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Abstract

In this paper, we evaluate specification and pricing error for the Consumption (C-) CAPM

in the case where the model is optimally scaled by consumption-wealth ratio (CAY). Lettau and

Ludvigson (2001b) show that the C-CAPM successfully explains a large portion (about 70%) of

the cross-section of expected returns on Fama and French’s size and book-to-market portfolios,

when the model is scaled linearly by CAY. In contrast, we use the methodology developed in

Basu and Stremme (2005) to construct the optimal factor scaling as a (possibly non-linear)

function of the conditioning variable (CAY), designed to minimize the model’s pricing error.

We use a new measure of specification error, also developed in Basu and Stremme (2005),

which allows us to analyze the performance of the model both in and out-of-sample.

We find that the optimal factor loadings are indeed non-linear in the instrument, in contrast

to the linear specification prevalent in the literature. While our optimally scaled C-CAPM

explains about 80% of the cross-section of expected returns on the size and book-to-market

portfolios (thus in fact out-performing the linearly scaled model of Lettau and Ludvigson

(2001b)), it fails to explain the returns on portfolios sorted by industry. Moreover, although

the optimal use of CAY does dramatically improve the performance of the model, even the

scaled model fails our specification test (for either set of base assets), implying that the model

still has large pricing errors. Out-of-sample, the performance of the model deteriorates further,

failing even to explain any significant portion of the cross-section of expected returns. For

comparison, we also test a scaled version of the classic CAPM and find that it has in fact

smaller pricing errors than the scaled C-CAPM.

JEL Classification: C31, C32, G11, G12

Keywords: Asset Pricing, Portfolio Efficiency, Conditional Factor Models
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1 Introduction

The consumption-based framework for asset pricing, going back to Lucas (1978), is one of

the most powerful theoretical paradigms in finance. Most asset pricing models, including

the classic CAPM, can be obtained as special cases of, or as proxies for, this model. In

addition, the consumption-based framework addresses many of the criticisms leveled at the

classic CAPM, such as its failure to account for hedging demands (Merton 1973) or the fact

that the market portfolio cannot be proxied by a portfolio of common stocks (Roll 1977).

The poor empirical performance of the consumption (C-) CAPM, as documented among

others by Hansen and Singleton (1982), and Breeden, Gibbons, and Litzenberger (1989), is

thus a puzzle.

In a recent paper, Lettau and Ludvigson (2001b) attempt to resurrect the consumption

CAPM by considering a modified version of the model, where the consumption growth factor

is scaled by lagged consumption-wealth ratio (CAY), the variable introduced by Lettau and

Ludvigson (2001a) and shown to have considerable ability in predicting asset returns1. They

use the approach of Campbell and Cochrane (2000), which expresses a conditional factor

model as an unconditional one in which the factor loadings are constant but the factors

themselves are scaled by the conditioning variable. They find that this model out-performs

the unscaled versions of the C-CAPM in explaining the cross-section of expected returns on

the 25 size and book-to-market portfolios of Fama and French. In particular, they claim

that the celebrated ‘value premium’ can be largely explained by the covariance of an asset’s

return with scaled consumption growth.

Subsequently a number of studies, for example Hodrick and Zhang (2001), have analyzed the

Lettau-Ludvigson framework and found that the model fails various specification error tests,

suggesting that the model is mis-specified and thus can have large pricing errors particularly

1See also Abhyankar, Basu, and Stremme (2005). Note however that CAY has been criticized on the

grounds of the ‘look-ahead bias’ inherent in its construction, see Brennan and Xia (2005).
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out-of-sample, even though it does a reasonable job of explaining the cross-section of expected

returns. These studies thus cast doubt as to whether the scaled C-CAPM can indeed be

a true asset pricing model. Note that the conditional linear specification, in which asset

betas are constant but the factors are scaled by the conditioning instruments, is equivalent

to a specification with unscaled factors but time-varying betas. Ghysels (1998) analyzes

this latter specification and finds that out-of-sample such models tend to have in fact larger

pricing errors than unscaled models.

In this paper, we construct an optimally scaled version of the consumption CAPM and

investigate whether it can be a true asset pricing model. We regard the scaled factor model

as one in which the factor loadings are time-varying, an approach first advocated by Ferson,

Kandel, and Stambaugh (1987), Harvey (1989), and Shanken (1989). We improve upon

the existing empirical literature in two ways; first, we do not constrain the factor loadings

(betas) to be linear functions of the instruments as advocated in these papers. In fact, our

methodology allows us to construct the optimal2 factor loadings as (typically non-linear)

functions of the instrument (CAY). Our approach thus gives the model the best possible

ex-ante chance of success, because the optimal use of the instrument is likely to reduce

the specification errors for betas relative to the linear specification. As a consequence, our

methodology allows us to assess whether any version of the C-CAPM, scaled or not, can ever

be a true pricing model. Second, our framework also allows us to assess whether the model

prices actively managed portfolios correctly, where the portfolio weights are optimal (in the

sense of mean-variance efficiency) functions of the instrument. This is important because

once the factor risk-premia are allowed to be time-varying functions of some conditioning

information, it is unrealistic not to allow the same information to be used in the formation

of portfolios. In other words, conditioning information makes pricing models more flexible,

but also enlarges the space of assets the model is required to price. The optimal use of

conditioning information in portfolio formation was first studied in Hansen and Richard

2Here, ‘optimal’ is defined as minimizing the in-sample pricing errors induced by the scaled model.
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(1987), and more recently in Ferson and Siegel (2001).

In order to assess whether a given (set of) factor(s) can give rise to a true asset pricing

model, we use a new measure of specification error for scaled factor models, developed in

Basu and Stremme (2005). This test exploits the close links between the stochastic discount

factor framework and mean-variance efficiency. Specifically, the test measures the distance

between the efficient frontier spanned by the factors (or factor-mimicking portfolios) and the

frontier spanned by the traded assets. We show that a conditional factor model is a true

asset pricing model if and only if the two frontiers coincide, i.e. if and only if our distance

measure evaluates to zero. We also show that our test is proportional to the difference in

maximum squared Sharpe ratios in the spaces of returns generated by managed portfolios

of the traded assets and the factor-mimicking portfolios, respectively. As a consequence, we

show that the model is a true asset pricing model if and only if it is possible to construct

a dynamically managed strategy, using the factor-mimicking portfolios as base assets, that

is unconditionally mean-variance efficient relative to the frontier spanned by the traded

assets. This enables us to study the performance of the model both in and out-of-sample.

