
Applied and
Computational
Statistics

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Sorana D. Bolboacă
Edited by

﻿Applied and Com
putational Statistics • Sorana D. Bolboacă

Applied and Computational Statistics

Applied and Computational Statistics

Special Issue Editor

Sorana D. Bolboacă

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade

Special Issue Editor

Sorana D. Bolboacă

Iuliu Haţieganu University of Medicine and Pharmacy

Romania

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) from 2018 to 2019 (available at: https://www.mdpi.com/journal/

mathematics/special issues/applied computational statistics).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03928-176-3 (Pbk)

ISBN 978-3-03928-177-0 (PDF)

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Special Issue Editor . vii

Preface to ”Applied and Computational Statistics” . ix

Ibrahim Elbatal, Farrukh Jamal, Christophe Chesneau, Mohammed Elgarhy and Sharifah

Alrajhi

The Modified Beta Gompertz Distribution: Theory and Applications
Reprinted from: Mathematics 2019, 7, 3, doi:10.3390/math7010003 1

Lorentz Jäntschi and Sorana D. Bolboacă

Computation of Probability Associated with Anderson–Darling Statistic
Reprinted from: Mathematics 2018, 6, 88, doi:10.3390/math6060088 18

Miltiadis S. Chalikias

Optimal Repeated Measurements for Two Treatment Designs with Dependent Observations:
The Case of Compound Symmetry
Reprinted from: Mathematics 2019, 7, 378, doi:10.3390/math7040378 35

Lili Tan, Yunzhan Gong and Yawen Wang

A Model for Predicting Statement Mutation Scores
Reprinted from: Mathematics 2019, 7, 778, doi:10.3390/math7090778 41

Dan-Marian Joiţa and Lorentz Jäntschi

Extending the Characteristic Polynomial for Characterization of C20 Fullerene Congeners
Reprinted from: Mathematics 2017, 5, 84, doi:10.3390/math5040084 80

v

About the Special Issue Editor

Sorana D. Bolboacă is a professor of medical informatics and biostatistics at the ”Iuliu Hat, ieganu”

University of Medicine and Pharmacy Cluj-Napoca, Romania. She earned her Ph.D. in

Medicine (2006) from the Iuliu Haţieganu University of Medicine and Pharmacy (title of the thesis

Evidence-Based Medicine: Logistics and Implementation) and a Ph.D. in Horticulture (2010) from the

University of Agriculture Sciences and Veterinary Medicine Cluj-Napoca (title of the thesis Statistical

Models for Analysis of Genetic Variability). Her research interests are multidisciplinary, and include

applied and computational statistics, molecular modeling, genetic analysis, statistical modeling in

medicine, integrated health informatics systems and the application of new technologies in medicine,

medical diagnostics research, medical imaging analysis, assisted decision systems, research ethics,

social media and health information, and evidence-based medicine. She is the author of more

than 200 papers and 19 monographs in medicine, computational chemistry, computer science,

mathematics, environmental sciences, biomedical engineering, nanoscience nanotechnology, and

medical informatics.

vii

Preface to ”Applied and Computational Statistics”

The research on statistical populations, samples, or models have applications in all research

areas and are conducted to gain knowledge for real-world problems. Increased calculation power

opens the path to computational statistics, algorithm translation, and the implementation of statistical

methods and computer simulations. These areas are developing rapidly, providing solutions to

multidisciplinary, interdisciplinary, and transdisciplinary topics. An excellent theoretical statistics

method is worthless in the absence of real-data applicability. Furthermore, any excellent theoretical

statistics method will find its ending sooner or later without proper implementation.

Statistical methods find their application is understanding phenomenon from all fields,

including medicine, biology, biochemistry, agriculture, horticulture, engineering, and more.

The Special Issue of Mathematics entitled “Applied and Computational Statistics” provides new

methods and their applicability to the prediction of the mutation score, repeated measurements

bi-treatment cross-over design, modified beta Gompertz distribution, extending the characteristic

polynomial, and computation of the probability associated with Anderson–Darling statistics. In

addition to giving a detailed presentation of the implemented method that assures the reproducibility,

the collection of articles also includes specific applicability examples.

Thanks to all contributors for their involvement in finding statistical solutions to real-life

problems; keep staying on the path of knowledge gain. Dear reviewers, thank you very much for the

time spent in reviewing the articles and for the constructive comments that have certainly contributed

to the quality of the papers. I warmly invite readers to enjoy reading this collection of articles, and I

hope that new ideas will come to life for the benefit of science by reading these manuscripts.

Sorana D. Bolboacă

Special Issue Editor

ix

mathematics

Article

The Modified Beta Gompertz Distribution:
Theory and Applications

Ibrahim Elbatal 1, Farrukh Jamal 2, Christophe Chesneau 3,*, Mohammed Elgarhy 4

and Sharifah Alrajhi 5

1 Institute of Statistical Studies and Research (ISSR), Department of Mathematical Statistics, Cairo University,
Giza 12613, Egypt; i_elbatal@staff.cu.edu.eg

2 Department of Statistics, Govt. S.A Postgraduate College Dera Nawab Sahib, Bahawalpur,
Punjab 63360, Pakistan; drfarrukh1982@gmail.com

3 Department of Mathematics, LMNO, University of Caen, 14032 Caen, France
4 Department of Statistics, University of Jeddah, Jeddah 21589, Saudi Arabia; m_elgarhy85@yahoo.com
5 Department of Statistics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

saalrajhi@kau.edu.sa
* Correspondence: christophe.chesneau@unicaen.fr; Tel.: +33-02-3156-7424

Received: 7 November 2018; Accepted: 17 December 2018; Published: 20 December 2018

Abstract: In this paper, we introduce a new continuous probability distribution with five parameters
called the modified beta Gompertz distribution. It is derived from the modified beta generator
proposed by Nadarajah, Teimouri and Shih (2014) and the Gompertz distribution. By investigating
its mathematical and practical aspects, we prove that it is quite flexible and can be used effectively
in modeling a wide variety of real phenomena. Among others, we provide useful expansions of
crucial functions, quantile function, moments, incomplete moments, moment generating function,
entropies and order statistics. We explore the estimation of the model parameters by the obtained
maximum likelihood method. We also present a simulation study testing the validity of maximum
likelihood estimators. Finally, we illustrate the flexibility of the distribution by the consideration of
two real datasets.

Keywords: modified beta generator; gompertz distribution; maximum likelihood estimation

MSC: 60E05; 62E15; 62F10

1. Introduction

The Gompertz distribution is a continuous probability distribution introduced by Gompertz [1].
The literature about the use of the Gompertz distribution in applied areas is enormous. A nice review
can be found in [2], and the references therein. From a mathematical point of view, the cumulative
probability density function (cdf) of the Gompertz distribution with parameters λ > 0 and α > 0 is
given by

G(x) = 1 − e−
λ
α (e

αx−1), x > 0.

The related probability density function (pdf) is given by

g(x) = λeαxe−
λ
α (e

αx−1), x > 0.

It can be viewed as a generalization of the exponential distribution (obtained with α → 0) and
thus an alternative to the gamma or Weibull distribution. A feature of the Gompertz distribution is that
g(x) is unimodal and has positive skewness, whereas the related hazard rate function (hrf) given by
h(x) = g(x)/(1 − G(x)) is increasing. To increase the flexibility of the Gompertz distribution, further

Mathematics 2019, 7, 3; doi:10.3390/math7010003 www.mdpi.com/journal/mathematics1

Mathematics 2019, 7, 3

extensions have been proposed. A natural one is the generalized Gompertz distribution introduced by
El-Gohary et al. [3]. By introducing an exponent parameter a > 0, the related cdf is given by

F(x) =
(

1 − e−
λ
α (e

αx−1)
)a

, x > 0.

The related applications show that a plays an important role in term of model flexibility. This idea
was then extended by Jafari et al. [4] who used the so-called beta generator introduced by Eugene et al. [5].
The related cdf is given by

F(x) =
1

B(a, b)

∫ 1−e− λ
α (eαx−1)

0
ta−1(1 − t)b−1dt

= I
1−e− λ

α (eαx−1) (a, b), x > 0. (1)

where a, b > 0, B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt and Ix(a, b) = (1/B(a, b))
∫ x

0 ta−1(1 − t)b−1dt, x ∈ [0, 1].
This distribution has been recently extended by Benkhelifa [6] with a five-parameter distribution. It is
based on the beta generator and the generalized Gompertz distribution.

Motivated by the emergence of complex data from many applied areas, other extended Gompertz
distributions have been proposed in the literature. See for instance, El-Damcese et al. [7] who considered
the Odd Generalized Exponential generator introduced by Tahir et al. [8]; Roozegar et al. [9] who used
the McDonald generator introduced by Alexander et al. [10]; Refs. [11,12] who applied the transmuted
generator introduced by Shaw and Buckley [13]; Chukwu and Ogunde [14] and Lima et al. [15] who
used the Kumaraswamy generator; and Benkhelifa [16] and Yaghoobzadeh [17] who considered the
Marshall–Olkin generator introduced by Marshall and Olkin [18]; and Shadrokh and Yaghoobzadeh [19]
who considered the Beta-G and Geometric generators.

In this paper, we present and study a distribution with five parameters extending the Gompertz
distribution. It is based on the modified beta generator developed by Nadarajah et al. [20]
(which can also be viewed as a modification of the beta Marshall–Olkin generator developed by
Alizadeh et al. [21]). The advantage of this generator is to nicely combine the advantages of the beta
generator of Eugene et al. [5] and the Marshall–Olkin generator of Marshall and Olkin [18]. To the
best of our knowledge, its application to the Gompertz distribution has never been considered before.
We provide a comprehensive description of its general mathematical properties (expansions of the cdf
and pdf, quantile function, various kinds of moments, moment generating function, entropies and
order statistics). The estimation of the model parameters by maximum likelihood is then discussed.
Finally, we explore applications to real datasets that illustrate the usefulness of the proposed model.

The structure of the paper is as follows. Section 2 describes the considered modified beta
Gompertz distribution. Some mathematical properties are investigated in Section 3. Section 4 provides
the necessary to the estimation of the unknown parameters with the maximum likelihood method.
A simulation study is presented, which tests validity of the obtained maximum likelihood estimators.
Applications to two real datasets are also given.

2. The Modified Beta Gompertz Distribution

Let c > 0, G(x) be a cdf and g(x) be a related pdf. The modified beta generator introduced
by Nadarajah et al. [20] is characterized by the cdf given by

F(x) = I cG(x)
1−(1−c)G(x)

(a, b), (2)

2

Mathematics 2019, 7, 3

By differentiation of F(x), a pdf is given by

f (x) =
cag(x) [G(x)]a−1 [1 − G(x)]b−1

B(a, b) [1 − (1 − c)G(x)]a+b , x ∈ R. (3)

The hrf is given by

h(x) =
cag(x) [G(x)]a−1 [1 − G(x)]b−1

B(a, b) [1 − (1 − c)G(x)]a+b
(

1 − I cG(x)
1−(1−c)G(x)

(a, b)
) , x ∈ R.

Let us now present our main distribution of interest. Using the cdf G(x) of the Gompertz
distribution with parameters λ > 0 and α > 0 as baseline, the cdf given by Equation (2) becomes

F(x) = I
c
(

1−e− λ
α (eαx−1)

)

1−(1−c)
(

1−e− λ
α (eαx−1)

)
(a, b), x > 0. (4)

The related distribution is called the modified beta Gompertz distribution (MBGz distribution),
also denoted by MBGz(λ, α, a, b, c). The related pdf in Equation (3) is given by

f (x) =
caλeαxe− λb

α (eαx−1)
(

1 − e− λ
α (e

αx−1)
)a−1

B(a, b)
[
1 − (1 − c)

(
1 − e− λ

α (e
αx−1)

)]a+b , x > 0. (5)

The hrf is given by

h(x) =

caλeαxe− λb
α (eαx−1)

(
1 − e− λ

α (e
αx−1)

)a−1

B(a, b)
[
1 − (1 − c)

(
1 − e− λ

α (e
αx−1)

)]a+b

⎡
⎢⎢⎢⎢⎣1 − I

c
(

1−e− λ
α (eαx−1)

)

1−(1−c)
(

1−e− λ
α (eαx−1)

)
(a, b)

⎤
⎥⎥⎥⎥⎦

,

x > 0. (6)

Figure 1 shows the plots for f (x) and h(x) for selected parameter values λ, α, a, b, c. We observe
that these functions can take various curvature forms depending on the parameter values, showing
the increasing of the flexibility of the former Gompertz distribution.

A strong point of the MBGz distribution is to contain different useful distributions in the literature.
The most popular of them are listed below.

• When c = 1/(1 − θ) with θ ∈ (0, 1) (θ is a proportion parameter), we obtain the beta Gompertz
geometric distribution introduced by Shadrokh and Yaghoobzadeh [19], i.e., with cdf

F(x) = I
1−e− λ

α (eαx−1)

1−θe− λ
α (eαx−1)

(a, b), x > 0.

However, this distribution excludes the case c ∈ (0, 1), which is of importance since it contains
well-known flexible distributions, as developed below. Moreover, the importance of small values
for c can also be determinant in the applications (see Section 4).

3

Mathematics 2019, 7, 3

• When c = 1, we get the beta Gompertz distribution with four parameters introduced by
Jafari et al. [4], i.e., with cdf

F(x) = I
1−e− λ

α (eαx−1) (a, b), x > 0.

• When c = b = 1, we get the generalized Gompertz distribution studied by El-Gohary et al. [3],
i.e., with cdf

F(x) =
(

1 − e−
λ
α (e

αx−1)
)a

, x > 0.

• When a = b = 1 and c = 1
θ with θ > 1, we get the a particular case of the Marshall–Olkin

extended generalized Gompertz distribution introduced by Benkhelifa [16], i.e., with cdf

F(x) =
1 − e− λ

α (e
αx−1)

θ + (1 − θ)
(

1 − e− λ
α (e

αx−1)
) , x > 0.

• When a = b = c = 1, we get the Gompertz distribution introduced by Gompertz [1], i.e., with cdf

F(x) = 1 − e−
λ
α (e

αx−1), x > 0.

• When c = 1 and α → 0, we get beta exponential distribution studied by Nadarajah and Kotz [22],
i.e., with cdf

F(x) = I1−e−λx (a, b), x > 0.

• When b = c = 1 and α → 0, we get the generalized exponential distribution studied by Gupta
and Kundu [23], i.e., with cdf

F(x) =
(

1 − e−λx
)a

, x > 0.

• When a = b = c = 1 and α → 0 we get the exponential distribution, i.e., with cdf

F(x) = 1 − e−λx, x > 0.

(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

pd
f

λ = 0.8 α = 0.1 a = 2 b = 2 c = 0.8
λ = 0.9 α = 1 a = 0.1 b = 0.5 c = 0.01
λ = 1 α = 0.8 a = 3 b = 0.5 c = 0.5
λ = 1 α = 1 a = 0.2 b = 0.2 c = 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

hr
f

λ = 0.7 α = 0.1 a = 3 b = 5 c = 0.1
λ = 0.9 α = 1 a = 0.2 b = 1 c = 0.1
λ = 1 α = 0.5 a = 3 b = 0.5 c = 1
λ = 0.1 α = 0.2 a = 0.1 b = 0.2 c = 2
λ = 1 α = 1 a = 0.2 b = 0.2 c = 2

Figure 1. Some plots of the pdf f (x) (a); and some plots for the hrf h(x) (b).

4

Mathematics 2019, 7, 3

3. Some Mathematical Properties

3.1. On the Shapes of the pdf

The shapes of f (x) given by Equation (5) can be described analytically. As usual, the critical
points x∗ of the pdf f (x) satisfies ∂

∂x ln(f (x∗)) = 0, with

∂

∂x
ln(f (x)) = α − bλeαx + (a − 1)

λeαxe− λ
α (e

αx−1)

1 − e− λ
α (e

αx−1)
+ (a + b)(1 − c)

λeαxe− λ
α (e

αx−1)

c + (1 − c)e− λ
α (e

αx−1)
.

The point x∗ is a local maximum if ∂2

∂x2 ln(f (x∗)) < 0, a local minimum if ∂2

∂x2 ln(f (x∗)) > 0 and a

point of inflection if ∂2

∂x2 ln(f (x∗)) = 0.
Let us now study the asymptotic properties of f (x). We have

f (x) ∼ ca

B(a, b)
λaxa−1, x → 0.

Thus, for a ∈ (0, 1), we have limx→0 f (x) = +∞; for a = 1, we have limx→0 f (x) = bcλ; and,
for a > 1, we have limx→0 f (x) = 0. We have

f (x) ∼ 1
cbB(a, b)

λeαxe
λb
α e−

λb
α eαx

, x → +∞.

Thus, limx→+∞ f (x) = 0 in all cases. Figure 1a illustrates these points for selected parameters.

3.2. On the Shapes of the hrf

Similar to the pdf, the critical points x∗ of the hrf h(x) given by Equation (6) satisfy ∂
∂x ln(h(x∗)) =

0, with

∂

∂x
ln(h(x)) = α − bλeαx + (a − 1)

λeαxe− λ
α (e

αx−1)

1 − e− λ
α (e

αx−1)
+ (a + b)(1 − c)

λeαxe− λ
α (e

αx−1)

c + (1 − c)e− λ
α (e

αx−1)

+
caλeαxe− λb

α (eαx−1)
(

1 − e− λ
α (e

αx−1)
)a−1

B(a, b)
[
1 − (1 − c)

(
1 − e− λ

α (e
αx−1)

)]a+b

⎡
⎢⎢⎢⎢⎣1 − I

c
(

1−e− λ
α (eαx−1)

)

1−(1−c)
(

1−e− λ
α (eαx−1)

)
(a, b)

⎤
⎥⎥⎥⎥⎦

.

Again, the point x∗ is a local maximum if ∂2

∂x2 ln(h(x∗)) < 0, a local minimum if ∂2

∂x2 ln(h(x∗)) > 0

and a point of inflection if ∂2

∂x2 ln(h(x∗)) = 0.
We also have

h(x) ∼ ca

B(a, b)
λaxa−1, x → 0.

Thus, for a ∈ (0, 1), we have limx→0 h(x) = +∞; for a = 1, we have limx→0 h(x) = bcλ; and,
for a > 1, we have limx→0 h(x) = 0. We have

h(x) ∼ bλeαx, x → +∞.

Thus, limx→+∞ h(x) = +∞ in all cases. Figure 1b illustrates these points for selected parameters.

5

Mathematics 2019, 7, 3

3.3. Linear Representation

Let us determine useful linear representations for F(x) given by Equation (4) and f (x) given by
Equation (5). First, let us suppose that c ∈ (0, 1). It follows from the generalized binomial formula, i.e.,

(1 + z)γ =
+∞

∑
k=0

(
γ

k

)
zk for |z| < 1 and γ ∈ R, with

(
γ

k

)
=

γ(γ − 1) . . . (γ − k + 1)
k!

, that

F(x) =
1

B(a, b)

∫ cG(x)
1−(1−c)G(x)

0
ta−1(1 − t)b−1dt

=
1

B(a, b)

+∞

∑
k=0

(
b − 1

k

)
(−1)k

∫ cG(x)
1−(1−c)G(x)

0
ta+k−1dt

=
1

B(a, b)

+∞

∑
k=0

(
b − 1

k

)
(−1)k

a + k

[
cG(x)

1 − (1 − c)G(x)

]a+k
.

On the other hand, using again the generalized binomial formula, we obtain

[
cG(x)

1 − (1 − c)G(x)

]a+k
= ca+k

+∞

∑
�=0

(−(a + k)
�

)
(−1)�(1 − c)�[G(x)]�+a+k. (7)

In a similar manner, we have

[G(x)]�+a+k =
[
1 − e−

λ
α (e

αx−1)
]�+a+k

=
+∞

∑
m=0

(
�+ a + k

m

)
(−1)m(1 − Hm(x)),

where Hm(x) = 1 − e− mλ
α (eαx−1) is the cdf of a Gompertz distribution with parameters mλ and α.

Combining these equalities, we obtain the following series expansion:

F(x) =
+∞

∑
m=0

vm(1 − Hm(x)), (8)

where

vm =
(−1)m

B(a, b)

+∞

∑
k=0

+∞

∑
�=0

(
�+ a + k

m

)(−(a + k)
�

)(
b − 1

k

)
ca+k(−1)k+�(1 − c)�

1
a + k

.

By derivation of F(x), f (x) can be expressed as

f (x) =
+∞

∑
m=0

wmhm(x), (9)

where wm = −vm and hm(x) is the pdf of a Gompertz distribution with parameters mλ and α.
For the case c > 1, we must do some transformation for Equation (7) to apply the generalized

binomial formula. We can write

6

Mathematics 2019, 7, 3

[
cG(x)

1 − (1 − c)G(x)

]a+k
=

[
G(x)

1 − (1 − 1
c)(1 − G(x))

]a+k

= [G(x)]a+k
+∞

∑
�=0

(−(a + k)
�

)
(−1)�(c − 1)�c−�[1 − G(x)]�

=
+∞

∑
�=0

�

∑
q=0

(−(a + k)
�

)(
�

q

)
(−1)�+q(c − 1)�c−�[G(x)]q+a+k.

On the other hand, we have

[G(x)]q+a+k =
+∞

∑
m=0

(
q + a + k

m

)
(−1)m(1 − Hm(x)).

Therefore, we can write F(x) as Equation (8) with

v∗m =

(−1)m

B(a, b)

+∞

∑
k=0

+∞

∑
�=0

�

∑
q=0

(−(a + k)
�

)(
�

q

)(
q + a + k

m

)(
b − 1

k

)
(−1)�+q+k(c − 1)�c−� 1

a + k
,

and f (x) as Equation (9) with wm = −v∗m (and still hm(x) is the pdf of a Gompertz distribution with
parameters mλ and α). For the sake of simplicity, we refer to the form in Equation (9) far all series
representation of f (x), whether c ∈ (0, 1) or c > 1.

Hereafter, we denote by X a random variable having the cdf F(x) given by Equation (4) (and the
pdf f (x) given by Equation (5)) and by Ym a random variable following the Gompertz distribution
with parameters mλ and α, i.e., having the cdf Hm(x) (and the pdf hm(x)).

3.4. Quantile Function

The quantile function of X is given by

Q(u) =
1
α

ln

(
1 − α

λ
ln

(
1 − I−1

u (a, b)
c + (1 − c)I−1

u (a, b)

))
, u ∈ (0, 1),

where I−1
u (a, b) denotes the inverse of Iu(a, b). It satisfies F(Q(u)) = Q(F(u)) = u. Using [20], one can

show that
Q(u) ∼ 1

λc
a

1
a B(a, b)

1
a u

1
a , u → 0.

