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The quantum theory is the first theoretical approach that helps one to successfully 
understand the atomic and sub-atomic worlds which are too far from the cognition 

based on the common intuition or the experience of the daily-life. This is a very 
coherent theory in which a good system of hypotheses and appropriate mathematical 
methods allow one to describe exactly the dynamics of the quantum systems whose 

measurements are systematically affected by objective uncertainties. Thanks to 
the quantum theory we are able now to use and control new quantum devices and 

technologies in quantum optics and lasers, quantum electronics and quantum 
computing or in the modern field of  nano-technologies.
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Preface 

The physics studies simple systems looking for fundamental interactions governing 
the dynamics of elementary constituents of the matter.  The significance of these 
notions  was evolving in  the  last  three centuries from the concept of the  force acting 
on macroscopic objects in the classical mechanics and electromagnetism up to the 
modern idea of the gauge fields intermediating the interactions among elementary 
particles. This is the historic way from the Newtonian mechanics to the actual 
quantum theory of fields. 

The quantum physics is born at the level of the atomic physics where the classical 
ideas of determinism and accuracy in physical experiments as well as the common 
intuition of the daily-life were inadequate for understanding the new phenomenology 
of the quantum world. The quantum systems can be measured only interacting with a 
macroscopic apparatus which is supposed to obey exactly the laws of the classical 
physics. This determine (or prepare) the measured state of the quantum system whose 
causal motion is stopped during the experiment. Moreover, the influence of the 
apparatus remains partially unknown such that  some measured quantities are 
affected by uncertainty. Reversely, one cannot measure a quantum system evolving 
causally without to affect or stop its evolution. For this reason the theory becomes 
crucial for analyzing the dynamics of the quantum systems, covering the obscure 
zones where the experiment is irrelevant. The first successful theory was the non-
relativistic quantum mechanics which explains how the quantum systems can be 
measured but taking over the old dynamic of the Newtonian mechanics. The next step 
was the quantum theory of fields which is a relativistic theory where the interactions 
are introduced coupling directly the matter fields to the gauge fields according to a 
given gauge symmetry. Thus one constructed a coherent theory,  gifted  with 
appropriate mathematical methods, which is  able to explain the quantum 
phenomenology at the atomic and nuclear scales. Moreover, this theory is 
indispensable for studying more complicated quantum systems in optics, electronics, 
solid and plasma physics or even in chemistry and biology. 

However, despite of the great success of the quantum theory and especially of its 
Standard Model, this theory  is still partially satisfactory in the high energy physics, 
going to the Planck scale, or at very large scales, in astrophysics and cosmology. This 
is because in the last few decades the absence of  new crucial experimental evidences 



XII Preface

forced the quantum theory to evolve independently, following only its internal logic, 
without to be directed by the experimental reality. In this period one developed many 
theoretical models in various directions using a large spectrum of new hypotheses and 
mathematical methods. Many efforts were devoted for building the super-string 
theory whose principal purpose is to integrate the gravity into the quantum theory. Of 
a special interest are some particular hypothetic conjectures as, for example, the Higgs 
mechanism which is the cornerstone of the Standard Model.  All these theoretical 
approaches may be confirmed or invalidated by the new experiments performed using 
the huge and expensive Large Hadron Collider working today at CERN in Geneva. 
Even though people waits impatiently for new confirmations and certainties, now it is 
premature to draw definitive conclusions before finishing to analyze on computer  the 
large amount of data obtained so far. In other words, we do not have yet the 
experimental criteria we need for selecting definitively the actual theoretical models, 
obtaining thus a reliable guide in further developments. 

Under such circumstances, we would like to present here few interesting new 
directions in which the quantum theory evolves. We start in the first section with some 
new general ideas in quantum physics and its mathematical methods. The second 
section is devoted to the modern directions in studying quantum effect in optics and 
chemistry where the success of the quantum theory is indisputable. We live some 
specific  open problems of the quantum gravity to be presented in the last section. 

We hope the reader should find useful and attractive information in all of the chapters 
of this book, written by scientists who obtained recently new remarkable results in 
their  fields of research. 

Prof. Ion Cotăescu, 
Head of Department, 

Director of the Research Center in Theoretical Physics and Gravitation, 
Department of Theoretical and Computational Physics, 

Faculty of Physics, West University of Timisoara, 
Romania 
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Quantum Theory as Universal Theory  
of Structures – Essentially from  

Cosmos to Consciousness 
T. Görnitz 

FB Physik, J. W. Goethe-Universität Frankfurt/Main 
Germany 

1. Introduction 

Quantum theory is the most successful physical theory ever. About one third of the gross 
national product in the developed countries results from its applications. These applications 
range from nuclear power to most of the high-tech tools for computing, laser, solar cells and 
so on. No limit for its range of validity has been found up to now.  

Quantum theory has a clear mathematical structure, so a physics student can learn it in a 
short time. However, very often quantum theory is considered as being “crazy” or “not 
understandable”. Such a stance appears reasonable as long as quantum theory is seen 
primarily as a theory of small particles and the forces between them. However, if quantum 
theory is understood more deeply, namely as a general theory of structures, not only the 
range is widely expanded, but it also becomes more comprehensible (T. Görnitz, 1999).  

Quantum structures can be material, like atoms, electrons and so on. They can also be 
energetic, like photons, and finally they can be mere structures, such as quantum bits. 
Keeping this in mind it becomes apprehensible that quantum theory has two not easily 
reconcilable aspects: on the one hand, it possesses a clear mathematical structure, on the 
other hand, it accounts for well-known experiences of everyday life: e.g. a whole is often 
more than the sum of its parts, and not only the facts but also the possibilities can be 
effective.  

If henadic and future structures (i.e. structures which are related to unity [Greek "hen"] and 
to future) become important in scientific analysis, then the viewable facts in real life differ 
from the calculated results of models of classical physics, which suppose elementary 
distinctions between matter and motion, material and force, localization and extension, 
fullness and emptiness and which describe any process as a succession of facts. From 
quantum theory one can learn two elementary insights: 

1. Not only facts but also possibilities can influence the way in which material objects behave. 
2. The elementary distinctions made in classical models are often useful, but not fundamental. 

Quantum theory shows that there are equivalences between the concepts of matter and 
motion, material and force, localization and extension, fullness and emptiness, and so on, 
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and these equivalences can be reduced to one fundamental equivalence: the equivalence of 
matter, energy and abstract quantum information.  

2. How to understand the laws of nature? 

Mankind searched for laws of nature to be braced for future events and to react on them. 
A rule and even more a law is only reasonable for a multitude of equal events. For a 
singular and therefore unique event the idea of a rule is meaningless because of the lack 
of a  recurrence. The required equality  for applying rules or laws will be achieved by 
ignoring differences between distinct events. Therefore, as a matter of principle,  laws of 
nature are always approximations, eventually very good approximations at the present 
time. If a law of nature is expressed in the form of a mathematical structure - which is 
always the case in physics - then this structure may conceal the approximate character of 
the law. This can lead to confusion about the interpretation of some laws and their 
correlations. One should keep this in mind when interpretational questions of quantum 
effects are to be deliberated.  

3. What is the central structure for an understanding of quantum theory? 

To understand the central structure of quantum theory one has to inspect how composite 
systems are formed. 

In classical physics the composition of a many-body system is made in an additive way. The 
state space of the composed system is the direct sum of the state spaces of the single particle 
systems. This results in a “Lego world view” of smallest building blocks – of one or another 
kind of “atoms”. In this view the world has to be decomposed into ultimately elementary 
objects – which never change - and the forces between such objects. This picture about the 
structure of reality was generally accepted for more than two millennia.  

Composite systems in quantum physics are constructed in a fundamentally different way. 
The state space of a composed quantum system is the tensor product of the state spaces of 
the single particle systems. To explain quantum theory we have to start with this structural 
difference. However, “tensor product” is a very technical concept. Is it possible to relate this 
concept to something familiar  in every day live?  

 
Fig. 1. The additive composition of two objects in classical physics, the states of the parts are 
outlined by white and black circles. The relational composition in quantum physics, marked 
by arrows, create the new states of the composed object. They are neither black nor white. 
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Let us recall that “relations” create a product structure. One can say that the new states of a 
composed object are the relational structures between the states of its parts. Therefore 
quantum theory can be characterized as the physics of relations;  it can be seen as a clear 
mathematical implementation of a familiar experience of life: A whole is often more than the 
sum of its parts.  

Up to now this central aspect of quantum theory is often misunderstood. In physics, and 
also in the philosophy of sciences, one speaks, for example,  of  "particles", i.e. electrons and 
so on, in a weakly bound system. This is certainly useful from a the practical point of view, 
but does not apply to the basic issue. In principle, two interacting electrons are "one object 
with charge -2" –  and not two independently existing particles.  

Relational structures create networks, in the essence they are plurivalent. In such a network 
many different connections between two outcomes are possible. This leads us to a further 
characterization of quantum theory, namely, quantum theory as “the physics of possibilities”.  

 
Fig. 2. Relations are not unique, they constitute possibilities.  

 
Fig. 3. When quantum particles have the possibility to go through both slits without 
controlling their passage, then one will find more then two maxima on a screen behind the 
slits. Position “A” can be reached if one of the holes is open, but no longer if both are open 
and not controlled. 

 Distant source

    Intensity

Controlled holes: 
2 maxima

Uncontrolled possibilities 
for both holes:  
more then 2 maxima
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In our daily life we are influenced not only by facts of the past but also by future 
possibilities, which we anticipate, wish for, or are afraid of. Quantum theory deals with 
possibilities only. We have to understand that also possibilities can have an impact –  not 
only facts.  

If in a double slit experiment quantum particles have the possibility of going through both 
slits without controlling their passage, will find more than two intensity maxima on a screen 
behind the slits. If the passage through the slits is controlled, which means that the passage 
through one of the slits becomes a fact, then only two maxima will result. This is comparable 
to experience of our everyday life: control restricts possibilities and thereby influences 
human behavior.  

4. The indissoluble relation between classical physics and quantum physics: The 
dynamic layering-process 

There are some popular but insufficient ideas about the distinctions of quantum physics and 
classical physics. One misleading distinction concerns the scope of application to 
microphysics and macrophysics, respectively. It is true that in microphysics only quantum 
theory is applicable; nevertheless there are also many macroscopic quantum phenomena. 
Another topic is the difference between continuous and discontinuous effects, the former 
being attributed to classical physics. However, it should be recalled that many operators in 
quantum physics have continuous spectra. Popular but false is also the distinction between 
a "fuzzy" quantum theory and a "sharp" classical physics. It ignores that quantum theory 
provides for the most accurate description of nature we ever had. Classical physics 
nourishes  the illusion of exactness. Its mathematical structure is based on the assumption of  
“arbitrarily smooth changes” of any variable. While this is a precondition for calculus, it is 
by no means always afforded by nature. At very high precision the quantum structure will 
become important anyway, as quantum physics is the physics of preciseness.  

Often there is no need for the precision of quantum theory. At first sight most of the 
processes in nature appear to be smooth. However, upon closer inspection, all actions are 
quantized, they appear in discrete “numbers” or “steps”. One may say that, strictly 
speaking, all changes are quantum jumps. So a quantum jump is the smallest non-zero 
change in nature - which may explain why this concept is so attractive in politics and 
economics. 

Since the early days of quantum mechanics Bohr has insisted that classical physics is a 
precondition for speaking about quantum results. It is impossible to ignore that for humans; 
there are not only possibilities but also facts. For an adequate description of nature we need 
both parts of physics, classical and quantum physics. Its connection can be described as a 
“dynamic layering-process”. The classical limit transforms a quantum theoretical 
description into a classical one, the process of quantization converts classical physics  into 
quantum physics.  

It seems evident that quantum theory is the foundation of classical physics. The existence of 
all the objects handled so successfully by classical physics can only be understood adopting 
quantum theory. It may be recalled that the existence of atoms, having opposite charges 
inside, is forbidden by classical electrodynamics. On the other hand, classical physics is a 
precondition for the appearance of quantum properties. The quantum properties of a system 
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become visible only if its entanglement with the environment is cut off. Such a cut can be 
modeled mathematically only in classical physics.  

The laws of classical physics ignore the relational aspects of nature. While thus being 
inferior to the quantum laws, they are potentially much easier to apply. For large objects, the 
relational aspects are very small, so that often there is no need to employ a quantum 
description.  

 
Fig. 4. Dynamic layering process between classical and quantum physics. 

5. The meaning of quantization 

Concerning quantization many concepts have been proposed (a good overview can be 
found in Ali & Engliš, 2005), and one may wonder whether here a simple fundamental 
structure can possibly be established.  

 
Fig. 5. Quantization of a bit: From the two states {0,1} of a bit to a two-dimensional complex 
state space of a qubit. 
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Ignoring for the moment the canonical quantization, a general structure can be inferred from 
the quantization of a bit with its two states {0,1} to a qubit: here quantization is obtained by 
constructing all complex-valued functions on the set of two points, resulting in a two-
dimensional complex space C².  

In a related way, path-integral quantization can be interpreted as constructing all functions 
on the set of the classical pathways. At  first glance, second quantization seems to be 
different. However, the construction of a state of the quantum field in terms of states of 
quantum particles is analogous to the construction of an analytical function in terms of 
powers of the variable. The analytical functions are dense, e.g., in the set of continuous or 
measurable functions, and even distributions conceived as limits of analytical functions. So, 
in a certain sense, the analytical functions represent “all functions”, and a quantum field can 
be interpreted as “the functions on the set of quantum particles”.  

In conclusion, we may say: Quantization is the transition from the manifold of the facts to the 
possibilities over the facts – where the possibilities are given in the form of functions on the 
manifold of facts. It even seems possible to state: “Quantization is (actually) second 
quantization.” In this sense Einstein’s invention of photons was the first demonstration of 
quantization.  

How can the canonical quantization of classical mechanics, characterized by a bisection 
(“polarization”) of variables, be interpreted in the present context?  

The explanation can be given as follows: Mechanics is the classical limit of quantum 
mechanics in that all operators commute. In quantum mechanics the position operator acts 
multiplicatively on wave functions over position space, while the momentum operator acts 
multiplicatively on wave functions over momentum space. A duplication replacing Φ(x) or 
Ψ(p) by R[x,p] allows for the commutation of position and momentum. Accordingly, in 
classical mechanics positions and momenta are the fundamental variables; the polarization 
reverses this duplication.  

The essence of quantization can summarized in the sentence: Quantization is the transition 
from the facts to the relational network of possibilities associated with the facts -  
mathematically represented by a linear space of functions defined on the set of the facts.  

A further characterization is as follows: The quantization of a system is the transition from a 
nonlinear description in a low-dimensional space, where the system may have  many or 
infinitely many degrees of freedom (e.g. classical mechanics or electromagnetic fields), to a 
linear description of many or infinitely many systems with few degrees of freedom in an 
infinite-dimensional space (e.g. quantum bits, photons, or other field quanta). This reminds 
of the exponential map and its conversion of products, being nonlinear, into sums, which 
are linear.  

6. Quantum theory relativizes distinctions 

Quantum theory is consistent with everyday experience indeed, but in non-living nature 
quantum effects become essential only at a high precision scale. At high precision, though, 
effects may appear that are not so evident from the everyday experience in the world 
around us.  
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Already in school the so-called wave-particle-duality is a subject. According to quantum 
theory, one and the same quantum object can act, depending on the circumstances, more like a 
wave or more like a particle, that is, as a more extended or more localized object. As we have 
discussed, quantum states can be understood as extended functions on facts, and it is thus an 
essential non-local theory. We may say: Quantum physics is the physics of non-locality. A strict 
distinction between locality and non-locality is relativized by quantum theory.  

Quantum theory demonstrates that transformations between matter and motion or between 
force and material are possible. Of course, Einstein’s famous formula E = mc² was found in 
special relativity, but in any related experiment antimatter is involved. This genuine 
quantum concept shows that the transformation between matter and motion is an effect of 
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sell in physics even today. Another serious problem was that v. Weizsäcker's models were 
inconsistent with general relativity at that time. 

As essential step forward, it proved necessary to go beyond the urs. v. Weizsäcker (1982, p. 
172) proposes „An »absolute« value of information is meaningless". But this is a 
contradiction to his claim (1971, p. 361): “Matter is information". Matter has an absolute 
value, as zero grams of matter is a clearly defined quantity. Therefore, with regard to an 
equivalence of matter and information, the latter must have an absolute value as well. So there was 
the need to extend the concept of »information« to one which is “absolute”. At that absolute 
level, one must do without reference to an “emitter” or “receiver”, and – even more 
important -  dispense with the concepts of meaning or knowledge, at least initially. This is 
the basic precondition for establishing the equivalence of matter and information.  

Here it proved necessary to make a connection to modern theoretical und empirical 
structures of physics, especially Bekenstein's and Hawking’s entropy of black holes, and a 
rational cosmology. Physics is more than an »extension of logics«, and, in physics 
information differs from destination, or meaning, or knowledge. Meaning always has a 
subjective aspect too, so meaning cannot be a basis for science and objectivity.  

If quantum information is to become the basis for science it must be conceived as absolute quantum 
information, free of meaning. It is denominated as “Protyposis” to avoid the connotation of 
information and meaning. Protyposis enables a fundamentally new understanding of matter which 
can seen as “formed”, “condensed” or “designed” abstract quantum information. Absolute 
quantum information provides a base for a new understanding of the world ranging from 
matter to consciousness. Protyposis adds to E=mc², that is, the equivalence of matter and 
energy, a further formula (Görnitz, T 1988², Görnitz, T., Görnitz, B. 2008) :  

 N = m c² tcosmos 6π/ħ (1) 

A mass m or an energy mc² is equivalent to a number N of qubits. The proportionality 
factor contains tcosmos, the age of the universe. Today a proton is 1041 qubits. A 
hypothetical black hole with the mass of the universe would have an entropy of order 
10123. If a particle is added, the entropy of the black hole increases proportionally to the 
mass-energy of the particle. If a single proton is added to the cosmic mass black hole, the 
entropy will rise by 1041 bits. These 1041 qubits "are" the proton, and only very few of those 
qubits will appear as meaningful information. All the others are declared as mass or 
energy. The cosmic mass black hole has an extension corresponding to the curvature 
radius of the universe. If the hypothetical proton disappears behind the horizon, any 
information on the proton is lost, and thus the unknown information, that is, the entropy, 
becomes maximal.  

8. Relativistic particles from quantum bits 

For a precise definition of a particle one has to employ Minkowski space. Here, a relativistic 
particle is then represented by an irreducible representation of the Poincaré group. Such a 
representation can be constructed from quantum information by Parabose creation and 
destruction operators for qubits and anti-qubits (urs and anti-urs) with state labels  running 
from 1 to 4.  
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Let be| the vacuum for qubits, p the order of Parabose statistics and r,s,t {1,2,3,4}. The 
commutation relations for Parabose are 
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If we make the following abbreviations: 
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then the operators for the Poincaré-group get the form: 

Boosts  

M10  = i ( w[1, 4] - f[4, 1] + w[2, 3] - f[3, 2] )/2    
M20 =    ( w[1, 4] + f[4, 1] - w[2, 3] - f[3, 2] )/2  
M30 =  i ( w[1, 3] - f[3, 1] - w[2, 4] + f[4, 2] )/2   

Rotations 

M21 =    ( d[1, 1] - d[2, 2] - d[3, 3] + d[4, 4] )/2 
 M31 =  i ( d[2, 1] - d[1, 2] - d[3, 4] + d[4, 3] )/2  (4) 

M32 =    ( d[2, 1] + d[1, 2] - d[3, 4] - d[4, 3] )/2 

Translations 

P1 =    (- w[2, 3]  - f[3, 2]  - w[1, 4] - f[4, 1]  - d[1, 2]  - d[2, 1] - d[4, 3]  - d[3, 4])/2   
P2 =  i ( -w[2, 3] + f[3, 2] + w[1, 4] - f[4, 1]  - d[1, 2] + d[2, 1] - d[4, 3]  +d[3, 4])/2  
P3 =    ( -w[1, 3]  - f[3, 1] + w[2, 4] + f[4, 2]  -d[1, 1] + d[2, 2] - d[3, 3]  +d[4, 4])/2   
P0 =    ( -w[1, 3]  - f[3, 1]  - w[2, 4]  - f[4, 2]   -d[1, 1] - d[2, 2]  - d[3, 3]  - d[4, 4])/2   

The vacuum of Minkowski space|0 is an eigenstate of the Poincaré group with vanishing 
mass, energy, momentum and spin. The Minkowski vacuum can be constructed (Görnitz, T., 
Graudenz, Weizsäcker, 1992) from the vacuum of the qubits |. In conventional notation 
(with ˆia ) it looks like: 
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With respect to the Minkowski-vacuum a massless boson with helicity –σ in z-direction and 
momentum m can be constructed as follows: 
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For a photon is |σ| = 1. 

A massive spinless boson at rest, constructed on the Minkowski-vacuum |0, with rest mass 
m = P0  0, momentum P1=P2=P3= 0, and Parabose-order p >1 is given by:  
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Another example (Görnitz, T., Görnitz B., 2002) is a massive fermion at rest with spin 1/2, 
constructed on the Minkowski-vacuum |0, with mass m = P0  0, spinz= -½, momentum 
P1=P2=P3= 0 and Parabose-order p >1: 
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Indeed, matter can be seen as a special form of abstract quantum information.  

The possibility to create relativistic particles via quantum bits is essential for many aspects 
in the scientific description of nature. The change of the state of such an object amounts to a 
transformation  associated with an element of the Poincaré group. In this operation the 
number and structure of its qubits will be changed. Interactions between matter – i.e. 
fermions – is effected by exchanging bosons. On the basis of the theory outlined here, this  
always appears as an exchange of qubits.  

For everyday purposes, one may state: 

 Matter is inactive, it resists change.  
 Energy can move matter.  
 Information can trigger energy.  

9. The relationships between quantum information, particles, living beings and 
consciousness 

Einstein's equivalence, E=mc², does not imply that the distinction between matter (having a 
restmass) and energy is always dispensable. Pure energy, e.g. massless photons, behave 
differently than massive particles. However, particles with mass can emit and absorb such 
photons. On the other hand, photons of sufficiently high energy can be transformed into 
particles with rest mass.  

Analogous relations apply to quantum information. If it should be localized then the 
mathematical structure implies that this information must have an material or at least an 
energetic carrier. However, a qubit needs not to be fixed to such a carrier. Here it should be 
recalled that the carriers themselves are special forms of the protyposis, in the same way as 
material objects can be understood as being special forms of energy.  

A further aspect is even more interesting: there is an analogy to the conversion of the energy 
of motion of a massive body into massless photons. The photons can separate from the mass 
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and travel apart, but then they are no longer localized in space, only in time, as the structure 
of a rest mass in Minkowski space any longer applies. Of course, the equivalence E=mc² is 
not affected by this.  

Qubits too may change a carrier or separate from it. In the latter case, they are no longer 
localizable in space and time, because  neither the structure of an energy nor of a rest mass 
in Minkowski space applies any longer. While qubits can form particles with and without 
mass – and therefore fields – there is no reason to assume that they always have to form 
particles. Obviously, quantum information does not necessarily become manifest in the form  
of particles or fields.  

The autonomous existence of the protyposis, of absolute quantum information, can solve 
some of present problems in science. The dark energy in cosmology, for example, could be a 
non-particle form of protyposis, as will be addressed below. 

In connection with a living body qubits can become meaningful. For animals, meaning not 
only depends on the “incoming” information, but also on the respective situation and the 
particular living conditions of the animal.  

Meaningful information can change its carriers, for instance from a sound wave to electrical 
nerve impulses, and allows for control unstable systems, such as living beings. Obviously, 
this finding will greatly influence the scientific understanding of life and mind. (see Görnitz, 
T., Görnitz, B., 2002, 2006, 2008). Mind is neither matter nor energy, rather it is protyposis in 
the shape of meaningful quantum information.  

For a scientific understanding of the mind a dualistic conception would be in contradiction 
to all science. Concerning the materialistic alternative, mind is clearly no matter, and a 
reduction of mind to small material particles will not succeed. Protyposis, more specifically, 
the equivalence of protyposis, matter, and energy, and its eventual manifestation as 
meaningful information, offers a solution to this problem.  

Life is characterized as control and timing, enabled by quantum information. Only unstable 
systems can be controlled. Living systems are unstable because they are far from the 
thermodynamical equilibrium. In the self-regulation of organisms – extending even to 
consciousness in the later stages of the biological evolution – quantum effects can become 
operational at the macroscopic level.  

Consciousness is quantum information carried by a living brain, it is quantum information that 
experiences and knows itself.  

This is not an analogy, but rather a physical characterization. It means that it is no longer 
required to perceive the interaction between quantum information in the shape of matter 
and quantum information in the shape of consciousness as a phenomenon beyond the field 
of science.  

The scientific description of consciousness opens also the way to extend the Copenhagen 
interpretation of quantum theory. Usually it is stated that a measuring process has 
happened when an observer has notified a result. But as long as the observer and his 
conscious mind are not subjects of physics, a theory of measurement seems to be beyond 
physics as well. Here, the central role of quantum information will become important. In an 
abstract way, a measurement can be seen as the transition from a quantum state comprising 
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all its possibilities to a conclusive fact. Generating a fact by measuring, results in the loss of  
information on all other potential states. The quantum eraser experiments show that a 
virtual measurement can produce a real fact only if the information on the quantum 
possibilities is lost.  

However, before addressing the intended extension of the Copenhagen interpretation, we 
take a closer look to the structure of the cosmic space,  as there is an essential connection.  

10. Quantum information and the introduction of the cosmic position space 

The Minkowski-space is a very good approximation in the domain of our laboratories and 
our environment. However, while the Minkowski-space is essential for an exact description 
of particles, the real position space in cosmology is different from this idealization. Since 
Einstein we know that the physical space can be curved.  

The idea of understanding position space as a consequence of the symmetry of quantum 
bits was first proposed by von Weizsäcker (1971, p. 361; 1982, p. 172). He and 
Drieschner (1979) showed how qubits can explain that the space of our physical 
experience is three-dimensional. This was the first attempt to establish the 
dimensionality of physical space from first principles. (As an aside, to argue that space 
has in reality 10 or even 26 dimensions is not really convincing.) However, their models 
were not consistent with general relativity. This problem can be overcome by group 
theoretical considerations.  

Any decision that can scientifically be decided, can be reduced to quantum bits. The states of 
a quantum bit are represented and transformed into each other by its symmetry group. The 
symmetry group for a quantum bit is spanned by the groups SU(2), U(1), and the complex 
conjugation. The essential part of the quantum bit  symmetry group is the SU(2), a three-
parameter compact group. Any number of quantum bits can be represented in the Hilbert 
space of measurable functions on the SU(2), which as its largest homogeneous space is an S³. 
This Hilbert space is the carrier space for the regular representation of the SU(2) that 
contains every irreducible representation of this group. The three-dimensional  S³ space is 
identified with the three-dimensional position space.  

Using group theoretical arguments, a relation can by established between the total number 
of qubits and the curvature radius R of the S³ space (Görnitz, T., 1988). A spin-1/2-
representation of the SU(2) group, the representation of a single qubit, is formed from 
functions on the S³ space having a wave length of the order of R. If the tensor product of N 
of such spin-1/2-representations – i.e. of N qubits - is decomposed into irreducible 
representations, then representations associated with much shorter wavelengths can be 
found. The multiplicities of such representations increase with decreasing wavelengths. 
They are high up to functions with a wavelength in the order R/√N. Here the multiplicities 
reach a maximum. Because of an exponential decrease of the multiplicities, the shorter 
wavelengths seem not to be of physical relevance. An N-dependent metric on this S³ is 
established by introducing a length related to this maximum: 

 λ0 = R/√N (9) 

as the length-unit is introduced.  
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If the S³ space is identified with the position space, a cosmological model results using three physically 
plausible assumptions (Görnitz, T. 1988²). They correspond to the basic assumptions in the three 
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1. There exists a universal and distinguished velocity. 
2. The energy of a quantum system is inversely proportional to its characteristic wave 

length.  
3. The first law of thermodynamics is valid.  

The first assumption introduces the velocity of light, c. The second assumption is the 
familiar Planck relation, E=hν=hc/λ , while the third allows us to define a cosmological 
pressure p according to dU+pdV=0.  

The result is a compact Friedman-Robertson-Walker-Space-Time. Measured in units of the 
fundamental length λ0, the cosmic radius R grows with the velocity of light. Therefore in this 
model the horizon problem as well as the flatness problem are absent. The horizon problem 
is related to the fact that the background radiation from opposed directions in space is 
entirely identical, whereas according to most cosmological models those regions could never 
have been in causal contact. As a remedy, inflation was invented. However, the ad hoc 
assumptions necessary here violate an important energy condition (Hawking, Ellis, 1973). 
This suggests that another solution of the horizon problem should be sought. More recently, 
the inflation concept has been criticized on other grounds, too (Steinhart, 2011).  

By the group theoretical argument, the number of qubits increases quadratically with the 
age of the universe, i.e., with the cosmic radius R. The energy attributed to a single qubit is 
inversely proportional to R. Therefore, the total energy U rises with R and the energy 
density decreases with 1/R². According to the first law of thermodynamics, the resulting 
state equation for the cosmic substrate, the protyposis, follows as µ=-p/3. 

From the metric of this model the Einstein-tensor Gik can be computed, and, using the 
relations between energy density and pressure, the energy-momentum-tensor Tik is 
obtained. Both tensors appear as being proportional to each other.  

If it is demanded that this proportionality between Gik and Tik is conserved also for local 
variations of the energy, Einstein’s equations of general relativity emerge as a consequence 
of the abstract quantum information. If a smallest physical meaningful length – the Planck 
length – according to λPl = λ0·√3/2 is introduced, one obtains with κ= 8πG/c4: 

 Gik = κ  Tik (10) 

In this cosmological model the dark energy can be interpreted as protyposis, i.e., as absolute 
quantum information, that is homogeneous and isotropic, and not organized in the form of 
quantum particles.  

11. The measuring process – reinterpreting the Copenhagen interpretation 

After the clarification of the relation between abstract quantum theory and space, we will 
turn to the strangest concept in quantum physics, namely the measuring process. Here the 
strongest discomfort results because the unitary time evolution of a quantum system 
appears to be interrupted.  
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A comprehensive review on the different attempts to solve this problem has been given by 
Genovese (2010). In this review most of the modern attempts are addressed, but 
fundamental earlier work, e.g. by Heisenberg or v. Weizsäcker, is not cited. I think, “the 
transition from a microscopic probabilistic world to a macroscopic deterministic world 
described by classical mechanics (macro-objectification)” is less of a problem, and also one 
should not say that the Copenhagen interpretation “is weak from a conceptual point of view 
since it does not permit to identify the border between quantum and classical worlds. How 
many particles should a body have for being macroscopic?”(Genovese, 2010).  

Rather the problem seems to stem from the conceptual fixation of physics on the more than 
2000 years old notion of “atoms” of one or another kind as basic structures. Quantum theory 
opens the possibility to recognize that more abstract structures – quantum information – 
should be viewed as the fundamental entities. This will open a new perspective for the 
measuring process as well.  

As already mentioned, the measuring process is often seen as the most controversial aspect 
of quantum theory. The “normal” time evolution in quantum theory is a unitary process. In 
the Schrödinger picture the time-evolution of the wave function is given by 

 
ˆˆ( ) ( ) (0) (0)

i Ht
Schr Schr Schrt U t e      (11) 

where Ĥ  is the Hamiltonian of the system under consideration. In an equivalent way, 
referred to as Heisenberg picture, the time- dependence can be shifted to the physical 
operators:  

 
ˆ ˆ†ˆ ˆ ˆˆ ˆ( ) ( ) (0) ( ) (0)

i iHt Ht
Heis Heis HeisA t U t A U t e A e     (12) 

The  time evolution according to the Schrödinger equation of the system  conserves the 
absolute value of the scalar products and does not change the total probability. In the 
measuring process, by contrast, the so-called “collapse of the wave function” is no longer 
unitary. There has been much discussion about this disruption in the description of the 
regular time evolution and whether that disruption can possibly be avoided. Let me very 
briefly recall the essential aspects.  

If a quantum system is in a state Φ, then in the measuring process every state Ψ can be 
found if  

 < Φ | Ψ> ≠ 0 (13) 

The probability ω to find Ψ if the system is in the state Φ is given by  

 ω = |< Φ | Ψ>|² (14) 

The so-called many-worlds-interpretation of QM assumes that there is no break in the 
unitary time evolution. It is postulated that any possible Ψ will be a real outcome of the 
measurement, but for every Ψ there is a separate universe in which this outcome is realized 
as a factum. For most people this interpretation is not acceptable because of the fantastical 
ontological overload thereby introduced. However, with a simple “one-word-dictionary” 
(Görnitz, T., Weizsäcker 1987) it can be translated into the normal world view: just replace 
“many worlds” by “many possibilities”. 



 
Advances in Quantum Theory 

 

16

A comprehensive review on the different attempts to solve this problem has been given by 
Genovese (2010). In this review most of the modern attempts are addressed, but 
fundamental earlier work, e.g. by Heisenberg or v. Weizsäcker, is not cited. I think, “the 
transition from a microscopic probabilistic world to a macroscopic deterministic world 
described by classical mechanics (macro-objectification)” is less of a problem, and also one 
should not say that the Copenhagen interpretation “is weak from a conceptual point of view 
since it does not permit to identify the border between quantum and classical worlds. How 
many particles should a body have for being macroscopic?”(Genovese, 2010).  

Rather the problem seems to stem from the conceptual fixation of physics on the more than 
2000 years old notion of “atoms” of one or another kind as basic structures. Quantum theory 
opens the possibility to recognize that more abstract structures – quantum information – 
should be viewed as the fundamental entities. This will open a new perspective for the 
measuring process as well.  

As already mentioned, the measuring process is often seen as the most controversial aspect 
of quantum theory. The “normal” time evolution in quantum theory is a unitary process. In 
the Schrödinger picture the time-evolution of the wave function is given by 

 
ˆˆ( ) ( ) (0) (0)

i Ht
Schr Schr Schrt U t e      (11) 
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The Copenhagen interpretation introduces an observer who is responsible for stating that a 
result has been found. If the observer can verify that the process has occurred, the result can 
be seen as a factum. Given that any description of reality needs a person to do the 
description, the introduction of an observer into the description of nature does not seem to 
be a serious constraint. However, the problem here is that this construct does not allow one 
to include the observer himself in the scientific description, which ultimately has to be based 
on physics, that is, quantum theory. In a conversation, reported to me by v. Weizsäcker 
about the necessity of a “cut” between quantum and classical physics and the movability of 
that cut, Heisenberg argued that the cut cannot be moved into the mind of the observer. 
According to v. Weizsäcker, his friend Werner Heisenberg said: “In such a case no physics 
would remain ”.  

This point of view is easily understandable, because at that time the range of physics was 
limited to material and energetical objects, but did not yet extend to quantum information. 
Since then much experimental and theoretical work on quantum information has emerged, 
indicating the mind can be understood as a very special form of quantum information. 
Therefore it is no longer warranted to keep the mind totally outside the realm of physics. 
(see Görnitz, T., Görnitz, B., 2002, 2008) However, for a scientific description of the observer 
and even of his mind, the original Copenhagen interpretation has to be extended.  

What is the role of the observer. Let the quantum system be in a state Φ. After the measuring 
process the observer has to realize that all the possible states Ψ did not turn into real facts 
except for the final Ψf, which is associated with the actual outcome of the measurement. 

But left with Ψf , the information about the former state Φ is no longer available. The only 
remaining information on Φ is that Φ is not orthogonal to Ψf. Obviously, this only very 
vague and imprecise information as, in general, infinitely many states will be not orthogonal 
to Ψf.  

If the observer comes to know the result of the measurement associated with Ψf , he will use 
this new wave function for the future description of the system. It is useful to describe this 
change of the wave function as a result of the change in the observer’s knowledge. (Görnitz, 
T., v. Weizsäcker 1987, see also: Görnitz, T., Lyre 2006). The measurement provides new 
knowledge and the observer can take that into account. 

Now the intriguing question is how does a fact come about in physics if there is no observer 
to constitute it?  

In a pure quantum description no facts can arise (at least when one does not resort to 
infinite many degrees of freedom, as done in the algebraical description by Primas (1981)). 
While classical physics does describe facts, the classical description does not make any 
difference between past and future facts, all events being determined in the same way. 
More specifically, in classical physic the “real character” of time with its difference 
between past and future does not appear. Neither in classical nor in quantum physics the 
irreversibility of a factum is a consequence of the respective mathematical structure. Both 
theories have a reversible structure, and the irreversibility encountered, for example, in 
thermodynamics is attributed to the describers imperfect knowledge of the microscopic 
configurations of the system. However, imperfect knowledge cannot be the cause of a 
physical occurrence.  
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Information plays the central role in the measurement process. However, as long as 
information is only understood as being “knowledge”, a human observer has to be 
supposed. My proposal is to expand the role of information, which will allow us to explain 
how facts arise in the scientific description of nature, even without supposing an observer in 
the first place.  

Apparently, only in the measurement, i.e. in the transition from the quantum to classical 
description, physics does discriminate before the event and after the event. This means that 
the problem of how events occur must be solved. In this regard, I think the experiments 
with the quantum eraser ( Scully et al., 1991, Zajonc et al., 1991, Herzog et al., 1995) may 
shed some light on the role of the observer. 

The first such experiments were "double slit" experiments. If it is possible—at least in 
principle—to get the “which-way” information about the slits, there will be no interference; 
otherwise, interference patterns should appear. 

As the quantum eraser shows, it is not a disturbance by the observer which causes the 
measuring process; rather, the crucial factor here is the loss of information concerning the 
original state Φ. As to Scully and Walther (1998) state: “It is simply knowing (or having the 
ability to know even if we choose not to look at the Welcher-Weg detector) which eliminates 
the pattern. This has been verified experimentally. Hence one is led to ask: what would 
happen if we put a Welcher-Weg detector in place (so we lose interference even if we don’t 
look at the detector) and then erase the which-way information after the particles have 
passed through? Would such a “quantum eraser” process restore the interference fringes? 
The answer is yes and this has also been verified experimentally.”  

To make clear what happens, it is useful to describe the process somewhat differently. 

The authors say “… and then erase the which-way information.” However, the information 
is not taken out of the system and then destroyed. On the contrary, the which-way 
information can leave the system only potentially. If indeed the information had left the 
system, a factum concerning the “Weg” would have been produced and interference would 
be absent. However, this was not the case; the information was returned into the system 
and, in fact, not able to leave it. Both “ways” remained possible, no path became factual, and 
the interference appeared.  

Thus, the essential aspect of a measurement is whether some information on the state of the system 
under consideration is lost. 

As long as there is the possibility that the information can come back into the system, no real 
factum has been created and no measurement has occured. Only if it is guaranteed that the 
information (or at least a part of it) has left the system for good, a factum has been created 
and a measuring result can be established. 

Each state of a quantum system is “co-existing” with all other states not orthogonal to it. In 
this huge manifold of states there are eigenstates of the measuring interaction. In the 
measuring process associated with the respective measuring interaction one of the 
eigenstates becomes factual when the information on all the other states has been lost.  

That the measuring process relies on a loss of information seems contradictory, but, in 
fact, it is not: in the measurement a huge amount of quantum possibilities is reduced to 



 
Advances in Quantum Theory 

 

18

Information plays the central role in the measurement process. However, as long as 
information is only understood as being “knowledge”, a human observer has to be 
supposed. My proposal is to expand the role of information, which will allow us to explain 
how facts arise in the scientific description of nature, even without supposing an observer in 
the first place.  

Apparently, only in the measurement, i.e. in the transition from the quantum to classical 
description, physics does discriminate before the event and after the event. This means that 
the problem of how events occur must be solved. In this regard, I think the experiments 
with the quantum eraser ( Scully et al., 1991, Zajonc et al., 1991, Herzog et al., 1995) may 
shed some light on the role of the observer. 

The first such experiments were "double slit" experiments. If it is possible—at least in 
principle—to get the “which-way” information about the slits, there will be no interference; 
otherwise, interference patterns should appear. 

As the quantum eraser shows, it is not a disturbance by the observer which causes the 
measuring process; rather, the crucial factor here is the loss of information concerning the 
original state Φ. As to Scully and Walther (1998) state: “It is simply knowing (or having the 
ability to know even if we choose not to look at the Welcher-Weg detector) which eliminates 
the pattern. This has been verified experimentally. Hence one is led to ask: what would 
happen if we put a Welcher-Weg detector in place (so we lose interference even if we don’t 
look at the detector) and then erase the which-way information after the particles have 
passed through? Would such a “quantum eraser” process restore the interference fringes? 
The answer is yes and this has also been verified experimentally.”  

To make clear what happens, it is useful to describe the process somewhat differently. 

The authors say “… and then erase the which-way information.” However, the information 
is not taken out of the system and then destroyed. On the contrary, the which-way 
information can leave the system only potentially. If indeed the information had left the 
system, a factum concerning the “Weg” would have been produced and interference would 
be absent. However, this was not the case; the information was returned into the system 
and, in fact, not able to leave it. Both “ways” remained possible, no path became factual, and 
the interference appeared.  

Thus, the essential aspect of a measurement is whether some information on the state of the system 
under consideration is lost. 

As long as there is the possibility that the information can come back into the system, no real 
factum has been created and no measurement has occured. Only if it is guaranteed that the 
information (or at least a part of it) has left the system for good, a factum has been created 
and a measuring result can be established. 

Each state of a quantum system is “co-existing” with all other states not orthogonal to it. In 
this huge manifold of states there are eigenstates of the measuring interaction. In the 
measuring process associated with the respective measuring interaction one of the 
eigenstates becomes factual when the information on all the other states has been lost.  

That the measuring process relies on a loss of information seems contradictory, but, in 
fact, it is not: in the measurement a huge amount of quantum possibilities is reduced to 

Quantum Theory as Universal Theory of  
Structures – Essentially from Cosmos to Consciousness 

 

19 

the distinct classical information on a fact. The information about the measuring result is 
factual and, that is, classical information which can be replicated. Such classical 
information can be repeatedly taken out from the system; the measuring result can be 
read out repeatedly.  

How can this loss of information modelled? 

An essential step towards a better understanding was accomplished by the theory of 
quantum decoherence, originating with the work by Zeh (1970). Decoherence can explain 
how, in an approximate way, a quantum object acquires classical properties. There is a 
recent and detailed book (Schlosshauer, 2007) to which the reader is referred to for technical 
details. The central point is that for the composite system of the object, the measuring 
device, and the environment, the non-diagonal elements in the partial density matrix of the 
object become exponentially small in a short time. Therefore, the object density matrix 
rapidly assumes a form reflecting the situation of a classical probability for an unknown fact 
within an ensemble of possible facts.  

It is occasionally stated, however misleadingly, that decoherence solves the measuring 
problem. This is not the case. Zeh wrote (1996, S. 23) that an environmental induced 
decoherence alone does not solve the measuring problem; this applies even more to a 
microscopic environment, where decoherence does not necessarily lead to an irreversible 
change. Joos (1990) wrote: “that the derivation of classical properties from quantum 
mechanics remains insufficient in one essential aspect. The ambiguity of the quantum 
mechanical dynamics (unitary Schrödinger dynamics versus indeterministic collapse) 
remains unsolved. The use of local density matrices presupposes implicitly the measuring 
axiom, i.e., the collapse.” And he proceeds in his text as follows: “certain objects for a local 
observer appear classical (so defining what a classical object is), but the central question 
remains unsolved; why in the non-local quantum world local observers exist at all?” 

To answer this question one has to take into account, besides quantum information, the 
cosmological aspects of quantum theory. 

Decoherence in a system is caused by the interaction with a macroscopic device, which in 
turn is embedded in an even larger environment. As a consequence, information flows out 
from the quantum object. As long as this information is restricted to a finite volume, there is 
no fundamental obstacle preventing the information from coming back into the quantum 
object. However, any environment is ultimately coupled to the cosmic space, being 
presently nearly empty and dark. This cosmic boundary condition is the reason that in the 
end, perhaps with some intermediate steps, the information can escape without any realistic 
chance for  ever coming back.  

As long as a quantum system is completely isolated, so that not even information can escape, it will 
remain in its quantum state, comprising all its respective possibilities. Only if a system is no longer 
isolated, allowing information to escape, which usually will be effected by outgoing photons, a factum 
can arise. 

Of course, mathematically one is confronted with a limiting procedure. To prove rigorously 
that no information will ever come back, an infinite time limit has to be considered. 
Alternatively, an environment is needed with actually infinite many degrees of freedom in 
order to have superselection rules in a strong sense. ( Primas, 1983). 
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As far as an observer of the process is concerned, he may decide that for all practical 
purposes the appearance of a factum can be acknowledged. In view of the cosmological 
conditions, dispelling any expectations that the information will come back, one does not 
have to assume that the creation of a factum depends on the perception of the observer. On 
the other hand, there may be still a role for the observer, namely, to assure the end of the 
limiting process. Loosely speaking, one may say that the observer has to “guarantee” that 
the information on all the other possible states Ψ does not come back and turn the 
measurement into an illusion.  

Usually, outgoing information will be carried mostly by photons. Because the cosmos is 
empty, dark and expanding with high velocity there is no chance that an outgoing photon 
will be replaced by an equal incoming photon. As is well known, the cosmos was not always 
as it is today. In the beginning, the cosmos was dense and hot. Going back to the earliest 
stages of the universe, it was ever more likely that an outgoing photon was matched by an 
equal incoming one. This means  that the idea of creating facts becomes more and more 
obsolete when approaching the singular origin. Concomitantly, the structure of time with 
the difference between past, present and future looses gradually its significance, to 
disappear completely in the neighbourhood of the singularity. Obviously, without the 
familiar structure of time the conceptuality of empiricism has no meaning, nor  has the 
concept of empirical science.  

The generalization of “knowledge” to “information,” more exactly to “quantum information,” opens 
the possibility to extend the Copenhagen interpretation in such a way that the observer and his 
consciousness can be included in the scientific description. ( see Görnitz, T., Görnitz, B., 2002, 
2008). 

The intention here is not only to describe quantum processes in the brain but also quantum processes 
of the mind.  

That biological processes, like vision, i.e., the absorption of photons in the retina, or the 
absorption of photons in a plant and the subsequent transport of the electrons in the process 
of photosynthesis, must be described as quantum processes is already well-known. (Engel et 
al., 2007).  

This suggests that in the brain, perhaps the most complicated organ in biology, quantum 
processes will play a crucial role, even when decoherence happens just as much. However, 
the effect of decoherence decreases for decreasing mass of the quantum objects. Decoherence 
is weakest for massless objects, such as photons. Photons are essential as carriers of 
information in the brain, as the supporter of thoughts. As a hint at the role of photons in the 
brain, one may see the forensic fact that the personality of a patient has passed away if 
photons can no longer be found in the EEG. 

12. Conclusions 

As all science is approximation, a good description of nature incorporates its decomposition 
into objects and forces between them and their factual description – done by classical 
physics –  as well as taking into account the possibilities and the aspect of wholeness as 
done by quantum theory. The dynamical layering-process describes the interrelations 
between the classical and the quantum approaches. 
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Quantum theory, being the most successful fundamental physical theory, can be understood 
as the physics of relations, possibilities, and nonlocality. At the core of quantum theory is 
the equivalence of locality and nonlocality, matter and force, wholeness and emptiness, and, 
last but not least, the equivalence of matter, energy, and quantum information.  

These fundamental equivalences, based on absolute quantum information, allow for a 
foundation of the cosmological concepts as well as the inclusion of consciousness in the 
scientific description of nature.  
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1. Introduction

The relation of mathematics to physics and its influence on physics have been a topic of much
interest for some time. A sampling of the literature in this area includes Wigner’s paper, "The
Unreasonable Effectiveness of Mathematics in the Natural Sciences" (Wigner, 1960) and many
others (Bendaniel, 1999; Bernal et al, 2008; Davies, 1990; Hut et al, 2006; Jannes, 2009; Omnès,
2011; Tegmark, 2008; Welch, 2009). The approach taken by this author is to work towards
a comprehensive theory of physics and mathematics together (Benioff, 2005; 2002). Such a
theory, if it exists, should treat physics and mathematics as a coherent whole and not as two
separate but closely related entities.

In this paper an approach is taken which may represent definite steps toward such a coherent
theory. Two ideas form the base of this approach: The local availability of mathematics and
the freedom to choose scaling factors for number systems. Local availability of mathematics
is based on the idea that all mathematics that an observer, Ox, at space time point, x, can, in
principle, know or be aware of, is available locally at point x. Biology comes in to the extent
that this locally available knowledge must reside in an observers brain. Details of how this is
done, biologically, are left to others to determine.

This leads to the association of a mathematical universe,
∨

x, to each point x.
∨

x contains all
the mathematics that Ox can know or be aware of. For example,

∨
x contains the various types

of numbers: the natural numbers, N̄x, the integers, Īx, the rational numbers, Rax, the real
numbers, R̄x, and the complex numbers, C̄x. It also contains vector spaces, V̄x, such as Hilbert
spaces, H̄x , operator algebras, Opx, and many other structures.

The universes are all equivalent in that any mathematical system present in one universe is
present in another. It follows that

∨
y contains systems for the different types of numbers as

N̄y, Īy, Ray, R̄y, C̄y. It also contains H̄y, Opy, etc. Universe equivalence means here that for any
system type, S, S̄y is the same system in

∨
y as S̄x is in

∨
x .

For the purposes of this work, it is useful to have a specific definition of mathematical systems.
Here the mathematical logical definition of a system of a given type as a structure (Barwise,
1977; Keisler, 1977) is used. A structure consists of a base set, a few basic operations, none or a
few basic relations, and a few constants. The structure must satisfy a set of axioms appropriate
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2 Will-be-set-by-IN-TECH

for the type of system being considered. For example,

N̄x = {Nx,+x,×x,<x, 0x , 1x} (1)

satisfies a set of axioms for the natural numbers as the nonnegative elements of a discrete
ordered commutative ring with identity (Kaye, 1991),

R̄x = {Rx,+x,−x,×x,÷x,<x, 0x , 1x} (2)

is a real number structure that satisfies the axioms for a complete ordered field (Randolph,
1968), and

C̄x = {Cx,+x,−x,×x,÷x, 0x, 1x} (3)

is a complex number structure that satisfies the axioms for an algebraically closed field of
characteristic 0 (Shoenfield, 1967).

H̄x = {Hx,+x,−x, ·x, �−,−�x, ψx} (4)

is a structure that satisfies the axioms for a Hilbert space (Kadison, 1983). Here ψx is a state
variable in H̄x. There are no constants in H̄x. The subscript, x, indicates that these structures
are contained in

∨
x .

The other idea introduced here is the use of scaling factors for structures for the different
number types. These scale structures are based on the observation (Benioffa, 2011; Benioffb,
2011; Benioffc, 2011) that it is possible to define, for each number type, structures in which
number values are scaled relative to those in the structures shown above. The scaling of
number values must be compensated for by scaling of the basic operations and constants
in such a way that the scaled structure satisfies the relevant set of axioms if and only if the
original structure does.

Scaling of number structures introduces scaling into other mathematical systems that are
based on numbers as scalars for the system. Hilbert spaces are examples as they are based
on the complex numbers as scalars.

The fact that number structures can be scaled allows one to introduce scaling factors that
depend on space time or space and time. If y = x + μ̂dx is a neighbor point of x, then the real
scaling factor from x to y is defined by

ry,x = e�A(x)·μ̂dx. (5)

Here �A is a real valued gauge field that determines the amount of scaling, and μ̂ and dx
are, respectively, a unit vector and length of the vector from x to y. Also · denotes the scalar
product. For y distant from x, ry,x is obtained by a suitable path integral from x to y.

Space time scaling of numbers would seem to be problematic since it appears to imply that
comparison of theoretical and experimental numbers obtained at different space time points
have to be scaled to be compared. This is not the case. As will be seen, number scaling plays
no role in such comparisons. More generally, it plays no role in what might be called, "the
commerce of mathematics and physics".

Space time dependent number scaling is limited to expressions in theoretical physics that
require the mathematical comparison of mathematical entities at different space time points.
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Typical examples are space time derivatives or integrals. Local availability of mathematics
makes such a comparison problematic. If f is a space time functional that takes values in some
structure S̄, then "mathematics is local" requires that for each point, y, f (y) is an element of
S̄y. In this case space time integrals or derivatives of f make no sense as they require addition
or subtraction of values of f in different structures. Addition and subtraction are defined only
within structures, not between structures.

This problem is solved by choosing some point x, such as an observers location, and
transforming each S̄y into a local representation of S̄y on S̄x. Two methods are available for
doing this: parallel transformations for which the local representation of S̄y on S̄x is S̄x itself,
and correspondence transformations. These give a local, scaled representation of S̄y on S̄x in
that each element of S̄y corresponds to the same element of S̄x, multiplied by the factor ry,x.

The rest of this paper explains, in more detail, these ideas and some consequences for physics.
The next section describes representations of number types that differ by scaling factors.
Sections 3 and 4 describe space time fields of complex and real number structures and the
representation of ry,x in terms of a gauge field, as in Eq. 5. This is followed by a discussion of
the local availability of mathematics and the assignment of separate mathematical universes
to each space time point. Section 6 describes correspondence and parallel transforms. It is
shown that �A plays no role in the commerce of mathematics and physics. This involves the
comparison and movement of the outcomes of theoretical predictions and experiments and
the general use of numbers.

Section 7 applies these ideas to quantum theory, both with and without the presence
of �A. Parallel and correspondence transformations are used to describe the wave packet
representation of a quantum system. It is seen that there is a wave packet description that
closely follows what what is actually done in measuring the position distribution and position
expectation value. The coherence is unchanged in such a description.

The next to last section uses "mathematics is local" and the scaling of numbers to insert �A into
gauge theories. The discussion is brief as it has already been covered elsewhere (Benioffa,
2011; Benioffc, 2011). �A appears in the Lagrangians as a boson for which a mass term is not
forbidden. The last section concludes the paper.

The origin of this work is based on aspects of mathematical locality that are already used in
gauge theories (Montvay & Münster, 1994; Yang & Mills, 1954) and their use in the standard
model (Novaes, 2000). In these theories, an n dimensional vector space, V̄x , is associated with
each point, x, in space time. A matter field ψ(x) takes values in V̄x . Ordinary derivatives are
replaced by covariant derivatives, Dμ,x, because of the problem of comparing values of ψ(x)
with ψ(y) and to introduce the freedom of choice of bases. These derivatives use elements
of the gauge group, U(n), and their representations in terms of generators of the Lie algebra,
u(n), to introduce gauge bosons into the theories.

2. Representations of different number types

Here the mathematical logical definition Barwise (1977); Keisler (1977) of mathematical
systems as structures is used. A structure consists of a base set, basic operations, relations,
and constants that satisfy a set of axioms relevant to the system being considered. As each
type of number is a mathematical system, this description leads to structure representations
of each number type.
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The types of numbers usually considered are the natural numbers, N̄, the integers, Ī, the
rational numbers, Ra, the real numbers, R̄, and the complex numbers, C̄. Structures for the
real and complex numbers can be defined by

R̄ = {R,+,−,×,÷,<, 0, 1}
C̄ = {C,+,−,×,÷, 0, 1}.

(6)

A letter with an over line, such as R̄, denotes a structure. A letter without an over line, as R in
the definition of R̄, denotes the base set of a structure.

The main point of this section is to show, for each type of number, the existence of many
structures that differ from one another by scale factors. To see how this works it is useful to
consider a simple case for the natural numbers, 0, 1, 2, · · · . Let N̄ be represented by

N̄ = {N,+,×,<, 0, 1} (7)

where N̄ satisfies the axioms of arithmetic (Kaye, 1991).

The structure N̄ is a representation of the fact that 0, 1, 2 · · · with appropriate basic operations
and relations are natural numbers. However, subsets of 0, 1, 2, · · · , along with appropriate
definitions of the basic operations, relations, and constants are also natural number structures.

As an example, consider the even numbers, 0, 2, 4, · · · in N̄ Let N̄2 be a structure for these
numbers where

N̄2 = {N2,+2,×2,<2, 02, 12} (8)

Here N2 consists of the elements of N with even number values in N̄. The structure N̄2 shows
that the elements of N that have value 2n in N̄ have value n in N̄2. Thus the element that has
value 2 in N̄ has value 1 in N̄2, etc. The subscript 2 on the constants, basic operations, and
relations in N̄2 denotes the relation of these structure elements to those in N̄.

The definition of N̄2 floats in the sense that the specific relations of the basic operations,
relation, and constants to those in N̄ must be specified. These are chosen so that N̄2 satisfies
the axioms of arithmetic if and only if N̄ does. A suitable choice that satisfies this requirement
is another representation of N̄2 defined by

N̄2
2 = {N2,+,

×
2

,<, 0, 2}. (9)

This structure is called the representation of N̄2 on N̄.

N̄2
2 shows explicitly the relations between the basic operations, relations, and number values

in N̄2 and and those in N̄. For example, 12 ↔ 2,+2 ↔ +,×2 ↔ ×/2,<2↔< . These relations
are such that N̄2

2 , and thereby N̄2, satisfies the axioms of arithmetic if and only if N̄ does.

N̄2
2 also shows the presence of 2 as a scaling factor. Elements of the base set N2 that have value

n in N̄2 have value 2n in N̄. Note that, by themselves, the elements of the base set have no
intrinsic number values. The values are determined by the axiomatic properties of the basic
operations, relations, and constants in the structure containing them.

This description of scaled representations applies to the other types of numbers as well. For
real numbers let r be a positive real number in R̄, Eq. 6. Let

R̄r = {R,+r,−r,×r,÷r,<r, 0r, 1r} (10)
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be another real number structure. Define the representation of R̄r on R̄ by the structure,

R̄r
r = {R,+,−,

×
r

, r÷,<, 0, r}. (11)

R̄r
r shows that number values in R̄r are related to those in R̄ by a scaling factor r.

R̄r
r gives the definitions of the basic operations, relation, and constants in R̄r in terms of those

in R̄. These definitions must satisfy the requirement that R̄r satisfies the real number axioms
if and only if R̄r

r does if and only if R̄ does.1

Note that the base set R is the same for all three structures. Also the elements of R do not
have intrinsic number values independent of the structure containing R. They attain number
values only inside a structure where the values depend on the structure containing R.

The relationships between number values in R̄r
r, R̄r , and R̄ can be represented by a new term,

correspondence. One says that the number value ar in R̄r corresponds to the number value ra in
R̄. This is different from the notion of sameness. In R̄, ra is different from the value a. However,
a is the same value in R̄ as ar is in R̄r as ra is in R̄r

r. The distinctions between the concepts of
correspondence and sameness does not arise in the usual treatments of numbers. The reason
is that sameness and correspondence coincide when r = 1.

For complex numbers, the structures, in addition to C̄, Eq. 6, are

C̄r = {C,+r,−r,×r,÷r, 0r , 1r}, (12)

and the representation of C̄r on C̄ as

C̄r
r = {C,+,−,

×
r

, r÷, 0, r}. (13)

Here r is a real number value in C̄. a is the same number value in C̄ as ar is in C̄r. Otherwise
the description is similar to that for the natural and real numbers. More details on these and
other number type representations are given in (Benioffb, 2011).

3. Fields of mathematical structures

As was noted in the introduction, the local availability of mathematics results in the
assignment of separate structures, S̄x, to each point, x, of space time. Here S denotes a type of
mathematical structure. The discussion is limited to the main system types of concern. These
are the real numbers, the complex numbers, and Hilbert spaces. Hilbert spaces are included
here because the freedom of choice of scaling factors for number types affects Hilbert spaces
as they are based on complex numbers as scalars.

3.1 Complex numbers

Parallel transformations between C̄x and C̄y for two points, x, y, define the notion of same
number values between the structures. Let Fy,x be an isomorphism from C̄x onto C̄y. With

C̄x = {Cx,+x,−x,×x,÷x, 0x, 1x}
C̄y = {Cy,+y,−y,×y,÷y, 0y, 1y},

(14)

1 The relations between the structures are also valid for negative values of r, provided < in Eq. 11 is
replaced by >, and appropriate changes are made in the axioms to reflect this replacement.
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and
Fy,xC̄x = C̄y, (15)

Fy,x defines the notion of same number value and same operation in C̄y as that in C̄x. This is
expressed by

ay = Fy,xax

Opy = Fy,xOpx .
(16)

Here ay is the same (or Fy,x-same) number value in C̄y as ax is in C̄x. Opy is the same operation
in C̄y as Opx is in C̄x. Op denotes any one of the operations, +,−,×,÷.

Note that Fy,x is independent of paths between x and y. This follows from the requirement
that for a path P from x to y and a path Q from y to z,

FQ∗P
z,x = FQ

z,yFP
y,x. (17)

Here Q ∗ P is the concatenation of Q to P. If z = x then the path is cyclic and the final structure
is identical to the initial one. This gives the result that

FQ∗P
x,x = 1. (18)

This shows that FP
y,x is path independent so that a path label is not needed. Note that

Fy,x = F−1
x,y . (19)

The subscript order in Fy,x gives the path direction, from x to y.

At this point the freedom to choose complex number structures at each space time point is
introduced. This is an extension, to number structures, of the freedom to choose basis sets in
vector spaces as is used in gauge theories (Montvay & Münster, 1994; Yang & Mills, 1954) This
can be accounted for by factoring Fy,x into a product of two isomorphisms as in

Fy,x = Wy
r Wr

x. (20)

Here y = x + ν̂dx is taken to be a neighbor point of x.

The action of Wy
r and Wr

y is given by

C̄y = Wy
r C̄r

x = Wy
r Wr

xC̄x = Fy,xC̄x. (21)

Here ry,x is a real number in C̄x that is associated with the link from x to y. As was the case
for Fy,x the order of the subscripts determines the direction of the link. Thus rx,y is a number
in C̄y for the same link but in the opposite direction and

(rx,y)xry,x = 1. (22)

Here (rx,y)x is the same number value in C̄x as rx,y is in C̄y. In the following, the subscripts
y, x are often suppressed on ry,x to simplify the notation.

The structure C̄r
x is defined to be the representation of C̄y on C̄x. As is the case for C̄r

r , Eq. 13,
the number values and operations in C̄r

x are defined in terms of the corresponding number
values and operations in C̄x:

28 Advances in Quantum Theory
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C̄r
x = {Cx,+x,−x,

×x

r
, r÷x, 0x , r}. (23)

The multiplication and division by r, shown in ×x/r, r÷x, are operations in C̄x. Note that the
number value r in C̄x is the multiplicative identity in C̄r

x. Also C̄r
x has the same base set, Cx, as

does C̄x.

The corresponding definition of Wr
x is given by

Wr
x(ax) = rax, Wr

x(±x) = ±x

Wr
x(×x) =

×x
r Wr

x(÷x) = r ÷x .
(24)

Wr
x is an isomorphism in that

Wr
x(axOxbx) = Wr

x(ax)Wr
x(Ox)Wr

x(bx). (25)

Here ax and bx are number values in C̄x and Ox denotes the basic operations in C̄x.

Wy
r has a similar definition as it is an isomorphism from C̄r

x to C̄y. Since the definition is similar
it will not be given here.

C̄r
x can also be represented in a form similar to that of Eq. 12 as

C̄r,x = {Cx,±r,x,×r,x,÷r,x, 0r,x, 1r,x}. (26)

This structure can be described as the representation of C̄y at x. The relation between the
number values and operations in C̄r,x and those in C̄x is provided by C̄r

x which defines the
number values and operations of C̄r,x in terms of those in C̄x. In this sense both C̄r,x and C̄r

x
are different representations of the same structure. From now on C̄r,x and C̄r

x will be referred
to as the representation of C̄y at x and on C̄x respectively.

The relations between the basic operations and constants of C̄r
x and those of C̄x lead to an

interesting property. Let f r
x(a

r
x) be any analytic function on C̄r

x. It follows that

f r
x(a

r
x) = br

x ⇔ r fx(ax) = rbx ⇔ fx(ax) = bx. (27)

Here fx is the same function on C̄x as f r
x is on C̄r

x. Also ax and bx are the same number values
in C̄x as ar

x and br
x are in C̄r

x.

This result follows from the observation that any term (ar
x)

n/(br
x)

m in C̄r
x satisfies the relation

(ar
x)

n

(br
x)m

r
x = r

(ax)n

(bx)m x . (28)

The n factors and n-1 multiplications in the numerator contribute a factor of r. This is canceled
by a factor of r in the denominator. The one r factor arises from the relation of division in C̄r

x
to that in C̄x.

Eq. 27 follows from the fact that Eq. 28 holds for each term in any convergent power series.
As a result it holds for the power series itself.
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3.2 Real numbers

Since the treatment for real numbers is similar to that for complex numbers, it will be
summarized here. The representations of R̄y at x and on R̄x are given by Eqs. 10 and 11
as

R̄r,x = {Rx ,±r,x,×r,x,÷r,x,<r,x, 0r,x, 1r,x}
R̄r

x = {Rx,±x, ×x
r , r÷x,<x, 0x , rx}.

(29)

Here r = rx,y is a positive real number.

The definition of parallel transforms for complex number structures applies here also. Let Fy,x
transform R̄x to R̄y. Fy,x defines the notion of same real number in that ay = Fy,x(ax) is the
same real umber in R̄y as ax is in R̄x. As was shown in Eqs. 20 and 21, Fy,x can be factored into
two operators as in Fy,x = Wy

r Wr
x where

R̄y = Wy
r R̄r

x = Wy
r Wr

xR̄x = Fy,xR̄x . (30)

Wr
x defines the scaled representation of R̄y on R̄x. It is given explicitly by Eq. 24. Wy

r maps
the scaled representation onto R̄y. Eqs. 27 and 28 also hold for the relations between any real
valued analytic function on R̄r

x and its correspondent on R̄x in that f r
x(a

r
x) = r fx(ax).

3.3 Hilbert spaces

As noted in the introduction, Hilbert space structures have the form shown in Eq. 4 as

H̄x = {Hx,+x,−x, ·x, �−,−�x, ψx}. (31)

Complex numbers are included implicitly in that Hilbert spaces are closed under
multiplication of vectors by complex numbers. Also scalar products are bilinear maps with
complex values.

As was the case for numbers, parallel transformation of H̄y to x maps H̄y onto H̄x. If scaling of
the numbers is included, then the local representation of H̄y, C̄y on H̄x, C̄x is given by H̄r

x, C̄r
x.

The structure, C̄r
x, is shown in Eq. 23. H̄r

x is given by

H̄r
x = {Hx,±x,

·x
r

,
�−,−�x

r
, rψx} (32)

This equation gives explicitly the relations of operations and vectors of the local representation
of H̄y to those in H̄x. The relations are defined by the requirement that H̄r

x satisfy the Hilbert
space axioms (Kadison, 1983) if and only if H̄x does.2 Here rψx is the same vector in H̄r

x as ψx
is in H̄x .

2 Support for the inclusion of r as a vector multiplier, as in H̄r
x, Eq. 32, is based on the equivalence

between finite dimensional vector spaces and products of complex number fields (Kadison, 1983). If
H̄y and H̄x are n dimensional spaces, then H̄y � C̄n

y and H̄x � C̄n
x .

These equivalences extend to the local representation of H̄y on H̄x. As the local representation of C̄y on
C̄x , C̄r

x is the scalar field base for the local Hilbert space representation. It follows that H̄r
x is equivalent

to (C̄r
x)

n. A vector in (C̄r
x)

n corresponds to an n-tuple, {ar
x,j : j = 1, · · · , n} of number values in C̄r

x . Use
of the fact that the value ar

x,j in C̄r
x, corresponds to the number value raj,x in C̄x shows that the n-tuple

in (C̄r
x)

n corresponds to the n-tuple, r{aj,x : j = 1, · · · , n} in C̄n
x . These equivalences should extend to

the case where H̄y and H̄x are separable, which is the case here.
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The description of H̄r
x given here is suitable for use in section 7 where wave packets for

quantum systems are discussed. For gauge theories, the Hilbert spaces contain vectors for
the internal variables of matter fields. In this case one has to include a gauge field to account
for the freedom to choose bases (Montvay & Münster, 1994; Yang & Mills, 1954). The local
representation of H̄y on H̄x is then given by (Benioffa, 2011; Benioffc, 2011)

H̄r,V
x = {Hx,±x,

·x
r

,
�−,−�x

r
, rVψx}. (33)

If the H̄x are n dimensional, then V is an element of the gauge group, U(n).

4. Gauge fields

As was noted in the introduction, for y = x + ν̂dx, ry,x can be represented as the exponential
of a vector field:

ry,x = e�A(x)·ν̂dx = eAν(x)dxν
(34)

(sum over repeated indices implied). �A(x) is also referred to as a gauge field as it gives the
relations between neighboring complex number structures at different space time points. To
first order in small quantities,

ry,x = 1 + �A(x) · ν̂dx. (35)

The use of ry,x makes clear the fact that the setup described here is a generalization of the
usual one. To see this, set �A(x) = 0 everywhere. Then ry,x = 1 for all y, x and the local
representations of C̄y and R̄y on C̄x and R̄x are C̄x and R̄x . Since the C̄x and R̄x are then
independent of x, one can replace C̄x and R̄x with just one complex and real number structure,
C̄ and R̄.

4.1 Scale factors for distant points

The description of ry,x can be extended to points y distant from x. Let P be a path from x to
y parameterized by a real number, s, such that P(0) = x and P(1) = y. Let rP

y,x be the scale
factor associated with the path P. If ay is a number value in C̄y, then ay corresponds to the
number value, rP

y,xax , in C̄x where ax = Fx,yay is the same number value in C̄x as ay is in C̄y.

One would like to express rP
y,x as an exponential of a line integral along P of the field �A(x).

However this is problematic because the integral corresponds to a sum over s of complex
number values in C̄P(s). Such a sum is not defined because addition is defined only within a
number structure. It is not defined between different structures.

This can be remedied by referring all terms in the sum to one number structure such as C̄x.
To see how this works, consider a two step path from x to y = x + ν̂1Δx and from y to z =
y + ν̂2Δy. Δy is the same number in C̄y as Δx is in C̄x.

Let az be a number value in C̄z. az corresponds to the number value rz,y ×y ay in C̄y. Here
ay = Fy,zaz is the same number value in C̄y as az is in C̄z. In C̄x, rz,y ×y ay corresponds to the
number value given by

ry,x ×x (rz,y)x(
×x

ry,x
)(ry,x ×x ax) = (rz,y)xry,xax . (36)
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Here (rz,y)x = Fx,y(rz,y) is the same number in C̄x as rz,y is in C̄y and ×x/ry,x is the
representation of ×y on C̄x. The C̄x multiplications are implied in the righthand term and
ax = Fx,yay.

The factor (rz,y)xry,x can be expressed in terms of the field �A. It is

(rz,y)xry,x = e(�A(y))x·ν̂2Δx+�A(x)·ν̂1Δx . (37)

Δy is replaced here by its same value Δx in C̄x.