To facilitate a direct comparison with the results of Lettau and Ludvigson (2001b), we

also analyze how well the optimally scaled model succeeds in explaining the cross-section

of expected returns. It should be pointed out however that the latter is only a necessary

and not sufficient condition for the model to be a true asset pricing model. This is because

unconditional moments are insufficient to assess conditional pricing errors.

We test the model on two different sets of traded assets; the 5× 5 portfolios sorted by size

and book-to-market ratio, as used in Lettau and Ludvigson (2001b), as well as 30 portfolios

sorted by industry. We find that the C-CAPM, optimally scaled by CAY, can explain about

80% of the cross-section of expected returns on the 5×5 size and book-to-market portfolios,

thus out-performing the linearly scaled model considered in Lettau and Ludvigson (2001b).

Since the unscaled (C-)CAPM is found to explain no more than 10-20% of the cross-section

of expected returns, these results seem to confirm the power of CAY as a scaling instrument.

In particular, the optimally scaled C-CAPM indeed seems to explain a large portion of the
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size and value premia documented famously by Fama and French (1992).

However, when the model is tested on the 30 industry portfolios, even the optimally scaled

C-CAPM explains only about 10% of the cross-section of expected returns. In this case, the

scaled model in fact performs slightly worse than the corresponding unscaled version. This

indicates that the model scaled by CAY, while capturing part of the size and value premia, is

nonetheless mis-specified, consistent with the findings of Hodrick and Zhang (2001). More-

over, out-of-sample the scaled model does not succeed in explaining any significant portion

of the cross-section of expected returns on either of the two sets of base assets considered.

To assess the performance of the C-CAPM as a conditional asset pricing model, we then

construct factor-mimicking portfolios in the asset spaces, using the methodology developed

in Basu and Stremme (2005)3. We then use these to construct the optimal factor loadings

as functions of the conditioning instrument, and evaluate our measure of model specification

error. We find that the optimal scaling function for the consumption-growth factor is in

fact highly non-linear in the instrument, in contrast to the linear specification that is used

predominantly in the existing literature. This explains the superior performance of the

optimally scaled model in explaining the cross-section of expected returns, as compared to

the linearly scaled model of Lettau and Ludvigson (2001b).

The in-sample estimates of our specification error test show that the optimal use of CAY as

scaling instrument indeed significantly improves the performance of the model. In the case

of the size and book-to-market portfolios, the optimal use of CAY more than doubles the

factor Sharpe ratio (from 0.22 to 0.51). In contrast, the optimal use of CAY in portfolio

formation widens the frontier spanned by the base assets only marginally (the Sharpe ratio

increases from 1.49 to 1.80). The latter is due to the fact that the size and value effect largely

dominates the predictive power of CAY. Our results are quite different in the case where

3Similar expressions for factor-mimicking portfolios are also derived, using a slightly different approach,

in Ferson, Siegel, and Xu (2005).
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the base assets are the 30 industry portfolios. While the Sharpe ratios in all cases are much

lower than for the size and book-to-market portfolios, the relative effect of introducing CAY

as scaling instrument is more dramatic4. While the slope of the asset frontier almost doubles

(the Sharpe ratio increases from 0.90 to 1.57), the factor Sharpe ratio increases dramatically

from only 0.04 to 0.53.

However, while the optimal use of CAY clearly improves the performance of the consumption

CAPM, the model nonetheless fails our specification test, indicating that pricing errors

are still large. In the case of the size and book-to-market portfolios, the factor-mimicking

portfolio achieves only about 40% of the fixed-weight asset Sharpe ratio, and less then 30%

of the maximum Sharpe ratio of active portfolios. In other words, even when CAY is used

optimally, the model is seriously mis-specified, producing considerable pricing errors even

when asked to price only static portfolios. While the model performs slightly better in the

case of the 30 industry portfolios, the factor-mimicking portfolio still achieves only about

one third of the optimal asset Sharpe ratio. It does, however, achieve about 60% of the

fixed-weight Sharpe ratio, indicating that the model comes considerably closer to being able

to price the static industry portfolios than it does the size and book-to-market portfolios.

In comparison we find that the ‘classic’ CAPM, while still falling short of being a true asset

pricing model, shows considerably better performance. In particular, the factor-mimicking

portfolio associated with excess market returns achieves more than 80% of the fixed-weight

Sharpe ratio for the 30 industry portfolios. Moreover, while the performance of the C-CAPM

deteriorates further out-of-sample, the performance of the classic CAPM is more robust.

Our analysis shows that the optimal use of lagged consumption-wealth ratio does significantly

improve the performance of the model. However our conclusion is that while the consumption

CAPM scaled by CAY does indeed explain a significant portion of cross-section of expected

returns in-sample for the size and book-to-market portfolios, it still has large pricing errors.

4These results are consistent with the findings of Abhyankar, Basu, and Stremme (2005), who compare

the predictive ability of various conditioning instruments.
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Our findings also prove that the linear scaling prevalent in the literature is clearly sub-

optimal, leading to larger-than-necessary specification errors. We find that no version of the

consumption CAPM scaled by CAY passes our specification test, failing even to price static

portfolios. The performance of the model deteriorates considerably out-of-sample which may

be due, in part, to the look-ahead bias in the construction of CAY, as observed in Brennan

and Xia (2005). Our findings suggest that researchers should look to incorporate additional

factors in order to significantly improve the performance of the model. For example, Basu

and Stremme (2005) show that the Fama-French 3-factor model, augmented by skewness

and kurtosis factors, successfully prices static portfolios.

