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J. A. Méndez-Bermúdez and R. Aguilar-Sánchez

Information-Length Scaling in a Generalized One-Dimensional Lloyd’s Model
Reprinted from: Entropy 2018, 20, 300, doi:10.3390/e20040300 . . . . . . . . . . . . . . . . . . . . . 19

Grzegorz Wilk and Zbigniew Włodarczyk

Oscillations in Multiparticle Production Processes
Reprinted from: Entropy 2017, 19, 670, doi:10.3390/e19120670 . . . . . . . . . . . . . . . . . . . . . 29

Oliver M. Cliff, Mikhail Prokopenko and Robert Fitch

Minimising the Kullback–Leibler Divergence for Model Selection in Distributed Nonlinear
Systems
Reprinted from: Entropy 2018, 20, 51, doi:10.3390/e20020051 . . . . . . . . . . . . . . . . . . . . . 43

Atsumi Ohara

Conformal Flattening for Deformed Information Geometries on the Probability Simplex
Reprinted from: Entropy 2018, 20, 186, doi:10.3390/e20030186 . . . . . . . . . . . . . . . . . . . . . 71

Milajiguli Rexiti, Domenico Felice and Stefano Mancini

The Volume of Two-Qubit States by Information Geometry
Reprinted from: Entropy 2018, 20, 146, doi:10.3390/e20020146 . . . . . . . . . . . . . . . . . . . . . 84

Takeshi Ooshida, Susumu Goto and Michio Otsuki

Collective Motion of Repulsive Brownian Particles in Single-File Diffusion with and without
Overtaking
Reprinted from: Entropy 2018, 20, 565, doi:10.3390/e20080565 . . . . . . . . . . . . . . . . . . . . . 93

Jozef Strečka
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A challenging frontier in physics concerns the study of complex and disordered systems. They are
characterized by an elevated level of interconnection and interaction between the parts, with a
richer global dynamic, which gives rise to the collective emerging behaviour of the entire system
that are no longer recognized in the properties of the single individual entities. In this scenario,
the methods of statistical physics, in understanding the properties of complex systems, have proved to
be very promising.

In fact, statistical physics is so general that it still holds, in a much wider context, than that, on
which the original theory was developed. Consequently, despite its largely recognized success in
physics, considerable efforts have been made to extend the formalism of statistical physics, beyond its
original application. In this way an increasing amount of physical and physical-like systems are now
well-studied by using the standard tools of this theory.

Thus, in the last decades, we assisted in an intense research activity that has modified our
comprehension of statistical physics, extending and renewing its applicability, considerably. Important
developments, relating equilibrium and nonequilibrium statistical mechanics, kinetic theory, information
theory, and others, have produced a new understanding of the properties of complex systems that requires,
in many cases, the extension of the statistical physics theory, beyond its standard formalism.

In this volume, we have selected and invited a limited number of papers on several topical trends
in the statistical physics of complex systems, based on the talks presented during the international
conference SigmaPhi2017 held in Corfu, from the 10th until the 14th of July 2017 (http://sigmaphisrv.
polito.it/), which gathered together, more than two hundred and fifty international scientists, working
in all areas of physics and interdisciplinary applications in non-physical systems.

This special issue collects twelve regular research articles, which underwent the standard rigorous
editorial process of the Entropy journal.

The first three articles [1–3] deal with non-extensive statistical mechanics and power-law distributions.
The paper “Equilibrium States in Two-Temperature Systems” by E.M.F. Curado and F.D. Nobre,

proposed a non-linear (power-like) Fokker-Planck equation, describing a kinetic process governing the
evolution toward the equilibrium of a system, whose underlying dynamics was characterized by two
different diffusional mechanisms. The diffusion term in the kinetic equation is related to the sum of the
two entropic forms, each of them associated to a given diffusion process. The corresponding diffusion
coefficients introduce two distinct characteristic temperatures of the system, a situation that usually
appears in nonequilibrium statistical mechanics. A physical application to type-II superconducting
vortices was discussed as an illustrative example.

In the paper “Information-Length Scaling in a Generalized One-Dimensional Lloyd’s Model” by
J.A. Méndez-Bermúdez and R. Aguilar-Sánchez, a numerical study of the generalized one-dimensional
Lloyd’s model was presented. This model described a class of disordered systems characterized by a
random variable whose density distribution function exhibits an asymptotically-slow decaying tail.

Entropy 2018, 20, 906; doi:10.3390/e20120906 www.mdpi.com/journal/entropy1
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It was, in a sense, related to several disordered models that have been studied in the literature,
like the bended random matrix model, the kicked-rotator model, the multiplex and multilayer
random networks, and others, so that the result obtained in this paper could have a wide spectrum
of applicability.

The paper “Oscillations in Multiparticle Production Processes” by G. Wilk and Z. Włodarczyk,
dealt with the study of the power-law and quasi-power-law distributions, characterized by log-periodic
oscillations that are ubiquitously observed in many different branches of science. Based on the
nonextensive statistical mechanics, the authors presented a study of the available experimental data
from the Large Hadron Collider (LHC) experiments, obtained from the multiparticle production
processes, at high energies. The analysis concerned: (i) The log-periodic oscillations pattern decorating
the power-like Tsallis distributions of the large transverse momenta spectra, and (ii) the oscillations of
some coefficients in the recurrence relation defining the multiplicity of distributions.

The information theory is covered by the next three articles [4–6].
In the paper “Minimising the Kullback-Leibler Divergence for Model Selection in Distributed

Nonlinear Systems” by O.M. Cliff, M. Prokopenko, and R. Fitch, the authors discussed, in the context
of a nonlinear dynamical system, a possible decomposition of the Kullback-Leibler divergence, a
fundamental quantity in information theory, in two information-measures, namely collective transfer
entropy and stochastic interaction. This result has been derived by using rigorous methods, based on
differential topology and, as highlighted in the paper, the approach proposed has potential applications
beyond the study of a complex system theory, becoming relevant in a variety of contexts of artificial
intelligence, like in machine learning.

The next paper “Conformal Flattening for Deformed Information Geometries on the Probability
Simplex” by A. Ohara, dealt with the study of two important notions that play a relevant role in
information geometry in characterizing statistical models with generalized exponential functions.
The first one, the dual flatness, produced fruitful geometrical structures like the existence of canonical
coordinate systems, a pair of conjugate potential functions and assures the existence of a canonical
divergence. The second one, was concerned with the invariance of a geometric structure, a crucially
valuable concept in developing mathematical statistics, which holds only when the statistical manifold
has a special triplet given by the Riemannian metric and a pair of mutually dual-affine connections.

Always within the information geometry, the paper “The Volume of Two-Qubit States by Information
Geometry” by M. Rexiti, D. Felice and S. Mancini, studied the volume of the set of two-qubits states
with maximally disordered subsystems, by considering their phase space representation, in terms of
probability distribution functions and by applying the classical Fisher information metric. The results
obtained were compared with those derived by using two different versions of the quantum Fisher
metric—the Helstrom and the Wigner–Yanase-like metrics. Although the absolute values of volumes
of separable and entangled states differ in the two approaches, it was shown that their ratios are
comparable, supporting the conclusion that classical Fisher information is able to capture the features
of the volume of quantum states.

The last topic collects six articles and deals with collective phenomena, respectively, in condensed
matter [7–10] and nuclear matter [11,12].

In the paper “Collective Motion of Repulsive Brownian Particles in Single-File Diffusion with and
without Overtaking” by T. Ooshida, S. Goto and M. Otsuki, a system of repulsive Brownian particles
confined in a (quasi-)one-dimensional channel, whose sub-diffusive behavior is known as the single-file
diffusion, was studied. Collective dynamics was illustrated by the calculations of the two-particle
displacement correlation of the system. It was shown both numerically and analytically that the
overtaking processes only destroy the short-range correlations, leaving the long-range correlations
nearly intact. Numerical solutions to the Langevin equation, with a large but finite interaction potential,
were studied to clarify the effect of overtaking, while, when particles are allowed to overtake each
other and, thereby, escape from the quasi-1D cage as a rare event, the effect of a non-zero overtaking
rate on the displacement correlation was derived analytically.
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In the paper “Strong- and Weak-Universal Critical Behaviour of a Mixed-Spin Ising Model with
Triplet Interactions on the Union Jack (Centered Square) Lattice” by J. Strečka, the mixed spin-1/2
and spin-S Ising model, with a triplet interaction on the centered square lattice, was studied, by
establishing a rigorous mapping correspondence with the symmetric eight-vertex model. This exact
mapping equivalence was showed by employing two independent mechanisms—by exploiting the
graph-theoretical formulation and by using the spin representation of the zero-field eight-vertex model.
Then, it was shown that the critical exponents of the mixed spin-1/2 and spin-S Ising model, with a
triplet interaction, fundamentally depend on the interaction anisotropy, as well as on the spin parity.
This was in contrast to the universality conjecture, which states that the critical behavior of very
different models may be characterized by the same set of critical exponents.

In the paper “Anomalous Statistics of Bose-Einstein Condensate in an Interacting Gas: An Effect of
the Trap’s Form and Boundary Conditions in the Thermodynamic Limit” by S. Tarasov, V. Kocharovsky,
and V. Kocharovsky, the authors studied a mesoscopic system formed by a finite number of trapped
particles in a three-dimensional rectangular box, with Dirichlet boundary conditions, in the mean-field
Bogoliubov and Thomas-Fermi approximations. It was shown that this model yields the non-Gaussian
condensate occupation statistics which is different from the non-Gaussian ideal-gas BEC statistics
but shares with it, a similar dependence on the trap form and on the boundary conditions. Such
a dependence does not vanish in the thermodynamic limit with the increase of the interparticle
interaction, the number of trapped particles, and the volume of the system.

In the paper “Study on Bifurcation and Dual Solutions in Natural Convection in a Horizontal
Annulus with Rotating Inner Cylinder Using Thermal Immersed Boundary-Lattice Boltzmann Method”
by Y. Wei, Z. Wang, Y. Qian, and W. Guo, the mechanism of the rotation effect on bifurcation and on dual
solutions, in a natural convection of a horizontal annulus, was studied, numerically. The mechanism
of the rotation effect was quantified by linear speed of rotational inner cylinder and it was presented
and analyzed by the streamlines and isotherms at different dimensionless linear speeds. The obtained
results manifested the existence of three convection patterns which affect the heat transfer in different
ways, where the linear speed determines the proportion of each convection.

The paper “Mathematical Realization of Entropy through Neutron Slowing Down” by B. Ganapol,
D. Mostacci, and V. Molinari, deals with the study of a classical problem in the neutron transport
theory. It was shown that the slowing down equation for elastic scattering of neutrons in an infinite
homogeneous medium can be solved analytically. These solutions characterized the evolution of
disorder associated with neutron–nucleus collisions. Starting from the monoenergetic neutrons
configuration, that represents a complete ordering system, the subsequent scattering creates disorder
by uniformly redistributing the neutron energy and the recoil energy transfer to field particles showing,
in this way, an increasing entropy with increasing lethargy.

Finally, in the paper “Energy from Negentropy of Non-Cahotic Systems” by P. Quarati, A.M.
Scarfone, and G. Kaniadakis the role of positive and negative contributions of entropy and free energy
were explored, with their constraints, during a transition of a system, from a non-equilibrium to an
equilibrium chaotic state. The amount of negentropy of a non-chaotic system is a source of energy
that can be transferred to an internal or inserted subsystem. The subsystem increases its energy and
can perform processes that otherwise would not happen like, for instance, the nuclear fusion of the
inserted deuterons in a liquid metal matrix, among many others. A few evaluations concerning the
non-ideal molecular gas, warm dense matter, and the nuclear matter were reported.

Acknowledgments: I express my thanks to the authors of the above contributions, to the journal Entropy, and
MDPI for their support during this work.

Conflicts of Interest: The author declares no conflict of interest.
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Equilibrium States in Two-Temperature Systems

Evaldo M. F. Curado * and Fernando D. Nobre

Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems,
Rua Xavier Sigaud 150, Urca, Rio de Janeiro 22290-180, Brazil; fdnobre@cbpf.br
* Correspondence: evaldo@cbpf.br; Tel.: +55-(21)2141-7369

Received: 24 January 2018; Accepted: 24 February 2018; Published: 9 March 2018

Abstract: Systems characterized by more than one temperature usually appear in nonequilibrium
statistical mechanics. In some cases, e.g., glasses, there is a temperature at which fast variables
become thermalized, and another case associated with modes that evolve towards an equilibrium
state in a very slow way. Recently, it was shown that a system of vortices interacting repulsively,
considered as an appropriate model for type-II superconductors, presents an equilibrium state
characterized by two temperatures. The main novelty concerns the fact that apart from the
usual temperature T, related to fluctuations in particle velocities, an additional temperature θ was
introduced, associated with fluctuations in particle positions. Since they present physically distinct
characteristics, the system may reach an equilibrium state, characterized by finite and different values
of these temperatures. In the application of type-II superconductors, it was shown that θ � T,
so that thermal effects could be neglected, leading to a consistent thermodynamic framework based
solely on the temperature θ. In the present work, a more general situation, concerning a system
characterized by two distinct temperatures θ1 and θ2, which may be of the same order of magnitude,
is discussed. These temperatures appear as coefficients of different diffusion contributions of a
nonlinear Fokker-Planck equation. An H-theorem is proven, relating such a Fokker-Planck equation
to a sum of two entropic forms, each of them associated with a given diffusion term; as a consequence,
the corresponding stationary state may be considered as an equilibrium state, characterized by
two temperatures. One of the conditions for such a state to occur is that the different temperature
parameters, θ1 and θ2, should be thermodynamically conjugated to distinct entropic forms, S1 and
S2, respectively. A functional Λ[P] ≡ Λ(S1[P], S2[P]) is introduced, which presents properties
characteristic of an entropic form; moreover, a thermodynamically conjugated temperature parameter
γ(θ1, θ2) can be consistently defined, so that an alternative physical description is proposed in
terms of these pairs of variables. The physical consequences, and particularly, the fact that the
equilibrium-state distribution, obtained from the Fokker-Planck equation, should coincide with the
one from entropy extremization, are discussed.

Keywords: nonlinear Fokker-Planck equations; generalized entropies; nonextensive thermostatistics

1. Introduction

The linear Fokker-Planck equation (FPE) represents one of the most important equations of
nonequilibrium statistical mechanics; it describes the time evolution of a probability density P(�x, t) for
finding a given particle at a position �x, at time t, diffusing under an external potential [1–4]. In the
absence of external potential, the FPE reduces to the linear diffusion equation, usually associated
with the description of the Brownian motion; a confining external potential yields the possibility of a
stationary-state solution for a sufficiently long time. A particular interest in the literature is given to a
harmonic confining potential, which leads to a Gaussian distribution as the stationary-state solution of
the FPE [3,4].

Entropy 2018, 20, 183; doi:10.3390/e20030183 www.mdpi.com/journal/entropy5
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It is very frequent nowadays, particularly within the realm of complex systems, to find dynamical
behavior that falls out of the ambit of linear diffusion, usually called anomalous diffusion [5].
As typical examples, one may mention diffusion in media characterized by randomness, porosity,
heterogeneity, as well as systems characterized by cooperative interactions among internal components,
self-organization, and long-time memory. For dealing with these phenomena, one commonly uses
a nonlinear (power-like) diffusion equation, known in the literature as porous-media equation [6].
Similarly to the linear case, by adding a confining potential one obtains a nonlinear Fokker-Planck
equation (NLFPE) [7], as introduced in [8,9]. For a harmonic confining potential, this NLFPE presents
a q-Gaussian distribution, typical of nonextensive statistical mechanics [10,11], as its stationary-state
solution. In this way, the NLFPE introduced in [8,9] is associated with Tsallis entropy Sq [12] (where
q ∈ � is called entropic index), since the q-Gaussian solution coincides with the distribution that
maximizes Sq.

Considering that statistical mechanics may be formulated by starting from a given statistical
entropy [1,10], many entropic forms were introduced since the proposal of Sq, as attempts to generalize
the standard Boltzmann-Gibbs (BG) formulation. Among those many, we may mention the entropic
forms of [13–24]; a pedagogical and comprehensive classification of entropic forms is given in [21],
whereas a discussion of how the volume of phase space defines its associated entropy may be found
in [22]. Additionally, the connections of NLFPEs with nonadditive entropic forms were explored
through generalized formulations of the H-theorem [7,25–47] and particularly, the NLFPE of [8,9] is
also related to the entropy with Sq by an H-theorem.

Although one may pursue an analysis in arbitrary dimensions, by considering a probability
density P(x1, x2, · · · , xN , t), like those of [37,48–50], herein for simplicity, we will restrict ourselves
to a one-dimensional space, described in terms of a probability density P(x, t). In this case, a general
NLFPE may be defined as [32,33,51]

∂P(x, t)
∂t

= − ∂

∂x
{A(x)Ψ[P(x, t)]}+ D

∂

∂x

{
Ω[P(x, t)]

∂P(x, t)
∂x

}
, (1)

where D represents a diffusion coefficient with dimensions of energy divided by the viscosity
coefficient, and the external force A(x), with dimensions of force divided by the viscosity, is associated
with a confining potential φ(x) [A(x) = −dφ(x)/dx]. Herein, from now on, we will consider for
simplicity the viscosity coefficient equal to one. The functionals Ψ[P(x, t)] and Ω[P(x, t)] should satisfy
certain mathematical requirements, e.g., positiveness and monotonicity with respect to P(x, t) [32,33];
moreover, to ensure normalizability of P(x, t) for all times one must impose the conditions,

P(x, t)|x→±∞ = 0 ;
∂P(x, t)

∂x

∣∣∣∣
x→±∞

= 0 ; A(x)Ψ[P(x, t)]|x→±∞ = 0 (∀t) . (2)

The NLFPE of Equation (1) recovers some well-known cases, as particular limits:
(i) The linear FPE [1–4] for Ψ[P(x, t)] = P(x, t) and Ω[P(x, t)] = 1; (ii) The NLFPE introduced
in [8,9], associated with nonextensive statistical mechanics, for Ψ[P(x, t)] = P(x, t) and
Ω[P(x, t)] = μ[P(x, t)]μ−1, where μ represents a real number, related to the entropic index through
μ = 2− q. It should be mentioned that a large variety of NLFPEs, like the one related to nonextensive
statistical mechanics, or in the general form of Equation (1), or even presenting nonhomogeneous
diffusion coefficients in the nonlinear diffusion term, have been derived in the literature by generalizing
standard procedures applied for the linear FPE [1–4], e.g., from approximations in the master
equation [37,46,51–55], from a Langevin approach by considering a multiplicative noise [46,56–63],
or form methods using ensembles and a projection approach [64].

Almost two decades ago, NLFPEs presenting more than one diffusive term appeared in the
literature [51,52,65,66], and particularly, very general forms were derived by considering the continuum
limit in a master equation with nonlinear transition probabilities [51,52]. A special interest was given

6
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to a concrete physical application, namely, a system of interacting vortices, currently used as a suitable
model for type-II superconductors, which exhibited such a behavior [38,43,45,46,65]. This NLFPE,
that appears as a particular case of the one derived in [51,52], presents two diffusive terms: (i) A linear
contribution, obtained in the usual way, i.e., by applying an additive uncorrelated thermal noise in the
system [2–4]; (ii) A nonlinear one, characterized by a power in the probability, like in the NLFPE of [8,9],
which emerged from a coarse-graining approach in the vortex-vortex interactions. From these diffusive
terms, two distinct temperatures were identified, respectively, the usual thermal temperature T,
associated with the linear contribution, and an additional temperature θ (directly related to fluctuations
in the vortex positions), defined from the diffusion coefficient of the nonlinear contribution. Moreover,
it was shown that θ � T for typical type-II superconductors, so that thermal effects could be neglected,
as an approximation [41]; based on this, a whole consistent thermodynamic framework was developed
by considering the temperature θ and its conjugated entropy Sq, with q = 2 [41–44,67,68].

Motivated by these previous investigations, in the present work we focus on a NLFPE
characterized by two diffusive terms, written in the general form [46]

∂P(x,t)
∂t = − ∂

∂x{A(x)Ψ[P(x, t)]}+ D1
∂

∂x

{
Ω1[P(x, t)] ∂P(x,t)

∂x

}
+ D2

∂
∂x

{
Ω2[P(x, t)] ∂P(x,t)

∂x

}
, (3)

where D1 and D2 represent diffusion coefficients, whereas the functionals (Ψ[P(x, t)], Ω1[P(x, t)],
and Ω2[P(x, t)]) should satisfy similar mathematical requirements as mentioned above [32,33].
One sees easily that Equation (3) may be written in the form of Equation (1), provided that

Ω[P(x, t)] =
D1

D
Ω1[P(x, t)] +

D2

D
Ω2[P(x, t)] . (4)

Of course, the present approach can be generalized to cover situations with several
(more than two) temperatures, by adding further nonlinear diffusive terms in (Equation (3));
this generalization is straightforward and will be addressed in future works.

In the analysis that follows, we discuss the physical aspects related to Equation (3), or equivalently,
to Equations (1) and (4). In the next section we develop a generalized form of the H-theorem,
from which the concepts of two temperatures, as well as their thermodynamically conjugated
entropic forms appear, each of them associated with a given diffusion term. In Section 3 we
work out the equilibrium solution of Equation (3), and we introduce a functional to be extremized,
defined as a composition of the two entropic forms. We show that by choosing appropriately the
Lagrange multipliers in this extremization procedure, one obtains an equation that coincides with
the time-independent solution of Equation (3). In contrast to this functional, it is verified that the
equilibrium solutions are not simple combinations of known equilibrium distributions, related to each
diffusion contribution separately. In Section 4 we review briefly the physical application of type-II
superconducting vortices, giving emphasis to its equilibrium distribution. Finally, in Section 5 we
discuss the physical consequences of an equilibrium state characterized by two distinct temperatures
and present our main conclusions, together with possible thermodynamic scenarios.

2. Generalized Forms of the H-Theorem

The H-theorem represents one of the most important results of nonequilibrium statistical
mechanics, since it ensures that after a sufficiently long time, the associated system will reach an
equilibrium state. In standard nonequilibrium statistical mechanics, it is usually proven by considering
the BG entropy SBG, and making use of an equation that describes the time evolution of the associated
probability density, like the Boltzmann, or linear FPE (in the case of continuous probabilities), or the
master equation (in the case of discrete probabilities) [1–4].

Recently, the H-theorem has been extended to generalized entropic forms by using NLFPEs [7,25–47].
In the case of a system under a confining external potential φ(x) [from which one obtains the external force

7
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appearing in Equation (1), or in Equation (3), A(x) = −dφ(x)/dx], the H-theorem corresponds to a
well-defined sign for the time derivative of the free-energy functional,

F[P] = U[P]− γS[P] ; U[P] =
∞∫

−∞

dx φ(x)P(x, t) , (5)

where γ denotes a positive parameter with dimensions of temperature. Moreover, the entropy may be
considered in the general form [32,33,35],

S[P] = k
∞∫

−∞

dx g[P(x, t)] ; g(0) = g(1) = 0 ;
d2g
dP2 ≤ 0 , (6)

where k represents a positive constant with entropy dimensions, that can be assumed as the Boltzmann
constant, whereas the functional g[P(x, t)] should be at least twice differentiable. Furthermore,
the conditions that ensure normalizability of P(x, t) for all times [cf. Equation (2)] are also used
in the proof of the H-theorem. For completeness, we first prove the H-theorem for the BG entropy,
making use of the linear FPE.

2.1. The H-Theorem from the Linear Fokker-Planck Equation

It is well-established that the BG entropy, defined following Equation (6) through
g[P(x, t)] = −P(x, t) ln[P(x, t)], is directly related to the linear FPE, given as a particular
case of Equation (1), with the functionals Ψ[P(x, t)] = P(x, t) and Ω[P(x, t)] = 1 [1–4];
moreover, in this case, one has the standard temperature in Equation (5), i.e., γ = T. Therefore,
the time derivative of the free-energy functional becomes

dF
dt = ∂

∂t

(∫ ∞
−∞ dx φ(x)P(x, t) + kT

∫ ∞
−∞ dx P(x, t) ln[P(x, t)]

)
=
∫ ∞
−∞ dx [φ(x) + kT(ln P + 1)] ∂P

∂t

=
∫ ∞
−∞ dx [φ(x) + kT ln P]

[
− ∂[A(x)P(x,t)]

∂x + D ∂2P(x,t)
∂x2

]
,

(7)

where, in the second line we have used the particular case of Equation (1) for the time-derivative of the
probability, and the normalization condition for all times, which implies on

∫ ∞
−∞ dx(∂P/∂t) = 0. Then,

we perform an integration by parts, use the conditions of Equation (2), and assume D = kT, to obtain

dF
dt

= −
∫ ∞

−∞
dx P(x, t)

[
−A(x) +

kT
P(x, t)

∂P(x, t)
∂x

]2

≤ 0 , (8)

Leading to a well-defined sign for the time-derivative of the free-energy functional. Since U[P]
and S[P] are both finite for any P, this implies that for a finite value of γ, F[P] is bounded from below
and that the reached stationary state is stable.

2.2. The H-Theorem from Nonlinear Fokker-Planck Equations

Considering a procedure similar to the one presented above for the general forms of the free-energy
functional in Equations (5) and (6), together with the NLFPE of Equation (1), the H-theorem may be
proven (see, e.g., [32,33,35]), by considering D = kγ, and imposing the condition

− d2g[P]
dP2 =

Ω[P]
Ψ[P]

, (9)

Which relates the entropic form to a certain time evolution. Particular entropic forms and their
associated NLFPEs were explored in [32], whereas families of NLFPEs (those characterized by the
same ratio Ω[P]/Ψ[P]) were studied in [35].

In what follows, we prove the H-theorem by making use of Equation (3); for that, we replace the
free-energy functional of Equation (5) by

8
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F[P] = U[P]− θ1S1[P]− θ2S2[P] ; U[P] =
∞∫

−∞

dx φ(x)P(x, t) , (10)

where θ1 and θ2 denote positive parameters with dimensions of temperature. Similarly to Equation (6),
we now define

Si[P] = k
∞∫

−∞

dx gi[P(x, t)] ; gi(0) = gi(1) = 0 ;
d2gi
dP2 ≤ 0 ; (i = 1, 2). (11)

Hence, one obtains for the time derivative of the free-energy functional of Equation (10)

dF
dt

=
∂

∂t

(∫ ∞

−∞
dx φ(x)P(x, t)− kθ1

∫ ∞

−∞
dx g1[P(x, t)]− kθ2

∫ ∞

−∞
dx g2[P(x, t)]

)

=
∫ ∞

−∞
dx

[
φ(x)− kθ1

dg1

dP
− kθ2

dg2

dP

]
∂P
∂t

=
∫ ∞

−∞
dx

[
φ(x)− kθ1

dg1

dP
− kθ2

dg2

dP

]

×
[
− ∂

∂x
{A(x)Ψ[P(x, t)]}+ D1

∂

∂x

{
Ω1[P(x, t)]

∂P(x, t)
∂x

}
+ D2

∂

∂x

{
Ω2[P(x, t)]

∂P(x, t)
∂x

}]
,

where in the last line we have substituted Equation (3) for the time derivative of the probability. Hence,
carrying out an integration by parts and using the conditions of Equation (2), one obtains

dF
dt

= −
∫ ∞

−∞
dx Ψ[P(x, t)]

[
−A(x) + D1

Ω1[P]
Ψ[P]

∂P(x, t)
∂x

+ D2
Ω2[P]
Ψ[P]

∂P(x, t)
∂x

]

×
[
−A(x)− kθ1

d2g1

dP2
∂P(x, t)

∂x
− kθ2

d2g2

dP2
∂P(x, t)

∂x

]
. (12)

Remembering that the functional Ψ[P(x, t)] was defined previously as a positive quantity, for a
well-defined sign of the quantity above it is sufficient to impose the conditions,

D1 = kθ1 ; D2 = kθ2 , (13)

As well as

− d2g1[P]
dP2 =

Ω1[P]
Ψ[P]

; − d2g2[P]
dP2 =

Ω2[P]
Ψ[P]

, (14)

Extending the condition of Equation (9) for two diffusion contributions. These conditions lead to
the following generalized form for the H-theorem,

dF
dt

= −
∫ ∞

−∞
dx Ψ[P(x, t)]

[
−A(x) + D1

Ω1[P]
Ψ[P]

∂P(x, t)
∂x

+ D2
Ω2[P]
Ψ[P]

∂P(x, t)
∂x

]2

≤ 0 . (15)

Like before, since F[P] [in Equation (10)] is finite for finite values of θ1 and θ2, the stationary
solution satisfying (dF/dt) = 0 is a stable solution.

One should notice that substituting Equation (4) in Equation (9), and using the conditions
of Equation (14), one gets

d2g
dP2 =

D1

D
d2g1[P]

dP2 +
D2

D
d2g2[P]

dP2 , (16)

So that integrating twice with respect to P(x, t), and using the conditions in Equations (6) and (11),

g[D1, D2, D, P(x, t)] =
D1

D
g1[P] +

D2

D
g2[P] . (17)

Now, integrating with respect to the variable x, the following functional results

9
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Λ[D1, D2, D, P(x, t)] = k
∫ ∞

−∞
dx g[D1, D2, D, P(x, t)] =

D1

D
S1[P] +

D2

D
S2[P] . (18)

We call attention to the fact that the functional Λ[D1, D2, D, P(x, t)] above apparently depends on the
probability, as well as on diffusion coefficients, a result that appears as a direct consequence of a NLFPE
with more than one diffusion term. According to information theory, written in this form, this quantity
should not be associated to an entropic form, since it violates one of its basic axioms, which states that
an entropic form should depend only on the probability P(x, t) [69]. Up to the moment, this functional
may be understood as a linear combination of the two entropic forms S1[P] and S2[P], with coefficients
(D1/D) and (D2/D), respectively; later on, based on thermodynamic arguments, we will argue that this
functional may be interpreted also as an entropic functional depending only on the probabilities.

3. Equilibrium Distribution

In this section we work out the stationary-state (i.e., time-independent) solution of Equation (3),
as well as the equilibrium distribution that results from an extremization procedure of the functional
of Equation (18). As usual, the Lagrange parameters of this later approach will be defined appropriately
so that these two results coincide; based on this, in the calculations that follow we refer to an
equilibrium state, described by a distribution Peq(x).

First, let us obtain the time-independent distribution of Equation (3); for this purpose, we rewrite
it in the form of a continuity equation,

∂P(x, t)
∂t

= − ∂J(x, t)
∂x

, (19)

where the probability current density is given by,

J(x, t) = A(x)Ψ[P(x, t)]− D1Ω1[P(x, t)]
∂P(x, t)

∂x
− D2Ω2[P(x, t)]

∂P(x, t)
∂x

. (20)

The solution Peq(x) is obtained by setting Jeq(x) = 0 (as required by conservation of probability [32]),
so that

Jeq(x) = A(x)Ψ[Peq(x)]− {D1Ω1[Peq(x)] + D2Ω2[Peq(x)]} dPeq

dx
= 0 , (21)

Which may still be written in the form

A(x) =
{

D1
Ω1[Peq(x)]
Ψ[Peq(x)]

+ D2
Ω2[Peq(x)]
Ψ[Peq(x)]

}
dPeq

dx
. (22)

Integrating the equation above over x, and remembering that the external force was defined as
A(x) = −dφ(x)/dx, one gets,

φ0 − φ(x) =
∫ x

x0

dx
{

D1
Ω1[Peq(x)]
Ψ[Peq(x)]

+ D2
Ω2[Peq(x)]
Ψ[Peq(x)]

}
dPeq

dx

=
∫ Peq(x)

Peq(x0)

{
D1

Ω1[Peq(x′)]
Ψ[Peq(x′)]

+ D2
Ω2[Peq(x′)]
Ψ[Peq(x′)]

}
dPeq(x′) , (23)

where φ0 ≡ φ(x0). Now, one uses the relations in Equation (14), and carrying the integrations,

D1
dg1[P]

dP

∣∣∣∣
P=Peq(x)

+ D2
dg2[P]

dP

∣∣∣∣
P=Peq(x)

= φ(x) + C1 , (24)

With C1 being a constant.
Next, we extremize the functional of Equation (18) with respect to the probability, under the

constraints of probability normalization and internal-energy definition following Equation (10).
For this, we introduce the functional

10
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I =
Λ
k
+ α

(
1−

∫ ∞

−∞
dx P(x, t)

)
+ β

(
U −

∫ ∞

−∞
dx φ(x)P(x, t)

)
, (25)

where α and β are Lagrange multipliers. Hence, the extremization, (δI)/(δP)|P=Peq(x) = 0, leads to

D1

D
dg1[P]

dP

∣∣∣∣
P=Peq(x)

+
D2

D
dg2[P]

dP

∣∣∣∣
P=Peq(x)

− α− β φ(x) = 0 . (26)

One notices that Equations (24) and (26), resulting from the stationary-state solution of Equation (3)
and the extremization of the functional of Equation (18), respectively, which in fact yield stable
solutions, coincide if one chooses the Lagrange multipliers α = C1/D and β = 1/D. Moreover, one should
remind that the relations in Equation (14) were used to get Equation (24).

For reasons that follow next, we impose the Lagrange multiplier β = 1/(D1 + D2), which implies
on D = D1 + D2; in this case, the functional of Equation (18) becomes

Λ[θ1, θ2, P(x, t)] =
θ1

θ1 + θ2
S1[P] +

θ2

θ1 + θ2
S2[P] , (27)

where we have used the temperature definitions of Equation (13). This particular choice for the
Lagrange multiplier β yields a functional Λ[θ1, θ2, P(x, t)], given by a linear combination of the two
entropic forms S1[P] and S2[P] with well-defined coefficients, representing one of the main novelties of
this investigation; it presents important properties, listed below.

(i) The corresponding coefficients are both in the interval [0, 1] and their sum gives unit, so that they
may be interpreted as probabilities related to the contribution of each entropic form to the functional
Λ[θ1, θ2, P(x, t)]; in this way, the quantity in Equation (27) can be understood as a mean value.

(ii) When one temperature prevails with respect to the other one, e.g., θ1 � θ2, the resulting
functional becomes essentially the entropic form associated to this temperature, i.e., Λ ≈ S1[P],
like considered in the physical application explored in [38,43,45,46,65].

(iii) In Equation (17), one has

g[θ1, θ2, P] =
θ1

θ1 + θ2
g1[P] +

θ2

θ1 + θ2
g2[P] , (28)

So that the conditions of Equation (11) yield g[θ1, θ2, 0] = g[θ1, θ2, 1] = 0, for arbitrary values of θ1 and
θ2.

(iv) The concavity of the functional Λ[θ1, θ2, P(x, t)] with respect to the probability is well defined;
indeed, Equation (16) leads to

d2g[θ1, θ2, P]
dP2 =

θ1

θ1 + θ2

d2g1[P]
dP2 +

θ2

θ1 + θ2

d2g2[P]
dP2 ≤ 0 , (29)

where the inequality comes as a direct consequence of the conditions in Equation (11). In addition
to this, due to the properties of the coefficients (described in (i) above), the second derivative on the
left-hand-side should be in between the two second derivatives on the right-hand side.

4. Physical Application: Type-II Superconducting Vortices

One case of interest in Equation (3) corresponds to the competition of two power-like diffusive
terms, given by the NLFPE [46]

∂P(x, t)
∂t

= − ∂

∂x
{A(x)P(x, t)]}+ D1

∂2Pμ1 (x, t)
∂x2 + D2

∂2Pμ2 (x, t)
∂x2 , (30)

where (D1, μ1) and (D2, μ2) correspond to coefficients and exponents related to each diffusion
contribution; comparing with Equation (3), one has that

11
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Ψ[P(x, t)] = P(x, t) ,

Ω1[P(x, t)] = μ1[P(x, t)]μ1−1 ; Ω2[P(x, t)] = μ2[P(x, t)]μ2−1 . (31)

Therefore, the integrations in Equation (14) lead to

S1[P(x, t)] = k
∞∫

−∞

dx
P(x, t)− [P(x, t)]μ1

μ1 − 1
; S2[P(x, t)] = k

∞∫
−∞

dx
P(x, t)− [P(x, t)]μ2

μ2 − 1
, (32)

Which compose the functional in Equation (27). By comparing this functional with previous ones
[e.g., cf. Equation (23) of [46]], the main novelty herein concerns the coefficients of each entropic form,
written in the form of probabilities. In this way, the equilibrium equation [cf. Equation (24)] becomes

D1μ1

μ1 − 1
Pμ1−1

eq (x) +
D2μ2

μ2 − 1
Pμ2−1

eq (x) = −φ(x) + C1 . (33)

Recently, a special interest was given to a physical application, namely, a system of interacting
vortices, used as a suitable model for type-II superconductors [38,43,45,46,65]. For this particular
system, in the second diffusive contribution one has μ2 = 2 and D2 = kθ, where an effective
temperature θ was related to the density of vortices [41]. The first diffusive term comes from a standard
uncorrelated thermal noise, leading to the linear contribution (μ1 = 1) and D1 = kT. The functional
of Equation (27) becomes

Λ[θ, T, P(x, t)] =
T

T + θ
S1[P(x, t)] +

θ

T + θ
S2[P(x, t)]

= − kT
T + θ

∞∫
−∞

dx P(x, t) ln P(x, t) +
kθ

T + θ

∞∫
−∞

dx {P(x, t)− [P(x, t)]2} , (34)

Which differs from previous ones [e.g., Equation (17) of [38], or Equation (47) of [46]] in the
choices for the coefficients. Particularly, with respect to the result of [38], one has now a concrete
proposal for the quantity in the denominator of these coefficients, which appeared herein from an
appropriate choice of the Lagrange multiplier β.

In the present case, Equation (33) becomes

D1 ln Peq(x) + 2D2Peq(x) = C′′ − φ(x) , (35)

Which can be written as

2D2 Peq(x)
D1

exp
(

2D2

D1
Peq(x)

)
=

2D2

D1
exp

(
C′′ − φ(x)

D1

)
. (36)

where C′′ = C1 − D1 + D2.
In the equation above one identifies the form XeX = Y, which defines the implicit W-Lambert

function, such that X = W(Y) (see, e.g., [70]). Therefore,

Peq(x) =
D1

2D2
W
{

2D2

D1
exp

(
C′′ − φ(x)

D1

)}
. (37)

Choosing a harmonic confining potential, the distribution above interpolates between two
well-known limits, namely, the Gaussian distribution (D1 � D2) and the parabola, i.e., q-Gaussian
distribution with q = 2 (D1 � D2); moreover, both parameters D1 and D2 affect directly the width of the
distribution, consistently with the temperature definitions of Equation (13), in the sense that larger
values of these parameters produce larger widths [46].
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Hence, considering φ(x) = αx2/2 (α > 0), and the temperature definitions of Equation (13) for the
present case, i.e., D1 = kT and D2 = kθ, g one has

Peq(x) =
T
2θ

W
{

2θ

T
exp

(
C′′

kT
− αx2

2kT

)}
, (38)

Which is illustrated in Figure 1 for typical choices of its parameters. The crossover between the
parabolic behavior (T � θ) to the Gaussian distribution (T � θ) is shown in Figure 1a, where we present
equilibrium distributions for α = θ = 1 and increasing values of T (from top to bottom). The former
limit is important for an appropriate description of a type-II superconducting phase, where one finds
strongly-interacting vortices [41,43], whereas in the latter limit one approaches the behavior of a
system of weakly-interacting particles [45]. In Figure 1b we present equilibrium distributions by
considering T = θ = 1 (i.e., in between the two limits mentioned above) and increasing values of α.
As expected, the parameter α, which represents the strength of the confining potential, is directly
related to the confining of the vortices, affecting the distribution width, in the sense that larger values
of α correspond to smaller distribution widths. In the first limiting behavior, a whole consistent
thermodynamic framework was developed by neglecting thermal effects, considering the temperature
θ, its conjugated entropy Sq (with q = 2), the parameter α, and introducing its conjugated parameter
σ [41–44,67,68]. At this point, it is important to emphasize that the two temperatures exist in an
equilibrium state (there is no flux), presenting different physical meanings. The usual temperature T

is related to the thermal noise, and may be changed through heat transfers to (or from) the system,
whereas the temperature θ is related to the density of vortices, and can be varied by monitoring an
applied magnetic field. Even with these two temperatures, with different physical meanings, there is
no nonequilibrium behavior, so that the thermodynamic formalism can be considered.

�6 �4 �2 2 4 6
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Figure 1. The equilibrium-state distribution Peq(x) of Equation (38) is represented versus x by
considering k = 1 and special choices of its parameters. (a) Fixing α = θ = 1 and increasing values
of T [T = 0.02, 0.2, 1.0, and 3.0 (from top to bottom)], showing the crossover from the parabolic to
the Gaussian behavior; (b) Fixing T = θ = 1 and increasing values of α [α = 0.2, 0.5, 1.0, and 3.0
(from bottom to top)]. The parameter C′′ is found in each case by imposing normalization for Peq(x).

Recently, by analyzing short-range power-law interactions and introducing correlations among
particles, a coarse-graining approach has led to a more general NLFPE, extending the previous results
to a wider range of values of q [71]. Motivated by this, a consistent thermodynamic framework was
proposed for q-Gaussian distributions characterized by a cutoff, under similar conditions [47].

Next, we discuss further the most general physical situation where both temperatures may be
of the same order of magnitude. Following previous analyses [42–44,67,68], we consider that the
parameter α may be varied continuously, and that these variations are related to a work contribution in
a first-law proposal.
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5. Discussion and Conclusions

In this section we analyze possible thermodynamical scenarios describing the two-temperature
equilibrium state (temperatures θ1 and θ2) discussed in Section 3. Considering the free-energy functional
of Equation (10), one may define two different types of heat-like contributions, related to variations in
each entropic contribution, namely, δQ1 = θ1dS1, and δQ2 = θ2dS2. Moreover, inspired by the physical
example of Section 4, one can consider the parameter α as some controllable external field associated
with work, which affects directly the volume occupied by the particles; in this way, following previous
investigations, we introduce an infinitesimal work contribution, δW = σdα [42–44,67,68]. Hence,
infinitesimal variations in the internal energy U can be associated to these proposals for infinitesimal
work and heat contributions, yielding an equivalent to the first law,

dU = δQ1 + δQ2 + δW = θ1dS1 + θ2dS2 + σdα , (39)

where the two temperatures may be obtained from

θ1 =

(
∂U
∂S1

)
S2, α

; θ2 =

(
∂U
∂S2

)
S1, α

. (40)

One should remind that, since the present results follow from a NLFPE, the thermodynamic
quantities (U, S1, S2, α), presenting infinitesimal changes in Equation (39), refer to one particle of the
system. Furthermore, σ corresponds to the parameter thermodynamically conjugated to α, to be
determined from an equation of state; considering Equation (39), one has two equivalent ways to
calculate σ,

σ = −θ1

(
∂S1

∂α

)
U, S2

; σ = −θ2

(
∂S2

∂α

)
U, S1

, (41)

By keeping fixed one of the two entropic forms in each case. Summing these two equations,
one has

σ = − 1
2

[
θ1

(
∂S1

∂α

)
U, S2

+ θ2

(
∂S2

∂α

)
U, S1

]
, (42)

Which relates the quantities (θ1, θ2, σ, α), representing the equation of state of the system.
Now, we assume that a given thermodynamical transformation may occur in such a way that

variations in the two entropic forms lead to a variation in the functional Λ of Equation (27) following

(θ1 + θ2)dΛ = θ1dS1 + θ2dS2 = δQ1 + δQ2 . (43)

In fact, the result above holds in general (not only for a specific transformation) if one considers Λ

as a thermodynamic quantity whose natural variables are S1 and S2, i.e., Λ ≡ Λ(S1, S2). This is justified
by the argument that, in a many-particle system, both entropic forms S1 and S2 should be extensive
quantities, and so, extensivity of Λ(S1, S2) follows by imposing Λ to be a homogeneous function of first
degree of S1 and S2,

Λ(λS1, λS2) = λΛ(S1, S2) , (44)

where λ is a positive real number. In this way, one may write the first-law in Equation (39) in the form,

dU = (θ1 + θ2)dΛ + σdα , (45)

From which one identifies (θ1 + θ2) as the parameter thermodynamically conjugated to Λ.
Therefore, another temperature (to be called γ) may be defined, leading to the fundamental equation
of thermodynamics,
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γ = θ1 + θ2 =

(
∂U
∂Λ

)
α

, (46)

Whereas the equation of state may be expressed as

σ = −γ

(
∂Λ
∂α

)
U

. (47)

One should notice that the temperature parameter γ above now appears as a concrete proposal of
this quantity in the two-entropic functional of previous works [e.g., Equation (17) of [38]].

Consequently, from the statistical point of view, the dependence of Λ on the entropic forms S1[P]

and S2[P] imply on Λ ≡ Λ[P]; furthermore, the effective-temperature definition of Equation (46) and the
first law in the form of Equation (45) are consistent with a free-energy functional similar to Equation (5),

F[P] = U[P]− γΛ[P] ; U[P] =
∞∫

−∞

dx φ(x)P(x, t) , (48)

So that results for systems with a single temperature and entropic form apply to the pair of
conjugated variables (γ, Λ) defined above. Particularly, the H-theorem for the NLFPE with two
diffusive terms in Equation (3) may be proven by considering the functional of Equation (4), leading to
the relation in Equation (9), as well as the equivalence of the stationary-state solution of the NLFPE and
the extremization of the functional Λ[P] (see, e.g., [46]). This means that the stationary-state solution
of the NLFPE yields the same solution as the MaxEnt principle, allowing us to assert that this is an
equilibrium solution.

To summarize, we have studied a general physical situation of a system characterized by
two distinct temperatures, θ1 and θ2, which may be of the same order of magnitude, and their
thermodynamically conjugated entropic forms, S1 and S2, respectively. This study was motivated
by recent investigations concerning type-II superconducting vortices, where two entropic forms
corresponding to Sq with q = 2 and BG entropy SBG, conjugated to temperatures θ and T, appeared.
However, in this case, it was shown that an approximated physical description could be developed
by neglecting thermal effects, based on the fact that along a typical type-II superconducting phase,
the two associated temperatures are significantly different in magnitude, i.e., θ � T. In the present
work we have assumed that the temperatures should present physically distinct properties, like in
the case of type-II superconductors, where they are associated respectively, to fluctuations in
velocities and positions of the particles; in this way, an equilibrium state may be attained, with a
temperature θ1 having a different physical meaning than the temperature θ2. The procedure was
based on a nonlinear Fokker-Planck equation, where the temperatures appeared as coefficients of
different diffusion contributions. We have proven an H-theorem, relating such a Fokker-Planck
equation to a sum of two entropic forms, each of them associated with a given diffusion term.
Due to the H-theorem, the corresponding stationary state is considered as an equilibrium state,
characterized by two temperature parameters, θ1 and θ2, and their associated entropic forms, S1 and S2.
Particularly, a free-energy functional, together with a first-law proposal, define a four-dimensional
space (θ1, θ2, S1, S2) where physical transformations may take place, in such a way to develop a consistent
thermodynamical framework. We have also introduced a functional Λ[P] ≡ Λ(S1[P], S2[P]), together
with a thermodynamically conjugated temperature parameter γ(θ1, θ2), so that an alternative physical
description is proposed in terms of these pair of variables. We have shown that the functional
Λ[P] presents properties characteristic of an entropic form, e.g., it depends only on the probability
distribution, and it presents the appropriated concavity sign.

The above-mentioned proposals, and particularly the thermodynamic properties of a system
with two distinct temperatures, together with their conjugated entropies, represent open problems of
relevant interest that require further investigations from both theoretical and experimental points of
view. Among potential candidates in nature, one could mention: (i) Systems of particles interacting
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repulsively, for which a coarse-graining procedure on the interactions lead to a diffusion contribution
in a Fokker-Planck equation of the same order of magnitude as the standard linear diffusion term,
associated with an additive uncorrelated thermal noise; (ii) Anomalous-diffusion phenomena in porous
media constituted by more than one type of material, or even random porous media.
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Abstract: We perform a detailed numerical study of the localization properties of the eigenfunctions
of one-dimensional (1D) tight-binding wires with on-site disorder characterized by long-tailed
distributions: For large ε, P(ε) ∼ 1/ε1+α with α ∈ (0, 2]; where ε are the on-site random
energies. Our model serves as a generalization of 1D Lloyd’s model, which corresponds to α = 1.
In particular, we demonstrate that the information length β of the eigenfunctions follows the scaling
law β = γx/(1 + γx), with x = ξ/L and γ ≡ γ(α). Here, ξ is the eigenfunction localization length
(that we extract from the scaling of Landauer’s conductance) and L is the wire length. We also report
that for α = 2 the properties of the 1D Anderson model are effectively reproduced.

Keywords: Lloyd model; scaling laws; information length; one-dimensional disordered systems

1. Introduction

There is a class of disordered systems characterized by random variables {ε} whose density
distribution function exhibits a slow decaying tail:

P(ε) ∼ 1
|ε|1+α

, (1)

for large |ε|, with 0 < α < 2. The study of this class of disordered systems dates back to Lloyd [1],
who studied spectral properties of a three-dimensional (3D) lattice described by a 3D tight-binding
Hamiltonian with Cauchy-distributed on-site potentials (which corresponds to the particular value
α = 1 in Equation (1)). Since then, a considerable number of works have been devoted to the study
of spectral, eigenfunction, and transport properties of Lloyd’s model in its original 3D setup [2–12]
and in lower dimensional versions [11–30]. Consequently, disorder characterized by Equation (1)
is commonly known as Lévy-type disorder. In addition, the recent experimental realizations of the
so-called Lévy glasses [31] as well as Lévy waveguides [32,33] has refreshed the interest in the study
of systems characterized by Lévy-type disorder; see some examples in Refs. [34–50].

It is important to point out that one-dimensional (1D) tight-binding wires with power-law
distributed random on-site potentials, characterized by power-laws different from α = 1 (which
corresponds to the 1D Lloyd’s model), have been scarcely studied; for prominent exceptions see
Refs. [26,27]. Thus, in this paper, we perform a detailed numerical study of the localization properties
of the eigenfunctions of disordered wires defined as a generalization of the 1D Lloyd’s model as
follows. We shall study 1D wires described by the Hamiltonian

H =
L

∑
n=1

[εn | n〉 〈n | − νn,n+1 | n〉 〈n + 1 | −νn,n−1 | n〉 〈n− 1 | ] ; (2)

Entropy 2018, 20, 300; doi:10.3390/e20040300 www.mdpi.com/journal/entropy19
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where L is the length of the wire given as the total number of sites n, εn are random on-site potentials,
and νn,m are the hopping integrals between nearest neighbours. In particular, we set νn,m = ν = 1 and
consider the on-site potentials εn following the distribution of Equation (1) with 0 < α ≤ 2. We note
that when α = 1 we recover the original 1D Lloyd’s model.

Of particular interest is the comparison between the 1D Anderson model [51] and our
generalization of 1D Lloyd’s model, since the former represents the most prominent model of
disordered wires [52]. Indeed, the 1D Anderson model is also described by the tight-binding
Hamiltonian of Equation (2). However, while for the standard 1D Anderson model (with white-noise
on-site disorder 〈εnεm〉 = σ2δnm and 〈εn〉 = 0) the on-site potentials are characterized by a finite
variance σ2 =

〈
ε2

n
〉

(in most cases the corresponding probability distribution function P(ε) is chosen
as a box or a Gaussian distribution), in the generalized 1D Lloyd’s model the second moment of the
random on-site energies εn diverges for 0 < α < 2, and if 0 < α < 1 also the first moment diverges.
Moreover, when α = 2 the properties of the generalized 1D Lloyd’s model are expected to be similar to
those of the 1D Anderson model, since the variance of Equation (1) becomes finite.

It is relevant to recall that the eigenstates Ψ of the infinite 1D Anderson model are exponentially
localized around a site position n0 [52]:

|Ψn| ∼ exp
(
−|n− n0|

ξ

)
; (3)

where ξ is the eigenfunction localization length. Moreover, for weak disorder (σ2 � 1), the only
relevant parameter for describing the statistical properties of the transmission of the finite 1D Anderson
model is the ratio L/ξ [53], a fact known as single parameter scaling. The above exponential localization
of eigenfunctions strongly affects the scattering and transport properties of the corresponding open
wire. In particular, the transmission or dimensionless conductance G, that within a scattering approach
to the electronic transport is given as [54–57]

G = |t|2 (4)

(where t is the transmission amplitude of the 1D wire), becomes exponentially small [58]:

〈− ln G〉 = 2
x

(5)

with
x =

ξ

L
. (6)

Thus, relation (5) can be used to obtain the localization length ξ from the transmission of the
disordered wire. Remarkably, it has been shown that Equation (5) is also valid for the generalized 1D
Lloyd’s model [26,27] implying the single parameter scaling, see also [22,23].

Moreover, outstandingly, it has been found [30] that the eigenfunction properties of both the
1D Anderson model and the 1D Lloyd’s model (i.e., our generalized 1D Lloyd’s model with α = 1),
characterized by the information length β (defined in Equation (12) below), are universal for the fixed
ratio of Equation (6). More specifically, it was numerically shown that the scaling function

β =
γx

1 + γx
, (7)

with γ ∼ 1, holds; see also [59].
Thus, below we explore the validity of scaling (7) for the eigenfunctions of the generalized 1D

Lloyd’s model. Of particular relevance is the regime 0 < α < 1 where the coexistence of insulating
and ballistic regimes has been reported [27] (evidenced by well defined peaks in P(G) at G = 0 and
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G = 1); a signature of the coexistence of localized and extended eigenfunctions. In our study, we use
the 1D Anderson model as reference.

Alongside this work we generate the random variables {ε} needed to construct the generalized
1D Lloyd’s model by the use of the algorithm introduced in Ref. [60]. That algorithm was designed to
produce random variables having the probability density function

P(ε) = C
ε1+α

, (8)

which has a lower cut-off at ε0 = (C/α)1/α such that
∫ ∞

ε0
P(ε)dε = 1. In addition, we randomize

the signs of the obtained variables {ε} in order to set the band center of the generalized 1D Lloyd’s
model to E = 0. Moreover, we have verified that our conclusions do not depend on our choice of
P(ε). Indeed, we obtained similar results (not shown here) with P(ε) = α/(1 + ε)1+α and P(ε) =
[1/Γ(α)]2−α exp(−1/2ε)/ε1+α (where Γ is the Euler gamma function), that we also used in [27].

2. Results

2.1. Extraction of the Localization Length ξ

We obtain the localization length ξ for the generalized 1D Lloyd’s model as follows: We open the
isolated wires by attaching two semi-infinite single channel leads to the border sites at opposite sides.
Each lead is described by a 1D semi-infinite tight-binding Hamiltonian. Using standard methods,
see e.g., [61–64], we can write the transmission amplitude through the disordered wires as

t = −2i sin(k)W T 1
E−Heff

W , (9)

where k = arccos(E/2) is the wave vector supported in the leads andHeff is an effective non-hermitian
Hamiltonian given byHeff = H − eikWW T . Here,W is a L× 1 vector that specifies the positions of
the attached leads to the wire. In our setup, all elements ofW are equal to zero exceptW11 andWL1

which we set to unity (i.e., the leads are attached to the wire with a strength equal to the inter-site
hopping amplitudes: ν = 1). Also, we have fixed the energy at E = 0. Therefore, we use Equation (4)
to compute G.

Then, in Figure 1a we present the ensemble average 〈− ln G〉 as a function of L for the generalized
1D Lloyd’s model for several values of α. It is clear from this figure that 〈− ln G〉 ∝ L for all the values
of α we consider here. Therefore, we can extract the localization length ξ by fitting the curves 〈− ln G〉
vs. L with Equation (5); see dashed lines in Figure 1a. We have observed that it is possible to tune ξ

for the same value of α by moving C in Equation (8). Thus, in Figure 1b we report the values of ξ,
extracted from the curves 〈− ln G〉 vs. L, as a function of C. Moreover, note that

ξ ∝ C−α , (10)

as shown with the dashed lines in Figure 1b.
In the following Subsection, we use the values of ξ obtained here to construct the ratio of

Equation (6) and verify scaling (7) accordingly.
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Figure 1. (a) Average logarithm of the conductance 〈− ln G〉 as a function of L for the generalized 1D
Lloyd’s model characterized by the values of α indicated on the figure (symbols). C = 1 and E = 0 were
used. Each point was calculated using 104 disorder realizations. Dashed lines are the fittings of the data
with Equation (5). The obtained values of ξ from the fittings are: ξ ≈ 0.143 (for α = 1/10), ξ ≈ 0.304
(for α = 1/5), ξ ≈ 0.919 (for α = 1/2), ξ ≈ 2.535 (for α = 1), and ξ ≈ 5.144 (for α = 3/2). (b) ξ as a
function of the constant C. Dashed lines are the fittings of the data with Equation (10). The obtained
values for the proportionality constant c from the fittings are: c ≈ 0.82 (for α = 1/2), c ≈ 2.01 (for
α = 1), c ≈ 3.25 (for α = 3/2), and c ≈ 4.01 (for α = 2). Error bars on both panels are not shown since
they are much smaller than symbol size.