Let P be an n step path where P(0) = x0 = x, P(j) = xj , P(n − 1) = xn−1 = y and xj+1 =

xj + ν̂jΔxj . Then rP
y,xax is given by

rP
y,x =

n−1

∏
j=0

(rxj+1,xj )x = exp(
n−1

∑
j=0

[(�A(xj)) · ν̂jΔxj ]x). (38)

The subscript x denotes the fact that all terms in the product and in the exponential, are
values in C̄x. For example (rxj+1,xj)x = Fx,xjrxj+1,xj is the same value in C̄x as rxj+1,xj is in C̄xj .
An ordering of terms in the product of Eq, 38 is not needed because the different r factors
commute with one another.

This can be extended to a line integral along P. The result is (Benioffa, 2011)

rP
y,x = exp{

∫ 1

0
(�A(P(s)))x · ( dP(s)

ds
)xds} = exp{

∫

P
(�A(�z))xd�z}. (39)

The subscript x on the factors in the integral mean that the terms are all evaluated in C̄x.

It is unknown if the field �A and thereby rP
y,x is or is not independent of the path P from x to y. If

�A is not integrable, then the path dependence introduces complications. In particular it means
that for y distant from x, there is no path independent way to describe the local representation

of C̄y on C̄x. The local representation would have to include a path variable as in C̄
rP

y,x
x .

In this work, this complication will be avoided by assuming that �A is integrable. Then rp
y,z =

ry,x, independent of P.

Let P be a path from x to y and Q be another path from y to x. Then integrability gives

rQ∗P
x,x = (rQ

x,y)xrP
y,x = 1x (40)

Here Q ∗ P is the concatenation of Q to P. This result gives

(rQ
x,y)x = (rP

y,x)
−1. (41)

5. Local availability of mathematics

The local availability of mathematics means that for an observer, Ox , at point x, the
mathematics that Ox can use, or is aware of, is locally available at x. Since mathematical
systems are represented by structures, (Barwise, 1977; Keisler, 1977), one can use

∨
x to denote

the collection of all these structures.
∨

x includes real and complex number and Hilbert space
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structures R̄x , C̄x, H̄x , structures for operator algebras as well as many other structure types.
All the mathematics that Ox uses to make physical predictions and physical theories use
the systems in

∨
x . Similarly, all the mathematics available to an observer Oy at point y is

contained in
∨

y .

An important requirement is that the mathematics available, in principle at least, to an
observer must be independent of the observers location. This means that

∨
y must be

equivalent to
∨

x. For each system structure in
∨

y, there must be a corresponding structure
in

∨
x . Conversely, for each system structure in

∨
x there must be a corresponding structure

in
∨

y . Furthermore the corresponding structures in
∨

y and
∨

x must be related by parallel
transforms that map one structure to another. These parallel transforms define what is meant
by the same structure and the same structure elements and operations in

∨
x as in

∨
y, and

conversely.

This use of parallel transforms is an extension to other types of mathematical systems, of
the definitions and use of parallel transforms, Section 3, to relate complex and real number
structures at different space time points. It is based on the description of each type of
mathematical system as structures, each consisting of a base set, basic operations, relations
and constants, that satisfy a set of axioms relevant to the system type.(Barwise, 1977; Keisler,
1977).

The association of an observer to a point, as in Ox, is an idealization, mainly because observers,
e.g. humans, have a finite size. Because of this, an observer’s location is a region and not a
point. This is the case if one notes that the observer’s brain is the seat of all mathematical
knowledge and limits consideration to the brain. In addition, quantum mechanics introduces
an inherent uncertainty to the location of any system. In spite of these caveats, the association
of an observer to a point will be used here.

An important aspect of
∨

x is that Ox must be able to use the systems in
∨

x to describe the
systems in

∨
y . This can be done by means of parallel transform maps or correspondence

maps from systems in
∨

y to those in
∨

x . Parallel transforms map elements and operations of
system structures S̄y to the same elements and operations of S̄x. In this case Ox can use the
mathematics of S̄x as a stand in for the mathematics of S̄y.

Correspondence maps take account of scaling of real and complex numbers in relating systems
at y to those at x. In this case Ox describes the mathematics of S̄y in terms of the local
representation, S̄r

x, of S̄y on S̄x. If S = R or S = C then Ox would describe the properties
of R̄y or C̄y in terms of the local scaled systems R̄r

x and C̄r
x.

The existence of correspondence maps means that for each system type, S,
∨

x contains all the
scaled systems, S̄r

x, for each point y, in addition to S̄x. (Recall r = ry,x.) They include scaled
real numbers, R̄r

x , complex numbers, C̄r
x, and scaled Hilbert spaces, H̄r

x, as well as many other
system types.

All these scaled systems are available to an observer, Ox at x. Since they are locally available,
Ox takes account of scaling by using them to make theoretical calculations that require
inclusion of numbers or vectors at different space or space time points. If Ox does not use
these correspondence maps and restricts use to parallel transform maps only, then the setup
becomes simpler in that each S̄r

x is identical to S̄x.
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This raises the question of when correspondence maps can be used instead of parallel
transform maps. This will be discussed in the next sections. Here the use of correspondence
maps follows from the inclusion into physics of the freedom to choose number systems at
different space time points. In this sense it extends the freedom to choose bases in vector
spaces in gauge field theory (Montvay & Münster, 1994; Yang & Mills, 1954) to the underlying
scalars.

6. Correspondence maps and parallel transform maps

It is proposed here that correspondence maps be used in any theoretical physics expression
that requires the mathematical comparison of mathematical entities at different space time
points. Typical examples are space and time derivatives or integrals of functions or functionals
as maps from space time (or space and time) to elements of mathematical systems that are
based on the real or complex numbers as scalars. An example is an n component complex
scalar field.

At this point it is not completely clear if there are other cases in which correspondence maps
should be used instead of parallel transform maps. However it is clear that there are many
situations where these maps should not be used. These involve what is referred to here as the
commerce of mathematics and physics.3

To see this suppose Ox wants to compare the numerical output of either an experiment or
a theoretical computation, done at x, with the numerical output of either an experiment or
computation done at y. Let bx and dy be the real valued numerical outcomes obtained. Use of
the correspondence maps means that Ox would compare bx with the local representation of
dy at x, that is, with the number ry,xdx . Here dx is the same number in R̄x as dy is in R̄y.

This is contradicted by experience. There is no hint of a factor ry,x in comparing outcomes
of repeated experiments, or comparing experimental outcomes with theoretical predictions,
or in any other use of numbers in commerce. If one ignores statistical and quantum
uncertainties, numerical outcomes of repeated experiments or repeated computations are the
same irrespective of when and where they are done.4

The reason for this is a consequence of a basic fact. This is that no experiment and no
computation ever directly yields a numerical value as an outcome. Instead the outcome of
any experiment is a physical system in a physical state that is interpreted as a numerical value.
Similarly the outcome of a computation is a physical system in a state that is interpreted as a
numerical value.

The crucial word here is interpreted. If ψy is the output state of a measurement apparatus for
an experiment at point y, and φx is the output state of a computation at point x, then the
numerical values of these output states are given by ay = Iy(ψy) and bx = Ix(φx). Here Iy and
Ix are interpretive maps from the output states of the measurement system into R̄y and from
the computation output states into R̄x respectively. The space time dependence of the maps is
indicated by the x, y subscripts.

3 Mathematical and physical commerce refers to the use of numerical values as outcomes of computations
and experiments in science, business, and communication.

4 A similar criticism of a suggestion by Weyl was made almost 100 years ago by Einstein (O’Raifeartaigh,
1997).
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uncertainties, numerical outcomes of repeated experiments or repeated computations are the
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any experiment is a physical system in a physical state that is interpreted as a numerical value.
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The crucial word here is interpreted. If ψy is the output state of a measurement apparatus for
an experiment at point y, and φx is the output state of a computation at point x, then the
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3 Mathematical and physical commerce refers to the use of numerical values as outcomes of computations
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4 A similar criticism of a suggestion by Weyl was made almost 100 years ago by Einstein (O’Raifeartaigh,
1997).
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The "Naheinformationsprinzip", no information at a distance principle (Mack, 1981; Montvay
& Münster, 1994), forbids direct comparison of the information in ψy with that in φx. This
means that Iy(ψy) and Ix(φx) cannot be directly compared. Instead the information contained
in ψy and that contained in φx must be transported, by physical means, to a common point for
comparison.

There are many different methods of physical information transmission. Included are optical
and electronic methods as well as older slower methods. All methods involve motion of an
information carrying physical system from one point to another, "information is physical"
Landauer (1991). The physical system used should be such that the state of the information
carrying degrees of freedom does not change during transmission from one point to another.

Figure 1 illustrates schematically, in one dimensional space and time, the nonrelativistic
transmission of a theory computation output state obtained at x′, u and an experimental
output state obtained at y, v to a common point, x, t, for comparison. Here x, x′, y are space
locations and u, v, t are times.

Fig. 1. A simple example of comparing theory with experiment. The ovals denote the output
computation and experiment systems in states φc and φe at space and times, x′, u and y, v. P
and Q denote the paths followed by these systems. One has P(u) = x′ and Q(v) = y. The
double oval in the center denotes the the two systems at the point, x, of path intersection
where P(t) = Q(t) = x. The interpretation maps are denoted by IP(s),s and IQ(s),s for different
times s. The real number structures R̄P(s),s and R̄Q(s),s are associated with each point in the
paths P and Q. Fx,t;x′,u and Fx,t:y,v are parallel transform operators that map the real number
structures at the points of theory and experiment completion to the point of path intersection.

The figure, and the discussion, illustrate a general principle. All activities in the commerce of
mathematics and physics consist of physical procedures and operations that generate physical
output systems in states that are interpreted as numerical values. The "no information at
a distance" principle forbids direct comparison of the associated number values at different
points. Instead the systems or suitable information carriers must be brought to a common
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point where the numerical information, as number values in just one real number structure,
can be locally compared.

Similar considerations apply to storage of outcomes of experiments or computations either in
external systems or in the observers brain. As physical dynamic systems, observers move in
space time. If P is a path taken by an observer, with P(τ) the observers location at proper time
τ, the mathematics available to OP(τ) is that in

∨
P(τ) . If φ(P(τ)) denotes the state of a real

number memory trace in an observers brain, then the number value represented by φ(P(τ))
is given by IP(τ)(φ(P(τ))). This is a number value in R̄P(τ). At a later proper time τ�, the
number value represented by the memory trace is IP(τ�)(φ(P(τ

�)). If there is no degradation
of the memory trace, then IP(τ)(φ(P(τ))) is the same number value in R̄P(τ) as IP(τ�)(φ(P(τ

�))
is in R̄P(τ�). Correspondence maps play no role here either.

7. Quantum theory

As might be expected, the local availability of mathematics and the freedom of choice of
number scaling factors, have an effect on quantum theory. This is a consequence of the
use of space time integrals and derivatives in the theory. For example, one would expect
to see the gauge field �A appear in quantum descriptions of physical systems. To see how this
effect arises, it is useful to limit the treatment to nonrelativistic quantum mechanics on three
dimensional Euclidean space, R3.

7.1 Effect of the local availability of mathematics on quantum theory

The local availability of mathematics requires that the usual setup of just one C̄, R̄, H̄ is
replaced by separate number structures, R̄x, C̄x and separate Hilbert spaces, H̄x, associated
with each x in R3.5 It follows that mathematical operations, such as space or time derivatives
or integrals, which involve nonlocal mathematical operations on numbers or vectors at
different points, cannot be done. The reason is that these operations violate mathematical
locality.

To preserve locality, one must use either parallel transformations or correspondence
transformations. These two methods are well illustrated by considering a single particle wave
packets. The usual representation has the form

ψ =
∫

ψ(y)|y�dy (42)

where the integral is over all space points in R3.

One result of the local availability of mathematics is that, for each y, the vector, ψ(y)|y�, is in
H̄y, just as ψ(y) is a number value in C̄y. It follows that the space integral over y makes no
sense. It describes a suitable limit of adding vectors that belong to different Hilbert spaces.
Addition is not defined between different spaces; it is defined only within one Hilbert space
and complex number structure.

5 The association of separate Hilbert spaces to each point x is different here from that used in gauge
theory (Montvay & Münster, 1994). In gauge theory, the spaces are all finite dimensional and apply
to internal states of the Fermion fields. Here the Hilbert spaces describe states of systems spread over
space, e.g. as wave packets.
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The use of parallel transformations replaces Eq. 42 by

ψx =
∫

x
ψ(y)x|yx�xdyx . (43)

Here ψ(y)x = Fx,yψ(y) is the same number value in C̄x as ψ(y) is in C̄y, the number triple, yx ,
in |yx�x is the same triple in R̄3

x as y is in R̄3
y, and |yx�x is the same state in H̄x as |y� is in H̄y.

The differentials dyx = dy1
xdy2

xdy3
x refer to R̄3

x. The subscript x in
∫

indicates that the integral
is based on H̄x, C̄x. The representations of sameness given above are shown explicitly by

ψ(y)x = Fx,yψ(y)
yx = F̄x,y(y)

|yx�x = |F̄x,y(y)�x
dyx = F̄x,y(dy).

(44)

Also |F̄x,y(y)�x is the same basis vector in H̄x as |y� is in H̄y.

Note that the point x on which the integral is based is arbitrary. Eq. 43 holds if the subscript x
is replaced by another point z. Then the integral is based on C̄z, H̄z.

The use of parallel transforms is applicable to other aspects of quantum mechanics. For each
y in R3, the momentum operator, py, for vectors in H̄y is given by

py = iyh̄y∇y = iyhy

3

∑
j=1

∂j,y. (45)

Here, iy, h̄y are numbers in C̄y. The action of py on a vector ψ at point y gives for the jth
component

py,jψ = iy h̄y∂j,yψ =
ψ(y + dyj)− ψ(y)

dyj . (46)

As was the case for the space integral, this expression makes no sense because ψ(y + dyj) is in
C̄y+djy and ψ(y) is in C̄y.

This can be remedied by replacing ∂j,y by ∂�j,y where

∂�j,yψ =
ψ(y + dyj)y − ψ(y)

dyj . (47)

Here ψ(y + dyj)y = Fy,y+djyψ(y + dyj). It follows from this that the expression for the
momentum becomes

p�
yψ =

3

∑
j=1

p�j,yψ = iyh̄y

3

∑
j=1

∂�j,yψ. (48)

The Hamiltonian for a single quantum system in an external potential, acting on a state, ψy at
point y, is given by

Hyψ(y) = − h̄2
y

2my

3

∑
j=1

(∂�)2
y,jψ(y) + V(y)ψ(y). (49)
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Here, h̄y and my are Planck’s constant and the particle mass. They have values in R̄y. The
values of the external potential, V(y), are also in R̄y.

The main difference between this and the usual expression for a Hamiltonian is the
replacement of ∂j,y with ∂�j,y. Otherwise, the expressions are the same.

For a single particle state, ψ, the momentum representation is ψ =
∫

ψ(p)|p�dp. Here dp =
dp1dp2dp3. Since the amplitude ψ(p) is a complex number value and no location for the value
is specified, one may choose any location, x, such as that of an observer, Ox , to assign ψ(p) as
a number value in C̄x and the integral as an element of

∨
x .

The relation between ψ(p) and ψ(x) is given by the Fourier transform. The components of the
space integral in

ψ(p) =
∫

eiz pzzψ(z)dz (50)

must all be mapped to a common point, x, for the integral to make sense. This gives

ψ(p)x =
∫

x
(eiz pzz)xψ(z)xdzx (51)

Here
(eiz pzz)x = Fx,zeiz pzz = eix pxzx (52)

is the same number in C̄x as eiz pzz is in C̄z.

The treatment described can be extended to multiparticle entangled states. It is sufficient to
consider two particle states. For example a two particle state ψ1,2 where the total momentum
of the two particles is 0 can be expressed by

ψ1,2 =
∫

ψ1(p)ψ2(−p)|p�1| − p�2dp. (53)

Use of Fourier transforms gives

ψ1,2 =
∫

dz1dz2(
∫

eiz1 pψ1(p)|p�1e−iz2 pψ2(−p)| − p�2dp). (54)

The integral must be transformed to a Hilbert space with just one scalar field. For a point x
with C̄x, H̄x, the integrand factors are parallel transformed to obtain

(ψ1,2)x =
∫

x
(dz1)x(dz2)x(

∫
(eiz1 p)xψ1(p)x |px�1(e

−iz2 p)xψ2(−p)x| − px�2dpx). (55)

Here
(eiz1 p)x = Fx,z1(e

iz1 p)
(e−iz2 p)x = Fx,z2(e

−iz2 p)
(56)

Also px is the same value in C̄x as p is in C̄z1 in the z1 integral, Eq. 54, and −px is the same
value in C̄x as −p is in C̄z2 in the z2 integral.
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7.2 Inclusion of number system scale factors

The above shows that the imposition of "mathematics is local" on quantum theory is more
complex than the usual treatment with just one scalar field and one Hilbert space for all space
points. Since the description with parallel transforms is equivalent to the usual one, the added
complexity is not needed if one goes no further with it.

This is not the case if one extends the treatment to include space dependent scaling factors for
the different C̄x, R̄x. For a given x, the local representations of C̄y on C̄x are given by scaled
representations, C̄

ry,x
x , of C̄y on C̄x. Also the local representation of H̄y on H̄x with effects of the

number scaling included, is given by H̄
ry,x
x .

For y = x + ν̂dx, a neighbor point of x, the scaling factor, ry,x is given by, ry,x = e�A(x)·ν̂dx, Eq.
34. If y is distant from x and �A(x) is integrable, then, expressing ry,x as an integral along a
straight line path from x to y gives, (Eq. 39)

ry,x = exp(
∫ 1

0

3

∑
i=1

Ai(sxi)xs(xi)xds) = exp(
3

∑
i=1

∫ yi

xi

Ai(zi)xdzi
x) =

3

∏
i=1

ry,x,i (57)

Here xi = �x · î and yi = �y · î are the components of �x and �y in the direction i. The last equality
assumes that the components of �A commute with one another.6 The subscript x indicates that
the integrals are defined on R̄x.

The presence of �A(x) affects the expression of a wave packet state ψ as given by Eq. 43. In this
case the wave packet expansion of ψx is given by

ψx =
∫

x
ry,xψ(y)x|yx�xdyx (58)

where ry,x is given by Eq. 57.

This result is obtained by noting that for each y the local representation of H̄y, C̄y on H̄x, C̄x,
with scaling factor included, is H̄

ry,x
x , C̄

ry,x
x . The vector in H̄

ry,x
x that is the same vector as ψ(y)|y�

is in H̄y, is denoted by ψ(y)r
x ·rx |yr

x�. Here ψ(y)r
x is the same number value in C̄

ry,x
x as ψ(y) is

in C̄y, and |yr
x� is the same vector in H̄

ry,x
x as |y� is in H̄y as |yx�x is in H̄x. This follows from

the observation that y, yr
x, and yx are the respective same numbers in R̄3

y, (R̄r
x)

3, and R̄3
x. Scalar

vector multiplication in H̄
ry,x
x is shown by ·rx.

The corresponding state on H̄x is obtained by noting that

ψr
x ·rx |yr

x�r
x ⇒ ry,xψ(y)x(·rx)x|ry,xyx�x = ry,xψ(y)x

·x
ry,x

ry,x|yx�x = ry,x ·x |yx�x . (59)

This is the result shown in Eq. 58. The use of (·rx)x = ·x
ry,x

, Eq. 32, is based on the requirement

that H̄
ry,x
x satisfies the same Hilbert space axioms (Kadison, 1983) as does H̄x.

It must be emphasized that the usual predictions of the quantum mechanical properties of
wave packets, with �A(x) = 0 everywhere, do a good job of prediction of experimental results.
So far, quantum mechanical predictions and experiments have not shown the need for the

6 Here, and in what follows, �A(x) is assumed to be integrable.
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presence of �A. This shows that the effect of the �A field must be very small, either through the
values of the field itself or by use of a very small coupling constant, g, of the field to numbers
and vectors. This would be accounted for by replacing �A in Eqs. 34 and 57 by g�A.

In this sense the presence of �A is no different than the presence of the gravitational field. In
theory, a proper description of quantum mechanics of systems should include the effects of
the gravitational field. However, it can be safely neglected because the field is so small, at
least far away from black holes where quantum physics is done.

Another feature of Eq. 58 is the dependence on the reference point x. This can be removed by
restricting the integration volume to a region of space, excluding x, where the region contains
essentially all of ψ. This is what one does in any experiment since ψ is prepared in a region
that does not include the observer.

The removal of x dependence then follows from expressing Eq. 58 as a sum of two terms, one
as the integral over V and the other over all space outside V:

ψx =
∫

x,V
ry,xψ(y)x|yx�xdyx +

∫

x,W
ry,xψ(y)x|yx�xdyx . (60)

The subscript, W, on the second integral means that it refers to integration over all space
outside V. Here x is a point in W.

Assume that V is chosen so that the integral over W can be neglected. Then

ψx ∼=
∫

x,V
ry,xψ(y)x|yx�xdyx. (61)

This equation has a problem in that the correspondence transforms are extended from any
point in V to a point outside V. However these transforms are restricted here to apply within
space or space time integrals, and not outside the integration volume.

This can be fixed by choice of a point z on the surface of V and replacing ry,x by Ux,zry,z. The
factor ry,z accounts for the correspondence transform from a point y in V to a point z on the
surface of V, and Ux,z is a unitary operator that parallel transforms the result from z to x. Then
one has

ψx,z ∼= Ux,zψz = Ux,z

∫

z,V
ry,zψ(y)z|yz�zdyz =

∫

x,V
(ry,z)xψ(y)x|yx�xdyx . (62)

The subscript z on ψx,z indicates a possible dependence on the choice of z on the surface of V.
Figure 2 illustrates the setup for two points y, u in V.

This result shows that the wave packet representation is independent of x, such as an
observers location, provided it is outside of V. However, to the extent that �A cannot be
neglected, the representation does depend on the location of z. To see what this dependence
is, let w be another point on the surface of V. Then, following Eq. 62, ψx,w is given by

ψx,w ∼= Ux,wψw = Ux,w

∫

w,V
ry,wψ(y)w|yw�wdyw =

∫

x,V
(ry,w)xψ(y)x|yx�xdyx . (63)

For the comparison, at x, of ψx,z with ψx.w, it is sufficient to compare, in H̄z, the parallel
transformation of ψw to z with ψz, in H̄z. The parallel transformation of ψw to z is given by

(ψw)z =
∫

z,V
(ry,w)z(ψ(y)w)z|(yw)z�zd(yw)z. (64)
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Fig. 2. Representation of scaling factors in the integrals from point z on the surface of V to
points y and u. The direction implied in the order of the subscripts of r is opposite to the
direction of the parallel transformations taking the integrand factors from y and u to z. Ux,z
parallel transforms ψz to (ψz)x = ψx.
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(ry,w)z = (ry,zrz,w)z = ry,z(rz,w)z (66)
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(ψw)z = (rz,w)z

∫

z,V
ry,zψ(y)z|yz�zdyz. (67)

The subscript, z, denotes parallel transformation to z, of mathematical elements that are not
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∨
z . No subscript appears on ry,z as it is already a number value in R̄z.
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ψx ∼=
∫

x
(1 +

∫ y

x
�A(w)x · ν̂dwx)ψ(y)x|yx�xdyx. (68)

Here ν̂ is a unit vector along the direction from x to y. The first term of the expansion
corresponds to the usual case with �A equal to 0 everywhere. The x dependence arises from
the second term, which gives the correction due to the presence of �A.
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The dependence on z can be appreciable because z can be any point on the surface of V. What
is interesting is that this dependence can be greatly reduced by using the properties of actual
measurements to minimize the effect of �A on the predicted expectation value.

Consider a position measurement on a system in state ψx, Eq. 58. The expectation value for
this measurement, calculated at x, is given by

�ψx|ỹ|ψx�x =
∫

x
ry,xyx|ψ(y)|2xdyx . (69)

This expectation value7 is an idealization or what one does. It does not take account of what
one actually does.

Typically, position measurements are done by dividing a volume of space up into cubes and
measuring the relative frequency of occurrence of the quantum system in the different cubes.
A measurement consists of a large number of repetitions of this measurement on repeated
preparations of the system in state ψ. Assume the cubes in space have volume Δ3 where Δ
is the length of a side. Then outcomes of the repeated experiment are "yeses" from the cube
detectors whose locations are denoted by triples, j, k, l of integers. Each "yes" means that
the location is somewhere in the volume of the responding detector cube located at position,
zj,k,l = jΔ, kΔ, lΔ. The local availability of mathematics means that zj,k,l is a triple of numbers
in R̄zj,k,l .

The presence of parallel and correspondence transformations enables physical theory to
express exactly what is done experimentally. Eq. 58 for ψx is replaced by an expression that
limits integrals with scaling factors to the cube volumes and parallel transports these integrals
to a common point x where they can be added together. The result, ψ�

x, is given by

ψ�
x = ∑

j,k,l
Ux,z

∫

Vj,k,l

rw,zψ(w)z|wz�zdwz. (70)

Here the sum is over all cubes. Each cube is labeled by a point z = zj,k,l on the cube surface.
Each integral over the volume, Vj,k,l = Δ3, of cube, j, k, l, is a vector in H̄z. Within each integral,
the r factor scales the values of each integrand at point w to values at z. Ux,z parallel transforms
the integrals at different z to a common point x.

The theoretical expectation value for the experimental setup described here is given by

�ψ�|ỹ|ψ��x = ∑
j,k,l

Ux,z

∫

Vj,k,l

rw,zwz|ψ(w)|2zdwz. (71)

The effect of the r factor is smaller here than it is in the expectation value using ψx. The reason
is that it is limited to integrations over small volumes.

This representation of the prediction is supported by the discussion on mathematical and
physical commerce. The "no information at a distance" principle requires that the information
contained in the outcomes of each position measurement, as physical systems in "yes" or "no"
states for each point zj,k,l, be transmitted by physical means to x where the results of the

7 All but one of the r factors appearing in the integrand are canceled by the r factors in the denominators
of the multiplication operations.
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repeated measurements are tabulated. The tabulation is all done at x. No factor involving �A
appears in the transmission or tabulation.

As noted, the effect of �A appears only in the integrals over the volumes Δ3. In these integrals,
to first order,

rw,z ∼= 1z +
∫ w

z
�A(y)z · μ̂dyz. (72)

Since the integral is limited to points within the volume Δ3, it is clear that as Δ → 0, the
integrals for each cube also approach 0.

This shows that the effect of the �A field diminishes as the accuracy of the measurement
increases. In the limit Δ = 0, the �A field disappears and one gets the usual theoretical
prediction without �A present. However, the Heisenberg uncertainty principle prevents the
limit, Δ = 0, from actually being achieved.

The presence of the �A field affects other quantum mechanical properties of systems. For
example, the description of the momentum operator with �A �= 0, replaces Eq. 48 by

pA,yψ =
3

∑
j=1

pA,j,yψ = iy h̄y

3

∑
j=1

Dj,yψ. (73)

Dj,yψ is given by altering Eq. 47 to read

Dj,yψ =
ry+dyj,yψ(y + dyj)y − ψ(y)

dyj . (74)

Here ry+dyj,zψ(y + dyj)y is the number value in C̄y that corresponds to ψ(y + dyj) in C̄y+dyj.

Using the fact that
ry+djy,y = eAj(y)djy (75)

and expansion to first order in the exponential gives,

Dj,yψ = ∂�j,yψ + Aj(y)ψ(y). (76)

The momentum components become

pA,j,y = iyh̄yDj,y = iyh̄y(∂
�
j,y + Aj(y)). (77)

This expression is similar to that for the canonical momentum in the presence of an
electromagnetic field. Note that Aj(y) is pure real.

The expressions for the Hamiltonian for a single particle remain as shown in Eq. 49 except
that ∂� is replaced by D. For example Eq. 49 becomes

(Hy)ψ(y) = − h̄2
y

2my

3

∑
j=1

(D)2
j,yψ(y) + V(y)ψ(y) (78)

with Dy,j given by Eq. 76.
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Inclusion of scaling factors into the two particle state entangled by momentum conservation is
straightforward. This is achieved by including scale factors in the two particle space integral,∫

x(dz1)x(dz2)x, in Eq. 55. The result is

(ψ1,2)x =
∫

x
rz1,x(dz1)xrz2,x(dz2)x(

∫
(eiz1 p)xψ1(p)x |px�1(e

−iz2 p)xψ2(−p)x| − px�2dpx). (79)

Here rz1,x and rz2,x are given by Eq. 57.

8. Gauge theories

One approach (Montvay & Münster, 1994) to gauge theories already makes partial use of
the local availability of mathematics with the assignment of an n dimensional vector space
to each x. Here the vector space is assumed to be a Hilbert space, H̄x, at each x. This H̄x is
quite different from that discussed in the previous section in that the vectors in H̄x refer to the
internal states of matter fields. Matter fields ψ are functionals where for each space time point
x, ψ(x) is a vector in H̄x.

The freedom of choice of a basis (Montvay & Münster, 1994; Yang & Mills, 1954) in each H̄x is
reflected in the factorization,

Uy,x = Yy,xVy,x, (80)

of a parallel transform operator, Uy,x, (Mack, 1981) from H̄x to H̄y where y = x + ν̂dx is a
neighbor point of x.8

The unitary operator Vy,x expresses the freedom of basis choice. As such it is an element of
the gauge group U(n) with a Lie algebra representation (Cheng & Li, 1984; Utiyama, 1956)

Vy,x = eiΞμ(x)dxμ
eiΩj

μ(x)τjdxμ
. (81)

Sum over repeated indices is implied. The τj are the generators of the Lie algebra su(n) and

the Ωj
μ(x) are the components of the n different gauge fields, �Ωj(x). �Ξ(x) is the gauge field

for the U(1) factor of U(n).

The covariant derivative of the field, ψ, is expressed by

Dμ,xψ =
Vμ,xψ(x + dxμ)x − ψ(x)

dxμ . (82)

Here Vμ,x is the μ component of Vy,x. Expansion of the exponential to first order in small
quantities gives

Dμ,xψ = ∂�μ,xψ + i(g1Ξμ(x) + g2Ωj
μ(x)τj)ψ(x). (83)

Coupling constants, g1 and g2, have been added. The definition of ∂�μ,xψ is essentially the
same as that given in Eq. 47. It is given by

∂�μ,xψ =
ψ(x + dxμ)x − ψ(x)

dxμ . (84)

8 Factorization is necessary because Uy,x cannot be expressed as an exponential of Lie algebra elements
or as a matrix of numbers. The reason is that the action of such a representation on a vector in H̄x gives
another vector in H̄x. It is not a vector in H̄y. Factorization remedies this in that Vy,x is a unitary map
from H̄x to H̄x and Yy,x is a unitary map from H̄x to H̄y.
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Here ψ(x + dxμ)x = Ux,x+dxμψ(x + dxμ) is the same vector in H̄x as ψ(x + dxμ) is in H̄x+dxμ .

The covariant derivative, Eq. 83, accounts for the local availability of mathematics and the
freedom of basis choice. It does not include the effects of scaling factors for numbers. This
is taken care of by replacing Vμ,xψ(x + dxμ)x in Eq. 82 by rx+dzμ,xVμ,xψ(x + dxμ)x. This is a
vector in the local representation, H̄r

x, Eq. 32, of H̄y on H̄x.

Expansion of the exponentials to first order adds another term to Dμ,x in Eq. 83. One obtains
(Benioffa, 2011; Benioffc, 2011)

Dμ,xψ = ∂�μ,xψ + gr Aμ(x) + i(g1Ξμ(x) + g2Ωj
μ(x)τj)ψ(x). (85)

A coupling constant, gr , for �A(x) has been added. The coupling constants, and i are all number
values in C̄x.

The physical properties of the gauge fields in Dμ,x are obtained by restricting the Lagrangians
to only those terms that are invariant under local and global gauge transformations (Cheng
& Li, 1984). For Abelian gauge theories, such as QED, �Ω(x) is absent. Invariance under local
gauge transformations, Λ(x), requires that the covariant derivative satisfy (Cheng & Li, 1984)

D�
μ,xΛ(x)ψ(x) = Λ(x)Dμ,xψ(x). (86)

D�
μ,x is obtained from Dμ,x by replacing Aμ(x) and Ξμ(x) with their primed values,

A�
μ(x), Ξ�

μ(x). The presence of the primes allows for the possible dependence of the fields
on the local U(1) gauge transformation, Λ(x) where

Λ(x) = eiφ(x). (87)

Use of Eq. 84 and separate treatment of real and imaginary terms gives the following results:

A�
μ(x) = Aμ(x)

g1Ξ�
μ(x) = g1Ξμ(x)− ∂�μ,xφ(x). (88)

This shows that the real field �A is unaffected by a U(1) gauge transformation. It also shows
that Ξμ(x) transforms in the expected way as the electromagnetic field.

As is well known the properties of the �Ξ field show that it is massless. The reason is that a
mass term for this field is not locally gauge invariant (Cheng & Li, 1984; Montvay & Münster,
1994).

Unlike the case for the �Ξ field, a mass term can be present for the real �A field. This suggests
that it represents a gauge boson for which mass is optional. That is, depending on what
physical system �A represents, if any, the presence of a mass term in Lagrangians is not
forbidden.

For nonabelian gauge theories, such as U(2) theories, Eq. 88 still holds. However there
is an additional equation giving the transformation properties of the three vector gauge
fields under local SU(2) gauge transformations. These properties result in the physical
representation of these fields in Lagrangians as charged vector bosons (Cheng & Li, 1984).
The �A and �Ξ bosons are still present.
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8.1 Physical properties of the �A field from the gauge theory viewpoint

At this point it is not known what physical system, if any, is represented by the �A field.
Candidates include the inflaton field (Albrecht, 1982; Linde, 1982), the Higgs boson, the
graviton, dark matter, and dark energy. One aspect that one can be pretty sure of is that the
ratio of the �A field - matter field coupling constant, gr, to the fine structure constant, α, must
be very small. This is a consequence of the great accuracy of the QED Lagrangian and the fact
that the �A field appears in covariant derivatives for all gauge theory (and other) Lagrangians.

As was noted, �Ξ is the photon field. Inclusion of this field and a Yang Mills term for the
dynamics of this field into the Dirac Lagrangian gives the QED Lagrangian (Cheng & Li,
1984).

9. Conclusion

This work is based on two premises: the local availability of mathematics and the existence
of scaling factors for number systems. Local availability is based on the idea that the only
mathematics that is directly available to an observer is that which is, or can be, in his or her
head. Mathematical information that is separate from an observer, Ox, at space time point x,
such as a textbook or a lecturer at point y, must be physically transmitted, e.g. by acoustic or
light waves, to Ox where it becomes directly available.

This leads to a setup in which mathematical universes,
∨

x, are associated with each point x.
If an observer moves through space time on a world line, P(τ), parameterized by the proper
time τ, the mathematics directly available to OP(τ) at time τ is that in

∨
P(τ) .

Each
∨

x contains many types of mathematical systems. If S̄x is in
∨

x, then
∨

y contains the
same system type, S̄y, and conversely. Each

∨
x contains the different types of number systems

and many other systems that are based on numbers. Included are the real and complex
numbers R̄x and C̄x.

Here the mathematical logical definition (Barwise, 1977; Keisler, 1977) of each type of system
as a structure is used. A structure consists of a base set, basic operations, relations, and
constants that satisfies axioms appropriate for the type of structure considered. Examples
are R̄ and C̄, Eq. 6 for the real and complex numbers.

For each type of number structure it is possible to define many structures of the same type that
differ by scaling factors (Benioffb, 2011). For each real number r, one can define structures R̄r ,
Eq. 11, and C̄r, Eq. 13, in which a scale factor r relates the number values in R̄r and C̄r to those
in R̄ and C̄. The scaling of number values must be compensated for by scaling of the basic
operations and relations in a manner such that R̄r and C̄r satisfy the relevant axioms for real
and complex numbers if and only if R̄ and C̄ do.

The local availability of mathematics requires that one be able to construct local
representations of C̄y on C̄x. Two methods were described. One uses parallel transformations.
These define or represent the notion of sameness between mathematical systems at different
points. If Fx,y is a parallel transform map from S̄y onto S̄x, then for each element, wy, in S̄y,
wx = Fx,y(wy) is the same element in S̄x as wy is in S̄y. In this case the local representation,
Wx,yS̄y, of S̄y on S̄x is S̄x itself.
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The other method uses what are called correspondence maps. These combine parallel
transformations with scaling. The local representation of C̄y on C̄x is C̄r

x, which is a scaling of
C̄x by a factor r = ry,x. (From now on R̄ is not explicitly mentioned as it is implicitly assumed
to be part of C̄.) The local representation of an element, ay, of C̄y corresponds to the element
ry,xax in C̄x. Here ax = Fy,xay is the same element in C̄x as ay is in C̄y.

It was seen that the scaling of numbers plays no role in the general use of numbers in
mathematics and physics. This includes such things as comparing outcomes of theory
predictions with experimental results or in comparing outcomes of different experiments.
More generally it plays no role in the use of numbers in the commerce of mathematics
and physics. The reason is that theory computations and experiment outcomes obtained at
different locations are never directly compared. Instead the information contained in the
outcomes as physical states must be transmitted by physical systems to a common point.
There the states of the physical transmittal systems are interpreted locally as numbers, and
then compared.
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ψ(y)|y�dy. Since ψ(y)|y� is a vector in H̄y, the integrand has to be moved to a common
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∫

x
ψ(y)x|yx�dyx (89)

or by correspondence maps which give

ψx =
∫

x
ry,xψ(y)x|yx�dyx. (90)

Here the scaling factor, ry,x, is the integral from x to y of the exponential of the gauge field,
�A(y), as in Eq. 57.

It was also seen that one can use both transform and correspondence maps to express the wave
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setup consists of a collection of cube detectors of volume Δ3 that fill 3 dimensional Euclidean
space, the outcome of each of many repeated experiments is a triple of numbers, j, k, l that
label the position, jΔ, kΔ.lΔ of the detector that fired.

As was seen in the discussion of mathematical and physical commerce, the outcomes of
repeated experiments must be physically transported to a common point, x where they are
interpreted as numbers in R̄x for mathematical combination. It follows that the scaling factors
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ψx by ψ�

x where, Eq. 70,

ψ�
x = ∑

j,k,l
Ux,z

∫

Vj,k,l

rw,zψ(w)z|wz�dwz. (91)

The sum is over all cubes. z = zj,k,l is a point on each cube surface. Each integral is over the
volume, Vj,k,l , of each cube. The r factor, Eq. 72, scales the values of each integrand at point w
to values at z. Ux,z parallel transforms the integrals at different z to a common point x.
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The state, ψ�
x, differs from ψx, or the usual quantum mechanical wave packet expression for ψ,

in that it ties theory closer to experiment. It also reduces the effect of scaling to the sum of the
effects for the volumes of each of the detectors. The effect is reduced because, for any point
w in the sensitive volume of the experiment, the effect of �A on the transform from w to x is
limited to the part of the path in the detector volume containing w. As the detector volumes
go to 0, so does the effect of �A. The increase in the number of detectors as the volume of each
gets smaller does not remove this effect.

In this sense the usual quantum theory wave packet integral for ψ is a limit in that it is
independent of experimental details. Unlike the case for the usual representation of ψ, use
of ψ�

x to make predictions will give values that depend on experimental details. The fact that
there is no indication, so far, of such dependence, at least to the accuracy of experiment, means
that the effect of �A(x) must be very small. Whether the small effect is due to small values of
�A itself or a small value of a coupling constant of �A to states and matter fields, is not known
at present.

The relation between ψ�
x and the usual integral for ψ is further clarified by the observation

that ψx → ψ as the detector volume goes to 0. However, the Heisenberg uncertainty principle
prevents experimental attainment of this limit.

It must be emphasized that the tying the wave packet integral to experiment details, as with
ψ�

x has nothing to do with collapse of the wave packet during carrying out of the experiment.
ψ�

x is just as coherent a state as is ψ.

The gauge field �A also appears in the expression for the canonical momentum. The usual
expression for momentum p = ∑j ih̄∂j,x is replaced by, Eq. 73

pA,x = ixh̄xDj,x (92)

where
Dj,x = ∂�j,x + �A. (93)

∂�j,x, Eq. 47, accounts for the local availability of mathematics.

As a covariant derivative, Dμ,x appears in gauge theories with additional terms. It was
seen that the limitation of Lagrangians to terms that are invariant under local gauge
transformations, (Cheng & Li, 1984; Montvay & Münster, 1994), results in �A appearing as
a gauge boson for which mass is optional. This is the case for both Abelian and nonabelian
gauge theories.

The physical nature of �A, if any, is unknown. What is known is that the great accuracy of QED
requires that the coupling constant of �A to matter fields must be very small.

It must be emphasized that this work is only a first step in combining "mathematics is local"
with the freedom of choice of scaling factors for number structures. An example of work for
the future is to determine the effect of number scaling factors on geometry. It is suspected
that the scaling factors may induce conformal transformations into geometry. More work also
needs to be done on the effects of number scaling on quantum mechanics. An interesting
question here is whether scaling factors are needed at all in classical mechanics.

Finally, one may hope that this work provides a real entry into the description of a coherent
theory of physics and mathematics together. Such a theory would be expected to describe

48 Advances in Quantum Theory



26 Will-be-set-by-IN-TECH

The state, ψ�
x, differs from ψx, or the usual quantum mechanical wave packet expression for ψ,

in that it ties theory closer to experiment. It also reduces the effect of scaling to the sum of the
effects for the volumes of each of the detectors. The effect is reduced because, for any point
w in the sensitive volume of the experiment, the effect of �A on the transform from w to x is
limited to the part of the path in the detector volume containing w. As the detector volumes
go to 0, so does the effect of �A. The increase in the number of detectors as the volume of each
gets smaller does not remove this effect.

In this sense the usual quantum theory wave packet integral for ψ is a limit in that it is
independent of experimental details. Unlike the case for the usual representation of ψ, use
of ψ�

x to make predictions will give values that depend on experimental details. The fact that
there is no indication, so far, of such dependence, at least to the accuracy of experiment, means
that the effect of �A(x) must be very small. Whether the small effect is due to small values of
�A itself or a small value of a coupling constant of �A to states and matter fields, is not known
at present.

The relation between ψ�
x and the usual integral for ψ is further clarified by the observation

that ψx → ψ as the detector volume goes to 0. However, the Heisenberg uncertainty principle
prevents experimental attainment of this limit.

It must be emphasized that the tying the wave packet integral to experiment details, as with
ψ�

x has nothing to do with collapse of the wave packet during carrying out of the experiment.
ψ�

x is just as coherent a state as is ψ.

The gauge field �A also appears in the expression for the canonical momentum. The usual
expression for momentum p = ∑j ih̄∂j,x is replaced by, Eq. 73

pA,x = ixh̄xDj,x (92)

where
Dj,x = ∂�j,x + �A. (93)

∂�j,x, Eq. 47, accounts for the local availability of mathematics.

As a covariant derivative, Dμ,x appears in gauge theories with additional terms. It was
seen that the limitation of Lagrangians to terms that are invariant under local gauge
transformations, (Cheng & Li, 1984; Montvay & Münster, 1994), results in �A appearing as
a gauge boson for which mass is optional. This is the case for both Abelian and nonabelian
gauge theories.

The physical nature of �A, if any, is unknown. What is known is that the great accuracy of QED
requires that the coupling constant of �A to matter fields must be very small.

It must be emphasized that this work is only a first step in combining "mathematics is local"
with the freedom of choice of scaling factors for number structures. An example of work for
the future is to determine the effect of number scaling factors on geometry. It is suspected
that the scaling factors may induce conformal transformations into geometry. More work also
needs to be done on the effects of number scaling on quantum mechanics. An interesting
question here is whether scaling factors are needed at all in classical mechanics.

Finally, one may hope that this work provides a real entry into the description of a coherent
theory of physics and mathematics together. Such a theory would be expected to describe

48 Advances in Quantum Theory Effects on Quantum Physics of the Local Availability of Mathematics and Space Time Dependent Scaling Factors for Number Systems 27

mathematics and physics together as part of a coherent whole instead of as two separate but
closely related disciplines.

10. Acknowledgement

This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357.

11. References

Albrecht, A. & Steinhardt, P. (1982). Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking, Phys. Rev. Lett. 48, 1220-1223.

Barwise, J. (1977). An Introduction to First Order Logic, in Handbook of Mathematical Logic, J.
Barwise, Ed. North-Holland Publishing Co. New York, 5-46.

BenDaniel, D. (1999). Linking the foundations of physics and mathematics,
arXiv:math-phy/9907004.

Benioff, P. (2011). New gauge fields from extension of parallel transport of vector spaces to
underlying scalar fields, Proceedings of SPIE, Quantum Information and Computation IX
8057,80570X, Orlando, Florida, USA, April, 2011, SPIE, Bellingham, Washington.

Benioff, P. (2011). Representations of each number type that differ by scale factors,
arXiv:1102.3658

Benioff, P. (2011). New gauge field from extension of space time parallel transport of vector
spaces to the underlying number systems, International Journal of theoretical physics 50,
1887-1907 2011; arXiv:1008.3134

Benioff, P. (2005). Towards a coherent theory of physics and mathematics: the
theory experiment connection, Foundations of Physics,35, 1825-1856, 2005;
arXiv:quant-ph/0403209.

Benioff, P. (2002). Towards a coherent theory of physics and mathematics, Foundations of
Physics,32, 989-1029, 2002; arXiv:quant-ph/0201093.

Bernal, A.; Sanchez, M.; Gil, F. (2008). Physics ftrom scratch. Letter on M. Tegmark’s, ’The
mathematical universe", arXiv:0803.0944.

Cheng, T. & Li, L. (1984). Gauge Theory of Elementary Particle Physics, Oxford University Press,
New York, NY, Chapter 8.

Davies, P. (1990). Why is the Physical World so Comprehensible? in Complexity, Entropy,
and Physical Information, Proceedings of the 1988 workshop on complexity, entropy,
and the physics of information, may-june 1989, Santa Fe New Mexico, W. H. Zurek,
Editor, Addison-Weseley Publishing Co. Redwood City CA, 61-70.

Hut,P.; Alford, M.; Tegmark, M. (2006). On math, matter, and mind, Foundations of Physics, 36,
765-794, 2006; arXiv: physics/ 0510188.

Jannes, G. (2009) Some comments on "The mathematical universe", Foundations of Physics, 39,
397-406, 2009.

Kadison, R. & Ringrose, J. (1983). Fundamentals of the Theory of Operator Algebras: Elementary
theory, Academic Press, New York, Chap 2.

Kaye, R. (1991). Models of Peano Arithmetic Clarendon Press, Oxford, 1991, 16-21.
Keisler, H. (1977). Fundamentals of Model Theory, in Handbook of Mathematical Logic, J.

Barwise, Ed. North-Holland Publishing Co. New York, 1977, 47-104.
Landauer, R. (1991). Information is Physical, Physics Today, 44, 23-29, 1991.

49
Effects on Quantum Physics of the Local Availability 
of Mathematics and Space Time Dependent Scaling Factors for Number Systems



28 Will-be-set-by-IN-TECH

Linde, A. (1982). A new inflationary universe scenario: A possible solution of the horizon,
flatness, homogeneity, isotropy and primordial monopole problems, Phys. Letters B,
108, 389-393, 1982.

Mack, G. (1981). Physical principles , geometrical aspects, and locality properties of gauge
field theories, Fortschritte der Physik, 29, 135-185, 1981.

Montvay, I. & Münster, G. (1994). Quantum Fields on a Lattice, Cambrodge University Press,
Cambridge, UK, Chapter 3.

Novaes, S. (2000). Standard model: an Introduction, in Particles and Fields, Proceedings,
X Jorge Andre Swieca Summer School, Sao Paulo, February 1999, Editors, J.
Barata, M. Begalli, R. Rosenfeld, World Scientific Publishing Co. Singapore;
arXiv:hep-th/0001283.

Omnes, R. (2011). Wigner’s "Unreasonable Effectiveness of Mathematics", Revisited,
Foundations of Physics, 41, 1729-1739, 2011.

O’Raifeartaigh, L. (1997). The Dawning of Gauge Theory, Princeton Series in Physics, Princeton
University Press, Princeton, N. J.

Randolph, J. (1968). Basic Real and Abstract Analysis, Academic Press, Inc. New York, NY, p 26.
Shoenfield, J. (1967). Mathematical Logic, Addison Weseley Publishing Co. Inc. Reading Ma, p.

86.
Tegmark, M. (2008). The mathematical universe, Foundations of Physics, 38, 101-150, 2008;

arXiv:0704.0646.
Utiyama, R. (1956). Invariant Theoretical Interpretation of Interaction, Phys. Rev. 101,

1597-1607, 1956.
Welch, L. (2009). A possible mathematical structure for physics, arXiv:0908.2063.
Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences,

Commum. Pure and Applied Math. 13, 001 (1960), Reprinted in E. Wigner, Symmetries
and Reflections, (Indiana Univ. Press, Bloomington IN, pp. 222-237.

Yang , C. & Mills, R. (1954). Conservation of isotopic spin and isotopic gauge invariance,
Physical Review 96, 191-195, 1954.

50 Advances in Quantum Theory



28 Will-be-set-by-IN-TECH

Linde, A. (1982). A new inflationary universe scenario: A possible solution of the horizon,
flatness, homogeneity, isotropy and primordial monopole problems, Phys. Letters B,
108, 389-393, 1982.

Mack, G. (1981). Physical principles , geometrical aspects, and locality properties of gauge
field theories, Fortschritte der Physik, 29, 135-185, 1981.

Montvay, I. & Münster, G. (1994). Quantum Fields on a Lattice, Cambrodge University Press,
Cambridge, UK, Chapter 3.

Novaes, S. (2000). Standard model: an Introduction, in Particles and Fields, Proceedings,
X Jorge Andre Swieca Summer School, Sao Paulo, February 1999, Editors, J.
Barata, M. Begalli, R. Rosenfeld, World Scientific Publishing Co. Singapore;
arXiv:hep-th/0001283.

Omnes, R. (2011). Wigner’s "Unreasonable Effectiveness of Mathematics", Revisited,
Foundations of Physics, 41, 1729-1739, 2011.

O’Raifeartaigh, L. (1997). The Dawning of Gauge Theory, Princeton Series in Physics, Princeton
University Press, Princeton, N. J.

Randolph, J. (1968). Basic Real and Abstract Analysis, Academic Press, Inc. New York, NY, p 26.
Shoenfield, J. (1967). Mathematical Logic, Addison Weseley Publishing Co. Inc. Reading Ma, p.

86.
Tegmark, M. (2008). The mathematical universe, Foundations of Physics, 38, 101-150, 2008;

arXiv:0704.0646.
Utiyama, R. (1956). Invariant Theoretical Interpretation of Interaction, Phys. Rev. 101,

1597-1607, 1956.
Welch, L. (2009). A possible mathematical structure for physics, arXiv:0908.2063.
Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences,

Commum. Pure and Applied Math. 13, 001 (1960), Reprinted in E. Wigner, Symmetries
and Reflections, (Indiana Univ. Press, Bloomington IN, pp. 222-237.

Yang , C. & Mills, R. (1954). Conservation of isotopic spin and isotopic gauge invariance,
Physical Review 96, 191-195, 1954.

50 Advances in Quantum Theory

0

Quantum Theory of Multi-Local Particle
Takayuki Hori
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Japan

1. Introduction

In those days before the development of the gauge field theories there were many attempts
to construct multi-local field theories of hadrons. The motivation for that was in the existence
of wide variety of hadrons which may be categorized by quantum numbers indebted to
the presumed internal structures. The success of QFD and/or QCD, however, impressed
us the power of the local field theories of quarks and leptons, and swept away almost all
alternative attempts describing the low energy physics. On the other hand the concept of the
multi-locality (or non-locality) was promoted to the string model which is now regarded as
one of candidates of the quantum gravity.

Although the realm of validity of the local field theory may be extended to the Planck scale
the conceptual gap between the string and the local field theory is so large that we cannot treat
them on an equal footing. Is there no room for the multi-local field theory in describing the
phenomena near the Planck scale?

We have sought the theoretical possibility of the multi-local objects, consisting of N particles,
which stay in an intermediate position between the local particle and the string. In the
papers (Hori, 1992)−(Hori, 2009) we have constructed the models with N = 2, which have
resembling properties as the string, though extremely simple in structure. The simplest
model with N = 2 is a system of two relativistic particles with specific interaction among
them. We called the object as a bilocal particle. We have found a hidden gauge symmetry
in the bilocal model (Hori, 1992), which reveals SL(2, R) in the canonical theory. This causes
the pathological property that the amount of the gauge invariance does not match with the
number of the first class constraints in the canonical theory. This means breakdown of Dirac’s
conjecture (Dirac, 1950).

The BRST analysis of the bilocal model shows the existence of spacetime critical dimensions,
D = 2 or D = 4 (Hori, 1996). But the quantum theory of the model can not be treated in the
similar way as the ordinary gauge theories, since the ghost numbers of the physical states are
not zero. Because the reason of the difficulty is in the constraint structure we have constructed
an improved version of N = 2 model based on the object called complex particle (Hori, 2009).

The coordinates of a complex particle are complex numbers and depend on the internal time.
In the lagrangian formulation the gauge degrees of freedom is two in the ordinary sense.
This causes the breakdown of Dirac’s conjecture as in the bilocal model. We argued that
a modification of the definition of the physical equivalence remedies the situation, and the
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system has all of the three gauge freedom of SL(2, R). The constraint structure is different
from that of the bilocal model in such a way that two of three constraints are hermitian
conjugate to each other, and a natural quantization scheme can be applied similar to the string
theory. The physical state conditions are fulfilled in the ghost number zero sector, and the
requirement that the momentum eigenstate should be physical restricts the dimension of the
spacetime to be two or four.

In the present paper we achieve the complete first quantization of the complex particle,
supplementing the results obtained in ref.(Hori, 2009). We also propose the field theory action
of the Chern-Simons type. The action is shown to be invariant under gauge transformations
in the field theoretical sense only if D = 4.

Finally we extend the previous results to N ≥ 3 particle system. Especially we define an open
N-particle and closed N-particle systems. We restrict ourselves, however, to the open cases
because the constraint structure in the canonical theory is much complicated in the closed
cases compared with the open cases.

2. Preliminary remark

The notion of gauge invariance or physical equivalence in the models considered in the
present paper is so subtle that one may easily fall into confusion. Therefore let us consider first
the ordinary relativistic particle, and count the number of gauge as well as physical degrees
of freedom. The spacetime coordinates of the particles xμ, (μ = 0, 1, 2, .., D − 1) are functions
of internal time τ, where D is the dimension of the spacetime. The action is written as 1

I0 =
∫

dτ
ẋμ ẋμ

2g
, (1)

where g is the einbein needed for the reparametrization of the internal time. The action is
invariant under the transformations

δxμ = �ẋμ + �μνxν + aμ, δg =
d

dτ
(�g), (�μν = −�νμ) (2)

where infinitesimal constant parameters �μν, aμ are those of Lorenz transformations and
translations, respectively, and the parameter � depends on τ, corresponding to the
reparametrization of τ.

Now what is the gauge freedom, by which the τ development of variables is not determined
uniquely? The existence of the invariance of the action, with τ dependent parameter, �, leads
to redundant variables, because of which the Euler-Lagrange(EL) equations have not unique
solutions even if one chooses suitable initial conditions.

We get the answer by first choosing gauge fixing conditions and by ascertaining consistency
of the solutions to EL equations. The first integral of EL equations is

ẋμ = cμg, ẋμ ẋμ = 0, (3)

1 The metric convension is ημν = diag(−1, 1, 1, ..1).

52 Advances in Quantum Theory



2

system has all of the three gauge freedom of SL(2, R). The constraint structure is different
from that of the bilocal model in such a way that two of three constraints are hermitian
conjugate to each other, and a natural quantization scheme can be applied similar to the string
theory. The physical state conditions are fulfilled in the ghost number zero sector, and the
requirement that the momentum eigenstate should be physical restricts the dimension of the
spacetime to be two or four.

In the present paper we achieve the complete first quantization of the complex particle,
supplementing the results obtained in ref.(Hori, 2009). We also propose the field theory action
of the Chern-Simons type. The action is shown to be invariant under gauge transformations
in the field theoretical sense only if D = 4.

Finally we extend the previous results to N ≥ 3 particle system. Especially we define an open
N-particle and closed N-particle systems. We restrict ourselves, however, to the open cases
because the constraint structure in the canonical theory is much complicated in the closed
cases compared with the open cases.

2. Preliminary remark

The notion of gauge invariance or physical equivalence in the models considered in the
present paper is so subtle that one may easily fall into confusion. Therefore let us consider first
the ordinary relativistic particle, and count the number of gauge as well as physical degrees
of freedom. The spacetime coordinates of the particles xμ, (μ = 0, 1, 2, .., D − 1) are functions
of internal time τ, where D is the dimension of the spacetime. The action is written as 1

I0 =
∫

dτ
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where c’s are arbitrary constants. By using the freedom �(τ) we can fix the gauge as

x0(τ) = τ. (4)

The remaining freedom (of finite degrees) is �0i, �ij, ai, which is counted 1
2 (D − 1)(D + 2).

Setting the initial conditions as

xi(0) = xi
0, ẋi(0) = cig0, g(0) = g0, (ci)2 = 1/g2

0, (5)

we get the unique solution

xi(τ) = cig0τ + xi
0, g(τ) = g0. (6)

That is, if the spacial coordinates and the spacial direction of the particle both at τ = 0
and the value g(0) are given, the whole orbit of the particle moving with velocity of light
is determined. The number of the physical degrees of freedom must be the number of degrees
of freedom to put the independent initial condition, i.e., 2(D − 1). On the other hand, among
the 1

2 (D − 1)(D + 2) degrees of freedom of the remaining symmetry in the gauge (4) the
number of freedom which does not move ci is 1

2 (D − 1)(D − 2). Hence the net degrees of
freedom for changing the initial condition is 1

2 (D − 1)(D + 2)− 1
2 (D − 1)(D − 2) = 2(D − 1).

This coincidence implies that the gauge freedom corresponds to the transformation with the
parameter �(τ), by which one can fix one variable for all τ.

Presumably, the above coincidence may be due to Dirac’s conjecture in the canonical theory,
which claims that every first class constraint should generate gauge transformations. In
the subsequent sections we will encounter the situations where a naive counting leads to
mismatch of degrees of freedom in the lagrangian form.

3. N = 2 model

3.1 Classical action

The simplest example of the multi-local particle is the two particle system with some bilinear
interactions. We call it bilocal particle (Hori, 1992). Let us denote the coordinates of the two
particles as xμ

a , (a = 1, 2; μ = 0, 1, 2, .., D − 1), which are functions of internal time, τ. We
introduce the einbeins, ga, (a = 1, 2), for the sake of the reparametrization invariance along the
world lines, which are auxiliary variables and their equations of motion make the trajectories
of the particles put on the light-cones. The proposed action of the bilocal particle is written as

I =
∫

dτL, L =
ẋ2

1
2g1

+
ẋ2

2
2g2

+ κ(ẋ1x2 − ẋ2x1), (7)

where κ is a constant with dimension of mass squared. (Here and hereafter we suppress the
spacetime indices μ, if no confusions occur.) The first two terms in the action are separately
invariant under

δxa = �a ẋa, δga =
d

dτ
(�aga), (a = 1, 2) (8)
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where �a, (a = 1, 2) are infinitesimal parameters depending on τ. This is the well known
reparametrization gauge invariance of the relativistic particle. Apparently the third term in
the action would violate this invariance with independent �1 and �2, but we found larger
invariance under the following transformations (Hori, 1992),

δx1 = �1 ẋ1 +
�0
g2

ẋ2, δx2 = �2 ẋ2 +
�0
g1

ẋ1, (9)

δg1 =
d

dτ
(�1g1) + 4κ�0g1, δg2 =

d
dτ

(�2g2)− 4κ�0g2, (10)

where the infinitesimal parameters �1, �2, �0 are functions of τ, two of which are arbitrary,
while another is subjected to the constraint

�̇0 + 2κg1g2(�2 − �1) = 0. (11)

In fact the variation of the lagrangian under (9) and (10) is

δL =
d

dτ

[
�0

(
ẋ1 ẋ2
g1g2

+ κ

(
ẋ2x2

g2
− ẋ1x1

g1

))
+

2

∑
a,b=1

�a

(
κ�abxaẋb + δab

ẋa ẋb
gb

)]

+ [�̇0 + 2κg1g2(�2 − �1)]
ẋ1 ẋ2
g1g2

, (�12 = −�21 = 1, �11 = �22 = 0). (12)

We can regard �1 and �2 as the independent gauge parameters, and �0 as dependent one
determined by (11) except its constant mode, a relic of the global invariance of the action. The
existence of the above unexpected gauge invariance is the origin of some curious properties
of our model such that the SL(2, R) gauge symmetry in the canonical theory and the existence
of the critical dimension as is shown later.

In the case κ �= 0, the first integral to the equations of motion derived by the action (7) is

ẋa

ga
+ 2κ ∑

b
�ab(xb − cb) = 0, (a = 1, 2), (13)

where ca, (a = 1, 2) are constants. Since the variations of ga give ẋ2
a = 0, we have

(xa − ca)
2 = 0, (a = 1, 2). (14)

Thus the two particles are put on the light-cone with tops of arbitrary spacetime points, and
moving with velocity of light.

For the sake of the reparametrization invariance we can fix the gauge as

x0
1(τ) = x0

2(τ) = τ, (15)

then from (13) we have

1
g1

= −2κ
(

τ − c0
2

)
,

1
g2

= 2κ
(

τ − c0
1

)
. (16)
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d
dτ

(�2g2)− 4κ�0g2, (10)

where the infinitesimal parameters �1, �2, �0 are functions of τ, two of which are arbitrary,
while another is subjected to the constraint

�̇0 + 2κg1g2(�2 − �1) = 0. (11)

In fact the variation of the lagrangian under (9) and (10) is

δL =
d

dτ

[
�0

(
ẋ1 ẋ2
g1g2

+ κ

(
ẋ2x2

g2
− ẋ1x1

g1

))
+

2

∑
a,b=1

�a

(
κ�abxaẋb + δab

ẋa ẋb
gb

)]

+ [�̇0 + 2κg1g2(�2 − �1)]
ẋ1 ẋ2
g1g2

, (�12 = −�21 = 1, �11 = �22 = 0). (12)

We can regard �1 and �2 as the independent gauge parameters, and �0 as dependent one
determined by (11) except its constant mode, a relic of the global invariance of the action. The
existence of the above unexpected gauge invariance is the origin of some curious properties
of our model such that the SL(2, R) gauge symmetry in the canonical theory and the existence
of the critical dimension as is shown later.

In the case κ �= 0, the first integral to the equations of motion derived by the action (7) is

ẋa

ga
+ 2κ ∑

b
�ab(xb − cb) = 0, (a = 1, 2), (13)

where ca, (a = 1, 2) are constants. Since the variations of ga give ẋ2
a = 0, we have

(xa − ca)
2 = 0, (a = 1, 2). (14)

Thus the two particles are put on the light-cone with tops of arbitrary spacetime points, and
moving with velocity of light.

For the sake of the reparametrization invariance we can fix the gauge as

x0
1(τ) = x0

2(τ) = τ, (15)

then from (13) we have

1
g1

= −2κ
(

τ − c0
2

)
,

1
g2

= 2κ
(

τ − c0
1

)
. (16)
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Substituting them back into (13), and dividing by κ, we obtain

(τ − c0
2)ẋi

1 = (x2 − c2)
i, (τ − c0

1)ẋi
2 = (x1 − c1)

i. (i = 1, 2, .., D − 1). (17)

Note that eqs.(17) do not depend on κ. (The case κ = 0 should be treated separately, since in
that case we must set ẋa/ga = c�a instead of (13) with other constants c�a, leading to ẋa = c�a
in the above gauge. We assume κ �= 0 henceforth.) Differentiating (17) with respect to τ we
have

(τ − c0
1)(τ − c0

2)ẍi
a + (τ − c0

a)ẋi
a − (xa − ca)

i = 0, (i = 1, 2, .., D − 1; a = 1, 2). (18)

These are the ordinary linear differential equations of second rank with regular singularities,
and are solved by Frobenius’s method. The general solutions are written as

xi
a(τ) = ci

a + (τ − c0
a)v

i
a + fa(τ)wi

a, (i = 1, 2, .., D − 1; a = 1, 2), (19)

where vi
a, wi

a, (a = 1, 2) are arbitrary constants, and fa(τ) are the solutions to the equations
(τ − c0

2) ḟ1 = f2 and (τ − c0
1) ḟ2 = f1, with vanishing asymptotic values, the concrete form of

which are written as

fa(τ) = c0
1 − c0

2 + (τ − c0
a) ln

∣∣∣∣∣
τ − c0

1
τ − c0

2

∣∣∣∣∣, (a = 1, 2). (20)

Substituting (19) once again into (17), we see vi
1 = vi

2 ≡ vi, wi
1 = wi

2 ≡ wi . Furthermore using
(14), we see v2 = 1, v · w = w2 = 0. Since we assume the Euclidean signature for the spacial
part of the metric, wi must vanish. Then we obtain

xi
a(τ) = ci

a + (τ − c0
a)v

i, v2 = 1, (i = 1, 2, .., D − 1; a = 1, 2). (21)

Thus we see that the relative coordinates xi
1 − xi

2 do not depend on τ, and each particle moves
with velocity of light. In other words the bilocal particle is the two end points of a rigid stick
with arbitrary length, which moves with velocity of light. Since this result is independent of
κ, the system does not transfered to that of two free particles in the limit κ → 0.

In the gauge choice (15), the einbeins are determined by (16) for arbitrary τ. The independent
parameters determining the initial condition are xi

a(0), (a = 1, 2; i = 1, 2, .., D − 1) and
vi, (i = 1, 2, .., D − 2). The number of them, 3D − 4, should be the number of the physical
degrees of freedom. On the other hand the number of constant parameters corresponding
to the τ-independent symmetry of the action, including �0 as well as Lorenz and translations,
which survives after gauge fixing is 1

2 (D− 1)(D+ 4)+ 1. Among them the number of freedom
which fixes vi is 1

2 (D − 1)(D − 2). The net freedom to move the initial condition counts
3D − 2. The discrepancy, (3D − 2)− (3D − 4) = 2, suggests existence of extra gauge degrees
of freedom in the case κ �= 0, which is not explicit in the lagrangian formulation.

3.2 Canonical theory

The canonical conjugate variables corresponding to x1 and x2 are p1 = ẋ1/g1 + κx2, and
p2 = ẋ2/g2 − κx1, respectively, while those corresponding to ga, denote πa, are subjected to
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primary constraint πa ∼ 0. The total hamiltonian is

HT =
1
2
(g1χ1 + g2χ−1) + v1π1 + v2π2, (22)

where

χ1 =
1
2
(p1 − κx2)

2, χ−1 =
1
2
(p2 + κx2)

2, (23)

and v1, v2 are the Dirac variables which are unphysical.

Preservation of the primary constraints πa ∼ 0 along time development gives the secondary
constraints χ±1 ∼ 0, while the preservation of them gives tertiary constraints

χ0 =
1
2
(p1 − κx2)(p2 + κx2) ∼ 0. (24)

There are no other constraints in our model. These constraint functions satisfy the SL(2, R)
algebra on account of the Poisson brackets:

{χn, χm} = −2κ(n − m)χn+m, (n, m = 0,±1). (25)

The whole first class constraints of our model are χ0 ∼ χ±1 ∼ π1 ∼ π2 ∼ 0. The coefficients
of the first class constraints in the hamiltonian are all unphysical variables, and the values
of which can be arbitrarily fixed for the sake of the gauge freedom. Two hamiltonians with
different coefficients are called gauge equivalent.

According to Dirac (Dirac, 1950)(Dirac, 1964), one may say that two points in the phase space
are physically equivalent if there exists another point in the phase space which develops
to the two points through equations of motion determined by respective guage equivalent
hamiltonians. Transformations from a point in the phase space to the physically equivalent
point are called gauge transformation. Dirac conjectured (Dirac, 1950) that all first class
constraints generate gauge transformations. (On the validity of Dirac’s conjecture it has been
argued by some authors, see, e.g., (Sugano & Kamo, 1982), (Frenkel, 1982).)

Now let us examine whether the first class constraints of our model, χ0, χ±1, π1, π2, generate
the gauge transformations. Consider the transformations of a canonical variable q, generated
by the constraint functions χ±1, χ0 and π1, π2;

δq = {q, Q}, Q = ∑
a=0,±1

�aχa + η1π1 + η2π2, (26)

where transformation parameters �, η1,2 are time dependent with �a(0) = η1,2(0) = 0. If time
development of q is generated by the total hamiltonian, i.e., q̇ = {q, HT}, then it turns out,
using the Jacobi identity, that q� = q + {q, Q} develops as

q̇� = {q, H�
T}

∣∣
q=q� + O(�2), (27)

H�
T = HT + Q̃ + η̇1π1 + η̇2π2, Q̃ = ∑

a=0,±1
�̇aχa + {Q, HT}. (28)
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We get the point q�(τ) from the initial point q(0) through the “hamiltonian” H�
T . The point

q(τ) is also developed from the same initial point but through the hamiltonian HT . Thus if
H�

T and HT are gauge equivalent, then the two points q�(t) and q(t) are physically equivalent
in Dirac’s sense. But this is not the case, since HT does not contain the tertiary constraint χ0
but H�

T does. Even if we set �0 = 0 the situation does not change, so we see that not only
χ0 but χ±1 do not generate gauge transformations. This indicates the breakdown of Dirac’s
conjecture in our model.

The above fact, however, does not contradict with the gauge invariance in the lagrangian
formulation. If we restrict ourselves to the transformation parameters so that Q̃ = 0, then
we see HT is gauge equivalent to H�

T . Thus χ0, χ±1 generate the gauge transformations with
the restricted parameters. These transformations coincide with those of the lagrangian form,
(9),(10), as is shown bellow. Rewriting the parameters �a in (26) as ��a, the condition Q̃ = 0
gives

η1 = �̇�1 + 2κ��0g1, η2 = �̇�−1 − 2κ��0g1, �̇�0 + 4κ(��2g1 − ��−1g2) = 0. (29)

Therefore we have

δx1 = ��1(p1 − κx2)− 1
2

��0(p2 + κx1), δx2 = ��−1(p2 + κx1)− 1
2

��0(p1 − κx2), (30)

δg1 = �̇�1 + 2κ��0g1, δg1 = �̇�1 − 2κ��0g2. (31)

Substituting the definition of momenta, p1 = ẋ1/g1 + κx2, p2 = ẋ2/g2 − κx1, into above
equations, we have

δx1 = ��1
ẋ1
g1

+
1
2

��0
ẋ2
g2

, δx2 = ��1
ẋ2
g2

+
1
2

��0
ẋ1
g1

. (32)

Finally redefining the parameter as ��1 = g1�1, ��−1 = g2�2, ��0 = 2�0, we get (9),(10). The last
condition in (29) is the same as (11) if the redefined parameters are used.