The remainder of the paper is organized as follows. Section 2, describes the model and

establishes our notation. In Section 3, we outline the theoretical methodology and develop

our test, while Section 4 focuses on the empirical analysis. Section 5 concludes. The proofs

of the mathematical results stated in this paper are available from the authors upon request.

2 Set-Up and Notation

In this section, we define the model and establish our notation. We construct the sets of

‘actively managed’ portfolios of the base assets and the factor-mimicking portfolios.

2.1 Traded Assets and Managed Pay-Offs

The information flow in the economy is described by a discrete-time filtration (Ft)t, defined

on some probability space (Ω,F , P ). We fix an arbitrary t > 0, and consider the period

beginning at time t − 1 and ending at t. Denote by L2
t the space of all Ft-measurable

random variables that are square-integrable with respect to P . We interpret Ω as the set

of ‘states of nature’, and L2
t as the space of all (not necessarily attainable) state-contingent

pay-off claims, realized at time t.

8



Traded Assets:

There are n traded risky assets, indexed k = 1 . . . n. We denote the gross return (per dollar

invested) of the k-th asset by rk
t ∈ L2

t , and by R̃t := ( r1
t . . . rn

t )′ the n-vector of risky asset

returns. In addition to the risky assets, a risk-free is traded with gross return r0
t = rf .

Conditioning Information:

To incorporate conditioning information, we take as given a sub-σ-field Gt−1 ⊆ Ft−1. We

think of Gt−1 as summarizing all information on which investors base their portfolio decisions

at time t− 1. In our empirical applications, Gt−1 will be chosen as the σ-field generated by

lagged consumption-wealth ratio (CAY)5. To simplify notation, we write Et−1( · ) for the

conditional expectation operator with respect to Gt−1.

Managed Portfolios:

We allow for the formation of managed portfolios of the base assets. To this end, denote by

Xt the space of all elements xt ∈ L2
t that can be written in the form,

xt = θ0
t−1rf +

n∑

k=1

( rk
t − rf )θk

t−1, (1)

for Gt−1-measurable functions θk
t−1. To simplify notation, we write (1) in vector form as

xt = θ0
t−1rf +( R̃t− rfe )′ θt−1, where e is an n-vector of ‘ones’. We interpret Xt as the space

of managed pay-offs, obtained by forming combinations of the base assets with time-varying

weights θk
t−1 that are functions of the conditioning information.

Pricing Function:

Because the base assets are defined by their returns, we set Πt−1( rk
t ) = 1 for k = 0, 1, . . . n,

and extend Πt−1 to all of Xt by conditional linearity. In particular, for an arbitrary pay-off

5Other examples of conditioning variables considered in the literature include, among others, dividend

yield (Fama and French 1988), or interest rate spreads (Campbell 1987),
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xt ∈ Xt of the form (1), it is easy to see that Πt−1( xt ) = θ0
t−1. By construction, the pricing

rule Πt−1 satisfies the ‘law of one price’, a weak from of no-arbitrage condition.

2.2 Stochastic Discount Factors

We use the stochastic discount factor framework to define what it means for a set of factors

to give rise to an admissible asset pricing model.

Definition 2.1 By an admissible stochastic discount factor (SDF) for the model ( Xt, Πt−1 ),

we mean an element mt ∈ L2
t that prices all base assets conditionally correctly, i.e.

Et−1( mt r
k
t ) = Πt−1( rk

t ) = 1 for all k = 0, 1, . . . n. (2)

The existence of at least one SDF is guaranteed by the Riesz representation theorem, but

unless markets are complete it will not be unique. Much of modern asset pricing research

focuses on deriving plausible SDFs from principles of economic theory, and then empirically

testing such candidates against observed asset returns. Note that in our definition, the SDF

is required to price the base assets conditionally. The vast majority of asset pricing model

tests considered in the literature have used the unconditional version of (2). In our setting,

we allow both assets and factors to be dynamically managed, and thus we are testing the

conditional version of the pricing equation. Note also that, if mt is an admissible SDF in

the sense of (2), linearity implies Et−1( mt xt ) = Πt−1( xt ) for any arbitrary managed pay-off

xt ∈ Xt. In other words, an SDF that prices all base assets correctly is necessarily compatible

with the pricing function Πt−1 for managed pay-offs. Taking expectations we obtain,

E( mt xt ) = E( Πt−1( xt ) ) =: Π0( xt ). (3)

In other words, any SDF that prices the base assets (conditionally) correctly must necessarily

also be consistent with the unconditional pricing rule Π0. In fact, it is easy to show that

a candidate mt is an admissible SDF if and only if (3) holds for all xt ∈ Xt. We can thus
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interpret (3) as a set of moment conditions that any candidate SDF must satisfy. There

are many empirical techniques (e.g. GMM) to estimate and test such restrictions. However,

as the space Xt of ‘test assets’ is infinite-dimensional, such tests will typically yield only

necessary but not sufficient conditions for the SDF.

This problem can be overcome by exploiting the close link between the SDF framework

and mean-variance efficiency. More specifically, one can obtain necessary and sufficient

conditions by testing how the candidate SDF acts on the unconditionally efficient frontier in

the space Xt of managed pay-offs (see Section 3 below). By two-fund separation, this reduces

the test to a one-dimensional problem. Motivated by this observation, we set Rt = Π−1
0 {1}.

In other words, Rt is the set of all managed pay-offs that have unit price and thus represent

the returns on dynamically managed portfolios.

2.3 Conditional Factor Models

Our focus here is not the selection of factors, but rather the construction and testing of

models for a given set of factors. Therefore, we take as given m factors, F i
t ∈ L2

t , indexed

i = 1 . . . m. Denote by F̃t = ( F 1
t , . . . , Fm

t )′ the m-vector of factors. In general we do not

assume the factors to be traded assets, that is we may have F i
t %∈ Xt.

Definition 2.2 We say that the model ( Xt, Πt−1 ) admits a conditional factor structure, if

and only if there exist Gt−1-measurable functions at−1 and bi
t−1 such that,

mt = αt−1 +
m∑

i=1

F i
t bi

t−1 (4)

is an admissible SDF for the model in the sense of Definition 2.1.

