stability.

Stability of fourth-order schemes generally requires a quite small time step τ . This
makes it computationally expensive to reach the steady state by evaluating Eq. (28).
Hafner et al. [17] propose a remedy to this problem, the so-called Fast Semi-Iterative
Scheme (FSI). It extrapolates the basic solver iteration with the previous iterate and
serves as an accelerated explicit scheme. The acceleration of the explicit scheme (28)
is given as

um,k+1 = αk · (I − τP(um,k))um,k + (1 − αk) · um,k−1 , (31)

where um,−1 := um,0 and αk = 4k+2
2k+3 for k = 0, . . . , n − 1. Here m stands for outer

cycle, i.e. m-th cycle with inner cycle of length n. And for passing to the next
outer cycle, we set um+1,0 := um,n . The stability analysis requires the matrix P to be
symmetric. This is satisfied since the diffusion tensorD is symmetric, and symmetric
central discretizations are used. In our implementation, we used n = 40, and stopped
iterating after the first outer cycle for which ‖um − um−1‖2 < 10−4.

4 Experimental Results

To establish the usefulness of our proposed new model, we applied it to the recon-
struction of images from a sparse subset of pixels (Sect. 4.1). Moreover, we evaluate
performance for a more classic inpainting task, scratch removal (Sect. 4.2). We
also demonstrate how results depend on the chosen diffusivity function and contrast
parameter (Sect. 4.3).
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4.1 Reconstruction From a Sparse Set of Pixels

Improving image reconstruction from a sparse set of known pixels was the main
motivation behind our work. Therefore, we applied it to two well-known natural
images, toucan and peppers, as well as to a medical image, a slice of a T1 weighted
brain MR scan (t1slice). For toucan, we kept a random subset of only 2% of the
pixels. Due to the lower resolution of the peppers and t1slice images, we kept 5%
and 20%, respectively.

In all three cases, results from our approach (FOEED) were compared to results
from second-order EED, as well as from the two anisotropic fourth-order PDEs
proposed by Li et al. [21]. In all experiments, we used the Charbonnier diffusivity
function, we set the contrast parameter to λ = 0.1, and the pre-smoothing parameter
to σ = 1.

Results for toucan are shown inFig. 2, forpeppers inFig. 3, and for t1slice inFig. 4.
Aquantitative evaluation in termsofMSEandAAE is presented inTable 2. In termsof
the numerical results, our proposed method produced a more accurate reconstruction
than any of the competing approaches. Visually, there is a clear difference between
second-order (EED) and fourth-order approaches (Li1, Li2, FOEED). Especially, we
found that the shapes of edges were reconstructed more accurately. For example, we
noticed this around the body and face in the toucan image (Fig. 2). Similarly, the
white and grey matter boundaries were better separated in the t1slice (Fig. 4).

As we expected based on the theoretical analysis in Sect. 3.2, visual differences
between the fourth-order methods are more subtle. However, in the peppers image
(Fig. 3), the tall and thin and the small and thick peppers in the foreground are much
more clearly separated in the FOEED result than in any of the others.

In addition to experimenting with grayscale versions of the toucan and peppers
images, we also applied EED and our FOEED filter channel-wise to the original
RGB color versions. Results for toucan can be found in Fig. 5, for peppers in Fig. 6.
Table 3 again provides a quantitative comparison. Similar observations can be made
as in the grayscale images: Again, FOEED leads to lower reconstruction errors than
EED, it visually reconstructs edges more accurately, and separates the peppers more
clearly.

Finally, we reconstructed images from a larger number of pixels, to obtain visually
cleaner results. Qualitative and numerical results are presented in Fig. 7 and Table 4,
respectively. FOEED still yields lower numerical errors than EED. Unsurprisingly,
the differences become smaller and less visually prominent as the mask density
increases. The table also reveals that FOEED requires more CPU time compared to
standard EED. However, due to the use of FSI in both cases, the difference in running
times until convergence is much lower than the difference in time step sizes.
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Fig. 2 1st row left: original toucan image of size 512 × 512; right: randomly chosen 2% of pixel
values; 2nd row left: EED based inpainted image; right: Li1 based inpainted image; 3rd row left:
Li2 based inpainted image; right: FOEED based inpainted image
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Fig. 3 1st row left: original peppers image of size 225 × 225; Right: randomly chosen 5% of pixel
values; 2nd row left: EED based inpainted image; Right: Li1 based inpainted image; 3rd row left:
Li2 based inpainted image; Right: FOEED based inpainted image
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Fig. 4 1st row left: original t1slice image of size 256 × 256; Right: randomly chosen 20% of pixel
values; 2nd row left: EED based inpainted image; Right: Li1 based inpainted image; 3rd row left:
Li2 based inpainted image; Right: FOEED based inpainted image
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Table 2 Numerical comparison of inpainting models for gray-valued images

Image Errors EED FOEED Li1 Li2

Toucan MSE 105.37 96.228 100.994 102.665

AAE 4.488 4.164 4.397 4.465

Peppers MSE 467.261 443.129 455.633 459.606

AAE 10.94 10.523 11.042 11.107

t1-slice MSE 166.356 150.002 152.698 155.955

AAE 5.895 5.698 5.789 5.853

Fig. 5 RGB toucan image, reconstructed from randomly chosen 2% of pixel values using EED
(left) or FOEED (right)

Fig. 6 RGB peppers image, reconstructed from randomly chosen 5% of pixel values using EED
(left) or FOEED (right)



Fourth-Order Anisotropic Diffusion for Inpainting and Image Compression 117

Table 3 Numerical comparison of inpainting models for RGB images

Image Errors EED FOEED

Toucan MSE 119.062 108.061
AAE 4.819 4.594

Peppers MSE 478.799 441.203
AAE 11.049 10.543

Table 4 Numerical comparison and computation times corresponding to Fig. 7

Image Errors EED FOEED CPU time

Toucan MSE 18.029 17.295 53.060 (FOEED)

AAE 1.696 1.686 21.259 (EED)

Peppers MSE 113.5 110.885 20.999 (FOEED)

AAE 4.565 4.441 19.79 (EED)

t1-slice MSE 114.845 107.323 24.74 (FOEED)

AAE 4.610 4.553 10.64 (EED)

4.2 Scratch Removal

Li et al. [21] proposed their anisotropic fourth-order PDE for more classical image
inpainting tasks, such as scratch removal. We evaluated whether our more general
filter can also provide a benefit in such a scenario by reconstructing a scratched
version of the peppers image. Similar to Li et al., we first made the scratches rather
thin, covering only 6% of all pixels. Results are shown in Fig. 8 and in Table 5. In
this case, all methods work well: Numerical errors are small and similar between
methods, and even though FOEED achieves the best numerical result, differences
are difficult to discern visually.

Therefore, we created amore challenging version with thicker scratches, covering
18% of all pixels (Fig. 9). The corresponding numerical comparison is shown in
Table 6. Here, FOEED achieves the most accurate reconstruction. Visually, we again
observe that edges are reconstructed more accurately, and objects are more clearly
separated, with fourth-order compared to second-order diffusion, and that steering
it with a fourth-order diffusion tensor again provides small additional benefits over
the previous methods.

Table 5 Numerical comparison for peppers with thinner scratches (Fig. 8)

Image Errors EED FOEED Li1 Li2

Peppers MSE 9.520 7.813 8.161 8.132

AAE 0.363 0.326 0.346 0.346
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Fig. 7 Higher quality reconstructions from a larger subset of pixels. 1st row: toucan image, recon-
structed with EED (left) or FOEED (right) from randomly chosen 14% of pixels; 2nd row left: same
for 20% of pixels from peppers; 3rd row left: same for 30% of pixels from t1slice. As expected,
increasing the fraction of known pixels reduces the differences in the results of the two schemes
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Fig. 8 1st row left: original peppers image of size 225×225; Right: corrupted image. 2nd row
left: EED based inpainting; Right: Li1 based inpainting. 3rd row left: Li2 based inpainting; Right:
FOEED based inpainting
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Fig. 9 1st row left: original peppers image of size 225 × 225; Right: corrupted image. 2nd row
left: EED based inpainting; Right: Li1 based inpainting. 3rd row left: Li2 based inpainting; Right:
FOEED based inpainting
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Table 6 Numerical comparison for peppers with thicker scratches (Fig. 9)

Image Errors EED FOEED Li1 Li2

Peppers MSE 104.744 78.761 101.670 101.592

AAE 2.455 2.099 2.465 2.450

4.3 Effect of Diffusivity Function and Contrast Parameter

For image inpainting with second-order PDEs, the Charbonnier diffusivity was pre-
viously found to work better than other established diffusivity functions. To assess
whether this is still true in the fourth-order case, we repeated the reconstruction of
the peppers image as shown in Fig. 3 with different diffusivities. Table 7 summarizes
the results. We conclude that the Charbonnier diffusivity still appears to be optimal.

Finally, in Fig. 10, we illustrate how the reconstructed image depends on the
contrast parameter λ. As expected, increasing λ leads to an increased blurring of
edges. In the limit, the diffusivity function takes on values close to 1 over a substantial
part of the image, and our model starts to approximate homogeneous fourth-order
diffusion.

Table 7 Numerical comparison of FOEED with different diffusivity functions
Image Errors Charbonnier [8]

1√
1+( s

λ
)2

Aubert [7]
( s
λ

)2

(s2+λ2)2

Perona-
Malik [24]

1
1+( s

λ
)2

Perona-
Malik2 [24]

e−( s
λ

)2

Geman-
Reynolds [14]

2λ2

(s2+λ2)2

Peppers MSE 443.129 458.961 478.411 491.153 491.186

AAE 10.523 10.587 10.943 11.157 11.007

Fig. 10 From left to right: FOEED based inpainted image with λ = 0.1, λ = 0.5, λ = 15.5
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5 Conclusions

We introduced a novel fourth-order PDE for edge enhancing diffusion (FOEED),
steered by a fourth-order diffusion tensor. We implemented it using a fast semi-
iterative scheme, and demonstrated that it achieved improved accuracy in several
inpainting tasks, including reconstructing images from a small fraction of pixels, or
removing scratches.

Our main motivation for using fourth-order diffusion in this context is the
increased smoothness of results compared to second-order PDEs [35], which we
expected to result in visuallymore pleasant reconstructions. Themodel in our current
work is still based on a single edge direction at each pixel, extracted via a traditional
second-order structure tensor. It is left as a separate research goal for future work
to combine this with approaches for the estimation of complex structures such as
crossings or bifurcations [1, 29], and with their improved reconstruction, e.g., by
operating on the space of positions and orientations [4, 9, 11].

Finally, our current work only considered reconstructions from a random subset
of pixels. A practical image compression codec that uses our novel PDE should
investigate how it interacts with more sophisticated approaches for selecting and
coding inpainting masks [27].
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Uncertainty in the DTI Visualization
Pipeline

Faizan Siddiqui, Thomas Höllt, and Anna Vilanova

Abstract Diffusion-Weighted Magnetic Resonance Imaging (DWI) enables the in-
vivo visualization of fibrous tissues such as white matter in the brain. Diffusion-
Tensor Imaging (DTI) specifically models the DWI diffusion measurements as a
second order-tensor. The processing pipeline to visualize this data, from image acqui-
sition to the final rendering, is rather complex. It involves a considerable amount of
measurements, parameters and model assumptions, all of which generate uncertain-
ties in the final result which typically are not shown to the analyst in the visualization.
In recent years, there has been a considerable amount of work on the visualization
of uncertainty in DWI, and specifically DTI. In this chapter, we primarily focus on
DTI given its simplicity and applicability, however, several aspects presented are
valid for DWI as a whole. We explore the various sources of uncertainties involved,
approaches for modeling those uncertainties, and, finally, we survey different strate-
gies to visually represent them.We also look at several relatedmethods of uncertainty
visualization that have been applied outside DTI and discuss how these techniques
can be adopted to the DTI domain. We conclude our discussion with an overview of
potential research directions.
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1 Introduction

Recent advancements in magnetic resonance imaging (MRI) technology have led
to the development of various remarkable techniques for the interpretation of brain
anatomy. The most promising one is diffusion-weighted imaging (DWI), the only
non-invasive technique for the assessment of brain white matter connectivity. This
approach relies on the measurement of anisotropic diffusion of water molecules.
The imaging and the interpretation of the molecular diffusion have improved with
the development of techniques like diffusion tensor imaging (DTI) and high angular
resolution diffusion imaging (HARDI). In this chapter, we will discuss the visualiza-
tion pipeline of DTI, given its clinical applicability. However, several visualization
strategies and sources of uncertainties associated are valid for more advancedmodels
like HARDI models.

DTI allows direct in-vivo examination of the fibrous structure in the brain at a
relatively low acquisition cost. By analyzing the three-dimensional shape of the diffu-
sion tensor, it provides valuable information about themicrostructure of brain tissues.
Despitemany advantages of this technique, some downsides limit its widespread use.
The main reason is that the complexity in the data makes it notoriously difficult to
infer and analyze.

The DTI visualization pipeline consists of four main stages, from data acquisition
to the final visual representation of the results, as shown in Fig. 1. Each stage is based
on assumptions, parameters, and estimations subject to considerable uncertainties.
The uncertainties involved in each of the pipelines’ stage can lead to unpredictable
variations in the final output.

Several state-of-the-art reports exist on DWI visualization [62, 92, 93, 99]. How-
ever, none of them give an overview of uncertainty, or they focus on some specific
aspects. Most of the visualization literature about uncertainty in DTI focuses on
issues related to the visual representation rather than sources of error involved in
the pipeline [36, 47, 92]. In this chapter, we discuss the DTI visualization pipeline
and analyze the sources of uncertainties present at each stage. We briefly cover the
approaches used for quantification of uncertainties, which are often omitted in other
studies [36, 47]. We review state-of-the-art strategies for uncertainty visualization
in DTI and compare their main characteristics and drawbacks. We further investi-
gate several methodologies for uncertainty visualization in other domains that have
not been explored in DWI and discuss how these techniques can be adopted in this
domain. DWImodels beyond DTI share a similar pipeline as the one shown in Fig. 1.
However, some parameters, error sources, and visual representations would differ
from the tensor model. Specifically, diffusion modeling and fiber tracking would be
based on different parameters and algorithms. In this chapter, we will indicate the
methods from the DTI that are valid for the more general DWI pipeline.

In Sect. 2, we discuss the background and review the visualization techniques for
DTI. In Sect. 3, we discuss the sources of uncertainties involved in the visualization
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Fig. 1 The DTI visualization pipeline with sources of uncertainties at each step

pipeline and proceed with the uncertainty modeling techniques in Sect. 4. We review
uncertainty visualization methods in Sect. 5 and conclude with open issues and
research direction in Sect. 6.

2 Background

Diffusion refers to the constant rapid movement of microscopic particles due to the
presence of thermal energy, i.e., ‘Brownian motion’. DWI deals with the diffusion of
water molecules present in biological tissues where the diffusion is usually restricted
due to the hindrance bymany obstacles such as axonal membranes, macromolecules,
and myelin. This kind of restricted diffusion is known as anisotropic diffusion. Ste-
jskal and Tanner [94] observed the anisotropic diffusion of water molecules in tissues
and investigated the related modeling of the diffusion effects for MRI. The clinical
application of this technique was first presented by Bihan et al. [61] with the intro-
duction of diffusion MRI along with the concept of apparent diffusion coefficient
(ADC). In some neurological conditions, the amount of diffusion is disturbed in the
affected area. Through studying these changes in diffusion, the abnormalities can be
detected. In the following section, we will summarize how these measurements have
been used to visualize white matter tracts in the brain.

2.1 Diffusion Tensor

The pattern of diffusion anisotropy of white matter tracts in 3D space can be mathe-
matically modeled by a second order tensor, called the diffusion tensor D, introduced
by Basser et al. [5]. The tensor D is a symmetric, positive definite tensor represented
by a 3× 3 matrix with six unique elements, denoted by Di j as follows:

D =
⎛
⎝
D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞
⎠ (1)



128 F. Siddiqui et al.

The diagonal elements in the diffusion tensor D represent the diffusion coeffi-
cients along the principle axes x, y and z, while the off-diagonal elements represent
the correlation of the diffusion between each pair of the principal direction. The
diffusion tensor D is symmetric about the diagonal axis (Di j = Dji ). By analysis of
the eigenvectors and eigenvalues λ1,λ2,λ3 of the diffusion matrix, the length and the
direction of the principal axes of the diffusion tensor can be determined.

The six unique values in the tensor D provide the intervoxel diffusion information
and the microstructure of a particular voxel. However, the six-dimensional diffusion
tensor is hard to infer and present to a user. For this reason, several scalar quantities
have been introduced to simplify the tensor to a single value. Fractional Anisotropy
(FA), themost widely used scalar measure in diffusion tensor imaging [9] , represents
the extent of the diffusion anisotropicity. A lower value of FA indicates that the
diffusion is free (FA = 0; isotropic), while a high value of FA implies that the
diffusion is restricted to a single direction (FA = 1; anisotropic). Another popular
scalar measure in DTI is mean diffusivity (MD), which represents the overall amount
of diffusion. Many other scalar measures have been proposed based on the more
complex behaviour of molecular diffusion and are explained in detail in surveys by
Novikov et al. [75], Rajagopalan et al. [83] and Vilanova et al. [99].

Visualization strategies: A Glyph is a general term for geometrically plotted spec-
ifier that represent multidimensional data values. Data information is mapped to
glyph characteristics such as shape and color. Glyphs provide a way to represent the
full six-dimensional information of a diffusion tensor by mapping the eigenvectors
and eigenvalues to the orientation and shape of a geometric primitive. The most
straight forward approach to visualize the diffusion tensor are ellipsoidal glyphs [82]
as shown in Fig. 2a. The orientation of the ellipsoid represents the direction of the
major eigenvector, while the length represents the corresponding eigenvalue. Westin
et al. [104] introduced three metrics to measure linear (λ1 > λ2,λ3), planar (λ1=λ2 >

λ3) and spherical diffusion (λ1 = λ2 = λ3). Figure. 2 represents the barycentric space
of diffusion tensor shapes in which the three extremes (linear, planar, and spherical)
are at the corner of triangles. Among several other proposed techniques, the super
quadratic glyph is considered state-of-the-art for glyph-based tensor visualization.
Instead of interpolating between ellipsoidal shapes, Kindlmann [57] represents the
diffusion by superquadrics with shape parameters defined by the barycentric coor-
dinates,as shown in Fig. 2b.

(a) Ellipsoid glyphs (b) Superquadratic glyphs

Fig. 2 Barycentric space of diffusion tensor shapes
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Outside DTI, glyphs are also used to represent the orientation distribution func-
tion (ODF) of the molecular diffusion, which is commonly estimated by models
that go beyond the diffusion tensor. ODF specifies the overall diffusion in a given
direction, integrated over displacement magnitudes [103]. Spherical polar plots [98]
parametrized surfaces [77], the HARDI glyph [81] and the HOME glyph [89] are
some of the common glyph based visualization techniques for representing ODFs.

2.2 Fiber Tracking

The diffusion tensor provides per-voxel information about the orientation of the
underlying neural tracts by analyzing the derived eigenvectors. By combining this
information with other scalar measure, e.g. FA, one can estimate trajectories of white
matter bundles in 3D space. The process of virtual reconstruction of the neural fiber
tract on the basis of the diffusion tensor field is namedFiber Tracking or Tractography
[8, 71]. These techniques of generating brain anatomical connectivity from the
diffusion information have been summarized in review articles [42, 72, 102]. Fiber

(a) Polylines (b) Illuminated streamlines

(c) Cylindrical tubes (d) Streamtubes

Fig. 3 Visualization techniques for deterministic tractography. Images are generated using
vIST/e [1]
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tracking methods have found its way in many neurological applications [18, 31, 45,
73, 74].

The fiber tracking strategies can be mainly divided into deterministic, probabilis-
tic, and global geometric techniques. Deterministic techniques always produce the
same output with the same set of inputs. Probabilistic techniques, however, add ran-
domness in the tracking process to incorporate the inherent uncertainty. We defer an
extensive discussion of probabilistic methods to Sect. 4. Global geometric methods
deduce connectivity in thewhitematter by globally optimizing a certain cost function
based on the diffusion tensor information and are outside of the scope of this chapter.

Streamline tracing is the most commonly used algorithm for tractography. It is
a deterministic technique that generates trajectories by integrating the vector field
defined by the main eigenvector at each voxel position. The tracing process ends
when the stopping criteria are met. Several constraints can be used as stopping
criteria, such as maximum turning angle or FA, to limit tracts to the region where
tensors realistically represent the fiber tracts.

Visualization strategies: Line-based approaches are the most straightforward tech-
nique to represent deterministic fiber tracts. Numerous strategies have been intro-
duced for the visualization of the white matter tracts, such as thin polylines [70]
illuminated streamlines [114] or cylindrical tubes [8]. Zhang et al. [112] introduced
streamtubes to encode the local diffusion tensor information along the cross-section
of the fiber tracts at each voxel. This technique has previously been used to represent
the tensor field in fluid dynamics, where they were called Hyper-streamlines [25].
Figure 3 shows the most commonly used representations for deterministic tractog-
raphy.

So far, we have discussed the visualization pipeline methods used in DTI without
the involvement of uncertainties. In the following sections, wewill review the sources
of uncertainty present in the pipeline, themodeling techniques and the strategies used
to visualize them.

3 Sources of Uncertainty

Understanding the sources of uncertainties is essential to provide effective visualiza-
tion. The DTI visualization pipeline involves complex stages of mathematical mod-
eling, analysis, mapping, and rendering strategies, therefore, it is prone to uncertainty
from various sources. Noise, patient movement, modeling residuals, and distortion
from imaging artifacts produce uncertainty in the orientation of the diffusion tensor
and are detrimental to fiber tracking algorithms. These uncertainties hamper the link
between the data beingmeasured and visualized. The sources of uncertainty involved
at each stage of the DTI visualization pipeline are shown in Fig. 1. In this section, we
will go through this pipeline and discuss the sources of error present at each stage.
Even though we focus on the DTI modality, several of the sources of uncertainty are
present in DWI pipelines that go beyond DTI.
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3.1 Image Acquisition

MRI-based techniques usually suffer from various acquisition errors such as noise,
motion artifacts, partial volume effects, etc. Signal to noise ratio in DWI sequences
is relatively high given that signal attenuation is being measured. The effect of noise
on the fiber tracking output has been widely studied in literature [3, 46, 59]. There
has been a growing trend of increasing the gradient direction in DTI acquisition
to improve the tractography quality. However, this further increases the acquisition
time. In HARDI, the gradient directions for acquisition are much higher than that of
DTI and, therefore, it needs more time.With higher acquisition time, it is more likely
that the subject move during the scan, which in turn, introduces misalignment in the
acquired image. These kinds of artifacts are known as motion artifacts. Providen-
tially, these misalignments can be corrected during the registration process. Several
automated techniques have been introduced to remove this artifact [113]. The finite
resolution of the results also affects the output of the process. The resolution of a
clinical DWI acquisition is typically in the order of millimeter (mm) in each direc-
tion, which is much lower than that of actual axons. Therefore, the signal values
have to be averaged to be able to fit in a single image voxel. This loss of information
is called the partial-volume effect (PVE). Several studies have been conducted in
neurological literature to investigate the PVE in DTI [84, 85, 101]. Other sources
of error during image acquisition involve magnetic distortion, scanner setting and
others [14].

3.2 Diffusion Tensor Calculation

In DTI, the diffusion of a water molecule is mathematically represented by a second-
order tensor, known as the diffusion tensor. Numerous measurements are performed
along various gradient directions to determine the molecular diffusion at each voxel.
The least-squaresmethod is themost commonly usedfitting technique to calculate the
diffusion tensor, but other more accurate regression procedures can also be used [5,
6]. This fitting procedure introduces a fitting error and involves a model choice.
Therefore it adds variation in the outcome of the DTI procedure. DTI technique can
only estimate one dominant diffusion direction per voxel, and thus, is incapable of
determining the structure where the multi-fiber direction is present and, therefore,
results in unreliable outcomes. HARDI models emerge to overcome this limitation
and able to model complex fibrous regions of the brain. It provides a way to estimate
the multi-fiber populations that can then be used for robust tractography. HARDI
models are more complex and usually introduce more parameters and choices to be
determined than DTI.
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3.3 Fiber Tracking

Fiber tracking involves the reconstruction of the fibrous structure of the brain white
matter by gradually following the local fiber orientation estimated from the diffusion
tensor. There are several parameters in fiber tracking to control the tracking process,
however, these parameters add variability to the fiber tracking results. There are four
major sources of uncertainties in the fiber tracking algorithm:

1. Region definition and filtering
2. Numerical approximation
3. Interpolation
4. Stopping criteria

Region definition and filtering: Regions are usually defined by the user to start, end,
or control the fiber pathways. The seeding region refers to the starting point of the
tracking process and defines the initial conditions for numerical integration. Regions
are also used to extract a specific bundle of interest and filter out others to avoid
visual clutter. The region definition in the fiber tracking process also adds variation
in the outcome. Usually, these regions are defined manually, and therefore introduce
an implicit user bias. Aminor variation in the definition can result in largely different
pathways. Recently, several techniques have been proposed to minimize the effect
of seed region in the fiber tracking algorithms [21, 46, 102].

Numerical approximation: Different types of numerical approximation schemes
can be implemented in the fiber tracking algorithm. Euler integration is the most
straight forward technique [71] but it is a strong approximation. Higher-order meth-
ods, such as 2nd or 4th order Runge-Kutta methods [8], are typically less sensitive to
noise and can be used for accurate fiber tracking. The integration step, or step size,
further affect the quality of these integration schemes [97].

Interpolation: During the numerical approximation process, most of the time, the
sample position after each integration step lies between volume grid points, hence,
interpolation is needed to estimate values, based on the neighboring grid points.
Several studies have been conducted to address the effect of interpolation in fiber
tracking [32, 109]. Various kinds of interpolation schemes are present, each result
in different pathways, and therefore, add variability in the results.

Stopping criteria: Different scalar measures, such as FA, MD, or curve angle, can
be used as stopping criteria in the fiber tracking process. Fiber tracking algorithms
are often highly sensitive to these values, meaning that a very small variation in
the stopping criteria can lead to a very large change in the resulting fiber [97].
Brecheisen et al. [16] propose a visual exploration tool that allows users to investigate
the behavior and sensitivity of DTI fiber tracking to stopping criteria.

In fiber tracking algorithms for HARDI models the principal directions are
extracted from a multifiber representation which adds another layer of complexity
to the algorithms.
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3.4 Visualization

The visualization stage involves the mapping of the data into a geometric representa-
tion or visual primitives that are finally rendered on to the screen. This process can be
another source the uncertainty. Various photo-realistic rendering techniques are used
to simulate real world lighting as exact as possible, but this further complexity adds
uncertainty in the outcome. Lighting models and shadows enhance the structural
perception of the fibers and as such improve the recognition of the spatial relations
between tracts; however, the controlling parameters can add further variability in the
final results.

4 Uncertainty Modeling

As discussed in the previous section, many sources of uncertainties are present at
each stage of the DTI visualization pipeline that affect the outcome of the process.
These uncertainties propagate through the pipeline adding uncertainty in the derived
quantities including diffusion tensor and fiber orientations. Estimating the error dis-
tribution of different sources is not a straight forward task. Different approaches
have been used to model the uncertainty, however, each with pros and cons. We have
classified the methods used for the uncertainty quantification into two categories:

1. Analytical methods
2. Stochastic methods

4.1 Analytical Methods

Analytical methods refer to approaches that provide an explicit mathematical formu-
lation of the error distribution. Thesemodeling techniques are based on theBayes the-
orem [56] andwere first introduced by Behrens et al. [12] in DWI. They estimated the
probability distribution function (PDF) of the fiber orientation by a Bayesian model.
Themain disadvantage of this modeling technique is that they rely on the assumption
of prior and noise present in the data. These techniques are computationally inex-
pensive, however, their dependence on the prior assumption limit their widespread
use. Most of the Bayesian model-based techniques are often combined with random
sampling methods, such as Markov Chain Monte Carlo (MCMC), to determine the
distribution of model parameters [11, 12, 33]. The application of Bayesian model
based methods in DTI and HARDI has been reported several times [48, 54, 64].

Shortest path algorithms are another useful approach for quantifying structural
brain connectivity and were first introduced by O’Donnell et al. [78]. This approach
relies on computing the connections between regions of interest rather than connec-
tions from a seed. Schober et al. [88] presented the distribution of the shortest path
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as a Gaussian process over the solution to an ordinary differential equation (ODE).
This strategy offers novel ways to quantify and visualize uncertainty arising from
the numerical computation and allow marginalization over a space of feasible solu-
tions. Hauberg et al. [40] extended this work and incorporated data uncertainty in
DTI by sub-sampling the diffusion gradients and solving the noisy ODE. Several
other studies using the shortest path algorithms in fiber tracking can be found in the
literature [39, 63].

4.2 Stochastic Methods

Describing the probability distribution analytically and propagating it through the
visualization pipeline is extremely difficult and often not feasible. The alternative
and the most straight forward way to estimate the probability distribution func-
tion is to repeat the acquisition multiple times, this approach is called the bootstrap
method [27]. However, for robust estimation of the PDFs, hundreds of data sets are
required, which is not practical in a clinical setting. Several stochastic techniques
were proposed to overcome this limitation [20]. Among them, the most widely used
techniques are residual bootstrapping andwild bootstrapping [106]. These techniques
rely on a single scan and estimate the probability distribution from the residuals that
remain after fitting diffusion tensor to the data. In residual bootstrapping [24], the
distribution is estimated by randomly assigning the residuals among gradient direc-
tions. Another possibility is to resample the data based on randomly flipping the
sign of the residuals by assuming symmetry in the distribution. The latter approach
is called wild bootstrapping [23]. A detailed comparison of bootstrap methods has
been presented by Chung et al. [20]. Stochastic bootstrapping has been widely used
for DTI [50, 60, 79, 100]. These techniques generate multiple DTI volumes through
stochastic simulations for estimating the probability distribution, however, they are
computationally very expensive.