The definition of the physical equivalence in the phase space owing to Dirac and the concept
of gauge transformations based on it may be cumbersome at least in the present model. In
ref.(Hori, 2009) we proposed another definition of physical equivalence, which seems natural
both in the lagrangian and the canonical theories, and in accordance with Dirac’s conjecture.
The basic observation is that every conserved quantities have the same values along the gauge
invariant orbits of canonical variables. Therefore any two physically equivalent points in
Dirac’s sense have the same values of all conserved quantities. Our claim is that the concept
of the physical equivalence should be relaxed so that the reverse proposition holds. That is,
we define that if all of the conserved variables at two points in the physical phase space (lied
in the constrained subspace) coincide then the two points are called physically equivalent.

In order to determine the conserved quantities in our model let us examine the global
symmetries. Since the deviations of the lagrangian under the global translations δxa = Ea
is δL = κ d

dτ (x1E2 − x2E1), the corresponding conserved charges are

p̃μ
1 =

ẋμ
1

g1
+ 2κxμ

2 , p̃μ
2 =

ẋμ
2

g2
− 2κxμ

1 , (33)
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which, in terms of the canonical variables, are written as

p̃μ
1 = pμ

1 + κxμ
2 , p̃μ

2 = pμ
2 − κxμ

1 . (34)

Similarly the conserved charges corresponding to the Lorenz invariance are

Mμν = x1[μ p1ν] + x2[μ p2ν]. (35)

All of the Poisson brackets between the charges p̃μ
a , Mμν and the constraints χ0, χ±1 vanish.

There is another global symmetry of the lagrangian, which is seen by setting �0 to a constant
and �1 = �2 = 0 in (9) and (10). The corresponding conserved charge turnes out to be
χ0 which is vanishing in the physically admissible orbits. In our model the maximal set
of conserved quantities are p̃μ

a , Mμν and χ0. Since these variables are invariant (up to the
first class constraints) under the transformations generated by all of the first class constraints,
Dirac’s conjecture holds.

In the canonical theory the gauge transformations are generated by five constraints χ0,±1, π1,2.
If one fixes the gauge by five subsidiary conditions, then the equations of motion determine
unique solutions. These ten conditions eliminate ten variables among 4(D + 1) canonical
variables xa, pa, ga, πa, and the remaining 2(2D − 3) canonical variables, i.e., 2D − 3 canonical
pairs become the physical variables.

3.3 Quantization

In this subsection we present the quantum theory, assuming that our model is a constrained
hamiltonian system with gauge symmetries generated by χ0,±1. This point of view is
consistent with the reduction of the classical degrees of freedom mentioned in 3.1.

Let us represent the dynamical variables as linear operators on the space of differentiable
and square integrable functions of x1,2. The momentum observables of the two particles are
defined by

p̃1 = −i∂1 + κx2, p̃2 = −i∂2 − κx1. (36)

They satisfy the commutation relation

[ p̃μ
1 , p̃ν

2 ] = 2κiημν. (37)

That is, the momenta of the two particles do not have simultaneous eigenvalues. This is
the reason why we call our system a bilocal particle instead of two particles. This is the
fundamental uncertainty relation of the model.

The classical constraint functions are replaced by the following operators:

L1 =
i

4κ
(−i∂1 − κx2)

2, (38)

L−1 =
i

4κ
(−i∂2 + κx1)

2, (39)

L0 =
i

4κ
(−i∂1 − κx2)(−i∂2 + κx1)− α, (40)
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where ∂a = ∂/∂xa, and the constant α represents the ambiguity due to the operator ordering.
The above operators constitute a basis of SL(2, R) with central term as

[Ln, Lm] = (n − m)

(
Ln+m +

(
α − D

4

)
δn+m

)
, (n, m = 0,±1), (41)

where D is the dimension of spacetime.

According to the gauge algebra (41) the BRST charge is defined by

Q = ∑
n=0,±1

cnLn − 1
2 ∑

n,m=0,±1
(n − m)cncm

∂

∂cn+m
, (42)

where ca, (a = 0,±1) are the BRST ghost variables. The square of the BRS charge is

Q2 = 2
(

α − D
4

)
c1c−1. (43)

As in the ordinary gauge theory we require the nilpotency of Q so that the ordering ambiguity
is fixes as α = D/4, which also eliminates the central term in (41).

In ref.(Hori, 1996) we have calculated the BRST cohomology classes in the bilocal model in
order to get the physical Hilbert space. We found there that there exists non-trivial physical
states only in the dimensions D = 2 or D = 4. In the case D = 2 there exists vector
states, while in the case D = 4 only scalar states are permitted. However, the analysis is
very complicated and it seems difficult to obtain simple scheme for calculations of quantum
phenomena.

The reason for the difficulty is in the fact that one can not define such an inner product in
the Hilbert space that L1 is hermitian conjugate to L−1. To obtain physical states represented
by functions of spacetime coordinates we are forced to solve the over determined system
L±1|pys� = L0|pys� = 0, which has no solution.

A field theory, however, has been constructed (Hori, 1993) by using the Chern-Simons action
whose exterior derivative is replaced by the BRST operator as Witten has done (Witten, 1986)
in a string field theory. But the formulation is formal and a concrete calculation of physical
processes has not been achieved due to lack of connections to the first quantized theory.

This situation has been partially overcome by a modification of the model, where two particles
in the bilocal model are replaced by the real and the imaginary parts of one complex particle
(Hori, 2009). The model is illustrated in the next section.

4. Complex particle

4.1 Action and invariance

The improved version of the N = 2 model is defined as follows. Let us consider the spacetime
with complex coordinates zμ, (μ = 0, 1, 2, ..D − 1), and a particle moving in the spacetime,
the complex coordinates of which are functions of the internal time τ. The einvein g is also
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complex valued function of τ. The proposed action is

IC =
∫

dτ LC, LC =
ż2

2g
+ iκżz̄ + c.c. (44)

The action describes dynamics of two real coordinates corresponding to the real and the
imaginary parts of z = x + ia. We call the object defined above as complex particle (Hori,
2009).

The action is invariant under the transformations

δz = �ż +
�0
ḡ

˙̄z, δg =
d

dτ
(�g) + 4iκ�0g, (45)

where � and �0 depend on τ. While � has arbitrary complex value, �0 is real and subjected to
the constraint,

�̇0 − iκgḡ(� − �̄) = 0. (46)

Classical solutions, the constraint structure and so force are analyzed in the similar way as
those of the bilocal model. Thus we recapitulate the results. In the gauge choice

g−1 = 2κ|τ − τ0|, (47)

it turns out that in the kinetic terms of the action x(real part) and a(imaginary part) have
correct and wrong signs, respectively. Thus x’s are physical variables, while a’s are ghosts.
The solution for z = x + ia to the equations of motion is

x(τ) = x0 + (τ − τ0)k +
e

τ − τ0
, (48)

a(τ) = a0 + s(τ − τ0)

(
(τ − τ0)k +

e
τ − τ0

)
, (49)

where s(τ) is the step function, and k and e are D-dimensional light-like vectors with real
valued components, which are mutually orthogonal.

The canonical momenta of z and z̄ are

p =
ż
g
+ iκz̄,

p̄ =
˙̄z
ḡ
− iκz, (50)

while those of g and ḡ, denoting π and π̄, respectively, vanish. Note that the momenta (50)
are not conserved quantities with respect to τ, and the conserved momenta, denoted p̃ and ˜̄p,
are

p̃ = p + iκz̄,
˜̄p = p̄ − iκz, (51)
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ḡ
− iκz, (50)

while those of g and ḡ, denoting π and π̄, respectively, vanish. Note that the momenta (50)
are not conserved quantities with respect to τ, and the conserved momenta, denoted p̃ and ˜̄p,
are

p̃ = p + iκz̄,
˜̄p = p̄ − iκz, (51)

60 Advances in Quantum Theory Quantum Theory of Multi-Local Particle 11

while the generators of Lorentz transformations defined by Mμν = z[μ pν] + z̄[μ p̄ν] are
conserved. The deviation of p’s and p̃’s (and their c.c.) comes from the fact that under
global translations the action is invariant but the lagrangian varies by total derivatives. For an
arbitrary variation δz (and δz̄), the identity

∫
dτ

[
[EL] +

d
dτ

( p̃δz + ˜̄pδz̄)
]
= 0 (52)

holds, where

[EL] =
(

∂L
∂z

− d
dτ

∂L
∂ż

)
δz + c.c. (53)

vanishes if the Euler-Lagrange equations are satisfied. Since in the translations, δz and δz̄ are
constants, p̃ and ˜̄p are conserved. From the invariance under the Lorenz transformations we
get Mμν as conserved quantities.

Now the total Hamiltonian generating τ development is

HT = gχ1 + ḡχ−1 + vπ + v̄π̄, (54)

where

χ1 =
1
2
(p − iκz̄)2,

χ−1 =
1
2
( p̄ + iκz)2, (55)

and v and v̄ are the Dirac variables corresponding to the primary constraints, π ∼ π̄ ∼ 0. The
preservation of the primary constraints requires the secondary constraints, χ1 ∼ χ−1 ∼ 0, and
the preservation of them requires the tertiary constraint

χ0 =
1
2
(p − iκz̄)( p̄ + iκz) ∼ 0. (56)

These constraint functions form a SL(2, R) algebra with regard to Poisson brackets:

{χn, χm} = −2iκ(n − m)χn+m, (n, m = 0,±1), (57)

and generate gauge transformations as argued in the bilocal model.

4.2 1st quantization

Now let us proceed to the quantum theory. We represent the canonical variables as operators
on the Hilbert space of differentiable and square integrable functions of z and z̄. The state
vectors are functions in the Hilbert space. The inner product of two states φ1, φ2 is defined by

�φ1|φ2� =
∫

dDzdDz̄ φ∗
1 (z, z̄)φ2(z, z̄). (58)
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A dynamical variable q is replaced by the differential operator −i∂/∂q. The classical constraint
functions are replaced by

L1 =
1

4κ
(−i∂ − iκz̄)2, (59)

L−1 =
1

4κ
(−i∂̄ + iκz)2, (60)

L0 =
1

4κ
(−i∂̄ + iκz)(−i∂ − iκz̄) + α, (61)

where ∂ = ∂/∂z, and the constant α represents the ambiguity due to the operator ordering.
L0,±1 satisfy the algebra,

[Ln, Lm] = (n − m)

(
Ln+m −

(
α − D

4

)
δn+m

)
, (n, m = 0,±1). (62)

The expression for the BRST operator is the same as eq.(42), and the requirement of the
nilpotency of it is guaranteed by α = D/4.

In the classical theory the constraints, χn = 0, (n = 0,±1), are imposed for guaranteeing the
equivalence of the lagrangian and the hamiltonian formulations 2. These constraints define
the physical subspace of whole phase space. In the quantum theory we cannot regard them
neither as operator equations nor as the equations to physical states, L0,±1|phys� = 0, since
they have no solution. Hence the conditions are relaxed so that a product of the constraint
operators has vanishing matrix elements between any physical states, |ϕ� and |φ�:

�ϕ|Ln1 · · · LnN |φ� = 0. (63)

This is realized by requiring

L1|φ� = L0|φ� = 0, (64)

for physical state |φ�, since we have �φ|L−1 = 0 by virtue of the Hermiticity, L†
1 = L−1, the

property lacking in the original bilocal model. The above conditions for physical states are
analogous to those of string model, and seems most natural ones.

In order that our model is physically meaningful there should exist the eigenstates of
momentum. As is shown shortly this requirement gives rise to restriction on the space
time dimension. The conserved quantities derived by the invariance under the space time
translations are

p̃ = −i∂ + iκz̄,
˜̄p = −i∂̄ − iκz. (65)

Thus the momentum should be combinations of these quantities. From the reality of
eigenvalues, it should have the form P = β p̃ + β̄ ˜̄p, with arbitrary complex constant β. Any

2 Strictly speaking, only the primary constraints are involved for the equivalence, and the secondary and
tertiary constraints are imposed on the initial conditions so that one stays on the subspace defined by the
primary constraints in later τ.
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two of the eigenstates of P would be taken as independent momentum eigenstates. However,
we regard one of them as the physical momentum state, since these two operators are not
mutually commuting and have not simultaneous eigenvalues. Any choice of β is physically
equivalent because it changes by global rotations. Here we choose the momentum of the real
part of z as the physical momentum, which corresponds to β = 1 (see eq.(52)).

Now let us solve the following equations:

L1|k� = L0|k� = 0, (66)

P|k� = k|k�. (67)

If one puts

|k� = e−κzz̄ f (z, z̄), (68)

the condition L1|k� = 0 reduces to ∂∂ f = 0, i.e., f (z, z̄) is an harmonic function with respect to
z. The eigenvalue equation P|k� = k|k� reduces to

(∂ + ∂̄ − 2κz̄ − ik) f (z, z̄) = 0. (69)

This equation is of the form with separate variables, and has the solution of the form
g1(z)g2(z̄). The solution is written as

f (z, z̄) = eik1z+i(k−k1)z̄+κz̄2
, (70)

with arbitrary separation constant k1. Multiplying arbitrary function a(k1) to (70), and
integrating over k1, we obtain the general solution to (69) as

f (z, z̄) = eikz̄+κz̄2
g(y), y = i(z̄ − z), (71)

where g(y) is an arbitrary differentiable function of real arguments y’s, which can be Fourier
expanded. Since f (z, z̄) is harmonic with respect to z, g(y) must be an harmonic function.

Finally, the condition L0|k� = 0 reduces to

(∂̄∂ − 2κz∂ − 4κα) f (z, z̄) = 0. (72)

Substituting (71) into this, we get
[(

yμ − kμ

2κ

)
∂

∂yμ + 2α

]
g(y) = 0. (73)

If we put

g(y) =

[(
y − k

2κ

)2
]−α

h
(

y − k
2κ

)
, (74)
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eq.(73) and the harmonicity of g are reduced to

uμ ∂

∂uμ h(u) = 0, (75)
(

u − K
u2

)
h(u) = 0, K = 2α(D − 2(α + 1)) =

1
4

D(D − 4), (76)

where u = ∂2/∂uμ∂uμ and u’s are D-dimensional real coordinates. These equations are
solved by the pseudo-harmonic analysis in D-dimensions. Transforming to the pseudo-polar
coordinates 3, (r, θ1, θ2, ..., θD−1), we see that from eq.(75) h does not depend on r. Since the
d’Alembertian u is written as r∂/∂r + (1/u2)Δ, where Δ is the Laplace-Beltrami operator
on S1,D−2, we see from (76) that Δh = Kh. It is well known in the theory of spherical functions
(Takeuchi, 1975) that if the Laplace-Beltrami operator on SD−1 have single valued bounded
eigenfunctions, then the eigenvalues must be of the form K = −�(� + D − 2) with non
negative integer �. Hence if we take the Eucledian signature for the metric we get D = 4 − 2�,
i.e., D = 2 or D = 4. In the present case, however, the signature of the metric is Minkowskian,
and the base space is S1,D−2 which is non-compact. The theory of pseudo-spherical functions
on non-compact space (Raczka et al., 1966) (Limi’c et al., 1966) (Limi’c et al., 1967) (Strichartz,
1973) shows variety of series of eigenvalues, including continuous as well as discrete ones.
An explicit form of the eigenfunctions are recently obtained for D = 3 (Kowalski et al., 2011).
The real eigenvalues of single valued eigenfunctions on the non-compact base space are of the
same form as those of the compact space except some supplementary continuous series. Here
we restrict ourselves to the former cases.

We have assumed here that the eigenfunctions are single valued. If one permits double valued
eigenfunctions a half integer value of K should be taken into account. The double values might
come from rotations around y0 axis. Since physical meaning of the rotations around the time
axis is not clear, we simply do not consider the effects.

The eigenfunctions are expressed by Gegenbauer’s polynomials for general �, but are
constants for � = 0. In the case D = 2, eqs.(75) and (76) are directly solved 4, and we get
h(u) = (u0 ± u1)(u2)−1/2.

The physical eigenstates of the momentum in four and two dimensions is written as

|k� ∝
eikz̄+κz̄(z̄−z)

(
z − z̄ − ik

2κ

)2 ×
{

1 (for D = 4)

z0 − z̄0 − ik0

2κ ±
(

z1 − z̄1 − ik1

2κ

)
(for D = 2).

(77)

There are spurious states defined by Ln
−1|k�, (n = 1, 2, ..), which are orthogonal to all physical

states and have zero norm. In the string theory there are many spurious states which are
physical and have zero norm, especially in the critical dimension. Existence of these states in
the string theory suggests some underlying gauge invariance, since they must be decoupled
from physical S-matrix. In the present model, however, spurious states are all unphysical by

3 According to the metric ημν = (−1, 1, 1, .., 1), the pseudo-polar coordinates are defined by y0 =

r sinh θ1, y1 = r cosh θ1 sin θ2 · · · sin θD−1, y2 = r cosh θ1 sin θ2 · · · cos θD−1, ..., yD−1 = r cosh θ1 cos θ2.
4 The solution D = 2 was overlooked in ref.(Hori, 2009).
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virtue of the constraint algebra without central term, and do not enter in physical S-matrix
from the outset.

4.3 Toward a field theory

A field theory based on the complex particle might have some gauge symmetries in the field
theoretic sense, which may have some connections with the SL(2, R) in the first quantized
theory. The most likely candidate for the action of the field theory may be the Chern-Simons
form written, for example, as (Hori, 1993)

I =
∫

d3cdDzdDz̄ V(z)
(

Ai � QAi − g
3

�ijk Ai � Aj � Ak
)

, (78)

where Q is the BRST charge and � is some associative binary operator like a convolution. V(z)
is a possible measure factor. The fields Ai, (i = 1, 2, 3) are fermionic and may be written as
Ai = ∑n cnΨi

n with ghost variables cn.

The nomenclature of “Chern-Siomons” comes from the Chern-Simons gauge theory on
three-manifold, which has been investigated in connection with knot theory. The formal
resemblance of our model to the C-S gauge theory is that the wedge product corresponds
to the operator �, which we call star product, and the exterior derivatives correspond to Q,
which are both nilpotent. The star product satisfies

A � B(x) = (−1)F(A)F(B)B � A(x), (79)

where F(A) = 1 for fermionic A and F(A) = 0 otherwise.

Now the action is invariant under the gauge transformations:

δAi = QΛi + g�ijkΛj � Ak, (80)

where Λi is arbitrary bosonic parameters depending on z’s and c’s. A necessary condition for
the invariance is the Leibniz rule for Q expressed as

Q(A � B) = Q(A) � B + (−1)F(A)F(B)A � Q(B), (81)

for arbitrary fields A and B. Then the action is invariant if the integral of total derivative
vanishes:

∫
d3cdDzdDz̄ V(z) QA = 0. (82)

Expanding the fields Ψi
n in powers of the imaginary parts of z, the coefficients may represent

physical fields. After integrations over the imaginary parts of z’s and ghost variables, the
action is expressed as integral of these fields over the real parts of z’s, which has some gauge
invariance.

Since there is no guideline for defining the star product apart from the condition (81), let us
examine the Leibniz rule in the following simple representation. Consider the representation
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of sl(2, R), on the space of functions of a single variable x, defined by

λ−1 = x − x0, λ0 = (x − x0)
d

dx
+ a, ł1 = (x − x0)

d2

dx2 + 2a
d

dx
, (83)

where x0 is a constant, and a is a constant which appears due to the ordering ambiguity. λ’s
satisfy the algebra,

[λn, λm] = (n − m)λn+m, (n, m = 0,±1). (84)

The natural choice for the (wedge) product of two functions, which permits the Leibniz rule,
may be the convolution defined by

A ∧ B(x) =
∫ x

x0

dx� A(x + x0 − x�)B(x�). (85)

The limits in the integration in the definition of the product is so chosen as it is
(anti-)commuting:

A ∧ B(x) = (−1)F(A)F(B)B ∧ A(x). (86)

Also we see from (85),

A ∧ B(x0) = 0. (87)

This suggests that the representation space, S, should be restricted to the functions which
vanish at z = z0:

S = { A | A ∈ C2, A(x0) = 0}. (88)

Now let us examine the Leibniz rule for the exterior derivative defined by

d = ∑
n=0,±1

cnłn − 1
2 ∑

n,m=0,±1
(n − m)cncm

∂

∂cn+m
. (89)

As in the ordinary exterior derivative, d is nilpotent. After straightforward calculations we
obtain

d(A ∧ B)− (dA ∧ B + A ∧ dB) = c1
[
2(1 − a)A ∧ B� + (2a − 1)A0B + AB0

]

+(1 − a)c0 A ∧ B, (90)

where A0 = A(x0), B0 = B(x0), B� = dB/dx. Thus we find that if and only if a = 1 and
A, B ∈ S then d behaves like a derivative operator.

Next let us examine the eigenstate expansions. The basis functions uk = (z − z0)
k, (k =

0, 1, 2, ..) satisfy

λ0u0 = au0, λ1u0 = 0, uk = λk
−1u0. (k = 1, 2, ..) (91)
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A function in S is expanded as

A(x) =
∞

∑
k=1

uk
k!

Ak. (92)

Note that u0 = 1, representing the ’ground state’, does not belong to S. The wedge product of
A and B in S is expanded as

A ∧ B(x) =
∞

∑
k=1

uk
k!

k−1

∑
m=0

Ak−m−1Bm. (93)

The summation in (93) over m is, in fact, carried out from 1 to k − 2 due to A0 = B0 = 0. The
k-th component of the wedge product is thus

(A ∧ B)k =
k−2

∑
m=1

Ak−m−1Bm. (94)

Finally, let examine whether an integration of dA vanishes for any A. Since the ghost
derivative parts in dA are of the form c1c−1∂/∂c0, c0(c1∂/∂c1 − c−1∂/∂c−1), they vanish after
integrations by parts. Thus it is sufficient to check only that

∫
dx V(x)λn A = 0, (n = 0,±1),

with some measure factor V. This leads to V(x) = δ(x − x0) and a = 0. Therefore it is
impossible in the present representations to satisfy all the requirements.

Now go back to the complex particle model. Let us define the basis functions vk as follows:

L0v0 = αv0, L1v0 = 0, vk = Lk
−1v0. (k = 1, 2, ..) (95)

where

v0 = e(ip+κ(z̄−z))z̄, α =
D
4

. (96)

v0 is the eigenstate of the momentum with eigenvalue p, but not a physical state, since
L0v0 �= 0. The basis vk(p, z, z̄), (k = 0, 1, 2, ...) may span a dense subset of functions which
are differentiable and square integrable. We consider fields which are expanded as

A =
∞

∑
k=0

vk
k!

Ak, (97)

where Ak are functions of the ghost variables and not depend on z’s . The each component of
a field A is denoted as Ak. In analogy with (94) let us define the star product as

(A � B)k =
k+δ

∑
m=0

(
Ak−m+βBm+γ + Am+γBk−m+β

)
, (98)

where integer constants, β, γ and δ, are introduced so that the Leibniz rule might be
satisfied. The star product satisfies the (anti-)symmetry, A � B = (−1)F(A)F(B)B � A, and the
associativity, (A � B) � C = A � (B � C).
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The Leibniz rule can be examined merely using the commutation relations (62) with α = D/4,
and it is sufficient to check for the first term in the BRST charge, since the second terms are in
the form of derivatives. For an operator O writing as

Leib[O; A, B] = (OA) � B + A � (OB)− O(A � B), (99)

we get

Leib[L0; A, B]k = (β + γ + α)
k+δ

∑
m=0

(Ak−m+βBm+γ + Ak−m+γBm+β), (100)

Leib[L−1; A, B]k = (β + γ + 1)
k+δ

∑
m=0

(Ak−m+βBm+γ−1 + Am+γ−1Bk−m+β)

−(1 + β)(Ak+βBγ−1 + Aγ−1Bk+β), (101)

Leib[L1; A, B]k = (β + γ + 2α − 1)
k+δ

∑
m=0

(Ak−m+βBm+γ+1 + Am+γ+1Bk−m+β)

+(
¯
Ak+β+1Bγ + AγBk+β+1)

−(β + 2α − 1 − δ)(A−α+βBk+α+γ+1 + Ak+α+γ+1B−α+β). (102)

The bulk parts (the summations) of these quantities vanish if we put

β + γ + α = 0, (103)

β + γ + 1 = 0, (104)

β + γ + 2α − 1 = 0, (105)

which are equivalent to

(D/4 =)α = 1, β + γ = −1. (106)

The marginal parts (single terms) vanish if

β = −1, γ = 0, δ = 0, (107)

and A0 = B0 = 0. Thus we see that the Leibniz rule for the BRST charge is valid only if D = 4
and restricting the function space to

S = {A|A0 = 0}. (108)

The star product should be

(A � B)k =
k

∑
m=1

(Ak−m−1Bm + AmBk−m−1) . (109)

Note (A � B)k = 0 for k ≤ 2. The reason for restriction to D = 4 seems a technical one in
building a field theory, while the restriction to D = 2 or D = 4 in the first quantized theory is
intrinsic in the model.

Finally let us examine the vanishing of the integral of the total derivatives of the form QA. As
in the simple representation (83), it is sufficient to check

∫
VLn A = 0, (n = 0,±1). Integrating
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Leib[L0; A, B]k = (β + γ + α)
k+δ

∑
m=0

(Ak−m+βBm+γ + Ak−m+γBm+β), (100)

Leib[L−1; A, B]k = (β + γ + 1)
k+δ

∑
m=0

(Ak−m+βBm+γ−1 + Am+γ−1Bk−m+β)

−(1 + β)(Ak+βBγ−1 + Aγ−1Bk+β), (101)

Leib[L1; A, B]k = (β + γ + 2α − 1)
k+δ

∑
m=0

(Ak−m+βBm+γ+1 + Am+γ+1Bk−m+β)

+(
¯
Ak+β+1Bγ + AγBk+β+1)

−(β + 2α − 1 − δ)(A−α+βBk+α+γ+1 + Ak+α+γ+1B−α+β). (102)

The bulk parts (the summations) of these quantities vanish if we put

β + γ + α = 0, (103)

β + γ + 1 = 0, (104)

β + γ + 2α − 1 = 0, (105)

which are equivalent to

(D/4 =)α = 1, β + γ = −1. (106)

The marginal parts (single terms) vanish if

β = −1, γ = 0, δ = 0, (107)

and A0 = B0 = 0. Thus we see that the Leibniz rule for the BRST charge is valid only if D = 4
and restricting the function space to

S = {A|A0 = 0}. (108)

The star product should be

(A � B)k =
k

∑
m=1

(Ak−m−1Bm + AmBk−m−1) . (109)

Note (A � B)k = 0 for k ≤ 2. The reason for restriction to D = 4 seems a technical one in
building a field theory, while the restriction to D = 2 or D = 4 in the first quantized theory is
intrinsic in the model.

Finally let us examine the vanishing of the integral of the total derivatives of the form QA. As
in the simple representation (83), it is sufficient to check

∫
VLn A = 0, (n = 0,±1). Integrating
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by parts, the conditions become KnV = 0, (n = 0,±1), where

K1 =
1

4κ
(i∂ − iκz̄)2, (110)

K−1 =
1

4κ
(i∂̄ + iκz)2, (111)

K0 =
1

4κ
(i∂ − iκz̄)(i∂̄ + iκz) + α, α =

D
4

. (112)

Now let us find the explicit form of V(z, z̄). Putting

V(z, z̄) = eiκz̄yG(y), y = i(z̄ − z), (113)

we find after straightforward calculations that the conditions are

K1V(z) = − 1
4κ

eiκz̄y
yG(y) = 0, (114)

K−1V(z) = eiκz̄y
(

y∂y +
1
2
(y2 + D)

)
G(y) = 0, (115)

K0V(z) = −1
2

eiκz̄y (y∂y + D − 2α
)

G(y) = 0. (116)

From the last two equations we see y2G(y) = 0, so we find G(y) ∝ (.y
2). Thus the solution

must be

V(z, z̄) = eiκz̄yδ(y2). (117)

Substituting this back into (114)-(116), we get

K1V(z) = − 1
2κ

eiκz̄y
[
(D − 4)δ�(y2) + 2(2δ�(y2) + y2δ��(y2))

]
(118)

K−1V(z) =
1
2

eiκz̄y
[
(D − 4)δ(y2) + y2δ(y2) + 4(δ(y2) + y2δ�(y2))

]
(119)

K0V(z) = −1
4

eiκz̄y
[
(D − 2 − 2α)δ(y2) + 4(δ(y2) + y2δ�(y2))

]
. (120)

From the identity xδ(x) = 0, we see δ(x) + xδ�(x) = 0 and 2δ�(x) + xδ��(x) = 0. Hence we see
that KnV = 0, (n = 0,±1) if and only if D = 4. Once again D = 4 makes us happy!

The action of the field theory is an integral over z and z, where the imaginary part of z’s are
restricted on the light-cone.

5. Extension to N ≥ 3

5.1 Actions and gauge invariance

The action of the N-extended multi-local particle is defined by

IN =
∫

dτ LN , LN =
N

∑
a=1

1
2ga

ẋ2
a + ∑

a,b
κab ẋaxb, (121)
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where xa are the (real) coordinates of the N particles and each ga is the einbein of the a-th world
line which is parametrized by τ, and dots denote the derivatives with respect to internal time
τ. The difference of this N particle system from the ordinary free particles comes from the
second term in eq.(121), where κab is an arbitrary anti-symmetric constant matrix.

The action has the hidden local symmetry generated by

δxa = �a ẋa + ∑
b

sab
ẋb
gb

, (122)

δga =
d

dτ
(�aga) + kaga, (123)

where �a, sab and ka are infinitesimal local parameters constrained by sab = sba and

ṡab + 2κabgagb(�b − �a) + 2 ∑
c
(κacgascb + κbcgbsca) = gakaδab, (124)

In fact the variation of the lagrangian is

δLN =
d

dτ

[
∑
a

�a ẋ2
a

2ga
+ ∑

a,b
(κab�axbẋa +

sab ẋa ẋb
2gagb

) + ∑
a,b,c

κabsacxbẋc

gc

]

+
1
2 ∑

ab
(sab − sba)

ẋa

ga

d
dτ

(
ẋb
gb

)

+∑
a,b

[
1
2

ṡab + 2κabgagb�b + ga

(
2 ∑

c
κacscb − 1

2
kaδab

)]
ẋa ẋb
gagb

. (125)

In order to fix the model we set the non-vanishing components of the anti-symmetric
parameter κab as in the following two cases:

(i) Closed N-particle (N ≥ 3):

κaa+1 = κ, (a = 1, ..., N − 1), κN1 = −κ, κab = −κba, (126)

(ii) Open N-particle (N ≥ 2):

κaa+1 = κ, (a = 1, ..., N − 1), κab = −κba, (127)

and other κ’s are set to zero, where κ is the coupling constant. The closed N-particle system is
characterized by the anti-symmetric matrix κab, each row (or column) of which has two non
vanishing elements, while in the open N-particle system this is valid except for the first (or
N-th) row (or column) corresponding to the two ends of the N particles. The bilocal particle
is the open 2-particle. In what follows we restrict ourselves to the open N-particle, since the
constraint structures in the canonical theories of the closed N-particle are rather complicated
compared with the open ones.

Now the number of the gauge degrees of freedom can be counted in the similar way as in the
bilocal particle, where the degrees of freedom of the initial condition are counted in suitable
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2gagb

) + ∑
a,b,c

κabsacxbẋc
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gauge condition. But this procedure is rather cumbersome in the lagrangian formalism
compared with the hamiltonian one.

However, a shortcut derivation of the physical degrees of freedom in the lagrangian formalism
is possible. The result coincides precisely with the hamiltonian one, if Dirac’s conjecture
holds. The reasoning is as follows. The number of the unphysical, i.e., the gauge degrees of
freedom is the number of the independent parameters and their time derivatives appeared in
the transformation rules, where a parameter and all of its (higher order) time derivative(s) are
formally regarded as independent. (For a skeptical reader we recommend to check the above
rule in the case of the Yang-Mills or the local Lorentz symmetries.)

The counting argument in the open N-particle system is as follows. The independent
transformation parameters are extracted by solving the constraint, eq.(124). For a = b in
eq.(124), we obtain ka in terms of ṡab and sab. For b = a + 1, we see �a(a = 2, ..., N) are
expressed in terms of �1, ṡaa+1, (a = 1, ..., N − 1) and sab. Next, for b ≥ a + 2, we see ṡab are
expressed by sab. Thus we have the independent parameters, sab(

N(N+1)
2 ), ṡaa(N), ṡaa+1(N −

1) and �1(1), where the numbers of each independent parameter are written in the
parentheses.

Substituting the above parameters into eqs.(122) and (123), we get the extra independent
parameters, s̈aa+1(N − 1) and �̇1(1). Thus we have the total of 1

2 N(N + 1) + 3N independent
parameters in eqs.(122) and (123). However, a short manipulation shows that saa and ṡaa
actually do not appear or be absorbed into �a by shifting �a → �a +

saa
ga

. Hence, finally, we see

the number of the gauge degrees of freedom is 1
2 N(N + 1) + N. Among them N degrees of

freedom are used for fixing ga, and the remaining 1
2 N(N + 1) are of our interest. 1

2 N(N + 1)
constraints and the same number of gauge fixing conditions eliminate a part of the canonical
variables, xa, pa, (a = 1, 2, .., N), leaving 1

2 N(2D − N − 1) canonical pairs as physical. Hence
if N ≤ 2(D − 1) there are at least one physical degrees of freedom.

In the next subsection we show that the number of the first class constraints in the hamiltonian
formalism coincides precisely with the above number. This is in accordance with Dirac’s
conjecture, i.e., all of the first class constraints generate the gauge symmetry of the system.

5.2 Canonical theory

The algebraic structure of the symmetry is clarified in the canonical formalism. Introducing
the momenta pa and πa conjugate to xa and ga, respectively, and defining

Vab =
1
2

p(−)
a p(−)

b , (128)

p(−)
a = pa − ∑

b
κabxb, (129)

we can express the total hamiltonian as

H(N)
T = ∑

a
gaVaa + ∑

a
Λaπa, (130)
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where Λ’s are Dirac variables which can be set to arbitrary functions of canonical variables.
The Poisson brackets of V’s are given by

{Vab, Vcd} = κc(aVb)d + κd(aVb)c. (131)

Now let us derive the constraints for the canonical variables in the open N-particle system.
The primary constraints are πa ∼ 0, since the lagrangian does not contain ġ’s. The stability
of the primary constraints along the time development requires the secondary constraints
Vaa ∼ 0. The stability of the latter, in turn, requires Vaa+1 ∼ 0, (a = 1, ..., N − 1). In general,
the stability of Vaa+k ∼ 0 requires Vaa+k+1 ∼ 0. After all we have 1

2 N(N + 1) secondary
and tertiary constraints, Vab, which close under the Poison brackets, and form the first class
constraints.

Vab generate the gauge symmetry which has the form of eqs.(122) and (123) in the lagrangian
formalism, and transform the hamiltonian, eq.(130), into the same form but with different
coefficients of Vaa. This ambiguity of the coefficients is a reflection of the gauge invariance
and is removed by the gauge fixing.

5.3 Quantization

In order to quantize the system we replace pμ
a ’s by −i∂μa, and we denote the quantum

operators obtained by this replacement by writing hats on these quantities. The generators
of the gauge transformations are defined by

V̂ab =
1
4

(
p̂(−)

a p̂(−)
b + p̂(−)

b p̂(−)
a

)
. (132)

The gauge algebra is expressed as
[V̂ab, V̂cd] = iκc(aV̂b)d + iκd(aV̂b)c. (133)

The ambiguities from the operator ordering are fixed by requiring the nilpotency of the BRST
operator as in the N = 2 theories, then the central terms in the gauge algebra also vanish.

The generators for the kinematic symmetry are as follows:

translations : p̂(+)
a = p̂a + ∑

b
κabxb, (a = 1, ..., N) (134)

Lorentz tfm. : Mμν =
N

∑
a=1

p̂a[μxaν] (135)

where p̂aμ ≡ −i∂aμ. p̂(+)
+a generate the translation of a-th particle. They form the following

algebra with a central term:

[Mμν, Mλρ] = iηρ[μ Mν]λ − iηλ[μ Mν]ρ, (136)

[Mμν, p̂(+)
aλ ] = −iηλ[μ p̂(+)

ν]a , (137)

[ p̂(+)
aμ , p̂(+)

bν ] = 2iκab. (138)
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The algebra defined above contains the Poincaré algebra as a subalgebra. The crucial point is
the uncertainty relation (138). The momentum of each particle does not have a certain value
irrespective to the momentum of the neighboring particles. Another important feature is the
commutativity of the kinematic generators and those of gauge generators:

[V̂ab, p̂(+)
μa ] = [V̂ab, Mμν] = 0. (139)

These relations assure the consistency of the gauge structure and the kinematic properties of
the model.

The first quantizations of the N-extended models may be achieved in the similar way as that
of the bilocal models. Chern-Simons type actions may be used in field theories. It is interesting
to know whether the critical dimensions exist also in the N-extended models. However, there
might be similar difficulties as in the bilocal model, and they may be overcome by improving
them to those like complex particle as is done in the bilocal model. We leave these problems
to future studies.

6. Summary

In the present paper we have analyzed the multi-local particle models especially emphasizing
on the complex particle. At first sight the guage degrees of freedom of the multi-local
particle are less than those of the canonical theory, which may lead to breakdown of Dirac’s
conjecture. The concept of physical equivalence is argued to be modified so that the guage
transformations are extend to whole algebra, recovering Dirac’s conjecture.

The constraint structure of the model of the complex particle is suited for the ordinary
quantization scheme as opposed to the original bilocal model, due to the Hermiticity property
of L±1. In the first quantization we see that, requiring the existence of the momentum
eigenstates which satisfy the physical state conditions, the dimension of the spacetime is
restricted to be two or four. The most natural action of the field theory might be of the form of
Chern-Simons one, where the exterior derivative is replaced by the BRST charge. It is rather
unexpected that the action has gauge invariance only in the four dimensions. This fact is
caused by the Leibniz rule of the BRST charge and the vanishing of the total derivative, i.e.,∫

QA = 0, which are satisfied only in four dimensions.

Although the complex particle model is favorable in many respects than the original bilocal
model, the latter is more intuitive in that the classical solution is interpreted as a rigid stick.
As far as we know the bilocal model is the first example of relativistically admissible rigid
stick.

We extend the bilocal model to N ≥ 3 particle system, and obtain large classes of actions. The
larger the guage algebra, the less physical degrees of freedom. The models categorized into
two classes, i.e., open and closed types. In open N-particle system it turns out that the number
of the constraints and the corresponding gauge symmetry is 1

2 N(N + 1). Consequently the
physical degrees of freedom survives only if N ≤ 2(D − 1).

The models proposed here have not been aimed so far to phenomenological applications but
to the analysis in their theoretical aspects such as the gauge invariance or critical dimensions.
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Of course we do not intend to claim that the present model is the theory of the nature and
for that reason the dimension of our spacetime should be four. However, it is interesting that
there exist simple models other than the string, which have critical dimensions. We hope that
the future investigations along with the direction described here may open a new perspective
in the area of quantum gravity where some non-locality of a fundamental object should play
the central role in the Planck scale.

7. References

Dirac, P. (1950). Generalized hamiltonian dynamics, Can. J. Math. 2.: 129.
Dirac, P. (1964). Lectures on Quantum Mechanics, Dover Pub., Mineola, New York.
Frenkel, A. (1982). Comment on cawley’s counterexample to a conjecture of dirac, Phys. Rev.

D21: 2986.
Hori, T. (1992). Hidden symmetry of relativistic particles, J. Phys. Soc. Jap 61.: 744.
Hori, T. (1993). Bilocal field theory in four dimensions, Phys. Rev. D48.: R444.
Hori, T. (1996). Brs cohomology of a bilocal model, Prog. Theor. Phys. 95.: 803.
Hori, T. (2009). Relativistic particle in complex spacetime, Prog. Theor. Phys. 122.(2.): 323–337.
Kowalski, K., Rembieli’nski, J. & Szcze’sniak, A. (2011). Pseudospherical functions on a

hyperboloid of one sheet, (arXiv:1104.3715v1).
Limi’c, N., Niederle, J. & Raczka, R. (1966). Continuous degenerate representation of

noncompact rotation grouts. ii, J. Math. Phys. 7: 2026.
Limi’c, N., Niederle, J. & Raczka, R. (1967). Eigenfunction expansions associated with the

second order invariant operator on hyperboloids and cones. iii, J. Math. Phys. 8: 1079.
Raczka, R., Limi’c, N. & Niederle, J. (1966). Discrete degenerate representation of noncompact

rotation grouts. i, J. Math. Phys. 7: 1861.
Strichartz, R. S. (1973). Harmonic analysis on hyperboloids, 12: 341.
Sugano, R. & Kamo, H. (1982). Poincare-cartan invariant form and dynamical systems with

constraints, Prog. Theor. Phys. 67: 1966.
Takeuchi, M. (1975). Modern Spherical Functions, Iwanami Shoten, Tokyo, Japan.
Witten, E. (1986). Noncommutative geometry and string field theory, Nucl.Phys. B268: 253.

74 Advances in Quantum Theory



24

Of course we do not intend to claim that the present model is the theory of the nature and
for that reason the dimension of our spacetime should be four. However, it is interesting that
there exist simple models other than the string, which have critical dimensions. We hope that
the future investigations along with the direction described here may open a new perspective
in the area of quantum gravity where some non-locality of a fundamental object should play
the central role in the Planck scale.

7. References

Dirac, P. (1950). Generalized hamiltonian dynamics, Can. J. Math. 2.: 129.
Dirac, P. (1964). Lectures on Quantum Mechanics, Dover Pub., Mineola, New York.
Frenkel, A. (1982). Comment on cawley’s counterexample to a conjecture of dirac, Phys. Rev.

D21: 2986.
Hori, T. (1992). Hidden symmetry of relativistic particles, J. Phys. Soc. Jap 61.: 744.
Hori, T. (1993). Bilocal field theory in four dimensions, Phys. Rev. D48.: R444.
Hori, T. (1996). Brs cohomology of a bilocal model, Prog. Theor. Phys. 95.: 803.
Hori, T. (2009). Relativistic particle in complex spacetime, Prog. Theor. Phys. 122.(2.): 323–337.
Kowalski, K., Rembieli’nski, J. & Szcze’sniak, A. (2011). Pseudospherical functions on a

hyperboloid of one sheet, (arXiv:1104.3715v1).
Limi’c, N., Niederle, J. & Raczka, R. (1966). Continuous degenerate representation of

noncompact rotation grouts. ii, J. Math. Phys. 7: 2026.
Limi’c, N., Niederle, J. & Raczka, R. (1967). Eigenfunction expansions associated with the

second order invariant operator on hyperboloids and cones. iii, J. Math. Phys. 8: 1079.
Raczka, R., Limi’c, N. & Niederle, J. (1966). Discrete degenerate representation of noncompact

rotation grouts. i, J. Math. Phys. 7: 1861.
Strichartz, R. S. (1973). Harmonic analysis on hyperboloids, 12: 341.
Sugano, R. & Kamo, H. (1982). Poincare-cartan invariant form and dynamical systems with

constraints, Prog. Theor. Phys. 67: 1966.
Takeuchi, M. (1975). Modern Spherical Functions, Iwanami Shoten, Tokyo, Japan.
Witten, E. (1986). Noncommutative geometry and string field theory, Nucl.Phys. B268: 253.

74 Advances in Quantum Theory

Part 2 

Quantum Matter 



 



 0

Quantum Theory of Coherence
and Polarization of Light

Mayukh Lahiri
Department of Physics and Astronomy, University of Rochester, Rochester, NY

USA

1. Introduction

When we open our eyes on earth for the first time, light generates the sensation of vision in
our mind. If there was no light, our way of thinking would undoubtedly be quite different.
Therefore, it is natural to ask the question, what is light? Our early inquisitiveness about light
is documented in many stories and characters from almost all religions and cultures. Later,
with the development of science, we tried to use more rigorous techniques to understand the
nature of light. However, regardless of intense investigations for centuries on this subject, we
are far from obtaining a convincing answer to the question “what is light?” Einstein seems to
have put it best1:

“All the fifty years of conscious brooding have brought me no closer to answer the question, ‘What are
light quanta?’ Of course today every rascal thinks he knows the answer, but he is deluding himself.”

It is clear from the preceding remarks that this question represents one of the ever-lasting ones
in physics. Although, at this stage one does not fully understand the nature of light, one can
nevertheless study its properties. In this context, one may recall Feynman’s illustration of the
principle of scientific research (Feynman et al., 1985):

“. . . in trying to get some idea of what we’re doing in trying to understand nature, is to imagine that
the gods are playing some great game like chess, let’s say, and you don’t know the rules of the game, but
you’re allowed to look at the board, at least from time to time . . . , and from those observations you try
to figure out what the rules of the game are.

To understand the nature of light thus scientists have lead to investigate different properties
of it. Coherence and polarization may be identified as the two important ones. In this
chapter, we will give brief descriptions of them, and will show how the two apparently
different phenomena can be described by analogous theoretical formulations, which involve
incorporating the statistical fluctuations present in light.

Detailed descriptions of the history of the theories of coherence and polarization may be found
in many scholarly articles [see, for example, (Born & Wolf, 1999; Brosseau, 2010; Mandel &
Wolf, 1995). It may be said that the topic originated in Hooke’s conjecture about the wave
nature of light (Hooke, 1665), which was put in a sounder basis by Huygens (Huygens, 1690).

1 From Einstein’s letter to Michael Besso, written in 1954.
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2 Will-be-set-by-IN-TECH

Later Young discovered that light waves may produce interference fringes (Young, 1802).
Young’s discovery lead to many investigations concerning interference properties of light2

and it turned out that light from different sources may differ in their abilities to interfere.
Traditionally “coherence” of an optical field is understood as the ability of light to interfere.
Early relevant investigations on interfering properties of light may be found in the works
of Fresnel and Arago (Arago & Fresnel, 1819)3. An important contribution was made by
Verdet (Verdet, 1865) when he determined the size of the region on the earth-surface, where
“sunlight vibrations are in unison”. Michelson established relationships between visibility of
interference fringes and intensity distribution on the surface of an extended primary source
(Michelson, 1890; 1891a;b; 1902; 1927). He also elucidated the connection which exists between
the visibility of interference fringes and energy distribution in spectral lines. However, he did
not interpret his results in terms of field correlations.

It has become customary in traditional optics to represent an optical field by a deterministic
function. Although a deterministic model provides simple solutions to some problems, it
often suffers from lack of self-consistency and leaves out many questions which can only be
answered by taking the random nature of the field into account. The necessity of developing a
statistical theory of light arises from the fact that all optical fields, whether found in nature or
generated in a laboratory, have some random fluctuations associated with them. Even though
these fluctuations are too rapid to be observed directly, their existence can be experienced by
various experiments which involve effects of correlations among the fluctuating fields at a
point, or at several points in space. In the quantum mechanical description, in addition to
that, one also needs to consider the presence of a detector, which is an atom or a collection of
atoms.

The first quantitative measure of the correlations of light vibrations was introduced by Laue
(Laue, 1906; 1907). Later Berek used this concept of correlation in his work on image formation
in microscopes (Berek, 1926a;b;c;d). A new era in this subject began when van Cittert
determined the joint probability distribution for the light disturbances at any two points on a
plane illuminated by an extended primary source (van Cittert, 1934) and also determined the
probability distribution for light disturbances at one point, at two different instances of time
(van Cittert, 1939).

A simpler and more profound approach for addressing such problems was developed by
Zernike (Zernike, 1938), who also introduced the concept of the “degree of coherence” in
terms of visibility of interference fringes, which is a measurable quantity. Although Zernike’s
work brought new light to this subject, it had some limitations, because it did not take into
consideration the time-difference that may exist between interfering beams. Wolf formulated
a more general theory of optical coherence by introducing more generalized correlation
functions into the analysis (Wolf, 1955). Analyzing the propagation of such correlation
functions is often quite complicated due to time-retardation factors, and in most of the cases
it does not lead to any useful solution. Also, for the same reason, it is rather difficult
in this formulation to analyze many practical problems. Such problems are treated much

2 For a detail discussion of the influence of Young’s interference experiment on the development of
coherence theory, see (Wolf, 2007a).

3 Interpretation of the results obtained by Fresnel and Arago in terms of moderns coherence theory is
given in (Mujat et al., 2004).
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more conveniently by a different formulation, known as the space-frequency formulation of
coherence theory (Wolf, 1981; 1982; 1986).

All the investigations mentioned above were carried out by the use of the scalar theory. To take
into account another property of light, namely polarization, one needs to consider the vector
nature of the fluctuating field. The credit of first notifying polarization properties of light is
attributed to Erasmus Bartholinus, who studied the phenomenon of double refraction using
calcite crystals. In 1672 Huygens (Huygens, 1690) provided an interpretation of the double
refraction from the conception of spherical light waves. Use of double refraction became
widely used in different fundamental and practical applications of optical sciences, which led
to important investigations on this subject by several distinguished scientists. The foundation
of the modern theory of polarization properties of light was laid down by Stokes (Stokes, 1852)
as he formulated the theory of polarization in terms of certain parameters, now known as
Stokes parameters [see also (Berry et al., 1977)]. Poincaré (Poincaré, 1892) provided a detailed
mathematical treatment of the polarization properties of light, in which he introduced the
concept of Poincaré sphere to specify any state of polarization of light. A matrix treatment of
polarization was introduced by Wiener (Wiener, 1927; 1930; 1966), whose analysis related field
correlations and polarization properties of light. Later, Wolf (Wolf, 1959) used a similar matrix
formulation for systematic studies of polarization properties of statistically stationary light
beams [see also, (Brosseau, 1995; Collett, 1993; Mandel & Wolf, 1995)]. A detailed description
of the history of the theory of polarization can be found in a recently published article by
Brosseau (Brosseau, 2010).

From the above discussion, it seems that coherence and polarization are two completely
different phenomena with different histories and origins. However, according to classical
theory, both of the can be interpreted as measures of correlations present between fluctuating
electric field components. It is interesting to note that Verdet probably suspected, almost
140 years ago, that there is some analogy between the concepts of polarization and of
coherence. The title of his paper (Verdet, 1865) states in loose translation: “Study of the
nature of unpolarized and partially polarized light”. Yet in spite of the stress on polarization,
it is the very paper in which Verdet estimated the region of coherence of sunlight on the
earth’s surface4. This connection, became even more prominent in the works of Wiener
and Wolf. However, for many years coherence and polarization have been considered as
two independent branches of optics. The connection between them became evident with the
introduction of a unified theory of coherence and polarization for stochastic electromagnetic
beams (Wolf, 2003a;b).

All the investigations mentioned above are based on the classical theory of electromagnetic
fields. In the early part of the last century, development of quantum mechanics began
to provide deeper explanations of the intrinsic properties of light and its interaction with
matter. Dirac’s quantization of electromagnetic fields (Dirac, 1957) made it possible to analyze
various properties of light by the use of quantum mechanical techniques. In 1963, Glauber
introduced quantum mechanical formulation of coherence theory (Glauber, 1963), which has
been followed by systematic investigations of the subject [see, for example, (Glauber, 2007;
Mandel & Wolf, 1995)].

4 It was pointed out by Wolf in a conference talk (Wolf, 2009b), which was presented by the author.
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4 Will-be-set-by-IN-TECH

This chapter intends to provide a quantum mechanical description of coherence and
polarization properties of light with emphasis on some recently obtained results. We will
begin with a brief discussion on the classical theories of coherence and polarization of light.
We will emphasize how the two apparently different properties of light may be described by
analogous theoretical techniques. We will stress the importance of describing the subject in
terms of observable quantities. We will then recall some basic results of quantum theory of
optical coherence in the space-time domain, followed by detailed description of coherence
properties of optical fields in the space-frequency domain. After that, we will discuss a
formulation of optical coherence in the space-frequency domain. We will also provide a
quantum mechanical description of polarization properties of optical beams. In the end,
we will point out an interesting observation on the connection of Bohr’s complementarity
principle with partial coherence, and with partial polarization.

2. Classical theory of stochastic fields

We already mentioned in the Introduction that a deterministic model of optical fields leads
to many discrepancies in the analysis of properties of light. A systematic development of the
theory of coherence and polarization properties of light requires to take account the random
fluctuations present in the field. We will show how this theory may be used to elucidate
coherence and polarization properties of light.

From the classic theory of Maxwell, it is well known that an optical field can be represented by
an electric field E(r; t) and a magnetic field B(r; t), which obey the four Maxwell’s equations
[see, for example, (Jackson, 2004)]. For a stochastic (randomly fluctuating) three-dimensional
optical field, each of them will be represented by three random components Ei(r; t) and
Bi(r; t), i = x, y, z, where x, y, z are three arbitrary mutually orthogonal directions in space.
In our discussion we will neglect the effects due to magnetic fields.

2.1 Optical coherence in the space-time domain

The word “coherence” refers to the ability of light to interfere. Coherence properties of light
may, therefore, be understood by analyzing the interference fringes produced in an Young’s
interference experiment (Fig. 1). Many years ago, Zernike (Zernike, 1938) defined the “degree
of coherence” of a wave field by the maximum value of visibility in the interference pattern
produced by it “under the best circumstances”5. However, as already mentioned in the
Introduction that Zernike did not take into account the time-delay between the fields arriving
from different pinholes. Consequently, his theory could not address some interesting aspects
of coherence, which was later generalized by Wolf (Wolf, 1955). We will now briefly discuss
the main results of Wolf’s theory in the space-time domain. For simplicity we begin with
scalar description of fields, or in other words we assume that all the electric field components
behave in the same way.

A randomly fluctuating generally complex optical scalar field6, at a point P(r), at a time
t, may be represented by a statistical ensemble {V(r; t)} of realizations. The second-order

5 By the term “best circumstances” Zernike meant that the intensities of the two interfering beams were
equal and that only small path difference was introduced between them.

6 The corresponding technical term is the “complex analytic signal” of a real electric field (Gabor, 1946).
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cross-correlation function Γ(r1, r2; t1, t2) of the random fields at two different space-time
points (r1; t1) and (r2; t2) is defined by the expression

Γ(r1, r2; t1, t2) ≡ �V∗(r1; t1)V(r2; t2)�, (1)

where the asterisk denotes the complex conjugate and the angular brackets denote ensemble
average. Now if the field is statistically stationary, at least in the wide sense (Mandel & Wolf,
1995; Wolf, 2007b), the expression on the right hand side of Eq. (1) then depends only on the
time difference τ ≡ t2 − t1. Therefore, for statistically stationary fields, the cross-correlation
function takes the form

Γ(r1, r2; τ) ≡ �V∗(r1; t)V(r2; t + τ)�. (2)

The cross-correlation function Γ(r1, r2; τ) is known as the mutual coherence function. It
characterizes the second-order correlation properties of such fields in the space-time domain.

The average intensity I(r) of light at a point P(r), apart from a constant factor depending on
the choice of units, is given by �|V(r; t)|2�. From Eq. (2) it follows that

I(r) ≡ �|V(r; t)|2� = Γ(r, r; 0). (3)

Evidently for statistically stationary light the average intensity does not depend on time.

Let us now consider a Young’s two pinhole interference experiment (Fig. 1). Suppose that a
light beam is incident from the half-space z < 0 onto an opaque screen A, placed in the plane
z = 0 containing two pinholes Q1(r1) and Q2(r2). For the sake of simplicity, we assume that

Fig. 1. Illustrating the notation relating to Young’s interference experiment.

the beam is incident normally on the screen A. In general, interference fringes will be formed
on a screen B, placed in a plane z = z0 > 0, some distance behind the screen A (see Fig. 1). If
we assume that the contributions to the total intensity from the two pinholes are equal to each
other, i.e., that I(1)(r) = I(2)(r) ≡ I(0)(r) (say), then we find that

I(r) = 2I(0)(r)

{
1 +

∣∣∣∣∣
Γ(r1, r2; τ)√
I(r1)

√
I(r2)

∣∣∣∣∣ cos [α(r1, r2; τ)]

}
, (4)
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where
τ ≡ t2 − t1 =

R2 − R1
c

(5)

is the time delay between the fields arriving at P(r) from pinholes Q(r1) and Q(r2), c being
the speed of light in free space, and α(r1, r2; τ) = arg {Γ(r1, r2; τ)}. The visibility V of the
fringes is defined by the famous formula due to Michelson, viz.,

V ≡ Imax − Imin
Imax + Imin

, 0 ≤ V ≤ 1. (6)

One can readily show from Eq. (4) and (6) that the visibility of the fringes at the point P(r) is
given by ((Wolf, 2007b), Sec. 3.1, Eq. (19))

V =

∣∣∣∣∣
Γ(r1, r2; τ)√
I(r1)

√
I(r2)

∣∣∣∣∣ . (7)

The normalized cross-correlation function in this expression is defined as the degree of coherence
γ(r1, r2; τ), i.e.,

γ(r1, r2; τ) ≡ Γ(r1, r2; τ)√
I(r1)

√
I(r2)

, (8)

Since the visibility is always bounded by zero and by unity, so is the modulus of degree of
coherence. It can also be proved explicitly by use of the Cauchy-Schwarz inequality that

0 ≤ |γ(r1, r2; τ)| ≤ 1. (9)

When |γ(r1, r2; τ)| = 1, sharpest possible fringes are obtained and the field is said to be
completely coherent, for the time delay τ, at the pair of points Q(r1) and Q(r2). In the other
extreme case, when |γ(r1, r2; τ)| = 0, no fringe is obtained and the field is said to be incoherent,
for the time delay τ, at the two points. In the intermediate case 0 < |γ(r1, r2; τ)| < 1, the field
is said to be partially coherent. It is to be noted that the degree of coherence is, in general, a
complex quantity. Its phase is also a meaningful physical quantity and can be determined
from measurements of positions of maximum and minimum in the fringe pattern [see, for
example, (Mandel & Wolf, 1995), p-167]. It must be noted that the mutual coherence function
Γ(r1, r2; τ) obeys certain propagation laws which make it possible to determine changes in
correlation properties of light on propagation. These propagation laws are often called Wolf’s
equations (see, for example, (Wolf, 2007b), Sec. 3.5).

The theory can be immediately generalized to vector fields. If we restrict ourselves to a
stationary stochastic light beam propagating along positive z direction, then the coherence
properties can be described by a 2 × 2 matrix

←→
Γ (r1, r2; τ), which is defined by the formula

←→
Γ (r1, r2, τ) ≡

[
Γij(r1, r2; τ)

]
≡

[
�E∗

i (r1; t)Ej(r2; t + τ)�
]

, (i = x, y; j = x, y), (10)

where Ei is a component of the electric field vector. In this case, the average intensity at a
point P(r) is given by

I(r) ≡ Tr
←→
Γ (r, r; 0), (11)
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where Tr represents trace of a matrix. The degree of coherence can be shown to be given by
the formula (Karczewski, 1963)

γ(r1, r2, τ) ≡ Tr
←→
Γ (r1, r2, τ)√
I(r1)I(r2)

. (12)

2.2 Optical coherence in the space-frequency domain

The space-time formulation of the coherence theory, discussed in the previous section, is
quite natural, intuitive and often useful. However, as mentioned in the Introduction, there
are some problems in statistical optics which turn out to be almost impossible to solve by
the use of this formulation. For example, attempts to solve problems involving change
in coherence properties of light on propagation through various media, or the problems
involving scattering of partially coherent light, presents considerable difficulties in this
formulation. These types of problems can be much more conveniently addressed by the use
of a somewhat different formulation, known as the space-frequency formulation of coherence
theory (Wolf, 1981; 1982; 1986). This space-frequency formulation has led to discoveries
and understanding of some new physical phenomena, such as correlation-induced spectral
changes (Wolf, 1987) and changes in polarization properties of light on propagation (James,
1994). Recent studies have also revealed a great usefulness of this theory in connection with
determining the structure of objects by inverse scattering technique [see, for example, Refs.
(Lahiri et al., 2009; Wolf, 2009a; 2010a; 2011)]. In this section we will briefly present some basic
results in the theory of optical coherence in the space-frequency domain for scalar fields which
are statistically stationary, at least in the wide sense.

A stationary random function V(r; t) is not square integrable and, consequently, its Fourier
transform does not exist. However, for most statistically stationary optical fields, it is
reasonable to assume that the mutual coherence function Γ(r1, r2; τ) exists and is a square
integrable function of τ. One can then define a function W(r1, r2; ω) which together with
Γ(r1, r2; τ) form a Fourier transform pair, i.e.,

W(r1, r2; ω) =
1

2π

∫ ∞

−∞
Γ(r1, r2; τ)eiωτ dτ, (13a)

Γ(r1, r2; τ) =
∫ ∞

0
W(r1, r2; ω)e−iωτ dω, (13b)

where ω denotes the frequency. The quantity W(r1, r2; ω) is called the cross-spectral density
function (to be abbreviated by CSDF) of the field. It can be shown that CSDF is also a
correlation function, i.e., that it can be represented in the form

W(r1, r2; ω) = �U∗(r1; ω)U(r2; ω)�ω , (14)

where U(r; ω) is a typical member of a suitably constructed ensemble of monochromatic
realizations7, all of frequency ω ((Wolf, 2007b), Sec. 4.1). In the special case, when the two
points r1 and r2 coincide, it follows from generalized Wiener-Khinchin theorem (see, for
example, (Mandel & Wolf, 1995), sec. 2.4.4) that the CSDF represents the spectral density

7 It is important to note that U(r; ω) is not the Fourier transform of the field V(r; t).
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S(r, ω) of the field, i.e., that
S(r, ω) = W(r, r; ω). (15)

The spectral density S(r, ω) is a physically meaningful quantity which represents the average
intensity at a particular frequency.

The CSDF is the key quantity in the second-order coherence theory in space-frequency
domain. As Eq. (15) shows, one can obtain the spectral density directly from it by taking
the two spatial arguments to be equal. The spectral coherence properties of scalar fields are
also completely described by the CSDF. To see that let us consider, once again, an Young’s
interference experiment (Fig. 1), but now we consider the fringe pattern produced by each
frequency component present in the spectrum of the light. This situation can be realized
by imagining that the incident light is filtered around the frequency ω before reaching the
pinholes. The distribution of the spectral density S(r; ω) on the screen B is given by the
expression [(Wolf, 2007b), Sec. 4.2]

S(r; ω) = S(1)(r; ω) {1 + |μ(r1, r2; ω)| cos [β(r1, r2; ω)− δ]} . (16)

Here S(1)(r; ω) is the contribution of light reaching at P(r) from either of the two pinholes,
δ = ω(R2 − R1)/c, and β(r1, r2; ω) is the phase of the so-called spectral degree of coherence
μ(r1, r2; ω) which is given by the expression ((Wolf, 2007b), Sec. 4.2)

μ(r1, r2; ω) ≡ W(r1, r2; ω)√
S(r1, ω)

√
S(r2, ω)

. (17)

The formula (16) is known as the spectral intensity law. By analogy with the space-time
formulation, one can readily show that |μ(r1, r2; ω)| is equal to the fringe visibility associated
with the frequency component ω, in the experiment sketched out in Fig. 1. It should be
noted that in this case, unlike in the case of the space-time formulation, the fringe visibility is
constant over the screen B. It can be shown that [(Mandel & Wolf, 1995), Sec. 4.3.2]

0 ≤ |μ(r1, r2; ω)| ≤ 1. (18)

When |μ(r1, r2; ω)| = 1, the field at the two points Q1(r1) and Q2(r2) is said to be spectrally
completely coherent at the frequency ω. If μ(r1, r2; ω) = 0, the field is said to be spectrally
completely incoherent at the two points, at that frequency. In the intermediate case, it is said
to be spectrally partially coherent at frequency ω. Like the mutual coherence function, the
cross-spectral density function also obey certain propagation laws [see, for example, (Mandel
& Wolf, 1995), Sec. 4.4.1].

The theory can also be generalized to the vector fields. For an optical beam propagating along
positive direction of z axis, one can define a 2 × 2 matrix, known as the cross-spectral density
matrix (CSDM), which is the Fourier transform of mutual coherence matrix [(Wolf, 2007b),
Chapter 9, Eqs. (1) and (2)]:

←→
W (r1, r2; ω) ≡ 1

2π

∫ ∞

−∞

←→
Γ (r1, r2; τ) exp[iωτ] dτ. (19)

As was in the scalar case, it can be shown that each element of the CSDM is a correlation
function [see, (Wolf, 2007b), Chapter 9]. In this case, the spectral density S(r, ω) is given by
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the expression [(Wolf, 2007b), Sec. 9.2, Eq. (2)]

S(r, ω) = Tr
←→
W (r, r; ω), (20)

and the spectral degree of coherence is given by the expression [(Wolf, 2007b), Sec. 9.2, Eq.
(8)]

μ(r1, r2; ω) =
Tr

←→
W (r1, r2; ω)√

S(r1; ω)
√

S(r2; ω)
. (21)

The relationship between coherence properties of light in the space-time and in the
space-frequency domains have been subject of interest [for details see, for example, (Friberg
& Wolf, 1995; Lahiri & Wolf, 2010a;d; Wolf, 1983)].

2.3 Polarization properties of stochastic beams in the space-time domain

In this section, we will briefly discuss some basic results in the matrix theory of polarization
of electromagnetic beams, following the work of Wolf. For detailed discussions on this topic
see any standard textbook, for example, (Born & Wolf, 1999; Brosseau, 1995; Collett, 1993;
Mandel & Wolf, 1995). Let us consider a statistically stationary light beam characterized
by a randomly fluctuating electric field vector E(r, t). Without any loss of generality, we
assume that the beam propagation direction is along positive z axis. Therefore, E(r, t) may
be represented by the two mutually orthogonal random components Ex(r, t) and Ey(r, t).
Suppose that these components are represented by the ensembles of realizations {Ex(r, t)}
and

{
Ey(r, t)

}
, respectively. One can construct a 2× 2 correlation matrix, known as coherency

matrix (Wiener, 1927), which is given by [see, for example, (Mandel & Wolf, 1995), Sec. 6.2,
Eq. 6.2-6]

←→
J (r) ≡ ←→

Γ (r, r; 0) ≡
[〈

E∗
i (r; t)Ej(r, t)

〉]
, i = x, y, j = x, y. (22)

The elements of this matrix are equal-time correlation functions; consequently for statistically
stationary fields they are time independent. This matrix contains all information about
polarization properties of a stationary stochastic light beam at a point. Each element of
this matrix can be determined from a canonical experiment, which involves passing the
beam thought a compensator plate and polarizer, and then measuring the intensities for
different values of the polarizer angle and of different values time delays introduced by the
compensator plate among the components of electric field (Born & Wolf, 1999). A similar
experiment will be discussed in detail in section 7. The Stokes parameters can be expressed
in terms of the elements of a coherency matrix [see, for example, (Born & Wolf, 1999), section
10.9.3].

2.3.1 Unpolarized light beam

It can be shown that if a light beam is unpolarized at a point P(r), then at that point the
coherency matrix is proportional to a unit matrix, i.e., it has the form ((Mandel & Wolf, 1995),
Sec. 6.3.1)

←→
J (u)(r) = A (r)

(
1 0
0 1

)
. (23)
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It implies that in this case x and y components of the electric field are completely uncorrelated
[Jxy(r) = Jyx(r) = 0], and intensities of x and y components of the field are equal [Jxx(r) =
Jyy(r) ≡ A (r)]. It immediately follows that in this case the normalized correlation function

jxy(r) ≡ Jxy(r)/
√

Jxx(r)Jyy(r) = 0 (24)

2.3.2 Polarized light beam

In the other extreme case when |jxy(r)| = 1, one can readily show that the elements of the
coherency matrix factorize in the form

J(p)ij (r) = E∗
i (r)Ej(r), (i = x, y; j = x, y), (25)

where Ei(r) is a time-independent deterministic function of position. This coherency matrix
is identical with that of a monochromatic field which is given by the expression

E(r; t) = Ei(r)e−iωt. (26)

In analogy with monochromatic beams, completely polarized beams are traditionally defined
by the the coherency matrices which can be expressed in the form (25). However, a polarized
light beam must not be confused with a monochromatic light beam. Recently, the distinction
between the two has been clearly pointed out (Lahiri & Wolf, 2009; 2010a).

2.3.3 Partially polarized light beam

Any optical beam, which is neither unpolarized, nor polarized, is said to be partially
polarized. Evidently, any coherency matrix which cannot be expressed in the form (23), or
in the form (25) represents a partially polarized beam. However, it is remarkable that any
such coherency matrix, can always be uniquely decomposed into the sum of two matrices
representing a polarized beam and an unpolarized beam (Wolf, 1959) (see also, (Mandel &
Wolf, 1995), Sec. 6.3.3), i.e., that

←→
J (r) =

←→
J (u)(r) +

←→
J (p)(r). (27)

consequently, the average intensity [I(r) ≡ Tr
←→

J (r)] of any light beam, at a point, has
contributions from a completely polarized and a completely unpolarized beam. The degree
of polarization at a point P(r) is defined as the ratio of the average intensity of the polarized
part to the total average intensity at that point (Wolf, 1959). One can show that it is given by
the expression (Wolf, 1959) (see also, Ref. (Born & Wolf, 1999), Sec. 10.9.2, Eq. (52))

P(r) ≡ I(p)(r)
I(r)

=

√√√√1 − 4 Det
←→

J (r)

[Tr
←→

J (r)]2
, (28)

where Det denotes the determinant and Tr denotes the trace. One can show that the degree of
polarization is always bounded between zero and unity:

0 ≤ P(r) ≤ 1. (29)
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If the degree of polarization is unity at a point r, then the beam is said to be completely polarized
at that point and if it has zero value, the light is said to be completely unpolarized at that point.

2.4 Polarization properties of stochastic beams in the space-frequency domain

As was in the case of coherence, polarization properties of light can also be analyzed in the
space-frequency domain. Such a theory has certain advantages, because it makes it easier to
study the change in polarization properties of light on propagation and scattering. The theory
involves analyzing polarization properties of light at each frequency present in its spectrum.
It is similar to the theory in the space-time domain, except that the coherency matrix

←→
J (r) is

replaced by equal-point CSDM
←→
W (r, r; ω). In this case the spectral degree of polarization is

given by the expression ((Wolf, 2007b), Sec. 9.2, Eq. (14))

P(r; ω) ≡
√√√√1 − 4 Det

←→
W (r, r; ω)

[Tr
←→
W (r, r; ω)]2

. (30)

The relationship between space-time and space-frequency description of polarization
properties of light are being investigated recently [for details see, for example, (Lahiri, 2009;
Lahiri & Wolf, 2010a; Setälä et al., 2009)].

2.5 Unified theory of coherence and polarization

For many years coherence and polarization properties of light have been considered as
independent subjects. However, the matrix formulation, especially in the space-frequency
domain, shows that they are intimately related. This fact was firmly established by the
introduction of unified theory of coherence and polarization (Wolf, 2003b). According to the
unified theory, both the coherence and polarization properties of a stochastic electromagnetic
beam, can be described in terms of the 2 × 2 cross-spectral density matrix (CSDM)←→
W (r1, r2; ω). The spectral density, spectral degree of coherence, and the spectral degree of
polarization are described by Eqs. (20), (21), and (30) respectively.