We refer to the coefficients bi
t−1 as the conditional factor loadings of the model and write (4)

in vector notation as mt = αt−1 + F̃ ′
t bt−1. We emphasize that the above specification defines

a conditional factor model, in that the coefficients at−1 and bi
t−1 are allowed to be functions
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of the conditioning information. In other words, in this specification the conditional risk

premia associated with the factors are allowed to be time-varying. This potentially gives the

model the flexibility necessary to price also managed portfolios, since the co-efficients of the

model can respond to the same information that is used in the formation of portfolios.

Factor-Mimicking Portfolios:

Since the factors need not be traded assets, we construct factor-mimicking portfolios within

the space Rt of managed returns.

Definition 2.3 An element f i
t ∈ Xt is called a factor-mimicking portfolio (FMP) for the

factor F i
t ∈ L2

t if and only if Πt−1( f i
t ) = 1, and

ρ2
(
f i

t , F i
t

)
≥ ρ2

(
rt, F i

t

)
for all rt ∈ Xt with Πt−1( rt ) = 1. (5)

Note that we define an FMP via the concept of maximal correlation with the factor. In

the literature, it is also common to characterize factor-mimicking portfolios by means of an

orthogonal projection6. However, it can be shown that these characterizations are in fact

equivalent. To define our test, we now take the factor-mimicking portfolios themselves as

base assets, and consider the space of pay-offs attainable by forming managed portfolios of

FMPs. Specifically, denote by XF
t the space of all xt ∈ L2

t that can be written in the form,

xt = φ0
t−1rf +

m∑

i=1

( f i
t − rf )φi

t−1, (6)

for Gt−1-measurable functions φi
t−1. By construction, Πt−1( xt ) = φ0

t−1 for any xt ∈ XF
t

of the form (6). Mimicking the construction in the preceding section, we define the set of

returns in this space as RF
t = Rt ∩XF

t .

6This is for example the approach taken in Ferson, Siegel, and Xu (2005).
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3 Tests of Conditional Factor Models

In this section, we define a new measure of model mis-specification in the presence of con-

ditioning information, as developed in Basu and Stremme (2005). This measure gives rise

to a necessary and sufficient condition for a given set of factors to constitute a viable asset

pricing model. Moreover, we show that our measure is closely related to the shape of the

efficient portfolio frontier in the augmented pay-off space.

As a starting point, we take as given an unconditionally efficient benchmark return r∗t ∈ Rt.

Although the results outlined below can be shown to be robust with respect to the choice

of benchmark return, we follow Hansen and Jagannathan (1997) and take r∗t as the return

with minimum unconditional second moment in Rt.

Definition 3.1 For given factors F̃t, the model misspecification error is defined as,

δF := inf
rt∈RF

t

σ2( r∗t − rt ), (7)

where RF
t is the space of managed portfolios of FMPs as defined in (6).

In other words, δF measures the minimum variance distance between the efficient benchmark

return r∗t and the return space RF
t spanned by the factor-mimicking portfolios. The following

properties, proven in Basu and Stremme (2005), motivate the interpretation of δF as a

measure of model mis-specification;

(i) One can show that for given set of factors F̃t, the model admits a factor structure in

the sense of Definition 2.2 if and only if δF = 0. In other words, our measure defines

a necessary and sufficient condition for for conditional factor models.

(ii) By construction, r∗t attains the maximum Sharpe ratio λ∗ in the space Rt of managed

returns. One can show that any rF
t ∈ RF

t that attains the minimum in (7) also attains

the maximum Sharpe ratio λF in the return space RF
t spanned by the FMPs.
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(iii) Moreover, it can be shown that δF is proportional to the difference in squared Sharpe

ratios, λ2
∗−λ2

F . In other words, δF measures the distance between the efficient frontiers

spanned by the base assets and by the factors, respectively.

As a consequence of (i) and (ii), it follows that a given factor model is a true asset pricing

model if and only if it is possible to construct a dynamic portfolio of the FMPs that is

unconditionally mean-variance efficient in the asset return space. Thus, our condition is

an extension of the Gibbons, Ross, and Shanken (1989) test to the case with conditioning

information. In fact, the resulting test statistic is similar to a standard Wald test.

3.1 Factor-Mimicking Portfolios

We now give an explicit characterization of the factor-mimicking portfolios as ‘managed’

portfolios of the base assets. We define the conditional moments,

µt−1 = Et−1( R̃t − rfe ), and Λt−1 = Et−1

(
( R̃t − rfe )( R̃t − rfe )′

)
(8)

In other words, excess returns can be written as R̃t−rfe = µt−1 +εt, where εt has zero mean

and variance-covariance matrix Σt−1 = Λt−1 − µt−1µ′
t−1. Similarly, we denote the mixed

conditional moments of the factors by

νt−1 = Et−1

(
F̃t

)
, and Qt−1 = Et−1

(
( R̃t − rfe )F̃ ′

t

)
(9)

Note that, if an admissible SDF of the form (4) exists, this implies,

0 ≡ Et−1

(
( R̃t − rfe )mt

)
= at−1µt−1 + Qt−1bt−1.

Conversely, if at−1 and bt−1 exist so that at−1µt−1 + Qt−1bt−1 = 0, then mt in (4) prices all

excess returns correctly and can hence be modified to be an admissible SDF. In other words,

the model admits a conditional factor structure if and only if the image of the conditional

linear operator Qt−1 contains µt−1. Basu and Stremme (2005) now show that, for a given

factor F i
t , the corresponding factor-mimicking portfolio can be written as,

f i
t = rf +

(
R̃t − rfe

)′
θi

t−1 with θi
t−1 = Λ−1

t−1

(
qi
t−1 − κiµt−1

)
(10)
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where qi
t−1 is the column of Qt−1 corresponding to factor i, and κi is a constant.