Various stochastic algorithms were introduced to incorporate uncertainty in trac-
tography by adding randomness in the tracking process. These techniques are called
probabilistic tractography [11, 87, 95]. These algorithms estimate the probability
density function of the fiber orientation at each voxel and determine the propagation
direction by drawing random samples from the distribution. Probabilistic fiber track-
ing is preferable in most cases as it takes uncertainty into account and can estimate
the confidence interval for each reconstructed pathways, however, they are compu-
tationally expensive [12, 26]. Koch et al. [58] propose to use Monte Carlo random
walks for the estimation of the fiber connectivity. The fiber tracking algorithm pro-
ceeds through each randomly selected neighboring voxel depending on the angle
between the voxel’s main eigenvector and its connecting angle with the neighboring
voxels. A similar approach has been used in other studies to establish a connectivity
map in a probabilistic sense [10, 13, 34, 80]. Monte Carlo methods have also been
used to generate fiber tracks based on random particle movement [38]. The PDF
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obtained from the analytical methods can be used to perform tractography with these
stochastic techniques [33, 48]. These studies are based on DTI, however, the concept
is extendable to HARDI as well, but they are not used much in this context [64].

5 Uncertainty Visualization

So far, we have discussed the sources of uncertainty present in the visualization
pipeline and themethods used for their quantification.Visualization provides away to
communicate data effectively and efficiently, however, uncertainty is often omitted in
the process. Visualizing uncertainty information in DWI can help assess the accuracy
of the acquisition and modeling, which ultimately guide the users in making critical
decisions. However, the visualization of complex data in itself is not straightforward,
adding uncertainty representation to it further complicates the process. Issues of
visual cluttering and loss of anatomical context are some of the few complications
when visualizing uncertainties.

In this section, we will survey the strategies used for the visualization of the
uncertainties in DTI and also discuss some related techniques used in the HARDI
model. We also summarize these strategies in Table 1. The modeling column refers
to the uncertainty quantification techniques, such as stochastic, bootstrapping, or
analytical methods. Domain indicates the application area of the study and ensemble
column categorizes the method into the local or global level. The representation
specifies the measure used for the aggregations of the ensemble, and finally, the
visualization column indicates the technique used to display the uncertainties. The
visualization of uncertainty in DTI can roughly be divided into two categories.

1. Local uncertainty visualization
2. Global uncertainty visualization

5.1 Local Uncertainty Visualization

Local representations of the uncertainty depict variation per voxel inside the vector
or tensor fields. Glyphs are typically used to depict the voxel-wise information of the
data. Several glyph-based techniques have been proposed to visualize the inherent
local uncertainty in DTI. Jones et al. [50] proposed a method to represent the confi-
dence interval of the main fiber direction by rendering an uncertainty cone, as shown
in Fig. 4a. Basser et al. [4] used a similar technique to represent the main eigenvector
and their associated uncertainties. This visualization approach allows the represen-
tation of the main diffusion direction and the confidence interval concurrently, also
described in Table 1. Schultz et al. [90] demonstrate a new glyph design, called
HiFiVE, that provides a more detailed impression of the uncertainty. It represents
the variation corresponding to the main eigenvector by rendering a double cone (blue
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Table 1 Summary of uncertainty representation and visualization strategies
References Modeling Domain Ensemble Representation Visualization

Jones et al. [50] Stochastic DWI Local Direction
interval

Interval glyph

Basser et al. [4] Stochastic DWI Local Direction
interval

Interval glyph

Schultz
et al. [90]

Stochastic DWI Local Probability
distribution

HIfive glyph

Jones et al. [52] Stochastic DWI Local Mean and
median

Overlay glyph

Zhang
et al. [110]

– DWI Local Mean and
variance

Halo and texture

Zhang
et al. [111]

– DWI Local Difference
encoding

Overlay glyph

Tournier
et al. [96]

Stochastic DWI Local ODF mean and
variance

Semi-transparent
glyph

Jiao et al. [49] Stochastic DWI Local ODF SIP Volume rendered
glyph

Basser et al. [7] Analytical DWI Local Mean and
covariance

Superimpose glyph

Abbasloo
et al. [2]

Analytical DWI Local Mean and
covariance

Overlay/Animation
glyph

Gerrits et al. [35] Analytical Both Local Mean and
covariance

Superimpose glyph

Wittenbrink
et al. [108]

Bootstrap Non-DWI Local Mean and
variance

Flow-field glyph

Zuk et al. [115] Bootstrap Non-DWI Local Probability
distribution

Flow-field glyph

Hlawatsch
et al. [43]

Bootstrap Non-DWI Local Mean and
variance

Flow-field glyph

Lodha et al. [65] Bootstrap Non-DWI Local Interval Flow-field glyph

Otten et al. [76] – DWI Global Line and interval Illustrative

Hermosilla
et al. [41]

– DWI Global Line and interval Illustrative

Brecheisen
et al. [15]

Stochastic DWI Global Line and interval Illustrative

Corouge
et al. [22]

Bootstrap DWI Global Ensembles Spaghetti plot

Bjornemo
et al. [13]

Stochastic DWI Global Ensembles Spaghetti plot

Jones et al. [51] Stochastic DWI Global Ensembles Spaghetti plot

Hangmann
et al. [38]

Stochastic DWI Global Ensembles Color coded
spaghetti plot

Ehricke
et al. [28]

Stochastic DWI Global Ensembles Color coded
spaghetti plot

Enders et al. [29] – DWI Global Fiber clusters Wrapped
geometrical hull

Chen et al. [19] – DWI Global Fiber clusters Wrapped
geometrical hull

(continued)
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Table 1 (continued)
References Modeling Domain Ensemble Representation Visualization

Merhof
et al. [68]

– DWI Global Fiber clusters Wrapped
geometrical hull

Jones et al. [53] Bootstrap DWI Global Ensemble/local
estimates

Streamtubes

Wiens
et al. [107]

Stochastic DWI Global Ensemble/local
estimates

Streamtubes

Goldau
et al. [37]

Stochastic DWI Global Fiber density Stipples glyphs

Hlawitschka
et al. [44]

Stochastic DWI Global Fiber density Stipples glyphs

Goldau
et al. [36]

Stochastic DWI Global Fiber density Stipples glyphs

Brown et al. [17] Stochastic DWI Global Fiber density Confidence region

Schultz
et al. [91]

Stochastic DWI Global Connectivity
Probability

Confidence region

Kapri et al. [55] – DWI Global Connectivty
Probability

Volume rendering

McGraw
et al. [67]

Stochastic DWI Global Connectivity
Probability

Volume rendering

Koch et al. [58] Stochastic DWI Global Connectivity
Probability

Density map

Parker et al. [80] Stochastic DWI Global Connectivity
Probability

Density map

Kaden et al. [54] Analytical DWI Global Connectivity
Probability

Density map

Schober
et al. [88]

Analytical DWI Global Ensembles Wobbly Spaghetti
plot

Hauberg
et al. [40]

Analytical DWI Global Ensembles Wobbly spaghetti
plot

Mirzargar
et al. [69]

Bootstrap Non-DWI Global Band Depth Wrapped
geometrical hull

Whitaker
et al. [105]

Bootstrap Non-DWI Global Band Depth Contour lines

Ferstl et al. [30] Bootstrap Non-DWI Global Line and interval Wrapped
geometrical hull

Sanyal et al. [86] Bootstrap Non-DWI Global Mean and std.
deviation

Ribbon

color) and the density estimation of the uncertainty around it (represented as a gray
surface), as shown in Fig. 4b.

Another way to represent the uncertainty in multivariate data is to estimate its
covariance. It does not only express the variance in each coefficient but also indi-
cates their linear dependencies. Since the diffusion tensor is a second-order tensor,
its covariance is represented by a fourth-order tensor, however, the visualization of
the fourth-order tensor is rather difficult in this context. Basser et al. [7] presented a
novel technique for the spectral decomposition of the fourth-order covariance tensor
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(a) Uncertainity cones [50] (b) HiFiVE Glyphs [90]

(c) Decomposed ensemble representation [110] (d) ODF glyphs [96]

Fig. 4 Glyphs with uncertainty encoding

and introduced the concept of tensorial normal distribution. They proposed a glyph
representation, called radial glyphs , which depicts the overall variance and a com-
posite glyph for representing the eigentensor of the fourth-order covariance. They
visualized the expected mean tensor and its standard deviation as three isosurfaces.
Abbasloo et al. [2] highlight that the radial glyph does not convey the correlation
with the mean tensor and also suffers from high visual complexity in the tensor field.
They proposed a more intuitive approach for the visualization of the covariance by
using multiple levels of detail. Unlike Basser et al., Abbasloo et al. visualize the con-
fidence interval at each eigenmode separately by glyph overlays and used animation
to visualize the differences in each mode. Gerrits et al. [35] pointed out the short-
coming in both of these visualization techniques and proposed a generic approach
that incorporates all the coefficients of the mean tensor and covariance in a single
glyph.

Various studies have been published concerning the representation of the tensor
ensemble directly. Jones et al. [52] visualize the ensemble data simply by overlaying
several glyphs. Although the superposition depicts the overall picture of the data, it
adds visual clutter and occlusion during display. To remedy this, Zhang et al. [111]
used transparency tominimize the occlusion.Abbasloo et al. [2] tried tominimize this
problem by rendering the superimposed glyphs in complementary colors. Zhang et
al. [110] proposed an approach to decompose the tensor data into three properties (i.e.,
scale, shape, and orientation), representing the structure of the underlying fibers, and
measure the variation per property. A glyph based representation has been presented
in this study to visualize the ensemble effectively. The variation in the ensemble is
represented by Halo and texture over the surface as shown in Fig. 4c.
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The orientation distribution function (ODF), associatedwithHARDI, specifies the
overall amount of diffusion in a given direction. Unlike the diffusion tensor model,
ODFs can have multiple maxima, and therefore are capable of modeling complex
fibrous structure more accurately than DTI. However, this technique is computa-
tionally expensive. The representation of the ODF itself is a challenging task and
adding uncertainty information only increases the complexity. Jiao et al. [49] pro-
posed a technique to visualize uncertainty over polar ODF glyphs by using a volume
rendering technique. They introduced shape inclusion probability (SIP) function to
represent the orientation uncertainty of the tensor. Tournier et al. [96] presented
a method to visualize uncertainties associated with ODFs by using semitransparent
glyphs. They represent themeanODF by the opaque surface and themean + standard
deviation by the transparent surface, as shown in Fig. 4d.

The visualization of uncertainty in a diffusion tensor is similar to the uncertainty
representation in a vector field where orientation is considered important. Several
glyph-based techniques exist in this scope.Wittenbrink et al. [108] presented a glyphs
based representation of the uncertainty for atmospheric and oceanographic data.
Likewise, Hlawatsch [43] and Lodha et al. [65] visualize the local uncertainty in a
fluid flow field using glyphs. Zuk et al. [115] proposed a glyph design to provide
uncertainty information in a bidirectional vector field. These techniques rely on the
representation of the vector direction and magnitude with encoded uncertainties to
depict the local uncertainty present in the field.

5.2 Global Uncertainty Visualization

In contrast to the local strategies, global uncertainty visualization in DTI aims at
providing information on how accurate fiber tract information is throughout the com-
plete tensor field, and how the inherent uncertainties accumulate during the tracking
process. In DWI independently of DTI or HARDI models being used, probabilistic
tractography is often used to incorporate these uncertainties. The most widely used
approach to visualize fibers obtained through probabilistic tractography is to super-
impose the resulting fibers in a so-called spaghetti plot [13, 22, 51], see Fig. 5a.
This visualization technique, however, does not depict a clear view of the region-
wise fiber connections and its uncertainty and suffers from strong cluttering. Color
coding the fiber tracts according to their seed points [22] does not suffice to mini-
mize the complexity of the visualization. Schober et al. [88] and Hauberg et al. [40]
used wobbly spaghetti plot that emphasize the fact that the individual resulting paths
cannot be considered as real fibers in the brain which is a common misinterpretation
in spaghetti plot. Instead, they are uncertain estimates of fibers.

To overcome the complexity and clutter caused by the multiple superimposed
tracts, Enders et al. [29] presented a technique to group the fibers related to a cer-
tain nerve tract and generate a surface that wraps the resulting fibers. Similarly,
Mehrof et al. [68] and Chen et al. [19] presented a method to cluster the fiber with
a proximity-based algorithm and generate hulls encompassing the fiber bundles, as
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(a) Spaghetti plot [51] (b) Wrapped streamlines [19]

(c) Illustrative visualization [15]
(d) Connectivity mapping [55]

Fig. 5 Global uncertainty visualization strategies

shown in Fig. 5b. The anatomical grouping helps the user to understand the under-
lying fibrous structure. Outside of DTI, Frest et al. [30] used a similar technique to
visualize uncertainty in flow field ensembles. They performed principal component
analysis to cluster the streamlines in a low dimensional space and determine themean
and confidence interval in an ensemble. These representations are visualized with a
line enclosed by a transparent surface. The geometrical hulls and enclosed surfaces
reduce clutter, however, they cannot resolve complex cluster shapes. To alleviate
these problems, Illustrative techniques have been proposed to represent the confi-
dence interval of the fiber bundle by creating silhouette, outline, and contours [15,
76], as shown in Fig. 5c.

To improve the understanding of ensembles of curves, it has been proposed to
visualize the statistical information such as mean or confidence intervals rather than
the direct ensemble visualization as spaghetti plot. Table 1 indicates the various
representations used by the studies. These representations, e.g, mean and confidence
interval, are the summarization of the raw samples.Unlike scalar values, the statistical
measures are not well defined for curves, and therefore, several approaches have been
proposed for the estimation of these terms. Brecheisen et al. [15] proposed to compute
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median and confidence intervals based on pre-selected distance measures between
curves. In the field of fluid dynamics, a band-depth concept [66] has been introduced
to analyze curve ensembles in two-dimensions [105] and three-dimensions [69]. This
concept provides away to determine centrality within the present curves and estimate
the variations. Sanyal et al. [86] visualize the uncertainty in the wind trajectories by
creating a ribbon along the ensemble mean. The width of a ribbon represents the
variability at each point.

A widely used approach for the visualization of the global uncertainty is to repre-
sent and visualize measures derived from the probabilistic tractography. Voxel-wise
fiber density computes the probability that a fiber tract traverses a voxel for a given
seed region [17]. Voxel-wise fiber density [28, 38] helps to infer the anatomical
connections. Another measure is the connectivity probability, which represents the
probability of a fiber tract crossing a given voxel while connecting two fixed anatom-
ical regions [91]. Von Kapri et al. [55] andMcGraw et al. [67] used volume rendering
for the visualization of density maps, as shown in Fig. 5d. The global visualization
of the fiber tracts does not provide the local tensor information. To visualize the local
uncertainty along with the probabilistic tracts, a stream tube technique has been pro-
posed [53, 107], which maps the local uncertainty measure onto the cross-section of
the tube.

A common problem with the three-dimensional approaches is that the geomet-
rical representation often occludes the underlying information, hampering its inter-
pretation. Various slice-based methods have been proposed for the visualization of
probabilistic fibers [58, 80]. These techniques have been used in neuroscience as
they provide a way to directly visualize the anatomical information, making it easy
to interpret anatomical context. Goldou et al. [36, 37] presented a novel slice based
approach for visualizing the probability by rendering fiber stipples. The number of
stipples, present at a particular region depicts the fiber density. Hlawitschka et al. [44]
proposes to use poisson-disk sampling for the generation of the fiber stipples.

Table 1 summarizes the survey indicating the domain, representation, and visu-
alization strategies used to display the uncertainty. The table covers the approaches
used for local and global uncertainty visualization in both the DWI and non-DWI
domain.

6 Conclusion

Diffusion-weighted imaging relies on complex stages of signal acquisition, math-
ematical modeling, model assumptions, and hence, is exposed to many sources of
uncertainty. Excluding this uncertainty from the visualization does not only affect
the result but also cripples the user to make an effective decision. However, the
efficient visualization of the uncertainty in DWI is nontrivial, as the data itself has
high visual complexity and adding uncertainty to it only adds further complexity. In
this chapter, we explored uncertainty in the various stages of the DTI visualization
pipeline. Several of the problems and solutions discussed throughout this chapter are
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also valid for other models beyond Diffusion tensor, such as HARDI models. Even
though we have not covered the technical background, where applicable, we have
discussed the applicability of the strategies beyond DTI. Further, we have reviewed
applicable uncertainty visualization techniques beyond the DWI domain.

DWI is still a growing field, considering the recent advancements and the frequent
development of new techniques, this survey should not be considered complete, it
rather should be enhanced in the future. Studies on uncertainty visualization so far are
mostly focused on the research aspect, however, no uncertainty visualization solution
exist to specifically support clinical tractography. Visual analytics, an emerging field
in visualization, can be helpful in enabling detailed analysis of uncertainty present
in DWI data, building on the top of the studies present in this survey. Most of the
presented studies deal with uncertainty on the noise and modeling level, dealing with
other sources of uncertainty and visualizing them as a whole part of the exploration
is another open research direction.

We focus on the visualization pipeline and techniques mostly related to DTI, a
study including other modeling techniques would be beneficial. In summary, even
though the uncertainty visualization in DWI has evolved considerably in the last few
years, we believe, a lot of work still needs to be done for the effective visualization
and exploration of DWI data.
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Challenges for Tractogram Filtering

Daniel Jörgens, Maxime Descoteaux, and Rodrigo Moreno

Abstract Tractography aims at describing themost likely neural fiber paths in white
matter. A general issue of current tractography methods is their large false-positive
rate. An approach to deal with this problem is tractogram filtering in which anatom-
ically implausible streamlines are discarded as a post-processing step after tractog-
raphy. In this chapter, we review the main approaches and methods from literature
that are relevant for the application of tractogram filtering. Moreover, we give a per-
spective on the central challenges for the development of new methods, including
modern machine learning techniques, in this field in the next few years.

Keywords Diffusion MRI · Tractography · Tractogram filtering

1 Introduction

Diffusion magnetic resonance imaging (dMRI) is currently the method of choice for
assessing the local microstructure in the white matter (WM) of the human brain in
vivo. Tractographymethods use this localmicrostructure to generate streamlines aim-
ing at modeling the underlying anatomy of neural fibers in the brain. These stream-
lines are locally aligned with the estimated tissue orientation. The set of obtained
streamlines is usually referred to as a tractogram and is the basis for different sub-
sequent analyses.
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Tractography has potential for clinically-relevant applications. For instance, visu-
alizations of tractography data are used by neurosurgeons with the goal of preserving
important neural bundles during brain tumor resection [9, 16, 64]. Moreover, it is
possible to group streamlines into bundles and perform analyses based on these.
This so-called bundle-based or tract-based analysis (BBA/TBA) allows to compute
statistics for individual bundles, either averaged or along the streamlines. This can
be used to perform group comparisons [8, 10, 60, 70] or to analyse WM changes
in patients over time [5]. Focusing on the tractogram as a whole, the concept of
structural connectivity is employed for the analysis of how pairs of cortical and sub-
cortical regions are connected through streamlines of the tractogram [49, 59]. These
connections can be summarized in graphs, which can be seen as estimations of the
actual anatomical connections between GM regions through neural pathways in the
WM. Such graphs serve as the basis for different group comparisons. For example,
this approach has been applied to different neurological diseases, including among
others epilepsy (e.g., [21]), multiple sclerosis (e.g., [31]) and Alzheimer’s disease
(e.g., [17, 41]), as well as for assessing differences in the brain due to normal aging
(e.g., [13]).

Despite its potential in the aforementioned applications, the validation of trac-
tography is an open challenge in the field. Several recent studies have unveiled that
state-of-the-art methods to construct tractograms suffer both from false positives
(FP), i.e., streamlines that are not related to anatomical structures [32], and false
negatives (FN), i.e., missing streamlines to accurately describe knownWM anatomy
in its whole extent [2]. At the same time, findings indicate that tractography results
are to some extent reproducible [34]. That means that FPs are an intrinsic problem
of current methods [32]. Already in 2014, Thomas et al. hypothesised that there
are inherent limitations of tractography that lead to effects of both, FPs and FNs
[62]. The importance of these two problems is application dependent. For example,
it has been argued that for structural connectivity analysis, a high specificity is of
higher importance than sensitivity [71]. This means that, for this specific application,
reducing FPs is more important than reducing FNs.

Despite the efforts in recent years, new approaches have still not overcome the
limitations of tractography methods [53]. In the particular case of FP, an alternative
to improving tractographymethods is to remove the FPs from the tractogram in a post
processing step. In the following, we refer to this approach as tractogram filtering.
Several methods from the literature can be used for this goal. Even though some
methods were not designed for tractogram filtering, they can be adapted for this
purpose. In this chapter, we consider tractogram filtering as a binary classification
problem in which we aim at assigning either a positive (P) or a negative (N) label to
each streamline. This allows us to assess the possibility to use a particular method to
define the labels P and N for, ideally, separating true positive (TP) and FP streamlines
in a tractogram. In the following, we review the most relevant methods in literature,
point out their issues and pose key challenges on the way to improved tractogram
filtering.

The chapter is organized as follows. Section 2 describes the main approaches and
methods for tractogramfiltering. Section 3 describes the key challenges of tractogram
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filtering and gives a perspective on future developments in the field. Finally, wemake
some concluding remarks in Sect. 4. In order to illustrate specific properties or issues
of the different strategies, we run some experiments on a very limited amount of data
from the Human Connectome Project (HCP).

2 Approaches for Tractogram Filtering

In the following sections, we review methods that can be used for tractogram filter-
ing. Based on the definition of the labels P and N for each streamline, we identified
four main criteria that these methods build upon, namely: explainability of the diffu-
sion signal, inclusion and exclusion regions of interest (ROIs), streamline geometry
or shape, and streamline similarity and clustering. Figure 1 shows the problem of
tractogram filtering interpreted as a binary classification problem and lists the most
relevant methods in this realm together with the main criteria used to group the
streamlines.

Table 1 lists themost relevant tractogramfilteringmethods that are reviewed in the
next subsections. The columns of this table describe the most relevant characteristics
of these methods, namely: criteria, use of dMRI data, required context, main target
and whether or not the method is data driven. First, criteria refers to the strategies
from Fig. 1 that are followed when employing the method for streamline classifica-
tion. Column dMRI in the table indicates if the method used the dMRI data or not. As
shown, only a few filtering methods make use of the acquired dMRI for performing
the classification. The listed methods also differ in the required streamline context.
While some are able to perform the classification individually per streamline, others
also require the streamlines in the bundles of interest or the complete tractogram as
extra inputs (column context). Furthermore, by design, the target of some methods
is to define either the positive (i.e., P) or negative (i.e., N) label but not both. In
other words, some methods aim at being more specific detecting TPs than FPs, and
the other way round for others. As an example, a streamline classified as negative
by Recobundles can still be a TP, since it can belong to a bundle not present in the
atlas. The target of the method is important to be considered, since preferring higher
specificity of P or N is application dependent. This is shown in column target in
the table. Finally, the methods can also be grouped into rule-based and data-driven
ones. While the former makes use of classical approaches, the latter use machine
learning techniques for performing the classification.

In the following sections, we describe the aforementioned criteria in detail and list
the most representative methods that use those criteria to perform the classification
of streamlines.
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Fig. 1 Tractogram filtering can be seen as classifying each streamline in a tractogram as either
positive (P) or negative (N), targeting true positives (TPs) and false positives (FPs), respectively.
Relevant methods use one or more of the depicted criteria for performing this classification. Some
representative methods are also depicted in the figure. For a detailed list refer to Table 1

2.1 Explainability of the Diffusion Signal

The idea behind this approach is that high-quality tractograms can be used to explain
the acquired dMRI data. In other words, synthetic dMRI generated from tractograms
should be very similar to the acquired dMRI data. Thus, these methods focus on find-
ing a subset of streamlines which can generate data that approximates the measured
signal as closely as possible. Streamlines not belonging to such a subset are likely
implausible (or duplicates of other streamlines already contributing to the signal)
and might be removed. This approach is shown in Fig. 2.
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Table 1 Representative methods for tractogram filtering. Criteria shows the criteria used for
streamline classification (cf. Fig. 1). Column dMRI indicates if the method uses diffusion data.
Context describes the contextual information required for streamline classification. Target shows
the target labels where the method is more specific. Data driven specifies if the method makes use
of machine learning or not

Method Criteria dMRI Context Target Data-driven

LiFE [42] dMRI
explainability

� Tractogram – �

COMMIT [12] dMRI
explanability

� Tractogram – �

SIFT [55] dMRI
explainability

� Tractogram – �

SIFT2 [57] dMRI
explainability

� Tractogram – �

TractQuerier
[66]

ROIs � – – �

TractSeg [67] ROIs � – P �
FiberNet [24] Geometry � – P �
FiberMap [73] Geometry � – P �
TRAFIC [37] Geometry � – P �
DeepBundle
[30]

Geometry � – P �

Geometric DL
[1]

Geometry � – N �

Recobundles
[19]

Streamline
similarity

� Bundles P �

Curated WMA
[74]

Streamline
similarity

� Bundles P �

FS2NET [40] Streamline
similarity

� Bundles P �

DeepFiltering
[25]

dMRI pattern � – – �

BundleMAP
[27]

Streamline
similarity, ROIs

� Bundles P �

ExTractor [43] Geometry,
ROIs,
Streamline
similarity

� Tractogram N �

COMMIT2 [50] dMRI
explainability,
ROIs

� Tractogram – �

AnchorTracts
[36]

dMRI
explainability,
ROIs,
Streamline
similarity

� Tractogram P �

FiberNet2.0 [23] ROIs, Geometry � – P �
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dMRI

Synthe c 
dMRITractogram

Residual
Tractography

Forward 
operator

Fig. 2 dMRI signal fitting approach. Synthetic dMRI is computed based on amicrostructure model
and compared to the acquired dMRI. The streamlines that are not relevant tominimizing the residual
might be filtered out

As shown in Table 1, these methods require the whole tractogram as an input. In
the following subsections, we will describe the most commonly used methods for
dMRI signal fitting and discuss their issues.

2.1.1 LiFE and COMMIT

Linear Fascicle Evaluation (LiFE) [7, 42] and Convex Optimization Modeling for
Microstructure InformedTractography (COMMIT) [12] state the problemas follows:
let y be a vector with the acquired diffusion signals, A(T) be a forward operator for
synthesizing diffusion data from the streamlines of the tractogram T, x be a vector
with weights for the contribution of every streamline to the acquired data, and η be
the acquisition noise. Then y can be written as:

y = A(T) x + η. (1)

Since theweights x cannot be negative, it is possible to solve (1) through non-negative
least squares:

arg min
x≥0

||A(T) x − y||22 (2)

Filtering is performed by discarding streamlines with low weights. This formulation
allows for the use of different models to couple the information from streamlines
to the measured signal or derivatives thereof. First, A can be chosen from a large
variety of forward operators proposed in the literature [39]. As an example, in the
original papers, COMMIT was based on a multi-compartment forward model while
in LiFE the stick and ball model was used. Notwithstanding, both can be adapted to
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use any other model. Second, different solvers can be applied for solving the non-
negative least-squares problem of (2). Both COMMIT and LiFE use the subspace
Barzilei-Borwein (SSB) solver proposed in [28]. Due to the nature of the problem,
sparsity on weights is desirable. For this purpose, COMMIT proposes a basis pursuit
de-noise (BPDN) formulation of (2) that actively considers sparsity by minimizing
the �1-norm of x. Such a formulation can be written as:

argmin
x≥0

||x||1, subject to ||A(T) x − y||22 ≤ ε, (3)

where ε is a parameter.
In order to reduce the inherent computational burden of these strategies, A is

implemented in LiFE and COMMIT through a lookup table on a dictionary of pre-
computed estimations. Moreover, a GPU-based optimized version has recently been
proposed for LiFE [29].

2.1.2 SIFT and SIFT2

Very similar to the techniques from the previous subsection is Spherical-
deconvolution Informed Filtering of Tractograms (SIFT) [55]. Instead of targeting
the raw dMRI data, it aims at reconstructing the fiber orientation distribution function
(fODF) in each voxel. First, the fODF is obtained with constrained spherical decon-
volution (CSD) [63]. Second, the contribution of every streamline to the fODF is
assessed. These contributions are used to determine whether a streamline is deemed
redundant/noisy or not. Third, these contributions are sorted in order to remove the
least relevant streamlines. Finally, the aforementioned two steps are iterated until
either a target number of streamlines or a certain residual level is reached. Unlike
LiFE and COMMIT, SIFT does not generate weights per streamline. Thus, SIFT2
was proposed as a slight modification of SIFT in which an additional regularization
term is added and a weight per streamline is computed [56].

In order to compare the agreement between SIFT and SIFT2, we run them with
their standard parameters on a whole-brain tractogram computed with anatomically-
constrained tractography (ACT) [54] from MRrtix31 with one million streamlines
obtained from one HCP subject. In this experiment, SIFT selected 34.6% of the
streamlines in the original tractogram. Figure 3 shows the histograms of weights
computed with SIFT2 where the individual histograms are obtained by separating
the streamlines based on whether they were accepted or discarded by SIFT. It can be
seen that the two histograms have a big overlapping region. A repetition of the exper-
iment with 500k streamlines showed similar results. This means that it is difficult to
reproduce the results from SIFT with the weights computed with SIFT2. Thus, while
SIFT2 can be useful for describing the contributions of streamlines to the acquired
data, unlike SIFT, its direct use for tractogram filtering is not straightforward.