Elements of the CSDM obey definite propagation laws [see, for example, (Wolf, 2007b), Sec.
9.4.1, Eq. (3)]. If the CSDM is specified at all pairs of points at any cross-sectional plane of a
beam, then it is possible to determine the CSDM at all pairs of points on any other cross-section
of that beam, both in free space and in a medium. Therefore, it is possible to study the changes
in spectral, coherence and polarization properties of a beam on propagation.

3. Optics in terms of observable quantities

At this point, we would like to emphasize that every optical phenomenon, which will be
addressed in this chapter, will be illustrated and interpreted in terms of observable quantities.
Formulating optical physics in terms of observable quantities is due to valuable work of Emil
Wolf (Wolf, 1954). His effort was highly appreciated by Danis Gabor in a lecture on “Light
and Information” (Gabor, 1955), as he mentioned “perhaps the most satisfactory feature of
the theory is that it operates entirely with quantities which are in principle observable, in line
with the valuable efforts of E. Wolf to rid optics of its metaphysical residues.”
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The analysis of coherence and polarization properties of light are based on the theory of
electromagnetic fields. However, one must note that even today, one is not able to “directly”
detect such a field at an optical frequency, or at a higher frequency. Any optical phenomenon
that one observes in a laboratory, or in nature, is the result of generation of electric currents
in detectors. Such currents originate from the so-called destruction of photons by light-matter
interactions. An example of commonly available sophisticated optical detectors is a human
eye. Another example of an optical detector is an EM-CCD camera, which is often used in
today’s laboratories. From the measurement of current in a detector one may predict the
so-called photon detection rate, or intensity of light.

In section 2, we interpreted spatial coherence properties of light in terms of correlation
between classical electric field at a pair of points. However, since electric field in an
optical frequency is not observable, one must not be too much carried away with such an
interpretation. It must be kept in mind that coherence is the ability of light to interfere and
a physical measure of coherence is the visibility of fringes in an interference experiment,
not a correlation function. On the other hand, polarization properties of light beams were
interpreted as correlation between electric field components at a particular point. However,
the physical phenomenon which leads to such a mathematical formulation is the modulation
of intensity of the beam, as it is passed through polarization controlling devices, such as
polarizers, compensator plates etc.

4. Quantum theory of optical fields

We begin by recalling some basic properties of quantized electromagnetic fields (Dirac, 1957).
A quantized electric field may be represented by a Hermitian operator (Mandel & Wolf, 1995)

Ê(r, t) = i ∑
k

∑
s

(
1
2

h̄ω

) 1
2 [

âk,sCk,s���k,sei(k·r−ωt) − â†
k,sC∗

k,s���
∗
k,se−i(k·r−ωt)

]
, (31)

where the wave vectors k labels plane wave modes, |k| = k = ω/c, c is the speed of light in
free space, Ck,s is a constant, and ���k,s (s = 1, 2), are mutually orthonormal base vectors, which
obey the conditions8

k · ���k,s = 0, ���∗k,s · ���k,s� = δss� , ���k,1 × ���k,2 = k/k. (32)

In the expansion (31), âk,s and â†
k,s are the photon annihilation and the photon creation

operators respectively, for the mode labeled by (k, s). These operators obey the well known
commutation relations [see, for example, (Mandel & Wolf, 1995), Sec. 10.3]

[
âk,s, â†

k� ,s�
]
= δ3

kk�δss� ,
[
âk,s, âk� ,s�

]
= 0, (33)[

â†
k,s, â†

k� ,s�
]
= 0,

8 The unit base vectors ���k1, ���k2 may be chosen to be complex for general expansion of the field into two
orthogonal polarization components, for example, in connection with elliptic polarization.
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where δij is the Kronecker symbol. As evident from Eq. (31), the electric field operators
consists of a positive frequency part9

Ê(+)(r, t) = i ∑
k

∑
s

(
1
2

h̄ω

) 1
2

âk,sCk,s���k,sei(k·r−ωt), (34)

and a negative frequency part Ê(−)(r, t), which is the Hermitian adjoint of the positive
frequency part. The expansion (31) represents the field in discrete modes. Such a
representation is appropriate, for example, when treating an electric field in a cavity. In more
general situations, a continuous mode representation may be more appropriate [for discussion
on such representation see (Mandel & Wolf, 1995), Sec. 10.10].

The state of the field is described by a state vector |i� in the Fock space, or, more generally, by a
density operator ρ̂ = {�i| |i�}average, where the average is taken over an appropriate ensemble.

The expectation value
〈

Ô
〉

of any operator Ô is given by the well known expression

〈
Ô
〉
= Tr

{
ρ̂ Ô

}
, (35)

where Tr denotes the trace. An informative description of how the measurable quantities
may be interpreted in terms of quantized field and density operators, was given by Glauber
(Glauber, 1963). In the following section, we will briefly go over some basic concepts from the
Glauber’s interpretation of quantum theory of optical coherence.

5. Summary of some basic results of the quantum theory of optical coherence in
the space-time domain

In the quantum-mechanical interpretation, a photon can be detected only by destroying
it. The photo-detector is assumed to be ideal in the sense that it is of negligible size and
has a frequency-independent photo absorbtion probability. Let us now consider absorption
(detection) of a photon by an ideal detector at a space-time point (r; t). Suppose that due to
this absorption the field goes from the initial state |i� to a final state | f �. The probability of

the detector for absorbing a photon in final state | f � is
∣∣∣� f | Ê(+)(r; t) |i�

∣∣∣2. The counting rate
in the detector is obtained by summing over all the final states which can be reached from |i�,
by absorption of a photon. One can extend the summation over a complete set of final states,
since the states which cannot be reached in this process will not contribute to the result [for
details see (Glauber, 2007)]. The counting rate of the detector then becomes proportional to

∑
f

∣∣∣� f | Ê(+)(r; t) |i�
∣∣∣2 = �i| Ê(−)(r; t) · Ê(+)(r; t) |i� . (36)

9 The classical analogue of the positive frequency part of electric field operator is the so-called complex
analytic signal of a real electric field, introduced by Gabor (Gabor, 1946). For a discussion of the physical
interpretation of the positive and negative frequency parts of the quantized electric field operator see
(Glauber, 1963).
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If one considers the random fluctuations associated with light, one leads to a more general
expression involving the density operator. The average counting rate of a photo-detector
placed at a position r at time t then becomes proportional to [c.f (Glauber, 1963), Eq. (3.3)]

R(r, t) ≡ Tr
{

ρ̂ Ê(−)(r, t) · Ê(+)(r, t)
}

. (37)

Here the dot (·) denotes scalar product.

Using similar arguments, one can obtain quantum-mechanical analogues of all correlation
functions (such as mutual coherence function etc.) used in the classical theory. The first-order
correlation properties (corresponds to second-order properties in the classical theory) of the
field may be specified by a 3 × 3 correlation matrix (Glauber, 1963)

←→
G (1)(r, t; r�, t�) ≡

[
G(1)

μν (r, t; r�, t�)
]

≡
[
Tr

{
ρ̂ Ê(−)

μ (r, t)Ê(+)
ν (r�, t�)

}]
, (38)

where μ, ν label, mutually orthogonal components of the electric field operator. For the
sake of simplicity, let us neglect the polarization properties of the light, restricting our

analysis to scalar fields. Hence, with a suitable choice of axes, only one element G(1)
μμ (r, t; r�, t�)

[no summation over repeated indices] of
←→
G (1)(r, t; r�, t�) will completely characterize all

first-order correlation properties of the field in the space-time domain. We omit the suffix
μ and write

G(1)(r, t; r�, t�) = Tr
{

ρ̂ Ê(−)(r; t)Ê(+)(r�; t�)
}

. (39)

The simplest coherence properties of light, in the space-time domain, are characterized by the
first-order correlation function

←→
G (1)(r, t; r�, t�). In terms of it one can define the first-order

degree of coherence by the formula [(Glauber, 1963), Eq. (4)]

g(1)(r, t; r�, t�) ≡ G(1)(r, t; r�, t�)√
G(1)(r; t; r; t)

√
G(1)(r�; t�; r�; t�)

. (40)

The modulus of g(1)(r, t; r�, t�) may be shown to be bounded by zero and unity [(Glauber,
1963), Eq. (4.2)], i.e.,

0 ≤ |g(1)(r, t; r�, t�)| ≤ 1. (41)

It can be shown that this quantity is related to fringe visibility in interference experiments [see,
for example, (Glauber, 2007), Sec. 2.7.2]. Complete first-order coherence (corresponding to
second-order coherence in classical theory) is characterized by the condition |g(1)(r, t; r�, t�)| =
1, and complete first-order incoherence by the other extreme, g(1)(r, t; r�, t�) = 0. Equations
(8), and (40) may look similar, but one must appreciate the fact that the quantum mechanical
interpretation is much more effective as one goes to a low-intensity domain, where absorption
or emission of one, or, few numbers of photons may affect the experimental observations.

Detailed descriptions on this topic have been discussed in many scholarly articles [see, for
example, (Glauber, 1963; 2007; Mandel & Wolf, 1995)].
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R(r, t) ≡ Tr
{

ρ̂ Ê(−)(r, t) · Ê(+)(r, t)
}

. (37)

Here the dot (·) denotes scalar product.

Using similar arguments, one can obtain quantum-mechanical analogues of all correlation
functions (such as mutual coherence function etc.) used in the classical theory. The first-order
correlation properties (corresponds to second-order properties in the classical theory) of the
field may be specified by a 3 × 3 correlation matrix (Glauber, 1963)

←→
G (1)(r, t; r�, t�) ≡

[
G(1)

μν (r, t; r�, t�)
]

≡
[
Tr

{
ρ̂ Ê(−)

μ (r, t)Ê(+)
ν (r�, t�)

}]
, (38)

where μ, ν label, mutually orthogonal components of the electric field operator. For the
sake of simplicity, let us neglect the polarization properties of the light, restricting our

analysis to scalar fields. Hence, with a suitable choice of axes, only one element G(1)
μμ (r, t; r�, t�)

[no summation over repeated indices] of
←→
G (1)(r, t; r�, t�) will completely characterize all

first-order correlation properties of the field in the space-time domain. We omit the suffix
μ and write

G(1)(r, t; r�, t�) = Tr
{

ρ̂ Ê(−)(r; t)Ê(+)(r�; t�)
}

. (39)

The simplest coherence properties of light, in the space-time domain, are characterized by the
first-order correlation function

←→
G (1)(r, t; r�, t�). In terms of it one can define the first-order

degree of coherence by the formula [(Glauber, 1963), Eq. (4)]

g(1)(r, t; r�, t�) ≡ G(1)(r, t; r�, t�)√
G(1)(r; t; r; t)

√
G(1)(r�; t�; r�; t�)

. (40)

The modulus of g(1)(r, t; r�, t�) may be shown to be bounded by zero and unity [(Glauber,
1963), Eq. (4.2)], i.e.,

0 ≤ |g(1)(r, t; r�, t�)| ≤ 1. (41)

It can be shown that this quantity is related to fringe visibility in interference experiments [see,
for example, (Glauber, 2007), Sec. 2.7.2]. Complete first-order coherence (corresponding to
second-order coherence in classical theory) is characterized by the condition |g(1)(r, t; r�, t�)| =
1, and complete first-order incoherence by the other extreme, g(1)(r, t; r�, t�) = 0. Equations
(8), and (40) may look similar, but one must appreciate the fact that the quantum mechanical
interpretation is much more effective as one goes to a low-intensity domain, where absorption
or emission of one, or, few numbers of photons may affect the experimental observations.

Detailed descriptions on this topic have been discussed in many scholarly articles [see, for
example, (Glauber, 1963; 2007; Mandel & Wolf, 1995)].
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6. Quantum theory of optical coherence in space-frequency domain

In this section we present a quantum-mechanical theory of first-order optical coherence for
statistically non-stationary light in the space-frequency domain. We discuss some relevant
correlation functions, associated with the quantized field and the density operator, which can
be introduced in the space-frequency representation. We also show, by use of the technique of
linear filtering, that these new correlation functions may be related to the photo-counting rate
and to well known coherence-functions of space-time domain. We consider non-stationary
light10, because the assumption of statistical stationarity is not always appropriate, especially
in many situations encountered in quantum optics where light emission may take place over
a finite time-interval. A detailed description of the main material presented in this section has
been recently published (Lahiri & Wolf, 2010c).

6.1 Correlation functions in the space-frequency domain

Let us first note some properties of the operator ê(r, ω), which is the Fourier transform of
Ê(r; t), i.e., which is given by

ê(r, ω) =
1

2π

∫ ∞

−∞
Ê(r; t)eiωt dt. (42)

Using the fact that Ê(r; t) = Ê(+)(r; t) + Ê(−)(r; t), one may express ê(r, ω) in the form

ê(r, ω) = ê(+)(r, ω) + ê(−)(r, ω), (43)

where

ê(+)(r, ω) =
1

2π

∫ ∞

−∞
Ê(+)(r; t)eiωt dt, (44a)

ê(−)(r, ω) =
1

2π

∫ ∞

−∞
Ê(−)(r; t)eiωt dt. (44b)

Using the property
{

Ê(+)(r; t)
}†

= Ê(−)(r; t), it follows from Eqs. (44) that
{

ê(+)(r, ω)
}†

=

ê(−)(r,−ω).

Let us now consider the following 3 × 3 correlation matrix

←→
W (1)(r, ω; r�, ω�) ≡

[
W

(1)
μν (r, ω; r�, ω�)

]
≡ Tr

{
ρ̂ ê(−)

μ (r,−ω)ê(+)
ν (r�, ω�)

}
. (45)

On using Eqs. (44) and (45), one can readily show that the elements of the correlation matrices←→
G (1)(r, t; r�, t�) and

←→
W (1)(r, ω; r�, ω�) are Fourier transforms of each other, i.e., that

W
(1)

μν (r, ω; r�, ω�) =
(

1
2π

)2 ∞�

−∞

G(1)
μν (r, t; r�, t�)ei(−ωt+ω�t�) dt dt�, (46a)

G(1)
μν (r, t; r�, t�) =

∞�

0

W
(1)

μν (r, ω; r�, ω�)ei(ωt−ω�t�) dω dω�. (46b)

10 Attempts to formulate coherence theory for classical non-stationary fields have been made (Bertolotti
et al., 1995; Sereda et al., 1998).
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We will restrict our analysis to scalar fields. Therefore, the 3 × 3 correlation matrix←→
W (1)(r, ω; r�, ω�) may now be replaced by the correlation function

W (1)(r, ω; r�, ω�) = Tr
{

ρ̂ ê(−)(r,−ω)ê(+)(r�, ω�)
}

, (47)

which, in analogy with the relations (46), is the Fourier transform of G(1)(r, t; r�, t�); viz,

W (1)(r, ω; r�, ω�) =
(

1
2π

)2 ∞�

−∞

G(1)(r, t; r�, t�)ei(−ωt+ω�t�) dt dt�, (48a)

G(1)(r, t; r�, t�) =
∞�

0

W (1)(r, ω; r�, ω�)ei(ωt−ω�t�) dω dω�. (48b)

We will refer to W (1)(r, ω; r�, ω�) as the two-frequency cross-spectral density function (to
be abbreviated by two-frequency CSDF) and the single-frequency correlation function
W (1)(r, ω; r�, ω) as the cross-spectral density function (CSDF) of the field, in analogy with
terminology used in the classical theory.

6.2 Physical interpretation of correlation functions in the space-frequency domain

Let us now assume that a light beam is transmitted by a linear filter which allows only a
narrow frequency band to pass through it. Suppose that the light, emerging from the filter,
has mean frequency ω̄ and effective bandwidth Δω � ω̄. The field operators representing
this filtered narrow-band light in the space-frequency domain, may then be represented by
the formulas

ê(+)
(ω̄)

(r, ω) = T(ω̄)(ω)ê(+)(r, ω), (49a)

ê(−)
(ω̄)

(r,−ω) = T∗
(ω̄)(ω)ê(−)(r,−ω), (49b)

where T(ω̄)(ω) is the transmission function of the filter, whose modulus is negligible outside
the pass-band ω̄ − Δω/2 ≤ ω ≤ ω̄ + Δω/2 of the filter. Using Eqs. (47) and (49), it follows
that for the filtered light,

W
(1)
(ω̄)

(r, ω; r�, ω�) = T∗
(ω̄)(ω)T(ω̄)(ω

�)W (1)(r, ω; r�, ω�). (50)

Here, the function W
(1)
(ω̄)

(r, ω; r�, ω�) is the two-frequency CSDF of the filtered light, of mean

frequency ω̄, and W (1)(r, ω; r�, ω�) on the right hand side is the two-frequency CSDF of the
unfiltered light incident on the filter.

From Eqs. (48b) and (50), one readily finds that the space-time correlation function

G(1)
(ω̄)

(r; t; r�; t�) of the filtered narrow-band light is given by the expression

G(1)
(ω̄)

(r; t; r�; t�) =
ω̄+Δω/2�

ω̄−Δω/2

T∗
(ω̄)(ω)T(ω̄)(ω

�)W (1)(r, ω; r�, ω�)ei(ωt−ω�t�) dω dω�. (51)

92 Advances in Quantum Theory



16 Will-be-set-by-IN-TECH

We will restrict our analysis to scalar fields. Therefore, the 3 × 3 correlation matrix←→
W (1)(r, ω; r�, ω�) may now be replaced by the correlation function

W (1)(r, ω; r�, ω�) = Tr
{
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ê(−)
(ω̄)

(r,−ω) = T∗
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Because of the assumption that Δω/ω̄ � 1, the function W (1)(r, ω; r�, ω�) in Eq. (51) does not
change appreciably as function of ω and ω� over the ranges ω̄ − Δω/2 ≤ ω ≤ ω̄ + Δω/2,
ω̄ − Δω/2 ≤ ω� ≤ ω̄ + Δω/2 and is approximately equal to W (1)(r, ω̄; r�, ω̄). From Eq. (51) it
then follows that

G(1)
(ω̄)

(r; t; r�; t�) ≈ W (1)(r, ω̄; r�, ω̄)
ω̄+Δω/2�

ω̄−Δω/2

T∗
(ω̄)(ω)T(ω̄)(ω

�)ei(ωt−ω�t�) dω dω�. (52)

6.3 Physical significance of W (1)(r, ω; r, ω)

Let us consider light generated by some physical process which begins at time t = 0 and ceases
at time t = T , say; for example light emitted by a collection of exited atoms. Clearly, such
light is not statistically stationary. Suppose now that this light is filtered and is then incident
on a photo-detector. It follows from Eq. (52) that the average counting rate R(ω̄)(r; t) ≡
G(1)
(ω̄)

(r; t; r; t) of the detector placed at a point r, at time t, is given by the expression

R(ω̄)(r; t) ≈ W (1)(r, ω̄; r, ω̄)
ω̄+Δω/2�

ω̄−Δω/2

T∗
(ω̄)(ω)T(ω̄)(ω

�)ei(ω−ω�)t dω dω�. (53)

Since, R(ω̄)(r; t) = 0, unless 0 < t < T , the total energy E (r; ω̄) detected (total counts) by the
photo-detector will be proportional to

E (r; ω̄) ≡
∫ T

0
R(ω̄)(r; t) dt =

∫ ∞

−∞
R(ω̄)(r; t) dt

≈ W (1)(r, ω̄; r, ω̄)

{
2π

∫ ω̄+Δω/2

ω̄−Δω/2

∣∣∣T(ω̄)(ω)
∣∣∣2 dω

}
(54)

Thus, we may conclude that the total energy E (r; ω) detected by the photo-detector, placed
at a point r in the path of a narrow-band light beam of mean frequency ω, is proportional to
W (1)(r, ω; r, ω), i.e., that

E (r; ω) ≡
∫ T

0
R(ω̄)(r; t) dt ∝ W (1)(r, ω; r, ω), (55)

the proportionality constant being dependent on the filter and on the choice of units. In other
words, the correlation function W (1)(r, ω; r, ω) provides a measure of the energy density, at a
point r, associated with the frequency ω of light. It is evident that W (1)(r, ω; r, ω) ≥ 0.

W (1)(r, ω; r, ω) must not be confused with the well-known Wiener’s spectral density (Wiener,
1930) of statistically stationary light. In the quantum mechanical interpretation, Wiener’s
spectral density is equivalent to the counting rate of the photo-detector, associated with a
frequency. On the other hand, the quantity W (1)(r, ω; r, ω) represents the total counts in the
photo-detector associated with the frequency ω. Therefore, W (1)(r, ω; r, ω) has a different
dimension than Wiener’s spectral density. Even in the stationary limit, W (1)(r, ω; r, ω) does
not reduce to the Wiener’s spectral density. In fact, in such a case, the energy density E (r; ω)
will be infinitely large and hence, in that limit, the quantity W (1)(r, ω; r, ω) will not be useful.
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For a light that is not statistically stationary, defining spectral density is a nontrivial problem
which is still a subject of an active discussion. Many publications have been dedicated to it
and several different definitions have been proposed [see, for example, (Eberly & Wódkievicz,
1977; Lampard, 1954; Mark, 1970; Page, 1952; Ponomarenko et al., 2004; Silverman, 1957)].
Nevertheless, for statistically non-stationary processes, W (1)(r, ω; r, ω) is measurable and a
physically meaningful quantity. In the following sections we show that it has an important
role in defining the spectral-degree of coherence of non-stationary light.

6.4 First-order coherence

We will now consider the first-order coherence properties of non-stationary light, again
restricting ourselves to scalar fields. As in the previous Section, we will consider a filtered
narrow-band light. On using Eqs. (40) and (52), one then has

g(1)
(ω̄)

(r, t; r�, t�) ≈ W (1)(r, ω̄; r�, ω̄)√
W (1)(r, ω̄; r, ω̄)

√
W (1)(r�, ω̄; r�, ω̄)

Θ(t, t�), (56)

where

Θ(t, t�) =

� ω̄+Δω/2
ω̄−Δω/2 T∗

(ω̄)(ω)T(ω̄)(ω
�)ei(ωt−ω�t�) dω dω�

∣∣∣∫ ω̄+Δω/2
ω̄−Δω/2 T(ω̄)(ω)e−iωt dω

∣∣∣
∣∣∣∫ ω̄+Δω/2

ω̄−Δω/2 T(ω̄)(ω)e−iωt� dω
∣∣∣
. (57)

Since, the numerator on the right hand side of Eq. (57) factorizes into a product of the two
integrals which appear in the denominator, it is evident that

|Θ(t, t�)| = 1, (58)

for all values of t and t�. From Eqs. (56) and (58), one readily finds that the modulus of
the first-order “space-time” degree of coherence of the filtered narrow-band light of mean
frequency ω̄, is given by the formula

∣∣∣g(1)(ω̄)
(r, t; r�, t�)

∣∣∣ ≈
∣∣∣∣∣∣

W (1)(r, ω̄; r�, ω̄)√
W (1)(r, ω̄; r, ω̄)

√
W (1)(r�, ω̄; r�, ω̄)

∣∣∣∣∣∣
. (59)

The expression within the modulus signs on the right-hand side is the normalized CSDF at
the frequency ω̄.

It may be concluded from Eq. (59) that this normalized CSDF provides a measure of first-order
coherence of the filtered light of mean frequency ω̄. Consequently, one may define the
first-order spectral degree of coherence at frequency ω by the formula

η(1)(r, ω; r�, ω) ≡ W (1)(r, ω; r�, ω)√
W (1)(r, ω; r, ω)

√
W (1)(r�, ω; r�, ω)

. (60)

It can be immediately shown that (Lahiri & Wolf, 2010c)

0 ≤ |η(1)(r, ω; r�, ω)| ≤ 1. (61)
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When |η(1)(r, ω; r�, ω)| = 1, the light may be said to be completely coherent at the frequency ω,
and when η(1)(r, ω; r�, ω) = 0, it may be said to be completely incoherent at that frequency. We
stress, once again, that W (1)(r, ω; r�, ω) and η(1)(r, ω; r�, ω) being single-frequency quantities,
provide measures of the ability of a particular frequency-component of the light to interfere.

We will now return to the two-frequency correlation function W (1)(r, ω; r�, ω�) given by
formula (47). It characterizes correlations between different frequency components of light,
i.e., the ability of two different frequency components to interfere. Interference of fields of
different frequencies has generally not been considered in the literature, probably because
it is not a commonly observed phenomenon. According to the classical theory, different
frequency components of statistically stationary light do not interfere (see, for example, (Wolf,
2007b), Sec. 2.5). For the sake of completeness, we will now show that this fact is also true
in the non-classical domain. The proof is similar to that for classical fields. If one considers
light whose fluctuations are statistically stationary in the wide sense, i.e., if G(1)(r, t; r�, t�) =
G(1)(r, r�; t� − t) then, ignoring some mathematical subtleties, one finds from Eq. (48a) that the
two-frequency CSDF W (1)(r, ω; r�, ω�) has the form

W (1)(r, ω; r�, ω�) = f [r, r�; (ω + ω�)/2]δ(ω − ω�), (62)

where f is, in general, a complex function of its arguments and δ denotes the Dirac delta
function. This formula shows that when ω �= ω�, the two-frequency CSDF W (1)(r, ω; r�, ω�) =
0, implying that different frequency components of statistically stationary light do not
interfere. However, for non-stationary random processes, this correlation function may have
a non-zero value and, consequently, interference among different frequency components may
take place. One may define a normalized two-frequency correlation function

η(1)(r, ω; r�, ω�) = W (1)(r, ω; r�, ω�)√
W (1)(r, ω; r, ω)W (1)(r�, ω�; r�, ω�)

(63)

as a generalized first-order spectral degree of coherence for a pair of frequencies ω and ω�. It
can also be shown that (Lahiri & Wolf, 2010c)

0 ≤ |η(1)(r, ω; r�, ω�)| ≤ 1. (64)

The extreme value |η(1)(r, ω; r�, ω�)| = 1, which corresponds to maximum possible
fringe visibility observed in interference experiments, represents complete coherence in the
space-frequency domain. The other extreme value, η(1)(r, ω; r�, ω�) = 0, implies that no
interference fringes will be present, i.e that there is complete incoherence between different
frequency components.

7. Polarization properties of optical beams

In this section we will discuss the polarization properties of light. As is clear from previous
discussions that a scalar treatment will no more be sufficient for his purpose, and we have
to consider the vector nature of the field. However, since, we will restrict our analysis to
beam-like optical fields, we will encounter 2 × 2 correlation matrices.
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We consider the canonical experiment depicted in Fig. 2. Suppose that a light beam,
propagating along the positive z axis, passes through a compensator, followed by a polarizer
(see Fig. 2). Light emerging from the polarizer is linearly polarized along some direction,

Fig. 2. Illustrating notation relating to the canonical polarization experiment.

which makes an angle θ, say, with the positive direction of a chosen x axis. We call θ the
polarizer angle. Effects of the compensator may be described by introducing phase delays αx
and αy in the x and the y components of the field operator Ê(+) respectively. Suppose now
that a photodetector is placed behind the polarizer (see Fig. 2), which detects photons that
emerge from the polarizer. From Eq. (37), it follows that the counting rate Rθ,α(r; t) in the
detector will be given by the formula

Rθ,α(r; t) = Tr
{

ρ̂ Ê(−)
θ,α (r; t)Ê(+)

θ,α (r; t)
}

, (65)

where
Ê(±)

θ,α = Ê(±)
x eiαx cos θ + Ê(±)

y eiαy sin θ. (66)

Using Eqs. (65) and (66), one readily finds that the average counting rate of the photo-detector
is given by the expression

Rθ,α(r; t) = G(1)
xx (r, t; r, t) cos2 θ + G(1)

yy (r, t; r, t) sin2 θ

+ 2
√

G(1)
xx (r, t; r, t)

√
G(1)

yy (r, t; r, t) sin θ cos θ|g(1)xy (r; t)| cos
[
βxy(r; t)− α

]
, (67)

where α = αy − αx and

g(1)xy (r; t) ≡ G(1)
xy (r, t; r, t)√

G(1)
xx (r, t; r, t)

√
G(1)

yy (r, t; r, t)
≡ |g(1)xy (r; t)|eiβxy(r;t). (68)

It is important to note that only the “equal-point” (r1 = r2 ≡ r) and “equal-time” (t1 = t2 ≡ t)
correlation matrix

←→
G (1)(r, t; r, t) contributes to the photon counting rate. We will refer to this

matrix as the quantum polarization matrix. Equation (67) makes it possible to determine the
elements of the quantum polarization matrix

←→
G (1)(r, t; r, t) in a similar way as is done for the

elements of the analogous correlation matrix for a classical field, introduced in Ref. (Wolf,
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We consider the canonical experiment depicted in Fig. 2. Suppose that a light beam,
propagating along the positive z axis, passes through a compensator, followed by a polarizer
(see Fig. 2). Light emerging from the polarizer is linearly polarized along some direction,

Fig. 2. Illustrating notation relating to the canonical polarization experiment.
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1959). One can readily show that

G(1)
xx (r, t; r, t) =R0,0(r; t), (69a)

G(1)
yy (r, t; r, t) =Rπ/2,0(r; t), (69b)

G(1)
xy (r, t; r, t) =

1
2
[
Rπ/4,0(r; t)−R3π/4,0(r; t)

]
+

i
2
[
Rπ/4,π/2(r; t)−R3π/4,π/2(r; t)

]
, (69c)

G(1)
yx (r, t; r, t) =

1
2
[
Rπ/4,0(r; t)−R3π/4,0(r; t)

]− i
2
[
Rπ/4,π/2(r; t)−R3π/4,π/2(r; t)

]
. (69d)

Let us now briefly examine some properties of the quantum polarization matrix←→
G (1)(r, t; r, t). Each element of this matrix, being a correlation function, has the properties

of a scalar product11. In particular, the elements of any such matrix satisfy the constraints

G(1)
μμ (r, t; r, t) ≥ 0, (70a)

G(1)
μν (r, t; r, t) =

{
G(1)

νμ (r, t; r, t)
}∗

, (70b)

Det
←→
G (1)(r, t; r, t) ≥ 0, (70c)

where μ = x, y; ν = x, y and Det denotes the determinant. Conditions (70a) and (70c) imply
that a quantum polarization matrix is always non-negative definite. Formula (70c) follows from
the Cauchy-Schwarz inequality. From Eqs. (68) and (70c), it follows that

0 ≤ |g(1)xy (r; t)| ≤ 1. (71)

7.1 Unpolarized light beam

We will now assume that an unpolarized photon-beam12 is used in the experiment depicted in
Fig. 2. For such a beam, the photon detection rate Rθ,α(r; t), has to be independent of θ and α
and consequently, one has from Eq. (67) that

g(1)xy (r; t) = 0, (72a)

and G(1)
xx (r, t; r, t) = G(1)

yy (r, t; r, t) ≡ A(r; t), say, (72b)

where A(r; t) is a real function of space and time and A(r; t) ≥ 0. From Eqs. (72) it is evident

that for an unpolarized beam, the quantum polarization matrix
←→
G (1)

(u)(r; t; r; t) is proportional
to a unit matrix, i.e., that

←→
G (1)

(u)(r; t; r; t) = A(r; t)
(

1 0
0 1

)
. (73)

11 The proof is similar to that given for scalar field operators (Titulaer & Glauber, 1965).
12 For discussion on unpolarized radiation see, for example, Refs. (Agarwal, 1971; Prakash et al., 1971)
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7.2 Polarized light beam

Let us now consider the other extreme case, namely when the beam is fully polarized13, i.e.,

when |g(1)xy (r; t)| = 1. In this case, it follows from Eq. (68) that the elements of
←→
G (1)

(p)(r; t; r; t)
can be expressed in the factorized form

{←→
G (1)

(p)(r; t; r; t)
}

μν
= E∗

μ (r; t)Eν(r; t), (μ = x, y; ν = x, y), (74)

where

Ex(r; t) =
√

G(1)
xx (r, t; r, t) exp [iφxx(r; t)] , (75a)

Ey(r; t) =
√

G(1)
yy (r, t; r, t) exp

[
iφyy(r; t)

]
. (75b)

Here φyy(r; t) − φxx(r; t) = βxy(r; t), where βxy(r; t) is the phase of g(1)xy (r; t), defined in

Eq. (68). The fact that the elements of
←→
G (1)

(p)(r; t; r; t) can be factorized, was also noted in
Ref. (Glauber, 1963). The condition (74) may readily shown to imply that for a completely
polarized light beam

Det
←→
G (1)

(p)(r; t; r; t) = 0. (76)

The converse of this statement is also true, i.e., if condition (76) holds at a point r, at time t,
one can readily show by use of properties (70a) and (70b) that |g(1)xy (r; t)| = 1; hence the light
is then completely polarized at that point at time t.

We will next establish a necessary and sufficient condition of complete polarization14. We
express it in the form of the following theorem:

Theorem 7.1. In order that a beam is completely polarized, it is necessary and sufficient that the
quantized field components and the density operator satisfy the condition

Ê(+)
x (r; t)ρ̂ = A(r; t)Ê(+)

y (r; t)ρ̂, (77a)

where A(r; t) =
G(1)

yx (r, t; r, t)

G(1)
yy (r, t; r, t)

, (77b)

Proof. To prove that Eq. (77) is a necessary condition, let us introduce the operator

M̂(r; t) = Ê(+)
x (r; t)− A(r; t)Ê(+)

y (r; t), (78)

where A(r; t) is given by Eq. (77b). On using Eqs. (77b) and (78), one readily finds that

Tr
{

ρ̂ M̂† M̂
}
=

Det
←→
G (1)(r, t; r, t)

G(1)
yy (r, t; r, t)

. (79)

13 For discussion on polarized radiation see Ref. (Mehta et al., 1974)
14 An analogous condition hold for complete first-order coherence in the space-time domain (Titulaer &

Glauber, 1965). In the classical limit, these conditions resembles the recently introduced concept of
statistical similarity (Roychowdhury & Wolf, 2005; Wolf, 2010b) for statistically stationary beams.
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If the field is completely polarized, Eqs. (76) and (79) imply that

Tr
{

ρ̂ M̂† M̂
}
= 0, (80)

and, consequently,
M̂ρ̂ = ρ̂M̂† = 0. (81)

Substituting for M̂ from Eq. (78) into Eq. (81), one readily find that condition (77) is satisfied.
Thus we have proved that Eq. (77) is a necessary condition for complete polarization of a light
beam at a point r, at time t.

On the other hand, if one imposes condition (77) on the components of the field operator and

evaluates Det
←→
G (1)

(p)(r; t; r; t), one readily obtains Eq. (76), i.e., one finds that if condition (77)
holds, the beam is completely polarized. Hence this condition is also a sufficiency condition.

7.3 Partially polarized light beam

We have discussed the properties of completely polarized and completely unpolarized beams.

Next we consider beams which are partially polarized, i.e., beams for which 0 < |g(1)xy (r; t)| <
1.

We will first establish the following result: If a beam of partially polarized photons is incident on a
photo-detector, the average counting rate of the detector, at any time t, can always be decomposed into
two parts, one which represents the counting rate for a polarized beam and the other the counting rate
for an unpolarized beam. It can be proved that any quantum polarization matrix

←→
G (1)(r, t; r, t)

can be uniquely decomposed in the form (Lahiri & Wolf, 2010b)

←→
G (1)(r, t; r, t) =

←→
G (1)

(p)(r; t; r; t) +
←→
G (1)

(u)(r; t; r; t), (82)

where the elements of
←→
G (1)

(p)(r; t; r; t) and
←→
G (1)

(u)(r; t; r; t) can be uniquely expressed in terms

of the elements of
←→
G (1)(r, t; r, t). From Eqs. (37) and (82), one can at once deduce that the

counting rate of the photo-detector has contribution from an unpolarized part and from a
polarized part; i.e., that

R(r, t) = Tr
←→
G (1)(r, t; r, t) = R(p)(r, t) +R(u)(r, t). (83)

By analogy with the classical theory of stochastic electromagnetic beams, we define the degree
of polarization P , at a point P(r), at time t, as the ratio of the photon counting rate for the
polarized part to the total counting rate:

P(r; t) ≡ R(p)(r, t)
R(r, t)

=
Tr
←→
G (1)

(p)(r; t; r; t)

Tr
←→
G (1)(r, t; r, t)

. (84)
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On expressing the elements of
←→
G (1)

(p)(r; t; r; t) in terms of the elements of
←→
G (1)(r, t; r, t), one

can show that (Lahiri & Wolf, 2010b)

P(r; t) =

√√√√√1 − 4 Det
←→
G (1)(r, t; r, t){

Tr
←→
G (1)(r, t; r, t)

}2 . (85)

From Eqs. (73) and (85), one can readily show that for a beam of unpolarized photons P = 0;
and from Eqs. (82) and (85) it follows, at once, that for a completely polarized beam of photons
P(r; t) = 1.

Although, formulas (28), and (85) look similar in form, one must bear in mind that the
definition used in classical theory is not appropriate for light of low intensity, nor has it been
shown that it is valid for fields that are not necessarily statistically stationary. On the other
hand, the expression (85) for the degree of polarization applies also to low intensity light and
for light whose statistical properties are characterized by non-stationary ensembles, such as,
for example, fields associated with a non-stationary ensemble of pulses.

8. Wave-particle duality, partial coherence and partial polarization of light

Quantum systems (quantons15) possess properties of both particles and waves. Bohr’s
complementarity principle (Bohr, 1928) suggests that these two properties are mutually
exclusive. In other words, depending on the experimental situation, a quanton will behave
as a particle or as a wave. In the third volume of his famous lecture series (Feynman et al.,
1966), Feynman emphasized that this wave-particle duality may be understood from Young’s
two-pinhole interference experiments (Young, 1802). In such an experiment, a quanton
may arrive at the detector along two different paths. If one can determine which path the
quanton traveled, then no interference fringe will be found (i.e., the quanton will show
complete particle behavior). On the other hand, if one cannot obtain any information about the
quanton’s path, then interference fringes, with unit visibility, will be obtained (i.e., the quanton
will show complete wave behavior), assuming that the intensities at the two pinholes are the
same. In the intermediate case when one has partial “which-path information” (WPI), fringes
with visibility smaller than unity are obtained, even if the intensities at the two pinholes
are equal. For the sake of brevity, we will use the term “best circumstances” to refer to the
situation when in an Young’s interference experiment, the intensities at the two pinholes are
equal, or to equivalent situations in other interferometric setups.

The relation between fringe visibility (degree of coherence) and WPI has been investigated by
researchers [see, for example, (Englert, 1996; Jaeger et al., 1995; Mandel, 1991)]. It has been
established that a quantitative measure of WPI and fringe-visibility obey a certain inequality.
In this section, we will first recollect the results obtained by Mandel and then will show that
it is not only the fringe-visibility, but also the polarization properties of the superposed light,
which may depend on WPI in an interference experiment.

15 This abbreviation is due to M. Bunge [see, for example, J.-M. Lévy-Leblond, Physica B 151, 314 (1988)].
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Suppose, that |ψ1� and |ψ2� represent two normalized single-photon states (eigenstates of the
number operator), so that

�ψ1|ψ2� = �ψ2|ψ1� = 0, (86a)

�ψ1|ψ1� = �ψ2|ψ2� = 1. (86b)

We will consider the superposition of the two states in some interferometric arrangement,
where a photon may travel along two different paths. Suppose that |ψID� represents a state of
light, which is formed by coherent superposition of the two states |ψ1� and |ψ2�, i.e., that

|ψID� = α1 |ψ1�+ α2 |ψ1� , |α1|2 + |α2|2 = 1, (87)

where α1 and α2 are, in general, two complex numbers. In this case, a photon may be in
the state |ψ1� with probability |α1|2, or in the state |ψ2� with probability |α2|2, but the two
possibilities are intrinsically indistinguishable. The density operator ρ̂ID will then have the
form

ρ̂ID = |α1|2 |ψ1� �ψ1|+ |α2|2 |ψ2� �ψ2|+ α∗1α2 |ψ2� �ψ1|+ α∗2α1 |ψ1� �ψ2| . (88)

In the other extreme case, when the state of light is due to incoherent superposition of the two
states, the density operator ρ̂D will be given by the expression

ρ̂D = |α1|2 |ψ1� �ψ1|+ |α2|2 |ψ2� �ψ2| . (89)

Here |α1|2 and |α2|2 again represent the probabilities that the photon will be in state |ψ1� or
in state |ψ2�, but now the two possibilities are intrinsically distinguishable. Mandel (Mandel,
1991) showed that in any intermediate case, the density operator

ρ̂ = ρ11 |ψ1� �ψ1|+ ρ12 |ψ1� �ψ2|+ ρ21 |ψ2� �ψ1|+ ρ22 |ψ2� �ψ2| (90)

can be uniquely expressed in the form

ρ̂ = I ρ̂ID + (1 −I )ρ̂D, 0 ≤ I ≤ 1. (91)

Mandel defined I as the degree of indistinguishability. If I = 0, the two paths are
completely distinguishable, i.e., one has complete WPI; and if I = 1, they are completely
indistinguishable, i.e., one has no WPI. In the intermediate case 0 < I < 1, the two
possibilities may be said to be partially distinguishable. Clearly, I may be considered as
a measure of WPI. According to Eqs. (90) and (91), one can always express ρ̂ in the form

ρ̂ = |α1|2 |ψ1� �ψ1|+ |α2|2 |ψ2� �ψ2|+I (α∗1α2 |ψ2� �ψ1|+ α∗2α1 |ψ1� �ψ2|). (92)

Clearly, the condition of “best circumstances” requires that |α1| = |α2|.

8.1 WPI and partial coherence

Mandel considered a Young’s interference experiment, in which the two pinholes (secondary
sources) were labeled by 1 and 2. He assumed |n�j to be a state representing n photons
originated from pinhole j (n = 0, 1; j = 1, 2). Clearly, in this case

|ψ1� = |1�1 |0�2 , |ψ2� = |0�1 |1�2 . (93)
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Calculations show that [for details see (Mandel, 1991)] “visibility ≤ I ”, and the equality
holds in the special case when |α1| = |α2|. Since fringe-visibility is a measure of coherence
properties of light (modulus of degree of coherence is equal to the fringe visibility), Mandel’s
result displays an intimate relationship between wave-particle duality and partial coherence.

8.2 WPI and partial polarization

Let us now assume that |ψ1� and |ψ2� are of the form

|ψ1� = |1�x |0�y , (94a)

|ψ2� = |0�x |1�y , (94b)

where the two states are labeled by the same (vector) mode k, and x, y are two mutually
orthogonal directions, both perpendicular to the direction of k. For the sake of brevity, k is
not displayed in Eqs. (94). Clearly |ψ1� represents the state of a photon polarized along the x
direction, and |ψ2� represents that along the y direction. In the present case, one may express

Ê(+)
i (r; t) in the form

Ê(+)
i (r; t) = Cei(k·r−ωt) âi, (i = x, y), (95)

where the operator âi represents annihilation of a photon in mode k, polarized along the i−
axis, and C is a constant. From Eqs. (38), (92), and (95), one readily finds that the quantum
polarization matrix

←→
G (1)(r, t; r, t) has the form

←→
G (1)(r, t; r, t) = |C|2

( |α1|2 I α∗1α2
I α1α∗2 |α2|2

)
. (96)

From Eqs. (84) and (96) and using the fact |α1|2 + |α2|2 = 1, one finds that, in this case, the
degree of polarization is given by the expression

P =
√
(|α1|2 − |α2|2)2 + 4|α1|2|α2|2I 2. (97)

It follows from Eq. (97) by simple calculations that

P2 −I 2 = (1 −I 2)(2|α1|2 − 1)2. (98)

Using the fact that 0 ≤ I ≤ 1, one readily finds that

P ≥ I . (99)

Thus, the degree of polarization of the out-put light in a single-photon interference experiment
is always greater or equal to the degree of indistinguishability (I ) which a measure of
“which-path information”.

Let us now assume that the condition of “best circumstances” holds, i.e., one has |α1| = |α2|.
It then readily follows from Eq. (97) that

P = I . (100)
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Calculations show that [for details see (Mandel, 1991)] “visibility ≤ I ”, and the equality
holds in the special case when |α1| = |α2|. Since fringe-visibility is a measure of coherence
properties of light (modulus of degree of coherence is equal to the fringe visibility), Mandel’s
result displays an intimate relationship between wave-particle duality and partial coherence.

8.2 WPI and partial polarization

Let us now assume that |ψ1� and |ψ2� are of the form

|ψ1� = |1�x |0�y , (94a)

|ψ2� = |0�x |1�y , (94b)

where the two states are labeled by the same (vector) mode k, and x, y are two mutually
orthogonal directions, both perpendicular to the direction of k. For the sake of brevity, k is
not displayed in Eqs. (94). Clearly |ψ1� represents the state of a photon polarized along the x
direction, and |ψ2� represents that along the y direction. In the present case, one may express

Ê(+)
i (r; t) in the form

Ê(+)
i (r; t) = Cei(k·r−ωt) âi, (i = x, y), (95)

where the operator âi represents annihilation of a photon in mode k, polarized along the i−
axis, and C is a constant. From Eqs. (38), (92), and (95), one readily finds that the quantum
polarization matrix

←→
G (1)(r, t; r, t) has the form

←→
G (1)(r, t; r, t) = |C|2

( |α1|2 I α∗1α2
I α1α∗2 |α2|2

)
. (96)

From Eqs. (84) and (96) and using the fact |α1|2 + |α2|2 = 1, one finds that, in this case, the
degree of polarization is given by the expression

P =
√
(|α1|2 − |α2|2)2 + 4|α1|2|α2|2I 2. (97)

It follows from Eq. (97) by simple calculations that

P2 −I 2 = (1 −I 2)(2|α1|2 − 1)2. (98)

Using the fact that 0 ≤ I ≤ 1, one readily finds that

P ≥ I . (99)

Thus, the degree of polarization of the out-put light in a single-photon interference experiment
is always greater or equal to the degree of indistinguishability (I ) which a measure of
“which-path information”.
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P = I . (100)
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This formula shows that under the “best circumstances”, the degree of indistinguishability (a
measure of WPI) and the degree of polarization are equal. The physical interpretation of this
result may be understood from the following consideration: If one has complete “which-path
information” (i.e., I = 0), then it follows from Eq. (100) that the degree of polarization of the
light emerging from the interferometer is equal to zero. Complete “which-path information”
in an single-photon interference experiment implies that a photon shows complete particle
nature, and our analysis suggests that in such a case light is completely unpolarized. In the
other extreme case, when one has no “which-path information”, i.e., when a photon does not
display any particle behavior, the output light will be completely polarized. Any intermediate
case will produce partially polarized light. For details analysis see (Lahiri, 2011).

9. Conclusions

We conclude this chapter by saying that we have given a description of first-order coherence
and polarization properties of light. The main aim of this chapter was to emphasize the fact
that although, coherence and polarization seem to be two different optical phenomena, both of
them can be described by analogous theoretical techniques. Our discussion also emphasizes
some newly obtained results in quantum theory of optical coherence in the space-frequency
domain, and in quantum theory of polarization of light beams.
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spaceŰfrequency domains, Opt. Lett. 34.
Lahiri, M. (2011). Wave-particle duality and partial polarization of light in single-photon

interference experiments, Phys. Rev. A 83.
Lahiri, M. & Wolf, E. (2009). Cross-spectral density matrices of polarized light beams, Opt.

Lett. 34.
Lahiri, M. & Wolf, E. (2010a). Does a light beam of very narrow bandwidth always behave as

a monochromatic beam?, Phys. Lett. A 374.
Lahiri, M. & Wolf, E. (2010b). Quantum analysis of polarization properties of optical beams,

Phys. Rev. A 82.
Lahiri, M. & Wolf, E. (2010c). Quantum theory of optical coherence of non-stationary light in

the space-frequency domain, Phys. Rev. A 82.
Lahiri, M. & Wolf, E. (2010d). Relationship between complete coherence in the space-time and

in the space-frequency domains, Phys. Rev. Lett. 105.
Lahiri, M., Wolf, E., Fischer, D. G. & Shirai, T. (2009). Determination of correlation functions of

scattering potentials of stochastic media from scattering experiments, Phys. Rev. Lett.
102.

104 Advances in Quantum Theory Quantum Theory of Coherence
and Polarization of Light 29

Lampard, D. G. (1954). Generalization of the wiener-khintchine theorem to nonstationary
processes, J. Appl. Phys. 25.

Laue, M. V. (1906). Zur thermodynamik der interferenezerscheinungen, Ann. d. Physik 20.
Laue, M. V. (1907). Ann. d. Physik 23.
Mandel, L. (1991). Coherence and indistinguishability, Opt. Lett. 16.
Mandel, L. & Wolf, E. (1995). Optical Coherence and Quantum Optics, (Cambridge University

Press, Cambridge).
Mark, W. D. (1970). Spectral analysis of the convolution and filtering of non-stationary

stochastic processes, J. Sound Vib. 11.
Mehta, C. L. & Sharma, M.K. (1974). Diagonal coherent–state representation for polarized

light, Phys. Rev. A. 10.
Michelson, A. A. (1890). Etude sur la constitution de la lumiere non polarisée et de la lumiere

partiellement polarisée, Phil. Mag. 30.
Michelson, A. A. (1891a). Phil. Mag. 31.
Michelson, A. A. (1891b). Phil. Mag. 31.
Michelson, A. A. (1902). Light Waves and Their Uses, The University of Chicago Press, Chicago,

USA.
Michelson, A. A. (1927). Studies in Optics, The University of Chicago Press, Chicago, USA.
Mujat, M., Dogariu, A. & Wolf, E. (2004). A law of interference of electromagnetic beams of

any state of coherence and polarization and the fresnel–arago interference laws, J.
Opt. Soc. Am. A. 21.

Page, C. H. (1952). Instantaneous power spectra, J. Appl. Phys. 23.
Poincaré, H. (1892). Théorie Mathématique de la Lumiére, Vol 2, Georges Carré, Paris, France.
Ponomarenko, S. A., Agrawal, G. P. & Wolf, E. (2004). Energy spectrum of a nonstationary

ensemble of pulses, Opt. Lett. 29.
Prakash, H. & Chandra, N. (1971). Density operator of unpolarized radiation, Phys. Rev. A 4.
Roychowdhury, H. & Wolf, E. (2005). Statistical similarity and the physical significance of

complete spatial coherence and complete polarization of random electromagnetic
beams, Opt. Commun. 248.

Sereda, L., Bertolotti, M. & Ferrari, A. (1998). Coherence properties of nonstationary light
wave fields, J. Opt. Soc. Am. A 15.

Setälä, T., Nunziata, F. & Friberg, A. T. (2009). Differences between partial polarizations in the
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1. Introduction 
A brief history of thoughts on covalent bonding 

The mechanism of covalent bonding is the basis of molecule formation and therefore of all 
of chemistry. It is a phenomenon which is extremely well characterized experimentally. The 
properties of covalently bonded molecules can also be reproduced and/or predicted by 
increasingly accurate calculations using the methods of quantum chemistry. These days, 
such calculations can be routinely performed using commercial program packages which 
are readily available to all chemists, who frequently find that molecular properties are 
simpler to calculate than to measure or track down in the literature. In the light of this 
success it is remarkable that the physical explanation of the origin of covalent bonding is 
still a subtle and contentious issue generating much discussion. The aim of this chapter is to 
reveal the origin of covalent bonding in simple terms and with illustrations allowing 
subtleties to be clarified and arguments to be settled. We shall propose that a deeper and 
more general analysis than hitherto widely known shows the merit and limitation of 
previous explanatory models and offers important clues for the understanding of the 
present computational methods of quantum chemistry and their future development. Our 
discussion will employ two very simple but very different theories of electronic structure – 
the Thomas-Fermi theory and the Hückel model of planar conjugated hydrocarbon 
molecules – which contain within them a full range of the dominant mechanisms needed to 
describe covalent bonding. The analysis presented here is in turn based on earlier articles [1-
6] and a thesis which is not yet published in all its essential parts [7]. 

A brief historical review of the understanding of covalent bonding is in order. The first 
model of covalent bonding which remains very relevant today is that of Lewis who 
understood that the periodic variation in chemical stability of the elements was the origin of 
chemical bonding and of the covalent bonding mechanism in particular [8]. The model of 
Lewis suggested that atoms which do not have an inert gas like electronic structure seek to 
achieve such a structure and its particular stability by either electron transfer between 
atoms, forming ionic bonds, or by electron sharing in forming covalent bonds between 
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atoms in molecules. The Lewis diagrams can be used to identify the bonds formed. Both 
mechanisms are in principle always present but more or less applicable and nature seems to 
confirm that molecules with very obvious Lewis structures according to ionic (valence 
electron transfer) or covalent (valence electron sharing) mechanisms are particularly stable. 
In our view the Lewis model – at its simple level without reference to any form of mechanics 
– is valid and useful. The difficulties start when one tries to interpret the bonding 
mechanisms identified by Lewis in more mechanical terms. 

The ionic bonding mechanism lends itself readily to a mechanical interpretation. One needs 
only to note that ionic bonds form when the electron transfer to create inert gas like ions at 
infinite separation requires relatively little energy since electron affinities and ionization 
energies are unusually close. Once the ions have formed one can then estimate the binding 
energy released when they approach to form an ionic structure. Doing this for, e.g., NaCl, 
gives a good prediction of the ionic bond strength. One immediately also understands that 
such ionic molecules are very reactive due to their polar nature and form extended crystal 
structures rather than inert molecules. Thus the ionic bonding mechanism is very simple to 
understand in terms of well known properties of the atoms. The complicating quantum 
mechanical effects are hidden in the properties of the atoms and reflected in the periodically 
variable ionization energies and electron affinities. 

The covalent bonding mechanism presents a far more difficult case. The physical 
explanation is still debated despite the apparent truth of the Lewis electron sharing model 
and the ability of modern quantum chemistry to account for the bond strengths to great 
accuracy. The question is how to physically interpret the calculations based on the quantum 
mechanical Schrödinger equation for the electronic structure of atoms and molecules. A first 
significant interpretation was offered by Hellman [9] already in the 1930-s soon after 
quantum mechanics had been developed. He suggested that covalent bonding should be 
understood as a quantum mechanical effect due to the lowering of ground state kinetic 
energy associated with the delocalization of valence electron motion between atoms in the 
covalently bound molecule. Although we shall find much which is correct in this proposal 
the picture is clouded by apparently contradictory facts. Most chemists at the time were 
reluctant to assign covalent bonding to a quantum effect. Instead the idea, seemingly 
supported by the Lewis diagrams with their electron pairs placed between bonded atoms, 
that electrostatic interaction between these pairs and the positively charged atomic centers 
in the molecule was the origin of the covalent bond became favored by most authors of 
introductory texts on chemistry. This view was supported by Coulson who in his famous 
book Valence [10] in 1961 pointed to the Virial Theorem of Coulombic systems which 
showed rigorously that when a molecule in its equilibrium (lowest energy) configuration 
was formed from infinitely separated atoms the kinetic energy rises by half as much as the 
potential energy drops. Thus it appeared that kinetic energy – in complete disagreement 
with Hellman’s proposal – opposed bonding while the electrostatic interactions were the 
cause of bonding. It seemed therefore that the covalent bonding mechanism could be 
understood as an extension of the ionic bonding mechanism to include the effect of electron 
pairs located at bond midpoints between atoms. In more detailed discussions bond 
formation was seen to be associated with excess electron density placed around bond 
midpoints by constructive overlap of atomic orbitals in bonding molecular orbitals. For 
more recent elaboration of the electrostatic view of the mechanism of covalent bonding see, 
e.g. a book by Burdett [11] and an essay by Bader and coworkers [12]. 
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cause of bonding. It seemed therefore that the covalent bonding mechanism could be 
understood as an extension of the ionic bonding mechanism to include the effect of electron 
pairs located at bond midpoints between atoms. In more detailed discussions bond 
formation was seen to be associated with excess electron density placed around bond 
midpoints by constructive overlap of atomic orbitals in bonding molecular orbitals. For 
more recent elaboration of the electrostatic view of the mechanism of covalent bonding see, 
e.g. a book by Burdett [11] and an essay by Bader and coworkers [12]. 
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This view of covalent bonding as an electrostatic interaction was generally accepted among 
chemists even though Ruedenberg [13] already in 1962 showed that the Virial Theorem was 
in small molecules like H2+ and H2 a reflection of orbital contraction, i.e., the tightening of 
the electron density around the two nuclei rather than the displacement of electron density 
into the region around the bond midpoint. Ruedenberg suggested that this contraction of 
atomic orbital or electron density around the atomic nucleus could be thought of as a 
“promotion” of the atom to a smaller size appropriate in the molecule. If this promotion was 
performed at a certain cost in increased energy at infinite separation then the subsequent 
formation of the molecule would follow the proposal of Hellman and show a decrease in 
kinetic energy due to valence electron delocalization which stabilizes the bond. An 
alternative procedure followed by most early applications of quantum chemistry to the 
calculation of covalent bond energies is to use frozen atomic orbitals in a minimal basis set 
calculation in which case the orbital contraction identified by Ruedenberg is completely 
absent. In this case the Virial Theorem is completely violated in the bond formation which is 
again – as predicted by Hellman – due to the lowering of the kinetic energy upon electron 
delocalization. One may then – as suggested by Kutzelnigg [14]– at the end of such a 
calculation allow the orbital exponents reflecting degree of contraction around the nuclei to 
be optimized. The Virial Theorem now is satisfied but only a small decrease in both total 
energy and bond length is found. Thus one can see that the ability to resolve the covalent 
bonding mechanism is hardly dependent on whether the Virial Theorem is satisfied or only 
weakly so. Recent discussion of this issue can be found in articles by Ruedenberg [15] and 
Kutzelnigg [16] and work cited therein. 

2. The current impasse 
The problem we are currently faced with in the understanding of covalent bonding is that 
we have a well formed empirical concept of a covalent bond which is arguably the very 
foundation of chemistry and we have within modern quantum chemistry many 
approximate theories which allow us to compute the structures, energies and other 
properties of covalently bonded molecules with high and ever increasing accuracy. 
Remarkably we still have not agreed upon how to provide an appropriate physical 
explanation of the observed and calculated covalent bonding. Clearly the arguments of 
Hellman and Ruedenberg in terms of kinetic energy lowering and that of Coulson and many 
authors of chemistry textbooks in terms of electrostatic interactions as the source of covalent 
bonding have their “grains of truth” but they also contain apparent contradictions which 
may confuse students or make textbook authors avoid the issue of physical understanding 
of covalent bonding altogether.  

Most quantum chemists appear to be pragmatic about this state of affairs and are not greatly 
concerned with the lack of physical understanding as long as their methods can 
quantitatively resolve covalent bonding. Bader [12] and others strongly maintain that 
chemical bonding must be thought of as due to an electrostatic interaction connected with 
the redistribution of electron density to yield a build up in the interatomic (~ bond 
midpoint) region. Others, e.g. Frenking, [17] seek insight into chemical bonding from an 
energy decomposition analysis (EDA) using the results of modern quantum chemistry for 
molecules with various types of chemical bonds. This can be thought of as a refinement of 
the discussion about the roles of kinetic or potential energies and whether one or the other is 
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the key to the covalent stabilization. There are of course different types of kinetic and 
potential energies. While contributing insight, these interpretations of modern quantum 
chemistry have not provided a convincing and fully accepted resolution of the dispute 
concerning the nature of covalent bonding. Our own work over a period of 25 years [1-6] 
has pointed to a deeper quantum dynamical origin of covalent bonding. This work has 
departed significantly from earlier mechanistic interpretations of covalent bonding, but thus 
far it has had little impact on the earlier and long-held views of the mainstream chemical 
community. It is this both general and more personal impasse which forms the starting 
point of our present contribution.  

3. The present focus – The nonbonding of Thomas-Fermi Theory contrasted 
with the successful bonding model of Hückel Theory 
Our view proposed here in the light of a long program of research is that i) there is a need 
for a deeper physical understanding of covalent bonding, ii) such an understanding will 
show that covalent bonding is a dynamical phenomenon relating to the motion of valence 
electrons in the molecule and iii) this insight casts helpful new light on the range of chemical 
bonds in molecules and materials and the applicability of quantum chemical methods in the 
calculation of atomic reactivity and covalent bonding. The aim here is to expose the main 
points of our analysis in their simplest context. Thus we focus on two old and simple 
methods, i.e., the original electronic density functional theory of Thomas and Fermi [18, 19] 
and the Hückel model of π-electron states in planar conjugated hydrocarbon molecules [20]. 
TF theory is known [21, 22] to fail completely to describe covalent bonding while the Hückel 
model is the simplest approach to the calculation of covalent bonds and provides within it a 
pedagogical illustration of the generality of its underlying mechanism [23].  

The complete failure of Thomas-Fermi (TF) density functional theory (DFT) with respect to 
covalent bonding is also a very significant advantage in the search for the mechanism of 
covalent bonding. The TF DFT is in many ways very successful and it contains 
representation of all the major electrostatic forces proposed as the origin of covalent 
bonding. Its variable electron density can clearly be made to reflect excess density at bond 
midpoints and in bonding regions between nuclei in molecules. Yet it returns no covalent 
bonding whatsoever. It would appear there must be a fundamental reason for this which in 
turn may tell us what covalent bonding is really about. 

The Hückel theory of π-electron resonance stabilization is – in stark contrast – almost 
inexplicably successful at capturing covalent bonding. It is fundamentally a quantum 
mechanical theory of one-electron wave functions, the π-molecular orbitals. The empirical 
form of its one-electron Hamiltonian is exceedingly simple. The bonding is essentially 
captured by one parameter β, which is placed off-diagonally, so as to allow the formation of 
band-like molecular orbitals delocalized over the planar hydrocarbon structure. There 
would not appear to be any room for the intricacies of virial theorems or electron density 
rearrangement to bond midpoints or bonding regions. Yet the π-bonding of two carbon 
atoms in ethylene or the resonance in benzene seem well resolved by this simple theory. 

It will be our premise here that the mechanism of covalent bonding can be identified by 
noting first that it is contained in the error made by the Thomas-Fermi theory in 
representing quantum mechanics and secondly noting that whatever this error is it is not 
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affecting the Hückel model of π-bonding. Covalent bonding, whether normal or resonant in 
character, is clearly contained in this model with extensions to σ-electrons and its nature 
should therefore be deducible from the simple ansatz of the Hückel theory. In mathematical 
terms the mechanism has been captured in the intersection of (1) the complement to the TF 
theory and (2) Hückel theory. 

4. Thomas-Fermi Theory – Quantization by the semiclassical 
Correspondence Principle 
Thomas-Fermi (TF) theory is the original density functional theory (DFT) of electronic 
structure. It proposes that the ground state energy of electrons in an external potential Vext(r) 
can be found by minimizing the functional – 

            5 3 1
122 ' ' extE C d d d r d V            r r r r r r r r r  (1) 

where atomic units have been used such that C is 3(3π2)2/3/10 and the Coulomb interaction 
between two electrons appears as 1/r12 with r12 being the separation between the electrons. 
The first term on the right is the kinetic energy functional, the second is the electrostatic 
repulsion between electrons and the third is the potential energy of interaction with the 
external field Vext(r). It should immediately be noted that this – in distinction to most 
modern forms of DFT – is a true density functional in that no reference is made to any wave 
function. Thus solving for ground state electronic structure and energy is far simpler in TF 
theory than in modern DFT where Kohn-Sham or Hartree-Fock expressions are used for the 
kinetic energy with the introduction of one-electron orbital wave functions. Many features 
of electronic structures are well reproduced by solutions obtained by TF theory but the 
failures are also dramatic. Given that covalent bonding is completely absent TF theory 
eliminates chemical reactivity and thereby nearly all of chemistry. Beyond that singular 
failure lie quantitative errors – particularly for small systems. 

A full derivation of TF theory can be carried out by semi-classical arguments mapping 
quantum mechanics into classical phase space by the following assumptions: 

1. Each quantum state of an electron corresponds precisely to a phase space volume of h3. 
2. Each one-electron energy eigenstate can be found by sequentially slicing up classical 

phase space by energy surfaces separated by a phase space volume h3. The phase space 
slices so formed are uniformly occupied and the energy of the corresponding quantum 
energy eigenstate is the uniform slice average of the classical energy. 

3. The formation of classical quantum states is carried out ergodically, i.e., without 
considering any possible dynamical constraints that may decompose phase space. The 
electronic phase space is extended to have a spin up and a spin down half-space which 
are both included in the summation to find the state volume h3. 

4. Many-electron systems are assumed to satisfy the mean-field approximation where the 
individual electrons are moving independently in an average field created by all 
electrons. 

The details can be found in a thesis [7] and will be published independently. Here we want 
to point out how the known errors and limitations of TF theory enters through the 
construction of the functional on this semiclassical basis. A good summary of the 
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performance of Thomas-Fermi theory for atoms and molecules can be found in the book by 
Parr and Yang on “The Density-Functional Theory of Atoms and Molecules” [24] where also 
many correction schemes have been discussed. It is our purpose here to reveal as clearly as 
possible the underlying causes of the failure of the original TF theory – particularly the 
reason why atomic reactivity and covalent bonding are absent. It then becomes possible to 
not only understand how to correct the theory but also to identify the origin of atomic 
reactivity and the covalent bonding mechanism in its general form.  

4.1 Thomas-Fermi Theory for one-dimensional motion 

We begin by considering the familiar particle-in-the-box system where a single electron is 
moving in a potential V(x) = 0 for 0 < x < L, and = ∞ elsewhere. Given the classical kinetic 
energy T = p2/2m it is clear that the classical phase space volume below an energy E is Ω(E) 
= 2p(E)L = 2(2mE)1/2L and the density of states is ρ(E) = (2m/E)1/2L . The energies separating 
states are obtained from Ω(EF,n) = nh, which yields EF,n = (nh/2L)2/2m . Finally the TF energy 
eigenvalues are obtained as – 
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This result strongly resembles the exact relation En = h2n2/8mL2 as shown in Figure 1, but the 
TF result is always slightly lower.  

 
Fig. 1. Comparison of Thomas-Fermi (filled square) with exact (diagonal line) 1D particle-in-
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In fact we note that EF,n = En so that the exact result is the upper bound on the slice of phase 
space making up the TF energy eigenstate. The reason for this deviation is that the correct 
quantum energy has a component of gradient kinetic energy which sets in as the wave 
function is brought to zero at the hard walls defined by the rise of the potential to infinity. 
The TF energy lacks this type of gradient kinetic energy and allows the density to be 
constant 1/L in the interval [0, L] rather than of the form 2sin2(πx)/L which vanishes at both 
endpoints with a peak in the middle. 

The gradient kinetic energy is related to the change in motion and thereby to the dynamical 
mechanism that TF theory completely neglects. It is easily shown that only this type of 
gradient kinetic energy arises for electrons in ground state orbitals and it can be obtained in 
terms of the electron density by a functional first noted by von Weizsäcker [25]. For many-
electron systems where more than the ground state orbital is filled there is another type of 
kinetic energy which we might call “orthogonality kinetic energy”. It is directly connected 
with the Pauli principle and the Pauli repulsion between molecules. In the semi-classical 
derivation of TF theory one can see that the TF kinetic energy functional is estimating 
orthogonality kinetic energy but in a way that extends it also to one or two electron ground 
states. Interestingly the TF estimate of the energy levels of a harmonic oscillator in one 
dimension is in perfect agreement with the exact result (see Figure 2). This is due to a 
cancellation of the gradient kinetic energy rise and the lowering of energy that follows from 
the tunneling of orbital wave functions into the potential wall. 

 
Fig. 2. Comparison of Thomas-Fermi (filled squares) with exact (diagonal line) energy 
eigenvalues for the 1D harmonic oscillator. 
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Fig. 3. Comparison of Thomas-Fermi (filled squares forming jagged line) and exact (diagonal 
line) energy eigenvalues for the cubic box potential in 3D. 

generally too low due to the lack of gradient kinetic energy but they are also nondegenerate 
and smoothly progressing with decreasing energy gaps while the exact results show larger 
and very variable energy gaps but strong degeneracies of the energy levels.  

The same comparison of exact and TF energies for the isotropic 3D harmonic oscillator in 
Figure 4 show only this latter error where the TF energy levels are nondegenerate with 
smoothly decreasing energy gaps while the exact spectrum shows constant energy gaps as 
for the 1D harmonic oscillator but rapidly rising degeneracy. 

The “degeneracy deficiency” seen in the TF eigenvalues of both the particle-in-the-cube and 
the isotropic 3D harmonic oscillator is due to the assumption of rapid ergodic electron 
dynamics which ignores the separability of the x, y and z-directed motion of the electron in 
these two potential wells. If we were to account for this separability and apply the TF theory 
to each 1D motion in the axial directions independently then the degeneracies would be 
recovered and we would have perfect agreement between 3x1D TF results and exact results 
for the harmonic oscillation and only the gradient error remaining in the case of the motion 
in a cube as shown in Figure 3.  

The identification of the “dynamical error” in standard TF theory above is of the utmost 
importance since the degeneracies in the spectra of the electron motion in a cube or in an 
isotropic 3D harmonic oscillation are a reflection of what we call “shell structure” in the case 
of atoms. Thus we can see already that the TF theory ignores shell structure and we shall 
show below that it thereby also ignores atomic reactivity. In order to correct TF theory for 
this error we need to explicitly account for the dynamical constraints, i.e. non-ergodicity and 
hindered electron dynamics, which is present in real electronic structures. This is easy to do  
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Fig. 4. Comparison of Thomas-Fermi (filled squares in jagged line) and exact (diagonal line) 
energy eigenvalues for the isotropic 3D harmonic oscillator. 

in the case of separable electronic motion as above but will be more subtle below as we 
approach realistic atomic and molecular systems. 

The dynamical error illustrated above can be seen to be related to the loss of shell structure 
in the TF theory. The molecular dynamical error which eliminates covalent bonding can be 
illustrated for motion in a simple one-dimensional double well potential:  
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This potential is shown in Figure 5.  

With a barrier height of 2.0 Eh (5.25 MJ/mol) and L = 8.0 a0 (4.23 Å) the energy splitting 
between the ground and first excited state energies according to TF theory, is compared 
with the exact result ΔE21 (= 3h2/8mL2 for a = 0) in Figure 6. 

We see that while the exact result – as is well known – is very sensitive to the barrier width 
a, the TF result is always the same irrespective of barrier width. Thus near degeneracies in 
molecular spectra of orbital energies are not accounted for in TF theory. Such near 
degeneracies are related to hindered electron motion between the two wells and thus to the 
reactivity of the system. In the case of interacting atoms this type of near orbital degeneracy 
is relaxed as the atoms bond by the covalent mechanism. Thus the formation of the covalent  
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Fig. 5. The 1D double square well potential. 