2.2. Calculation of the Information Length β

We compute the information length β for the generalized 1D Lloyd’s model by the use of
the Shannon entropy S of the corresponding eigenfunctions: With the Shannon entropy for the
eigenfunction Ψm, which is given as

S = −
L

∑
n=1

(Ψm
n )

2 ln(Ψm
n )

2 , (11)

we write β (see e.g., [65]) as
β = exp [− (SGOE − 〈S〉)] . (12)

Here SGOE ≈ ln(L/2.07) is the entropy of a random eigenfunction with Gaussian distributed
amplitudes (i.e., an eigenfunction of the Gaussian Orthogonal Ensemble [66]). With this definition
for S (recall that S provides the number of principal components of an eigenfunction in a given basis)
and β, when the eigenfunctions are localized 〈S〉 ≈ 0 and β ≈ 2.07/L, which tends to zero for large L.
On the other hand, when fully chaotic eigenfunctions extend over the L available basis states 〈S〉 = SGOE

and β = 1. Therefore, β can take values in the range (0, 1].
Below we use exact numerical diagonalization to obtain the eigenfunctions Ψm (m = 1 . . . L)

of large ensembles of the generalized 1D Lloyd’s model characterized by the parameters L, C, and
α. We perform the average 〈S〉 taking half of the eigenfunctions, around the band center, for each
disordered wire length such that 〈S〉 is computed with 105 data values. For example, since for a wire
of length L = 103 we extract 103/2 Shannon entropies only, we construct an ensemble of 2× 102

disordered wires of that length to compute 〈S〉 from a double average; that is, we average over a subset
of the eigenfunctions and over wire realizations. We use half of the eigenfunctions around the band
center to be consistent with the fact that we have fixed E = 0 in Equation (9), however we have verified
that our conclusions do not depend on this choice: i.e., we could reduce the energy window around
E = 0 or even consider all eigenfunctions to compute 〈S〉 obtaining equivalent results.

In Figure 2a we present β as a function of ξ/L, see Equations (6) and (7), for the generalized 1D
Lloyd’s model with α = 1, i.e., for the actual 1D Lloyd’s model. Recall that to construct the ratios
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ξ/L we are using the values of ξ obtained in the previous Subsection from the scaling of Landauer’s
conductance; see Figure 1a. In addition, in Figure 2b the logarithm of β/(1− β) as a function of ln(ξ/L)
is presented. The quantity β/(1− β) is useful in the study of the scaling properties of β because

β

1− β
= γx , (13)

which is obtained directly by equating γx from (7), implies that a plot of ln[β/(1− β)] vs. ln(x) (with
x = ξ/L) is a straight line with unit slope. This fact applies for 1D Lloyd’s model as can be easily
verified by comparing the black symbols with the black dashed line in Figure 2b. Note that to construct
Figure 2 we have used wires with lengths in the range 102 ≤ L ≤ 103 only, however by changing C
(different symbols indicate different values of C) it is possible to span a large range of ξ/L values.
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Figure 2. (a) Information length β as a function of ξ/L [see Equations (6) and (7)] for the generalized 1D
Lloyd’s model with α = 1 (black symbols) and the 1D Anderson model (red symbols). (b) Logarithm
of β/(1− β) as a function of ln(ξ/L) [see Equation (13)]. Different symbols correspond to disorder
distributions with different constants C, as indicated in (a). Each symbol is computed by averaging
over 105 eigenstates. Wires with 102 ≤ L ≤ 103 were used. The identity, black dashed line in (b),
is shown to guide the eye.

In Figure 2 we include, in red symbols, the corresponding data for the 1D Anderson model.
Note that the functional forms in both panels, for both data sets, are very similar. With this, we confirm
that scaling (7) is valid for the 1D Lloyd’s model and the 1D Anderson model; as already shown in [30].

Now, in Figure 3 we plot curves of β vs. ξ/L (left panels) and ln[β/(1− β)] vs. ln(ξ/L) (right
panels) for several values of α. Again, as reference, we include curves for the 1D Anderson model (red
dashed lines). In particular, we present representative values of α in the interval 0 < α < 1 (α = 1/2
and 3/4), one value of α in the interval 1 ≤ α < 2 (α = 3/2), and α = 2. We stress the choice of the
values of α in Figure 3 because it is known that the properties of systems with Levy-type disorder can
be significantly different when the disorder is characterized by values of α in the intervals 0 < α < 1
or 1 ≤ α < 2. However, as shown in Figure 3 there is no major difference between different values of
α except for the evolution of the curves towards that for the 1D Anderson model when increasing α.
In fact, once α = 2 the 1D Anderson model is effectively reproduced, see the lower panels of Figure 3.

Thus, we have verified that scaling (7) describes remarkably well all data sets. Indeed, in left
panels of Figure 3 we show fittings of the data with Equation (7); see full black lines. Finally, in Figure 4
we report the values of the coefficients γ, obtained from the fittings of the data using Equation (7),
for the values of α considered here. Clearly, when α = 2, the coefficient γ is already very close to that
for the 1D Anderson model (γ ≈ 2); while, in the opposite limit (i.e., when α → 0) the value of γ

becomes relatively large.
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Figure 3. (Left panels) Information length β as a function of ξ/L [see Equations (6) and (7)] for
ensembles of 1D disordered wires. (Right panels) Logarithm of β/(1− β) as a function of ln(ξ/L)
[see Equation (13)]. Black circles correspond to the generalized 1D Lloyd’s model with α = 1/2,
3/4, 3/2, and 2 (from top to bottom); while the Anderson model is represented by red dashed lines.
Each symbol is computed by averaging over 105 (106) eigenstates when L ≥ 102 (L < 102). Here, as in
Figure 2, we change C to span a large range of ξ/L values however we do not use different symbols
to indicate different values of C to avoid figure saturation. Full black lines in left panels correspond
to fittings of the data with Equation (7) with γ ≈ 4.3798 (for α = 1/2), γ ≈ 3.5453 (for α = 3/4),
γ ≈ 2.4891 (for α = 3/2), and γ ≈ 2.069 (for α = 2).
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Figure 4. Coefficient γ as a function of α, obtained from the fittings of the curves β vs. ξ/L with
Equation (7); see left panels in Figure 3. Black circles correspond to the generalized 1D Lloyd’s model,
while the 1D Anderson model is represented by the red dashed line at γ ≈ 2. Error bars are not shown
since they are much smaller than symbol size.

3. Discussion

In this paper, by the use of extensive numerical simulations, we demonstrate that the information
length β of the eigenfunctions of our generalization of 1D Lloyd’s model scales with the ratio
x = ξ(α)/L as γx/(1 + γx), where ξ(α) is the eigenfunction localization length, γ ≡ γ(α), and L
is the wire length. Here α is the power-law decay of the long-tailed distributions, P(ε) ∼ 1/ε1+α,
characterizing the on-site random energies of 1D tight-binding wires.

It is particularly relevant that scaling (7) describes the eigenfunction properties of our
generalization of 1D Lloyd’s model for all values of α, since it has been shown that transport properties
of this model are significatively different in the intervals 0 < α < 1 and 1 ≤ α < 2 [27]. Moreover,
we have shown that for α = 2 the generalized 1D Lloyd’s model already reproduces the properties of
the 1D Anderson model.

It is pertinent to add that scaling (7) is also valid for the eigenfunctions of other disordered models
(when the scaling parameter x is properly defined): the banded random matrix (BRM) model [67–74],
the kicked-rotator model [65,71,75] (a quantum-chaotic system characterized by a random-like banded
Hamiltonian matrix), the diluted BRM model [76], and multiplex and multilayer random networks [77].
Thus, we include our generalization of 1D Lloyd’s model to the family of complex systems described
by scaling (7).

Finally, we want to recall that scaling (7), can be rewritten in a "model independent" form as a
relation between properly-defined inverse lengths [30,67]:

1
d(L, ξ)

=
1

d(∞, ξ)
+

1
d(L, 0)

, (14)

were d(L, ξ) ≡ exp[〈S(L, ξ)〉], which is also applicable to our generalization of 1D Lloyd’s model.
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Abstract: We discuss two examples of oscillations apparently hidden in some experimental results for
high-energy multiparticle production processes: (i) the log-periodic oscillatory pattern decorating the
power-like Tsallis distributions of transverse momenta; (ii) the oscillations of the modified combinants
obtained from the measured multiplicity distributions. Our calculations are confronted with pp data
from the Large Hadron Collider (LHC). We show that in both cases, these phenomena can provide
new insight into the dynamics of these processes.

Keywords: scale invariance; log-periodic oscillation; complex nonextensivity parameter; self-similarity;
combinants; compound distributions

1. Introduction

In this work, we argue that closer scrutiny of the available experimental results from Large Hadron
Collider (LHC) experiments can result in some new, so-far unnoticed (or underrated) features, which
can provide new insight into the dynamics of the processes under consideration. More specifically,
we shall concentrate on multiparticle production processes at high energies and on two examples
of hidden oscillations apparently visible there: (i) the log-periodic oscillations in data on the large
transverse momenta spectra, f (pT) (presented in Section 2); (ii) the oscillations of some coefficients in
the recurrence relation defining the multiplicity distributions, P(N) (presented in Section 3).

As will be seen, the first phenomenon is connected with the fact that large pT distributions follow
a quasi power-like pattern, which is best described by the Tsallis distribution [1–3]:

f (pT) = C
(

1 +
pT
nT

)−n
, n =

1
q− 1

(1)

This is a quasi power-law distribution with two parameters: power index n (connected with the
nonextensivity parameter q) and scale parameter T (in many applications identified with temperature) [3].
In Figure 1, we present examples of applications of the nonextensive approach to multiparticle
distributions represented by Equation (1). Figure 1a,b show the high-quality Tsallis fit as well as
a kind of self-similarity of pT distributions of jets and hadrons [4]. Figure 1c demonstrates that the
values of the nonextensivity parameters q for particles in jets correspond rather closely to values of q
obtained from the inclusive distributions measured in pp collisions [4,5]. (This observation should be
connected with the fact that multiplicity distributions, P(N), are closely connected with the nonextensive
approach, and that q− 1 = Var(N)/ < N >2 −1/ < N > for negative binomial distributions (NBDs),
Poisson distributions (PDs) and binomial distributions (BDs) [5]). In general, one observes the self-similar
characteristics of the production process, in both cases originating from their cascading characteristic,
which always results in a Tsallis distribution. (In fact, this is a very old idea, introduced by Hagedorn
in [6,7], that the production of hadrons proceeds through the formation of fireballs, which produces
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a statistical equilibrium of an undetermined number of all kinds of fireballs, each of which in turn
is considered to be a fireball. This idea returned recently in the form of thermofractals introduced
in [8]. We note that the NBD discussed below also has a self-similar character [9]. We note also that
the self-similarity and fractality features of the multiparticle production process were exhaustively
discussed in [10,11].). In the pure dynamical QCD approach to hadronization, one could think of partons
fragmenting into final-state hadrons through multiple sub-jet production [11].
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Figure 1. (a) Transverse momentum spectra pT for jets (open symbols) compared with pT spectra for
hadrons (full symbols) from proton–proton collisions at

√
s = 7 TeV (with arbitrary normalization at

pT = 20 GeV; data are from [12–15]). The dashed line shows the fit using Equation (1). (b) The power
index n extracted from fits to the jet spectra shown in (a) (full symbols) compared with n from pT

distributions of charged particles (open symbols, data are from [14–16]. (c) Compilation of values of the
parameters q obtained from the pT spectra (triangles) and from the multiplicity distributions (circles).
Triangles at small 〈N〉 are obtained from [12,13]; those for larger 〈N〉 are from [17]. Full squares and
circles are from data on multiparticle production in p + p collisions: squares (inelastic data) are from
the compilation for beam energy 3.7−303 GeV presented in [18], full circles (non-single diffractive data)
are from the compilation in [19], and open-red circ les are from [20].

2. Log-Periodic Oscillations in Data on Large pT Momenta Distributions

To start with the first example, we note that, despite the exceptional quality of the Tsallis fit
presented in Figure 1a (in fact, only such a two-parameter quasi-power-like formula can fit the data
over the whole range of pT), the ratio R = data/ f it (which is expected to be a flat function of pT ,
R (pT) ∼ 1) presented in Figure 2a shows clear log-periodic oscillatory behaviour as a function of the
transverse momentum pT . In fact, it turns out that such behaviour occurs (at the same strength) in data
from all LHC experiments, at all energies (provided that the range of the measured pT is large enough),
and that its amplitude increases substantially for the nuclear collisions [21]. These observations
strongly suggest that closer scrutiny should be undertaken to understand its possible physical origin.
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Figure 2. (a) The R = data/ f it ratio for pp collisions at TeV from the CMS [14,15,22] and ATLAS [12]
experiments fitted by Equation (2) with parameters a = 0.909, b = 0.166, c = 1.86, d = 0.948 and
f = −1.462. (b) The log-periodic oscillations of T = T (pT) fitting R (pT) from panel (a) for pp
collisions at 0.9 and 7 TeV from the CMS experiment [14,15,22]. These can be fitted by Equation (3)
with parameters ã = 0.132, b̃ = 0.0035, c̃ = 2.2, d̃ = 2.0, and f̃ = −0.5 for 0.9 TeV and ã = 0.143,
b̃ = 0.0045, c̃ = 2.0, d̃ = 2.0, and f̃ = −0.4 for 7 TeV. (c) The results of the Fourier transform of T(pT)

from Figure 2b. The continuous line represents rT′(r) versus r, and the dashed line denotes the function
rT′(r) = 5.1 sin[(2π/3.2) ln(1.24r)] fitted for small values of r.

We note that we have two parameters in the Tsallis formula (Equation (1)), n and T, and each of
them (or both, but we do not consider such a situation) could be a priori responsible for the observed
effect. We start with the power index n. In this case, the observed oscillations may be related to some
scale invariance present in the system and are an immanent feature of any power-like distribution [23].
In [24], we showed that they also appear in quasi-power-like distributions of the Tsallis type. In general,
they are attributed to a discrete scale invariance (connected with a possible fractal structure of the
process under consideration) and are described by introducing a complex power index n (or q). This, in
turn, has a number of interesting consequences [25–27], such as a complex heat capacity of the system
or complex probability and complex multiplicative noise, all of these known already from other
branches of physics. In short, one relies on the fact that power-like distributions, say O(x) = Cx−m,
exhibit scale invariant behaviour, Q(λx) = μO(x), where parameters λ and μ are, in general, related
by the condition that μλm = 1 = exp(2πik), k = 0, 1, 2, . . . , which means that the power index
m can take complex values: m = − ln μ

ln λ + i 2πk
ln λ . In the case of a Tsallis distribution, this means that

Equation (1) is decorated by some oscillating factor R (pT), the form of which (when keeping only the
k = 0 and k = 1 terms) is

R (pT) = a + b [cos (pT + d) + f ] (2)
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As one can see in Figure 2, this perfectly fits the observed log-oscillatory pattern.
The second possibility is to keep n constant but allow the scale parameter T to vary with pT in

such a way as to allow a fit to the data on R (pT) [27]. The result is shown in Figure 2b. The resulting
T (pT) has the form of log-periodic oscillations in pT , which can be parameterized by

T (pT) = ã + b̃
[
sin

(
pT + d̃

)
+ f̃

]
(3)

Such behaviour of T (pT) can originate from the well-known stochastic equation for the
temperature evolution, which in the Langevin formulation has the following form:

dT
dt

+
1
τ

T + ξ(t) = Φ (4)

where τ is the relaxation time and ξ(t) is time-dependent white noise. Assuming additionally that we
have time-dependent transverse momentum pT = pT(t) increasing in a way following the scenario of
the preferential growth of networks [28],

dpT
dt

=
1
τ0

( pT
n
± T

)
(5)

where n is the power index and τ0 is some characteristic time-step, one may write

1
τ0

( pT
n
± T

) dT
dpT

+
1
τ

T + ξ(t) = Φ (6)

Equation (3) is obtained in two cases: (i) The noise term increases logarithmically with pT while
the relaxation time τ remains constant:

ξ (t, pT) = ξ0(t) +
ω2

n
ln (pT) (7)

(ii) The white noise is constant, ξ (t, pT) = ξ0(t), but the relaxation time becomes pT-dependent, for
example,

τ = τ (pT) =
nτ0

n + ω2 ln (pT)
(8)

In both cases ω is some new parameter [3,27]. (To fit data, one needs only a rather small admixture
of the stochastic processes with noise depending on pT . The main contribution comes from the usual
energy-independent Gaussian white noise. We note that whereas each of the proposed approaches is
based on a different dynamical picture, they are numerically equivalent.).

However, we can use Equation (3) in a way that allows us to look deeper into our dynamical
process. To this end, we calculate the Fourier transform of T (pT) presented there:

T(r) =

√
2
π

∫ ∞

0
T (pT) eipTrdpT = T0 + T′(r) (9)

One can see now how the temperature T (more exactly, its part that varies with r, T′(r)) changes
with distance r from the collision axis (defined in the plane perpendicular to the collision axis and
located at the collision point). The result of this operation is seen in Figure 2c as specific log-periodic
oscillations in pT . Such behaviour can be studied by considering the flow of a compressible fluid in
a cylindrical source. Assuming oscillations with small amplitude and velocity v, and introducing
the velocity potential f such that v = grad f , one finds that f must satisfy the following cylindrical
wave equation:

1
r

∂

∂r

(
r

∂ f
∂r

)
− 1

c2
∂2 f
∂t2 = 0 (10)
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It can be shown that this represents a travelling sound wave with velocity v in the direction of
propagation. Because the oscillating part of the temperature, T′, is related to the velocity v, then

T′ =
cκT
cP

v (11)

where κ = 1
V

(
∂V
∂T

)
P

is the coefficient of thermal expansion and cP denotes the specific heat at constant

pressure [29]; in the case of a monochromatic wave where f (r, t) = f (r) exp(−iωt), we have that

∂2 f (r)
∂r2 +

1
r

∂ f (r)
∂r

+ K2 f (r) = 0, K = K(r) =
ω

c(r)
(12)

with K being the wave number depending in general on r. For

K(r) =
α

r
(13)

the solution of Equation (12) takes the form of some log-periodic oscillation:

f (r) ∝ sin[α ln(r)] (14)

Because in our case f (r) ∝ vr, using Equation (11), we can write that

rT′(r) ∝
cκT0

cP
f (r) =

cκT0

cP
sin[α ln(r)] (15)

which is what we have used in describing the T′(r) presented in panel (c) of Figure 2. The space picture
of the collision (in the plane perpendicular to the collision axis and located at the collision point) that
emerges is some regular logarithmic structure for small distances, which disappears when r reaches
the dimension of the nucleon, that is, for r ∼ 1 fm. Whether it is connected with the parton structure of
the nucleon remains for the moment an open question.

To end this section, we note that Equation (12) with K(r) given by Equation (13) is scale invariant
and that f (λr) = f (r). We note also that in the variable ξ = ln r, Equation (12) is also self-similar
because in this variable, it takes the form of the traveling wave equation:

∂2F(ξ)
∂ξ2 + α2F(ξ) = 0 (16)

which has the self-similar solution
F(ξ) ∝ cos[αξ] (17)

for which F(ξ + ln λ) = F(ξ) (with α = 2πk
ln λ or λ = exp

(
2πk

α

)
, where k = 1, 2, 3, . . . ). This is

the self-similar solution of the second kind, usually encountered in the description of the intermediate
asymptotic. Such asymptotics are observed in phenomena that do not depend on the initial
conditions because sufficient time has already passed; nevertheless the system considered is still
out of equilibrium [30].

3. Oscillations Hidden in the Multiplicity Distributions Data

Whereas the previous section is concerned with oscillations hidden in the distributions of
produced particles in transverse momenta f (pT) (which by using the Fourier transformation allows
us to gain some insight into the space picture of the interaction process), in this section, we concentrate
on another important characteristic of the multiparticle production process, namely, on the question of
how many particles are produced and with what probability, that is, on the multiplicity distribution
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function P(N), where N is the observed number of particles. This is usually one of the first observables
measured in any multiparticle production experiment [11].

At first we note that any P(N) can be defined in terms of some recurrence relation, the most
popular takes the following form:

(N + 1)P(N + 1) = g(N)P(N) where g(N) = α + βN (18)

Such a linear form of g(N) leads to a NBD, BD or PD:

NBD : P(N) =
Γ(N + k)

Γ(N + 1)Γ(k)
pN(1− p)k with α = kp, β =

α

k
(19)

BD : P(N) =
K!

N!(K− N)!
pN(1− p)K−N with α =

Kp
1− p

, β = − α

K
(20)

PD : P(N) =
λN

N!
exp(−λ) with α = λ, β = 0 (21)

Suitable modifications of g(N) result in more involved distributions P(N) (cf. [31] for references).
The most popular form of P(N) is the NBD type of distribution, Equation (19). However, with a

growing energy and number of produced secondaries, the NBD starts to deviate from data for large N,
and one has to use combinations of NBDs (two [32], three [33] and multicomponent NBDs [34] were
proposed) or try to use some other form of P(N) [11,35,36]. For example, in Figure 3a, a single NBD is
compared with a two-NBD. However, as shown there, the improvement, although substantial, is not
completely adequate. It is best seen when looking at the ratio R = PCMS(N)/Pf it(N), which still shows
some wiggly structure (albeit substantially weaker than in the case of using only a single NBD to fit
the data). Taken seriously, this observation suggests that there is some additional information hidden
in the P(N). The question of how to retrieve this information was addressed in [31] by resorting to
a more general form of Equation (18) usually used in counting statistics when dealing with cascade
stochastic processes [37] in which all multiplicities are connected. In this case, one has coefficients Cj
defining the corresponding P(N) in the following way:

(N + 1)P(N + 1) = 〈N〉
N

∑
j=0

CjP(N − j) (22)

These coefficients contain the memory of particle N + 1 about all N − j previously produced
particles. Assuming now that all P(N) are given by experiment, one can reverse Equation (22) and
obtain a recurrence formula for the coefficients Cj:

〈N〉Cj = (j + 1)
[

P(j + 1)
P(0)

]
− 〈N〉

j−1

∑
i=0

[
P(j− i)

P(0)

]
(23)

As can be seen in Figure 3c, the coefficients Cj obtained from the data presented in Figure 3a show
oscillatory behaviour (with period roughly equal to 16) gradually disappearing with N. They can be
fitted by the following formula:

〈N〉Cj =
(

a2 + b2
)j/2

sin [c + j arctan(b/a)] + dj (24)

with parameters a = 0.89, b = 0.37, c = 5.36, and d = 0.95. Such oscillations do not appear in the
single NBD fit presented in Figure 3a, and there is only a small trace of oscillations for the two-NBD fit
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presented in Figure 3a. This is because for a single NBD, one has a smooth exponential dependence of
the corresponding Cj on the rank j:

Cj =
k
〈N〉 pj+1 =

k
k + m

exp(j ln p) (25)

and one can expect any structure only for the multi-NBD cases [31].

0 50 100 150 200
10

-7

10
-6

1x10
-5

1x10
-4

10
-3

10
-2

10
-1

10
0

(a)

P
(N

)

N

CMS

NBD

2-NBD

�

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b)

ra
ti

o

N

CMS/2-NBD

 CMS/NBD

�

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5

2.0

(c)

<
N

>
C

j

j

data

NBD

2-NBD

fit

Figure 3. (a) Charged hadron multiplicity distributions for the pseudorapidity range |η| < 2 at
√

s =
7 TeV, as given by the CMS experiment [38] (points), compared with the negative binomial distribution
(NBD) for parameters 〈N〉 = 25.5 and k = 1.45 (dashed line) and with the two-component NBD (solid
line) with parameters from [39]. (b) Multiplicity dependence of the ratio R = PCMS(N)/Pf it(N) for
the NBD (red circles) and for the two-component NBD for the same data as in panel (a) (green squares).
(c) Coefficients Cj emerging from the data and NBD fits presented in panel (a). The data points are
fitted by Equation (24); see text for details.

Before proceeding further we note that the coefficients Cj are closely related to the combinants C�
j ,

which were introduced in [40] (see also [11,41,42]) and are defined in terms of the generating function
G(z) as

C�
j =

1
j!

dj ln G(z)
dzj

∣∣∣∣
z=0

, where G(z) =
∞

∑
N=0

P(N)zN (26)

or by the following relation [31]:

ln G(z) = ln P(0) +
∞

∑
j=1

C�
j zj (27)
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From the above, one can deduce the following [31]:

Cj =
j + 1
〈N〉 C�

j+1 (28)

This means that one can rewrite the recurrence relation, Equation (22), in terms of the
combinants C�

j :

(N + 1)P(N + 1) =
N

∑
j=0

(j + 1)C�
j P(N − j) (29)

When compared with Equation (22), this allows us to express our coefficients Cj, which henceforth
we shall call modified combinants, by the generating function G(z) of P(N):

〈N〉Cj =
1
j!

dj+1 ln G(z)
dzj+1

∣∣∣∣
z=0

(30)

This is the relation we use in the following when calculating the Cj from distributions defined by
some G(z).

To continue our reasoning, we note first that whereas a single NBD does not lead to oscillatory
behaviour of the modified combinants Cj, there is a distribution for which the corresponding Cj
oscillate in a maximum way. This is the BD for which the modified combinants are given by the
following formula:

Cj = (−1)j K
〈N〉

( 〈N〉
K− 〈N〉

)(j+1)

=
(−1)j

1− p

(
p

1− p

)j
(31)

which oscillates rapidly with a period equal to 2. In Figure 4a, one can see that the amplitude of
these oscillations depends on p; generally the Cj increase with rank j for p > 0.5 and decrease for
p < 0.5. However, their general shape lacks the fading-down feature of the Cj observed experimentally.
This suggests that the BD alone is not enough to explain the data but must be somehow combined with
some other distribution. (In fact, in [43], we have already used a combination of elementary emitting cells
(EECs) producing particles following a geometrical distribution (our aim at that time was to explain
the phenomenon of Bose–Einstein correlations). For a constant number k of EECs, one obtains the
NBD as the resultant P(N), whereas for k distributed according to the BD, the resulting P(N) is a
modified NBD. However, we could not find a set of parameters providing both the observed P(N)

and oscillating Cj. We note that originally, the NBD was seen as a compound PD, with the number
of clusters given by a PD and the particle inside the clusters distributed according to a logarithmic
distribution [44].).
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We resort therefore to the idea of compound distributions (CDs) [45], which, from the point of view
of the physics involved in our case, could for example describe a production process in which a number
M of some objects (clusters, fireballs, etc.) are produced following, in general, some distribution f (M)

(with generating function F(z)), and subsequently decay independently into a number of secondaries,
ni=1,...,M, always following some other (the same for all) distribution g(n) (with a generating function
G(z)). The distribution h(N), where

N =
M

∑
i=0

ni (32)

is a CD of f and g: h = f ⊗ g. For CDs, we have that

〈N〉 = 〈M〉〈n〉 and Var(N) = 〈M〉Var(n) + Var(M)〈n〉2 (33)

and its generating function H(z) is equal to

H(z) = F[G(z)] (34)

It should be mentioned that for the class of distributions of M that satisfy our recursion relation,
Equation (18), the CD h = f ⊗ g is given by Panjer’s recursion relation [46]:

Nh(N) =
N

∑
j=1

[βN + (α− β)j]g(j)h(N − j) =
N

∑
j=1

C(P)
j (N)h(N − j) (35)

with the initial value h(0) = f (0). However, the coefficients C(P)
j occurring here depend on N, contrary

to our recursion given by Equation (22), for which the modified combinants, Cj, are independent of N.
Moreover, Equation (22) is not limited to the class of distributions satisfying Equation (18) but is valid
for any distribution P(N). For this reason, the recursion relation, Equation (35), is not suitable for us.

To visualize the CD in action, we take for f a BD with generating function F(z) = (pz + 1− p)K,
and for g we take a PD with generating function G(z) = exp[λ(z− 1)]. The generating function of the
resultant distribution is now equal to

H(z) = {p exp[λ(z− 1)] + 1− p}K (36)

and the corresponding modified combinants are

〈N〉Cj =
Kλj+2 exp(−λ)

j!

j+2

∑
i=1

[
p

1− p + p exp(−λ)

]i 1
i

i

∑
k=0

(−1)k+1
(

i
k

)
kj+1 =

=
Kλj+2 exp(−λ)

j!

j+2

∑
i=1

[
p

1− p + p exp(−λ)

]i
S(j + 1, i)

(37)

where

S(n, k) =

{
n
k

}
=

1
k!

k

∑
i=0

(−1)k−i
(

k
i

)
in (38)

is the Stirling number of the second kind. Figure 4b shows the above modified combinants for the
compound binomial distribution (CBD; a combination of a BD with a PD) with K = 3 and λ = 10
calculated for three different values of p in the BD: p = 0.54, 0.62, 0.66. We note that in general, the
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period of the oscillations is equal to 2λ, that is, in Figure 4b, where λ = 10 it is equal 20. The multiplicity
distribution in this case is

P(0) =
(

1− p + pe−λ
)K

(39)

P(N) =
1

N!
dN H(z)

dzN

∣∣∣∣
z=0

=
1

N!

K

∑
i=1

i!
(

K
i

)(
λpe−λ

)i (
1− p + pe−λ

)K−i
S(N, i) (40)

The proper normalization comes from the fact that H(1) = 1. This shows that the choice of a BD
as the basis of the CDs to be used seems to be crucial to obtain oscillatory Cj (e.g., a CD formed from a
NBD and some other NBD provides smooth Cj).

Unfortunately, such a single component CBD (depending on three parameters: p, K and λ;
P(N) = h(N; p, K, λ) does not describe the experimental P(N). We return therefore to the idea of
using a multicomponent version of the CBD, for example, a three-component CBD defined as follows
(with wi being weights):

P(N) = ∑
i=1,2,3

wih (N; pi, Ki, λi) ; ∑
i=1,2,3

wi = 1 (41)

As can be seen in Figure 5, in this case, the fit to P(N) is quite good, and the modified combinants
Cj follow an oscillatory pattern as far as the period of the oscillations is concerned, albeit their
amplitudes still decaying too slowly.
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Figure 5. Results of using the compound binomial distribution (CBD) approach given by Equation (41)
with parameters ω1 = 0.34, ω2 = 0.4, ω3 = 0.26; p1 = 0.22, p2 = 0.22, and p3 = 0.12; K1 = 10, K2 = 12,
and K2 = 30; and λ1 = 4, λ2 = 9, and λ3 = 14. (a) Charged hadron multiplicity distributions for |η| < 2
at
√
(s) = 7 TeV, as given by the CMS experiment [38] (points), compared with a three-component CBD

(3-CBD; Equation (41)). (b) Coefficients Cj emerging from the CMS data used in panel (a) compared
with the corresponding Cj obtained from the 3-CBD.

4. Summary

To summarize, we would like to mention that power law and quasi-power-law distributions are
ubiquitous in many different, apparently very disparate, branches of science (such as, e.g., earthquakes,
escape probabilities in chaotic maps close to crisis, biased diffusion of tracers in random systems,
kinetic and dynamic processes in random quenched and fractal media, diffusion limited aggregates,
growth models, or stock markets near financial crashes, to name only a few). Also ubiquitous is the
fact that, in most cases, they are decorated with log-periodic oscillations of different kinds [23,24,26,27].
It is then natural to expect that oscillations of certain variables constitute a universal phenomenon,
which should occur in a large class of stochastic processes, independently of the microscopic details.
In this paper, we have concentrated on some specific oscillation phenomena seen at LHC energies in
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transverse momentum distributions. Their log-periodic characteristics suggest that either the exponent
of the power-like behavior of these distributions is complex, or that there is a scale parameter that
exhibits specific log-periodic oscillations. Whereas the most natural thing seems to be attributing
the observed oscillations to some discrete scale invariance present in the system considered [23,24],
it turns out that such scale-invariant functions also satisfy some specific wave equations showing a
self-similarity property [21]. In both cases, these functions exhibit log-periodic behavior.

Concerning the second topic considered here, the presence of oscillations in counting statistics, one
should realize that it is also a well-established phenomenon. The known examples include oscillations
of the high-order cumulants of the probability distributions describing the transport through a double
quantum dot, oscillations in quantum optics (in the photon distribution function in slightly squeezed
states; see [47] for more information and references). In elementary particle physics, oscillations of
the Hq moments, which represent ratios of the cumulants to factorial moments, also have a long
history [11,35,36].

Our expectation that the oscillations discussed here could also be observed (and successfully
measured) in multiparticle production processes is new. To see these, one must first deduce from
the experimental data on the multiplicity distribution P(N) the modified combinants Cj (which are
defined by the recurrence relation presented in Equation (22); we note that, contrary to the Hq moments,
the Cj are independent of the multiplicity distribution P(N) for N > j). In the case for which these
modified combinants show oscillatory behavior, they can be used to search for some underlying
dynamical mechanism that could be responsible for it. The present situation is such that the measured
multiplicity distributions P(N) (for which, as we claim in [31], the corresponding modified combinants
Cj oscillate), are most frequently described by NBDs (the modified combinants of which do not
oscillate). Furthermore, with increasing collision energy and increasing multiplicity of produced
secondaries, some systematic discrepancies between the data and the NBD form of the P(N) used to
fit them become more and more apparent. We propose therefore to use a novel phenomenological
approach to the observed multiplicity distributions on the basis of the modified combinants Cj obtained
from the measured multiplicity distributions. Together with the fitted multiplicity distributions
P(N), these would allow for a more detailed quantitative description of the complex structure of the
multiparticle production process. We argue that the observed strong oscillations of the coefficients Cj
in the pp data at LHC energies indicate the compound characteristics of the measured distributions
P(N) with a central role played by the BD, which provides the oscillatory characteristics of the Cj.
This must be supplemented by some other distribution in such a way that the CD fits both the observed
P(N) and the Cj deduced from it. However, at the moment, we are not able to obtain fits to both P(N)

and Cj of acceptable quality. Therefore, these oscillations still await their physical justification, that
is, the identification of some physical process (or combination of such processes) that would result in
such phenomena.

We close by noting that both phenomena discussed here describe, in fact, different dynamical
aspects of the multiparticle production process at high energies. The quasi-power-like distributions
and the related log-periodic oscillations are related with events with rather small multiplicities of
secondaries with large and very large momenta; these are called hard collisions, and they essentially
probe the collision dynamics towards the edge of the phase space. The multiparticle distributions
collect instead all produced particles, the majority of which come from the soft collisions concentrated
in the middle of the phase space. In this sense, both the phenomena discussed provide us with
complementary new information on these processes and, because of this, they should be considered,
as much as possible, jointly. (Because of some similarities observed between hadronic, nuclear and
e+e− collisions [11,48,49] (see also Chapter 20 of [50]), one might expect that the phenomena discussed
above will also appear in these reactions. However, this is a separate problem, too extensive and not
yet sufficiently discussed to be presented here).
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Abstract: The Kullback–Leibler (KL) divergence is a fundamental measure of information geometry
that is used in a variety of contexts in artificial intelligence. We show that, when system
dynamics are given by distributed nonlinear systems, this measure can be decomposed as
a function of two information-theoretic measures, transfer entropy and stochastic interaction.
More specifically, these measures are applicable when selecting a candidate model for a distributed
system, where individual subsystems are coupled via latent variables and observed through a filter.
We represent this model as a directed acyclic graph (DAG) that characterises the unidirectional
coupling between subsystems. Standard approaches to structure learning are not applicable in this
framework due to the hidden variables; however, we can exploit the properties of certain dynamical
systems to formulate exact methods based on differential topology. We approach the problem by
using reconstruction theorems to derive an analytical expression for the KL divergence of a candidate
DAG from the observed dataset. Using this result, we present a scoring function based on transfer
entropy to be used as a subroutine in a structure learning algorithm. We then demonstrate its use in
recovering the structure of coupled Lorenz and Rössler systems.

Keywords: Kullback–Leibler divergence; model selection; information theory; transfer entropy;
stochastic interaction; nonlinear systems; complex networks; state space reconstruction

1. Introduction

Distributed information processing systems are commonly studied in complex systems and
machine learning research. We are interested in inferring data-driven models of such systems,
specifically in the case where each subsystem can be viewed as a nonlinear dynamical system. In this
context, the Kullback–Leibler (KL) divergence is commonly used to measure the quality of a statistical
model [1–3]. When a model is compared with fully observed data, computing the KL divergence can
be straightforward. However, in the case of spatially distributed dynamical systems, where individual
subsystems are coupled via latent variables and observed through a filter, the presence of hidden
variables renders typical approaches unusable. We derive the KL divergence in such systems as
a function of two information-theoretic measures using methods from differential topology.

The model selection problem has applications in a wide variety of areas due to its usefulness
in performing efficient inference and understanding the underlying phenomena being studied.
Dynamical systems are an expressive model characterised by a map that describes their evolution
over time and a read-out function through which we observe the latent state. Our research focuses
on the more general case of a multivariate system, where a set of these subsystems are distributed
and unidirectionally coupled to one another. The problem of inferring this coupling is an important
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multidisciplinary study in fields such as ecology [4], neuroscience [5,6], multi-agent systems [7–9],
and various others that focus on artificial and biological networks [10].

We represent such a spatially distributed system as a probabilistic graphical model termed a synchronous
graph dynamical system (GDS) [11,12], whose structure is given by a directed acyclic graph (DAG). Model
selection in this context is the problem of inferring directed relationships between hidden variables from
an observed dataset, also known as structure learning. A main challenge in structure learning for DAGs
is the case where variables are unobserved. Exact methods are known for fully observable systems
(i.e., Bayesian networks (BNs)) [13]; however, these are not applicable in the more expressive case when
the state variables in dynamical systems are latent. The main focus of this paper is to analytically derive
a measure for comparing a candidate graph to the underlying graph that generated a measured dataset.
Such a measure can then be used to solve the two subproblems that comprise structure learning, evaluation
and identification [14], and hence find the optimal model that explains the data.

For the evaluation problem, it is desirable to select the simplest model that incorporates all
statistical knowledge. This concept is commonly expressed via information theory, where an
established technique is to evaluate the encoding length of the data, given the model [1,15,16].
The simplest model should aim to minimise code length [2], and therefore we can simplify our
problem to that of minimising KL divergence for the synchronous GDS. Using this measure, we find
a factorised distribution (given by the graph structure) that is closest to the complete (unfactorised)
distribution. We first analytically derive an expression for this divergence, and build on this result to
present a scoring function for evaluating candidate graphs based on a dataset.

The main result of this paper is an exact decomposition of the KL divergence for synchronous
GDSs. We show that this measure can be decomposed as the difference between two well-known
information-theoretic measures, stochastic interaction [17,18] and collective transfer entropy [19].
We establish this result by first representing discrete-time multivariate dynamical systems as dynamic
Bayesian networks (DBNs) [20]. In this form, both the complete and factorised distributions cannot
be directly computed due to the hidden system state. Thus, we draw on state space reconstruction
methods from differential topology to reformulate the KL divergence in terms of computable distributions.
Using this expression, we show that the maximum transfer entropy graph is the most likely to have
generated the data. This is experimentally validated using toy examples of a Lorenz–Rössler system and
a network of coupled Lorenz attractors (Figure 1) of up to four nodes. These results support the conjecture
that transfer entropy can be used to infer effective connectivity in complex networks.

(a) (b)

Figure 1. Trajectory of a pair of coupled Lorenz systems. Top row: original state of the subsystems.
Bottom row: time-series measurements of the subsystems. In each figure, the black lines represent an
uncoupled simulation (λ = 0), and teal lines illustrate a simulation where the first (leftmost) subsystem
was coupled to the second (λ = 10). (a) σ = 10, β = 8/3, ρ = 28; (b) σ = 10, β = 8/3, ρ = 90.
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2. Related Work

Networks of coupled dynamical systems have been introduced under a variety of terms, such
as complex networks [10], distributed dynamical systems [6] and master–slave configurations [21].
The defining feature of these networks is that the dynamics of each subsystem are given by a set of
either discrete-time maps or first-order ordinary differential equations (ODEs). In this paper, we use
the discrete-time formulation, where a map can be obtained numerically by integrating ODEs or
recording observations at discrete-time intervals [22].

An important precursor to network reconstruction is inferring causality and coupling strength
between complex nonlinear systems. Causal inference is intractable when the experimenter can
not intervene with the dataset [23], and so we focus our attention on methods that determine
conditional independence (coupling) rather than causality. In seminal work, Granger [24] proposed
Granger causality for quantifying the predictability of one variable from another; however, a key
requirement of this measure is linearity of the system, implying subsystems are separable [4].
Schreiber [25] extended these ideas and introduced transfer entropy using the concept of finite-order
Markov processes to quantify the information transfer between coupled nonlinear systems. Transfer
entropy and Granger causality are equivalent for linearly-coupled Gaussian systems (e.g., Kalman
models) [26]; however, there are clear distinctions between the concepts of information transfer and causal
effect [27]. Although transfer entropy has received criticism over spuriously identifying causality [28–30],
we are concerned with statistical modelling and not causality of the underlying process.

Recently, a number of measures have been proposed to infer coupling between distributed
dynamical systems based on reconstruction theorems. Sugihara et al. [4] proposed convergent
cross-mapping that involves collecting a history of observed data from one subsystem and uses this
to predict the outcome of another subsystem. This history is the delay reconstruction map described
by Takens’ Delay Embedding Theorem [31]. Similarly, Schumacher et al. [6] used the Bundle Delay
Embedding Theorem [32,33] to infer causality and perform inference via Gaussian processes. Although
the algorithms presented in these papers can infer driving subsystems in a spatially distributed
dynamical system, the results obtained differ from ours as inference is not considered for an entire
network structure, nor is a formal derivation presented. Contrasting this, we recently derived an
information criterion for learning the structure of distributed dynamical systems [12]. However,
the criterion proposed required parametric modelling of the probability distributions, and thus
a detailed understanding of the physical phenomena being studied. In this paper, we extend this
framework by first showing that KL divergence can be decomposed as information-theoretically useful
measures, and then arriving at a similar result but employing non-parametric density estimation
techniques to allow for no assumptions about the underlying distributions.

It is important to distinguish our approach from dynamic causal modelling (DCM), which
attempts to infer the parameters of explicit dynamic models that cause (generate) data. In DCM,
the set of potential models is specified a priori (typically in the form of ODEs) and then scored via
marginal likelihood or evidence. The parameters of these models include effective connectivity such
that their posterior estimates can be used to infer coupling among distributed dynamical systems [34].
As a consequence, these approaches can be used to recover networks that reveal the effective structure
of observed systems [35,36]. In contrast, our approach does not require an explicitly specified model
because the scoring function can be computed directly from the data. However, it does assume an
implicit model in the form of a DAG where the subsystem processes are generated by generic functions.

Unlike effective connectivity, which is defined in relation to a (dynamic causal) model, the concept
of functional connectivity refers to recovering statistical dependencies [37]. Consequently, statistical
measures such as Granger causality and transfer entropy are typically used to identify functional,
rather than effective structure. For example, transfer entropy has been used previously to infer
networks in numerous fields, e.g., computational neuroscience [5,38], multi-agent systems [8], financial
markets [39], supply-chain networks [40], and biology [41]. However, most of these results build on
the work of Schreiber [25] by assuming the system is composed of finite-order Markov chains and
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thus there is a dearth of work that provides formal derivations for the use of this measure for inferring
effective connectivity. Our work allows us to compute scoring functions directly from multivariate
time series (as in functional connectivity), yet still assumes an implicit model (albeit with weaker
assumptions on the model than those considered in inferring effective connectivity).

3. Background

3.1. Notation

We use the convention that (·) denotes a sequence, {·} a set, and 〈·〉 a vector. In this work,
we consider a collection of stationary stochastic temporal processes Z. Each process Zi comprises
a sequence of random variables (Zi

1, . . . , Zi
N) with realisation (zi

1, . . . , zi
N) for countable time indices

n ∈ N. Given these processes, we can compute probability distributions of each variable by counting
relative frequencies or by density estimation techniques [42,43]. We use bold to denote the set of
all variables, e.g., zn = {z1

n, . . . , zM
n } is the collection of M realisations at index n. Furthermore,

unless otherwise stated, Xi
n is a latent (hidden) variable, Yi

n is an observed variable, and Zi
n is an

arbitrary variable; thus, Zn = {Xn, Yn} is the set of all hidden and observed variables at temporal
index n. Given a graphical model G, the pi parents of variable Zi

n+1 are given by the parent set

ΠG(Zi
n+1) = {Zij

n}j = {Zi1
n , . . . , Zipi

n }. Finally, let the superscript zi,(k)
n = 〈zi

n, zi
n−1, . . . , zi

n−k+1〉 denote
the vector of k previous values taken by variable Zi

n.

3.2. Representing Distributed Dynamical Systems as Probabilistic Graphical Models

We are interested in modelling discrete-time multivariate dynamical systems, where the state is
a vector of real numbers given by a point xn lying on a compact d-dimensional manifoldM. A map
f : M → M describes the temporal evolution of the state at any given time, such that the state at
the next time index xn+1 = f (xn). Furthermore, in many practical scenarios, we do not have access
to xn directly, and can instead observe it through a measurement function ψ : M → RM that yields
a scalar representation yn = ψ(xn) of the latent state [22,44]. We assume the multivariate system
can be factorised and modelled as a DAG with spatially distributed dynamical subsystems, termed
a synchronous GDS (see Figure 2a). This definition is restated from [12] as follows.

V 1

V 2

(a)

X1
1 X1

2 X1
3 X1

4

Y 1
1 Y 1

2 Y 1
3 Y 1

4

X2
1 X2

2 X2
3 X2

4

Y 2
1 Y 2

2 Y 2
3 Y 2

4

(b)

Figure 2. Representation of (a) the synchronous GDS with two vertices (V1 and V2), and (b) the
rolled-out DBN of the equivalent structure. Subsystems V1 and V2 are coupled by virtue of the edge
X1

n → X2
n+1.

Definition 1 (Synchronous GDS). A synchronous GDS (G, xn, yn, { f i}, {ψi}) is a tuple that consists of:
a finite, directed graph G = (V , E) with edge-set E = {Ei} and M vertices comprising the vertex set V = {Vi};
a multivariate state xn = 〈xi

n〉, composed of states for each vertex Vi confined to a di-dimensional manifold
xi

n ∈ Mi; an M-variate observation yn = 〈yi
n〉, composed of scalar observations for each vertex yi

n ∈ R; a set of
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local maps { f i} of the form f i : M→Mi, which update synchronously and induce a global map f : M→M;
and a set of local observation functions {ψ1, ψ2, . . . , ψM} of the form ψi : Mi → R.

The global dynamics and observations can therefore be described by the set of local functions [12]:

xi
n+1 = f i(xi

n, 〈xij
n 〉j) + υ f i , (1)

yi
n+1 = ψi(xi

n+1) + υψi , (2)

where υ f i and υψi are additive noise terms. The subsystem dynamics (1) are a function of the subsystem

state xi
n and the subsystem parents’ state 〈xij

n 〉j at the previous time index, i.e., f i : (Mi ×jMij)→Mi.
However, the observation yi

n+1 is a function of the subsystem state alone, i.e., ψi : Mi → R. We assume
that the maps { f i} and {ψi}, as well as the graph G, are time-invariant.

The discrete-time mapping for the dynamics (1) and measurement functions (2) can be modelled as
a DBN in order to facilitate structure learning of the graph [12] (see Figure 2b). DBNs are a probabilistic
graphical model that represent probability distributions over trajectories of random variables
(Z1, Z2, . . .) using a prior BN and a two-time-slice BN (2TBN) [45]. To model the maps, however, we need
only to consider the 2TBN B = (G, ΘG), which can model a first-order Markov process pB(zn+1 | zn)

graphically via a DAG G and a set of conditional probability distribution (CPD) parameters ΘG [45].
Given a set of stochastic processes (Z1, Z2, . . . , ZN), the realisation of which constitutes the sample
path (z1, z2, . . . , zN), the 2TBN distribution is given by pB(zn+1 | zn) = ∏i Pr(zi

n+1 | πG(Zi
n+1)),

where πG(Zi
n+1) denotes the (index-ordered) set of realisations {zj

o : Zj
o ∈ ΠG(Zi

n+1)}.
To model the synchronous GDS as a DBN, we associate each subsystem vertex Vi with a state

variable Xi
n and an observation variable Yi

n. The parents of subsystem Vi are denoted ΠG(Vi) [12].
From the dynamics (1), variables in the set ΠG(Xi

n+1) come strictly from the preceding time slice, and
additionally, from the measurement function (2), ΠG(Yi

n+1) = Xi
n+1. Thus, we can build the edge set E in

the GDS by means of the edges in the DBN [12], i.e., given an edge Xi
n → Xj

n+1 of the DBN, the equivalent
edge Vi → Vj exists for the GDS. The distributions for the dynamics (1) and observation (2) maps of M
arbitrary subsystems can therefore be factorised according to the DBN structure such that [12]

pB(zn+1 | zn) =
M

∏
i=1

Pr(xi
n+1 | xi

n, 〈xij
n 〉j) · Pr(yi

n+1 | xi
n+1). (3)

The goal of learning nonlinear dynamical networks thus becomes that of inferring the parent set
ΠG(Xi

n) for each latent variable Xi
n.

Finally, recall that the parents of each observation are constrained such that ΠG(Yi
n+1) = Xi

n+1.

As a consequence, we use the shorthand notation yij
n to denote the observation of the j-th parent of the

i-th subsystem at time n (and the same for xij
n ).

3.3. Network Scoring Functions

A number of exact and approximate DBN structure learning algorithms exist that are based
on Bayesian statistics and information theory. We have shown in prior work how to compute the
log-likelihood function for synchronous GDSs. In this section, we will briefly summarise the problem
of structure learning for DBNs, focusing on the factorised distribution (3).

The score and search paradigm [46] is a common method for recovering graphical models from
data. Given a dataset D = (y1, y2, . . . , yN), the objective is to find a DAG G∗ such that

G∗ = arg max
G∈G

g(B : D), (4)
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where g(B:D) is a scoring function measuring the degree of fitness of a candidate DAG G to the data
set D, and G is the set of all DAGs. Finding the optimal graph G∗ in Equation (4) requires solutions
to the two subproblems that comprise structure learning: the evaluation problem and the identification
problem [14]. The main problem we focus on in this paper is the evaluation problem, i.e., determining
a score that quantifies the quality of a graph, given data. Later, we will address the identification problem
by discussing the attributes of this scoring function in efficiently finding the optimal graph structure.

In prior work, we developed a score based on the posterior probability of the network structure G,
given data D. That is, we considered maximising the expected log-likelihood [12]

�(Θ̂G : D) = E
[
log Pr(D | G, Θ̂G)

]
= E

[
log

(
pB(zn+1 | zn)

)]
, (5)

where the expectation E[Z] =
∫ ∞
−∞ z Pr(z)dz. It was shown that state space reconstruction techniques

(see Appendix A) can be used to compute the log-likelihood of Equation (3) as a difference of
conditional entropy terms [12]. In the same work, we illustrated that the log-likelihood ratio
of a candidate DAG G to the empty network G∅ is given by collective transfer entropy (see
Appendix B), i.e.,

�(Θ̂G : D)− �(Θ̂G∅ : D) = N ·
M

∑
i=1

T〈Yij〉j→Yi . (6)

For the nested log-likelihoods above, the statistics of 2(�(Θ̂G : D)− �(Θ̂G∅ : D)) asymptotically
follow the χ2

q-distribution, where q is the difference between the number of parameters of each
model [47,48]. We will draw on this log-likelihood decomposition in later sections for statistical
significance testing.

4. Computing Conditional KL Divergence

In this section, we present our main result, which is an analytical expression of KL divergence that
facilitates structure learning in distributed nonlinear systems. We begin by considering the problem of
finding an optimal DBN structure as searching for a parsimonious factorised distribution pB that best
represents the complete digraph distribution pKM . That is, pKM is the joint distribution yielded by
assuming no factorisation (the complete graph KM) and thus no information loss. The distribution is
expressed as:

pKM (zn+1 | z(n)n ) = Pr
(
{z1

n+1, . . . , zM
n+1} | {z1

n, . . . , zM
n }, {z1

n−1, . . . , zM
n−1}, {z1

1, . . . , zM
1 }

)
. (7)

We quantify the similarity of the factorised distribution pB to this joint distribution via KL
divergence. In prior work, De Campos [3] derived the MIT scoring function for BNs by this approach
and it was later used for DBN structure learning with complete data [49]. We extend the analysis to
DBNs with latent variables, i.e., we compare the joint and factorised distributions of time slices, given
the entire history,

DKL
[
pKM ‖ pB

]
= DKL

[
pKM (zn+1 | z(n)n ) ‖ pB(zn+1 | z(n)n )

]
= ∑

z(n)n

Pr(z(n)n ) ∑
zn+1

Pr(zn+1 | z(n)n ) log
Pr(zn+1 | z(n)n )

pB(zn+1 | z(n)n )

= E

[
log

Pr(zn+1 | z(n)n )

pB(zn+1 | zn)

]
.

(8)

48



Entropy 2018, 20, 51

Substituting the synchronous GDS model (3) into Equation (8), we get

DKL
[
pKM ‖ pB

]
= E

[
log

Pr(zn+1 | z(n)n )

∏M
i=1 Pr(xi

n+1 | xi
n, 〈xij

n 〉j) · Pr(yi
n+1 | xi

n+1)

]
. (9)

However, Equation (9) comprises maximum likelihood distributions with unobserved (latent)
states xn. It is common in model selection to decompose the KL divergence as

DKL
[
pKM ‖ pB

]
= E

[
log

(
Pr(zn+1 | z(n)n )

)]
− E

[
log

(
pB(zn+1 | zn)

)]
, (10)

where the second term is simply the log-likelihood (5). In this form, pKM is often identical for all models
considered and, in practice, it suffices to ignore this term and thus avoid the problem of computing
distributions of latent variables. The resulting simpler expression can be viewed as log-likelihood
maximisation (as in our previous work outlined in Section 3.3). However, as we show in this section,
pKM is not equivalent for all models unless certain parameters of the dynamical systems are known.
Hence, for now, we cannot ignore the first term of Equation (10) and we instead propose an alternative
decomposition of KL divergence that comprises only observed variables.

4.1. A Tractable Expression via Embedding Theory

In order to compute the distributions in (9), we use the Bundle Delay Embedding Theorem [32,33]
to reformulate the factorised distribution (denominator), and the Delay Embedding Theorem for
Multivariate Observation Functions [50] for the joint distribution (numerator). We describe these
theorems in detail in Appendix A, along with the technical assumptions required for ( f , ψ). Although
the following theorems assume a diffeomorphism, we also discuss application of the theory towards
inferring the structure of endomorphisms (e.g., coupled map lattices [51]) in the same appendix.

The first step is to reproduce a prior result for computing the factorised distribution (denominator)
in Equation (9). First, the embedding

yi,(κi)
n = 〈yi

n, yi
n−τi , . . . , yi

n−(κi−1)τi 〉, (11)

where τi is the (strictly positive) lag, and κi is the embedding dimension of the i-th subsystem (the
embedding parameters). Note that, although we can take either the future or past delay embedding (11)
for diffeomorphisms, we explicitly consider a history of values to account for both endomorphisms
and diffeomorphisms. Moreover, an important assumption of our approach is that the the structure
(enforced by coupling between subsystems) is a DAG; this comes from the Bundle Delay Embedding
Theorem [32,33] (see Lemma 1 of [12] for more detail). Our previous result is expressed as follows.

Lemma 1 (Cliff et al. [12]). Given an observed dataset D, where yn ∈ RM, generated by a directed and acyclic
synchronous GDS (G, xn, yn, { f i}, {ψi}), the 2TBN distribution can be written as

M

∏
i=1

Pr(xi
n+1 | xi

n, 〈xij
n 〉j) · Pr(yi

n+1 | xi
n+1) =

∏M
i=1 Pr(yi

n+1 | yi,(κi)
n , 〈yij,(κij)

n 〉j)

Pr(xn | 〈yi,(κi)
n 〉)

. (12)

Next, we present a method for computing the joint distribution (numerator) in Lemma 3.
For convenience, Lemma 2 restates part of the delay embedding theorem in [50] in terms of subsystems
of a synchronous GDS and establishes existence of a map G for predicting future observations from
a history of observations.

Lemma 2. Consider a diffeomorphism f : M→M on a d-dimensional manifoldM, where the multivariate
state xn consists of M subsystem states 〈x1

n, . . . , xM
n 〉. Each subsystem state xi

n is confined to a submanifold
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Mi ⊆ M of dimension di ≤ d, where ∑i di = d. The multivariate observation is given, for some map G,

by yn+1 = G(〈yi,(κi)
n 〉).