1https://www.mrtrix.org/.

https://www.mrtrix.org/
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Fig. 3 Histograms showing the frequency of different SIFT2 weights computed for streamlines
that are filtered out (in blue) or not (in orange) with SIFT. Both methods were computed on an HCP
subject with 1 million streamlines computed with ACT in MRtrix3

2.1.3 Issues of dMRI Signal Fitting

While dMRI signal fitting is appealing, it has not been able to significantly reduce the
false positive rate [50, 52]. This fact can be attributed to various reasons. Daducci
et al. [11] discuss a number of issues of dMRI signal fitting. First, most of the
current dMRI signal fittingmethods require a whole brain tractogram, even if a single
white matter bundle is of interest. This results both in an unnecessary computational
burden and a higher risk for false positives when targeting specific fiber bundles.
For example, if a fiber bundle is not appropriately represented in the full tractogram,
which is not uncommon, there is a higher risk for implausible streamlines from other
bundles to take their place in the reconstruction. Second, the computed weights of
streamlines tend to be inversely proportional to the number of similar streamlines in
the tractogram. This effect is shown in Fig. 4 for the case of SIFT2 (a similar behavior
is expected from LiFE and COMMIT). As shown, the SIFT2 weights are lower in
the centerlines of the bundles, where tractography tends to yield more streamlines.
Thus, thresholding of SIFT2 weights cannot be used for progressive filtering, since
that might result in discarding the most important tracts very early. Moreover, some
noisy streamlines might be classified as acceptable just because of the reward they
get for reaching distant regions. This issue comes from the fact that weights of SIFT2
are designed for fitting the acquired data, but not for filtering. This could potentially
be solved through an extra step of weight normalization that, to our knowledge, has
not been proposed so far. Third, as discussed in [11], minimizing the residual from
Fig. 2 does not guarantee that the solution is plausible as the current methods are very
prone to overfit due to the large amount of unknowns that must be estimated. Finally,
working with incomplete streamlines can lead to biased results in the uncovered
regions, which might be especially problematic for structural connectivity.
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Fig. 4 Average weights computed through SIFT2 per voxel. Darker and brighter voxels correspond
to lower and higher SIFT2 weights, respectively. The values are extracted from the same dataset of
Fig. 3

Fig. 5 The course of two close fiber bundles is depicted in dashed green. A local error (blue box)
can lead to a noisy streamline (in red). Since most segments of its path are correct, it still might be
classified as acceptable by most dMRI signal fitting methods

In addition to these issues, most dMRI signal fitting methods compute a single
weight per streamline, which can lead to acceptance of implausible streamlines that
are erroneous in a small region (cf. Fig. 5). As suggested in [42], this issue can
be handled by having variable weights along the streamlines. However, this solution
might come at a cost of numerical instability. Finally, an important aspect to consider
is the applicability of these methods to diseased brains. For example, it was reported
in [72] that using SIFT in certain types of illnesses (e.g. brain tumors) can lead to
wrong conclusions of connectivity changes.

In [69], we tested the performance of SIFT2 in short synthetic streamlines. First,
we generated dMRI data with Fiberfox [35] with and without noise from a set of
straight and bent short streamlines. Second, we added a set of streamlines at a differ-
ent angle. These added streamlines should ideally be classified as noisy as they do
not comply with the generated dMRI data. Finally, SIFT2 was run in order to assess
its ability to separate the ‘signal-generating’ streamlines from the added ones. The
main result of these experiments is that SIFT2 is able to filter the implausible stream-
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lines in this simplified problem only for straight streamlines with b-values below
3000s mm−2 and low levels of noise. Our hypothesis for this is that dMRI signal
fitting methods might benefit from longer streamlines for increasing their stability.
However, as already discussed, stability cannot guarantee a good solution as shown
in Fig. 5.

It is worth to note that the filtered tractograms have been reported significantly
different from the non-filtered ones [45]. However, it is difficult to assess whether or
not the differences are due to the reduction of noise or to the aforementioned inherent
problems of this methodology.

Finally, it is important to remark that global tractography [33, 46] is closely related
to dMRI signal fitting. Both use the acquired diffusion data to assess the quality of the
tractograms, one for generating streamlines, and the other to assess the plausibility
of them. Thus, global tractography shares the same issues of dMRI signal fitting.
On the other hand, the current dMRI signal fitting methods are more efficient than
global tractography.

2.2 Inclusion and Exclusion ROIs

A different approach is to implement anatomical constraints in terms of using seg-
mentation masks for filtering out implausible streamlines.

An intuitive way to employ such masks is atlas-based tractogram filtering. This
strategy comprises two steps: first, the atlas of streamline bundles is registered to
the subject data, and second, streamlines that are not fully contained within a single
bundle mask after registration are filtered out. Despite its simplicity, this method has
various shortcomings. First, compared to gray matter (GM), registration of WM in
raw data ismore challenging due to the relatively low contrast and the less convoluted
structure [58]. This makes registration more prone to errors [22]. Thus, different
methods have been proposed for the specific purpose of WM registration on both
raw and derived features such as fractional anisotropy (FA) maps (cf. [38] for a
review of methods). Second, atlas-based approaches are known for not being able to
model the anatomical variability among subjects very well. Finally, the anatomical
shape of fiber bundles can change due to illnesses (e.g. brain tumors), making the
use of atlases difficult in such applications.

An interesting alternative to atlas-basedfiltering is to estimate segmentationmasks
of fiber bundles directly from dMRI data. By that, the problematic registration step
is avoided. TractSeg [67, 68] follows this idea by training a neural network for
segmenting 72 different fiber bundles. In this approach, fODF peaks are taken as
input to a 2.5DU-Net architecture for segmentation [48].Unlike atlas-basedmethods,
TractSeg does not require registration and is subject-specific since it only uses the
acquired data.

Alternatively, Wassermann et al. [66] proposed the white matter query language
(WMQL) and its implementation TractQuerier, which can be used to define fiber
bundles of interest using high-level relationships between GM and WM structures.
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The method uses any parcellation for locating regions of GM that can be used in the
query. WMQL can be used for filtering out streamlines not compliant with any of the
anatomical rules defined for extracting all bundles of interest. Notice that although
neither TractSeg nor TractQuerier were proposed for tractogram filtering, they can be
easily adapted for this purpose. Moreover, it is important to remark that TractQuerier
itself is only a tool to define the mentioned rules. Thus, it can potentially be used for
tractogram filtering either targeting TPs or FPs.

It is important to notice that methods using segmentation masks as inclusion or
exclusion ROIs could be unable to detect certain implausible streamlines that are
not rejected. That is, defining anatomy solely based on inclusion/exclusion ROIs is
often only a necessary but not a sufficient condition for determining the plausibility
of streamlines. Moreover, while some tractography methods do include anatomical
priors in the formulation (e.g. [26, 54]), in practice, the resulting tractograms usually
contain false positives.

2.3 Streamline Geometry or Shape

In this approach, the shape of streamlines is used for deciding whether or not they
are plausible. Most tractography methods already include restrictions on the shape
of streamlines, such as maximum local curvature or minimum and maximum length.
Moreover, some tractography methods include geometry priors at a higher level [4,
15]. Since these rules are usually included in state-of-the-art tractography approaches,
there has been less need for filtering methods implementing this idea.

A recurrent issue in probabilistic tractography is the existence of streamlines
with unrealistic loops. In [3], changes in track density are used for detecting and
removing such loops. Using a more general formulation, it is assumed in [65] that
the relationship between a streamline and its neighbours should be similar along the
path. Such relationships are modeled through graphs and are analyzed using spectral
graph theory. This method is able to remove unrealistic loops while keeping the ones
that comply with anatomy.

Recently, the usefulness of streamline geometry for filtering has been shown. For
example, in ExTractor simple geometry priors are employed to assess streamline
plausibility [43]. Surprisingly, the authors found that around half of the streamlines
generated bymany state-of-the-art methods do not complywith such priors. A graph-
based neural networkwas trained in [1] to reduce the computational cost of ExTractor.

Additional geometry priors can potentially be useful for tractogram filtering. Geo-
metrical features extracted from a population could be used to assess the plausibility
of streamlines at a local level. For example, an atlas of local sheet probability index
[61], statistical shape models of fiber bundles [15] or an atlas of local orientation and
curvature [6] could be beneficial for removing false positives.

Also deep learning-based methods have been proposed for tractogram filtering,
most of them relying mainly on streamline geometry as criteria. For instance, in
FiberNet a convolutional neural network is used on the coordinates of the streamlines
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after a spatial normalization for bundle classification [24]. In [73], the authors extract
a set of features from the shape of streamlines (named FiberMap) to train their bundle
classifier. Streamlines not belonging to a known bundle are assigned to an additional
class. Furthermore, TRAFIC trains a network using distances to five landmarks,
curvature and torsion per tract as features for filtering [37]. Moreover, DeepBundle
[30] used a graph convolutional neural network for extracting geometric features
from the streamlines. Such learned features are then used to assign them to their
more likely fiber bundle in an end-to-end fashion. The loss function can be designed
to target false positives. Since these deep learning-based methods use streamlines of
specific fiber bundles for training, their main target are the TPs in those bundles.

Similarly to the inclusion and exclusion of ROIs, geometry constraints of the
streamlines are not necessarily sufficient criteria for deciding the validity of stream-
lines and must be combined with other priors. That does, however, not apply to the
mentioned DL-approaches which—depending on the training labels—are able to
learn a model of plausible streamline geometry.

2.4 Streamline Similarity and Clustering

With this strategy, streamlines are clustered in bundles before further analysis. Such
clusters canbeused as surrogates of the underlying structure ofWM.Fibers belonging
to small clusters or that do not share similar properties of bundles of interest can be
removed.

The only requirement for using standard clustering algorithms for streamline clus-
tering is to define a distance metric between streamlines. While proposing distance
metrics is straightforward, it is more difficult to find the most appropriate one for
streamlines. Depending on the application, a tractogram can consist of millions of
streamlines. Thus, it is critical to use efficient implementations. For example, Quick-
bundles [18] was proposed as a tool for performing clustering very efficiently.

Once clusters of streamlines are extracted, there are different alternatives for
performing filtering. For example, Recobundles uses an atlas-based strategy in which
the clusters are first registered to an atlas of streamline bundles, followed by a pruning
procedure of streamlines lying far away from the registered centroids [19]. Following
another strategy, in [74], 800 clusters of streamlines are computed for a number of
subjects that, after manual curation performed by an expert, are used for creating
an atlas of streamline clusters. This curated white matter atlas (WMA) is used for
filtering out streamlines far away from any cluster in the atlas. Following a different
idea, BundleMAP [27] uses support vector machines on the mean and covariance of
the coordinates of the streamlines in a bundle to detect FPs.

Clustering methods based on deep learning have the potential to be computation-
ally more efficient than classical approaches. In [40], the authors proposed FS2NET,
a Siamese deep neural network that uses bi-directional long short term memory
(LSTM) layers for learning a distance measure between streamlines. With this dis-
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tance, themethod can be used to assess if two streamlines should be clustered together
or not.

Implausible streamlines tend to follow more erratic paths compared to plausible
ones. Thus, using clustering is appealing for filtering, since it introduces strong
requirements on smoothness of streamlines. Moreover, combined with atlas-based
approaches, they are able to filter both whole brain or partial tractograms. Unlike
the atlas-based approaches described in Sect. 2.2, the registration is performed on
tractograms, which tends to be more accurate (cf. [38] for a review of methods). Still,
the inherent issues of atlas-based approaches might have an impact on the accuracy
of such methods.

Since the methods of this subsection are based on bundle similarity, they target
only certain bundles and, by that, only TPs.

2.5 Multiapproaches

From the previous discussion, it is natural to devise methods taking advantage of
different priors for increasing accuracy. Due to the fact that the research field is
relatively new, only a few multiapproach methods have been proposed. In this line,
COMMIT2 [50] adds anatomy priors to the original formulation of COMMIT in
order to target the issues of dMRI signal fitting methods. Another example is anchor-
constrained plausibility [36], which combines streamline clustering and dMRI signal
fitting for performing filtering. In [23], FiberNet2.0 has been proposed as an exten-
sion of FiberNet in which inclusion/exclusion of ROIs are added to the processing
pipeline.

We have recently used deep learning for combining two methods: RecoBundles
and ExTractor [25] using the dMRI signal as the only input of the neural network.
From our preliminary results, it is not obvious which method should be used as
gold standard, as the choice of accuracy measurement depends very much on the
application. Thus, while a perfect combination of priors is not straightforward, from
our experience in [25], we expect new methods that combine two or more priors to
perform better on average.

3 Challenges and Perspective

Machine learning and in particular deep learning has been very successful in many
medical image analysis applications in the last few years. Preliminary efforts show
the potential of this approach also for the specific problem of tractogram filtering
[1, 25]. However, important challenges for methods following this approach remain
open.

As mentioned in [44], there are important general challenges for tractography,
which also apply for tractogram filtering. Specifically, machine learning and deep
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learning require large amounts of training data of good quality that are difficult to
obtain for tractogram filtering. Moreover, the available training data is relatively
scarce and difficult to combine. Also, inter observer variability of manual annota-
tions is particularly severe in tractography [47, 52]. Furthermore, it is in general
questionable if manual annotation of whole brain tractograms would ever become a
feasible goal. For this reason, the definition of adequate training labels in absence of
a ground truth or a strong gold standard can be expected to remain themain challenge
for machine learning-based methods in this field in the future.

One way of addressing this issue is to combine different methods as automatic
annotation tools in order to define a gold standard. Following this idea, in [25], we
proposed a method that builds on top of two methods, namely Recobundles and
ExTractor, for defining labels. However, this combination is not straightforward. As
pointed out in Table 1 and in the previous sections, it must be considered that different
methods assess different characteristics of the tractogram. For example, the rejection
of a streamline based on geometry priors could have a higher confidence than basing
that decision on a clustering argument. The reverse is also true: a streamline close to
an anatomically plausible cluster might be accepted but a streamline compliant with
a finite number of geometry-based rules could still violate other unchecked rules and
therefore be implausible. Filtering also depends on the application. If the goal is to
obtain segmentation masks, geometrical constraints could have a lower value.

In order to investigate the process of finding a good balance in the combination
of different automatic annotation tools, we run Tractquerier (TQ), which is an imple-
mentation of WMQL, Recobundles (RB), TractSeg (TS) and COMMIT (CM) in a
tractogram of 10 million streamlines computed with ACT [54] for one HCP subject.
A naïve approach to combine the methods would be majority voting. Figure 6 (on the
left) shows the acceptance rates of streamlines for the testing dataset after perform-
ing a majority voting with different thresholds. As shown, requiring at least three
methods to accept a streamline would result in a massive filtering of 95.1% of the

Fig. 6 Percentage of accepted streamlines obtained with Tractquerier (TQ), Recobundles (RB),
TractSeg (TS) andCOMMIT (CM) on a 10M tractogramof oneHCP subject.Left:Thresholding the
number of positive labels from the four methods per streamline (majority voting).Right: Individual
methods
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Fig. 7 Agreement between
Tractquerier (TQ),
Recobundles (RB), TractSeg
(TS) and COMMIT (CM) on
a 10M tractogram of one
HCP subject. Every entry
shows the percentage of
streamlines with the same
classification label obtained
by the corresponding pair of
methods

dataset. Even with a milder threshold of at least two methods, 79.1% of the dataset
would be filtered out. While the amount of around 20% of accepted streamlines (i.e.,
two million streamlines in this example) could be enough to fill up the space of the
WM with an improved TP-to-FP ratio, potential biases of such an ad hoc approach
would need to be investigated. Also the low agreement for only 50.6% of the stream-
lines (0.2% for four positive votes and 50.4% for four negative votes) indicates that
a more sophisticated strategy for the combination of different tools should be con-
sidered. This could maintain a higher acceptance rate of TP streamlines and by that
potentially reduce the required number of streamlines in the tractogram.

Figures 6 (on the right) and 7 show the percentage of streamlines accepted by
each method as well as their agreement, respectively. As shown, the most restrictive
method is CM and the most relaxed one is TQ. While the other two methods are in
the middle, they are also rather restrictive. Moreover, any pair of methods agrees in
60–80% of the streamlines. From these initial analyses, it is clear that more research
is needed in order to find better ways of synthesising information from different
methods for the purpose of tractogram filtering than just simple majority voting.
Again, the final application must also be considered for assessing the ideal approach.

In addition to combining different methods, using other prior information can be
potentially useful for tractogramfiltering. For example, including specificmicrostruc-
ture information has been useful for tractography [20, 51],which can also be expected
from tractogram filtering methods. Combining dMRI and functional information
is promising to understand the mechanisms for brain connectivity [14]. Thus, it
would be interesting to explore in the future the use of functional data for tractogram
filtering.
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4 Conclusion

Tractogram filtering is a relatively young but very active research area with a high
potential of development.While the reviewedmethods in this chapter show that there
are amultitude ofways to obtain information related to the plausibility of streamlines,
there is yet no holistic approach to separate the TP and FP streamlines in a tractogram
in a fully satisfying way. In our opinion, machine learning-based methods have the
potential to contribute substantially to tractogram filtering. However, at this moment
the applicability of supervised approaches is tightly coupled to the proper definition
of training labels, which is difficult to obtain in the absence of a ground truth. We see
the combination of different automatic annotation tools, potentially complemented
withmanual annotations from neuroanatomists, as a promising avenue to address this
problem, while developments are still needed in that line of research in the future.
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Single Encoding Diffusion MRI: A Probe
to Brain Anisotropy

Maëliss Jallais and Demian Wassermann

Abstract This chapter covers anisotropy in the context of probing microstructure of
the human brain using single encoded diffusionMRI.Wewill start by illustrating how
diffusion MRI is a perfectly adapted technique to measure anisotropy in the human
brain using water motion, followed by a biological presentation of human brain. The
non-invasive imaging technique based onwatermotions known as diffusionMRIwill
be further presented, along with the difficulties that come with it. Within this context,
we will first review and discuss methods based on signal representation that enable
us to get an insight into microstructure anisotropy. We will then outline methods
based on modeling, which are state-of-the-art methods to get parameter estimations
of the human brain tissue.

1 Accessing Brain Anisotropy Using Diffusion MRI

1.1 Introduction

Diffusion-weighted MR imaging is a non-invasive tool used to probe tissue
microstructure. During a typical acquisition of tens of milliseconds in brain imag-
ing, water molecules can displace up to tens of micrometers. Diffusion is therefore
sensitive to a wide range of microstructural and physiological parameters in the
tissue. The diffusing molecules get restricted by the boundaries of the underlying
microstructure of tissues. Diffusion anisotropy corresponds to the hindrance of those
molecules, otherwise free diffusing (i.e. isotropically). Changes in anisotropy have
been related to brain diseases such as ischemia, multiple sclerosis, trauma, or brain
tumors [2, 58]. Diffusion anisotropy is therefore considered as a potential biological
marker for changes in tissue microstructure. A loss of anisotropy can also be the sign
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of an increasing isotropy, as neurons grow in size. Panagiotaki et al. [57] notably use
this change to study the evolution of tumor cell size in response to a drug. An under-
standing of the origin of anisotropy change and a combined study of both anisotropy
and isotropy can therefore lead to great discoveries on a tissue microstructure and
its evolution.

An ultimate goal of a Magnetic Resonance (MR) diffusion theory is then to relate
the microstructural and physiological parameters quantitatively to the diffusion-
weighted signal. This task appears to be complicated as deducing those parameters
constitutes a complex inverse problem requiring careful modeling of the diffusion
signal over awide range of diffusion time and diffusionweightings (diffusionweight-
ings will be further explained in Sect. 2.2).

Regarding its cellular composition, brain can be decomposed in two main parts:
white matter and grey matter. The former designates regions that contain mainly
long-range myelinated axons, which cross the brain connecting different parts of
grey matter, and relatively few cell bodies. A method to study those connections
is called tractography and has been well explored during the past few years [28].
Grey matter contains mainly cell bodies, connected by neurites, and relatively few
myelinated axons. Anisotropy exists in both white matter and grey matter and is
due to the presence of cells with long cylindrical processes (axons in white matter
and neurites in grey matter). Its presence, or its absence, will provide us with key
information about the tissue structure at the cellular level.

Fick et al. dedicated a review on existing diffusion anisotropy metrics [14], which
includes Fractional Anisotropy (FA) [3], Generalized Fractional Anisotropy (GFA)
[60], Propagator Anisotropy (PA) [50], Orientation Dispersion Index (ODI) [67], and
microscopic Fractional Anisotropy (µFA) [33]. We present here a complementary
approach, which considers anisotropy as a probe for accessing microstructure, either
through signal representations or tissue modeling.

1.2 Anisotropy as Reflected by Water Motion

Particles suspended in a fluid are constantly undergoing small random movements,
which is known as Brownian motion [42]. The physical process of a steadily spread
of a substance is called diffusion. Diffusion can therefore be considered a macro-
scopic manifestation of Brownian motion on the microscopic level. When no barrier
impedes diffusion preferentially in one direction over another, molecular displace-
ments are equal in all directions. This is known as isotropic diffusion. However, in
brain, molecule movements are hindered by cell membranes. Diffusion is then not
equal along all directions anymore and has become anisotropic. The distance traveled
by a water molecule depends on its interactions. Certain geometric characteristics
of the underlying structure at the microscopic level can therefore be inferred from
the molecule movements [32]. The further a molecule travels during the time of an
acquisition, the greater signal attenuation we get. The objective is to use this attenu-
ation to deduce the structure of the medium where the water molecules are trapped
in.
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Depending on the diffusion time, i.e. the amount of time between two gradient
pulses (see Sect. 2.1), the information we get about the structure will be different.
If the diffusion time was extremely short, only the local intrinsic diffusivity of the
fluid, i.e. the rate at which particles can spread, would be measured. The hindrance
effects would only become apparent at longer times. The degree of anisotropy hence
also depends on the diffusion time.

1.3 Structural Brain Anisotropy

Brain tissue is very anisotropic due to the cylindrical shapes of axons and processes.
Water molecules within those fibers will on average move further along them than
across them due to their small diameter. Typical axon diameter in humans is of the
order of 1–10 µm [5]. Process diameters in grey matter lie between 0.1 and 15 µm.

The strong anisotropy in white matter due to the axons encouraged its wide study
over the past decades. The more complex tissue structure and weaker anisotropy in
grey matter make its study harder. The presence of isotropy in grey matter is partly
due to the numerous somas whose shapes resemble spheres (see Sect. 4.1). Soma
diameters range between 20 and 120 µm. White matter models need to be adapted
to account for the presence of somas in order to be applied to grey matter [38, 53].
Myelin also appears to modulate the degree of diffusion anisotropy between axons
and processes (and so between white matter and grey matter), but has a smaller role
in anisotropy than membrane [6].

Note that anisotropy is not only a property of neural fibers. Anisotropy has also
been observed in liquid crystals, muscles and other tissues, even in fruits and veg-
etables [5]. The degree of fractional anisotropy (see Sect. 3.1) is however higher
in healthy neural fibers than in other tissues such as skeletal muscle, kidney, and
myocardium [11, 18].

1.4 Measuring Anisotropy Using Diffusion MRI

Using Diffusion Magnetic Resonance Imaging (dMRI) as a non-invasive probe in
human brain, we aim at getting information about its structure. The acquired diffu-
sion signal is a sum of the diffusion signals coming from each compartment weighted
by their relative volume fractions [56], and is therefore modulated by the geometry
of the tissue microstructure. Relevant information to infer from it are soma diame-
ters, soma and process densities, and diffusivities. Two complementary approaches
have emerged for extracting these information about the tissue microstructure from
the diffusion signal: signal representation and tissue modelling (denomination from
Novikov et al. [48]).
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Signal representations aim at quantifying parameters and are model-independent
mathematical expressions. Their parameters do not carry any particular physical
meaning. Representations can be used to store, compress or compare measurements.
There is an infinite way to represent a continuous function. One chooses a representa-
tion according to the need of a particular neuroimaging study [44]. Although signal
representations are suited for all kind of tissues, they lack specificity and provide
only an indirect characterization of the microstructure.

Biophysical tissue models rely on a schematic geometry of the underlying tissue.
They are pictures representing a physical reality relying on assumptions meant to
simplify the complexity of a biological tissue. A good model only keeps relevant
featureswhich characterize the tissue and discards irrelevant degrees of freedom. The
designed analytical expression is then fit to the diffusion data in order to estimate
these relevant features of the microstructure. This advantage of providing greater
specificity and interpretation of biologically-relevant parameters appears to be the
weakness of themethod. Indeed the initial geometric assumptionmust be chosen as to
accurately capture all of the features of the tissue that effectively impact the diffusion
signal in a given acquisition range [48], but we also must be able to mathematically
solve this inverse problem. Model validations are important because a wrong model
could lead to wrong interpretations of a physical phenomenon.

Techniques from these two approaches, signal representations and tissue mod-
elling, will be reviewed respectively in Sects. 3 and 4.

2 Diffusion MRI: Introduction to a Non-Invasive Imaging
Technique

Nuclear Magnetic Resonance Imaging allows to non-invasively study the brain in-
vivo, and in particular brain anisotropy, induced by its microstructure.

2.1 Diffusion MRI Acquisition Sequence

Consider an MRI acquisition sequence. After slice selection, all the nuclei on this
plane are precessing at the same frequency. To obtain a diffusion MR image, two
gradient pulses are added to the acquisition sequence. The first applied pulse is going
to make the particles go off phase. We then apply a second gradient with the same
strength in the opposite direction, during the same amount of time. If molecules
stayed still between those two gradients, they would have all come back to their
original phase, the two gradients cancelling each other. However, after turning the
first gradient on, molecules are moving randomly (Brownian motion). After a certain
evolution time, if molecules are not at the same location, the second gradient causes
destructive interference, which results in a loss of signal. The further a molecule
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travels from its initial position during the time between the two diffusion gradients
along the gradient direction, the greater signal attenuation we get. The ratio between
the signal obtained with diffusion gradients and the one without them quantifies the
amount of ongoing diffusion. The objective is then to deduce the structure of the
medium where the water molecules are trapped in from those signal losses.

2.2 Mathematical Foundations

Stejskal andTanner invented in 1965 thePulsedGradient SpinEcho (PGSE) sequence
[59] to measure diffusion in a specific direction. In this sequence, two opposite
diffusion gradients are applied during a time δ, separated by a time interval �. The
diffusion-weighting is globally encoded by the b-value [37], and reflects the strength
and timing of the gradients used to generate the diffusion weighted images. This
factor is computed as follow:

b = γ 2g2δ2(� − δ/3), (1)

where γ ( MHzT−1) is the nuclear gyromagnetic ratio of the water proton 1H and
g is the strength of the diffusion gradient. In the following sections, g encodes the
direction of the applied diffusion weighting in addition to its strength (g = ||g||),
and ĝ is the corresponding unit vector (ĝ = g/||g||).

The quantity E(b) = S(b)/S0 expresses, for each voxel, the attenuation of the
diffusion-weighted signal along the selected gradient direction, S0 being the image
acquired without diffusion gradients. In the absence of restrictions (free diffusion),
the signal attenuation can be expressed as:

E(b) = e−bD, (2)

with D the diffusion coefficient.

If δ is assumed to be infinitely narrow, i.e. the diffusion during that time is negligi-
ble, the signal attenuation can be related to the ensemble average propagator (EAP)
P(r, τ ) via a Fourier relationship under the q-space formalism [9, 59]:

E(q, τ ) = S(q, τ )

S0
=

∫
R3

P(r, τ )e−2π iq·rdr, (3)

where q is the wave vector and τ the diffusion time, which, for the PGSE sequence,
are expressed as

q = γ δg/2π and τ = � − δ/3. (4)

The diffusion time τ expresses the time interval during which spins are allowed
to diffuse before measurement. By increasing the spatial frequency q = ||q|| it is
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possible to achieve a higher spatial resolution of P(r, τ ) in the displacement space
described by r.

2.3 Acquisition Strategies

Experimental parameters, and especially q and τ , influence the diffusion signal atten-
uation along different gradient directions, and therefore the estimation of diffusion
anisotropy. Ideally, many gradient directions, q-values and diffusion times would be
required to completely characterize diffusion anisotropy in a tissue. In practice, the
sampling strategy depends on the application and on the chosen signal representation.
This way, only one shell of gradient directions and a single b-value are usually used
in DTI (see Sect. 3.1). Also using only one shell at a higher b-value and more direc-
tions, are the High Angular Resolution Diffusion Imaging (HARDI) schemes, which
aim at increasing the angular resolution of the diffusion signal with the intent of
resolving crossing tissue configurations [61]. Different diffusion-weightings signal
acquisitions are also needed for some signal representations. In that case, multi-shell
acquisitions are set up using different q-shells with fixed diffusion time. Each shell
then represents a collection of samples in the three-dimensional space with the same
q-value. An optimal spatial coverage is important to measure the diffusion signal
as efficiently as possible. Expansions have been proposed such that all the acquired
samples lie on different non-collinear directions [10]. This multi-shell design can
be extended to τ -shells, called qτ acquisitions [13] in order to exploit different val-
ues for both q and τ . In that case, a complete q-shell scheme is acquired for each
desired diffusion time. Ning et al [44] reviews and compares 16 reconstruction algo-
rithms (single andmulti-shells) to help determine an appropriate acquisition protocol
(number of b-values) and the analysis method to use for a particular neuroimaging
study.

2.4 Difficulties

A main drawback to take into consideration is inherent to the dMRI acquisition
process. Due to the acquisition device limitations and themesoscopic size of neurons,
one voxel, at the macroscopic scale, includes thousands of somas and processes. This
means that the acquired signal is an average of the signal coming from all those cells.
Several issues have then to be considered.

First, the acquired signal in a voxel will be an average of the signal of all the
diffusing molecules within this voxel, which could correspond to not less than 3000
axons inwhitematter. Features that will then be computed from it, such as anisotropy,
will be an average of all the components in the tissue. One needs to note that every
tissue is made of several compartments and that the signals from each of these
compartments where water molecules are present are averaged. Investigations using
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diffusion-weighted spectroscopy, an imaging techniquewith increased cellular speci-
ficity, are also led to try and target specific compartment(s) [38, 54]. This average
problem leads to a second issue: a small change in anisotropy (or other features) can
actually reflect greater pathological differences. It means that there needs to be a big
change in the voxel to be able to detect it in the acquired diffusion signal. Third issue
is that anisotropic cellular elements might be considered as isotropic due to the tree
pattern of processes within grey matter [26] or to crossing fibers in white matter. At
least, as expected from an acquisition, the signal is noisy. Low concentration of water
molecules in some tissue (and thus long scan times) can lead to a poor signal-to-noise
ratio.