From Q(u), we can simulate the MBGz distribution. Indeed, let U be a random variable
following the uniform distribution over (0, 1). Then, the random variable X = Q(U) follows the
MBGz distribution.

The median of X is given by M = Q(1/2). We can also use Q(u) to define skewness measures.
Let us just introduce the Bowley skewness based on quartiles and the Moors kurtosis respectively
defined by

B =
Q(3/4) + Q(1/4)− 2Q(1/2)

Q(3/4)− Q(1/4)
, Mo =

Q(7/8)− Q(5/8) + Q(3/8)− Q(1/8)
Q(6/8)− Q(2/8)

.

Contrary to γ1 and γ2, these quantities have the advantage to be always defined. We refer
to [24,25].

7

Mathematics 2019, 7, 3

3.5. Moments

Let r be a positive integer. The rth ordinary moment of X is defined by μ′
r = E (Xr) =∫ +∞

−∞ xr f (x)dx. Using the linear representation given by Equation (9), we can express μ′
r as

μ′
r =

+∞

∑
m=0

wm

∫ +∞

−∞
xrhm(x)dx =

+∞

∑
m=0

wmE(Yr
m).

By doing the change of variables u = eαx, we obtain

E(Yr
m) =

mλ

αr+1 e
mλ
α

∫ +∞

1
(ln u)re−

mλ
α udu.

This integral has connections with the so-called generalized integro-exponential function.
Further developments can be found in [26,27]. Therefore, we have

μ′
r =

+∞

∑
m=0

wm
mλ

αr+1 e
mλ
α

∫ +∞

1
(ln u)re−

mλ
α udu.

Obviously, the mean of X is given by E(X) = μ′
1 and the variance of X is given by V(X) =

μ′
2 − (μ′

1)
2.

3.6. Skewness

The rth central moment of X is given by μr = E
[
(X − μ′

1)
r]. It follows from the binomial

formula that

μr =
r

∑
k=0

(
r
k

)
(−1)k(μ′

1)
kμ′

r−k.

On the other side, the rth cumulants of X can be obtained via the equation:

κr = μ′
r −

r−1

∑
k=1

(
r − 1
k − 1

)
κkμ′

r−k,

with κ1 = μ′
1. The skewness of X is given by γ1 = κ3/κ3/2

2 and the kurtosis of X is given by γ2 = κ4/κ2
2.

One can also introduce the MacGillivray skewness given by

ρ(u) =
Q(1 − u) + Q(u)− 2Q(1/2)

Q(1 − u)− Q(u)
, u ∈ (0, 1).

It illustrates the effects of the parameters a, b, α and λ on the skewness. Further details can be
found in [28].

3.7. Moment Generating Function

The moment generating function of X is given by MX(t) = E
(
etX) =

∫ +∞
−∞ etx f (x)dx.

Using Equation (9), we have

MX(t) =
+∞

∑
m=0

wm

∫ +∞

−∞
etxhm(x)dx =

+∞

∑
m=0

wm MYm(t),

where MYm(t) = E(etYm), the moment generating function of Ym. Doing successively the change of
variables u = eαx and the change of variable v = mλ

α u, we obtain

8

Mathematics 2019, 7, 3

MYm(t) =
mλ

α
e

mλ
α

∫ +∞

1
u

t
α e−

mλ
α udu = e

mλ
α

(α

mλ

) t
α
∫ +∞

mλ
α

v
t
α e−vdv

= e
mλ
α

(α

mλ

) t
α Γ
(

t
α
+ 1,

mλ

α

)
,

where Γ(d, x) denotes the complementary incomplete gamma function defined by Γ(d, x) =∫ +∞
x td−1e−tdt. Therefore, we can write

MX(t) =
+∞

∑
m=0

wme
mλ
α

(α

mλ

) t
α Γ
(

t
α
+ 1,

mλ

α

)
.

Alternatively, using the moments of X, one can write

MX(t) =
+∞

∑
r=0

tr

r!
μ′

r =
+∞

∑
r=0

+∞

∑
m=0

tr

r!
wm

mλ

αr+1 e
mλ
α

∫ +∞

1
(ln u)re−

mλ
α udu.

3.8. Incomplete Moments and Mean Deviations

The rth incomplete moment of X is defined by mr(t) = E

(
Xr1{X≤t}

)
=
∫ t
−∞ xr f (x)dx.

Using Equation (9), we can express mr(t) as

mr(t) =
+∞

∑
m=0

wm

∫ t

−∞
xrhm(x)dx.

Doing successively the change of variables u = eαx, we obtain

∫ t

−∞
xrhm(x)dx =

mλ

αr+1 e
mλ
α

∫ eαt

1
(ln u)re−

mλ
α udu.

The mean deviation of X about the mean is given by

δ1 = E(|X − μ′
1|) = 2μ′

1F(μ′
1)− 2m1(μ

′
1),

where m1(t) denote the first incomplete moment. The mean deviation of X about the median
M = Q(1/2) is given by

δ2 = E(|X − M|) = μ′
1 − 2m1(M).

3.9. Entropies

Let us now investigate different kinds of entropies. For the sake of simplicity in exposition,
we suppose that c ∈ (0, 1) (the case c > 1 can be considered in a similar way). The Rényi entropy of X
is defined by

Iγ(X) =
1

1 − γ
ln
[∫ +∞

−∞
[f (x)]γ dx

]
,

with γ > 0 and γ 	= 1. It follows from (3) that

[f (x)]γ =
caγ[g(x)]γ [G(x)]γ(a−1) [1 − G(x)]γ(b−1)

B(a, b)γ [1 − (1 − c)G(x)]γ(a+b)
.

9

Mathematics 2019, 7, 3

The generalized binomial formula implies that

[G(x)]γ(a−1)

[1 − (1 − c)G(x)]γ(a+b)
=

+∞

∑
k=0

(−γ(a + b)
k

)
(−1)k(1 − c)k[G(x)]k+γ(a−1).

Similarly, we have

[G(x)]k+γ(a−1) =
+∞

∑
�=0

(
k + γ(a − 1)

�

)
(−1)�[1 − G(x)]�.

Therefore,

[f (x)]γ =

caγ

B(a, b)γ

+∞

∑
k=0

+∞

∑
�=0

(−γ(a + b)
k

)(
k + γ(a − 1)

�

)
(−1)k+�(1 − c)k[1 − G(x)]�+γ(b−1)[g(x)]γ.

By doing the change of variable u = eαx and the change of variable v = (�+ γb) λ
α u, we get

∫ +∞

−∞
[1 − G(x)]�+γ(b−1)[g(x)]γdx =

∫ +∞

0
e−(�+γb) λ

α (e
αx−1)λγeαγxdx

= λγ 1
α

e(�+γb) λ
α

∫ +∞

1
uγ−1e−(�+γb) λ

α udu

=
αγ−1

(�+ γb)γ
e(�+γb) λ

α

∫ +∞

(�+γb) λ
α

vγ−1e−vdv

=
αγ−1

(�+ γb)γ
e(�+γb) λ

α Γ
(

γ, (�+ γb)
λ

α

)
.

By putting the above equalities together, we have

Iγ(X) =

1
1 − γ

[
αγ ln(c)− γ ln(B(a, b)) + (γ − 1) ln(α) +

γbλ

α

+ ln
[+∞

∑
k=0

+∞

∑
�=0

(−γ(a + b)
k

)(
k + γ(a − 1)

�

)
(−1)k+�(1 − c)k e�

λ
α

(�+ γb)γ
Γ
(

γ, (�+ γb)
λ

α

)]]
.

The Shannon entropy of X is defined by S(X) = E(− ln[f (X)]). It can be obtained by the formula
S(X) = limγ→1+ Iγ(X).

The γ-entropy is defined by

Hγ(X) =
1

γ − 1
ln
[

1 −
∫ +∞

−∞
[f (x)]γ dx

]
.

Using the expansion above, we obtain

Hγ(X) =
1

γ − 1
ln
[

1 − caγαγ−1eγb λ
α

B(a, b)γ
×

+∞

∑
k=0

+∞

∑
�=0

(−γ(a + b)
k

)(
k + γ(a − 1)

�

)
(−1)k+�(1 − c)k e�

λ
α

(�+ γb)γ
Γ
(

γ, (�+ γb)
λ

α

)]
.

10

Mathematics 2019, 7, 3

3.10. Order Statistics

Let X1, . . . , Xn be the random sample from X and Xi:n be the ith order statistic. Then, the pdf of
Xi:n is given by

fi:n(x) =
n!

(i − 1)!(n − i)!
f (x)[F(x)]i−1 [1 − F(x)]n−i

=
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j f (x)[F(x)]j+i−1.

It follows from Equations (8) and (9) that

fi:n(x) =
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j

+∞

∑
m=0

wmhm(x)

[
+∞

∑
k=0

vk(1 − Hk(x))

]j+i−1

.

Using a result from [29], power series raised to a positive power as follows

(
+∞

∑
k=0

akxk

)n

=
+∞

∑
k=0

dn,kxk,

where the coefficients (dn,k)k∈N are determined from the recurrence equation: dn,0 = an
0 and,

for any m ≥ 1, dn,m = (1/(ma0))
m
∑

k=1
(k(n + 1)− m)akdn,m−k. Therefore, noticing that 1 − Hk(x) =(

e− λ
α (e

αx−1)
)k

, we have

[
+∞

∑
k=0

vk(1 − Hk(x))

]j+i−1

=
+∞

∑
k=0

dj+i−1,k(1 − Hk(x)),

where dj+i−1,0 = vj+i−1
0 and, for any m ≥ 1, dj+i−1,m = 1

mv0

m
∑

k=1
(k(j + i) − m)vkdj+i−1,m−k.

By combining the equalities above, we obtain

fi:n(x) =
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j

+∞

∑
m=0

+∞

∑
k=0

wmdj+i−1,khm(x)(1 − Hk(x)).

Finally, one can observe that hm(x)(1 − Hk(x)) = mλeαxe−
(m+k)λ

α (eαx−1) = m
m+k um+k(x),

where um+k(x) denotes the pdf of the Gompertz distribution with parameters (m + k)λ and α. Thus,
the pdf of ith order statistic of the MBGz distribution can be expressed as a linear combination of
Gompertz pdfs, i.e.,

fi:n(x) =
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j

+∞

∑
m=0

+∞

∑
k=0

wmdj+i−1,k
m

m + k
um+k(x).

Let r be a positive integer. Then, the rth ordinary moment of Xi:n can be expressed as

E(Xr
i:n) =

∫ +∞

−∞
xr fi:n(x)dx

=
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j

+∞

∑
m=0

+∞

∑
k=0

wmdj+i−1,k
mλ

αr+1 e
(m+k)λ

α

∫ +∞

1
(ln u)re−

(m+k)λ
α udu.

11

Mathematics 2019, 7, 3

4. Statistical Inference

4.1. Maximum Likelihood Estimation

We now investigate the estimation of the parameters of the MBGz distribution. Let x1, . . . , xn

be n observed values from the MBGz distribution and ξ = (λ, α, a, b, c) be the vector of unknown
parameters. The log likelihood function is given by

�(ξ) = an ln(c) + n ln(λ) + α
n

∑
i=1

xi − λb
α

n

∑
i=1

(eαxi − 1) + (a − 1)
n

∑
i=1

ln
(

1 − e−
λ
α (e

αxi−1)
)

− n ln(B(a, b))− (a + b)
n

∑
i=1

ln
[
1 − (1 − c)

(
1 − e−

λ
α (e

αxi−1)
)]

.

The maximum likelihood estimators of the parameters are obtained by maximizing the log
likelihood function. They can be determined by solving the non-linear equations: ∂

∂λ �(ξ) = 0, ∂
∂α �(ξ) =

0, ∂
∂a �(ξ) = 0, ∂

∂b �(ξ) = 0, ∂
∂c �(ξ) = 0 with

∂�(ξ)

∂λ
=

n
λ
− b

α

n

∑
i=1

(eαxi − 1) + (a − 1)
n

∑
i=1

1
α (e

αxi − 1)e− λ
α (e

αxi−1)

1 − e− λ
α (e

αxi−1)

+ (a + b)
n

∑
i=1

(1 − c) 1
α (e

αxi − 1)e− λ
α (e

αxi−1)

1 − (1 − c)
(

1 − e− λ
α (e

αxi−1)
) ,

∂�(ξ)

∂α
=

n

∑
i=1

xi − λb
α

n

∑
i=1

[
xieαxi − 1

α
(eαxi − 1)

]

+ (a − 1)
n

∑
i=1

λ
α e− λ

α (e
αxi−1)

[
xieαxi − 1

α (e
αxi − 1)

]
1 − e− λ

α (e
αxi−1)

+ (a + b)
n

∑
i=1

(1 − c)e− λ
α (e

αxi−1)
[

xieαxi − 1
α (e

αxi − 1)
]

1 − (1 − c)
(

1 − e− λ
α (e

αxi−1)
) ,

by setting B(1,0)(a, b) = ∂
∂a B(a, b) and B(0,1)(a, b) = ∂

∂b B(a, b) (one can remark that B(1,0)(a, b) = ψ(a)−
ψ(a + b) and B(0,1)(a, b) = ψ(b)− ψ(a + b), where ψ(x) denotes the so called digamma function),

∂�(ξ)

∂a
= n ln c +

n

∑
i=1

ln
(

1 − e−
λ
α (e

αxi−1)
)
− n

B(1,0)(a, b)
B(a, b)

−
n

∑
i=1

ln
[
1 − (1 − c)

(
1 − e−

λ
α (e

αxi−1)
)]

,

∂�(ξ)

∂b
= −λ

α

n

∑
i=1

(eαxi − 1)− n
B(0,1)(a, b)

B(a, b)
−

n

∑
i=1

ln
[
1 − (1 − c)

(
1 − e−

λ
α (e

αxi−1)
)]

and

∂�(ξ)

∂c
=

an
c

− (a + b)
n

∑
i=1

1 − e− λ
α (e

αxi−1)

1 + (1 − c)
(

1 − e− λ
α (e

αxi−1)
) .

We can solve the above non-linear equations simultaneously. A mathematical package can be used
to get the maximum likelihood estimators of the unknown parameters. In addition, all the second-order

12

Mathematics 2019, 7, 3

derivatives exist. As usual, the asymptotic normality of the maximum likelihood estimators can be used
to construct informative objects (approximate confidence intervals, confidence regions, and testing
hypotheses of λ, α, a, b, c, etc.).

4.2. Simulation

From a theoretical point of view, the performances of the different estimates (MLEs) for the MBGz
distribution are difficult to compare. We therefore propose a simulation study that uses their mean
square errors (MSEs) for different sample sizes as benchmarks. The software package Mathematica
(version 9) was used. Different sample sizes were considered through the experiments at size n = 50,
100 and 150. The experiment was repeated 3000 times. In each experiment, the estimates of the parameters
were obtained by maximum likelihood methods of estimation. The means and MSEs for the different
estimators can be found in Table 1. We observed that MSEs are decreasing with increasing n.

Table 1. The MLEs and MSEs of MBGz distribution.

n Parameters Initial MLE MSE Initial MLE MSE

50 a 3.0 3.0024 0.5057 2.5 2.6424 0.1737
b 1.5 1.6409 0.1499 1.5 1.5219 0.0400
c 0.5 0.4941 0.0008 0.5 0.5050 0.0004
α 0.5 0.5422 0.0198 0.5 0.5291 0.0116
λ 0.5 0.5241 0.0387 0.5 0.5235 0.0122

100 a 3.0 3.0778 0.2458 2.5 2.5060 0.0754
b 1.5 1.6083 0.0779 1.5 1.5373 0.0291
c 0.5 0.4986 0.0003 0.5 0.4991 0.0003
α 0.5 0.5572 0.0147 0.5 0.5123 0.0029
λ 0.5 0.4926 0.0126 0.5 0.5035 0.0070

150 a 3.0 2.9041 0.1015 2.5 2.5125 0.0284
b 1.5 1.6159 0.0485 1.5 1.5232 0.0088
c 0.5 0.4940 0.0002 0.5 0.5002 0.0001
α 0.5 0.5477 0.0094 0.5 0.5137 0.0015
λ 0.5 0.4694 0.0072 0.5 0.4968 0.0015

50 a 1.5 1.4706 0.0325 1.5 1.5435 0.0641
b 1.8 1.7764 0.0639 1.8 1.7838 0.0955
c 0.5 0.5054 0.0013 1.5 1.5285 0.0203
α 0.5 0.4833 0.0029 0.5 0.4895 0.0008
λ 0.5 0.5488 0.0160 0.5 0.5364 0.0118

100 a 1.5 1.5138 0.0201 1.5 1.5194 0.0224
b 1.8 1.8177 0.0380 1.8 1.8309 0.0451
c 0.5 0.5004 0.0007 1.5 1.5010 0.0047
α 0.5 0.5007 0.0023 0.5 0.5011 0.0005
λ 0.5 0.5106 0.0059 0.5 0.5036 0.0028

150 a 1.5 1.5313 0.0102 1.5 1.4690 0.0094
b 1.8 1.8152 0.0194 1.8 1.8396 0.0258
c 0.5 0.5055 0.0003 1.5 1.4864 0.0017
α 0.5 0.5173 0.0022 0.5 0.5007 0.0004
λ 0.5 0.5044 0.0034 0.5 0.4943 0.0009

4.3. Applications

This section provides an application to show how the MBGz distribution can be applied in
practice. We compared MBGz to Exponentaited Generalized Weibull–Gompertz distribution (EGWGz)
by El-Bassiouny et al. [30] and other well known distributions in literature, Kumaraswamy–Gompertz
(Kw-Gz), beta Gompertz (BGz) and Gompertz (Gz) models. The MLEs are computed using
Quasi-Newton Code for Bound Constrained Optimization and the log-likelihood function evaluated.
The goodness-of-fit measures, Anderson–Darling (A*), Cramer–von Mises (W*), Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and log-likelihood (�̂) values are computed.
As usual, the lower are the values of these criteria, the better is the fit. In addition, the value for

13

Mathematics 2019, 7, 3

the Kolmogorov–Smirnov (KS) statistic and its p-value are reported. The required computations are
carried out in the R software (version 3).

4.3.1. Dataset 1

The first dataset was given in [31]. It represents the time to failure of turbocharger of a certain
type of engine. The dataset is as follows: 0.0312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944,
0.958, 0.966, 0.977, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272,
1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566,
1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848,
1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.

4.3.2. Dataset 2

The second dataset was considered in [32]. It corresponds to a single fiber with 20 and 101 mm of
gauge length, respectively. The dataset is as follows: 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3,
5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0, 7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7,
8.8, 9.0.

Tables 2 and 3 present the maximum likelihood estimates, with the corresponding standard errors
in parentheses, of the unknown parameters (λ, α, a, b, c) of the MBGz distribution for Datasets 1 and
2, respectively. Tables 4 and 5 show the statistics AIC, BIC, W*, A*, KS, and p-Value values for all the
considered models. We then see that the proposed MBGz model fits the considered data better than the
other models. Thus, the proposed MBGz model provides an interesting alternative to other existing
models for modeling positive real data. To complete this fact, PP, QQ, epdf and ecdf plots of the MBGz
distribution are given in Figures 2 and 3 for Datasets 1 and 2, respectively.

Table 2. MLEs (standard errors in parentheses) for Dataset 1.

Distribution Estimates

MBGz (λ, α, a, b, c) 0.0085 2.5537 1.0737 1.3153 5.0687
(0.0067) (0.5727) (0.3197) (0.8933) (3.3003)

EGWGz (λ, a, b, c, β) 3.2078 2.4598 0.0203 1.8974 0.5460
(1.2099) (0.6498) (0.0531) (1.8193) (0.2430)

KwGz (a, b, c, d, θ) 0.1861 1.4948 1.4909 0.9811
(0.3130) (0.5076) (0.4735) (2.4368)

BGz (a, b, θ, v) 0.3144 1.5591 1.4798 0.4966
(0.4283) (0.3658) (0.4543) (0.8692)

Gz (λ, α) 0.0841 1.8811
(0.0268) (0.2043)

Table 3. MLEs (standard errors in parentheses) for Dataset 2.

Distribution Estimates

MBGz (λ, α, a, b, c) 0.0098 0.5270 0.8768 4.5635 0.1561
(0.0116) (0.1599) (0.3893) (0.8862) (0.2442)

EGWGz (λ, a, b, c, β) 0.0101 0.6077 0.1078 1.6929 0.6613
(0.0141) (0.1506) (0.3427) (1.2539) (0.3379)

KwGz (a, b, θ, v) 0.0133 0.2923 2.0164 13.7085
(0.0120) (0.1641) (0.7880) (7.0208)

BGz (a, b, c, d, θ) 0.0125 0.1856 3.7622 2.0116
(0.0100) (0.1601) (2.5635) (3.3802)

Gz (λ, α) 0.0074) (0.6243)
(0.0035) (0.0748)

14

Mathematics 2019, 7, 3

Table 4. The AIC, BIC, W*, A*, KS, and p-Value values for Dataset 1.

Dist �̂ AIC BIC W* A* KS p-Value

MBGz 50.0387 110.0776 118.2481 0.0328 0.2745 0.0539 0.9889
EGWGz 52.6888 115.3776 126.5482 0.0706 0.5341 0.0785 0.7885
KwGz 51.2042 110.4084 119.3448 0.0529 0.4125 0.0640 0.9396
BGz 51.1518 110.3026 119.2399 0.0518 0.4057 0.0627 0.9484
Gz 53.9686 111.9374 122.4056 0.0819 0.5921 0.0810 0.7547

Table 5. The AIC, BIC, W*, A*, KS, and p-Value values for Dataset 2.

Dist �̂ AIC BIC W* A* KS p-Value

MBGz 78.2184 168.1770 176.0214 0.0222 0.1840 0.0707 0.9888
EGWGz 79.3744 168.5489 178.5933 0.0479 0.2922 0.0821 0.9623
KwGz 80.7197 169.4395 176.1950 0.0430 0.3326 0.0966 0.8489
BGz 82.9924 173.9849 180.7404 0.0922 0.6736 0.1080 0.7389
Gz 80.9566 168.9234 177.2911 0.0359 0.2335 0.0903 0.8299

Empirical and theoretical dens.

Data

D
en

si
ty

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

empirical
theoretical

0.5 1.0 1.5 2.0 2.5

0.
0

1.
0

2.
0

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

Empirical and theoretical CDFs

Data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Figure 2. PP, QQ, epdf and ecdf plots of the MBGz distribution for Dataset 1.

15

Mathematics 2019, 7, 3

Empirical and theoretical dens.