Proof. The proof restates part of the proof of Theorem 2 of Deyle and Sugihara [50] in terms of subsystems.
Given M inhomogeneous observation functions {ψi}, the following map

Φ f ,ψ(x) = 〈Φ f 1,ψ1(x), Φ f 2,ψ2(x), . . . , Φ f M ,ψM (x)〉 (13)

is an embedding where each subsystem (local) map Φ f i ,ψi : M → Rκi
, smoothly (at least C2), and,

at time index n is described by

Φ f i ,ψi (xn) = 〈ψi (xn) , ψi(xn−τ), . . . , ψi(xn−(k−1)τ)〉

= yi,(κi)
n ,

(14)

where ∑i κi = 2d + 1 [50]. Note that, from (13) and (14), we have the global map

Φ f ,ψ(xn) = 〈yi,(κi)
n 〉 = 〈y1,(κ1)

n , . . . , ym,(κM)
n 〉.

Now, since Φ f ,ψ is an embedding, it follows that the map F = Φ f ,ψ ◦ f ◦Φ−1
f ,ψ is well defined and

a diffeomorphism between two observation sequences F : R2d+1 → R2d+1, i.e.,

〈yi,(κi)
n+1 〉 = Φ f ,ψ (xn+1) = Φ f ,ψ ( f (xn))

= Φ f ,ψ

(
f
(

Φ−1
f ,ψ

(
〈yi,(κi)

n 〉
)))

= F(〈yi,(κi)
n 〉).

The last 2d + 1 components of F are trivial, i.e., the set 〈yi,(κi)
n 〉 is observed; denote the first M

components by G : Φ f ,ψ → RM, and then we have yn+1 = G(〈yi,(κi)
n 〉).

We now use the result of Lemma 2 to obtain a computable form of the KL divergence.

Lemma 3. Consider a discrete-time multivariate dynamical system with generic ( f , ψ) modelled as a directed
and acyclic synchronous GDS (G, xn, yn, { f i}, {ψi}) with M subsystems. The KL divergence of a candidate
graph G from the observed dataset D can be computed from tractable probability distributions:

DKL
[
pKM ‖ pB

]
= E

⎡⎣log
Pr(yn+1 | 〈y

i,(κi)
n 〉)

∏M
i=1 Pr(yi

n+1 | yi,(κi)
n , 〈yij,(κij)

n 〉j)

⎤⎦ . (15)

Proof. Lemma 1, we can substitute (12) into (9), and express the KL divergence DKL
[
pKM ‖ pB

]
as

DKL
[
pKM ‖ pB

]
= E

⎡⎣log

⎛⎝Pr(zn+1 | z(n)n ) · Pr(xn | 〈yi,(κi)
n 〉)

∏M
i=1 Pr(yi

n+1 | yi,(κi)
n , 〈yij,(κij)

n 〉j)

⎞⎠⎤⎦ . (16)

We now focus on pKM (zn+1|z(n)n ). Using the chain rule,

pKM (zn+1 | z(n)n ) = Pr(xn+1 | z(n)n ) · Pr(yn+1 | xn+1, z(n)n ).

Given the Markov property of the dynamics (1) and observation (2) maps, we get

pKM (zn+1 | z(n)n ) = Pr(Xn+1 = f (xn) | xn) · Pr(Yn+1 = ψ(xn+1) | xn+1). (17)
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Now, recall fom Lemma 2 that global equations for the entire system state xn and observation yn are

xn+1 = f (xn) + υ f = f
(

Φ−1
f ,ψ(〈y

i,(κi)
n 〉)

)
+ υ f , (18)

yn+1 = ψ(xn+1) + υψ = G(〈yi,(κi)
n 〉) + υψ. (19)

Given the assumption of i.i.d noise on the function f , from (18), we express the probability of the
dynamics xn+1, given by the embedding, as

Pr
(

xn+1 | 〈yi,(κi)
n 〉

)
= Pr

(
Xn+1 = f

(
Φ−1

f ,ψ

(
〈yi,(κi)

n 〉
))
| 〈yi,(κi)

n 〉
)

= Pr
(

Xn = Φ−1
f ,ψ

(
〈yi,(κi)

n 〉
)
| 〈yi,(κi)

n 〉
)
· Pr (Xn+1 = f (xn) | xn) .

(20)

By assumption, the observation noise is i.i.d or dependent only on the state xn+1, and thus the
probability of observing yn+1, from (19) is

Pr
(

yn+1 | 〈y
i,(κi)
n 〉

)
= Pr

(
Yn+1 = G(〈yi,(κi)

n 〉) | 〈yi,(κi)
n 〉

)
= Pr

(
Xn+1 = f

(
Φ−1

f ,ψ

(
〈yi,(κi)

n 〉
))
| 〈yi,(κi)

n 〉
)

× Pr (Yn+1 = ψ(xn+1) | xn+1) .

(21)

By (20) and (21), we have that

Pr(xn+1 | xn) · Pr(yn+1 | xn+1) =
Pr(yn+1 | 〈y

i,(κi)
n 〉)

Pr(xn | 〈yi,(κi)
n 〉)

. (22)

Substituting Equation (22) into (17) gives

pKM (zn+1 | z(n)n ) =
Pr(yn+1 | 〈y

i,(κi)
n 〉)

Pr(xn | 〈yi,(κi)
n 〉)

. (23)

Finally, substituting (23) back into (16) yields the statement of the theorem.

Given all variables in (15) are observed, it is now straightforward to compute KL divergence;
however, as we will see, it is more convenient to express (15) as a function of known
information-theoretic measures.

4.2. Information-Theoretic Interpretation

The main theorem of this paper states KL divergence in terms of transfer entropy and stochastic
interaction. These information-theoretic concepts are defined in Appendix B for convenience.

Theorem 4. Consider a discrete-time multivariate dynamical system with generic ( f , ψ) represented as
a directed and acyclic synchronous GDS (G, xn, yn, { f i}, {ψi}) with M subsystems. The KL divergence
DKL

[
pKM ‖ pB

]
of a candidate graph G from the observed dataset D can be expressed as the difference between

stochastic interaction (A9) and collective transfer entropy (A8), i.e.,

DKL
[
pKM ‖ pB

]
= SY −

M

∑
i=1

T{Yij}j→Yi . (24)
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Proof. We can reformulate the KL divergence in (15) as

DKL
[
pKM ‖ pB

]
= E

[
log

(
Pr(yn+1 | 〈y

i,(κi)
n 〉)

)]
− E

[
log

(
M

∏
i=1

Pr(yi
n+1 | yi,(κi)

n , 〈yij,(κij)
n 〉j)

)]

= −H(Yn+1 | {Y(κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Yi,(κi)

n , {Yij,(κij)
n }j)

= −H(Yn+1 | {Y(κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Yi,(κi)

n )

+
M

∑
i=1

(
H(Yi

n+1 | Yi,(κi)
n , {Yij,(κij)

n }j)− H(Yi
n+1 | Yi,(κi)

n )

)
.

(25)

Substituting in the definitions of transfer entropy (A8) and stochastic interaction (A9) completes
the proof.

To conclude this section, we present the following corollary showing that, when we assume
a maximum or fixed embedding dimension κi and time delay τi, it suffices to maximise the collective
transfer entropy alone in order to minimise KL divergence for a synchronous GDS.

Corollary 1. Fix an embedding dimension κi and time delay τi for each subsystem Vi ∈ V . Then, the graph G
that minimises the KL divergence DKL

[
pKM ‖ pB

]
is equivalent to the graph that maximises transfer entropy, i.e.,

arg min
G∈G

DKL
[
pKM ‖ pB

]
= arg max

G∈G

M

∑
i=1

T{Yij}j→Yi . (26)

Proof. The first term of (24) is constant, given a constant vertex set V , time delay τ and embedding
dimension κ and is thus unaffected by the parent set ΠG(Vi) of a variable. As a result, SY does not
depend on the graph G being considered, and, therefore, we only need to consider transfer entropy
when optimising KL divergence (24).

As mentioned above, Corollary 1 is, in practice, equivalent to the maximum log-likelihood (5)
and log-likelihood ratio (6) approaches. However, the statement only holds for constant embedding
parameters. In the general case, where these parameters are unknown, one requires Theorem 4 to perform
structure learning. Given this result, we can now confidently derive scoring functions from Corollary 1.

5. Application to Structure Learning

We now employ the results above in selecting a synchronous GDS that best fits data generated by
a multivariate dynamical system. The most natural way to find an optimal model based on Theorem 4
is to minimise KL divergence. Here, we assume constant embedding parameters and use Corollary 1
to present the transfer entropy score and discuss some attributes of this score. We then use this scoring
function as a subroutine for learning the structure of coupled Lorenz and Rössler attractors.

From Corollary 1, a naive scoring function can be defined as

gTE(B : D) =
M

∑
i=1

T{Yij}j→Yi . (27)

Given parameterised probability distributions, this score is insufficient, since the sum of transfer
entropy in (27) is non-decreasing when including more parents in the graph [38]. Thus, we use
statistical significance tests in our scoring functions to mitigate this issue.
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5.1. Penalising Transfer Entropy by Independence Tests

Building on the maximum likelihood score (27), we propose using independence tests to define
two new scores of practical value. Here, we draw on the result of de Campos [3], who derived a scoring
function for BN structure learning based on conditional mutual information and statistical significance
tests, called MIT. The central idea is to use collective transfer entropy T〈Yij〉j→Yi to measure the degree

of interaction between each subsystem Vi and its parent subsystems ΠG(Vi), but also to penalise this
term with a value based on significance testing. As with the MIT score, this gives a principled way to
re-scale the transfer entropy when including more edges in the graph.

To develop our scores, we form a null hypothesis H0 that there is no interaction T〈Yij〉j→Yi , and then
compute a test statistic to penalise the measured transfer entropy. To compute the test statistic,
it is necessary to consider the measurement distribution in the case where the hypothesis is true.
Unfortunately, this distribution is only analytically tractable in the case of discrete and linear-Gaussian
systems, where 2NT〈Yij〉j→Yi is known to asymptotically approach the χ2-distribution [48]. Since this

distribution is a function of the parents of Yi, we let it be described by the function χ2({lij}j). Now,
given this distribution, we can fix some confidence level α and determine the value χα,{lij}j

such that

p(χ2({lij}j) ≤ χα,{lij}j
). This represents a conditional independence test: if 2NT〈Yij〉j→Yi ≤ χα,{lij}j

,

then we accept the hypothesis of conditional independence between Yi and 〈Yij〉j; otherwise, we reject
it. We express this idea as the TEA score:

gTEA(B : D) =
M

∑
i=1

(
2NT{Yij}j→Yi − χα,{lij}j

)
. (28)

(a) (b)

Figure 3. Distributions of the (a) TEA penalty function (28) and the (b) TEE penalty function (28).
Both distributions were generated by observing the outcome of 1000 samples from two Gaussian
variables with a correlation of 0.05. The figures illustrate: the distribution as a set of 100 sampled
points (black dots); the area considered independent (grey regions); the measured transfer entropy
(black line); and the difference between measurement and penalty term (dark grey region). Both tests
use a value of α = 0.9 (a p-value of 0.1). The distribution in (a) was estimated by assuming variables
were linearly-coupled Gaussians, and the distribution in (b) was computed via a kernal box method
(computed by the Java Information Dynamics Toolkit (JIDT), see [52] for details).

In general, we only have access to continuous measurements of dynamical systems, and so are
limited by the discrete or linear-Gaussian assumption. We can, however, use surrogate measurements
T〈Yij〉sj→Yi to empirically compute the distribution under the assumption of H0 [52]. This same

technique has been used by [38] to derive a greedy structure learning algorithm for effective network
analysis. Here, 〈Yij〉sj are surrogate sets of variables for 〈Yij〉j, which have the same statistical
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properties as 〈Yij〉j, but the correlation between 〈Yij〉sj and Yi is removed. Let the distribution of these

surrogate measurements be represented by some general function T(si) where, for the discrete and
linear-Gaussian systems, we could compute T(si) analytically as an independent set of χ2-distributions
χ2({lij}j). When no analytic distribution is known, we use a resampling method (i.e., permutation
or bootstrapping), creating a large number of surrogate time-series pairs {〈Yij〉sj , Yi} by shuffling

(for permutations, or redrawing for bootstrapping) the samples of Yi and computing a population
of T〈Yij〉sj→Yi . As with the TEA score, we fix some confidence level α and determine the value Tα,si ,

such that p(T(si) ≤ Tα,si ) = α. This results in the TEE scoring function as

gTEE(B : D) =
M

∑
i=1

(
T{Yij}j→Yi − Tα,si

)
. (29)

We can obtain the value Tα,si by (1) drawing S samples T〈Yij〉sj→Yi from the distribution T(si) (by

permutation or bootstrapping), (2) fixing α ∈ {0, 1/S, 2/S, . . . , 1}, and then (3) taking Tα,si such that

α =
1
S ∑

T{Yij}j→Yi

�T{Yij}s
j→Yi≤T

α,si .

We can alternatively limit the number of surrogates S to �α/(1− α)� and take the maximum
as Tα,si [22]; however, taking a larger number of surrogates will improve the validity of the
distribution T(si).

Both the analytical (TEA) and empirical (TEE) scoring functions are illustrated in Figure 3.
Note that the approach of significance testing is functionally equivalent to considering the
log-likelihood ratio in (6), where, as stated, nested log-likelihoods (and thus transfer entropy) follows
the above χ2-distribution [48].

5.2. Implementation Details and Algorithm Analysis

The two main implementation challenges that arise when performing structure learning are:
(1) computing the score for every candidate network and (2) obtaining a sufficient number of samples
to recover the network. The main contributions of this work are theoretical justifications for measures
already in use and, fortunately, algorithmic performance has already been addressed extensively using
various heuristics. Here, we present an exact, exhaustive implementation for the purpose of validating
our theoretical contributions.

First, for computing collective transfer entropy for the score (29), we require CPDs to be
estimated from data. Given these CPDs, collective transfer entropy (A8) decomposes as a sum
of p conditional transfer entropy (A7) terms, where p = |{Yij}j| is the size of the parent set
(see Appendix B for details). Since most observations of dynamical systems are expected to be
continuous, we employ a non-parametric, nearest-neighbour based approach to density estimation
called the Kraskov–Stögbauer–Grassberger (KSG) estimator [43]. For any arbitrary decomposition
of collective transfer entropy (i.e., any ordering of the parent set), this density estimation can be
computed in time O(κ(p + 1)KNκ(p+1) log(N)), where K is the number of nearest neighbours for each
observation in a dataset of size N, and κ is the embedding dimension [52]. We upper bound this as
O(κMKNκM log(N)) since the maximum p is M− 1.

Now, the above density estimation was described for an arbitrary ordering of the parent set. In the
case of parametric (discrete or linear-Gaussian) density estimation, every permutation of the parent set
yields equivalent results, with potentially different χα,{lij}j

values for each permutation [3]; however,
this is not the case for non-parametric density estimation techniques, e.g., the KSG estimator. Hence,
as a conservative estimate of the score, we compute all p! permutations of the parent set and take
the minimum collective transfer entropy. In order to obtain the surrogate distribution, we require S
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uncorrelated samples of the density. Since the surrogate distributions decompose in a similar manner,
the score for a candidate network can be computed in time O(S ·M! · κMKNκM log(N)), where, again,
we have upper bounded p! as M!.

Using this approach, we can now compute the score (29), and thus the optimal graph G∗

can be found using any search procedure over DAGs. Exhaustive search, where all DAGs are
enumerated, is typically intractable because the search space is super-exponential in the number
of variables (about 2O(M2)), and so heuristics are often applied for efficiency. We restrict our attention
to a relatively small network (a maximum of M = 4 nodes) and thus we are able employ the dynamic
programming (DP) approach of Silander and Myllymaki [53] to search through the space of all DAGs
efficiently. This approach requires first computing the scores for all local parent sets, i.e., 2M scores.
Once each score is calculated, the DP algorithm runs in time o(M · 2M−1) and the entire search
procedure run in time O(M · 2M−1 + 2M · S · M! · κMKNκM log(N)). As a consequence, the time
complexity of the exhaustive algorithm is dominated by computing the 2M scores and, in smaller
networks, most of the time is spent on density estimation for surrogate distributions.

Finally, the problem of inferring optimal embedding parameters is well studied in the literature.
In our experimental evaluation, we set the embedding dimension to the maximum, i.e., κ = 2d + 1,
where d is the dimensionality of the entire latent state space (e.g., if M = 3 and di = 3 for each
subsystem, then κ = 2 ∑i di + 1 = 19). However, determining these parameters would give more
insight into the system and reduce the number of samples required for inference. There are numerous
criteria for optimising these parameters (e.g., [54]); most notably, the work of [55] suggests an
information-theoretic approach that could be integrated into the scoring function (29) to search over
the embedding parameters and DAG space simultaneously.

6. Experimental Validation

The dynamics (1) and observation (2) maps can be obtained by either differential equations,
discrete-time maps, or real-world measurements. To validate our approach, we use the toy example
of distributed flows, whereby the dynamics of each node are given by either the Lorenz [56] or the
Rössler system of ODEs [57]. The discrete-time measurements are obtained by integrating these ODEs
over constant intervals. In this section, we formally introduce this model, study the effect of changing
the parameters of a coupled Lorenz–Rössler system, and finally apply our scoring function to learn the
structure of up to four coupled Lorenz attractors with arbitrary graph topology. To compute the scores,
we use the Java Information Dynamics Toolkit (JIDT) [52], which includes both the KSG estimator and
methods for generating the surrogate distributions.

6.1. Distributed Lorenz and Rössler Attractors

For validating our scoring function, we study coupled Lorenz and Rössler attractors. The Lorenz
attractor exhibits chaotic solutions for certain parameter values and has been used to describe numerous
phenomena of practical interest [56,58,59]. Each Lorenz system comprises three components (di = 3),
which we denote x = 〈u, v, w〉; the state dynamics are given by:

ẋ = g(x) =

⎧⎪⎪⎨⎪⎪⎩
u̇ = σ(v− u),

v̇ = u(ρ− w)− v,

ẇ = uv− βw,

(30)

with free parameters {σ, ρ, β}. Similarly, the Rössler attractor has state dynamics given by:

ẋ = g(x) =

⎧⎪⎪⎨⎪⎪⎩
u̇ = −y− z,

v̇ = x + ay,

ẇ = b + z(x− c),

(31)
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with free parameters {a, b, c} [57].
In the distributed case, the components of each state vector xi

t are also driven by components of
another subsystem. A number of different schemes have been proposed for coupling these variables,
e.g., using the product [21,60] and the difference [61,62] of components. Our model uses the latter
approach of linear differencing between one or more subsystem variables to couple the network. Let λ

denote the coupling strength, C denote a three-dimensional vector of binary values, and A denote
an adjacency (coupling) matrix (i.e., an M× M matrix of zeros with Aij = 1 iff Vi ∈ ΠG(Vj)). Then,
the state equations for M spatially distributed systems can be expressed as

ẋi
t = gi(xi

t) + ν f + λC
M

∑
j=1

Aij(xj
t − xi

t), (32)

where gi(·) represents the i-th chaotic attractor and ν f is additive noise. In our simulations, we
use λ = 2, C = 〈1, 0, 0〉 (each subsystem is coupled via variable u), and the adjacency matrices
shown in Figure 4. In our experiments, we use common parameters for both attractors, i.e.,
σ = 10, β = 8/3, ρ = 28 and a = 0.1, b = 0.1, c = 14. For the observation yi

t, it is common
to use one component of the state as the read-out function [4,32,33]; we therefore let yi

t = ui
t + νψ.

The noise terms are normally distributed with ν f ∼ N (0, σf ) and νψ ∼ N (0, σψ). Figure 1 illustrates
example trajectories of Lorenz–Lorenz attractors coupled via this model.

V 1

V 2 V 3

(a) G1

V 1

V 2 V 3

(b) G2

V 1

V 2 V 3

(c) G3

V 1

V 2 V 3

(d) G4

V 1 V 2

V 3 V 4

(e) G5

V 1 V 2

V 3 V 4

(f) G6

V 1 V 2

V 3 V 4

(g) G7

V 1 V 2

V 3 V 4

(h) G8

Figure 4. The network topologies used in this paper. The top row (a–d) are four arbitrary networks with
three nodes (M = 3) and the bottom row (e–h) are four arbitrary networks with four nodes (M = 4).

6.2. Case Study: Coupled Lorenz–Rössler System

In order to characterise the effect of coupling on our score, we begin our evaluation by measuring
the transfer entropy of a coupled Lorenz–Rössler attractor. In this setup, M = 2, ΠG(V1) = ∅,
and ΠG(V2) = V1, g1(x) was given by (30), and g2(x) was given by (31). The transfer entropy was
computed with a finite sample size of N = 100, 000.

Figure 5 shows the transfer entropy as a function of numerous parameters. In particular, the figure
illustrates the effect of varying the coupling strength λ, embedding dimension κ, dynamics noise
σf , and observation noise σψ. As expected, increasing λ, or reducing either noise σ, increases the
transfer entropy. The embedding dimension, however, increases to a set point, remains approximately
constant, and then decreases. The κ-value above which transfer entropy remains constant illustrates
the embedding dimension at which the dynamics are reconstructed; the decrease in transfer entropy
after this point, however, is likely due to the finite sample size used for density estimation.
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(a) σf = 0, σψ = 0.4 (b) σf = 0, σψ = 1.2 (c) σf = 0, σψ = 2

(d) σf = 2.5× 10−3, κ = 1 (e) σf = 2.5× 10−3, κ = 8 (f) σf = 2.5× 10−3, κ = 16

(g) σf = 2.5× 10−3, λ = 0 (h) σf = 2.5× 10−3, λ = 2 (i) σf = 2.5× 10−3, λ = 4

Figure 5. Transfer entropy as a function of the parameters of a coupled Lorenz–Rössler system. These
components are: coupling strength λ and embedding dimension κ in the top row (a–c); coupling
strength λ and observation noise σψ in the middle row (d–f); and observation noise σψ and embedding
dimension κ in the bottom row (g–i).

There are two interesting features in Figure 5 due to the dynamical systems studied. First, in the
bottom row (Figure 5g–i), there is a bifurcation around κ = 6. The theoretical embedding dimension
for this system is κ = 2(d1 + d2) + 1 = 7, and, in this case, for κ < 6, the embedding does not suffice
to reconstruct the dynamics. Second, in Figure 5i, the transfer entropy decreases after about λ = 2.
This appears to be the case of synchrony due to strong coupling, where the dynamics of the forced
variable become subordinate to the forcing [4], thus reducing the information transferred between the
two subsystems.

6.3. Case Study: Network of Lorenz Attractors

In this section, we evaluate the score (27) in learning the structure of distributed dynamical
systems. We will look at systems of three and four nodes of coupled Lorenz subsystems with
arbitrary topologies. Unfortunately, significantly higher number of nodes become computationally
expensive due to an increased embedding dimension κ, number of data points N, and number of
permutations required to calculate the collective transfer entropy. To evaluate the performance of the
score (27), the dynamics noise is constant σf = 0.01, whereas the observation noise σψ and the number

57



Entropy 2018, 20, 51

of observations taken N are varied. We selected the theoretical maximum embedding dimension
κ = 2d + 1 and τ = 1 as is common given discrete-time measurements [22]. It should be noted that
from the results from Section 6.2 that transfer entropy is sensitive to the numerous parameters used
to generate the data, and thus depending on the scenario, a significant sample size can be required
for recovering the underlying graph structure. We do not make an effort to reduce this sample size
and instead show the effect of using a different number of samples on the accuracy of the structure
learning procedure.

In order to evaluate the scoring function, we compute the recall (R, or true positive rate), fallout
(F, or false positive rate), and precision (P, or positive predictive value) of the recovered graph.
Let TP denote the number of true positives (correct edges); TN denote the number of true negatives
(correctly rejected edges); FP denote the number of false positives (incorrect edges); and FN denote the
number of false negatives (incorrectly rejected edges). Then, R = TP/(TP + FN), F = FP/(FP + TN),
and P = TP/(TP + FP). Finally, the F1-score gives the harmonic mean of precision and recall to give
a measure of the tests accuracy, i.e., F1 = 2 · R · P/(R + P). Note that the ideal recall, precision and
F1-score is 1, and ideal fallout is 0. Furthermore, a ratio of R/F >1 suggests the classifier is better than
random. As a summary statistic, Tables 1 and 2 presents the F1-scores for all networks illustrated in
Figure 4, and the full classification results (e.g., precision, recall, and fallout) are given in Appendix C.
The F1-scores are thus a measure of how relevant the recovered network is to the original (generating)
network from our data-driven approach.

In general, the results of Tables 1 and 2 show that the scoring function is capable of recovering
the network with high precision and recall, as well as low fallout. In the table, the cell colours are
shaded to indicate higher (white) to lower (black) F1 scores. The best performing score is that with
a p-value of 0.01 and no penalisation (a p-value of ∞) has the second highest classification results.
As expected, the graphs recovered from data with low observational noise (σψ = 1) are more accurate
than those inferred from noisier data (σψ = 10). The results for three-node networks (shown in Table 1)
yields mostly full recovery of the structure for a higher number of observations N ≥ 75 K, whereas,
the four-node networks (shown in Table 2) are more difficult to classify.

Table 1. F1-scores for three-node (M = 3) networks. We present the classification summary for the
three arbitrary topologies of coupled Lorenz systems represented by Figure 4b–d (network G1 has no
edges and thus an undefined F1-score). The p-value of the TEE score is given in the top row of each
table, with ∞ signifying using no significance testing, i.e., score (27).

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph N σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G2
5 K 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5

25 K 1 0.8 1 0.5 1 0.5 1 0.8

100 K 1 0.5 1 1 1 1 1 0.8

G3
5 K 1 0.67 1 1 1 1 1 0.67

25 K 1 1 1 0.5 1 1 1 1

100 K 1 1 1 1 1 1 1 1

G4
5 K 0.8 - 0.8 0.8 0.8 0.5 0.8 -

25 K 1 1 1 1 1 0.5 1 1

100 K 1 1 1 1 1 1 1 1
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Table 2. F1-scores for four-node (M = 4) networks. We present the classification summary for the three
arbitrary topologies of coupled Lorenz systems represented by Figure 4f–h (network G5 has no edges
and thus an undefined F1-score). The p-value of the TEE score is given in the top row of each table,
with ∞ signifying using no significance testing, i.e., score (27).

p = ∞ p = 0.01 p = 0.001 p = 0.0001

Graph N σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10 σψ = 1 σψ = 10

G6
5 K 0.57 0.5 0.57 0.29 0.57 0.29 0.57 -

25 K 0.75 0.33 0.75 0.33 0.75 0.29 0.75 0.33

100 K 1 0.33 1 0.57 1 0.4 1 0.33

G7
5 K 1 0.25 1 0.29 0.75 0.25 0.75 0.57

25 K 1 0.5 1 0.86 1 0.86 1 0.5

100 K 1 0.86 1 0.86 1 0.86 1 0.86

G8
5 K 1 0.25 1 0.57 1 0.75 1 0.25

25 K 1 0.86 1 0.86 1 0.86 1 0.86

100 K 1 0.86 1 0.86 1 0.57 1 0.86

Interestingly, the statistical significance testing does not have a strong effect on the results.
It is unclear if this is due to the use of the non-parametric density estimators, which, in effect, are
parsimonious in nature since transfer entropy will likely reduce when conditioning on more variables
with a fixed samples size. One challenging case is the empty networks G1 and G5; this is shown in
Appendix C, where the fallout is rarely 0 for any of the p-values or sample sizes (although a large
number of observations N = 100 K appears to reduce spurious edges). It would be expected that
significance testing on these networks would outperform the naive score (27) given that a non-zero
bias is introduced for a finite number of observations. Further investigation is required to understand
why the null case fails.

7. Discussion and Future Work

We have presented a principled method to compute the KL divergence for model selection in
distributed dynamical systems based on concepts from differential topology. The results presented in
Figure 5 and Tables 1 and 2 illustrate that this approach is suitable for recovering synchronous GDSs
from data. Further, KL divergence is related to model encoding, which is a fundamental measure
used in complex systems analysis. Our result, therefore, has potential implications for other areas of
research. For example, the notion of equivalence classes in BN structure learning [63] should lend
insight into the area of effective network analysis [35,36].

More specifically, the approach proposed here complements explicit Bayesian identification and
comparison of state space models. In DCM, and more generally in approximate Bayesian inference,
models are identified in terms of their parameters via an optimisation of an approximate posterior
density over model parameters with respect to a variational (free energy) bound on log evidence [64].
After these parameters have been identified, this bound can be used directly for model comparison
and selection. Interestingly, free energy is derived from the KL divergence between the approximate
and true posterior and thus automatically penalises more complex models; however, in Equation (8),
these distributions are inverted. In future work, it would be interesting to explore the relationship
between transfer entropy and the variational free energy bound. Specifically, computing an evidence
bound directly from the transfer entropy may allow us to avoid the significance testing described in
Section 5 and instead use an approximation to evidence for structure learning.

Multivariate extensions to transfer entropy are known to eliminate redundant pairwise
relationships and take into account the influence of confounding relationships in a network (i.e.,
synergistic effects) [65,66]. In this work, we have shown that this intuition holds for distributed
dynamical systems when confined to a DAG topology. We conjecture that these methods are also
applicable when cyclic dependencies exist within a graph, given any generic observation can be used

59



Entropy 2018, 20, 51

in reconstructing the dynamics [50]; however, the methods presented are more likely to reveal one
source in the cycle, rather than all information sources due to redundancy.

There are a number of extensions that should be considered for further practical implementations
of this algorithm. Currently, we assume that the dimensionality of each subsystem is known, and thus
we can bound the embedding dimension κ for recovering the hidden structure. However, this is
generally infeasible in practice and a more general algorithm would infer the embedding dimension
and time delay for an unknown system. Fortunately, there are numerous techniques to recover these
parameters [54,55]. Furthermore, evaluating the quality of large graphs is infeasible with our current
approach. However, our exact algorithm illustrates the feasibility of state space reconstruction in
recovering a graph in practice. In the future, we aim to leverage the structure learning literature on
reducing the search space and approximating scoring functions to produce more efficient algorithms.

Finally, the theoretical results of this work supplements understanding in fields where transfer
entropy is commonly employed. Point processes are being increasingly viewed as models for
a variety of information processing systems, e.g., as spiking neural trains [67] and adversaries
in robotic patrolling models [68]. It was recently shown how transfer entropy can be computed
for continuous time point processes such as these [67], allowing for efficient use of our analytical
scoring function gTEA in a number of contexts. Another intriguing line of research is the physical
and thermodynamic interpretation of transfer entropy [69], particularly its relationship to the arrow
of time [70]; this relationship between endomorphisms as discussed here and time asymmetry of
thermodynamics should be explored further.
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Appendix A. Embedding Theory

We refer here to embedding theory as the study of inferring the (hidden) state xn ∈ M of
a dynamical system from a sequence of observations yn ∈ R. This section will cover reconstruction
theorems that define the conditions under which we can use delay embeddings for recovering the
original dynamics f from this observed time series.

In differential topology, an embedding refers to a smooth map Φ : M→ N between manifolds
M and N if it maps M diffeomorphically onto its image. In Takens’ seminal work on turbulent
flow [31], he proposed a map Φ f ,ψ : M→ Rκ , that is composed of delayed observations, can be used
to reconstruct the dynamics for typical ( f , ψ). That is, fix some κ (the embedding dimension) and τ (the
time delay), the delay embedding map, given by

Φ f ,ψ(xn) = y(κ)n = 〈yn, yn+τ , yn+2τ , . . . , yn+(κ−1)τ〉, (A1)

is an embedding. More formally, denote Φ f ,ψ, Dr(M,M) as the space of Cr-diffeomorphisms onM
and Cr(M,R) as the space of Cr-functions onM, then the theorem can be expressed as follows.

Theorem A1 (Delay Embedding Theorem for Diffeomorphisms [31]). LetM be a compact manifold of
dimension d ≥ 1. If κ ≥ 2d + 1 and r ≥ 1, then there exists an open and dense set ( f , ψ) ∈ Dr(M,M)×
Cr(M,R) for which the map Φ f ,ψ is an embedding ofM into Rκ .

The implication of Theorem A1 is that, for typical ( f , ψ), the image Φ f ,ψ(M) of M under the
delay embedding map Φ f ,ψ is completely equivalent to M itself, apart from the smooth invertible
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change of coordinates given by the mapping Φ f ,ψ. An important consequence of this result is that

we can define a map F = Φ f ,ψ ◦ f ◦Φ−1
f ,ψ on Φ f ,ψ, such that y(κ)n+1 = F(y(κ)n ) [44]. The bound for the

open and dense set referred to in Theorem A1 is given by a number of technical assumptions. Denote
(D f )x as the derivative of function f at a point x in the domain of f . The set of periodic points A of f
with period less than τ has finitely many points. In addition, the eigenvalues of (D f )x at each x in
a compact neighbourhood A are distinct and not equal to 1.

Theorem A1 was established for diffeomorphisms Dr; by definition, the dynamics are thus
invertible in time. Thus, the time delay τ in (A1) can be either positive (delay lags) or negative (delay
leads). Takens later proved a similar result for endomorphisms, i.e., non-invertible maps that restricts
the time delay to a negative integer. Denote by E(M,M) the set of the space of Cr-endomorphisms on
M, then the reconstruction theorem for endomorphisms can be expressed as the following.

Theorem A2 (Delay Embedding Theorem for Endomorphisms [71]). LetM be a compact m dimensional
manifold. If κ ≥ 2d + 1 and r ≥ 1, then there exists an open and dense set ( f , ψ) ∈ Dr(M,M)× Cr(M,R)
for which there is a map πκ : Xκ →M with πκΦ f ,ψ = f κ−1. Moreover, the map πκ has bounded expansion or
is Lipschitz continuous.

As a result of Theorem A2, a sequence of κ successive measurements from a system determines
the system state at the end of the sequence of measurements [71]. That is, there exists an endomorphism
F = Φ f ,ψ ◦ f ◦Φ−1

f ,ψ to predict the next observation if one takes a negative time (lead) delay τ in (A1).
In this work, we consider two important generalisations of the Delay Embedding Theorem A1.

Both of these theorems follow similar proofs to the original and have thus been derived for
diffeomorphisms, not endomorphisms. However, encouraging empirical results in [6] support the
conjecture that they can both be generalised to the case of endomorphisms by taking a negative time
delay, as is done in Theorem A2 above. This would allow for not only distributed flows that are used
in our work, but endomorphic maps, e.g., the well-studied coupled map lattice structure [51].

The first generalisation is by Stark et al. [44] and deals with a skew-product system. That is, f is
now forced by some second, independent system g : N → N . The dynamical system onM×N is
thus given by the set of equations

xn+1 = f (xn, ωn), ωn+1 = g(ωn). (A2)

In this case, the delay map is written as

Φ f ,g,ψ(x, ω) = 〈yn, yn+τ , yn+2τ , . . . , yn+(κ−1)τ〉, (A3)

and the theorem can be expressed as follows.

Theorem A3 (Bundle Delay Embedding Theorem [44]). LetM and N be compact manifolds of dimension
d ≥ 1 and e, respectively. Suppose that κ ≥ 2(d + e) + 1 and the periodic orbits of period ≤ d of g ∈ Dr(N )

are isolated and have distinct eigenvalues. Then, for r ≥ 1, there exists an open and dense set of ( f , ψ) ⊂
Dr(M×N ,M)× Cr(M,R) for which the map Φ f ,g,ψ is an embedding ofM×N into Rκ .

Finally, all theorems up until now have assumed a single read-out function for the system in
question. Recently, Sugihara et al. [4] showed that multivariate mappings also form an embedding,
with minor changes to the technical assumptions underlying Takens’ original theorem. That is, given
M ≤ 2d + 1 different observation functions, the delay map can be written as

Φ f ,〈ψi〉(x) = 〈Φ f ,ψ1(x), Φ f ,ψ2(x), . . . , Φ f ,ψM (x)〉, (A4)
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where each delay map Φ f ,ψi is as per (A1) for individual embedding dimension κi ≤ κ. The theorem
can then be stated as follows.

Theorem A4 (Delay Embedding Theorem for Multivariate Observation Functions [50]). Let M be a
compact manifold of dimension d ≥ 1. Consider a diffeomorphism f ∈ Dr(M,M) and a set of at most 2d + 1
observation functions 〈ψi〉 where each ψi ∈ Cr(M,R) and r ≥ 2. If ∑i κi ≥ 2d + 1, then, for generic ( f , 〈ψi〉),
the map Φ f ,〈ψi〉 is an embedding.

Appendix B. Information Theory

In this section, we introduce some key concepts of information theory: conditional entropy;
conditional and collective transfer entropy; and stochastic interaction.

Consider two arbitrary random variables X and Y; the conditional entropy H(X | Y) represents the
uncertainty of X after taking into account the outcomes of another random variable Y by the equation

H(X | Y) = −∑
x,y

Pr(x, y) log Pr(x | y) = E [Pr(x | y)] . (A5)

Transfer entropy detects the directed exchange of information between random processes by
marginalising out common history and static correlations between variables; it is thus considered a measure
of information transfer within a system [25]. Let the processes X and Y have associated embedding
dimensions κX and κY. The transfer entropy of X to Y is given in terms of conditional entropy:

TX→Y = H(Yn+1 | Y(κY)
n )− H(Yn+1 | Xi,(κX)

n , Y(κY)
n ). (A6)

Now, given a third process Z with embedding dimension κZ, we can compute the information
transfer of X to Y in the context of Z as:

TX→Y|Z = H(Yn+1 | Y(κY)
n , Zi,(κZ)

n )− H(Yn+1 | Xi,(κX)
n , Y(κY)

n , Zi,(κZ)
n ). (A7)

The collective transfer entropy computes the information transfer between a set of M source
processes and a single destination process [19]. Consider the set Y = {Yi} of source processes. We can
compute the collective transfer entropy from Y to the destination process X as a function of conditional
entropy (A5) terms:

TY→X = TY1→X +
M

∑
i=1

TYi→X|{Y1,...,Yi−1}, (A8)

where the ordering of the source processes are arbitrary.
Stochastic interaction measures the complexity of dynamical systems by quantifying the excess

of information processed, in time, by the system beyond the information processed by each of the
nodes [17,18,72,73]. Using the same notation, stochastic interaction of the collection of processes Y is

SY = −H(Yn+1 | {Yi,(κi)
n }) +

M

∑
i=1

H(Yi
n+1 | Yi,(κi)

n ). (A9)

The standard definition assumes a first-order Markov process [17,18]; In (A9), we generalise
stochastic interaction to arbitrary κ-order Markov chains.

Appendix C. Extended Results

Here, we present the extended results of Tables 1 and 2. That is, we give the precision, recall,
fallout, and F1-scores for the eight networks of Lorenz attractors shown in Figure 4. These results
are given for a number of different sample sizes to illustrate the sample complexity of this problem:
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N = 5000 (Tables A1 and A2), N = 10,000 (Tables A3 and A4), N = 25,000 (Tables A5 and A6),
N = 50,000 (Tables A7 and A8), and N = 100,000 (Tables A9 and A10). Each table has results for
various p-values (with a p-value of ∞ denoting the maximum likelihood score (27)), as well as two
different observation noise variances, σψ = 1 and σψ = 10.

Table A1. Classification results for three-node (M = 3) networks for N = 5000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0.33 0.22 0.33 0.22 0.22 0.33 0.33 0.22

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

P 0.67 0.5 0.67 0.5 0.67 0.5 0.67 0.5

F1 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5

G3

R 1 0.5 1 1 1 1 1 0.5

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.67 1 1 1 1 1 0.67

G4

R 1 0 1 1 1 0.5 1 0

F 0.14 0.43 0.14 0.14 0.14 0.14 0.14 0.43

P 0.67 0 0.67 0.67 0.67 0.5 0.67 0

F1 0.8 - 0.8 0.8 0.8 0.5 0.8 -

Table A2. Classification results for four-node (M = 4) networks for N = 5000 samples. We present the
precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.31 0.25 0.31 0.19 0.31 0.25 0.31 0.19

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 0.67 0.67 0.67 0.33 0.67 0.33 0.67 0

F 0.15 0.23 0.15 0.23 0.15 0.23 0.15 0.31

P 0.5 0.4 0.5 0.25 0.5 0.25 0.5 0

F1 0.57 0.5 0.57 0.29 0.57 0.29 0.57 -

G7

R 1 0.25 1 0.25 0.75 0.25 0.75 0.5

F 0 0.25 0 0.17 0.083 0.25 0.083 0.083

P 1 0.25 1 0.33 0.75 0.25 0.75 0.67

F1 1 0.25 1 0.29 0.75 0.25 0.75 0.57

G8

R 1 0.25 1 0.5 1 0.75 1 0.25

F 0 0.25 0 0.083 0 0.083 0 0.25

P 1 0.25 1 0.67 1 0.75 1 0.25

F1 1 0.25 1 0.57 1 0.75 1 0.25
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Table A3. Classification results for three-node (M = 3) networks for N = 10,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0.22 0.11 0.22 0.11 0.22 0.22 0.22 0.11

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.5 1 0.5 1 0.5 1 0.5

F1 1 0.5 1 0.5 1 0.5 1 0.5

G3

R 1 0.5 1 1 1 0 1 0.5

F 0 0.14 0 0 0 0.29 0 0.14

P 1 0.5 1 1 1 0 1 0.5

F1 1 0.5 1 1 1 - 1 0.5

G4

R 1 1 1 0.5 1 0.5 1 1

F 0.14 0.14 0 0 0.14 0.14 0.14 0.14

P 0.67 0.67 1 1 0.67 0.5 0.67 0.67

F1 0.8 0.8 1 0.67 0.8 0.5 0.8 0.8

Table A4. Classification results for four-node (M = 4) networks for N = 10,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.31 0.25 0.31 0.19 0.31 0.19 0.31 0.25

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 0.67 0.33 0.67 0 1 1 0.67 0.33

F 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

P 0.5 0.33 0.5 0 0.6 0.6 0.5 0.33

F1 0.57 0.33 0.57 - 0.75 0.75 0.57 0.33

G7

R 0.75 0.5 1 0.5 1 0.25 0.75 0.5

F 0.083 0.083 0 0.083 0 0.17 0.083 0.083

P 0.75 0.67 1 0.67 1 0.33 0.75 0.67

F1 0.75 0.57 1 0.57 1 0.29 0.75 0.57

G8

R 1 0.25 1 0.25 1 0 1 0.25

F 0 0.17 0 0.17 0 0.25 0 0.17

P 1 0.33 1 0.33 1 0 1 0.33

F1 1 0.29 1 0.29 1 - 1 0.29
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Table A5. Classification results for three-node (M = 3) networks for N = 25,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0.22 0.11 0.22 0.11 0.22 0.22 0.22 0.11

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G2

R 1 1 1 0.5 1 0.5 1 1

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.67 1 0.5 1 0.5 1 0.67

F1 1 0.8 1 0.5 1 0.5 1 0.8

G3

R 1 1 1 0.5 1 1 1 1

F 0 0 0 0.14 0 0 0 0

P 1 1 1 0.5 1 1 1 1

F1 1 1 1 0.5 1 1 1 1

G4

R 1 1 1 1 1 0.5 1 1

F 0 0 0 0 0 0.14 0 0

P 1 1 1 1 1 0.5 1 1

F1 1 1 1 1 1 0.5 1 1

Table A6. Classification results for four-node (M = 4) networks for N = 25,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.31 0.19 0.31 0.19 0.31 0.19 0.31 0.19

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0.33 1 0.33 1 0.33

F 0.15 0.15 0.15 0.15 0.15 0.23 0.15 0.15

P 0.6 0.33 0.6 0.33 0.6 0.25 0.6 0.33

F1 0.75 0.33 0.75 0.33 0.75 0.29 0.75 0.33

G7

R 1 0.5 1 0.75 1 0.75 1 0.5

F 0 0.17 0 0 0 0 0 0.17

P 1 0.5 1 1 1 1 1 0.5

F1 1 0.5 1 0.86 1 0.86 1 0.5

G8

R 1 0.75 1 0.75 1 0.75 1 0.75

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.86 1 0.86 1 0.86 1 0.86

65



Entropy 2018, 20, 51

Table A7. Classification results for three-node (M = 3) networks with N = 50,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0 0.11 0 0 0 0.11 0 0.22

P - 0 - - - 0 - 0

F1 - - - - - - - -

G2

R 1 0.5 1 0.5 1 0.5 1 0.5

F 0 0.14 0 0.14 0 0.14 0 0.14

P 1 0.5 1 0.5 1 0.5 1 0.5

F1 1 0.5 1 0.5 1 0.5 1 0.5

G3

R 1 1 1 0.5 1 1 1 1

F 0 0.14 0 0.14 0 0.14 0 0

P 1 0.67 1 0.5 1 0.67 1 1

F1 1 0.8 1 0.5 1 0.8 1 1

G4

R 1 0.5 1 1 1 0.5 1 1

F 0 0.14 0 0 0 0.14 0 0

P 1 0.5 1 1 1 0.5 1 1

F1 1 0.5 1 1 1 0.5 1 1

Table A8. Classification results for four-node (M = 4) networks with N = 50,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.19 0.062 0.19 0.19 0.19 0.12 0.19 0.12

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0 1 0.33 1 0.33

F 0 0.15 0 0 0 0.23 0.15 0.15

P 1 0.33 1 - 1 0.25 0.6 0.33

F1 1 0.33 1 - 1 0.29 0.75 0.33

G7

R 1 0.75 1 0.5 1 0.5 1 0.75

F 0 0 0 0.17 0 0.083 0 0

P 1 1 1 0.5 1 0.67 1 1

F1 1 0.86 1 0.5 1 0.57 1 0.86

G8

R 1 0.75 1 0.75 1 0.75 1 0.75

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 0.86 1 0.86 1 0.86 1 0.86
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Table A9. Classification results for three-node (M = 3) networks with N = 100,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G1

R - - - - - - - -

F 0 0.22 0 0.11 0 0.22 0 0.11

P - 0 - 0 - 0 - 0

F1 - - - - - - - -

G2

R 1 0.5 1 1 1 1 1 1

F 0 0.14 0 0 0 0 0 0.14

P 1 0.5 1 1 1 1 1 0.67

F1 1 0.5 1 1 1 1 1 0.8

G3

R 1 1 1 1 1 1 1 1

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1 1

G4

R 1 1 1 1 1 1 1 1

F 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1 1

Table A10. Classification results for four-node (M = 4) networks with N = 100,000 samples. We present
the precision (P), recall (R), fallout (F), and F1-score for the eight arbitrary topologies of coupled Lorenz
systems represented by Figure 4.

Graph p-Value ∞ 0.01 0.001 0.0001

σψ 1 10 1 10 1 10 1 10

G5

R - - - - - - - -

F 0.19 0.062 0.19 0.062 0.19 0.19 0.19 0.12

P 0 0 0 0 0 0 0 0

F1 - - - - - - - -

G6

R 1 0.33 1 0.67 1 0.33 1 0.33

F 0 0.15 0 0.15 0 0.077 0 0.15

P 1 0.33 1 0.5 1 0.5 1 0.33

F1 1 0.33 1 0.57 1 0.4 1 0.33

G7

R 1 - 1 - 1 - 1 -

F 0 - 0 - 0 - 0 -

P 1 - 1 - 1 - 1 -

F1 1 - 1 - 1 - 1 -

G8

R 1 0.75 1 0.75 1 0.5 1 0.75

F 0 0 0 0 0 0.083 0 0

P 1 1 1 1 1 0.67 1 1

F1 1 0.86 1 0.86 1 0.57 1 0.86
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Abstract: Recent progress of theories and applications regarding statistical models with generalized
exponential functions in statistical science is giving an impact on the movement to deform the
standard structure of information geometry. For this purpose, various representing functions are
playing central roles. In this paper, we consider two important notions in information geometry,
i.e., invariance and dual flatness, from a viewpoint of representing functions. We first characterize a
pair of representing functions that realizes the invariant geometry by solving a system of ordinary
differential equations. Next, by proposing a new transformation technique, i.e., conformal flattening,
we construct dually flat geometries from a certain class of non-flat geometries. Finally, we apply the
results to demonstrate several properties of gradient flows on the probability simplex.

Keywords: representing functions; affine immersion; nonextensive statistical physics; invariance;
dually flat structure; Legendre conjugate; gradient flow

1. Introduction

The theory of information geometry has elucidated abundant geometric properties equipped
with a Riemannian metric and mutually dual affine connections. When it is applied to the study of
statistical models described by the exponential family, the logarithmic function plays a significant role
in giving the standard information geometric structure to the models [1,2].

Inspired by the recent progress of several areas in statistical physics and mathematical
statistics [3–10] which have exploited theoretical interests and possible applications for generalized
exponential families, one research direction in information geometry is pointing to constructions of
deformed geometries based on the standard one, keeping its basic properties. A typical and classical
example of such a deformation would be the alpha-geometry [1,2], a statistical definition of which can
be regarded as a replacement of the logarithmic function by suitable power functions. Hence, for the
purpose of the generalization and flexible applicability, much attention is paid to various uses of such
replacements by representing functions as important tools [3,4,11,12].

Two major characteristics of the standard structure are dual flatness and invariance [2]. Dual
flatness (or Hessian structure [13]) produces fruitful properties such as the existence of canonical
coordinate systems, a pair of conjugate potential functions and the canonical divergence (relative
entropy). In addition, they are connected with the Legendre duality relation, which is also fundamental
in the generalization of statistical physics. On the other hand, the invariance of geometric structure
is crucially valuable in developing mathematical statistics. It has been proved [14] that invariance
holds for only the structure with a special triple of a Riemannian metric and a pair of mutually dual
affine connections, which are respectively called the Fisher information and the alpha-connections (see
Section 3 for their definitions). The study of these two characteristics from a viewpoint of representing
functions would contribute to our geometrical understanding.
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In this paper, we first characterize a pair of representing functions that realizes the invariant
information geometric structure. Next, we propose a new transformation to obtain dually flat
geometries from a certain class of non-flat information geometries, using concepts from affine
differential geometry [15,16]. We call the transformation conformal flattening, which is a generalization
of the way to realize the corresponding dually flat geometry from the alpha-geometry developed
in [17,18]. As applications and easy consequences of the results, we finally show several properties of
gradient flows associated with realized dually flat geometries. Focusing on geometric characteristics
conserved by the transformation, we discuss the properties such as a relation between geodesics and
flows, the first integral of the flows and so on. These properties are new and general. Hence, they
refine the arguments of the flows in [18], where only the alpha-geometry is treated.

The paper is organized as follows. In Section 2, we introduce preliminary results, explaining
several existing methods to construct the information geometric structure that includes a dually
flat structure and the alpha-structure and so on. We also give a short summary of concepts from
affine differential geometry, which will be used in this paper. Section 3 provides a characterization
of representing functions that realize invariant geometry, i.e., the one equipped with the Fisher
information and a pair of the alpha-connections. The characterization is obtained by solving a simple
system of ordinary equations. In Section 4, we first obtain a certain class of information geometric
structure by regarding representing functions as immersions into an ambient affine space. Then, we
demonstrate the conformal flattening to realize the corresponding dually flat structure, and discuss
their properties and relations with generalized entropies or escort probabilities [19]. Section 5 exhibits
the geometric properties of gradient flows with respect to a conformally realized Riemannian metric.
These flows are reduced to the well-known replicator flow [20] (Chapter 16) when we consider the
standard information geometry. Suitably choosing its pay-off functions, we see that the flow follows a
geodesic curve or conserves a divergence from an equilibrium. In the final section, some concluding
remarks are made.

Throughout the paper, we use a probability simplex as a statistical model for the sake of simplicity.

2. Preliminaries

2.1. Information Geometry of Sn and Rn+1
+

Let us represent an element p ∈ Rn+1 with its components pi, i = 1, · · · , n+ 1 as p = (pi) ∈ Rn+1.
Denote, respectively, the positive orthant by

Rn+1
+ := {p = (pi) ∈ Rn+1|pi > 0, i = 1, · · · , n + 1},

and the relative interior of the probability simplex by

Sn :=

{
p ∈ Rn+1

+

∣∣∣∣∣n+1

∑
i=1

pi = 1

}
.

Let p(X) be a probability distribution of a random variable X taking a value in the finite sample
space Ω = {1, 2, · · · , n, n + 1}. We consider a set of distributions p(X) with positive probabilities, i.e.,
p(i) = pi > 0, i = 1, · · · , n + 1, defined by

p(X) =
n+1

∑
i=1

piδi(X), δi(j) = δ
j
i (the Kronecker’s delta),

which is identified with Sn. A statistical model in Sn is represented with parameters ζ = (ζ j), j =
1, · · · , d ≤ n by
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pζ(X) =
n+1

∑
i=1

pi(ζ)δi(X),

where each pi is smoothly parametrized by ζ. For such a statistical model, ζ j can also be regarded as
coordinates of the corresponding submanifold in Sn. For simplicity, we shall consider the full model,
i.e., d = n and the parameter set is bijective with Sn via pi(ζ)’s.

The information geometric structure [2] on Sn denoted by (g,∇,∇∗) is composed of the pair of
mutually dual torsion-free affine connections ∇ and ∇∗ with respect to a Riemannian metric g. If we
write ∂i := ∂/∂ζ i, i = 1, · · · , n, the mutual duality requires components of (g,∇,∇∗) to satisfy

∂igjk = Γij,k + Γ∗ik,j. (1)

Let L and M be a pair of strictly monotone (i.e., one-to-one) smooth functions on the interval (0, 1).
One way of constructing such a structure (g,∇,∇∗) is to define the components as follows [2,11]:

gij(p) = ∑
X∈Ω

∂iL(pζ(X))∂j M(pζ(X)), i, j = 1, · · · , n, (2)

Γij,k(p) = ∑
X∈Ω

∂i∂jL(pζ(X))∂k M(pζ(X)), i, j, k = 1, · · · , n, (3)

Γ∗ij,k(p) = ∑
X∈Ω

∂kL(pζ(X))∂i∂j M(pζ(X)), i, j, k = 1, · · · , n. (4)

In this paper, we call L and M representing functions. It is easy to verify the mutual duality (1).
(Positive definiteness of g needs additional conditions.)

When the curvature tensors of both ∇ and ∇∗ vanish, (g,∇,∇∗) is called dually flat [2]. It is
known that (g,∇,∇∗) is dually flat if and only if there exist two special coordinate systems denoted
by θi(p) and ηi(p), i = 1, · · · , n, respectively, where (θi) is ∇-affine, (ηi) is ∇∗-affine and they are
biorthogonal, i.e.,

g

(
∂

∂θi ,
∂

∂ηj

)
= δ

j
i .

We give examples. For a real number α, define L(α)(u) := 2u(1−α)/2/(1− α) and L(1) := ln u. If we set
L(u) = L(α)(u) and M(u) = L(−α)(u), then they derive the alpha-structure [2] (gF,∇(α),∇(−α)), where
gF is the Fisher information and ∇(±α) are the alpha-connections (see Section 3). In particular, if we
choose α = 1, it defines the standard dually flat structure (gF,∇(e) := ∇(1),∇(m) := ∇(−1)), where
∇(e) and ∇(m) are called the e- and m-connection, respectively [2]. Similarly, the φ-log geometry [3]
can also be introduced in the same way by taking L(u) = logφ(u) and M(u) = u.

One traditional way to construct a general information geometric structure (g,∇,∇∗), without
using representing functions, is by means of contrast functions (or divergences) [2,21]. In our case, let
ρ be a function on Sn × Sn satisfying ρ(p, r) ≥ 0, ∀p, r ∈ Sn with equality if and only if p = r. For a
vector field ∂i, let (∂i)p denote its tangent vector at p. When we define

gij(p) = −(∂i)p(∂j)r ρ(p, r)
∣∣

p=r , i, j = 1, · · · , n, (5)

Γij,k(p) = −(∂i)p(∂j)p(∂k)r ρ(p, r)
∣∣

p=r , i, j, k = 1, · · · , n, (6)

Γ∗ij,k(p) = −(∂i)p(∂j)r(∂k)r ρ(p, r)
∣∣

p=r , i, j, k = 1, · · · , n, (7)

we can confirm that (1) holds. If g is positive definite, we say that ρ is a contrast function or a divergence
that induces the structure (g,∇,∇∗).

A contrast function ρ of the form:
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ρ(p, r) = ψ(θ(p)) + ϕ(η(r))−
n

∑
i=1

θi(p)ηi(r) (8)

always induces the corresponding dually flat structure. Conversely, it is known [2] that if (g,∇,∇∗)
is dually flat, then there exists the unique contrast function of the form (8) that induces the structure.
Hence, it is called the canonical divergence of (g,∇,∇∗) and we say that the functions ψ and ϕ are
potentials. By setting p = r, we see that a dually flat structure naturally gives the Legendre duality
relations at each p, i.e., the function ϕ, is the Legendre conjugate of ψ satisfying

ηi =
∂ψ

∂θi , θi =
∂ϕ

∂ηi
.

Applying the idea of affine hypersurface theory [15] is also one of the other ways to construct the
information geometric structure. Let D be the canonical flat affine connection on Rn+1. Consider an
immersion f from Sn into Rn+1 and a vector field ξ on Sn that is transversal to the hypersurface f (Sn)

in Rn+1. Such a pair ( f , ξ), called an affine immersion, defines a torsion-free connection∇ and the affine
fundamental form g on Sn via the Gauss formula as

DX f∗(Y) = f∗(∇XY) + g(X, Y)ξ, X, Y ∈ X (Sn), (9)

where X (Sn) is the set of tangent vector fields on Sn and f∗ denotes the differential of f . By regarding
g as a (pseudo-) Riemannian metric, one can discuss the realized structure (g,∇) on Sn.