In addition to those issues, we must recall that the spacing between axons, axon
diameter, myelin thickness, etc are all also variables, even within the same tract,
which adds to the complexity of the problem. The barriers to diffusion have also not
a simple nor regular geometry. The correspondence between the biological features
of the tissue and the non-invasive diffusion measure is therefore not straightforward.

3 Quantifying Anisotropy via Signal Representation

Signal representation is an indirectmethod that aims at describing the diffusion signal
with no assumptions about the underlying structure. It can therefore be applied to
healthy or diseased tissues. Several methods are described, with an emphasis made
on the cumulant expansion, which is the most widespread signal representation.

3.1 Cumulant Expansion

Common signal representations are based on the cumulant expansion [39, 65], which
corresponds to a development of the logarithm of the signal in polynomials up to a
given order in b:

ln

(
S(b)

S0

)
= −bD + 1

6
(bD)2K + . . . (5)

where D is the diffusion coefficient and K the kurtosis. This formula can also be
written in the tensor form:

ln
S(b)

S0
= −bC (2)

i1i2
gi1gi2 + b2C (4)

i1...i4
gi1 . . . gi4 − . . . (6)

where C (l) are the cumulant tensors, and g is the direction of the applied diffusion
weighting (see Sect. 2.2).Note that Einstein’s convention of summation over repeated
indices is used here.
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An expansion in moments, which corresponds to a Taylor expansion of the signal,
is also possible. While expansions in moments and in cumulants are mathematically
equivalent, for a similar order truncation at some fixed (low) order, the cumulant
series provides a more accurate estimation of the dMRI signal than a moment expan-
sion. Moment expansion is more optimal for analytical treatments because contri-
butions from different tissue compartments add up. A combinatorial relation exists
between the two expansions [40, 65]. Computing the cumulant tensors and convert-
ing them intomoments is promoted to be themost numerically stablemethodology to
adopt [49].

One of the most popular MRI techniques in brain research as well as in clinical
practice isDiffusionTensor Imaging (DTI) [3], basedon the cumulant expansionup to
the first order in b. This technique is valid for lowdiffusionweighting (b � (DK )−1).
Note that this technique does not assume that the medium is homogeneous with
unrestricted diffusion (K = 0), which appears to be not true for most biological
tissues, but that it follows a Gaussian law when b � (DK )−1.

Using tensor decomposition, three eigenvalues (λ1, λ2 and λ3) reflecting axial
and radial diffusivity of molecules within fibers and in the extra-cellular space are
computed (see Fig. 1). The difference between those two diffusivities enable to
define variables such as Mean Diffusivity (MD) (the average of all the eigenvalues)
or Fractional Anisotropy (FA), defined as follow:

FA = std(λ)

rms(λ)
=

√
1

2

√
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2√
λ2
1 + λ2

2 + λ2
3

(7)

Those two measures are complementary, as they bring different information to
the comprehension of a tissue (Fig. 2). Hofstetter et al. [19] used MD to hypothesize
the presence of bigger cells in the brain after a learning session. Beaulieu et al. also
investigated anisotropy in the human brain grey matter using DTI [4].

Diffusion Kurtosis Imaging (DKI) goes beyond DTI and its first order expansion
by also estimating the kurtosis of the diffusion probability distribution function [25].

Fig. 1 Isotropic diffusion in somas can be modeled by a sphere (left). Anisotropic diffusion in
neurites can be represented by an ellipsoid reflecting axial (λ1) and radial (λ2 and λ3) diffusion.
This image has been inspired by the book chapter written by Christian Beaulieu [4]
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Fig. 2 Mean diffusivity (MD) and fractional anisotropy (FA) are two complementary measures.
Here are three examples of ellipses ranging from isotropic to anisotropic that have the same mean
diffusivity (0.7 × 10−3 mm2s−1). This image has been inspired by the book chapter written by
Christian Beaulieu [4]

The kurtosis quantifies the non-Gaussianity of a distribution. The information that it
provides is complementary to DTI metrics. Fitting the kurtosis tensor significantly
improves the accuracy of the diffusion tensor estimation [64]. In a same way, extend-
ing the series to the sixth order cumulant (in b3) also increases the accuracy of the
kurtosis estimation, albeit with a penalty on precision.

In order to estimate the six independent components of the diffusion tensor, the
minimal required data is one b = 0 (unweighted) image and six non-collinear direc-
tions on a single diffusion weighting, or “shell”. The additional estimation of the 15
independent components of the kurtosis tensor requires a minimal acquisition of one
b= 0 image and one or two nonzero shells with 15 non-collinear gradient directions,
so that a total of 22 diffusion-weighted images are acquired [64]. The choice of the
shell b-values is a trade-off between accuracy and precision. The b-values should
be as low as possible to respect the validity of the cumulant expansion, but slightly
higher values enable to limit the impact of noise [12]. Jelescu et al. [21] suggest a
typical value around b = 1 ms µm−2 for DTI and 2 ms µm−2 for DKI in vivo. For
further details on the optimization of acquisition parameters for precisemeasurement
of diffusion in anisotropic systems, we invite the reader to have a look at the work
of Jones et al. [31].

3.2 Other Representations

Yablonskiy et al. [66] hypothesize that the acquired diffusion signal is a sum of
signals originating frommany spin packets, present in different cell types, at different
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positions. Each spin packet having then different trajectories and facing different
hindrances, theymake the assumption that they all have a different apparent diffusion
coefficient (ADC). Hence, they introduced a distribution of diffusion coefficients
ρ(D), and expressed the diffusion signal as following:

S

S0
=

∫ ∞

0
ρ(D)e−bDdD (8)

Theoretically, the distribution of diffusion coefficients can be estimated using the
inverse Laplace transform. In practice, some functional form needs to be assumed
for ρ(D) due to the mathematical ill-conditioning of the inverse Laplace trans-
form. In addition, a very strong diffusion weighted regime is needed for the esti-
mated distribution to accurately reflect the tissue distribution of diffusion coefficients
[34, 47].

Jian et al. [29] propose a statistical method to infer connectivity patterns based on
the characterization of the water molecule diffusion by a continuous distribution of
diffusion tensors. They described theMR signal attenuation as the Laplace transform
of this probability distribution defined on themanifold of symmetric positive-definite
tensors. Combined with a spherical deconvolution approach, displacement probabil-
ity functions and distinct fiber orientations can be estimated in each voxel in aHARDI
dataset.

The multi-shell Mean Apparent Propagator (MAP)-MRI method, as proposed by
Özarslan et al. [50], expands the signal using harmonic oscillator basis functions.
It indeed represents the diffusion-weighted signal by an anisotropic Gaussian mod-
ulated by a series of Hermite polynomials. This method allows the estimation of
three-dimensional EAP, where both restricted (non-Gaussian) diffusion and crossing
axons can be represented. However, according to [44], this method fails to estimate
crossing angles correctly. The strength of the method resides on its capacity to accu-
rately estimate diffusion properties such as return-to-origin probability, and mean-
squared displacement. The propagator anisotropy (PA) metric was derived from this
method, which is a measure of dissimilarity between the reconstructed EAP and its
closest isotropic approximation EAP.

Hanyga et al. [17] proposed a new space-fractional diffusion model based on an
anomalous anisotropic diffusion equation that preserves posivity. This method seems
well-suited for applications to DTI [42].

Other representations exist, but have not been included in this chapter.

3.3 Limitations

The validity and therefore the usefulness of the cumulant expansion depends on its
convergence towards the acquisition signal, characterized by the convergence radius
bc [35]. If b < bc, then the series can be approximated using a couple of low terms
in Eq. 6, higher order terms being flooded by the noise, i.e. small contributions to
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the signal can not be decoupled from the noise in experimental data. The number
of parameters to estimate is then reduced, but a good accuracy does not assure its
validity. Otherwise, if b > bc, the series in Eq. 6 diverges whichmeans that themodel
function cannot be reduced to a polynomial. A good quality fitting gives then more
credit to the underlying model.

Hutchinson et al. [20] compare the DTI, DKI, MAP-MRI and NODDI (see
Sect. 4.4.1) methods in different experimental conditions to study the influence of
noise and sampling (among others) on parameter estimations. All methods proved to
be influenced by the acquisition parameters such as the b-values, the resolution, the
SNR and the diffusion time. The need of DKI to fit a higher order tensor explains its
high sensitivity to noise.

Regional issues are also to be noted, related to crossing fibers, which can be
detected as isotropic zones [1]. Indeed, several diffusion directions are possible in
that case. The angular resolution needs to be high enough and the model designed
to take this particular case into account.

4 Biophysical Modeling to Measure Anisotropy

This second approach is based on a biophysical model designed for a particular
tissue geometry. This model is fit to the diffusion signal acquired, which allows the
estimation of the relevant parameters of the microstructure. While it can provide a
greater specificity of biological parameters, the design of themodel remains difficult,
as it needs to accurately capture all the features that effectively and substantially
impact the diffusion signal in a given acquisition range (the coarse graining problem,
see [46]).

Another big challenge of this approach comes from the number of unknowns to
estimate after the definition of all effective parameters. To estimate them all wewould
need a lot of different b-values. This is unfeasible in clinical applications, because
first the gradients used in clinical MRIs are not strong enough, and secondly it would
require a patient to stay in the MRI device for a very long time. Some methods rely
on constraint to bypass this problem, as presented in Sect. 4.4.

4.1 Multi-compartmental Model

Tissue in the brain can generally be decomposed into four compartments. Thefirst one
corresponds to the somas, which are the central part of the neurons, mainly present in
grey matter. Glial cells are also comprised in this compartment, as done by Palombo
et al. [54]. However, their possible high exchange rate with the extracellular space
(ECS) is still a matter of discussion and this argument would argue in favor of their
better modeling in the ECS compartment [15]. Somas can be modeled as spheres
of different diameters. Neurites, the second compartment, connect those neurons
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together, either in short distances in grey matter (they are called dendrites), or long
distance connections in white matter (axons). The diffusivity across the processes is
considered zero due to the restriction implied by the fixed small diameter. Processes
can therefore be modeled by cylinders with zero-radius (“sticks”) (see part Sect. 4.2
below). The orientation of a collection of processes within a voxel is characterized by
an orientation distribution function (ODF) [60]. The third compartment corresponds
to extra-cellular space (ECS) and is modeled as Gaussian anisotropic. The last one
is the cerebrospinal fluid (CSF), which could contribute if a voxel contains part of
a ventricle, and corresponds to free diffusing molecules. It is hence modeled as free
diffusion.

The acquired water signal originates from these four compartments and are
weighted according to their relative signal fraction f :

S(b) = fsomas · Ssomas(b) + fneurites · Sneurites(b) + fECS · SECS(b) + fCSF · SCSF(b),
(9)

with fsomas + fneurites + fECS + fCSF = 1. Remark that fsomas, fneurites, fECS and fCSF
are not the relative volume fractions due to the T2 differences between the compart-
ments. In the following models presented, a combination of those compartments is
used to model particular tissues and keep only the relevant compartments. Note that
a common assumption is made that the exchanges between the compartments can be
neglected at the time scales of clinical dMRI, at least in white matter. The estimation
of exchange rate in vivo is challenging andmore investigations are needed to validate
this hypothesis in white and gray matter.

4.2 Neurites as Sticks

Neurites have been modeled by zero-radius impermeable cylinders, characterized
by their longitudinal diffusivity, the transverse diffusivity being considered zero.
These neurites are called “sticks” and correspond to the most anisotropic Gaussian
compartment possible [7, 26, 36].

The intra-neurite response function, i.e. the diffusion signal from water inside a
stick of diffusivity Da pointing in the unit direction n̂, is defined as:

Gn̂(ĝ, b) = e−bDa(ĝ·n̂)2 , (10)

with ĝ being the unit gradient direction of the measurement. It is determined by
cos θ ≡ ĝ · n̂, where θ is the angle between n̂ and ĝ.

The signal, after being isotropically averaged over multiple gradient directions ĝ,
is the following [8, 24, 30]:

S̄ � β · b−1/2, (11)

with β = √
π
4 · fneurites/(D

||
a )

1/2.
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In brain tissue, at sufficiently large b-values, the extra-axonal space signal is
exponentially suppressed, its diffusivity being non-zero in any direction. The only
remaining signal in white matter comes from the axons (Sneurites in Eq. 9), and follows
the power law from Eq. 11 [41, 62]. This equation captures the very anisotropy of
white matter.

Veraart et al. [63] recently proved that the radius of the axons can be estimated for
very high b-values, where the transverse diffusivity is not considered null anymore.
The direction-averaged DWI signal then follows the following law:

S̄ � βe−bD⊥
a · b−1/2 (12)

Such law however does not hold in gray matter, which indicates that white mat-
ter and grey matter require different models in order to accurately capture their
microstructure. Several hypothesis have been elaborated to explain the different
behaviour of gray matter DWI signal. McKinnon et al. [41] and Veraart et al. [63]
suggest that an increased permeability in cell membranes of neurites in gray matter
might be the cause of an increased exponent, while Palombo et al. [52] advocate
the abundance of cell body in gray matter. Özarslan et al. [51] suggest that curvy
projections, along with longer pulse duration, lead to a disappearance of the b−1/2

decay.

4.3 Standard Model of Diffusion in Neural Tissue

The measured diffusion signal in brain white matter is a sum of anisotropic com-
partments. It can be modeled as a convolution between a response kernel K from a
perfectly aligned fascicle pointing in the direction n̂ and the fiber orientation distri-
bution (ODF) P(n̂) normalized to

∫
dn̂P(n̂) ≡ 1.

Sĝ(b) =
∫

|n̂|=1
P(n̂)K(b, ĝ · n̂)dn̂, (13)

ĝ being defined in Sect. 2.2.
In the case of white matter, the kernel can be written as:

K(b, ξ) = S0

[
f e−bDaξ

2 + (1 − f − fCSF) e
−bD⊥

e −b
(
D||

e −D⊥
e

)
ξ 2 + fCSF e−bDCSF

]
,

(14)

with ξ = ĝ · n̂. Those exponential contributions correspond to the intra-axonal space
modeled by a stick compartment (Eq. 10), the extra-axonal space modeled by an axi-
ally symmetric Gaussian compartment with transverse and longitudinal diffusivities
D⊥

e and D||
e , and the cerebrospinal fluid (CSF) compartment. All those compartments

are represented in Fig. 3. This decomposition has been widely used in white matter
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Fig. 3 Standard Model of diffusion in neuronal tissue. Two-compartment model (intra- and extra-
neurite spaces) described by 4 independent parameters: f , Da , D

‖
e and D⊥

e and a fiber orientation
distribution P(n̂). This figure is reproduced from Novikov et al. [49]

by the community. As a consequence, Novikov et al. suggested to call it the Standard
Model (SM) [46]. For the sake of reference, we will also refer to it as the SM in this
chapter.

4.4 Standard Model Parameter Estimation Using Constraints

In the previous sections we presented the SM of diffusion in neural tissue as a sum
of anisotropic Gaussian compartments, as defined by Novikov et al. [46]. We will
now introduce some methods based on the SM that rely on constraints to overcome
the challenge of estimating many biological parameters of interest.

4.4.1 Neurite Orientation Dispersion and Density Imaging

In order to reduce the number of parameters that need to be estimated, Zhang et al.
[67] proposed to impose restrictions on the intrinsic diffusivities. They introduced a
method calledNeurite OrientationDispersion andDensity Imaging (NODDI), which
relies on a three-compartment SM (intra-axonal space, extra-axonal space and CSF),
described by seven parameters: volume fractions fintra and fiso, diffusivities D||

a ,
D||

e , D⊥
e and Diso, and the orientation dispersion modeled by a Watson distribution

of concentration parameter κ . By fixing the diffusivities to the following values:

D‖
a = D‖

e = 1.7μm2/ms (15)

D⊥
e = (1 − fintra ) · D‖

e (16)

Diso = 3μm2/ms (17)

only the two volume fractions and the orientation dispersion need to be estimated.
Although this method allows to estimate the parameters, the validity of those

constraints need to be questioned. To begin with, if we admit that the equalities are
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correct, they imply that a small deviation from the fixed values, as occurs in cerebral
ischemia,will induce a non-negligible bias in the other parameters estimation, leading
to false interpretations. However, studies using Diffusion weighted spectroscopyMR
which can quantify the diffusion of specific metabolites (e.g. [55]), suggest, through
the study of metabolites specifically found on different sections of the neurons and
extra cellular tissue, that such diffusivity is not constant across the whole brain.
Whether and how these findings can be used to shed light on water diffusion in the
brain, is an open question.

Another drawback of this method is that it leads to indetermination, which means
that NODDI returns one possible result among a multiplicity of mathematical solu-
tions by fixing D‖

a = D‖
e [23, 49]. If we consider the case where all the parameter

constraints are released and theCSF compartment neglected (calledNODDIDA [22],
which stands for NODDI with diffusivity assessment), two distinct solutions to the
estimation problem exist: D‖

a > D‖
e and D‖

a < D‖
e (see Figs. 8 and 9 in Jelescu et al.

[23]). Both solutions lie within biologically plausible ranges, and determining which
solution is biologically correct is an active field of research, although most studies
are suggesting D‖

a > D‖
e . At least, the tortuosity approximation that relates D⊥

e and
D‖

e has been invalidated in the case of tight packings of axons [45].

4.4.2 White Matter Tract Integrity Metrics

Another approach to estimate the relevant features of interest in a tissue proposes
to relate the scalar parameters to the DKI components. Called White Matter Tract
Integrity (WMTI) [16], it is a two-compartment SM that relies on the assumption
that sticks are highly aligned within a voxel.

The tissue is described as a sum of two Gaussian compartments (intra- and extra-
axonal space, Eq. 9 with fsomas = 0 and fCSF = 0), where axons are modeled as
sticks embedded in a Gaussian anisotropic extra-axonal medium. Each compartment
is characterized by a tensor (Da and De) derived from the kurtosis tensors D and K .
In any direction j:

Dj = fintra Da,j + (1 − fintra) De,j, (18)

K j = 3 fintra · (1 − fintra )

(
De,j − Da,j

)2
D2

j

(19)

We retrieve the two possible mathematical solutions mentioned before, as demon-
strated by the square in Eq. 19. The solution chosen in this method is D‖

a < D‖
e ,

which leads to:

fintra = Kmax

Kmax + 3
, (20)

De,j = Dj

[
1 +

√
K j · fintra

3 (1 − fintra)

]
, (21)
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Da,j = Dj

[
1 −

√
Kj (1 − fintra)

3 fintra

]
. (22)

Although WMTI enables to capture the changes of diffusivities, it has two main
limitations. First, this approach is limited to regions of highly aligned single fiber
bundles, which are only present in some white matter regions. Jespersen et al. sug-
gested a method that alleviates this assumption by assuming a Watson distribution
of the axons (like in NODDI) [27]. Second, as it relies on the DKI decomposition,
this method is only restricted to the low b-value regime, which could lead to some
bias.

4.5 Lemonade

As explained in Sect. 4, estimating both compartment diffusivities and orientation
dispersion of neurites simultaneously is problematic and tends to be biased. Some
methods suggest fixing some parameters such as NODDI or to limit its application
to coherent fibers only as WMTI to work around these problems. Releasing these
constraints necessitates to estimate a larger number of parameters.

A very recent method in white matter estimates the scalar parameters of a two-
compartment kernel separately from the ODF without any constraints. The method
developed by Novikov et al. [49] is based on the modeling of the diffusion signal
as a convolution of the ODF and the response kernel from a perfectly aligned fiber
segment, as presented in Sect. 4.3. It can be decomposed into two steps. A first
step solves an algebraic system of equations that relates the kernel parameters to
the signal moments for low b-values. This part was called LEMONADE, which
stands for Linearly Estimated Moments provide Orientations of Neurites And their
Diffusivities Exactly. It requires at least 3 non-zero b-shells inferior to 2.5 ms µm−2

and returns estimates for fintra , D
‖
a , D

‖
e , D⊥

e and p2 = 3〈(cosψ)2〉−1
2 , which gives an

estimate of the orientation dispersion. In a second step, a rotationally invariant energy
function of the system is minimized exploiting all available data and using the first
estimates as initialization values.

This method emphasizes the existence of the two mathematical solutions as intro-
duced before, and shows that, in principle, the degeneracy can be avoided using
measurements up to the 3rd order of b-values. However, due to noise in the data, the
solution selection remains difficult in practice and individual validation should be
carried out.

The assumptions made in this approach are, as in the other methods previously
presented, the existence of only two compartments, the uniformity of diffusivities
across all axons in the voxel, and axial symmetry of the kernel. These assumptions
are also the limitations of themodel used. Validation in the case of pathological tissue
also needs to be investigated.
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We refer the reader to Jelescu andBudde’s reviewon the accuracy and validation of
biophysical parameters of different diffusion models in white matter, which includes
the ones presented before [21].

5 Summary and Above

We have shown two main approaches to describe microstructure anisotropy using
diffusionMRI: signal representation and biophysical modeling.While the former are
general and make no assumptions about the underlying tissue, models are designed
for a particular tissue and therefore provide greater specificity and interpretation of
the estimated biological parameters. The difficulties in modeling reside in accurately
capturing the features that effectively and substantially impact the diffusion signal in
a given acquisition range, and being able to correctly fit the model (inverse problem).

Anisotropy provides great insight into a tissue structure, and its evolution can
enlighten the progression of certain pathologies. The presence of isotropy must not
be neglected either, as it can be a great marker of other microstructures, such as in
grey matter where it denotes the presence of somas.

Although great progresses have beenmade during the last decade, some questions
remain unresolved. To cite a few, we can wonder to which extent we can consider
compartments as non-exchanging. Diffusion time, brain region and myelination of
the tissue will most likely impact the answer of this question. Can we also come
up with methods less sensitive to the signal-to-noise ratio or a way to disentangle
thermal noise and artifacts from the signal of interest?
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Conceptual Parallels Between Stochastic
Geometry and Diffusion-Weighted MRI

Tom Dela Haije and Aasa Feragen

Abstract Diffusion-weighted magnetic resonance imaging (MRI) is sensitive to
ensemble-averaged molecular displacements, which provide valuable information
on e.g. structural anisotropy in brain tissue. However, a concrete interpretation of
diffusion-weightedMRI data in terms of physiological or structural parameters turns
out to be extremely challenging. One of the main reasons for this is the multi-scale
nature of the diffusion-weighted signal, as it is sensitive to the microscopic motion
of particles averaged over macroscopic volumes. In order to analyze the geometrical
patterns that occur in (diffusion-weighted measurements of) biological tissue and
many other structures, we may invoke tools from the field of stochastic geometry.
Stochastic geometry describes statistical methods and models that apply to random
geometrical patterns of which we may only know the distribution. Despite its many
uses in geology, astronomy, telecommunications, etc., its application in diffusion-
weightedMRI has so far remained limited. In this work we review some fundamental
results in the field of diffusion-weightedMRI from a stochastic geometrical perspec-
tive, and discuss briefly for which other questions stochastic geometry may prove
useful. The observations presented in this paper are partly inspired by the Workshop
on Diffusion MRI and Stochastic Geometry held at Sandbjerg Estate (Denmark) in
2019, which aimed to foster communication and collaboration between the two fields
of research.
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1 Introduction

Diffusion-weighted magnetic resonance imaging (MRI) [22] is one of the few imag-
ing modalities that is capable of mapping the immensely complex micro-structural
architecture of the human brain in a non-destructive manner. This is achieved by
applying a specific sequence of diffusion-sensitizing magnetic field gradients during
the MRI acquisition, producing a signal with a decay rate that is dependent on the
relative mobility of water molecules in the tissue [30]. As the overall mobility of the
molecules is decreased by the presence of any material barrier, the acquired signal
effectively provides an indirect probe of the ambient structure. At the micrometer
length scales accessible in current scanners, the dominant barriers to the diffusing
molecules in the brain are the fiber-like neurites that transmit information between
different regions of the brain [3], and whose properties are (naturally) of profound
importance in neurology. Aside from the anticipated and present clinical value of
this modality, diffusion-weighted MRI also stands to provide unique information
about the evolution, morphogenesis, and function of the brain, already being pur-
sued through the tracking of macroscopic fibers in tractography [2, 4, 20]. The
challenge faced by the diffusion-weighted MRI community is to identify the rele-
vant structural parameters determining the signal decay, and—to the extent that this
is possible—to invert the relation between them. This is where we believe stochastic
geometry could play a role.

Stochastic geometry [29] is an area of statistics that provides modeling and infer-
ence techniques for complex spatial objects whose structure can be described effec-
tively as random patterns. One of the first cases studied in what is now called stochas-
tic geometry—the problem of stereology [1]—included the inference of geometric
properties of 3D objects from their intersections with a small number of 2D planes.
This topic gained traction in the 1960s, as its solutions alleviated the challenging and
computationally demanding task of actually computing 3D reconstructions. Stereol-
ogy found a wealth of applications ranging from geology to for example microscopy
of neuroanatomy. Since then stochastic geometry has evolved into a mature field of
mathematics that offers a rich toolbox of rigorously developed techniques, includ-
ing models with potential relevance for diffusion-weighted MRI such as random
tessellations and fiber processes. Skimming the stochastic geometry literature one
quickly comes across a number of concepts that have obvious analogues indepen-
dently developed in the diffusion-weighted MRI literature, and yet the two research
domains have had very limited contact so far.

This chapter is written from the perspective of diffusion-weighted MRI as a field
working on a set of challenging modeling problems, focusing on the potential utility
of stochastic geometry in addressing them. Our aim is not to provide an exhaustive
overview of relevant theory in either field, but simply to highlight some well-known
results where the conceptual links between the two become apparent. A compre-
hensive introduction to stochastic geometry can be found in the book by Stoyan
et al. [29], while the books by Jones [16] and by Johansen-Berg and Behrens [15]
provide a good entryway to diffusion-weighted MRI.
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To initiate an exchange of ideas between these two fields, the first Workshop on
Diffusion MRI and Stochastic Geometry was co-organized by the authors and Eva B.
Vedel Jensen at Sandbjerg Estate (Denmark, January 20–24, 2019). The observations
presented in this chapter partly inspired thisworkshop, but the chapter likewise builds
on the valuable discussions held at the lively and interactive workshop. We are not
aware of any previous works pointing out the parallels described here, although some
of them will undoubtedly have been noticed before.

Overview

The molecular dynamics relevant for diffusion-weighted MRI are conveniently
described by a displacement probability density function—the diffusion propaga-
tor P(r, t). The propagator P(r, t) represents the probability of a displacement r at
a diffusion time t , and the diffusion-weighted signal is related to the characteristic
function S of the propagator given by

S(q) =
∫
e−iqr P(r, t) dr, (1)

where qr denotes the inner product between q and r . The Fourier parameter q can
be considered an experimental parameter, determined in practice by the diffusion-
sensitizing gradients of the acquisition.

In the following sections we give examples of connections to stochastic geometry
for three different ‘limiting regimes’ of the diffusion-weighted signal, where expres-
sions for the relevant molecular dynamics can be simplified significantly. Sections 2
and 3, which feature the short and long diffusion time limits respectively, can be
well-understood in terms of the time-dependent diffusion coefficient D(t), which
represents the mean squared molecular displacement at a time t . This diffusion coef-
ficient appears as the first non-trivial coefficient in the Taylor series of log S, the
cumulant expansion.1

log S(q) � −D(t) q2 + . . . (2)

From this expansion it can already be gathered that results based on the diffusion
coefficient are mostly applicable when q is relatively small—i.e., when the gradi-
ents are weak enough for the D-dependent term in this expansion to dominate—and
in Sect. 4 we consider instead the limit where the gradient strength parameter ∼ q
becomes large. In this regime the diffusion coefficient no longer provides an ade-
quate vehicle for the description and analysis of the diffusion process, and we have
to rely on other descriptors. Where necessary, additional details on these concepts
will be given in the text, although technicalities will be skipped in favor of acces-
sibility. To simplify the exposition further, we will make implicit use of the narrow

1We restrict ourselves in Eq. (2) to the one-dimensional case, to keep technicalities to a minimum.
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pulse approximation [6, 27] throughout. The paper concludes with an outlook on the
possible future uses of stochastic geometry in Sect. 5.

2 Specific Volumes and the Short-Time Limit

…the time-dependent diffusion coefficient D(t) of mobile molecules confined in pores or
cells carries information about the confining geometry. At early times, [a perturbative expan-
sion of D(t)] gives, irrespective of details, the pore surface to volume ratio …, which is a
measure of microscopic length.

Sen (2004)

The first regime we consider is the short-time limit, described in the seminal works
by Mitra, Sen, and others [18, 19, 26], and with important insights dating back to
Kac [17]. The situation analyzed in these works is the diffusion of molecules in the
neighborhood of obstructive geometrical features, Fig. 1. At the boundaries between
the diffusive medium and the geometry, the diffusion is prescribed by boundary
conditions that can depend on e.g. the permeability, leaving the spatially averaged,
time-dependent diffusion coefficient D(t) to be solved.While this is a very challeng-
ing problem for any non-zero, finite time t , the limiting behavior for t → 0 can be
expressed in terms of a relatively small set of practically useful structural parameters.
As D(t) can be measured in the scanner, we can use diffusion-weighted measure-

Fig. 1 A schematic showing a particle (black solid line) diffusing in a volume V , marked by the
blue hatch pattern. The gray boundary S acts as a barrier to the diffusion, resulting in a decreased
time-dependent diffusion coefficient D(t) compared to the free diffusion coefficient D0. At short
times only particles in a small neighborhood of the boundary (within a distance ∼ √

D0 t) are
significantly impacted by this effect, resulting in a characteristic decrease of D(t) proportional
to the ratio between the surface area S and the volume V . Note that the time-dependent diffusion
coefficient measured in diffusion-weightedMRI is acquired by averaging over volumes much larger
than the typical diffusion length

√
D0 t
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ments to obtain estimates of these parameters. The emergence of these structural
parameters in the diffusion-weighted signal can be understood as follows.