Data

D
en

si
ty

2 4 6 8

0.
00

0.
10

0.
20

empirical
theoretical

2 4 6 8

2
4

6
8

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

2 4 6 8

0.
0

0.
4

0.
8

Empirical and theoretical CDFs

Data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Figure 3. PP, QQ, epdf and ecdf plots of the MBGz distribution for Dataset 2.

Author Contributions: I.E., F.J., C.C., M.E. and S.A. have contributed equally to this work.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the referees for their valuable comments which helped to
improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gompertz, B. On the nature of the function expressive of the law of human mortality and on the new mode
of determining the value of life contingencies. Philos. Trans. R. Soc. A 1825, 115, 513–580. [CrossRef]

2. Tjørve, K.M.C.; Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model
approach: An addition to the Unified-Richards family. PLoS ONE 2017, 12. [CrossRef]

3. El-Gohary, A.; Alshamrani, A.; Al-Otaibi, A. The generalized Gompertz distribution. Appl. Math. Model.
2013, 37, 13–24. [CrossRef]

4. Jafari, A.A.; Tahmasebi, S.; Alizadeh, M. The beta-Gompertz distribution. Revista Colombiana de Estadistica
2014, 37, 141–158. [CrossRef]

5. Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Comm. Statist. Theory Methods
2002, 31, 497–512. [CrossRef]

6. Benkhelifa, L. The beta generalized Gompertz distribution. Appl. Math. Model. 2017, 52, 341–357. [CrossRef]
7. El-Damcese, M.A.; Mustafa, A.; El-Desouky, B.S.; Mustafa, M.E. Generalized Exponential Gompertz

Distribution. Appl. Math. 2015, 6, 2340–2353. [CrossRef]
8. Tahir, M.H.; Cordeiro, G.M.; Alizadeh, M.; Mansoor, M.; Zubair, M.; Hamedani, G.G. The Odd Generalized

Exponential Family of Distributions with Applications. J. Stat. Distrib. Appl. 2015, 2, 1–28. [CrossRef]
9. Roozegar, R.; Tahmasebi, S.; Jafari, A.A. The McDonald Gompertz distribution: Properties and applications.

Commun. Stat. Simul. Comput. 2017, 46, 3341–3355. [CrossRef]

16

Mathematics 2019, 7, 3

10. Alexander, C.; Cordeiro, G.M.; Ortega, E.M.M.; Sarabia, J.M. Generalized beta-generated distributions.
Comput. Stat. Data Anal. 2012, 56, 1880–1897. [CrossRef]

11. Khan, M.S.; King, R.; Hudson, I.L. Transmuted Generalized Gompertz distribution with application. J. Stat.
Theory Appl. 2017, 16, 65–80. [CrossRef]

12. Moniem, A.I.B.; Seham, M. Transmuted Gompertz Distribution. Comput. Appl. Math. 2015, 1, 88–96.
13. Shaw, W.; Buckley, I. The Alchemy of Probability Distributions: Beyond Gram-Charlier Expansions and a

Skewkurtotic-Normal Distribution from a Rank Transmutation Map; Research Report; King’s College: London,
UK, 2007.

14. Chukwu, A.U.; Ogunde, A.A. On kumaraswamy gompertz makeham distribution. Am. J. Math. Stat. 2016, 6,
122–127.

15. Lima, F.P.; Sanchez, J.D.; da Silva, R.C.; Cordeiro, G.M. The Kumaraswamy Gompertz distribution.
J. Data Sci. 2015, 13, 241–260.

16. Benkhelifa, L. Marshall-Olkin extended generalized Gompertz distribution. J. Data Sci. 2017, 15, 239–266.
17. Yaghoobzadeh, S. A new generalization of the Marshall-Olkin Gompertz distribution. Int. J. Syst. Assur.

Eng. Manag. 2017, 8, 1580–1587. [CrossRef]
18. Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application

to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [CrossRef]
19. Shadrokh, A.; Yaghoobzadeh, S.S. The Beta Gompertz Geometric Distribution: Mathematical Properties and

Applications. Andishe_ye Amari 2018, 22, 81–91.
20. Nadarajah, S.; Teimouri, M.; Shih, S.H. Modified Beta Distributions. Sankhya Ser. B 2014, 76, 19–48. [CrossRef]
21. Alizadeh, M.; Cordeiro, G.M.; Brito, E. The beta Marshall-Olkin family of distributions. J. Stat. Distrib. Appl.

2015, 2, 4. [CrossRef]
22. Nadarajah, S.; Kotz, S. The beta exponential distribution. Reliab. Eng. Syst. Saf. 2006, 91, 689–697. [CrossRef]
23. Gupta, R.D.; Kundu, D. Generalized Exponential Distributions. Aust. N. Z. J. Stat. 1999, 41, 173–188.

[CrossRef]
24. Kenney, J.F.; Keeping, E.S. Mathematics of Statistics, 3rd ed.; Chapman and Hall Ltd.: Rahway, NJ, USA, 1962.
25. Moors, J.J. A quantile alternative for kurtosis. J. R. Stat. Soc. Ser. D 1988, 37, 25–32. [CrossRef]
26. Milgram, M. The generalized integro-exponential function. Math. Comput. 1985, 44, 443–458. [CrossRef]
27. Lenart, A. The moments of the Gompertz distribution and maximum likelihood estimation of its parameters.

Scand. Actuar. J. 2014, 3, 255–277. [CrossRef]
28. MacGillivray, H.L. Skewness and Asymmetry: Measures and Orderings. Ann. Stat. 1986, 14, 994–1011.

[CrossRef]
29. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products; Academic Press: New York, NY, USA, 2000.
30. El-Bassiouny, H.; EL-Damcese, M.; Mustafa, A.; Eliwa, M.S. Exponentiated Generalized Weibull-Gompertz

Distribution with Application in Survival Analysis. J. Stat. Appl. Probab. 2017, 6, 7–16. [CrossRef]
31. Xu, K.; Xie, M.; Tang, L.C.; Ho, S.L. Application of Neural Networks in forecasting Engine Systems Reliability.

Appl. Soft Comput. 2003, 2, 255–268. [CrossRef]
32. Badar, M.G.; Priest, A.M. Statistical aspects of fiber and bundle strength in hybrid composites. In Progress in

Science and Engineering Composites, Proceedings of the ICCM-IV, Tokyo, Japan, 25–28 October 1982; Hayashi, T.,
Kawata, K., Umekawa, S., Eds.; Japan Society for Composite Materials: Tokyo, Japan, 1982; pp. 1129–1136.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

17

mathematics

Article

Computation of Probability Associated with
Anderson–Darling Statistic

Lorentz Jäntschi 1,2 and Sorana D. Bolboacă 3,*

1 Department of Physics and Chemistry, Technical University of Cluj-Napoca, Muncii Blvd. No. 103-105,
Cluj-Napoca 400641, Romania; lorentz.jantschi@gmail.com

2 Doctoral Studies, Babeş-Bolyai University, Mihail Kogălniceanu Str., No. 1, Cluj-Napoca 400028, Romania
3 Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy,

Louis Pasteur Str., No. 6, Cluj-Napoca 400349, Romania
* Correspondence: sbolboaca@umfcluj.ro; Tel.: +40-766-341-408

Received: 14 April 2018; Accepted: 23 May 2018; Published: 25 May 2018

Abstract: The correct application of a statistical test is directly connected with information related
to the distribution of data. Anderson–Darling is one alternative used to test if the distribution of
experimental data follows a theoretical distribution. The conclusion of the Anderson–Darling test is
usually drawn by comparing the obtained statistic with the available critical value, which did not
give any weight to the same size. This study aimed to provide a formula for calculation of p-value
associated with the Anderson–Darling statistic considering the size of the sample. A Monte Carlo
simulation study was conducted for sample sizes starting from 2 to 61, and based on the obtained
results, a formula able to give reliable probabilities associated to the Anderson–Darling statistic
is reported.

Keywords: Anderson–Darling test (AD); probability; Monte Carlo simulation

1. Introduction

Application of any statistical test is made under certain assumptions, and violation of these
assumptions could lead to misleading interpretations and unreliable results [1,2]. One main assumption
that several statistical tests have is related with the distribution of experimental or observed data
(H0 (null hypothesis): The data follow the specified distribution vs. H1 (alternative hypothesis):
The data do not follow the specified distribution). Different tests, generally called “goodness-of-fit”,
are used to assess whether a sample of observations can be considered as a sample from a
given distribution. The most frequently used goodness-of-fit tests are Kolmogorov–Smirnov [3,4],
Anderson–Darling [5,6], Pearson’s chi-square [7], Cramér–von Mises [8,9], Shapiro–Wilk [10],
Jarque–Bera [11–13], D’Agostino–Pearson [14], and Lilliefors [15,16]. The goodness-of-fit tests use
different procedures (see Table 1). Alongside the well-known goodness-of-fit test, other methods
based for example on entropy estimator [17–19], jackknife empirical likelihood [20], on the prediction
of residuals [21], or for testing multilevel survival data [22] or multilevel models with binary
outcomes [23] have been reported in the scientific literature.

Mathematics 2018, 6, 88; doi:10.3390/math6060088 www.mdpi.com/journal/mathematics18

Mathematics 2018, 6, 88

Table 1. The goodness-of-fit tests: approaches.

Test Name Abbreviation Procedure

Kolmogorov–Smirnov KS
Proximity analysis of the empirical distribution
function (obtained on the sample) and the
hypothesized distribution (theoretical)

Anderson–Darling AD How close the points are to the straight line
estimated in a probability graphic

chi-square CS Comparison of sample data distribution with a
theoretical distribution

Cramér–von Mises CM Estimation of the minimum distance between
theoretical and sample probability distribution

Shapiro–Wilk SW

Based on a linear model between the ordered
observations and the expected values of the
ordered statistics of the standard normal
distribution

Jarque–Bera JB
Estimation of the difference between asymmetry
and kurtosis of observed data and theoretical
distribution

D’Agostino–Pearson AP Combination of asymmetry and kurtosis measures

Lilliefors LF
A modified KS that uses a Monte Carlo technique
to calculate an approximation of the sampling
distribution

Tests used to assess the distribution of a dataset received attention from many researchers
(for testing normal or other distributions) [24–27]. The normal distribution is of higher importance,
since the resulting information will lead the statistical analysis on the pathway of parametric or
non-parametric tests [28–33]. Different normality tests are implemented on various statistical packages
(e.g., Minitab—http://www.minitab.com/en-us/; EasyFit—http://www.mathwave.com/easyfit-
distribution-fitting.html; Develve—http://develve.net/; r(“nortest” nortest)—https://cran.r-project.
org/web/packages/nortest/nortest.pdf; etc.).

Several studies aimed to compare the performances of goodness-of-fit tests. In a Monte Carlo
simulation study conducted on the normal distribution, Kolmogorov–Smirnov test has been identified
as the least powerful test, while opposite Shapiro–Wilks test was identified as the most powerful
test [34]. Furthermore, Anderson–Darling test was found to be the best option among five normality
tests whenever t-statistics were used [35]. More weight to the tails are given by the Anderson–Darling
test compared to Kolmogorov–Smirnov test [36]. The comparisons between different goodness-of-fit
tests is frequently conducted by comparing their power [37,38], using or not confidence intervals [39],
distribution of p-values [40], or ROC (receiver operating characteristic) analysis [32].

The interpretation of the Anderson–Darling test is frequently made by comparing the AD statistic
with the critical value for a particular significance level (e.g., 20%, 10%, 5%, 2.5%, or 1%) even if
it is known that the critical values depend on the sample size [41,42]. The main problem with this
approach is that the critical values are available just for several distributions (e.g., normal and Weibull
distribution in Table 2 [43], generalized extreme value and generalized logistic [44], etc.) but could
be obtained in Monte Carlo simulations [45]. The primary advantage of the Anderson–Darling test is
its applicability to test the departure of the experimental data from different theoretical distributions,
which is the reason why we decided to identify the method able to calculate its associated p-value as a
function also of the sample size.

D’Augostino and Stephens provided different formulas for calculation of p-values associated to
the Anderson–Darling statistic (AD), along with a correction for small sample size (AD*) [37]. Their

19

Mathematics 2018, 6, 88

equations are independent of the tested theoretical distribution and highlight the importance of the
sample size (Table 3).

Several Excel implementations of Anderson–Darling statistic are freely available to assist the
researcher in testing if data follow, or do not follow, the normal distribution [46–48]. Since almost
all distributions are dependent by at least two parameters, it is not expected that one goodness-of-fit
test will provide sufficient information regarding the risk of error, because using only one method
(one test) gives the expression of only one constraint between parameters. In this regard, the example
provided in [49] is illustrative, and shows how the presence of a single outlier induces complete
disarray between statistics, and even its removal does not bring the same risk of error as a result of
applying different goodness-of-fit tests. Given this fact, calculation of the combined probability of
independent (e.g., independent of the tested distribution) goodness-of-fit tests [50,51] is justified.

Good statistical practice guidelines request reporting the p-value associated with the statistics
of a test. The sample size influences the p-value of statistics, so its reporting is mandatory to assure
a proper interpretation of the statistical results. Our study aimed to identify, assess, and implement
an explicit function of the p-value associated with the Anderson–Darling statistic able to take into
consideration both the value of the statistic and the sample size.

Table 2. Anderson–Darling test: critical values according to significance level.

Distribution [Ref] α = 0.10 α = 0.05 α = 0.01

Normal & lognormal [43] 0.631 0.752 1.035

Weibull [43] 0.637 0.757 1.038

Generalized extreme value [44] - - -

n = 10 0.236 0.276 0.370
n = 20 0.232 0.274 0.375
n = 30 0.232 0.276 0.379
n = 40 0.233 0.277 0.381
n = 50 0.233 0.277 0.383

n = 100 0.234 0.279 0.387

Generalized logistic [44] - - -

n = 10 0.223 0.266 0.374
n = 20 0.241 0.290 0.413
n = 30 0.220 0.301 0.429
n = 40 0.254 0.306 0.435
n = 50 0.258 0.311 0.442

n = 100 0.267 0.323 0.461

Uniform [52] * 1.936 2.499 3.903

* Expressed as upper tail percentiles.

Table 3. Anderson–Darling for small sizes: p-values formulas.

Anderson–Darling Statistic Formula for p-Value Calculation

AD ≥ 0.6 exp (1.2937 − 5.709·(AD*) + 0.0186·(AD*)2)
0.34 < AD* < 0.6 exp (0.9177 − 4.279·(AD*) − 1.38·(AD*)2)
0.2 < AD* < 0.34 1 − exp (−8.318 + 42.796·(AD*) − 59.938·(AD*)2)

AD* ≤ 0.2 1 − exp (−13.436 + 101.14·(AD*) − 223.73·(AD*)2)

AD∗ = AD(1 + 0.75
n + 2.25

n2); AD = −n − 1
n ·∑n

i=0(2·i − 1)·[ln(F(Xi) + ln(1 − F(Xn−i+1))].

20

Mathematics 2018, 6, 88

2. Materials and Methods

2.1. Anderson–Darling Order Statistic

For a sample Y = (y1, y2, . . . , yn), the data are sorted in ascending order (let X = Sort(Y), and
then X = (x1, x2, . . . , xn) with xi ≤ xi+1 for 0 < i < n, and xi = yσ(i), where σ is a permutation of
{1, 2, . . . , n} which makes the X series sorted). Let the CDF be the associated cumulative distribution
function and InvCDF the inverse of this function for any PDF (probability density function). The
series P = (p1, p2, . . . , pn) defined by pi = InvCDF(xi) (or Q = (q1, q2, . . . , qn) defined by qi = InvCDF(yi),
where the P is the unsorted array, and Q is the sorted array) are samples drawn from a uniform
distribution only if Y (and X) are samples from the distribution with PDF.

At this point, the order statistics are used to test the uniformity of P (or for Q), and for this
reason, the values of X are ordered (in Y). On the ordered probabilities (on P), several statistics can be
computed, and Anderson–Darling (AD) is one of them:

AD = AD(P, n) = −n −
n

∑
i=1

(2i − 1) ln(pi(1 − pn−i+1))

n
. (1)

The associated AD statistic for a “perfect” uniform distribution can be computed after splitting
the [0, 1] interval into n equidistant intervals (i/n, with 0 ≤ i ≤ n being their boundaries) and using the
middles of those intervals ri = (2i − 1)/2n:

ADmin(n) = AD(R, n) = −n + 4H1(R, n). (2)

where H1 is the Shannon entropy for R in nats (the units of information or entropy)
(H1(R,n) = − Σri·ln(ri)).

Equation (2) gives the smallest possible value for AD. The value of the AD increases with the
increase of the departure between the perfect uniform distribution and the observed distribution (P).

2.2. Monte Carlo Experiment for Anderson–Darling Statistic

The probability associated with a particular value of the AD statistic can be obtained using a
Monte Carlo experiment. The AD statistics are calculated for a large enough number of samples (let be
m the number of samples), the values are sorted, and then the relative position of the observed value of
the AD in the series of Monte Carlo-calculated values gives the probability associated with the statistic
of the AD test.

It should be noted that the equation linking the statistic and the probability also contains the size
of the sample, and therefore, the probability associated with the AD value is dependent on n.

Taking into account all the knowledge gains until this point, it is relatively simple to do a Monte
Carlo experiment for any order statistic. The only remaining problem is how to draw a sample from a
uniform distribution in such way as to not affect the outcome. One alternative is to use a good random
generator, such as Mersenne Twister [53], and this method was used to generate our samples as an
alternative to the stratified random approach.

2.3. Stratified Random Strategy

Let us assume that three numbers (t1, t2, t3) are extracted from a [0, 1) interval using Mersenne
Twister method. Each of those numbers can be <0.5 or ≥0.5, providing 23 possible cases (Table 4).

21

Mathematics 2018, 6, 88

Table 4. Cases for the half-split of [0, 1).

Class t1 t2 t3 Case

“0” if ti < 0.5
“1” if ti ≥ 0.5

0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

It is not a good idea to use the design presented in Table 4 in its crude form, since it is transformed
to a problem with an exponential (2n) complexity. The trick is to observe the pattern in Table 4. In fact,
for (n + 1) cases, with different frequencies of occurrence following the model, the results are given in
Table 5.

Table 5. Unique cases for the half-split of [0, 1).

|{ti|ti < 0.5}| |{ti|ti ≥ 0.5}| Frequency (Case in Table 4)

3 0 1 (case 1)
2 1 3 (case 2, 3, 5)
1 2 3 (case 4, 6, 7)
0 3 1 (case 8)

The complexity of the problem of enumerating all the cases stays with the design presented in
Table 5 at the same order of magnitude with n (we need to list only n + 1 cases instead of 2n).

The frequencies listed in Table 5 are combinations of n objects taken by two (intervals), so instead of
enumerating all 2n cases, it is enough to record only n + 1 cases weighted with their relative occurrence.

The effect of the pseudo-random generator is significantly decreased (the decrease is a precise
order of magnitude of the binary representation, one unit in log2 transformation: 1 = log22, for the
(0, 0.5) and (0.5, 1) split) by doing a stratified random sample.

The extractions of a number from (0, 0.5) and from (0.5, 1) were furthermore made in our
experiment with Mersenne Twister random (if x = Random() with 0 ≤ x < 1 then 0 ≤ x/2 < 1 and
0.5 ≤ 0.5 + x/2 < 1). Table 5 provides all the information we need to do the design. For any n, for
k from 0 to n, exactly k numbers are generated as Random()/2, and sorted. Furthermore, exactly
n−k numbers are generated as 0.5 + Random()/2, and the frequency associated with this pattern is
n!/(k!·(n−k)!).

The combinations can also be calculated iteratively: cnk(n,0) = 1, and cnk(n,k) =
cnk(n,(k − 1))·(n − k + 1)/k for successive 1 ≤ k ≤ n.

2.4. Model for Anderson–Darling Statistic

Performing the Monte Carlo (MC) experiment (generates, analyzes, and provides the outcome)
each time when a probability associated with the AD statistic is needed is resource-consuming and
not effective. For example, if we generate for a certain sample size (n) a large number of samples
m = 1.28 × 1010, then the needed storage space is 51.2 Gb for each n. Given 1 Tb of storage capacity, it
can store only 20 iterations of n, as in the series of the AD(n). However, this is not needed, since it is
possible to generate and store the results of the Monte Carlo analysis, but a proper model is required.

It is not necessary to have a model for any probability, since the standard thresholds for rejecting
an agreement are commonly set to α = 0.2, 0.1, 0.05, 0.02, 0.01 (α = 1 − p). A reliable result could be
considered the model for the AD when p ≥ 0.5. Therefore, the AD (as AD = AD(n,p)) for 501 value

22

Mathematics 2018, 6, 88

of the p from 0.500 to 0.001, and for n from 2 to 61 were extracted, tabulated, and used to develop
the model.

A search for a dependency of AD = AD(p) (or p = p(AD)) for a particular n may not reveal any
pattern. However, if the value of the statistic is exponentiated (see the ln function in the AD formula),
values for the model start to appear (see Figure 1a) after a proper transformation of p. On the other
hand, for a given n, an inconvenience for the AD(p) (or for its inverse, p = p(AD)) is to have on the
plot, a non-uniform repartition of the points—for instance, precisely two points for 5 ≤ AD < 6 and
144 points for AD < 1. As a consequence, any method trying to find the best fit based on this raw data
will fail because it will give too much weight on the lower part with a much higher concentration of
the points. The problem is the same for exp(AD) replacing AD (Figure 1b) but is no more the case for
1/(1 − p) as a function of exp(AD) (Figure 1c), since the dependence begins to look like a linear one.
Figure 1b suggests that a logarithm on both axes will reduce the difference in the concentration of
points in the intervals (Figure 1d), but at this point, is not necessary to apply it, since the last spots in
Figure 1c may act as “outliers” trailing the slope. A good fit in the rarefied region of high p (and low α)
is desired. It is not so important if we will have a 1% error at p = 50%, but is essential not to have a
1% error at p = 99% (the error will be higher than the estimated probability, α = 1 − p. Therefore, in
this case (Figure 1c), big numbers (e.g., ~200, 400) will have high values of residuals, and will trail the
model to fit better in the rarefied region.

(a) (b)

(c) (d)

Figure 1. Probability as function of the AD statistic for a selected case (n = 25) in the Monte Carlo
experiment: (a) p = p(AD); (b) p = p(eAD); (c) α-1 vs. eAD; (d) −ln(α) vs. AD.