3.2 Maximum Sharpe Ratios

In this section, we give explicit expressions for the maximum Sharpe ratios, in the spaces of

augmented pay-offs spanned by the base assets and the factors, respectively. Denote by λ∗

the maximum Sharpe ratio in the asset return space Rt,

λ∗ = sup
rt∈Rt

E( rt )− rf

σ( rt )
. (11)

Similarly, denote by λF the corresponding maximum Sharpe ratio in the space RF
t of managed

returns spanned by the factors. Abhyankar, Basu, and Stremme (2005) show that λ∗ can be

written as λ2
∗ = E( H2

t−1 ), where H2
t−1 = µ′

t−1 Σ−1
t−1 µt−1. This expression extends Equation

(16) of Jagannathan (1996) to the case with conditioning information. Similarly, Basu and

Stremme (2005) show that the maximum Sharpe ratio λF in the return space spanned by

the factor-mimicking portfolios can be written as λ2
F = E( H2

F,t−1 ), where

H2
F,t−1 = µ′

t−1Λ
−1
t−1Yt−1

[
Y ′

t−1Λ
−1
t−1Σt−1Λ

−1
t−1Yt−1

]−1
Y ′

t−1Λ
−1
t−1µt−1, (12)

and Yt−1 = Qt−1 − µt−1κ′. The main result in Basu and Stremme (2005) states that a given

set of factors constitutes a true asset pricing model if and only if λF = λ∗. To relate this

result to the measure δF of specification error, they show that,

δF =

(
rf

1 + λ2
∗

)2

· ( λ2
∗ − λ2

F ), (13)

Thus, δF indeed measures distance between the efficient frontiers spanned by managed port-

folios of the base assets and the factor-mimicking portfolios, respectively. Since by construc-

tion RF
t ⊆ Rt, we always have λF ≤ λ∗ (and hence δF ≥ 0), with equality if and only if there

exists a portfolio in RF
t that is unconditionally efficient in the space Rt. In other words, a

given factor model is a true asset pricing model if and only if it is possible to construct a

managed portfolio from the factor-mimicking portfolios that is efficient in the return space
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spanned by the traded assets7.

Finally, Basu and Stremme (2005) explicitly derive the weights of the portfolio that attains

the maximum Sharpe ratio λF in the factor space and show that, if the model is indeed a true

asset pricing model, these weights are in fact proportional to the factor loadings. Moreover,

because the weights are chosen optimally, even if the model fails to satisfy the test (that is,

even if δF > 0), the corresponding factor loadings yield the best possible8 model that can

be constructed from the given set of factors. Moreover, because δF is attained by a pair of

managed portfolios the weights of which can be explicitly characterized, it lends itself ideally

to out-of-sample tests of model performance.

4 Empirical Analysis

In this section, we describe the empirical methodology and data used, and report the results

of our analysis.

4.1 Methodology

We specialize the set-up of the preceding sections to the case of a single instrument. Specifi-

cally, let yt−1 be the given Ft−1-measurable conditioning variable (in this case CAY), and set

Gt−1 = σ( yt−1 ). For the estimation, we use the de-meaned variable y0
t−1 = yt−1 − E ( yt−1 ).

To compute the conditional moments, we estimate a multivariate predictive regression for

7In this sense, our test is very similar in spirit to the ‘spanning’ test developed in Gibbons, Ross, and

Shanken (1989).
8Here, ‘best possible’ is defined as having minimal pricing error.
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the factors and (excess) asset returns of the form,

(
R̃t − rfe

F̃t

)
=

(
µ0

ν0

)
+

(
β

γ

)
· y0

t−1 +

(
εt

ηt

)
(14)

where εt and ηt are independent of y0
t−1 with Et−1( εt ) = Et−1( ηt ) = 0. Moreover, we assume

that the time series of { εt, ηt } is independently and identically distributed (iid)9. In the

notation of Section 3, we can then calculate the conditional moments as,

µt−1 = µ0 + βy0
t−1 and Λt−1 = ( µ0 + βy0

t−1 )( µ0 + βy0
t−1 )′ + E( εtε

′
t ),

νt−1 = ν0 + γy0
t−1 and Qt−1 = ( µ0 + βy0

t−1 )( ν0 + γy0
t−1 )′ + E( εtη

′
t ).

Note that due to the iid assumption, we can use unconditional expectations to compute the

moments of the residuals εt and ηt. For each set of base assets, we estimate (14) and then

construct the factor-mimicking portfolios using (10). Using (12), we can then compute the

maximum Sharpe ratios λ∗ and λF directly from the above conditional moments. Alter-

natively, we can use the results from Basu and Stremme (2005) to construct the managed

portfolios that (theoretically) attain these Sharpe ratios, and estimate the unconditional

moments of their returns. The latter method is used in our out-of-sample tests to assess the

robustness of our in-sample results.

Finally, to compute the model-implied expected returns on the base assets, we use the fact

that if mt is a true SDF of the form (4), then the results of the preceding section imply

µt−1 = − 1

at−1
Qt−1bt−1.

Taking unconditional expectations in the above expression yields the vector of unconditional

expected returns implied by the model. We then regress the realized average returns cross-

sectionally on the model-implied returns.

9Note however that we do not assume that the εt and ηt are mutually independent, i.e. we do not assume

the residual variance-covariance matrix to be diagonal.
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4.2 Data

Constrained by the availability of data (in particular the consumption-wealth ratio), we use

quarterly data covering the period from January 1960 to December 2002.

Base Assets

We conduct our empirical analysis using two sets of base assets; the 5×5 portfolios sorted on

firm size and book-to-market ratio, and the 30 portfolios sorted on industry sector. Monthly

data on both sets are available from Kenneth French’s web site10. The 5 × 5 size and

book-to-market portfolios are constructed as the intersection of 5 portfolios sorted on firm

size (market equity), and 5 portfolios sorted on book-to-market ratio. The portfolios are

rebalanced at the end of June each year. The 30 industry portfolios are constructed at the

end of June each year using the four-digit SIC codes.