In the limit t → 0 the diffusing molecules do not have enough time to interact
with the geometry, and the diffusion coefficient naturally approaches the medium’s
free diffusion coefficient D(0) = D0—the diffusion coefficient of the medium in the
absence of any geometry. At times close to the limit, the particles move a typical
distance in the order of

√
D0 t (by virtue of the definition of D in terms of the mean

squared displacement), and so roughly speaking only the fraction of particles within
some distance ∼ √

D0 t can ‘see’ the geometry. As the geometry essentially acts as
a barrier to the diffusion, the time-dependent diffusion coefficient decreases from
its free diffusion limit, and this decrease is more significant if a larger fraction of
the total number of particles can interact with the boundaries. For diffusion times
approaching 0, this fraction becomes exactly proportional to the surface area of the
geometry. Formalizing this notion, Mitra et al. [19] then showed that the first order
correction describing the approach of the limit becomes proportional to the surface-
to-volume ratio S/V of a smooth geometry, cf. Fig. 1, according to

D(t) ∼ D0 − 4

3 d
√

π

S

V

√
D0 t D0 (t → 0), (3)

where d is the spatial dimension. From this relation, the surface-to-volume ratio can
be estimated reliably from the diffusion-weighted measurements [13]. The order
t terms in this expansion depend to varying degrees on the boundary condition
parameters such as the permeability, as well as on the average curvature of the
geometry, while higher order terms depend on even more intricate details of the
environment.

Although the complex interactions between particles undergoing random dis-
placements and their surrounding structures have not been considered in stochastic
geometry as such—this problem is closer to mathematical physics [5]—the surface-
to-volume ratio uncovered in Eq. (3) is a commonly estimated quantity in for example
stereology. The surface-to-volume ratio is also referred to as the surface density or
as the specific surface area in stereology and stochastic geometry. An example of a
question in this scenario for which stochastic geometry could be helpful is: “what is
the smallest observationwindow (voxel) that has an acceptable error when estimating
a given characteristic?” [29, Sect. 6.4.6].

3 Stationarity and the Long-Time Limit

That is, we assume here that the voxel is statistically homogeneous. This macroscopic uni-
formity allows us to go from averaging over the contributions from all parts of the system…
to ensemble averaging over all disorder realizations, leading to the description of the signal
in terms of the statistical properties embodied in the correlators …

Novikov and Kiselev (2010)
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In the short-time limit of the previous section, particles could not explore their sur-
roundings outside a vanishingly small window, leading to the simple relation between
the surface-to-volume ratio and the time-dependent diffusion coefficient. In the long-
time limit, on the other hand, we can assume that particles in fact see all the sur-
rounding structures. Under fairly general conditions, the diffusion process in this
limit can still be described in terms of a single diffusion coefficient—the limiting
coefficient D∞ = limt→∞ D(t). While determining D∞ for a given sample is very
difficult, Novikov et al. [21, 23, 24] showed that once again there are basic geomet-
rical properties of the structure that completely determine the limiting behavior of
D(t). In this case, the diffusion coefficient approaches its limit as

D(t) ∼ D∞ + c t−ϑ (t → ∞), (4)

where c is a constant, and where the exponent ϑ = (p + d)/2 is determined by the
spatial dimension d and a structural exponent p. The structural exponent p is the
exponent of the limiting power law behavior of the structure correlation function,
which roughly speaking quantifies the presence of long-range correlations in the
diffusion barriers. While the constant c varies significantly between different config-
urations of barriers, we know of only a few possible values for the exponent p, with
many vastly different configurations of barriers producing the same critical exponent
in experiments. The structural exponent p effectively distinguishes between different
structural universality classes [23].

A central concept in the cited works by Novikov et al. is that because the dif-
fusing particles can explore their entire surroundings, the exact configuration of the
barriers becomes irrelevant. Consequently, one can theoretically replace the compli-
cated original structure with a simpler-to-analyze effective medium, permitting the
derivation of e.g. Eq. (4). As explained in the quote above, the practical application
of this simplifying methodology requires that we assume that the subsets of a sample
explored by different particles can be viewed as random samples (‘disorder realiza-
tions’) generated by some basic statistical properties of the global structure. In the
context of stochastic geometry, this same assumption is more commonly called (spa-
tial) stationarity, and it is a key assumption in many classical proofs in the field. In
particular, the assumption of stationarity enabled the first proofs of the fundamental
formulas of stereology. In a number of stochastic geometry results it is now known
that a weaker ‘first order stationarity’ assumption is sufficient [1], and it might be
interesting to see if the same is possible for the long-time limit results discussed here.

4 Directional Measures and the Strong-Gradient Limit

The concept of disorderedmedia and statistical averaging can be particularly valuable to deal
with the geometric complexity of biological tissues. We believe that further progress in the
field can be achieved by merging microscopic geometric models, statistical [descriptions]
of disordered media, and high-gradient features of the signal formation.

Grebenkov (2016)



Conceptual Parallels Between Stochastic Geometry and Diffusion-Weighted MRI 199

The gradient strength parameter set during a diffusion-weighted MRI experiment
determines—roughly speaking—the scanner’s sensitivity to diffusive motion. The
mobility of the water molecules in the sample affects the decay rate of the diffusion-
weighted signal, cf. Sect. 1, and stronger gradients make this effect correspondingly
stronger. Although stronger gradients thus produce weaker, harder to detect signals,
these signals contain information about interesting features of the diffusion that
cannot be observed at lower gradient strengths. The results for the short-time and
long-time limits described in the previous subsections are mainly used at low to
moderate gradient strength acquisitions.

When we increase the gradient strength in a diffusion-weighted MRI experiment
we first notice that the anisotropy, i.e., the orientation-dependence, becomes more
significant. While we omitted this before, anisotropy is already a factor at the lower
gradient strength experiments used for the concepts discussed in Sects. 2 and 3. In the
general case, the long-time limit D∞ of D(t) considered in Eq. (3) is, for example, in
fact a tensorial quantity related to the mean squared molecular displacements along
different orientations. This anisotropy in the diffusion reflects the anisotropy in the
sample’s micro-structure, so for example in the brain it is predominantly determined
by the orientation distribution of neurites, cf. Sect. 1. At higher gradient strengths,
the orientation-dependence of the diffusion can no longer be represented by a simple
tensor, and a more complete set of orientational features becomes accessible.

Theneurite orientations are generally characterizedby a so-calledfiber orientation
distribution function (ODF), which specifies the likelihood that a neurite is locally
tangent to a given orientation, and the estimation of this object from strong-gradient
experiments is a common problem considered in diffusion-weighted MRI. A large
number of techniques have been proposed to deal with this question [14, 31, 32],
but we will not discuss them in detail here. Instead we will point out that the ODF
also has a stochastic geometrical analogue: the rose of directions [29]. The rose of
directions is defined for fiber processes—a well-defined (locally finite) collection
of randomly placed fibers. The rose of directions is the distribution of the direction
tangent to a typical point on a fiber, where the meaning of a ‘typical point’ can
be made explicit using Palm distribution theory. A stationary fiber process is an
example of a stochastic geometrical model in the spirit of the work by Novikov
et al. [21] that could be useful to model biological tissues. Furthermore, the rose
of directions has a dual—the rose of intersections. These two objects are related
through the Funk–Radon integral transform [9], which also appears naturally in for
example the diffusion-weighted signal expression for narrow cylinders (the ‘fiber
ball’ ODF) [14].

At even stronger gradients we move to another limiting regime—the strong-
gradient limit, or localization regime [11]. Here we can still make use of the intuition
developed in Sect. 2: any structure in the sample will act as a barrier for particles in
its vicinity, and thus slow down the average motion in that region. Slower diffusion
in turn implies less signal decay, and so the main contributions to the signal now
come from particles localized near the barriers [28]. The localization effect carries
non-trivial consequences for the diffusion time-dependence of the signal, but for this
chapter we are more interested in the orientation dependence in this regime.
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A simple way to understand the impact of the geometry’s anisotropy on the signal
in the strong-gradient limit, is to look at a diffusion propagatorwith a compact support
�. At strong gradients the integrand in Eq. (1) oscillates rapidly, and as a result the
integral indeed tends to 0. However, the rate at which it decays is in fact governed by
the support �, which is of course determined by the geometry. We can consider as
an illustration the ‘indicator’ propagator which is 1 everywhere inside a sufficiently
smooth and convex�, and 0 elsewhere. The signal decay is then exponential with an
exponent supr∈� qr [12], where the exponent, viewed as a function in q, determines
� completely. We could for example use this observation to recover the shape of a
convex pore enveloping a diffusing substance, provided that the pore is much smaller
than the typical diffusion length

√
D0 t [6], but this approach is not limited to closed

pores.
The function q �→ supr∈� qr is called the support function of � in stochastic

geometry, where it can be associated with the rose of directions of a fiber pro-
cess [29]. A similar interpretation can be given to the support function as it occurs
here, leading to the definition of the barrier ODF [7, 8]. It must be mentioned that
as these developments are very recent, their practical utility is currently still being
investigated.

5 Perspectives

We have given three examples of concepts in diffusion-weighted MRI that also
occur in stochastic geometry: the surface-to-volume ratio, which is related to the
specific surface area commonly estimated in stereology; statistical homogeneity,
which is related to stationarity; and the fiber orientation distribution function, whose
stochastic geometry analogue is the rose of directions. In the context of neuroimaging,
the common thread between them appears to be the concept of stationary fiber and
surface processes from stochastic geometry, which are completely characterized by
the specific length/area and the rose of directions.

We believe further investigations in this direction could lead to new and useful
methods for the analysis of diffusion-weighted MRI data, as well as novel research
problems in stochastic geometry. In particular, we hope that the link to the mature
statistical theory found in stochastic geometry may offer practical tools for the anal-
ysis of uncertainty and variation in applications of diffusion weighted MRI: How
much faith can we put in estimated anatomical quantities? Which quantities can we
expect to be able to derive from given data?What are the conditions we should put on
our data acquisition in order to be able to draw sound conclusions for the hypotheses
that we ultimately hope to investigate?
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Magnetic Resonance Assessment of
Effective Confinement Anisotropy with
Orientationally-Averaged Single and
Double Diffusion Encoding

Cem Yolcu, Magnus Herberthson, Carl-Fredrik Westin, and Evren Özarslan

Abstract Porous or biological materials comprise a multitude of micro-domains
containing water. Diffusion-weighted magnetic resonance measurements are sensi-
tive to the anisotropy of the thermal motion of such water. This anisotropy can be
due to the domain shape, as well as the (lack of) dispersion in their orientations.
Averaging over measurements that span all orientations is a trick to suppress the
latter, thereby untangling it from the influence of the domains’ anisotropy on the
signal. Here, we consider domains whose anisotropy is modeled as being the result
of a Hookean (spring) force, which has the advantage of having a Gaussian diffusion
propagator while still confining the spatial range for the diffusing particles. In fact,
this confinementmodel is the effectivemodel of restricted diffusionwhen diffusion is
encoded via gradients of long durations, making the model relevant to a broad range
of studies aiming to characterize porous media with microscopic subdomains. In this
study, analytical expressions for the powder-averaged signal under this assumption
are given for so-called single and double diffusion encoding schemes, which sensi-
tize the MR signal to the diffusive displacement of particles in, respectively, one or
two consecutive time intervals. The signal for one-dimensional diffusion is shown
to exhibit power-law dependence on the gradient strength while its coefficient bears
signatures of restricted diffusion.
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1 Introduction

Magnetic resonance has proved to be an extremely effective tool to peer intomaterials
and tissues noninvasively. It manipulates the magnetic orientation of molecules per-
vading the material into a natural precession which emits radio waves. By imposing
a spatially-varying magnetic field (hence frequency of precession), the emitted radio
frequency signal is made to encode in its spectrum the coordinates of the molecules
that emit it. This way, the signal can be spectrally decomposed to trace backwhat pro-
portion of it originates from where, that is, from which ‘voxel.’ Commonly achieved
voxel sizes are in the neighborhood of a millimeter.

Another use of a spatially-varying precession rate involves sensitizing the signal
to the motion of the molecules; diffusion in particular. When the molecules trace
out random (Brownian) paths where different locations they visit impart different
precessional angles on them, their precessions lose coherence, attenuating the sum of
their emitted radio waves. This attenuation of MR signal, specifically its response to
the direction of the gradient in precession rate, can reveal or quantify howmobile the
molecules are along different directions. The difference of mobility can arise from
pore boundaries, impurities, cell membranes, etc. Hence the diffusion-attenuated
signal encodes the influence of structures that can be significantly smaller than voxel
dimensions. Tracing out axon bundles in human brain white matter is for instance a
widely employed application of this principle. This modality of magnetic resonance
imaging, which we refer to as diffusion MR, is the subject of this contribution.

While the anisotropy (i.e., variance under a rotation transformation) of a single
pore or a cell may be easily visualized, one would be mistaken to make a one-to-
one connection with that and the anisotropy of the signal (i.e., the response of the
signal to orientations of the specimen or the apparatus). For instance, the signal of a
voxel consisting of an unaligned mixture of cylindrical aqueous compartments will
be less sensitive to rotations than one consisting of an aligned bundle of cylinders.
The anisotropy of the individual compartments is common in the two examples, but
the aligned case has more ensemble anisotropy.

In some sense, then, ensemble anisotropy confounds compartment anisotropy
at the signal level, and eliminating it pronounces features at the subvoxel level.
One way to achieve this is to take an average of the signal over all orientations. If
the material allows it, it can be ground into a powder to that effect; hence the term
powder averaging. However this is generally impossible in bio-medical applications.
Then, repeated applications of a measurement protocol in different orientations is
the avenue to follow.

In this contribution, we are concerned with two particular diffusion MR schemes,
single and double diffusion encoding (SDE and DDE), orientationally averaged in
the aforementioned fashion to eliminate ensemble anisotropy. The single encoding
scheme [44] is the bread and butter of most applications, employing a magnetic
field gradient that remains on for a specified duration in one direction, and then
the opposite direction after a specified delay (Fig. 1). The signal then encodes the
probability of Brownian displacement between the application of the two pulses.
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Fig. 1 The pulse sequence for single diffusion encoding, with time running along the horizontal
direction

Fig. 2 The pulse sequence for double diffusion encoding

SDE has been the encoding scheme employed since some of the earliest studies
of the powder averaged signal [5]. However, very recent theoretical [13] as well
as experimental [1] studies have considered the orientationally-averaged signal for
more general gradient waveforms.

The double diffusion encoding (DDE) scheme employs two single-encoding
blocks in succession [9], in different directions in general, before the signal is read
(Fig. 2). This method has been studied extensively in recent years mostly because it
allows the anisotropy of the microdomains to be quantified [8], which has important
implications for medical imaging. The reader is referred to the reviews [4, 11, 27,
40, 42] for in-depth presentation of the method. In a nutshell, the DDE technique
encodes into the signal the joint probability of two Brownian displacements taking
place between the two pulses of each block. For freely diffusing molecules, the two
displacements are uncorrelated [36]. However, when restrictions, and arguably inho-
mogeneities and forces, are present, this is no longer the case [24], hence imparting
signatures of compartment size onto the signal. As mentioned above, DDE employ-
ing gradient blocks in different directions is sensitive to anisotropy of subdomains
inside the voxel [6, 8], but not independently of ensemble anisotropy [29].

While we do not consider restricted diffusion in the strict sense of restriction by
hard walls in this article, we do respect the finite range of motion of the molecules by
the aid of a harmonic attractive force [7, 20, 25, 46, 49]. This is an effective model
which can mimic restrictive walls with reasonably tractable mathematics, and is
actually approached when the gradient pulses are long [34].
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This chapter is organized as follows. We first present the signal arising from an
effectively confined domain under double diffusion encoding. Afterwards we derive
analytical expressions for its powder average and consider the “stick” geometry,
wherein diffusion is fully confined in two dimensions.We then treat the case of single
diffusion encoding as an extreme case of double encoding and give its corresponding
powder average expressions. The special cases of “stick” and “pancake” geometry
are compared to their counterparts for free diffusion. The article is concluded after
discussions based on the results of the previous sections.

2 Double Diffusion Encoding at the Compartment Level

Here we derive the double-encoded diffusionMR signal arising from a compartment
which is characterized by an effective spring force attracting the molecules toward
the center. Such a force mimics the confining effect of walls, membranes, etc., with
minimal mathematical burden.

The spring (Hookean) force influences themotion of themolecules via a quadratic
potential1

V (x) = 1
2 x

ᵀCx , (1)

defining the confinement tensor C, which can be taken to have Cᵀ = C without
loss of generality. However, in order for the steady state molecule number density
pst(x) ∝ e−V (x) to be normalizable, C must be positive (semi)definite.2 Under this
(or any) potential, the magnetization density ρ(x, t) evolves according to

∂tρ(x, t) = (D∇) · e−V (x)∇eV (x)ρ(x, t) − ig(t) · xρ(x, t) . (2)

Here, we have assumed that diffusion is governed by a spatially-uniform, possibly
anisotropic diffusivity tensorD and that diffusion encoding is achieved by amagnetic
field gradient waveform g(t). Note that we absorb the gyromagnetic ratio γ into g(t)
so that it has dimensions of time−1 length−1.3

The signal Sc = ∫
d3x ρ(x, t) arising from a single such confined compartment

under a general encoding waveform g(t) can be found thanks to the Brownian paths
having a Gaussian probability measure under the potential (2) [49]:

Sc = exp

(

− 1
2q

ᵀ
c (0)D�−1qc(0) −

∫ te

0
dτ qᵀ

c (τ )Dqc(τ )

)

, (3)

1In units of the thermal energy scale kBT , where kB is the Boltzmann constant and T is the absolute
temperature.
2Vanishing confinement (i.e., free diffusion) has an unnormalizable steady state, but it can be
handled.
3Alternatively, g(t) can be called a precession rate gradient waveform.
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with the generalized encoding wave vector

qc(t) =
∫ te

t
dτ e−�(τ−t)g(τ ). (4)

Here, te is the duration of the encoding protocol, and

� = DC (5)

is a matrix of equilibration rates. According to an equivalence between the signals of
diffusion under a Hookean confinement and under restricting walls [34], a restriction
of linear size L should have a confinement value of aroundC ≈ 11/L2. For instance,
the confinement value within walls 5 µm apart would be about C ≈ 0.44 µm−2.
With water diffusing at D = 3 µm2/ms, this would imply an equilibration rate of
� ≈ 1.3ms−1. In other words, it would take random walkers a few milliseconds to
spread out roughly to their eventual distribution.

As depicted in Fig. 2, double-diffusion encoding is achieved by a gradient wave-
form consisting of two pairs of bipolar rectangular pulses, each with a given duration
δ and separation �, and magnitudes g1 and −g2; the minus sign is customary. The
time between the leading edges of the second pulse of the first pair and the first pulse
of the second pair, tm, is called the mixing time. The calculation of the signal (3)
therefore entails very simple integrals, but in a cumbersome piecewise fashion. Upon
significant simplification one finds

Sc(g1, g2) = exp
(−gᵀ

1T◦g1 − gᵀ
2T◦g2 − 2gᵀ

1T×g2
)

. (6)

One may refer to the tensors

T◦ = D�−3 [
(1 − e−��)(1 − e−�δ)2e�δ − (1 − e−2�δ)e�δ + 2�δ

]
, (7a)

2T× = D�−3e−�(tm−δ)(1 − e−�δ)2(1 − e−��)2 , (7b)

respectively, as the self-coupling and cross-coupling tensors between encoding
blocks.4 For the orientational average below, we consider |g1| = |g2| = g, with a
fixed angle ψ between them.

As the free diffusion limit is approached, one can see that the cross-coupling of
encoding blocks vanishes, as T× ∼ (D/2)�δ2�2(1 + �δ − �tm), due to displace-
ments in separate time intervals being uncorrelated in pure Brownian motion [36].
The dependence on the mixing time tm does not enter until second order in confine-
ment, in line with approximate calculations done for a spherical wall [29].

4T◦ is the same tensor that appears in the single-encoding signal Sc = e−gᵀT◦ g [49]. In the free
diffusion (� → 0), it is easily shown that T◦ → Dδ2(� − δ/3), which recovers the free diffusion
signal [43, 44]. .
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3 Double Diffusion Encoding: Powder Average

The orientational (powder) average of the compartment signal (6) is performed as
follows: The vectors g1 and g2 form a plane with unit normal vector

n̂ = g1 × g2
|g1 × g2|

. (8)

One constructs the average by integrating over all orientations of (the plane normal
to) n̂, and for each of these integrate over all orientations of the pair {g1, g2} within
the plane, with their relative angle ψ fixed. The procedure hence described can be
written as5

S̄ =
∫

dn̂
4π

∫
dβ

2π
Sc

(
gn̂(β), gn̂(β + ψ)

)
. (9)

Here, gn̂(β) is a vector of magnitude g in the plane normal to n̂, whose orientation
is parameterized by the (in-plane) azimuthal angle β, according to which we can
identify g1 → gn̂(β) and g2 → gn̂(β + ψ).

We first take the in-plane integral

S̃(n̂)
def=

∫
dβ

2π
Sc

(
gn̂(β), gn̂(β + ψ)

) def=
∫

dβ

2π
e−σn̂(β) , (10)

which serves as the definitions for the intermediate quantities S̃(n̂) and σn̂(β).
According to Eq. (6), the latter is given by

σn̂(β) = gᵀ
n̂(β)T◦gn̂(β) + gᵀ

n̂(β + ψ)T◦gn̂(β + ψ) + 2gᵀ
n̂(β)T×gn̂(β + ψ) .

(11)

To anchor the angle coordinate β, we define the in-plane cartesian coordinates u, v
such that û ‖ gn̂(0) and v̂ = n̂ × û, yielding

gn̂(β) = ûg cosβ + v̂g sin β . (12)

After an exercise in trigonometric simplification, and denoting û
ᵀ
T◦v̂ = T ◦

uv etc.,
one finds

σn̂(β) = ςn̂ + ρn̂ cos 2β − �n̂ sin 2β , (13)

5We suppress the obvious limits of these integrals.
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with

ςn̂

g2
= (

T ◦
uu + T ◦

vv

) + (
T×
uu + T×

vv

)
cosψ , (14a)

ρn̂

g2
= (

T ◦
uu − T ◦

vv

)1 + cos 2ψ

2
+ T ◦

uv sin 2ψ + (
T×
uu − T×

vv

)
cosψ + 2T×

uv sinψ ,

(14b)

�n̂

g2
= (

T ◦
uu − T ◦

vv

) sin 2ψ

2
− T ◦

uv

(
1 + cos 2ψ

) + (
T×
uu − T×

vv

)
sinψ − 2T×

uv cosψ .

(14c)

These depend on n̂ through û and v̂, of course. Hence via Eq. (10),

S̃(n̂) = e−ςn̂

∫
dβ

2π
e−ρn̂ cos 2β+�n̂ sin 2β

= e−ςn̂ I0

(√
ρ2n̂ + �2n̂

)

, (15)

where an integral representation of the modified Bessel function of order 0 was
recognized [10]. The argument of the square root can be found after a semi-tedious
calculation as

ρ2n̂ + �2n̂ = g4
[(
T ◦
uu − T ◦

vv

)
cosψ + (

T×
uu − T×

vv

)]2 + 4g4
(
T ◦
uv cosψ + T×

uv

)2
, (16)

and we rewrite the powder-averaged double-encoding signal (9) via Eqs. (10) and
(15) as

S̄ =
∫

dn̂
4π

e−ςn̂ I0

(√
ρ2n̂ + �2n̂

)

. (17)

For the actual evaluation of the integral, explicit expressions in terms of the polar
and azimuthal angles (θ,ϕ) of n̂ need to be substituted,6 which are steps we omit
here. Eyeballing how entries ofT◦ andT× appear in Eq. (17) via Eqs. (14a) and (16),
one notes that it is useful to define the intermediate tensors

M = g2
(
T◦ cosψ + T×

)
(18a)

M̃ = g2
(
T◦ + T× cosψ

)
. (18b)

Referring to their eigenvalues, in any preferred order (but the same for both), as mi

and m̃i , and using the following shorthand

6n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), û = (cos θ cosϕ, cos θ sinϕ,− sin θ), and v̂ = (− sinϕ,

cosϕ, 0).
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m−
i j = mi − m j , (19a)

m̃−
i j = m̃i − m̃ j , (19b)

m̃+
i j = m̃i + m̃ j , (19c)

the powder-averaged signal (17) attains the form

S̄ = e−m̃+
12

∫
dcos θ dϕ

4π
e−(m̃−

31+m̃−
12 sin

2ϕ) sin2θ (20)

× I0
(√(

m−
12

)2 + 2m−
12

[
m−

31 + (m−
13 + m−

23) sin
2ϕ

]
sin2θ + (

m−
13 + m−

21 sin
2ϕ

)2
sin4θ

)
,

upon substantial algebraic manipulation.
Reference [13] found series expansions for this form in a different context. We

can use its results. Namely,

S̄ = e−m̃+
12

∞∑

k=0

k∑

m=0

qmkYmk , where (21a)

Ymk =
∞∑

n=0

n∑

l=0

√
π(−1)n

l!(n − l)!
(
m̃−

31

)n−l(
m̃−

12

)l

22(m+l)+1

(
2m + 2l

m + l

)
(n + k)!

(
n + k + 1

2

)! , and

(21b)

qmk =
(
m−

31

)k−m

(k−m)!
k/2∑

j=0

(
m−

12

) j
Ik− j

(
m−

12

)

2 j j !(m−
13+m−

23

)2 j−m 2F̃1

(
m−k,−2 j;m+1−2 j;m−

13+m−
23

m−
12

)
,

(21c)

with the following three alternatives for Eq. (21b):

Y (1)
mk =

√
π

22m+1

(
2m

m

) ∞∑

n=0

(
m̃−

13

)n
(k + n)!

n!(k + n + 1
2

)! 2F1

(
m + 1

2 ,−n;m + 1; m̃−
21

m̃−
31

)
, (22a)

Y (2)
mk =

√
π

22m+1

∞∑

n=0

(
m̃−

21

)n
(k + n)!(2n+2m

n+m

)

22nn!(k + n + 1
2

)! 1F1
(
k + n + 1; k + n + 3

2 ; m̃−
13

)
,

(22b)

Y (3)
mk =

√
π

22m+1

(
2m

m

) ∞∑

n=0

(
m̃−

13

)n
(k+n)!

n!(k+n+ 1
2

)! 2F2
(
m+ 1

2 , k+n+1;m+1, k+n+ 3
2 ; m̃−

21

)
.

(22c)

Here, i Fj (. . .) are the confluent hypergeometric functions [3], tilde denoting regu-
larization. Note that these expressions apply to the most general case, in which the
confinement tensor (and thus the tensors that are functions of it) have three distinct
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eigenvalues. Special cases associated with coinciding eigenvalues are discussed in
the appropriate occasion later.

Which alternative among Eq. (22) yields better convergence is a matter of how the
eigenvalues m̃i are chosen to be ordered, by way of the sizes and signs of m̃−

i j . As a
general guideline it would be wise to order the eigenvalues so as to avoid a sequence
that alternates in sign, and with a large expansion parameter. Take Eq. (22b) for
instance. Given that 1F1(k+l+1; k+l+ 3

2 ; m̃−
13) > 0 and increasing for all m̃−

13, it
would be beneficial to make m̃−

13 negative (and large if possible), while keeping m̃
−
21

positive (and small if possible). For a given set of eigenvalues m̃i , ordering them
in the fashion m̃1 < m̃2 < m̃3 would be along this guideline, whereas the ordering
m̃2 < m̃3 < m̃1 would result in a sequence with larger terms and alternating sign.

Note however that while T◦ is a monotonic (decreasing) function of �, T× is
not; see Eq. (7). Through Eq. (18) this means that their mixtures M and M̃ are not
necessarilymonotonic in the confinement�. Hencewhat ordering of the confinement
eigenvalues �i achieves what ordering in the eigenvalues mi and m̃i is a question
which has an answer only on a case-by-case basis. Furthermore, the ordering of �i

that yields a desirable ordering of m̃i for a particular one of Eq. (22) may not produce
an ordering of mi as desirable for the convergence of qmk in Eq. (21c).

3.1 Axisymmetric Confinement

We refer to the condition when two of the eigenvalues �i of the confinement tensor
coincide as axisymmetric confinement. Under this condition, the series expansions
above undergo simplifications.

The most drastic simplification occurs when �1 = �2. That is, given that two
eigenvalues coincide, assigning first and second place to them is the wisest choice
as far as the evaluation of the series expansions (21) is concerned.

First, the coefficient qmk simplifies as7

7For this, it needs to be noted [13, supplementary information] that the way qmk arises in the
calculation—before ever arriving at Eq. (21c)—is that it is the coefficient in the (double) series
expansion of the Bessel function in Eq. (20):

I0(. . .) =
∞∑

k=0

k∑

m=0

qmk sin
2mϕ sin2kθ .

Upon all coefficients in the argument except for m−
13 vanishing due to axisymmetry, one has

I0
(
m−

13 sin
2θ

) =
∞∑

k=0

(
m−

13

)
2k

(k!)222k sin2kθ ,

which, comparing to the previous (double) expansion, implies Eq. (23).
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qmk =
{

δm0(m
−
13)

k

( k
2 )!( k

2 )!2k , even k

0 , odd k
. (23)

The coefficient Ymk , on the other hand, loses the interior summation in Eq. (21b)
due to m−

12 vanishing. The remaining summation can be identified according to the
definition of hypergeometric functions [3] as

Ymk =
√

π

2m+1

(
2m

m

)
k!