A simple linear regression y ~ŷ = a·x + b for x ← eAD and y ← α − 1 = 1/(1 − p) will do most of
the job for providing the values of α associated with the values of the AD. Since the dependence is
almost linear, polynomial or rational functions will perform worse, as proven in the tests. A better
alternative is to feed the model with fractional powers of x. By doing this, the bigger numbers will
not be disfavored (square root of 100 is 10, which is ten times lower than 100, while square root of 1 is
1; thus, the weight of the linear component is less affected for bigger numbers). On the other hand,

23

Mathematics 2018, 6, 88

looking to the AD definition, the probability is raised at a variable power, and therefore, to turn back
to it, in the conventional sense of operation, is to do root. Our proposed model is given in Equation (3):

ŷ = a0 + a1x1/4 + a2x2/4 + a3x3/4 + a4x (3)

The statistics associated with the proposed model for data presented in Figure 1 are given in
Table 6.

Table 6. Proposed model tested for the AD = AD(p) series for n = 25. SST: Sum of Squares: Total; SSRes:
Sum of Squares: Residuals; SSE = Sum of Squares Error.

Coefficient Value (95% CI) SE t-Value

a0 4.160 (4.126 to 4.195) 0.017567 237
a1 −10.327 (−10.392 to −10.263) 0.032902 −314
a2 9.357 (9.315 to 9.400) 0.02178 430
a3 −6.147 (−6.159 to −6.135) 0.00601 −1023
a4 3.4925 (3.4913 to 3.4936) 0.000583 5993

SST = 1550651, SSRes = 0.0057,
SSE = 0.0034, r2

adj = 0.999999997

The analysis of the results presented in Table 6 showed that all coefficients are statistically
significant, and their significance increases from the coefficient of AD1/4 to the coefficient of the AD.
Furthermore, the residuals of the regression are with ten orders of magnitude less than the total
residuals (F value = 3.4 × 1010). The adjusted determination coefficient has eight consecutive nines.

The model is not finished yet, because we need a model that also embeds the sample size (n).
Inverse powers of n are the best alternatives as already suggested in the literature [43]. Therefore, for
each coefficient (from a0 to a4), a function penalizing the small samples was used similarly:

âi = b0,i + b1,in−1 + b2,in−2 + b3,in−3 + b4,in−4. (4)

With these replacements, the whole model providing the probability as a function of AD statistic
and n is given by Equation (5):

ŷ =
4

∑
i=0

4

∑
j=0

bi,jxi/4n−j, (5)

where ŷ = 1/(1 − p), bi,j = coefficients, x = eAD, n = sample size.

3. Simulation Results

Twenty-five coefficients were calculated for Equation (5) from 60 values associated to sample sizes
from 2 to 61, based on 500 values of p (0.500 ≤ p ≤ 0.999) and with a step of 0.001. The values of the
obtained coefficients along with the related Student t-statistic are given in Table 7.

24

Mathematics 2018, 6, 88

Table 7. Coefficients of the proposed model and their Student t-values provided in round brackets.

bi,j (ti,j) j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 5.6737
(710)

−38.9087
(4871)

88.7461
(11111)

−179.5470
(22479)

199.3247
(24955)

i = 1 −13.5729
(1699)

83.6500
(10473)

−181.6768
(22746)

347.6606
(43526)

−367.4883
(46009)

i = 2 12.0750
(1512)

−70.3770
(8811)

139.8035
(17503)

−245.6051
(30749)

243.5784
(30496)

i = 3 −7.3190
(916)

30.4792
(3816)

−49.9105
(6249)

76.7476
(9609)

−70.1764
(8786)

i = 4 3.7309
(467)

−6.1885
(775)

7.3420
(919)

−9.3021
(1165)

7.7018
(964)

3.1. Stratified vs. Random

The same experiment was conducted with both simple and random stratified Mersenne Twister
method [53] to assess the magnitude of the increases in the resolution of the AD statistic. The differences
between the two scenarios were calculated and plotted in Figure 2.

 red (0.07 to 0.05]
 light green (0.05 to 0.03]
 blue (0.03 to 0.01]
 green (0.01 to 0.01]
 cyclam (0.01 to 0.03]
 yellow (0.03 to 0.05]
 grey (0.05–0.07]
 orange (0.07–0.09]

Figure 2. The effect in differences between classical and stratified random in calculated AD statistic.

3.2. Analysis of Residuals

The residuals, defined as the difference between the probability obtained by Monte Carlo
simulation and the value estimated by the proposed model, without and with transformation (ln and
respectively log), were analyzed. For each probability (p ranging from 0.500 to 0.999 with a step of
0.001; 500 values) associated with the statistic (AD) based on the MC simulation for n ranging from
2 to 61 (60 values), 30,000 distinct pairs (p, n, AD) were collected and investigated. The descriptive
statistics of residuals are presented in Table 8.

25

Mathematics 2018, 6, 88

Table 8. Residuals: descriptive statistics.

Parameter (p − p̂) ln(p − p̂) log(p − p̂)

Arithmetic mean 3.04 × 10−7 −18.8283 −8.17703
Standard deviation 2.55 × 10−6 3.9477 1.7144

Standard error 1.47 × 10−8 0.02279 0.009898
Median 1.5 × 10−8 −18.0132 −7.82304
Mode 9.52 × 10−8 −16.1677 −7.02156

Minimum 1.32 × 10−18 −41.167 −17.8786
Maximum 0.000121 −9.02296 −3.9186

The most frequent value of residuals (~99%) equals with 0.000007 when no transformed data are
investigated (Figure 3, left-hand graph). The right-hand chart in Figure 3 depicted the distribution
of the same data, but expressed in logarithmical scale, showing a better agreement with normal
distribution for the transformed residuals.

(a) (pp ˆ) (b) log(pp ˆ)

0

5000

10000

15000

20000

25000

30000

7.0E 06 5.7E 05 1.1E 04 1.6E 04

Fr
eq
ue

nc
y
(n
o)

Value of residuals

600

400

1400

2400

3400

4400

5400

6400

7400

8400

18 15 12 9 6 3

Fr
eq
ue

nc
y
(n
o)

Value of residuals
7.0×10 6 5.7×10 5 1.1×10 4 1.6×10 4

Figure 3. Distribution of residuals (differences between MC-simulated values and the values
estimated by our model) for the probability from regression for the whole pool of data (30,000 pairs).
(a) untransformed data (b) log transformed data

A sample of p ranging from 0.500 to 0.995 with a step of 0.005 (100 values), and for n in the
same range (from 2 to 61; 60 values) was extracted from the whole pool of data, and a 3D mesh with
6000 grid points was constructed. Figure 4 represents the differences log10(p − p̂) (p̂ is calculated with
Equation (5)) and the values of the bi,j coefficients given in Table 4. For convenience, the equation for p̂
and (α ≡ 1 × p) are

p̂ = 1 −
(

4

∑
i=0

4

∑
j=0

bi,j xi/4n−j

)−1

â =

(
4

∑
i=0

4

∑
j=0

bi,j xi/4n−j

)−1

.

26

Mathematics 2018, 6, 88

red (18 to 15)
light green (15 to 12)
blue (12 to 9)
green (9 to 6)
cyclamen (6 to 3)

Figure 4. 3D plot of the estimation error for data expressed in logarithm scale as function of p (ranging
from 0.500 to 0.999) and n (ranging from 2 to 61).

Figure 4 reveals that the calculated Equation (5) and the expected values (from MC simulation for
AD = AD(p,n)) differ less than 1‰ (−3 on the top of the Z axis). Even more than that, with departure
from n = 2, and from p = 0.500 to n = 61, or to p = 0.999, the difference dramatically decreases to 10−6

(visible on the Z-axis as −6 moving from n = 2 to n = 61), to 10−9 (visible on the plot visible on X-axis as
−9 moving from p = 0.500 to p = 0.995), and even to 10−15 (visible on the plot on Z-axis as −15 moving
on both from p = 0.500 to p = 0.995 and from n = 2 to n = 61). This behavior shows that the model
was designed in a way in which the estimation error (p − p̂) would be minimal for small α (α close to
0; p close to 1). A regular half-circle shape pattern, depicted in Figure 4, suggests that an even more
precise method than the one archived by the proposed model must be done with periodic functions.

Figure 5 illustrates, more obviously, this pattern with the peak at n = 2 and p = 0.500.

Figure 5. 3D plot of the estimation error for untransformed data: Z-axis show the 105·(p − p̂) as a
function of p (ranging from 0.500 to 0.999) and n (ranging from 2 to 61).

Median of residuals expressed in logarithmic scale indicate that half of the points have exactly
seven digits (e.g., 0.98900000 vs. 0.98900004). The cumulative frequencies for the residuals represented
in logarithmic scale also show that 75% have exactly six digits, while over 99% have exactly five
digits. The agreement between the observed Monte Carlo and the regression model is excellent
(r2(n = 30,000) = 0.99999) with a minimum value for the sum of squares of residuals (0.002485). These
results sustain the validity of the proposed model.

27

Mathematics 2018, 6, 88

4. Case Study

Twenty sets of experimental data (Table 9) were used to test the hypothesis of the
normal distribution:

H1: The distribution of experimental data is not significantly different from the theoretical
normal distribution.

H2: The distribution of experimental data is not significantly different from the theoretical
normal distribution.

Table 9. Characteristics of the investigated datasets.

Set ID What the Data Represent? Sample Size Reference

1 Distance (m) on treadmill test, applied on subject ts with
peripheral arterial disease 24 [54]

2 Waist/hip ratio, determined in obese insulin-resistant patients 53 [55]

3 Insulin-like growth factor 2 (pg/mL) on newborns 60 [56]

4 Chitotriosidase activity (nmol/mL/h) on patients with critical
limb ischemia 43 [57]

5 Chitotriosidase activity (nmol/mL/h) on patients with critical
limb ischemia and on controls 86 [57]

6 Total antioxidative capacity (Eq/L) on the control group 10 [58]

7 Total antioxidative capacity (Eq/L) on the group with
induced migraine 40 [53]

8 Mini mental state examination score (points) elderly patients
with cognitive dysfunction 163 [59]

9 Myoglobin difference (ng/mL) (postoperative–preoperative)
in patients with total hip arthroplasty 70 [60]

10 The inverse of the molar concentration of carboquinone
derivatives, expressed in logarithmic scale 37 [61]

11 Partition coefficient expressed in the logarithmic scale
of flavonoids 40 [62]

12
Evolution of determination coefficient in the identification of
optimal model for lipophilicity of polychlorinated biphenyls
using a genetic algorithm

30 [63]

13 Follow-up days in the assessment of the clinical efficiency of
a vaccine 31 [64]

14 Strain ratio elastography to cervical lymph nodes 50 [65]

15 Total strain energy (eV) of C42 fullerene isomers 45 [66]

16 Breslow index (mm) of melanoma lesions 29 [67]

17 Determination coefficient distribution in full factorial analysis
on one-cage pentagonal face C40 congeners: dipole moment 44 [68]

18 The concentration of spermatozoids (millions/mL) in males
with ankylosing spondylitis 60 [69]

19 The parameter of the Poisson distribution 31 [70]

20 Corolla diameter of Calendula officinalis L. for Bon-Bon Mix ×
Bon-Bon Orange 28 [71]

Experimental data were analyzed with EasyFit Professional (v. 5.2) [72], and the retrieved AD
statistic, along with the conclusion of the test (Reject H0?) at a significance level of 5% were recorded.

28

Mathematics 2018, 6, 88

The AD statistic and the sample size for each dataset were used to retrieve the p-value calculated with
our method. As a control method, the formulas presented in Table 3 [43], implemented in an Excel file
(SPC for Excel) [47], were used. The obtained results are presented in Table 10.

Table 10. Anderson–Darling (AD) statistic, associated p-values, and test conclusion: comparisons.

Set
EasyFit Our Method SPC for Excel

AD Statistic Reject H0? p-Value Reject H0? p-Value Reject H0?

1 1.18 No 0.2730 No 0.0035 Yes
2 1.34 No 0.2198 No 0.0016 Yes
3 15.83 Yes 3.81 × 10−8 Yes 0.0000 Yes
4 1.59 No 0.1566 No 4.63 × 10−15 Yes
5 6.71 Yes 0.0005 Yes 1.44 × 10−16 Yes
6 0.18 No o.o.r. 0.8857 No
7 3.71 Yes 0.0122 Yes 1.93 × 10−9 Yes
8 11.70 Yes 2.49 × 10−6 Yes 3.45 × 10−28 Yes
9 0.82 No 0.4658 No 0.0322 Yes

10 0.60 No 0.6583 No 0.1109 No
11 0.81 No 0.4752 No 0.0334 Yes
12 0.34 No o.o.r. 0.4814 No
13 4.64 Yes 0.0044 Yes 0.0000 Yes
14 1.90 No 0.1051 No 0.0001 Yes
15 0.39 No 0.9297 No 0.3732 No
16 0.67 No 0.5863 No 0.0666 No
17 5.33 Yes 0.0020 Yes 2.23 × 10−13 Yes
18 2.25 No 0.0677 No 9.18 × 10−6 Yes
19 1.30 No 0.2333 No 0.0019 Yes
20 0.58 No 0.6774 No 0.1170 No

AD = Anderson–Darling; o.o.r = out of range.

A perfect concordance was observed in regard to the statistical conclusion regarding the normal
distribution, when our method was compared to the judgment retrieved by EasyFit. The concordance
of the results between SPC and EasyFit, respectively, with the proposed method, was 60%, with
discordant results for both small (e.g., n = 24, set 1) samples as well as high (e.g., n = 70, set 9) sample
sizes. Normal probability plots (P–P) and the quantile–quantile plots (Q–Q) of these sets show slight,
but not significant deviations from the expected normal distribution (Figure 6).

Without any exceptions, the p-values calculated by our implemented method had higher values
compared to the p-values achieved by SPC for Excel. The most substantial difference is observed for
the largest dataset (set 8), while the smallest difference is noted for the set with 45 experimental data
values (set 15). The lowest p-value was obtained by the implemented method for set 3 (see Table 10);
the SPC for Excel retrieves, for this dataset, a value of 0.0000. The next smallest p-value was observed
for set 8. For both these sets, an agreement related to the statistical decision was found (see Table 10).

Our team has previously investigated the effect of sample size on the probability of
Anderson–Darling test, and the results are published online at http://l.academicdirect.org/Statistics/
tests/AD/. The method proposed in this manuscript, as compared to the previous one, assures a
higher resolution expressed by the lower unexplained variance between the AD and the model using a
formula with a smaller number of coefficients. Furthermore, the unexplained variance of the method
present in this manuscript has much less weight for big “p-values”, and much higher weight for small
“p-values”, which means that is more appropriate to be used for low (e.g., p ~10−5) and very low
(p ~10−10) probabilities.

29

Mathematics 2018, 6, 88

Figure 6. Normal probability plots (P–P) and quantile-quantile plot (Q–Q) by example: graphs for set 9
(n = 70) in the first row, and for set 11 (n = 40) in the second row.

Further research could be done in both the extension of the proposed method and the evaluation
of its performances. The performances of the reported method could be evaluated for the whole
range of sample sizes if proper computational resources exist. Furthermore, the performance of the
implementation could be assessed using game theory and game experiments [73,74] using or not
using diagnostic metrics (such as validation, confusion matrices, ROC analysis, analysis of errors,
etc.) [75,76].

The implemented method provides a solution to the calculation of the p-values associated with
Anderson–Darling statistics, giving proper weight to the sample size of the investigated experimental
data. The advantage of the proposed estimation method, Equation (5), is its very low residual
(unexplained variance) and its very high estimation accuracy at convergence (with increasing of in
and for p near 1). The main disadvantage is related to its out of range p-values for small AD values,
but an extensive simulation study could solve this issue. The worst performances of the implemented
methods are observed when simultaneously n is very low (2 or 3) and p is near 0.5 (50–50%).

Author Contributions: L.J. and S.D.B. conceived and designed the experiments; L.J. performed the experiments;
L.J. and S.D.B. analyzed the data; S.D.B. wrote the paper and L.J. critically reviewed the manuscript.

Acknowledgments: No grants have been received in support of the research work reported in this manuscript.
No funds were received for covering the costs to publish in open access.

Conflicts of Interest: The authors declare no conflict of interest.

30

Mathematics 2018, 6, 88

References

1. Nimon, K.F. Statistical assumptions of substantive analyses across the General Linear model: A Mini-Review.
Front. Psychol. 2012, 3, 322. [CrossRef] [PubMed]

2. Hoekstra, R.; Kiers, H.A.; Johnson, A. Are assumptions of well-known statistical techniques checked, and
why (not)? Front. Psychol. 2012, 3, 137. [CrossRef] [PubMed]

3. Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano
degli Attuari 1933, 4, 83–91.

4. Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19,
279–281. [CrossRef]

5. Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic
processes. Ann. Math. Stat. 1952, 23, 193–212. [CrossRef]

6. Anderson, T.W.; Darling, D.A. A Test of Goodness-of-Fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [CrossRef]
7. Pearson, K. Contribution to the mathematical theory of evolution. II. Skew variation in homogenous material.

Philos. Trans. R. Soc. Lond. 1895, 91, 343–414. [CrossRef]
8. Cramér, H. On the composition of elementary errors. Scand. Actuar. J. 1928, 1, 13–74. [CrossRef]
9. Von Mises, R.E. Wahrscheinlichkeit, Statistik und Wahrheit; Julius Springer: Berlin, Germany, 1928.
10. Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52,

591–611. [CrossRef]
11. Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression

residuals. Econ. Lett. 1980, 6, 255–259. [CrossRef]
12. Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression

residuals: Monte Carlo evidence. Econ. Lett. 1981, 7, 313–318. [CrossRef]
13. Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55,

163–172. [CrossRef]
14. D’Agostino, R.B.; Belanger, A.; D’Agostino, R.B., Jr. A suggestion for using powerful and informative tests of

normality. Am. Stat. 1990, 44, 316–321. [CrossRef]
15. Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am.

Stat. Assoc. 1967, 62, 399–402. [CrossRef]
16. Van Soest, J. Some experimental results concerning tests of normality. Stat. Neerl. 1967, 21, 91–97. [CrossRef]
17. Jänstchi, L.; Bolboacă, S.D. Performances of Shannon’s entropy statistic in assessment of distribution of data.

Ovidius Univ. Ann. Chem. 2017, 28, 30–42. [CrossRef]
18. Noughabi, H.A. Two Powerful Tests for Normality. Ann. Data Sci. 2016, 3, 225–234. [CrossRef]
19. Zamanzade, E.; Arghami, N.R. Testing normality based on new entropy estimators. J. Stat. Comput. Simul.

2012, 82, 1701–1713. [CrossRef]
20. Peng, H.; Tan, F. Jackknife empirical likelihood goodness-of-fit tests for U-statistics based general estimating

equations. Bernoulli 2018, 24, 449–464. [CrossRef]
21. Shah, R.D.; Bühlmann, P. Goodness-of-fit tests for high dimensional linear models. Journal of the Royal

Statistical Society. Ser. B Stat. Methodol. 2018, 80, 113–135. [CrossRef]
22. Balakrishnan, K.; Sooriyarachchi, M.R. A goodness of fit test for multilevel survival data. Commun. Stat.

Simul. Comput. 2018, 47, 30–47. [CrossRef]
23. Perera, A.A.P.N.M.; Sooriyarachchi, M.R.; Wickramasuriya, S.L. A Goodness of Fit Test for the Multilevel

Logistic Model. Commun. Stat. Simul. Comput. 2016, 45, 643–659. [CrossRef]
24. Villaseñor, J.A.; González-Estrada, E.; Ochoa, A. On Testing the inverse Gaussian distribution hypothesis.

Sankhya B 2017. [CrossRef]
25. MacKenzie, D.W. Applying the Anderson-Darling test to suicide clusters: Evidence of contagion at U. S.

Universities? Crisis 2013, 34, 434–437. [CrossRef] [PubMed]
26. Müller, C.; Kloft, H. Parameter estimation with the Anderson-Darling test on experiments on glass. Stahlbau

2015, 84, 229–240. [CrossRef]
27. İçen, D.; Bacanlı, S. Hypothesis testing for the mean of inverse Gaussian distribution using α-cuts. Soft

Comput. 2015, 19, 113–119. [CrossRef]
28. Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J.

Endocrinol. Metab. 2012, 10, 486–489. [CrossRef] [PubMed]

31

Mathematics 2018, 6, 88

29. Hwe, E.K.; Mohd Yusoh, Z.I. Validation guideline for small scale dataset classification result in medical
domain. Adv. Intell. Syst. Comput. 2018, 734, 272–281. [CrossRef]

30. Ruxton, G.D.; Wilkinson, D.M.; Neuhäuser, M. Advice on testing the null hypothesis that a sample is drawn
from a normal distribution. Anim. Behav. 2015, 107, 249–252. [CrossRef]

31. Lang, T.A.; Altman, D.G. Basic statistical reporting for articles published in biomedical journals: The
“Statistical Analyses and Methods in the Published Literature” or The SAMPL Guidelines. In Science Editors’
Handbook; European Association of Science Editors, Smart, P., Maisonneuve, H., Polderman, A., Eds.; EASE:
Paris, France, 2013; Available online: http://www.equator-network.org/wp-content/uploads/2013/07/
SAMPL-Guidelines-6-27-13.pdf (accessed on 3 January 2018).

32. Curran-Everett, D.; Benos, D.J. American Physiological Society. Guidelines for reporting statistics in journals
published by the American Physiological Society.

33. Curran-Everett, D.; Benos, D.J. Guidelines for reporting statistics in journals published by the American
Physiological Society: The sequel. Adv. Physiol. Educ. 2007, 31, 295–298. [CrossRef] [PubMed]

34. Razali, N.M.; Wah, Y.B. Power comparison of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and
Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 21–33.

35. Tui, I. Normality Testing—A New Direction. Int. J. Bus. Soc. Sci. 2011, 2, 115–118.
36. Saculinggan, M.; Balase, E.A. Empirical Power Comparison of Goodness of Fit Tests for Normality in the

Presence of Outliers. J. Phys. Conf. Ser. 2013, 435, 012041. [CrossRef]
37. Sánchez-Espigares, J.A.; Grima, P.; Marco-Almagro, L. Visualizing type II error in normality tests.

Am. Stat. 2017. [CrossRef]
38. Yap, B.W.; Sim, S.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81,

2141–2155. [CrossRef]
39. Patrício, M.; Ferreira, F.; Oliveiros, B.; Caramelo, F. Comparing the performance of normality tests with ROC

analysis and confidence intervals. Commun. Stat. Simul. Comput. 2017, 46, 7535–7551. [CrossRef]
40. Mbah, A.K.; Paothong, A. Shapiro-Francia test compared to other normality test using expected p-value.