We say that ( f , ξ) is non-degenerate and equiaffine if g is non-degenerate and DXξ is tangent to Sn

for any X ∈ X (Sn), respectively. The latter ensures that the volume element θ on Sn defined by

θ(X1, · · · , Xn) = det( f∗(X1), · · · , f∗(Xn), ξ), Xi ∈ X (Sn)

is parallel to ∇ [15] (p.31). It is known [15,16] that there exists a torsion-free dual affine connection ∇∗
satisfying (1) if and only if ( f , ξ) is non-degenerate and equiaffine. In this case, the obtained structure
(g,∇,∇∗) on Sn is not dually flat in general. However, there always exists a positive function σ and a
dually flat structure (g̃, ∇̃, ∇̃∗) on Sn that hold the following relations [16]:

g̃ = σg, (10)

g(∇̃XY, Z) = g(∇XY, Z)− d(ln σ)(Z)g(X, Y), (11)

g(∇̃∗XY, Z) = g(∇∗XY, Z) + d(ln σ)(X)g(Y, Z) + d(ln σ)(Y)g(X, Z). (12)

Furthermore, there exists a specific contrast function ρ(p, r) for (g,∇,∇∗) called the geometric divergence.
Then, a contrast function ρ̃(p, r) that induces (g̃, ∇̃, ∇̃∗) is given by the conformal divergence ρ̃(p, r) =
σ(r)ρ(p, r). These properties of the structure (g,∇) realized by the non-degenerate and equiaffine
immersion are called 1-conformal flatness [16].

3. Characterization of Invariant Geometry by Representing Functions

Suppose that a pair of representing functions (L, M) defines an information geometric structure
(g,∇,∇∗) by (2), (3) and (4). In this section, we consider the condition of (L, M) such that (g,∇,∇∗) is
invariant. This is equivalent [2,14] to g which is the Fisher information gF defined by

gF
ij(p) = ∑

X∈Ω
pζ(∂i ln pζ)(∂j ln pζ) (13)

and a pair of dual connections satisfies ∇ = ∇(α) and ∇∗ = ∇(−α) for a certain α ∈ R, where ∇(α) is
the α-connection defined by
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Γ(α)
ij,k = ∑

X∈Ω
pζ

(
∂i∂j ln pζ +

1− α

2
(∂i ln pζ)(∂j ln pζ)

)
(∂k ln pζ). (14)

Hence, gij expressed in (2) by functions L(u) and M(u) coincides with the Fisher information if
and only if the following equation holds:

dL
du

dM
du

= 1/u. (15)

Similarly, we derive a condition for Γij,k expressed in (3) to be the α-connection. First, note that
the following relations hold:

∂i ln pζ = (∂i pζ)
1
pζ

, ∂i∂j ln pζ = (∂i∂j pζ)
1
pζ
− (∂i pζ)(∂j pζ)

1
p2

ζ

. (16)

On the other hand, we have

∂i∂jL(pζ) = (∂i∂j pζ)
dL
du

(pζ) + (∂i pζ)(∂j pζ)
d2L
du2 (pζ), (17)

∂k M(pζ) = (∂k pζ)
dM
du

(pζ). (18)

Substituting (16), (17) and (18) into (3) and (14), and comparing them, we obtain (15) again and

d2L
du2

dM
du

= −1 + α

2u2 . (19)

Expressing L′ := dL/du and L′′ := d2L/du2, we have the following ODE from (15) and (19):

L′′

L′
= −1 + α

2u
. (20)

By integrations, we get

ln L′ = − (1 + α)

2
ln u + c (21)

and

L(u) = c1u(1−α)/2 + c2, M(u) = c3u(1+α)/2 + c4, (22)

where c and ci, i = 1, · · · , 4 are constants with a constraint c1c3 = 4/(1 − α2). Thus, (L, M) is
essentially a pair of representing functions that derives the alpha-geometry and there is only freedom
of adjusting the constants for the invariance of geometry. If we require solely (15), which implies that
only a Riemannian metric g is the Fisher information gF, there still remains much freedom for (L, M).

4. Affine Immersion of the Probability Simplex

Now we consider the affine immersion with the following assumptions.
Assumptions:

1. The affine immersion ( f , ξ) is nondegenerate and equiaffine,
2. The immersion f is given by the component-by-component and common representing function

L, i.e.,
f : Sn � p = (pi) �→ x = (xi) ∈ Rn+1, xi = L(pi), i = 1, · · · , n + 1,

3. The representing function L : (0, 1) → R is sign-definite, concave with L′′ < 0 and strictly
increasing, i.e., L′ > 0. Hence, the inverse of L denoted by E exists, i.e., E ◦ L = id.

4. Each component of ξ satisfies ξ i < 0, i = 1, · · · , n + 1 on Sn.
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Remark 1. From the assumption 3, it follows that L′E′ = 1, E′ > 0 and E′′ > 0. Regarding sign-definiteness
of L, note that we can adjust L(u) to L(u) + c by a suitable constant c without loss of generality since the
resultant geometric structure is unchanged (See Theorem 1) by the adjustment. For a fixed L satisfying the
assumption 3, we can choose ξ that meets the assumptions 1 and 4. For example, if we take ξ i = −|L(pi)|, then
( f , ξ) is called centro-affine, which is known to be equiaffine [15] (p.37). The assumptions 3 and 4 also assure
positive definiteness of g (the details are described in the proof of Theorem 1). Hence, ( f , ξ) is non-degenerate
and we can regard g as a Riemannian metric on Sn.

4.1. Conormal Vector and the Geometric Divergence

Define a function Ψ on Rn+1 by

Ψ(x) :=
n+1

∑
i=1

E(xi),

then f (Sn) immersed in Rn+1 is expressed as a level surface of Ψ(x) = 1. Denote by Rn+1 the dual
space of Rn+1 and by 〈ν, x〉 the pairing of x ∈ Rn+1 and ν ∈ Rn+1. The conormal vector [15] (p.57)
ν : Sn → Rn+1 for the affine immersion ( f , ξ) is defined by

〈ν(p), f∗(X)〉 = 0, ∀X ∈ TpSn, 〈ν(p), ξ(p)〉 = 1, (23)

for p ∈ Sn. Using the assumptions and noting the relations:

∂Ψ
∂xi = E′(xi) =

1
L′(pi)

> 0, i = 1, · · · , n + 1,

we have

νi(p) :=
1
Λ

∂Ψ
∂xi =

1
Λ(p)

E′(xi) =
1

Λ(p)
1

L′(pi)
, i = 1, · · · , n + 1, (24)

where Λ is a normalizing factor defined by

Λ(p) :=
n+1

∑
i=1

∂Ψ
∂xi ξ i =

n+1

∑
i=1

1
L′(pi)

ξ i(p). (25)

Then, we can confirm (23) using the relation ∑n+1
i=1 Xi = 0 for X = (Xi) ∈ X (Sn). Note that v : Sn →

Rn+1 defined by

vi(p) = Λ(p)νi(p) =
1

L′(pi)
, i = 1, · · · , n + 1,

also satisfies

〈v(p), f∗(X)〉 = 0, ∀X ∈ TpSn. (26)

Furthermore, it follows, from (24), (25) and the assumption 4, that

Λ(p) < 0, νi(p) < 0, i = 1, · · · , n + 1,

for all p ∈ Sn.
It is known [15] (p.57) that the affine fundamental form g can be represented by

g(X, Y) = −〈ν∗(X), f∗(Y)〉, X, Y ∈ TpSn.
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In our case, it is calculated via (26) as

g(X, Y) = −Λ−1〈v∗(X), f∗(Y)〉 − X(Λ−1)〈v, f∗(Y)〉

= − 1
Λ

n+1

∑
i=1

(
1

L′(pi)

)′
L′(pi)XiYi =

1
Λ

n+1

∑
i=1

L′′(pi)

L′(pi)
XiYi, X, Y ∈ TpSn. (27)

Hence, g is positive definite from the assumptions 3 and 4, and we can regard it as a Riemannian
metric.

Utilizing these notions from affine differential geometry, we can introduce a geometric
divergence [16] as follows:

ρ(p, r) = 〈ν(r), f (p)− f (r)〉 =
n+1

∑
i=1

νi(r)(L(pi)− L(ri))

=
1

Λ(r)

n+1

∑
i=1

L(pi)− L(ri)

L′(ri)
, p, r ∈ Sn. (28)

It is easily checked that ρ is actually a contrast function of the 1-conformally flat structure
(g,∇,∇∗) using (5), (6) and (7).

4.2. Conformal Flattening Transformation

As is described in the preliminary section, by 1-conformally flatness there exists a positive
function, i.e., conformal factor σ that relates (g,∇,∇∗) with a dually flat structure (g̃, ∇̃, ∇̃∗) via the
conformal transformation (10), (11) and (12). A contrast function ρ̃ that induces (g̃, ∇̃, ∇̃∗) is given as
the conformal divergence:

ρ̃(p, r) = σ(r)ρ(p, r), p, r ∈ Sn. (29)

from the geometric divergence ρ in (28).
For an arbitrary function L within our setting given by the four assumptions, we prove that we

can construct a dually flat structure (g̃, ∇̃, ∇̃∗) by choosing the conformal factor σ carefully. Hereafter,
we call this transformation conformal flattening.

Define

Z(p) :=
n+1

∑
i=1

νi(p) =
1

Λ(p)

n+1

∑
i=1

1
L′(pi)

,

then it is negative because each νi(p) is negative. The conformal divergence to ρ with respect to the
conformal factor σ(r) := −1/Z(r) is

ρ̃(p, r) = − 1
Z(r)

ρ(p, r).

Theorem 1. If the conformal factor is σ = −1/Z, then the information geometric structure (g̃, ∇̃, ∇̃∗) on
Sn that is transformed from the 1-conformally flat structure (g,∇,∇∗) via (10), (11) and (12) is dully flat.
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Furthermore, the conformal divergence ρ̃ that induces (g̃, ∇̃, ∇̃∗) on Sn is canonical where Legendre conjugate
potential functions and coordinate systems are explicitly given by

θi(p) = xi(p)− xn+1(p) = L(pi)− L(pn+1), i = 1, · · · , n, (30)

ηi(p) = Pi(p) :=
νi(p)
Z(p)

=
1/L′(pi)

n+1

∑
k=1

1/L′(pk)

, i = 1, · · · , n, (31)

ψ(p) = −xn+1(p) = −L(pn+1), (32)

ϕ(p) =
1

Z(p)

n+1

∑
i=1

νi(p)xi(p) =
n+1

∑
i=1

Pi(p)L(pi). (33)

Proof. Using given relations, we first show that the conformal divergence ρ̃ is the canonical divergence
for (g̃, ∇̃, ∇̃∗):

ρ̃(p, r) = − 1
Z(r)

〈ν(r), f (p)− f (r)〉 = 〈P(r), f (r)− f (p)〉

=
n+1

∑
i=1

Pi(r)(xi(r)− xi(p))

=
n+1

∑
i=1

Pi(r)xi(r)−
n

∑
i=1

Pi(r)(xi(p)− xn+1(p))−
(

n+1

∑
i=1

Pi(r)

)
xn+1(p)

= ϕ(r)−
n

∑
i=1

ηi(r)θi(p) + ψ(p). (34)

Next, let us confirm that ∂ψ/∂θi = ηi.
Since θi(p) = L(pi) + ψ(p), i = 1, · · · , n, we have

pi = E(θi − ψ), i = 1, · · · , n + 1,

by setting θn+1 := 0. Hence, we have

1 =
n+1

∑
i=1

E(θi − ψ).

Differentiating by θ j, we obtain

0 =
∂

∂θ j

n+1

∑
i=1

E(θi − ψ) =
n+1

∑
i=1

E′(θi − ψ)

(
δi

j −
∂ψ

∂θ j

)

= E′(xj)−
(

n+1

∑
i=1

E′(xi)

)
∂ψ

∂θ j .

This implies that

∂ψ

∂θ j =
E′(xj)

∑n+1
i=1 E′(xi)

= ηj.

Together with (34) and this relation, ϕ is confirmed to be the Legendre conjugate of ψ.
The dual relation ∂ϕ/∂ηi = θi follows automatically from the property of the

Legendre transform.

The following corollary is straightforward because all the quantities in the theorem depend
on only L:
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Corollary 1. Under the assumptions, the dually flat structure (g̃, ∇̃, ∇̃∗) on Sn, obtained by following the
above conformal flattening, does not depend on the choice of the transversal vector ξ.

Remark 2. Note that the conformal metric is given by g̃ = −g/Z and is positive definite. Furthermore,
the relation (12) means that the dual affine connections ∇∗ and ∇̃∗ are projectively (or -1-conformally)
equivalent [15,16]. Hence, ∇∗ is projectively flat. Furthermore, the above corollary implies that the realized
affine connection ∇ is also projectively equivalent to the flat connection ∇̃ if we use the centro-affine immersion,
i.e., ξ i = −L(pi) [15,16]. See Proposition 3 for an application of projective equivalence of affine connections.

Remark 3. In our setting, conformal flattening is geometrically regarded as normalization of the conormal
vector ν. Hence, the dual coordinates ηi(p) = Pi(p) can be interpreted as a generalization of the escort
probability [10,19] (see the following example). Similarly, ψ and −ϕ might be seen as the associated Massieu
function and entropy, respectively.

Remark 4. While the immersion f is composed of a representing function L under the assumption 2, the
corresponding M of a single variable does not generally exist for (g,∇,∇∗) nor (g̃, ∇̃, ∇̃∗). From the expressions
of the Riemann metrics g in (27) and g̃ = −g/Z, we see that the counterparts of the representing functions
M(pi) would be, respectively, −νi(p) and Pi(p), but note that they are multi-variable functions of p = (pi).

4.3. Examples

If we take L to be the logarithmic function L(t) = ln(t), then the conformally flattened geometry
immediately defines the standard dually flat structure (gF,∇(1),∇(−1)) on the simplex Sn. We see
that −ϕ(p) is the entropy, i.e., ϕ(p) = ∑n+1

i=1 pi ln pi and the conformal divergence is the KL divergence
(relative entropy), i.e., ρ̃(p, r) = D(KL)(r||p) = ∑n+1

i=1 ri(ln ri − ln pi).
Next, let the affine immersion ( f , ξ) be defined by the following L and ξ:

L(t) :=
1

1− q
t1−q, xi(p) =

1
1− q

(pi)
1−q,

and

ξ i(p) = −q(1− q)xi(p),

with 0 < q and q �= 1. We see that the immersion is centro-affine scaled by the constant factor
q(1− q). Then, we see that the immersion realizes the alpha-structure (gF,∇(α),∇(−α)) on Sn with
q = (1 + α)/2. The geometric divergence is the alpha-divergence, i.e.,

ρ(p, r) =
4

1− α2

(
1−

n+1

∑
i=1

(pi)
(1−α)/2(ri)

(1+α)/2

)
.

Following the procedure of conformal flattening described in the above, we have [17]

Ψ(x) =
n+1

∑
i=1

((1− q)xi)1/1−q, Λ(p) = −q, (constant)

νi(p) = −1
q
(pi)

q, σ(p) = − 1
Z(p)

=
q

∑n+1
k=1 (pi)q

,

and obtain a dually flat structure (g̃F, ∇̃, ∇̃∗) via the formulas in Theorem 1:

ηi = Pi =
(pi)

q

∑n+1
k=1 (pk)

q
, θi =

1
1− q

(pi)
1−q − 1

1− q
(pn+1)

1−q = lnq(pi)− ψ(p),
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ψ(p) = − lnq(pn+1), ϕ(p) = lnq

(
1

expq(Sq(p))

)
, g̃F = − 1

Z(p)
gF.

Here, lnq and Sq(p) are the q-logarithmic function and the Tsallis entropy [10], respectively, defined by

lnq(t) =
t1−q − 1

1− q
, Sq(p) =

∑n+1
i=1 (pi)

q − 1
1− q

.

Note that the escort probability appears as the dual coordinate ηi.

5. An Application to Gradient Flows on Sn

Recall the replicator flow on the simplex Sn for given functions fi(p) defined by

ṗi = pi( fi(p)− f̄ (p)), i = 1, · · · , n + 1, f̄ (p) :=
n+1

∑
i=1

pi fi(p), (35)

which is extensively studied in evolutionary game theory. It is known [20] (Chapter 16) that

(i) the solution to (35) is the gradient flow that maximizes a function V(p) satisfying

fi =
∂V
∂pi

, i = 1, · · · , n + 1, (36)

with respect to the Shahshahani metric gS (See below),
(ii) the KL divergence is a local Lyapunov function for an equilibrium called the evolutionary stable

state (ESS) for the case of fi(p) = ∑n+1
j=1 aij pj with (aij) ∈ R(n+1)×(n+1).

The Shahshahani metric gS is defined on the positive orthant Rn+1
+ by

gS
ij(p) =

∑n+1
k=1 pk

pi
δij, i, j = 1, · · · , n + 1.

Note that the Shahshahani metric induces the Fisher metric gF on Sn. Further, the KL divergence is the
canonical divergence [2] of (gF,∇(1),∇(−1)). Thus, the replicator dynamics (35) are closely related with
the standard dually flat structure (gF,∇(1),∇(−1)), which associates with exponential and mixture
families of probability distributions. In addition, investigation of the flow is also important from a
viewpoint of statistical physics governed by the Boltzmann–Gibbs distributions when we choose V(p)
as various physical quantities, e.g., free energy or entropy.

Similarly, when we consider various Legendre relations deformed by L, it would be of interest to
investigate gradient flows on Sn for a dually flat structure (g̃, ∇̃, ∇̃∗) or a 1-conformally flat structure
(g,∇,∇∗). Since g and g̃ can be naturally extended to Rn+1

+ as a diagonal form (we use the same
notation for brevity):

gij(p) =
1

Λ(p)
L′′(pi)

L′(pi)
δij, g̃ij(p) = − 1

Z(p)
gij(p), i, j = 1, · · · , n + 1 (37)

from (27), we can define two gradient flows for V(p) on Sn. One is the gradient flow for g, which is

ṗi = g−1
ii ( fi − f̄ H), f̄ H(p) :=

n+1

∑
k=1

Hk(p) fk(p), Hi(p) :=
g−1

ii (p)

∑n+1
k=1 g−1

kk (p)
, (38)

for i = 1, · · · , n + 1. It is verified that ṗ is tangent to Sn, i.e., ṗ ∈ TpSn and gradient of V, i.e.,

g(X, ṗ) =
n+1

∑
i=1

fiXi − f̄ H
n+1

∑
i=1

Xi =
n+1

∑
i=1

∂V
∂pi

Xi, ∀X = (Xi) ∈ X (Sn).
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In the same way, the other one for g̃ is defined by

ṗi = g̃−1
ii ( fi − f̄ H), f̄ H(p) :=

n+1

∑
k=1

Hk(p) fk(p), i = 1, · · · , n + 1. (39)

Note that both the flows reduce to (35) when L = ln.
From (37), the following consequence is immediate:

Proposition 1. The trajectories of the gradient flow (38) and (39) starting from the same initial point coincide
while velocities of time-evolutions are different by the factor-Z(p).

Taking account of the example with respect to the alpha-geometry and the conformally flattened
one given in subsection 4.3, the following result shown in [18] can be regarded as a corollary of the
above proposition:

Corollary 2. The trajectories of the gradient flow (39) with respect to the conformal metric g̃ for L(t) =

t1−q/(1− q) coincide with those of the replicator flow (35) while velocities of time-evolutions are different by
the factor-Z(p).

Next, we particularly consider the case when V(p) is a potential function or divergences. As for
a gradient flow on a manifold equipped with a dually flat structure (g̃, ∇̃, ∇̃∗), the following result
is known:

Proposition 2. [22] Consider the potential function ψ(p) and the canonical divergence ρ̃(p, r) of (g̃, ∇̃, ∇̃∗)
for an arbitrary prefixed point r. The gradient flows for V(p) = ±ψ(p) and V(p) = ±ρ(p, r) follow
∇̃∗-geodesic curves.

As is described in Remark 2, ∇∗ and ∇̃∗ are projectively equivalent. One geometrically interesting
property of the projective equivalence is that ∇∗- and ∇̃∗- geodesic curves coincide up to their
parametrizations (i.e., a curve is ∇∗-pregeodesic if and only if it is ∇̃∗-pregeodesic) [15] (p.17).
Combining this fact with Propositions 1 and 2, we see that the following result holds:

Proposition 3. Let r ∈ Sn be an arbitrary prefixed point. The gradient flows (38) for V(p) = ±ρ(p, r) =
±ρ̃(p, r)/σ(r), V(p) = ±ρ̃(p, r) and V(p) = ±ψ(p) follow ∇̃∗-geodesic curves.

Finally, we demonstrate here another aspect of the flow (39). Let us particularly consider the
following functions fi:

fi(p) :=
L′′(pi)

(L′(pi))2

n+1

∑
j=1

aijPj(p), aij = −aji ∈ R, i, j = 1, · · · , n + 1. (40)

Note that fis are not integrable, i.e., non-trivial V satisfying (36) does not exist because of the
anti-symmetry of aij. Hence, for this case, (39) is no longer a gradient flow. However, we can
prove the following result:

Theorem 2. Consider the flow (39) with the functions fis defined in (40) and assume that there exists an
equilibrium r ∈ Sn for the flow. Then, ρ(p, r) and ρ̃(p, r) are the first integral (conserved quantity) of the flow.

Proof. By substituting (40) into f̄ H(p) in (39) and using the expression of g̃ii in (37), we have

f̄ H(p) =
1

∑n+1
k=1 L′(pk)/L′′(pk)

n+1

∑
i=1

1
L′(pi)

n+1

∑
j=1

aijPi(p).
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By the relation E′(xi) = 1/L′(pi) and (31), it holds that

n+1

∑
i=1

1
L′(pi)

n+1

∑
j=1

aijPi(p) =
1

∑n+1
k=1 E′(xk)

n+1

∑
i=1

n+1

∑
j=1

aijE′(xl)E′(xj) = 0.

Hence, we see that f̄ H = 0 and the flow (39) reduces to

ṗi = g̃−1
ii (p) fi(p), i = 1, · · · , n + 1. (41)

Since r is an equilibrium point, we see from (40) that

n+1

∑
j=1

aijPj(r) = 0, i = 1, · · · , n + 1. (42)

Then, using (34), (41) and (42), we have

dρ̃(p, r)
dt

= −
n+1

∑
i=1

Pi(r)L′(pi) ṗi

= Z(p)Λ(p)
n+1

∑
i=1

Pi(r)
(L′(pi))

2

L′′(pi)
fi(p) = Z(p)Λ(p)

n+1

∑
i=1

Pi(r)

(
n+1

∑
j=1

aijPj(p)

)

= Z(p)Λ(p)
n+1

∑
i=1

n+1

∑
j=1

(Pi(p)− Pi(r))aijPj(p)

= Z(p)Λ(p)
n+1

∑
i=1

n+1

∑
j=1

(Pi(p)− Pi(r))aij(Pj(p)− Pj(r)) = 0.

Thus, ρ̃(p, r) is the first integral of the flow. It follows that ρ(p, r) is also the first integral of the flow
from the definition of conformal divergence (29).

Remark 5. From proposition 1, the same statement holds for the flow (38). The proposition implies the fact [20]
that the KL divergence is the first integral for the replicator flow (35) with the function fi(p) in (40) defined by
L(t) = ln t and Pj(p) = pj.

6. Conclusions

We have considered two important aspects of information geometric structure, i.e., invariance
and dual flatness, from a viewpoint of representing functions. As for the invariance of geometry,
we have proved that a pair of representing functions that derives the alpha-structure is essentially
unique. On the other hand, we have shown the explicit formula of conformal flattening that transforms
1-conformally flat structures on the simplex Sn realized by affine immersions to the corresponding
dually flat structures. Finally, we have discussed several geometric properties of gradient flows
associated to two structures.

Presently, our analysis is restricted to the probability simplex, i.e., the space of discrete probability
distributions. For the continuous case, the similar or related results are obtained in [23,24] without
using affine immersions. Extensions of the results obtained in this paper to continuous probability
space and the exploitation of relations to the literature are left for future work.

The conformal flattening can also be applied to the computationally efficient construction of a
Voronoi diagram with respect to the geometric divergences [18]. Exploring the possibilities of other
applications would be of interest.
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Abstract: Using the information geometry approach, we determine the volume of the set of two-qubit
states with maximally disordered subsystems. Particular attention is devoted to the behavior of the
volume of sub-manifolds of separable and entangled states with fixed purity. We show that the usage
of the classical Fisher metric on phase space probability representation of quantum states gives the
same qualitative results with respect to different versions of the quantum Fisher metric.
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1. Introduction

The volume of sets of quantum states is an issue of the utmost importance. It can help in finding
separable states within all quantum states. The former are states of a composite system that can be
written as convex combinations of subsystem states, in contrast to entangled states [1]. The notion
of volume can also be useful when defining “typical” properties of a set of quantum states. In fact,
in such a case, one uses the random generation of states according to a measure stemming from
their volume [2].

Clearly, the seminal thing to do to determine the volume of a set of quantum states is to consider a
metric on it. For pure quantum states, it is natural to consider the Fubini–Study metric which turns out
to be proportional to the classical Fisher–Rao metric [3]. However, the situation becomes ambiguous
for quantum mixed states where there is no single metric [4]. There, several measures have been
investigated, each of them arising from different motivations [5]. For instance, one employed the
Positive Partial Transpose criterion [1] to determine an upper bound for the volume of separable
quantum states and to figure out that it is non-zero [6]. However, this criterion becomes less and less
precise as the dimension increases [7]. An upper bound for the volume of separable states is also
provided in [8] by combining techniques of geometry and random matrix theory. Here, separable states
are approximated by an ellipsoid with respect to a Euclidean product. Following up, in Reference [9],
a measure relying on the convex and Euclidean structure of states has been proposed. Such a volume
measure turned out to be very effective in detecting separability for large systems. Nevertheless, for
two-qubit states, the Euclidean structure is not given by the Hilbert–Schmidt scalar product. Instead,
the latter is considered as a very natural measure upon the finite dimensional Hilbert spaces. For this
reason, it has been employed as a natural measure in the space of density operators [6]. Such a measure
revealed that the set of separable states has a non-zero volume and, in some cases, analytical lower and
upper bounds have been found on it. Still based on the Hilbert–Schmidt product, a measure has been
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recently introduced to evaluate the volume of Gaussian states in infinite dimensional quantum systems
[10]. However, it does not have a classical counterpart, as an approach based on the probabilistic
structure of quantum states could have. This approach has been taken for infinite dimensional quantum
systems by using information geometry [11]. This is the application of differential geometric techniques
to the study of families of probabilities [12]. Thus, it can be employed whenever quantum states are
represented as probability distribution functions, instead of density operators. This happens in phase
space where Wigner functions representing Gaussian states were used in such a way that each class of
states is associated with a statistical model which turns out to be a Riemannian manifold endowed
with the well-known Fisher–Rao metric [11].

This approach could be extended to the entire set of quantum states considering the Husimi
Q-function [13] instead of the Wigner function, being the former a true probability distribution function.
Additionally, it could be used in finite dimensional systems by using coherent states of compact groups
SU(d). Here, we take this avenue for two-qubit systems. Above all, we address the question of whether
such an approach gives results similar to other approaches based on the quantum version of the Fisher
metric, such as the Helstrom quantum Fisher metric [14] and the Wigner-Yanase-like quantum Fisher
metric [15]. We focus on states with maximally disordered subsystems and analyze the behavior of the
volume of sub-manifolds of separable and entangled states with fixed purity. We show that all of the
above mentioned approaches give the same qualitative results.

The layout of the paper is as follows. In Section 2, we recall the structure of a set of two-qubit
states. Then, in Section 3, we present different metrics on such a space inspired by the classical
Fisher–Rao metric. Section 4 is devoted to the evaluation of the volume of states with maximally
disordered subsystems. Finally, we draw our conclusions in Section 5.

2. Structure of a Set of Two-Qubit States

Consider two-qubit states (labeled by 1 and 2) with associated Hilbert spaceH = C2 ⊗C2. The
space L(H) of linear operators acting onH can be supplied with a scalar product 〈A, B〉 = Tr

(
A†B

)
to have a Hilbert–Schmidt space. Then, in such a space, an arbitrary density operator (positive and
trace class operator) can be represented as follows

ρ =
1
4

(
I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3

∑
m,n=1

tmmσm ⊗ σn

)
, (1)

where I is the identity operator on C2, r, s ∈ R3, and σ := (σ1, σ2, σ3) is the vector of Pauli matrices.
Furthermore, the coefficients tmn := Tr (ρ σm ⊗ σn) form a real matrix denoted by T.

Note that r, s are local parameters as they determine the reduced states

ρ1 := Tr2ρ =
1
2
(I + r · σ) , (2)

ρ2 := Tr1ρ =
1
2
(I + s · σ) , (3)

while the T matrix is responsible for correlations.
The number of (real) parameters characterizing ρ is 15, but they can be reduced with the following

argument. Entanglement (in fact, any quantifier of it) is invariant under local unitary transformations,
i.e., U1 ⊗U2 [1]. Then, without loss of generality, we can restrict our attention to states with a diagonal
matrix T. To show that this class of states is representative, we can use the following fact: if a state is
subjected to U1 ⊗U2 transformation, the parameters r, s and T transform themselves as

r′ = O1r, (4)

s′ = O2s, (5)

T′ = O1TO†
2, (6)
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where Ois correspond to Uis via
Uin̂ · σU†

i = (Oin̂) · σ, (7)

being n̂ a versor of R3. Thus, given an arbitrary state, we can always choose unitaries U1, U2 such that
the corresponding rotations will diagonalize its matrix T.

As we consider the states with diagonal T, we can identify T with the vector t := (t11, t22, t33) ∈ R3.
Then, the following sufficient conditions are known [16]:

(i) For any ρ, the matrix T belongs to the tetrahedron T with vertices (−1,−1,−1), (−1, 1, 1), (1,−1, 1),
(1, 1,−1).

(ii) For any separable state ρ, the matrix T belongs to the octahedron O with vertices (0, 0,±1), (0,±1, 0),
(0, 0,±1).

Still, the number of (real) parameters (9) characterizing ρ is quite large. Thus, to simplify the
treatment, from now on, we focus on the states with maximally disordered subsystems, namely the
states with r, s = 0. They are solely characterized by the T matrix. For these states, the following
necessary and sufficient conditions are known [16]:

(i) Any operator (1) with r, s = 0 and diagonal T is a state (density operator) iff T belongs to the
tetrahedron T .

(ii) Any state ρ with maximally disordered subsystems and diagonal T is separable iff T belongs to the
octahedron O.

3. Fisher Metrics

The generic state with maximally disordered subsystems parametrized by t reads

ρt =
1
4

3

∑
n=1

tnnσn ⊗ σn, (8)

and has a matrix representation (in the canonical basis):

ρt =

⎛⎜⎜⎜⎝
t33+1

4 0 0 t11−t22
4

0 1−t33
4

t11+t22
4 0

0 t11+t22
4

1−t33
4 0

t11−t22
4 0 0 t33+1

4

⎞⎟⎟⎟⎠ . (9)

We shall derive different Fisher metrics for the set of such states.

3.1. Classical Fisher Metric in Phase Space

The state (8) can also be represented in the phase space by means of the Husimi Q-function [13],

Qt (x) :=
1

4π2 〈Ω1|〈Ω2|ρt |Ω2〉|Ω1〉, (10)

where

|Ω1〉 = cos
θ1

2
|0〉+ e−iφ1 sin

θ1

2
|1〉, (11)

|Ω2〉 = cos
θ2

2
|0〉+ e−iφ2 sin

θ2

2
|1〉, (12)

are SU(2) coherent states [17]. Here, x := (θ1, θ2, φ1, φ2) is the vector of random variables θ1,2 ∈ [0, π),
φ1,2 ∈ [0, 2π] , with probability measure dx = 1

16π2 sin θ1 sin θ2dθ1dθ2dφ1dφ2.
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Recall that the classical Fisher–Rao information metric for probability distribution functions Qt is
given by:

gFR
ij :=

∫
Qt (x) ∂i log Qt (x) ∂j log Qt (x) dx, (13)

where ∂i := ∂
∂tii

.
Considering (8) and (10), we explicitly get

Qt (θ1, θ2, φ1, φ2) =
2 sin θ1 sin θ2

64π2

[
t11 (cos(φ1 + φ2) + cos(φ1 − φ2))

−t22 (cos(φ1 + φ2)− cos(φ1 − φ2))
]

+
4

64π2 [t33 cos θ1 cos θ2 + 1] . (14)

Unfortunately, it is not possible to arrive at an analytical expression for gij. In fact, the integral (13) can
only be evaluated numerically.

Let us, however, analyze an important property of this metric.

Proposition 1. The metric (13) is invariant under local rotations.

Proof. From Section 2, we know that the equivalence relation ρ ∼ (U1 ⊗U2) ρ
(
U†

1 ⊗U†
2
)

leads to the
transformation (6) for the parameters matrix, where the correspondence between Ois and Uis, given
by Equation (7), can be read as follows

(Oi)μν =
1
2

Tr
[
σμUiσνU†

i

]
. (15)

Therefore, the effect of the equivalence relation acts on Qt (x) of Equation (10) by changing the
parameter vector t = (t11, t22, t33) via an orthogonal transformation given by (15). That is

Qt(x) �→ Qt′ (x) , (16)

where t′ = Ot, or explicitly

t′11 = O11t11 + O12t22 + O13t33,

t′22 = O21t11 + O22t22 + O23t33, (17)

t′33 = O31t11 + O32t22 + O33t33.

Let us now see how the entries of the Fisher–Rao metric (13) change under an orthogonal
transformation of T given in terms of (15). To this end, consider (13) written for t′ as follows

g̃FR
ij =

∫
Qt′ (x) ∂′i log Qt′ (x) ∂′j log Qt′ (x) dx

=
∫ 1

Qt′ (x)
∂′iQt′ (x) ∂′jQt′ (x) dx, (18)

where ∂′i := ∂
∂t′ii

. From (17), we recognize the functional relation t′ii = t′ii(t); therefore, we have

∂iQt′ (x) = ∂′1Qt′ (x) ∂it′11 + ∂′2Qt′ (x) ∂it′22 + ∂′3Qt′ (x) ∂it′33 (19)

Finally, from (18) and (19), we arrive at

gFR
ij =

3

∑
m,n=1

g̃FR
mnOinOjm, (20)
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and as a consequence we immediately obtain gFR = O g̃FR O�.

3.2. Quantum Fisher Metrics

It is remarkable that (13) is the unique (up to a constant factor) monotone Riemannian metric
(that is, the metric contracting under any stochastic map) in the class of probability distribution
functions (classical or commutative case) [18]. This is not the case in an operator setting (quantum case),
where the notion of Fisher information has many natural generalizations due to non-commutativity [4].
Among the various generalizations, two are distinguished.

The first natural generalization of the classical Fisher information arises when one formally
generalizes the expression (13). This was, in fact, first done in a quantum estimation setting [14]. To see
how this happens, note that in a symmetric form, the derivative of Qt reads

∂iQt =
1
2
(∂i log Qt ·Qt + Qt · ∂i log Qt) . (21)

In Equation (13), replacing the integration by trace, Qt by ρt, and the logarithmic derivative ∂i log Qt

by the symmetric logarithmic derivative Li determined by

∂iρt =
1
2
(Liρt + ρt Li) , (22)

we come to the quantum Fisher information (derived via the symmetric logarithmic derivative)

gH
ij (ρθ) :=

1
2

Tr
(

LiLjρt + LjLiρt
)

. (23)

Using (9) to solve (22) yields

L1 =

⎛⎜⎜⎜⎜⎜⎜⎝

t11−t22
(t11−t22)

2−(t33+1)2 0 0 t33+1
−(t11−t22)

2+(t33+1)2

0 t11+t22
(t11+t22)

2−(t33−1)2
t33−1

(t11+t22)
2−(t33−1)2 0

0 t33−1
(t11+t22)

2−(t33−1)2
t11+t22

(t11+t22)
2−(t33−1)2 0

t33+1
−(t11−t22)

2+(t33+1)2 0 0 t11−t22
(t11−t22)

2−(t33+1)2

⎞⎟⎟⎟⎟⎟⎟⎠ , (24)

L2 =

⎛⎜⎜⎜⎜⎜⎜⎝

t22−t11
(t11−t22)

2−(t33+1)2 0 0 t33+1
(t11−t22)

2−(t33+1)2

0 t11+t22
(t11+t22)

2−(t33−1)2
t33−1

(t11+t22)
2−(t33−1)2 0

0 t33−1
(t11+t22)

2−(t33−1)2
t11+t22

(t11+t22)
2−(t33−1)2 0

t33+1
(t11−t22)

2−(t33+1)2 0 0 t22−t11
(t11−t22)

2−(t33+1)2

⎞⎟⎟⎟⎟⎟⎟⎠ , (25)

L3 =

⎛⎜⎜⎜⎜⎜⎜⎝

t33+1
−(t11−t22)

2+(t33+1)2 0 0 t11−t22
(t11−t22)

2−(t33+1)2

0 1−t33
(t11+t22)

2−(t33−1)2 − t11+t22
(t11+t22)

2−(t33−1)2 0

0 − t11+t22
(t11+t22)

2−(t33−1)2
1−t33

(t11+t22)
2−(t33−1)2 0

t11−t22
(t11−t22)

2−(t33+1)2 0 0 t33+1
−(t11−t22)

2+(t33+1)2

⎞⎟⎟⎟⎟⎟⎟⎠ . (26)

Then, from Equation (23), we obtain

gH = 1
Δ

⎛⎜⎜⎜⎜⎜⎝
1− ‖t‖2 − 2t11t22t33 (1 + ‖t‖2 − 2t2

33)t33 + 2t11t22
(
1 + ‖t‖2 − 2t2

22
)

t22 + 2t11t33

(1 + ‖t‖2 − 2t2
33)t33 + 2t11t22 1− ‖t‖2 − 2t11t22t33

(
1 + ‖t‖2 − 2t2

11
)

t11 + 2t22t33(
1 + ‖t‖2 − 2t2

22
)

t22 + 2t11t33
(
1 + ‖t‖2 − 2t2

11
)

t11 + 2t22t33 1− ‖t‖2 − 2t11t22t33

⎞⎟⎟⎟⎟⎟⎠ , (27)
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where
Δ :=

(
(t11 + t22)

2 − (1− t33)
2
) (

(t11 − t22)
2 − (1 + t33)

2
)

. (28)

It follows
det gH =

1
Δ

. (29)

The second generalization of the classical Fisher information arises by noticing that (13) can be
equivalently expressed as

gFR
ij = 4

∫
∂i

√
Qt (x)∂j

√
Qt (x) dx. (30)

Replacing the integration by trace, and the parameterized probabilities Q by a parameterized density
operator ρ, we can arrive at [15]

gWY
ij := 4Tr

[
(∂i
√

ρt)
(
∂j
√

ρt
)]

. (31)

The superscript indicates the names of Wigner and Yanase since Equation (31) is motivated by their
work on skew information [19].

The following proposition relates gWY and gH .

Proposition 2. If [ρt, Li] = 0, ∀i, then gWY = gH.

Proof. If [ρt, Li] = 0, i = 1, 2, 3 from (22) it follows ∂iρt = ρt Li and gH
ij = Tr

[
ρt LiLj

]
. It is also

gWY
ij = Tr

[
ρt
−1/2 (∂iρt) ρt

−1/2 (∂jρt
)]

(32)

= Tr
[
ρt
−1/2ρt Liρt

−1/2ρt Lj

]
(33)

= Tr
[
ρt

1/2Liρt
1/2Lj

]
(34)

= Tr
[
ρt LiLj

]
= gH

ij , (35)

where in (32) we have used the definition (31); in (33) we have used the result ∂iρt = ρt Li; and in (35)
the commutativity of ρt and Lis.

By referring to (9) and (24)–(26), we can see that the conditions of Proposition 2 are satisfied,
hence hereafter we shall consider gWY = gH .

4. Volume of States with Maximally Disordered Subsystems

The volume of two-qubit states with maximally disordered subsystems will be given by

V =
∫
T

√
det g dt, (36)

where the tetrahedron T is characterized by equations:

1− t11 − t22 − t33 ≥ 0,

1− t11 + t22 + t33 ≥ 0,

1 + t11 − t22 + t33 ≥ 0,

1 + t11 + t22 − t33 ≥ 0. (37)

(If the Fisher metric is degenerate, then the volume is meaningless, given that det g = 0. This reflects on
the parameters describing the states. Indeed, at least one of them should be considered as depending
on the others. Thus, one should restrict the attention to a proper submanifold.)
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Analogously, the volume of two-qubit separable states with maximally disordered subsystems
will be given by

Vs =
∫
O

√
det g dt, (38)

where the octahedron O is characterized by equations:

1− t11 − t22 − t33 ≥ 0,

1 + t11 − t22 − t33 ≥ 0,

1 + t11 + t22 − t33 ≥ 0,

1− t11 + t22 − t33 ≥ 0,

1− t11 − t22 + t33 ≥ 0,

1 + t11 − t22 + t33 ≥ 0,

1 + t11 + t22 + t33 ≥ 0,

1− t11 + t22 + t33 ≥ 0. (39)

Concerning the classical Fisher metric, as a consequence of the result gFR = O g̃FRO�

(Proposition 1), we have that the volume computed as
∫ √

det gFR dt is invariant under orthogonal
transformations of the parameters matrix T.

However, the integral (13) can only be performed numerically. To this end, we have generated
103 points randomly distributed inside the tetrahedron T . On each of these points, the integral (13)
has been numerically evaluated, hence the value of the function

√
det gFR determined on a set of

discrete points. After that, data has been interpolated and a smooth function
√

det gFR(t11, t22, t33)

obtained. This has been used to compute the quantities (36), (38) and their ratio, resulting as V = 0.168,
Vs = 0.055, Vs/V = 0.327.

The same volumes computed by the quantum Fisher metric result in V = π2, Vs = (4− π)π and
their ratio is Vs/V = (4− π)/π ≈ 0.27.

It would also be instructive to see how the ratio of the volume of separable states and the volume
of total states varies versus the purity. This latter quantity turns out to be

P = Tr
(

ρ2
)
=

1
4

(
1 + ‖t‖2

)
(40)

Thus, fixing a value of P ∈ [ 1
4 , 1] amounts to fixing a sphere S centered in the origin of R3 and with a

radius
√

4P− 1. Hence, the volume of states with fixed purity will be given by

V(P) =
∫
T ∩S

√
det g dt, (41)

while the volume of separable states with fixed purity will be given by

Vs(P) =
∫
O∩S

√
det g dt. (42)

As a consequence, we can obtain the ratio

R(P) =
Vs(P)
V(P)

, (43)

as a function of purity P. Such a ratio is plotted in Figure 1 as a solid (resp. dashed) line for the
classical (resp. quantum) Fisher metric. There, it is shown that by increasing the purity, the volume of
separable states diminishes until it becomes a null measure. In fact, this happens already at purity
P = 1/2. However, when the purity is low enough (below 1/3), all states are separable (R = 1). Above
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all, the two curves show the same qualitative behavior. This means that the usage of classical Fisher
information on the phase space representation of quantum states (as a true probability distribution
function) is able to capture the main feature of the geometry of quantum states.

0.25 0.30 0.35 0.40 0.45 0.50
P

0.2

0.4

0.6

0.8

1.0
R

Figure 1. Ratio of volumes (43) vs purity P. Solid line refers to the classical Fisher metric; dashed line
refers to the quantum Fisher metric.

5. Conclusions

In conclusion, we have investigated the volume of the set of two-qubit states with maximally
disordered subsystems by considering their phase space representation in terms of probability
distribution functions and by applying the classical Fisher information metric to them. The results
have been contrasted with those obtained by using quantum versions of the Fisher metric. Although
the absolute values of volumes of separable and entangled states turn out to be different in the two
approaches, their ratios are comparable. Above all, the behavior of the volume of sub-manifolds of
separable and entangled states with fixed purity is shown to be almost the same in the two approaches.

Thus, we can conclude that classical Fisher information in phase space is able to capture the
features of the volume of quantum states. The question then arise as to which aspects such an approach
will be unable to single out with respect to the purely quantum one. Besides that, our work points
out other interesting issues within the quantum metrics. In fact, in the considered class of two-qubit
states, the Helstrom and the Wigner–Yanase-like quantum Fisher metrics coincide. This leads us to
ask the following questions: For which more general class of states in finite dimensional systems are
the two equal? When they are not equal, what is their order relation? These investigations are left for
future works.

Additionally, it is worth noting that our approach to the volume of states by information geometry
offers the possibility to characterize quantum logical gates. In fact, given a logical gate (unitary) G on
two-qubit states, the standard entangling power is defined as [20]:

E(G) :=
∫

E (G|ψ〉) dμ (|ψ〉) ,

where E is an entanglement quantifier [1] and the overall average is the product states |ψ〉 = |ψ1〉⊗ |ψ2〉
according to a suitable measure μ (|ψ〉). It is then quite natural to take the measure induced by the Haar
measure on SU(2)⊗ SU(2) [21]. However, E(G) is not usable on the subset of states with maximally
disordered subsystems as it is restricted to pure states. Here, our measure comes into play which leads
to the following:

E(G) :=
∫
O

E
(

Gρt G†
)√

det g dt.
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In turn, this paves the way to a general formulation that involves the average overall separable states
by also including parameters r, s. Clearly, this would provide the most accurate characterization of the
entangling potentialities of G.

Finally, our approach can be scaled up to three or more qubit, but since analytical calculations
will soon become involved, one should consider families of states with a low number of parameters,
e.g., those proposed in [22]. Nevertheless, such families can provide geometrical insights for more
general cases.
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Abstract: Subdiffusion is commonly observed in liquids with high density or in restricted geometries,
as the particles are constantly pushed back by their neighbors. Since this “cage effect” emerges from
many-body dynamics involving spatiotemporally correlated motions, the slow diffusion should be
understood not simply as a one-body problem but as a part of collective dynamics, described in
terms of space–time correlations. Such collective dynamics are illustrated here by calculations of
the two-particle displacement correlation in a system of repulsive Brownian particles confined in a
(quasi-)one-dimensional channel, whose subdiffusive behavior is known as the single-file diffusion
(SFD). The analytical calculation is formulated in terms of the Lagrangian correlation of density
fluctuations. In addition, numerical solutions to the Langevin equation with large but finite interaction
potential are studied to clarify the effect of overtaking. In the limiting case of the ideal SFD without
overtaking, correlated motion with a diffusively growing length scale is observed. By allowing
the particles to overtake each other, the short-range correlation is destroyed, but the long-range
weak correlation remains almost intact. These results describe nested space–time structure of cages,
whereby smaller cages are enclosed in larger cages with longer lifetimes.

Keywords: caged dynamics; stochastic processes; collective motion; single-file diffusion; normal
and anomalous diffusion; displacement correlation; overtaking; hopping rate; label variable;
Dean–Kawasaki equation

1. Introduction

Particles in dense liquids are hindered from free motion, being constantly pushed back by their
neighbors. This is often described as a “cage” that confines each particle. The cage effect makes the
motion subdiffusive and, in certain cases, leads to the glass transition [1,2].

To be specific, let us consider a system consisting of Brownian particles with a nearly hardcore
interaction. The position vector of the i-th particle, ri = ri(t), is governed by the Langevin equation

mr̈i = −μṙi −
∂U
∂ri

+ μfi(t), (1a)

with m and μ denoting the mass and the drag coefficient of the particle, μfi(t) representing the thermal
fluctuating force, and the interaction being prescribed as

U = U(r1, r2, . . .) = ∑
(j,k)

Vjk (1b)

in terms of the pair potential Vjk. Among the fundamental statistical quantities characterizing
this system is the mean square displacement (MSD), i.e., the second moment of the displacement
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Ri = ri(t)− ri(0). If the interaction through U is negligible, each particle diffuses freely so that
〈
R2

i
〉

grows in proportion to t (for timescales longer than m/μ). This occurs when the colloidal fluid modeled
by Equation (1) is dilute enough. In contrast, particles in a denser colloidal fluid are hindered from
free motion by the cage effect, so that the growth of

〈
R2

i
〉

is much slower. As is illustrated in Figure 1a,
every particle in such a system is almost arrested in a “cage” consisting of its neighbors. In extreme
cases, the system ceases to be fluid and becomes a kind of amorphous solid, referred to as colloidal
glass [1].

Although it is true that the cage effect suppresses the growth of MSD on the whole, the details
are rather complicated [2]. The behavior of the MSD in dense liquids reflects at least three aspects
of caged dynamics: nearly free motion within the cage for a short time, possible drift of the cage
enclosing the particle at a longer timescale, and hopping of the particle out of the cage as a rare event.
Proper characterization of these processes requires space–time description, typically in terms of some
four-point space–time correlation [2–4], as the cage effect actually emerges from many-body dynamics
involving collective motions of numerous particles correlated both spatially and temporally.

(a) (b)

Figure 1. (a) Schematic description of a cage in a dense liquid, consisting of the surrounding particles
that hinder free motion of the enclosed particle. (b) A (quasi-)one-dimensional model of the cage effect,
with the particles confined in a narrow channel.

In search of insight into the theoretical treatment of such collective motions, here, we take note
of the one-dimensional (1D) system illustrated in Figure 1b, following several authors who studied
it as a simplified model of the cage effect [4–10]. The slow dynamics of such a 1D system are known
by the name of single-file diffusion (SFD). In what we call the ideal SFD, every particle is eternally
trapped within the “cage” formed by their neighbors. The MSD in the ideal SFD is known to grow
subdiffusively as

〈
R2

i
〉

∝
√

t [11–14] (for 1D systems, we write Ri instead of Ri). The subdiffusion in
SFD emerges from collective motion of particles [5,10,15] and is also detected as a negative longtime
tail in the velocity autocorrelation [16,17], indicating that the particle is pushed back by its neighbors.
The importance of the collective motion is understood by considering the origin of the effective
stochastic equation for a single particle in SFD: the one-body equation (yielding the negative velocity
autocorrelation) is actually based on the collective dynamics described in terms of the fluctuating
density field [18].

Focusing on the collective motions in SFD, the group of the present authors has noticed
the usefulness of the displacement correlation

〈
RiRj

〉
[4,10,19]. It is a kind of four-point space–time

correlation that probes both the time scale and length scale; the definition of the displacement includes
t, while the spatial scale is included as the mean distance between the two particles (i, j). In the ideal
SFD in which the particles are forbidden to overtake each other, the displacement correlation has
been calculated both analytically and numerically [4,10,20]. The calculated displacement correlation
revealed collective motions behind the slow diffusion in SFD, in contrast to free diffusion in which〈

RiRj
〉

vanishes (unless i = j). The formalism for analytical calculation of the displacement correlation
can be extended to the case of two-dimensional (2D) colloidal liquids [10,21], which reproduces
some numerical findings in 2D systems, such as vortical cooperative motion, with negative velocity
autocorrelation being a manifestation of the cage effect. One of the delicate points in this extension is
that the cage effect in 2D liquids cannot be infinitely strong, in the sense that eventually the particles
can escape from the 2D cage. The escape from the cage is an important process, which requires
further investigation.
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Methodologically, it should be noted that one of the most powerful approaches to SFD, employing
the relation between the position of the tagged particle and the density fluctuation [10,12,17,22], has
been formulated in reliance on the assumption that overtaking is completely forbidden. To extend this
formalism to the case of “non-ideal SFD”—in which overtaking is allowed—is a challenging problem,
which is the main objective of the present work. Most of the existing works on SFD with overtaking
have reported numerical simulations [23–27], while analytical results are quite rare. In the exceptional
case of lattice SFD, the method of vacancy dynamics [15,16] has been applied to quasi-1D geometries
allowing some kind of overtaking [28,29]. The analysis of lattice SFD with overtaking, however, is not
readily extensible to the cases with a continuous space coordinate.

In the present work, we discuss how the analytical results on the displacement correlation in
SFD [4,10,20] are modified, if the particles are allowed to overtake each other and thereby escape
from the quasi-1D cage as a rare event. The probability of the escape is regulated by the height of
the potential barrier, denoted by Vmax, so that Vmax → +∞ and Vmax → 0 correspond to the ideal
SFD and the free diffusion, respectively. Some numerical solutions for finite Vmax were included in
our previous work [19], but analytical calculations were limited to the ideal case without overtaking,
for the very reason that overtaking was difficult to take into account in the theoretical framework
based on the density fluctuation. Now, the effect of a non-zero overtaking rate on the displacement
correlation will be shown analytically as a main result of the present work.

Logical presentation of the main results in Section 4 requires a considerable amount of review in
preparatory sections. For this reason, the paper is organized as follows: In Section 2, after the governing
equation of the 1D system is specified and the collective motion is illustrated in a space–time diagram,
we define some basic concepts and variables, such as the displacement correlation, overtaking, the
fluctuating density field ρ(x, t), and the label variable ξ, clarifying their background. In particular, the
kinematics of overtaking are discussed in Subsection 2.5. The usage of the label variable is a keystone
for the analytical calculation of the displacement correlation [4,10,30], as is reviewed in Section 3 in
the case of SFD without overtaking. The displacement correlation in this case is expressed in terms of
a similarity variable, implying a nested space–time structure of cages. Subsequently, we proceed to the
main topic in Section 4, in which we incorporate the effect of overtaking into the calculation of the
displacement correlation by considering the dynamics of overtaking in terms of the Ξi(t) prepared
in Subsection 2.5. It is shown analytically and confirmed numerically that the infrequent overtaking
events destroy the short-range correlation, while the long-range weak correlation remains almost
intact. The final section is allotted for discussion and concluding remarks.

2. Formulation and Background

2.1. Specification of the System

We consider a 1D system of Brownian particles with short-range repulsive interaction, confined
in a narrow channel, as is depicted in Figure 1b. With the position of the i-th particle denoted by
Xi = Xi(t), the system is governed by the 1D Langevin equation:

mẌi = −μẊi −
∂

∂Xi
∑
j<k

V(Xk − Xj) + μ fi(t), (2)

where m and μ represent the mass and the drag coefficient of the particle, respectively. The system
contains N particles within the length L. Posing the periodic boundary condition, Xi+N = Xi + L, we

consider the limit of N → ∞ with the density ρ0
def
= N/L kept constant.

The thermal fluctuating force, μ fi(t), is characterized by the variance,

〈
fi(t) f j(t′)

〉
=

2kBT
μ

δijδ(t− t′), (3)
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with T denoting the temperature of the medium. The whole system is assumed to be at thermal
equilibrium, which implies spacial homogeneity and temporal steadiness.

The interaction between the particles is expressed by the pairwise potential, V(r). We could
choose any family of V(r) that interpolates between the limiting case of V = 0 and the opposite limit
of the hardcore potential,

VHC(r) =

{
∞ (|r| ≤ σ)

0 (|r| > σ)
(4)

with the diameter σ. Here, we choose

V(r) =

⎧⎪⎨⎪⎩Vmax

(
1− |r|

σ

)2
(|r| ≤ σ)

0 (|r| > σ)

(5)

which is parametrized by the barrier height Vmax. We also tested some other potentials [19], only to
find that the basic behavior of the 1D system is qualitatively unaffected by different choices of V(r).
Preference was given to Equation (5) merely because its hard sphere limit (Vmax � kBT) has been
studied systematically [31] in the context of 3D glassy dynamics.

In regard to the system governed by Equation (2), we refer to the case of Vmax → +∞ as the ideal
SFD, in which every particle is eternally caged by its neighbors. Large but finite values of Vmax allow
the particle to exchange positions with one of its neighbors as a rare event which we call overtaking
(borrowing the word from traffic flow). The ideal SFD means SFD without overtaking, and we may
say “non-ideal SFD” referring to the case of finite Vmax/kBT. Note that the description of non-ideal
SFD with the 1D equation (2) can be interpreted as modeling a quasi-1D system [19,23–27] in which,
typically, the position vector ri = (Xi, Yi) is governed by Equation (1a) with the potential term

U = U(r1, r2, . . .) = ∑
(j,k)

Vjk + ∑
j

Vex(Yj), (6)

where Vex = Vex(y) denotes the external confinement potential such that Vex(±∞) → +∞. In this
description, V(Xk − Xj) in Equation (2) represents the free energy of the subsystem consisting of
the neighboring particles j and k.

The specification of the system by Equations (2), (3) and (5), supplemented with the periodic
boundary condition, involves some dimensional constants. As the basic scales of the length
and the time, we take the particle diameter (σ) and the corresponding diffusive time (σ2/D),
where D = kBT/μ is the diffusion constant of a free Brownian particle. A finite value of mass, such that
m/μ : σ2/D = 1 : 1, is specified for computational ease, unless specified otherwise. The system size,
L, must be infinitely large; though, in numerical computations, we must specify some finite values

for it. For later convenience, we introduce �0
def
= L/N = 1/ρ0 which has the dimension of length.