 
Fig. 6. Comparison of the energy splitting between ground and first excited states of a 
double square well motion in one dimension. The TF theory shows constant and large 
splitting while the exact result decreases rapidly towards zero with increasing barrier width. 
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Fig. 6. Comparison of the energy splitting between ground and first excited states of a 
double square well motion in one dimension. The TF theory shows constant and large 
splitting while the exact result decreases rapidly towards zero with increasing barrier width. 
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bond will be found to be directly related to the facilitation of interatomic electron transfer 
which is reflected in the transition of the energy spectrum of the separated atoms from 
degenerate or near degenerate form towards a nondegenerate form for molecules as in the 
TF theory. The failure of TF theory to describe covalent bonding is then clearly due to the 
ergodic quantization procedure which produces smooth progression of electronic energy 
levels without degeneracies or near degeneracies at all atomic separations. 

4.2 The hydrogen atom 

In the case of the hydrogen atom (in atomic units) the 3D potential is – 

 V(r) = 1/r . (4) 

The phase space volume below the energy E can be worked out analytically as  

 Ω(E) = 23/2π3/3(E)3/2 . (5) 

The energy eigenvalues according to Thomas-Fermi theory readily follow and are shown 
compared with the exact energy eigenvalues of the hydrogen atom in Figure 7. We have  

 
Fig. 7. Comparison of Thomas-Fermi and exact energy eigenvalues for the hydrogen atom. 
The original TF theory is called “ergodic” while the spin-conserving TF theory is denoted 
“nonergodic”. 

 En(TF) = 21/2(21/2/12)-1/3/4 for n = 1, (6) 

  = [21/2(21/2/12)-1/3/4]×[n1/3  (n  1)1/3] for n = 2,3,….. (7) 

as compared to the exact values – 
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 En,l,m = 1/2n2 , n = 1,2,…, l = 0,1,.. n  1, m = l, l + 1, … l  1, l. (8) 

However, the electron has spin – either up or down. We have so far considered spinless 
particles. Allowing for spin while maintaining the ergodic quantization of the original TF 
theory will double the phase space as the electron is allowed to rapidly flip from up to down 
or vice versa. The results above therefore describe doubly degenerate energy levels which 
correspond to a form of “nonergodic” TF theory which conserves spin. The standard TF 
theory, on the other hand, will populate both spin up and spin down phase space with one-
electron states which are spin-depolarized giving nondegenerate energy levels. Figure 7 
shows both the fully ergodic (original) TF energy eigenvalues as well as those obtained by 
the spin-nonergodic TF theory described above. The clear picture seen is that the Thomas-
Fermi energies behave reasonably apart from the inability to resolve the highly degenerate 
shell structure of the correct quantum results. This will be a key fact in the resolution of 
reactivity and covalent bonding proposed below. 

4.3 The hydrogen molecule ion 

The simplest molecule, the hydrogen molecule ion H2+, has an electronic potential composed 
of two displaced hydrogen atom potentials, hence the total potential energy including the 
internuclear repulsion (all in atomic units) is - 

 
  1 1 1

a b
V r

r r R
     (9) 

where ra and rb represent the distance of the electron from nuclei a and b respectively and R 
is the internuclear separation. 

The first two terms in equation (9) correspond to a double well potential of two superposed 
hydrogen Coulomb wells while the third term represents the repulsion between the two 
protons. The integral determining the phase space volume below an energy E, Ω(E), is now 
harder to find analytically but still easy to determine numerically. We leave those details 
aside and consider the results obtained by the “nonergodic” (i.e., spin conserving) form of 
Thomas-Fermi theory. In Figure 8 we show the electronic, internuclear and total energy of 
the ground state as a function of the internuclear separation R. 

It is clear from the figure that while the electronic energy is weakly attractive the 
internuclear repulsion is stronger and the total energy is weakly repulsive. The phase space 
integrations are readily extended to generate excited state energies and the corresponding 
bond energy curves for the first ten states of H2+ in the spin conserving TF theory are shown 
in Figure 9 below. 

The non-bonding character of the Thomas-Fermi results is not related to the choice of spin 
conserving or original spin-unpolarized theory. As will be even more clear after 
consideration of the successfully bonding Hückel theory below the problem of the Thomas-
Fermi theory is related to the inability to resolve the constraints on the electron dynamics. In 
the case of the calculations for H2+ above the loss of bonding is related to the inability to 
resolve left-right electron transfer between the two coulombic potential wells located on the 
protons. As seen very clearly in the case of the two non-overlapping square wells in 1D 
above the TF theory will effectively quantize the motion as if the dynamical hindrance of the  
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 En,l,m = 1/2n2 , n = 1,2,…, l = 0,1,.. n  1, m = l, l + 1, … l  1, l. (8) 
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  1 1 1
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r r R
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where ra and rb represent the distance of the electron from nuclei a and b respectively and R 
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Fig. 8. The Thomas-Fermi energies for H2+ obtained in the “nonergodic” (spin conserving) 
theory are shown as a function of bond length R. From the top we have the internuclear, 
total and electronic energies. 

 
Fig. 9. Total energies for the lowest ten states of H2+ in the spin conserving form of Thomas-
Fermi theory. 
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barrier was not present – irrespective of its width. In the same way the TF results for H2+ 
above have a character as if the electron transfer is rapidly delocalized for all bond lengths 
in stark contrast to the slowing down of this transfer by an increasingly broad barrier for 
increasing bond length seen in the exact quantum mechanical results. This will be discussed 
in greater detail in connection with the Hückel model below.  

We conclude this examination of the Thomas-Fermi theory with the observation that it is 
able to follow broad trends in the density of energy eigenstates quite well but fails to resolve 
degeneracies and near-degeneracies in the spectrum due to dynamical conservation laws 
and other constraints such as potential barriers penetrable only by tunneling. In order to 
confirm our notion that this failure is also the cause of its inability to predict covalent 
bonding we now turn to the Hückel theory which despite its simple empirical nature is able 
to resolve covalent bonding very well. We shall particularly consider the representation of 
dynamics afforded by the Hückel theory to find therein the reason why it succeeds where 
the Thomas-Fermi theory fails. 

5. Covalent bonding as described by the Hückel Molecular Orbital (HMO) 
model 
Hartree-Fock and modern DFT based on the Kohn-Sham kinetic energy both successfully 
describe covalent bonding – albeit with some quantitative errors due to incorrect description 
of electron correlation effects. Common to these theories is the key role played by molecular 
orbitals formed from modified atomic orbitals as the covalently bound molecule is created. 
It is clearly the nature of these molecular orbitals and their orbital energies which carries the 
information about the covalent bonding mechanism. In order to most graphically illustrate 
the covalent bonding mechanism we shall therefore reexamine perhaps the simplest form of 
molecular orbital quantum chemistry, the Hückel molecular orbital model, which 
successfully captures the covalent bonding mechanism. In particular we shall 

 claim that Hückel theory, appropriately interpreted and extended, is the minimal and 
precisely focussed explanation of all forms of covalent bonding, 

 use the Hückel model to illustrate the concept of quantum ergodicity in the context of 
electron dynamics, 

 show that Hückel theory displays the direct relation between electron delocalization 
and quantum ergodicity which in turn is the key to covalent bonding, and 

 argue that all main types of bonding, including resonance stabilization, can be 
systematically organized according to the degree of delocalization employed in the 
stabilization. 

The molecular orbitals (MO) of a molecule are, by definition, solutions of the Hartree-Fock 
equations, i.e. eigenfunctions of the Fock operator 

 
ˆ

i i iF   (10) 

where F̂ is an effective one-electron Hamiltonian operator for a single electron within the 
molecule which interacts with the nuclei and all other electrons. Thus we have 

 ˆ ˆ ˆ ˆ ˆ
NF T V J K    , (11) 



 
Advances in Quantum Theory 120 

barrier was not present – irrespective of its width. In the same way the TF results for H2+ 
above have a character as if the electron transfer is rapidly delocalized for all bond lengths 
in stark contrast to the slowing down of this transfer by an increasingly broad barrier for 
increasing bond length seen in the exact quantum mechanical results. This will be discussed 
in greater detail in connection with the Hückel model below.  

We conclude this examination of the Thomas-Fermi theory with the observation that it is 
able to follow broad trends in the density of energy eigenstates quite well but fails to resolve 
degeneracies and near-degeneracies in the spectrum due to dynamical conservation laws 
and other constraints such as potential barriers penetrable only by tunneling. In order to 
confirm our notion that this failure is also the cause of its inability to predict covalent 
bonding we now turn to the Hückel theory which despite its simple empirical nature is able 
to resolve covalent bonding very well. We shall particularly consider the representation of 
dynamics afforded by the Hückel theory to find therein the reason why it succeeds where 
the Thomas-Fermi theory fails. 

5. Covalent bonding as described by the Hückel Molecular Orbital (HMO) 
model 
Hartree-Fock and modern DFT based on the Kohn-Sham kinetic energy both successfully 
describe covalent bonding – albeit with some quantitative errors due to incorrect description 
of electron correlation effects. Common to these theories is the key role played by molecular 
orbitals formed from modified atomic orbitals as the covalently bound molecule is created. 
It is clearly the nature of these molecular orbitals and their orbital energies which carries the 
information about the covalent bonding mechanism. In order to most graphically illustrate 
the covalent bonding mechanism we shall therefore reexamine perhaps the simplest form of 
molecular orbital quantum chemistry, the Hückel molecular orbital model, which 
successfully captures the covalent bonding mechanism. In particular we shall 

 claim that Hückel theory, appropriately interpreted and extended, is the minimal and 
precisely focussed explanation of all forms of covalent bonding, 

 use the Hückel model to illustrate the concept of quantum ergodicity in the context of 
electron dynamics, 

 show that Hückel theory displays the direct relation between electron delocalization 
and quantum ergodicity which in turn is the key to covalent bonding, and 

 argue that all main types of bonding, including resonance stabilization, can be 
systematically organized according to the degree of delocalization employed in the 
stabilization. 

The molecular orbitals (MO) of a molecule are, by definition, solutions of the Hartree-Fock 
equations, i.e. eigenfunctions of the Fock operator 

 
ˆ

i i iF   (10) 

where F̂ is an effective one-electron Hamiltonian operator for a single electron within the 
molecule which interacts with the nuclei and all other electrons. Thus we have 

 ˆ ˆ ˆ ˆ ˆ
NF T V J K    , (11) 

The Role of Quantum Dynamics in Covalent Bonding –  
A Comparison of the Thomas-Fermi and Hückel Models 121 

where T̂  is the kinetic energy operator of an electron, ˆ
NV  and Ĵ  represent the Coulomb 

interaction of an electron with the nuclei and all other electrons respectively, and K̂  is the 
exchange operator which accounts for the fermion nature of the electrons, i.e. the anti-
symmetry requirement on the total many-electron wave function. In the majority of 
quantum chemical applications the MO-s are constructed from atom centred basis functions 
 k ,  

 i ki k
k

C  . (12) 

The Hartree-Fock equations, when projected onto the space spanned by the above atomic 
orbital (AO) basis, become matrix eigenvalue equations 

 FC = SC , (13) 

where S and F are the overlap and Fock matrices, 

 kl k lS   , (14) 

 
ˆ

kl k lF F  . (15) 

The Hückel MO method is developed from Hartree-Fock theory through a series of 
assumptions and approximations. 

1. As Hückel theory was formulated primarily for conjugated hydrocarbons, i.e. planar 
molecules, the    separability applies and hence the Fock equations are block-
diagonal: 

     

    

      
      

      

F 0 C 0 S 0 C 0 0
0 F 0 C 0 S 0 C 0




 (16) 

Hückel theory is then concerned with the calculation of the -MO-s only, by solving 

 F C = S Cπ π π π π . (17) 

2. The  basis set is assumed to be a minimal basis, consisting of atomic 2p orbitals, one on 
each carbon atom. Assuming that the molecule is in the xy plane, its  MO-s are then 
constructed in terms of the set of 2pz AO-s of the carbon atoms. 

3. All diagonal elements of the  Fock matrix are represented by a single parameter, , 
which represents the energy of an electron in a 2pz atomic orbital that includes its 
interaction with the rest of the molecule, according to the definition of a diagonal Fock 
matrix element. All off-diagonal elements between AO-s on neighbour, i.e. bonded 
atoms, are assigned a single parameter, , which is assumed to be a negative quantity. 
All other off-diagonal Fock matrix elements are assumed to be negligible. The neglect of 
integrals between non-neighbour atoms is known as the tight-binding approximation, 
and, as Ruedenberg [26] pointed out, it is a justifiable first approximation, whereas “the 
outright neglect of neighbour overlap is not.” The Hückel (Fock) matrix is thus  
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   F I Mπ  , (18) 

where I is the unit matrix and M is the topological or connectivity matrix which 
specifies the presence or absence of bonds between all pairs of atoms. For butadiene, for 
example, we have 

 

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 
 
   
  
 

M  , (19) 

where the numbering of carbon atoms and hence of the 2pz atomic orbitals is sequential, 
starting at one end of the molecule. 

4. In the simplest formulation of Hückel theory the 2pz atomic orbitals are assumed to be 
orthonormal. The Hückel -MO equations are then simply 

 F C = Cπ π π π .  (20) 

The corresponding eigenvalues are 

 i i     , (21) 

where the coefficients  i  are eigenvalues of the topological matrix M. We will refer to 
this approach as the standard Hückel model. We recall here, however, that the neglect of 
overlap between neighbour atoms is not a justifiable approximation according to 
Ruedenberg's analysis [26]. 

Since  is negative, the bonding, non-bonding and antibonding MO-s correspond to 
positive, zero and negative eigenvalues of M, respectively. The energies of the MO-s directly 
correlate with the number of nodal planes. Thus, for butadiene the normalized MO-s and 
their energies are 

    1 2 3 4 1 2 3 4

0.37 0.60 0.60 0.37
0.60 0.37 0.37 0.60
0.60 0.37 0.37 0.60
0.37 0.60 0.60 0.37

       

 
      
    

 (22) 

 1 2 3 41.62 , 0.62 , 0.62 , 1.62                   . (23) 

For any given MO the presence of a nodal plane between two neighbour atoms is indicative 
of antibonding character between those particular atoms, as the node signifies destructive 
interference of the AO-s. For butadiene thus, occupancy of the second MO would weaken 
the -bond between atoms 2 and 3, while strengthening those between atoms 1 and 2, as 
well as between 3 and 4. Such effects are given a quantitative measure by the first order 
reduced density matrix in the AO representation, D, which in Hückel theory is generally 
known as the charge and bond order matrix. It is defined as  
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 †D = C nCπ π , (24) 

where n is the diagonal MO occupancy matrix with elements 2, 1 or 0. The off-diagonal 
elements of D are the bond orders, with values ranging from 0 to 1, where Dpq = 1 signifies a 
conventional two-centre -bond, as in ethylene. In butadiene the -bond orders are 0.89, 0.45 
and 0.89. Thus, Hückel theory predicts in a qualitatively correct manner that there is an 
alternation of -bond strengths in conjugated polyenes which accounts for the observed 
variation of CC bond lengths. In fact, the Hückel-SCF model [27], in which the -parameters 
are defined to be bond length dependent, while the bond lengths in turn are determined on 
the basis of the corresponding bond orders in a self-consistent way, has been found to be a 
useful and reliable computational approach in a number of applications [28-32]. 

As noted above, the most obvious discrepancy of the standard Hückel model is the neglect 
of the overlap integrals between the 2pz AO-s on neighbour atoms, i.e. atoms which are 
directly bonded to each other. This approximation actually introduces an inconsistency in 
that if such an approximation were justified, then  would also be negligible since the latter 
is overlap dependent. The justification, in the words of Coulson, is that “Historically, people 
have tended not to include it (overlap) because it turns out not to make much numerical 
difference” [33]. However, in the spirit of the Hückel parametrization, this problem is easily 
remedied, by approximating the overlap matrix S as 

  S I M , (25) 

where , a third Hückel parameter, is a measure of the average overlap integral between the 
2pz AO-s on bonded atoms. Since F, M and S have a common set of eigenvectors, U, i.e., 

 
( ) ( ) ,
( ) ( ) ,

 
   

   
   

SU I M U U I
F U I M U U Iπ




 (26) 

where  is the diagonal matrix of eigenvalues of M. The eigenvalues, , and eigenvectors, C, 
of the generalized eigenvalue equations (17) are simply 

 
1

i
i

i

 






 (27) 

 1 2( )  C U Iπ  . (28) 

This formalism, originally proposed by Wheland [34], will be referred to as the standard 
Hückel model with overlap. In comparison with the two-parameter standard model, the 
inclusion of differential overlap integrals results in higher energies, except for non-bonding 
MO-s whose energies would be unaffected. Thus, the bonding MO-s become less bonding, 
while the antibonding ones become more antibonding. The MO energy levels for butadiene 
obtained by the application of these two Hückel models are compared in Figure 10. An 
important consequence of the above parametrization is that the only change in the MO-s 
brought about by the introduction of explicit overlap is their renormalization, whereby all 
elements of the i-th column vector of U are multiplied by a (re)-normalization constant of 

1 2(1 )i   . 
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Fig. 10. Butadiene: Comparison of Hückel π-MO energy levels calculated by standard model 
(γ = 0) and with the inclusion of overlap (γ = 0.2), with  = 0. 

An alternative, implicit way of incorporating overlap in the Hückel model is to assume that 
the 2pz AO basis is a rigorously orthonormal basis,  i , consisting of Löwdin 
orthogonalized AO-s [35]. The Löwdin process [36], known also as symmetric 
orthogonalization, is defined by the linear transformation  

 1 2= S  . (29) 

This formalism, termed Hückel model in OAO basis, where the  and  parameters of Hückel 
theory are defined with respect to the Löwdin orthogonalized 2pz AO basis, is formally 
equivalent to the standard (two-parameter) model developed above, but the interpretation 
of the parameters, especially from the point of view of chemical bonding is quite different, 
as discussed below. 

5.1 The hydrogen molecule ion 

The hydrogen molecule ion, H2+, is the textbook example of covalent chemical bonding as 
well as of the basic principle of molecular orbital (MO) theory. It also represents a natural 
starting point for Hückel theory. The simplest representation of the (normalized) bonding 
and antibonding wave functions, , are in- and out-of-phase combinations of the 1s atomic 
orbitals (AO) of hydrogen, a, b, centred on the nuclei a and b (with a fixed orbital exponent 
 = 1):  

    1 22 1 ,ab a bS  


       (30) 

where Sab is the overlap matrix element of the two AO-s. The corresponding energies (in 
atomic units) in terms of overlap (S), kinetic (T) and nuclear attraction (V) integrals are 
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S R
  

 


 (31) 



 
Advances in Quantum Theory 124 

 
Fig. 10. Butadiene: Comparison of Hückel π-MO energy levels calculated by standard model 
(γ = 0) and with the inclusion of overlap (γ = 0.2), with  = 0. 

An alternative, implicit way of incorporating overlap in the Hückel model is to assume that 
the 2pz AO basis is a rigorously orthonormal basis,  i , consisting of Löwdin 
orthogonalized AO-s [35]. The Löwdin process [36], known also as symmetric 
orthogonalization, is defined by the linear transformation  

 1 2= S  . (29) 

This formalism, termed Hückel model in OAO basis, where the  and  parameters of Hückel 
theory are defined with respect to the Löwdin orthogonalized 2pz AO basis, is formally 
equivalent to the standard (two-parameter) model developed above, but the interpretation 
of the parameters, especially from the point of view of chemical bonding is quite different, 
as discussed below. 

5.1 The hydrogen molecule ion 

The hydrogen molecule ion, H2+, is the textbook example of covalent chemical bonding as 
well as of the basic principle of molecular orbital (MO) theory. It also represents a natural 
starting point for Hückel theory. The simplest representation of the (normalized) bonding 
and antibonding wave functions, , are in- and out-of-phase combinations of the 1s atomic 
orbitals (AO) of hydrogen, a, b, centred on the nuclei a and b (with a fixed orbital exponent 
 = 1):  

    1 22 1 ,ab a bS  


       (30) 

where Sab is the overlap matrix element of the two AO-s. The corresponding energies (in 
atomic units) in terms of overlap (S), kinetic (T) and nuclear attraction (V) integrals are 

    
 

1
1

aa ab aa ab

ab

T T V V
E

S R
  

 


 (31) 

The Role of Quantum Dynamics in Covalent Bonding –  
A Comparison of the Thomas-Fermi and Hückel Models 125 

where the last term is the nuclear repulsion energy at an arbitrary internuclear distance R. 
Thus the interaction between the AO-s is quantified by the three coupling matrix elements 

 ˆ ˆ, , ,ab a b ab a b ab a bS T T V V         (32) 

where V̂  represents the attractive Coulomb potential of both nuclei. The resulting total 
energies E as a function of the bond length are shown in Figure 11.  

 
Fig. 11. H2+ bonding and antibonding potential energy curves calculated using 1s AO-s with 
a fixed orbital exponent of 1.  

The calculation predicts the existence of a stable molecule with an equilibrium bond length 
of 2.5 a0 and a dissociation (De) or bond energy of 0.0648 Eh, i.e. 170 kJ mol-1. The 
experimental values are 2.0 a0 and 270 kJ mol-1. Thus this simplest of MO calculations yields 
results that are qualitatively correct. 

While non-zero overlap is manifested in non-zero kinetic and potential interactions between 
the AO-s, it also gives rise to a direct energetic effect known as Pauli repulsion. So as to 
separate the effect of the latter from the direct kinetic and potential components of the bond 
energy we orthogonalize the AO-s by Löwdin’s symmetric orthogonalization method, as 
discussed in the previous section. The resulting OAO-s have the property that they resemble 
the original atom-centred AO-s to the maximum degree, i.e. the dominant contribution to 
each OAO is from a specific AO. In the present case of H2+, the normalized OAO-s are  

 1 1 2N    , 

  2 2 1N    , (33) 

where the constants  (<1) and N can be shown to be 
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Since 1N  , the orthogonalization process results in increased density close to the centre of 
the dominant AO which is compensated by a reduction in density in the nodal region of the 
OAO. 

An important aspect of the orthogonalization procedure is the behaviour of the kinetic 
energy matrix elements. In the AO basis the diagonal elements are large and positive, while 
the off-diagonal elements are at least an order of magnitude smaller. With regard to the 
latter, it is instructive to rewrite such a quantity as 

 
2

ˆ ( ) ( )
2

f T g d f g
m




   r r r  (36) 

where 2h  , h being Planck’s constant, and m is the electronic mass. According to the 
above equation (obtained via integration by parts) the sign of the kinetic matrix element is 
determined by the relative signs of the gradients of the wave functions f and g in the overlap 
region. In the case of two AO-s on different atoms the signs of the bond-perpendicular 
gradients of the two AO-s are the same, but would be different for the bond-parallel 
components for all reasonable bond distances. Hence an off-diagonal kinetic energy matrix 
element would consist of a negative bond-parallel component and a positive bond-
perpendicular component. 

The kinetic energy matrix elements obtained from the above H2+ calculations are shown in 
Figure 12. We note that as the molecule forms, i.e. the internuclear distance decreases, the 
effect of Löwdin orthogonalization is to increase the diagonal kinetic energy elements but 
decrease the off-diagonal elements to negative values. The former effect is the increasing 
Pauli repulsion with increasing overlap, while the latter represents the energetic 
stabilization associated with electron delocalization, i.e. covalent bond formation.  

The effect of Löwdin orthogonalization on the potential energy (nuclear attraction) matrix 
elements is quite different, as shown in Figure 13. In the OAO basis the coupling matrix 
element Vab is near-zero at all distances, while Vaa varies inversely with the kinetic term Taa. 
In fact the sum Taa + Vaa is largely constant throughout the range of bond lengths: it varies 
between -0.698 Eh at R = 5 a0 and -0.871 Eh at R = 1 a0.  

The total energy, when expressed in terms of the OAO matrix elements, is simply 

  1 .aa aa ab abE T V V R T       (37) 

Noting that the sum of the bracketed terms monotonically increases with decreasing bond 
distance, it follows that the equilibrium binding, which occurs in the region of 2.5 a0, is 
entirely due to the contribution of the coupling kinetic energy matrix element Tab to the 
energy. The conclusion that follows is well known, inasmuch as an MO calculation using a 
fixed exponent minimal basis predicts that covalent bonding is due to a drop in the kinetic  



 
Advances in Quantum Theory 126 

 
 1 22

12

12

1 1 S

S


 
 , (34) 

   1 22
121 2N S 


   . (35) 

Since 1N  , the orthogonalization process results in increased density close to the centre of 
the dominant AO which is compensated by a reduction in density in the nodal region of the 
OAO. 

An important aspect of the orthogonalization procedure is the behaviour of the kinetic 
energy matrix elements. In the AO basis the diagonal elements are large and positive, while 
the off-diagonal elements are at least an order of magnitude smaller. With regard to the 
latter, it is instructive to rewrite such a quantity as 

 
2

ˆ ( ) ( )
2

f T g d f g
m




   r r r  (36) 

where 2h  , h being Planck’s constant, and m is the electronic mass. According to the 
above equation (obtained via integration by parts) the sign of the kinetic matrix element is 
determined by the relative signs of the gradients of the wave functions f and g in the overlap 
region. In the case of two AO-s on different atoms the signs of the bond-perpendicular 
gradients of the two AO-s are the same, but would be different for the bond-parallel 
components for all reasonable bond distances. Hence an off-diagonal kinetic energy matrix 
element would consist of a negative bond-parallel component and a positive bond-
perpendicular component. 

The kinetic energy matrix elements obtained from the above H2+ calculations are shown in 
Figure 12. We note that as the molecule forms, i.e. the internuclear distance decreases, the 
effect of Löwdin orthogonalization is to increase the diagonal kinetic energy elements but 
decrease the off-diagonal elements to negative values. The former effect is the increasing 
Pauli repulsion with increasing overlap, while the latter represents the energetic 
stabilization associated with electron delocalization, i.e. covalent bond formation.  

The effect of Löwdin orthogonalization on the potential energy (nuclear attraction) matrix 
elements is quite different, as shown in Figure 13. In the OAO basis the coupling matrix 
element Vab is near-zero at all distances, while Vaa varies inversely with the kinetic term Taa. 
In fact the sum Taa + Vaa is largely constant throughout the range of bond lengths: it varies 
between -0.698 Eh at R = 5 a0 and -0.871 Eh at R = 1 a0.  

The total energy, when expressed in terms of the OAO matrix elements, is simply 

  1 .aa aa ab abE T V V R T       (37) 

Noting that the sum of the bracketed terms monotonically increases with decreasing bond 
distance, it follows that the equilibrium binding, which occurs in the region of 2.5 a0, is 
entirely due to the contribution of the coupling kinetic energy matrix element Tab to the 
energy. The conclusion that follows is well known, inasmuch as an MO calculation using a 
fixed exponent minimal basis predicts that covalent bonding is due to a drop in the kinetic  

The Role of Quantum Dynamics in Covalent Bonding –  
A Comparison of the Thomas-Fermi and Hückel Models 127 

 
Fig. 12. Kinetic energy matrix elements for H2+ with respect to (non-orthogonal) 1s AO-s and 
Löwdin OAO-s. 

 
Fig. 13. Potential energy (nuclear attraction) matrix elements for H2+ with respect to (non-
orthogonal) 1s AO-s and Löwdin OAO-s. 
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energy as the molecule’s constituent atoms come together. The same conclusions apply in 
the more general case of optimised exponents, provided we allow for orbital contraction, as 
pointed out by Ruedenberg.  

To provide more insight into the mathematical reasons for these changes consider the 
diagonal and off-diagonal matrix elements of the (Hermitean) kinetic energy operator T̂ that 
arise when two real orbitals are Löwdin orthogonalized, as described above. The 
transformed matrix elements are 
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Using the overlap and kinetic energy matrix elements computed for H2+ at a range of 
distances we find that in both expressions the terms involving the diagonal matrix elements, 

i.e 1 1T̂   and 2 2T̂  , are dominant. (The same pattern has been found for the p 

orbitals of ethylene and benzene, computed at the SCF/STO-3G level of theory, to be 
discussed later.) The net result is that the kinetic energy of an OAO is larger than that for the 
AO, and the off-diagonal kinetic energy matrix element between two OAO-s is negative, as 
noted above. The physical explanation for the increased kinetic energy content, in the words 
of Weber and Thiel [37], is that “the orthogonalization accounts for the Pauli repulsion of the 
electrons at other centres and prevents penetration into these regions, thus effectively 
reducing the volume for an electron in the OAO and increasing its kinetic energy”. In the 
case of Löwdin orthogonalized AO-s the dominant contributions arise from the regions 
where the dominant component of a given OAO interacts with the “orthogonalization tail” 
of the other, and where the gradients of the OAO-s with respect to all coordinates differ in 
sign. 

In the context of Hückel MO theory, we note that the energy of H2+ at any distance can be 
written in terms of distance dependent  and  parameters: 

       1 ,E R R R R      (40) 

where 

      aa aaR T R V R    (41) 

and 

       ,ab abR T R V R    (42) 
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where the matrix elements are evaluated in the OAO basis. While similar, but more 
complex expressions can be easily derived for the standard Hückel model with overlap, the 
inherent simplicity of the former makes it more attractive. More importantly, however, in 
the Hückel model in OAO basis, the Pauli repulsion is rigorously separated from the effects 
of delocalization and covalent bonding. In other words, use of OAO bases represents a 
natural starting point for the analysis and ultimately the understanding of covalent 
bonding. 

5.2 The ethylene molecule 

Ethylene is the classic -bonded molecule which often serves as the starting point for the 
parametrization of Hückel MO theory. The bonding and antibonding  MO-s of ethylene are 
formally the same as the  MO-s of H2+, but there are two important differences: (1)  MO-s 
are constructed from pz-type MO-s which are parallel to each other, hence their interaction 
matrix elements are in general smaller than those of s and p AO-s in head to head 
arrangements. (2) In a many-electron molecule such as ethylene the potential energy of a 
given electron includes its interaction with all other electrons, as well as the field due to the 
nuclei, as implemented in the SCF process. 

Computed values of the kinetic and potential matrix elements of the 2pz AO-s and OAO-s 
are shown for a range of C-C distances in Figures 14 and 15. The CH distances and bond 
angles are fixed at their experimental values. The matrix elements were calculated from 
SCF/STO-3G kinetic energy and Fock matrix elements of ethylene. The potential energy 
matrix elements are simply 

 
Fig. 14. Kinetic energy matrix elements for 2pz orbitals of ethylene with respect to (non-
orthogonal) AO-s and Löwdin OAO-s. 
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Fig. 15. Potential energy matrix elements for 2pz orbitals of ethylene with respect to (non-
orthogonal) AO-s and Löwdin OAO-s. 

 , , , .ij ij ijV F T i j a b    (43) 

where Fij is the Fock matrix element between AO-s i, j. 

The C-C distance dependence of these matrix elements is qualitatively the same as what was 
obtained for H2+ (Figures 12 and 13). Consequently the same observations and conclusions 
apply for the formation of a simple -bond in ethylene as for the -bond in H2+. Thus, in the 
OAO representation -bonding is the result of the negative kinetic interaction between the 
two OAO-s. As the  MO-s are eigenfunctions of the  block of the Fock matrix (see equation 
(10)), the Hückel parameters can readily be identified as the appropriate Fock matrix 
elements of a minimal basis computation, i.e. 

 , .aa abF F     (44) 

The  orbital energies of ethylene as a function of the C-C distance, as obtained in the 
current SCF/STO-3G calculations, are given in Figure 16. As expected, the splitting of the 
bonding and antibonding energies is strongly dependent on the interatomic distance. This is 
a consequence of the distance dependence of the kinetic energy matrix element Tab, which in 
turn determines the behaviour of the Fock matrix element Fab, ie.  of Hückel theory. The 
kinetic energies (relative to that of a 2pz AO) of the bonding  and antibonding * MO-s are 
also shown in Figure 16. Clearly, the distance dependence of the MO-s is determined by 
their kinetic energy content. 

We conclude this section with the observation that the Hückel description of - bonding in 
ethylene is exactly the same as that of the covalent bond in H2+. In both molecules the  
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Fig. 16. Total orbital and kinetic energies of the bonding  and antibonding * MO-s of 
ethylene computed at the SCF/STO-3G level of theory. The kinetic energies are relative to 
that of a 2pz AO (1.4777 Eh). 

bonding and antibonding energy levels can be determined in terms of the Hückel  and  
parameters, where  represents the energy of an electron in an OAO and  is the coupling 
matrix element between the OAO-s on the bonded atoms of the molecule.  is negative and 
predominantly kinetic in character. Thus for the bonding MO, which is the in-phase 
combination of the OAO-s, the energy stabilization relative to the OAO-s is due to 
delocalization and the concomitant drop in kinetic energy. The opposite holds for the 
antibonding MO, the out-of-phase combination of OAO-s, where the energetic 
destabilization is due to the presence of the extra node in the MO. 

5.3 Benzene 

In conjugated molecules there is an extra degree of stabilization of the bonding MO-s due to 
the extra degree of possible  delocalization. To further test the performance of the above 
Hückel models with regard to describing and interpreting -bonding in planar conjugated 
hydrocarbons, we decided to parametrize the Hückel models on the basis of an ab initio 
minimal basis (STO-3G) Hartree-Fock calculation on benzene at its experimental 
equilibrium geometry. The high (D6h) molecular symmetry is evident in the overlap and 
Fock matrices; there are only four distinct type of elements in each, as indicated in Table 1, 
which lists the converged Fock, overlap and kinetic energy matrix elements in the 2pz AO 
basis and also in the Löwdin orthogonalized (OAO) basis. The in-plane (x,y) components of 
the kinetic energy matrix elements are also shown (as T ). 



 
Advances in Quantum Theory 132 

i,j 
AO OAO 

S F T T  F T T  

1,1; 2,2; 3,3;... 1.000 0.103 1.478 0.296 0.004 1.590 0.362 
1,2; 2,3; 3,4;... 0.214 0.254 0.075 0.081 0.251 0.263 0.157 
1,3; 2,4; 3,5;... 0.026 0.041 0.000 0.018 0.010 0.017 0.010 
1,4; 2,5; 3,6;... 0.010 0.014 0.004 0.009 0.023 0.013 0.008 

Table 1. Benzene: Overlap, Fock and kinetic energy matrix elements (in Eh) in AO and OAO 
bases from ab initio (HF/STO-3G) calculations. (The orbitals are numbered sequentially 
around the ring.) 

First, we note that the Hückel approximation, whereby off-diagonal overlap and Fock 
matrix elements between orbitals on atoms which are not directly bonded to each other (as 
listed in the last two rows of Table 1) are neglected, is justified. Secondly, however, the 
differential overlaps, i.e. S12, S23,…can hardly be judged as negligible. Thirdly, the 
orthogonalization has resulted in diagonal Fock matrix elements that are uniformly higher 
in energy, as expected, since the orthogonalization results in orbital contraction as well as 
delocalization by virtue of the “orthogonalization tails” possessed by the OAO-s. As 
discussed earlier in the section on H2+, an off-diagonal kinetic energy matrix element would 
consist of a negative bond-parallel component, T , and a positive bond-perpendicular 
component, T . In the case of benzene the former is actually the in-plane component. In the 
case of non-orthogonal AO-s the two components are positive and negative. As expected, 
Löwdin orthogonalization increases the diagonal elements of the kinetic energy matrix by 
~0.11 Eh, but decreases both bond-parallel and bond-perpendicular components of the off-
diagonal elements to large negative values. 

As the data in Table 1 indicate, in the (non-orthogonal) AO basis the Fock matrix elements, 
in particular the off-diagonal elements, F12, F23,…are dominated by potential energy 
contributions. However, the large and definitely non-negligible overlap integrals, S12, 
S13,…are indicative of substantial Pauli repulsion, so that in the OAO basis the off-diagonal 
Fock matrix elements are almost entirely kinetic in character. Moreover, the increase in the 
diagonal Fock matrix elements brought about by the orthogonalization process is largely 
due to the analogous increase in the diagonal kinetic energy matrix elements. 

Another notable consequence of the orthogonalization procedure is the decrease, by 
approximately a factor of 4, in the magnitude of the Fock matrix elements between AO-s on 
next nearest neighbouring atoms, viz. 1,3; 2,4; 3,5;... elements. 

Utilizing the appropriate ab initio Fock and overlap matrix elements of benzene we can 
parametrize the three Hückel models as follows:  

1. Standard Hückel model: 

 11 22 h... 0.103F F E       (45) 

12 23 h... 0.254F F E       

0  . 
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2. Standard Hückel model with overlap: In addition to  and , as chosen for the standard 
model, 

 12 23 ... 0.214S S      (46) 

3. Hückel model in OAO basis: 

 OAO OAO
11 22 h... 0.004F F E      (47) 

OAO OAO
12 23 h... 0.251F F E       

Applying these three models to benzene, the energy levels obtained are shown in Figure 17, 
along with the ab initio SCF energies for comparison. 

 
Fig. 17. Benzene: Comparison of π MO energy levels calculated by (a) standard Hückel 
model (b) standard Hückel model with overlap (c) Hückel model in OAO basis and (d) ab 
initio (HF/STO-3G) method. 

The energy levels calculated by the standard model are uniformly too low in comparison 
with the ab initio values. This is attributable largely to the neglect of the differential overlap 
integrals. Their inclusion, according to the standard model with overlap, results in 
significant improvements in the energies of the bonding MO-s, but also an overcorrection to 
the energy of the highest antibonding MO. The best overall agreement with the ab initio 
results is obtained by the Hückel model in the OAO basis. The energies calculated by the 
latter approach are essentially the same as those from the standard model calculations plus a 
positive shift of ~0.1 Eh, since the respective  parameters are nearly the same. 
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Despite its simplicity, the standard model with overlap has not gained much popularity, 
largely because most workers in the field, especially prior to the development of more 
sophisticated semi-empirical and indeed ab initio methods, found that the standard model 
works well without the explicit allowance for overlap, as noted for example by Coulson [33]. 
It was also appreciated that the standard model can be regarded as being formally 
equivalent to the Hückel model in OAO basis, i.e. the neglect of overlap is rigorously 
justifiable [35]. Depending on the problem at hand, be it the estimation and/or 
rationalisation of stabilities in terms of -delocalization, or the interpretation of electronic 
spectra, the  and  parameters of Hückel theory are treated as adjustable empirical 
parameters, chosen so as to best fit experimental data. As remarked above, choosing  and  
to best model ab initio minimal basis SCF MO-s and their energies is a pedagogical exercise - 
we do not suggest that such a procedure is superior or preferable to the accepted practice 
when it comes to “real” applications. The difference between the two models arises, of 
course, in the computation of the MO coefficients. Use of the OAO basis implies that the 
MO-s are  

 -1 2= S U   (48) 

where U is the matrix of eigenvectors of the of the topology matrix, M. 

As a further test of the three Hückel models for benzene, the kinetic and potential energy 
components of the computed orbital energies are listed in Table 2, where each MO is 
labelled by the number of its nodal planes.  

 
  

Number 
of nodes 

  T  V  

1 2 3 4 1 2 3 4 1 2 3 4 
Standard 
Hückel 0.61 0.36 0.15 0.41 1.63 1.55 1.40 1.33 2.24 1.91 1.25 0.92 
   

Hückel 
with overlap 0.43 0.29 0.19 0.71 1.14 1.28 1.79 2.33 1.57 1.57 1.59 1.61 
   

Hückel 
in OAO 
basis 

0.50 0.25 0.26 0.51 1.06 1.33 1.85 2.12 1.56 1.57 1.60 1.61 

   

ab initio 
(HF/STO-
3G) 

0.46 0.28 0.27 0.50 1.08 1.32 1.82 2.16 1.54 1.60 1.55 1.66 

   

ab initio T      0.06 0.20 0.50 0.70     

Table 2. Benzene: Total orbital energies of Hückel and ab initio MO-s and their kinetic and 
potential energy components (in Eh). 

The two Hückel models, which include overlap, reproduce the ab initio kinetic and potential 
orbital energies quite accurately, providing further support for the view that these models 
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capture the essential features of the more sophisticated ab initio approach to MO theory. 
Neglecting differential overlap integrals, as invoked in the standard model, yields 
qualitatively different results: the ordering of the MO-s in the standard model is determined 
by the potential energy, as the apparent kinetic energies of the MO-s depend inversely on the 
number of nodes, due to the neglect of Pauli repulsion. To help with our understanding of 
these effects consider the kinetic energy associated with a given MO, as obtained from 
equation (27): 
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T
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where T and T are the kinetic energy components of  and  respectively. As noted 
already, in the standard model the kinetic energy contributions to the  parameters, 
although effectively negligible, are actually positive. The variation in kinetic energy among 
the MO-s is largely determined by the variation in energy denominators which depend 
inversely on the eigenvalues,  i , which in turn are in a direct relationship with the total 
energies,  i . However, in the absence of Pauli repulsion, i.e. overlap effects, the kinetic 
energy of the i-th MO would be determined by the energy numerator T + iT alone, which 
gives rise to the incorrect nodal dependence of the kinetic energy. 

The apparent non-physical behaviour of the MO energies is a basic flaw of the standard 
Hückel model. It is caused by the inconsistency which is implicit in the formalism, i.e. the 
neglect of differential overlap in the parametrization of the overlap matrix, but not in the 
parametrization of the Fock matrix. We believe that from a pedagogical point of view we 
should not advocate this model as a qualitatively correct representation of the electronic 
structure of conjugated -electron molecules, but rather as the first step in the development 
of an acceptable, i.e. physically correct, theory. 

The above results graphically illustrate the importance of overlap integrals in the 
calculation of molecular wave functions and energies as well as in the description and 
interpretation of chemical bonding. Overlap integrals make an important contribution to 
the quantum mechanical coupling of (non-orthogonal) AO-s and, more generally, of atom-
centred basis functions. Their neglect, as in the standard Hückel model, results in MO-s 
and energetics which would provide an incorrect interpretation of covalent bonding in 
terms of kinetic and potential energies. With the help of judiciously chosen empirical or 
semi-empirical parameters such overlap effects can be “folded” into those parameters in a 
range of popular semi-empirical methods which neglect differential overlap, although 
ultimately, as shown by the work of Weber and Thiel [37], significant improvements in 
accuracy and reliability can be achieved by the direct incorporation of overlap into these 
models. In the case of Hückel MO theory this can be achieved simply by adopting the 
OAO representation. 

The interpretation of covalent bonding via the Hückel theory is particularly transparent by 
utilizing the model in OAO representation, as the role of kinetic energy and its origins in the 
context of bonding can be clearly seen. Löwdin orthogonalization of the AO-s accounts for 
the presence of Pauli repulsion between electrons in the AO-s and results, most 
significantly, in the contraction of the AO-s. The coupling between the resulting OAO-s is, 
however, very strong, negative and predominantly kinetic in character. Electronic 



 
Advances in Quantum Theory 136 

delocalization, as described by the formation of bonding MO-s, leads to stabilization, largely 
because of the concomitant drop in the kinetic energy. This is graphically illustrated by the 
results for benzene which are summarized in Figure 18, where the kinetic and potential 
energies of the MO-s are plotted against their total energies. 

 
Fig. 18. Kinetic and potential energies -MO-s and OAO-s of benzene as obtained by Hückel 
model in OAO basis. 

The energetic stabilization and destabilization of the occupied and unoccupied MO-s 
(relative to an OAO) are clearly a consequence of the kinetic energy content of the MO-s. 
There is negligible variation in the potential energies of the MO-s. This picture is essentially 
the same as the description of Ruedenberg and co-workers [13, 38-41]. 

In summary, we note that, despite its apparent simplicity of application, the Hückel model 
clearly contains all the necessary quantum mechanical elements to describe -bonding in 
polyenes. It enables us to interpret covalent bonding in a manner that is physically correct as 
well as transparent. It relies on just three parameters: , representing the binding of a -
electron occupying a 2pz AO to an atom; , representing the quantum mechanical interaction 
between AO-s on neighbour atoms; and , which is the overlap between the coupled AO-s.  
and  can be thought of as two sides of the same coin, as both are crucial in the correct 
description of the coupling between two AO-s. By reformulating the Hückel model in terms 
of a Löwdin orthogonalized AO basis, the number of parameters is reduced, as only  and  
need to be defined. Solution of the Hückel equation results in delocalized MO-s with a range 
of energies which are lower as well as higher than , depending on the number of nodes in 
the MO-s and on the magnitudes of  and . 

The degree of -bonding, i.e.  stabilization, that occurs in a given molecule is determined 
by the overall accumulated contributions of the  coupling terms resulting from the 
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delocalization, as described by the formation of bonding MO-s, leads to stabilization, largely 
because of the concomitant drop in the kinetic energy. This is graphically illustrated by the 
results for benzene which are summarized in Figure 18, where the kinetic and potential 
energies of the MO-s are plotted against their total energies. 

 
Fig. 18. Kinetic and potential energies -MO-s and OAO-s of benzene as obtained by Hückel 
model in OAO basis. 
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Hückel MO-s are maximally delocalized, and therefore they naturally provide an optimal 
description of -bonding, since the degree of delocalization is a key factor that effectively 
governs the degree of stabilization. An important point that emerges from this analysis is 
that the mechanism of binding an electron within an atom, as represented by  is of no 
consequence. All that is needed is an attractive atomic potential. In other words, the 
particular form of the Coulomb attraction that binds electrons does not play a crucial role in 
the covalent bonding mechanism. The latter depends on delocalization and quantum 
mechanical coupling of (localized) AO-s and is not affected by the exact nature of the inter-
particle forces. 

5.4 Extensions of Hückel Theory 

Hückel MO theory in its standard form describes the -electron structure of conjugated 
polyenes. It can be, as indeed it has been, generalized in a number of ways so as to be 
applicable e.g. to  systems with heteroatoms, the treatment of -bonding – as we have done 
above – and the description of solids. 

The generalized Hückel method, more widely known as the Pariser-Parr-Pople (PPP) 
method [42-45] is a semi-empirical -MO theory, where electron repulsion effects are 
explicitly, although approximately, allowed for. PPP utilizes the tight binding 
approximation and it is parametrized in terms of one- and two-electron integrals chosen 
largely on the basis of experimental data. 

The extended Hückel MO (EHMO) method, developed by Hoffmann [46], is a valence MO 
theory, i.e. - and -electrons are treated on equal footing. The diagonal Fock matrix 
elements,  iiF (in a minimal basis) are parametrized on the basis of atomic ionization 

energies, while the off-diagonal elements,  ijF , following the recommendation of 

Wolfsberg and Helmholtz [47], are specified simply as 

   2ij ij ii jjF KS F F  , (50) 

where Sij is an overlap integral computed in a minimal Slater orbital basis and K is an 
adjustable parameter, usually ~1.75. The MO-s and their energies are obtained by solving 
the generalized eigenvalue equations (13); the total molecular energy is simply defined as 
the sum of the occupied MO energies. As the overlap integrals are computed at any given 
molecular geometry (rather than parametrized), the EHMO method allows geometry 
optimizations to be carried out. 

Basic Hückel theory lies at the heart of the widely used tight binding method of material 
modelling [48]. The formalism was first developed by Slater and Koster [49] in an attempt to 
generalize the LCAO method to infinite periodic crystals by means of Bloch sums. The AO 
basis in a tight binding calculation is understood to be a Löwdin orthonormalized basis. The 
Hamiltonian, i.e. Fock matrix elements, are formally defined with respect to the orthogonal 
AO basis, although it is generally parametrized, such that, e.g. the two-centre integrals are 
represented by parameters that depend on the distance between the atomic centres, rather 
like in Hoffmann's EHMO method. The popularity of the method, as explained by Goringe 
et al. [48], stems from the view that the tight binding method combines physical 
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transparency and quantum mechanical sophistication, as well as being a method that 
combines computational speed with surprising accuracy. The same applies, in our view, to 
standard  Hückel MO theory, although in most practical molecular applications today the 
level of accuracy that’s required cannot be achieved by such a simple model. It can, 
however, help us understand covalent bonding. 

6. The quantum dynamical content of Hückel Theory 
We have seen above that Hückel theory resolves covalent bonding in terms of a kinetic 
coupling allowing -electrons to form delocalized molecular orbitals. Now we shall show 
how this in fact resolves the interatomic flow of electrons which can vary in extent (degree 
of delocalization) and rate. Thus the Hückel model can be seen as a simple theory of 
molecular electron dynamics. In turn we shall be able to deduce that covalent bonding is 
most generally understood as due to a quantum dynamical mechanism relating to the 
facilitation of interatomic electron transfer. 

As suggested by the examples above, the Hückel -MO-s of polyenes are expected to be 
delocalized. A simple, yet convincing way to demonstrate this is to utilize the analogy 
between Hückel theory and the finite element method (FEM) representation of wave 
functions of a “particle in a box”, which is a familiar example to chemistry students. It is also 
known as the Free Electron Molecular Orbital (FEMO) model for conjugated  systems 
[42,50]. It represents the simplest quantum mechanical treatment of conjugated molecules, 
whereby the -electrons are assumed to be fully delocalized within a one-dimensional box, 
the length of which is chosen on the basis of the total distance between the end-atoms of the 
conjugated system. The system, used also in our discussion of Thomas-Fermi theory above, 
is defined by the square-well potential: 
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and solution of the one-dimensional Schrödinger equation yields the following energy 
eigenvalues and (delocalized) eigenfunctions: 
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where h is Planck's constant and m is the mass of the particle, i.e. here the electron. 

An unusual but, in the context of this work, instructive way to solve this problem is to use 
the finite element method. This is a basis set method where, in the simplest implementation, 
the basis functions are roof functions, centred at equidistant grid-points {xk}: 

  1
1

3( ) ,
2

k
k k k

x x
x x x x 




  
 

 , (54) 



 
Advances in Quantum Theory 138 

transparency and quantum mechanical sophistication, as well as being a method that 
combines computational speed with surprising accuracy. The same applies, in our view, to 
standard  Hückel MO theory, although in most practical molecular applications today the 
level of accuracy that’s required cannot be achieved by such a simple model. It can, 
however, help us understand covalent bonding. 

6. The quantum dynamical content of Hückel Theory 
We have seen above that Hückel theory resolves covalent bonding in terms of a kinetic 
coupling allowing -electrons to form delocalized molecular orbitals. Now we shall show 
how this in fact resolves the interatomic flow of electrons which can vary in extent (degree 
of delocalization) and rate. Thus the Hückel model can be seen as a simple theory of 
molecular electron dynamics. In turn we shall be able to deduce that covalent bonding is 
most generally understood as due to a quantum dynamical mechanism relating to the 
facilitation of interatomic electron transfer. 

As suggested by the examples above, the Hückel -MO-s of polyenes are expected to be 
delocalized. A simple, yet convincing way to demonstrate this is to utilize the analogy 
between Hückel theory and the finite element method (FEM) representation of wave 
functions of a “particle in a box”, which is a familiar example to chemistry students. It is also 
known as the Free Electron Molecular Orbital (FEMO) model for conjugated  systems 
[42,50]. It represents the simplest quantum mechanical treatment of conjugated molecules, 
whereby the -electrons are assumed to be fully delocalized within a one-dimensional box, 
the length of which is chosen on the basis of the total distance between the end-atoms of the 
conjugated system. The system, used also in our discussion of Thomas-Fermi theory above, 
is defined by the square-well potential: 

 
( ) 0, 0

, elsewhere,
V x x L  

 
 (51) 

and solution of the one-dimensional Schrödinger equation yields the following energy 
eigenvalues and (delocalized) eigenfunctions: 

 
2 2

28n
n hE
mL

  , (52) 

 2( ) sin , 1,2,...n
n xx n

L L
    , (53) 

where h is Planck's constant and m is the mass of the particle, i.e. here the electron. 

An unusual but, in the context of this work, instructive way to solve this problem is to use 
the finite element method. This is a basis set method where, in the simplest implementation, 
the basis functions are roof functions, centred at equidistant grid-points {xk}: 

  1
1

3( ) ,
2

k
k k k

x x
x x x x 




  
 

 , (54) 

The Role of Quantum Dynamics in Covalent Bonding –  
A Comparison of the Thomas-Fermi and Hückel Models 139 

 1
1

3 ,
2

0 , elsewhere.

k
k k

x x
x x x




  
 


 

The N basis functions (for N = 7) are illustrated in Figure 19, and the grid-spacing  is of 
course equal to L/(N + 1).  

 
Fig. 19. Square well potential of particle in a box system showing grid-points and the FEM 
roof functions {k} for N = 7. 

Note that these basis functions are normalized but not orthogonal. The overlap matrix S is 
obtained by simple integration: 
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The Hamiltonian consists of only the kinetic energy operator: 
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and we obtain the Hamiltonian matrix elements via integration by parts (c.f. equation 36), 
whereby only the first derivatives of the roof functions are required. Thus, 
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Now, we note that the structures of these translational Hamiltonian and overlap matrices in 
the FEM roof-function basis are precisely those of the standard Hückel model with overlap 
which we discussed above. Thus we merely identify the Hückel parameters as follows: 
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The energy eigenvalues,  i , and the corresponding matrix of eigenvectors, C, are given by 
equations (27) and (28). Since the basic form of the eigenvectors is independent of the 
magnitudes of the parameters ,  and , we can conclude that the Hückel eigenvectors for a 
linear polyene will be completely delocalized over the entire carbon back-bone of the 
molecule the same way as the eigenfunctions of the particle in a box. 

It is worth noting that the eigenvalues, , and eigenvectors, U, of the corresponding 
topology matrix, M, can be written in analytic form [42]: 
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where n is the n-th (exact) eigenstate of the particle in a box, as given by equation (53). The 
coefficients of the roof functions in a given global wave function n are thus the same as the 
coefficients for the 2pz AO-s at corresponding carbon sites in the Hückel scheme, all given by 
the numerical value of n evaluated at the grid-point in question. The analytic formulae in 
equations (59) and (60) actually found their way into the chemical literature as solutions of 
the Hückel equations for linear polyenes [42]. Analogous analytical formulae exist for 
(mono-) cyclic polyenes, where complete delocalization of the Hückel MO-s can be similarly 
demonstrated by analogy with the particle on a ring problem. 

Since the eigenvectors of the particle in a box correspond to wave functions that are fully 
delocalized within the square well, the model describes free translation of the particle inside 
the box. In other words, if at some time t = 0 the particle is represented by a localized wave-
packet ( ,0)x , the time-evolution of the latter is given by  
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and therefore the probability density, P(x, t), of this wave packet evolves in time according 
to 
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 where the eigenfunctions,  n , of the (time-independent) Hamiltonian, are assumed to be 
real. 

As an illustration of the movement of a wave-packet, let it initially correspond to the first 
roof function, 1, i.e., 

    1,0x x  . (63) 

The probability density at a given grid-point xk at time t is then 
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For N = 4 the application of this equation (utilising equations (27), (28), (59) and (60) for the 
coefficients {Ckn}and energies {En} yields the results shown in Figure 20.  

 
Fig. 20. Time evolution of probability density P(xk,t) at a given grid-point xk for a wave 
packet defined as the roof function 1 at t = 0, in a basis of 4 roof functions (N = 4), with the 
grid-point index k shown in the figure. 

The time-evolution of the densities at the four grid points within the box demonstrates the 
movement of density from one end of the box to the other including reflections from the 
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ends and the broadening of the initial wave packet. Since the time-independent eigenstates 
of the Hamiltonian are completely delocalized, an electron initially localized at one end of 
the box is able to freely traverse the box, i.e. fully access the available phase space. The time 
average of the probability density at a given grid-point is simply 

    
0

1lim ,k kP x dtP x t


 
  . (65) 

Approximating the integral by discrete summation, we define  kP x


 which represents 

the time average of the probability density calculated for a finite value of . A plot of the 
computed values of  kP x


 as a function of  for the current problem is shown in Figure 

21. It provides a convincing illustration of the rapid convergence and uniformization of the 
probability densities at the various grid points. The fully converged values are 

   1 4 0.3P x P x   and    2 3 0.2P x P x  . 

As shown above, the Hückel type Hamiltonian reflects translation which is free within the 
region spanned by the delocalized eigenfunctions. Hückel MO theory therefore describes 
the free translation of electrons among the atoms of the linear structures established by the 
carbon atoms of a planar conjugated hydrocarbon molecule, which form a “molecular wire”. 
The values of  and  will give the moving electron an effective mass and a velocity. The 
shifts in orbital energies, downward for bonding MO-s, which brings about the energetic 
stabilization of the molecule, are clearly associated with the “delocalization of the electronic 
motion.” The fundamental mechanism of covalent bonding is therefore electron 
delocalization. 

 
Fig. 21. Time averages of probability densities <P(xk)> as a function of the elapsed time , 
with the grid-point index k shown in the figure. 
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7. Quantum Ergodicity and the Hückel Model 
The Hückel model is about the coupling of carbon atoms, formation of delocalized 
molecular orbitals and electron translation along “molecular wires” but most of all it is 
about stabilization of -bonded conjugated hydrocarbon molecules. Why does 
delocalization lead to stabilization? The answer can be given at different levels of 
explanation. The simplest answer may be to appeal to the Uncertainty Principle, as it clearly 
defines the connection between spatial localization and zero-point energy of a quantum 
particle. This relationship is particularly clearly demonstrated by the behaviour of a particle 
in a box, as summarized by equation (52), whereby the (kinetic) energy of the particle is 
inversely dependent on the size of the box, L. The more we localize particle motion, by 
reducing L, the higher the zero-point energy becomes along with increased spacing between 
energy levels, since 
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n h

E E
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  . (66) 

Thus, it is clear that if the interaction of atoms results in delocalization of the valence 
electrons, then this must, in general, decrease the occupied orbital energies of the system 
and thereby its total energy, resulting in the formation of a molecule. This was discussed by 
Hellmann [9], who, although aware of the Virial Theorem, emphasised the drop in kinetic 
energy due to delocalization upon molecule formation. Reality is however a little more 
complex. As indicated in the Introduction, the accurate energetics of molecule formation 
(which satisfy the requirements of the Virial Theorem) appear to contradict Hellmann's 
ideas, because they also account for orbital contraction. As shown by Ruedenberg and co-
workers [13, 38-41], the correct analysis of the energetics from the point of view of covalent 
bonding needs to separate the atomic orbital contraction effects from the molecular 
interference and delocalization effects. 

At another, and possibly deeper level of explanation, we point out that the reactivity of atoms 
is related to the presence of nonergodic constraints which are relaxed as the molecule forms, 
thereby lowering the energy. The concept of quantum ergodicity is not widely known nor 
without subtlety. A classical (microcanonical) system is said to be ergodic if its trajectory 
dynamics uniformly accesses, or covers, all parts of the (momentum-position) phase space 
which are consistent with a given total energy. Following the original suggestion of von 
Neumann, it was proposed [51] that a quantum system is ergodic if and only if the spectrum 
of energy eigenstates is non-degenerate. Thus a system with a degenerate energy specrum 
would be classified nonergodic. Subsequently it has been recognized that a degree of 
ergodicity could be discerned from the corresponding degree of regularity of the spectrum of 
energy eigenvalues, with an ergodic system displaying a smooth variation of energy gaps 
which translate into a corresponding smooth variation in the total density of states of the 
system [51]. By contrast, a nonergodic system would display random variations in the energy 
gaps. While there is no doubt about the validity of such a correlation between ergodic 
properties of a system and its spectral properties, we believe that quantum ergodicity is more 
directly related to the character of the energy eigenfunctions. This suggestion has been made 
and explored in earlier work on anharmonically coupled harmonic oscillators [52]. 
Consequently, the definition we adopt here is that a quantum system is ergodic if the energy 
eigenfunctions are maximally delocalized in any local basis set. The full implications of this 
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definition may not be immediately obvious. There are many conceivable local basis sets to 
examine and the meaning of “maximal delocalization” is not readily apparent either. 
However, in some cases the application of the above definition is straightforward. Such is the 
case with the Hückel model of conjugated polyenes, because the relevant local basis set is 
obviously the set of carbon 2pz AO-s which are used to construct the Hückel MO-s, as 
illustrated for benzene in Figure 22. 

In the absence of the coupling the localized basis functions form degenerate sets of zeroth 
order energy eigenfunctions. The coupling transforms them into -MO-s with a band of 
energies. The MO-s may be maximally delocalized or not, depending on the underlying 
molecular geometry. The larger the coupling and the greater the degree of delocalization, 
the broader the energy band becomes, with energy levels which are more evenly spaced. As 
the occupancy of the MO-s is in Aufbau manner, in order of increasing energy, the broader 
the band of energies, the greater the energetic stabilization. Thus, the ergodic character of 
the -MO-s, being indicative of the degree of delocalization and rate of electron transfer, 
leads to maximal binding.  

  
Fig. 22. Benzene: (a) Contour maps of 2pz AO, and (b) lowest energy Hückel -MO 
displaying delocalization and maximal spread in terms of the localized basis. (Plane of 
contour map: 0.32 a0 above molecular plane. Contour levels are 0.002×2n, n = 0,1,2,... ) 

A remarkable feature of the Hückel model is that the actual nature of the eigenstates is 
unaffected by the strength of the coupling. As indicated by equation (28), the relative 
contributions of the AO-s to a given MO is determined entirely by the topology of the 
molecule. The presence of overlap coupling between the AO-s only affects the normalization 
of the MO. Thus the slightest coupling leads to the formation of delocalized MO-s, as 
dictated by the topology of the molecule, which reflects a degree of ergodicity that is a 
geometrical feature, being independent of the coupling matrix element  and/or overlap . 
Only the rate of electron transfer among the atoms reflects the magnitude of the coupling. 
(Indeed, in the absence of any coupling, a polyene with n C-atoms would be n-fold 

(a) (b)
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degenerate which would be unaffected by any unitary transformation of the AO basis, 
including the one that diagonalizes the topology matrix M of the molecule.) 

It should be clear then that from a fundamental quantum mechanical point of view covalent 
bond formation can be interpreted as the relaxation of dynamical constraints which make 
the non-bonded atoms or molecular fragments nonergodic. In H2+ for example, the 
important constraint is the spatial confinement of the electron to the vicinity of one of the 
protons when the internuclear distance is large. As the distance decreases towards the 
equilibrium value the localization constraint is relaxed and the electron is able to more 
rapidly delocalize over the two protons. The same mechanism operates in the formation of 
the 2-electron -bond in H2 or the analogous -bond in ethylene, but the process now 
involves two electrons of opposite spin. In the case of butadiene there is an additional 
stabilizing delocalization as the -electrons are able to move along the whole chain of four 
carbon atoms. Similar additional delocalization is present in longer polyene chains and in 
cyclic molecules such as benzene. The covalent bonding mechanism in all these molecules is 
consistent with a more ergodic form of electron dynamics in the molecules than in the 
corresponding H atoms or in a hypothetical ethylene system without a -bond ( =  = 0). 

It is instructive to examine the character of the energy eigenstates of a polyene chain with 
reference to the ergodic hypothesis. The conventional valence-bond picture of a conjugated 
polyene is in terms of alternating single and double bonds between the carbon atoms, 
although the importance of delocalization is recognised by the introduction of resonance 
involving several canonical structures. In the Hückel MO model each carbon atom 
“donates” a 2pz AO towards the formation of delocalized -MO-s, which are then occupied 
by the -electrons of the molecule, one from each atom. Thus, -bonding is delocalized right 
from the start, although it is customary to describe the individual CC bonds in terms of 
bond orders, which are readily obtained from the MO coefficients and which for a polyene 
typically range from ~0.5 to ~0.8. As noted already, correction for non-zero overlap will 
renormalize the MO-s but will not affect the relative magnitudes of the coefficients. We 
claim that the Hückel eigenstates exhibit maximal delocalization in the 2pz AO basis. The 
support for this claim comes from the fact that the Hückel MO-s are formally equivalent to 
the particle-in-a-box eigenfunctions expanded in terms of roof functions, as discussed in the 
previous section. As this analogy has general applicability, we conclude that Hückel models 
of polyene chains exhibit full ergodicity and free translation of all electrons within the 
bounds established by the molecular chain. 

In the case of cyclic polyenes, exemplified by benzene, the rotational symmetry and the 
cyclic boundary conditions impose restrictions which, as shown in Figure 17, result in two 
pairs of doubly degenerate (highest occupied and lowest unoccupied) MO-s. Such a pattern 
is typical of cyclic polyenes: Systems with an even number of carbon atoms have just two 
non-degenerate -MO-s and only one, if the number of carbons is odd [42]. Application of 
the von Neumann definition to the latter would imply that the electron dynamics in cyclic 
polyenes is not fully ergodic. The degeneracies arise, however, as a result of the rotational 
character of electronic motion in systems with only cyclic boundary conditions and they 
correspond to the classical nonergodicity associated with the absence of reflection. Thus, the 
direction of motion, forward or backward, is an additional constant of motion. The motion is 
nonergodic for the trivial reason that direction cannot be reversed, but the rotation is still 
“free” in the sense that there are no barriers of any kind.  
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The analogous free electron MO model of cyclic systems is “the particle on a ring” whose 
energy eigenvalues and eigenfuctions are [42] 
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where n = 0, 1, 2,…, I is the moment of inertia of the particle and  is the angular 
coordinate. With the exception of the ground state (n = 0) all states are doubly degenerate, 
forming forward and backward rotating pairs of eigenstates at each energy. 

8. Chemical bonding and delocalization 
Recognizing the central role of delocalization in the quantum mechanical description of 
molecular electron structure, chemical bonding can be given a unified and physically correct 
description. We recognise that there are two separate sources of stabilization:  

i. Transfer of electrons due to differences in electronegativity, and  
ii. Delocalization of electronic motion.  

In both cases the process of bonding brings the system towards ergodic and rapid electron 
dynamics. Due to the inherent asymmetry between bonded atoms in the former case, the 
ergodic dynamics in such systems is largely local, resulting in the type of interaction which, 
in the limiting case of complete charge transfer, we describe as ionic bonding. The covalent 
bonding mechanism, illustrated so clearly by the application of Hückel theory to polyenes, 
which implicitly accounts for resonance stabilization that is associated with conjugation and 
aromaticity, is a direct consequence of the relaxation of constraints which releases the 
bonding electrons to move freely among the bonded atoms of the molecule.  

It is widely appreciated that ionic and covalent bonding represent two limiting bonding 
scenarios, with a continuous spectrum in-between, including bonds described as ionic 
bonds with covalent character, polar covalent bonds or covalent bonds with ionic character. 
Molecular orbital theory naturally covers all possible cases. This is most easily demonstrated 
by using perturbation theory to deduce the eigenvectors and eigenvalues (correct to first 
and second order respectively) of the following model Hamiltonian for a hypothetical 
heteronuclear diatomic molecule with two valence electrons, in a basis of two valence 
orbitals a, b, which are localized on the two atoms, a and b: 

 
 
  
 

    
H . (69) 

In this equation  (>0) is nominally the difference in ionization energies of the two atoms, 
i.e. an energetic measure of their electronegativity difference. Assuming that a and b are 
orthogonal, the MO-s (in non-normalized form) and their energies are readily shown to be 
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provided /  1. In the limiting case of very large electronegativity difference and 
sufficiently small coupling, i.e. /  0, the model predicts ionic bonding, whereby a, the 
lower energy MO, accommodating both electrons, is entirely localized on atom a. The 
energetic stabilization of the ion pair is of course due to the Coulomb attraction of the 
oppositely charged ions. For small but finite values of /, a contains some contribution 
from b, i.e. there is some delocalization, signalling a degree of covalent character to the 
predominantly ionic bond. These effects increase with decreasing , corresponding to 
increasing covalency (through the regime when low order perturbation theory is no longer 
applicable). In the limit of  = 0 we have a homonuclear diatomic with fully delocalized 
MO-s 

 a b      (72) 

and a fully covalent bond with the two electrons equally shared by the two atoms. 

In extended systems, ranging from just triatomics such as NO2 to polyenes like benzene to 
crystalline solids such as graphite there is an increased degree of delocalization that can 
extend over the whole molecule, culminating in macroscopic delocalization that takes place 
in metallic systems such as solid sodium or graphite. Thus, metallic bonding is just a natural 
extension of the very basic covalent bonding mechanism that occurs in H2+! The success and 
reliability of computational models based on MO theory to systems ranging from diatomics 
to proteins and to solids (in the form of the tight binding method briefly discussed above) 
provides convincing practical support for our belief that the MO model contains all the 
essential physics needed to correctly account for the wide range of bonding interactions of 
atoms and molecules that account for the chemistry of our world. 

Depending on the system of interest and the accuracy we require of a specific calculation, 
the basic MO model may need to be extended so that the computed molecular wave 
function better approximates the exact wave function. This requires the use of large orbital 
basis sets as well the explicit inclusion of dynamical electron correlation, predominantly 
between electrons of opposite spins, which, by definition, is neglected in the Hartree-Fock 
formalism. For example, the quantitative prediction of a covalent bond dissociation energy 
requires the inclusion of correlation in the quantum chemical model since correlation 
contributions to bond dissociation energies are typically 25 - 50%. Another well-known 
deficiency of the (single configuration) Hartree-Fock method is its inability to correctly 
describe dissociation processes which involve the breaking of one or more two-electron 
covalent bonds, as occurs e.g. in the dissociation of H2 (from its ground state), which 
requires a multi-configuration treatment, i.e. the inclusion of non-dynamical (static) electron 
correlation. Irrespective, however, of the nature of the correlated wave function, whether it 
is multi-configuration SCF, configuration interaction or coupled cluster, it implicitly 
includes electron delocalization. This is obvious when a given correlated wave function is 
constructed in terms of delocalized MO-s, such as canonical SCF MO-s, or even localized 
SCF MO-s, e.g. two- or three-centre bond orbitals and lone pair orbitals, which, relative to 
the atomic orbitals, are of course considerably delocalized. Delocalization is less obvious 
when the total wave function is constructed directly from atomic orbitals, as in Valence 
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Bond Theory. For example, the Heitler-London wave function of H2 is built in terms of 
atomic configurations 1sa(1)1sb(2) and 1sb(1)1sa(2). While these correspond to localized 
electrons (on atom a or b), their (in-phase) combination, representing the ground state of H2, 
is clearly a delocalized two-electron wave function. 

9. Implications for Thomas-Fermi and modern Density Functional theories 
We have seen above the direct relation between covalent bonding and valence electron 
dynamics which in turn is related to canonical orbital delocalization and energy splitting. 
The original Thomas-Fermi theory effectively assumes ergodicity of electronic motion and 
maximal transfer rates which in molecular orbital representation would mean maximally 
delocalized and energy separated canonical orbitals. Thus the atoms are according to the TF 
theory already relaxed into inert gas form and molecules are unstable since the effects on 
stability due to dynamical constraints posed by atomic shell structure and potential barrier 
hindrance of interatomic electron transfer cannot be resolved to favor molecule formation. 
Here we have emphasized the value of the understanding this failure provides concerning 
the mechanism of covalent bonding. The obvious follow up question is whether it is – given 
this understanding – possible to correct Thomas-Fermi theory and obtain a more useful but 
still “orbital free” form of TF-theory. 