J. Stat. Comput. Simul. 2015, 85, 3002–3016. [CrossRef]
41. Arshad, M.; Rasool, M.T.; Ahmad, M.I. Anderson Darling and Modified Anderson Darling Tests for

Generalized Pareto Distribution. Pak. J. Appl. Sci. 2003, 3, 85–88.
42. Stephens, M.A. Goodness of fit for the extreme value distribution. Biometrika 1977, 64, 585–588. [CrossRef]
43. D’Agostino, R.B.; Stephens, M.A. Goodness-of-Fit Techniques; Marcel-Dekker: New York, NY, USA, 1986;

pp. 123, 146.
44. Shin, H.; Jung, Y.; Jeong, C.; Heo, J.-H. Assessment of modified Anderson–Darling test statistics for the

generalized extreme value and generalized logistic distributions. Stoch. Environ. Res. Risk Assess. 2012, 26,
105–114. [CrossRef]

45. De Micheaux, P.L.; Tran, V.A. PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation
Studies for Goodness-of-fit Tests in R. J. Stat. Softw. 2016, 69. Available online: https://www.jstatsoft.org/
article/view/v069i03 (accessed on 10 April 2018).

46. 6ixSigma.org—Anderson Darling Test. Available online: http://6ixsigma.org/SharedFiles/Download.aspx?
pageid=14&mid=35&fileid=147 (accessed on 2 June 2017).

47. Spcforexcel. Anderson-Darling Test for Normality. 2011. Available online: http://www.spcforexcel.com/
knowledge/basic-statistics/anderson-darling-test-for-normality (accessed on 2 June 2017).

48. Qimacros—Data Normality Tests Using p and Critical Values in QI Macros. © 2015 KnowWare International
Inc. Available online: http://www.qimacros.com/hypothesis-testing//data-normality-test/#anderson
(accessed on 2 June 2017).

49. Jäntschi, L.; Bolboacă, S.D. Distribution Fitting 2. Pearson-Fisher, Kolmogorov-Smirnov, Anderson-Darling,
Wilks-Shapiro, Kramer-von-Misses and Jarque-Bera statistics. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca
Hortic. 2009, 66, 691–697.

50. Mosteller, F. Questions and Answers—Combining independent tests of significance. Am. Stat. 1948, 2, 30–31.
[CrossRef]

51. Bolboacă, S.D.; Jäntschi, L.; Sestraş, A.F.; Sestraş, R.E.; Pamfil, D.C. Pearson-Fisher Chi-Square Statistic
Revisited. Information 2011, 2, 528–545. [CrossRef]

52. Rahman, M.; Pearson, L.M.; Heien, H.C. A Modified Anderson-Darling Test for Uniformity. Bull. Malays.
Math. Sci. Soc. 2006, 29, 11–16.

32

Mathematics 2018, 6, 88

53. Matsumoto, M.; Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator (PDF). ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [CrossRef]

54. Ciocan, A.; Ciocan, R.A.; Gherman, C.D.; Bolboacă, S.D. Evaluation of Patients with Lower Extremity
Peripheral Artery Disease by Walking Tests: A Pilot Study. Not. Sci. Biol. 2017, 9, 473–479. [CrossRef]

55. Răcătăianu, N.; Bolboacă, S.D.; Sitar-Tăut, A.-V.; Marza, S.; Moga, D.; Valea, A.; Ghervan, C. The effect of
Metformin treatment in obese insulin-resistant patients with euthyroid goiter. Acta Clin. Belg. Int. J. Clin.
Lab. Med. 2018. [CrossRef] [PubMed]

56. Hăs, măs, anu, M.G.; Baizat, M.; Procopciuc, L.M.; Blaga, L.; Văleanu, M.A.; Drugan, T.C.; Zaharie, G.C.;
Bolboacă, S.D. Serum levels and ApaI polymorphism of insulin-like growth factor 2 on intrauterine growth
restriction infants. J. Matern.-Fetal Neonatal Med. 2018, 31, 1470–1476. [CrossRef] [PubMed]

57. Ciocan, R.A.; Drugan, C.; Gherman, C.D.; Cătană, C.-S.; Ciocan, A.; Drugan, T.C.; Bolboacă, S.D. Evaluation
of Chitotriosidase as a Marker of Inflammatory Status in Critical Limb Ischemia. Ann. Clin. Lab. Sci. 2017,
47, 713–719. [PubMed]

58. Bulboacă, A.E.; Bolboacă, S.D.; Stănescu, I.C.; Sfrângeu, C.-A.; Bulboacă, A.C. Preemptive Analgesic and
Anti-Oxidative Effect of Curcumin for Experimental Migraine. BioMed Res. Int. 2017, 2017, 4754701.
[CrossRef]

59. Bulboacă, A.E.; Bolboacă, S.D.; Bulboacă, A.C.; Prodan, C.I. Association between low thyroid-stimulating
hormone, posterior cortical atrophy and nitro-oxidative stress in elderly patients with cognitive dysfunction.
Arch. Med. Sci. 2017, 13, 1160–1167. [CrossRef] [PubMed]

60. Nistor, D.-V.; Caterev, S.; Bolboacă, S.D.; Cosma, D.; Lucaciu, D.O.G.; Todor, A. Transitioning to the direct
anterior approach in total hip arthroplasty. Is it a true muscle sparing approach when performed by a low
volume hip replacement surgeon? Int. Orthopt. 2017, 41, 2245–2252. [CrossRef] [PubMed]

61. Bolboacă, S.D.; Jäntschi, L. Comparison of QSAR Performances on Carboquinone Derivatives. Sci. World J.
2009, 9, 1148–1166. [CrossRef] [PubMed]

62. Harsa, A.M.; Harsa, T.E.; Bolboacă, S.D.; Diudea, M.V. QSAR in Flavonoids by Similarity Cluster Prediction.
Curr. Comput.-Aided Drug Des. 2014, 10, 115–128. [CrossRef] [PubMed]

63. Jäntschi, L.; Bolboacă, S.D.; Sestraş, R.E. A Study of Genetic Algorithm Evolution on the Lipophilicity of
Polychlorinated Biphenyls. Chem. Biodivers. 2010, 7, 1978–1989. [CrossRef] [PubMed]

64. Chirilă, M.; Bolboacă, S.D. Clinical efficiency of quadrivalent HPV (types 6/11/16/18) vaccine in patients
with recurrent respiratory papillomatosis. Eur. Arch. Oto-Rhino-Laryngol. 2014, 271, 1135–1142. [CrossRef]
[PubMed]

65. Lenghel, L.M.; Botar-Jid, C.; Bolboacă, S.D.; Ciortea, C.; Vasilescu, D.; Băciut, , G.; Dudea, S.M. Comparative
study of three sonoelastographic scores for differentiation between benign and malignant cervical lymph
nodes. Eur. J. Radiol. 2015, 84, 1075–1082. [CrossRef] [PubMed]

66. Bolboacă, S.D.; Jäntschi, L. Nano-quantitative structure-property relationship modeling on C42 fullerene
isomers. J. Chem. 2016, 2016, 1791756. [CrossRef]

67. Botar-Jid, C.; Cosgarea, R.; Bolboacă, S.D.; S, enilă, S.; Lenghel, M.L.; Rogojan, L.; Dudea, S.M. Assessment
of Cutaneous Melanoma by Use of Very- High-Frequency Ultrasound and Real-Time Elastography.
Am. J. Roentgenol. 2016, 206, 699–704. [CrossRef] [PubMed]

68. Jäntschi, L.; Balint, D.; Pruteanu, L.L.; Bolboacă, S.D. Elemental factorial study on one-cage pentagonal face
nanostructure congeners. Mater. Discov. 2016, 5, 14–21. [CrossRef]

69. Micu, M.C.; Micu, R.; Surd, S.; Girlovanu, M.; Bolboacă, S.D.; Ostensen, M. TNF-a inhibitors do not impair
sperm quality in males with ankylosing spondylitis after short-term or long-term treatment. Rheumatology
2014, 53, 1250–1255. [CrossRef] [PubMed]

70. Sestraş, R.E.; Jäntschi, L.; Bolboacă, S.D. Poisson Parameters of Antimicrobial Activity: A Quantitative
Structure-Activity Approach. Int. J. Mol. Sci. 2012, 13, 5207–5229. [CrossRef] [PubMed]

71. Bolboacă, S.D.; Jäntschi, L.; Baciu, A.D.; Sestraş, R.E. Griffing’s Experimental Method II: Step-By-Step
Descriptive and Inferential Analysis of Variances. JP J. Biostat. 2011, 6, 31–52.

72. EasyFit. MathWave Technologies. Available online: http://www.mathwave.com (accessed on 25 March
2018).

73. Arena, P.; Fazzino, S.; Fortuna, L.; Maniscalco, P. Game theory and non-linear dynamics: The Parrondo
Paradox case study. Chaos Solitons Fractals 2003, 17, 545–555. [CrossRef]

33

Mathematics 2018, 6, 88

74. Ergün, S.; Aydoğan, T.; Alparslan Gök, S.Z. A Study on Performance Evaluation of Some Routing Algorithms
Modeled by Game Theory Approach. AKU J. Sci. Eng. 2016, 16, 170–176.

75. Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data
Min. Knowl. Manag. Process 2015, 5, 1–11. [CrossRef]

76. Gopalakrishna, A.K.; Ozcelebi, T.; Liotta, A.; Lukkien, J.J. Relevance as a Metric for Evaluating Machine
Learning Algorithms. In Machine Learning and Data Mining in Pattern Recognition; Perner, P., Ed.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7988.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

34

mathematics

Article

Optimal Repeated Measurements for Two Treatment
Designs with Dependent Observations: The Case of
Compound Symmetry

Miltiadis S. Chalikias

Department of Accounting and Finance, School of Business, Economics and Social Sciences, University of West
Attica, 12244 Egaleo, Greece; mchalikias@hotmail.com or mchalik@uniwa.gr

Received: 18 February 2019; Accepted: 13 April 2019; Published: 25 April 2019

Abstract: In this paper, we construct optimal repeated measurement designs of two treatments for
estimating direct effects, and we examine the case of compound symmetry dependency. We present
the model and the design that minimizes the variance of the estimated difference of the two treatments.
The optimal designs with dependent observations in a compound symmetry model are the same as
in the case of independent observations.

Keywords: repeated measurement designs; compound symmetry

1. Introduction

In repeated measurement designs, a sequence of treatments is applied to each experimental unit
(e.u.). In particular, one treatment is applied in each period. For example, for two treatments, A and
B, and three periods, a possible sequence is ABA, which means that the treatments A, B, and A are
respectively applied at the beginning of each of the three periods. The direct effect of a treatment is the
effect of the treatment which is applied in the period that is examined. The residual effect is the effect
of the treatment which is applied in the period preceding the period that is examined. In the case of
two treatments, A and B, the direct τA and τB can be estimated. In every period, a treatment is applied,
so either τA or τB is estimable. In this paper, the parameter of interest is the difference of direct effects
τ = τA − τB.

Most researchers who have investigated repeated measurement designs, such as [1–6], have
been occupied with universally optimal designs where the observations are independent. However,
researchers have also shown interest in designs with dependent observations, as in the cases of [7–11].

The model we use in this paper, and which is presented below, was first introduced by Hedayat
and Afsarinejad [12,13]. In previous research [14,15] using this model, the author of this article studied
two treatment designs under the assumption that consecutive observations were independent. Building
on that previous work, in the present article the author examines the case of compound symmetry
dependency. The aim is to find a design that corresponds to a minimum variance estimator.

2. The Model

A compound symmetry model has the following characteristics:

(i) For each sequence, the variance matrix is of the form Σm = aIm + bJm, where Im is the unit m × m
matrix, and Jm is the m × m matrix where all elements are equal to 1 (m is the number of periods).

(ii) The observations corresponding to different treatment sequences (different e.u.) are independent,
and the number of sequences is 2m.

Mathematics 2019, 7, 378; doi:10.3390/math7040378 www.mdpi.com/journal/mathematics35

Mathematics 2019, 7, 378

The goal is to find the design that corresponds to the minimum variance estimator. I show that, in
this case, the optimal design regarding the direct effect is the same as in the model of independent
observations, and only the variance of the estimator is different.

The model is [12]:
yijk = μ+ τ+ πj + δi, j−1 + γi + ζk + eijk (1)

j corresponds to the j-th period, j = 1, 2, . . . , m;
i corresponds to the i-th sequence, i = 0, 1, . . . 2m − 1;
k corresponds to the unit k = 1, 2, . . . , n;
τA, τB: are direct effects of treatments A and B;
π j: is the effect of the j-th period;
δA, δB: are the residual effects of A and B;
γi: is the effect of the i-th sequence; and
ζk: is the effect of the k-th e.u. (subject effect), which is a random variable, independent of the error eijk.

The errors eijk are assumed to be independent. However, the quantities ζk + eijk are independent
only between sequences and not within sequences.

The overparameterized model vector form of the above model is written as:

Y = τAτA + τBτB + δAδA + δBδB + π1π1 + · · ·+ πmπm ++γ0γ0 + · · ·+ γqγq + e (2)

where q = 2m − 1 and Y,τA,τB,δA,δB,π1, · · ·πm,γ0, · · ·γq, e are 1×mn vectors; the direct effect vector

is 1 if the treatment is A, and zero if it is B. For example, for the sequence ABB . . . , τA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and, in the same way, τB, δA, δBπι and γι are defined so that τA + τB = 1mn, δA + δB + π1 =

1mn, and π1 + π2 + . . .+ πm = 1mn. Also, 1 when the ith unit is employed, and 0 elsewhere, so
γ0 + γ1 + γ2 + . . .+ γ2m−1 = 1mn. So, in equation (2) there are linearly dependent vectors.

Keeping only the linear independent vector [16], the model (2) is transformed to

E(Y) = τ(τA − τB) + δ(δA − δB) + π1π1 + · · ·+ πm−1πm−1 ++γ0γ0 + · · ·+ γq−1γq−1

where q = 2m − 1. In a vector form:

Y = Xb + e⇔ Y =
(

X1 X2
)(b1

b2

)
(3)

where Y is (mn) × 1, the design matrix X is (mn) × s, b is s × 1, e is (mn) × 1, and s is the number of
unknown parameters. If we are interested only in some and not in all of the parameters, then we write
b
′
=
(

b′1 b′2
)
, where b1 is the r parameters of interest, and b2 is the s-r remaining parameters.

We assume only one parameter of interest for the difference of the direct effects, τ = τA − τB,
which can be considered as the direct effect of A in the case of τB = 0. In order to guarantee the
estimability of the model, we postulate the restrictions τB = 0,πm = 0,γ2m−1 = 0.

The matrix X1 corresponds to the coefficients of τ, and the matrix X2 corresponds to the coefficients

of the rest of the non-random variables. Let us assume V = X2(X2
TΣ−1X2)

−1
X2

T is a (mn) × (mn)
matrix, P the projection matrix of X2, P = X2(X2

TX2)
−1

X2
T and Σ are the (mn) × (mn) variance matrix

of the observations.
From the ordinal least-squares equations, we derive the following relation for the estimation of

the main effect τ:
(XT

1 Σ−1X1 −XT
1 Σ−1VΣ−1X1)τ̂ = XT

1 Σ−1(I− PΣ−1)Y

36

Mathematics 2019, 7, 378

We also have
var(τ) = σ2(XT

1 Σ−1X1 −XT
1 Σ−1VΣ−1X1)

−1
= σ2Q−1 (4)

3. The Case of Compound Symmetry

The observations are dependent within sequences with variance matrix Σm. The observations
from different sequences are independent, therefore:

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
...

Σm 0 · · · 0
0 Σm · · · 0

. . .
...

0 0 · · · Σm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Vm0 0 · · · 0

0 Vm1 · · · 0
. . .

...
0 0 · · · Vmq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where q = 2m − 1 and Vmj = X2 j(X2 j

TΣm
−1X2 j)

−1
X2 j

T.
In order to obtain a sequence enumeration, the binary enumeration system was used,

with 0 corresponding to A, and 1 to B. Thus, we obtained the enumerations 0, 1, . . . , 2m − 1.
For example, if we have five periods and the sequence BABBA, then this is the 13th sequence,
since BABBA↔ 1 · 20 + 0 · 20 + 1 · 22 + 1 · 23 + 0 · 24 = 13 . For two periods, we have four sequences,
that is, AA↔ 0, BA↔ 1, AB↔ 2, BB↔ 3 . For three periods (two treatments) we have eight sequences:

A B A B A B A B

A A B B A A B B

A A A A B B B B

u0 u1 u2 u3 u4 u5 u6 u7

where ui i = 0, 2, 3, 4, 5, 6, 7 is the number of units that received the i-th sequence of treatments. The
sequences that we obtain by substituting A for B and vice versa are called dual or reversal designs.
Observe that for these sequences, we obtain the enumeration 7 − i, i = 0, 1, 2, 3.

Proposition 1. For a repeated measurement design with m periods, n experimental units, and a variance matrix
Σ that consists of n diagonal block matrices of the form Σm = aIm + bJm,

(XT
1 Σ−1X1 −XT

1 Σ−1VΣ−1X1) =
1
a
(XT

1 X1 −XT
1 PX1)

where P = X2(X2
TX2)

−1
X2

T.

Proof. Let X̃1 = Σ−1/2X1, X̃2 = Σ−1/2X2, and Ỹ = Σ−1/2Y. Then

(XT
1 Σ−1X1 −XT

1 Σ−1VΣ−1X1) = XT
1 X1 − X̃

T

1 PX̃1

where P̃ = X̃2(X̃2
TX̃2)

−1
X̃2

T. In other words, P̃ is the matrix of the orthogonal projection to R(X̃2). �

X1 j j = 0, 1, 2 . . .m is the m × 1 matrix of τ in the j-th sequence, and X2 j j = 0, 1, 2 . . .m is the
mx(m + 2m) matrix of the parameters μ,π1,π2, . . . πm−1, δA, δB,γ1,γ2, . . . ,γq, where q = 2m − 1.

37

Mathematics 2019, 7, 378

For example, for three periods (m = 3), we have the matrices:

X1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X10}u0

X11}u1
...

X17}u7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and X2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X20

X21
...

X27

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For the linear space R(X̃2j) and for any sequence (m observations) R(X̃2j) = R(X2j), we observe

the following:

(i) The matrix (aIm + bJm) is positive definite, so the matrix (aIm + bJm)
− 1

2 is also positive definite,
and we conclude that:

(aIm + bJm)
− 1

2 =
1
a
(Im − b

a + bm
Jm)⇔ (aIm + bJm)

− 1
2 =

1√
a
(Im − δJm)

where δ =
√ a

a+bm
m , 1− δ ·m > 0, and we have X̃2 j =

1√
α
(Im − δJm)−1X2 j.

(ii) The coefficients of the general mean are 1, so 1m ∈ R(X2j) and.

1√
a
(Im − δJm) · 1m =

1√
a + bm

1m ⇒ 1m ∈ R(X̃2 j)

(iii) If z is another column vector, and z ∈ R(X2j), then

1√
a
(Im − δJm)z =

1√
a
(z− δ(1T

mz)1m)⇒ z ∈ R(X̃2 j)⇔ R(X̃2 j) = R(X2 j)

(iv) If P̃m is the matrix of the orthogonal projection to the linear space R(X̃2j), then P̃m j =

Pm j, where Pmj = X2 j(X2 j
TX2 j)

−1
X2 j

T is the matrix of the orthogonal projection to R(X2j) and
Pmj · 1m = 1m ⇒ Pmj · Jm = Jm . From the above, we conclude that:

(X̃
T

1 jX̃1 j − X̃
T

1 jP̃mjX̃1 j) = X̃
T

1 jX̃1 j − X̃
T

1 jP̃mjX̃1 j =
1
a
(XT

1 jX1 j −XT
1 jPmjX1 j)

(Im − P̃mj)X̃1 j =
1√
a
(Im − Pmj)(Im − δJm)X1 j =

1√
a
(Im − Pmj)X1 j

(X̃
T

1 X̃1 − X̃
T

1 P̃X̃1) =

q∑
j=0

(X̃
T

1 jX̃1 j − X̃
T

1 jP̃mjX̃1 j) =
1
a
(XT

1 X1 −XT
1 PX1)

Corollary 1. The designs that result in the estimators with the minimum variance, i.e., minvar(τ̂) are exactly
the optimal designs of the model with independent observations. In this case, the variance var(τ̂) is multiplied
by α:

var(τ) = σ2(XT
1 X1 −XT

1 PX1)
−1

= σ2a · (Q∗)−1

σ2(Q∗)−1 is the variance of the optimal designs in the model with independent observations).

Proof. From the previous proof, we conclude that the variance of the estimator of the direct effect,
which is given by Formula (3), equals to

var(τ) = σ2a · (Q∗)−1

�

38

Mathematics 2019, 7, 378

Comments: (1) If we consider that an observation can influence another observation, the e.u are
correlated, and the correlation is given by ρ, −1 < ρ < 1. Dependent observations are often considered
observations of the same cluster [17]. A simple example of dependency appears when children of the
same mother are included in a sample. Due to their common household environment and genes, it is
expected that these children have a greater chance of having the same characteristics.

(2) In the case of compound symmetry, the variance matrix of each sequence observations is
Σm = (1 − ρ)Im + ρJm, so α = 1 − ρ, and b = ρ. In order for the matrix to be positive definite, the
condition − 1

m−1 < ρ < 1 is necessary. If ρ = 0, then we obtain the model with independent observations
and α = 1.

(3) The variance of the estimator of the direct effect, var(τ̂), decreases when the correlation
coefficient ρ increases and it approaches 0, when ρ approaches 1, since α = 1 − ρ.

(4) For two periods with dependent observations, the 2 × 2 variance matrix of the observations
in the compound symmetry model is Σ2 = (1− ρ)I2 + ρJ2 . The optimal design for this model is the
same as the optimal design for independent observations for every ρ, −1 < ρ < 1.

For an even n, such an optimal design is obtained when to the sequences AA and AB correspond to
n/2 e.u, while for an odd n, the optimal design is obtained when to the sequences AA and AB correspond
to (n − 1)/2 and (n + 1)/2 e.u., respectively [11]. The reverse sequences BB, BA also correspond to an
optimal design with: var(τ) = σ2(1− ρ)(Q∗)−1

(5) As illustrated, the examined model with dependent observations is also associated with
variance matrices Σ for which the optimal designs are the same as the ones of the model with
independent observations [14,18].