The nondimensional barrier height, Vmax/kBT, has an effect on the dynamics through the overtaking
frequency, as will be discussed later.

In numerical simulations, the system is equilibrated by a preparatory run started at t = −Tw.
Subsequently, for a reason clarified in the next subsection, the particles are renumbered consecutively
in the sense that

X0 < X1 < · · · < Xi < Xi+1 < · · · < XN ( = X0 + L) (7)

at t = 0. It should be noted that Tw must be longer than max t for sufficient equilibration [4].
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2.2. Spatiotemporally Correlated Motion in SFD

As a graphic depiction of collective motions in SFD, let us examine Figure 2, in which a numerical
solution of Equation (2) in the case of the ideal SFD is represented as worldlines in the (x, t)-plane.
To visualize the correlation of the worldlines, we measured the displacement for each particle i,

Ri = Ri(t)
def
= Xi(t)− Xi(0), (8)

for the time interval from 0 to t = 2n × 10 σ2/D (with n = 1, 2, . . .), in accordance with Ref. [4].
If Ri(t) > 5σ, the position of the particle is marked with a filled circle (•); if Ri(t) < −5σ, it is marked
with an open square (�). As the time difference (t) increases, a string of the same kind of symbol is
formed, expressing a cluster of particles moving together in the same direction.

0 100 200 300 400 500
10

102

103

ti
m
e
D
t/
σ
2

position x/σ

Figure 2. A space–time diagram representing cooperative motion in SFD. A numerical solution to
Equation (2), calculated for ρ0 = N/L = 0.20 σ−1, is plotted as worldlines in the (x, t)-plane (note that
the t-axis is on a logarithmic scale). The symbols • and � mark particles displaced (by more than 5σ)
rightward and leftward, respectively.

The formation of clusters, visually shown in Figure 2, is quantified by calculating the displacement
correlation

〈
RiRj

〉
. Note that the consecutive numbering in Equation (7) is needed to make

〈
RiRj

〉
meaningful as a function of j − i ( = Δ) and t. Since Ri and Rj have the same sign within
the same cluster, their product must be positive if the distance in the numbering, Δ = j − i, is
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small, while
〈

RiRj
〉

for distant particles (with �0Δ greater than the correlation length) is expected
to vanish. The average, denoted by 〈 〉, is taken over the initial condition and the Langevin noise.
Computationally, the displacement correlation is calculated as

〈
RiRj

〉
= 〈RiRi+Δ〉 =

1
N ∑

i
〈RiRi+Δ〉 . (9)

2.3. Continuum Description

Our theoretical approach to the displacement correlation,
〈

RiRj
〉
, is based on a continuum

description of the dynamics of Brownian particles. As fluctuating hydrodynamic fields describing
the temporally coarse-grained dynamics of {Xi}i=1,2,... for timescales longer than m/μ, one may take
the density fields

ρ(x, t) = ∑
i

ρi(x, t), ρi(x, t) = δ(x− Xi(t)), (10)

and their fluxes
Q(x, t) = ∑

i
Qi(x, t), Qi(x, t) = ρi(x, t)Ẋi(t). (11)

Note that the delta function in Equation (10) should be regarded as a blunted one, as a result of the
coarse-graining (see §II-B in Ref. [21] and references therein).

The density field, ρ(x, t), is governed by the Dean–Kawasaki equation [32–37], which can be
presented as a set of equations of the following form:

∂tρ + ∂xQ = 0, (12a)

Q = −D
(

∂xρ +
ρ

kBT
∂xU

)
+ ∑

i
ρi(x, t) fi(t), (12b)

U = U[ρ](x) =
∫

Veff(x− x′)ρ(x′)dx′. (12c)

The effective potential, Veff in Equation (12c), is determined by the condition that the density fluctuation,
described by Equations (12), should be consistent with the static structure factor,

S(k) def
=

1
N ∑

i
∑

j

〈
exp

[
ik
(
Xj − Xi

)]〉
(k �= 0), (13)

determined directly from Equation (2). More specifically, with the Fourier mode of the density and its
correlation defined as

ρ̂(k, t) def
=

∫
eikxρ(x, t)dx = ∑

j
exp

[
ikXj(t)

]
, F(k, t) def

=
1
N
〈ρ̂(k, t)ρ̂(−k, 0)〉 (k �= 0),

evidently, F(k, t = 0) must be equal to S(k), and the initial decay of F(k, t) is known to be exponential,
as is shown in Ref. [38] as Equation (4.144). In our notation, it reads

F(k, t) = S(k)e−Dck2t (for t � σ2/D), (14)

with Dc = Dc(k) = D/S(k) referred to as the (short-time) collective diffusion coefficient [38,39].
Once Veff is determined so as to make the linearized dynamics of Equations (12) consistent with
Equation (14), we may redefine S(k) by the ratio of D to Dc(k).

2.4. Label Variable

Now let us outline the main idea that makes it possible to calculate
〈

RiRj
〉

analytically on the
ground of Equations (12) [4,10,19,30]. The point is to introduce a new variable, ξ, referred to as the
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label variable, to incorporate the notion of particle tracking into the mathematical formalism that links〈
RiRj

〉
with Equations (12).

The necessity of the new variable for particle tracking is understood by noticing how a more
straightforward approach, based on ρi(x, t) in Equation (10), is confronted by a difficulty. In principle,〈

RiRj
〉

can be obtained from the Fourier mode of ρi(x, t), because the definition

ρ̂i(k, t) def
=

∫
eikxρi(x, t)dx = exp [ikXi(t)] (15)

implies ρ̂i(k, t)ρ̂i(−k, 0) = exp(ikRi), and therefore

〈
ρ̂i(k, t)ρ̂i(−k, 0)ρ̂j(±k, t)ρ̂j(∓k, 0)

〉
=
〈

eik(Ri±Rj)
〉
= 1− k2

2

〈
(Ri ± Rj)

2
〉
+ · · · . (16)

If the correlation on the left side is successfully evaluated by nonlinear analysis of the equation
governing ρi and ρj, analogous to Equation (12b) and later shown as Equation (48), then

〈
RiRj

〉
can be

obtained from the power series on the right side. This is insurmountable, unfortunately, as is evident
from the complication encountered in the apparently easier problem of evaluating 〈ρ̂i(k, t)ρ̂i(−k, 0)〉
in SFD [8,9].

The difficulty originates from the choice of the standard field representation with the independent
variables (x, t), referred to as the Eulerian description (according to the terminology of fluid
mechanics [40,41]). Since

〈
RiRj

〉
is treated as a kind of four-point space–time correlation [42,43],

it implies a four-body correlation in the Eulerian description, as is seen in Equation (16). However,
this difficulty can be avoided by switching to another way referred to as the Lagrangian
description [30,40,41], which means to include particle tracking mechanism in the definition of the
fields and their correlations. In this way, the displacement correlation can be treated simply as a
two-body Lagrangian correlation of the field [4,10,19].

Deferring a concrete calculation of
〈

RiRj
〉

until the next section, here we only define the label
variable ξ to lay the foundation for it. Instead of (x, t) for the standard space–time coordinate
system, we introduce a stretchable coordinate system (ξ, t), requiring ξ = ξ(x, t) to satisfy the
convective equation,

(ρ∂t + Q∂x)ξ = 0, (17)

which states that ξ should be convected with the velocity u = Q/ρ. To satisfy Equation (17), we define
ξ as a solution to

(ρ, Q) = (∂xξ, −∂tξ). (18)

This is solvable because of the continuity equation (12a), with the solution determined uniquely by
some initial condition, such as ξ(X0(t0), t0) = 0. Subsequently, by inverting the mapping (x, t) �→ ξ,
we obtain the coordinate system with the independent variables (ξ, t) [4,10,19,21,30]. It should be
emphasized that we take Equation (18), not Equation (17), as the definition of the mapping between ξ

and x. In other words, we do not solve Equation (17) in the usual sense of the word; rather, Equation (17)
is satisfied as a consequence of Equation (18). In this way, we avoid complication of the attempt to
define ξ = ξ(x, t) directly with Equation (17), which would require specification of the initial condition
We also remind the readers that the delta function in the definition of ρ is a blunted one, as has been
noted immediately after Equations (10) and (11).

Using the label variable ξ, defined in this way, we can calculate
〈

RiRj
〉

analytically. The (ξ, t)
coordinate system has an advantage of making it easy to trace the worldlines, such as the ones plotted
in Figure 2, because ξ is expected to keep the same value if we follow the identical particle. In order to
see it, we define

Ξi(t)
def
= ξ(Xi(t), t) (19)
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as a function of the particle number i and the time t, and consider its t-derivative [30,44]. Provided that
the conventional chain rule is valid, the time-derivative of Ξi(t) is

dΞi(t)
dt

= Ẋi(t)
∂ξ

∂x

∣∣∣∣
x=Xi

+
∂ξ

∂t

∣∣∣∣
x=Xi

=
(
ρẊi −Q

)∣∣
x=Xi

, (20)

where the definition of ξ in Equation (18) is taken into account. The expression on the right side of
Equation (20) vanishes unless the i-th particle overlaps with another. In the ideal SFD, in which the
particles never overlap, Ξi(t) is none other than the numbering i; this is the key ingredient for the
analytical calculation of

〈
RiRj

〉
in the ideal SFD.

In the absence of overtaking, the particles can move only as a result of changes in inter-particle
spaces, which is illustrated schematically in Figure 3a as a migrating “vacancy” causing correlated
motion of particles. The overtaking allows another kind of motion, illustrated in Figure 3b, which does
not require migration of a vacancy. Before proceeding to a concrete calculation of

〈
RiRj

〉
, let us discuss

how to describe an overtaking event within the framework of the (ξ, t) coordinate system.

(a)

1 2 3 4 5

vacancy
1 2 3 4 5

vacancy

(b) 1 2

2

3 4

4

5

5

6

2
4

5

1 2

2

3 4

5

5

4

6

Figure 3. Schematic illustration of two kinds of processes in the 1D system under consideration.
The small digits represent the values of the label variable ξ, while the larger digits are numbers to
identify the particles. (a) Fluctuation of the inter-particle space without overtaking, interpretable as the
migration of a vacancy. (b) An overtaking event, in which two particles exchange their labels.

2.5. Kinematics of Overtaking Events

In the presence of overtaking, Ξi(t) = ξ(Xi(t), t) is not necessarily equal to i. In this case, we must
distinguish between them and discuss correspondence among three variables: the numbering (i ∈ Z),
the label variable (ξ ∈ R), and the position (x).

We still define ξ by Equation (18) without regard to overtaking. The constant of integration is
chosen appropriately so that Ξi(t) = ξ(Xi(t), t) has an integer value unless the i-th particle overlaps
with another. On this premise, the mapping from i ∈ Z to Ξi(t) = ξ(Xi(t), t) ∈ Z is injective,
which means, so to speak, a kind of exclusion principle whereby different particles must carry different
values of ξ.

The overtaking process is a transition from one such mapping to another. Since the effect of
overtaking on the mapping i �→ Ξi(t) is local, as is readily seen from Equation (18), we may identify
the overtaking event with a process in which two particles exchange the value of their label. In the case
of a pair of particles (i, j), with t1 and t2 denoting points in time immediately before and after
the exchange, this process is described as

Ξi(t2) = Ξj(t1), Ξj(t2) = Ξi(t1). (21)
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To justify Equation (21), we consider what occurs in the time interval from t1 to t2.
Since the particles may overlap in the course of overtaking, the value of Ξi(t) is not limited to Z

but rather belongs to R. Using ρ and ρi given in Equation (10), we rewrite Equation (20) as

dΞi
dt

=
∫ (

ρẊi −Q
)

ρidx = ∑
j

∫ (
ρj Ẋi −Qj

)
ρidx

= ∑
j

∫ (
ρjQi − ρiQj

)
dx, (22)

which implies that Ξi(t) is locally conserved. Note that only overlapping particles contribute to
the integral. If no particle overlaps the i-th one, then the expression on the right side of Equation (20)
vanishes so that Ξi remains constant. If only one particle, say the j-th one, overlaps particle i,
Equation (22) gives

dΞi
dt

=
∫ (

ρjQi − ρiQj
)

dx = −
dΞj

dt
. (23)

By integrating Equation (23) over the time interval from t1 to t2 and taking the conditions such as
Ξi(t1) ∈ Z into account, we find

Ξi(t2)− Ξi(t1) = −Ξj(t2) + Ξj(t1) ∈ Z,

so that only two cases are possible: one is the case of unsuccessful or retracted overtaking, with the same
value of (Ξi, Ξj) restored after the interaction, and the other case corresponds to Equation (21) that
describes (successful) overtaking. Note that the other possibilities are eliminated by the “exclusion
principle” for the configurations before and after the overtaking process. As a rare case, three-body or
four-body interactions might be possible, but it suffices to approximate such a case with a sequence of
two-body exchange processes.

Changes of Ξi(t) = ξ(Xi(t), t) and Xi(t) = x(Ξi(t), t) are exemplified in Figure 3. Since ξ = ξ(x, t)
satisfies ∂ξ/∂x = ρ by definition in Equation (18), {Ξi} is always spatially consecutive, as is shown in
Figure 3 with small digits. The important point is that this spatial consecutiveness of {Ξi} holds true
even if the numbering is inverted by overtaking. In other words, ξ labels the order in the file and not
the particles themselves. In the case of Figure 3b, the particles are initially numbered consecutively so
that Ξi = i for all i, until particles 4 and 5 start to overlap. During overtaking, the values of Ξ4 and Ξ5

evolve according to Equation (23) with (i, j) = (4, 5), while the labels for other particles, such as Ξ2,
Ξ3 and Ξ6, remain unchanged. Finally, after overtaking, particle 4 carries the label Ξ4 = 5, while label
4 is now carried by particle 5 so that Ξ5 = 4.

In the next section, we start with the case of the ideal SFD, in which the requirement of
(d/dt)Ξi(t) = 0 is fulfilled so that ξ simply plays the role of particle numbering. Later, we consider
the temporal change of Ξi(t) to allow for overtaking in Section 4.

3. Displacement Correlation in SFD without Overtaking

3.1. Analytical Calculation of Displacement Correlation

Here we review the analytical calculation of
〈

RiRj
〉

in the ideal SFD [4,10,19], in which Ξi is
independent of t.

Out of the three equations composing the Dean–Kawasaki equation (12), the continuity
equation (12a) is already included in ξ = ξ(x, t), or its inverse mapping x = x(ξ, t),
through Equation (18). To relate x = x(ξ, t) to the remaining two equations, we solve Equation (12b)
for u = Q/ρ, which should be equal to u = ∂tx(ξ, t). Noticing that u(ξ, t) is the (negative) flux of
1/ρ = ∂ξ x(ξ, t), we introduce [30]

ψ = ψ(ξ, t) def
= ρ0

∂x
∂ξ
− 1 (24)
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so that 1/ρ = �0(1 + ψ). The fluctuating field ψ can be interpreted as a continuum representation
of migrating vacancies [16] or elongation of a chain [45]. As is illustrated schematically in Figure 3a,
migration of a vacancy can give rise to correlated motion of particles.

Once the dynamics of ψ are known from Equations (12), the remaining task for the calculation of〈
RiRj

〉
is only a problem of kinematics—given the field ψ, how can we find the displacement? This is

readily solved in a Fourier representation,

ψ(ξ, t) = ∑
k

ψ̌(k, t)e−ikξ , ψ̌(k, t) =
∫

eikξ ψ(ξ, t)
dξ

N

(
with

k
2π/N

∈ Z

)
, (25)

allowing us to express x = x(ξ, t) as an antiderivative of ψ:

x = x(ξ, t) = �0ξ + �0 ∑
k

e−ikξ ψ̌(k, t)
−ik

+ XG(t), (26)

where XG(t) corresponds to the center-of-mass motion which should be negligible in the limit of
N → +∞ [10]. The positions of the i-th or j-th particle are then obtained by substituting Ξi or Ξj into ξ

in Equation (26), which readily yields

Ri = x(Ξi, t)− x(Ξi, 0) = �0 ∑
k

e−ikΞi
ψ̌(k, t)− ψ̌(k, 0)

−ik
(27)

in the absence of overtaking (i.e., dΞi/dt = 0). To calculate
〈

RiRj
〉
, we multiply Equation (27) by

its duplicate with (i, k) replaced by (j,−k). Subsequently, taking it into account that
〈
ψ̌(k, t)ψ̌(k′, t′)

〉
generally vanishes unless k + k′ = 0 (due to the space-translation symmetry of the system), we find

〈
RiRj

〉
= �2

0 ∑
k

e−ik(Ξj−Ξi)
〈[

ψ̌(k, t)− ψ̌(k, 0)
][

ψ̌(−k, t)− ψ̌(−k, 0)
]〉

k2

→ �2
0

π

∫ ∞

−∞
e−ikΔ Cψ(k, 0)− Cψ(k, t)

k2 dk (N → ∞), (28)

where we have defined
Cψ(k, t) def

= N
〈
ψ̌(k, t)ψ̌(−k, 0)

〉
(29)

and used Ξj − Ξi = j− i = Δ. We refer to Equation (28) as the Alexander–Pincus formula [10,12],
which relates the displacement correlation to Cψ. Since Cψ is a two-body correlation, it is much more
tractable than the four-body correlation in Equation (16).

To allow concrete calculation of Cψ, Equations (12b) and (12c) are rewritten as an equation for
ψ̌(k, t) in the following form:

∂tψ̌(k, t) = −Dc
∗k2ψ̌(k, t) + ∑

p+q+k=0
V pq

k ψ̌(−p, t)ψ̌(−q, t) + O(ψ̌3) + ρ0 f̌L(k, t). (30)

The statistics of the random force term are specified as

ρ2
0

〈
f̌L(k, t) f̌L(−k′, t′)

〉
=

2D∗
N

k2δkk′δ(t− t′), (31)

where D∗ = D/�2
0. The coefficient of the linear term is

Dc
∗ =

Dc

�2
0
= D∗

(
1 +

2 sin ρ0σk
k

)
, (32)
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which also gives S = D/Dc = D∗/Dc
∗, and the coefficients V pq

k in the nonlinear term are found
in Refs. [4,30].

Within the linear approximation to Equation (30), Cψ is readily calculated as

Cψ(k, t) = Se−Dc∗k2t. (33)

Although a nonlinear theory producing a correction term to be added to Equation (33) is also
possible [4], here we ignore this correction, giving priority to the simpler expression in Equation (33).

The displacement correlation is obtained by substituting Equation (33) into the Alexander–Pincus
Formula (28) and evaluating the integral. As the contribution from the longwave modes is dominant,
S = S(k) and Dc

∗ = D∗/S(k) can be replaced by their limiting values for k → +0. Thus,
〈

RiRj
〉

is
obtained explicitly as a function of Δ and t, expressible in terms of a similarity variable

θ
def
=

�0Δ
λ(t)

=
Δ

2
√

Dc∗t
, λ(t) = 2

√
Dct , (34)

as [4,10,19] 〈
RiRj

〉
2S�2

0

√
(Dc∗/π)t

= e−θ2 −
√

π |θ| erfc |θ| def
= ϕ(θ), (35)

so that
〈

RiRj
〉
= K

√
t ϕ(θ) where K = 2S�2

0
√

Dc∗/π. The dynamical correlation length λ(t) grows
diffusively, which seems to be consistent with the observation of growing clusters in Figure 2.

Note that infrared and ultraviolet cutoffs are not necessary in Equation (28), as the integrand is
regular around k = 0 and decays for k → ±∞ (algebraically, but fast enough). This should not be
confused with the infrared divergence of x(ξ, t) in Equation (26) in the limit of L → ∞.

3.2. Particle Simulation in the Absence of Overtaking

The theoretical prediction in Equation (35) is tested in Figure 4a, by plotting the values of the
displacement correlation,

〈
RiRj

〉
, obtained from numerical simulation of the ideal SFD. The computed

values are plotted in terms of rescaled variables; according to Equation (35), a plot of
〈

RiRj
〉
/(K

√
t)

against the similarity variable θ should give a single master curve for all values of the time interval t.
The ideal SFD was simulated by solving Equation (2) numerically with a very high barrier (we chose
Vmax = 50kBT). The system size and the density were specified as N = 104 and ρ0 = N/L = 0.2 σ−1

so that L = 5Nσ.
The three kinds of symbols in Figure 4a correspond to three different values of t. The plots for

all these values of t are seen to be reducible to a single master curve given by ϕ( · ) in Equation (35),
supporting the prediction of the analytical calculation.

To be precise, a small but finite discrepancy is found at θ = 0 for t = 10 σ2/D. One may be
tempted to explain this short-time discrepancy simply as indicating a lack of time to establish correlated
motion, because a particle, on average, takes time on the order of 1/Dc

∗ to encounter its neighbors.
Unfortunately, this argument appears too simple to explain the numerical result in Figure 4a in which
a positive correlation for θ �= 0 (i.e., |Δ| ≥ 1) has already been established at t = 10 σ2/D. We note,
on the other hand, that the discrepancy can be ascribed to the nonlinear term in Equation (30) which
was ignored in the previous subsection. It is shown that inclusion of the nonlinear term gives a
correction to Equation (35), which is significant only for |θ| � 1 and Dc

∗t < 1 [4], and the sign of the
correction for the MSD is negative [4,10]. Thus, the short-distance correlations are affected by nonlinear
coupling of ψ̌, while correlations over a long distance seem to be tractable with a linear theory.

It should be also noted that the theoretical predictions discussed here are based on
the Dean–Kawasaki equation in which inertia is completely ignored, while the particle-based
simulation is performed with finite m/μ. To check for consistency between the numerical simulation
and the theoretical predictions, three cases with different values of m/μ are compared in Figure 4b. It is
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seen that the change in m/μ does not make any remarkable difference. This is in agreement with the
general expectation that the Langevin dynamics on time scales longer than m/μ are basically independent
of the inertia, because the momentum can be eliminated by temporal coarse-graining [46–48].

In regard to correlations over long distances, one might be tempted to suppose that the static
structure factor, S(k) in Equation (13), could be helpful in the detection of such long-ranged correlations.
This point was discussed in Ref. [19], leading to the conclusion that the structure of the collective
motion is not properly captured by the static structure factor. It is for this reason that we focused on〈

RiRj
〉

rather than S(k).

(a) (b)

Figure 4. Comparison of the theoretical prediction (35) for the ideal single-file diffusion (SFD) with
a particle-based simulation. (a) Displacement correlation for different values of the time interval t.
The red squares (�), the blue circles (•) and the black triangles (�) represent the numerical values of
〈RiRj〉 /(K

√
t ) at the time intervals t/(σ2/D) = 10, 70 and 200, respectively. The ratio m/μ:σ2/D was

chosen to be 1:1. The values are plotted against θ = �0Δ/λ(t), i.e., the distance rescaled with λ(t).
The thin, solid line shows the theoretical master curve given by ϕ( · ) in Equation (35). (b) Displacement
correlation for different values of m/μ. The open squares (�) represent the numerical result for
m/μ:σ2/D = 1:1, the open circles (◦) for 1:2, and the open triangles (!) for 1:5. The time interval was
chosen to be t = 200 σ2/D.

4. Effects of Overtaking on Displacement Correlation

Having reviewed the analytical calculation of the displacement correlation
〈

RiRj
〉
, which leads

to Equation (35) for the ideal SFD, let us now consider effects of overtaking that were ignored in the
previous section. We start with numerical observation, noticing how the behavior of

〈
RiRj

〉
deviates

from Equation (35) due to overtaking. This deviation is then compared with a modified theory in
which overtaking is allowed for.

4.1. Particle Simulation of SFD with Overtaking

The governing equations of the system, namely Equations (2), (3) and (5), contain a parameter
Vmax representing the barrier height. This parameter, Vmax, regulates the frequency of overtaking,
if the other parameters are kept unchanged.

Two extreme cases are already known theoretically: the case of Vmax → ∞ implying the ideal SFD
in which overtaking is completely forbidden, and Vmax = 0 corresponding to free diffusion in which
overtaking is always allowed. In the ideal SFD, there is a positive correlation between displacements
of two particles, as is shown in Equation (35), while in free diffusion, displacements of two particles
are totally uncorrelated, as is easily seen by proving

104



Entropy 2018, 20, 565

〈
RiRj

〉
=

{
2Dt + O(Dm/μ) (i = j)

0 (i �= j)
(36)

for Vmax = 0.
Between these two extreme cases, there are cases of finite values of Vmax, allowing overtaking

with some probability. Three such cases are shown in Figure 5, where the computed values of
〈

RiRj
〉

at t = 200σ2/D are plotted against Δ = j− i. In the case of the lowest barrier, Vmax = kBT, the plot
is similar to Equation (36) in that

〈
RiRj

〉
almost vanishes for i �=j; instead, the MSD (i = j) is greater

than in the other two cases, indicating that the particles are diffusing almost freely. The case of the
highest barrier with Vmax = 5kBT resembles the ideal SFD, although a close inspection reveals a slight
deviation from Equation (35) as a result of overtaking that occurs at a very small rate.

The intermediate case with Vmax = 3kBT is interesting. At large distances, the same correlation is
observed in the case of Vmax = 3kBT as in the case of Vmax = 5kBT (and as in the ideal SFD). In contrast,
at Δ = ±1 and ±2, the correlation in the case of Vmax = 3kBT is remarkably smaller than that for
Vmax = 5kBT. The decrease in the displacement correlation and the increase in MSD must be attributed
to overtaking.

The numerical observation on the effects of a finite Vmax may be understood intuitively, if
〈

RiRj
〉

is regarded as representing a nested structure of cages with different radii. From this point of view,
the plot for Vmax = 3kBT in Figure 5 can be interpreted as describing the breakdown of inner cages,
while the outer ones persist (at least until t = 200σ2/D). To elevate this pictorial idea to a quantitative
theory on collective motion in SFD with overtaking, we raise the question: How can we modify
Equation (35) allowing for overtaking?

Figure 5. Two-particle displacement correlation, 〈RiRj〉 (nondimensionalized with σ2), numerically
obtained for three different values of Vmax. The red triangles (�), the blue circles (•) and the black
squares (�) represent the data for Vmax = kBT, 3kBT and 5kBT, respectively. The time interval is fixed
at t = 200σ2/D. The density and the system size are the same as in Figure 4.

4.2. Theory of Displacement Correlation in SFD with Overtaking

To find out how Equation (35) should be modified by overtaking, let us re-examine its derivation
process. A crucial step is found in Equation (27) where Ri is obtained on the assumption that Ξi is
independent of t. This is the point at which the “no overtaking” rule was enforced [30,44].
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Overtaking is incorporated into the theory though temporal changes of Ξi(t) [44]. The kinematics
of overtaking were discussed in Subsection 2.5: as is illustrated in Figure 3, two particles exchange
their labels according to Equation (21).

In order to recalculate the displacement correlation, now we need to consider the dynamics of
overtaking. In principle, the stochastic dynamics of Ξi(t) should be determined from “first principles”
through Equation (22). As a crude approximation, however, here we adopt a phenomenological
description characterized by the parameter να, referred to as the overtaking frequency or the hopping rate.

The dynamics of Ξi(t) is modeled as a simple Markovian process in which the labels of
neighboring particles are exchanged at a rate of να. More precisely speaking, for every pair (i, j)
such that Ξj(t1) = Ξi(t1)± 1, their labels are exchanged according to Equation (21) with a probability
of 1− ναΔt in every short time interval, Δt = t2 − t1. This process is essentially equivalent to what is
known as “Amida-kuji” (Amitabha’s lottery) or the “ladder lottery” [49,50]. In regard to the dynamics
of a single tagged particle, the Amida-kuji process is merely a diffusion on a 1D lattice [49,51] such that

[Ξi(t)− Ξi(0)]
2 = 2ναt. (37)

This is readily shown by solving the master equation for the one-tag diffusion propagator [51],

∂tP(a, t) = να [P(a + 1, t) + P(a− 1, t)− 2P(a, t)] , (38)

where P(a, t) = P(0, 0; a, t) denotes the probability that the tagged particle, the 0-th one such that
Ξ0(0) = 0, carries the label Ξ0(t) = a at the time t.

In order to calculate the contribution of overtaking to the displacement correlation
〈

RiRj
〉
, we need

to know the two-body diffusion propagator, P(i, j, 0; a, b, t), which represents the probability that the
tagged particles, initially labelled with Ξi(0) = i and Ξj(0) = j, are found to carry Ξi(t) = a and
Ξj(t) = b at the time t. Assuming j − i = Δ > 0 without loss of generality, we write the master
equation for Pa,b = P(i, i + Δ, 0; a, b, t) with a �= b as

∂tPa,b = να (Pa+1,b + Pa−1,b + Pa,b+1 + Pa,b−1 − 4Pa,b) + (δa+1,b + δa,b+1)να (Pb,a + Pa,b) (39)

and Pa,a = 0. This is more complicated than Equation (38) but still solvable in a Fourier representation
(as is shown in Appendix A), so that two-body correlations of Ξi(t) are given in terms of the modified
Bessel function in the limit of N → ∞.

Now, we are prepared for calculation of
〈

RiRj
〉
. From Equation (26) and Ri = x(Ξi, t)− x(Ξi, 0),

we find

Ri = �0 ∑
k �=0

e−ikΞj(t)ψ̌(k, t)− e−ikΞj(0)ψ̌(k, 0)
−ik

+ �0 [Ξi(t)− Ξi(0)]

= �0 ∑
k �=0

e−ikΞ0
i

−ik

[
e−ikδΞi ψ̌(k, t)− ψ̌(k, 0)

]
+ �0δΞi, (40)

where we have defined
Ξ0

i
def
= Ξi(0), δΞi = δΞi(t)

def
= Ξi(t)− Ξ0

i

for the sake of brevity. Following the same line of argument as in the derivation of Equation (28),
on the assumption that ψ̌ and Ξi are uncorrelated, we have

〈
RiRj

〉
= �2

0 ∑
k �=0

eik(Ξ0
j−Ξ0

i )

k2

〈[
e−ikδΞi(t)ψ̌(k, t)− ψ̌(k, 0)

] [
eikδΞj(t)ψ̌(−k, t)− ψ̌(−k, 0)

]〉
+ �2

0
〈
δΞiδΞj

〉
. (41)
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The summand can be expanded as〈[
e−ikδΞi ψ̌(k, t)− ψ̌(k, 0)

] [
eikδΞj ψ̌(−k, t)− ψ̌(−k, 0)

]〉
=
〈

eik(δΞj−δΞi)ψ̌(k, t)ψ̌(−k, t)
〉
−
〈

e−ikδΞi ψ̌(k, t)ψ̌(−k, 0)
〉
−
〈

eikδΞj ψ̌(−k, t)ψ̌(k, 0)
〉

+
〈
ψ̌(k, 0)ψ̌(−k, 0)

〉
"
(

1 +
〈

eik(δΞj−δΞi)
〉) 〈

ψ̌(k, t)ψ̌(−k, t)
〉
− 2Re

〈
e−ikδΞi

〉 〈
ψ̌(k, t)ψ̌(−k, 0)

〉
, (42)

again, with the assumption that ψ̌ and Ξi are uncorrelated. The terms including the exponentials of
δΞi can be evaluated analytically on the basis of solutions to the master equations (38) and (39).

In this way, after some calculation, we obtain the displacement correlation. For i = j, we have〈
Ri

2
〉

�2
0

= 2S

√
D′∗t
π

+ 2ναt, (43)

where D′∗ = Dc
∗ + να. Note that the last term, 2ναt, originates from Equation (37). In the case of i �= j,

using ϕ( · ) defined in Equation (35), we obtain〈
RiRj

〉
�2

0
= S

[
2

√
D′∗t
π

ϕ

( |j− i|√
4D′∗t

)
−
√

2ναt
π

ϕ

( |j− i|√
8ναt

)]
+ 〈δΞiδΞj〉 . (44)

The last term (Δ = j− i ≥ 1 without loss of generality) needs to be evaluated with the two-body
diffusion propagator in the form of Equation (A13) in Appendix A, which yields

〈δΞiδΞi+Δ〉 = −2ναt e−4ναt [IΔ−1(4ναt) + IΔ(4ναt)] +
(

Δ− 1
2

)
e−4ναt

∞

∑
n=Δ

In(4ναt), (45)

with In( · ) denoting the n-th modified Bessel function. It is easy to verify that, in the limit of να → 0,
Equations (43) and (44) are reduced to the ideal case in Equation (35).

The theoretical prediction in Equations (43)–(45) is compared with a result of our particle
simulation in Figure 6. With the barrier height and the density chosen as Vmax = 3kBT and
ρ0 = N/L = 0.2 σ−1 (N = 104 and L = 5Nσ), we calculated

〈
RiRj

〉
and delineated it for three different

values of t. The same rescaled variables were used as in Figure 4a: namely,
〈

RiRj
〉
/(K

√
t) is plotted

against θ, with K given immediately below Equation (35). The hopping rate was evaluated numerically
and estimated to be να = 0.0057 D/σ2 (see Appendix B), which was used to plot Equations (43)–(45)
as theoretical curves in Figure 6. The prediction for the ideal SFD (να = 0) in Equation (35) is also
included with a broken line.

In regard to the difference between the particle simulation and theory for the ideal SFD, Figure 6
exhibits qualitatively the same behavior as was observed in Figure 5—the difference due to overtaking
is remarkable only for small θ and occurs in such a way that, except for the self part (i = j, i.e., the MSD),
the numerical values of the displacement correlation are smaller than the prediction for the ideal SFD
in Equation (35). This means that the effect of overtaking should manifest itself as a negative correction
to
〈

RiRj
〉

for i �= j. In this sense, the present theory modifies Equation (35) in the right direction, as the
theoretical curve in Figure 6 predicts smaller values of

〈
RiRj

〉
for i �= j in comparison to Equation (35).
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Figure 6. Comparison of the theoretical predictions of 〈RiRj〉with particle-based numerical calculations
of SFD with overtaking (Vmax = 3kBT). The three symbols have the same meaning as in Figure 4
with the axes rescaled also in the same way: 〈RiRj〉 /(K

√
t ) is plotted against θ. The thinnest red

line, the thin blue line, and the solid black line represent Equation (44) that allows for overtaking
(να = 0.0057 D/σ2), evaluated at the values of t corresponding to the three kinds of symbols, namely,
at t/(σ2/D) = 10, 70, and 200, respectively. The theory without overtaking [να = 0, i.e., Equation (35)]
is shown by a broken line.

5. Discussion and Concluding Remarks

We have presented calculations of two-particle displacement correlation,
〈

RiRj
〉
, in a 1D or

quasi-1D system of Brownian particles with repulsive interaction, i.e., in SFD with or without
overtaking, as an illustrative model of collective dynamics associated with the cage effect. In the ideal
SFD (without overtaking), correlated motion with a diffusively growing length scale, λ = 2

√
Dct,

was observed. Subsequently, we studied how this result is modified by overtaking; it was shown
both numerically and analytically that the overtaking processes destroy short-range correlations alone,
leaving long-range correlations nearly intact. This behavior of

〈
RiRj

〉
, evidenced in Figures 5 and 6,

suggests a spatiotemporally nested structure of cages, such that smaller cages are enclosed in larger
cages with longer lifetimes.

The main objective of the present work was to shed theoretical light on overtaking in SFD,
by extending an analytical theory of SFD to the case of non-ideal SFD in which overtaking is allowed.
The analytical theory is based on the method of the label variable ξ. The Lagrangian correlation of the
field ψ links

〈
RiRj

〉
to the Dean–Kawasaki equation (12) that describes the fluctuating density field,

while overtaking is taken into account through δΞi(t). The main analytical result is represented by
Equations (43) and (44). This result is reasonably consistent with the numerical behavior of

〈
RiRj

〉
in Figure 6. A linear solution to the transformed Dean–Kawasaki equation (30) seems to suffice for
the description of the outer cages (long scales). Contrastively, the inner cages are not only affected by
overtaking via δΞi(t) but also subject to nonlinear coupling of ψ̌, as is suggested by the deviation from
the linear theory in Figure 4a.

In spite of the reasonable agreement between the analytical and numerical results, however,
there are at least two issues that need to be discussed and probably improved in the future.
Firstly, the hopping rate (να) could be obtained from βVmax and other parameters in a more
first-principle-oriented manner, as opposed to the numerical fitting adopted here. Secondly, the validity
of the decoupling approximation in Equation (42) is questionable.
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In regard to the first issue, we note that the numerical fit for να in Equation (A14) in Appendix B
is not simply given by an Arrhenius-like expression, e−βVmax [46], but includes a prefactor that
depends on ρ0 in a nontrivial way. Although accurate computation of overtaking is difficult and
may require improvement in the numerical scheme, which is outside the scope of the present work,
the numerical prefactor is interesting enough to motivate theoretical attempts to explain it. While Vmax

in Equation (2) corresponds to the Helmholtz free energy barrier in quasi-1D systems governed by
Equations (1a) and (6) [10,27], the hopping rate is rather related to a barrier in the Gibbs free energy [52].
The ρ0-dependent prefactor is also reminiscent of the escape probability in predator–prey problems on
a 2D lattice [53]. Theoretical evaluation of the hopping rate (να) in the present system will be quite
suggestive in a wider context, such as that of 2D colloidal liquids.

In fact, correspondence between the 2D dynamics of colloids and the non-ideal SFD may
deserve serious consideration. Displacement correlations in 2D colloidal liquids [54] were recently
calculated analytically with the method of the label variable [21]. A linear analysis of the transformed
Dean–Kawasaki equation was found to suffice to explain displacement correlations at larger scales,
while a phenomenological correction was needed for behavior at smaller scales. The 2D dynamics
involve dilatational and rotational modes; the former modes change the local density and correspond
to ψ(ξ, t) in SFD, while the latter (or, to be precise, their short-wave components) allow the particles to
escape from the cage and correspond to δΞi(t) in this sense. More intuitively speaking, the overtaking
event in Figure 3b can be understood as a small vortex involving two particles, namely 4 and 5.

The second issue concerns the approximation of treating ψ̌ and δΞi in Equation (42) as
uncorrelated, which seems to have made the behavior of Equations (43) and (44) quantitatively
incorrect for shorter distances. While a quantitative test of Equation (44) is already given in Figure 6,
the MSD in Equation (43) requires more discussion. The validity of Equation (43) could be checked by
way of

Dα
def
= lim

t→∞

〈
R2〉
2t

, (46)

which can be computed numerically and compared with analytical predictions. It seems, however,
that the να-dependence of Dα is in dispute. Hahn and Kärger [23] asserted Dα ∝ να, while Mon and
Percus [24] claimed Dα ∝ ν1/2

α . If Equation (43) is taken literally, it predicts that the longtime behavior
of MSD is dominated by the second term on the right side and makes essentially the same prediction
as Hahn and Kärger [23]; unfortunately, it contradicts the numerical results of Mon and Percus [24],
at least for a certain range of να. On the other hand, the reasoning about the origin of Dα ∝ ν1/2

α by
Mon and Percus [24] is unsatisfactory, as it seems to lack connection with the collective motion.

As a possible scenario for reconciliation, we may conjecture that the correlation between ψ̌ and
δΞi, ignored in the present theory, makes a difference to the short-range behavior of

〈
RiRj

〉
and in

the MSD as its limiting case. It seems physically plausible that the collapse of smaller cages may be
influenced by density fluctuations with long wavelengths which correlate ψ̌ and δΞi. If this correlation
modifies the term containing S in Equation (43) so as to give〈

R2〉
�2

0
"
(

2√
π

S + c
√

ναt
)√

D′∗t + 2ναt (47)

with some constant c, then it predicts Dα to be a sum of terms proportional to
√

να and να. This form
might be consistent at once with Hahn and Kärger [23] and with Mon and Percus [24], depending on
the values of parameters.

All these issues originate from the phenomenological treatment of overtaking. Improvement upon
the present analysis, going beyond the “Amida-kuji” or random exchange approximation, will need to
be grounded on the integral in Equation (22) that gives dΞi/dt. Its systematic treatment will allow
calculation of να, and it will also make it possible to take the correlation between ψ̌ and Ξi into account.
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The integrand in Equation (22) is given, in principle, by a solution of the Dean equation [32] for
the single particle density, ρi = ρi(x, t), and its flux, Qi:

∂tρi(x, t) + ∂xQi = 0 (48a)

Qi = −D

[
∂xρi +

ρi
kBT

∂x ∑
j

V(x− Xj(t))

]
+ ρi fi. (48b)

Technically difficult though it might be, this strategy seems quite natural, as it is consistent with the
treatment of ψ based on the Dean–Kawasaki equation (12). Development of this strategy for systematic
treatment of overtaking effects on SFD will provide useful insights into cage-breaking events in 2D
and 3D colloidal glasses.

Author Contributions: T.O. designed the basic plan of the research. All the three authors worked together for
the theoretical part. M.O. performed numerical calculations and S.G. verified them. The manuscript was written
by T.O. and checked by all the other authors.

Funding: This work was supported by JSPS KAKENHI Grant Numbers JP-15K05213 and JP-18K03459.

Acknowledgments: The authors thank Hajime Yoshino, Takeshi Kawasaki, Takeshi Matsumoto, Sheida Ahmadi
and Richard Bowles for valuable comments and discussions. The first author (Ooshida) expresses his cordial
gratitude to the organizers and the participants in the Special Session A1 (“Stochastic Processes in Complex
Environment” organized by Julian Talbot and Carlos Mejía-Monasterio) in the SigmaPhi2017 conference held in
Kerkira, Greece, at which he presented outline of this work and received many helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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Appendix A. Two-Body Propagator in the Amida-Kuji Process

Here we outline solution of the master equation (39) for the two-body diffusion propagator in
the Amida-kuji process. Note that most of the symbols in this Appendix (such as λ, μ and σ) are
unrelated to the homonymous ones used in the main text.

To introduce some notation, we begin with a simpler problem of the one-body diffusion
propagator governed by Equation (38). Its solution is found to be expressible in terms of

Φn(s)
def
=

∫ π

−π
exp [inλ + s(cos λ− 1)]

dλ

2π
= e−s In(s) (n ∈ Z, s ∈ R), (A1)

where In denotes the n-th modified Bessel function. This is obtained by looking for a solution in
Fourier representation,

P(a, t) = ∑
l

P̂l(t)e
iaλ, P̂l(t) ∝ e−σt, λ =

2πl
N

,

which is found to satisfy Equation (38) if σ = 2να(1− cos λ). The amplitude of P̂l is determined by
the Fourier representation of the initial condition,

P(a, 0) = δa,0 =
1
N ∑

l
eiaλ,
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so that the solution is
P(a, t) =

1
N ∑

l
eiaλ−σt → Φa(2ναt) (A2)

in the limit of N → ∞. This solution allows calculating

〈
[δΞi(t)]

p〉 = +∞

∑
a=−∞

apP(a, t);

in particular, for p = 2 we obtain Equation (37).
The two-body problem in Equation (39) is more complicated. As a counterpart of Δ = j − i,

we introduce d = b− a. Although a general solution could be sought in Fourier representation as
Pa,b = ∑l P̃l,d(t)eiaλ, here we concentrate on the mode with l = 0, introducing

Qd = Q(Δ, d, t) def
= ∑

a
P(i, i + Δ, 0; a, a + d, t); (A3)

this is sufficient for the present purpose, as the knowledge of Qd will allow us to calculate〈[
δΞj(t)− δΞi(t)

]p
〉
= ∑

d
(d− Δ)pQ(Δ, d, t). (A4)

In terms of Qd, the master equation (39) is rewritten as

∂tQd = 2να (Qd+1 + Qd−1 − 2Qd) + (δd,1 + δd,−1)να (Q1 + Q−1) (d �= 0), (A5)

while Q0 vanishes identically. The initial condition can be expressed as

Qd|t=0 = Q(Δ, d, 0) = δΔ,d =
1
N ∑

m
ei(d−Δ)μ (A6)

where μ = 2πm/N, the summation ranges from −N/2 to N/2 (with the endpoints included by half),
and Δ is taken to be positive without loss of generality.

To solve Equation (A5), we assume

Qd =

⎧⎪⎪⎨⎪⎪⎩
1
N ∑m Ameidμe−σmt (d > 0)

0 (d = 0)
1
N ∑m Bmeidμe−σmt (d < 0)

(A7)

with A−m = A∗m and B−m = B∗m. By considering the cases of |d| ≥ 2 in Equation (A5), we find

σm = σ−m = 2να (2− ε− ε∗) (A8)

with ε
def
= eiμ. Subsequently, evaluation of Equation (A5) for d = ±1 gives

(2− ε)Am + (2− ε∗)A−m = ε∗Bm + εB−m (A9a)

(2− ε∗)Bm + (2− ε)B−m = εAm + ε∗A−m, (A9b)

which also implies Am + A−m = Bm + B−m.
Although the initial condition (A6) seems to suggest Am = Bm = ε−Δ, this naive choice does not

satisfy Equations (A9). Instead, we assume

Am = ε−Δ + C, Bm = ε−Δ + C∗, (A10)
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where C = C(ε) is a polynomial of ε (consisting of terms with non-negative powers only) so that

∑
m

C(ε)εd = 0

for d > 0. Substituting Equation (A10) into Equations (A9) yields

2(1− ε)C + 2(1− ε∗)C∗ = (−2 + ε + ε∗)
(

εΔ + ε−Δ
)

, (A11)

which is satisfied if we choose
C =

1
2

(
ε−1 − 1

)
εΔ. (A12)

Note that this is indeed a polynomial, since Δ ≥ 1. Thus Qd is obtained in the form of Equation (A7),
with Am and Bm given by Equations (A10) and (A12), where ε = eiμ = e2πim/N .

In the limit of N → ∞, the summations in Equation (A7) are evaluated as integrals, expressible in
terms of Φn(s) in Equation (A1). The result reads

Qd =

⎧⎪⎪⎨⎪⎪⎩
Φd−Δ(4ναt)− 1

2 Φd+Δ(4ναt) + 1
2 Φd+Δ−1(4ναt) (d > 0)

0 (d = 0)
1
2 Φd−Δ(4ναt) + 1

2 Φd−Δ+1(4ναt) (d < 0).

(A13)

This result allows us to calculate the moments of δΞj − δΞi in Equation (A4). In particular, using the
second moment, we can also calculate

〈
δΞiδΞj

〉
as

〈
δΞiδΞj

〉
=

1
2

[〈
δΞ2

i

〉
+
〈

δΞ2
j

〉
−
〈
(δΞj − δΞi)

2
〉]

,

where 〈δΞ2
i 〉 = 〈δΞ2

j 〉 = 2ναt according to Equation (37). After some rearrangement with the recurrence
formula for the modified Bessel function, we arrive at Equation (45).

Appendix B. Numerical Evaluation of the Hopping Rate

Within the approximation of the present work, the hopping rate να is regarded as a constant
whose value depends on the control parameters of the system. The problem of how to specify να

might be trivial if the lattice dynamics were adopted instead of the present system with the continuous
space, because the probability of overtaking, i.e., the ratio of να to the collision frequency, would be
given as a part of dynamical rules governing the lattice system. More consideration is required in the
present case, because overtaking is not given as an elementary process but determined as a result of
the Langevin dynamics regulated by the interaction potential V(r) with r ∈ R.

For the present, we have determined the function να = να(ρ0, Vmax) by solving Equation (2)
numerically, with V(r) given in Equation (5); for numerical ease, the mass is chosen to be finite so
that m/μ : σ2/D = 1 : 1. For each run with some specific values of (ρ0, Vmax), we counted overtaking
events that had occurred since the time 0, and plotted the cumulative number of overtaking, divided by
N, against t. Thus we obtain a plot analogous to Figure 4(a) in Ref. [25] that can be fitted with a straight
line, whose slope gives να. The values of να, collected in this way as a function of (ρ0, Vmax), are fitted
with an Arrhenius-like expression, with a prefactor that depends both on Vmax and ρ0 [44]:

να = D
(

a0
ρ0

σ
+ a1ρ2

0 βVmax

)
e−βVmax , β =

1
kBT

, (A14)

where a0 ≈ 1/2 and a1 ≈ 1/6.
The numerical values of να reported here, however, should not be regarded as decisive. We must

be cautious about difficulty in precise numerical calculation of rare events such as overtaking.
In comparison to other quantities, computation of να may be sensitive to the choice of the numerical
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scheme, and in the present calculation, based on a Verlet-like scheme, the computed values of να seem
to depend on the ratio m/μ:σ2/D. A systematic study of this issue will be expected in the future.
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Department of Theoretical Physics and Astrophysics, Institute of Physics, Faculty of Science,
P. J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovak Republic; jozef.strecka@upjs.sk

Received: 30 December 2017; Accepted: 26 January 2018; Published: 29 January 2018

Abstract: The mixed spin-1/2 and spin-S Ising model on the Union Jack (centered square) lattice
with four different three-spin (triplet) interactions and the uniaxial single-ion anisotropy is exactly
solved by establishing a rigorous mapping equivalence with the corresponding zero-field (symmetric)
eight-vertex model on a dual square lattice. A rigorous proof of the aforementioned exact mapping
equivalence is provided by two independent approaches exploiting either a graph-theoretical or spin
representation of the zero-field eight-vertex model. An influence of the interaction anisotropy as well
as the uniaxial single-ion anisotropy on phase transitions and critical phenomena is examined in
particular. It is shown that the considered model exhibits a strong-universal critical behaviour
with constant critical exponents when considering the isotropic model with four equal triplet
interactions or the anisotropic model with one triplet interaction differing from the other three.
The anisotropic models with two different triplet interactions, which are pairwise equal to each
other, contrarily exhibit a weak-universal critical behaviour with critical exponents continuously
varying with a relative strength of the triplet interactions as well as the uniaxial single-ion anisotropy.
It is evidenced that the variations of critical exponents of the mixed-spin Ising models with the
integer-valued spins S differ basically from their counterparts with the half-odd-integer spins S.

Keywords: mixed-spin ising model; triplet interaction; weak-universal critical behaviour

PACS: 05.50.+q; 75.10.Hk; 75.40.Cx

1. Introduction

One of the most important concepts elaborated in the theory of phase transitions and critical
phenomena is universality hypothesis, which states that a critical behaviour does not depend on specific
details of a model but only upon its spatial dimensionality, symmetry and number of components
of the relevant order parameter. The foremost consequence of the universality hypothesis is that the
critical behaviour of very different models may be characterized by the same set of critical exponents
and one says that the models with the identical set of critical exponents belong to the same universality
class. However, there exists a few exactly solved models whose critical exponents do depend on the
interaction parameters and thus contradict the usual universality hypothesis [1]. The spin-1/2 Ising
model with a three-spin (triplet) interaction on planar lattices belongs to paradigmatic exactly solved
models of this type. As a matter of fact, the exact solutions for the spin-1/2 Ising model with the
triplet interaction gave rigorous proof for different sets of critical exponents on different planar
lattices [2–7]. More specifically, the critical exponent α for the specific heat fundamentally differs
when this model is defined on centered square lattice (α = 1/2) [2], triangular lattice (α = 2/3) [3–5],
decorated triangular [6], honeycomb and diced lattices [7] (α ≈ 0, logarithmic singularity). In addition,
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the spin-1/2 Ising model with the triplet interaction on a kagomé lattice [8] does not display a phase
transition at all.

In the present work, we will consider and exactly solve the mixed spin-1/2 and spin-S Ising
model with the triplet interaction on the Union Jack (centered square) lattice by establishing a rigorous
mapping correspondence with the symmetric (zero-field) eight-vertex model. The investigated model
generalizes the model originally proposed and examined by Urumov [9] when accounting for the
additional uniaxial single-ion anisotropy acting on the spin-S atoms. It will be demonstrated hereafter
that the critical exponents of the mixed spin-1/2 and spin-S Ising model with the triplet interaction on
the centered square lattice fundamentally depend on the interaction anisotropy, the uniaxial single-ion
anisotropy, as well as, the spin parity.

2. Model and Exact Solution

Let us introduce the mixed spin-1/2 and spin-S Ising model with pure three-spin (triplet)
interactions on a centered square lattice defined through the Hamiltonian:

H = −J1

�
∑
i,j

Si,jσi,jσi+1,j − J2

�
∑
i,j

Si,jσi+1,jσi+1,j+1 − J3

�
∑
i,j

Si,jσi,j+1σi+1,j+1 − J4

�
∑
i,j

Si,jσi,jσi,j+1 − D∑
i,j

S2
i,j, (1)

whereas the spin-1/2 atoms (light blue circles in Figure 1) represented by the Ising spin variables
σi,j = ±1/2 are placed at corners of a square lattice, the spin-S atoms (dark blue circles in Figure 1)
are situated in the middle of square plaquettes. The Hamiltonian (1) takes into account four different
triplet interactions J1, J2, J3 and J4 within down-, left-, up- and right-pointing triangles, respectively,
in addition to the uniaxial single-ion anisotropy D acting on the spin-S atoms.

J1

J2

J3

J4

�i , j= ±1/2 S =i , j -S, -S+1,...,S

Figure 1. A schematic illustration of the mixed spin-1/2 (light blue) and spin-S (dark blue) Ising model
on a centered square lattice. Four different colors are used to distinguish triplet interactions J1, J2, J3

and J4 within down-, left-, up- and right-pointing triangles, respectively.

The Hamiltonian (1) can be alternatively rewritten as a sum of cell Hamiltonians H = ∑�
i,jHi,j,

whereas the cell HamiltonianHi,j involves all interactions terms depending on the central spin Si,j:

Hi,j = −J1 Si,jσi,jσi+1,j − J2 Si,jσi+1,jσi+1,j+1 − J3 Si,jσi,j+1σi+1,j+1 − J4 Si,jσi,jσi,j+1 − DS2
i,j. (2)

The partition function of the mixed spin-1/2 and spin-S Ising model with triplet interactions on
a centered square lattice can be then cast into the following form:

Z = ∑
{σi,j}

∏
i,j

S

∑
Si,j=−S

exp(−βHi,j) = ∑
{σi,j}

∏
i,j

ω(σi,j, σi+1,j, σi+1,j+1, σi,j+1), (3)
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where the summation ∑{σi,j} runs over all available spin configurations of the spin-1/2 atoms,
β = 1/(kBT), kB is Boltzmann’s constant, T is the absolute temperature and the expression ω denotes
the Boltzmann’s weight obtained after tracing out degrees of freedom of the central spin-S atom:

ω(a, b, c, d) =
S

∑
n=−S

exp(βDn2) cosh [βn (J1 ab + J2 bc + J3 cd + J4 da )] . (4)

An invariance of the Boltzmann’s factor ω(a, b, c, d) = ω(−a,−b,−c,−d) implies that there exist
at most eight different Boltzmann’s weights obtained from Equation (4) by considering all 16 spin
configurations of the four corner spins involved therein. Hence, it follows that one may establish
two-to-one mapping correspondence between a spin configuration and a relevant graph representation
of the equivalent eight-vertex model on a dual square lattice according to the scheme shown in Figure 2.
A solid line is drawn on a respective edge of a dual square lattice lying in between two unequally
aligned neighbouring spins, while a broken line is drawn otherwise. It turns out, moreover, that the
effective Boltzmann’s weights obtained after inserting all possible spin configurations of the four corner
spins into Equation (4) are pairwise equal to each other:

ω1(+,+,+,+) = ω2(+,−,+,−) =
S

∑
n=−S

exp(βDn2) cosh
[

βn
4

(J1 + J2 + J3 + J4)

]
,

ω3(+,−,−,+) = ω4(+,+,−,−) =
S

∑
n=−S

exp(βDn2) cosh
[

βn
4

(J1 − J2 + J3 − J4)

]
,

ω5(−,+,+,+) = ω6(+,+,−,+) =
S

∑
n=−S

exp(βDn2) cosh
[

βn
4

(J1 − J2 − J3 + J4)

]
,

ω7(+,+,+,−) = ω8(+,−,+,+) =
S

∑
n=−S

exp(βDn2) cosh
[

βn
4

(J1 + J2 − J3 − J4)

]
,

(5)

which means that the mixed-spin Ising model with triplet interactions on a centered square lattice is
equivalent with the symmetric (zero-field) eight-vertex model exactly solved by Baxter [10,11]. Owing
to this fact, one may easily prove an exact mapping relationship between the partition functions of
the mixed-spin Ising model with triplet interactions on a centered square lattice and the zero-field
eight-vertex model on a dual square lattice:

Z(β, J1, J2, J3, J4, D) = 2Z8−vertex(ω1, ω3, ω5, ω7). (6)

It is apparent from the mapping relation in Equation (6) between the partition functions that the
mixed-spin Ising model with triplet interactions on a centered square lattice becomes critical only if the
corresponding zero-field eight-vertex model becomes critical as well. Bearing this in mind, the critical
points of the mixed-spin Ising model with triplet interactions on a centered square lattice can be readily
obtained from Baxter’s critical condition [10,11] when the explicit form of the effective Boltzmann’s
weights in Equation (5) is taken into consideration:

ω1 + ω3 + ω5 + ω7 = 2max{ω1, ω3, ω5, ω7}. (7)

It should be stressed that the critical exponents for the specific heat, magnetization, susceptibility
and correlation length satisfy Suzuki’s weak-universal hypothesis [12] and can be calculated from:

α = α′ = 2− π/μ, β = π/16μ, γ = γ′ = 7π/8μ, ν = ν′ = π/2μ, (8)

where tan(μ/2) = (ω1ω3/ω5ω7)
1/2 on assumption that ω1 = max{ω1, ω3, ω5, ω7}.
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Figure 2. A schematic representation of two-to-one mapping correspondence between the Ising
spin configurations and line coverings of the equivalent eight-vertex model on a dual square lattice
(the sign ±marks σ = ±1/2).