(
k + 1

2

)! 1F1
(
k + 1; k + 3

2 ; m̃−
13

)
, (24)

which yields via Eq. (23) and Eq. (21a)

S̄axy = √
πe−m̃+

12

∞∑

n=0

(
2n

n

)(
m−

13

)
2n

22n+1

1F1
(
2n + 1; 2n + 3

2 ; m̃−
13

)

(
2n + 1

2

)! . (25)

This expansion is not so sensitive to the ordering of eigenvalues number 1 and
3, as the expansion parameter (m−

13) is squared, and the hypergeometric function
1F1(2n+1; 2n+3/2; m̃−

13) > 0 for all arguments.
We depict in Fig. 3 the evaluation of the powder averaged signal (25) for axisym-

metric confinement for representative values of encoding parameters. In Fig. 3a, the
confinement is anisotropic (prolate), whereas in Fig. 3b, it is (nearly) isotropic. The
bell-shaped dependence on the relative angle ψ between the gradient directions is
seen in both cases, which is a sign that diffusion is not free [29]. This dependence
is due mainly to the exponential prefactor in Eq. (25) that has nothing to do with
the difference between the confinement eigenvalues (anisotropy). When the mixing
time is increased, the bell-shaped modulation, indicating confinement regardless of
anisotropy , stops overwhelming the relatively smaller influence of the rest of the
expression (25): see Fig. 3awhere the confinement is anisotropic. In an isotropic con-
finement, on the other hand, angular modulation simply disappears when the mixing
time is increased (Fig. 3b), illustrating that the angular modulation that survives the
increase in mixing time is due only to compartmental anisotropy, and not due to the
fact of confinement (or to ensemble anisotropy, which was already eliminated by
powder averaging).

3.2 Insights from Two Dimensions

The signal expressions for double encoding are a bit unwieldy to get a conceptual
handle on. However, some insight can be gleaned from considering the orientational
averaging in two dimensions.

Obviously, in the spirit of Eq. (9), the 2D orientationally averaged signal can be
written as
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Fig. 3 Dependence of powder averaged signal (25) on the angle ψ between double-encoding gra-
dient directions. a Prolate confinement �, with eigenvalues {1, 1, 0.1} in arbitrary units. � = 10
and δ = 1, in units of �−1

1 . The mixing time tm was set to the following multiples {1, 2, 6, 30} of
δ. The gradient strength is set such that D0g2/�3

1 = 0.16, with D0 being the unit of diffusivity.
b Isotropic confinement �, with eigenvalues {1, 1, 1} in arbitrary units. � = 3 and δ = 2/3, in
units of�−1

1 . The mixing time tm was set to the following multiples {1, 3/2, 3, 6} of δ. The gradient
strength is set such that D0g2/�3

1 = 1. c Free diffusion with varying anisotropy (prolate) for com-
parison, with diffusivity D eigenvalues {D0, eD0, eD0}. Across the three groups of plots, diffusion
weighting b = g2δ2(� − δ/3) takes the values {0.4, 1.4, 10} in units of D−1

0 , whereas each group
of plots have the eccentricity parameter set to {0.01, 0.1, 0.2}

S̄2D =
∫

dβ

2π
Sc(g(β), g(β + ψ)) . (26)

That is, there is no normal vector to integrate over; everything takes place in an (x, y)
plane. The same steps Eq. (10) through Eq. (15) apply, and one has

S̄2D = e−g2Tr
(
T◦+T× cosψ

)
I0

(
g2(T ◦

1 − T ◦
2 ) cosψ + g2(T×

1 − T×
2 )

)
. (27)

The dependence on the relative angle ψ of the gradient directions occurs both in the
exponential attenuation factor and in the Bessel function. The angular dependence
in the Bessel function has to do with anisotropy (T ◦

1 − T ◦
2 ) which the exponential

factor is insensitive to due to the trace. In the exponent, on the other hand, the angular
dependence is controlled by TrT×, whose presence is due to confinement (since
T× → 0 in the free diffusion limit). For large mixing times (tm�i � 1) the latter
drops out and the angular modulation due to anisotropy is liberated. However, for
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smallermixing time, it turns out that the angular dependence of the exponential factor
dominates, which is due to confinement, suppressing the signature of anisotropy.

An interesting double-encoding scheme is its “symmetrized” version [35], which
fixesψ = π/2, but varies themagnitudes g1 = g cosα and g2 = g sinα as a function
of some parameter α. In that scenario, one can easily calculate that

S̄sym2D = e− g2

2 Tr(T◦) I0

(
g2

2
√
2

√(
�T 2◦ + �T 2×

) + (
�T 2◦ − �T 2×

)
cos 4α

)

, (28)

showing that the modulation due to confinement in the exponential factor drops out,
and one of pure anisotropy remains (with �T◦ denoting T ◦

1 − T ◦
2 etc.). The result

is a ‘cleaner’ version of the signal modulation wherein the confinement anisotropy
is the only source of angular modulation characterized by the cos 4α dependence.
It should be remembered though that the confinement model is purely Gaussian, as
such does not account for compartmental kurtosis. When truly restricted diffusion is
considered, the compartment anisotropy and compartmental kurtosis both yield the
same type of angular dependence compromising the interpretation of such angular
dependence except when the compartments are isotropic [35].

3.3 One-Dimensional Diffusion Under High Gradient: g−2

Scaling

A special case of interest is when the compartment has an extremely elongated shape,
resembling a “stick”. Such extremely anisotropic shapes combined with an asymp-
totically large gradient strength (g → ∞) tend to exhibit power-law dependence on
the gradient strength g or the wave vector q = δg. In what follows, we confirm that
the orientationally averaged signal (25) is no exception. Physical interpretation of
the limits or extremes involved is remarked on at the end.

The two transverse confinement eigenvalues �1 = �2 = �⊥ approach infinity
while �3 = �‖ is finite. Accordingly, m1 = m2 = m⊥ = 0 and m3 = m‖ is finite
(similarly for m̃i ). Combined with a gradient g → ∞, noting that m‖ ∼ g2 and
m̃‖ ∼ g2 due to the definition (18), the orientationally averaged signal (25) assumes
the asymptotic form

S̄stick ∼
⎛

⎝2m̃‖

√

1 −
(
m‖
m̃‖

)2
⎞

⎠

−1

; (29)
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see footnote 8 for details.8 When we substitute from Eq. (18), the power-law depen-
dence (∼ g−2) becomes obvious:

S̄stick ∼
⎛

⎜
⎝2g2

(
T ◦

‖ + T×
‖ cosψ

)

√√
√
√1 −

(
T ◦

‖ cosψ + T×
‖

T ◦
‖ + T×

‖ cosψ

)2
⎞

⎟
⎠

−1

. (30)

This result should be compatible with the findings of Ref. [13] in the free diffusion
limit (� → 0). It is easy to see that Eq. (7) implies T×

‖ → 0 and T ◦
‖ → D‖δ2(� −

δ/3) as � → 0, yielding

S̄freestick ∼ (
2g2δ2D‖

(
� − δ

3

)
sinψ

)−1
, (31)

which is in fact the powder averaged signal of a rank-1 diffusivity tensor
( D‖ 0 0

0 0 0
0 0 0

)

under the rank-2 measurement matrix g2δ2
(
� − δ

3

)
(

1+cosψ 0 0
0 1−cosψ 0
0 0 0

)

of DDE, as

predicted by Ref. [13]. This scaling (∼ g−2) of the signal of stick-compartments
under rank-2 measurements (planar encoding) has been recently confirmed in vivo
[1]. Note that the expression is invalid for ψ = 0 and ψ = π where the two encoding
directions coincide, and the corresponding measurement matrix is rank-1.

Lastly, we address the physical interpretation of the limits of large confinement
(�) and gradient (g) values. Note that the final expressions such as Eqs. (21)–(22)
and (25) come out in terms of the eigenvalues of the matrices M and M̃, which are
in turn defined in Eqs. (18) and (7). The sense in which a confinement eigenvalue �

and gradient strength g is large follows in particular from Eq. (7): In the same order
as the limits have been carried out, infinite (transverse) confinement (�⊥ → ∞)
is to be interpreted physically as g2D⊥�−3

⊥ 
 1, while infinite gradient (g → ∞)

8At the extreme of m1 = m2 = m⊥ = 0, the signal (25) becomes

S̄stick ∼ √
π

∞∑

n=0

(
2n

n

)
m‖2n

22n+1
1F1

(
2n + 1; 2n + 3

2 ; −m̃‖
)

(
2n + 1

2

)! .

The hypergeometric function can be rewritten by a so-called Kummer transformation as

1F1(2n + 1; 2n + 3
2 ; −m̃‖) = e−m̃‖

1F1(
1
2 ; 2n + 3

2 ; m̃‖) ∼ (
2n + 1

2

)!/√π m̃2n+1
‖ ,

where the second step uses the asymptotic form (m̃‖ → ∞) of the Hypergeometric function [10].
Hence, the signal attains the form

S̄stick ∼
∞∑

n=0

(
2n

n

) m2n‖
22n+1m̃2n+1

‖
,

converging to Eq. (29) for |m‖/m̃‖| < 1, which can be verified by carefully considering the func-
tional dependences arising from the explicit form (18) of the matricesM and M̃ (with the exception
of the encoding angles ψ = 0 and ψ = π where the two encoding directions coincide).



216 C. Yolcu et al.

is to be taken to mean g2D‖�−3
‖ � 1. One may write D−1

‖ �3
‖ 
 g2 
 D−1

⊥ �3
⊥ in

short. It should be noted that this order-of-magnitude treatment ignores potential
exceptions or extremes which may arise from very particular combinations of the
protocol parameters δ, �, tm, and ψ.

4 Single Diffusion Encoding

The powder-averaged single-encoding signal can be obtained by way of “hacking”
its double-encoded counterpart. One notes that Sc = e−gᵀT◦ g is the single-encoding
signal at the compartment level [49]. Then the features of the form (6) to get rid of
are (i) the presence of a second vector g2 unequal to the first, (i i) the presence of
cross-coupling (T×), and (i i i) the double occurrence of self-coupling. The first is
hacked away by setting ψ = 0. For the second, one simply sets T× = 0.9 The result
is Sc = e−2gᵀT◦ g , suffering from the third problem above, which is fixed by replacing
g → g/

√
2. All this yields via Eq. (18)

M = 1
2g

2T◦ = M̃ , (32)

which is the substitution that converts the powder-average expressions for double-
encoding into those of single-encoding.

With this condition applied, the m̃−
i j ’s appearing in Eq. (21) turn into m

−
i j ’s. How-

ever this alone does not produce drastic simplifications such as reducing summations.
Rather than using Eq. (21), in fact, it is better to note that other results in Ref. [13] are
quite suitable in the case of single-encoding. Since the compartment signal has the
form Sc = e−Tr(T◦ ggᵀ), with the matrix ggᵀ axisymmetric by dint of being rank-1,
the results of Ref. [13] for axisymmetric diffusion or measurement tensor can be
applied. Written in terms of the parameters of the present discussion, the relevant
formulas of Ref. [13] indicate the following alternative expressions

S̄(1) =
√

π

2
e−g2T ◦

3

∞∑

n=0

g2n
(
T ◦
3 − T ◦

1

)n
(
n + 1

2

)! 2F1

(
1
2 ,−n; 1; T ◦

1 −T ◦
2

T ◦
1 −T ◦

3

)
, (33a)

S̄(2) = e−g2T ◦
3

∞∑

n=0

g2n
(
T ◦
1 − T ◦

2

)n

n!(2n + 1)! 1F1
(
n + 1; n + 3

2 ; g2(T ◦
3 − T ◦

1 )
)
, (33b)

S̄(3) =
√

π

2
e−g2T ◦

3

∞∑

n=0

g2n
(
T ◦
3 − T ◦

1

)n
(
n + 1

2

)! 2F2
(
1
2 , n + 1; 1, n + 3

2 ; g2(T ◦
1 − T ◦

2 )
)
,

(33c)

9Physically, this can be imagined as the limit tm → ∞. However, physics is not necessary. We
simply have a set of expressions, e.g. Eq. (21), containing T◦ and T× via Eq. (18) via Eq. (19), and
we want to remove instances of T×.
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S̄(4) =
√

π

2
e−g2T ◦

3

∞∑

n=0

(2n
n

)
g4n

(
T ◦
1 − T ◦

2

)2n

16n
(
2n+ 1

2

)! 1F1
(
2n+1; 2n+ 3

2 ; g2

2 (2T ◦
3 −T ◦

2 −T ◦
1 )

)
,

(33d)

for fully anisotropic � (hence T◦); the axisymmetric case is taken up below. These
summations are subject to the same guidelines that followed Eq. (22) except that the
caveats about conflicting eigenvalue ordering do not apply here. The single-encoding
expressions here only involve the self-coupling tensor T◦ which is a monotonically
decreasing function of �; see Eq. (7). Therefore the ordering of the eigenvalues T ◦

i
and �i are certain to be in exactly the opposite sense of each other.

4.1 Axisymmetry and the Power-Laws for Confined diffusion

The first alternative in Eq. (33) needs special care when T ◦
1 = T ◦

3 and the argu-
ment of the hypergeometric function 2F1(. . .) diverges. Invoking a property of the
hypergeometric function,10 and renaming T ◦

1 = T ◦
⊥ and T ◦

2 = T ◦
‖ , one finds11

S̄axy =
√

π

2
e−g2T ◦⊥(δ,�)

erf
(
g
√
T ◦

‖ (δ,�) − T ◦
⊥(δ,�)

)

g
√
T ◦

‖ (δ,�) − T ◦
⊥(δ,�)

. (34)

Here, we have also explicitly denoted the dependence on the encoding protocol’s
timing parameters as per Eq. (7). Note that in the free diffusion limit (� → 0, see
footnote 4), the known single-encoding powder-average signal [2, 18, 48]

10

lim
x→0

xn2F1
(
m+ 1

2 ,−n;m+1; y
x

) = (−y)n
(
m + n − 1

2

)!m!
(
m − 1

2

)! (m + n)! .

.
11Alternatively to using the results of Ref. [13] here, one may go back to the integral expression
(20). First, we note that axisymmetry, with the choice �1 = �2, makes the integrand independent
of ϕ, yielding

S̄ = 1
2 e

−m̃+
12

∫
dcos θ em̃

−
13 sin

2θ I0
(
m−

13 sin
2θ

)
.

We are not aware of a closed-form evaluation of this integral. However, its special case (32) relevant
here, making the arguments of the exponential and Bessel function match, has the result [12, 6.625–
4]

S̄ =
√

π

2
e−2m1

erf
(√

2m−
31

)

√
2m−

31

=
√

π

2
e−g2T ◦

1

erf
(
g
√
T ◦
3 − T ◦

1

)

g
√
T ◦
3 − T ◦

1

.

.
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S̄axy =
√

π

2
e−q2(�− δ

3 )D⊥
erf

(
q
√(

� − δ
3

)(
D‖ − D⊥

))

q
√(

� − δ
3

)(
D‖ − D⊥

) , (35)

with q = gδ, is recovered.
Two special limiting cases follow.

4.1.1 Stick: S̄ ∝ g−1 Scaling

When particles have negligible latitude to move in the transverse direction, the
orientationally-averaged signal (34) assumes a special form. In terms of the con-
finement model, this corresponds to�⊥ → ∞, which implies T ◦

⊥ → 0 via Eq. (7).12

The signal (34) then becomes

S̄stick =
√

π

2

erf
(
g
√
T ◦

‖ (δ,�)
)

g
√
T ◦

‖ (δ,�)

g→∞∼
√

π

2g
√
T ◦

‖ (δ,�)

�‖→0∼
√

π

2q
√(

� − δ
3

)
D‖

.

(36)

The large gradient regime has been important in identifying stick-like compartments
via the q−1 scaling, which has been observed in white-matter areas of the brain and
has been interpreted with the assumption of a free one-dimensional diffusion [23],
which is adequate for channels of straight long channels of infinitesimal diameter.
A notable exception is Ref. [33], which has incorporated the effects of finite size
and curvature to offer an explanation for any deviation from the q−1 scaling, most
apparent within gray matter. Ref. [33] also pointed out that such a scaling is not the
true asymptotic behavior of the signal; the latter is rather dictated by theDebye-Porod
law yielding q−4 scaling for narrow pulses [38], while an even steeper attenuation is
predicted when the pulses are wide.

The above expression suggests that a similar decay is expected for the gradient
magnitude rather than the q-value. The crucial difference is in the dependence on
the timing parameters {δ,�} of the SDE sequence, see Fig. 1. It would thus be
interesting, e.g. in white-matter, to investigate whether the dependence on the timing
parameters is more like 1/

√
� − δ/3 (free difusion along the fiber) or 1/

√
T ◦

‖ (δ,�)

(confined diffusion along the fiber), which would inform about the diffusion process
along the axons.

12The limits �⊥ → ∞ and g → ∞ are to be interpreted in the same sense as Sect. 3.3.
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4.1.2 Pancake: S̄ ∝ g−2 Scaling

For completeness, we consider the opposite case where particles are able to spread in
a plane, but not along the normal. Here, �‖ → ∞, implying T ◦

‖ → 0 via Eq. (7).13

One then has14

S̄pancake =
√

π

2
e−g2T ◦⊥(δ,�)

erfi
(
g
√
T ◦⊥(δ,�)

)

g
√
T ◦⊥(δ,�)

g→∞∼ 1

2g2T ◦⊥(δ,�)

�⊥→0∼ 1

2q2
(
� − δ

3

)
D⊥

.

(37)

Thus, the orientationally-averaged signal attenuates at a faster rate than in the case
of sticks. Similarly though, the dependence on the timing parameters are different in
free and confined diffusion scenarios.

5 Discussion

We have provided, for the first time, explicit expressions for the orientationally-
averaged SDE and DDE MR signal intensity for structures represented by confine-
ment tensors [49]. The latter is the effectivemodel of restricted diffusion when pulses
are long enough for the diffusing particles to traverse distances larger than the pore
size [34]. As such, our findings are relevant for a broad range of porous materials
featuring isolated, small pores.

The counterpart of these results for compartments of free anisotropic diffusion
were given in Ref. [13] for arbitrary encoding waveforms. Reference [13] showed
inter alia that the absence of axisymmetry could be discerned from the decay of the
orientationally-averaged signal by employing themost general formulas. Though not
rigorously studied here, we expect such arguments to be valid in the case of confined
geometries as well by employing Eqs. (21)–(22) and (33).

For the time being, considering arbitrary waveforms for confined compartments
seems extremely challenging. However, taking confinement into account is impor-
tant, since the free diffusion model lacks features (such as the dependence on relative
angle in double encoding) that a realistic signal will bear, see Fig. 3. Such bell-shaped
angular modulation was related to the radius of gyration of the pores [24] and has
since been used to estimate the apparent size of pores [4, 17, 29, 30, 41] via DDE
measurements. The underlying reason was thought to be a restriction effect [11] that
not only leads to an anisotropy of the diffusion process at a length scale smaller
than the pore size [26, 29, 31, 32], but also makes the apparent diffusion coefficient
depend on the diffusion time [15]. Thus, this effect is absent when free diffusion is
thought to take place within individual pores, see Fig. 3c. Our results indicate that

13The limits �‖ → ∞ and g → ∞ are to be interpreted in a sense analogous to Sect. 3.3, with ⊥
and ‖ interchanged.
14The imaginary error function has the properties i erfi(z) = erf(iz), and erfi(z) ∼ ez

2
/z

√
π.
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the confinement tensor framework is capable of capturing such angular modulation,
which makes it a suitable representation of diffusion within microdomains [22, 34,
49]. This is important in applications like q-space trajectory imaging [47] and dif-
fusion tensor distribution imaging [45], which aim to characterize the structure of
subdomains using general gradient waveforms.

Another angular modulation that is apparent in Fig. 3 is w-shaped, which was
pointed out by Mitra [24] for randomly distributed sticks. Later, it was proved that
the dominant contribution to such angular modulation had the functional form cos 2ψ
for fully restricted structures and cylinders of finite diameter [28]. Such modulation
thatmanifests itself at twice the “angular frequency” [19, 24, 28] is present evenwhen
diffusionwithin the subdomains is envisioned to be free as long as it is anisotropic, see
Fig. 3c. Thus, suchmodulation is truly indicative of the anisotropy of the subdomains,
be it free (Fig. 3c), confined (Fig. 3a, b), or truly restricted [28, 32]. For more
information on such anisotropy, the reader is referred to the review on this topic by
Ianuş et al. [14] in this book series.

From a mathematical point of view, the expressions in Ref. [13] provided the
Laplace transform of a tensor distribution, which includes rotated copies of a given
diffusion tensor wherein all orientations are equally likely, thus extending the mod-
eling approach that employs parametric diffusion tensor distributions [16, 21, 37,
39] to a new type of tensor distribution. Evaluating the signal, in a similar fashion,
for confinement rather than diffusion tensors can be regarded as the evaluation of a
transform whose kernel is the compartmental signal given in (6) instead of the kernel
of the matrix Laplace transform e−BD.

6 Conclusion

We have given analytical expressions for the orientationally averaged diffusion MR
signal originating from confined anisotropic compartments for two relatively simple
encoding schemes.Anumber of observations related to signalmodulation and power-
law tails were made for such confined pores. These findings complement and extend
the exact expressions for locally free diffusion provided in Ref. [13] to confined
diffusion albeit for SDE and DDE measurements.
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Abstract Clinical tractography is a challenging problem in diffusion tensor imaging
(DTI) due to persistent validation issues. Geodesic tractography, based on a shortest
path principle, is conceptually appealing, but has not produced convincing results so
far. A major weakness is its rigidity with respect to candidate tracts it is capable of
producing given a pair of endpoints, showing a tendency to produce false positives
(such as shortcuts) and false negatives (e.g. if a shortcut supplants the correct solu-
tion).We propose a new geodesic paradigm that appears to overcome these problems,
making a step towards semi-automatic clinical use. To this end we couple the DTI
tensor field to a family of Riemannian metrics, governed by control parameters. In
practice these parameters may allow for edits by an expert through manual selec-
tion among multiple tract suggestions, or for bringing in a priori knowledge. In this
paper, however, we consider an automatic, evidence-driven procedure to determine
optimal controls and corresponding tentative tracts, and illustrate the role of edits to
remediate erroneous defaults.

L. Florack · R. Sengers (B) · S. Meesters · L. Smolders · A. Fuster
Eindhoven University of Technology, Department of Mathematics & Computer Science,
NL-5600 Eindhoven, MB, The Netherlands
e-mail: H.J.C.E.Sengers@tue.nl

L. Florack
e-mail: L.J.M.Florack@tue.nl

S. Meesters
e-mail: S.P.L.Meesters@tue.nl

L. Smolders
e-mail: L.Smolders@student.tue.nl

A. Fuster
e-mail: A.Fuster@tue.nl

© The Author(s) 2021
E. Özarslan et al. (eds.), Anisotropy Across Fields and Scales,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-56215-1_11

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56215-1_11&domain=pdf
mailto:H.J.C.E.Sengers@tue.nl
mailto:L.J.M.Florack@tue.nl
mailto:S.P.L.Meesters@tue.nl
mailto:L.Smolders@student.tue.nl
mailto:A.Fuster@tue.nl
https://doi.org/10.1007/978-3-030-56215-1_11


226 L. Florack et al.

1 Introduction

Tractography aims at reconstructing bundles of nerve fibers in the brain (aka tracts)
from diffusion weighted magnetic resonance imaging (DWI), the only neuroimaging
technique enabling non-invasive in vivo imaging of the brain’s fibrous structure.
Unfortunately, persistent issues curb clinical progress [14, 53]. Decades after its
inception [5, 7, 23, 30, 38, 47], lack of consensus and even skepsis as to its clinical
feasibility prevail. This has sparked new incentives to specifically address current
limitations in quantitative evaluation studies and international competitions [9, 12,
13, 37, 39, 51].

The geometric rationale for Diffusion Tensor Imaging (DTI), in its original form
proposed by O’Donnell et al. [43] and, from a somewhat different perspective, by
Lenglet et al. [31], and subsequently adapted by Fuster et al. [21], Hao et al. [24, 25],
and several others, stipulates that one can ‘geometrize away’ local diffusivity patterns
inside the brain. The idea is to incorporate anisotropic diffusivity of water in brain
whitematter, viewed as a porousmediumwith an orientational preference along axon
bundles [57], into the intrinsic geometry of a suitably defined, curved manifold (akin
to the geometrization of gravitational forces in general relativity theory). A similar
approach is taken by Aumentado-Armstrong et al. [4], where a curved manifold is
used to model conductivity of electrical signals in the heart muscles. In the case
of DTI a Riemannian manifold presents itself, since its defining metric represents
a positive definite quadratic form (or inner product) that can be formally mapped
one-to-one onto the DTI tensor. Due to its modest performance, however, geodesic
tractography has been largely abandoned in return for other approaches. A notable
exception is the probabilistic approach by Hauberg et al. [26] and Schober et al. [55].

Our goal is to provide a versatile deterministic Riemann-DTI geometric paradigm
for DTI geodesic tractography, revisiting original ideas (loc. cit.), which overcomes
some of the main weaknesses, such as producing false positives (e.g. shortcuts) and
false negatives (e.g. a shortcut is obscured by the correct solution). Since themapping
of DTI data to biologically meaningful tracts is generally ill-posed, we aim for a
flexible metric equipped with control parameters. This admits adaptation to fiducial
‘ground truth’ tracts, inwhich data-extrinsic knowledgemay be incorporated (e.g. via
manual edits by an expert or via machine learning). The parameters control a locally
smooth, spatially varying so-called ‘3-bein’, or triad, detailed in Sect. 2 (cf. Savadjiev
et al. [54] and Piuze et al. [48] for a similar idea in the context of myofiber geometry
from DTI, based on Cartan’s method of moving frames). In Sect. 3 we perform
experiments to illustrate the theory, provide proof of principle, and present results in
the context of a simple DTI-tractography phantom for the sake of illustration. There
are no obstacles for application on more sophisticated simulated or real data.
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2 Theory

Differential geometric approaches in DWI are not new [1, 3, 15, 20–22, 24, 25, 31–
33, 43, 46, 48]. The premise underlying the Riemann-DTI paradigm is that tissue
microstructure imparts non-random barriers to water diffusion [8, 57]. The fibrous
nature of brain white matter, comprising bundles of elongated axons connecting
nerve cells in surrounding greymatter regions, facilitatesmobility ofwatermolecules
along fiber directions. Since DTI captures the main diffusion anisotropy, it is natural
to stipulate a Riemannian metric proportional to the inverse of the diffusion tensor.
In this way, a relatively large mean free path is tantamount to a relatively short
Riemannian distance, so that the problem of tractography can be related to a geodesic
(‘shortest path’) problem. Candidate tracts can then be obtained by direct integration
of the geodesic equations, by functional minimization of the Riemannian length (or
related cost) functional for curves with fixed endpoints, or (with some care) by
inference from the Hamilton-Jacobi equation [28, 45, 50, 52].

Despite the appealing heuristics supporting the geometric paradigm, there are
serious caveats we need to take into consideration:

1. In a geodesically complete space any pair of points is connected by at least
one geodesic, raising the issue of ‘false positives’ (curves not corresponding to
meaningful tracts).

2. A well-posed relation between geodesics as ‘paths of least resistance’ and mean-
ingful neural tracts is not self-evident. Tissuemicrostructure, which remains unre-
solved at scanner resolution, induces mesoscopic diffusivity patterns involving
more complex factors than plain presence or absence of nerve axons [41, 42,
44]. As a consequence, there may be many a priori equally viable microstructural
explanations for any given DTI image,1 so that a one-to-one mapping between
DTI and Riemannian metric is unlikely to work for tractography.

We will address both concerns and outline our strategy towards an improved frame-
work.

Ad caveat 1: Geodesic completeness , tantamount to (huge) redundancy, may be
used to our advantage, provided two conditions are met:

(i) Meaningful tracts correspond, to acceptable approximation and at least piece-
wise, to geodesics.

(ii) One can identify true (or reject false) positives, based on some deterministic or
probabilistic criterion.

The first condition is our main hypothesis, the second one is a constitutional part
of the geodesic tractography problem. The problem then boils down to finding ‘the
right’ metric together with effective connectivity criteria for pruning its geodesics
[2, 50, 56]. Streamline tractography, in its simplest form a singular limit of geodesic

1This fact also implies that ‘ground truth’ simulations must be interpreted with great care in order
not to penalise experimental results that deviate from the stipulated ground truth used to create a
phantom if such results are equally compatible with data evidence.
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tractography based on a degenerate metric, lacks completeness, a direct consequence
of its first order nature, which prohibits generic endpoint constraints. As a result,
odds are that two fiducial endpoints (picked by an authoritative expert, say) fail to
be connected, leaving us in a quandary how to repair for ‘false negatives’. Clearly,
geodesic completeness requires (at least) second order schemes.

Ad caveat 2: To allow for prior knowledge or retrospective corrections we do not
determine a unique metric in terms of DTI data evidence a priori. Instead we aim
for optimal control parameters for a family of metrics and induced geodesics in a
joint (semi-)automated procedure. The premise is that, due to unknown microstruc-
tural factors, apparent diffusivities reflect fiber orientations at best qualitatively. By
investigating the parameter unfolding of the family of metrics along with geodesic
pruning we may investigate whether a stable result compatible with ground truth can
be achieved (bearing in mind footnote 1). To this end we have conducted a feasibility
study on the Fibercup [13, 49] simulator to clarify all conjectured features of our
approach in a simplified context. There are no fundamental obstructions for appli-
cation to more sophisticated phantoms or to real data, but this elaboration is left for
future work.