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Carriere, K.C.; Reinsel, G.C. Optimal two period repeated measurement designs with two or more treatments.
Biometrika 1993, 80, 924–929. [CrossRef]

2. Chalikias, M.; Kounias, S. Extension and necessity of Cheng and Wu conditions. J. Stat. Plan. Infer. 2012, 142,
1794–1800. [CrossRef]

3. Cheng, C.S.; Wu, C.F. Balanced repeated measurements designs. Ann. Stat. 1980, 11, 29–50. [CrossRef]
4. Hedayat, A.S.; Yang, M. Universal Optimality of Selected Crossover Designs. J. Am. Stat. Assoc. 2004, 99,

461–466. [CrossRef]
5. Hedayat, A.S.; Zheng, W. Optimal and efficient crossover designs for test-control study when subject effects

are random. J. Am. Stat. Assoc. 2010, 105, 1581–1592. [CrossRef]
6. Stufken, J. Some families of optimal and efficient repeated measurements designs. J. Stat. Plan. Infer. 1991,

27, 75–83. [CrossRef]
7. Hedayat, A.S.; Yan, Z. Crossover designs based on type I orthogonal arrays for a self and simple mixed

carryover effects model with correlated errors. J. Stat. Plan. Infer. 2008, 138, 2201–2213. [CrossRef]
8. Kounias, S.; Chalikias, M.S. An algorithm applied to designs of repeated measurements. J. Appl. Stat. Sci.

2005, 14, 243–250.
9. Kushner, H.B. Allocation rules for adaptive repeated measurements designs. J. Stat. Plan. Infer. 2003, 113,

293–313. [CrossRef]
10. Laska, E.M.; Meisner, M. A variational approach to optimal two treatment crossover designs: Application to

carryover effect models. J. Am. Stat. Assoc. 1985, 80, 704–710. [CrossRef]
11. Matthews, J.N.S. Optimal crossover designs for the comparison of two treatments in the presence of carryover

effects and autocorrelated errors. Biometrika 1987, 74, 311–320. [CrossRef]
12. Hedayat, A.; Afsarinejad, K. Repeated measurements designs, I. Survey Stat. Des. Linear Models 1975, 229–242.

Available online: http://ani.stat.fsu.edu/techreports/M261.pdf (accessed on 23 April 2019).
13. Hedayat, A.S.; Afsarinejad, K. Repeated measurements designs II. Ann. Stat. 1978, 18, 1805–1816. [CrossRef]

39

Mathematics 2019, 7, 378

14. Kounias, S.; Chalikias, M. Optimal and Universally Optimal Two Treatment Repeated Measurement Designs;
Vonta, F., Nikulin, M., Eds.; Statistics for industry and technology Birkhauser: Boston, MA, USA; Basel,
Switzerland; Berlin, Germany, 2008; pp. 465–477.

15. Kounias, S.; Chalikias, M.S. Optimal two treatment repeated measurement designs with treatment-period
interaction in the model. Util. Math. 2015, 96, 243–261.

16. Kounias, S.; Chalikias, M. Estimability of Parameters in a Linear Model. Stat. Probab. Lett. 2008, 28, 2437–2439.
[CrossRef]

17. Liang, K.Y.; Zeger, S.L. Regression analysis for correlated data. Annu. Rev. Pub. Health 1993, 14, 43–68.
[CrossRef] [PubMed]

18. Chalikias, M.; Kounias, S. Optimal two Treatment Repeated Measurement Designs for three Periods. Commun.
Stat. Theory Methods 2017, 46, 200–209. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

40

mathematics

Article

A Model for Predicting Statement Mutation Scores

Lili Tan, Yunzhan Gong and Yawen Wang *

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China
* Correspondence: wangyawen@bupt.edu.cn

Received: 13 June 2019; Accepted: 15 August 2019; Published: 23 August 2019

Abstract: A test suite plays a key role in software testing. Mutation testing is a powerful approach
to measure the fault-detection ability of a test suite. The mutation testing process requires a large
number of mutants to be generated and executed. Hence, mutation testing is also computationally
expensive. To solve this problem, predictive mutation testing builds a classification model to predict
the test result of each mutant. However, the existing predictive mutation testing methods only
can be used to estimate the overall mutation scores of object-oriented programs. To overcome the
shortcomings of the existing methods, we propose a new method to directly predict the mutation
score for each statement in process-oriented programs. Compared with the existing predictive
mutation testing methods, our method uses more dynamic program execution features, which more
adequately reflect dynamic dependency relationships among the statements and more accurately
reflects information propagation during the execution of test cases. By comparing the prediction
effects of logistic regression, artificial neural network, random forest, support vector machine, and
symbolic regression, we finally decide to use a single hidden layer feedforward neural network as
the predictive model to predict the statement mutation scores. In our two experiments, the mean
absolute errors between the statement mutation scores predicted by the neural network and the real
statement mutation scores both approximately reach 0.12.

Keywords: software testing; machine learning; mutation testing

1. Introduction

When a programmer writes a program, a mistake may occur in the code. For example,
a programmer may incorrectly write x=x-1 as x=x+1, x=x*1, x=x%1, etc. This mistake is referred
to as a software fault (i.e., a software bug). When this fault is executed, an incorrect execution result
may appear on the corresponding statement. This incorrect execution result often is referred to as a
software error and cannot be directly observed. When this software error propagates to an observable
program output, a software failure occurs.

A strong-power test suite may detect more software faults than a weak-power one, thus measuring
the fault detection capability of a test suite is an important question in software testing. Mutation testing
is an approach to determine the effectiveness of a test suite [1–3].

The programs with software faults are called mutants. In mutation testing, mutants are generated
through automatically changing the original program with mutation operators, where each mutation
operator is a rule and can be applied to program statements to produce the program version with a
software fault. A mutant is said to be identified by a test suite if at least one test case from the test
suite has different execution results on the mutant and the original program. Mutation score, which is
the ratio of all identified mutants to all mutants, has been widely used to assess the adequacy of a
test suite.

Although mutation testing is obviously useful, it is extremely expensive [4,5]. For example, using
108 mutation operators, Proteum [6] generates 4937 mutants for tcas, which is the smallest program

Mathematics 2019, 7, 778; doi:10.3390/math7090778 www.mdpi.com/journal/mathematics41

Mathematics 2019, 7, 778

among the Siemens programs and contains only 137 non-commenting and non-whitespace lines of
code. Thus, testing a large number of mutants can be a big burden.

For solving this problem, researchers have proposed some optimization methods to reduce the cost
of mutation testing, such as random mutation [7,8], mutant clustering [9] and selective mutation [10,11].
For quickly calculating the mutation score of the whole program, these methods attempt to use a
mutant sample to represent all mutants. Random mutation randomly chooses some mutants from all
mutants to construct mutation samples. A mutant clustering algorithm first classifies all mutants into
different clusters so that the mutants in a cluster have similar identification difficulties, and then selects
a small number of mutants from each cluster to construct the mutant sample. Selective mutation uses
only a subset of mutation operators to generate a mutant sample.

Different from the above mutant reduction methods, the predictive mutation testing
methods [12,13] have been proposed in recent years. The predictive mutation testing methods extract
some features related to program structures and testing processes and apply machine learning to
predict each mutant’s test result (i.e., the identification result). Moreover, these predictive methods’
execution time is short. However, the existing predictive mutation testing methods are all designed
for object-oriented programs. The same as other methods, the existing predictive mutation testing
methods are also mainly used for estimating the mutation score of the whole program. The main
differences among the above mutant reduction methods can be shown in Table 1.

Table 1. Main differences among mutation reduction methods.

Method Key Technology Time Cost Target

random mutation simple random sampling low estimating program mutation score

mutant clustering stratified sampling low estimating program mutation score

selective mutation non-probability sampling high estimating program mutation score

predictive mutation supervised learning low
estimating program mutation score
classifying mutants

To make up for the shortcomings of existing predictive mutation testing methods, based on the
execution impact map [14] Goradia uses, we suggest a new predictive method. This new method is
not only suitable for procedure-oriented programs but also can use a single hidden layer feedforward
neural network and seven statement features to predict the mutation score of each program statement.

The prediction of the statement mutation scores includes two major phases: extracting the
statement features and determining the mathematical form of predictive model. In the feature
extraction phase, we obtain the following seven features to express the effect of a statement on
the program outputs: number of executions, path impact factor, value impact factor, generalized
path impact factor, generalized value impact factor, latent impact factor, and information hidden
factor. In fact, among the above seven features, only a number of executions are adopted by existing
predictive mutation testing methods. Compared with the existing predictive mutation testing methods,
our method more accurately expresses information propagation among the statements. For a statement,
except for the number of executions, its six other features are extracted from the following six
aspects respectively:

When a test case executes on the statement containing a software fault , an error may be generated.
This error either propagates along the original execution path or changes the original execution path.

(1) The fault in the statement may change the program output by generating the errors that
propagate along the original execution paths. From this aspect, we extract the statement’s value
impact factor.

(2) The fault in the statement may change the program outputs by generating the errors altering
the original execution paths. From this aspect, we extract the statement’s path impact factor.

42

Mathematics 2019, 7, 778

However, in a few cases, the change of execution path does not result in a change of program
output. Therefore, we need to analyze further the features of the changed program branch in order to
more accurately predict how likely the program output will be changed.

(3) The no longer executed branches lose their ability to pass their information along the original
execution path to the program outputs. The loss of this capability may cause the program output to be
changed. From this aspect, we extract the statement’s generalized value impact factor.

(4) The no longer executed program branch is no longer able to influence the selection of
subsequent program branches. Loss of this ability may also impact the program output. From this
aspect, we extract the statement’s generalized path impact factor.

(5) The fault in a statement may cause some program branches, which has not been executed,
will be executed. Executing these new branches may cause the program output to change. From this
aspect, we extract the statement’s latent impact factor.

(6) Sometimes, the program under testing has multiple output statements, some of which happen
to have the same output values. In this case, even if the software fault changes the execution path of
the test case, the program outputs could still be the same. From this aspect, we extract a statement’s
information hidden factor.

Among these six factors, the first five factors facilitate program output changes, and the last one
prevents program output from changing.

In the phase of determining mathematical form of the predictive model, we compared the
following five machine learning models based on Brier scores: artificial neural network (ANN),
logical regression (LR), random forest (RF), support vector machine (SVM) and symbolic regression
(SR). From the experiment results, the artificial neural networks were identified as the most suitable
predictive model.

With the methods in this article, we analyzed the two programs. In the two experiments, the mean
absolute errors between the real statement mutation scores and predictive statement mutation scores
are 0.1205 and 0.1198, respectively.

The remainder of this paper is organized as below: in Section 2, we introduce some basic terms
used throughout the entire paper. In Section 3, we define seven statement features. In Section 4, we
propose a method for quickly calculating statement features. In Section 5, we compare the prediction
accuracy of five machine learning models. In Section 6, we introduce the structure of our automated
prediction tool. In Section 7, we describe the work to be performed.

2. Basic Terms

Definition 1. Original program and mutation score.

In this paper, a program without any software fault is also called an original program. For example,
Program 1 is an original program. It first outputs the factorial of the absolute value of the difference
between m and n, and then classifies the factorial. Based on the relationships among m, n and the
factorial, the execution results of the program are divided into three areas, the first and third of which
belong to the first class, and the second of which belongs to the second class.

A program with software faults is called a mutant. In mutation testing, mutants are generated
through automatically changing the original program with mutation operators. For example, in terms
of Program 1, if the statement dist=m-n is changed into dist=m%n, then the mutant m1 is generated
as shown in Program 2. If a test suite (i.e., a collection of test cases) can identify the mutant m1, it
must satisfy the following conditions: there must be at least one test case in the test suite to execute the
statement dist=m%n in m1, the execution result of dist=m%n must be different from that of dist=m-n,
and the difference must be propagated to the program output.

Program mutation score is the proportion of identified mutants in a program, which is used to
assess how well the program is tested by the test suite. Statement mutation score is the the proportion

43

Mathematics 2019, 7, 778

of identified mutants in a statement, which is used to assess how well the statement is tested by the
test suite.

Definition 2. Program statement and branch.

In this article, we predict the ability of a test suite to test each line program code. A statement in
the program under testing usually occupies one line. Because a control expression usually occupies a
line in the program, in this paper, we also think of a controlling expression as a statement. As shown in
Program 1, we denote gth statement as sg. According to C programming language standard—C99 [15],
a controlling expression can occur in “if”, “switch”, “while”, “do while” and “for” statements and
decides which of the program branches is executed.

In terms of if-else statement, if its controlling expression appears in the rth line, then we denoted
its controlling expression as sr, and use Br,t and Br, f to denote the true branch and false branch of sr,
respectively. In terms of a loop statement (such as while loop, do-while loop and for loop), we regard
it as the combination of the controlling expression and the corresponding program branch. If a loop
statement’s controlling expression appears in the rth line, then its controlling expression is denoted as
sr, and the corresponding loop body is considered as the true branch of sr, so that this loop body can
also be denoted as Br,t. According to this representation method, the program branch whose function
is to exit the loop is denoted as Br, f .

Program 1: An original program.

#include <stdio.h>

typedef int bool ;

void fun(int m, int n) {

int dist, fac ;

s1 if(m>n)

s2 dist=m-n ;

else

s3 dist=n-m;

s4 fac=1;

s5 while (dist>1) { // Loop for factorial

s6 fac=fac ∗ dist ;

s7 dist = dist -1 ;

}

s8 printf (“fac=%d \n”, fac);

s9 if (m<n) // classify the factorial

s10 printf (“class 1 \n”) ;

s11 else if (fac<5)

s12 printf (“class 2 \n”) ;

else

s13 printf (“class 1 \n”) ;

}

44

Mathematics 2019, 7, 778

Program 2: The mutant m1 of Program 1.

#include <stdio.h>

typedef int bool ;

void fun(int m, int n) {

int dist, fac ;

s1 if(m>n)

s2 dist=m%n ;

else

s3 dist=n-m;

s4 fac=1;

s5 while (dist>1) { // Loop for factorial

s6 fac=fac ∗ dist ;

s7 dist = dist -1 ;

}

s8 printf (“fac=%d \n”, fac);

s9 if (m<n) // classify the factorial

s10 printf (“class 1 \n”) ;

s11 else if (fac<5)

s12 printf (“class 2 \n”) ;

else

s13 printf (“class 1 \n”) ;

}

For example, in Program 1, s9 is the controlling expression, the statement s10 constitutes its true
branch B9,t, and the statements s11, s12 and s13 constitute its false branch B9, f . The statements s6 and s7

constitute the loop body of the while loop, and, in this situation, the loop body is also considered as
the true branch B5,t of the controlling expression s5.

Definition 3. Statement instance and branch instance.

A statement may be executed multiple times by a test suite, so that multiple execution instances
are generated. The statement’s each execution instance is called its a statement instance. The hth
execution instance of test case tk on statement sg is denoted as sh

g,tk
. In this paper, the execution instance

of a program output statement is called an output statement instance. In addition, the execution instance
of a controlling expression is also considered as a special statement instance, and is called a controlling
expression instance.

For example, when Program 1 is executed by test case t1(m = 4, n = 1), the assignment statement
s4, controlling expression s5, controlling expression s9, controlling expression s11 and output statement
s13 are executed once, three times, once, once and once. This allows them to produce one, three, one,
one and one execution instance, respectively, during the execution of the test case t1. Among them,
the controlling expression instances s1

5,t1
, s2

5,t1
and s3

5,t1
, respectively, represent the first, second and

third executions of the test case t1 on the statement s5.
A program branch may also be executed multiple times, so that many execution instances are

generated. Each execution instance of the program branch is called a branch instance. Just as a

45

Mathematics 2019, 7, 778

program branch consists of many statements, a branch instance consists of many statement instances.
These statement instances are called the statement instances in the branch instance. A bit similar to the
symbols of statement instances, we use Bl

r,z,tk
to represent the lth execution instance of the test case

tk on the program branch Br,z, where z represents the true or the false branch, and its value is t or f .
Whether Br,z is executed depends on the execution result of the controlling expression sr.

For example, the branch instance B1
9,t,t1

consists of s1
10,t1

, and the branch instance B1
9, f ,t1

consists

of s1
11,t1

, s1
12,t1

and s1
13,t1

. In terms of the while statement in Program 1, s5 is a controlling expression
and generates three execution instances s1

5,t1
, s2

5,t1
and s3

5,t1
during the execution of the test case t1.

Because the execution of B1
5,t,t1

is the necessary condition for B2
5,t,t1

to be executed, B2
5,t,t1

is contained in
B1

5,t,t1
. As shown in Table 2, Figures 1 and 2, the first branch instance B1

5,t,t1
of the while loop consists of

the statement instances s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

, s2
7,t1

and s3
5,t1

, and the second branch instance B2
5,t,t1

consists
of the statement instances s2

6,t1
, s2

7,t1
and s3

5,t1
.

Table 2. The execution history of the test cases.

Test Case Program Output Execution History Branch Instances in Loop

m = 4, n = 1 fac = 6, class 1 (s13) H1 :
s1

1,t1
, s1

2,t1
, s1

4,t1
, s1

5,t1
, s1

6,t1
, s1

7,t1
, s2

5,t1
,

s2
6,t1

, s2
7,t1

, s3
5,t1

, s1
8,t1

, s1
9,t1

, s1
11,t1

, s1
13,t1

B1
5,t,t1

= {s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

, s2
7,t1

,
s3

5,t1
}, B2

5,t,t1
= {s2

6,t1
, s2

7,t1
, s3

5,t1
}

m = 2, n = 2 fac = 1,class 2 (s12) H2 : s1
1,t2

, s1
3,t2

, s1
4,t2

, s1
5,t2

, s1
8,t2

, s1
9,t2

, s1
11,t2

, s1
12,t2

m = 1, n = 4 fac = 6, class 1 (s10) H3 :
s1

1,t3
, s1

3,t3
, s1

4,t3
, s1

5,t3
, s1

6,t3
, s1

7,t3
, s2

5,t3
,

s2
6,t3

, s2
7,t3

, s3
5,t3

, s1
8,t3

, s1
9,t3

, s1
10,t3

B1
5,t,t1

= {s1
6,t1

, s1
7,t3

, s2
5,t3

, s2
6,t3

, s2
7,t3

,
s3

5,t3
}, B2

5,t,t3
= {s2

6,t3
, s2

7,t3
, s3

5,t3
}

Definition 4. Original execution path of the test case.

The execution history Hk of the test case tk is formed when the test case tk executes on an original
program. The execution history Hk is an execution trace, each element of which is a statement instance.
These statement instances are ordered by time until the last program output. In this paper, the execution
history Hk of the test case tk is also called the original execution path of tk.

For example, consider the Program 1, where test case t1 (m = 4, n = 1), test case t2 (m = 2, n = 2),
and test case t3 (m = 1, n = 4) constitutes the test suite T. As shown in Table 2, when t1 is executed,
H1 is generated, and the program outputs fac = 6 and class 1. When t2 is executed, H2 is generated,
and the program outputs fac = 1 and class 2. When t3 is executed, H3 is generated and the program
outputs fac = 6 and class 1.

Figure 1. The execution impact graph G1 formed when Program 1 is executed by test case 1.

46

Mathematics 2019, 7, 778

Figure 2. The execution impact graph G2 formed when Program 1 is executed by test case 2.

Definition 5. Execution impact graph

An execution impact graph Gk is formed when the test case tk executes. The execution impact
graph Gk consists of multiple impact arcs generally, and each impact arc expresses the information
propagation between the statement instances. In terms of an impact arc, the arc tail sj

i,tk
is called a

direct impact predecessor, and the arc head sh
g,tk

is called a direct impact successor. In the practical

application, if a variable is assigned in the statement instance sj
i,tk

and is directly used at the statement

instance sh
g,tk

, then sj
i,tk

is a direct impact predecessor of sh
g,tk

, and sh
g,tk

is a direct impact successor of sj
i,tk

.

In the execution impact graph Gk, each node is expressed in the form of sj
i,tk

or s∗i,tk
, where sj

i,tk
denotes

a statement instance and the symbol ∗ indicates that the statement si is not executed by test case tk.
For example, when program 1 is executed by test cases 1, 2, and 3, the corresponding execution

impact graphs are generated respectively, as shown in Figures 1, 2, and 3. In Program 1, the variable
dist is defined in the statement s2 and is directly used in the statements s5, s6 and s7. Hence, when the
test case t1 is executed, s1

2,t1
becomes the direct impact predecessor of s1

5,t1
, s1

6,t1
and s1

7,t1
, respectively.

In this situation, s1
5,t1

, s1
6,t1

and s1
7,t1

become the direct impact successors of s1
2,t1

.

Figure 3. The execution impact graph G3 formed when Program 1 is executed by test case 3.

Each direct impact successor of a statement instance may have its own direct impact successor.
Thus, the impact successor is transitive. If a statement instance is the impact successor of the statement
instance sh

g,tk
but it is not the direct impact successor of sh

g,tk
, then this statement instance is called the

indirect impact successor of sh
g,tk

. Thus, the impact successor can be divided into two types: the direct
impact successor and the indirect successor.

47

Mathematics 2019, 7, 778

For example, s1
5,t1

, s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

, s2
7,t1

, s3
5,t1

, s1
8,t1

and s1
11,t1

are all the impact successors of s1
2,t1

.
However, s1

5,t1
, s1

6,t1
and s1

7,t1
are the direct impact successors of s1

2,t1
, and s2

5,t1
, s2

6,t1
, s2

7,t1
, s3

5,t1
, s1

8,t1
and

s1
11,t1

are the indirect impact successors of s1
2,t1

.
If there is a fault fg in statement sg, and sh

g,tk
is an execution instance of statement sg, then fg may

change the execution result of sh
g,tk

during the execution of the test case tk. If this change happens,
we say that a error eh

g,tk
is generated from the statement instance sh

g,tk
. In this paper, an error is different

from a fault . Errors are dynamic and are generated in the process of the test case execution. However,
faults are static. Whether the program under testing is executed or not, they may exist in the program
under testing.

3. Formal Definitions of Statement Features

In this section, we propose the seven features of a statement. The most of them are related to
execution paths of test cases. When the statement containing a software fault is executed by a test case,
an error may generate. After this error generates, it either propagates along the original execution path
of the test case or changes the original execution path. The value impact factor describes the ability of
the fault existing in a statement to affect the program output under the condition that the execution path
is unchanged. The path impact factor, the generalized value impact factor, the generalized path impact
factor and the latent impact factor describe the abilities of the fault existing in a statement to affect the
program output under the condition that the execution path is changed by the generated error.

3.1. Value Impact Factor

The value impact factor of a statement expresses its ability to directly impact the program outputs
along the execution paths of the test cases.