The exact mapping equivalence with the zero-field eight-vertex model can be alternatively proven
by exploiting the spin representation of the eight-vertex model. For this purpose, the effective
Boltzmann factor in Equation (4) can be replaced via the generalized star-square transformation [13–15]
schematically drawn in Figure 3:

ω =
S

∑
n=−S

exp(βDn2) cosh
[

βn(J1σi,jσi+1,j + J2σi+1,jσi+1,j+1 + J3σi+1,j+1σi,j+1 + J4σi,j+1σi,j)
]

= R0 exp(βR1σi,jσi+1,j+1 + βR2σi+1,jσi,j+1 + βR4σi,jσi+1,jσi+1,j+1σi,j+1).

(9)

The physical meaning of the generalized star-square transformation in Equation (9) lies
in replacing spin degrees of freedom related to the central spin-S atom through the effective
pair interactions (R1, R2) and the effective quartic interaction (R4) between the four enclosing
spin-1/2 atoms (see Figure 3). The star-square transformation in Equation (9) must hold for any
spin state of the four enclosing spin-1/2 atoms and this “self-consistency” condition unambiguously
determines so far unspecified mapping parameters:

R0 = (ω1ω3ω5ω7)
1/4, βR1 = ln

(
ω1ω7

ω3ω5

)
, βR2 = ln

(
ω1ω5

ω3ω7

)
, βR4 = 4 ln

(
ω1ω3

ω5ω7

)
. (10)

The star-square transformation in Equation (9) establishes a rigorous mapping correspondence
between the partition function of the mixed-spin Ising model with triplet interactions on a centered
square lattice and the partition function of the spin-1/2 Ising model on two inter-penetrating square
lattices with the effective pair interactions (R1, R2) and the effective quartic interaction (R4):

Z(β, J1, J2, J3, J4, D) = R2N
0 Z8−vertex(β, R1, R2, R4).

It has been proven previously that the spin-1/2 Ising model defined on two inter-penetrating
square lattices coupled together by means of the quartic interaction is nothing but the Ising
representation of the zero-field eight-vertex model on a square lattice [16,17]. In this way, we have
afforded alternative proof for an exact mapping equivalence between the mixed-spin Ising model with
triplet interactions on a centered square lattice and the zero-field eight-vertex model on a square lattice.

�i , j �i , j+1
Si , j

J1

J2

J3

J4

�i , j+1 �i , j+1 +1

�i , j �i , j+1

R1

R4

R2

�i , j+1 �i , j+1 +1

SST

Figure 3. A schematic representation of the generalized star-square transformation, which replaces
spin degrees of freedom of the central spin-S atom through two effective pair interactions (R1, R2) and
the effective quartic interaction (R4) between the four enclosing spin-1/2 atoms.
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3. Results and Discussion

In this section, let us discuss the most interesting results for the mixed spin-1/2 and spin-S Ising
model with triplet interactions on a centered square lattice depending on the interaction anisotropy,
the uniaxial single-ion anisotropy and the spin magnitude S. For the sake of simplicity, our further
attention will be restricted to four particular cases to be further referred to as:

• Model A: J ≡ J1 = J2 = J3 = J4,
• Model B: J ≡ J1, J′ ≡ J2 = J3 = J4,
• Model C: J ≡ J1 = J3, J′ ≡ J2 = J4,
• Model D: J ≡ J1 = J2, J′ ≡ J3 = J4,

which will be separately treated in the following subsections. For better illustration, the four aforementioned
special cases of the mixed spin-1/2 and spin-S Ising model with triplet interactions on a centered
square lattice are schematically drawn in Figure 4, where different colors are used for distinguishing
triplet interactions of different size. In addition, our subsequent discussion will be henceforth restricted
to the mixed spin-1/2 and spin-S Ising model with both positive triplet interactions (J > 0, J′ > 0),
because the other meaningful particular case with both negative triplet interactions (J < 0, J′ < 0)
displays the identical critical behavior because J → −J, J′ → −J′ interchange merely causes a trivial
change in a relative orientation of the nearest-neighbor spins.

J J J J J= = = =1 2 3 4

MODEL A

J J J J J J= , ´= = =1 2 3 4

MODEL B

J J J J J J= = , ´= =1 3 2 4

MODEL C

J J J J J J= = , ´= =1 2 3 4

MODEL D

Figure 4. The four particular cases of the mixed spin-1/2 and spin-S Ising model with triplet
interactions on a centered square lattice, which will be comprehensively studied in the following
subsections. Different colors are used for distinguishing triplet interactions of different size.

3.1. Model A (J ≡ J1 = J2 = J3 = J4)

Let us begin with a detailed analysis of critical behaviour of the mixed spin-1/2 and spin-S Ising
model with unique triplet interaction on a centered square lattice, which represents a very special
case due to the isotropic nature of the triplet interactions J ≡ J1 = J2 = J3 = J4. Under this condition,
one gains from Equation (5) just two different Boltzmann’s weights:

ω1 =
S

∑
n=−S

exp(βDn2) cosh (βnJ) , ω3 = ω5 = ω7 =
S

∑
n=−S

exp(βDn2), (11)

where the Boltzmann’s weights in Equation (11) evidently satisfy the inequality ω1 ≥ ω3. The ordered
state emergent at low enough temperature can be accordingly found from the lowest-energy states
entering the Boltzmann’s weights ω1(+,+,+,+) and ω2(+,−,+,−). As a result, the spontaneous
order has a four-fold degeneracy, because the nodal spin-1/2 atoms display either a ferromagnetic or
antiferromagnetic long-range order and the central spins are oriented in such a way that either zero
or two down spins appear within each triangular plaquette. This statement will remain true also for
the other three particular models treated hereafter. The critical condition in Equation (7) of the mixed
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spin-1/2 and spin-S Ising model with unique triplet interaction on a centered square lattice simplifies
owing to a validity of the inequality ω1 ≥ ω3 to the following form:

ω1 = 3ω3 ⇒
S

∑
n=−S

exp(βcDn2) cosh (βcnJ) = 3
S

∑
n=−S

exp(βcDn2), (12)

where βc = 1/(kBTc) and Tc marks the critical temperature. It follows from Equation (8) that the
critical exponents remain constant along the whole critical line in Equation (12), irrespective of the
spin magnitude S:

tan(μ/2) =
√

ω1/ω3 =
√

3 ⇒ α = α′ = 1/2, β = 3/32, γ = γ′ = 21/16, ν = ν′ = 3/4, (13)

where their size is identical with the ones predicted for the spin-1/2 Ising model with the unique triplet
interaction on a centered square lattice, i.e. the so-called Hintermann–Merlini model [2]. The critical
temperature obtained from the numerical solution of the critical condition in Equation (12) is plotted in
Figure 5 against the uniaxial single-ion anisotropy for several spin magnitudes S. Although the critical
temperature monotonically decreases with decreasing of the uniaxial single-ion anisotropy regardless
of the spin size S, there is fundamental difference in the critical behaviour of the mixed-spin Ising
models with integer and half-odd-integer spins S, respectively. Namely, the critical temperature of the
former mixed-spin systems becomes zero for D/J < −1 in accordance with presence of the disordered
ground state, which appears due to energetic favoring of the nonmagnetic spin state S = 0 of the
integer-valued spins. On the other hand, the critical temperature of the latter mixed-spin systems tends
towards the critical temperature of the Hintermann–Merlini model [2] kBTc/J = 1/4 ln(1 +

√
2) ≈

0.2836 . . ., which is achieved in the asymptotic limit D/J → −∞ (but practically already at D/J ≈ −1)
due to energetic favoring of two lowest-valued states S = ±1/2 of the half-odd-integer spins.

Figure 5. The critical temperature of the model A as a function of the uniaxial single-ion anisotropy by
considering: (a) half-odd-integer spins S; and (b) integer spins S.

3.2. Model B (J ≡ J1, J′ ≡ J2 = J3 = J4)

Next, let us relax the condition of the isotropic triplet interactions by considering the model B,
where one triplet interaction (say J ≡ J1) differs from the other three (J′ ≡ J2 = J3 = J4). Even under
this constraint, one still gets from Equation (5) just two different Boltzmann’s weights:

ω1 =
S

∑
n=−S

exp(βDn2) cosh
[

βn
4
(

J + 3J′
)]

, ω3 = ω5 = ω7 =
S

∑
n=−S

exp(βDn2) cosh
[

βn
4
(

J − J′
)]

, (14)
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which are however slightly more complicated due to the interaction anisotropy. It is evident from
Equation (14) that the Boltzmann’s weights still satisfy the inequality ω1 ≥ ω3, which affords the
following critical condition:

ω1 = 3ω3 ⇒
S

∑
n=−S

exp(βcDn2) cosh
[

βcn
4

(
J + 3J′

)]
= 3

S

∑
n=−S

exp(βcDn2) cosh
[

βcn
4

(
J − J′

)]
. (15)

It should be pointed out, moreover, that the critical exponents are still constants independent of
the spin magnitude and the interaction anisotropy as given by Equation (13).

The critical frontiers of the model B are illustrated in Figure 6 for two different spin values,
which demonstrate typical critical behaviour of the mixed-spin systems with half-odd-integer and
integer spins S, respectively. It can be seen in Figure 6 that the critical temperature of the investigated
mixed-spin system rises steadily with increasing of the interaction ratio J′/J both for the integer as
well as half-odd-integer spins. However, it is worth remarking that the critical value of the uniaxial
single-ion anisotropy needed for an onset of the disordered ground state of the mixed-spin systems with
integer spins S shifts towards more negative values upon strengthening of the interaction ratio J′/J.

Figure 6. The critical temperature of the model B as a function of the uniaxial single-ion anisotropy
by considering several values of the interaction anisotropy J′/J and two different spin magnitudes:
(a) S = 1; (b) S = 3/2.

3.3. Model C (J ≡ J1 = J3, J′ ≡ J2 = J4)

Now, let us turn our attention to a critical behaviour of the model C with the triplet interactions
J ≡ J1 = J3, J′ ≡ J2 = J4, which are pairwise equal in triangles lying in opposite to each other within
elementary square cells (see Figure 4). In this particular case, one gets from Equation (5) three different
Boltzmann’s weights:

ω1 =
S

∑
n=−S

exp(βDn2) cosh
[

βn
2
(

J + J′
)]

, ω3 =
S

∑
n=−S

exp(βDn2) cosh
[

βn
2
(

J − J′
)]

,

ω5 = ω7 =
S

∑
n=−S

exp(βDn2).

(16)
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It directly follows from Equation (16) that the Boltzmann’s weights obey the inequality
ω1 ≥ ω3 ≥ ω5 and, hence, the critical condition ω1 = ω3 + 2ω5 can be explicitly written as follows:

S

∑
n=−S

exp(βcDn2) cosh
[

βcn
2
(

J + J′
)]

=
S

∑
n=−S

exp(βcDn2) cosh
[

βcn
2
(

J − J′
)]

+ 2
S

∑
n=−S

exp(βcDn2). (17)

Besides, the Boltzmann’s weights in Equation (16) imply that the critical exponents given by
Equation (8) may display striking dependence along the critical line determined by Equation (17) on
the spin magnitude, the uniaxial single-ion anisotropy as well as the interaction anisotropy according
to the formulas:

tan
(μ

2

)
=

√
ω1ω3

ω5
⇒ α = α′ = 2− π

μ
, β =

π

16μ
, γ = γ′ =

7π

8μ
, ν = ν′ =

π

2μ
. (18)

For illustrative purposes, Figures 7a and 8a display phase boundaries of the model C for the
specific spin values S = 1 and 3/2, respectively. As one can see, the same general trends can be
observed in the relevant dependencies of the critical temperature on the uniaxial single-ion anisotropy
and the interaction anisotropy as previously discussed for the model B. However, the model C exhibits
along the displayed critical lines continuously varying critical exponents unlike the model B with the
strong-universal (constant) critical exponents. For instance, it can be found in Figure 7b that the critical
exponent α for the specific heat monotonically increases with increasing of the uniaxial single-ion
anisotropy for the integer-valued spins S = 1, whereas the observed increase is the greater the higher
the interaction anisotropy is. In addition, it is quite surprising that the critical exponents for the
model C with the half-odd-integer spins S = 3/2 exhibit completely different weak-universal critical
behaviour. Although the critical exponent α for the specific heat is shifted towards higher values
upon increasing of the interaction anisotropy too, but this time the critical exponent α displays a more
peculiar nonmonotonous dependence on the uniaxial single-ion anisotropy with a round minimum
whose depth basically depends on the interaction anisotropy.

Figure 7. (a) The critical temperature of the model C as a function of the uniaxial single-ion anisotropy
by considering the spin size S = 1 and several values of the interaction anisotropy J′/J; and
(b) the respective changes of the critical exponent α for the specific heat along the critical lines displayed
in Figure 7a.
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Figure 8. (a) The critical temperature of the model C as a function of the uniaxial single-ion anisotropy
by considering the spin size S = 3/2 and several values of the interaction anisotropy J′/J; and
(b) the respective changes of the critical exponent α for the specific heat along the critical lines displayed
in Figure 8a.

3.4. Model D (J ≡ J1 = J2, J′ ≡ J3 = J4)

Finally, we will perform a comprehensive analysis of critical behaviour of the model D with the
triplet interactions J ≡ J1 = J2, J′ ≡ J3 = J4, which are pairwise equal to each other within adjacent
triangles of elementary square plaquettes. In this particular case one gets from Equation (5) three
different Boltzmann’s weights given by:

ω1 =
S

∑
n=−S

exp(βDn2) cosh
[

βn
2
(

J + J′
)]

, ω3 = ω5 =
S

∑
n=−S

exp(βDn2),

ω7 =
S

∑
n=−S

exp(βDn2) cosh
[

βn
2
(

J − J′
)]

.

It is quite apparent that the Boltzmann’s weights in Equation (19) satisfy the inequality ω1 ≥ ω7 ≥
ω3, which affords from Equation (7) the critical condition ω1 = 2ω3 +ω7. After substituting explicit form
of the Boltzmann’s weights (19) into the relevant critical condition one obtains the completely identical
critical condition as given by Equation (17) for the model C. This result would suggest that the model D
has exactly the same phase boundaries as the model C. However, it should be emphasized that the
weak-universal critical behaviour of the model D will be characterized by different critical exponents:

tan
(μ

2

)
=

√
ω1

ω7
⇒ α = α′ = 2− π

μ
, β =

π

16μ
, γ = γ′ =

7π

8μ
ν = ν′ =

π

2μ
, (19)

because the definition of the parameter μ governing changes of the critical exponents is different
(cf. Equations (18) and (19)).

For the sake of comparison, the critical temperature and critical exponent α are plotted in Figures 9
and 10 for the model D by assuming two different spin values S = 1 and 3/2, respectively. It has
already been argued that the phase boundaries of the model D coincide with the critical lines of the
model C, so let us only comment the respective behaviour of the critical exponent α for the specific heat.
Figure 9b would suggest that the critical exponent α for the model D with the integer-valued spin S = 1
falls down monotonically with increasing of the uniaxial single-ion anisotropy, whereas the interaction
anisotropy generally reinforces the relevant decline. This behaviour is in sharp contrast with what
has been previously reported for the model C, where exactly opposite tendency has been revealed
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(cf. Figures 7b and 9b). The reduction of the critical exponent α due to the interaction anisotropy has
also been detected for the model D with the half-odd-integer spin S = 3/2, but this time the critical
exponent α shows a peculiar nonmonotonous dependence on the uniaxial single-ion anisotropy with
a round maximum. This finding is repeatedly in marked contrast with what has been previously found
for the model C (c.f. Figures 8b and 10b). It could be thus concluded that the models C and D display
remarkably different weak-universal critical behaviour of the critical exponents even though their
phase boundaries are in a perfect coincidence.

Figure 9. (a) The critical temperature of the model D as a function of the uniaxial single-ion anisotropy
by considering the spin size S = 1 and several values of the interaction anisotropy J′/J; and
(b) the respective changes of the critical exponent α for the specific heat along the critical lines displayed
in Figure 9a.

Figure 10. (a) The critical temperature of the model D as a function of the uniaxial single-ion anisotropy
by considering the spin size S = 3/2 and several values of the interaction anisotropy J′/J; and
(b) the respective changes of the critical exponent α for the specific heat along the critical lines displayed
in Figure 10a.
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4. Conclusions

The mixed spin-1/2 and spin-S Ising model with four different triplet interactions on a centered
square lattice has been exactly solved by establishing a rigorous mapping equivalence with the
corresponding zero-field eight-vertex model on a dual square lattice. A rigorous proof of the
aforementioned exact mapping equivalence has been afforded by two independent ways, exploiting
either the graph-theoretical formulation [10,11] or the spin representation [16,17] of the zero-field
eight-vertex model, the latter one obtained after adapting of the generalized star-square mapping
transformation [13–15]. It should be mentioned that the range of applicability of the present exactly
solved mixed-spin Ising model with the triplet interactions goes beyond the scope of magnetic systems,
because three-body interactions might play a crucial role in determining thermodynamic behavior of
other complex physical systems such fluids.

The primary goal of the present work was to examine an influence of the interaction anisotropy,
the uniaxial single-ion anisotropy and the spin parity upon phase transitions and critical phenomena.
It has been shown that the considered model exhibits a strong-universal critical behaviour with
constant critical exponents, which are independent of the uniaxial single-ion anisotropy as well as
the spin parity when considering either the isotropic model A with four equal triplet interactions
or the anisotropic model B with one triplet interaction differing from the other three. On the other
hand, it has also been evidenced that the models C and D with the triplet interactions, which are
pairwise equal to each other, exhibit a weak-universal critical behaviour characterized by continuously
varying critical exponents. Under these circumstances, the relevant critical exponents are changing
along the critical lines in dependence on a relative strength of the triplet interactions as well as the
uniaxial single-ion anisotropy. Although the critical boundaries of the models C and D are completely
the same, different interaction anisotropy of both models is responsible for a qualitatively different
weak-universal behaviour of the critical exponents. Besides, it also turns out that the mixed-spin
systems with the integer-valued spins S exhibit very different variations of the critical exponents in
comparison with their counterparts with the half-odd-integer spins S. A more detailed study of the
order parameter and other important thermodynamic quantities, especially in a vicinity of the critical
points, is left as a challenging task for our future work.
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Abstract: We analytically calculate the statistics of Bose-Einstein condensate (BEC) fluctuations in an
interacting gas trapped in a three-dimensional cubic or rectangular box with the Dirichlet, fused or
periodic boundary conditions within the mean-field Bogoliubov and Thomas-Fermi approximations.
We study a mesoscopic system of a finite number of trapped particles and its thermodynamic limit.
We find that the BEC fluctuations, first, are anomalously large and non-Gaussian and, second, depend
on the trap’s form and boundary conditions. Remarkably, these effects persist with increasing
interparticle interaction and even in the thermodynamic limit—only the mean BEC occupation, not
BEC fluctuations, becomes independent on the trap’s form and boundary conditions.

Keywords: Bose-Einstein condensation; statistics of Bose-Einstein condensate; Bogoliubov coupling;
interacting Bose gas; mesoscopic system

1. Critical Phenomena and Statistics of Anomalous Fluctuations in a Bose-Einstein Phase Transition

Any second order phase transition in a many-body system occurs near its critical point via
development of the critical phenomena and anomalously large fluctuations of an order parameter [1].
Finding their microscopic theory and analytical description constitutes one of the major and still
unsolved problem in theoretical physics. A phase transition to the Bose-Einstein condensed state in
the interacting Bose gas of N particles confined in an optical/magnetic trap is one of the phenomena
that have been the most intensively studied in the last two decades (for a review, see [2] and
references therein).

In the present paper we analyze the statistics of the number of condensed particles at the
temperature T well outside a narrow critical region around the critical temperature Tc, namely,
at T � Tc where a well-known mean-field approximation based on the Gross-Pitaevskii and
Bogoliubov-de Gennes equations is valid. (In fact, such a mean-field approximation works reasonably
well even up to the temperature Tc/2, that is for all temperatures in the interval T < Tc/2, as
has been verified, for example, by the experiments on the dynamics and decay of the condensate
excitations [2–6].) At somewhat higher temperatures, but still outside the critical region, one could
employ a more complicated theory (beyond the mean field) that consistently accounts for a deeper
thermal depletion of spatially inhomogeneous condensate and various many-body effects of particle
interactions via an approximate solution to the Dyson equation for the Green’s and self-energy
functions of the standard quantum-field-theory method [3,4]. Even higher temperatures at the wings
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of critical region, which are still far from the central part of critical region, could be accessed by means
of a phenomenological renormalization-group theory (for a review, see [7] and references therein).
Finally, the BEC phase transition in the weakly interacting Bose gas at any temperatures outside and
inside the entire critical region can be rigorously described by the general equations for the order
parameter, self-energy and Green’s functions within a recently developed microscopic theory of phase
transitions [8–10].

The study of the BEC statistics has a long and rich history (see, for example, an arbitrary sample
of relatively recent papers [11–25] and references therein.) However, nobody succeeded yet in deriving
the BEC statistics in the interacting gas for the temperature interval Tc/2 < T < Tc and the entire
critical region neither by means of the standard quantum-field-theory method, renormalization-group
theory or microscopic theory nor by means of the other known approaches (discussed, e.g., in [6])
which are more involved than the Bogoliubov approximation.

An analytical solution for the BEC statistics at any temperature, including the entire critical region,
was found recently [15,26–30] only for the ideal, non-interacting gas confined in a trap of arbitrary
geometry and dimensions. In particular, it provides a universal scaling of all thermodynamic quantities
and a universal form of the BEC occupation probability distribution over the entire critical region in the
thermodynamic limit of macroscopically large systems. This universal statistics is either non-Gaussian
of an anomalously large variance or Gaussian, depending on the trap geometry, and clearly manifests
itself in the mesoscopic systems starting from the number of particles N of the order of a thousand.

An essential novelty of the work [15] and the subsequent papers [26–30] was a formulation (and
a solution) of the very problem of finding the entire probability distribution and its characteristic
function for the BEC statistics as opposed to the calculation of just the first two statistical moments,
the mean value and the variance, discussed in the preceding works (see, e.g., [11,13,14,18,23]). It was
done mainly for the ideal Bose gas, with only one exception. Namely, in the paper [15] we put forward
and solved this problem within the Bogoliubov approximation for a weakly interacting gas confined
in a three-dimensional (3D) box trap with the periodic boundary conditions. Such a trap has a purely
homogeneous ground state and a homogeneous condensate wave function.

In the present paper we continue this line of research. Namely, we find the probability distribution
and the characteristic function, including all moments and cumulants, for the BEC statistics in a weakly
interacting dilute gas confined in a 3D rectangular box of dimensions Lx, Ly, Lz with the Dirichlet
(zeroth) or so-called fused boundary conditions (see (28) and thereinafter). In the Dirichlet’s case
a one-particle ground state is strongly inhomogeneous ∝ sin(πx/Lx) sin(πy/Ly) sin(πz/Lz) and
one has to solve the Gross-Pitaevskii and Bogoliubov-de Gennes equations for the inhomogeneous
condensate and quasiparticle wave functions (see, e.g., [2,3,5–7,31,32]). For simplicity’s sake, we do
this within the Thomas-Fermi approximation assuming that the healing length ξ is much less than the
box dimensions:

ξ � Lx, Ly, Lz; ξ =

√
V

8πN0a
, g =

4πh̄2a
M

. (1)

Here N0 is the mean number of particles in the condensate, M the mass of a particle, V = LxLyLz

the volume of a trap, a > 0 the s-wave scattering length determining the interaction constant g. If the
first-order Born approximation for the two-body repulsive interaction with a potential U(r1 − r2)

is applicable, one can think of the interaction constant as of the k = 0 component, g = U0, of the
Fourier transform Uk =

∫
U(r) exp (ikr)d3r of the two-body potential and model the latter by a Dirac

delta-function U(r) = U0δ(r). The diluteness of the gas means its low density N/V � a−3, i.e.,
a small value of the gas parameter Na3/V � 1. This assumption of the dilute gas together with
the Thomas-Fermi condition (1) implies the following inequalities on the admissible values of the
condensate gas parameter n0a3:

1√
8π

a
L
�

√
n0a3 � 1 for L = Lx, Ly, Lz; n0 =

N0

V
. (2)
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Then, possessing the BEC statistics for the mesoscopic system of N interacting particles in the box
traps of different rectangular forms and different, periodic, fused or Dirichlet, boundary conditions,
we compare their statistics and conclude on the effect of the trap’s form and boundary conditions
on them. In particular, we calculate the asymptotics of the BEC statistics and the effect of the trap’s
form and boundary conditions in the thermodynamic limit N → ∞ , V → ∞ with a concentration of
particles N/V being kept constant.

The paper is organized as following. In Section 2 we formulate the basic model of the BEC statistics
in a weakly interacting gas confined in a flat trap within the mean-field theory of the Gross-Pitaevskii
equation for the condensate and Bogoliubov—de Gennes equations for the quasiparticles, both being
simplified by means of the Thomas-Fermi approximation. In Section 3 we present the general analytical
formulas for the characteristic function and all cumulants of the noncondensate occupation probability
distribution for a mesoscopic system of N particles in a weakly interacting gas in the case when the
Bogoliubov coupling squeezes (forces to coherently correlate the particles’ creation and annihilation
operators) the contribution to the noncondensate occupation separately either from each quasiparticle
or from each pair of symmetric counter-propagating quasiparticles. In Section 4 we derive the explicit
analytical formulas for the asymptotics of the obtained characteristic function and all cumulants
of the noncondensate occupation probability distribution in the thermodynamic limit. In Section 5
we apply these results for BEC statistics to the case of the cubic or rectangular box trap with the
periodic, fused or Dirichlet boundary conditions in the regime of thermally-dominated fluctuations.
Section 6 contains the discussion and implications of the obtained results for the statistical physics of
the BEC phase transition. The main conclusions are stated in Section 7.

2. Quasiparticles: The Spectrum and Eigenstates Within the Gross-Pitaevskii and
Bogoliubov—De Gennes Equations in the Thomas-Fermi Approximation

In the thermal equilibrium the mesoscopic system of N interacting particles is described by the
statistical operator (density matrix)

ρ̂ = e−Ĥ/T ∏
j
(1− e−ε j/T), Ĥ = ∑

j
ε j b̂†

j b̂j, (3)

where the Hamiltonian Ĥ is given by the Bogoliubov approximation as the sum over the dressed
by the condensate and many-body interaction quasiparticles with the eigenenergies ε j and creation
(annihilation) operators b̂†

j (b̂j) enumerated by the index j = 1, 2, .... The field operator of the particles

ψ̂(r) =
√

N0φ(r) + θ̂(r), where θ̂ = ∑
j

[
uj(r)b̂j + v∗j (r)b̂

†
j

]
, [b̂j, b̂†

j′ ] = δj,j′ , (4)

includes the c-number (classical) condensate wave function
√

N0φ(r) and the field operator θ̂(r) of the
noncondensate particles. The operators b̂†

j and b̂j obey the canonical commutation relations.
The profile of the condensate wave function φ (which is chosen to be real) obeys the

Gross-Pitaevskii equation [2](
− h̄2

2M
Δr + Utrap(r) + gN0φ2(r)− μ

)
φ(r) = 0,

∫
φ2(r)d3r = 1, (5)

where Utrap(r) is the external potential of the trap and μ the chemical potential. The eigenenergies and
eigenstates (uj, vj)

T of quasiparticles are determined by the Bogoliubov-de Gennes equations [2,31,32](
− h̄2

2M
Δr + Utrap(r) + 2gN0φ(r)2 − μ

)(
uj
vj

)
+ gN0φ2(r)

(
vj
uj

)
= ε j

(
+uj
−vj

)
(6)
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with the boundary conditions specified by the trap setup. Here Δr is the Laplace operator.
The operator of the number of noncondensed particles that determines the statistics of the

condensate depletion can be represented via the creation and annihilation operators of quasiparticles:

N̂ex ≡
∫

θ̂+ θ̂d3r = ∑
j,k

(
b̂+j b̂k

∫
u∗j ukd3r + b̂j b̂k

∫
ujvkd3r + b̂+j b̂+k

∫
u∗j v∗k d3r + b̂j b̂+k

∫
vjv∗k d3r

)
. (7)

The subscript “ex” stands for “excitations”. Since the total number of particles in the trap is
conserved, N = const, the condensate occupation statistics is determined by the complimentary
operator N̂0 = N − N̂ex. The parameter N0, that enters the Equations (5) and (6) and plays a part of
the mean field in this Bogoliubov approach, is the mean condensate occupation and should be found
from the self-consistency equation

N0 = N − 〈N̂ex〉, 〈...〉 = Tr(...ρ̂). (8)

The angle brackets denote averaging over the quantum ensemble given by the statistical
operator (3).

In fact, the particle-number-conservation constraint N̂0 + N̂ex = N defines the canonical or
microcanonical (along with the energy constraint Ĥ = E = const) statistical ensembles and is
responsible for the very existence of the BEC phase transition as a process leading to a macroscopic
occupation of a single quantum state [1,2,9,31]. Thus, a rigorous microscopic description of the BEC
requires an introduction of the constraint Hilbert space by an appropriate truncation of the original
Fock space of the system of N particles. The most natural and straightforward way of doing so
is to express all physical quantities via the particle-number-conserving creation and annihilation
operators of the canonical quasiparticles which describe the transitions between the ground and
excited one-particle states. Such operators were first introduced in the famous Holstein-Primakoff
representation [33] (worked out also by Schwinger [34]) and are known in the theory of BEC as the
Girardeau-Arnowitt operators [35,36]. The similar “number-conserving” approaches were widely
discussed in the literature – for example, see [37] introducing the ladder operators similar to the
Girardeau-Arnowitt ones (but conserving the particle number only approximately, [36]), [38] involving
the modified ladder operators to establish the U(1)-symmetry model for calculating the dynamics of
BEC, [39] formulating the number-conserving finite temperature theory which takes into account the
non-quadratic terms of Hamiltonian, [15] describing the BEC statistics in the Bogoliubov approximation
via the Girardeau-Arnowitt operators, [16,17] describing the higher-order cumulants of the BEC
statistics in an ideal gas at zero temperature, [40,41] presenting the description of the coupled
dynamics of the condensate and noncondensate fractions, [24] calculating the correlations in a Bose
gas via introduction of the c-number constants for the Girardeau-Arnowitt operators and the so-called
“coherent” energy levels which are highly-occupied and mostly form the condensate mode of the
interacting gas, [19] where the number-conserving approach was used for a comparatative analysis of
the generalized BEC in the anysotropic boxes within the canonical and grand-canonical ensembles, etc.

While the particle number conservation is crucially important for the correct description of BEC
in the critical region [9,26–29], the constraint N̂0 + N̂ex = N is less important for the well-developed
condensate phase at low temperatures T � Tc considered in the present paper. Here the role of the
constraint is reduced mainly to the self-consistency Equation (8) for the mean condensate occupation
and has only a minor effect on fluctuations. In fact, the particle number conservation does not affect
directly and cannot eliminate the strong effect of squeezing of quasiparticle contributions to the
condensate depletion in Equation (7) via the Bogoliubov couplings.

The Bogoliubov-de Gennes system of equations is not a standard realization of the Sturm–Liouville
problem, and there is no usual orthogonality of the partial u’s and v’s components of quasiparticle
wave functions in the general case [31,32]. This fact is crucial for the existence of the nonzero
Bogoliubov couplings, that is the nonzero integrals playing a part of coefficients in the right hand
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side of Equation (7). Actually, the sensitivity of the BEC statistics to the trap’s form and boundary
conditions strongly involves the statistics’ dependence on the spectrum of quasiparticles, while the
aforementioned non-orthogonality of the partial components of eigenfunctions uj and vj determines
the squeezing of quasiparticle contributions to the condensate depletion in Equation (7) via the
Bogoliubov couplings. At the same time, the eigenvectors (uj, vj)

T of the quasiparticle wave functions
are orthogonal [31] in the sense of the difference-component scalar product:∫

(uiu∗j − viv∗j )dV = δi,j,
∫
(uivj − ujvi)dV = 0,

∫
(uiφ− viφ

∗)dV = 0.

Thus, finding the statistics of the condensate depletion operator N̂ex over the quantum statistical
ensemble ρ̂ is a problem, far from being trivial, of diagonalizing an infinite matrix (7) with mostly
nonzero entries defined by the overlapping integrals of quasiparticle states. However, there are cases
when only a small part of the overlapping integrals is significant. One of such cases is the case of the
flat traps discussed below.

In the present paper we simplify calculations by employing the Thomas-Fermi approximation
in which one ignores the kinetic energy term −(h̄2/(2M))Δr in the Gross-Pitaevskii Equation (5) and
obtain the analytical solution for the condensate wave function:

√
N0φ(r) ≈

√
μ−Utrap(r)

g
if Utrap(r) < μ (9)

and zero elsewhere. It is known that this approximation works quite well if the interparticle interaction
is strong enough for the condition (1) to be fulfilled [2,32]. Moreover, we restrict analysis to the case of
flat traps with a constant value (taken to be zero) of trapping potential inside the entire trap’s volume
and the infinite potential walls at the trap’s borders. According to the Thomas-Fermi approximation (9),
it amounts to the homogeneous profile of the condensate, φ(r) = V−1/2, and μ = gn0. In this case the
solution to the Bogoliubov-de Gennes Equations (6) for the quasiparticle states acquires the form

uj(r) =
f j(r)√
1− A2

j

, vj(r) =
Aj fj(r)√

1− A2
j

(10)

with the spatial profile of both components uj(r) and vj(r) given by the same function f j(r) which is
the solution to the one-particle Shrödinger equation of the empty (without condensate) trap:

− h̄2

2M
Δr f j(r) = ε

(0)
j f j(r). (11)

The Shrödinger Equation (11) establishes the orthogonal basis of the one-particle wave functions
{ f j(r)} and the corresponding spectrum of the bare energies: ε

(0)
1 ≤ ε

(0)
2 ≤ ε

(0)
3 ≤ . . .

We assume that the latter equation is equipped with the same boundary conditions as were
imposed on the one-particle wave function at the borders of the original (without condensate) trap.
This means that the quasiparticles are mostly determined by the Bogoliubov-de Gennes equations
applied to the central part of the almost homogeneous condensate which demonstrates a significant
density drop only in the relatively thin, of the order of the healing length ξ � Lx, Ly, Lz,
inhomogeneous boundary layers. At the same time, the boundary conditions imposed at the
borders of the trap are important and strongly influence the quasiparticles in the following ways.
First, the high-energy quasiparticles, which have the quasi-classical (WKB) properties, propagate
adiabatically (freely) through the boundary layers, that is, they carry a full information about the
boundaries and fully “feel” the boundary conditions. Second, the low-energy quasiparticles, the
wavelengths of which are of the order of the trap’s dimension, also know about boundaries since even
in the central part of the volume these quasiparticles must obey the symmetry of the system which is
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determined by the boundary conditions. For example, switching between the Dirichlet and periodic
boundary conditions, roughly speaking, enables or disables a half of all “wavevector components”
(quantum numbers) in the spectrum of eigenstates in each spatial direction. Since the BEC statistics is
determined mainly by the large groups of excited states and the trending terms of energy spectra, we
assume that the corrections to eigenenergies ε

(0)
j caused by the inhomogenety of the condensate in the

boundary layers via varying coefficients in the Bogoliubov-de Gennes Equations (6) do not strongly
affect the BEC statistics in the asymptotics of vanishing parameter ξ/V1/3 → 0. Thus, although the
boundary condensate layers are formally omitted in the Thomas-Fermi approximate solution (9),
they are actually present in the basic model formulated above. They are responsible for a transition
from the homogeneous value of the condensate profile φ(r) = V−1/2 in the trap’s volume to the value
(for example, zero in the Dirichlet’s case) required by the original boundary conditions at the trap’s
borders and also determine the symmetry of the whole system.

The model (10) and (11), based on the Thomas-Fermi approximation, of the Bogoliubov-de Gennes
Equations (6) describes the quasiparticles with the spectrum of eigenenergies ε j and Bogoliubov
couplings determined by the coupling parameter Aj given by the following equations:

ε j =

√(
ε
(0)
j

)2
+ 2gn0ε

(0)
j , Aj =

ε j − ε
(0)
j − gn0

gn0
, (12)

where the interaction coupling energy gn0 is proportional to the condensate density n0 = N0/V.
Similar approaches are known in the literature on the BEC in the inhomogeneous systems and were
used by many authors (see, e.g., [32,42]) for the calculation of quantum depletion and other parameters
of BEC.

It is worth noting that the formulated above model for the BEC statistics (10)–(12) is very basic
and poses a series of further questions which go beyond the scope of the present paper. They include,
for example,

(i) the problem of finding the actual spectrum and Bogoliubov couplings of quasiparticles from the
solutions of the exact Gross-Pitaevskii and Bogoliubov-de Gennes Equations (5) and (6) beyond
the Thomas-Fermi approximate model (10)–(12) as well as more specific questions, like

(ii) the problem of the possibly missed or excessive quasiparticles in the model (10)–(12),
(iii) the problem of an accurate transfer of the actual trap’s boundary conditions into the equivalent

boundary conditions for the approximate Shrödinger Equation (11) for quasiparticles at the
borders of the main body of the quasi-homogeneous condensate through the inhomogeneous
condensate boundary layer of thickness ξ � Lx, Ly, Lz (for example, in terms of the impedance
boundary conditions dictated by the exact solution to the Gross-Pitaevskii Equation (5)).

A possible approach to these problems, based on the second-order perturbation theory, can be
found in [42] where the Bogoliubov analysis of the weakly inhomogeneous Bose system as well as
the results for the corresponding deformation of the condensate and for the expectation value of the
quantum depletion were presented. In particular, a suppression of the quantum depletion induced
by a weak lattice was predicted. (The effect is probably related to the quasiparticle selection and
corresponding limitation of quasiparticle spectrum by means of the Bragg scattering on the lattice.)

We’ll discuss these problems and effects elsewhere. Below we focus on the technique for the
analysis of BEC statistics in the interacting gas within the basic model (10)–(12) and, in particular, on a
possible effect of the trap’s form and boundary conditions on the statistics of condensate depletion in
the thermodynamic limit.
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3. The Characteristic Function and Cumulants of the BEC Depletion Probability Distribution for
a Mesoscopic System of Weakly Interacting Particles

Here we describe a technique for evaluating the statistics of the total number of
noncondensed particles. The statistics is derived in terms of a Fourier transform of its characteristic
function which is described via the cumulants and generating cumulants related to the BEC depletion
operator N̂ex in Equation (7) and calculated analytically.

We consider a mesoscopic system with any finite number N of trapped particles and dimensions
of the trap Lx, Ly, Lz. Let us introduce dimensionless energy variables:

λ
(0)
j ≡ ε

(0)
j
/

ε
(0)
1 , λj ≡ ε j

/
ε
(0)
1 , Δ ≡ gn0

/
ε
(0)
1 , α ≡ ε

(0)
1
/

T,

so that ε
(0)
j
/

T = αλ
(0)
j , ε j

/
T = αλj, gn0

/
T = αΔ.

(13)

The dimensionless spectra {λ
(0)
j } and {λj} represent the bare one-particle and renormalized

by condensate quasiparticle energies, respectively. The strength of the interparticle interaction is
characterized by the parameter Δ = gn0/ε

(0)
1 which is the ratio of the interaction coupling energy to

the energy gap in the bare one-particle spectrum. The applicability condition of the Thomas-Fermi
approximation (1) means that one has Δ � 1. The dimensionless parameter α characterizes the size
of the system, so that the thermodynamic limit of a macroscopically large system means α → 0.
The statistical operator (3) and Bogoliubov quasiparticle eigenenergies ε j and coupling coefficients Aj
of Equation (12) acquire the following forms with an explicit appearance of the asymptotic parameter α:

ρ̂ = e−α ∑j λj b̂
+
j b̂j ∏

j
(1− e−αλj), λj =

√(
λ
(0)
j

)2
+ 2λ

(0)
j Δ, Aj =

λj − λ
(0)
j − Δ

Δ
. (14)

The present analysis implies the Bogoliubov approximation which is valid at T � Tc (or maybe
even up to T < Tc/2), that is, anyway far outside the critical region. Hence, the condensate is
well developed and the particle number constraint of the canonical ensemble N = N̂0 + N̂ex does
not play any significant role for the occupation numbers of the quasiparticle states and different
blocks of quasiparticles (which are, in fact, pairs of quasiparticles in the case of the box trap), which
have mutually nonzero overlapping integrals in the excited particle occupation operator (7), produce
independent contributions to the noncondensate occupation. This means that the characteristic function
is the product of the partial characteristic functions, corresponding to the occupation contributions
from such blocks of quasiparticles, and the probability distribution ρ(n) of the condensate depletion
operator N̂ex could be effectively obtained via the Fourier transform of this characteristic function

Θ(u) ≡ 〈eiuN̂ex 〉, ρ(n) =
1

2π

∫ π

−π
e−iunΘ(u)du. (15)

Thus, it remains to calculate the partial characteristic function for the noncondensate occupation
from each separate block of quasiparticles contributing to the noncondensate with mutually
coherent correlations, or squeezing, due to Bogoliubov couplings in Equations (7) and (10). This is
straightforward to do either by the algebraic method suggested in [15] or by the developed later,
equivalent and more general method of the Wigner transform [43]. The result can be written as the
product of contributions from each quasiparticle j as follows

Θ(u) = ∏
j

√
z(Aj)− 1

z(Aj)− eiu ×
z(−Aj)− 1

z(−Aj)− eiu , z(Aj) =
Aj − eαλj

Aje
αλj − 1

. (16)
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The corresponding generating cumulants (which are defined via the following derivatives of the
logarithm of the characteristic function) have a symmetric transparent form:

κ̃m ≡
∂m ln Θ(u)
∂(eiu − 1)m

∣∣∣∣
u=0

=
Γ(m)

2 ∑
j

[
1

(z(Aj)− 1)m +
1

(z(−Aj)− 1)m

]
, (17)

Γ(m) denotes the Euler gamma functions. Here the product and the sum run over all quasiparticles
of the considered basic model (10)–(12). These formulas hold for any homogeneously condensed
mesoscopic system, including both the case of the real-valued eigenfunction f j (when Bogoliubov
coupling squeezes the contribution to noncondensate occupation from each quasiparticle separately
and the corresponding matrix blocks in the noncondensate occupation operator (7) are 2× 2 blocks) and
the case of the complex-valued eigenfunction f j (when Bogoliubov coupling squeezes the contribution
to noncondensate occupation from each pair of symmetric counter-propagating quasiparticles and the
corresponding matrix blocks in the noncondensate occupation operator (7) are 4× 4 blocks) as well as
even the case when both real- and complex-valued eigenfunctions are simultaneously present among
the quasiparticles.

The presented generating cumulants are very useful for the analysis of the BEC statistics.
The ordinary cumulants κm ≡ dm ln Θ(u)/d(iu)m|u=0 and the initial moments αm ≡ 〈N̂m

ex〉 immediately
follow from the generating cumulants (for the other general relations see, e.g., [15,26,44]):

κr =
r

∑
m=1

σ
(m)
r κ̃m, αm =

m

∑
r=1

(m,r)

∑ (m; a1, ..., am)
′κa1

1 ...κam
m .

Here σ
(m)
r are the Stirling numbers of the second kind [44], (m; a1, ..., am)′ = m!/[(1!)a1 a1!...(m!)am am!]

is a multinomial coefficient, and the sum ∑(m,r) runs over the non-negative integers a1, ..., ar which
satisfy the following two conditions: a1 + 2a2 + ... + rar = r and a1 + ... + ar = m. In particular,
the first four cumulants constitute themselves the four most important characteristics of the shape
of the probability density function – the mean value, the variance (square of the standard deviation),
the asymmetry and the excess:

Mean = 〈N̂ex〉 = κ1 = κ̃1;

Variance = σ2 = κ2 = κ̃2 + κ̃1;

Asymmetry = κ3 = κ̃3 + 3κ̃2 + κ̃1;

Excess = κ4 + 3κ2
2, κ4 = κ̃4 + 6κ̃3 + 7κ̃2 + κ̃1.

(18)

The meaning and the main advantage of the cumulants are in their direct and explicit
characterization of the non-Gaussian properties of statistics as well as its asymptotics at the wings
of the probability density function. In particular, the cumulants of the Gaussian statistics are exactly
zero for all orders higher than the second order. Thus, the simple analytical expressions (17) for the
generating cumulants yield the analytical results for any other statistical parameters which one could
be interesting in.

The Equation (17) for the first cumulant, m = 1, has a special meaning. It is a nonlinear
self-consistency Equation (8) for determining the BEC order parameter that is the BEC mean occupation:

N0 = N −∑
j

1 + A2
j

1− A2
j

1

eαλj − 1
−∑

j

A2
j

1− A2
j

. (19)

This is because the total number of particles in the trap N is fixed, so that the occupation of
condensate is determined by the number of excited particles, N0 = N − 〈N̂ex〉, and, at the same time,
the mean number of excited particles 〈N̂ex〉 is determined via the Bogoliubov-de Gennes quasiparticles’
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spectrum λj and couplings Aj which are governed by the interaction coupling energy gN0/V. Formally,
the self-consistency equation has a nontrivial solution not only in the whole region of validity of the
Bogoliubov approximation at low enough temperatures, say, T � Tc, but also at the temperatures
much closer to the critical temperature Tc (see, for example, [15]). The solution to the self-consistency
equation could be found as a power series in the asymptotic parameter α via the Mellin transform
technique discussed, for example, in [27,28].

When the self-consistent value of the condensate occupation N0 has been found, the Equations (16)
and (17) analytically yields the BEC statistics of the mesoscopic system. This statistics is non-Gaussian
as is clearly seen from the formulas for the higher-order cumulants which establish nonzero values.

4. Asymptotics of the BEC Statistics in the Thermodynamic Limit

Let us now calculate the thermodynamic limit of the BEC statistics (15) and (16) obtained above
for the basic model (10)–(12). The crucial fact is that this BEC statistics, in general, is non-Gaussian and
depends on the trap’s form and boundary conditions not only for a mesoscopic system, but even for a
macroscopically large system in the thermodynamic limit.

The cumulant analysis provides the most convenient and transparent description of the
BEC statistics. First of all, let us find the asymptotic scaling of the cumulants in the limit α � 1, Δ � 1
via a direct evaluation of the sum in the Equation (17). The two terms in the summand forming the
generating cumulant κ̃m in the Equation (17) could be written in the following forms:

1
z(+Aj)− 1

=
1

λ
(0)
j

×
λj

eαλj − 1
−

Aj

1 + Aj
,

1
z(−Aj)− 1

=
1

λ
(0)
j + 2Δ

×
λj

eαλj − 1
+

Aj

1− Aj
.

(20)

They are the combinations of the two summands which have a different origin and different
dependencies on the two large parameters, α−1 � 1 and Δ � 1.

The first terms in the right hand sides describe the effects of a nonzero temperature on the BEC
statistics associated with the thermal depletion of BEC and strongly depend on the parameter α.
They predictably vanish in the limit of very low temperatures T → 0, or αλ1 � 1, but play a
major role in the moderate temperature regime. It is important to note that these “thermal” terms
curiously involve the bare particle energies λ

(0)
j , which happens due to the exact algebraic relations

(1 + Aj)/(1 − Aj) = λ
(0)
j /λj and (1 − Aj)/(1 + Aj) = (λ

(0)
j + 2Δ)/λj valid for the Bogoliubov

spectrum (12) and its dimensionless counterpart (14).
The second terms in the right hand sides are responsible for the effects associated with the

quantum depletion. They are totally independent on α (and temperature) and depend only on the
interaction parameter Δ which determines the Bogoliubov couplings Aj.

Taking into account the asymptotic behavior of the coupling coefficient Aj,

Aj " −1 +

√
2λ

(0)
j /Δ for λ

(0)
j � Δ, and Aj " −Δ/2λ

(0)
j for λ

(0)
j � Δ, (21)

we immediately conclude that the term
(
z(+Aj)− 1

)−1 in Equation (17) determines the main

contributions from the states with low energies, λ
(0)
j � Δ, since it has the resonant denominators both

in the “quantum” and “thermal” parts. For the states with high energies, λ
(0)
j � Δ, both terms in

brackets in Equation (17) are equally important.
For the first generating cumulant these “thermal” and “quantum” summands are present as the

separate contributions which is clearly illustrated by Equation (19). However, for all higher-order
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generating cumulants there is an interplay of these “thermal” and “quantum” contributions in accord
with the following binomial expansion:

κ̃m =
Γ(m)

2 ∑
j

m

∑
l=0

Cl
m

⎛⎜⎝ (−Aj)
m−l(

λ
(0)
j

)l
(1 + Aj)m−l

+
(Aj)

m−l(
λ
(0)
j + 2Δ

)l
(1− Aj)m−l

⎞⎟⎠(
λj

eαλj − 1

)l

, (22)

where Cl
m stands for the binomial coefficient.

Let us consider separately the three significantly different cases corresponding to the three possible
relations between the two large parameters, α−1 � 1 and Δ � 1. The case of a very large interaction
energy and low temperatures, gn0 � T, ε

(0)
1 , corresponds to a very cold, somewhat degenerate

interacting gas with the negligible thermal effects. The opposite case of relatively high temperatures,
T � gn0 � ε

(0)
1 , corresponds to an interacting gas with thermally dominated fluctuations. In the

intermediate case the interplay between the thermal and quantum effects should be taken into account.
The following analysis of the cumulants’ scaling requires a comparison of the contributions from
various individual states (quasiparticles) to the noncondensate occupation and is closely related to the
applicability of the central limit theorem to the corresponding random variable (7) which is the sum of
many random squeezed contributions from the quasiparticles.

In the case of very low temperatures, the probability distribution of the noncondensate occupation
is determined solely by the quantum effects, and all Bose thermal exponents in Equation (20) are
negligibly small. The cumulants are scaled in terms of the large parameter Δ � 1. The individual
contribution of a low-energy quasiparticle (with an almost linear, or acoustic, Bogoliubov-de Gennes

spectrum λj) to the generating cumulant κ̃m has the order of
(

Δ/λ
(0)
j

)m/2
which easily follows

from the Equations (17) and (20). The bare energy λ
(0)
j has a quadric dependence on the quantum

numbers. Thus, the first two cumulants, 〈N̂ex〉 and σ2, can be approximated by the well-convergent
integrals over all states {j} that yields the scaling 〈N̂ex〉 ∼ σ2 ∼ Δ3/2. The corresponding sums
are much larger than the individual contributions since a plenty of states contribute considerably.
The higher-order cumulants cannot be approximated in the same way since the corresponding integrals
are divergent at low energies. It means that only a small fraction of low-energy states makes the
dominant contribution to the value of higher-order cumulants which has the same order of magnitude
as the individual summands. In a result, the higher-order cumulants scale as κm ∼ Δm/2 for m ≥ 4.
The third cumulant has a little bit different scaling κ3 ∼ Δ3/2 ln Δ which corresponds to the logarithmic
divergence of the approximating integral and means that a number of high-energy states make a small,
but not totally negligible contributions.

These calculations show that in the thermodynamic limit of the macroscopically large system,
V → ∞ at a constant condensate density, N0/V " const, the total noncondensate occupation
in a quantum-dominated regime experiences the standard thermodynamic fluctuations with the

standard deviation σ ∼
√
〈N̂ex〉 and has the normal, Gaussian probability distribution with vanishing

normalized higher-order cumulants: κm/σm → 0. Exactly the same situation holds for the statistics
of the noncondensate occupation in an ideal Bose gas trapped in the three-dimensional harmonic
potential [27,28] when the largest parameter in the system is α−1.

In the opposite case of thermally-dominated fluctuations, the thermal depletion is much larger
than the quantum depletion. In this case the main contribution to the generating cumulants
immediately follows from the binomial expansion (17) if one keeps only the largest terms:

κ̃m =
Γ(m)

2 ∑
j

⎡⎢⎣ 1(
λ
(0)
j

)m +
1(

λ
(0)
j + 2Δ

)m

⎤⎥⎦( λj

eαλj − 1

)m

. (23)
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(Let us stress again that the brackets in this expression involve the bare energy spectrum.)
The individual “thermal” contribution of a quasiparticle to the generating cumulant κ̃m has the

order of
(

αλ
(0)
j

)−m
and demonstrates the dependence on λ

(0)
j that is significantly steeper than the one

revealed for the “quantum” contribution. Thus, for any 3D flat trap the sum could be obtained via the
integral over all states {j} only for the first cumulant κ̃1, which immediately yields the following result

〈N̂ex〉 " V ζ

(
3
2

)(
MT

2πh̄2

)3/2
∼ α−3/2, (24)

where ζ(j) = ∑∞
l=1 l−j is a Riemann zeta function. It is worth noting that the contribution of each

quasiparticle j is on the order of α−1, but a huge number of the contributing states makes the collective
result much larger, namely, 〈N̂ex〉 ∼ α−3/2.

At the same time, for all higher-order cumulants including the second one (which gives the
variance of the distribution) the corresponding integral is divergent at low energies. It means, that
the main contribution to the value of κ̃m for m ≥ 2 comes from a small enough number of the lowest
energy quasiparticles j, and the discrete structure of the energy spectrum should be taken into account.
Employing the series expansion for the Boltzmann exponent eαλj − 1 " αλj, we obtain

κ̃m =
Γ(m)α−m

2 ∑
j

⎡⎣ 1

λ
(0)m
j

+
1

(λ
(0)
j + 2Δ)m

⎤⎦ . (25)

The Equation (25) means that the total value of the sum is of the same order as the values of the
individual contributions. The latter result is similar to the one obtained in [27,28] for the ideal Bose gas.
The only difference is that now, for the interacting gas, it involves the two spectral sums, ∑j

Γ(t)

λ
(0)t
j

and

∑j
Γ(t)

(λ
(0)
j +2Δ)t

, instead of a single spectral sum ∑j
Γ(t)

(λj−λ0)t that was employed in the BEC statistics of

the ideal gas with the ground state energy λ0. The Equation (25) for m = 2 immediately reveals the
scaling of the variance, σ2 ∼ κ̃2 ∼ α−2. Thus, the system is characterized by the anomalously large
variance [11,12,14,15,18,25], σ2 ∼ 〈N̂ex〉4/3 � 〈N̂ex〉, as is clear from the Equations (24) and (25).

This, partly heuristic method of finding the cumulants’ asymptotics could be verified by a more
rigorous method involving the Mellin transform and employed previously for the ideal gas in [27,28].
The latter method yields even the smaller next order terms of asymptotics omitted in (25). However,
here we skip discussion of these terms and other details of the asymptotics. Let us just note that the
generating cumulant κ̃m and the ordinary cumulant κm have the same main term in the asymptotics.

It is convenient to introduce the normalized random variable x = (Nex − 〈N̂ex〉)/σ which
characterizes the statistics of the number of noncondensed particles, has the zero mean value and the
unity variance. The cumulants and characteristic function of this normalized variable could be easily
obtained by applying the scaling and employing the trap function S(t, u) discussed in detail in [27].
The crucial point of the calculation is that the scaling of the variance σ2 ∼ α−2 is related to the scaling
of the higher-order cumulants κm ∼ α−m in quite a special way. Thus, in the thermodynamic limit
α → 0 the simple calculations of the scaled higher-order cumulants κ

(x)
m of the normalized variable x

yield the following explicit analytical result:

κ
(x)
1 = 0; κ

(x)
2 = 1; κ

(x)
m ≡ κm

σm =
S̃(m)

S̃(2)m/2 for m > 2,

S̃(t) =
Γ(t)

2 ∑
j

⎡⎢⎣ 1(
λ
(0)
j

)t +
1(

λ
(0)
j + 2Δ

)t

⎤⎥⎦ , S̃(t, u) =
Γ(t)

2 ∑
j

⎡⎢⎣ 1(
λ
(0)
j − iu

)t +
1(

λ
(0)
j + 2Δ− iu

)t

⎤⎥⎦ ,
(26)
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where we employed the trap function S̃(t) and the extended trap function S̃(t, u) determined by
the spectrum {λj}. It is immediate to conclude that in the thermodynamic limit α → 0 the scaled
higher-order cumulants tend to the nonzero constants determined by the trap’s form (geometry) and
boundary conditions as well as by the strength of the interparticle interaction.