It is clearly possible to remove the assumed ergodicity with respect to spin-flipping as we 
have done here in our analysis of the hydrogen atom and the hydrogen molecular ion. It is 
also possible to recognize that quantization must be done separately and individually for 
the atoms of an infinitely expanded molecule. Thus we could immediately see that the 
energy of H2+ would be lower at equilibrium separation than at infinite bond length where 
the energy should – with local quantization – be that of a hydrogen atom. In fact, we have in 
earlier work [4-7] explored the possibility of comparing traditional ergodic TF energies with 
nonergodic locally quantized TF energies to estimate the reactivity of atoms and the 
maximal stabilization possible by assuming that there were no dynamical constraints on the 
electronic motion for a molecule at its equilibrium geometry. This work was done using 
simplified exponential electron densities and empirical von Weiszäcker correction to allow 
atomic TF energies to agree with experiment or accurate quantum chemical results. The 
results have clearly shown that Thomas-Fermi theory, with or without spin and space 
localization imposed on the electronic motion and therefore also on the quantization, is 
capable of providing a measure of atomic reactivity and bonding efficiency in the formation 
of molecules. The picture one finds is in good agreement with chemical intuition. First row 
atoms are more reactive than those in the second row. Oxygen is the most reactive atom and 
– due to Pauli and internuclear repulsion and remaining constraints on electronic motion – 
only a small fraction (typically a quarter) of the stabilization energy available in principle is 
actually realized in the molecule at equilibrium.  

An “orbital free” true density functional theory that can accurately predict reactivity and 
covalent bonding at all stages of molecule formation has still not been found. This is in itself a 
signal that covalent bonding is not – despite the Hohenberg-Kohn theorem [53] – readily 
described in terms of electron density. Wave functions, here in terms of one-electron orbitals, 
provide the best route to covalent bonding. The reason is, we hope, very clear from our 
analysis above: the canonical orbitals of Hartree-Fock, Hückel or modern density functional 
theory capture the character of the electron dynamics in the most direct manner and thereby 
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also reactivity and bonding. It has been noticed in connection with DFT applications to solids 
[54] that Thomas-Fermi theory can be corrected for the “nonbonding flaw” by a zeroth order 
orbital calculation where the one-electron Hamiltonian is generated from the Thomas-Fermi 
electron density and no iterations to consistency are performed. We have independently 
investigated such orbital corrections and verified [7] that the Thomas-Fermi results for electron 
densities of molecules can similarly be used to generate approximate one-electron 
Hamiltonians of the Fock or Kohn-Sham type which then yield energies of a quality nearly as 
good as that obtained by converging the corresponding Hartree-Fock or DFT calculations. This 
again illustrates the power of the molecular orbital analysis and the fact that it so effectively 
comprises and corrects the flaw of the Thomas-Fermi theory. 

A final reflection on the evolution of modern DFT suggests that it is – perhaps surprisingly – 
more beholden to the Kohn-Sham method of estimating kinetic energy by an introduction of 
orbitals than it is to the Hohenberg-Kohn theorem which gave the density functional theory 
of electronic structure its legitimacy. Without a solution to the “nonbonding flaw” DFT 
would have remained of marginal interest in the great computational advance on molecular 
and solid state electronic structures over recent decades. The Kohn-Sham scheme inserted 
the molecular orbital analysis which – precisely as in the Hückel theory above or in the 
orbital correction of Thomas-Fermi theory – effectively resolved the electron dynamics and 
related mechanisms of reactivity and bonding. This suggests that improved functionals of 
either higher accuracy or computational efficiency must retain the ability to resolve the 
electron dynamics – if not by orbitals then by some other method no less able to describe the 
intimate coupling between electronic motion and stability. 

10. Conclusions 
The contrast between the total failure of the Thomas-Fermi theory and the success of the 
Hückel molecular orbital model in describing covalent bonding has shown very clearly that 
the mechanism of bonding is fundamentally of dynamical origin. Interatomic transfer of 
valence electrons, present to a degree in the molecule but absent between the separated 
atoms, relaxes the energy penalty of the constrained quantization in a dissociated molecule. 
The molecular orbitals obtained either by the application of Hückel theory, or by ab initio 
Hartree-Fock methods, capture the delocalization and orbital energy splitting which 
represent the spatial degree as well as the rate of valence electron transfer which underlies 
covalent stabilization. Thomas-Fermi theory employs an ergodic quantization scheme as if 
the delocalization and the rate of electron transfer were always maximal irrespective of 
bond lengths and potential and other barriers restraining such a flow. As soon as it is 
recognized that quantization must be done independently for separated atoms, Thomas-
Fermi theory becomes capable of addressing reactivity and bonding. The non-bonding flaw 
is then identified, but without the use of molecular orbitals the quantitative prediction of 
covalent stabilization as a function of bond length is still too demanding for Thomas-Fermi 
theory. The obvious remedy to the problem was proposed by Kohn and Sham [55] in their 
famous prescription for the evaluation of kinetic energy. Our view is that the reintroduction 
of molecular orbitals, as in the Hückel model, provides the key to the quantitative 
representation of the valence electron dynamics and its effect on covalent stability. 

The dynamical mechanism of covalent bonding as described above allows us to understand 
why earlier explanations of covalent bonding as due either to kinetic energy lowering or 
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electrostatic potential stabilization through electron density redistribution and build up of 
density around bond midpoints have led to persistent disputes. Both these mechanisms play 
a vital but subsidiary role to the dynamical relaxation which is the fundamental mechanism 
of covalent stabilization. Thus there are molecules with particular electronic structures 
and/or wave functions obtained by specific quantum chemical methods for which the 
description of bonding may agree or disagree with either of these earlier explanations of 
covalent bonding. This is because the fundamental valence electron transfer between atomic 
centres in the molecule may result in either potential or kinetic energy lowering which in 
themselves represent stabilization processes, but which are nevertheless less general than 
the underlying dynamical mechanism. Only the most general description of the mechanism 
will give us the full benefit of understanding the bonding seen in all types of molecules and 
computational methods.  

Our analysis above has focused on the qualitative understanding of covalent bonding but 
we are convinced that a gain in such understanding will also bring advantages in the 
quantitative prediction of bonding. There are good reasons to believe that such benefits will 
first be found in the development of new density functional methods with improved 
performance with respect to computational efficiency and accuracy. Our work so far indeed 
contains a number of suggestions for the improvement of DFT and we look forward to 
much further progress in the future. 
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1. Introduction 
Throughout these centuries, the origin of life is an intriguing question that still remains 
unanswerable (Nadeau & Subramaniam, 2011). Moreover, the growth and evolution of each 
living species in nature is governed by a life code, an acronym widely famous as DNA that 
means deoxyribonucleic acid (Rittscher, 2010). With a function of organic acid, the great 
DNA action consists into the organization and regulation of the genetic informations, which 
are simply so-called as genes (Gräslund et al, 2010). Thus, due to the immensity of genes to 
be taken into account, the DNA composition transformed it into a large olygomer formed by 
nucleotide subunits (Jung & Marx, 2005), and therefore DNA is considered one of the largest 
macromolecules ever known. Within the cellular environment, the DNA is organized into 
some very long structures so-named chromosomes, which are duplicated through the cell 
division process.  

In the view of the recent history, however, in fact DNA is considered the cornerstone of the 
biological science, and therefore the appealing to investigate its structure was always an 
exciting task. Briefly, in 1868 the physicist Miescher (Dahm, 2008) has proposed the first 
DNA evidences. After that, precisely in 1878, the nucleic acid was isolated as primary 
nucleobases by Kossel (Jones, 1953). However, only in the beginning of the last century that 
these nucleobases were understood as being formed by phosphate groups linked by ester 
bonds of the 2-deoxyribose (see Fig. 1). Some time later, the discovering of the X-ray 
diffraction by Röntgen (Frankel, 1996) has aided Astbury (Astbury, 1947) to conclude that 
DNA had a regular structure. Furthermore, it was by the X-ray diffraction studies of 
Franklin and Gosling (Franklin & Gosling, 1953), in 1952, that Watson and Crick (Watson & 
Crick, 1953) informed the most modern structure of DNA as a double-helix form (Watson, 
1980).  

The DNA double-helix is stabilized by means of hydrogen bonds between nucleotides as 
well as stacking interactions among the aromatic nucleobases widely known as adenine (A),  
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Fig. 1. Representation of the DNA structure. 

cytosine (C), guanine (G) and thymine (T), which are tied to ester/phospate. In this context, 
it is widely established that these two types of base pairs form different hydrogen bonds. In 
other words, A and T form two hydrogen bonds N–H···O and N···H–N, whereas G and C 
form three hydrogen bonds O···H–N, N–H···N, and N–H···O, as can be seen in the Fig. 2. 
On the other hand, the stability of the DNA is also ruled by the interactions formed by G 
and C, which are recognized as intra-strand base type of stacking. 

 
Fig. 2. Illustration of the hydrogen bonds between nucleotides. 

The biological science is well-known as one of the most interdisciplinary areas due to the 
large number of molecular processes occurring simultaneously within the living organisms 
(Cech & Rubin, 2004), in particular those related to the DNA functionality. Until nowadays, 
however, the discovery of the DNA structure is seen as one of the most important scientific 
conquests of all time. It was by this bioscientific scenery that an immense variety of contexts 
were grouped to congregate one unique idea: molecular recognition and its biochemical 
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functionality (Iqbal et al, 2000; Laskowski, 1996). According to Hitaro (Hitaro, 2002), the 
biological understanding is closely related to the examination of structure and dynamics of 
the cellular functions in a cooperative way, not in isolated parts of the own organism. In 
corroborating to this, as a guide Stahl et al (Stahl et al, 2010) affirm that the molecular 
recognition is stated whether an attractive interaction provoked by the approaching of two 
molecules, which possess at least a slight difference of electronegativity between them. So, 
we would like to emphasize that a careful attention to the knowledge about the profile of 
the interaction types seems to be necessary.  

Some time ago, a historical review signed by Martin and Derewenda put in proof a ransom 
of the concepts related to the hydrogen bonding (Martin & Derewenda, 1999). It was quoted 
some important researchers in this regard, such as Linski, Orgel, Nernst, Werner, and finally 
Lewis, that is considered one of the pioneers of the contemporary chemistry at work with 
systems formed via hydrogen bonds. However, Latimer and Rodebush have published the 
first report about hydrogen bond investigations in aqueous medium. Well, Astbury 
suggested a structure to the alfa-queratine caused by interactions of the NH and CO groups 
on the peptide bonds. Pauling and Mirsky revisited the protein structure and emphasized 
that peptide bonds were formed through the hydrogen bonds between the oxygen and 
peptide nitrogen. In meanwhile, Huggins has carefully analyzed the results reported by 
Astbury (Astbury, 1947), and noted that the amide hydrogen to behave out of the plane 
unless molecular resonance effects were enhanced, so that the single pair of electrons of 
nitrogen was also in the peptide chain.  

Nevertheless, the theory cyclol of proteins in the peptide chain advocated by Wrinch have 
the form –C(OH)···N instead of –(CO)···(NH)–, as it was known. In theory, no classical 
hydrogen bond could be formed. Thus, Pauling was quick to recognize the flaws in your 
publishing model in July 1939, in which he emphasized the planarity of the peptide bond. 
Pauling published his article weeks before the Nazis invaded Poland on September 1. 
However, the same year Pauling also released his classic book ‘The Nature of the Chemical 
Bond’, who was one of the leading spokesmen for the dissemination and development of 
the history of chemical bond and hydrogen bond, so far. After several years of insights 
and discussions, Pauling affirmed in its theories that hydrogen bonds (Y···H) are formed 
by electronegative differences between proton donors (H) and their acceptor ones (Y), as 
already mentioned (Pauling, 1939). However, Pimentel and McClellan did not agree with 
this electronegative criterion, and they stated that hydrogen bonds can exist if the 
hydrogen is bound to any other atom (Pimentel & McClellan, 1960). Some years later, 
theoreticians established some physical conditions in order to unveil the nature of the 
hydrogen bond. For instance, when the electrostatic attractive is the dominant 
phenomenon undoubtedly the intermolecular system is stabilized by means of hydrogen 
bonds (Umeyama & Morokuma, 1977). In opposition to this, van der Waals systems are 
widely known as weakly bound because the London dispersion forces are the main 
contributions (Cukras & Sadlej, 2008).  

Traditionally, besides oxygen, but fluorine and nitrogen are the most known proton 
acceptors in systems stabilized at light of the H···F and H···N hydrogen bonds. However, 
the proton character is a quite accepted parameter, and thereby, the hydrogen bond model 
leads to X–H+δ···Y-δ. It can be perceived a charge separation interpreted as charge 
transference between HOMO and LUMO orbitals of the proton donor and acceptor, 
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respectively. With this in mind, it was established that other proton acceptor types can be 
useful, such as the unsaturated hydrocarbon centers, by which the X–H+δ···π-δ hydrogen 
bonds emerged with great evidence. In this scenery, it become stated that a single element is 
not answerable for the formation of the hydrogen bond, but ideally the cornerstone of this 
interaction is site with high electronic density, which at this time is assumed as formed by 
electronegative elements or unsaturated bonds. The magnificence of the π centers becomes 
reliable upon the formation of the π-δ···π-δ sandwich stacking, whose profile is known as one 
of the weakest interaction with strength in range of 1-3 kcal/mol, being considered then as 
London’s dispersion forces beyond the van der Waals contacts often devoted to weak 
hydrogen bonds.  

The interpretation and forward comprehension of all kind of events and phenomena 
inherent to the DNA environment is not an easy task (Šponer et al, 2001-2002), but in recent 
years the applicability of the chemical methods, physical theories and spectroscopy analyses 
have been decisive in accurate investigations of the biological systems (Shogren-Knaak et al, 
2001). On the other hand, this has yielded intense debates among the expert theoreticians, 
and a lot of computational approaches have been implemented with the purpose to 
decompose the total energy into the following terms: electrostatic, dispersion, charge 
transfer, polarizability, and exchange potential (Umeyama & Morokuma, 1977). Surely, 
other interaction types also occur, such as dihydrogen bonds, halogen bonds or stacking, but 
in practice the most important is the availability of appropriated methodologies to the 
examination of all properties of these interactions. In general, this requirement is displayed 
on the basis of theoretical calculations, such as those from ab initio, semi-empirical or DFT 
nature, where all of them are always implemented to seek and find the deeper potential 
energy surface.  

On the other hand, a long time the scientific community would felt a necessity of a 
theoretical method by which the chemical bond content could be elucidated in its essence. 
Indeed, this theoretical method has emerged 40 years ago due to an insight of Bader based 
in catching information computed directly from the electronic density. Baptized as 
Quantum Theory of Atoms in Molecules (QTAIM) (Bader, 1990), this method models all 
points of molecular surface through the integration of the electronic density by taking into 
account the formalism of quantum mechanics for subspace. Thus, the principle adopted by 
Bader was purely based in quantum mechanics, but with the purpose to describe the atomic 
behaviour within the molecular environment. By revisiting the trajectory of the QTAIM 
development, Bader simply took into account the atomistic cooperative activity, by which 
atoms were defined in a molecule as open systems able to exchange charge and momentum 
with their neighbours. 

The QTAIM benchmark is treat confined systems by means of boundary conditions, in 
which the molecular or atomic surfaces and their shapes are enable to transfer momentum.  

 ρ(r).n(r) = 0 for all points on surface S(Ω) (1) 

In a recent chapter, Bader (Bader, 2009) has discussed that proper open system are defined 
by equation of motion for an observable Ĝ as follows: 

��2� �(���)��∗���� ������ � ��� � �12� ����(�� �)��(�)� �(�) � ��� (2)
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Where the expressions for J�(r) and its property density ρ�(r)	are given by: 

��(�) = � ℏ
2������� ��∗�����(�)�� � ���∗���(�)��� (3)

��(�) = ��2� ���� �∗���(�)�� � �∗���(�)��� (4)

The great goal here is transform each property into a particle density in a real space in 
according to the operation of ���, which sums the spins over all coordinates denoted by r in 
a surface space indicated by Ω. If we take into account that Schrödinger and Heisenberg’s 
equations define the changes on state function and how these changes affect an average 
value of an observable. In this context, one of the most appropriated procedures to obtain a 
great relationship concerned to the observable, energy (E) for instance, is dedicated to the 
Ehrenfest’s theorem, by which the time rate of change of the average values of an electronic 
position r� and momentum p� = �ℏ� yields the following relation: 

�< �̂ >
�� =< ����(�) =< F̂ (�) > (5)

F� means a force exerted on an electron at position r� by an average distribution of the 
remains electrons as well as by a nuclear framing yielding the force exerted on the electron 
density. In a real surface space, this kind of force is computed as: 

�� = � ���
�

��∗(�����)�� = � ����(�)
�

= ����(�� �)��(�)� �(�) (6)

In this equation, the momentum of flux density of the QTAIM is distinguished by the stress 
tensor ��(�) , whose physical nature indicates a dimension of energy density. 

��(�) = � ℏ
�

��� ��
∗�(��) � �(��∗)� � ��∗�� � ����∗� (7)

The stress tensor σ�(r) is defined through the derivation of the Newton’s equation of motion 
(Bader, 1991):  

��� < �� >
��� =< ��(�) (8)

The Lagrangian formalism should be used to account the kinetic (K) and potential (U) 
energies, what results in the next equation: 

� = ��� �
2 � �(�) (9)
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To set out the QTAIM formalism, it was used the principle of least action for particle motion 
in subspace conditions. Well, the principle of least action states that a quantity (q) derived 
from wave function is minimized in space and time (t1 and t2) and the atomic surface of a 
open system is modelled as a zero-flux surface, by which the time variations in end points is 
zero (see Fig. 3), as well as the surface also is zero in the extreme of functions, what can be 
summarized as: 

����(�) = � ������ −
�
�� �

��
��� ���

��

��
���� = 0 (10)

 
Fig. 3. Description of the principle of least action. 

In this equation, L symbolizes the Lagrangian defined by the kinetic (K) and potential (U) 
energies. In surface, W12 vanishes according to the Euler-Lagrange equation, and therefore, 
the Schrödinger’s equation for normalized wave function can be determined as: 

 ��� − �� = 0����∗ − ��∗ = 0 (11) 

with H� = − ℏ�
��∇� + U�. In terms of quantum mechanics, the Lagrangian of the state functions is 

defined as: L(Ψ, Ψ, Ψ� ,t). In regards to the first-order variation in Ψ, it can be obtained the 
Schrödinger’s equation �ℏ ����� � = H�Ψ as the Euler-Lagrange equation Ψ(q,t) dependent of 
time. In this context, by solving the Schrödinger’s equation ĤΨ = EΨ on the basis of the 
classical Hamilton-Jacobi equation for a stationary state reduces the quantum Lagrangian to 
J(ψ, ψ) in order to minimize the total energy. If the wavefunction is normalized, an 
undetermined multiplier in J(ψ, ψ) is executed, thereby a new functional G(ψ, ψ ) is 
obtained. Moreover, it should be pointed out that G(ψ, ψ) and L(Ψ, Ψ, Ψ� ,t) are functional 
of ψ and Ψ whose kinetic energy are respectively given as follows: +�ℏ���� � ��. �� > 

and −� ℏ���� � �∇�Ψ >. Thus, it can be stated the difference between two forms of kinetic 
energy as proportional to the Laplacian (L) of the electronic density: 

� − � = � − �ℏ
�

����
∗��� − � ℏ

�

�����
∗. �� = −�ℏ

�

����
�� (12)

Ruled by the Gauss’s surface theorem over a spatial region S(Ω):  
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� − � � −� ℏ
�

4��� �����
�

 (13)

� − � � −�ℏ
�

4�����(�) ��(�)� � (14)

where K(Ω) and G(Ω) represent the kinetic energy densities, which are equivalent to the 
Laplacian of the charge density, 2ρ(r). If the surface S(Ω) is one of zero-flux at any point r 
where n is a normal vector, K(Ω) = G(Ω) and becomes established the equation (1), whose 
meaning defines the surface by which the atom is delimited as zero-flux of charge density 
(Fig. 4). In other words, the value of the first electronic density derivative is zero, whereas 
the second derivatives go to a minimum or maximum of charge concentration.  

 
Fig. 4. Topology with representation of the zero-flux surface. 

The relationship between surface conditions and high and low electronic density sites is 
ruled by the virial theorem. By assuming the contributions of the kinetic and potential 
energies, elevated and depressive charge density regions are modelled by the positive 
(kinetic energy density G is positive) and negative (electronic potential energy density U is 
negative) Laplacian values, as demonstrated by the equation (16):  

2� � � � �ℏ
�

4���
��(�) (15)

� � �ℏ
�

4m��
�ρ(r) − 2G (16)

with 
2

G N ψ * . ψdτ
2m

  
 , in which G is the gradient kinetic energy density and Ψ is an 

antisymmetric many-electron wavefunction (Matta & Boyd, 2007). By the action of the 
kinetic (G) and potential (U) energy operators, QTAIM identifies maximum and minimum 
of electronic density in the molecular surface and the chemical bonds are classified as 
closed-shell whether 2ρ(r) > 0 or shared interactions when 2ρ(r) < 0. As aforesaid, the 
negative Laplacian indicates high concentration of charge density (uphill) whereas depletion 
of charge density is motivated by the positive Laplacian (downhill). The Laplacian 2ρ(r) is 
defined by the sum of the eigenvalues of the Hessian Matrix H (2ρ(r) ≡ λ1 + λ2 + λ3) (see 
Equations 17), whereas the electronic density ρ(r) is described as a set of critical points, such 
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as Cage Critical Points (CCP), Ring Critical Points (RCP), Bond Critical Points (BCP), and 
Nuclear Attractor (NA).  
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All these critical points are specific, and their internal formalisms are ruled either by the 
sum of the eigenvalues signs (λ1 + λ2 + λ3) as well as by the number of non-zero eigenvalues. 
Therefore, it is obtained a coordinate pair (r, s), which can be used to classify the critical 
points above cited. For instance, the coordinates of CCP, RCP, BCP, and NA are (3,+3), 
(3,+1), (3,-1), and (3,-3). As explained above, r is a coordinate where a normal vector is 
aligned perpendicularly to molecular surface, but now r is interpreted as an intermediary 
point wherein two gradient paths of electronic density emerge from two bonded nuclei. 
Actually, this analysis is routinely applied in many investigations, in particular the 
application in systems formed by hydrogen bonds must be worthwhile. As widely 
established, these arguments have been also applied successfully to study π-systems 
(Oliveira & Araújo, 2011) and hydrogen-bonded complexes (Oliveira et al, 2009). As such, it 
can be seen critical points as extremes of electronic density, that is, maximum or minimum 
in each particular case. For instance, the BCP coordinates (3,-1) implies that the 
tridimensional (x, y, z) electronic density is extreme, whereas -1 is the summed result of two 
maximum (two -1 signs) and one minimum (one +1 sign) of electronic density. By the nature 
of the π···H hydrogen bonds, the proton donor is aligned perpendicularly to the π cloud, 
but in regards to QTAIM critical points, the BCP (3,-1) between the carbon atoms above 
mentioned is the attractor for the bond path linking the hydrogen to the C≡C, C=C, and C–C 
bonds. In this context, the coordinate (3,-1) is considered an able QTAIM source to accept 
protons along the CC bonds.  

One of the most usual types of interactions existing in DNA structure is the hydrogen bond. 
As already mentioned, the formation of a hydrogen bond claims by one center with high 
electronic density, such as those containing lone electron pairs. In this context, a lot of 
proton acceptors possessing great electronic density have been exhaustively examined, e.g., 
hydrogen peroxides (HP). The great insight to investigate the capability of hydrogen 
peroxide in genetic environment is due to its presence in human blood as a metabolic 
bioproduct. It is widely reported the formation of several interaction complexes at the DNA 
level, of which the adenine base is one of the most used in this regard. Thus, the work 
elaborated by Dobado and Molina (Dobado & Molina, 1999) display great informations 
about the formation of hydrogen complexes on the DNA structure, in particular those 
composed by adenine and HP. As depicted in Fig. 5, there are multiple hydrogen bonds 
formed, in general, they are mutual once HP is functioning either as proton acceptor or 
proton donor, and due to this it is not easy to estimate the real strengths of these hydrogen 
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Fig. 5. The adenine···hydrogen peroxide complexes 

between 1.8 Å and 2.1 Å. In terms of the QTAIM approach, by the topological contour plots 
of these geometries illustrated in the Fig. 6 became reliable to put in discussion the 
hydrogen bond profiles between adenine···HP.  

 
Fig. 6. 2(r) contour maps for the hydrogen bonds. 
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As can be seen, the structural nature of the hydrogen bond within these complexes is justly 
cyclic once two intermolecular BCP were located adenine and HP. According to QTAIM 
virial theorem of electronic energy, these BCP above mentioned are the source to obtain the 
Laplacian and electronic density quantities. It can be observed that the N–H···O 
(adenine···HP) and O–H···N (HP···adenine) hydrogen bonds were characterized not only in 
terms of the positive values of Laplacian fields and low amounts of electronic density, but 
also by the location of the RCP, what leads to the identification of large cyclic structures 
formed by seven or up to eight members. However, the charge concentration measurement 
on the RCP is valid to debate the hydrogen bond strength. As such, it was computed the 
higher (r) value of 0.04 e/ao3 for O–H···N, whereas it was found 0.025 e/ao3 for N–H···O. In 
spite of this, the 2(r) values of 0.1 e/ao5 and 0.06 e/ao5 also indicate that O–H···N is a pure 
closed-shell interaction albeit N–H···O cannot be one a typical one. In other words, the 
hydrogen bond is formed when HP is the strongest proton acceptor, what in this sense 
could be concluded that HP is a Lewis’s base.  

The formation of hydrogen bond is a quite diversified event and not occurs uniquely by 
means of independent species or isolated monomers, but also within the same structure 
whether the acceptor and donor of protons are located in appropriated molecular sites. 
This type of interaction is recognized as intramolecular, and its functionality on the DNA 
structure has been well examined. In this context, Hocquet (Hocquet, 2001) provided an 
explanation to the different conformations C3’-endo/anti and C2’-endo/anti of the 
deoxyribonucleosides, namely as 2’-deoxycytidine (dC), 2’-deoxythymidine (dT), 2’-
deoxyadenosine (dA), and 2’-deoxyguanosine (dG) pictured in the Fig. 7 due to the 
formation of intramolecular hydrogen bonds between the purine base and the sugar 
group.  

 
Fig. 7. Chemical structure and atom numbering of the four 2’-deoxyribonucleosides.  
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Fig. 8. Geometry optimized structures of 2’-deoxycytidine (dC) and the molecular graph 
showing all BCP and RCP. 

The QTAIM calculations used to examine the conformations of these deoxyribonucleosides 
revealed the existence of BPs and an intermediate BCP along them. In according to the 
molecular graph (see Fig. 8), it is quoted the formation of the O5’···H6, O5’···H2’ and 
O2···H1’ in C2’-endo/anti, whereas O5’···H6 and O4’···H6 interactions in C3’-endo/anti. In 
comparison with other traditional works, the values of the electronic density and Laplacian 
correspond to median hydrogen bond strength, although it should be mentioned that low 
(r) values followed by positive 2(r) provide a closed-shell interaction. In this scenery, we 
would like to say that the proton donor feature of H6 diminish as follows dT > dC > dA > 
dG. Nevertheless, it was demonstrated that dT shows higher electronic density in 
comparison to the remaining deoxyribonucleosides. In exception, the C2’-endo/anti 
conformation of dC presents an O5’···H6 hydrogen bond weak, but in other hand, the C3’-
endo/anti conformation has a normal electronic density value but its Laplacian is very high, 
what signify the existence of closed-shell interaction. 

Subramanian et al (Parthasarathi et al, 2004) have used QTAIM topological parameters, such 
as electronic densities, Laplacian shapes, and chemical descriptors to investigate the 
formation of DNA base pairs and which hydrogen bond profiles are formed among them. In 
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Fig. 9 is illustrated the bond paths, BCPs as red dots, and RCPs as yellow dots of the 
Guanine···Cytosine Watson and Crick (GCWC) and 2amino-Adenine···Thymine 
(2aminoAT) DNA complexes, which are formed by means of three stable hydrogen bonds. 

 
Fig. 9. Molecular graphs of DNA bases. 

Initially, the QTAIM protocol indicates the existence of the hydrogen bonds N–H···O and 
N–H···N in conformity with their positive Laplacian values accompanied by low electronic 
density accounts, meaning the existence of a closed-shell interaction between these DNA 
entities. So, if we take into account the Koch and Popelier’s criteria to ensure the 
characteristics of hydrogen bonds (Koch & Popelier, 1995), the alterations on the charge 
density of the proton donors are one of the most drastic events occurred after complexation. 
Of course that the QTAIM topological parameters are used in this insight, such as the 
appropriated values of electronic density and Laplacian values at the BCP, or even the 
mutual penetration between proton donors and acceptors. 

Furthermore, one of the most important analyses in structures stabilized via hydrogen 
bonds is the measurement of its interaction strength, which can be obtained through the 
topological descriptors, e.g., electronic density, Laplacian, and electronic density energy, 
these in association with molecular parameters, such as interactions energies, structural 
distances, and vibrational stretching frequencies. In fact, these relationships have been very 
useful in studies of hydrogen-bonded complexes, but it was also used to investigate the 
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interaction strength between the DNA base pairs. Well, in Fig. 10 is plotted a relationship 
between the interaction energies and the electronic densities computed in each 
intermolecular BCP not only in regards to GCWC and 2aminoAT, but other DNA types are 
also included in this analysis, of which we can cite Cytosine···Cytosine (CC), two 
Thymine···Thymine configurations (TT1 and TT2), two Adenine···Adenine configurations 
(AA1 and AA2), as well as other ones.  

 
Fig. 10. Relationship between the interaction energy and total (r) of the DNA base pairs.  

Through the correlation coefficient value of 0.859 can be perceived a good and linear 
relationship between the electronic density in the range of 0.030 and 0.055 e/ao3 and the 
interaction energy between 9-15 kcal/mol. It can be seen that DNA pairing bases 
stabilized by three hydrogen bonds are most strongly bound, once the electronic densities 
of these systems are more than 0.05 e/ao3, and thereby they are not placed in the linear 
region. Notably, it is by the fact that the supermolecule approach is not accurate for 
determining the interaction energy in systems formed by three hydrogen bonds or higher, 
e.g. GCWC and 2aminoAT, we can assume that slight deviations in the linear adjustments 
should occur.  

Nevertheless, additional hydrogen bonds beyond than two previously identified are 
possible, mainly in GG3 complex but in GG1 not. Ideally it could be possible to identify a 
bifurcate hydrogen bond O6···H(C8) and O6···H(N2) in GG1, although it was not possible 
to characterize any BCP or RCP for these two interactions, what makes QTAIM unfeasible to 
be used in this regard. However, the application of the Laplacian instead of the electronic 
density as topological descriptor to predict the interaction strength is very useful in many 
situations. To the best of our knowledge, the hydrogen bond strength on the DNA bases is 
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also unveiled through the relationship between the interaction energy and the Laplacian 
computed in each intermolecular BCP, either those with two hydrogen bonds or even with 
three ones. This relationship is illustrated in Fig. 11, by which a correlation coefficient of 
0.827 was obtained. We can observe that similar results were obtained in comparison to that 
presented for the electronic density. The low electronic density values as well as the 
depletion characteristic of the Laplacian corroborated themselves, and in this sense, these 
two QTAIM parameters show similar efficiency to predict the interactions strength of the 
DNA bases of pairs. 

 
Fig. 11. Relationship between the interaction energy and total 2(r) of the DNA base pairs. 

As is widely known, the interaction strength is the cornerstone to preserve the molecular 
stabilization, and in the DNA scenery, it has been demonstrated that their nucleobases 
provide the molecular stability of the DNA chains due to the number of the hydrogen 
bonds to be formed, and indeed, their strengths are included in this context. Among the 
DNA structures well-known, it has been noticed that π stacking and hydrogen bonds are 
the most important types of interaction that retains the DNA helical structure with great 
influence of the guanine and cytosine nucleobases. In an overview, these nucleobases in 
olygonucleotides form are stabilized by distinct energies, i.e., 20 kcal/mol for hydrogen 
bonds whereas 2.40 kcal/mol for π stacking. In order to understand the connectivity 
between hydrogen bonds and π stacking, a symbolic model system was examined, in 
which the action of the benzene upon the formation of the C6H6···GC and C6H6···CG 
complex must be worthwhile (Robertazzi & Platts, 2006). In according to the Fig. 12, the 
bond paths and BCP of the C6H6···GC (a) and C6H6···CG (b) complexes can be analyzed. 
The QTAIM results show that no significant variation could be found between (a) and (b),  
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Fig. 12. Topologies of (a) benzene···GC and (b) benzene···CG. 

i.e., the electronic density for the hydrogen bonds and π stacking are in the range of  
0.001 e/ao3. 

Likely, a decisive argument changes the conclusion highlighted above: inclusion of benzenic 
structures with the following substituents –NO2, –F, –CH3, –CHO, –OH, and –NH2 into the 
ternary complexes (a) and (b). This action should be useful to demonstrate that the 
hydrogen bonds and π stacking can be affected by the hardness (n) of the substituted 
benzene, whose definition according to the Density Functional Theory (DFT) (Geerlings et al, 
2003) is based on second derivative of electronic energy (E) with respect to the number of 
electrons (N) for a constant external potential (r)U  : 
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The great goal of this insight is the reduction of the charge transfer from guanine (G) to 
cytosine (C) with stacked substituted groups on the benzene structure. For example, 
changing –NO2 by –NH2 cytosine is a better proton acceptor with increase of the electronic 
density at the BCP of the hydrogen bonds H1···N3 and H2···O2, but otherwise, a worse 
proton donor causes an increase in the electronic density, what could lead to confirm surely 
that π stacking does influence the formation of hydrogen bonds between G and C. As can be 
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seen, hydrogen bonds and π stacking bring great deformations on the molecular sites of the 
DNA, but its ideal structure is preserved. In accord with Meggers et al (Meggers et al¸ 2005), 
DNA polymer analogous formed by π stacking interactions in agreement with Watson-
Crick pairing scheme of bases produces α-double helix with absence of the backbone sugar 
residues. Definitively, hydrogen bonds and π stacking interactions are not independent, as 
already discussed the influence between them.  

The nucleobases dimers are formed by π stacking interactions, which can be also 
subdivided into intrastrand (a) and interstrand (b), as illustrated below. As widely-
known, the formation of stacking interactions is closely compromised with the formation 
of the gene codes. In this context is that, in addition to the hydrogen bonds, the π stacking 
contacts should be carefully reliable to interpret the DNA structure and the α-helix 
formation.  

 
Indeed, there is an intense discussion about the formation of hydrogen bonds on the 
nucleobases dimers. For instance, in recent years the triple hydrogen bonds occurrence on 
nucleobase has been evaluated through the application of high-level calculations, by which 
a slight difference in range of 3 kcal/mol between the dimer and the individual hydrogen 
bonds was discovered. Due to this, recently Matta et al (Matta et al, 2006) have developed a 
theoretical investigation of WC dimeric derived from the DNA fragments. It was quoted the 
existence of three types of hydrogen bonds, namely as N–H···O, C–H···O, and N–H···N. 
The first hydrogen bond type occurs between A and T as well as in G and C. The second 
hydrogen bond is recognized as triple between A and T. Finally, the last hydrogen bond 
model makes itself presents in a double format between A and T as well as G and C. Thus, it 
should be important to comment each one of these hydrogen bonds and their influence on 
the DNA structure.  

It is observed a slight higher concentration of ρ(r) in the CG complex in comparison to AT, 
in which the values are 0.028 e/ao3 and 0.025 e/ao3, respectively. Moreover, the H···O 
hydrogen bond is sensitively weak in AT once the value of ρ(r) is 0.006 e/ao3. Furthermore, 
the ellipticity curvature λ3 is smaller in AT rather than in CG, what indicates a less charge 
density accumulation in the intermolecular region of the AT system. Only for mention, the 
remaining λ1 and λ2 are perpendicular to the BP of the hydrogen bonds, what makes their 
negative results and then are not taken into account. In according to the Equation 15, the 
virial potential operator U is negative over the entire molecule, whereas G is positive. If U is 
the dominant term, a high electronic density concentration is assumed, as can be seen in 
shared interactions such as covalent or unsaturated bonds. In other words, the electrons are 
placed on the BCP. The same reasoning can be dedicated to G, although the kinetic 
contribution diagnoses closed-shell interactions, or in this current work, the hydrogen bonds 
N–H···O and H···O. Thus, it was suggested an alternative approach to the virial expression 
in order to propose a novel term so-called as electronic energy density H: 

 H 2G U   (19) 
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Well, it is by the contributions of G and U that H is estimated. It was observed negative 
values of H not for N–H···O, but actually to N–H···H. The main feature of the N–H···H 
hydrogen bond is its length, which is very short in AT than in CG. Thereby, the electronic 
density ρ(r) of 0.052 e/ao3 is AT is higher than CG, whose value is 0.038 e/ao3. Nevertheless, 
these hydrogen bonds exhibit positive value of 2ρ(r) as well as negative electronic energy 
density H, what is anomalous for closed-shell interactions, but it can be an indication of 
shared electronic density. However, Fig. 13 illustrates different π stacking interactions on 
DNA structure.  
 

 
Fig. 13. Molecular graph of the nucleobase dimer duplexes. 

It was discovered some diversity of π interactions formed by the N···N, C···C, C···N, and 
O···N contacts. These, some are intrastrand and other ones are interstrand. For the third 
structure, G4···C7 and G5···C6, in addition to the six hydrogen bonds, eight π stacking 
interactions are known, of which six are intrastrand whereas two are interstrand. As 
remarkably defined, the values of the electronic energy density H are positive due to the 
contribution of G accompanied by U with smaller negative amounts. By this relationship, 
the Laplacian fields are positive, and in this current analysis were obtained values of 2ρ(r) 
in range of 0.009-0.039 e/ao5, what no doubts in regards to the profile of closed-shell 
interactions remains about these interactions. In comparison with some typical hydrogen 
bonds formed, the ρ(r) values of the intrastrand and interstrand π-stacked contacts are very 
low, but the lowest charge concentration is found in intrastrand situations. In an overview, 
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it was quoted that albeit these π stacking interactions are weak, surely they can influence the 
geometry and stabilization of the DNA structure. 
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1. Introduction

The quantum theory of fields on curved space-times, which is of actual interest in astrophysics
and cosmology, is faced with serious difficulties arising from the fact that some global
properties of the theory on flat space-times become local when the background is curved.
The principal impediment on curved manifolds is the absence of the Poincaré symmetry
which gives rise to the principal invariants of special relativity (i.e. the mass and spin) and
assures the stability of the vacuum state. This drawback encouraged many authors to avoid
the principal steps of the quantum theory based on canonical quantization looking for new
effective methods able to be used in theories on curved manifolds. Thus a particular attention
was payed to the construction of the two-point functions of the axiomatic quantum field
theory (Allen & Jacobson, 1986) or to some specific local effects as, for example, the Unruh’s
one (Unruh, 1976). However, in this manner some delicate problems related to the fields with
spin may remain obscure.

For this reason we believe that turning back to the traditional method of canonical
quantization we may open new perspectives in developing the quantum field theory on
curved space-times. According to the standard interpretation of the quantum mechanics, our
basic assumption is that the quantum states are prepared by a global classical apparatus which
includes the natural and local frames. This means that the quantum observables must be
defined globally as being conserved operators which commute with that of the field equation.
Therefore, the quantum modes have to be determined as common eigenfunctions of several
complete systems of commuting operators which include the operator of the field equation.
These mode functions must be orthonormalized with respect to a suitable relativistic scalar
product such that the subspaces of functions of positive and respectively negative frequencies
remain orthogonal to each other in any frame. This conjecture leads to a stable vacuum state
when we perform the canonical quantization which enables us to derive the propagators and
especially the one-particle operators. Moreover, the theory of the interacting fields may be
developed then as in the flat case using the S-matrix and the perturbation theory since the
normal ordering of the operator products do make sense thanks to the stability of the vacuum
state.

The theory of quantum fields with spin on curved backgrounds has a specific structure since
the spin half can be defined only in orthogonal local (non-holonomic) frames. Therefore,
in general, the Lagrangian theory of the matter fields has to be written in local frames
assuming that this is tetrad-gauge covariant. Thus the gauge group L↑

+ ⊂ SO(1, 3) (of
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the principal fiber bundle) and its universal covering group, SL(2, C), (of the spin fiber
bundle) become crucial since their finite-dimensional (non-unitary) representations induce
the covariant representations of the universal covering group of the isometry one according
to which the matter fields transform under isometries (Cotăescu, 2000). The generators of
these covariant representations are the differential operators given by the Killing vectors
associated to isometries according to the generalized Carter and McLenagan formula (Carter
& McLenaghan, 1979). The theory of the fields with integer spin can be written either in
local frames or exclusively in natural ones where we have shown how the spin must be
defined in order to recover the Carter and McLenagan formula (Cotăescu, 2009). Thus the
external symmetry offers us the conserved operators among them we may select different
sets of commuting operators which have to define the free quantum modes. A convenient
relativistic scalar product and a stable vacuum state have to complete the framework we need
for performing the canonical quantization.

Our method is helpful on the de Sitter space-time where all the free field equations can
be analytically solved while the SO(1, 4) isometries provide us with a large collection of
conserved operators. A particular feature of this symmetry is that the energy and momentum
operators do not commute to each other. Consequently, there are no mass-shells and the
energy and momentum are diagonal in different bases, called the energy and respectively
momentum bases (or representations). In spite of this new behavior, we pointed out that
the principal invariants of the covariant representations can be expressed in terms of rest
energy and spin as in special relativity (Cotăescu, 2011a). Moreover, we have derived the
principal sets of quantum modes of the free scalar (Cotăescu et al., 2008), Dirac (Cotăescu,
2002; Cotăescu & Crucean, 2008), Proca (Cotăescu, 2010) and Maxwell (Cotăescu & Crucean,
2010) fields applying the same procedure of canonical quantization. In what follows we would
like to present these results for the scalar and Dirac fields which are the typical examples of
the field theory formulated exclusively either in natural or in local frames.

In the second section we briefly review our theory of external symmetry focusing on the de
Sitter isometries and their invariants. The third section is devoted to the de Sitter space-time
and its isometries. The next two sections are devoted to the second quantization of the scalar
and Dirac fields. For these fields we derive the quantum modes in momentum representation
using the free field equations in the (co)moving frames of the de Sitter expanding universe
and the local frames defined by the diagonal gauge in the case of the Dirac equation. The
polarization of the Dirac field is given in the helicity basis which can be easily defined in the
momentum representation we use. Considering appropriate scalar products in each particular
case, a special attention is paid to the orthogonality and completeness properties as well as to
the choice of the vacuum state. We argue that the vacuum of Bunch-Davies type (Bunch &
Davies, 1978) we define here is stable as long as the particle and antiparticle sets of mode
functions remain orthogonal among themselves in any frame. Under such circumstances the
method of canonical quantization is working well allowing us to obtain important pieces as
propagators and one-particle operators. Finally, we present our conclusions marking out what
is new in interpreting the global quantum modes studied here.

2. External symmetry in general relativity

In general relativity the space-time symmetries are the isometries of the background
associated to the Killing vectors. The physical fields minimally coupled to gravity take over
this symmetry transforming according to appropriate representations of the isometry group.

176 Advances in Quantum Theory



2 Will-be-set-by-IN-TECH

the principal fiber bundle) and its universal covering group, SL(2, C), (of the spin fiber
bundle) become crucial since their finite-dimensional (non-unitary) representations induce
the covariant representations of the universal covering group of the isometry one according
to which the matter fields transform under isometries (Cotăescu, 2000). The generators of
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In the case of the scalar vector or tensor fields these representations are completely defined by
the well-known rules of the general coordinate transformations since the isometries are in fact
particular automorphisms. However, the theory of spinor fields is formulated in orthogonal
local frames where the basis-generators of the spinor representation were discovered by Carter
and McLenaghan (Carter & McLenaghan, 1979).

For this reason we proposed a new theory of external symmetry in the context of the
gauge-covariant theories in local orthogonal frames (Cotăescu, 2000). We introduced there
new transformations which combine isometries and gauge transformations such that the
tetrad fields should remain invariant. In this way we obtained the external symmetry group
and we derived the general form of the basis-generators of the representations of this group
shoving that these are given by a formula which generalizes the Carter and McLenaghan one.
Moreover, we pointed out that this theory can be formulated exclusively in natural frames if
there are only scalar, vector and tensor fields (Cotăescu, 2009).

2.1 Tetrad gauge covariance

Let us consider the pseudo-Riemannian space-time (M, g) and a local chart (or natural frame)
of coordinates xμ (labeled by natural indices, μ, ν, ... = 0, 1, 2, 3) (Wald, 1984). Given a
gauge, we denote by eμ̂ the tetrad fields that define the local frames and by êμ̂ those of

the corresponding coframes. These have the usual duality, êμ̂
α eα

ν̂ = δ
μ̂
ν̂ , êμ̂

α eβ
μ̂ = δ

β
α , and

orthonormalization, eμ̂ · eν̂ = ημ̂ν̂, êμ̂ · êν̂ = ημ̂ν̂, properties. The metric tensor gμν = ηα̂β̂ êα̂
μ êβ̂

ν

raises or lowers the natural indices while for the local indices (μ̂, ν̂, ... = 0, 1, 2, 3) we have to
use the flat Minkowski metric η =diag(1,−1,−1,−1). The derivatives in local frames are the
vector fields ∂̂ν̂ = eμ

ν̂ ∂μ which satisfy the commutation rules [∂̂μ̂, ∂̂ν̂] = C ··σ̂
μ̂ν̂· ∂̂σ̂ defining the

Cartan coefficients.

The metric η remains invariant under the transformations of its gauge group, O(1, 3). This
has as subgroup the Lorentz group, L↑

+, of the transformations Λ[A(ω)] corresponding to
the transformations A(ω) ∈ SL(2, C) through the canonical homomorphism (Tung, 1984). In
the standard covariant parametrization, with the real parameters ωα̂β̂ = −ωβ̂α̂, the SL(2, C)

transformations A(ω) = exp(− i
2 ωα̂β̂Sα̂β̂) are generated by the covariant basis-generators

of the sl(2, C) algebra, denoted by Sα̂β̂. For small values of ωα̂β̂ the matrix elements of the

transformations Λ in the local basis can be expanded as Λμ̂ ·
· ν̂ [A(ω)] = δ

μ̂
ν̂ + ω

μ̂ ·
· ν̂ + · · · .

Assuming now that (M, g) is orientable and time-orientable we can consider G(η) = L↑
+

as the gauge group of the Minkowski metric η (Wald, 1984). This is the structure group of
the principal fiber bundle whose basis is M. The group Spin(η) = SL(2, C) is the universal
covering group of G(η) and represents the structure group of the spin fiber bundle (Lawson
& Michaelson, 1989). In general, a matter field ψ(ρ) : M → V(ρ) is locally defined over M with
values in the vector space V(ρ) of a representation ρ, generally reducible, of the group Spin(η).
The covariant derivatives of the field ψ(ρ),

D(ρ)
α̂ = eμ

α̂ D(ρ)
μ = ∂̂α̂ +

i
2

ρ(Sβ̂ ·
· γ̂) Γ̂γ̂

α̂β̂
, (1)
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depend on the connection coefficients in local frames,

Γ̂σ̂
μ̂ν̂ = eα

μ̂eβ
ν̂ (ê

σ̂
γΓγ

αβ − êσ̂
β,α)

=
1
2

ησ̂λ̂(Cμ̂ν̂λ̂ − Cμ̂λ̂ν̂ − Cν̂λ̂μ̂) ,
(2)

which assure the covariance of the whole theory under tetrad gauge transformations
produced by automorphisms A of the spin fiber bundle. This is the general framework of
the theories involving fields with half integer spin which can not be treated in natural frames.

2.2 External symmetries in local frames

A special difficulty in local frames is that the theory is no longer covariant under isometries
since these can change the tetrad fields that carry natural indices. For this reason we proposed
a theory of external symmetry in which each isometry transformation is coupled to a gauge
one able to correct the position of the local frames such that the whole transformation should
preserve not only the metric but the tetrad gauge too (Cotăescu, 2000). Thus, for any isometry
transformation x → x� = φξ(x) = x + ξaka + ..., depending on the parameters ξa (a, b, ... =
1, 2...N) of the isometry group I(M), one must perform the gauge transformation Aξ defined
as

Λα̂ ·
· β̂
[Aξ(x)] = êα̂

μ[φξ(x)]
∂φ

μ
ξ (x)

∂xν
eν

β̂
(x) (3)

with the supplementary condition Aξ=0(x) = 1 ∈ SL(2, C). Then the transformation laws of
our fields are

(Aξ , φξ) :

e(x) → e�(x�) = e[φξ(x)]

ê(x) → ê�(x�) = ê[φξ(x)]

ψ(ρ)(x) → ψ�
(ρ)

(x�) = ρ[Aξ(x)]ψ(ρ)(x) .

(4)

We have shown that the pairs (Aξ , φξ) constitute a well-defined Lie group we called the
external symmetry group, S(M), pointing out that this is just the universal covering group of
I(M) (Cotăescu, 2000). For small values of ξa, the SL(2, C) parameters of Aξ(x) ≡ A[ωξ(x)]

can be expanded as ω
α̂β̂
ξ (x) = ξaΩα̂β̂

a (x) + · · · , in terms of the functions

Ωα̂β̂
a ≡

∂ω
α̂β̂
ξ

∂ξa |ξ=0
=

(
êα̂

μ kμ
a,ν + êα̂

ν,μkμ
a

)
eν

λ̂
ηλ̂β̂ (5)

which depend on the Killing vectors ka = ∂ξa φξ |ξ=0 associated to ξa.

The last of Eqs. (4) defines the operator-valued representations T(ρ) : (Aξ , φξ) → T(ρ)
ξ

of the group S(M) which are called the covariant representations (CR) induced by the
finite-dimensional representations ρ of the group SL(2, C). The covariant transformations,

(T(ρ)
ξ ψ(ρ))[φξ(x)] = ρ[Aξ(x)]ψ(ρ)(x) , (6)

leave the field equation invariant since their basis-generators (Cotăescu, 2000),
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178 Advances in Quantum Theory Quantum Fields on the de Sitter
Expanding Universe 5

X(ρ)
a = i∂ξa T(ρ)

ξ |ξ=0

= −ikμ
a ∂μ +

1
2

Ωα̂β̂
a ρ(Sα̂β̂) ,

(7)

commute with the operator of the field equation and satisfy the commutation rules

[X(ρ)
a , X(ρ)

b ] = icabcX(ρ)
c determined by the structure constants, cabc, of the algebras s(M) ∼

i(M). In other words, the operators (7) are the basis-generators of a CR of the s(M) algebra
induced by the representation ρ of the sl(2, C) algebra. These generators can be put in the
covariant form (Cotăescu, 2000),

X(ρ)
a = −ikμ

a D(ρ)
μ +

1
2

ka μ; ν eμ
α̂ eν

β̂
ρ(Sα̂β̂) , (8)

which represents the generalization to any representation ρ of the famous formula given by
Carter and McLenaghan (Carter & McLenaghan, 1979) for the spinor representation ρs =
( 1

2 , 0)⊕ (0, 1
2 ).

A specific feature of the CRs is that their generators have, in general, point-dependent spin
terms which do not commute with the orbital parts. However, there are tetrad-gauges in
which at least the generators of a subgroup G ⊂ I(M) may have point-independent spin
terms commuting with the orbital parts. Then we say that the restriction to G of the CR T(ρ)

is manifest covariant. Obviously, if G = I(M) then the whole representation T(ρ) is manifest
covariant (Cotăescu, 2000).

2.3 Isometries in natural frames

Whenever there are no spinors, the matter fields are vectors or tensors of different ranks and
the whole theory is independent on the tetrad fields dealing with the natural frames only. In
general, any tensor field, Θ, transforms under isometries as Θ → Θ� = Tξ Θ, according to a
tensor representation of the group S(M) defined by the well-known rule in natural frames

⎡
⎣ ∂φα

ξ (x)

∂xμ

∂φ
β
ξ (x)

∂xν
...

⎤
⎦ �

Tξ Θ
�

αβ... [φ(x)] = Θμν...(x) . (9)

Hereby one derives the basis-generators of the tensor representation, Xa = i ∂ξa Tξ |ξ=0, whose
action reads

(Xa Θ)αβ... = −i(ka
νΘαβ...; ν + ka

ν
; αΘνβ... + ka

ν
; βΘαν......) . (10)

Our purpose is to show that the operators Xa can be written in a form which is equivalent to
equation (8) of Carter and McLenaghan.

In order to accomplish this we start with the vector representation ρv = ( 1
2 , 1

2 ) of the SL(2, C)

group, generated by the spin matrices ρv(Sα̂β̂) which have the well-known matrix elements

[ρv(Sα̂β̂)]
μ̂ ·
· ν̂ = i(ηα̂μ̂δ

β̂
ν̂ − ηβ̂μ̂δα̂

ν̂ ) , (11)

in local bases. Furthermore, we define the point-dependent spin matrices in natural frames
whose matrix elements in the natural basis read
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(S̃μν)σ ·· τ = eμ
α̂ eν

β̂
eσ

γ̂[ρv(Sα̂β̂)]γ̂ ·
· δ̂

êδ̂
τ = i(gμσδν

τ − gνσδ
μ
τ ) . (12)

These matrices represent the spin operators of the vector representation in natural frames.
We observe that these are the basis-generators of the groups G[g(x)] ∼ G(η) which leave
the metric tensor g(x) invariant in each point x. Since the representations of these groups
are point-wise equivalent with those of G(η), one can show that in each point x the
basis-generators S̃μν(x) satisfy the standard commutation rules of the vector representation
ρv (but with g(x) instead of η).

In general, the spin matrices of a tensor Θ of any rank, n, are the basis-generators of the
representation ρn = ρ1

v ⊗ ρ2
v ⊗ ρ3

v ⊗ .... ⊗ ρn
v which read ρn(S̃) = S̃1 ⊗ I2 ⊗ I3... + I1 ⊗ S̃2 ⊗

I3... + ..... Using these spin matrices a straightforward calculation shows that equation (8) can
be rewritten in natural frames as (Cotăescu, 2009),

Xn
a = −ikμ

a∇μ +
1
2

ka μ; ν ρn(S̃μν) , (13)

where ∇μ are the usual covariant derivatives. It is not difficult to verify that the action of these
operators is just that given by equation (10) which means that Xn

a are the basis-generators of
a tensor representation of rank n of the group S(M).

Thus, it is clear that the tensor representations are equivalent with the CRs defined in local
frames while the equation (13) represents the generalization to natural frames of the Carter
and McLenaghan formula. We stress that this result is not trivial since it can not be seen as a
simple basis transformation like in the usual tensor theory of the linear algebra. The principal
conclusion here is that the Carter and McLenaghan formula is universal since it holds not only
in local frames but in natural frames too (Cotăescu, 2009).

3. The de Sitter expanding universe

Our approach is helpful on the four-dimensional de Sitter space-time where all the usual free
field equations can be analytically solved while the isometries give rise to the rich so(1, 4)
algebra. Hereby we selected various sets of commuting operators determining the quantum
modes of the scalar, vector and Dirac fields.

3.1 Natural and local frames

Let us consider (M, g) be the de Sitter space-time defined as the hyperboloid of radius
1/ω (where ω denotes the Hubble de Sitter constant) embedded in the five-dimensional
flat space-time (M5, η5) with Cartesian coordinates zA (labeled by the indices A, B, ... =
0, 1, 2, 3, 4) and the metric η5 = diag(1,−1,−1,−1,−1) (Birrel & Davies, 1982). The local
charts (or natural frames) of coordinates {x} can be easily introduced on (M, g) defining the
sets of functions zA(x) able to solve the hyperboloid equation, η5

ABzA(x)zB(x) = −ω−2. In
a given chart the line element ds2 = η5

ABdzAdzB = gμν(x)dxμdxν defines the metric tensor of
(M, g).

In what follows we restrict ourselves to consider only the (co)moving charts, {t,�x} and
{tc,�x} which have the same Cartesian space coordinates, xi (i, j, k... = 1, 2, 3), but different
time coordinates. The first chart is equipped with the proper time t ∈ (−∞, ∞) while
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3. The de Sitter expanding universe

Our approach is helpful on the four-dimensional de Sitter space-time where all the usual free
field equations can be analytically solved while the isometries give rise to the rich so(1, 4)
algebra. Hereby we selected various sets of commuting operators determining the quantum
modes of the scalar, vector and Dirac fields.

3.1 Natural and local frames

Let us consider (M, g) be the de Sitter space-time defined as the hyperboloid of radius
1/ω (where ω denotes the Hubble de Sitter constant) embedded in the five-dimensional
flat space-time (M5, η5) with Cartesian coordinates zA (labeled by the indices A, B, ... =
0, 1, 2, 3, 4) and the metric η5 = diag(1,−1,−1,−1,−1) (Birrel & Davies, 1982). The local
charts (or natural frames) of coordinates {x} can be easily introduced on (M, g) defining the
sets of functions zA(x) able to solve the hyperboloid equation, η5

ABzA(x)zB(x) = −ω−2. In
a given chart the line element ds2 = η5

ABdzAdzB = gμν(x)dxμdxν defines the metric tensor of
(M, g).

In what follows we restrict ourselves to consider only the (co)moving charts, {t,�x} and
{tc,�x} which have the same Cartesian space coordinates, xi (i, j, k... = 1, 2, 3), but different
time coordinates. The first chart is equipped with the proper time t ∈ (−∞, ∞) while

180 Advances in Quantum Theory Quantum Fields on the de Sitter
Expanding Universe 7

tc = −ω−1 e−ωt ∈ (−∞, 0] is the conformal time. These charts are defined by the functions
(Birrel & Davies, 1982),

z0 =
eωt

2ω

(
1 + ω2�x 2 − e−2ωt

)
= − 1

2ω2tc

[
1 − ω2(tc

2 −�x 2)
]

(14)

z4 =
eωt

2ω

(
1 − ω2�x 2 + e−2ωt

)
= − 1

2ω2tc

[
1 + ω2(tc

2 −�x 2)
]

(15)

zi = eωtxi = − 1
ωtc

xi (16)

and have the line elements

ds2 = dt2 − e2ωt d�x · d�x =
1

ω2tc
2

(
dtc

2 − d�x · d�x
)

. (17)

We remind the reader that these charts cover only the expanding portion of (M, g) known as
the de Sitter expanding universe.

The theory of external symmetry in local frame depends on the choice of the tetrad-gauge. The
simplest gauge in the chart {t,�x} is the diagonal one in which the non-vanishing components
of the tetrad fields are

ê0
0 = e0

0 = 1 , êi
j = eωtδi

j , ei
j = e−ωtδi

j . (18)

The corresponding gauge in the chart {tc,�x} is given by the non-vanishing tetrad components,

e0
0 = −ωtc , ei

j = −δi
j ωtc , ê0

0 = − 1
ωtc

, êi
j = −δi

j
1

ωtc
. (19)

3.2 The Killing vectors of the SO(1, 4) isometries

The de Sitter manifold (M, g) is defined as a homogeneous space of the pseudo-orthogonal
group SO(1, 4) which is in the same time the gauge group of the metric η5 and the
isometry group, I(M), of the de Sitter space-time . The group of the external symmetry,
S(M) = Spin(η5) = Sp(2, 2), has the Lie algebra s(M) = sp(2, 2) ∼ so(1, 4) for which
we use the covariant real parameters ξAB = −ξBA. In this parametrization, the Killing
vectors corresponding to the SO(1, 4) isometries can be derived considering the natural
representation carried by the space of the scalar functions over M5. The basis-generators of
this representation are the genuine orbital operators

L5
AB = i

[
η5

ACzC∂B − η5
BCzC∂A

]
= −iKC

(AB)∂C (20)

which define the components of the Killing vectors K(AB) on (M5, η5). With their help we
can derive the corresponding Killing vectors of (M, g), denoted by k(AB), using the obvious
identities k(AB)μdxμ = K(AB)CdzC.

In the chart {t,�x} the Killing vectors of the de Sitter symmetry have the components,

k0
(0i) = k0

(4i) = xi , kj
(0i) = kj

(4i) −
1
ω

δ
j
i = ωxixj − δ

j
i ϑ , (21)

k0
(ij) = 0 , kl

(ij) = δl
j x

i − δl
i xj ; k0

(04) = − 1
ω

, ki
(04) = xi . (22)
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while in the other moving chart, {tc,�x}, these components become

k0
(0i) = k0

(4i) = ωtcxi , kj
(0i) = kj

(4i) −
1
ω

δ
j
i = ωxixj − δ

j
i ϑ , (23)

k0
(ij) = 0 , kl

(ij) = δl
j x

i − δl
i xj ; kμ

(04) = xμ , (24)

where the function ϑ is defined as

ϑ =
1

2ω
(1 + ω2�x 2 − e−2ωt) =

1
2ω

[1 + ω2(�x 2 − tc
2)] , (25)

3.3 The so(1, 4) generators of covariant representations

According to our general theory, the generators of the CRs T(ρ) of the group S(M) = Sp(2, 2),
induced by the representations ρ of the SL(2, C) group, constitute CRs of the sp(2, 2) algebra
induced by the representations ρ of the sl(2, C) algebra. Therefore, their commutation
relations are determined by the structure constant of the group Sp(2, 2) and the principal
invariants are the Casimir operators of the CRs which can be derived as those of the algebras
sp(2, 2) ∼ so(1, 4).

In the covariant parametrization of the sp(2, 2) algebra adopted here, the generators X(ρ)
(AB)

corresponding to the Killing vectors k(AB) result from equation (7) and the functions (5) with
the new labels a → (AB). Using then the Killing vectors (21) and (22) and the tetrad-gauge
(18) of the chart {t,�x}, after a little calculation, we find first the sl(2, C) generators. These are
the total angular momentum,

J(ρ)i ≡ 1
2

εijkX(ρ)
(jk) = −iεijkxj∂k + S(ρ)

i , (26)

and the generators of the Lorentz boosts

K(ρ)
i ≡ X(ρ)

(0i) = ixi∂t + iϑ(x)∂i − iωxi xj∂j + e−ωtS(ρ)
0i + ωS(ρ)

ij xj , (27)

where ϑ is defined by Eq. (25). In addition, there are three generators,

R(ρ)
i ≡ X(ρ)

(i4) = −K(ρ)
i +

1
ω

i∂i , (28)

which play the role of a Runge-Lenz vector, in the sense that {Ji, Ri} generate a so(4)
subalgebra. The energy (or Hamiltonian) operator,

H ≡ ωX(ρ)
(04) = i∂t − iωxi∂i , (29)

is given by the Killing vector k(04) which is time-like only for ω|�x|eωt ≤ 1. Fortunately, this
condition is accomplished everywhere inside the light-cone of an observer at rest in �x = 0.
Therefore, the operator H is correctly defined.

The generators introduced above form the basis {H, J(ρ)i , K(ρ)
i , R(ρ)

i } of the covariant
representation of the sp(2, 2) algebra with the following commutation rules (Cotăescu, 2011a):

[
J(ρ)i , J(ρ)j

]
= iεijk J(ρ)k ,

[
J(ρ)i , R(ρ)

j

]
= iεijkR(ρ)

k ,
[
K(ρ)

i , K(ρ)
j

]
= −iεijk J(ρ)k (30)

[
J(ρ)i , K(ρ)

j

]
= iεijkK(ρ)

k ,
[

R(ρ)
i , R(ρ)

j

]
= iεijk J(ρ)k ,

[
R(ρ)

i , K(ρ)
j

]
=

i
ω

δij H , (31)
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j
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=
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and [
H, J(ρ)i

]
= 0 ,

[
H, K(ρ)

i

]
= iωR(ρ)

i ,
[

H, R(ρ)
i

]
= iωK(ρ)

i . (32)

As mentioned in the previous section, it is useful to replace the operators �K(ρ) and �R(ρ) by the
momentum operator �P and its dual, �Q(ρ), whose components are defined as

Pi = ω(R(ρ)
i + K(ρ)

i ) = i∂i , Q(ρ)
i = ω(R(ρ)

i − K(ρ)
i ) . (33)

which have the remarkable properties (Cotăescu, 2011a)

[H, Pi] = iωPi ,
[

H, Q(ρ)
i

]
= −iωQ(ρ)

i ,
[

Q(ρ)
i , Q(ρ)

j

]
= [Pi, Pj] = 0 . (34)

We obtain thus the basis {H, Pi, Q(ρ)
i , J(ρ)i } and the basis of the Poincaré type formed by

{H, Pi, J(ρ)i , K(ρ)
i }.

The last two bases bring together the conserved energy (29) and momentum (33a) which
are the only genuine orbital operators, independent on ρ. What is specific for the de Sitter
symmetry is that these operators can not be put simultaneously in diagonal form since they
do not commute to each other,as it results from Eq. (34a). Therefore, there are no mass-shells.

4. The massive Klein-Gordon field

The quantum modes of the scalar field in moving frames of de Sitter manifolds are well-known
from long time (Birrel & Davies, 1982) paying attention to the scalar propagators, known as
two-point functions (Candelas & Raine, 1975; Chernikov & Tagiriv, 1968), we recover here
using the canonical quantization (Cotăescu et al., 2008).

4.1 Scalar quantum mechanics

In what follows we study the scalar field minimally coupled to the de Sitter gravity using our
recently proposed new quantum mechanics on spatially flat Robertson-Walker space-times in
which we defined different time evolution pictures (Cotăescu, 2007).

4.1.1 Lagrangian theory

In an arbitrary chart {x} of a curved manifold the action of a charged scalar field φ of mass m,
minimally coupled to gravity, reads (Birrel & Davies, 1982),

S [φ, φ∗] =
∫

d4x
√

gL =
∫

d4x
√

g
(

∂μφ∗∂μφ − m2φ∗φ
)

, (35)

where g = |det(gμν)|. This action gives rise to the Klein-Gordon equation

1√
g

∂μ [
√

g gμν∂νφ] + m2φ = 0 . (36)

The conserved quantities predicted by the Noether theorem can be calculated with the help of
the stress-energy tensor

Tμν = ∂μφ∗∂νφ + ∂νφ∗∂μφ − gμνL . (37)
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Thus, for each isometry corresponding to a Killing vector k(AB) there exists the conserved
current Θμ[k(AB)] = −Tμ ·

· ν kν
(AB) which satisfies Θμ[k(AB)];μ = 0 producing the conserved

quantity

C[k(AB)] =
∫

Σ
dσμ

√
g Θμ[k(AB)] , (38)

on a given hypersurface Σ ⊂ M. Moreover, generalizing the form of the conserved electric
charge due to the internal U(1) symmetry one defines the relativistic scalar product of two
scalar fields as

�φ, φ�� = i
∫

Σ
dσμ√g φ∗ ↔

∂μ φ� , (39)

using the notation f
↔
∂ h = f (∂h) − h(∂ f ). With this definition one obtains the following

identities
C[k(AB)] = �φ, X(AB)φ� (40)

which can be proved for any Killing vector using the field equation (36) and the Green’s
theorem. These identities will be useful in quantization, giving directly the conserved
one-particle operators of the quantum field theory (Cotăescu et al., 2008).

4.1.2 Time-evolution pictures on de Sitter space-time

Let us consider now the de Sitter expanding universe (M, g) and the chart {t,�x} with FRW
line element. We say that the natural time-evolution picture (NP) is the genuine quantum
theory in this chart where the time evolution of the massive scalar field is governed by the
Klein-Gordon equation

(
∂2

t − e−2ωtΔ + 3ω∂t + m2
)

φ(x) = 0 . (41)

The solutions of this equation may be square integrable functions or tempered distributions
with respect to the scalar product (39) that in NP and for Σ = R3 takes the form

�φ, φ�� = i
∫

d3x e3ωt φ∗(x)
↔
∂t φ�(x) . (42)

since in this chart
√

g = e3ωt.

The principal operators of NP are the isometry generators given by Eqs. (26)-(29) but
calculated for the scalar representation (0, 0) whose generators vanish. Thus, these operators
are just the genuine orbital generators of the natural representation which is equivalent to the
scalar CR. In addition, we consider the coordinate operator, �X, defined as (Xiφ)(x) = xiφ(x),
that obeys,

[Pi, Xj] = iδij I , [H, Xi] = −iωXi , (43)

where I is the identity operator.

The NP can be changed using point-dependent operators which could be even non-unitary
operators since the relativistic scalar product does not have a direct physical meaning as
that of the non-relativistic quantum mechanics . We exploit this opportunity for introducing
the new time-evolution picture, called the Schrödinger picture (SP), with the help of the
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√

g = e3ωt.

The principal operators of NP are the isometry generators given by Eqs. (26)-(29) but
calculated for the scalar representation (0, 0) whose generators vanish. Thus, these operators
are just the genuine orbital generators of the natural representation which is equivalent to the
scalar CR. In addition, we consider the coordinate operator, �X, defined as (Xiφ)(x) = xiφ(x),
that obeys,

[Pi, Xj] = iδij I , [H, Xi] = −iωXi , (43)

where I is the identity operator.

The NP can be changed using point-dependent operators which could be even non-unitary
operators since the relativistic scalar product does not have a direct physical meaning as
that of the non-relativistic quantum mechanics . We exploit this opportunity for introducing
the new time-evolution picture, called the Schrödinger picture (SP), with the help of the
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transformation φ(x) → φS(x) = W(x)φ(x)W−1(x) produced by the operator of time
dependent dilatations (Cotăescu, 2007),

W(x) = exp
[
−ωt(xi∂i)

]
, W+(x) = e3ωt W−1(x) , (44)

which has the following convenient actions

W(x)F(xi)W−1(x) = F
(

e−ωtxi
)

, W(x)G(∂i)W−1(x) = G
(
eωt∂i

)
, (45)

upon any analytical functions F and G. This transformation leads to the Klein-Gordon
equation of the SP

[(
∂t + ωxi∂i

)2 − Δ + 3ω(∂t + ωxi∂i) + m2
]

φS(x) = 0 , (46)

and allows us to define the scalar product of this picture,

�φS, φ�
S� ≡ �φ, φ�� = i

∫
d3x

[
φ∗

S

↔
∂t φ�

S + ωxi(φ∗
S

↔
∂i φ�

S)

]
, (47)

as it results from Eqs. (44).

The specific operators of the SP, denoted by HS, Pi
S and Xi

S, are defined as

(HSφS)(x) = i∂tφS(x) , (Pi
SφS)(x) = −i∂iφS(x) , (Xi

SφS)(x) = xiφS(x) , (48)

The meaning of these operators can be understood in the NP. Indeed, performing the inverse
transformation we recover the conserved energy operator H = W−1(x) HS W(x) and we find
the new interesting time-dependent operators of the NP,

Xi(t) = W−1(x) Xi
S W(x) = eωtXi , (49)

Pi(t) = W−1(x) Pi
S W(x) = e−ωtPi , (50)

which satisfy the canonical commutation rules (Cotăescu, 2007),

[Xi(t), Pj(t)] = iδij I , [H, Xi(t)] = [H, Pi(t)] = 0 . (51)

The angular momentum has the same expression in both these pictures since it commutes
with W(x). We note that even if Xi(t) and Pi(t) commute with H they can not be considered
conserved operators since they do not commute with the Klein-Gordon operator.