For computational reasons one could employ any coordinate basis on the tan-
gent bundle T M induced by an arbitrary coordinate map. Such a basis is com-
monly denoted by {∂i .=∂/∂xi }i=1,2,3. (A natural choice would be to employ the
same coordinates as those given by a Cartesian coordinate frame of the associated
Euclidean space.) However, given a suitable metric gi j , we may instead opt for a
special, g-orthogonal (non-coordinate, or anholonomic) basis {ea}a=1,2,3. This is the
triad alluded to in Sect. 1. If we write the new basis vectors in terms of linear com-
binations of the coordinate vectors,2

ea = eia∂i , (1)

then the coefficients eia define the transformation matrix relating the general coordi-
nate basis to the triad. We may define a new metric holor with entries hab relative to
the triad by the standard change-of-basis formula:

gi j e
i
ae

j
b = hab . (2)

The triad can be chosen so as to put hab into a convenient form. In order to illustrate
this ‘gauge fixing’, let us assume that the dual metric ginv is identified with the DTI
matrix D, as originally proposed. Take h=diag(1/λ1, 1/λ2, 1/λ3), in which the λa

are the eigenvalues of D. In the parlance of classical matrix theory [27], ea is then
the eigenvector of D associated with λa , which, in turn, defines a rank-one matrix
Za =ea ⊗ ea (‘Frobenius covariant’). Equation (2) is the geometrical counterpart
of the classical Lagrange-Sylvester matrix decomposition, D=∑3

a=1 λa Za , and the
eigenvalues are our controls. We may vary the λa and observe the effect on the

2The Einstein summation convention for identical upper/lower index pairs applies throughout in
tensorial equations.
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metric, induced geodesics, and ultimately fiber tracts. This parameter freedomunifies
originally proposed models for the connection between DTI and Riemannian metric
[21, 24, 25, 31, 43], since all instances can be obtained by slick (local or global)
choice of λa . This includes streamline tractography via singular perturbation theory.

To find a geodesic we fix seed and target points, A and B say, and minimize the
length functional for curves connecting these points. This can be extended to any pair
of regions provided one employs an efficient algorithm. Solving the Hamilton-Jacobi
equation (with the help of fast marching methods) seems attractive in this respect,
but, by design, provides only global minimizers, and is therefore not likely to solve
the shortcut problem. Instead we opt for direct, coarse-to-fine minimization of the
parametrization invariant functional

Lg(γ) =
∫ tB

tA

√
gi j (x(t))ẋ i (t)ẋ j (t) dt , (3)

in which
γ : [tA, tB] → R

3 : t �→ x(t) (4)

is an arbitrarily parametrized curve connecting A= x(tA) and B= x(tB) in R3 and ẋ
denotes its derivative. We embed the metric in a multiresolution family, with scale
parameter σ ∈R

+, according to the multiplicative scheme proposed by Florack et al.
for positive symmetric matrices [16, 18], viz. if g is the Gram matrix with entries
gi j , then

g(x, σ ) = exp ((φσ ∗ ln g)(x)) , (5)

in which exp and ln are matrix-exp and matrix-log, φσ is the L1-normalised isotropic
Gaussian kernel of scale σ [17, 19, 29, 34], and ∗ denotes entry-wise convolution.
(This definition ensures that the dual of a blurred metric equals the blurred dual
metric.) Since themetric can be shown to becomeEuclidean in theσ →∞ limit under
suitable, weak conditions, the asymptotic minimizer is the straight line connecting
A and B. As one gradually decreases σ , this minimizer (geodesic at resolution 1/σ )
is expected to deform likewise gradually, while adapting to the refined metric (at
this level of rigor we ignore the problem of scale space bifurcations, cf. Damon [10,
11]). A higher resolution geodesic can then be found by adding a few control points
roughly equidistantly along the curve in proportion to resolution, andminimizing the
multivariate function of the control points representing our discretization of Eq. (3).
Now suppose we have a (local) minimizer at some scale σ , then along with a scale
refinement σ →σ −dσ (we take dσ ∝σ ) we increment the number of control points
along the curve, and seek a new minimizer in the vicinity of the previous one. In
this way one can arbitrarily refine the geodesic curve (until grid scale, if needed), cf.
Fig. 1.

The multiresolution scheme for geodesics sketched above applies to each fixed
member of the (λ1, λ2, λ3)-family of metrics, and should not be confused with opti-
mization with respect to the unfolding of this family as a function of (λ1, λ2, λ3).
The details of this are given in the next section, notably Eq. (6).
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Fig. 1 Coarse-to-fineminimization of the length functional in Eq. (3) is implemented as an iterative
multivariate function minimization in which the number of variables gradually increases in propor-
tion to resolution. The control points represent a Bezier curve (blue) which by default we initialize
by the unique Euclidean geodesic (dotted line), although this initialising curve may be manually
overruled. In this example there are two control points, P2 and P3 (recall that the endpoints, P1 and
P4 in this case, remain fixed). Note that the control points in general do not lie on the curve itself.
These points are part of the ‘behind-the-scenes’ machinery in the minimization procedure and in
themselves do not have any anatomical meaning. However, given k points in space, we may con-
struct a Bezier curve through these points (although not uniquely). This may be useful for manual
initialisation or correction by an expert, based on anatomical landmarks.

3 Experiments

In the following experiments we use an operational procedure to automatically select
‘the right’ (anisotropic) scaling of the control parameters λa for the triad, relative to
the original eigenvalues of the diffusion tensor. To begin with, we have opted for a
single, global parameter ε∈(0, 1], introduced so as to rescale the diagonal metric hinv

(the dual of h in Eq. (2)) by3 diag(1, ε, ε). The global character of ε allows us to leave
λ1 unscaled, since any scaling of λ1 can be absorbed into ε. Effectively this yields
an ε-parametrized family of Riemannian metrics gε, replacing the unscaled metric
g=gε=1 in Eqs. (2), (3) and (5). However, we only use this scaling whenever the
fractional anisotropy (FA) [6] of the diffusion tensor is large enough (here we choose
FA=0.15 as the ad hoc threshold) to ensure a well-defined main eigendirection.4

Below this threshold the diffusion tensor is kept unscaled. As a result we obtain an
ε-parametrized family of geodesics γε, cf. Eq. (4). These geodesics are computed one

3In principle, the control parameter triple (λ1, λ2, λ3) permits local adaptation leading to a 3-
parameter family in every voxel. The singular limit ε=0 corresponds to streamline tractography and
is excluded for its geodesic incompleteness. Values ε>1 may affect the ordering of the eigenvalues
of h inv.
4This ad hoc anisotropy threshold calls for a more rigorously motivated alternative, but it serves
our purpose in this feasibility study, viz. to ensure well-posedness.
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by one by the coarse-to-fine scheme outlined at the end of Sect. 2 for each fiducial
pair of endpoints and each setting of ε.

Subsequently each geodesic thus obtained is quantitatively evaluated in terms of
the tract length unbiased, nonlinear connectivity functional [2, 50, 56]

C(γε) = Lη(γε)

Lg(γε)
, (6)

in which η denotes the standard Euclideanmetric (so that Lη(γ ) is the usual length of
γ ), recall Eq. (3). Note that in the denominator we use the unscaled diffusion metric
g=gε=1, for which the curve γε is, in general, not a geodesic (unless ε=1). Using the
scaled length gε in the denominator would entail a bias towards ε = 1. Each geodesic
γε will almost surely not correspond to a streamline (unless both endpoints are on the
streamline), which implies that there exists a t ∈ (0, 1) such that the tangent vector
γ̇ε(t) has a component in the direction of a non-principal eigenvector of the diffusion
tensor. Since this component scales with ε−1, the connectivity would vanish for
ε → 0 even if the geodesic remains (approximately) the same curve. Instead, the ε

control parametermerely serves to single out an optimal, metric-compatible geodesic
through a suitable anisotropic scaling of the metric tensor. The connectivity criterion
for the latter is based on data evidence, viz. average apparent diffusivity, which should
not involve ε. Connectivity C(γε) is thus some average measure of diffusivity along
γε. Parameter values

ε∗ ∈ argmax
ε∈[δ,1]C(γε) , (7)

for some fixed 0<δ	1, at which locally 5 optimal connectivity is attained, are tract-
specific sharpening parameters, affected in a still unknown manner, by underlying
microstructure. The corresponding tracts γε∗ are called optimal tracts.

As illustrated in Fig. 2 for the Fiberfox-reconstructed Fibercup phantom with
addedRiccian noise [40] (cf. Fillard et al. for a detailed description [13] of the original
Fibercup) only optimal tracts are retained. Since it is known that the inverse metric
has certain shortcomings (e.g. see [24]), we also employed our automated procedure
in combination with one of the other metric proposals in the literature, namely the
adjugate metric [21, 22].We chose this one, because it is derived from first principles
of the underlying diffusion process and in addition it’s very easy to implement. In
Fig. 2, the optimal tracts found for the inverse (bottom-left) and adjugate DTI metric
(bottom-right) emerge for different optimal parameter values, but are, remarkably,
virtually indistinguishable. As the adjugate DTImetric is essentially a local isotropic
scaling of the inverse DTI metric, it is a noteworthy feature that we are able to obtain
essentially the same tracts in both cases with a family of metrics characterised by a
single, global parameter. After all, the governing geodesic equations for the inverse
and adjugate are not the same. In practice, a broad range of parameter values (the
high plateaux in the graphs) can be used to single out essentially the same tracts,
making this procedure robust with respect to the precise choice of ε. The experiment
shows that, in all cases and by virtue of proper placement of endpoints, correct tracts

5 We define argmaxx f (x)
.= {x | f (y) ≤ f (x) for all y in a neighbourhood of x}.
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Fig. 2 (Top-left) Ground truth tracts (for various seed points); illustration adapted from Fillard
et al. [13]. (top-right) Tracts obtained by using the unscaled inverse (red), respectively adjugate
(blue) DTI tensor as the default metric for geodesic tractography. Both metrics produce shortcuts
(false positives) instead of following the U-shape fibers, leaving false negatives. (middle-left) Per-
tract connectivity for the ε-parameter unfolding of the inverse DTI metric, g=Dinv. (middle-right)
Idem for the adjugate DTI metric, g=det DDinv. Colors correspond to those used for the tracts in
the bottom two figures. The red dots indicate the tract-specific parameter values ε∗ ∈(0, 1] for the
metrics used for each optimal tract. This optimal parameter is not affected by a suitable (global)
normalization of g, meaning that the absolute value of the connectivity is inherently meaningless. It
is, however, the relative value that determines the optimal parameter. Note the logarithmic scale for
ε. (bottom-left) Optimal results obtained by automatic optimization for inverse DTI metric ansatz.
(bottom-right) Optimal results obtained by automatic optimization for adjugate DTI metric ansatz.
The latter two results are virtually indistinguishable, but optimality is obtained at different control
parameter settings.
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Fig. 2 (continued)

are found automatically, and, in particular, that shortcuts do not occur. To assess the
robustness to placement of endpoints, in Fig. 3 the optimal tracts are computed for
pairs of perturbed endpoints, demonstrated for the adjugate DTI metric.

Low connectivity typically corresponds to shortcuts. Figure 4 shows optimal tracts
for each pair of corresponding (ground truth) seed and target points (top), as well as
connectivities for optimal tracts between a selection of seed point and all remaining
target points (bottom). For each pair of possible seed/target points, the optimal tract
was determined by Eq. (7). Figure 4 shows two representative cases: one in which
the stipulated ground truth yields the highest connectivity and a second one in which
it is among the top but is still dominated by another tract.

Multiple local maxima of C(γε) generally exist, occurring at ε∈{ε∗
1, . . . , ε

∗
k } say,

corresponding to k plausible tracts (recall Eq. (7) and footnote 5) that invariably
include the stipulated ‘ground truth’, although the latter does not necessarily corre-
spond to the globalmaximum, recall Fig. 4b. Figure 5 illustrates this case by another
simulation (based on Fiberfox [40]), emblematic of an ambiguous configuration of
kissing or crossingfiber tracts . Both interpretations are indeed confirmed, in the sense
of corresponding to local optima of C(γε). Our current coarse-to-fine implementa-
tion, however, cannot handle scale space bifurcations of geodesics automatically,
and, due to our default initialization by the Euclidean geodesic, automatically zooms
in on the kissing tract. The crossing tract requires a (simple) manual edit to overrule
the default initialization and encourage convergence to another solution. This edit
and its effect is shown in Fig. 5, and further illustrated in Fig. 6. Here the default ini-
tialization by the Euclidean geodesic has been replaced by a quadratic Bezier curve
forced to pass through a manually selected inclusive ROI called an AND gate (green
circle), while connectivity maximization for this control point has been constrained
to this neighbourhood. Note that, for the inverse as well as the adjugate diffusion
tensor ansatz, Fig. 6, boundary extrema γε are found near ε=1, illustrating the same
inclination to produce shortcuts as γ1 for the unscaled metric. Closer to the optimal
ε∗ ∈argmaxε∈[δ,1] C(γε) we observe correct convergence, though.
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Fig. 3 For each endpoint of the optimal green curve (cf. Fig. 2) the red points are generated
from a multivariate normal distribution centered around the endpoints with covariance matrix Σ =
diag(0.5, 0.5). The blue tracts are the optimal tracts for pairs of such perturbed endpoints by using
the adjugate DTI metric ansatz. The green curve has a connectivity value of 2.749 and the mean
connectivity of all perturbed tracts is 2.708 with a standard deviation of 0.037. Visually, the green
curve is a good representative of this bundle of tracts as awhole and its connectivity is approximately
one standard deviation away from the mean.

In Fig. 7, the left Cortical Spinal Tract of the ISMRM2015Tractography challenge
data [35] is used to illustrate the operational procedure on a 3D dataset. Quantitative
measures used in the challenge are the overlap (OL), overreach (OR) and F1 scores,
see Côté et al. [9]. OL is defined as the number of voxels through which both the
reconstruction and the ground truth pass, normalized by the number of ground truth
voxels. OR is the number of voxels through which the reconstruction passes but the
ground truth does not, normalized by the number of reconstructed voxels. These two
quantities can be interpreted as the true positive rate and the false discovery rate.
The F1 score is the harmonic mean of OL and 1 − OR. Our tractography results in
OR = 0.324, OL = 0.375, leading to F1 = 0.427, ranking it in the top 40% of the
submitted challenge results based solely on F1 scores. It is particularly notewor-
thy that this DTI-based procedure has a performance comparable to HARDI type
methods, outperforming other DTI-based methods applied to the CST [36].
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Fig. 4 (Top) Seed and target point labeling: si = start of tract, ei = end of tract; the attached number
i ∈{1, . . . , 7}, refers to the tract label. (bottom) Box-and-whisker plot of connectivity in the adjugate
DTI metric versus seed point. For the seed points s1 and s2 the boxplot above it shows the optimal
connectivity of that seed point to every other target point s j and e j . Endpoints that yield the highest
connectivity are indicated on top on the boxplot. The red dots indicate the connectivity value for
the stipulated ground truth, i.e. the tract running from si to ei , for each tract label.
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Fig. 5 Simulation with kissing/crossing fibers. Seed and target points are invariably taken to lie
in upper and lower left corner. Note that there are two plausible solutions. The left two figures
pertain to the (connectivity pruned) ε-family induced by the inverse diffusion metric, the right two
figures to that of the adjugate diffusion metric. In either case, our automatic procedure only finds
one solution (blue curves). (top) The equally viable crossing scenario is due to the coarse-to-fine
schemewith default initialization (red dotted Euclidean geodesic in the upper two figures). (bottom)
By employing a restricted neighbourhood search region (AND gate, green circle) with suitable
initialization (red dotted quadratic Bezier curve), the algorithm converges to the blue crossing
geodesics in the bottom two figures, resolving the false negative result.
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Fig. 6 Geodesics found by unfolding of the Riemannian metric family gε , Eq. (7) in combination
with connectivity optimization, Eq. (6) for inverse (left) and adjugate (right) diffusion tensor ansatz
g=g1, the AND gate of Fig. 5 (green circle). Initialization is given by the quadratic Bezier curve
in Fig. 5. Red-to-blue rainbow color coding shows the connectivity evolution as a function of ε,
with red indicating low connectivity tracts and blue indicating the (unique) connectivity optimized
result for ε∗ =argmaxε∈[δ,1] C(γε).

4 Conclusion and Discussion

We have proposed a modified Riemann-DTI geodesic tractography framework. The
modification entails the embedding of a DTI induced metric into a family of metrics
designed for the purpose of tractography, furnished with an operational scheme for
tract-specific optimization of metric and geodesic(s) for any given pair of endpoints
based on a nonlinear connectivity functional.

In a simple experiment based on the Fibercup simulator we conclude that all local
connectivity maxima correspond to plausible tracts that consistently follow high
diffusivity pathways and avoid, as much as logically possible, inconsistent regions.
For instance, despite a rather simplistic connectivity measure, all ground truth tracts
are reconstructed provided seed and target points are (roughly) correctly placed, i.e.
in such a way that a plausible fiber does indeed exist, recall Fig. 2. The robustness
of our procedure with respect to the placement of endpoints is demonstrated in
Fig. 3, where tracts reconstructed using slightly perturbed seed and target locations,
remained in close proximity to the original one.

It is essential, in this respect, to appreciate the ill-posed nature of tractography.
Although the generation of diffusivity patterns from a given tract configuration is
robust (albeit model-dependent), this process is not invertible. The equivalence class
of tract configurations consistent with a given diffusivity pattern may contain many
‘metamers’, so to speak. The actual power of the proposed method is precisely its
ability to generate multiple representatives from this equivalence class, so that no
a priori bias is introduced. In clinical practice this could help an expert to reject
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Fig. 7 Comparison of the Left Cortical Spinal Tract (CST) between the ground truth (red) and
connectivity-optimal geodesics according to Eqs. (6) and (7) in which the basemetric is the adjugate
DTI-metric. The geodesics are color-coded according to their connectivity value, which increases
fromgreen to blue.Thedepicted views are labeledwithS(uperior),A(nterior) andL(eft) to determine
the plane and orientation of the cross-section. On visual inspection of the multiple views of the CST,
the optimal geodesics lie close to the ground truth. Using more refined connectivity measures or a
criterion to remove single tracts, the results can be improved. This can relieve us from those spurious
tracts that are seemingly leaving the bundle and clearly have a lower connectivity than the rest of
the tracts. A selection of 3000 ground truth tracts were extracted from the CST to determine seed
and target points for the geodesics.
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false positives (if not eliminated automatically), based on data-extrinsic anatomi-
cal insight, in favour of selecting one of the remaining plausible candidate tracts,
i.e. without being confronted with false negatives. Ideally such candidates present
themselves, viz. as one of the local optima actually found by our automatic scheme.

False negatives may nevertheless occur if local maxima are missed due to inade-
quate numerical optimization.We have indicated how this problemmay be mitigated
through a simple manual edit by an expert. The delineation of an AND gate through
which one believes tentative tracts of interest should pass, or the sketch of a coarse
initialization curve between the endpoints, overruling the default straight line seg-
ment, both make it more likely to drive numerical optimization to the correct local
maximum.

To prevent scaling of the diffusion tensors in a non-sensical manner, their eigen-
values are only affected whenever an FA threshold was exceeded in order to ensure
a well-defined main eigendirection of the diffusion tensor. This treshold was based
on experiments with the Fiberfox-reconstructed Fibercup phantom, but needs to be
adjusted for tractography on real data. This ad hoc approach should be considered
a first stepping stone towards a more refined technique combining the scaling of
eigenvalues with the anisotropy of the tensor and the noise level of the data. Highly
anisotropic tensors have a relatively large first eigenvalue and may tolerate a more
severe scaling, since they provide more evidence for an articulated orientation. Since
many low FA regions contain complex fiber structures, not scaling the DTI tensors
there may influence the shape of the geodesics. In these areas we do not expect to
get accurate results, since DTI is not able to resolve complex fiber structures ade-
quately. However, scaling of the tensors enhances any noise present in the data and
may increase the number of false positives, especially when the signal-to-noise-ratio
is very low.

We stress that ‘most likely’ fiber candidates are obtained for any pair of endpoints
in terms of local optimality of connectivity. Recalling Fig. 4, note that even though
tract s2-e2 has a high connectivity value, maximal connectivity is attained by the
tract s2-s5. This effect can be ascribed to the construction of the family of metrics
gε as well as the conservative nature of the connectivity measure in Eq. (6). At the
intersection of two bundles the diffusion tensors are (nearly) isotropic, leading to
similar diffusivities in all directions. This isotropy (FA ≤ 0.15) prevents anisotropic
rescaling of the metric, as explained. Moreover, as the connectivity measure only
accounts for average diffusion along a tract and does not penalize curvature, a bend
in the tract does not decrease its connectivity, as the latter is based on diffusivity, not
geometry. These effects combined result in a connectivity-optimal tract which differs
from the ground truth one. This needs to be remedied by using more sophisticated
connectivity measures, which will be application dependent and may require prior
knowledge about the bundles of interest. Our generic connectivity measure has been
motivated mainly by our desire to preserve true positives, not as a criterion to remove
false positives, allowing a modular approach. Additional criteria for pruning false
positives connecting a fiducial seed point to a volumetric target region (possibly the
whole brain) will be studied in future work, including appropriate extensions of the
proposed coarse-to-fine tractography algorithm.
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In the ISMRM Tractography challenge reconstructed tracts are interpreted as
centerlines of a fiber with a thickness/resolution of 1 mm isotropic voxel. The OL,
OR and F1 scores were calculated based on such 1 mm voxels [36]. The trac-
tography, however, was performed on the diffusion weighted images consisting of
2 mm isotropic voxels. This way we can only resolve detail up to the grid scale of
2 mm and quantification measures should take this resolution difference into account
when using the affine transformation to convert between the two different spaces.
By downscaling this minimal resolution of 1 mm to 2 mm we increase the F1 score
to 0.526, ranking in the top 20% (as the only DTI based algorithm).

In this experiment details could be resolved up to grid scale, but if one would
consider the effects of noise (e.g. in the acquisition process), this may lead to a
different effective minimal resolution, determined by grid scale and noise level. The
influence of different kinds of noise (e.g. acquisition noise, seeding errors) needs to
be addressed in future studies in which the control-triad framework is combined with
uncertainty quantification.

These experiments confirm our main conjecture that the potential of DTI has not
yet been fully exploited in tractography.
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Magnetic Resonance Imaging of T2- and
Diffusion Anisotropy Using a Tiltable
Receive Coil
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Abstract The anisotropic microstructure of white matter is reflected in variousMRI
contrasts. Transverse relaxation rates can be probed as a function of fibre-orientation
with respect to the main magnetic field, while diffusion properties are probed as a
function of fibre-orientation with respect to an encoding gradient. While the latter
is easy to obtain by varying the orientation of the gradient, as the magnetic field is
fixed, obtaining the former requires re-orienting the head. In this work we deployed
a tiltable RF-coil to study T2- and diffusional anisotropy of the brain white matter
simultaneously in diffusion-T2 correlation experiments.
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1 Introduction

1.1 Background

Magnetic Resonance Imaging (MRI) allows us to probe structural anisotropy of
tissue in vivo by studying the magnetic properties and translational motion of for
instance hydrogen protons. In the human body, hydrogen is naturally abundant in
various compounds, with the highest MR signal amplitude detected from hydrogen
in water molecules. Hydrogen protons possess spin angular momentum, which is an
intrinsic quantum property that allows the occurrence of magnetic interactions and
resonance. When placed in a magnetic field, there is a slight preference for spins
to be aligned with the field, resulting in a net magnetisation M aligned with the
main magnetic field B0 [1]. Upon the application of a radiofrequency field at the
Larmor frequency B1, M can be tipped out of alignment with B0; most commonly
into the perpendicular plane. The measured signal is the result of the ensemble of
spins precessing coherently in the plane, and signal loss (decay) occurs when such
coherence reduces.

This signal decay, which results from a progressive loss of coherence of pre-
cessional phase, i.e. dephasing, is also called spin-spin relaxation. The spin-spin
relaxation rate is usually denoted by R2 = 1/T2, where T2 is the time taken for the
magnetization to decay to 1/e of its initial value [2, 3]. In addition to the irreversible
spin-spin relaxation, dephasing can be caused by local variations in the magnetic
field, a reversible process if the spins are static. Such local variations in the magnetic
field arise from a difference in interaction of different substances with the magnetic
field (susceptibility effects). If the spins experience Brownianmolecular motion, they
will experience variousmagnetic field strengths, and their dephasing due to local field
changes will be effectively irreversible. Hence, the measured apparent T2 of signal
decay will no longer be purely induced by dephasing due to spin-spin interactions,
but will depend on the amplitude and spatial characteristics of the local field vari-
ations, and the mean displacement of molecules per unit of time due to incoherent
motion.

In diffusion-weighted MRI, additional (and typically much stronger) magnetic
field variations are induced intentionally by applyingmagnetic field gradientswhich
cause the strength of the main magnetic field B0 to vary linearly in space [4–6]. As
such, the Brownian molecular motion can be encoded in the signal in a controlled
way.

The interplay of susceptibility anddiffusion effects leads to the anisotropyof tissue
being reflected in differentMRI contrasts and hence the combination of contrasts can
give a more complete picture of tissue microstructure. In the following paragraphs
we will describe anisotropy in the brain and these processes in more detail.

Structural anisotropy of human brain tissue. The dominant tissue exhibiting
anisotropy in the brain is the white matter (WM). It is predominantly composed
of the long extensions of neuronal cells—the axons, which are are grouped into
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fibre bundles and inter-connect different areas of the brain. The main function of
axons is to transmit electric impulses between and within brain areas. Axons can be
insulated by a myelin sheath which is formed of lipid chains and allows a faster sig-
nal transmission. The size, density, length of the axons and their myelination levels
vary with age and may alter with pathology. Therefore, investigation of the white
matter microstructure is of high importance in understanding the functionality of the
healthy brain, but also in studying the mechanisms of normal/abnormal development
and pathology.

Diffusion effects. Measurements of Brownian molecular motion in biological tissue
can reflect not only the temperature and the viscosity of the medium it is occurring
in, but most importantly will be sensitive to the underlying geometry and anisotropy
of the tissue. For instance, in the brain white matter water molecules can propagate
much easier along fibre bundles than perpendicular to them because of obstacles
such as the cell membrane and myelin [7]. This property can be used to estimate the
main orientation of fibre bundles and their virtual reconstruction by means of fibre
tractography [8, 9]. Additionally, if water molecules are trapped inside the axon
and cannot penetrate the boundaries (restricted diffusion), the mean displacement
perpendicular to the axon will be similar to its diameter at long diffusion times. The
diffusion of water molecules which reside outside axons is commonly thought of as
not being fully restricted but hindered. An example of the differences between the
movement of water molecules residing inside and outside of axons is visualised in
Fig. 1a.

In MRI, Brownian motion of water molecules is most commonly encoded using a
pair of pulsedmagnetic field gradients, a dephasing and a rephasing gradient [6] (Fig.
2). If spins are stationary, these gradientswould have no additional effect on the signal
decay. However if spins change their positions during or between the application of
the gradients, the rephasing will be incomplete which will result in signal loss. The
signal loss due to diffusion can be enhanced by increasing the magnitude of the
gradients, the time during which the gradients are on, and/or the time between the
gradients. The strength of the diffusion weighting is described by the b-value; a
parameter which combines the information on the diffusion gradient strength and
timings.

Magnetic susceptibility effects. Any material placed inside a strong magnetic field
interacts with it—it can becomemagnetised itself. The proportionality constant link-
ingmagnetic field strength and themagnetisation induced inside thematerial is called
magnetic susceptibility. At the boundaries betweenmaterials with different magnetic
properties the magnetic flux density is spatially inhomogeneous and its distribution
will depend on the boundary orientation to the magnetic field and the difference
in susceptibility between the materials. Additionally, the magnetisation induced in
some materials may also depend on the orientation of the sample to the magnetic
field, i.e. the magnetic susceptibility of those materials is anisotropic.

As mentioned above, the nerve fibres in human brain are insulated by myelin
sheath. Myelin is more diamagnetic than water, i.e., it is repelled more strongly by
a magnetic field. Additionally, several studies suggested that the magnetic suscepti-
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a) b)
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Fig. 1 A white matter nerve fibre can be modelled as a hollow cylinder composed of a myelin
sheath. a Brownian motion prependicular to the nerve fibre is restricted inside the cylinder (the
molecules are “trapped” inside the cylinder) and hindered outside of it (the mean displacement of
themolecules per time-point is larger, but nevertheless lower than ‘free’ water). bThemyelin sheath
is more diamagnetic than the surrounding tissue and perturbs the local magnetic field. The field
perturbation is inhomogeneous and depends on the nerve fibre orientation to the magnetic field B0

90◦ 180◦

dephasing rephasing

spin-echo

Δ

echo time TE

g

δ

b = γ2g2δ2(Δ − δ/3)

Fig. 2 Pulsed-gradient spin-echo sequence: the echo time TE is defined as the time between the
radio-frequency pulse and the centre of the spin-echo. The diffusion-weighting strength, the b-value,
can be calculated as b = γ2g2δ2(� − δ/3)

bility of the myelin sheath has an anisotropic component [10–12]. It has been shown
that the signal decay from white matter varies as a function of orientation to B0

[13–20] and can be well explained using a hollow cylinder fibre model (Fig. 1b) [17]
and is often represented by a 3-pool model [18, 21, 22].

The strongest contribution to this signal anisotropy arises from the water trapped
between the layers of myelin sheath, called the myelin water. However, the myelin
water signal decays very quickly, on account of its short T2 (∼10–30 ms), and is
usually negligible at the echo times used in a typical diffusion-weighted MRI exper-
iment. Nevertheless, it has also been observed that signal decay rates may still be
orientation-dependent even without this myelin-water component [13, 20, 23–25].
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1.2 Scope of This Work

Inmyelinated white matter it has been reported that T ∗
2 (where 1/T ∗

2 = 1/T2 + 1/T ′
2

and T ′
2 can be understood as capturing the reversible effects of field inhomogeneities)

depends on the orientation of the fibre with respect to B0 due to microscopic sus-
ceptibility effects [13, 16, 18, 19, 26]. Orientation-dependence of T2 was also
reported recently [20, 23, 24, 27] and could potentially characterise microscopic-
susceptibility more reliably and reflect effects related to axon diameter [24, 28].
Experiments designed to probe relaxation-anisotropy commonly involve reorienting
the head inside the scanner, and are thus challenged by unintended signal-to-noise
ratio (SNR) variations across orientations caused by differences in proximities to the
receiver coil, and by increased susceptibility to motion and artefacts due to patient-
discomfort. In this work, we re-purpose a tiltable RF coil (originally designed for
patient comfort) to investigate T2-orientational dependence within the context of a
diffusion-T2 correlation experiment. The coil can be tilted around the left-right axis
by 0◦, 9◦ and 18◦ to B0, which: (1) minimises patient-discomfort and thus improves
reliability; (2) offers a new degree of freedom as tilting around the left-right axis
is otherwise difficult to achieve; (3) fixes the coil-to-brain distance across orienta-
tions and thus reduces SNR variations; and (4) increases the reproducibility of the
experiment.