The probability density function ρx of the normalized random variable x = (Nex − 〈N̂ex〉)/σ can
be written straightforwardly in the form of the Fourier transform:

ρx =
1

2π

∫ ∞

−∞
e−iuxΘ(x)(u)du, Θ(x)(u) = S̃

⎛⎝0,
u√
S̃(2)

⎞⎠− S̃(0)− iu√
S̃(2)

S̃(1). (27)

The characteristic function Θ(x)(u) in Equation (27) is a well-defined function due to an exact
cancellation of all singular terms (see the Appendix in [27]) and appears to be non-Gaussian. Thus,
within the basic model (10)–(12), the probability distribution ρ(n) of the noncondensate occupation (15)
and, hence, the probability distribution of the complimentary condensate occupation are significantly
non-Gaussian for any number N of interacting particles and any dimensions of the trap, and the
difference with the Gaussian statistics is significant.

In the intermediate case, both thermal and quantum contributions to the cumulants, which are
fused in the binomial formula (22), are important and should be taken into account. The Gaussian
or non-Gaussian behavior of the BEC statistics is closely related to the way the second cumulant, or
the variance, κ2 ≡ σ2, is accumulated. Its “thermal” contribution scales as α−2, and its “quantum”
contribution scales as Δ3/2. They are of the same order, that is σ ∼ α−1 ∼ Δ3/4, when αΔ3/4 ∼ 1.
At the same condition, all higher-order cumulants κm, m ≥ 3, are mostly determined by the thermal
contribution which is of the order of α−m. (The quantum contributions are of the same importance
only for αΔ1/2 ∼ 1 which corresponds to a stronger interparticle interaction.) Hence, the scaled
higher-order cumulants κ

(x)
m tend in the thermodynamic limit to some nonzero constants which

implies the non-Gaussian statistics. However, the difference from the Gaussian statistics is somewhat
suppressed compared to the thermally-dominated regime due to a larger value of the variance.

This non-Gaussian distribution is characterized by the standard deviation σ ∼
√
〈N̂ex〉 which is not

anomalously large yet. It happens so because the first cumulant, κ1 = 〈N̂ex〉, is mostly determined
by the quantum contribution. The thermal contribution to 〈N̂ex〉 becomes of the same order as the
quantum one only for αΔ ∼ 1 which corresponds to the higher temperatures.

In summary, the non-Gaussian statistics of the total noncondensate occupation clearly appears
in the 3D flat traps starting from αΔ3/4 ∼ 1 and remains such for all smaller values of α, that is,

in other words, starting from the temperature T ∼ 4
√
(gn0)3ε

(0)
1 and for the higher temperatures.

The quantum-dominated and thermally-dominated regimes correspond to the large and small values
of the same dimensionless parameter, αΔ3/4 � 1 and αΔ3/4 � 1, respectively.

The same conclusions are true for the large enough mesoscopic systems (that is, when α is small,
but finite) since the relative corrections to the leading asymptotic terms discussed above become much
less than 1 when the thermodynamic-limit parameter α and the inverse particle-interaction parameter
Δ−1 become much less than unity: α � 1, Δ−1 � 1. Thus, the scaled statistics of the BEC in the
mesoscopic systems is quite similar to the thermodynamic-limit statistics.

5. Statistics of the BEC Depletion in a Weakly Interacting Gas Trapped in the Cubic or
Rectangular Box with the Periodic, Dirichlet or Fused Boundary Conditions in the Regime of
Thermally-Dominated Fluctuations

The most curious and nontrivial regime among the ones described above is the regime of
thermally-dominated fluctuations where the central limit theorem is not applicable and the BEC
statistics is non-Gaussian. In the present section we consider this regime closely and present the
detailed analysis of the corresponding probability density function in the thermodynamic limit.
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For simplicity’s sake, we employ mostly graphics and skip the long analytical calculations. For the
mesoscopic, but relatively large systems (that is, when α � 1, say, α ∼ 10−2) the scaled BEC statistics
is close enough to the one in the thermodynamic limit and could be easily obtained, including all
finite-size corrections, on the basis of the mesoscopic values of cumulants given by Equations (17).

We start with some general properties of the probability density function ρn or its scaled
counterpart ρx, (27), described by the basic model (10)–(12), common for all three-dimensional cubic
or rectangular box traps, no matter what are the boundary conditions. The leading term of the
asymptotics of the characteristic function at the large values of the argument is given by a power
law Θx(u) ∼ (−iu)3/2 as could be shown in the same way as it was done in [27,28] for the case of an
ideal gas. It means that the actual distribution ρx is described by an exponential slope ρx ∼ e−x for the
positive arguments x, i.e., for n > 〈N̂ex〉, and by much steeper, super-exponential slope ρx ∼ e−|x|

3
for

the negative arguments x, i.e., for n < 〈N̂ex〉. The form of both wings of the probability distribution is
quite different from the Gaussian law.

The origin of the strongly non-Gaussian statistics is closely related to an inapplicability of
the central limit theorem. The point is that the statistical distribution and the cumulants of the
noncondensate occupation are dominated by the anomalously large contributing occupations (random
variables) of a relatively small number of the lowest energy quasiparticles. The inapplicability of the
central limit theorem also means that the shape of the probability distribution could be affected by a
modification of a relatively small fraction of the quasiparticle energy spectrum, for example, caused by
some perturbation of the trap’s form or boundary conditions.

Let us illustrate this general conclusion by a straightforward comparison of the probability
distributions of the total noncondensate occupation for three, in general, anisotropic box traps of
dimensions Lx ≤ Ly ≤ Lz with the periodic, Dirichlet or fused boundary conditions, respectively.

According to the basic model (10)–(12), these traps possess the bare spectra αλ
(0)
j ≡ ε

(0)
j /T enumerated

by the integer vector j = (jx, jy, jz), namely,

α(p) =
2h̄2π2

ML2
zT

, λ
(0)(p)
j =

L2
z

L2
x

j2x +
L2

z
L2

y
j2y + j2z , jx,y,z = ±0,±1,±2, . . . , excluding j = (0, 0, 0)

α(D) =
h̄2π2

2ML2
zT

, λ
(0)(D)
j =

L2
z

L2
x

j2x +
L2

z
L2

y
j2y + j2z , jx,y,z = +1,+2,+3, . . . ,

α( f ) =
h̄2π2

2ML2
zT

, λ
(0)( f )
j =

L2
z

L2
x

j2x +
L2

z
L2

y
j2y + j2z , jx,y,z = 0,+1,+2, . . . , excluding j = (0, 0, 0).

(28)

Here and hereafter we denote the quantities specific to the periodic, Dirichlet or fused boundary
conditions by the superscripts (p), (D), or ( f ), respectively. Note that the parameters α(p) for the box
with the periodic boundary conditions is 4 times larger than the Dirichlet’s or fused trap’s α(D) and
α( f ) because for this box the lowest-energy nontrivial one-particle state should demonstrate a full
wavelength spatial variance along the trap, while the Dirichlet (or any impedance) boundary conditions
allow also a half wavelength one-particle states. The periodic boundary conditions are introduced
mainly for the convenience of theoretical calculations. In the actual experiments, usually the Dirichlet
boundary conditions are more relevant. Since the true effective boundary conditions for the Shrödinger
Equation (11) are not fully understood yet, we model them not only by the classical Dirichlet (zero)
boundary conditions which prohibit the zero quantum values for any of the quantum numbers jx, jy, jz,
but also by the so-called fused boundary conditions which allow for the zero quantum numbers and
combine some but not all features of the periodic and Dirichlet boundary conditions. Including such
zero quantum numbers in the quasiparticle energy spectrum has a direct physical meaning as allowing
for the entire planes, like (0, jz, iz), or lines, like (0, 0, jz), of quasiparticles more closely related to the
state j = (0, 0, 0) corresponding to the trivial, zero-energy Goldstone mode u(r) = −v(r) = φ(r).
This mode corresponds to an arbitrary phase of the condensate wave function and, therefore, does
not contribute to the noncondensate occupation. However, it is known that the Goldstone mode
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should always be present among the solutions of the Bogoliubov-de Gennes equations [18,32,45].
This fact suggests that the quasiparticles with the entire lines or planes of the zero quantum numbers
(see Equation (28)) could also be present in the system. Note also that the most significant difference
between the three spectra in Equation (28) is the difference in the ranges (28) in which the quantum
numbers (jx, jy, jz) vary.

First, let us elaborate, by means of the analytical result in Equations (27) and (28), on the values of
the cumulants and their dependence on the interaction strength parameter Δ (see Equation (13)) for
the case of the cubic box traps, Lx = Ly = Lz = L.

The box with the periodic boundary conditions provides 8 times larger number of quasiparticles
compared to the Dirichlet’s one because the integer vectors j = (jx, jy, jz) enumerating the
quasiparticles for the box with periodic boundary conditions fill all 8 octants of the three-dimensional
integer lattice compared to the only one positive octant filled by the integer vectors enumerating the
quasiparticles for the Dirichlet’s box. However, since the energies (and, hence, the parameter α(p))
for the periodic boundary conditions are 4 times larger and the leading term in the asymptotics of
the first cumulant κ1 ∼ α−3/2 scales as the 3/2 power of α−1, the thermodynamic limit of the mean
noncondensate occupation is the same, no matter which boundary conditions are applied.

The eightfold shortage of the number of quasiparticles is not the only important thing which
happens as one alters the boundary conditions. Another significant fact is that the change of
the boundary conditions disproportionately adds or removes all quasiparticles with the zero
quantum numbers. That group of quasiparticles is quite large since in the sphere of quantum numbers
(jx, jy, jz) with energies no larger than Λ, λj ≤ Λ, there are ∼ Λ2/3 quasiparticles with the zero
quantum numbers. This observation explains a pronounced effect of the boundary conditions on all
higher-order cumulants which appear to be noticably different for the different traps. Numerically,
the variance and asymmetry in a cubic trap, Lx : Ly : Lz = 1 : 1 : 1, are as follows

κ
(p)
2 : κ

(D)
2 : κ

( f )
2 =

S̃(p)
2
16

: S̃(D)
2 : S̃( f )

2 = 0.57 : 0.35 : 2.62,

κ
(p)
3 : κ

(D)
3 : κ

( f )
3 =

S̃(p)
3
64

: S̃(D)
3 : S̃( f )

3 = 0.13 : 0.066 : 3.56,

(29)

where the calculations were done for the interaction strength Δ(D, f ) ≡ gn0/ε
(0)(D, f )
1 ≡ 2MgN0/(h̄2π2L) = 80

in the case of the boxes with the Dirichlet or fused boundary conditions (see Equation (28)) that
corresponds to Δ(p) ≡ gn0/ε

(0)(p)
1 ≡ MgN0/(2h̄2π2L) = 20 in the case of the box with the periodic

boundary conditions.
The values of the cumulants significantly depend on the parameter Δ which characterizes the

strength of interparticle interaction. However, even in the limit of very strong interaction Δ → ∞
(i.e., gn0 � ε

(0)
1 ) the higher-order cumulants keep nonzero values, so that the probability distribution

remains non-Gaussian. The point is that with increasing Δ the contribution of a spectral sum with
the shifted energies λj + 2Δ in Equation (26) decreases. As a result, the values of “the amplitudes”
S̃(m) which determine the asymptotic values of the cumulants κm in the thermodynamic limit tend
to a half of their values at Δ = 0. (Note that the zero value of the interaction strength parameter,
Δ = 0, corresponds to a limit of the ideal gas that is admissible within the basic model (10)–(12) only
for the trap with the periodic boundary conditions where the condensate is strictly homogeneous.
The moderate or small values of Δ ∼ 1 or� 1 have only a formal meaning for the traps with the other
boundary conditions since for the inhomogeneous condensate the Thomas-Fermi approximation (1)
requires Δ � 1.) This decrease of the higher-order cumulants κm can be described analytically via the
following asymptotics of their “amplitudes” (the universal numbers)

S̃(m)→ 1
2

[
S̃(m)

∣∣∣
Δ=0

+
k π3/2LxLy

L2
z

× Γ (m− 3/2)
(2Δ)m−3/2

]
at Δ � 1 (30)
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with the coefficient k equal to 1/8 or 1 for the Dirichlet or periodic boundary conditions, respectively.
We see that “the amplitudes” S̃(m) of the cumulants of the orders m = 3, 4, 5, . . . decrease by almost
two times and reach their ultimate minimum values already at the moderate interaction strength,
MgN0/(2h̄2π2L) ∼ 5, which corresponds to Δ ∼ 5 and Δ ∼ 20 for periodic and Dirichlet boundary
conditions, respectively.

Importantly, the situation is opposite for the variance κ2 and the corresponding value of its
“amplitude” S̃(2) which decreases very slowly, namely, as 1/

√
2Δ. This is demonstrated in Figure 1a:

Even at Δ = 50 the variance does not quite reach its ultimate minimum value. Note that for the case
of the periodic boundary conditions at small Δ the variance tends exactly to the value known for the
ideal Bose gas as it should be since in this case the condensate is homogeneous for any strength of
repulsive interaction and, hence, the basic model is valid for any values of Δ. The situation is different
for the case of the Dirichlet boundary conditions where the formal value of κ2 at Δ = 0 is 30% less than
the true value of the ideal-gas variance.
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Figure 1. The dependences of cumulants on the interaction strength Δ ≡ gn0
/

ε
(0)
1 in the

thermodynamic limit of a very large system (α → 0): (a) the variance κ2 for a cubic trap with the
periodic (a dashed blue line) and Dirichlet (a solid orange line) boundary conditions normalized to

its (hypothetical) value κ2|Δ=0 at zero interaction strength; (b) the normalized cumulants κ
(x)
3 and κ

(x)
4

for a cubic trap with the periodic boundary conditions and their asymptotic values at Δ → ∞; (c) the

normalized cumulants κ
(x)
3 and κ

(x)
4 for a cubic trap with the Dirichlet boundary conditions and their

asymptotic values at Δ → ∞. The curves for the Dirichlet’s trap are dotted in the region Δ < 10 where
the Thomas-Fermi approximation is expected to be inaccurate.

The evolution of the normalized asymptotic cumulants κ
(x)
m shown in Figure 1b,c in accord with the

analytical results (27) and (28) clearly follows from the evolution of their “amplitudes”—the universal
numbers S̃(m). Namely, for small enough values of Δ (which has a physical meaning only for the case
of the periodic boundary conditions) both S̃(m) and S̃(2) decrease with an increase of Δ. However, the
larger the exponent in the spectral sum, the faster it goes down. As a result, the normalized cumulant
κ
(x)
m , which is equal to the ratio S̃(m)/S̃(2)m/2, decreases. For the moderate values of Δ the values

of S̃(m) at m = 3, 4, 5... are already halved, but the value of S̃(2) still is decreasing slowly. Therefore,
the normalized cumulant slowly grows up to the level of 2m/2−1κ

(x)
m |Δ=0. In fact, that means that

even for a large value Δ ∼ 100–500 one should not totally neglect the second shifted spectral sum of
the terms containing λj + 2Δ in Equation (26). However, we’ll see below that the governed by these
cumulants dependence of the probability distribution function on the value of the interaction strength
parameter Δ is not very fast and is driven almost entirely by the Δ-dependence of the variance.

The result in Equation (30) demonstrates that the variance and asymmetry calculated for the
traps with different boundary conditions are not the same. Therefore, in the general case the scaled
asymptotic distributions for the corresponding traps do not coincide as well. It is also worth to note
that changing the boundary conditions is not the only way to affect the higher-order cumulants.
For example, the squeezing of a cubic trap to a prolonged or shortened rectangular box results into
changing the asymptotic cumulants and significantly affects the scaled probability distributions.
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Both of these effects are illustrated in Figure 2. More general deformation of the trap geometry, for
example, into some kind of a cylindrical form also would alter the noncondensate occupation statistics.
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Figure 2. The normalized asymptotic distribution ρx of the scaled total number of noncondensed
particles, x = (n− 〈N̂ex〉)/σ, plotted in the thermodynamic limit (α → 0) for different rectangular
traps in the linear (up) and log (down) scales. The aspect ratio of a trap Lx : Ly : Lz is (a) 1 : 1 : 1;
(b) 1 : 1 : 2 ; and (c) 0.33 : 1 : 1. The dashed blue, solid orange and dot-dashed green curves are
for the periodic, Dirichlet and fused boundary conditions, respectively. The interaction strength is
Δ(D, f ) ≡ 2MgN0/(h̄2π2L) = 80 in the case of the boxes with the Dirichlet or fused boundary conditions
(see (28)) that corresponds to Δ(p) ≡ MgN0/(2h̄2π2L) = 20 in the case of the box with the periodic
boundary conditions.

An effect of the trap’s form (geometry) on the probability distribution of the noncondensate
occupation can be explicitly shown via dependence of the asymptotics of the characteristic function
Θ(x)(u) at the large values of its arguments, |u| � 1, on the dimensions Lx, Ly, Lz of the anisotropic
box trap. Indeed, we find that this asymptotics

ln Θ(x)(u) ∼ F

⎛⎝ −iu√
S̃(2)

⎞⎠+ F

⎛⎝ −iu√
S̃(2)

+ 2Δ

⎞⎠ , where

F(y) =
2
√

πR3/2 y3/2

3
+

R1 y ln y
2

+
y
2

(
S̃(0)(1)− R1 + γR1

)
+ . . . ,

(31)

depends on the ratios Lx : Ly : Lz via the R’s dimensionless coefficients given by the following formulas

R(p)
3/2 =

π3/2LxLy

L2
z

, R(p)
1 = 0,

R(D)
3/2 =

π3/2LxLy

8 L2
z

, R(D)
1 = −π

8
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LxLy

L2
z

+
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)
,

R( f )
3/2 =

π3/2LxLy

8 L2
z

, R( f )
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π

8

(
LxLy

L2
z

+
Lx

Lz
+
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Lz

)
,

(32)
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for the periodic, Dirichlet and fused boundary conditions, respectively (see Equation (28)).
The coefficient S̃(0)(1) entering function F(y) in Equation (31) is a regularized (if it is singular) value of
the trap function S̃(t) at t = 1, and γ " 0.577 is the Euler–Mascheroni constant.

The change of the rectangular box form via the dimensions’ ratios Lz : Ly : Lz affects “the
variance amplitude” S̃2 which is the characteristic scale of the variable u. (This is also clearly seen
from the expression for the Θ(x)(u) in Equation (27)). A simple analysis of the Fourier integral (27)
shows that the quantity (S̃2)

−1/2 is the characteristic scale of the argument x of the scaled asymptotic
distribution ρx. The dimensions’ ratios also determine the coefficients in the asymptotics (31) of
Θ(x)(u) at the large values of the argument. All these coefficients, starting from the next-to-leading
term coefficient R1, strongly depend on the dimensions’ ratios. Only the coefficient in front of the
leading term could not be changed by means of the anisotropic squeezing or stretching of the box form
if the volume of the trap is kept constant. (One has to take into account that the eightfold difference
in Equation (32) between the coefficient R(p)

3/2 and the coefficients R(D)
3/2, R( f )

3/2 for the periodic and the
other two boundary conditions is exactly compensated by the difference in the definitions of α(p)

and α(D), α( f ), see Equation (28)). The increasing anisotropy of the trap significantly decreases “the
amplitude” S̃2 of the anomalously large variance

σ2 " S̃2

(R3/2)
4/3 ζ4/3(3/2)

〈N̂ex〉4/3 (33)

since the leading term in the asymptotics of the mean value 〈N̂ex〉 does not feel the anisotropy and
remains almost constant. Figure 3 demonstrates this effect for a very large, thermodynamic-limit
rectangular box trap with the Dirichlet boundary conditions: the variance decreases by 20% when any
dimension of the box becomes about four times longer (or shorter) than the other dimensions.

The result in the Equation (33) explicitly proves that the fluctuations of the condensate
depletion in the weakly interacting gas are anomalously large compared to the standard
thermodynamic fluctuations. The thermodynamic fluctuations would have considerably smaller
variance, σ2 ∼ 〈N̂ex〉, proportional only to the first power of the mean value, while the variance (33) of
the true noncondensate occupation is proportional to the larger power, σ2 ∼ 〈N̂ex〉4/3, of the mean
noncondensate occupation 〈N̂ex〉 � 1. Thus, the basic model (10)–(12) is in agreement with this known
fact [14,15,18].
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Figure 3. The thermodynamic-limit (α → 0) asymptotics of the anomalously large variance σ2,
Equation (33), of the condensate depletion fluctuations in the interacting gas trapped in the rectangular
box with the Dirichlet boundary conditions vs the box trap anisotropy characterized by the dimensions’
ratios Lx : Ly : Lz = 1 : 1 : X, where 0.25 < X < 4. The interaction strength is set to be

Δ(D) ≡ gn0
/

ε
(0)(D)
1 = 80.

The main effect of the change of boundary conditions is that a large group of states with one zero
quantum number appears to be added or removed disproportionately. As a result, the next-to-leading
logarithmic term appears in the characteristic function (31) that leads to the logarithmic shift of an
argument in the exponent, which could make the left-wing decay of the distribution considerably
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faster or slower. However, for the cases considered in Figure 2 this effect is not a major one since in
these cases the variance values S̃2 differ so significantly (which, in fact, is not the general case!) that
the most important effect of the trap’s form on the noncondensate occupation probability distribution
consists in altering the characteristic scale of the noncondensate occupation random variable x.

The change of the boundary conditions also considerably affects the lowest energy quasiparticles
which determine the right-wing asymptotics of the noncondensate occupation probability distribution.
The smaller is the lowest energy and the higher is the corresponding degeneracy, the weaker
exponential decay is realized for the larger than average noncondensate occupations x > 0 (that is,
for n > 〈N̂ex〉).

It is worth noting that a relatively pronounced effect of the change of the boundary conditions in
the rectangular trap from the periodic to Dirichlet ones calculated above cannot be directly observed
in the experiments since the periodic boundary conditions constitute an auxiliary theoretical model.
Only some partial analogues of such switching of boundary conditions could be realized in a real
system, for example, in a toroidal trap with an azimuthal symmetry and, hence, the periodic boundary
condition along the azimuthal direction via cutting the torus by a high, almost vertical potential wall.
This or similar cylindrically symmetric setups which are more relevant to the actual experiments
will be discussed elsewhere. In the present paper we just draw attention to such effect of boundary
conditions on the BEC statistics.

The overall picture of the effects of the trap’s form and boundary conditions on the noncondensate
occupation statistics for a weakly interacting gas within the basic model (10)–(12) is similar to the
one known for an ideal gas. (For example, statistics of BEC in an ideal gas trapped in the anisotropic
box or slabs was discussed in [19,21,22,27,46].) As is illustrated in Figure 2, a typical change in the
thermodynamic-limit asymptotics of the noncondensate occupation probability distribution due to
a change of the trap’s form or boundary conditions is about 10% or so. Note that this is already
normalized and centered probability distribution, so that the change cannot be eliminated by some
kind of mesoscopic effects or perturbations.

Of course, the leading terms in the thermodynamic-limit asymptotics for the mean value 〈N̂ex〉
are the same for the different trap’s forms and boundary conditions. This happens since a very
large number of the quasiparticles contribute to 〈N̂ex〉 and the individual contributions are not really
important. The non-Gaussian distribution appears to be a robust property of the system—the trends of
asymptotics could not be changed without changing the index in the power law for the density of states,
and modification of a small number of quasiparticles hardly affects the behavior of the probability
distribution. The effect of boundary conditions on the distributions is mostly governed by the large
enough group of energies with one zero quantum number. The effect of the trap’s form deformation
disproportionately affects the whole energy spectrum of quasiparticles and, hence, is significant.
The same mechanisms determine the BEC statistics in an ideal gas as is shown in [27,28].

A further analysis beyond the basic model (10)–(12) could reveal the other cases when a change
of the trap affects the BEC statistics significantly. For example, the effect of a change of the trapping
potential in the entire volume of the trap, say, by means of imposing an additional weak potential lattice
considered in [42], at moderate (but still less than critical, T � Tc) temperatures could be analyzed
by the perturbation method of [42]. Unfortunately, the authors of [42] discussed only the case of the
quantum-dominated regime at very close to zero temperatures when the BEC statistics is Gaussian in
the bulk limit. Moreover, the ref. [42] is devoted to the calculation of the mean value (i.e., only the first
cumulant) of quantum depletion, while we are interesting in the entire statistics (i.e., all higher-order
cumulants) of condensate depletion and, mostly, in the opposite case of the thermally-dominated
fluctuations when the statistics is significantly non-Gaussian even for the macroscopically large system.
Note, however, that the dependence of the low-temperature limit of the mean condensate depletion
on the large interaction parameter Δ, calculated in [42], is definitely in agreement with the “quantum”
contribution to the first cumulant calculated in the present paper from Equation (25).It is possible,
in principle, to calculate the characteristic function of the BEC statistics starting from Equations (29)
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and (31) of [42]. We expect that in the result one will obtain the regimes of the quantum-dominated,
Gaussian and thermally-dominated, non-Gaussian fluctuations similar to the ones described in the
present paper. Thus, these calculations could reveal the dependence of BEC statistics on the lattice
perturbation of the trapping potential and provide a basis for the design of an actual experiment on
its measurement.

6. Discussion: Why the BEC Statistics Remains Non-Gaussian and Dependent on the Trap’s Form
and Boundary Conditions Even in the Thermodynamic Limit and Upon Increasing Interaction?

The proposed basic model (10)–(12) of the BEC statistics is relatively simple. It takes into account
the main physical mechanism of an influence of the interparticle interaction on the noncondensate
(and complimentary condensate) occupation and its fluctuations. The point is that the noncondensate
occupation is a random variable equal to the sum of many bare-particle excited-state occupations
created by the independently fluctuating Bogoliubov-de Gennes quasiparticles, as is clearly seen from
the Equations (16) and (17). The interparticle interaction, mediated by the condensate, forces, via the
Bogoliubov coupling, each quasiparticle or pair of counter-propagating quasiparticles to populate the
bare-particle excited states in a squeezed, or coherently correlated mode. This is exactly what the basic
model describes via the Equations (7) and (10).

Thus, on the one hand the basic model admits the nontrivial analysis presented in the Sections 3–5
and, in particular, the analytical solution for its thermodynamic-limit asymptotics. On the other
hand, it allows one to take into account the effect of the interparticle interaction in the Bose gas
and, in particular, the renormalization (dressing) of the quasiparticles and trap by a well-developed
condensate fraction. As a result, this basic model yields a series of interesting conclusions about
the probability distribution, moments and cumulants of BEC fluctuations as the functions of the
interaction strength, temperature, the number of trapped particles, the dimension of the system, the
form (geometry) of the trap and the imposed boundary conditions.

First of all, the noncondensate occupation fluctuations in an interacting gas are anomalously large
compared to the standard thermodynamic fluctuations as is proven by the result in the Equation (33).

The second, but very important fact is that the BEC statistics turns out to be strongly non-Gaussian,
as it was in the case of the non-interacting, ideal gas [15,26–30], and remains so with an increase of the
interparticle interaction. The origin of this non-Gaussianness is, of course, in an inapplicability of the
central limit theorem. Indeed, if the contribution of quasiparticles to the noncondensate occupation
decreases slowly with an increase of their quantum numbers jx, jy, jz, a large number of quasiparticles
contributes significantly to the statistics, the central limit theorem works and one finally obtains
the Gaussian distribution. In the opposite case of rapidly decreasing contributions the group of
quasiparticles which mainly determines the statistics is not large enough and the central limit theorem
is not applicable. Hence, the resulting statistics is non-Gaussian. This is exactly the picture behind the
analysis of the values of cumulants and the characteristic function as the sums of the accumulating
contributions from the lattice of quasiparticle states presented in the Sections 3–5.

As is known for the case of an ideal Bose gas [27,28], the three-dimensional systems with the
quadratic spectrum, λj ∼ j2x + j2y + j2z , and the linear spectrum, λj ∼ jx + jy + jz, constitute the examples
of the “rapidly growing” and “slowly growing” spectra, respectively. The crucial nontrivial fact about
the BEC statistics in a weakly interacting gas is as follows. The Bogoliubov-de Gennes quasiparticles
have a “slowly growing” spectrum (12), ε j, of an almost linear dependence of eigenenergies on the
quantum numbers vector j starting from the zero energy until the interaction coupling energy gn0.
Nevertheless, the statistics of the noncondensate occupation (consisting of the excited bare particle
occupations) is accumulated (due to the squeezing caused by Bogoliubov coupling) in accord with the
bare energies ε

(0)
j (see the first sum in the square brackets of Equation (25)). But the bare energies form

the quadratic spectrum and, hence, grow fast enough to disable the central limit theorem!
Next, we find that in the region of parameters where the thermal depletion is much larger

than the quantum depletion the noncondensate occupation probability distribution converges in the
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thermodynamic limit to the special function determined by the trap’s form and boundary conditions.
Within the basic model, the effect of the trap’s form and boundary conditions on the probability
distribution could exist even in the thermodynamic limit. Moreover, any change of the spectrum,
which strongly affects (or even excludes, as it happens when the boundary conditions are changed
from the periodic to Dirichlet ones) a large enough group of quasiparticles, results into the probability
distribution altering. This is the reason why the system geometry and dimensionality are very
important for the BEC statistics. In particular, a proper choice of the trap’s geometry and a change of
dimensionality from D = 3 value to the lower, quasi-1D or quasi-2D values, for which the non-Gaussian
BEC statistics is known [27] to be more pronounced and achievable starting from the lower exponent
p = 2D/(4− D) of the power-law trapping potential Utrap ∼ |r|p, can increase the observable effect
on the condensate depletion statistics.

The other mechanism of the influence of the trap’s form and boundary conditions on the BEC
statistics in the interacting gas could be seen from the analysis of a mesoscopic system when the
condensate boundary layers near the borders of the trap occupy only a small fraction of the trap’s
volume in the Thomas-Fermi regime. The remaining, main part of the trap’s volume contains an almost
homogeneous condensate and determines the main part of the structure and Bogoliubov couplings
of all low energy excitations. The contributions from these excitations dominate the values of all
higher-order generating cumulants κ̃m, m ≥ 3, and, hence, are responsible for the non-Gaussian
behavior of the BEC statistics. At the same time, the second generating cumulant, i.e., the variance,
σ2 ∼ κ̃2 could contain an appreciable contribution from the high energy, ε j ∼ or > gn0, excitations
the wavelengths of which are shorter than the healing length. The latter implies a validity of the
WKB (quasi-classical) approximation for the solution to the Bogoliubov-de Gennes Equations (6) for
these high energy quasiparticles even in the boundary layer of the healing-length thickness. It means
that the high energy excitations propagate adiabatically (as in the geometrical optics approximation)
through the boundary layer and, hence, fully feel the boundary conditions of the trap. As a result
of this interplay between the different properties of the low and high energy excitations and their
different roles in the BEC statistics, the scaled higher-order cumulants in Equation (26) and, hence,
the statistics of condensate fluctuations in Equation (27) in the interacting gas depend on the trap’s
geometry (form) and boundary conditions and are non-Gaussian. A very similar difference in the
dependences of the second-order and higher-order cumulants exists also in the case of the varying
interparticle interaction g, i.e., the parameter Δ in Equation (13), as is discussed in Section 5 and
in Figure 1.

Of course, there are many effects which are not included in the formulated above basic model of
the BEC statistics such as (a) the inhomogeneity of the condensate, in particular, within the boundary
layers of the healing-length thickness near the borders of the trap, (b) the effect of such inhomogeneities
on the modification of the quasiparticle energy spectrum, Bogoliubov couplings and squeezing of the
noncondensate occupation, (c) the thermal and many-body effects in the range of temperatures from
T ∼ Tc/2 to the critical temperature T = Tc which are beyond the Bogoliubov approximation, etc.
They require much more involved theoretical analysis and can considerably modify the BEC statistics
in the interacting gas. Moreover, in order to describe correctly the full range of parameters and,
in particular, an evolution of the BEC statistics in its transition from a small mesoscopic system to
a macroscopic system or from an ideal gas with zero interaction g = 0 to an interacting gas in the
Thomas-Fermi regime as well as in order to get numerically accurate parameters of the BEC statistics
one has to improve the basic model by the accurate account and solutions for these effects.

So, the intriguing problems of whether or not the nature allows the surface’s geometry (form)
and boundary conditions of a macroscopically large trap to influence the BEC statistics and how
the BEC statistics evolves with increasing trap’s size and interparticle interaction remain open.
A similarly general question is whether or not the BEC statistics in the real macroscopic systems remains
non-Gaussian in the thermodynamic limit. A universal mechanism leading to the Gaussian statistics
in the many-body thermodynamic systems is well known. It is the central limit theorem valid for the
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sum of a large system of independent random variables in which there are no strongly dominating
small subsystems. The considered systems significantly differ from the usual thermodynamic
systems since the spontaneous symmetry breaking creates a well-developed condensate, or a coherent
macroscopic wave function, which spreads over the entire volume of the system from border to border
and coherently transfers the information about the trap’s form (geometry) and boundary conditions
over the whole system. This could be the basis of the general mechanism keeping the BEC statistics
non-Gaussian and dependent on the trap’s form and boundary conditions in the thermodynamic
limit. Independently on the answers to these questions, the basic model presented in this paper can
be employed as a useful constructive basis for the search, comparison and classification of various
mechanisms affecting the BEC statistics.

Certainly, the ultimate answers to all these questions should be given by the experimental
studies of the BEC statistics in the interacting gas. They constitute a promising field of research
but require very accurate measurements and a very stable confinement of BEC with the precisely
controllable parameters. A recent progress in the experimental techniques suggests that the BEC
statistics is already becoming accessible experimentally (see, e.g., [47]). Among the recent experiments,
especially promising are the experiments of the Hadzibabic’s group [48–50] with an almost flat
cylindrical trap where the thermally-dominated regime seems to be accessible. For example, the
setup of [49] in the thermally-dominated regime of condensate depletion at T ∼ Tc/3 constitutes
a macroscopically large system since the parameter of the thermodynamic limit in Equation (13),
α = h̄2π2/(2ML2T), is indeed very small, α ∼ 0.003. Hence, the mesoscopic effects should be
relatively weak and the described above anomalous thermodynamic-limit BEC statistics could be
revealed experimentally. Another interesting example of the uniform BEC with the almost flat potential
inside the box trap and vertical “walls” at the borders was demonstrated in the experiments of the
Raizen’s group [51–53]. Other promising experimental setups include a two-dimensional flat trap of
Dalibard’s group [54], the circular waveguides for BEC trapping [55] and the system which “paints”
an arbitrary border of the trap by rapidly moving laser beams [56].

7. Conclusions

We formulated and solved the basic model (10)–(12) of the BEC statistics in a weakly interacting
gas confined in a flat trap within the Thomas-Fermi approximation of the mean-field theory of
Gross-Pitaevskii and Bogoliubov-de Gennes. This model yields the non-Gaussian condensate
occupation statistics which is different from also non-Gaussian ideal-gas BEC statistics (for the same
trap) but shares with it a similar dependence on the trap’s form and boundary conditions. Such a
dependence does not vanish with the increase of the interparticle interaction, the number of trapped
particles and the volume of the system, that is in the thermodynamic limit.
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Abstract: A numerical investigation has been carried out to understand the mechanism of the rotation
effect on bifurcation and dual solutions in natural convection within a horizontal annulus. A thermal
immersed boundary-lattice Boltzmann method was used to resolve the annular flow domain covered
by a Cartesian mesh. The Rayleigh number based on the gap width is fixed at 104. The rotation
effect on the natural convection is analyzed by streamlines, isotherms, phase portrait and bifurcation
diagram. Our results manifest the existence of three convection patterns in a horizontal annulus
with rotating inner cylinder which affect the heat transfer in different ways, and the linear speed
(U∗i ) determines the proportion of each convection. Comparison of average Nusselt number versus
linear speed for the inner cylinder indicates the existence of the three different mechanisms which
drive the convection in a rotation system. The convection pattern caused by rotation reduces the
heat transfer efficiency. Our results in phase portraits also reveal the differences among different
convection patterns.

Keywords: natural convection; bifurcation; horizontal annulus; thermal IB-LBM; rotation

1. Introduction

Natural convection in a horizontal annulus is a useful subject due to its importance in theoretical
study and in many engineering applications, such as thermal energy storage systems, cooling systems
in electronic components, brake assembly and bearing fittings. Considering its simple geometry,
this system has become a classical model and has been well studied by many researchers. Early in
1966, Grigull and Hauf [1] investigated natural convection in a horizontal annulus experimentally.
In 1969, Powe et al. [2] designed an experiment and delineated the convection with different types of
flow depending on the Grashof number and radius ratio. Kuehn and Goldstein [3] studied the natural
convection in concentric cylinders numerically and experimentally. Nguyen et al. [4] presented the
flow patterns and heat transfer rates in terms of the radius ratio, the Rayleigh number and inversion
parameter. Dyko et al. [5] presented a three-dimensional numerical and experimental study for flow
between two horizontal coaxial cylinders at Rayleigh numbers approaching and exceeding the critical
values. The instability and bifurcation phenomena in the natural convection in a horizontal annulus
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have also attracted the interest of many researchers. Yoo et al. [6–8] studied the effect of the Prandtl
number on the bifurcation phenomenon of natural convection in an annulus with a narrow or wide gap.
Results show that natural convection with high Prandtl number in a narrow annulus has bifurcation
solutions. Petrone et al. [9,10] analyzed the bifurcation phenomena theoretically through a bifurcation
diagram by numerical simulation. Luo et al. [11] reported the eccentricity effect on the dual solutions.
Hu et al. [12] demonstrated three solutions in the wide gap annulus with a constant heat flux at
wall. Zhang et al. [13] investigated the natural convection in a circular enclosure partitioned by a
thin flat plate. Natural convection in other types of enclosures has also been studied by many other
researchers [14,15].

It has been confirmed that the rotation effect plays a significant role in natural convection in an
annulus in applications such as the heat transfer in bearing system, i.e., in the work of Lopez et al. [16]
which studied the rotation effect on convection in a vertical annulus. For a square enclosure within
which there is a rotating circular cylinder, Zhang et al. [17] found that the heat transfer can be
conduction-dominated or mixed convection-dominated depending on the rotating speed. In this paper,
we focus on the rotation effect on the natural convection in a horizontal annulus. The mechanism
of the rotation effect is quantified by linear speed of rotational inner cylinder, and is presented and
analyzed by the streamlines and isotherms at different dimensionless linear speeds. We also use the
bifurcation diagram of rotation system to discuss the bifurcation solutions of natural convection in a
horizontal annulus with stationary inner and outer cylinders. The present study of the rotation effect
on natural convection provides a thorough insight in understanding the heat transfer in the bearing
system problem.

All simulations in this study are carried out using a thermal immersed boundary-lattice
Boltzmann method (IB-LBM). The lattice Boltzmann method (LBM) has been widely adopted in
computational fluid dynamics for its convenience in treating curved boundaries and performing
parallel computation [12,14–16,18–30]. It exhibits great convenience in heat and mass transfer [6–8,12].
The IB-LBM has achieved great success in dealing with moving boundaries with complex geometry
since 2004 since Feng et al. [21] first introduced the IBM into LBM. Since then, a lot of efforts have
been made to improve the accuracy of this method [22,24–26]. Feng et al. [22] used the idea of direct
force to calculate the boundary force. Niu et al. [24] considered the moment exchange on the boundary.
Wu et al. [25,26] proposed an implicit velocity correction-based model. For thermal fluids, researchers
made efforts to deal with the thermal boundary conditions [12,28–30]. Hu et al. [12] developed a
thermal IB-LBM to simulate both the temperature Dirichlet boundary condition and the Neumann
boundary condition. Wu et al. discussed the accuracy of thermal IB-LBM [30]. Recently, the thermal
lattice Boltzmann method with curving boundary treatment becomes popular in simulating natural
convection in a horizontal annulus [11,12,31,32].

The remainder of this paper is organized as follows. Section 2 describes the scope of simulations
and briefly introduces the numerical method used in this paper. In Section 3, numerical results are
compared with experiments. In Section 4, numerical results and the effect of rotation on the natural
convection are presented. We summarize our findings and conclude in Section 5.

2. Numerical Model and Method

In this section, the configuration of natural convection in a horizontal annulus and a treatment for
thermal flow with curved boundaries are introduced. We follow the idea of the coupled lattice BGK
model (CLBGK) [21] to treat thermal flow field. The IB-LBM is used to treat the boundary conditions.
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2.1. Numerical Model

The configuration of a two-dimensional natural convection is shown in Figure 1. Ri and Ro denote
the radius of inner and outer cylinders, respectively. The flow is driven by gravity Gα. The governing
equations of the convection are [23]:

∂tρ + ∂α(ρuα) = 0 (a)
∂t(ρuα) + ∂β

(
ρuαuβ

)
= Gα + Fα − ∂α p + ∂β

[
μ
(
∂αuβ + ∂βuα

)]
(b)

∂tT + uα∂αT = κ∂2
αT + Φ (c)

(1)

where ρ is the fluid density, uα is velocity, Gα is the buoyancy, Fα is the body force, μ is the dynamic
viscosity, T is the temperature, κ is thermal diffusivity and Φ is the heat source term. The inner
and outer cylinder surfaces are maintained at different uniform temperatures Th and Tc(Th > Tc),
respectively. With the Boussinesq approximation [21], the fluid density is assumed to be a linear
function of the temperature and the buoyancy can be written as: Gα = −gαβ(T − T0) and β is the
coefficient of thermal expansion and T0 is the average temperature of fluid.

Figure 1. Configuration of natural convection in a horizontal annulus.

Some dimensionless variables in natural convection are introduced as follows. The Mach
number (Ma):

Ma =

√
|gα|βΔTL

cs
, (2)

where ΔT = Th − Tc is temperature difference between hot wall and cold wall, L is the characteristic
length across the temperature field which is Ro − Ri for the convection in a horizontal annulus.
The Mach number used in present work is fixed at 0.01 to ensure that the flow is incompressible.

The Rayleigh number (Ra):

Ra =

∣∣gα

∣∣βΔTL3

νκ
=

(MaLcs)
2Pr

ν2 , (3)

where Pr is the Prandtl number defined as Pr = ν/κ.
The Nusselt number (Nu):

Nu =
|qα|
Qc

=
|uαT − κ∂αT|

Qc
, (4)

where |qα| is the quantity of local heat flux and Qc is the average heat flux resulting from
pure conduction.

153



Entropy 2018, 20, 733

2.2. Thermal IB-LBM

To solve the governing equations, the CLBGK model [23] is used in this paper. The general
philosophy is to solve the velocity field and the temperature field using two independent lattice
BGK equations, respectively, and then to combine them into one coupled model for the Boussinesq
incompressible flow.

The lattice BGK equation with external force term reads:

fi(xα + ciαδt, t + δt)− fi(xα, t) = −ω f

[
fi(xα, t)− f (eq)

i (xα, t)
]
+ Fiδt, (5)

where fi is the density distribution function, f (eq)
i is the equilibrium distribution function, ciα is the ith

discretized velocity vector and ω f is the relaxation parameter. For the D2Q9 model [18], the equilibrium
function is:

f (eq)
i (xα, t) = wiρ

[
1 +

ciαvα

c2
s

+
vαvβ

2c2
s

( ciαciβ

c2
s
− δαβ

)]
, (6)

where sound speed cs and the weight coefficient wi are:

cs =
1√
3

δx

δt
, wi =

⎧⎪⎨⎪⎩
4/9 i = 0
1/9 i = 1 ∼ 4
1/36 i = 5 ∼ 8

. (7)

Using Chapman-Enskog expansion till the second order of approximation and considering the
conserved quantity ρ = ∑ fi and ρuα = ∑ ficiα + Fαδt/2, the relation between the relaxation parameter
ω f and kinematic viscosity ν can be obtained as:

ν = c2
s

(
1

ω f
− 1

2

)
δt. (8)

The force scheme proposed by Buick [27] is applied in this work:

Fi = wi

(
1−

ω f

2

)
Gαciα

c2
s

, (9)

where Gα is the external force.
Coupling temperature field to flow field, the well-known Boussinesq approximation is often used

in the study of natural convection. With the Boussinesq approximation, the gravity can be rewritten as:

Gy = −ρ
∣∣gα

∣∣[1− β(T − T0)]. (10)

To simplify this formula, T0 is chosen as −1/β and the gravity is:

Gy = ρ
∣∣gα

∣∣βT. (11)

For the flow field, non-slip boundary condition is considered in all simulations. The direct force
IB-LBM proposed by Feng [22] is applied to realize the dynamical boundary condition. The discretion
of the derivative of time in above equation is related to the desired boundary condition (Equation (12)).
This method is also termed as direct forcing model by Wu [25] penalty method by Feng et al. [21] and
direct forcing method by Feng et al. 2005 [22]. They proposed a direct force term to realize the no-slip
boundary condition as formed below.

Fα = ρ
(
∂tuα + uβ∂βuα

)
− μ∂2

βuα + ∂α p, (12)
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where ∂tuα = uD
α −uα

δt
and uD

α is the desired value of velocity on the boundary.
Based on their method, the force term used in a thermal IB-LBM has the following formula:

Fα = ρ
(
∂tuα + uα∂βuβ

)
− ∂2

βuα + ∂α p− ρ
∣∣∣gα

∣∣∣βTeyα, (13)

where eyα is the unit vector in the y direction.
To simulate the thermal field, we follow the idea of CLBGK proposed by Guo [23] and use a

9-discrete-velocity model with the distribution function of temperature gi.

gi(xα + ciαδt, t + δt)− gi(xα, t) = −ωg

[
gi(xα, t)− g(eq)

i (xα, t)
]
+ Φiδt (14)

where Φi is discretized heat source term which is related to heat source Φ. The thermal equilibrium
function is:

g(eq)
i (xα, t) = wiT

[
1 +

ciαvα

c2
s

+
vαvβ

2c2
s

( ciαciβ

c2
s
− δαβ

)]
. (15)

To compare with Equation (1) (c), the Chapman-Enskog expansion is also used to decide the
relation between ωg and κ, which is:

κ = c2
s

(
1

ωg
− 1

2

)
δt. (16)

Following the idea of previous direct force model and considering uα∂αT = 0 at boundary,
the isothermal boundary condition is realized by the following modified heat source:

Φ = ∂tT − κ∂2
αT (17)

where ∂tT is calculated by ∂tT = TD−T
δt

and TD is the desired value of temperature on the boundary.
Since LBM deals with Eulerian flow points and boundaries are represented by Lagrangian points,

Delta function is used to exchange the message between Eulerian points and Lagrangian points and
has the following formula:

D(xα − x0α) = δ(x− x0)δ(y− y0)

δ(r− r0) =

{
1
4

[
1 + cos

(
π|r|

2

)]
|r|≤ 2

0 |r|> 2
.

(18)

The messages from both velocity field and thermal field are exchanged by Delta function
mentioned in the above section.

3. Verification

The accuracy of the present method in natural convection in an annulus is verified. To qualify the
results, the average Nusselt number (Nu)is defined by the following equation:

Nu =
qn
Qc

=

∫
qnds

QcS
(19)

where S is the area of the flow filed. For pure conduction, the exact solution of the temperature field in
an annulus is:

T − Tc

ΔT
=

ln Ro
r

ln Rβ
(20)
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where radius ratio Rβ = Ro
Ri

. Considering the definition of the average Nusselt number, its formula in
an annulus yields:

Nu =

∫
qnds

QcS
= γ

L
∫

qrrdrdθ

κΔTπS
= γ

∫
qrrdrdθ

κΔTπ(Ro + Ri)
(21)

where the modified parameter γ is:

γ =
ln Rβ

(
Rβ + 1

)
2
(

Rβ − 1
) . (22)

The relation between γ and Rβ is shown in Figure 2.

Figure 2. The distribution of the modified parameter γ versus the radius ratio Rβ.

The grid independence tests of present thermal IB-LBM for natural convection in horizontal
annuli are conducted. The grid sizes of 128 × 128, 256 × 256 and 512 × 512(l.u.) are tested for 4
different Rayleigh numbers, namely, Ra = 102, 103, 104 and 2 × 104 to verify the grid independence
and the accuracy of the boundary treatment by comparing with the results from experiments [3].
Table 1 presents the results of average Nusselt number. It is shown that numerical results of the present
method are in excellent agreement with experimental results. The relative errors between grid size of
256 × 256(l.u.) and extrapolated results are only 1.39%, 1.02%, 1.29% and 1.17% for Ra = 102, 103, 104

and 5× 104, respectively. Results show that the grid size of 256× 256(l.u.) which is used in following
studies is fine enough.

Table 1. The grid independence test and comparison for the average Nusselt number. Rβ = 2.6 and
Pr = 0.7.

Ra
Grid Size

Experiment [3]
128× 128 256× 256 512× 512 Extrapolation

1× 102 1.034 1.016 1.008 1.002 1.000~1.002
1× 103 1.101 1.092 1.087 1.081 1.081~1.084
1× 104 1.955 1.977 1.989 2.003 2.005~2.010
2× 104 2.346 2.364 2.375 2.392 2.394~2.405

4. Results and Discussion

In this section, the rotation effect on bifurcations of natural convection is analyzed with Pr = 0.7
and Ra = 104 in an annulus with its radius ratio Rβ = 1.5. The streamlines, isotherms and phase
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portrait of average Nusselt number will be further analyzed. In order to study the rotation effect of
the inner cylinder, the linear speed of the inner cylinder is non-dimensionalized by the characteristic
speed U0 =

√
|gα|βΔTL . As a matter of convenience, the Nusselt number Nu is used to represent the

average Nusselt number in the flow field Nu in the following section.

4.1. Bifurcation Solutions in Stationary Concentric Cylinders

It has been found by many researchers that the bifurcation phenomenon appears in the natural
convection in a horizontal annulus [7,11,12,31]. Different initial conditions will lead to different
structures of convection. The schematic of different initial conditions used in our paper is shown
in Figure 3. With different temperature distributions at Γu, we obtained three different structure
of convection. From isotherms, different numbers of hot peaks can be found in different states.
In Figure 4c, for instance, one can find three hot peaks at (0.2, 0.65), (0.5, 0.8) and (0.8, 0.65), respectively.
A number of hot peaks are used to distinguish these different states in this paper. In this subsection,
the bifurcation phenomena are simulated, which mainly verify the accuracy of the thermal IB-LBM
treatment and obtain the initial conditions for following rotating cases.

Figure 3. Schematic of initial condition of bifurcation solutions.

The bifurcation solutions of natural convection in a horizontal annulus with stationary inner and
outer cylinders are presented. We first use zero velocity and low temperature for all flow fields as zero
initial condition and obtained 1-peak state. Then 2-peak state is obtained by using the final state of
1-peak state by removing internal energy step as its initial condition. Finally, 3-peak state is obtained
by using the final state of 2-peak state with an injecting internal energy step as its initial condition.
The treatment of removing/injecting internal energy step in dealing with the temperature field at top
region Γu is shown in Figure 3. When implementing removing internal energy step, temperature at top
region Γu is set as the lowest temperature Tc, compulsively. The injecting internal energy step is to set
the temperature at top region the highest temperature Th, compulsively.

Figure 4 shows the results of streamlines and isotherms at Ra = 104, Pr = 0.7, Rβ = 1.5.
For 1-peak-state which is shown in Figure 4a, it is observed with zero initialization. It is seen that a pair
of symmetrical vortices are formed in the annulus because of the buoyancy and one hot peak in the
isotherms appears at the top region. According to the formula of local Nusselt number (Equation (4)),
it is larger at top region than the remained region. After removing internal energy step, another
solution with two hot peaks of this system is observed in Figure 4b. It is seen that a new pair of
vortices appear at the top region of the annulus and velocity at middle of the top region turns from
upwards to downwards. Injecting internal energy to Γu region at 2-peak state, another bifurcation
consists of three hot peaks branches. 3-peak-state is presented in Figure 4c. A new pair of vortices
appears at the top region. It is further observed that new vortex pair stretches and compresses the
previous vortex pair and the previous vortex pair turns into two small vortices which beside the newly
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appeared large vortex pair. One also sees that 3-peak-state is very unstable from Figure 5c. This also
suggests that with a small perturbation (inner cylinder rotate clockwise with its dimensionless linear
speed exceeds 0.03), the flow state turns from 3-peak-state to 2-peak-state. It is further found that new
pairs of vortices constantly appear at the top region of the annulus and the Nusselt number gradually
increases with increasing number of hot peaks at the same Ra, Pr and Rβ, which are 1.579, 1.791 and
1.888, respectively.

(a) 1-Peak-State 

(b) 2-Peak-State 

(c) 3-Peak-State 

Figure 4. Different states at the same Ra, Pr and Rβ. Ra = 104, Pr = 0.7, Rβ = 1.5.

The phase portrait of Nusselt number is shown in Figure 5. In order to show the detail in the phase
portrait, final phase trajectory of Nusselt number are zoomed in and presented in the inset of Figure 5.
From Figure 5a,b, the phase portraits indicate that the Nusselt number increases with increasing hot
peaks. Since the configuration is symmetric, the phase portraits in both Figure 5a,b indicate that
the 2-peak-state and 3-peak-state are both stable. However, as discussed above, 3-peak-state will be
unstable when the symmetry of the system breaks. Figure 5c shows the phase trajectory of the progress
when a small perturbation is introduced into 3-peak-state. It is seen that any perturbation which
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breaks the symmetry of the system makes one of two previous small vortices compressed, the average
Nusselt number decreases, and the compressed vortex finally disappears. Two large vortices beside
the disappeared small vortex then merged into one vortex and the system turns to 2-peak-state. One
also sees that the average Nusselt number of the newly formed 2-peak-state is smaller than that of the
equilibrium system, vortices then resize under the buoyancy and the average Nusselt number increases
till the system reaches equilibrium state.

 
(a) (b) 

 
(c) 

Figure 5. The phase portrait of Nusselt number. (a) Flow state turns from 1-peak-state to 2-peak-state
after removing energy step; (b) Flow state turns from 2-peak-state to 3-peak-state after injecting energy
step; (c) Flow state turns from 3-peak-state back to 2-peak-state after a small perturbation introduced
into the system.

4.2. Rotation Effect on Natural Convection

The effect of linear speed of rotational inner cylinder is further analyzed in this subsection. Since
3-peak-state is an unstable system for rotating inner cylinder, 1-peak-state and 2-peak-state are the
only two bifurcation systems discussed in this subsection. The inner cylinder rotates clockwise and its
dimensionless linear speed (U∗i ) is ranging from 0 to 4. Figures 6a and 7a show the results obtained
from stationary inner cylinder of 1-peak-state and 2-peak-state, respectively. The linear speed is
increasingly considered after that.
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(a)  

(b)  

(c)  

(d)  

Figure 6. The streamlines and isotherms of rotation effect on 1-peak-state natural convection for
0 ≤ U∗i ≤ 4.
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(a)  

(b)  

(c)  

(d)  

Figure 7. The streamlines and isotherms of rotation effect on 1-peak-state natural convection 0 ≤ U∗i ≤ 0.28.
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It is seen that for 1-peak-state, two symmetrical vortices are formed in a stationary annulus
as shown in Figure 6a. With increasing linear speed, left vortex is stretched and the right one is
compressed, the hot peak moves clockwise and the width of hot peak increases as shown in Figure 6b.
One also sees that the separated part of convection at top region deviates from the middle line
more obviously than that at bottom region. Left vortex wedges into the right one at top region and
compresses the right vortex. The right vortex then approaches the outer cylinder. From Figure 6c,
three main convection appear in the annulus. It is obtained that the first convection is the left vortex
and the second one is the right vortex. This suggests that the third convection starts from right part
of bottom region near the right vortex, clings to the hot inner cylinder, streams around the right
vortex and finally back to the right part of bottom region. From Figure 6d, one also sees that the
first convection, the left vortex is compressed and is located in the top region, the second convection,
and the right main vortex disappears, the third convection is developed into a main convection in
the annulus when the dimensionless linear speed is faster than U∗i = 4.0. This mainly implies that
the disappearance of the second convection leads to a rapid decrease of the Nusselt number after the
critical number of dimensionless linear speed, which is between 3 and 4.

For 2-peak-state, a stable range of 0 ≤ U∗i ≤ 0.28 is considered, in which 2-peak-state is stable.
The streamlines and isotherms of rotation effect on 2-peak-state are shown in Figure 7, where four
dimensionless speed, namely, U∗i =0, 0.1, 0.2, 0.28 are considered. As shown in Figure 7a, one can see
that a pair of main vortices and a pair of small vortices at top region emerge symmetrically in the
annulus at stationary condition. From Figure 7b,c, it is seen that as linear speed of the inner cylinder
increases, the symmetry of the flow are broken, the left vortices of both pairs are stretched and the
right ones are compressed. It is also obtained that two hot peaks move clockwise and the width of
left hot peak becomes larger than the right one. Figure 7d shows the result from highest linear speed
before critical speed. It is seen that the compressed vortex of the small pair approaches the vertical
position of the annulus. Amazingly, it is further found that the compressed small vortex disappears,
and the stretched small vortex and the compressed main vortex merge with each other; the system
then turns to 1-peak-state as the dimensionless linear speed is larger than a critical number.