3.1.1. Value Impact Factor of Statement

The errors generated from the statement instance sh
g,tk

may propagate along the original execution
path Hk to some execution instances of the output statements. Each of these output statement instances
is called the value impact element of the statement instance sh

g,tk
. The collection consisting of all value

impact elements of sh
g,tk

is called value impact set of the statement instance sh
g,tk

, and denoted as Vh
g,tk

.
A statement sg has multiple execution instances generally and each execution instance has its

own value impact set. The union of these value impact sets is called the value impact set of sg, and is
denoted as Vg. The element in Vg is called the value impact element of sg. The number of value impact
elements of sg is called the value impact factor of sg, and is denoted as xvi(sg). Therefore, the following
formula holds:

Vg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Vh
g,tk

, (1)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk.

Example 1. From Table 2, we know that the statement s6 has four execution instances s1
6,t1

, s2
6,t1

, s1
6,t3

and s2
6,t3

.
If s6 includes a fault, then each execution instance of s6 may generate an error. The errors generated from s1

6,t1

and s2
6,t1

may propagate along the original execution path H1 to the output statement instance s1
8,t1

. Therefore,
V1

6,t1
= V2

6,t1
= {s1

8,t1
}. The errors generated from s1

6,t3
and s2

6,t3
may propagate along the original execution

path H3 to the output statement instance s1
8,t3

. Therefore, V1
6,t3

= V2
6,t3

= {s1
8,t3

}. According to Formula (1),
we have V6 = V1

6,t1

⋃
V2

6,t1

⋃
V1

6,t3

⋃
V2

6,t3
= {s1

8,t1
, s1

8,t3
}.

48

Mathematics 2019, 7, 778

3.1.2. The Value Impact Relationship between Statement Instance and Its Direct Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then we get

Vh
g,tk

=
⋃

c=1,2,··· ,n
Vqc

pc ,tk
. (2)

Example 2. From Figure 1, we can know that the direct impact successors of the statement instance s1
7,t1

consist
of s2

5,t1
, s2

6,t1
and s2

7,t1
. Under the condition that we know V2

5,t1
= ∅, V2

6,t1
= {s1

8,t1
} and V2

7,t1
= ∅, we have

V1
7,t1

= V2
5,t1

⋃
V2

6,t1

⋃
V2

7,t1
= {s1

8,t1
}.

This formula indicates that the errors generated from the statement instance s1
7,t1

can reach up to one output
statement instance s1

8,t1
when it propagates along the original execution path of the test case t1. Using the same

method, we also know V1
6,t1

= {s1
8,t1

}, V2
6,t1

= {s1
8,t1

}, V2
5,t1

= ∅ and V3
5,t1

= ∅.

3.1.3. Value Impact Set of Branch Instance

The information expressed by the statement instances in the branch instance Bl
r,z,tk

can propagate
along the original execution path Hk to some execution instances of the program output statements.
These affected output statement instances constitute the value impact set Vl

r,z,tk
of the branch instance

Bl
r,z,tk

. We can get the following formula:

Vl
r,z,tk

=
⋃

d=1,2,··· ,n

Vhd
gd ,tk

, (3)

where sh1
g1,tk

, sh2
g2,tk

, · · · , shn
gn ,tk

are all the statement instances in the branch instance Bl
r,z,tk

.

Example 3. We can use formula (3) to calculate the value impact set of the branch instance B1
5,t,t1

. From Example
2, we know both V1

6,t1
= {s1

8,t1
}, V1

7,t1
= {s1

8,t1
}, V2

5,t1
= ∅, V2

6,t1
= {s1

8,t1
} V2

7,t1
= ∅, V3

5,t1
= ∅. Because

the branch instance B1
5,t,t1

consists of the six statement instances s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

s2
7,t1

, and s3
5,t1

, we get
V1

5,t,t1
= V1

6,t1

⋃
V1

7,t1

⋃
V2

5,t1

⋃
V2

6,t1

⋃
V2

7,t1

⋃
V3

5,t1
= {s1

8,t1
}.

3.1.4. Value Impact Set of the Special Statement Instance

If a statement instance is an output statement instance, it usually does not have any impact
successors. We set its value impact set to itself because the change of its execution result is precisely
the change of program output. If a statement instance is not an output statement instance and does not
have any impact successors, then we set its value impact set to an empty set.

3.2. Path Impact Factor

The path impact factor of a statement expresses its ability to directly impact the execution paths
of the test cases.

3.2.1. Path Impact Factor of Statement

The more controlling expression instances a statement impact, the more easily the fault in the
statement changes the execution paths of the test cases. The more likely the execution path is changed,
the more likely the program output will be changed. Therefore, we take the number of the control
expression instances impacted by a statement during the test suite execution as a feature to describe

49

Mathematics 2019, 7, 778

the effect of this statement on program output. For this purpose, we defined a statement’s path
impact factor.

The errors generated from the statement instance sh
g,tk

may propagate along the original execution
path Hk to some controlling expression instances. The collection of these controlling expression
instances is called the path impact set Ph

g,tk
of the statement instance sh

g,tk
. The element in Ph

g,tk
is called

the path impact element of sh
g,tk

. The path impact set of statement sg is the union of path impact sets of
execution instances of sg, and denoted as Pg. In other words,

Pg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Ph
g,tk

. (4)

K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk.

Example 4. From Table 2, we know that the statement s6 has four execution instances s1
6,t1

, s2
6,t1

, s1
6,t3

and s2
6,t3

.
If s6 includes a fault, then when s6 is executed by the test suite, each execution instance may generate an error.
The errors generated from first two statement instances s1

6,t1
and s2

6,t1
may propagate along the original execution

path H1 to the controlling expression instance s1
11,t1

. Along the original execution path H3, the errors generated
from the last two statement instances s1

6,t3
and s2

6,t3
cannot be propagated to any controlling expression instance.

Therefore, P1
6,t1

= P2
6,t1

= {s1
11,t1

} and P1
6,t3

= P2
6,t3

= ∅. Using Formula (4), we get

P6 = P1
6,t1

⋃
P2

6,t1

⋃
P1

6,t3

⋃
P2

6,t3
= {s1

11,t1
}.

3.2.2. The Path Impact Relationship of the Statement Instance and Its Direct Impact Successor

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Ph
g,tk

=
⋃

c=1,2,··· ,n
Pqc

pc ,tk
. (5)

Example 5. From Figure 1, we can know the the direct impact successors of the statement instance s1
7,t1

consist
of s2

5,t1
, s2

6,t1
and s2

7,t1
. Under the condition that we know P2

5,t1
= {s2

5,t1
}, P2

6,t1
= {s1

11,t1
} and P2

7,t1
= {s3

5,t1
},

according to Formula (5), we have

P1
7,t1

= P2
5,t1

⋃
P2

6,t1

⋃
P2

7,t1
= {s2

5,t1
, s1

11,t1
, s3

5,t1
}.

Therefore, the errors generated from the statement instance s1
7,t1

can change up to three controlling
expression instances s2

5,t1
, s1

11,t1
and s3

5,t1
along the original execution path H1. Using the same method, we can

also get P1
6,t1

= {s1
11,t1

}, P3
5,t1

= {s3
5,t1

}, and so on.

3.2.3. Path Impact Set of Branch Instance

The statement instances in the branch instance Bl
r,z,tk

may propagate their information along
the original execution path Hk to some of the controlling expression instances outside of Bl

r,z,tk
.

These controlling expression instances constitute the path impact set Pl
r,z,tk

of the branch instance Bl
r,z,tk

.
The path impact set of Bl

r,z,tk
express the impact of Bl

r,z,tk
on the controlling expression instances outside

of Bl
r,z,tk

. If sh1
g1,tk

, sh2
g2,tk

, · · · , shn
gn ,tk

are all the statement instances in the branch instance Bl
r,z,tk

, then the
following mathematical formula holds

Pl
r,z,tk

=
(⋃

d=1,2,··· ,n

Phd
gd ,tk

)∖
Bl

r,z,tk
. (6)

50

Mathematics 2019, 7, 778

Example 6. We illustrate the formula above by calculating the path impact set of the branch instance B1
5,t,t1

.
From Example 5, we know that P1

6,t1
= {s1

11,t1
}, P1

7,t1
= {s2

5,t1
, s3

5,t1
, s1

11,t1
}, P2

5,t1
= {s2

5,t1
}, P2

6,t1
= {s1

11,t1
},

P2
7,t1

= {s3
5,t1

}, and P3
5,t1

= {s3
5,t1

}. Because the branch instance B1
5,t,t1

consists of the six statement instances
s1

6,t1
, s1

7,t1
, s2

5,t1
, s2

6,t1
, s2

7,t1
and s3

5,t1
, we get

P1
5,t,t1

= (P1
6,t1

⋃
P1

7,t1

⋃
P2

5,t1

⋃
P2

6,t1

⋃
P2

7,t1

⋃
P3

5,t1
) \ B1

5,t,t1
= {s1

11,t1
}.

3.2.4. Path Impact Set of the Special Statement Instance

If a statement instance is a controlling expression instance, it usually does not have any impact
successors. We set its path impact set to itself because the change of its execution result is precisely the
change of the program execution path. If a statement instance is not a controlling expression instance
and does not have any impact successors, then we set its path impact set to an empty set.

3.3. Generalized Value Impact Factor

The generalized value impact factor of a statement expresses its ability to indirectly impact the
program outputs.

3.3.1. Generalized Value Impact Factor of Statement

The error generated from the statement instance sh
g,tk

may propagate to some controlling
expression instances along the original execution path of test case tk, so that the execution results of
these controlling expression instances may be changed. As long as the execution result of the control
expression instance sl

r,tk
is changed, the branch instance Bl

r,z,tk
, which appears in the original execution

path Hk, will no longer be executed. This makes the statement instances in Bl
r,z,tk

no longer pass their
information to some output statement instances. Thus, the execution results of these output statement
instances may be changed. Therefore, the errors generated from the statement instance sh

g,tk
may

indirectly affect some output statement instances through the above error propagation process. These
output statement instances that may be indirectly influenced by sh

g,tk
form the generalized value impact set

of the statement instance sh
g,tk

. The generalized value impact set of the statement instance sh
g,tk

is denoted
as Vh

g,tk
. The element in Vh

g,tk
is called the generalized value impact element of sh

g,tk
. The number of

generalized value impact element of sh
g,tk

is called the generalized value impact factor of sh
g,tk

, and is
denoted as xgvi(sh

g,tk
).

A statement sg has multiple execution instances generally and each execution instance has its own
generalized value impact set. In order to describe this indirect effect of sg on program output, the union
of these generalized value impact sets is called the generalized value impact set of sg. The generalized
value impact set of sg is denoted as Vg, the element in Vg is called the generalized value impact element
of sg, and the number of the generalized value impact element of sg is called the generalized value
impact factor of sg. In summary,

Vg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Vh
g,tk

, (7)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk.

Example 7. In Program 1, the statement s7 has four execution instances s1
7,t1

, s2
7,t1

s1
7,t3

,and s2
7,t3

. Given that
V1

7,t1
= {s1

8,t1
, s1

13,t1
}, V2

7,t1
= ∅, V1

7,t3
= {s1

8,t3
}, and V2

7,t3
= ∅, we can use Formula (7) to calculate the

generalized value impact set of the statement s7:

V7 = V1
7,t1

⋃ V2
7,t1

⋃ V1
7,t3

⋃ V2
7,t3

= {s1
8,t1

, s1
13,t1

, s1
8,t3

}.

51

Mathematics 2019, 7, 778

3.3.2. Generalized Value Impact Set of the Special Statement Instance

A controlling expression instance sl
r,tk

usually does not have any impact successors.
Corresponding to sl

r,tk
, there is usually a branch instance Bl

r,z,tk
that appears in the original execution

path Hk. In this situation, the generalized value impact set of sl
r,tk

is equal to the value impact set of
the branch instance Bl

r,z,tk
. This conclusion can be interpreted as follows: If an error is generated from

the controlling expression instance sl
r,tk

, then the branch instance Bl
r,z,tk

will no longer be executed,
so that the statement instances in Bl

r,z,tk
can no longer propagate their information along the original

execution path Hk to some output statement instances. This error propagation process also exactly
reflects the impact of branch instance Bl

r,z,tk
on program output. Hence, the above conclusion is proved.

For example, the generalized value impact set of the controlling expression instance s1
5,t1

is equal to the
value impact set of the branch instance B1

5,t,t1
.

If a statement instance is not a controlling expression instance and does not have any impact
successors, then we set its generalized value impact set to an empty set.

3.3.3. The Generalized Value Impact Relationship between a Statement and Its Direct Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Vh
g,tk

=
⋃

c=1,2,··· ,n
V qc

pc ,tk
. (8)

Example 8. In Program 1, s2
5,t1

, s2
6,t1

and s2
7,t1

are all direct impact successors of the statement instance s1
7,t1

.
Given that V2

5,t1
= {s1

8,t1
}, V2

6,t1
= {s1

13,t1
}, and V2

7,t1
= ∅, according to formula (8), we can get

V1
7,t1

= V2
5,t1

⋃ V2
6,t1

⋃ V2
7,t1

= {s1
8,t1

, s1
13,t1

}.

In the same way, given that V3
5,t1

= ∅, we can get V2
7,t1

= V3
5,t1

= ∅. Given that V2
5,t3

= {s1
8,t3

},
V2

6,t3
= ∅, and V2

7,t3
= ∅,we can get V1

7,t3
= V2

5,t3

⋃ V2
6,t3

⋃ V2
7,t3

= {s1
8,t3

}

3.4. Generalized Path Impact Factor

The generalized path impact factor of a statement expresses its ability to indirectly change the
program execution path.

3.4.1. Generalized Path Impact Factor of Statement

The error generated from the statement instance sh
g,tk

may propagate to some controlling
expression instances along the original execution path of test case tk. As long as the execution
result of the control expression instance sl

r,tk
is changed, the branch instance Bl

r,z,tk
that appears in the

original execution path Hk will no longer be executed. The statement instances in Bl
r,z,tk

will no longer
pass their information to the controlling expression instances appearing after Bl

r,z,tk
. In this situation,

the execution results of the controlling expression instances appearing after Bl
r,z,tk

may be changed
because they are no longer influenced by the statement instances in Bl

r,z,tk
. Therefore, the errors

generated from the statement instance sh
g,tk

may indirectly affect some controlling expression instances
appearing after Bl

r,z,tk
through the above error propagation process. These controlling expression

instances that may be indirectly affected by sh
g,tk

through the above error propagation process form the
generalized path impact set of the statement instance sh

g,tk
. This set is denoted as Ph

g,tk
, the element of which

is called the generalized path impact element of sh
g,tk

. The number of generalized path impact elements
of sh

g,tk
is called the generalized path impact factor of sh

g,tk
, and is denoted as xgpi(sh

g,tk
).

52

Mathematics 2019, 7, 778

A statement sg has one or more execution instances generally. Therefore, the generalized path
impact set of sg is defined as the union of generalized path impact sets of the execution instances of sg,
and is denoted as Pg. In other words,

Pg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Ph
g,tk

, (9)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk. The element in Pg is called the generalized path impact
element of sg. The number of generalized path impact element of sg is called the generalized path
impact factor of sg, and denoted as xgpi(sg).

Example 9. We explain the above definitions by calculating the generalized path impact set of the statement s7.
In Program 1, the statement s7 has four execution instances s1

7,t1
, s2

7,t1
, s1

7,t3
and s2

7,t3
. Given that P1

7,t1
= {s1

11,t1
},

P2
7,t1

= ∅, P1
7,t3

= ∅ and P2
7,t3

= ∅, we can use Formula (9) to calculate the generalized value impact set of
the statement s7.

P7 = P1
7,t1

⋃P2
7,t1

⋃P1
7,t3

⋃P2
7,t3

= {s1
11,t1

}.

3.4.2. Generalized Path Impact Set of the Special Statement Instance

If a statement instance sl
r,tk

is a controlling expression instance, then it usually does not have any
impact successors. Corresponding to sl

r,tk
, there is usually a branch instance Bl

r,z,tk
, which exists in the

original execution path Hk. In this situation, the generalized path impact set of sl
r,tk

is precisely the
path impact set of Bl

r,z,tk
. This conclusion can be interpreted as follows: Assume there is a software

fault in statement sr. If an error is generated from the controlling expression instance sl
r,tk

, then the
branch instance Bl

r,z,tk
will no longer be executed, the information expressed by the statement instances

in Bl
r,z,tk

can no longer propagate along the original execution path Hk to some controlling expression
instances outside of Bl

r,z,tk
. This error propagation process also exactly reflects the impact of branch

instance Bl
r,z,tk

on the execution path of the test case tk. Therefore, the generalized path impact set
of sl

r,tk
is equal to the path impact set of Bl

r,z,tk
. For example, the generalized path impact set of the

controlling expression instance s1
5,t1

is equal to the path impact set of the branch instance B1
5,t,t1

. In other
words, P1

5,t1
= P1

5,t,t1
= {s1

11,t1
}. Otherwise, if a statement instance is not a controlling expression

instance and does not have any impact successors, then we set its generalized path impact set to an
empty set.

3.4.3. The Generalized Path Impact Relationship between a Statement Instance and Its Direct
Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Ph
g,tk

=
⋃

c=1,2,··· ,n
P qc

pc ,tk
. (10)

Example 10. In Program 1, s2
5,t1

, s2
6,t1

and s2
7,t1

are all direct impact successors of the statement instance s1
7,t1

.
Given that P2

5,t1
= {s1

11,t1
}, P2

6,t1
= ∅, and P2

7,t1
= ∅, according to formula (10), we can get

P1
7,t1

= P2
5,t1

⋃P2
6,t1

⋃P2
7,t1

= {s1
11,t1

}.

53

Mathematics 2019, 7, 778

3.5. Latent Impact Factor

The fault in a statement may cause some program branches that have not yet been executed to
be executed. The latent impact factor expresses the impact of these branches to be executed on the
program output.

3.5.1. Latent Impact Factor of the Program Statement

Contrary to the branch instances that will no longer be executed, some branch instances may
be going to be executed due to the error generated from the statement instance sh

g,tk
. These branches

to be executed may change the program outputs. For an example, in Program 1, if the assignment
statement s2 is mutated into dist=m%n, then the remainder dist becomes zero when test case t1 runs.
In this situation, the true branch B11,t of s11, which consists of s12 and does not appear in the original
execution path H1, will be executed and change the program output.

These branch instances to be executed are divided into two classes. In the first class, each branch
instance contains statement instances. In the second class, each branch instance does not. The first
class branch instances constitute the latent impact set of statement instance sh

g,tk
, and denotes as Lh

g,tk
.

The element in Lh
g,tk

is called the latent impact element of the statement instance sh
g,tk

. The number of latent
impact elements of sh

g,tk
is called the latent impact factor of sh

g,tk
and denoted as xli(sh

g,tk
).

A statement sg has multiple execution instances generally, and each of them has its own latent
impact set. Therefore, the union of these latent impact sets is defined as the latent impact set of the
statement sg, and denoted as Lg. In other words,

Lg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Lh
g,tk

, (11)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk. The element in Lg is called the latent impact element of
sg. The number of latent impact element of sg is called the latent impact factor of the statement sg, and
denoted as xli(sg).

Example 11. We are going to calculate the latent impact factor of the statement s7. As shown in Table 2, s7 has
the four execution instances s1

7,t1
, s2

7,t1
, s1

7,t3
and s2

7,t3
. Assume four errors e1

7,t1
, e2

7,t1
, e1

7,t3
and e2

7,t3
are generated

from the statement instances s1
7,t1

, s2
7,t1

, s1
7,t3

and s2
7,t3

, respectively. In this situation, e1
7,t1

may propagate along
the original execution path H1 to the controlling expression instances s2

5,t1
, s3

5,t1
and s1

11,t1
. When e1

7,t1
propagates

to s2
5,t1

, the branch instances B2
5, f ,t1

that do not appear in the original execution path H1 will be executed.
However, the role of B5, f is to exit the loop, so that it does not contain any statements. Thus, B2

5, f ,t1
itself does

not affect program output. This makes B2
5, f ,t1

not a latent impact element of s1
7,t1

. When e1
7,t1

propagates along
the original execution path H1 to s3

5,t1
, the branch instance B3

5,t,t1
that does not appear in the original execution

path H1 will be executed. The B5,t contains some statements so that the execution of B3
5,t,t1

in itself may change
the program outputs. Thus, B3

5,t,t1
is a latent impact element of s1

7,t1
. When e1

7,t1
propagates along the original

execution path H1 to s1
11,t1

, the branch instance B1
11,t,t1

that does not appear in the original execution path H1

will be executed. The program branch B11,t contains some statements so that the execution of B1
11,t,t1

in itself
may change the program outputs. Thus, the branch instance B1

11,t,t1
is a latent impact element of s1

7,t1
. From the

above analysis, we can know that the latent impact set of s1
7,t1

consists of B3
5,t,t1

and B1
11,t,t1

. In the similar way,
we can know that the latent impact set of the statement instance s2

7,t1
consists of B3

5,t,t1
. The latent impact set of

s1
7,t3

consists of B3
5,t,t3

, and that of s2
7,t3

also consists of B3
5,t,t3

. With Formula (11), we can get the latent impact
set of the statement s7:

L7 = L1
7,t1

⋃
L2

7,t1

⋃
L1

7,t3

⋃
L2

7,t3
= {B3

5,t,t1
, B1

11,t,t1
, B3

5,t,t3
}.

54

Mathematics 2019, 7, 778

3.5.2. The Latent Impact Relationship between a Statement Instance and its Direct Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Lh
g,tk

=
⋃

c=1,2,··· ,n
Lqc

pc ,tk
. (12)

Example 12. From Figure 1, we can know the the direct impact successors of the statement instance s1
7,t1

consist
of s2

5,t1
, s2

6,t1
and s2

7,t1
. Given that L2

5,t1
= ∅, L2

6,t1
= {B1

11,t,t1
} and L2

7,t1
= {B3

5,t,t1
}, according to Formula (12),

we have

L1
7,t1

= L2
5,t1

⋃
L2

6,t1

⋃
L2

7,t1
= {B1

11,t,t1
, B3

5,t,t1
}.

In addition, under the condition that we know L2
5,t3

= ∅, L2
6,t3

= ∅ and L2
7,t3

= {B3
5,t,t3

}, using the same
method, we can still get

L1
7,t3

= L2
5,t3

⋃
L2

6,t3

⋃
L2

7,t3
= {B3

5,t,t3
}.

Furthermore, we can get

L7 = L1
7,t1

⋃
L2

7,t1

⋃
L1

7,t3

⋃
L2

7,t3
= {B1

11,t,t1
, B3

5,t,t1
, B3

5,t,t3
}.