In NP picture the eigenvalues problem H fE(t,�x) = E fE(t,�x) of the energy operator leads to
energy eigenfunctions of the form

fE(t,�x) = F[eωt�x]e−iEt (52)

where F is an arbitrary function. This explains why in this picture one can not find energy
eigenfunctions separating variables. However, in our SP these eigenfunctions become the
new functions

f S
E (t,�x) = W(x) fE(t,�x)W−1(x) = F(�x)e−iEt (53)

which have separated variables. This means that in SP new quantum modes could be derived
using the method of separating variables in coordinates or even in momentum representation.
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4.2 Scalar plane waves

As mentioned before, the specific feature of the quantum mechanics on M is that the
conserved energy and momentum can not be measured simultaneously with desired
accuracy. Consequently, there are no particular solutions of the Klein-Gordon equation with
well-determined energy and momentum, being forced to consider different plane waves
solutions depending either on momentum or on energy and momentum direction. Thus we
shall work with two bases of fundamental solutions we call here the momentum and energy
bases . The momentum basis is well-known (Birrel & Davies, 1982; Chernikov & Tagiriv, 1968)
but the energy one is a new basis derived using our SP (Cotăescu et al., 2008).

4.2.1 The momentum basis

It is known that the Klein-Gordon equation (41) of NP can be analytically solved in terms
of Bessel functions (Birrel & Davies, 1982). There are fundamental solutions determined as
eigenfunctions of the set of commuting operators {Pi} of NP whose eigenvalues pi are the
components of the momentum �p. Among different versions of solutions which are currently
used we prefer the normalized solutions of positive frequencies that read

f�p(x) =
1
2

√
π

ω

1
(2π)3/2 e−3ωt/2Zk

( p
ω

e−ωt
)

ei�p·�x , k =
√

μ2 − 9
4 , (54)

where p = |�p|, the functions Zk are defined in the Appendix A and we denote μ = m
ω .

Obviously, the fundamental solutions of negative frequencies are f ∗�p (x).

All these solutions satisfy the orthonormalization relations

� f�p, f�p� � = −� f ∗�p , f ∗�p� � = δ3(�p − �p�) , � f�p, f ∗�p� � = 0 , (55)

and the completeness condition

i
∫

d3 p f ∗�p (t,�x)
↔
∂t f�p(t,�x

�) = e−3ωtδ3(�x −�x�) . (56)

For this reason we say that the set { f�p |�p ∈ R3
p} forms the complete system of fundamental

solutions of positive frequencies of the momentum basis of the Hilbert space H(+)
KG of particle

states. The solutions of negative frequencies, { f ∗�p |�p ∈ R3
p}, span an orthogonal Hilbert space,

H(−)
KG , associated to the antiparticle states. We must stress that this separation of the positive

and negative frequencies defines the Bunch-Davies vacuum which is known to be stable.

In this basis, the Klein-Gordon field can expanded in terms of plane waves of positive and
negative frequencies in usual manner as

φ(x) = φ(+)(x) + φ(−)(x)

=
∫

d3 p
[

f�p(x)a(�p) + f ∗�p (x)b∗(�p)
] (57)

where a and b are the particle and respectively antiparticle wave functions of the momentum
representation. These can be calculated using the inversion formulas a(�p) = � f�p, φ� and
b(�p) = � f�p, φ∗�.
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4.2.2 The energy basis

The plane waves of given energy have to be derived in the SP (Cotăescu, 2007) where the
Klein-Gordon equation has the suitable form (46). We assume that in this picture the scalar
field can be expanded as

φS(x) = φ
(+)
S (x) + φ

(−)
S (x) =

∫ ∞

0
dE

∫
d3q

[
φ̂
(+)
S (E,�q)e−iEt+i�q·�x + φ̂

(−)
S (E,�q)eiEt−i�q·�x] (58)

where φ̂
(±)
S behave as tempered distributions on the domain R3

q such that the Green
theorem may be used. Then we can replace the momentum operators Pi

S by qi and the
coordinate operators Xi

S by i∂qi obtaining the Klein-Gordon equation of the SP in momentum
representation,

{[
±iE + ω

(
qi∂qi + 3

)]2 − 3ω
[
±iE + ω

(
qi∂qi + 3

)]
+�q2 + m2

}
φ̂
(±)
S (E,�q) = 0 , (59)

where E is the energy defined as the eigenvalue of HS. We remind the reader that the operators
Pi

S and Xi
S become in NP the time dependent operators (49) and respectively (50) while HS is

related to the conserved energy operator H. This means the energy E is a conserved quantity
but the momentum �q does not have this property. More specific, only the scalar momentum
q = |�q| is not conserved while the momentum direction is conserved since the operator (50) is
parallel with the conserved momentum �P. For this reason we denote �q = q�n observing that
the differential operator of Eq. (59) is of radial type and reads qi∂qi = q ∂q. Consequently, this
operator acts only on the functions depending on q while the functions which depend on the
momentum direction �n behave as constants. Therefore, we have to look for solutions of the
form

φ̂
(+)
S (E,�q) = hS(E, q) a(E,�n) , (60)

φ̂
(−)
S (E,�q) = [hS(E, q)]∗ b∗(E,�n) , (61)

where the function hS satisfies an equation derived from Eq. (59) that can be written simply
using the new variable s = q

ω and the notation � = E
ω . This equation,

[
d2

ds2 +
2i� + 4

s
d
ds

+
μ2 − �2 + 3i�

s2 + 1
]

hS(�, s) = 0 , (62)

is of the Bessel type having solutions of the form hS(�, s) = const s−i�−3/2 Zk(s). Collecting
all the above results we derive the final expression of the Klein-Gordon field (58) as

φS(x) =
∫ ∞

0
dE

∫

S2
dΩn

{
f S
E,�n(x)a(E,�n) + [ f S

E,�n(x)]∗b∗(E,�n)
}

, (63)

where the integration covers the sphere S2 ⊂ R3
p. The fundamental solutions f S

E,�n of
positive frequencies, with energy E and momentum direction �n result to have the integral
representation

f S
E,�n(x) = N0e−iEt

∫ ∞

0
ds

√
s Zk(s) eiωs�n·�x−i� ln s , (64)

where N0 is a normalization constant.
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For understanding the physical meaning of this result we must turn back to NP where the
scalar field

φ(x) =
∫ ∞

0
dE

∫

S2
dΩn

{
fE,�n(x)a(E,�n) + [ fE,�n(x)]∗b∗(E,�n)

}
, (65)

is expressed in terms of the solutions of NP that can be put in the form

fE,�n(t,�x) = W−1(x) f S
E,�n(t,�x)W(x) = f S

E,�n(t, eωt�x)

= N0e−
3
2 ωt

∫ ∞

0
ds

√
s Zk

(
se−ωt) eiωs�n·�x−i� ln s , (66)

changing the integration variable eωts → s in the integral (64). Using then the scalar product
(108) and the method of the Appendix B we can show that the normalization constant

N0 =
1
2

√
ω

2
1

(2π)3/2 , (67)

assures the desired orthonormalization relations

� fE,�n, fE� ,�n � � = −� f ∗E,�n, f ∗E� ,�n � � = δ(E − E�) δ2(�n −�n �) , � fE,�n, f ∗E� ,�n � � = 0 , (68)

and the completeness condition

i
∫ ∞

0
dE

∫

S2
dΩn

{
[ fE,�n(t,�x)]

∗ ↔
∂t fE,�n(t,�x

�)
}

= e−3ωtδ3(�x −�x �) . (69)

This means that the set of functions { fE,�n|E ∈ R+,�n ∈ S2} constitutes the complete system of

fundamental solutions of the energy basis of H(+)
KG . The set { f ∗E,�n|E ∈ R+,�n ∈ S2} forms the

energy basis of H(−)
KG .

The last step is to calculate the transition coefficients between the momentum and energy
bases of the NP that read (Cotăescu et al., 2008)

� f�p, fE,�n� = � fE,�n, f�p�∗ =
p− 3

2√
2πω

δ2(�n −�np) e−i E
ω ln p

ω , (70)

where�np = �p/p. With their help we deduce the transformations

a(�p) =
∫ ∞

0
dE

∫

S2
dΩn� f�p, fE,�n�a(E,�n) =

p− 3
2√

2πω

∫ ∞

0
dE e−i E

ω ln p
ω a(E,�np) , (71)

a(E,�n) =
∫

d3 p � fE,�n, f�p�a(�p) =
1√

2πω

∫ ∞

0
dp

√
p e i E

ω ln p
ω a(p�n) , (72)

and similarly for the wave functions b. These transformations do not mix the particle and
antiparticle states such that we can conclude that the Bunch-Davies vacuum defined here is
stable with respect to the basis transformations.
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4.3 Quantization and one-particle operators

The quantization can be done in canonical manner considering that the wave functions a and
b of the fields (57) and (65) become field operators (such that b∗ → b†). We assume that the
particle (a, a†) and antiparticle (b, b†) operators fulfill the standard commutation relations in
the momentum basis, from which the non-vanishing ones are

[a(�p), a†(�p �)] = [b(�p), b†(�p �)] = δ3(�p − �p �) . (73)

Then, from Eq. (71) it results that the field operators of the energy basis satisfy

[a(E,�n), a†(E�,�n �)] = [b(E,�n), b†(E�,�n �)] = δ(E − E�)δ2(�n −�n �) , (74)

and
[a(�p), a†(E,�n)] = [b(�p), b†(E,�n)] = � f�p, fE,�n� , (75)

while other commutators are vanishing. In this way the field φ is correctly quantized
according to the canonical rule (Drell & Bjorken, 1965),

[φ(t,�x), π(t,�x�)] = e3ωt [φ(t,�x), ∂tφ
†(t,�x�)] = i δ3(�x −�x�) , (76)

where π =
√

g ∂tφ
† is the momentum density derived from the action (35). All these operators

act on the Fock space which has the unique Bunch-Davies vacuum state |0� accomplishing

a(�p)|0� = b(�p)|0� = 0 , �0|a†(�p) = �0|b†(�p) = 0 , (77)

and similarly for the energy basis. The sectors with a given number of particles have to be
constructed using the standard methods, obtaining thus the generalized bases of momentum
or energy.

The one-particle operators corresponding to the conserved operators can be calculated bearing
in mind that for any self-adjoint generator X of the scalar representation of the group I(M)
there exists a conserved one-particle operator of the quantum field theory which can be
calculated simply as

X =: �φ, Xφ� : (78)

respecting the normal ordering of the operator products. Hereby we recover the standard
algebraic properties

[A, φ(x)] = −Aφ(x) , [A,B ] =: �φ, [A, B] φ� : (79)

due to the canonical quantization adopted here. In other respects, the electric charge operator
corresponding to the U(1) internal symmetry (of Abelian gauge transformations φ → eiαIφ)
results from the Noether theorem to be Q =: �φ, Iφ� := : �φ, φ� :.

However, there are many other conserved operators which do not have corresponding
differential operators at the level of quantum mechanics. The simplest examples are the
operators of number of particles,

Npa =
∫

d3 p a†(�p)a(�p) =
∫ ∞

0
dE

∫

S2
dΩna†(E,�n)a(E,�n) , (80)

and that of antiparticles, Nap (depending on b and b†), giving rise to the charge operator
Q = Npa −Nap and that of the total number of particles, N = Npa +Nap.
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In what follows we focus on the conserved one-particle operators determining the momentum
and energy bases. The diagonal operators of the momentum basis the are Q and the
components of momentum operator,

P i =: �φ, Piφ� :=
∫

d3 p pi
[

a†(�p)a(�p) + b†(�p)b(�p)
]

. (81)

In other words, the momentum basis is determined by the set of commuting operators
{Q,P i}. The energy basis is formed by the common eigenvectors of the set of commuting
operators {Q,H, P̃ i}, i.e. the charge, energy and momentum direction operators. The energy
operator can be easily calculated since the solutions (66) are eigenfunctions of the operator H.
In this way we find

H =: �φ, Hφ� :=
∫ ∞

0
dE E

∫

S2
dΩn

[
a†(E,�n)a(E,�n) + b†(E,�n)b(E,�n)

]
. (82)

More interesting are the operators P̃ i of the momentum direction since they do not come from
differential operators and, therefore, must be defined directly as

P̃ i =
∫ ∞

0
dE

∫

S2
dΩn ni

[
a†(E,�n)a(E,�n) + b†(E,�n)b(E,�n)

]
. (83)

The above operators which satisfy simple commutation relations,

[H,P i] = iωP i , [H, P̃ i] = 0 , [Q,H] = [Q,P i] = [Q, P̃ i] = 0 , (84)

are enough for defining the bases considered hare.

Our approach offers the opportunity to deduce mode expansions of conserved one-particle
operators but in bases where these are not diagonal. For example, we can calculate the mode
expansion of the energy operator in the momentum basis either starting with the identity

(H f�p)(x) = −iω
(

pi∂pi +
3
2

)
f�p(x) (85)

or using Eq. (72). The final result (Cotăescu et al., 2008),

H =
iω
2

∫
d3 p pi

[
a†(�p)

↔
∂ pi a(�p) + b†(�p)

↔
∂ pi b(�p)

]
, (86)

is similar to those obtained for other fields as we shall see later. This expansion has a
remarkable property namely, the change of the phase factors,

f�p(x) → f�p(x)eiχ(�p) , a(�p) → e−iχ(�p)a(�p) , b(�p) → e−iχ(�p)b(�p) , (87)

using a real phase function χ(�p), preserve the form of the operators φ, Q and P i but
transforms the Hamiltonian operator as

H → H+ ω
∫

d3 p [pi∂pi χ(�p)]
[

a†(�p)a(�p) + b†(�p)b(�p)
]

. (88)

Our preliminary investigations indicate that this property may be helpful for avoid some
mathematical difficulties related to the flat limit ω ∼ 0 (Cotăescu, 2011b).

We note that beside the above conserved operators we can introduce other one-particle
operators extending the definition (78) to the non-conserved operators of our quantum
mechanics. However, these operators will depend explicitly on time, their expressions being
complicated and without an intuitive physical meaning.
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[H,P i] = iωP i , [H, P̃ i] = 0 , [Q,H] = [Q,P i] = [Q, P̃ i] = 0 , (84)

are enough for defining the bases considered hare.

Our approach offers the opportunity to deduce mode expansions of conserved one-particle
operators but in bases where these are not diagonal. For example, we can calculate the mode
expansion of the energy operator in the momentum basis either starting with the identity

(H f�p)(x) = −iω
(

pi∂pi +
3
2

)
f�p(x) (85)

or using Eq. (72). The final result (Cotăescu et al., 2008),

H =
iω
2

∫
d3 p pi

[
a†(�p)

↔
∂ pi a(�p) + b†(�p)

↔
∂ pi b(�p)

]
, (86)

is similar to those obtained for other fields as we shall see later. This expansion has a
remarkable property namely, the change of the phase factors,

f�p(x) → f�p(x)eiχ(�p) , a(�p) → e−iχ(�p)a(�p) , b(�p) → e−iχ(�p)b(�p) , (87)

using a real phase function χ(�p), preserve the form of the operators φ, Q and P i but
transforms the Hamiltonian operator as

H → H+ ω
∫

d3 p [pi∂pi χ(�p)]
[

a†(�p)a(�p) + b†(�p)b(�p)
]

. (88)

Our preliminary investigations indicate that this property may be helpful for avoid some
mathematical difficulties related to the flat limit ω ∼ 0 (Cotăescu, 2011b).

We note that beside the above conserved operators we can introduce other one-particle
operators extending the definition (78) to the non-conserved operators of our quantum
mechanics. However, these operators will depend explicitly on time, their expressions being
complicated and without an intuitive physical meaning.

190 Advances in Quantum Theory Quantum Fields on the de Sitter
Expanding Universe 17

4.4 Commutator and Green functions

In the quantum theory of fields the Green functions are related to the partial commutator
functions (of positive or negative frequencies) defined as

D(±)(x, x�) = i[φ(±)(x), φ(±) †(x�)] (89)

and the total one, D = D(+) + D(−). These function are solutions of the Klein-Gordon
equation in both the sets of variables and obey [D(±)(x, x�)]∗ = D(∓)(x, x�) such that D results
to be a real function. This property suggests us to restrict ourselves to study only the functions
of positive frequencies,

D(+)(x, x�) = i
∫

d3 p f�p(x) f�p(x�)∗ = i
∫ ∞

0
dE

∫

S2
dΩn fE,�n(x) fE,�n(x�)∗ , (90)

resulted from Eqs. (57) and (65). Both these versions lead to the final expression

D(+)(x, x�) = π

4ω

i
(2π)3 e−

3
2 ω(t+t�)

∫
d3 p Zk

( p
ω

e−ωt
)

Z∗
k

( p
ω

e−ωt�
)

ei�p·(�x−�x�) (91)

from which we understand that D(+)(x, x�) = D(+)(t, t�,�x − �x �) and may deduce what
happens at equal time. First we observe that for t� = t the values of the function D(+)(t, t,�x −
�x �) are c-numbers which means that D(t, t,�x −�x �) = 0. Moreover, from Eqs. (56) or (69) we
find

(∂t − ∂t� )D(+)(t, t�,�x −�x �)
∣∣∣
t�=t

= e−3ωtδ3(�x −�x �) (92)

and similarly for D(−).

The commutator functions can be written in analytical forms since the mode integral (91) may
be solved in terms of Gauss hypergeometric functions (Chernikov & Tagiriv, 1968). Indeed, in
the chart {tc,�x} this integral becomes

D(+)(tc, tc
�,�x −�x �) = iπω2

4
e−πk

(2π)3 (tctc
�)

3
2

∫
d3 p ei(�x−�x �)·�p H(1)

ik (−ptc)H(1)
ik (−ptc

�)∗ (93)

and can be solved as,

D(+)(tc, tc
�,�x −�x�) = im2

16π
e−πksech(πk) 2F1

(
3
2
+ ik,

3
2
− ik; 2; 1 +

y
4

)
, (94)

where the quantity

y(x, x�) = (tc − tc
� − i�)2 − (�x −�x �)2

tctc
� (95)

is related to the geodesic length between x and x� (Birrel & Davies, 1982).

In general, G(x, x�) = G(t, t�,�x −�x �) is a Green function of the Klein-Gordon equation if this
obeys [

EKG(x)− m2
]

G(x, x�) = −e−3ωtδ4(x − x�) . (96)
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The properties of the commutator functions allow us to construct the Green function just as in
the scalar theory on Minkowski space-time. We assume that the retarded, DR, and advanced,
DA, Green functions read

DR(t, t�,�x −�x �) = θ(t − t�)D(t, t�,�x −�x �) , (97)

DA(t, t�,�x −�x �) = − θ(t� − t)D(t, t�,�x −�x �) , (98)

while the Feynman propagator,

DF(t, t�,�x −�x �) = i�0|T[φ(x)φ†(x�)] |0�
= θ(t − t�)D(+)(t, t�,�x −�x �)− θ(t� − t)D(−)(t, t�,�x −�x �) , (99)

is defined as a causal Green function. It is not difficult to verify that all these functions satisfy
Eq. (96) if one uses the identity ∂2

t [θ(t) f (t)] = δ(t)∂t f (t), the artifice ∂t f (t − t�) = 1
2 (∂t −

∂t� ) f (t − t�) and Eq. (92).

5. The Dirac field

The first solutions of the free Dirac equation in the moving chart with proper time and
spherical coordinates were derived in (Shishkin, 1991) and normalized in (Cotăescu et al.,
2006). We derived other solutions of this equation but in moving charts with Cartesian
coordinates where we considered the helicity basis in momentum representation (Cotăescu,
2002; Cotăescu & Crucean, 2008; Cotăescu, 2011b). These solutions are well-normalized,
satisfy the usual completeness relations and correspond to a unique vacuum state.

5.1 Spinor quantum mechanics

Let ψ be a Dirac free field of mass m, defined on the space domain D, and ψ = ψ+γ0 its
Dirac adjoint. The tetrad gauge invariant action of the Dirac field minimally coupled with the
gravitational field is

S [e, ψ] =
∫

d4x
√

g
{

i
2
[ψγα̂Dα̂ψ − (Dα̂ψ)γα̂ψ]− mψψ

}
(100)

where the Dirac matrices, γα̂, satisfy {γα̂, γβ̂} = 2ηα̂β̂. The covariant derivatives in
local frames, denoted simply by Dα̂, are given by Eq. (1) where we consider the spinor
representation ρs = ( 1

2 , 0)⊕ (0, 1
2 ) of the SL(2, C) group whose basis-generators in covariant

parametrization are Sα̂β̂ = i
4 [γα̂, γβ̂]. The operator of the Dirac equation EDψ = mψ, derived

from the action (100), reads ED = iγα̂Dα̂. In other respects, from the conservation of the
electric charge one deduces that when e0

i = 0 (i, j, ... = 1, 2, 3) the time-independent relativistic
scalar product of two spinors,

〈
ψ, ψ�〉 =

∫

D
d3x μ(x)ψ(x)γ0ψ�(x) . (101)

has the weight function μ =
√

g e0
0 .

Our theory of external symmetry offers us the framework we need to calculate the conserved
quantities predicted by the Noether theorem. Starting with the infinitesimal transformations
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2006). We derived other solutions of this equation but in moving charts with Cartesian
coordinates where we considered the helicity basis in momentum representation (Cotăescu,
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of the one-parameter subgroup of S(M) generated by Xa, we find that there exists the
conserved current Θμ[Xa] which satisfies Θμ[Xa];μ = 0. For the action (100) this is

Θμ[Xa] = −T̃μ ·
· ν kν

a +
1
4

ψ{γα̂, Sβ̂γ̂}ψ eμ
α̂ Ωa β̂γ̂ (102)

where
T̃μ ·
· ν =

i
2

[
ψγα̂eμ

α̂ ∂νψ − (∂νψ)γα̂eμ
α̂ ψ

]
(103)

is a notation for a part of the stress-energy tensor of the Dirac field. Finally, it is clear that the
corresponding conserved quantity is the real number (Cotăescu, 2002),

∫

D
d3x

√
g Θ0[Xa] =

1
2
[�ψ, Xaψ�+ �Xaψ, ψ�] . (104)

We note that it is premature to interpret this formula as an expectation value or to speak about
Hermitian conjugation of the operators Xa with respect to the scalar product (101), before
specifying the boundary conditions on D. What is important here is that this result is useful
in quantization giving directly the one-particle operators of the quantum field theory.

On the de Sitter expanding universe we can chose the simple Cartesian gauge (18) of the chart
{t,�x} or the corresponding gauge (19) in the chart {tc,�x}. Then the Dirac operator takes the
forms

ED = −iωtc

(
γ0∂tc + γi∂i

)
+

3iω
2

γ0 = iγ0∂t + ie−ωtγi∂i +
3iω

2
γ0 (105)

and the weight function of the scalar product (101) reads

μ = (−ωtc)
−3 = e3ωt . (106)

This operator commutes with the isometry generators (26)-(29) whose spin parts are given
now by the matrices Sα̂β̂. Thus we obtained the NP of the Dirac theory.

The SP can be introduced transforming the Dirac field using the same operator (44) as in
the scalar case. In this picture the Dirac field becomes ψS(x) = W(x)ψ(x)W−1(x) while the
genuine orbital operators (49), (50) and H remain the same as in the scalar case. Moreover, we
obtain the free Dirac equation of the SP,

[
iγ0∂t + iγi∂i − m + iγ0ω

(
xi∂i +

3
2

)]
ψS(x) = 0 , (107)

and the new form of the relativistic scalar product,
〈
ψS, ψ�

S
〉
=

〈
ψ, ψ�〉 =

∫

D
d3x ψ̄S(x)γ0ψ�

S(x) , (108)

calculated according to Eqs. (101) and (44b). We observe that this is no longer dependent on√
g, having thus the same form as in special relativity.

5.2 Polarized plane wave solutions

In what follows we present the principal polarized plane wave solutions of the free Dirac
field minimally coupled to the de Sitter gravity. The polarization is described in the helicity
basis such that we have to speak about the momentum-helicity basis and the energy-halicity
one (Cotăescu, 2002; Cotăescu & Crucean, 2008). In addition, we derived the modes of the
momentum-spin basis (Cotăescu, 2011b) but these exceed the space of this paper.
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5.2.1 The momentum-helicity basis

The plane wave solutions of the Dirac equation with m �= 0 may be eigenspinors of the
momentum operators Pi corresponding to the eigenvalues pi. Therefore, we assume that,
in the standard representation of the Dirac matrices, with diagonal γ0 (Thaler, 1992), these
have the form

ψ
(+)
�p =

(
f+(tc) α(�p)

g+(tc)
�σ · �p

p α(�p)

)
ei�p·�x , ψ

(−)
�p =

(
g−(tc)

�σ · �p
p β(�p)

f−(tc) β(�p)

)
e−i�p·�x (109)

where σi denotes the Pauli matrices while α and β are arbitrary Pauli spinors depending on
�p. Replacing these spinors in the Dirac equation given by (105) and denoting μ = m

ω and
ν± = 1

2 ± iμ, we find equations of the form (161) whose solutions can be written in terms of
Hankel functions as

f+ = (− f−)∗ = c tc
2e

1
2 πμ H(1)

ν− (−ptc) (110)

g+ = (−g−)∗ = c tc
2e−

1
2 πμ H(1)

ν+ (−ptc) . (111)

The integration constant c will be calculated from the ortonormalization condition in the
momentum scale.

The plane wave solutions are determined up to the significance of the Pauli spinors α and
β. In general any pair of orthogonal spinors ξσ(�p) with polarizations σ = ±1/2 represents a
good basis in the space of α-spinors. According to the standard interpretation of the negative
frequency terms, the corresponding basis of the β-spinors is formed by the pair of orthogonal
spinors defined as ησ(�p) = iσ2[ξσ(�p)]∗. It remains to choose specific spinor bases, considering
supplementary physical assumptions. Here we choose the helicity basis which is formed by
the orthogonal Pauli spinors of helicity λ = ± 1

2 which satisfy the eigenvalues equations

�σ · �p ξλ(�p) = 2pλ ξλ(�p) , �σ · �p ηλ(�p) = −2pλ ηλ(�p) , (112)

and the orthonormalization condition ξ+λ (�p)ξλ� (�p) = η+
λ (�p)ηλ� (�p) = δλλ� .

The desired particular solutions of the Dirac equation with m �= 0 result from our starting
formulas (109) where we insert the functions (110) and (111) and the spinors of the helicity
basis (112). It remains to calculate the normalization constant c with respect to the scalar
product (101) with the weight function (106). After a few manipulation, in the chart {t,�x}, it
turns out that the Dirac field can be expanded as

ψ(t,�x) = ψ(+)(t,�x) + ψ(−)(t,�x)

=
∫

d3 p ∑
λ

[
U�p,λ(x)a(�p, λ) + V�p,λ(x)b∗(�p, λ)

]
, (113)

in terms of the particle (a) and antiparticle (b) wave functions of the momentum
representation. The fundamental spinors of positive and negative frequencies with
momentum �p and helicity λ read (Cotăescu, 2002)

U�p,λ(t,�x) = iN

(
1
2 e

1
2 πμ H(1)

ν− (qe−ωt) ξλ(�p)
λ e− 1

2 πμ H(1)
ν+ (qe−ωt) ξλ(�p)

)
ei�p·�x−2ωt (114)

V�p,λ(t,�x) = iN

(
λ e− 1

2 πμ H(2)
ν− (qe−ωt) ηλ(�p)

− 1
2 e

1
2 πμ H(2)

ν+ (qe−ωt) ηλ(�p)

)
e−i�p·�x−2ωt , (115)
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where we introduced the new parameter q =
p
ω and

N =
1

(2π)3/2
√

πq . (116)

These solutions are the common eigenspinors of the complete set of commuting operators
{ED, �S2, Pi, W} obeying

Pi U�p,λ = pi U�p,λ , Pi V�p,λ = −pi V�p,λ , (117)

W U�p,λ = pλU�p,λ , W V�p,λ = −pλV�p,λ , (118)

where W = �J · �P = �S · �P is the helicity operator. For this reason we say that these spinors form
the momentum-helicity basis.

In other respects, according to Eqs. (160) and (162), it is not hard to verify that these spinors
are charge-conjugated to each other,

V�p,λ = (U�p,λ)
c = C(U�p,λ)

T , C = iγ2γ0 , (119)

satisfy the ortonormalization relations,
〈

U�p,λ, U�p � ,λ�
〉
=

〈
V�p,λ, V�p � ,λ�

〉
= δλλ�δ3(�p − �p �) , (120)

〈
U�p,λ, V�p � ,λ�

〉
=

〈
V�p,λ, U�p � ,λ�

〉
= 0 , (121)

and represent a complete system of solutions in the sense that
∫

d3 p ∑
λ

[
U�p,λ(t,�x)U

+
�p,λ(t,�x

�) + V�p,λ(t,�x)V
+
�p,λ(t,�x

�)
]
= e−3ωtδ3(�x −�x �) . (122)

Thus we can conclude that the separation of the positive and negative frequency modes
performed here is point-independent and corresponds to a stable vacuum state which is of
the Bunch-Davies type.

In the case of m = 0 (when μ = 0) it is convenient to consider the chiral representation of the
Dirac matrices (with diagonal γ5) and the chart {tc,�x}. We find that the fundamental solutions
in momentum-helicity basis of the left-handed massless Dirac field (Cotăescu, 2002),

U0
�p,λ(tc,�x) = lim

μ→0
PLU�p,λ(tc,�x) =

(−ωtc

2π

)3/2 (
( 1

2 − λ)ξλ(�p)
0

)
e−iptc+i�p·�x , (123)

V0
�p,λ(tc,�x) = lim

μ→0
PLV�p,λ(tc,�x) =

(−ωtc

2π

)3/2 (
( 1

2 + λ)ηλ(�p)
0

)
e iptc−i�p·�x , (124)

where PL = 1
2 (1− γ5) is the left-handed projection matrix. These solutions are non-vanishing

only for positive frequency and λ = − 1
2 or negative frequency and λ = 1

2 , as in the flat case
and, moreover, they have similar properties as in (119)-(118).
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5.2.2 The energy-helicity basis

The energy basis formed by eigenspinors of the energy operator, H, must be studied in the SP
where Eq. (107) can be solved in momentum representation (Cotăescu & Crucean, 2008). We
start assuming that the spinors of the SP may be expanded in terms of plane waves of positive
and negative frequencies as,

ψS(x) = ψ
(+)
S (x) + ψ

(−)
S (x)

=
∫ ∞

0
dE

∫

D̂
d3 p

[
ψ̂
(+)
S (E,�p) e−i(Et−�p·�x) + ψ̂

(−)
S (E,�p) ei(Et−�p·�x)] (125)

where ψ̂
(±)
S are spinors which behave as tempered distributions on the domain D̂ = R3

p such
that the Green theorem may be used. Then we can replace the momentum operators Pi

S by
their eigenvalues pi and the coordinate operators Xi

S by i∂pi obtaining the free Dirac equation
of the SP in momentum representation,

[
±Eγ0 ∓ γi pi − m − iγ0ω

(
pi∂pi +

3
2

)]
ψ̂
(±)
S (E,�p) = 0 , (126)

where E is the energy defined as the eigenvalue of HS. Denoting �p = p�n we observe that
the differential operator of Eq. (126) is of radial type and reads pi∂pi = p ∂p. Therefore, this
operator acts on the functions which depend on p while the functions which depend only on
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ψ̂
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uS(E,�p, λ) a(E,�n, λ) , (127)

ψ̂
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S (E,�p) = ∑

λ

vS(E,�p, λ) b∗(E,�n, λ) , (128)

involve spinors of helicity λ = ± 1
2 and the particle and antiparticle wave functions, a and

respectively b, which play here the role of constants since they do not depend on p. According
to our previous results, the spinors of the momentum representation must have the form

uS(E,�p, λ) =

(
1
2 f (+)

E (p) ξλ(�n)
λg(+)

E (p) ξλ(�n)

)
, vS(E,�p, λ) =

(
λg(−)

E (p) ηλ(�n)
− 1

2 f (−)
E (p) ηλ(�n)

)
, (129)

where ξλ(�n) and ηλ(�n) = iσ2[ξλ(�n)]∗ denote now the Pauli spinors of the helicity basis
introduced in section 5.2.1. (which depend only on the momentum direction�n). Furthermore,
we derive the radial functions solving the system

[
iω

(
p

d
dp

+
3
2

)
∓ (E − m)

]
f (±)
E (p) = ∓p g(±)

E (p) , (130)
[

iω
(

p
d

dp
+

3
2

)
∓ (E + m)

]
g(±)

E (p) = ∓p f (±)
E (p) , (131)
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5.2.2 The energy-helicity basis
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(−)
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∫ ∞

0
dE

∫

D̂
d3 p

[
ψ̂
(+)
S (E,�p) e−i(Et−�p·�x) + ψ̂

(−)
S (E,�p) ei(Et−�p·�x)] (125)

where ψ̂
(±)
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resulted from Eq. (126). We find the solutions

f (+)
E (p) = [− f (−)

E (p)]∗ = Cp−1−i�e
1
2 πμ H(1)

ν− (
p
ω ) , (132)

g(+)
E (p) = [−g(−)

E (p)]∗ = Cp−1−i�e−
1
2 πμ H(1)

ν+ (
p
ω ) . (133)

The normalization constant C has to assure the normalization in the energy scale.

Collecting all the above results we can write down the final expression of the Dirac field (125)
in SP identifying the form of the fundamental spinors of given energy. Then we turn back to
the NP where the Dirac field,

ψ(x) = ψS(t, eωt�x) =
∫ ∞

0
dE

∫

S2
dΩn ∑

λ

[
UE,�n,λ(t,�x)a(E,�n, λ) (134)

+VE,�n,λ(t,�x)b
∗(E,�n, λ)

]
, (135)

depends on the solutions written in NP,

UE,�n,λ(t,�x) = US
E,�n,λ(t, eωt�x) , VE,�n,λ(t,�x) = VS

E,�n,λ(t, eωt�x) . (136)

According to Eqs. (129), (132) and (133), we obtain the integral representations

UE,�n,λ(t,�x) = iN̂e−2ωt
∫ ∞

0
s ds

(
1
2 e

1
2 πμ H(1)

ν− (se−ωt) ξλ(�n)
λ e− 1

2 πμ H(1)
ν+ (se−ωt) ξλ(�n)

)
eiωs�n·�x−i� ln s , (137)

VE,�n,λ(t,�x) = iN̂e−2ωt
∫ ∞

0
s ds

(
λ e− 1

2 πμ H(2)
ν− (se−ωt) ηλ(�n)

− 1
2 e

1
2 πμ H(2)

ν+ (se−ωt) ηλ(�n)

)
e−iωs�n·�x+i� ln s , (138)

where we denote the dimensionless integration variable by s = p
ω eωt and take

N̂ =
1

(2π)3/2
ω√

2
. (139)

We derived thus the fundamental spinor solutions of positive and, respectively, negative
frequencies, with energy E, momentum direction �n and helicity λ. These spinors are
charge-conjugated to each other,

VE,�n,λ = (UE,�n,λ)
c = C(UE,�n,λ)

T , C = iγ2γ0 , (140)

and satisfy the orthonormalization relations
〈
UE,�n,λ, UE,�n � ,λ�

〉
=

〈
VE,�n,λ, VE,�n � ,λ�

〉
= δλλ�δ(E − E�) δ2(�n −�n �) , (141)〈

UE,�n,λ, VE,�n � ,λ�
〉
=

〈
VE,�n,λ, UE,�n � ,λ�

〉
= 0 . (142)

deduced as in the Appendix B. Moreover, the completeness relation
∫ ∞

0
dE

∫

S2
dΩn ∑

λ

{
UE,�n,λ(t,�x)[UE,�n,λ(t,�x

�)]+

+VE,�n,λ(t,�x)[VE,�n,λ(t,�x
�)]+

}
= e−3ωtδ3(�x −�x �) , (143)
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indicates that this system of solutions is complete. We say that this represents the
energy-helicity basis.

Finally, we derive the transition coefficients transforming the momentum-helicity and the
energy-helicity bases among themselves. After a few manipulation we find that these
coefficients,

〈
U�p,λ, UE,�n,λ�

〉
=

〈
V�p,λ, VE,�n,λ�

〉∗
= δλλ�

p− 3
2√

2πω
δ2(�n −�np) e−i E

ω ln p
ω , (144)

〈
U�p,λ, VE,�n,λ�

〉
=

〈
V�p,λ, UE,�n,λ�

〉
= 0 , (145)

are similar to those of the scalar modes (70). Therefore, the particle wave functions a(�p, λ) and
a(E,�n, λ) are related among themselves by similar unitary transformations as (71) and (72) but
conserving, in addition, the helicity. These transformations preserve the vacuum state since
the antiparticle wave functions have the same properties and the particle and antiparticle
Hilbert spaces remain orthogonal to each other, as it results from Eq. (145).

5.3 Quantization and propagators

The quantization of the Dirac field can be done easily in the helicity bases as well as in the spin
one. We assume that the wave functions of the momentum-helicity basis, a(�p, λ) and b(�p, λ),
become field operators (so that b∗ → b†) satisfying the standard anticommutation relations
from which the non-vanishing ones are

{a(�p, λ), a†(�p �, λ�)} = {b(�p, λ), b†(�p �, λ�)} = δλλ�δ3(�p − �p �) . (146)

The corresponding anticommutation rules of the energy-helicity basis are

{a(E,�n, λ), a†(E�,�n �, λ�)} = {b(E,�n, λ), b†(E�,�n �, λ�)}
= δλ,λ�δ(E − E�)δ2(�n −�n �) . (147)

We say that this quantization is canonical since the equal-time anticommutator takes the
standard form (Drell & Bjorken, 1965)

{ψ(t,�x), ψ(t,�x �)} = e−3ωtγ0δ3(�x −�x �) , (148)

as it results from Eq. (122). In addition, we know that the mode separation we use defines a
stable vacuum state. Therefore, we have to construct the Fock space canonically, applying the
creation operators upon the unique vacuum state |0�.
The one-particle operators corresponding to the isometry generators can be calculated as in
the scalar case using the definition X =: �ψ, Xψ� :. The operators which do not come from
differential operators have to be defined directly giving their mode expansions (Cotăescu,
2002). It is remarkable that all these operators have similar properties to those of the
scalar field presented here or of the vector fields studied in (Cotăescu, 2010; Cotăescu &
Crucean, 2010). The most interesting result is the expansion of the energy operator in the
momentum-helicity basis where we may use the identity

H U�p,λ(t,�x) = −iω
(

pi∂pi +
3
2

)
U�p,λ(t,�x) , (149)
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and the similar one for V�p,λ, leading to the expansion

H =
iω
2

∫
d3 p pi ∑

λ

[
a†(�p, λ)

↔
∂ pi a(�p, λ) + b†(�p, λ)

↔
∂ pi b(�p, λ)

]
(150)

which depend on the phase factors of the field operators as in the scalar or vector cases.

The Green functions can be expressed in terms of anticommutator functions,

S(±)(t, t�,�x −�x �) = i{ψ(±)(t,�x), ψ
(±)

(t�,�x �)} , (151)

and S = S(+) + S(−) which can be written as mode integrals that can be analytically solved
(Kosma & Prokopec, 2009). These functions are solutions of the Dirac equation in both their
sets of coordinates and helped us to write down the Feynman propagator,

SF(t, t�,�x −�x �) = i �0| T[ψ(x)ψ(x�)] |0�
= θ(t − t�)S(+)(t, t�,�x −�x �)− θ(t� − t)S(−)(t, t�,�x −�x �) , (152)

and the retarded and advanced Green functions SR(t, t�,�x −�x �) = θ(t − t�)S(t, t�,�x −�x �) and
respectively SA(t, t�,�x −�x �) = −θ(t� − t)S(t, t�,�x −�x �), which satisfy the specific equation,

[ED(x)− m]SF(t, t�,�x −�x �) = −e−3ωtδ4(x − x�) , (153)

of the spinor Green functions on the de Sitter space-time (Cotăescu, 2002).

6. Concluding remarks

We presented here the complete quantum theory of the massive scalar and Dirac free fields
minimally coupled to the gravity of the de Sitter expanding universe. Applying similar
methods we succeeded to accomplish the theory of the Proca (Cotăescu, 2010) and Maxwell
(Cotăescu & Crucean, 2010) fields on this background. The main points of our approach are
the theory of external symmetry (Cotăescu, 2000; 2009) that provides us with the conserved
operators of the fields with any spin and the Schrödinger time-evolution picture (Cotăescu,
2007) allowing us to derive new sets of fundamental solutions.

The wave functions defining quantum modes are solutions of the field equations and common
eigenfunctions of suitable systems of commuting operators which represent conserved
observables globally defined on the de Sitter manifold. All these observables form the global
apparatus which prepares global quantum modes as it seems to be natural as long as the field
equations are global too. In this manner, we obtain wave functions correctly normalized on
the whole background such that the Hilbert spaces of the particle and respectively antiparticle
states remain orthogonal to each other in any frame, assuring thus the stability of a vacuum
state which is of the bunch-Davies type (Bunch & Davies, 1978).

The new energy bases introduced here completes the framework of the de Sitter quantum
theory, being crucial for understanding how the energy and momentum can be measured
simultaneously. We may convince that considering the simple example of a Klein-Gordon
particle in the state

|χ� =
∫

d3 p χ(�p)a†(p)|0� , χ(�p) = ρ(�p)e−iϑ(�p) , (154)
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determined by the functions ρ, θ : R3
p → R. The normalization condition

1 = �χ|χ� =
∫

d3 p |χ(�p)|2 =
∫

d3 p |ρ(�p)|2 (155)

shows that the function ρ must be square integrable on R3
p while θ remains an arbitrary real

function. Furthermore, according to Eqs. (81) and (86), we derive the expectation values of
the non-commuting operators P i and H,

�χ|P i|χ� =
∫

d3 p pi |ρ(�p)|2 , �χ|H|χ� = ω
∫

d3 p [pi∂pi ϑ(�p)] |ρ(�p)|2 . (156)

The expectation values of the momentum operators are independent on the phase θ while that
the energy operator depends mainly on it. This means that we can prepare at anytime states
with arbitrary desired expectation values of both these observables. Thus, in the particular
case of θ(�p) = � ln(p) we obtain �χ|H|χ� = ω� = E indifferent on the form of ρ if this obeys
the condition (155). In other respects, we observe that the dispersion of the energy operator in
this particular state,

dispH = �χ|H2|χ� − �χ|H|χ�2 = ω2
∫

d3 p |pi∂pi ρ(�p)|2 − 9
4 ω2 , (157)

depends only on the momentum statistics given by the function ρ. Thus we can say that we
meet a new quantum mechanics on the de Sitter expanding universe.

We conclude that our approach seems to be coherent at the level of the relativistic
quantum mechanics where the conserved observables of different time-evolution pictures
are correctly defined allowing us to derive complete sets of quantum modes. Consequently,
the second quantization can be performed in canonical manner leading to quantum free
fields, one-particle operators and Green functions with similar properties to those of special
relativity. Under such circumstances, we believe that we constructed the appropriate
framework for studying quantum effects of interacting fields on the de Sitter background.
Assuming that the quantum transitions are measured by the same global apparatus which
prepares the free quantum states we may use the perturbation theory for deriving transition
amplitudes as in the flat case.

Finally we specify that our attempt to use quantum modes globally defined does not
contradict the general concept of local measurements (Birrel & Davies, 1982) which is the
only possible option when the isometries (or other symmetries) are absent and, consequently,
the global apparatus does not work.

7. Appendix

Appendix A: Some properties of Hankel functions

Let us consider the functions Zk depending on the Hankel functions H(1,2)
ν (z) (Abramowitz &

Stegun, 1964) as

Zk(z) = e−πk/2H(1)
ik (z) , Z∗

k (z) = eπk/2H(2)
ik (z) . (158)

where z, k ∈ R. Then, using the Wronskian W of the Bessel functions we find that

Z∗
k (z)

↔
∂z Zk(z) = W[H(2)

ik , H(1)
ik ](z) =

4i
πz

. (159)
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A special case is of the Hankel functions H(1,2)
ν± (z) of indices ν± = 1

2 ± ik where z, k ∈ R. These
are related among themselves through

[H(1,2)
ν± (z)]∗ = H(2,1)

ν∓ (z) , (160)

satisfy the equations
(

d
dz

+
ν±
z

)
H(1)

ν± (z) = ie±πk H(1)
ν∓ (z) ,

(
d
dz

+
ν±
z

)
H(2)

ν± (z) = −ie∓πk H(2)
ν∓ (z) (161)

and the identities

e±πk H(1)
ν∓ (z)H(2)

ν± (z) + e∓πk H(1)
ν± (z)H(2)

ν∓ (z) =
4

πz
. (162)

Appendix B: Normalization integrals

In spherical coordinates of the momentum space, �n ∼ (θn, φn), and the notation �q = ωs�n, we
have d3q = q2dq dΩn = ω3 s2ds dΩn with dΩn = d(cos θn)dφn. Moreover, we can write

δ3(�q −�q �) = 1
q2 δ(q − q�)δ2(�n −�n�) = 1

ω3s2 δ(s − s�)δ2(�n −�n�) , (163)

where we denoted δ2(�n −�n�) = δ(cos θn − cos θ�n)δ(φn − φ�
n) .

The normalization integrals can be calculated according to Eqs. (66) and (163), that yield

� fE,�n, fE� ,�n � � = i
N2(2π)3

ω3 δ2(�n −�n �)
∫ ∞

0

ds
s

ei(�−��) ln s
[

Z∗
k (s e−ωt)

↔
∂t Zk(s e−ωt)

]
. (164)

The final result has to be obtained using Eq. (159) and the representation

1
2πω

∫ ∞

0

ds
s

e
i
ω (E−E�) ln s = δ(E − E�) . (165)
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1. Introduction

Since the discovery of the accelerated expansion of the universe(Fadely et al., 2009; Fu et al.,
2008; Hicken et al., 2009; Kessler et al., 2009; Massey et al., 2007; Mantz et al., 2009; Percival
et al., 2009; Reid et al., 2009; Riess et al., 2009; Schrabback et al., 2009; Suyu et al., 2009;
Vikhlinin et al., 2009),(Bennet et al., 2010; Jarosik et al., 2010; Komatsu et al., 2010; Larson
et al., 2010), much attention has been attracted to the generalized gravity theories of the
f (R)-type(Caroll et al., 2004; Sotiriou & Faraoni, 2008; Nojiri & Odintsov, 2006). Before the
discovery, such theories have been interested in because of its theoretical advantages: The
theory of the graviton is renormalizable(Utiyama & DeWitt, 1962; Stelle, 1977). It seems to be
possible to avoid the initial singularity of the universe which is the prediction of the theorem
by Hawking(Hawking & Ellis, 1973) (Nariai, 1971; Nariai & Tomita, 1971). And inflationary
model without inflaton field is possible(Starobinsky, 1980).

There is a well-known equivalence theorem between this type of theories and Einstein gravity
with a scalar field(Barrow & Cotsakis, 1988; Maeda, 1989; Teyssandier & Tourrence, 1983;
Wands, 1994; Witt, 1984). The theorem states that two types of theories related by a suitable
conformal transformation are equivalent in the sense that the field equations of both theories
lead to the same paths. Many investigations have been devoted to this issue(Magnano &
Sokolowski, 1994; Sotiriou & Faraoni, 2008). In this work, we first review classical aspects
of the theorem by deriving it in a self-contained and pedagogical way. Then we describe
the problems of to what extent the equivalence holds. Main problems are: (i) Is the surface
term given by Gibbons and Hawking (Gibbons & Hawking, 1977) which is necessary in
Einstein gravity also necessary in the f (R)-type gravity? (ii) Does the equivalence hold also in
quantum theory? (iii) Which metric is physical, i.e., which metric should be identified with the
observed one? Next we solve the problem of the surface terms or the variational conditions.
The surface term is not necessary since we can impose the variational conditions at the time
boundaries that the metric and its "time derivative" can be put to be vanishing. This simplicity
could be added to the advantages of f (R)-type gravity. Quantum aspects of the theorem
are then summarized when we quantize the theory canonically in the framework of the
generalized Ostrogradski formalism (Ezawa et al., 2006) which is a natural generalization to
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the system in a curved spacetime. The main result is that if the f (R)-type theory is quantized
canonically, Einstein gravity with a scalar field has to be quantized non-canonically. Brief
comments are given on the problem (iii).

In section 2, the Lagrangian density and field equations for the f (R)-type gravity are
summarized. In section 3, the equivalence theorem is derived in a pedagogical way. In
section 4, the problems concerning the equivalence theorem are pointed out, especially to what
extent the equivalence holds. In section 5, the issue of surface term is clarified. Section 6 is
devoted to a description of the canonical formalism of the f (R)-type gravity and the classicaly
equivalent Einstein gravity with a scalar field. Summary and discussions are given in section
7. Conformal transformations of geometrical quantities are summarized in the appendix.

2. Generalized gravity of f (R)-type

Generalized gravity of f (R)-type is one of the higher curvature gravity(HCG) theories in
which the action is given by

S =
∫

dDxL =
∫

dDx
√−g f (R). (2.1)

The spacetime is taken to be D-dimensional. Here g ≡ det gμν and R is the D-dimensional
scalar curvature. Taking the variational conditions at the hypersurfaces Σt1 and Σt2 (Σt is the
hypersurface t = constant) as

δgμν = 0 and δġμν = 0, (2.2)

field equations are derived by the variational principle as follows:

− δL
δgμν(x)

=
√−g

[
f �(R)Rμν − 1

2
f (R)gμν −∇μ∇ν f �(R) + gμν� f �(R)

]
= 0, (2.3a)

or
Gμν =

1
f �(R)

[ 1
2

(
f (R)− R f �(R)

)
gμν − (gμν�−∇μ∇ν) f �(R)

]
, (2.3b)

where a prime represents the differentiation with respect to R, ∇μ the covariant derivative
with respect to the metric gμν and Gμν is the D-dimensional Einstein tensor. Equations
(2.3a,b) are the 4-th order partial differential equations, so the above variational conditions
are allowed. Further discussions on this issue will be given in Section 5.

Here we comment on the dimensionality of f (R). Comparing the action S with the
Einstein-Hilbert one

SE−H =
1

2κ2
D

∫
dDx

√−gR, (2.4)

where κD ≡ √
8πGD with GD the D-dimensional gravitational constant, we obtain the

dimension of f �(R) to be equal to that of κ −2
D , so that

[ f �(R) ] = [ κ −2
D ] = [ L2−D ]. (2.5)
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It is well known that this type of theory is transformed to Einstein gravity with a scalar field
by a conformal transformation, which is usually referred to as equivalence theorem. We will
review and clarify the content of the theorem.

3. Equivalence theorem

The theorem concerns with the conformal transformation

g̃μν ≡ Ω2gμν. (3.1)

In terms of the transformed Einstein tensor, field equations (2.3b) are written as

G̃μν=
1

f �(R)
∇μ∇ν f �(R)− (d − 1)∇μ∇ν(ln Ω)− gμν

[ 1
f �(R)

� f �(R)− (d − 1)�(ln Ω)
]

+(d − 1)∂μ(ln Ω)∂ν(ln Ω) + gμν

[ f (R)− R f �(R)
2 f �(R)

+
(d − 1)(d − 2)

2
∂λ(ln Ω)∂λ(ln Ω)

]
,

(3.2)
where we put D ≡ 1 + d (i.e. d is the dimension of the space). Eqs.(3.2) are the field equations
after the conformal transformation. If they are the equations for Einstein gravity with a scalar
field, 2nd order derivatives on the right hand side should vanish. From this requirement, Ω is
determined to be

Ω2 =
[
2κ 2

D f �(R)
]2/(d−1)

. (3.3)

The coefficient of f �(R) in the square bracket, which can be any constant, was chosen to be
2κ 2

D in order to make Ω to be dimensionless and equal to unity for Einstein gravity. So, (3.1)
takes the following form

g̃μν =
[
2κ 2

D f �(R)
]2/(d−1)

gμν. (3.4)

Scalar field is defined as

κD φ̃ ≡
√

d(d − 1) ln Ω =
√

d/(d − 1) ln[2κ2
D f �(R)], (3.5a)

or
f �(R) =

1
2κ 2

D
exp

(√
(d − 1)/d κD φ̃

)
,

ln Ω =
1√

d(d − 1)
κD φ̃.

(3.5b)

The coefficient of ln Ω, or equivalently ln[2κ2
D f �(R)], in (3.5a) was chosen for the right-hand

side of (3.2) to take the usual form of scalar field source. Solving (3.5) for R, we denote the
solution as

R = r(φ̃). (3.6)

In terms of φ̃, (3.2) takes the following form

G̃μν = κ 2
D

[
∂μφ̃ ∂νφ̃ + g̃μν

(
−1

2
∂λφ̃ ∂̃λφ̃ − V(φ̃)

)]
, (3.7)
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where ∂̃φ̃ ≡ g̃λρ∂ρφ̃ and

V(φ̃) ≡ − f (r(φ̃)) exp
(
− d + 1√

d(d − 1)
κD φ̃

)
+

1
2κ 2

D
r(φ̃) exp

(
− 2√

d(d − 1)
κD φ̃

)
. (3.8)

Field equation for the scalar field is obtained by taking the trace of (3.2) as

�̃φ̃ = − κD√
d(d − 1)

exp
(
− d + 1√

d(d − 1)
κDφ̃

)[
(d+ 1) f (r(φ̃))− κ −2

D r(φ̃) exp
(√

(d − 1)/d κDφ̃
)]

.

(3.9)
Equations (3.7) and (3.9) are obtained also by the variational principle with the following
Lagrangian density:

L̃ = L̃G + L̃φ̃, (3.10)

where
L̃G =

1
16πGD

√−g̃R̃, L̃φ̃ =
√−g̃

[
−1

2
∂λφ̃ ∂̃λφ̃ − V(φ̃)

]
. (3.11)

Here √−g̃ =
[
2κ 2

D f �(R)
](d+1)/(d−1) √−g, (3.12)

and

R̃ =
[
2κ 2

D f �(R)
]−2/(d−1) [

R − 2d
d − 1

( 1
f �(R)

� f �(R)− 1
2

1
f �(R)2 ∂λ f �(R)∂λ f �(R)

)]
. (3.13)

L̃φ̃ is given by terms in the parenthesis multiplying g̃μν in (3.7) and V(φ̃) is given by (3.8). It is
noted that this Lagrangian density L̃ is not equal to the Lagrangian density L in (2.1) which,
in terms of the transformed variables g̃μν and φ̃, is expressed as

L =
√−g̃ f (r(φ̃)) exp

(
− d + 1√

d(d − 1)
κDφ̃

)
.

Thus from the field equations (2.3b) for the f (R)-type gravity, field equations for g̃μν with
the source of the scalar field and the field equation for the scalar field are derived. So the
equivalence seems to be shown. However, eqs.(2.3b) are 10 4-th order differential equations
for 10 component gμν, so that, to obtain a unique set of solutions, 40 initial conditions seem
to be required. On the other hand eqs.(3.7) are 10 2nd order differential equations for 10
component g̃μν, only 20 initial conditions are required to have a set of unique solution.
Similarly, eq.(3.9) requires only 2 initial conditions. Therefore equivalence does not appear
to hold if the initial conditions are taken into account. This apparent breakdown comes from
the fact that the 40 initial conditions are not independent, which is easily seen in canonical
formalism (see section 5).

The above result that the variational equations of both theories coincide is usually stated
as “HCG described by the Lagrangian density L is equivalent to Einstein gravity with a
scalar field described by the Lagrangian density L̃ " and is referred to as the equivalence
theorem. Note, however, that the variational equations hold on the paths that make the
action stationary. Ref.(Magnano & Sokolowski, 1994)is recommended as a good review on
the equivalence theorem. For recent investigations, see Ref.(Faraoni & Nadeau, 2007)and
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references cited in these references. We use the following usual terminology on this issue:
{

descriptions with L : descriptions in the Jordan frame
descriptions with L̃ : descriptions in the Einstein frame

4. Problems

We have seen that the equivalence of the two theories hold at least on the classical paths
which can be determined by the variational principle. However, there would be problems on
the other kinds of equivalence. In order to examine these problems, we note the following:

[
1. The theories are not conformally invariant.
2. The physical metric is identified with the one determined from observations.

Unsettled problems include the following:

(I) To what extent the equivalence would hold?

(I-1) In the Einstein frame, it is well known that the surface term given by Gibbons and
Hawking (GH term) is necessary. It is often argued that, from the equivalence point of view,
surface term is necessary also in the Jordan frame(Dyer & Hinterbichler, 2009). However, this
equivalence is not taken for granted, but should be examined carefully. The examination is
given in the next section.

(I-2) Would the equivalence hold also in quantum theory? If the equivalence holds in the
canonical quantum theories, fundamental Poisson brackets should be equivalent. That is, the
fundamental Poisson brackets in one frame should be derived from those of the other frame.

(II) Which metric is physical in the sense that should be identified with the observed one?
This problem has been investigated from various aspects(Magnano & Sokolowski, 1994). If
the metric in the Einstein frame is physical(Chiba, 2003), HCG has no essential meaning and
it appears by the choice of unphysical frame. If the metric in the Jordan frame is physical,
the equivalence theorem states that the metric in this frame has one more scalar degrees of
freedom which could be observed as non-transverse-traceless polarization of gravitational
waves(Alves et al. 2009, 2010)in future observations. Furthermore, equivalence theorem states
that, instead of treating the complicated Jordan frame, we can use the simpler and familiar
Einstein frame for calculation. However, for comparison with observations, the results should
be expressed in the words of Jordan frame. It should be noted only one of the metrics is
physical. In the following, assuming that the metric in the Jordan frame is physical, we restrict
ourselves to the description of problem (I).

5. Surface terms

5.1 General considerations

We first consider discrete systems whose Lagrangians contain the time derivatives of the
generalized coordinates qi up to the n-th order qi(n). If the n-th order derivatives are contained
non-linearly the equations of motion are 2n-th order differential equations. Then 2n conditions
are necessary for each qi to determine the solution uniquely. These conditions can be given by
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2n initial conditions or n boundary conditions at two times, t1 and t2. The latter conditions can
be taken to be the values of the generalized coordinates themselves and their time derivatives
up to the (n − 1)-th order. Then we can take the variational conditions (boundary conditions)
as

δqi(k)(t1) = δqi(k)(t2) = 0, (k = 0, 1, · · · , n − 1). (5.1)

Therefore no boundary terms are necessary.

On the other hand, if the n-th order derivatives are contained linearly, equations of motion
are at most (2n − 1)-th order differential equations. Then at least one condition in (5.1) does
not hold generally. Therefore special solutions are required to satisfy all the conditions in (5.1)
and to eliminate generally the corresponding variations at the boundaries, boundary terms are
necessary. In other words, in order that the equations of motion and the variational conditions
are compatible, boundary terms are required.

For continuous systems, or fields, we can proceed similarly, i.e. if the Lagrangian contains
the highest order derivatives linearly, surface terms are required to eliminate some of the
variations of derivatives at the boundaries.

5.2 f (R)-type gravity

In this theory, the Lagrangian density contains the components of the metric, the generalized
coordinates, and their derivatives up to the second order in a non-linear way. So from the
general considerations above, no surface terms are necessary. Concrete situations are as
follows.

The variational principle leads to the field equations which are 4-th order differential
equations, (3.2), so that 40 conditions are formally required to decide the solution for the
metric uniquely, although they are not independent. These conditions can be taken to be the
initial functions of the components of the metric gμν itself and their derivatives up to the 3rd
order, or gμν and their first order derivatives at 2 times t = t1 and t = t2. The latter conditions
correspond to the variational conditions at the time boundaries. That is, at 2 time boundaries
t = t1 and t = t2, variational conditions are taken as δgμν = 0 and δġμν = 0 given by (2.2). In
fact the Lagrangian density contains up to the 2nd order derivatives non-linearly, no surface
term is necessary.

5.3 Einstein gravity with a scalar field

In this theory, the gravity theory is the Einstein one and if we start from the Lagrangian density
L̃, (3.10), whose gravitational part L̃G contains the second order derivatives of the metric
linearly, surface term e.g. the GH term, is necessary from the above considerations. Some
arguments exist that if we require the equivalence also in the boundary terms, surface term
is necessary also in the f (R)-type gravity(Dyer & Hinterbichler, 2009).This is not the case.
This equivalence should be examined carefully. The situation can be seen by examining the
variation. If the theory is obtained from the f (R)-type theory by the conformal transformation,

g̃μν =
[
2κ 2

D f �(R)
]2/(d−1) gμν and if we express the variation of this quantity and φ̃ in terms of
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the variations in the Jordan frame, we have the following relations:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δg̃μν =
�
2κ 2

D f �(R)
�2/(d−1)

δgμν +
4κ 2

D
d − 1

�
2κ 2

D f �(R)
�−(d−3)/(d−1)

gμν δ f �(R),

δφ̃ = κ −1
D

�
d/(d − 1)

1
f �(R)

δ f �(R),

(5.2)

where

δ f �(R) =
∂ f �

∂gαβ
δgαβ +

∂ f �
∂(∂λgαβ)

δ(∂λgαβ) +
∂ f �

∂(∂λ∂ρgαβ)
δ(∂λ∂ρgαβ). (5.3)

Therefore, if both sets of the variational conditions

δg̃μν = δφ̃ = 0, (5.4)

which are usually taken for L̃ and (2.2), δgμν = δġμν = 0, are imposed, we have

δg̈μν = 0, (5.5)

at the boundary. However, this is not generally possible, but would require specific solutions
as noted above. That is, the variational conditions, which require the GH term in the Einstein
gravity with a scalar field, are different from those in the f (R)-type theory. To compare the
surface terms, the variational conditions have to be carefully treated.

The above situation is related to the fact that the conformal transformation is not the
transformation of the generalized coordinates, gμν, but the transformation depending on the
2nd order derivatives of them. Comparison of the surface terms is made as follows. When L̃
is expressed in terms of the metric in the Jordan frame, gμν, it is written as follows:

L̃ = L− ∂λ

� 2d
d − 1

�−g ∂λ f �(R)
�

. (5.6)

Since L requires no surface term when the variational condition (2.2) are taken, the second
term on the right-hand side is the surface term which is different from the GH term. This is
an example that surface terms depend on the boundary conditions.

6. Canonical formalism

The canonical formalism belongs to classical physics. However, most quantum theory is
obtained by canonical quantization which requires that commutation relations among the
fundamental quantities are proportional to the corresponding Poisson brackets, e.g. for one
dimensional system

[q̂, p̂] = ih̄{q, p}PB,

where a hat represents an operator. It is noted that one of the proportional factor i assures that
the observables are Hermitian operators and the other h̄ adjusts the dimensionality, a very
natural proportional factors.

Canonical quantum theories are very successful and only well-known failure is the theory of
gravitons in general relativity. On the other hand, the canonical quantum theory of gravitons
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in f (R)-type gravity is known to be renormalizable(Utiyama & DeWitt, 1962; Stelle, 1977).
This suggests a possibility that the equivalence theorem would be violated in quantum theory.
The violation might come from the fact that classical equivalence means the equivalence along
the classical paths. While, the Poisson brackets require derivatives in all directions in the
phase space. The laws of usual canonical quantum theory describe the dynamics of matter
and radiation which have duality of waves and particles assured by experiments. On the
other hand, gravity describes the dynamics of spacetime. However, no nature of spacetime
similar to the duality has been observed. Investigation of quantum gravity arises from various
motivations. For example, since the gravity mediates interactions of elementary particles,
it would be natural that the gravity is also described quantum mechanically. A preferable
possibility that fundamental laws of nature would take forms of quantum theory is also one
of them. The canonical quantum theory would be the first candidate for quantum gravity.
Therefore a canonical formalism of gravity is very important. In this section results on a
canonical formalism, a generalization of the Ostrogradski formalism, are reviewed. In the
following, we use a unit for which 2κ 2

D = 1.

6.1 Canonical formalism in the Einstein frame

We adopt the ADM method for the gravitational field(Arnowitt et al., 2006), so the procedure
is well known.

(1) Gravitational field

The spacetime is supposed to be constructed from the hypersurfaces Σt with t = constant
(foliation of spacetime). The dynamics of the spacetime determines the evolution of the
hypersurface. So the generalized coordinates are the metric of the d-dimensional hypersurface
h̃ij(x, t).

Since R̃ contains 2nd order time derivatives linearly, we first make a partial integration to
transform the Lagrangian density of the gravitational part in (3.11) to the following GH form:

L̃h =
√

h̃ Ñ
[
K̃ijK̃ij − K̃2 + R̃

]
, (6.1)

where K̃ is the trace of the extrinsic curvature K̃ij(K̃ ≡ h̃ijK̃ij) and R̃ is the scalar curvature
constructed from h̃ij.

Canonical formalism is obtained by the Legendre transformation as usual. The momenta π̃ij

canonically conjugate to h̃ij are defined as

π̃ij ≡ ∂L̃h

∂(∂0h̃ij)
=

√
h̃
[
K̃ij − h̃ijK̃

]
, (6.2)

where h̃ ≡ det h̃ij and Ñ is the lapse function. The extrinsic curvature K̃ij with respect to h̃ij is
defined as

K̃ij ≡ 1
2

Ñ−1
(

∂0h̃ij − Ñi;j − Ñj;i

)
, (6.3)
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Ñi is the shift vector. A semicolon ; represents a covariant derivative with respect to h̃ij.
Solving (6.3) for K̃ij, we have

K̃ij =
1√
h̃

[
π̃ij − 1

d − 1
h̃ijπ̃

]
and K̃ = − π̃

(d − 1)
√

h̃
. (6.4)

Hamiltonian density is given as

H̃h = π̃ij ˙̃hij − L̃h

= Ñ
[

Gijklπ̃
ijπ̃kl −

√
h̃R̃

]
+ 2(π̃ij Ñi);j − 2π̃

ij
;j Ñi.

(6.5)

where
Gijkl ≡ 1

2
√

h

(
h̃ik h̃jl + h̃il h̃jk − 2

d − 1
h̃ij h̃kl

)
, (6.6)

is sometimes referred to as supermetric. In deriving (6.5), we used the expression for L̃h,
expressed in terms of canonical variables, as follows

L̃h =
Ñ√

h̃

[
π̃ijπ̃ij − 1

d − 1
π̃2 + h̃R̃

]
. (6.7)

(2) Scalar field

The generalized coordinate is φ̃(x, t). Momenta canonically conjugate to φ̃ is defined as usual
by

π̃(x, t) ≡ ∂L̃φ

∂(∂0φ̃(x, t))
= −√

g̃ g̃0μ∂μφ̃ = Ñ−1
√

h̃
[
∂0φ̃ − Ñi∂iφ̃

]
, (6.8a)

so

∂0φ̃ =
Ñ√

h̃

[
π̃ + Ñ−1

√
h̃Ñi∂iφ̃

]
=

Ñ√
h̃

π̃ + Ñi∂iφ̃. (6.8b)

In terms of canonical variables, L̃φ is expressed as follows

L̃φ = Ñ
[

1

2
√

h̃
π̃2 − 1

2

√
h̃ h̃ij∂iφ̃ ∂jφ̃ − V(φ̃)

]
.

Using this, we have the following expression for the Hamiltonian density

H̃φ = π̃ ˙̃φ − L̃φ =
Ñ

2
√

h̃
π̃2 + Ñi∂iφ̃ π̃ +

1
2

Ñ
√

h̃ h̃ij∂iφ̃ ∂jφ̃ + V(φ̃). (6.9)

(3) Fundamental Poisson brackets

Nonvanishing fundamental Poisson brackets in the Einstein frame are given as

{h̃ij(x, t), π̃kl(y, t)}PB = δkl
(ij)δ(x − y) and {φ̃(x, t), π̃(y, t)}PB = δ(x − y), (6.10)

where (ij) expresses the symmetrization and not the symmetric part.
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6.2 Canonical formalism in the Jordan frame

There are several canonical formalisms for generalized gravity theories in the Jordan frame.
Among them formalism given by Buchbinder and Lyakhovich(Buchbinder & Lyakhovich,
1987) is logically very simple. However, concrete calculation is somewhat cumbersome partly
due to arbitrariness although it allows a wide application. In addition, the Hamiltonian
is generally transformed under the transformation of generalized coordinates that does not
depend on time explicitly. Here we use the formalism which is a generalization of the
well-known one given by Ostrogradski(Ezawa et al., 2010). For comparison of typical
formalisms, see (Deruelle et al., 2009).

(1) Generalized coordinates

In this frame, we also use the foliation of the spacetime. Since the f (R)-type gravity is a
higher-derivative theory, we follow the modified Ostrogradski formalism in which the time
derivatives in the Ostrogradski formalism is replaced by Lie derivatives along the timelike
normal n to the hypersurface Σt in the ADM formalism (Ezawa et al., 2006,2010). So the
generalized coordinates are

hij(x, t) and Kij(x, t) =
1
2
Lnhij(x, t) ≡ Qij(x, t). (6.11)

Here contravariant and covariant components of n are given as follows:

nμ = N−1(1,−Ni) and nμ = N(−1, 0, 0, 0). (6.12)

(2) Conjugate momenta

Denoting the momenta canonically conjugate to these generalized coordinates as πij and Πij

respectively, we have from the modified Ostrogradski transformation
⎧⎨
⎩

πij = −√
h
�

f �(R)Qij + hij f ��(R)LnR
�

,

Πij = 2
√

h f �(R)hij.
(6.13)

From (6.13), it is seen that Πij has only the trace part, so it is expressed as

Πij =
1
d

Πhij and Π = 2d
√

h f �(R). (6.14)

From the second equation, we have

f �(R) =
Π

2d
√

h
or R = f �−1(Π/2d

√
h) ≡ ψ(Π/2d

√
h). (6.15)

Correspondingly, it is also seen from (6.13) that the traceless part of Qij is related to that of πij,
and we have

Qij = − 2
P

π†ij +
1
d

hijQ, (6.16)

where
P ≡ Π

d
, (6.17)
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and
π†ij ≡ πij − 1

d
hijπ (6.18)

is the traceless part. A dagger is used to represent the traceless part. (Q, P) is one of the
canonical pairs. In terms of these variables, the scalar curvature is expressed as follows

R = 2hijLnQij + Q2 − 3QijQij + R − 2Δ(ln N). (6.19)

(3) Hamiltonian density

In the modified Ostrogradski formalism, Hamiltonian density is defined as

H ≡ πij ḣij + ΠijQ̇ij −L. (6.20)

Using
LnQij = N−1(∂0Qij − NkQij;k − Nk

;iQkj − Nk
;jQik − N−1∂i N∂j N) (6.21)

and eqs. (6.14)−(6.19), we have an explicit expression for H as follows:

H = N
[ 2

P
π†ijπ†

ij +
2
d

Qπ +
1
2

Pψ(P/2
√

h)− d − 3
2d

Q2P − 1
2

RP + ΔP −
√

h f
(

ψ(P/2
√

h)
)]

+Nk
[
2π

† ;j
kj − 2

d
π:k + P∂kQ − 2

d
(QP);k

]

+

[
−2Njπ

†ij +
2
d

Ni(π + QP) + ∂i NP − NP;i
]

;i
.