Factor Models

To facilitate the comparison with the results of Lettau and Ludvigson (2001b), we focus

mainly on the Consumption CAPM, in which the single factor is the growth in aggregate

(log) consumption. For comparison, we also consider the ‘classic’ CAPM, in which the factor

is given by the (excess) returns on the market portfolio. We use the Fama-French benchmark

factors (available from Kenneth French’s web site) to extract the market factor.

Conditioning Instrument

As conditioning instrument, we chose the consumption-wealth ratio as constructed in Lettau

and Ludvigson (2001a). The (updated) quarterly data are available from Sydney Ludvigson’s

web site11. In a wide class of forward-looking models, the consumption-aggregate wealth ratio

summarizes agents’ expectations of future returns to the market portfolio. Thus the variable

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

11http://www.econ.nyu.edu/user/ludvigsons/
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captures expectations without requiring the researcher to observe information sets directly.

A log-linear approximation to a representative investor’s intertemporal budget constraint

shows that the log consumption-wealth ratio may be expressed in terms of future returns

to the market portfolio and future consumption growth. This leads to a co-integrating

relation between log consumption and log wealth. The log consumption-aggregate wealth

ratio is not observable because human capital is not observable. To overcome this obstacle,

Lettau and Ludvigson (2001a) reformulate the bivariate co-integrating relation between log

consumption and log wealth as a trivariate co-integrating relation involving three observable

variables, namely log consumption, ct, log nonhuman or asset wealth, at, and log labor

income, yt. Finally the log aggregate consumption-wealth ratio cayt is then given by

cayt = ct − 0.2711 at − 0.6185 yt. (15)

It has been pointed out by Brennan and Xia (2005) that this variable suffers from a ‘look-

ahead bias’ that is introduced by estimating the parameters of the co-integrating regression

between consumption, asset wealth, and labor income using the entire sample. They thus

argue that the in-sample predictive power of this variable cannot be taken as evidence that

consumers are able to take account of expected returns on risky assets in making their

consumption decisions.

4.3 Results

For illustration only, Figure 1 shows the time series of the conditioning variable CAY over

the sample period, compared with the contemporaneous returns on the market portfolio.

Without making any claims of statistical significance, the graph seems to indicate that CAY

indeed possesses some predictive power, with many of the extreme observations in the two

time series coinciding at the one-period lag12.

12For a more statistically rigorous analysis of return predictability using various lagged instruments see

Abhyankar, Basu, and Stremme (2005).
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Cross-Section of Expected Returns

Figure 2 shows the realized expected returns on the 5×5 size and book-to-market portfolios,

graphed against the corresponding model-implied returns. Panel A shows the results for the

unscaled C-CAPM, while Panel B reports the results for the C-CAPM optimally scaled by

CAY. The reported R2 are the coefficients of determination in the regression of realized on

model-implied returns. The figure shows that optimal scaling indeed improves the perfor-

mance of the model: while the unscaled model explains less than 10% of the cross-section

of expected returns, the R2 for the optimally scaled model is about 80%. Our results thus

seem to confirm the findings of Lettau and Ludvigson (2001b). Note however that our model

out-performs theirs by about 10%, which indicates that the assumption of linear scaling is

too restrictive (see below for a discussion of the optimal factor loadings).

However, when we repeat the same exercise using the 30 industry portfolios as base assets,

the results are very different. As Figure 3 shows, even the optimally scaled C-CAPM explains

only about 10% of the cross-section of expected returns. In this case, the scaled model in

fact performs slightly worse than the corresponding unscaled version. This indicates that

the model scaled by CAY, while capturing part of the size and value premia, is nonetheless

mis-specified. This conclusion is also supported by the poor out-of-sample performance of

the model. In our out-of-sample test (results not reported), even the optimally scaled C-

CAPM had virtually no explanatory power for the cross-section of expected returns (with

an R2 of less than 10%), even in the case of the size and book-to-market portfolios.

Model Specification Error

To assess the performance of the C-CAPM as a conditional asset pricing model, we evaluate

our measure of model specification error. We computed both the ex-ante values derived

directly from the conditional moments using (12), as well as the values derived from the ex-

post moments of the portfolios that attain the maximum Sharpe ratios. However, because

the in-sample results are very similar in both cases, we report only one set of figures in the

tables below.
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Table 4 shows the in-sample results for the C-CAPM, for both sets of base assets (Panel

A reports the results for the size and book-to-market portfolios, Panel B those for the 30

industry portfolios). For both sets of assets, the characteristics of the factor-mimicking

portfolio (Table 4.A) are very similar (with expected returns of 5.8 and 5.7%, respectively,

and a volatility of about 0.5% in both cases). Note that the ex-post betas between factor

and mimicking portfolio are close to one (0.90 and 0.92, respectively). This validates the

construction of the mimicking portfolios, as we have chosen the constant κ in (10) such that

the ex-ante beta equals 1.

Moving on to Table 4.B, note first that in the fixed-weight case (without using CAY as

conditioning instrument), the asset Sharpe ratio is considerably higher for the size and

book-to-market portfolios (1.49) than for the 30 industry portfolios (0.90). In contrast, the

difference is much less pronounced (1.80 and 1.57, respectively) when the assets are optimally

managed using CAY. In other words, while the introduction of the conditioning instrument

enlarges the frontier of the 30 industry portfolios by more than 50%, it has only marginal

effect on the frontier spanned by the size and book-to-market portfolios. This is due to the

size and value effects which, in the case of the size and book-to-market portfolios, largely

dominate the predictive power of CAY.

It is clear from the table that the optimal use of CAY as scaling instrument indeed signifi-

cantly improves the performance of the C-CAPM (with the factor Sharpe ratios increasing

from 0.22 to 0.51 for the size and book-to-market portfolios, and from 0.04 to 0.53 for the

30 industry portfolios, respectively). Similar to the asset frontier, the increase is much

more dramatic for the 30 industry portfolios. However, our results also show that even

the dramatic increase in Sharpe ratio comes not even close to ‘resurrecting’ the model: the

factor-mimicking portfolios achieve only 28 and 34%, respectively, of the corresponding opti-

mally managed asset Sharpe ratios. This proves that the model, even when scaled optimally

by CAY, is still mis-specified and has rather large pricing errors, in particular on actively

managed portfolios. Our results thus confirm the earlier findings of Hansen and Singleton

(1982), or Breeden, Gibbons, and Litzenberger (1989), that the Consumption CAPM does
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a poor job of pricing in particular the size and book-to-market portfolios. However, our

findings add to the existing empirical literature in that we give the model the ‘best chance’

by not restricting the factor loadings to be linear functions of the instrument.