Figure 8 illustrates the phase portrait of the progress of 2-peak-state turning to 1-peak-state.
In order to show the detail in the phase portrait, final phase trajectory of Nusselt number are zoomed
and presented in the inset of Figure 8. The steady 2-peak-state flow field with U∗i = 0.28 is used
as the initial condition of this simulation, the speed of inner cylinder is increased to 0.29. After the
non-equilibrium progress of small vortex disappearing and two vortex merging with each other,
as analyzed before. This also suggests that the Nusselt number becomes that of steady 1-peak-state with
inner cylinder speed equals 0.29 gradually. It is further found that the critical number of dimensionless
linear speed is between 0.28 and 0.29, the bifurcation phenomenon disappears and the steady state is
1-peak-state when the linear speed is higher than the critical speed.

As shown in Figure 9, both duel solutions can be obtained till U∗i = 0.28. With the increment of
linear speed, the rotation effect leads to the decrement of the average Nusselt number, and it is more
obvious in 2-peak-state than that in 1-peak-state, which mainly illustrates that 2-peak-state is more
sensitive than 1-peak-state. It is obtained that the average Nusselt number of 2-peak-state is larger than
that of 1-peak-state, i.e., heat convection is more important in 2-peak-state than that in 1-peak-state.
It is implied that when U∗i is greater than 0.29, 2-peak-state is unstable. A local minimum value of
average Nusselt number which appears at U∗i = 0.5, indicating two different main mechanisms driving
the convection. For U∗i ≤ 0.5, the system is over-damped for U∗i ≥ 0.6, the system is under-damped.
Figure 9 shows the phase trajectories of cases at U∗i = 0.3 and U∗i = 0.9 as examples of these two
systems. This also suggests that the third convection seems leading to the behavior of under-damped
trajectories while the first and the second convection seems leading to the behavior of over-damped
trajectories. It is further found that a small increase occurs for the Nusselt number, when the third
convection is taken control, in which this increment results in the local minimum value of average
Nusselt number at around U∗i = 0.5.
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Figure 8. The phase portrait of 2-peak-state turns to 1-peak-state.

Figure 9. The bifurcation diagram of natural convection in horizontal concentric cylinders with rotating
inner cylinder.

5. Conclusions

In this paper, numerical simulations have been performed to demonstrate the existence of
bifurcation phenomena in natural convection in a horizontal annulus to investigate the rotation
effect on it by using the thermal IB-LBM. Several conclusions can be summarized as follows.

In the first place, it is validated that numerical results of the present method are well consistent
with experimental results. Our results manifest that 1-peak-state is the most stable system, 2-peak-state
is more sensitive than 1-peak-state and 3-peak-state is the most sensitive system which will breakdown
by a very small perturbation.

After that it is found that the rotation effect on 2-peak-state is more obvious than 1-peak-state,
since 2-peak-state is more sensitive than 1-peak-state. It is noted that in the range of the present
parameters, 2-peak-state is stable. When the linear speed of inner cylinder exceeds the critical speed,
2-peak-state breakdown and turns to 1-peak-state. From the flow pattern shown by streamlines,
one may indicate that the right small vortex is compressed and finally disappears, then the left small
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vortex and the right main vortex merge with each other and the flow turns to 1-peak-state. Finally,
three convections in this system which are affected by different linear speed of inner cylinder were
discussed in detail. It is implied that the first and the second convections are contributed by the
left and right main vortices, respectively. The third convection is a new vortex under the effect of
rotation. With increasing linear speed, left main vortex is stretched and period of the first convection
increases. Right main vortex is compressed and the scope of the second convection decreases. The third
convection grows with the acceleration of rotation. It is further found that 2-peak-state is stable in
the range of 0 ≤ U∗i ≤ 0.28, and when the linear speed of inner cylinder exceeds the critical speed,
2-peak-state breakdown and turns to 1-peak-state.
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Abstract: The slowing down equation for elastic scattering of neutrons in an infinite homogeneous
medium is solved analytically by decomposing the neutron energy spectrum into collision intervals.
Since scattering physically smooths energy distributions by redistributing neutron energy uniformly,
it is informative to observe how mathematics accommodates the scattering process, which increases
entropy through disorder.

Keywords: entropy; elastic scattering; neutron slowing down

1. Introduction

Neutron slowing down in an infinite homogeneous medium [1] is a classic problem in neutron
transport theory. Neutrons (test particles) collide elastically with nuclei (field particles) and thereby
lose energy to nuclear recoil. Thus, we have a common collisional process as described by a balance in
energy phase space between a neutron source and neutrons scattering into and out of an infinitesimal
energy increment, leading to the slowing down equation. One can analytically solve this equation for
the neutron collision density distribution as it tends toward its equilibrium state. In addition, neutron
loss is possible through radiative capture but will not be considered. Limiting our investigation to an
infinite medium has naturally eliminated spatial and directional variation. While the slowing down
equation is deterministic, it nevertheless describes the statistical scattering process, as illustrated by
the associated mathematics.

In the following, we argue that the solution to the neutron slowing down equation characterizes
the evolution of disorder associated with neutron–nucleus collisions. While it is not strictly correct
to attribute disorder to entropy [2], in our case, starting from monoenergetic neutrons representing
complete order, subsequent scattering creates disorder by uniformly redistributing neutron energy
and recoil energy transfer to field particles. The nucleus scattering model conserves kinetic energy;
however, it should be noted that the slowing down process assumes background nuclei are at rest.
This considerably simplifies the scattering kernel and allows an analytical solution. Beginning
with oscillations of the collision density in lethargy (logarithm of energy), called Placzek transients,
neutron slowing down demonstrates increasing entropy with increasing lethargy. The oscillations
originate from the discontinuity of derivatives submerged further into the solution at collision interval
boundaries. As will be shown, the initially sharp discontinuity from the singular delta function source
embeds itself in higher-order derivatives. Hence, with increasing lethargy, the solution becomes
smoother, which is a tendency toward increased randomness and equilibrium. Therefore, neutron
slowing down is a physical example of the mathematical representation of increasing disorder since
one begins with a source of zero entropy (certainty), and, with an ever-increasing number of collision
intervals, smoothing (uncertainty) of the energy distribution follows.

Entropy 2018, 20, 233; doi:10.3390/e20040233 www.mdpi.com/journal/entropy166
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2. Solution

2.1. The Slowing Down Equation

The neutron slowing down equation in a purely scatter material in the fast neutron regime is

F(E) =

E+
0∫

0

dE′P
(
E′ → E

)
F
(
E′
)
+ δ(E− E0) (1a)

for the collision (energy) density
F(E) ≡ Σs(E)φ(E), (1b)

where Σs(E) is the scattering cross section and φ(E) is the neutron scalar flux. The neutron scatters
elastically from a nucleus uniformly to the energy interval αE′ ≤ E ≤ E′ with probability of scattering
into dE given by

P
(
E′ → E

)
dE =

dE
(1− α)E′

; (1c)

otherwise, the probability is zero. The scattering parameter is

α ≡
(

A− 1
A + 1

)2
, (1d)

where A is the mass number of the nucleus, and a monoenergetic source emits neutrons at energy E0.
Therefore, Equation (1a) becomes

F(E) =
1

1− α

min(E+
0 ,E/α)∫

E

dE′

E′
F
(
E′
)
+ δ(E− E0). (2)

Note that to include source neutrons, the upper limit in the scattering integral must come from just
above E0.

Change to Lethargy Variable

With the change of energy to the lethargy variable,

u ≡ ln
(

E0

E

)
,

Equation (2) becomes

F(u) =
1

1− α

u∫
max(0− , u−q)

due−(u−u′)F
(
u′
)
+ δ(u), (3a)

where

q ≡ ln
(

1
α

)
; (3b)

and with the further transformation
F(u) ≡ e−ug(u), (4a)

there results,

g(u) =
1

1− α

u∫
max(0− ,u−q)

du′g
(
u′
)
+ δ(u). (4b)
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2.2. Determination of g(u) by Collision Interval

A natural decomposition of lethargy into scattering collision intervals (n), shown in Figure 1,
enables an explicit solution. The lethargy interval q is the maximum lethargy gain a neutron experiences
after a single collision.

Figure 1. Scattering collision intervals (n = 1, 2, 3, 4).

2.2.1. Collision Interval (1)

In the first collision interval (1), Equation (4b) is

g1(u) =
1

1− α

u∫
0

du′g1
(
u′
)
+ δ(u). (5a)

For
g(u) ≡ g1(u), 0 ≤ u ≤ q, (5b)

a convenient solution is
g1(u) = g0(u) + g1c(u). (6a)

The source, emitting uncollided neutrons, defines

g0(u) ≡ δ(u), (6b)

and introducing Equation (6a) into Equation (5a) gives

g1c(u) =
1

1− α

u∫
0

du′g1c
(
u′
)
+

1
1− α

(6c)

for neutrons experiencing at least one collision. Therefore, upon differentiation

dg1c(u)
du

=
1

1− α
g1c(u), (7a)

and solving, with initial condition

g1c(0) =
1

1− α
, (7b)

from Equation (6c)

g1c(u) =
1

1− α
eu/(1−α). (7c)

The solution in interval (1) is

g1(u) = δ(u) +
1

1− α
eu/(1−α), (8)

exhibiting the delta function source discontinuity at u = 0 with no disorder and source neutrons
scattering to the end of interval (1).
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2.2.2. Collision Interval (2)

For the second collision interval, q ≤ u ≤ 2q, Equation (4b) becomes

g(u) =
1

1− α

u∫
u−q

du′g
(
u′
)
;

and, if
g(u) ≡ g2(u), q ≤ u ≤ 2q, (9a)

then

g2(u) =
1

1− α

q∫
u−q

du′g1
(
u′
)
+

1
1− α

u∫
q

du′g2
(
u′
)
, (9b)

where scattering from interval (1) contributes to interval (2). Differentiating gives

dg2(u)
du

=
1

1− α
g2(u)−

1

(1− α)2 e(u−q)/(1−α) − 1
1− α

δ(u− q). (9c)

Before solving Equation (9c), we note the delta function source singularity, originally at u = 0, has
moved to the derivative of g2(u) at u = q, and continues on to higher derivatives in subsequent collision
intervals, as will be shown.

From Equation (9b),

g2
(
q+
)
= lim

ε→0
g2(q + ε) =

1
1− α

q∫
0+

du′g1
(
u′
)
=

1
1− α

[
eq/(1−α) − 1

]
; (9d)

and on solving Equation (9c) as a sum of the solution to the homogeneous equation and the particular
solution gives

g2(u) =

[
g2
(
q+
)
− (u− q)

(1− α)2

]
e(u−q)/(1−α) +

1
1− α

[1−Θ(u− q)], (9e)

or, since from Equation (8),

g1
(
0+
)
=

1
1− α

,

g2(u) =
[

g2
(
q+
)
− (u− q)

(1− α)
g1
(
0+
)]

e(u−q)/(1−α) +
1

1− α
[1−Θ(u− q)]. (9f)

Though the last term vanishes in interval (2), it is theoretically necessary to give the delta function
discontinuity in the derivative.

Note that since Equation (8) evaluated at q− is

g1
(
q−
)
=

1
1− α

eq/(1−α), (10a)

across the boundary of intervals (1) and (2), one observes a finite discontinuity in g(u),

Δg2(q) ≡ g2
(
q+
)
− g1

(
q−
)
= − 1

1− α
; (10b)

hence, the delta function in Equation (9c) at u = q in the derivative of g2(u).
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2.2.3. Collision Interval (3)

To establish a pattern, we continue to interval (3) with Equation (4b) for n = 3:

g3(u) =
1

1− α

2q∫
u−q

du′g2
(
u′
)
+

1
1− α

u∫
2q

du′g3
(
u′
)
, (11a)

where
g(u) ≡ g3(u), 2q ≤ u ≤ 3q. (11b)

On differentiation of Equation (11a):

dg3(u)
du

=
1

1− α
g3(u)−

1
1− α

g2(u− q) (11c)

and solving

g3(u) = g3
(
2q+

)
e(u−2q)/(1−α) − 1

1− α

u∫
2q

du′e(u−u′)/(1−α)g2
(
u′ − q

)
.

After integration of the last term, we find

g3(u) =

[
g3
(
2q+

)
− (u− 2q)

(1− α)
g2
(
q+
)
+

1
2
(u− 2q)2

(1− α)3

]
e(u−2q)/(1−α), (11d)

which is also

g3(u) =

[
g3
(
2q+

)
− (u− 2q)

(1− α)
g2
(
q+
)
+

1
2
(u− 2q)2

(1− α)2 g1
(
0+
)]

e(u−2q)/(1−α). (11e)

The initial condition, g3(2q+), for interval (3) is approached from within the interval and is given by
Equation (11a) as

g3
(
2q+

)
= lim

ε→0
g3(2q + ε) =

1
1− α

2q∫
q

du′g2
(
u′
)
.

However, from Equation (9b), we also find

g2
(
2q−

)
=

1
1− α

2q∫
q

du′g2
(
u′
)
, (11f)

demonstrating the continuity of g(2q) across intervals (2) and (3), and completing the solution for
collision interval (3).

2.2.4. Collision Interval (n)

Continuity for u > 2q+

In general, defining the solution gn(u) for interval (n),

g(u) = gn(u), (n− 1)q ≤ u ≤ nq, (12a)
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and partitioning the scattering integral in Equation (4b) into current and previous intervals gives

gn(u) =
1

1− α

(n−1)q∫
u−q

du′gn−1
(
u′
)
+

1
1− α

u∫
(n−1)q

du′gn
(
u′
)
. (12b)

The interpretation of this expression is shown in Figure 2, and, as already mentioned, includes a
contribution to interval (n) from scatter in the previous interval.

Figure 2. Contribution from previous collision interval-.

For n ≥ 3, from Equation (12b) with n decremented by unity and u = (n− 1)q− ε → (n− 1)q− ,
in the limit as ε → 0 :

gn−1
(
(n− 1)q−

)
= lim

ε→0
gn−1((n− 1)q− ε) =

1
1− α

(n−1)q∫
(n−2)q

du′gn−1
(
u′
)
. (13a)

Similarly, for u = (n− 1)q + ε → (n− 1)q+ in Equation (12b),

gn
(
(n− 1)q+

)
= lim

ε→0
gn((n− 1)q + ε) =

1
1− α

(n−1)q∫
(n−2)q

du′gn−1
(
u′
)

(13b)

and therefore, comparing to Equation (13a),

Δgn((n− 1)q) = gn
(
(n− 1)q+

)
− gn−1

(
(n− 1)q−

)
= 0. (13c)

Thus, g(u) is a continuous function with the exception of the delta function singularity at u = 0 and the
finite discontinuity at u = q.

2.2.5. General Solution

From gn(u), n = 2, 3, the following pattern emerges:

gn(u) = e(u−(n−1)q)/(1−α)
n−1

∑
k=0

γn,k(u− (n− 1)q)k +
1

1− α
[1−Θ(u− q)]δn,2, (14)

where for n = 2
γ2,0 = g2(q+)

γ2,1 = − 1
(1−α)

g1(0+),

and n = 3
γ3,0 = g3(2q)

γ3,1 = − 1
(1−α)

g2(q+)
γ3,2 = 1

2
1

(1−α)2 g1(0+).
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We now confirm the pattern by constructive inductive reasoning.
For n ≥ 4, assume the form of the solution, Equation (14), is true for n − 1

gn−1(u) = e(u−(n−2)q)/(1−α)
n−2

∑
k=0

γn−1,k(u− (n− 2)q)k. (15a)

Differentiating Equation (12b) gives the ODE:

dgn(u)
du

=
1

1− α
gn(u)−

1
1− α

gn−1(u− q), (15b)

with the following solution over the interval ((n− 1)q+ , nq−):

gn(u) = gn((n− 1)q+)e(u−(n−1)q)/(1−α)

− 1
1−α

u∫
(n−1)q+

du′e(u−u′)/(1−α)e(u
′−(n−1)q)/(1−α)

n−2
∑

k=0
γn−1,k(u′ − (n− 1)q)k. (15c)

Performing the integration:

gn(u) =

[
gn
(
(n− 1)q+

)
− 1

1− α

n−2

∑
k=0

γn−1,k

k + 1
(u− (n− 1)q)k+1

]
e(u−(n−1)q)/(1−α), (15d)

and decrementing index k by unity gives

gn(u) =

[
gn
(
(n− 1)q+

)
− 1

1− α

n−1

∑
k=1

γn−1,k−1

k
(u− (n− 1)q)k

]
e(u−(n−1)q)/(1−α). (15e)

Hence, on comparison to Equation (14), for k = 0:

γn,0 = gn
(
(n− 1)q+

)
, (16a)

and for k = 1, 2, . . .

γn,k = −
1

(1− α)k
γn−1,k−1 (16b)

On solving the recurrence of Equations (16):

γn,k =
(−1)k

(1− α)kk!
γn−k,0 =

(−1)k

(1− α)kk!
gn−k

(
(n− (k + 1))q+

)
, (16c)

we have the conjectured solution of the form of Equation (14) for intervals n ≥ 3:

gn(u) = e(u−(n−1)q)/(1−α)
n−1

∑
k=0

(−1)k

k!

[
u− (n− 1)q

1− α

]k
gn−k

(
(n− (k + 1))q+

)
. (16d)

Or, from the continuity of g(u) (Equation (13c)),

gn(u) = e(u−(n−1)q)/(1−α)

⎡⎣ gn−1((n− 1)q̃)

+
n−1
∑

k=1

(−1)k

k!

[
u−(n−1)q

1−α

]k
gn−k((n− (k + 1))q̃)

⎤⎦, (17a)

where

(n− (k + 1))q̃ =

⎧⎪⎨⎪⎩
0+, k = n− 1

2q+, k = n− 2
(n− (k + 1))q, 1 ≤ k ≤ n− 3.

(17b)
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From Equation (4a), the collision density by collision interval is therefore

Fn(u) = e(αu−(n−1)q)/(1−α)

⎡⎣ gn−1((n− 1)q̃)

+
n−1
∑

k=1

(−1)k

k!

[
u−(n−1)q

1−α

]k
gn−k((n− (k + 1))q̃)

⎤⎦, (18a)

For future use, the jth derivative (using Leibnitz’s rule) is:

F(j)
n (u)

= e(αu−(n−1)q)/(1−α)

⎡⎢⎢⎣ gn−1((n− 1)q̃)δj0 +
n−1
∑

k=1

(−1)k

k!

[
1

1−α

]k
gn−k((n− (k + 1))q̃)

•
j

∑
l=0

j!
l!(j−l)!

[
α

1−α

]j−l
[u− (n− 1)q]k−l

⎤⎥⎥⎦.
(18b)

We now investigate the singularities of derivatives of g(u).

3. Continuity/Singularities

So far, we have identified the singularities given in Table 1. In this section, all the relevant
singularities starting at interval (n) will also be identified. To do so, we require several conjectures
concerning the continuity of the collision density.

Table 1. Singularities identified.

Interval u Derivative (j) Type

1 0 0 Infinite *
2 q 0 Finite
2 q 1 Infinite *

* Delta function.

Conjecture 1. The jth derivatives of gn−1 and gn at u = (n − 1)q for n ≥ j + 3 are continuous.

Symbolically, Conjecture 1 is

Δg(j)
n ((n− 1)q) ≡ g(j)

n
(
(n− 1)q+

)
− g(j)

n−1
(
(n− 1)q−

)
= 0, n ≥ j + 3, (C1.1)

which has already been shown for j = 0 above (Equation (13c)).
Assuming the conjecture true for j − 1 gives

Δg(j−1)
n ((n− 1)q) = g(j−1)

n
(
(n− 1)q+

)
− g(j−1)

n−1
(
(n− 1)q−

)
= 0, n ≥ j + 2. (C1.2)

We next apply j − 1 derivatives to the differentiation of Equation (15b) to give

g(j)
n (u) =

1
1− α

[
g(j−1)

n (u)− g(j−1)
n−1 (u− q)

]
; (C1.3)

moreover, if we reduce n by unity, then

g(j)
n−1(u) =

1
1− α

[
g(j−1)

n−1 (u)− g(j−1)
n−2 (u− q)

]
. (C1.4)

Evaluating Equations (C1.3) and (C1.4) at (n − 1)q+ and (n − 1)q−, respectively,

g(j)
n
(
(n− 1)q+

)
=

1
1− α

[
g(j−1)

n
(
(n− 1)q+

)
− g(j−1)

n−1
(
(n− 2)q+

)]
(C1.5)

173



Entropy 2018, 20, 233

g(j)
n−1

(
(n− 1)q−

)
=

1
1− α

[
g(j−1)

n−1
(
(n− 1)q−

)
− g(j−1)

n−2
(
(n− 2)q−

)]
(C1.6)

and subtracting

Δg(j)
n ((n− 1)q) =

1
1− α

⎧⎨⎩
[

g(j−1)
n ((n− 1)q+)− g(j−1)

n−1 ((n− 2)q+)
]
−

−
[

g(j−1)
n−1 ((n− 1)q−)− g(j−1)

n−2 ((n− 2)q−)
] ⎫⎬⎭. (C1.7)

On re-arrangement,

Δg(j)
n ((n− 1)q) =

1
1− α

⎧⎨⎩
[

g(j−1)
n ((n− 1)q+)− g(j−1)

n−1 ((n− 1)q−)
]
−

−
[

g(j−1)
n−1 ((n− 2)q+)− g(j−1)

n−2 ((n− 2)q−)
] ⎫⎬⎭, (C1.8)

which is
Δg(j)

n ((n− 1)q) =
1

1− α

{
Δg(j−1)

n ((n− 1)q)− Δg(j−1)
n−1 ((n− 2)q)

}
. (C1.9)

Since, by assumption, the first term is

Δg(j−1)
n ((n− 1)q) = 0, n ≥ j + 2; (C1.10)

and with n replaced by n − 1, the second term is

Δg(j−1)
n−1 ((n− 2)q) = 0, n ≥ j + 3. (C1.11)

Thus, Equation (C1.9) vanishes and confirms Conjecture 1, which is therefore true by induction.

Conjecture 2. The n − 2 derivative at u = (n − 1)q is discontinuous for gn, n ≥ 2.

Symbolically, Conjecture 2 is

Δg(n−2)
n ((n− 1)q) �= 0, n ≥ 2. (C2.1)

We have already shown for n = 2:

Δg(0)2 (q) = g2
(
q+
)
− g1

(
q−
)
= − 1

1− α
�= 0. (C2.2)

Assume conjecture is true for n−1:

Δg(n−3)
n−1 ((n− 2))q) �= 0, n ≥ 3. (C2.3)

Introduce j = n − 2 into Equation (C1.9):

Δg(n−2)
n ((n− 1)q) =

1
1− α

{
Δg(n−3)

n ((n− 1)q)− Δg(n−3)
n−1 ((n− 2)q)

}
. (C2.4)

However, from Conjecture 1, Equation (C1.1):

Δg(j)
n ((n− 1)q) = 0, n ≥ j + 3, (C2.5)

which implies for j = n− 3 ≥ 0
Δg(n−3)

n ((n− 1)q) = 0; (C2.6)
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and Equation (C2.4) by assumption becomes

Δg(n−2)
n ((n− 1)q) = −Δg(n−3)

n−1 ((n− 2)q) �= 0, (C2.7)

which is Conjecture 2—again, proved by induction.
Solving the recurrence in Equation (C2.7) gives the discontinuity

Δg(n−2)
n ((n− 1)q) =

(−1)n−1

(1− α)n−1 . (C2.8)

Conjecture 3. The n − 1 derivative of gn at u = (n − 1)q contains a delta function singularity.

Symbolically, Conjecture 3 is

g(n−1)
n (u) = hn(u) + βnδ(u− (n− 1)q), n ≥ 1. (C3.1)

We have shown that Conjecture 3 is true for n = 1 (and n = 2)

g(0)1 (u) = h1(u) + β1δ(u) (C3.2)

in Equation (8) with
β1(u) = 1

h1 = 1
1−α eu/(1−α).

(C3.3)

Assuming the conjecture is true for n − 1:

g(n−2)
n−1 (u) = hn−1(u) + βn−1δ(u− (n− 2)q), n ≥ 2. (C3.4)

From Equation (C1.2) with j = n − 1:

g(n−1)
n (u) =

1
1− α

[
g(n−2)

n (u)− g(n−2)
n−1 (u− q)

]
(C3.5)

and Equation (C3.4) becomes

g(n−1)
n (u) = 1

1−α

[
g(n−2)

n (u)− hn−1(u− q)
]
− βn−1

1−α δ(u− q− (n− 2)q)

= hn(u) + βnδ(u− (n− 1)q),
(C3.6)

where
hn(u) ≡ 1

1−α

[
g(n−2)

n (u)− hn−1(u− q)
]

βn ≡ − βn−1
1−α ,

(C3.7)

which is Conjecture 3. In addition,

βn ≡
(−1)n−1

(1− α)n−1 . (C3.8)

In summary, from the three conjectures and the analytical solution of Equation (17), one concludes

(a) gn(u) is continuous at u = (n − 1)q for n ≥ 3 and within the interval

(n− 1)q ≤ u ≤ nq;

(b) g(n−2)
n (u) has a finite discontinuity at u = (n − 1)q for n ≥ 2 and is otherwise continuous;

(c) g(n−1)
n (u) has a delta function discontinuity at u = (n − 1)q for n ≥ 2 and is otherwise continuous.
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Finally, the derivatives of collision density F(u) inherit the continuity properties of g(u), since, by
Leibnitz’s rule,

F(j)
n (u) = dj

duj [e−ugn(u)]

= e−u
j

∑
l=0

(−1)l−j j!
l!(l−j)! g(l)n (u); (n− 1), q ≤ u ≤ nq.

(19)

4. Singularities and Smoothing

Table 2, displaying points of discontinuity of the collision density for scattering against 12C, is
based on the above continuity arguments. To the right is increasing lethargy and down the rows
increasing derivatives. As is apparent, with increasing lethargy (and disorder), discontinuities become
further embedded in the collision density derivatives, making F(u) ever smoother. Embedding of the
discontinuities is clearly observed in Figure 3a–c. As noted above, the finite discontinuity at u = q, from
integration over the delta function source emerges in the collision density itself, as shown in Figure 3a.

Table 2. Embedding of discontinuities in jth derivative of F(u) with collision interval n.

(n − 1)/(n)
j/u

0
0

(1)/(2)
q

(2)/(3)
2q

(3)/(4)
3q

(4)/(5)
4q

(5)/(6)
5q

. . .
. . .

0 DF F C C C C . . .
1 - DF F C C C . . .
2 - - DF F C C . . .
3 - - - DF F C . . .
4 - - - - DF F . . .
5 - - - - - DF . . .

. . . - - - - - - . . .

C: Continuous; F: Finite discontinuity; DF: Delta function.

Figure 3. Cont.
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Figure 3. (a) Collision density; (b) first two derivative of collision density and the collision density; (c)
15 derivatives of collision density.

As neutrons scatter to lower energy (higher lethargy), the memory of the singular source is
retained since a delta function (not shown) exists at the beginning of each scattering interval exactly
where the previous derivative has a finite discontinuity.

Figure 3b shows several derivatives, as given by Equation (18b). We observe Placzek oscillations
in F(u), including the finite discontinuity at u = q. The oscillations for increasing u obviously originate
from the submerged discontinuities and are indicative of increasing entropy (disorder) and smoothing
as the influence of the discontinuities becomes further submerged in the derivatives. Also observed is
the constant asymptotic collision density (1/E) equilibrium distribution, as shown in Table 3, where

F(∞) = 1/
[

α +
α

1− α
ln(α)

]
.

Figure 3c shows 15 derivatives normalized so that the finite discontinuity in each is the same, and
the derivatives are displaced downward for better viewing. The pattern is evident and visualizes how
increasing physical smoothing is mathematically linked to the submergence of the initial discontinuities
of the source distribution with lethargy.
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Table 3. Run-up to asymptotic collision density.

u F(u)

6 6.3383867546
8 6.3383811228

10 6.3383812067
12 6.3383812061
∞ 6.3383812061

5. Randomness of Collisions

Another statistical measure of the disorder in the collision density distribution is the randomness
of collisions. In the following analysis, we find an expression for the distribution of the collided density
in terms of the number of collisions.

As shown in [3], the Laplace transform of Equation (3a) gives the following transform of the
collision density:

F(p) =
1

1−Qs(p)
, (20a)

with

Qs(p) =
c

1− α

[
1− e−q(p+1)

p + 1

]
. (20b)

Here, c is the number of neutrons emitted in a scattering collision relative to the total possible
interactions including loss by absorption. In the analysis above, c is unity.

The geometric series representation of Equation (20a) is

F(p) =
∞

∑
n=0

Qs(p)n =
∞

∑
n=0

cn

(1− α)n

[
1− e−q(p+1)

p + 1

]n

, (21)

where convergence is guaranteed by choice of the complex variable p. Then, using the binomial
theorem for the term in brackets, Equation (21) becomes

F(p) =
∞

∑
n=0

cn

(1− α)n

n

∑
l=0

(−1)l n!
(n− l)!l!

[
e−ql(p+1)

(p + 1)n

]
, (22a)

whose analytical inversion becomes

F(u) = δ(u) +
∞

∑
n=1

cn

[
e−u

[u/q]

∑
l=0

(−1)l n!
(n− l)!l!

(
u− lq
1− α

)n−1
]

. (22b)

The upper limit of the second summation [u/q] is the greatest integer contained in u/q. Note that n is
now the collision number, not to be confused with the collision interval.

The first term in Equation (22b) is the uncollided collision density at the source and the term in
brackets is the nth collided collision density after n collision:

F0(u) = δ(u) (23a)

Fn(u) ≡
e−u

(n− 1)!

[u/q]

∑
l=0

(−1)l n!
(n− l)!l!

(
u− lq
1− α

)n−1
; n = 1, 2, . . . , (23b)

where the subscript is the number of collisions and c is unity for purely scattering.
For lethargy less than 0.5, Figure 4a shows the variation of the collided density with n, where the

hint of a Gaussian distribution is observed. As lethargy increases, as anticipated, the development of the
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Gaussian distribution becomes evident in Figure 4b, verifying the randomness of the neutron–nucleus
collision. The numerical evaluation of Equation (23b) is highly sensitive to round-off error and requires
quadruple precision, which increases the computing time (normally under a minute) on a LENOVO
2.4 GHz YOGA platform by several seconds.

Figure 4. (a) Collided collision density to u = 0.5; (b) Collided collision density to u = 5.

How do we know that the distribution is indeed Gaussian? This can be shown relatively easily by
noting that a normalized Gaussian frequency is

f (x) =
1√

2πσ2
e(x−μ)2/2σ2

. (24a)

If each curve of Figure 4b is a Gaussian, then when, at each lethargy u, the distribution is normalized
by the area under the curve, which is F(u),

f̂ (x) =
Fx(u)

∞
∑

n=0
Fn(u)

, (24b)
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where x is now a continuous analogue of the collision number n. By equating Equations (24a) and
(24b) at their maxima μ:

1√
2πσ2

= f̂ (μ(u)), (24c)

where the collision number at maximum is

μ(u) =

∞
∑

n=0
nFn(u)

∞
∑

n=0
Fn(u)

, (24d)

there results
σ(u)2 =

1

2π f̂ (μ(u))2 . (24e)

With the parameters for the Gaussian now known, we can plot the two distributions as shown in
Figure 5. They are nearly graphically identical over u = [0.8, 12].

Figure 5. Comparison of calculated frequency of collision (a) and the corresponding Gaussian (b).
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6. Conclusions

Through a rather involved, rigorous mathematical derivation, verification of the obvious was
achieved. In particular, the connection between the increased physical smoothness of the collision
density distribution with lethargy and consequent singularities from monoenergetic source emission
was demonstrated. It was shown that, with increased collisions, the original source singularity becomes
submerged in the derivatives of the distribution function, resulting in smoothing of the distribution
function. In addition, the tendency of the collision frequency over the number of collisions to become
Gaussian with increased lethargy was also demonstrated.
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Abstract: Negative contribution of entropy (negentropy) of a non-cahotic system, representing the
potential of work, is a source of energy that can be transferred to an internal or inserted subsystem.
In this case, the system loses order and its entropy increases. The subsystem increases its energy
and can perform processes that otherwise would not happen, like, for instance, the nuclear fusion
of inserted deuterons in liquid metal matrix, among many others. The role of positive and negative
contributions of free energy and entropy are explored with their constraints. The energy available to
an inserted subsystem during a transition from a non-equilibrium to the equilibrium chaotic state,
when particle interaction (element of the system) is switched off, is evaluated. A few examples are
given concerning some non-ideal systems and a possible application to the nuclear reaction screening
problem is mentioned.

Keywords: negentropy; non-ideal systems; many-body correlations

1. Introduction

In thermodynamics and in statistical mechanics, the entropy enters, with a central role, into all
laws concerning systems in states of equilibrium and non-equilibrium: in reversible and irreversible
transformations and phase transitions, in Boltzmann and Gibbs classical and quantum extensive and
non-extensive statistics.

Entropy can be expressed as a total, compact, positive expression always increasing in isolated
systems during its time evolution towards equilibrium. Often, entropy is composed by a few different
terms and, when the system is not in an equilibrium chaotic state, at least one of them represents a
negative contribution to its evaluation.

The negative entropy (negentropy) contribution is present because of many different reasons
like the quantum Pauli exclusion or boson inclusion principles, the many-body correlations and
interactions among the single elements composing the system. Quantum exclusion-inclusion effects as
well as correlations and/or interactions produce order to the system decreasing the value of the total
entropy [1].

It is interesting to study the negative entropy contribution, different from the positive one,
because negentropy represents a stored mobilizable energy in organized systems. This quantity can be
spontaneously transferred or exchanged among the elements of the system, or from these elements to
an inserted subsystem, or from an organized environment to elements of a system [2,3]. In a non-ideal
system, as for instance gas, plasma or liquid and solid metal, composed by interacting or correlated
elements in a stationary non-equilibrium (long-life metastable) state, some energy can be transferred to
other particles of a subsystem (as for instance deuterons or very light nuclei) implanted into its volume
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size. The relative energy of the reacting deuteron nuclei can be increased by negentropy of a given
number of the system elements, allowing fusion reactions against Coulomb repulsion more easily [4].

Experimental measurements of nuclear fusion rates of deuterons inserted in a liquid or solid
metal matrix, impinged by accelerated deuterons of a given kinetic energy much greater than expected,
can be explained by means of the role of negentropy of the matrix. Other examples and applications can
be found in astrophysical plasmas, where often measured reaction rates are greater than expected [5,6].

The creation of order and energy of high value requires non-equilibrium conditions. If negative
entropy of the single elements is responsible for the energy transfer, we expect that small islands of
disorder, where negative entropy is spent, and islands of order, where negative entropy is received,
will be created. Without any action from outside the system, switching off the interaction among the
elements, makes the entropy increase or negative entropy decrease.

Our work is close to the papers by Sato [7,8] and by Yi-Fang Chang [9,10], but differs because we
evaluate the energy that can be transferred by means of negentropy to induce and facilitate processes
that without this transferred energy would be absent. However, our method is not an alternative to
that of Sato and that of Yi-Fang Chang but rather allows the study of particular situations in which
the previous methods are less appropriate. Sato has generalized the definition of negentropy that
becomes valid under general situations: negentropy represents the potential of work defined by
Kullback-Leibler information [11,12]; this is more appropriate than being defined by the difference
of entropies.

In this work we calculate the amount of energy that a single element of a system can transfer to
other internal elements or clusters of elements spending entropy-lowering (by means of negentropy)
when the interaction or the correlations among the elements are switched off or when their intensity
is lowered. A few evaluations are reported concerning non-ideal molecular gas, warm dense matter
(pseudo white dwarf) and nuclear matter while possible application to the screening of nuclear
reactions in plasmas is indicated.

We show the constraints to which negative and positive contributions of entropy and free energy
are submitted, explain how negentropy is linked to correlations among the elements of a system and
report how energy fluctuation is due to negentropy and therefore to correlations.

In Section 2 we define the different positive and negative contribution of entropy. In Section 3 we
report the suggestion by Clausius and Helmholtz concerning the splitting of entropy and free energy
in free and bound contribution. In Section 4 we present a different splitting of entropy and free energy
while in Section 5 we discuss the corresponding energy transfer mechanism. In Section 6 we give an
explicit example to evaluate the energy that can be exported by some elements of the system to an
inserted element of a subsystem in a non-ideal system; in Section 7 we report a few applications with
numerical examples. Conclusions are given in Section 8.

2. The Different Entropy Contributions

Let us consider a statistical system of elements (for instance laboratory plasma, astrophysical or
stellar plasma, solid and liquid metal, non-ideal gas, warm dense matter; the system can also be an
environment or a medium) that contains a subsystem (implanted nuclei, accelerated ions through
the system, special cluster of different particles). The system is composed of N elements much larger
than the number of elements of the subsystem. The subsystem interacts with a finite number M of
elements of the system with M ≪ N. For instance, in a time Δt during successive elastic collisions
or after a mean free path, the subsystem enters into an interaction with M elements of the system.
We assume that the system is not in a global thermodynamic equilibrium; it is not in a full disorder
chaotic state but has a certain degree of order. To be more precise, the system is in a stationary state
with a long lifetime (metastable state), its entropy is the sum of a positive and a negative contribution
because correlations and/or interactions are present, which are responsible, for isolated systems, for a
lower value of entropy. The negative terms are expression of the order and represent the correlation
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entropy contribution. Without any action from outside of the system, by switching off the interaction,
we impose the entropy to increase or the negative entropy to reduce.

Of course, the evolution in time of entropy is always positive for isolated systems; this is the same
for the entropy of an ensemble in equilibrium. For instance, a classical ideal gas is always the sum of
positive contributions.

However, if we introduce particle correlations, for instance and for simplicity, for quantum
effects like the Pauli exclusion or the inclusion-exclusion principle, that give a sort of order to the gas,
the related contributions to entropy are negative and the entropy decreases compared to its value for
classical, uncorrelated ideal gas.

Therefore, a system with correlations or interactions among the N elements, with a given potential
energy, has negative contribution in the entropy expression:

S = Sideal − Scorr , (1)

where Sideal is the maximum value of entropy that is the entropy of the equilibrium state and Scorr

is the contribute due to the correlations, Scorr was also called by Gibbs [13] “capacity of entropy or
negentropy”, by Brillouin [14] “input or information”, by Obukhov [15] “deficiency of entropy” and
by Sato [7,8] “potential of work or negentropy”.

If the interaction is a weak short-range, two-body interaction, the equilibrium distribution function
is still Maxwellian and the entropy is the sum of positive terms only.

A state of thermal equilibrium is chaotic at zero value of controlling parameters (an example
of a controlling parameter of interest here is the interaction two-body potential U(r) as discussed in
Section 7) and entropy is a measure of chaoticity or deviation from equilibrium of a state.

Non-equilibrium state does not remain constant after isolation because of irreversible processes
that are responsible for transitions to a state of equilibrium on the same energy shell. A stationary
state of non-equilibrium of a system is a time invariant state of an open system. The entropy of an
equilibrium state is greater than in state of non-equilibrium with non-zero value of control parameters.
Moreover, we can compare states of a different order (or chaoticity) only if they belong to the same
energy shell.

3. Clausius and Helmholtz Suggestion

Following Clausius and Helmholtz, it seems useful to divide the energy of a system in two parts
Eb and E f , where b is for bound and f for free [16–18]:

E = T S + F = Eb + E f , (2)

with Eb = T S the part of energy bound in thermal motion of molecules and E f = F the part of energy
free to perform work and coincides with the thermodynamical free energy.

In a system at equilibrium, with a given volume V, temperature T and number of elements N,
the value of entropy S is maximum and the value of free energy F is minimum. The more work that
can be produced, the greater the value of the entropy.

Like energy, entropy can also be divided into a bound and a free part

S = Sb + S f , (3)

where Sb is the entropy bound in the microscopic motion of molecules or the N elements of the system,
while S f is the entropy available for information processing or to produce work outside the system.
We argue that S f can also be exchanged among the elements or group of elements of the system or
with elements of an inserted subsystem.

Because of the splitting of S, it would be more correct, in place of the above definitions Eb = T S
and E f = F, to write:
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Ẽb = T Sb and Ẽ f = T S f + F . (4)

Then, the energy available to produce work becomes Ẽ f . In addition and for completeness, it would
be better also to split the free energy F in:

F = Fb + F f , (5)

where the quantities Fb and F f can be understood as it follows: at equilibrium F is minimum (Feq = Fb

which is a negative quantity) and F f = 0. Moving toward non-equilibrium state, taking T, V and N
constants, the positive quantity F f increases and the total F increases too.

By grouping all the terms with index b together and all the terms with index f together we obtain:

E
b = T Sb + Fb , and E

f = T S f + F f , (6)

with

E = Eb + E f = Ẽb + Ẽ f = E
b + E

f
. (7)

Therefore, the energy bound to microscopic motion is E
b

and the energy available for work is E
f
.

Clearly, at equilibrium total energy is E
b

and E
f = 0.

If during the transition from equilibrium to non-equilibrium, or vice versa, temperature, volume

and number of elements do not change, then Sb and Fb do not change, as well as E
b
.

4. A Different Subdivision of Free Energy and Entropy

In the following, we consider a system of independent elements and a system with elements
correlated or interacting through a potential and therefore with an entropy value lower than that
of a system with independent elements. We focus our attention on the subdivision of entropy and
free energy into the contributions related to equilibrium, where contributions to produce work are
absent if V, N and T remain constant, and into the contributions due to the presence of correlations or
interactions among the elements of the system. These are the contributions that can produce work and
can be spent internally and locally between elements of the system or can be spent outside the system
or to an inserted subsystem. In this way, the system will lose order and become more chaotic.

We may divide the total entropy in two parts: one positive and one negative. Accordingly and
differently from Decomposition (3), we consider:

S = S+ − S− , (8)

with S− > 0.
The contribution S− is due to correlations or interactions and brings order to the system; it can

also be thought of as an environment whose entropy at global thermodynamic equilibrium is given by
S+. Negentropy S− is available to transfer energy to other subjects and to do work.

Let us divide also the free energy F into two parts:

F = F+ − F− , (9)

with F− > 0; the part F+ can do work.
Since, the energy of the system is E = F + T S, we may write:

E = (F+ − F−) + T (S+ − S−) . (10)

As a consequence, not all the free energy F contributes to make work and the entire quantity of
T, S does not represent work.
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Comparing Equations (8) and (10) with Equations (3) and (5), we can write the following relations

Sb = S+ , and S f = −S− , (11)

as well as

Fb = −F− , and F f = F+ , (12)

so that

E
b = T S+ − F− , instead of Eb = T S , (13)

and

E
f = −T S− + F+ , instead of E f = F . (14)

5. Transfer of Energy

A system in global thermodynamic equilibrium with entropy S = S+ does not have energy to
spend outside. On the other hand, a system, with entropy S = S+ − S− can transfer energy to an
inserted subsystem that, entering in interaction during a mean free path with M elements, can receive
an average energy from negentropy up to the quantity M T S−/N. The system loses order, and the
subsystem gains energy.

If the M elements of the system that interact with the subsystem transfer their available energy to
the subsystem at constant temperature T, the variation of energy is:

ΔE = T ΔS +ΔF . (15)

For simplicity of notation we define entropy S , energy E and free energy F per element, that is S = S/N,
E = E/N and F = F/N.

The total energy variation of the system, after transfer of some amount of energy to the subsystem
with a transition from the initial state 1 to the final state 2, is:

ΔE = E2 − E1 = T (S+2 −S+1 ) − T (S−2 −S−1 ) + (F+2 −F+1 ) − (F−2 −F−1 )
= T (ΔS+ −ΔS−) +ΔF+ −ΔF−
= (−T ΔS− +ΔF+) + (T ΔS+ −ΔF−)
= ΔE f +ΔEb . (16)

Toward the equilibrium, the free energy F must diminish and the entropy S must increase, therefore
ΔF < 0, ΔS > 0, that is ΔF+ < ΔF− and ΔS+ > ΔS−, or:

F+2 −F−2 − < F+1 −F−1 , (17)

S+2 −S−2 > S+1 −S−1 . (18)

If the system loses energy (ΔE < 0, i.e., ΔEb + ΔE f < 0), the work to the subsystem is made by F+
and/or S− and

ΔF+ −ΔF− < T (ΔS− −ΔS+) . (19)

The total exchanged energy Eex between the system and the subsystem, at constant temperature, is:

Eex = M (−T S−1 +F+1 ) , (20)
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so that the residual total energy Eres of the system becomes:

Eres = E1 − Eex

= N [T (S+1 −S−1 ) +F+1 −F−1 ] −M (−T S−1 +F+1 )
= −(N −M)T S−1 + (N −M)F+1 +N (T S+1 −F−1 ) . (21)

In the transfer of energy from the initial state to the final state, all the above relations should be satisfied
because of the increase of total entropy S and the decrease of F.

The important point is that the expression to evaluate the transferred energy on the work that can
be performed is not E = F = F+ − F−. It is instead given by the difference of the positive free energy
F+ and the negentropy contribute T S−. This means that a part of entropy also contributes to perform
work and a part of free energy contributes to produce heat or non-information. F+ and S− are different
from zero when the elements of the ensemble are submitted to correlations or interactions. These
two quantities go to zero when the system goes to equilibrium. In this case, the remaining quantities
different from zero are F− and S+ ≡ Seq, while S− can be identified with negentropy or lowering of
entropy S− = Seq −ΔS.

In conclusion, let us describe two examples to evaluate the energy that can be exported or
imported by the system during a process.

We recall that sometimes [9,10], the variation of entropy of a system is divided into internal Sint

and external Sext entropy (the internal entropy is related to irreversible processes):

ΔS = ΔSext +ΔSint , (22)

ΔSint ≥ 0 is required by the second law of thermodynamics.

- Case of exporting entropy

We study first the conditions required to prepare a system with an entropy lower than its greatest
value when at equilibrium. Since the order increases if the entropy decreases, the system can have
lower entropy not only exporting entropy but also importing negentropy. Of course, the system that
exports negentropy increases its entropy.

We want ΔS < 0 to increase the order of the system, so that:

−ΔSext > ΔSint ≥ 0 . (23)

This expression represents the thermodynamic condition for self-organization. We must export more
entropy than the entropy variation for the irreversible internal transformations. In fact, from relation:

ΔS = (Sext
2 − Sext

1 ) +ΔSint < 0 , (24)

and using ΔSint ≥ 0, we get the condition Sext
1 > Sext

2 , that is, the external entropy should decrease.
We repeat the relations of the above transition by using our definition of entropy (8), that is:

ΔS = ΔS+ −ΔS− < 0 . (25)

By identifying

ΔS+ ≡ ΔSint ≥ 0 , (26)

and

ΔS− ≡ −ΔSext , (27)
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the condition (25) gives

0 ≤ ΔS− < ΔS+ . (28)

Therefore, negentropy increases, the order increases and the positive contribution must increase in a
quantity to keep valid the condition ΔS < 0.

- Case of importing entropy

The opposite case is when the system increases its entropy ΔS > 0. Since the order decreases
if the entropy increases, the system can have higher entropy not only importing entropy but also
exporting negentropy.

We want

ΔSext > −ΔSint , (29)

that is, internal entropy increases, therefore external entropy may decrease quite a lot despite total
entropy increasing. However, the disorder shall increase.

In this case, by using our definition, we have:

ΔS+ > ΔS− , (30)

that is assured if ΔS− < 0 since ΔS+ ≡ ΔSint ≥ 0. Therefore, positive contribution increases more than
negative contribution is exported. Entropy increases because negentropy is exported.

6. An Explicit Example to a Non-Ideal System

We define free energy F and entropy S for a non-ideal system of elements interacting by the
two-body potential U(r) following [19]. The two quantities F− and F+ reads:

F− = k T ln A(T) , (31)

F+ = k T N n B(T) , (32)

with n = N/V, where

A(T) = VN

N!
(2 π m k T

h2 )3 N/2
, (33)

B(T) = 2 π

∞

∫
0

(1− exp(−U(r)
k T
)) r2 dr , (34)

and from the thermodynamical relation

S = −( ∂F
∂T
)

V,N
, (35)

and using the Decompositions (8) and (9), we have

S+ = (∂F−

∂T
)

V,N
, S− = (∂F+

∂T
)

V,N
. (36)

Therefore, we get

T S+ = k T ln A(T) + 3
2

N k T , (37)

T S− = k T N n B(T) −N n C(T) , (38)
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where

C(T) = 2 π

∞

∫
0

U(r) exp(−U(r)
k T
) r2 dr , (39)

so that, the energy becomes

E = F + T S = N (3
2

k T + n C(T)) . (40)

We consider the two following cases:

1. Transition from nonequilibrium to equilibrium by switching off the interaction: from the state
(T, V, N, U(r) /= 0) to (T̂, V, N, U(r) = 0). The energy difference is

ΔE = N (3
2

k ΔT + n ΔC(T)) , (41)

with ΔT = T̂ − T.

The second term ΔC(T) derives from terms containing the interaction U(r).
Let us consider a system in interaction whose potential can be modelled by an average energy
value ⟨U(r)⟩ with an interaction radius equal to Rc. Then, Equations (37) and (38) still hold
where now

B(T) = 2
3

π R3
c (1− exp(−⟨U(r)⟩

k T
)) , (42)

C(T) = 2
3

π ⟨U(r)⟩R3
c exp(−⟨U(r)⟩

k T
) . (43)

When the interaction is switched off, the same amount of energy calculated above can transfer to
one element of the system itself (or a cluster of elements) by at most M ≪ N elements during
a time Δt between two successive elastic collisions while the element performs a mean path
length. The accelerated element (or cluster) can later give back the acquired energy to other
elements. The energy of an element, during the non-equilibrium to equilibrium transition with
switching off the interaction or correlation U(r), fluctuates of the order of T S−/N and the energy
per particle gained before is 3

2 kΔT + n ΔC(T). The bulk properties of the system do not change,
however, locally, a modification of the features of the site can be observed.

2. Transition from equilibrium state (T, V, N, U(r) = 0) to the equilibrium state (T, V̂, N, U(r) = 0):
ΔF ≡ ΔF− = N k T ln( V̂

V
) = −p ΔV , (44)

where ΔV = V̂ −V and p ΔV is the work performed outside the system. This relation implies
ΔS = ΔS+, so that

Q = −N k T ln( Ṽ
V
) , (45)

is the heat received from the outside to maintain T constant and ΔE = 0.

7. Some Possible Applications

We report a few applications to several non-ideal systems described by simple models just to
have an indication of the order of magnitude we might expect from the negentropy effect described in
the previous sections.
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- Molecular gas

We consider a non-ideal gas with two-body interaction modelled by ⟨U(r)⟩ = 2 × 10−2 eV with
Rc = 5× 10−8 cm. At temperature T = 300 K, corresponding to the thermal energy k T = 2.6× 10−2 eV
per donor, and a particle density n = 1020 cm−3, the negentropy transfer of energy is T S− = 4× 10−6 eV.
Otherwise, changing the average potential value in ⟨U(r)⟩ = 10−1 eV and the particle density in
n = 1022 cm−3, we obtain T S− = 5× 10−2 eV.

- Warm dense matter (a pseudo white dwarf) and nuclear matter

We consider a non-ideal neutral gas, composed by a background of α-particles (He4 nuclei) and
a degenerate Fermi gas of electrons. The system looks like a pseudo white dwarf made of a warm,
dense matter. Let us focus our attention to the inert α-particle gas with the following parameters:
n = 1030 cm−3; T = 107 K, corresponding to the thermal energy k T = 860 eV, and Rc = 10−10 cm
(the range of average correlated α − α screened potential).

We evaluate the energy that a single element can transfer as a function of ⟨U(r)⟩/k T (the value of
⟨U(r)⟩ depends on the assumption of the screening model) given by (38). If we take ⟨U(r)⟩/k T = 10−2,
each element can transfer 18 eV of energy that reduces to 9 eV if ⟨U(r)⟩/k T = 5× 10−3.

During a mean free path λ inside the system, an α-particle or an ion or deuteron inserted into the
system interacts with M≪ N elements and can transfer to it the energy given by

M
N

T S− = n π R2
c λ T S−

= 2
3

π2 R5
c

σ
n k T [1− (1+ ⟨U(r)⟩

k T
) exp(−⟨U(r)⟩

k T
)] . (46)

We assume a mean free path λ = 10−9 cm and recalling that σ = 1/(n λ), the elastic cross section
is σ = 10−21 cm2. The value of M is about 30 particles so that the total energy transferable is 550 eV if
⟨U(r)⟩/k T = 10−2 and reduces to 280 eV if ⟨U(r)⟩/k T = 5× 10−3.

This amount of energy does not change the bulk property of the system, nevertheless it can
improve the probability of an α − α or an α-nucleus fusion reaction inside the pseudo white dwarf.
A description and result analogous to those of a pseudo white dwarf can be made for a system of
nuclear matter where the kinetic energy of an element (nucleon) could be increased by means of M
elements donors of negentropy.

- Liquid metals

A great number of liquid metals have a negentropy of about 2.5 eV [20,21]. An inserted subsystem
can receive a few hundred eV when it interacts with 100 elements during a mean free path.

For instance, in liquid metals with implanted deuterons, the fusion reaction rate with deuterons
accelerated through the metal increases because the term M T S− increases the kinetic energy of the
colliding nuclei [4]. This permits an easier passage through the Coulomb barrier by the tunnel effect.
This effect is in addition to electron screening, stopping power and other microscopic effects.

- Nuclear reaction in plasmas

Another important application concerns the screening of nuclear reactions in plasmas slightly far
from equilibrium. It is well known that the rate of nuclear fusions in a plasma grows with the plasma
screening effect. In the weak screening regime with plasma parameter Γ < 1, Salpeter’s approach
works. A colliding pair of equal nuclei with relative kinetic energy receive an extra kinetic energy
given by (Z e)2/λD, where the Debye-Hückel length is λ2

D = k T/n (Z e)2, and the Coulomb tunneling
becomes easier.

In addition to this increment, we can introduce another one due to the negative entropy effect of
plasma to the colliding pair. The expression of negentropy can be derived from internal and excess free
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energy given in [22,23]. Beyond the Debye-Hückel, other terms representing negative contributions
to entropy permit the surrounding particles, while two nuclei are tunneling toward one another, to
transfer energy making close approach easier against the repulsive Coulomb potential.

The same plasma negentropy effect can be introduced in measurements of correlations enhanced
collision rates using cryogenic non-neutral plasmas [24].

- Fluctuations

As a final example that deserves further attention, let us now consider a part of the system itself
instead of a subsystem of a different nature from the system or medium.

We divide the system of N elements in W cells of an elementary volume τ = h/π, where h is
the Planck constant and π is the phase space momentum volume. The cell A may receive in time
Δt the energy Z T S−, being Z the number of elements interacting with the cell A (Z ≪ N). In a
successive time Δt, the cell A can lose the energy received because other cells of the system enter into
an interaction with it. Therefore, the energy of each element fluctuates based on the quantity T S−.
The time Δt is given by the uncertainty principle: Δt ≈ h/T S−. For instance, a system at k T = 10 eV,
with S− = 3.5× 10−4 eV/K, we obtain Δt = 10−16 s, that is the time between two elastic collisions of the
cell. In this time, any element of the cell fluctuates in energy of the quantity T S− ≈ 40 eV. We conclude
that the energy fluctuation of a system in a given time is induced by the presence of negentropy, which
occurs because of the existence of correlations among the elements of the system, as it can be expected
(all details on the evaluation of this effect will be given elsewhere).

A list of systems with important negative contributions to entropy is reported in works by
Yi-Fang Chang [9,10]. Chang reported the decrease of entropy in macroscopic thermodynamics
quantities in many different isolated systems submitted to gravitational interactions, attractive
electromagnetic interactions, and strong nuclear interaction (weak nuclear being excluded). From
microscopic nuclear, atomic, molecular, and nano-physical theories, one can obtain the decrease of
entropy in macroscopic thermodynamics.

8. Conclusions

Since the early works by Szilard [25], Schrödinger [26] and Brillouin [27], many researchers have
learned how useful it is to apply the concept of negentropy in many complex problems in physics,
biology and information science. Later, Sato [7,8] has generalized the definition of negentropy and
his last proposal was linked to the Kullback-Leibler approach to statistical mechanics [11,12]. This
definition allows the use of negentropy not only in isolated systems but also in a wider class of systems.
Yi-Fang Chang [9,10] has recently remarked that negentropy enters into the description of many
different physical situations.

Our contribution in this paper is that by separating the positive from the negative contribution of
entropy, we may suggest that a subsystem inserted into a non chaotic system can benefit from a certain
amount of energy transferred by a group of elements of the system, those that within a certain amount
of time enter into an interaction with the subsystem itself.

In a few cases we have made approximate calculations of the energy that each element of the
system can transfer. The number of elements in the subsystem is much smaller than those of the
system and interact with a small part of elements before participating in processes, like nuclear fusion
and Coulomb tunnelling that, without the transferred energy, would be absent. The system in this
transfer of energy through the negentropy does not change its bulk properties. We have evaluated in a
few cases the amount of energy that can be transferred per element. Further applications to turbulent
motion and screening problems of thermonuclear reactions are in progress.
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