Finally, instead of studying global variations across the whole brain volume, we
adopt an along-tract profiling tractometry approach (i.e., which is the mapping of
measures along pathways reconstructed with tractography [29, 30]) to assess spatial
variations in more detail.

2 Methods

2.1 Data Acquisition

The studywas approved by the Cardiff University School of Psychology Ethics Com-
mittee and written informed consent was obtained. Two healthy volunteers (female,
30y.) were scanned on a 3 T 300mT/m Connectom scanner equipped with a mod-
ified 20-channel head/neck tiltable coil (Siemens Healthcare, Erlangen, Germany).
Each subject was in supine, head first position and the direction of the magnetic
field B0 was along the superior-inferior radiological axis. MRI data were acquired
in the default (0◦) and tilted (18◦) orientations of the tiltable coil (Fig. 3a, b). One
of the subjects underwent a second scan in the default head orientation to examine
test-retest variability.

Diffusion-T2 correlation data were acquired using a pulsed-gradient spin-echo
echo-planar-imaging (PGSE-EPI) sequence [6] (Fig. 2), with different echo-times
TE to probe T2, and diffusion-weighting strengths or b-values to probe diffusion,
(Fig. 3c). The timings of the diffusion encoding gradients were fixed for all echo
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Fig. 3 a The coil in default (0◦) and tilted (18◦) position. b b = 0 s/mm2 images at different TE.
c Acquisition parameters for the diffusion-correlation experiment

times. The signal in voxel x can then be denoted as Sx(b,TE). Additional b0-images
were acquired in the halfway-tilted (9◦) position (not shown). Remaining parameters
were repetition time TR 3.5 s and voxel size 3 × 3 × 3mm3.

2.2 MRI Signal Processing

The diffusion-T2 data were preprocessed to correct for subject motion, eddy current
effects, Gibbs ringing and gradient non-linearities [31–33] for each subject and each
head orientation. Spatial correspondence between the tilted and default head orienta-
tions was obtained in twoways: 1) by nonlinear registration [34] to the halfway-tilted
(9◦) space, and 2) by a tractometry approach in native space.

The tractometry [29] approach in native space of each head orientation relied
on the quantitative mapping of measures along reconstructed brain pathways. First,
fibre orientation distribution functions (fODFs) [35, 36] were estimated at each voxel
using multi-tissue multi-shell constrained spherical deconvolution (MSMT-CSD)
[37]. For each coil position, peaks were extracted from the resulting fODFs and used
as input to perform streamline tractography on the TE = 54ms data. Bundles were
automatically segmented [38], a representative core-streamline was computed [39],
and the bundles were subsequently subdivided [40, 41] into n = 20 segments (s)
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Fig. 4 Extracted brain pathways of interest from subject 2. Bundleswere segmented into 20 sections
(0: ligth-blue, 20: dark-brown). CC: corpus callosum, UF: uncinate fasciculus, CST: cortiospinal-
tract, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus. Visualisation
was performed using FiberNavigator [43]

(Fig. 4). Voxels with a single-fibre-population were identified [42] and assigned to
si if their location was inside the segment and their orientation was within 30◦ of the
orientation of the core-streamline in that segment. Note that only tract-segments with
minimal fanning (assessed visually) were considered. T2 values were then profiled
for each bundle independently by taking the mean and standard error of the mean
within each tract segment.

2.3 Estimation

SNR estimates were obtained from the background of the images acquired at TE =
54ms and b = 0 s/mm2 for both the (0◦) and (18◦) coil-orientations [44]. The voxel-
wise T2 was estimated from the b0-signals as S(0,TE) = S(0, 0)e−TE/T2 , using a
nonlinear least-squares trust-region-reflective algorithm in Matlab.

Fibre orientation θ to the main magnetic field B0 was estimated for the vox-
els with single fibre population. With prior knowledge of θ orientation-dependent
(anisotropic) and -independent (isotropic) components of R2 can be estimated as
follows [20, 45]: R2(θ) = R2,isotropic + R2,anisotropic · sin4 θ.

3 Results

Signal-to-noise ratio. The estimated noise standard deviationwas similar for the two
coil-orientations. Figure 5a compares the signals in the default and the tilted position
after registration to the common space; the signal (and thus SNR) between coil-
orientations variedwithin a similar range as the range seenbetween test-retest scans in
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the same orientation. Globally, the images are aligned but some local misalignments
can still be observed.

Voxel-wise T2-estimates. Figure 5b highlights differences in estimated T2 for differ-
ent coil-orientations. Globally, the difference in T2-values estimated from the data
in default and tilted head orientations is larger than or equal to T2-values estimated
from test-retest scans in default head orientation for subject 1 (Fig. 5b, left half).
Local differences in T2 can be observed between the default and tilted position, as
indicated by red arrows in the T2-maps in Fig. 5b, for example. The inverse T2-values
in white matter mostly range between 9s−1 and 21s−1 for both subjects and head
orientation.

Fig. 5 a b = 0 s/mm2 image for the default (0◦) and tilted (18◦) orientation registered to the
halfway-tilted (9◦) space, and their difference (tilted—default). σ̂ is the estimated standard deviation
in the background of the image. b Estimated T2 for the default (0◦) and tilted (18◦) orientation
registered to the halfway-tilted (9◦) space, and their difference. Red arrows indicate regions of
visible difference
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Fig. 6 Relaxation rate 1/T2 as a function of the fibre-orientation θ with the main magnetic field,
in the default (left) and tilted (right) position. Each point represents a single-fibre-population voxel
and is colour-coded according to its orientation (red, blue, and green correspond to the left-right,
superior-inferior and anterior-posterior axis, respectively). The black line represents a model-fit of
1/T2 as a function of θ as described in previous literature and references therein [13, 19, 20]

GlobalWMisotropic andanisotropic T2- stimates. The total isotropic (orientation-
independent) component of relaxation rate of R2 = 1/T2 in WM was estimated at
13.7 ± 0.2 s−1 and 13.6 ± 0.2 s−1, in default and tilted head orientations, respec-
tively, for one of the subjects (Fig. 6). For the same subject the total WM anisotropic
components of the inverse T2 were 1.6 ± 0.25 s−1 and 1.7 ± 0.25 s−1, for default and
tilted head positions, respectively. The range of T2-values in white matter and their
total isotropic and anisotropic components are consistent with previously reported
values in [20, 45].

Tractometry analysis. Figures7, 8 and 9 show the along-tract profiles of the esti-
mated T2 (top plot) and angle w.r.t. B0 (bottom plot) for different tracts. Globally,
the angular profiles show comparable characteristics between subjects in the default
and tilted position. For Subject 1, the angular profiles remain similar in the default
and default-retest acquisition, except for the inferior parts of the corticospinal tract
(CST).

Profiling of T2 in the CST, which runs along the z-axis (i.e., inferosuperior),
reveals a significant increase in T2, for example in segment 16 which experiences
a change in orientation w.r.t. B0 from ∼35◦ in the default position to ∼55◦ in the
tilted position (Fig. 7). This is in the regime where the derivative of the relaxation
rate 1/T2 as a function of angle is the largest (Fig. 6). The uncinate fasciculus (UF)
shows a noisier pattern, likely because the number of single-fibre voxels per segment
is generally lower (∼5−10 in the UF compared to ∼15−20 in the CST).
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Fig. 7 Tractometry results (mean and standard error) for the corticospinal tract (CST, top plots) and
the uncinate fasciculus (UF, bottom plots). T2-values and fibre orientation to B0 are plotted against
segment numbers for each fibre tract and subject. Colour bar indicates tract-segment location,
corresponding to the colour-encoding on the visualised tracts. Note that only tract-segments with
minimal fanning (assessed visually) were considered

In the inferior longitudinal fasciculus (ILF) (Fig. 8) a global decrease in angle
w.r.t. B0 from default to tilted position leads to an overall, yet subtle, increase in T2.
In the inferior fronto-occipital fasciculus (IFOF) the pattern is less clear.

In the callosal midbody the angle w.r.t. B0 remains relatively unchanged and so
does T2.

4 Discussion

In this work we have incorporated a tiltable coil in T2-diffusion-correlation experi-
ment to modulate the white matter fibre orientation with respect to themainmagnetic
field B0.
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Fig. 8 Tractometry results (mean and standard error) for the inferior fronto-occipital fasciculus
(IFOF, top plots) and the inferior longitudinal fasciculus (ILF, bottom plots). T2-values and fibre
orientation to B0 are plotted against segment numbers for each fibre tract and subject. Colour bar
indicates tract-segment location, corresponding to the colour-encoding on the visualised tracts. Note
that only tract-segments with minimal fanning (assessed visually) were considered

We observed changes in the T2-tract-profile after the participants’ heads were
re-oriented in the scanner, with up to ∼10ms difference in T2-values between the
default and the tilted head orientation. The test-retest T2-tract profiles in the default
head position are more similar to each-other than to the tract profiles in the tilted
head position, as for example evident from the results for the CST and IFOF. These
initial results suggest variation of T2 as a function of fibre orientation to B0 and that
tilting the participant’s head by 18◦ can reveal those variations.
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Fig. 9 Tractometry results for the genu of the corpus callosum (CC2). T2-values and fibre ori-
entation to B0 are plotted against segment numbers for each subject. Colour bar corresponds to
tract-segment location, and this is colour-encoded on the tracts themselves. Note that only tract-
segments with minimal fanning (assessed visually) were considered

4.1 Incorporating Tiltable Coil in T2-diffusion correlation
experiments

Robustness of experimental setup when using a tiltable coil. The tiltable coil
allows us to control the pitch orientation of the participant’s head. We have demon-
strated an overall test-retest similarity of estimated fibre-tract orientations in the
default position, whereas there were clear differences with the tilted head position.
However, some differences in fibre orientation of the CST between the test and retest
could be observed, particularly in the inferior segments, while differences in fibre
orientation in the IFOF tract were less obvious. Given the apparent stability of the
IFOF tract profiling and insensitivity of fibre orientation to the head rotation around
B0 in the default head position (yaw), the test-retest differences in the CST could
be a result of an additional roll head orientation with respect to the coil between the
two scans. Such additional differences in orientation could be mitigated by further
restricting head position within the coil, e.g. additional padding or performing the
experiments with differences in tilt immediately after each other without a break.
Whereas this introduces a confound in assessing test-retest variability, the estima-
tion of fibre-orientations is done in each coil orientation independently and as such
we do not expect this to be detrimental in the overall assessment of T2-anisotropy.

Range of orientations. By re-purposing a coil that was designed tomaximise patient
comfort in clinical situations means that the range of coil orientations was limited. A
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larger range of orientations would allow the θ versus 1/T2 relationship to be elucidate
more robustly. Nevertheless, these initial experiments demonstrate the utility of this
hardware design for uncovering orientational-anisotropy effects in vivo.

4.2 Origin of T2-Contrast and -Anisotropy in WM

The water signal from eachWM voxel is a superposition of the signal from different
water pools (e.g. intra- and extra-axonal, and at short TE alsomyelinwater), therefore
the macroscopic T2-values measured in this study could be approximated as the
weighted average of the T2-values from each of the two compartments. This means
that the macroscopic T2 will depend on individual T2-values of the compartments,
but also on the relative contribution to the signal. As such, tracts with the same
apparent T2 but differences in signal fractions and T2-values between the intra- and
the extra-axonal compartments could exhibit very different apparent orientational
anisotropy.

A clear separation of macroscopic T2-values in some tracts and segments between
the default and the tilted head orientations suggests that macroscopic T2 is also a
function of orientation toB0. Fibre tract re-orientation in themagnetic fieldwill cause
local changes in the local magnetic field due to differences between the magnetic
susceptibility of the myelin sheath and the surrounding tissue. Following the hollow-
cylinder model [26], the magnitude of these microscopic B0-field perturbations is
expected to be larger in the extra-axonal compartment and, in combination with
molecular Brownian motion, will cause an additional faster relaxation in the extra-
relative to the intra-axonal compartment [46]. Future work will explore the effects
of fibre orientation on individual compartments [47, 48].

4.3 Considerations in Data Processing

Tractometry versus image registration In this work we adopted tract profiling
for comparing the T2-diffusion-correlation data in default and tilted head positions,
instead of a voxel-based analysis; image registration was used for visualisation pur-
poses only. Voxel-based analysis is known to suffer from confounds related to mis-
registration and data interpolation, an effect we visually observed in our study likely
amplified by the large imaging voxels (3mm isotropic) and imperfect correction for
geometric distortions due to gradient nonlinearities. With the tractometry approach,
spatial correspondence between coil orientations was established while keeping the
data in native space, and each segment consitutes information from multiple voxels
improving robustness to noise. We were able to reproduce T2-values from test-retest
along the tracts.
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Correction for subject motion The individual images have been corrected for
subject motion, which could also involve head re-orientation with respect to the
magnetic field. Subjects who participated in this study were experiencedMR scanner
participants, therefore the maximum rotation around any axis rarely exceeded 1.5◦.
However,when considering the application of thismethod on less compliant subjects,
subject motion could become a confounding factor.

5 Conclusion

Including a tiltable coil into the experimental set-up for diffusion-T2 correlationmea-
surements paves the way for a more reliable assessment of orientational T2 depen-
dence. Microstructural origins of the differences in T2 could include differences in
pathway properties (e.g. axon diameter) or susceptibility effects. T2 orientational-
dependence would furthermore impact analyses frameworks that assume constant T2
along pathways [49]. Voxel-wise comparison of T2 from different head-orientations
remains challenging due to complications in experiment setup, imperfect correc-
tion for geometric distortions, and intrinsic scan-variability. Using a tractometry
framework, we found indications of regional changes in T2 upon tilting of the head.
Studying this effect in a larger population is necessary to increase statistical power.
In future work, the diffusion-T2 correlation experiments can be used to study com-
partmental T2 orientation-dependence.
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Anisotropy in the Human Placenta in
Pregnancies Complicated by Fetal
Growth Restriction
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Abstract The placenta has a unique structure, which enables the transfer of oxygen
and nutrients from the mother to the developing fetus. Abnormalities in placental
structure are associatedwithmajor complications of pregnancy; for instance, changes
in the complex branching structures of fetal villous trees are associated with fetal
growth restriction. Diffusion MRI has the potential to measure such fine placental
microstructural details. Here, we present in-vivo placental diffusion MRI scans from
controls and pregnancies complicated by fetal growth restriction.Wefind that after 30
weeks’ gestation fractional anisotropy is significantly higher in placentas associated
with growth restricted pregnancies. This shows the potential of diffusionMRI derived
measures of anisotropy for assessing placental function during pregnancy.

1 Introduction

Fetal growth restriction (FGR) is a condition where the developing fetus does not
reach its full growth potential in-utero [13]. It constitutes a major pregnancy compli-
cation and is associated with a high degree of fetal mortality, morbidity and life-long
complications [19]. Early onset FGR (defined as that diagnosed before 32 weeks’
gestation) affects 0.5–1% of pregnancies and late onset FGR (diagnosed after 32

P. J. Slator (B) · D. C. Alexander
Centre for Medical Image Computing, Department of Computer Science, University College
London, London, UK
e-mail: p.slator@ucl.ac.uk

A. Ho · S. Bakalis · L. C. Chappell
Women’s Health Department, King’s College London, London, UK

L. Jackson · J. V. Hajnal ·M. Rutherford · J. Hutter
Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, UK
e-mail: jana.hutter@kcl.ac.uk

L. Jackson · J. V. Hajnal · J. Hutter
Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, UK

© The Author(s) 2021
E. Özarslan et al. (eds.), Anisotropy Across Fields and Scales,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-56215-1_13

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56215-1_13&domain=pdf
mailto:p.slator@ucl.ac.uk
mailto:jana.hutter@kcl.ac.uk
https://doi.org/10.1007/978-3-030-56215-1_13


264 P. J. Slator et al.

weeks’) affects 5–10% of pregnancies [6, 9]. Early diagnosis and close monitoring
are essential to optimize the outcome for pregnancies affected by FGR. Recently,
pharmacological treatments have shown promise for severe early onset FGR cases
[31]. However, while routine antenatal monitoring utilising symphysis-fundal height
and ultrasound measurements can identify a significant proportion of FGR cases
[10], detection remains a major problem—only 31% of cases were diagnosed dur-
ing a previous study [11]. Detection is crucial as FGR is a leading cause of late
unexpected stillbirth [11].

Post-delivery histopathological analysis shows a significant degree of character-
istic pathologies in FGR placentas [15, 33], emphasising its importance and involve-
ment in the cascade of events leading ultimately to sub-optimal growth. However,
while post-delivery detection or confirmation plays an important role in increasing
knowledge and possible causes of FGR, it comes too late to influence clinical care
for these pregnancies. Therefore, recent novel developments, mainly using Mag-
netic Resonance Imaging (MRI) focus on studying the placenta during pregnancy to
complement available antenatal screening.

1.1 Placental Microstructure

The placenta constitutes the key connection between mother and baby in utero and
acts as the life support system for the growing fetus. Among its many functions
are the exchange of oxygen and nutrients from the maternal blood circulation to
the fetal blood, and the removal of waste products. The placenta comprises 10–40
individual lobules each constituting one key exchange unit. The transfer relies on a
delicate and dynamically evolving microstructure within these units, focused around
the fetal villi and depicted in Fig. 1A. These tree-like structures originate from the
umbilical cord and contain fetal arteries and veins. They are bathed in maternal
blood that enters the intervillous spaces from the spiral arteries at the level of the
basal plate. A thin membrane called the syncytiotrophoblast separates maternal and
fetal circulation, and allows the transport of oxygen and nutrients through it. Sev-
eral histopathological features are associated with FGR, including elongated villous
trees without the appropriate branching patterns [21] as illustrated schematically in
Fig. 1B.

1.2 Placental MRI

Specific challenges of in-utero placental MRI include motion, such as maternal
breathing and fetal movements, various air-tissue interfaces such as amniotic fluid,
abdominal fat and bowel gas, and the suboptimal position of the imaging coil with
respect to the organ of interest, especially for placentas located on the posterior wall
of the uterus [5]. Another important limitation specifically for diffusion MRI arises
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Fig. 1 Schematic representation of single fetal villous trees in the placenta. Fetal blood flows
through the convoluted branching structures, allowing nutrient exchange with the surrounding
maternal blood. Panel A: complex branching structure of a healthy placenta. Panel B: pathological
branching structure, associated with prengancy complications such as fetal growth restriction

from the safety requirement to reduce the acoustic sound level of the sequence to
protect the fetal hearing. Therefore, typically the gradient slew rate is reduced, in
consequence increasing the read-out length and thus the echo time resulting in lower
Signal-to-Noise Ratios (SNR) [5, 16].

Diffusion MRI can reveal fine tissue microstructure details through sensitivity to
the diffusion of water. By varying the strength and direction of diffusion gradients,
the MRI sequence can be specifically tailored to microstructural features of interest.
For example, sequences with a high number of distinct gradient directions can inform
on tissue anisotropy and directionality. Such diffusionMRI sequences are commonly
used to image white matter fibre tracts in the brain, however applications elsewhere
in body exist, including in the placenta [3, 20, 27].

2 Methods

Pregnant women, recruited as part of a larger cohort for the Placental Imaging Project
(PIP), underwent an MRI scan between 20 and 40 weeks of gestation. Informed
consent was obtained (REC 14/LO/1169) and the scan was performed on a clinical
3T Philips Achieva (Best, The Netherlands) scanner using the 32-channel cardiac
coil. All women were scanned in supine position under frequent monitoring of heart
rate, saturation and blood pressure throughout the scan. Dedicated padding was
provided to increase maternal comfort and verbal interaction was maintained.

After initial structural T2-weighted sequences of the entire uterus and the fetal
brain in multiple orientations, a B0 map was acquired. An in-house developed tool
for image based shimming was employed [12] to focus the shim on the placental
parenchyma, avoiding air-tissue interfaces with bowel gas as much as possible. We
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next acquired a diffusion-prepared spin echo sequence. For some participants we
used a modified sequence which acquires additional gradient-echos after the initial
Spin Echo (e.g. [28]), although in this study we only utilised the first spin echo mea-
surement. Conventional Stejskal-Tanner diffusion preparation was performed, with
a total of 65 b-value/b-vector combinations, optimized specifically for the placenta
as previously described [17, 26], with three diffusion gradient directions at b = [5,
10, 25, 50, 100, 200, 400, 600, 1200, 1600] s/mm2, eight directions at b= 18 s/mm2,
seven at b = 36 s/mm2, fifteen at b = 800 s/mm2, and six b = 0 volumes. Further
parameters include FOV = [300–340] × 320 × 84mm, TR = 7 s, SENSE = 2.5,
halfscan = 0.6, resolution = 3mm3 for scans with additional gradient-echos and
2mm3 otherwise. The total acquisition time was 8min 30 s. Fat was suppressed with
SPIR saturation pulses. The acquisition plane was coronal to the mother, chosen to
assure that the in-plane direction coincides with the longest placental dimensions in
mostly anterior and posterior placentas.

To correct for motion, the diffusion weighted volumes were registered non-rigidly
to a common template using the ANTs multivariate template construction tool with
the cross-correlation similarity metric [1]. Subsequently, a region of interest (ROI)
comprising the whole placenta and adjacent basal placenta was manually segmented
in all slices of the first b= 0 volume.We estimated diffusion tensor, mean diffusivity
(MD), and fractional anisotropy (FA) maps—using all diffusion weightings—for the
motion corrected scans using MRTrix [32].

2.1 Recruitment

We include a total of twenty-nine participants in this study, who were categorised as
follows. Sixteen women were normal uncomplicated control pregnancies; their out-
comes were obtained and checked to ensure that no new diagnosis of pre-eclampsia,
gestational hypertension, fetal growth restrictionor gestational diabetes hadoccurred,
and their birthweight was greater than the 5th centile (by INTERGROWTH-21st).
Seven women were diagnosed with fetal growth restriction, detected from antena-
tal ultrasound assessments. We also include six women recruited as uncomplicated
control pregnancies who gave birth to a baby under the 5th centile, but did not have
a formal antenatal FGR diagnosis. Although these could simply be constitutionally
small babies, they could also be undiagnosed FGR cases, so we hence analysed them
as a separate cohort. Five of the six below the 5th centile had co-morbidities, such
as chronic hypertension in pregnancy (CHTN), or pre-eclampsia (PE). The patient
population characteristics are given in Table 1.
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Table 1 Scan details for all participants. FGR denotes participants diagnosed with fetal growth
restriction according to guidelines [13]. Under 5% denotes participants with no FGR diagnosis who
delivered a baby weighting under the 5th percentile

Participant ID Cohort Gestational age at scan

1 Control 23.86

2 Control 26.14

3 Control 26.72

4 Control 26.72

5 Control 27.14

6 Control 27.14

7 Control 28.29

8 Control 28.86

9 Control 28.86

10 Control 29.67

11 Control 29.86

12 Control 31.29

13 Control 33.43

14 Control 35.57

15 Control 36.29

16 Control 36.43

21 FGR 22.0

22 FGR 23.42

23 FGR 28.57

24 FGR 29.57

25 FGR 30.85

26 FGR 32.85

28 (Scan 1) FGR + CHTN 30.71

28 (Scan 2) FGR + PE 34.14

29 Under 5% 21.29

30 Under 5% 25.72

31 Under 5% + CHTN 38.0

32 Under 5% + CHTN 19.86

33 Under 5% + PE 28.71

34 (Scan 1) Under 5% + PE 31.42

34 (Scan 2) Under 5% + PE 33.42

3 Results

Figures 2 and 3 display FA maps, ordered by gestational age (GA) at scanning
time, for control and growth restricted participants respectively. We next examine
the evolution of FA values over gestation (Fig. 4). Finally, we compare FA values
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Fig. 2 Fractional anisotropy maps for all control participants. The boundary between the uterine
wall (higher FA) and placenta (lower FA) is clear in most placentas with gestational age less than
30 weeks



Anisotropy in the Human Placenta in Pregnancies Complicated … 269

Fig. 3 Fractional anisotropy maps for FGR and low birthweight cohorts
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Fig. 4 Mean FA across placenta and uterine wall as a function of gestational age

Fig. 5 Mean FA across placenta and uterine wall for the three cohorts, split at 30 weeks gestational
age

between control and growth-restricted pregnancies (Fig. 5), assessing the potential
of FA to inform on FGR-associated placental abnormalities.

The FA maps for all control participants (Fig. 2) show distinctive patterns in
agreement with the literature [27]—the FA is lower in the placenta, and higher in
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the adjacent uterine wall. These observations likely represent isotropic nature of
maternal blood pools and fetal villous tree branching within the placenta, and the
prevalence of anisotropic fibrous muscle tissue in the uterine wall. Another factor
in the high FA in the uterine wall may be the coherent orientation of vasculature in
these areas. On the other hand, the distinction between the uterine wall and placenta
is less clear in the growth restriction placentas (Fig. 3), and many of these maps show
areas of high FA within the placenta.

Figure 4 plots the mean FA value within the ROI comprising the placenta and
uterine wall. Control scans (Fig. 4, black dots) show an apparent decrease in mean
FA over gestation, potentially reflecting microstructural changes during normal pla-
centa maturation. On the other hand, growth restriction scans (Fig. 4, red and yellow
dots), do not show a clear trend over gestation. At early gestational ages, control
and compromised placentas have comparable mean FA values. Due to the downward
FA trend in control placentas, from around 30 weeks gestation growth restriction
placentas appear to have considerably lower FA values than control placentas. This
difference was statisically significant, both when comparing controls with the com-
bined FGR and low birth weight cohorts (p = 0.005, independent samples t-test),
and when comparing controls to these two cohorts separately (Fig. 5). We tested if
trends over GA differ between controls and growth restriction (i.e. FGR and under
5%) cohorts by calculating a linear regression to predict mean FA based on GA,
cohort, and the interaction between GA and cohort. The coefficients and p-values are
given in Table 2, and Fig. 6 visualises the fits. The coefficient of the interaction term
between GA and low birth weight is statistically significant (p = 0.002), suggesting
a different trend over gestation.

Table 2 Coefficients and corresponding statistics from linear regression to predict mean FA based
on GA, cohort, and GA × cohort (interaction term)

Coefficient Value Standard error t P > |t |
Intercept 0.8457 0.193 4.384 0.000

Cohort (FGR) −0.4541 0.313 −1.449 0.160

Cohort (Under5) −0.7159 0.259 −2.765 0.011

GA −0.0150 0.006 −2.328 0.028

GA × Cohort
(FGR)

0.0188 0.011 1.769 0.089

GA × Cohort
(Under5)

0.0299 0.009 3.412 0.002
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Fig. 6 Linear regression to predict mean FA based on GA, cohort, and GA × cohort

4 Discussion and Conclusion

This study visualizes and quantifies fractional anisotropy in placentas of both control
pregnancies and those affected by growth restriction. Encouragingly we find that the
FA is significantly different across gestation in growth restricted pregnancies com-
pared to controls. The fractional anisotropy is a coarse measurement that averages
over a number of tissue properties. There are hence a number of microstructural or
functional changes that could explain this observation. Our initial speculations of
plausible factors behind the changes in FA are as follows.

We observed a clear pattern of decreasing FA with gestational age for control
placentas, suggesting that normal placental development causes a reduction in coher-
ently orientated tissue. A consistent hypothesis is that this reduction in FA reflects
the normal onset of terminal villi formation along the surfaces of intermediate villi,
which occurs predominately during the third trimester [2]. On the other hand, we
observed higher FA for placentas associated with growth restricted pregnancies after
30 gestational weeks. This is consistent with histological findings that FGR placentas
show a lack of side-branching terminal villi [2].

In this study, we utilised an MR protocol with multiple b-values and gradient
directions. However, we only fit a relatively simple model to the data, the diffusion
tensor. This data can support more complex models, such as anisotropic IVIM-type
models, which separately consider the perfusion (i.e. low b-value) and diffusion
(high b-value) signal components (e.g. [26]), and may help disentangle the tissue
microstructure changes underlying the observed difference in FA. Another potential
approach is to use orientation distribution functions, which might reveal differences
in complexity of the orientation of villi (e.g. [23]).
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There are a number of MRI-derived biomarkers that show promise for detecting
placental dysfunction. These include: T2* relaxometry [18, 24, 25], which relates
to oxygenation levels; structural measures [7]; apparent diffusion coefficient (ADC)
[4, 14, 30], relating to global tissue structure; and intravoxel incoherent motion
(IVIM) MRI perfusion fraction [8, 22, 29], which relates to blood flow. Thus far,
dMRI-derived potential biomarkers (ADC and perfusion fraction) have considered
tissue to be isotropic. Our results strongly suggest that the FA is also sensitive to
placental dysfunction, and hence that quantifying tissue anisotropy is an additional
important avenue for assessing placental health. It may be the case that multiple
biomarkers need to be combined in order to best assess the health of an individual
placenta. The fact that we see higher FA values for placentas with birth weight
under the 5th percentile, as well as those diagnosed with FGR is interesting and
merits further investigation. It is likely that a significant proportion of cases under
the 5th percentile are undiagnosed FGR. Our results suggest that quantifying tissue
anisotropy in the placenta could have a role to play in the detection of FGR, We will
investigate this by combining further scanning with post-delivery placental histology
to test the ability to distinguish FGR cases from small but otherwise healthy babies.
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