(6.22)
(4) Fundamental Poisson brackets

Non-vanishing fundamental Poisson brackets are the following:

{hij(x, t), πkl(y, t)}PB = δi
(kδ

j
l)δ(x − y), (6.23a)

and
{Qij(x, t), Πkl(y, t)}PB = δi

(kδ
j
l)δ(x − y). (6.23b)

(5) Wheeler-DeWitt equation

A primary application of the canonical formalism is the Wheeler-DeWitt (WDW)
equation(DeWitt, 1967). Before writing down the WDW equation, we make a canonical
transformation

(Q, P) → (Q̄, P̄) ≡ (P,−Q), (6.24)

which removes the negative powers of the momentum P. The resulting Hamiltonian is
expressed as follows:

H = NH0 + NkHk + divergent term, (6.25)
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where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 =
2
Q

π†ijπ†
ij −

2
d

Pπ +
1
2

Qψ(Q/2
√

h)− d − 3
2d

QP2 − 1
2

RQ

−
√

h f
�

ψ(Q/2
√

h)
�
+ ΔQ,

Hk = 2π
† ;j
kj − 2

d
π;k − QP;k +

2
d
(QP);k.

(6.26)

The WDW equation is written as
Ĥ0Ψ = 0, (6.27)

where Ĥ0 is obtained from H0 by replacing πij and P with −i∂/∂hij and −i∂/∂Q, respectively.
However, in order to apply (6.27) to the observed universe after compactification, we first
carry out the dimensional reduction and then we should take into account the cosmological
principle. Such procedures were done using the formalism of Buchbinder and Lyakhovich
which, although is generally different from the one described above, is very similar in the
case of gravity(Ezawa et al., 1994). It was shown by the semiclassical approximation method
that the internal space could be stabilized.

6.3 Compatibility of the two sets of fundamental Poisson brackets

(1) Compatibility conditions

The canonical variables in the Einstein frame can be expressed in terms of those in the Jordan
frame. So we can calculate the left hand sides of (6.10) using (6.23a,b). The compatibility
conditions are that the results are the right hand sides of (6.10), i.e. the following relations
should be satisfied:

{h̃ij(x, t), π̃kl(y, t)}PB = ∑
m,n

�
ddz

��
∂h̃ij(x, t)

∂hmn(z, t)
∂π̃kl(y, t)
∂πmn(z, t)

− ∂π̃kl(y, t)
∂hmn(z, t)

∂h̃ij(x, t)
πmn(z, t)

�

+

�
∂h̃ij(x, t)

∂Qmn(z, t)
∂π̃kl(y, t)

∂Πmn(z, t)
− ∂π̃kl(y, t)

∂Qmn(z, t)
∂h̃ij(x, t)
Πmn(z, t)

��

= δi
(kδ

j
l)δ(x − y),

(6.28)
and

{φ̃(x, t), π̃(y, t)}PB = ∑
m,n

�
ddz

��
∂φ̃(x, t)

∂hmn(z, t)
∂π̃(y, t)

∂πmn(z, t)
− ∂π̃(y, t)

∂hmn(z, t)
∂φ̃(x, t)

πmn(z, t)

�

+

�
∂φ̃(x, t)

∂Qmn(z, t)
∂π̃(y, t)

∂Πmn(z, t)
− ∂π̃(y, t)

∂Qmn(z, t)
∂φ̃(x, t)

Πmn(z, t)

��

= δ(x − y).
(6.29)

Other fundamental Poisson brackets should vanish. These conditions may lead to some
restrictions on f (R).
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(6.26)

The WDW equation is written as
Ĥ0Ψ = 0, (6.27)

where Ĥ0 is obtained from H0 by replacing πij and P with −i∂/∂hij and −i∂/∂Q, respectively.
However, in order to apply (6.27) to the observed universe after compactification, we first
carry out the dimensional reduction and then we should take into account the cosmological
principle. Such procedures were done using the formalism of Buchbinder and Lyakhovich
which, although is generally different from the one described above, is very similar in the
case of gravity(Ezawa et al., 1994). It was shown by the semiclassical approximation method
that the internal space could be stabilized.

6.3 Compatibility of the two sets of fundamental Poisson brackets

(1) Compatibility conditions

The canonical variables in the Einstein frame can be expressed in terms of those in the Jordan
frame. So we can calculate the left hand sides of (6.10) using (6.23a,b). The compatibility
conditions are that the results are the right hand sides of (6.10), i.e. the following relations
should be satisfied:
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and
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Other fundamental Poisson brackets should vanish. These conditions may lead to some
restrictions on f (R).

214 Advances in Quantum Theory The Equivalence Theorem in the Generalized Gravity of f (R)-type and Canonical Quantization 13

(2) Expression of the conformal transformation in terms of canonical variables

Using (3.4), (6.2), (6,3) and (6.8a,b), we obtain the following form of the conformal
transformation expressing the canonical variables in the Einstein frame in terms of those in
the Jordan frame:
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��
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(6.30)
(3) Calculation of the Poisson brackets

It may seem that the calculations are carried out easily. However, the evaluations of the
brackets involving the time derivatives of the momenta are difficult. It is noted that it is
impossible to use the field equations. Since, in that case, changes of variables are restricted to
those along the paths of motions, which does not fit to Poisson brackets which use changes
in any direction. Nevertheless, we can show, using (6.30), that assumption that all of the
equations (6.10), (6.23a,b) hold leads to contradiction(Ezawa et al., 2006, 2010). In other words,
two frames are not related by a canonical transformation.

Therefore, in the framework of the canonical formalism used here, we cannot quantize the
theory canonically in both frames. That is, if the f (R)-type theory is quantized canonically,
corresponding Einstein gravity with a scalar field has to be quantized non-canonically, e.g. in
the non-commutative geometric way.

7. Summary and discussions

In this work, we reviewed the equivalence theorem in the f (R)-type gravity by deriving it
in a pedagogical and self-contained way. Equivalence of this theory with Einstein gravity
with a scalar field, related by a conformal transformation, holds on the classical paths. Strictly
speaking, description in the physical frame is equivalent to the description in the unphysical
frame, since only one frame is physical. If the description in the unphysical frame is simpler,
calculations could be done in the frame.

Concerning the surface term in the f (R)-type gravity, it is not necessary in the Jordan frame.
Necessity of the surface term in the Einstein frame comes from the structure of the Lagrangian
density that it contains the 2nd order derivatives linearly. A concrete example of the surface
term is obtained that shows the dependence of it on the variational conditions. The usual
variational conditions in the Einstein frame leads to the GH term. On the other hand, if the
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variational conditions are taken as in the Jordan frame, the surface term is different and is
given by (5.6).

In the canonical formalism, the conformal transformation is not a canonical one. So the
fundamental Poisson brackets are not equivalent in the sense that the sets of fundamental
Poisson brackets in both frames are not compatible. Thus if the theory is quantized canonically
in the Jordan frame, quantization in the Einstein frame has to be non-canonical, e.g. in
the non-commutative geometric way(Kempf, 1994). It is pointed out that similar situation
occurs in the inflation model in multidimensional Einstein gravity(Ezawa et al., 1996). In
this model, the n-dimensional internal space continues to shrink during inflation and loses
its gravitational potential energy which is transferred to the inflating space. The potential

energy behaves as −a−(n−2)
I , which is expected by the Gauss law in n-dimensional space,

so that the shrinkage of the internal space leads classically to the collapse of the internal
space similar to the situation in the case of atoms. However if n > 3, the canonical
quantum theory cannot prevent the collapse of the internal space contrary to the case of
atoms, so that non-canonical quantum theory is required. Recently, in the noncommutative
geometric multidimensional cosmology, it is shown that stabilization of the internal space is
possible(Khosravi et al., 2007).This suggests that in the multidimensional f (R)-type gravity,
extra-dimensional space would be stable. This result is in conformity with that obtained by
the semiclassical approximation to the WDW equation noted above.

Thus, considering the renormalizability of the graviton theory and stabilization of the internal
space in the semiclassical approximation to WDW equation, it is plausible that f (R)-type
gravity can be quantized canonically in the Jordan frame. In addition, similar stabilization is
possible in Einstein gravity if the noncommutative geometry is used, so quantization in the
Einstein frame would be non-canonical.

8. Appendix: Conformal transformations of geometrical quantities

We consider a conformal transformation given as

g̃μν ≡ Ω2gμν. (A.1)

Transformations of geometrical quantities are given as follows.

Christoffel symbols

Γ̃λ
μν = Γλ

μν + δλ
μ ∂ν(ln Ω) + δλ

ν ∂μ(ln Ω)− gμν ∂λ(ln Ω). (A.2)

Covariant derivatives

For a scalar field, we have

∇̃μ∇̃νφ = ∇μ∇νφ −
[
∂μ(ln Ω)∂νφ + ∂ν(ln Ω)∂μφ − gμν∂λ(ln Ω)∂λφ

]
, (A.3a)

or
�̃φ = Ω−2

[
�φ + (D − 2)∂λ(ln Ω)∂λφ

]
, (A.3b)
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Ricci tensor

R̃μν =Rμν−(D−2)[∇μ∇ν(ln Ω)−∂μ(ln Ω)∂ν(Ω)]−gμν[�(ln Ω)+(D−2)∂λ(ln Ω)∂λ(ln Ω)]
(A.4)

scalar curvature

R̃ = Ω−2
[

R − 2(D − 1)�(ln Ω)− (D − 1)(D − 2)∂λ(ln Ω)∂λ(ln Ω)
]

(A.5)

Einstein tensor

G̃μν = Gμν − (D − 2)
[
∇μ∇ν(ln Ω)− gμν�(ln Ω)− ∂μ(ln Ω)∂ν(ln Ω)− D − 3

2
gμν∂λ∂λ(ln Ω)

]

(A.6)
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M., Eifler, T., Erben, T., Fassnacht, C.D., High, F.W., Hilbert, S., Hildebrandt, H.,
Hoekstra, H., Kuijken, K., Marshall, P., Mellier, Y., Morganson, E., Schneider, P.,
Semboloni, E., Van Waerbeke, L. & Velander, M.(2009). Evidence for the accelerated

219The Equivalence Theorem in the Generalized Gravity of f (R)-Type and Canonical Quantization



18 Will-be-set-by-IN-TECH

expansion of the Universe from weak lensing tomography with COSMOS, Astron.
Astrophys. 516: id A63

Sotiriou, T.P. & Faraoni, V.(2008). f (R) theories of gravity, Rev. Mod. Phys. 82: 451-497. is a
good review.

Starobinsky, A.A.(1980). A new type of isotropic cosmological model without singularity,
Phys. Lett. 91: 99-102

Stelle, K.(1977). Renormalization of Higher-Derivative Quantum Gravity, Phys. Rev. D16:
953-969

Suyu, S.H., Marshall, P.J., Auger, M.W., Hilbert, S., Blandford, R.D., Koopmans, L.V.E.,
Fassnacht, C.D. & Treu, T.(2009). Dissecting the Gravitational Lens B1608+656. II.
Precision Measurements of the Hubble Constant, Spacial Curvature, and the Dark
Energy Equation of State, ApJ 711: 201-221

Teyssandier, P. & Tourrence, PH .(1983). The Cauchy problem for the R + R2 theories of gravity
without torsion, J. Math. Phys 24: 2793-2799

Utiyama, R. & DeWitt, B.S.(1962).Renormalization of a Classical Gravitational Field Inter-
acting with Quantized Matter Fields, J. Math. Phys. 3:608-618

Vikhlinin, A., Burenin, R.A., Ebeling, H., Forman, W.R., Hornstrup, A., Jones, C., Kravtsov,
A., Murray, S.S., Nagai, D., Quintana, H., & Voevodkin, A.(2009). Chandra Cluster
Cosmology Project II: Samples and X-Ray Data Reduction, ApJ 692:1033-1059

Wands, D.(1994).Extended Gravity Theories and the Einstein-Hilbert Action, Class. Quantum
Grav. 11:269-280

Whitt, B.(1984).Fourth-Order Gravity as General Relativity Plus Matter, Phys. Lett.
145B:176-178

220 Advances in Quantum Theory



18 Will-be-set-by-IN-TECH

expansion of the Universe from weak lensing tomography with COSMOS, Astron.
Astrophys. 516: id A63

Sotiriou, T.P. & Faraoni, V.(2008). f (R) theories of gravity, Rev. Mod. Phys. 82: 451-497. is a
good review.

Starobinsky, A.A.(1980). A new type of isotropic cosmological model without singularity,
Phys. Lett. 91: 99-102

Stelle, K.(1977). Renormalization of Higher-Derivative Quantum Gravity, Phys. Rev. D16:
953-969

Suyu, S.H., Marshall, P.J., Auger, M.W., Hilbert, S., Blandford, R.D., Koopmans, L.V.E.,
Fassnacht, C.D. & Treu, T.(2009). Dissecting the Gravitational Lens B1608+656. II.
Precision Measurements of the Hubble Constant, Spacial Curvature, and the Dark
Energy Equation of State, ApJ 711: 201-221

Teyssandier, P. & Tourrence, PH .(1983). The Cauchy problem for the R + R2 theories of gravity
without torsion, J. Math. Phys 24: 2793-2799

Utiyama, R. & DeWitt, B.S.(1962).Renormalization of a Classical Gravitational Field Inter-
acting with Quantized Matter Fields, J. Math. Phys. 3:608-618

Vikhlinin, A., Burenin, R.A., Ebeling, H., Forman, W.R., Hornstrup, A., Jones, C., Kravtsov,
A., Murray, S.S., Nagai, D., Quintana, H., & Voevodkin, A.(2009). Chandra Cluster
Cosmology Project II: Samples and X-Ray Data Reduction, ApJ 692:1033-1059

Wands, D.(1994).Extended Gravity Theories and the Einstein-Hilbert Action, Class. Quantum
Grav. 11:269-280

Whitt, B.(1984).Fourth-Order Gravity as General Relativity Plus Matter, Phys. Lett.
145B:176-178

220 Advances in Quantum Theory

9 

Gravitational Quantisation and Dark Matter 
Allan Ernest 

Charles Sturt University 
Australia 

1. Introduction 
This chapter looks at the concept of gravitational quantisation and the intriguing possibility 
that it may enable understanding one of the most mysterious problems in astrophysics: the 
nature and origin of dark matter. The concept of gravitational quantisation is relatively new, 
and from the traditional quantum mechanical viewpoint it raises questions about the 
applicability of quantum mechanics to gravitational fields, and also questions about the 
applicability of quantum mechanics on macroscopic scales, because the quantisation states 
of gravitational fields are sometimes large. Quantum physics was after all, originally 
developed to describe the behaviour of electrons in atoms and quickly became the 
recognised way to accurately model the physics of atomic-sized systems. Although it was an 
obvious extension that the structure of nuclei, which were even smaller, could also be well 
described using a wave-mechanical approach, for many years this was the limited domain 
in which quantum theory operated. Nevertheless the success of applying quantum physics 
to nuclear phenomena showed (1) that quantum theory was appropriate to potentials other 
than electrical (in this case the strong nuclear force) and (2) that it provided a correct 
description of nature over a range of scales (< ~2 fm for nuclear structure compared to > ~50 
pm for atoms). The success in modelling nuclear phenomena did not necessarily mean 
however that quantum theory was suitable for describing nature over all scales and that it 
applied to all other types of potentials. For example, the existence of a region where 
quantum physics breaks down and classical physics takes over still remains a debated issue, 
but if such a region exists, at what scale does it happen? And secondly, for what other 
potentials or pseudo-potentials might quantum theory be valid and how would this validity 
be demonstrated? 

With respect to the first question, we argue that there are at present no experiments that 
invalidate quantum theory at any scale, and that quantum-based predictions of classical or 
macroscopic measurements are expected to equally agree with those of classical 
calculations, provided careful attention is paid to effects such as decoherence (Zurek, 1981, 
1982, Chou et al., 2011, Lamine et el., 2011, Jaekel et al., 2006, Schlosshauer, 2007). Indeed 
isolating a consistent value for the scale of the so-called mesoscopic region between the 
quantum and classical domain, above which classical theory would dominate, has proved 
elusive and experiments have continued to demonstrate the applicability of quantum 
physics at macroscopic scales. However, as the many newly-observed macroscopic quantum 
phenomena demonstrate, this does not preclude the possibility that quantum theory may 
lead to additional novel macroscopic phenomena that have no classical analogue. Examples 
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include experiments involving superconductivity and superconducting interference devices, 
and the experiments with entangled photons, atoms and molecules (Nakamura et al., 1999, 
Ketterle, 2002, Van der Wal et al., 2000, Zbinden et al., 2001, Schmitt-Manderbach et al., 
2007). 

With respect to the second point, recent experiments have also observed quantum effects in 
potentials and pseudo potentials other than electromagnetic or nuclear. In seminal work by 
Nesvizhevsky et al., 2002, quantised states of the gravitational field were observed in the 
laboratory. These remarkable experiments demonstrate for the first time that particles form 
gravitational eigenstates in gravitational potential wells, and hence that particles in 
gravitational potentials conform to the laws of quantum physics in the same way that 
electrons do in the electrical potentials around nuclei (despite any apparent but ongoing 
inconsistency between quantum mechanics and general relativity). If relatively pure 
gravitational quantum eigenstates can form in a laboratory situation then the question arises 
as to whether such eigenstates might exist naturally elsewhere in the universe, and if so, 
what their theoretical properties might be. 

Research in the area of quantum gravity has been active for some time (for general reviews 
see DeWitt and Esposito, 2007, Rovelli, 2008 and Woodard, 2009). It should be noted that the 
aim in this chapter is not to develop a theory of quantum gravity. Quantum gravity seeks to 
produce a unified theory of quantum physics and general relativity under all conditions, 
particularly in regions of strong gravity where classical Newtonian approaches break down. 
Such a theory does not yet exist and is not needed in the current context, where a 
Newtonian formulation of gravitational quantum theory is used. The purpose here is to 
examine properties of the predicted quantum based eigenstates that exist predominantly in 
the weak gravity regions of (possibly deep) gravitational wells and to study the behaviour 
of particles in these regions using the traditional quantum eigenspectral decomposition of 
the particle wavefunctions in terms of their energy eigenstate basis vectors. That is, we do 
not include eigenstates that might have significant amplitude fractions in regions of strong 
gravity such as near black holes (and such states should not be needed as they form a small 
fraction of the eigenspectral decomposition for particles in weak gravity regions), and we 
assume that those states that are included in the decomposition may be approximated by 
ignoring any small fraction of their eigenstate function that does encroach on such regions. 
It will turn out that the use of a quantum gravitational approach introduces novel properties 
to particles that enable dark matter to arise as a natural consequence of cosmic evolution 
without the need for new particles or physics beyond traditional quantum theory. 
Coincidentally we will see that not only can gravitational quantisation potentially solve the 
dark matter problem, but also that it compels the introduction of a new paradigm for the 
macroscopic description of particles and their interaction properties. 

The first evidence that dark matter might exist appeared over 70 years ago with Zwicky’s 
observations of high rotation velocities of galaxies in the Virgo cluster which pointed to 
excess unseen mass (Zwicky, 1937). About 30 years later (Rubin, 1970) showed that the 
orbital speeds of stars and gas within galaxies did not fall off with radial position in a 
Keplarian manner as expected, but maintained a constant velocity as far out as could be 
measured. These galactic rotation curves seemed to clearly show that galaxies also 
contained mass beyond that that would be expected from their visible component. 
Significantly this “missing” mass is not a small fraction of the visible component. Instead it 
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dominates, making over 80% of the expected 27% matter content of the universe, and much 
more than this in some galaxies. Because these controversial observations seemed 
inexplicable and had such radical implications for the understanding of the universe they 
were initially treated with scepticism. Evidence has continued however to point to a 
universe whose dominant matter content remains a mystery. Strong evidence supporting 
this hypothesis also comes from observations of gravitational lensing and also those from 
the Wilkinson Microwave Anisotropy Probe (WMAP). These ‘dark’ particles are essentially 
invisible: as far as observations reveal, they do not radiate energy, are transparent to 
electromagnetic radiation and weakly interacting with ordinary (baryonic) particles.  

Cosmologists’ currently favoured solution is the cold dark matter theory (CDM) or the more 
recent modification that includes dark energy, lambda cold dark matter (LCDM) (Primack, 
2001). The theory is based then on the hypothetical existence of an as yet undiscovered 
weakly interacting elementary particle. Although no such particle is predicted from the 
standard model of particle physics, there are extensions to the standard model such as 
supersymmetry (Feng, 2010) that potentially have theoretically predicted particles that 
might function as long-lived weakly interacting particles. Given that such a particle exists, 
numerical simulations of LCDM have been developed, and these have been very successful 
in predicting the very large scale structure of the universe (see Croft and Estathiou, 1993, 
Colberg et al., 1997). In these simulations the structure of the universe grows by 
gravitational coalescence of dark matter particles to initially form small agglomerations that 
then combine in a process of hierarchical merging (Knebe, 1998, Diemand and Moore, 2009) 
to form the clusters and large galaxies seen today. Numerical simulations initially using 
particle masses of 41~ 10 kg (because of computational constraints) and later smaller masses 
both give similar and excellent prediction of large scale universal structure. 

Despite the successes of LCDM cosmology on large scales, it faces some very serious 
challenges on the galactic scale and below (Kroupa et al., 2010). The problems have been so 
difficult that some cosmologists have questioned the validity of the entire LCDM theory. 
The numerical simulations of CDM produce steep cusp-like density profiles at low galactic 
halo radii, an overabundance of satellite galaxies and problems with the predicted angular 
momentum (ibid.). Additionally, the observation of fully formed galaxies like the Milky 
Way at very early times in cosmic history presents a formation mechanism problem since it 
is difficult to understand how this could have happened via hierarchical merging, a 
cornerstone of LCDM cosmology for understanding galaxy formation, in the limited time 
available (ibid.). 

There have been several proposed alternate theories to the idea that the dark matter 
observations arise as the result of hidden mass. One group of these alternative solutions is 
based on the notion that the equations describing gravity on large scales may need to be 
modified. The idea, originally due to Milgrom (1983) - Modified Newtonian Dynamics or 
MOND has now many variations that include relativity and generalisations of quantum 
gravity. These theories all have the effect of modifying gravity in such a way as to explain 
the galactic rotation curves and thus also remove the need for the explanation of the dark 
matter observations in terms of unseen excess mass. However evidence that the “dark 
matter” observations are truly the result of the existence of extra unseen matter continues to 
grow and it has become increasingly difficult to explain dark matter in terms of modified 
gravity. One group of relatively recent observations compelling for the bona-fide existence 
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of dark matter are those of galactic cluster collisions such as the famous Bullet cluster, 1E 
0657-56. In the Bullet cluster evidence is seen of the separation of dark matter from the 
visible components as a result of the collision. The dominant mass component, the dark 
matter, along with the individual galaxies within the cluster have passed through one 
another largely unaffected, but the gas components have interacted and are seen between 
the two now separated dark matter/galactic cluster components (Clowe et al., 2006). 

The suggestion that gravitational quantisation might play a direct role in the solution to the 
dark matter problem was first made by Ernest (2001) and later using a fundamentally 
different approach by Chavda and Chavda (2002). In the former case (the approach in this 
chapter) Ernest considered the effects that the eigenspectral array describing the 
wavefunctions of traditional particles has on their interaction properties, while Chavda and 
Chavda consider the bound quantum eigenstate of two micro black holes and suggest that 
due to their binding, the constituent black holes of such a system will not lose mass in the 
expected manner (i.e from Hawking radiation). In this way micro black holes formed in the 
early universe could be still present today rather than having evaporated at earlier times 
and hence function as an alternative dark matter candidate like the neutralino. 

2. Naturally occurring gravitational eigenstates: Quantum wavefunctions with 
limited eigenspectral range and the connection with dark matter 
2.1 Conditions for naturally occurring gravitational eigenstates 

Predicting the behaviour of particles in gravitational fields using quantum mechanics is in 
principle simple. One applies the non-relativistic Schrodinger equation to a Newtonian 
potential to yield its eigenstates and energies. Once the eigenstates are known, the temporal 
evolution of any particle in that potential is determined from the temporal evolution of the 
eigenspectral array that describes the initial wavefunction, essentially what is classically the 
initial conditions of the particle. Several authors have developed theoretical and numerical 
solutions to these types of equations under various conditions (Bernstein et al., 1998, Doran 
et al., 2005, Vachaspati, 2005, Gossel et al., 2010) and used them to make predictions about 
various physical phenomena ranging from astrophysical processes such as rates of accretion 
onto black holes, to understanding the behaviour of a gravitational Bose-Einstein 
condensate. 

Very little work has been done however to investigate the potential existence or theoretical 
properties of gravitational eigenstates and their consequences for astrophysics (Ernest 2009a, 
2009b). The simplest gravitational eigenstate system would feasibly consist of two neutral, 
spin-zero elementary-type particles in a bound state. The problem for such a system is that 
the binding energy is unrealistically small. For example, if the masses were ~10��� kg, the 
most highly bound state, with principle quantum number � � 1 has a binding energy of 
~−10��� eV which is minuscule compared to typical universally pervading energies, for 
example, cosmic microwave background photons (~2 × 10�� eV) or the observed dark 
energy component of ~1 GeV m-3 (Tegmark et al., 2004). 

The easiest way to increase the binding energy is to increase one or more of the two 
masses of this two component system. By pushing the component masses to ‘grains’ of 
~10��� kg each, the energy of the � � 1 state becomes a healthy -10 eV. But there are 
things to consider than just the binding energy. Given typical densities of 10� −
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10�	kg	m�� for the masses, the physical size of each is ~10��	m. The initial and simplest 
mathematical approach involves two single point potentials and clearly requires that the 
‘physical extent’ of the masses should not encroach into any significant fraction of the 
space occupied by the eigenfunction, otherwise the effective potential between the two 
changes, and the description in terms of a simple Schrödinger equation breaks down. For 
� � 1, the scale of the -10 eV energy eigenstate above is ~10���	m so that this condition is 
clearly not satisfied. For higher n states, the position of the wavefunction is shifted to 
larger radii, which alleviates this difficulty, but the binding energy of the eigenstate 
approaches zero. One way to circumvent these difficulties is to consider a small 
elementary type particle (say of mass 271.7 10  kg) bound in the central potential well of 
a much larger mass and consider only large values of n, and particularly the high angular 
momentum states where ~l n  (see Table 1) 
 

Central mass  
M (kg) 

n  value at 
eigenstate  
energy ~1 eV 

Eigenstate 
 ‘size’ for  

~l n  (m) 

Physical radius of central  
mass (m) assuming  
density 3 3~ 5 10  kg m  

1010  27.6 10  93.5 10  17.6 10  
2010  127.6 10  13.5 10  51.6 10  

246 10 (MEarth) 174.6 10  62.1 10  66.4 10  
3010 (MSun) 227.6 10  113.5 10  83.5 10  
4010  327.6 10  213.5 10  117.6 10  

Table 1. Eigenstate ‘size’ versus central mass size for a fixed binding energy (1 eV ~ 5000 K) 
and ‘orbit mass’ 271.7 10  kg. 

With a central point mass potential well, for a given fixed binding energy ��, the quantum 
number n is proportional to the central mass M . (see solutions to equation (1) below). 
Additionally, for the high angular momentum states ( ~l n ), the average effective eigenstate 
radius and thickness are proportional to M  and 1/2M  respectively, while the physical size 
of the central mass grows only as 1/3M . Thus although the value of n required to form an 
eigenstate which ‘clears’ the physical extent of the central mass increases as the central mass 
is increased, the critical value of n required to do this corresponds to a more highly bound 
structure the larger M is. Thus by increasing the central mass sufficiently it is possible to 
obtain a well-bound structure and maintain an eigenstate which does not encroach on the 
physical extent of the central mass. This behaviour is illustrated in Table 1. What constitutes 
‘well-bound’ is arguable, but for a binding energy of 1eV and an ‘orbit mass’ of ~10���kg, 
Table 1 shows that the required central mass needs to be of the order or greater than the 
mass of the Earth. Certainly for the solar mass (~10��	kg) and above the condition is easily 
achieved and the analysis can be carried out using a single particle simple Newtonian-type 
Schrodinger equation. 

2.2 Connection with dark matter 

What connection does dark matter have with gravitational eigenstates? Quantum mechanics 
is simply an alternative way to model nature, most useful on small scales. But we do expect 
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that quantum physics should equally well model all classical macroscopic phenomena, 
predicting essentially identical results, a belief echoed in the correspondence principle. Yet 
quantum theory has already yielded many novel macroscopic non-classical phenomena, so 
could a quantum mechanical description of the motion of elementary particles in a galactic 
potential also yield new insights? Remarkably, a quantum description of gravitationally 
bound particles does indeed predict new and intriguing effects. The reason comes from the 
predictions that quantum theory makes about variations in the interaction cross sections of 
particles based on their eigenspectra, which can exhibit unique properties in the case of 
macroscopic gravity. 

2.2.1 Cross sections and eigenspectra 

The concept of describing interactions in terms of a cross section has been one of the most 
fundamental and useful in physics. Simply put, cross sections measure the effective area 
that one particle (the ‘target’ particle) presents to another (the ‘bullet’) when interacting. 
Additionally, it is a measure of the rate at which a reaction occurs. In the laboratory, 
measurements of cross sections are made using a localised ‘beam’ of bullets, measuring the 
rate at which they ‘hit’ the target, and performing an analysis generally based on the 
assumption of a uniform incoming ‘plane wave’ of particles. But whilst it may seem 
reasonable, there is an implicit assumption in this about the nature of wavefunctions 
representing the particles. There is also often an assumption that a measured cross section is 
somehow independent of all but the most evident characteristics of the wavefunctions 
representing the particles involved in the measurement. 

Some aspects of the wavefunction that affect the cross section are obvious. For example 
classically the ‘chance’ (and hence rate) at which two particles placed in a box will interact 
depends on the size of the box. This is trivially allowed for in the experiment by including 
the ‘beam intensity’ in the analysis. Likewise no one finds it surprising that cross sections 
depend on temperature because it is clear we are changing the fundamental nature of the 
interaction. Importantly though, this represents a specific example of how the 
wavefunction characteristics, in this case the eigenspectral wavelengths, affect the 
relevant overlap integrals that determine the rate of reaction and the cross section. But 
there are also subtleties of the wavefunctional form that can lead to dramatic changes in 
the resulting cross section of a particular interaction. In short, the measured cross section 
for any interaction is intimately linked to the eigenspectral array of the wavefunctions 
representing the particles involved. If the eigenspectral array from which the particle 
wavefunction is composed contains a significant fraction of states that are weakly 
interacting (aka ‘dark eigenstates’), then the measured cross section for that interaction 
will be much reduced. 

2.2.2 Dark eigenstates of the eigenspectral ensemble of a large gravity well 

The remarkable thing about the eigenspectral ensemble of a large gravitational structure 
such as a galactic halo is that, in addition to the vast array of states which would normally 
make up the quantum description of any localised ‘visible’ particle, it also contains vast 
numbers of gravitational eigenstates that are weakly interacting or ‘dark’. These dark states 
are the highly excited, high angular momentum (high ( , )n l ) states of Figure 1 (those closest 
to the left hand curve of the ( , )n l  diagram, that is the dotted curve 1p  where we have  
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Fig. 1. Schematic ( , )n l diagram showing the high n, l, m -valued stationary states, drawn to 
emphasize the values of the parameter p n l   (dotted curves). Each solid circle on the 
diagram represents 2 1l  , z-projection (m-valued) substates. 

introduced the notation p n l  ) and are somewhat analogous to the Rydberg states in 
atoms, but have much long lifetimes, extreme stability and are much more robust because of 
the physical scale of the potential. A wavefunction whose eigenspectral array on the (n,l) 
diagram determines it as existing as a relatively localised particle in classical phase space 
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predisposes it to having similar interaction cross sections to those determined in standard 
laboratory measurements.  

We stress this point in another way: The localisation of a particle in phase space is 
determined by a wavefunction that not only yields the localisation, but also an average 
position and momentum in that space. There are however many other eigenspectral 
distributions that could yield the same average momentum and position in phase space but 
that would describe particles with very different cross sections. It is possible in principle to 
form an eigenspectral array with a similar average phase space location as a localised 
particle, but which is composed predominantly of dark gravitational quantum states. 
Although particles might possess a similar average momentum and position as their visible 
counterparts, but they will be weakly acting, invisible and unable to reach equilibrium with 
visible localised matter via traditional thermalizing interaction processes. Particles with such 
distributions can form the basis of dark matter. 

Predominantly dark gravitational eigenspectral arrays represent an attractive solution for 
the dark matter problem because (1) they can potentially arise naturally in the universe as a 
direct prediction of quantum mechanics and (2) they can be used to explain the nature and 
origin of dark matter without the need for any new physics or new particles. As will be seen 
later, ‘dark-gravitational-eigenstate’ dark matter appears to possess properties that fit with 
many observations of dark matter behaviour, including an inability to gravitationally 
collapse or coalesce, a transparency to light and other parts of the electromagnetic spectrum, 
and does not suffer from the same problems associated with other CDM WIMP candidates. 
Eigenstructure halos formed from vast arrays of particles with predominantly high-l, dark 
eigenspectra enable the success of LCDM cosmology on large scales to be retained while 
yielding properties that remove the difficulties faced by LCDM on the galactic 
cluster/galaxy scale and below. 

3. Schrödinger-type solutions to gravitational potentials 
3.1 Solution of the simple central point potential 

More complex arrangements of gravitational binding than that discussed in 2.1 are possible, 
for example agglomerations of elementary neutral particles bound in a ‘collective’ 
gravitational potential well in a similar manner to the structure of nuclear material. We 
begin here however with the Schrödinger approach to the central point potential and make 
refinements on this. The analysis for this has been done elsewhere and we give a brief 
summary here. (For more detail see Ernest, 2009a.) The gravitational form of Schrodinger’s 
equation for a two particle system is written as 
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where M0 and m0 are the masses of the large central and small ‘orbit’ point particles respectively, 
  is the reduced mass and the other symbols have their normal meanings. Separation of 
variables leads to the eigenenergies nE  and normalised eigenfunctions , , ( , ),n l mu tr  which are 

given by 2 2 2 2 2
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the standard quantum numbers.  , ,l mY   are the spherical harmonics. The limits of the 
angular eigenfunction components for large m and l are not significant for the present 
discussion and have been dealt with previously (Ernest, 2009a). The radial component

       2 1
, 0 0 1 02 exp 2l l

n l nl n lR r N r nb r nb L r nb
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0 0 0b G m M   is a scale factor analogous to the atomic case, and 
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are very significant in developing the present theory and we concentrate on these from now 
on. The states are shown in Figure 1 where, for a central point-mass potential as in this 
diagram, the set of all l  and m values is degenerate for any given value of n .  

In Figure 1 the l-m-degenerate n levels are shown in proportion schematically to their state 
energy 21 /n  but it should be noted that their average radial positions behave in the 
opposite way: approximately 2n . For the high-l, high-n states the average radial position is 
accurately written as 2

0nr n b . The radial eigenfunction extent max minr r  spreads out as a 

square root dependence on the value of p, approximately centred on 2
0n b . The position of 

the eigenfunctions is important because a sufficient density of occupied states can in 
principle modify the potential so it is no longer that of a central point-mass. The deviation 
from a point potential can be approximately allowed for by incorporating 0b  as a variable 
dependent on the enclosed variable mass ( )M r . Each ( )M r  gives an eigenvalue series of 

energies 1
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nE  , 2

2
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nE , 3
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nE … and the appropriate n chosen from each series 1{ }n , 

2{ }n , 3{ }n , … using the value of ( )M r  determined from its functional form. This method 
works but it is not the optimal approach. 

3.2 Solutions for halo mass distributions and logarithmic potentials 

Solutions to the gravitational central-point-potential Schrodinger equation given above can 
be shown to contain some states that possess the fundamental properties required for dark 
matter. The galaxy and clusters however are not point potentials but have extended mass 
distributions. As mentioned earlier, the radial velocity profiles of galaxies for example show 
constant velocities with radius as far out as can measured rather than the expected 
Keplarian decline. This implies a radial density profile that varies as 21 / r . The force is then 
proportional to the enclosed mass enclosedM which is therefore given by 
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where again m0 is the ‘orbit mass and e the natural logarithm base. This hybrid 1 /r -
logarithmic potential differs from the equivalent point-mass, 1 /r  point potential 
substantially at low r  although in principle the characteristics of the high-l, n quantum 
states of 1 /r  potentials that make them suitable as fundamental components of dark 
matter eigenspectral arrays will have equivalent states in the eigenstate ensembles of the 
real logarithmic halo potentials. In the central point-mass potential case it was possible 
(Ernest 2009a, 2009b) to obtain approximations for the energies and wavefunction forms of 
the eigenstates which can be used to obtain quantitative values for interaction rates etc. It is 
clearly important to be able to develop approximations for similar states in the real 
logarithmic potentials of the galactic halo case which we now do below.  

For wavefunctions inside the halo, the logarithmic potential Schrödinger equation becomes 
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which, on separation of variables, gives the equation for the  radial component  , ( )n lu r  of 
the wavefunction as 
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The Schrödinger equation is known to be analytically solvable for 1 /r  and 2r  potentials 
but equations with logarithmic potentials require approximation techniques. The equation 
can be recast into a standard form as  
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where l is the angular momentum quantum number. A few attempts have been made to 
solve this equation. Ciftci et al. (2003) developed approximate solutions for various power-
law and logarithmic potentials based on extensions of the Laguerre solutions applicable to 
1 /r  potentials. Their procedure however, when applied to the present case, involves 
summations (over n) with prohibitively large numbers of terms of Laguerre polynomial 
coefficients. 

The technique used here involves first finding the eigenenergies of the states that 
correspond to the highest angular momentum for any given n value, that is, all the states 
that have 1p   (i.e. 1l n  ) for each n. These eigenstates have a thin single peaked radial 
form. For maxm m l    the states are ring-like or circular. The energy may be deduced 
semi-classically noting that all the probability density lies at essentially the same radius rn, 
giving the state ‘potential’ energy as 0 0 0 0( ) / ln( e / )U n nE r GM m R R r  . The number of polar 
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oscillations is maxl n , giving 2 nr n  , and momentum 0 nm v n r   using the de Broglie 
relation. The equivalent “kinetic” energy is then 0 0 02KE Gm M R  and the net energy of the 
state is therefore 

 0 0 0
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e( ) ( ) lnn p n n l n n
n
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As the quantum number m decreases, the state form spreads gradually in the  polar 
direction yielding thin annular shells, ultimately creating a closed spherical shell for 0m  . 
These states simply represent variations in the polar-azimuthal orientation and so (6) 
corresponds to the energy of all m sublevels of the l value. The energy of the lower m-states 
is the same as for the maximum value of m, both by symmetry and because classically lower 
m-values behave simply as mixtures of tilted circular states of equivalent energy. 

For the circular states the velocity v can also be written as a (halo-constant) 0 0( )v GM R  , 
by equating the centripetal and gravitational force based on the enclosed mass. Combined 
with 0 nm v n r  , this allows nr  to be expressed in terms of n and leads to an expression for 
the energy level levels , 1n pE   for the circular ( 1p  ) states (compared with 

2 2 2 2 2
, all 0 2n pE G m M n   in the centralised point-mass case). nr  and , 1n pE   are given by  
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where the ,n lE  are the energy eigenvalues which will in general depend on both n and l. 

Each of these states is itself the lowest energy eigenvalue in a set of eigenvalues all of which 
have the same value of l, say 'l l  and increasing values of n and p, that is 1, 2, 3 ...p  . The 
energies are 1 ' 1, ', 1n l l l pE E     , 2 ' 2 , ', 2n l l l pE E     , 3 ' 3, ', 3n l l l pE E      … with 1E  given by 

equation (7).  

The quantity  2 21 /2l l mr  in equation (5) may be thought of as the ‘centrifugal potential’ 
and for each value of l we define the effective potential energy as 
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plots of which are shown in Figure 2. 

The maximum energy depths dE  of the well minima and their corresponding radial 
positions are given by  
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Fig. 2. Effective halo potentials for various l. 42
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Within each well (characterised by its l-value) the lowest the energy state (labelled say by 
0  ) is a 1p   eigenstate and corresponds to the n-value 1n l  . For n states not too 

much greater than l we use a simple harmonic Taylor series approximation around the 
minimum, which is analytically solvable to obtain a set of energy eigenvalues and 
eigenfunctions for any 1n l    provided n is not too far above l. (For typical galactic halo 
parameters the harmonic approximation gives better than 1% accuracy to the potential over 
the region of the well encompassed by eigenstates with p from 1 to 2010  - see Figure 3).  

The harmonic form of the Schrödinger equation is  
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Fig. 3. Taylor approximations to the 333.0 10l   effective halo potential. 42
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and putting ' dr r r   leads to an equation of the form of equation (11) equivalent to (5) as 
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provided that 
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The eigenvalue and eigenfunction solutions to (11) are those for the standard harmonic 
oscillator, given by 
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where ( )H   are the Hermite polynomials and 0( ) /dr r m    . Combining equations 
(14) and (15), noting that   is related directly to the p-value for the state by 

1 1p n l       and taking care to distinguish between quantum parameters that refer to 
the well compared to the states within that well, we can write a general formula for the 
eigenvalues of any high angular momentum (low-p) state of a logarithmic centrifugal well in 
terms of the quantum numbers n and l as 
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A schematic state diagram similar to that for the central point-mass state ensemble is shown 
in Figure 4, with a superimposed schematic for the harmonic approximation to the 
centrifugal well for an angular momentum quantum number l. The levels ( = 0, 1, 2 …) of 
the centrifugal well schematic correspond to the increasing values of p and n and constant l, 
beginning with the state 1n l  , 1p  . The lines of constant-n are no longer horizontal 
because of the additional dependence of the energy on l. It is of interest to compare the 
energy level differences between two adjacent l-values with two adjacent n-values since this 
gives a measure of the degree to which the presence of a logarithmic potential affects the 
otherwise degenerate l-states of the classic central point-mass potential. Equation (16)  
shows that for any given l, the state energy increases linearly with n as anticipated  
from the discussion of the circular states discussed earlier in this section. Indeed as l  
approaches n, equation (16) approaches equation (7), as expected. Putting ( 1)l l l    
and noting that l is close to n, partial differentiation of equation (16) with respect to n  
and l gives the energy spacing per unit change in n and l as: , 0 0 02n lE n Gm M lR     

and 2
, 0 0 0( 2 )n lE l Gm M n l l R      respectively. For ~l n , ( 2 ) ~ ( 2 1)n l l  , hence 

, , ,( 2 1) 2 0.3n l n l n lE l E n E n           so that the energy spacing for adjacent l-states 

in the extended 21 r  density distribution is a substantial fraction of the energy spacing of 
adjacent n-states, as illustrated in Figure 4, and in contrast to the angular momentum 
degeneracy observed for the eigenstates in the central point-potential. Also since ,n lE l   is 

always negative, state energy increases as l decreases (at least for the 20~ 10  p-values that 
are within the range of validity of the harmonic approximation) so that the low angular 
momentum states are less well bound than the high angular momentum ones for any given 
n. For the typical halo parameters 21

0 0 2.0 10 kg/m,M R   27
0 1.67 10 kgm   , and taking 

21 331.0 10 m ( ~ 6 10 )r l    as a typical outer halo position, the energy spacing for adjacent 

n states is 32~ 4.8 10 eV,  and for l states is 32~ 1.6 10 eV . If the same procedure used here 
is applied to a standard central point-mass potential then the spacing between the harmonic  
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(14) and (15), noting that   is related directly to the p-value for the state by 

1 1p n l       and taking care to distinguish between quantum parameters that refer to 
the well compared to the states within that well, we can write a general formula for the 
eigenvalues of any high angular momentum (low-p) state of a logarithmic centrifugal well in 
terms of the quantum numbers n and l as 
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A schematic state diagram similar to that for the central point-mass state ensemble is shown 
in Figure 4, with a superimposed schematic for the harmonic approximation to the 
centrifugal well for an angular momentum quantum number l. The levels ( = 0, 1, 2 …) of 
the centrifugal well schematic correspond to the increasing values of p and n and constant l, 
beginning with the state 1n l  , 1p  . The lines of constant-n are no longer horizontal 
because of the additional dependence of the energy on l. It is of interest to compare the 
energy level differences between two adjacent l-values with two adjacent n-values since this 
gives a measure of the degree to which the presence of a logarithmic potential affects the 
otherwise degenerate l-states of the classic central point-mass potential. Equation (16)  
shows that for any given l, the state energy increases linearly with n as anticipated  
from the discussion of the circular states discussed earlier in this section. Indeed as l  
approaches n, equation (16) approaches equation (7), as expected. Putting ( 1)l l l    
and noting that l is close to n, partial differentiation of equation (16) with respect to n  
and l gives the energy spacing per unit change in n and l as: , 0 0 02n lE n Gm M lR     

and 2
, 0 0 0( 2 )n lE l Gm M n l l R      respectively. For ~l n , ( 2 ) ~ ( 2 1)n l l  , hence 

, , ,( 2 1) 2 0.3n l n l n lE l E n E n           so that the energy spacing for adjacent l-states 

in the extended 21 r  density distribution is a substantial fraction of the energy spacing of 
adjacent n-states, as illustrated in Figure 4, and in contrast to the angular momentum 
degeneracy observed for the eigenstates in the central point-potential. Also since ,n lE l   is 

always negative, state energy increases as l decreases (at least for the 20~ 10  p-values that 
are within the range of validity of the harmonic approximation) so that the low angular 
momentum states are less well bound than the high angular momentum ones for any given 
n. For the typical halo parameters 21

0 0 2.0 10 kg/m,M R   27
0 1.67 10 kgm   , and taking 

21 331.0 10 m ( ~ 6 10 )r l    as a typical outer halo position, the energy spacing for adjacent 

n states is 32~ 4.8 10 eV,  and for l states is 32~ 1.6 10 eV . If the same procedure used here 
is applied to a standard central point-mass potential then the spacing between the harmonic  
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Fig. 4. Schematic ( , )n l  state diagram for the logarithmic potential (radial mass density 
21 /r ) showing the high n, l-valued stationary states. A typical effective centrifugal l-well 

of momentum ( 1)l l    is shown superimposed on the state diagram to illustrate how the 
higher energy states ( 1 2) , 0,1,2...E       corresponding to (p =  + 1, l = l, n = l +  + 
1) are calculated for each l-well. Each solid circle on the diagram represents 2 1l  , z-
projection (m) substates. 
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levels gives essentially the same result as that obtained directly from equation (1) which is 
again a check on the validity of the approach. That is the energy of a particular vibrational 
level in one l-harmonic well becomes equal to the energy of one level above or below in 
the adjacent, 1l   well, making the energy levels for different l, same n degenerate as 
expected. 

It is also possible to write down the eigenfunctions of the high angular momentum 
eigenstates in a logarithmic potential. It is necessary to generalise the normalisation constant 

 1 4
0 2 !m     in equation (15). Writing the second of equations (15) as 

2( ) ( )exp( 2)u r N H      where  1 4
0 2 !N m     , and r    , where 

 1 42 ( 1) dl l r    and  1 42 ( 1)l l   , we modify the procedure of Schiff (1968) to find 
N . The integral for calculating the normalising constant is given by 
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Now 1r   and is approximately constant and equal to dr  over the significant range of 
the integrand and it can therefore be taken outside the integral to give 
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since it is merely a displacement of the harmonic function from 0r   to dr r  so (17) may 
be written as 
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 , expanding the 

exponential as a power series and equating series coefficients, enables the integral in 
equation (18) as 1 2 2 !   (see Schiff, 1968 for details) and gives the normalising constant N 
as  
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Thus the eigenfunctions , ( )l pu r  (or , ( )n lu r ) may be written in terms of the well parameters

dr  and l, as 
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where dr  is defined as in equation (10). 

4. High angular momentum states: Longevity, darkness, transparency, 
stability and weak interaction with low l-states 
High angular momentum, high-n gravitational eigenstates make excellent dark matter 
candidates. Any particle, even traditional baryons or electrons, placed into these states or 
into wavefunctions whose eigenspectral composition is rich in high-n,l states will be dark, 
weakly interacting and unable to gravitationally collapse in the traditional classical sense. 
Why is this? 

Quantum theory provides standard ways to calculate the interaction properties of 
eigenstates such as spontaneous and stimulated emission and absorption rates, particle 
interaction cross-sections etc. These rates depend, among other things, on the overlap 
integral (matrix element) for the interaction, which itself depends on the initial and final 
states and on the interaction Hamiltonian, generally expressed as a combination of spatial 
and momentum (differential) operators. In the case of radiative dipole decay for example 
the rate ,i fA  is given by (Ernest, 2009b): 
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where e is the electronic charge, the 0  electrical permittivity, iff e i  r  the absolute 

value of the dipole matrix element for spontaneous decay for the transition i to f, if  the 

transition angular frequency, and the other symbols have their usual meanings. 

iff e i  r  is given (Ernest, 2009b) as normal by 
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where ,ifx ify   and ifz  are standard Cartesian components, expressible in terms of 

angular and radial overlap integrals , , , , , ,, , ,x y z rI I I I       over the initial, i, and final, f, 

spherical harmonic , ( , )m lY    and radial component , ( )n lu r  eigenfunctions: 
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Ernest (2009b) calculated state to state dipole decay times ,1 / i fA  based on a central point-

mass potential. Using the logarithmic potential developed here, decay times remain very 
similar. Times are affected by the choice of the density parameter 0 0M R  but if the same 
enclosed mass is used the energy spacing between levels is only marginally different. For 
example the differences in energy spacing (occurring as a result of differences in the shape 
of the well for the two different potentials) between two adjacent 1p   states with 0p   
(such as A B  on Figure 4) for logarithmic (real halo) versus point-mass potentials 
produce differences in decay times of less than 5% for the same enclosed mass at typical 
galactic halo radii. As a result particles occupying these states (or predominant mixtures of 
them) in the logarithmic potentials corresponding to actual galactic halos do not emit 
radiation, are stable over cosmic lifetimes and do not undergo gravitational collapse. We 
restate this important result: 

 The lifetimes of the high angular momentum states are far greater than the age of the 
universe and the states are stable and do not emit radiation. 

Similar arguments apply to 0p   transitions originating on the ‘deeper’ 2,3, 4...p   states 
(such as C D  on Figure 4), provided that p is a negligible fraction of n. These lifetimes 
remain long even when the number of available decay channels is taken into account 
(selection rules require that 1l    and 0, 1m   ). This was discussed extensively by 
Ernest (2009b) and is related to the effects that eigenfunction orthogonality, large radial 
position and differences in spatial oscillation frequency (SOF) have on the overlap integral. 
(Where transitions are involved that ‘cross’ lines of constant p on the state diagram, it can be 
shown (Ernest, 2009b) that the overlap integrals become exceedingly small.) We do not 
repeat the arguments in detail here but note that the results can be applied in the same way 
with essentially the same conclusions to the states of the logarithmic potential wells.  

The extreme longevity of the low-p states has implications for the rates of stimulated 
emission and absorption. The probability per unit time ifP  of stimulated emission or 

absorption of radiation from a state i to a state f is given by 
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where ( )if   is the radiation energy density per unit angular frequency and ( )ifI   is the 
corresponding beam intensity per unit angular frequency. Assuming the upper and lower 
degeneracies are similar one can calculate the absorption and scattering times for photons as 
they pass through a typical halo. The details of this calculation are derived explicitly in Ernest 
(2009b). The calculation derived there shows that photons in virtually all known regions of the 
electromagnetic spectrum will pass through the halo without scattering via low-p eigenstates, 
so that halos composed of such states will be completely transparent and not subject to the 
usual processes of Compton or Raleigh scattering as are traditional localised ‘free’ particles 
represented by visible eigenspectral ensembles. Again these calculations extend immediately 
to the eigenstates of the logarithmic potentials with essentially the same results. We therefore 
also explicitly note that: 

 A halo consisting of ordinary particles composed predominantly of low-p eigenspectral 
components will be transparent to virtually all regions of the electromagnetic spectrum.  

Interactions of low-p eigenstates with other particles involve different Hamiltonian 
operators and are not subject to the same stringent selection rules as with photon 
interactions, particularly for three body ‘collisions’. We therefore expect that low-p 
eigenstates will not be as ‘dark’ for particles as they are for photons. It turns out however 
that it is still difficult for state transfer across lines of constant p, particularly when p is small. 
The reasons behind this relate to several properties of the low-p states. These include their 
limited radial range, the limited number of, and wavelength of, their spatial oscillations, and 
the effect of differences in the SOF between the initial and final quantum states. These 
aspects were discussed by Ernest (2009b). It was seen in figure 9 of that paper that there is a 
relationship between the relative spatial oscillation frequency (RSOF) of the initial and final 
states and the size of the overlap integral. If one state has 1p   then the value of 

  log log rI  is linearly related to  log RSOF . Recent work has shown that a similar 
relationship exists for 2p   states and should hold in general provided p is a negligible 
fraction of n. This relationship means that if either of the states has a low-p value, the size of 
the overlap integral diminishes rapidly with any difference in p-values, that is the degree of 
‘p-crossing’. Furthermore because the interaction Hamiltonian does not have a significant 
effect on the spatial oscillation frequencies of the states, it means that similar relationships 
should exist for other types of interactions such as those involving particles. This is a direct 
consequence of the orthogonality and limited radial extent of the low-p eigenstates.  

Figure 5 shows a general summary of the different ways in which ‘visible’ matter (that is 
photons and traditional particles in thermalized, broad-range mixtures of halo eigenstates) 
with low-p states is limited by effects such as spatial oscillation frequency and spatial 
overlap. In case (a) we have small changes in both p and n, and transitions are possible, but 
the size of the change is so small that changes in energy or momentum of the perturbing 
entity, and state dispersion effects over cosmic history, are negligible. In case (b) again the 
change in p is small, i.e. no significant ‘p-crossing’ and the initial and final spatial oscillation 
frequencies are similar (RSOF~1). Transitions are also theoretically possible in this case but 
here n  is made large enough to enable observable changes in the momentum and/or 
energy of the perturbing entity. However exclusively in the low-p regime, the n  required 
for such measurable angular momentum or energy changes requires eigenstate functions 
that are spatially distinct making 0rI   irrespective of the Hamiltonian involved. In case (c) 
the initial and final states are no longer spatially distinct (i.e. forced to overlap by  
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Fig. 5. Schematic ( , )n l state diagram showing how characteristics of low-p initial (u(r)i) 
states, and final (u(r)f) states lead to weak interaction: 
case (a) small change in p  similar SOF; transitions possible, 0RI   but , ( ) ~ 0E mv   
case (b) small change in p  similar SOF; , 1n l     , ( ) 0E mv   , but initial final 
states spatially distinct  ~ 0rI  
case (c) large change in p  large differences in SOF; , 1n l     , ( ) 0E mv   , but 
large relative SOF  ~ 0rI  

the choice of the final state) but still maintain large differences in l  and n . This however 
requires significant ‘p-crossing’ and, in a similar way to figure 9 of Ernest (2009b), we expect 
the resulting differences in spatial oscillation frequency to result in 0RI  , irrespective of 
the interaction Hamiltonian involved. Again we note that: 

 A halo consisting of ordinary particles composed predominantly of low-p eigenspectral 
components will be weakly interacting with particles and therefore have difficulty in 
thermalising and hence redistributing its eigenspectral distribution to that of traditional 
localised, Maxwellian eigenspectral compositions. 
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For interactions between identical particles there is the possibility that exchange degeneracy 
enables particles in very different p   states to still interact because of ‘SOF swapping’. This 
can be seen by writing down the symmetric/antisymmetric form of the two-particle 
(eigenstate+perturbing particle) overlap integral. The SOF of the initial and final eigenstates 
could theoretically work together with the SOF of the eigenspectral components of the initial 
and final perturbing particle states to allow a p -crossing transition even when the SOF of 
the initial eigenstate is very different from the final. Optical thickness follows from such a 
particle interaction because low- p  eigenspectral components may then be transferred to 
more strongly interacting components. This possibility enables the prospect of limited 
interchange of baryons in dark states with traditional ‘Maxwellian’ matter during cosmic 
history. Potentially it offers a solution to the significant astrophysical problems of a 
continued source of star forming material in galaxies, the disk-halo conspiracy (mass 
distribution follows radial luminosity), the production of ionised gas from precessional 
galactic jets as observed in M42 at temperatures consistent with those expected from outer 
halo interactions, and the hot interacting gas in the Bullet cluster collision. 

5. A formation scenario 
A short account of the possible qualitative model of the formation of dark halos was given 
by Ernest (2006) and we summarise that approach here. There is still considerable work to 
be done in developing and testing the validity of the approach but the qualitative scenario 
does provide a general basis for how formation would need to proceed. Given the 
properties of particles in dark gravitational eigenstates, it is reasonable to expect that once 
particles have eigenspectral distributions that are dark, that, aside from for the types of 
particle interactions discussed above, they could largely remain in these distributions over 
cosmic times. Clearly the processes involved are dynamic and on-going, and the proportion 
of particles with dark eigenspectral distributions depends on the rates at which distributions 
are transferred back and forward between dark and visible states during cosmic history. 
Detailed calculations of these processes are potentially very difficult because not only do the 
transition rates depend on their closeness to the 1p   diagonal, but the dynamic 
redistribution of matter concurrently changes the shape of the potential well and hence the 
overlap integrals involved in the rate calculations. 

In the formation scenario proposed, each massive dark ‘eigenstructure’ halo is occupied by 
baryons and electrons in a self-assembled massive gravitational potential, each of which is 
initially seeded by the potential well of a supermassive black hole formed at the last, e+/e- 
phase transition at ~ 0.75t s in the early universe. Such black holes were themselves 
originally one of the first candidates proposed as a solution to the dark matter problem, but 
it was shown that their abundance could only provide up to 10-7 of the closure density (Hall 
and Hsu, 1990). However in the present scenario we note that if a PBH is sufficiently large it 
can continue to accrete baryonic matter. Under normal circumstances this is countered by 
photon pressure via baryon-photon oscillation, but this process is critically dependent on 
the cross section for Compton scattering which is significantly reduced if the eigenspectral 
distribution of the captured baryons is biased toward dark states. In the present scenario 
therefore, the black holes formed at the last phase transition act as the seed potentials to 
capture baryons and electrons that then transfer to dark eigenspectral distributions thereby 
insulating them from the baryon-photon oscillation process and enabling them to add to the 



 
Advances in Quantum Theory 242 

captured baryonic dark halo, concurrently increasing the density contrast and well 
potential, and enhancing further matter capture in a continuing cycle. 

It is well known that primordial black holes (PBH) can form from over-density regions at 
the various phase transitions in the early universe (Carr, 1975, Jedamzik and Niemeyer, 
1999). It is expected that such black holes will form with masses up to the horizon mass MH 
at the time of the phase transition. The PBHs required for eigenstructure seeding need to be 
massive and we are interested in the black holes formed at the e+/e- phase transition at 

~ 0.75t s. Numerical calculations by Hawke and Stewart (2002) suggest a lower limit to 
MPBH as 4

H10 M  while Carr gives an approximate upper limit on PBH mass as 
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where T is the temperature at the phase transition (~1 MeV at ~ 0.75t s), geff is the number of 
degrees of freedom (43/4 at the last phase transition) and SM  is the solar mass. This suggests 
a maximum black hole mass 4

S10 M  while Afshordi et al (2003) consider up to 6
S10 M .  

The capture of baryonic matter is in a sense similar to the capture of electrons by ions to 
form atoms and a simple version of the Saha equation 

 
  3

2 expe i e i

a a i

n n m kT E
n n n kT

  
  

  
 (27) 

suggests that particles might undergo a form of ‘gravitational recombination’ provided that 
the energy level concerned is deeper than the corresponding energy related to the 
temperature at the time involved. This fixes a particular radius within the seed well at 
which the condition iE f kT  (where ~ 2 10f  ) is satisfied. Ernest (2006) considered seed 
masses of between 410  and  6

S10 M , and derived an equation for the temporal 
development of a so-called thermal radius thr  at which this condition was satisfied: 
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where 1k  is a constant relating to relevant parameters such as the effective enclosed mass, 
temperature etc., and the solution a function of 0( )thr t , the initial size of the thermal radius 
(Ernest 2006). If the matter is effectively captured inside thr  then, as the surrounding 
universe expands and the temperature drops, the contrast density increases and thr  
increases with time. Depending on the chosen value of f, results show that provided 

4
S S~ 5 10M M  or greater, thr  can increase rapidly (until equation 27 breaks down due to 

the presence of adjacent halos) and can accommodate a halo mass of 4210  kg, generally 
before the completion of nucleosynthesis. Whether or not particles can effectively transfer to 
dark states within this time is still an open question because the model is still to be 
developed in detail and requires calculation of deep-state stimulated transition rates (the 
prevailing transition process in this strongly radiation-dominated era). It does suggest 
however that it might be possible to maintain consistency with measured nucleosynthesis 
ratios and still maintain baryonic densities applicable to the total matter content of the 
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where T is the temperature at the phase transition (~1 MeV at ~ 0.75t s), geff is the number of 
degrees of freedom (43/4 at the last phase transition) and SM  is the solar mass. This suggests 
a maximum black hole mass 4

S10 M  while Afshordi et al (2003) consider up to 6
S10 M .  

The capture of baryonic matter is in a sense similar to the capture of electrons by ions to 
form atoms and a simple version of the Saha equation 
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suggests that particles might undergo a form of ‘gravitational recombination’ provided that 
the energy level concerned is deeper than the corresponding energy related to the 
temperature at the time involved. This fixes a particular radius within the seed well at 
which the condition iE f kT  (where ~ 2 10f  ) is satisfied. Ernest (2006) considered seed 
masses of between 410  and  6

S10 M , and derived an equation for the temporal 
development of a so-called thermal radius thr  at which this condition was satisfied: 
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where 1k  is a constant relating to relevant parameters such as the effective enclosed mass, 
temperature etc., and the solution a function of 0( )thr t , the initial size of the thermal radius 
(Ernest 2006). If the matter is effectively captured inside thr  then, as the surrounding 
universe expands and the temperature drops, the contrast density increases and thr  
increases with time. Depending on the chosen value of f, results show that provided 

4
S S~ 5 10M M  or greater, thr  can increase rapidly (until equation 27 breaks down due to 

the presence of adjacent halos) and can accommodate a halo mass of 4210  kg, generally 
before the completion of nucleosynthesis. Whether or not particles can effectively transfer to 
dark states within this time is still an open question because the model is still to be 
developed in detail and requires calculation of deep-state stimulated transition rates (the 
prevailing transition process in this strongly radiation-dominated era). It does suggest 
however that it might be possible to maintain consistency with measured nucleosynthesis 
ratios and still maintain baryonic densities applicable to the total matter content of the 
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universe: i.e. dark plus visible matter, either (1) because the baryons have transferred to 
weakly interacting states before nucleosynthesis completion or (2) because of the extreme 
inhomogeneity introduced by the eigenstructure halos. (Mass captured in the halos is 
sequentially removed from the more rapidly expanding, necessarily under-density, mid-
halo regions as expansion proceeds.) Interestingly however, from Carr’s black hole number 
density-mass spectrum equation, it can be calculated that the value thr  takes for the 
separation of such adjacent halos at the formation time translates, after universal expansion, 
into the order of magnitude for the number density of present day galaxies (Ernest, 2006). 

In a traditional p e   recombining plasma once the temperature has dropped well below 
the ionisation level, virtually all electrons and protons have formed into atoms, so we 
might initially expect that today all the baryons and electrons of the universe would have 
gravitationally combined into halo eigenstructures and possibly also collapsed into dark 
eigenstates. There would then be no visible matter in the universe, particularly in the 
present scenario where halos grow until they overlap. During the formation process 
however, as discussed above there are weak, relatively ‘field-free’ corner regions in 
between adjacent halos and some baryons and electrons would have remained as 
thermalised distributions in these regions. The probability of any individual particle 
transferring to a dark state is necessarily small and so we expect that some as yet 
unknown fraction of matter in the halo itself as well as the matter in these field-free corner 
regions will form the basis of the visible matter we observe today. An interesting 
consequence from this is the prediction of the visible to total matter ratio. If we assume 
that halos fill space like oranges in a box and imagine that growth stops when the halo 
edges meet with the remaining matter left over in the corners then the ratio of this left 
over matter to the total matter should give us a ratio of the visible to total matter. 
Bertschinger (1985) has looked at the capture of baryonic matter by a central potential and 
has shown that such capture can result in self-similar density profiles which are 
reasonably consistent with the logarithmic potential, 21 r  profiles observed today. 
Assuming such a density profile, we get a ratio for visible to total matter of 0.23 for loose 
random packing and 0.186 for close random packing. This can be compared with the 
WMAP result which measures the visible to total matter ratio of the universe via baryon-
photon oscillation as 0.18 (Tegmark etal., 2004). 

It was estimated that initially the eigenstructure radius would have be formed from the 
horizon size 83 10 m  to 1310 m . It is expected that various processes would act on the 
eigenstates after baryonic capture. These would be required to expand the halos to their 
presently observed sizes. We imagine the matter at radius 1310 mr   in a Maxwellian 

distribution which we approximate by a single momentum 3 Bp mk T  (where Bk  is 
Boltzmann’s constant). Given an isotropic distribution of particles then particles enter the 

,n l  diagram at a position that corresponds to their angular momentum. For the temperature 
conditions at initial formation this suggests the majority of particles will have values of 

~ 3 /Bl r mk T   up to 228 10l   for 83 10 mr   , ( 10~ 10 KT ) and 265 10l   for 
1310 mr   ( 8~ 4 10 KT  ).  

We want to estimate the rate at which such particles might be promoted up or down via 
stimulated radiation processes. The stimulated transition rate is given by equation 24 which 
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depends on the overlap integral if  and on the energy density per unit angular frequency 
 if   at the transition frequency which relates to the temperature at the formation time. 

For 10~ 10 KT  this peaks at 21~ 4 10   Hz, but this frequency corresponds to large 
changes in p values ( 1l   ) that do not have favourable if  values when the initial value 
of ( )ip p  is low. Hence there is an optimum value of n  that will yield the maximum 
transfer rate. For smaller changes in p the value of if  is higher (for 1ip   where 1p   
necessarily, there is virtually 100% in-phase overlap in the dipole matrix element and 

if e r  ) but  if   is  much smaller. Nevertheless at these high temperatures there is a 
peak rate 34 1~ 10  s  that occurs for 1p   transitions originating on 1, 1i in p  . Likewise 
similar 1p   transitions originating on the deeper states where 1ip   will show similar 
rates. Additionally however if the states are very deep, the rapid decrease in if  with 
increase in p  (Ernest, 2009b) does not occur, and promotion demotion rates may be even 
greater. Thus although it was seen that the state dispersion due to radiation such as that 
from the CMB does not appreciably alter the relative eigenstate position on the state 
diagram for present day halos, in the early times of formation the rates are such that these 
halos could have been easily expanded. It is relatively easy to track the rates during cosmic 
history and indications are that radiation expansion of halos may have occurred up to as late 
in cosmic history as the beginning of the period of reionization. Although accurate 
calculations require detailed knowledge of the energy level spacings which have only 
recently been determined for logarithmic potentials. Further work is being carried out in 
this area.  

6. Observations and predictions 
It is difficult for any model of dark matter to predict observable phenomena because by the 
nature of dark matter it is not very observable! Perhaps the biggest departure of the present 
approach from traditional cosmic concordance is the early formation of massive 
eigenstructures. Whilst within the present theory traditional LCDM is left intact on the 
largest scales (indeed we know that eigenstructures themselves will function effectively in 
describing large scale structure as the original numerical modelling was carried out with 
similar mass ‘particles’). One would anticipate that such a change would leave some imprint 
on for example the CMB. The halo separation at decoupling corresponds to fluctuations in 
the anisotropy spectrum at 410l  . Unfortunately at such high l values the finite time for 
atomic recombination has most likely smoothed out peaks due to the individual halos. One 
might see evidence in the Lyman-α forest, but since it is anticipated that every 
eigenstructure forms into a galaxy, this is really just noting the observed effects that galactic 
halos already have on the Lyman-  forest.  

One possible observation might reveal the eigenstate nature of dark matter. We know that in 
the 21 r  density profiles the total energy of an eigenstate minus its potential energy is 
effectively a measure of its kinetic energy. This kinetic energy is constant with radius and 
determined only by eigenstate particle mass and the ratio 0 0M R . Furthermore we know 
that although these high-l eigenstates are very dark with respect to photon interactions, their 
interactions with other particles may not be so ineffective, because of relaxed selection rules. 
It is possible that dark baryons slowly ‘leak’ into the visible regime over time via collisions 
and interactions with particles and other eigenstates. If particle/dark-eigenstate collisions 
do occur then the eigenspectral distribution will shift to a lower-l, visible composition. It is 
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suggested this is one of the primary origins of the hot x-ray gas seen in halos, and the radio 
and other emission from black hole jets as they precess in the halo and the hot x-ray 
emission seen in cluster collisions such as the famous “Bullet cluster”.  

Firstly we note that the halo x-ray emission is at an approximately constant temperature across 
the radius of the halo, consistent with the radial dependence of the effective kinetic energy of 
eigenstates. The equivalent kinetic energy of these eigenstates averaged over the electron and 
proton component is most simply calculated from 0 0( ) 4K p eE GM m m R   which for the 
Milky Way corresponds to a temperature 62 /3 1.3 10 KK BE k   . The Milky Way exhibits a 
range of x-ray energies but the best estimates of the diffuse halo gas temperature are 

61.3 1.5 10 K  (Kappes et al., 2003). If the hypothesis of energy transfer from dark to visible 
states is correct, one might expect to see, over a range of different halos, a linear correlation 
between two quantities 0 0M R  and the x-ray temperature, both of which should be 
measurable, the first by lensing and the second by x-ray satellites. In some halos a variation in 
velocity profiles with radius is observed and there might be a correlation between the halo 
temperature and the local the equivalent eigenstate kinetic energy as a function of radius 
within a single halo. It is also significant that some observed x-ray intensities mimic halo dark 
matter density profiles (ibid.) the generality of which could be tested. 

7. Conclusion 
Quantum theory predicts the existence of well-bound, dark gravitational eigenstates in 
potential wells like those associated with galactic or cluster halos. By allowing the 
possibility that these states could be incorporated into the eigenspectra of what would 
normally be visible elementary particles, it enables them to function as dark matter 
candidates. This then enables the nature and origin of dark matter to be understood without 
the need for new particles or new physics. Gravitational eigenstates have already been 
experimentally observed in the laboratory and there is no reason to deny their existence in 
large potential wells. Many of the properties of dark matter then arise as a natural 
consequence of (i) the functional properties of the wavefunctions corresponding to the dark 
eigenstates or (ii) the envisaged formation scenario. 

Perhaps the most exciting aspect of gravitational eigenstates though will be realised if these 
states do turn out to be responsible for dark matter, for in doing this they will provide us 
not only with a solution to a long standing problem in astrophysics but also with a more 
generalised way to describe and understand the nature of matter on macroscopic scales. 
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