Moreover, comparing the optimally scaled factor Sharpe ratios (0.51 and 0.53, respectively)

with the fixed-weight asset Sharpe ratios (1.49 and 0.90, respectively), we can conclude that

the scaled model does not even succeed in pricing static portfolios conditionally correctly

(with the factor achieving only about 34 and 59%, respectively, of the fixed-weight asset

Sharpe ratios). Our results show that it is not possible to conclude that the value premium

for example can be explained by an asset’s covariance with scaled consumption growth.

These findings thus broadly confirm (albeit using a very different methodology) those of

Hodrick and Zhang (2001), who use the Hansen and Jagannathan (1997) discount factor

distance to examine the specification error of the original Lettau-Ludvigson model and find

it to be quite seriously mis-specified. This is further emphasized by the poor out-of-sample

performance of the model (see below).

Our findings are further illustrated by Figure 5, which shows the efficient frontiers in the case

of the 5×5 size and book-to-market portfolios: while the fixed-weight (dotted line) and opti-

mally managed (solid line) asset frontiers are very close to one-another, the frontier spanned

by the factor (dashed line) does not even capture some of the base assets (unsurprisingly, it

is the small value portfolios that display the strongest performance).

For comparison, we also estimated the ‘classic’ CAPM, scaled by CAY, where the single

factor is given by the excess returns on the market portfolio. The results are reported in

Table 8 and Figure 9. We find that the classic CAPM performs significantly better than

the consumption CAPM (the factor-mimicking portfolio achieving about 40 and 46% of the

optimally scaled asset Sharpe ratios, respectively). More interestingly, the optimally scaled

factor achieves up to 80% of the fixed-weight asset Sharpe ratio, indicating that the classic

CAPM comes quite close to pricing at least passive portfolios correctly. Moreover, unlike

the C-CAPM, the classic CAPM loses little of its performance out-of-sample (see below).

22



Optimal Factor Loadings

Our framework allows us not only to test if a given (set of) factor(s) can constitute a viable

asset pricing model, but also to construct the optimal factor loadings as functions of the

conditioning instrument. Figure 6 shows the optimal loadings for the ‘corner’ elements

(small growth and value, and large growth and value) within the matrix of size and book-

to-market portfolios. As the graphs show, the optimal loadings are highly non-linear in the

instrument, in particular around its mean (0.723). Similarly, Figure 7 shows the coefficient

(denoted bt−1 in Definition 2.2) of the consumption-growth factor in the optimally scaled

stochastic discount factor (SDF). Again, the optimal coefficient is highly non-linear in the

conditioning instrument CAY, in particular around its mean. Note however that the non-

linearity is less pronounced in the case where the base assets are the 30 industry portfolios

(graphs not shown here).

Out-of-Sample Results

Because we can explicitly construct the portfolios that (theoretically) attain the maximum

Sharpe ratios in both the asset and the factor return spaces, we are able to assess the out-

of-sample performance of the model. To do this, we estimate the conditional moments in-

sample, use the results to construct the corresponding efficient portfolios, and then estimate

the unconditional moments of these portfolios out-of-sample. The results (for the 5× 5 size

and book-to-market portfolios) are reported in Table 10. While the performance of both

models increases slightly out-of-sample, the performance of the C-CAPM does not match

that of the full-sample estimates (Table 4). The results are quite different for the ‘classic’

CAPM which maintains (in fact slightly exceeds) its in-sample performance (Table 8) out-

of-sample. Note also that the out-of-sample performance of the unscaled models is very

different from the in-sample estimates, while the results for the optimally scaled model are

in general more robust. This latter result should however be taken with caution, as it may

be driven in part by the ‘look-ahead’ bias inherent in the construction of the instrumental

variable CAY (Brennan and Xia 2005).
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We also investigated the ability of the models to explain the out-of-sample cross-section of

expected returns on the base assets (results not reported). We found that, in contrast to

the in-sample results (Figures 2 and 3), out-of-sample neither model was able to explain any

significant portion of the cross-section of expected returns, for both sets of assets (with an R2

of less than 5% in the regression of realized out-of-sample returns on in-sample model-implied

returns).

5 Conclusion

The consumption-based framework has been one of the theoretical mainstays of asset pricing.

However the poor empirical performance of the consumption CAPM has long been a puzzle.

Lettau and Ludvigson (2001b) claim that the consumption CAPM can be ‘resurrected’ by

scaling the factor by CAY, the predictive variable constructed in Lettau and Ludvigson

(2001a), and show that it does a good job of explaining the expected returns of the 25

portfolios sorted by size and book-to-market. Subsequent studies (Hodrick and Zhang 2001)

have shown that their model leads to large pricing errors and is seriously mis-specified.

We re-examine this issue using the method of optimal scaling of factor models developed in

Basu and Stremme (2005), which utilizes the predictive variable optimally. We use a new

measure of specification error also developed in Basu and Stremme (2005), which allows us

to analyze the performance of conditional factor models. We find that, while the optimal

use of CAY does dramatically improve the performance of the consumption CAPM, the

model is unable to price the 25 portfolios sorted by size and book-to-market or the 30

industry portfolios correctly, and is thus quite far from being a true asset pricing model.

Our optimally scaled model does a good job of explaining the cross-section of expected

returns in-sample, but its performance deteriorates considerably out-of-sample which may

be due in part to the look-ahead bias in CAY (Brennan and Xia 2005).
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Figure 1: Time Series of Market Returns and CAY

This plot shows the time series of quarterly returns on the market portfolio (Panel A) and the evolution

of the consumption-wealth ratio (CAY) that is used as conditioning variable in our empirical analysis.

The data for the market return were obtained from Kenneth French’s web site.
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Panel A: Panel B:

FF 25 size/book-to-market FF 30 industry

factor-mimicking portf factor-mimicking portf

expected return 5.79% 5.70%

volatility 0.47% 0.48%

beta (with factor) 0.889 0.922

Table 4.A: Factor-Mimicking Portfolio (Consumption CAPM)

Panel A: Panel B:

FF 25 size/book-to-market FF 30 industry

Sharpe ratio Sharpe ratio

assets factors % assets factors %

fixed-weight 1.493 0.223 14.9% 0.901 0.035 3.9%

optimally scaled 1.796 0.509 28.3% 1.574 0.531 33.7%

Table 4.B: In-Sample Estimation Results (Consumption CAPM)

These tables show the in-sample estimation results for the Consumption CAPM. Table 4.A reports

the characteristics of the factor-mimicking portfolio associated with the consumption growth factor.

Table 4.B shows the maximum Sharpe ratios spanned by the base assets and the factors, respectively,

both for the unscaled (‘fixed-weight’) as well as the optimally scaled model. In each table, Panel A on

the left reports the results for the 5 × 5 size and book-to-market portfolios, while Panel B shows the

corresponding results for the 30 industry portfolios. The third column in each panel of Table 4.B shows

the fraction of the asset frontier that is spanned by the factors (if this number is 100%, the factor is a

true asset pricing model).
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Figure 5: Efficient Frontier (Consumption CAPM)

This plot shows the efficient frontiers generated by the base assets and the factor-mimicking portfolios,

respectively. The single factor is consumption growth and the base assets are the 5× 5 size and book-

to-market portfolios. The base assets (shown as bullets in the figure) are located in the graph from left

to right by decreasing size. Within each size group, the different ‘styles’ are arranged in a ‘C’-shaped

pattern, with value stocks at the top and growth stocks at the bottom end. The solid and dotted lines

show the asset frontier, with and without optimal scaling, respectively. The dashed line shows the

frontier spanned by the factors, optimally scaled (the closer the latter comes to the former, the better

the factor does at pricing the assets).
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Figure 6: Factor Loadings (Consumption CAPM)

This figure shows the factor loadings (vertical axes) for a selection (the ‘corners’ of the portfolio

matrix, small value, small growth, large value and large growth) of the base assets, as a function of the

conditioning instrument CAY (horizontal axes). The base assets are the 5× 5 size and book-to-market

portfolios, and the single factor is consumption growth.
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Figure 7: Stochastic Discount Factor (Consumption CAPM)

This figure shows the coefficient (vertical axis) of the single factor that gives the optimal (in the sense

of having minimal pricing error) stochastic discount factor, as a function of the conditioning instrument

CAY (horizontal axis). The base assets are the 5×5 size and book-to-market portfolios, and the single

factor is consumption growth.
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Panel A: Panel B:

FF 25 size/book-to-market FF 30 industry

factor-mimicking portf factor-mimicking portf

expected return 12.36% 12.83%

volatility 17.17% 17.17%

beta (with factor) 1.002 1.002

Table 8.A: Factor-Mimicking Portfolio (Classic CAPM)

Panel A: Panel B:

FF 25 size/book-to-market FF 30 industry

Sharpe ratio Sharpe ratio

assets factors % assets factors %

fixed-weight 1.493 0.365 24.5% 0.901 0.390 43.3%

optimally scaled 1.796 0.716 39.9% 1.574 0.723 45.9%

Table 8.B: In-Sample Estimation Results (Classic CAPM)

These tables show the in-sample estimation results for the ‘classic’ CAPM. Table 8.A reports the char-

acteristics of the factor-mimicking portfolio associated with the excess returns on the market portfolio.

Table 8.B shows the maximum Sharpe ratios spanned by the base assets and the factors, respectively,

both for the unscaled (‘fixed-weight’) as well as the optimally scaled model. In each table, Panel A on

the left reports the results for the 5 × 5 size and book-to-market portfolios, while Panel B shows the

corresponding results for the 30 industry portfolios. The third column in each panel of Table 8.B shows

the fraction of the asset frontier that is spanned by the factors (if this number is 100%, the factor is a

true asset pricing model).
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Figure 9: Efficient Frontier (Classic CAPM)

This plot shows the efficient frontiers generated by the base assets and the factor-mimicking portfolios,

respectively. The single factor is the excess return on the market portfolio, and the base assets are the

30 industry portfolios. The solid and dotted lines show the asset frontier, with and without optimal

scaling, respectively. The dashed line shows the frontier spanned by the factors, optimally scaled (the

closer the latter comes to the former, the better the factor does at pricing the assets).
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Panel A: Panel B:

in-sample out-of-sample

Sharpe ratio Sharpe ratio

assets factors % assets factors %

fixed-weight 1.423 0.002 0.0% N/A 0.441 31.0%

optimally scaled 1.988 0.327 16.4% N/A 0.462 23.2%

Table 10.A: Out-of-Sample Estimation Results (Consumption CAPM)

Panel A: Panel B:

in-sample out-of-sample

Sharpe ratio Sharpe ratio

assets factors % assets factors %

fixed-weight 1.423 0.289 20.3% N/A 0.455 32.0%

optimally scaled 1.988 0.713 35.9% N/A 0.740 37.2%

Table 10.B: Out-of-Sample Estimation Results (Classic CAPM)

These tables show the out-of-sample estimation results for both the Consumption CAPM (Table 10.A)

and the ‘classic’ CAPM (Table 10.B). We estimate the model over the first 25 years of the sample period,

and test the resulting model over the remainder of the sample. The base assets are the 5× 5 size and

book-to-market portfolios, and the conditioning instrument is consumption-wealth ratio (CAY). Each

panel shows the maximum Sharpe ratios spanned by the base assets and the factors, respectively, both

for the unscaled (‘fixed-weight’) as well as the optimally scaled model. In each table, Panel A on the

left reports the in-sample results, while Panel B shows the corresponding out-of-sample results.
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