3.5.3. Latent Impact Set of the Special Statement Instance

If a statement instance sl
r,tk

is a controlling expression instance and the branch instance Bl
r,z,tk

does
not appear in the original execution path Hk; then, in the condition that Bl

r,z,tk
is not empty, we set

Bl
r,z,tk

as the only element in the latent impact set of sl
r,tk

. If a statement instance is not a controlling
expression instance and does not have any impact successors, then we set the latent impact set of sl

r,tk
to an empty set.

For example, as far as the controlling expression instance s2
5,t1

is concerned, although the branch
instance B2

5, f ,t1
does not appear in the original execution path H1, B2

5, f ,t1
does not include any statement

instance. Hence, B2
5, f ,t1

is not a latent impact element of s2
5,t1

, and we set the latent impact set of s3
5,t1

to an empty set. As far as the controlling expression instance s3
5,t1

is concerned, because the branch
instance B3

5,t,t1
not only does not appear in the original execution path H1 but also is not empty, we set

s3
5,t1

as the only element in the latent impact set of B3
5,t,t1

.

3.6. Information Hidden Factor

The last feature of a statement is its information hiding feature. Sometimes, the program has
multiple output statements, and some of them happen to generate same outputs. In this case, even if
the software fault in a statement changes the execution path of the test case, the output of the program
may still not be changed.

This phenomenon make the faults in statements difficult to identify. For a statement sg, we
use the information hiding factor to express this feature. The information hiding factor of sg can be
calculated in the following way. We use the test cases that execute sg to construct sub test suite Tg.
When we execute Tg, the program under testing generates some outputs. The information entropy of
the output distribute is called the information hidden factor of statement sg, and denoted as xih(sg).
In other words,

xih(sg) = −∑
i

pi log2 pi, (13)

55

Mathematics 2019, 7, 778

where pi is the probability that the test cases executing the statement sg generate the ith program
output class.

Example 13. We calculate the information hidden factors of the statements s9 and s11, respectively.
In Program 1, the test suite consists of the test cases t1, t2 and t3. These three test cases all execute statement
s9. Their executions generate three program outputs (fac = 6, class 1), (fac = 1 class 2) and (fac = 6 class 1),
respectively. Hence, the probability that the program output (fac = 6, class 1) is 0.67, and the probability that the
program output (fac = 1 class 2) is 0.33. According to Formula (13), the information hidden factor of statement
s9 is 0.9182 bit. The test cases t1 and t2 execute the statement s11. Their executions generate two program
outputs (fac = 6, class 1) and (fac = 1 class 2), respectively. Hence, the probabilities that the program output
(fac = 6, class 1) and (fac = 6, class 1) are both 0.5. According to Formula (13), the information hidden factor of
statement s11 is 1.0 bit.

4. Calculation of Statement Features

First, we propose an iterative method to compute statement features, and then compare the time
cost of this method with that of direct mutant testing.

4.1. Calculation Process

We divide the calculation of all the statement features into two parts. The first part calculation
includes the first five statement features: the value impact factor, the path impact factor, the generalized
value impact factor, the generalized path impact factor, and the latent impact factor. The second part
calculation includes includes the last two statement features: the number of times a statement is
executed, and information hidden factor.

The first part of the calculation takes much more time than the second one. For reducing the
computational complexity, we propose an iterative method. Generally, if a statement instance has at
least one impact successor, then we can calculate its first five features according to the formulas (2), (5),
(8), (10), and (12). Otherwise, we use the methods mentioned in Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and
3.5.3 to calculate its first five features.

The computation of the statement features is divided into two corresponding stages. The first
stage, including steps 1–6, calculate the first part of statement features. The second stage including
steps 7 and 8, calculate the second part of statement features. The overall computation steps are
as follows:

Step 1 Set test case serial number k = 1.
Step 2 Construct the execution impact graph Gk of the test case tk.
Step 3 First, from the original execution path of the test case tk, find all statement instances that

have not been analyzed. From these unanalyzed statement instances, find the last executed statement
instance. We might as well denote this statement instance as sh

g,tk
.

(1) If sh
g,tk

has one or more impact successors, then we construct the impact sets of its first five
features according to the formulas (2), (5), (8), (10) and (12).

(2) If sh
g,tk

does not have any impact successors, then we construct the impact sets of its first five
features according to the methods mentioned in Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.

Step 4 If there are some statement instances which appear in the original execution path of test
case tk but have not yet been analyzed, go to step 3, else go to step 5.

Step 5 If test case tk is not the last test case in test suite, then k = k + 1, and go to step 2, else go to
step 6.

Step 6 First, construct each program statement’s value impact set, path impact set, generalized
value impact set, generalized path impact set and latent impact set by formulas (1), (4), (7), (9) and (11).
Next, for each program statement , calculate its value impact factor, path impact factor, generalized
value impact factor, generalized path impact factor factor and the latent impact factor.

56

Mathematics 2019, 7, 778

Step 7 For each statement in program under testing, compute the total number of times it is
executed by the test cases in the test suite.

Step 8 For each statement in the program under testing, compute its information hidden factor by
formula (13).

Example 14. We illustrate the above process by extracting the features of each statement in Program 1. In terms
of the first stage of extracting the statement features, whether the statement instances are generated during the
execution of test case 1, test case 2 or test case 3, the methods for calculating features of the statement instance
are the same. Therefore, with regard to steps 1 to 5, we only explain in detail how to calculate the features of the
statement instances generated during test case t1 execution. The detailed calculation process is as follows.

We first set k = 1, execute test case t1, and construct the execution impact graph G1 of test case t1

as shown in Figure 1.
The first analyzed statement instance is the last executed statement instance in original execution

path H1. Thus, we first analyze the output statement instance s1
13,t1

. According to Sections 3.1.4, 3.2.4,
3.3.2, 3.4.2 and 3.5.3, we get V1

13,t1
= {s1

13,t1
}, P1

13,t1
= ∅, V1

13,t1
= ∅, P1

13,t1
= ∅ and Ł1

13,t1
= ∅.

The second analyzed statement instance s1
11,t1

is the penultimate element in original execution
path H1. Because it is a controlling expression, we get V1

11,t1
= ∅, P1

11,t1
= {s1

11,t1
}, V1

11,t1
= V1

11,t,t1
=

V1
13,t1

= {s1
13,t1

}, P1
11,t1

= ∅ and L1
11,t1

= {B1
11,t,t1

} according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
The third analyzed statement instance s1

9,t1
is the antepenultimate element in H1. Because s1

9,t1
is a

controlling expression instance, we get V1
9,t1

= ∅, P1
9,t1

= {s1
9,t1

}, V1
9,t1

= V1
9,t,t1

= V1
11,t1

⋃
V1

13,t1
=

{s1
13,t1

}, P1
9,t1

= P1
9,t,t1

= (P1
11,t1

⋃
P13,t1) \ B1

9,t,t1
= (s1

11,t1

⋃
∅) \ B1

9,t,t1
= ∅ and Ł1

9,t1
= {B1

9,t,t1
}

according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
The fourth analyzed statement instant s1

8,t1
is the fourth element from the end of H1. Because s1

8,t1

is an output statement instance, V1
8,t1

= {s1
8,t1

}, P1
8,t1

= ∅, V1
8,t1

= ∅, P1
8,t1

= ∅ and Ł1
8,t1

= ∅ according
to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.

The fifth analyzed statement instant s3
5,t1

is the fifth element from the end of H1. Because s3
5,t1

is a controlling expression instance of zero length, V3
5,t1

= ∅, P3
5,t1

= {s3
5,t1

}, V3
5,t1

= V3
5, f ,t1

= ∅,

P3
5,t1

= P1
5,t,t1

= ∅ and Ł3
5,t1

= {B3
5,t,t1

} according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
The sixth analyzed statement instance s2

7,t1
is the sixth statement instance from the end of H1.

Because the direct impact successors of s2
7,t1

consist of s3
5,t1

, we get V2
7,t1

= V3
5,t1

= ∅, P2
7,t1

= P3
5,t1

=

{s3
5,t1

}, V2
7,t1

= V3
5,t1

= ∅, P2
7,t1

= P3
5,t1

= ∅, Ł2
7,t1

= Ł3
5,t1

= {B3
5,t,t1

} according to formulas (2), (5), (8),
(10) and (12).

The seventh analyzed statement instance s2
6,t1

is the seventh element from the end of H1.
Becasue the direct impact successors of s2

6,t1
consist of s1

8,t1
and s1

11,t1
, we get V2

6,t1
= V1

8,t1

⋃
V1

11,t1
=

{s1
8,t1

}, P2
6,t1

= P1
8,t1

⋃
P1

11,t1
= {s1

11,t1
}, V2

6,t1
= V1

8,t1

⋃ V1
11,t1

= {s1
13,t1

}, P2
6,t1

= P1
8,t1

⋃P1
11,t1

= ∅ and
L2

6,t1
= L1

8,t1

⋃
L1

11,t1
= {B1

11,t,t1
} according to formulas (2), (5), (8), (10) and (12).

The eighth analyzed statement instance s2
5,t1

is the eighth element from the end of H1.
Because s2

5,t1
is a controlling expression instance, we get V2

5,t1
= ∅, P2

5,t1
= {s2

5,t1
}, V2

5,t1
= V2

5,t,t1
=

V2
6,t1

⋃
V2

7,t1

⋃
V3

5,t1
= {s1

8,t1
}, P2

5,t1
= P2

5,t,t1
= (P2

6,t1

⋃
P2

7,t1

⋃
P3

5,t1
) \ P2

5,t,t1
= {s1

11,t1
} and Ł2

5,t1
= ∅

according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
The ninth analyzed statement instance s1

7,t1
is the ninth element from the end of H1. Because the

direct impact successors of s1
7,t1

consist of s2
5,t1

, s2
6,t1

and s2
7,t1

, we get V1
7,t1

= V2
5,t1

⋃
V2

6,t1

⋃
V2

7,t1
= {s1

8,t1
},

P1
7,t1

= P2
5,t1

⋃
P2

6,t1

⋃
P2

7,t1
= {s2

5,t1
, s3

5,t1
, s1

11,t1
}, V1

7,t1
= V2

5,t1

⋃ V2
6,t1

⋃ V2
7,t1

= {s1
8,t1

, s1
13,t1

}, P1
7,t1

=

P2
5,t1

⋃P2
6,t1

⋃P2
7,t1

= {s1
11,t1

} and L1
7,t1

= L2
5,t1

⋃
L2

6,t1

⋃
L2

7,t1
= {B3

5,t,t1
, B1

11,t,t1
} according to formulas

(2), (5), (8), (10) and (12).
The tenth analyzed statement instance s1

6,t1
is the tenth element from the end of H1. Because the

direct impact successors of s1
6,t1

consist of s2
6,t1

, we get V1
6,t1

= V2
6,t1

= {s1
8,t1

}, P1
6,t1

= P2
6,t1

= {s1
11,t1

},

57

Mathematics 2019, 7, 778

V1
6,t1

= V2
6,t1

= {s1
13,t1

}, P1
6,t1

= P2
6,t1

= ∅ and L1
6,t1

= {B11,t,t1} according to formulas (2), (5), (8), (10)
and (12).

The eleventh analyzed statement instance s1
5,t1

is the eleventh statement instance from the end
from H1. Because s1

5,t1
is a controlling expression instance, we get V1

5,t1
= ∅, P1

5,t1
= {s1

5,t1
}, V1

5,t1
=

V1
5,t,t1

= {s1
8,t1

}, P1
5,t1

= P1
5,t,t1

= {s1
11,t1

} and L1
5,t1

= ∅ according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2
and 3.5.3.

The twelfth analyzed statement instance s1
4,t1

is the twelfth element from the end of H1. Because the
direct impact successors of s1

4,t1
consist of s1

6,t1
, we get V1

4,t1
= V1

6,t1
= {s1

8,t1
}, P1

4,t1
= P1

6,t1
= {s1

11,t1
},

V1
4,t1

= V1
6,t,t1

= {s1
13,t1

}, P1
4,t1

= P1
6,t,t1

= ∅, L1
4,t1

= L1
6,t1

= {B1
11,t,t1

} according to formulas (2), (5), (8),
(10) and (12).

The thirteenth analyzed statement instance s1
2,t1

is the thirteenth element from the end of
H1. The direct impact successors of s1

2,t1
consist of s1

5,t1
, s1

6,t1
and s1

7,t1
. According to formulas

(2), (5), (8), (10) and (12), we get V1
2,t1

= V1
5,t1

⋃
V1

6,t1

⋃
V1

7,t1
= {s1

8,t1
}, P1

2,t1
= P1

5,t1

⋃
P1

6,t1

⋃
P1

7,t1
=

{s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

}, V1
2,t1

= V1
5,t1

⋃ V1
6,t1

⋃ V1
7,t1

= {s1
8,t1

, s1
13,t1

}, P1
2,t1

= P1
5,t1

⋃P1
6,t1

⋃P1
7,t1

= {s1
11,t1

}
and L1

2,t1
= L1

5,t1

⋃
L1

6,t1

⋃
L1

7,t1
= {B3

5,t,t1
, B1

11,t,t1
}.

The fourteenth analyzed statement instance s1
1,t1

is the fourteenth element from the end of H1.
Because s1

1,t1
is a controlling expression instance, we get V1

1,t1
= ∅, P1

1,t1
= {s1

1,t1
}, V1

1,t1
= V1

1,t,t1
=

V1
2,t1

= {s1
8,t1

}, P1
1,t1

= P1
1,t,t1

= P1
2,t1

\ B1
1,t,t1

= {s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

} and L1
1,t1

= B1
1, f ,t1

according to
Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.

Similar to the above procedure, we can continue to calculate the above first five impact sets for all
statement instances generated during the executions of test case 2 and test case 3, respectively. Thus
far, steps 1–5 are completed, and their final results are shown in Table 3.

After calculating the first five impact sets of each statement instance, based on Table 3 and
Formulas (1), (4), (7), (9) and (11), we can get the first five impact sets of each statement, as shown in
Table 4. The corresponding impact factors are shown in Table 5.

After calculating the first five impact factors of each statement, we calculate the execution number
of each statement, as shown in Table 6.

Finally, similar to Example 13, we use the Formula (13) to calculate the information hidden factor
of each statement. The calculation process are shown in Table 7.

4.2. Computational Complexity Analysis

Through the analysis of computational complexity, we can draw the following conclusion:
Compared with the time required for direct mutation testing, the time used to calculate all statement
features can be neglected. The computation time of statement features consists of two parts. The first
part of time overhead is used to calculate the value impact factor, path impact factor, generalized
value impact factor, generalized path impact factor and potential impact factor. The calculation of
these features is relatively complex. The second part of time overhead is used to calculate the other
two statement features. The calculation of these two features is relatively simple. Therefore, we can
approximatively consider the first part of time overhead as the total time overhead for computing all
statement features. In this situation, to prove the conclusion, we only need to prove that the first part
of time overhead is much lower than that used to directly execute mutation testing. We can get this
conclusion from the following four steps:

In the first steps, we first suppose the time overhead that the computer spends to executes one
statement once is T0. According the Section 4.1, we can get the following conclusion: the time overhead
used to compute a factor of a statement instance is also roughly equal to T0. If a statement instance
has at least one impact successor, then we use the formulas (2), (5), (8), (10) and (12) to calculate its
first five impact factors, respectively. Otherwise, this statement does not have any impact successors,
and we use the method in the Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3 to calculate them, respectively.

58

Mathematics 2019, 7, 778

Whichever method is used, the calculation is simple. Therefore, we can consider that the time overhead
used to compute an impact factor of the statement instance is roughly equal to T0.

Table 3. The first five impact sets of all statement instances in Program 1.

Statement
Instance

Direct Impact
Successors

Value
Impact Set

Path
Impact Set

Generalized
Value Impact Set

Generalized
Path Impact Set

Latent
Impact Set

s1
13,t1

∅ s1
13,t1

∅ ∅ ∅ ∅

s1
11,t1

∅ ∅ s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s1
9,t1

∅ ∅ s1
9,t1

s1
13,t1

∅ B1
9,t,t1

s1
8,t1

∅ s1
8,t1

∅ ∅ ∅ ∅

s3
5,t1

∅ ∅ s3
5,t1

∅ ∅ B3
5,t,t1

s2
7,t1

s3
5,t1

∅ s3
5,t1

∅ ∅ B3
5,t,t1

s2
6,t1

s1
8,t1

, s1
11,t1

s1
8,t1

s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s2
5,t1

∅ ∅ s2
5,t1

s1
8,t1

s1
11,t1

∅

s1
7,t1

s2
5,t1

, s2
6,t1

, s2
7,t1

s1
8,t1

s2
5,t1

, s3
5,t1

, s1
11,t1

s1
8,t1

, s1
13,t1

s1
11,t1

B3
5,t,t1

, B1
11,t,t1

s1
6,t1

s2
6,t1

s1
8,t1

s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s1
5,t1

∅ ∅ s1
5,t1

s1
8,t1

s1
11,t1

∅

s1
4,t1

s1
6,t1

s1
8,t1

s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s1
2,t1

s1
5,t1

, s1
6,t1

, s1
7,t1

s1
8,t1

s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

s1
8,t1

, s1
13,t1

s1
11,t1

B3
5,t,t1

, B1
11,t,t1

s1
1,t1

∅ ∅ s1
1,t1

s1
8,t1

s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

B1
1, f ,t1

s1
12,t2

∅, s1
12,t2

∅ ∅ ∅ ∅

s1
11,t2

∅, ∅ s1
11,t2

s1
12,t2

∅ B1
11, f ,t2

s1
9,t2

∅ ∅ s1
9,t2

s1
12,t2

∅ B1
9,t,t2

s1
8,t2

∅ s1
8,t2

∅ ∅ ∅ ∅

s1
5,t2

∅ ∅ s1
5,t2

∅ ∅ B1
5,t,t2

s1
4,t2

s1
8,t2

, s1
11,t2

s1
8,t2

s1
11,t2

s1
12,t2

∅ B1
11, f ,t2

s1
3,t2

s1
5,t2

∅ s1
5,t2

∅ ∅ B1
5,t,t2

s1
1,t2

∅ ∅ s1
1,t2

∅ s1
5,t2

B1
5,t,t2

s1
10,t3

∅ s1
10,t3

∅ ∅ ∅ ∅

s1
9,t3

∅ ∅ s1
9,t3

s1
10,t3

∅ B1
9, f ,t3

s1
8,t3

∅ s1
8,t3

∅ ∅ ∅ ∅

s3
5,t3

∅ ∅ s3
5,t3

∅ ∅ B3
5,t,t3

s2
7,t3

s3
5,t3

∅ s3
5,t3

∅ ∅ B3
5,t,t3

s2
6,t3

s1
8,t3

s1
8,t3

∅ ∅ ∅ ∅

s2
5,t3

∅ ∅ s2
5,t3

s1
8,t3

∅ ∅

s1
7,t3

s2
5,t3

, s2
6,t3

, s2
7,t3

s1
8,t3

s2
5,t3

, s2
5,t3

s1
8,t3

∅ B3
5,t,t3

s1
6,t3

s2
6,t3

s1
8,t3

∅ ∅ ∅ ∅

s1
5,t3

∅ ∅ s1
5,t3

s1
8,t3

∅ ∅

s1
4,t3

s1
6,t3

s1
8,t3

∅ ∅ ∅ ∅

s1
3,t3

s1
5,t3

, s1
6,t3

, s1
7,t3

s1
8,t3

s1
5,t3

, s2
5,t3

, s3
5,t3

s1
8,t3

∅ B3
5,t,t3

s1
1,t3

∅ ∅ s1
1,t3

s1
8,t3

s1
5,t3

, s2
5,t3

, s3
5,t3

B1
1,t,t3

59

Mathematics 2019, 7, 778

Table 4. The first five impact sets of all statements in Program 1.

Statement
instance

Value
Impact Set

Path
Impact Set

Generalized
Value Impact Set

Generalized
Path Impact Set

Latent
Impact Set

s1 ∅ s1
1,t1

, s1
1,t2

, s1
1,t3

s1
8,t1

, s1
8,t3

s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

,s1
5,t2

, s1
5,t3

, s2
5,t3

, s3
5,t3

B1
1, f ,t1

,B1
5,t,t2

, B1
1,t,t3

s2 s1
8,t1

s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

s1
8,t1

, s1
13,t1

s1
11,t1

B3
5,t,t1

, B1
11,t,t1

s3 s1
8,t3

s1
5,t2

, s1
5,t3

, s2
5,t3

, s3
5,t3

s1
8,t3

∅ B1
5, f ,t2

, B3
5,t,t3

s4 s1
8,t1

, s1
8,t2

,s1
8,t3

s1
11,t1

, s1
11,t2

s1
13,t1

, s1
12,t2

∅ B1
11,t,t1

, B1
11, f ,t2

s5 ∅
s3

5,t1
, s2

5,t1
, s1

5,t1
, s1

5,t2
,

s3
5,t3

, s2
5,t3

, s1
5,t3

s1
8,t1

, s1
8,t3

s1
11,t1

B3
5,t,t1

, B1
5,t,t2

, B3
5,t,t3

s6 s1
8,t1

, s1
8,t3

s1
11,t1

, s1
13,t1

∅ B1
11,t,t1

s7 s1
8,t1

, s1
8,t3

s3
5,t1

, s2
5,t1

, s1
11,t1

, s3
5,t3

,
s2

5,t3

s1
8,t1

, s1
13,t1

, s1
8,t3

s1
11,t1

B3
5,t,t1

, B1
11,t,t1

, B3
5,t,t3

s8 s1
8,t1

, s1
8,t2

, s1
8,t3

∅ ∅ ∅ ∅

s9 ∅ s1
9,t1

, s1
9,t2

, s1
9,t3

s1
13,t1

, s1
12,t1

, s1
10,t3

∅ B1
9,t,t1

, B1
9,t,t2

, B1
9, f ,t3

s10 s1
10,t3

∅ ∅ ∅ ∅

s11 ∅ s1
11,t1

, s1
11,t2

s1
13,t1

, s1
12,t2

∅ B1
11,t,t1

, B1
11, f ,t2

s12 s1
12,t2

∅ ∅ ∅ ∅

s13 s1
13,t1

∅ ∅ ∅ ∅

Table 5. The first five impact factors of all statements in Program 1.

Statement
Value
Impact Factor

Path
Impact Factor

Generalized
Value Impact Factor

Generalized
Path Impact Factor

Latent
Impact Factor

s1 0 3 2 8 3

s2 1 4 2 1 2

s3 1 4 1 0 2

s4 3 2 2 0 2

s5 0 7 2 1 3

s6 2 1 1 0 1

s7 2 5 3 1 3

s8 3 0 0 0 0

s9 0 3 3 0 3

s10 1 0 0 0 2

s11 0 2 2 0 2

s12 1 0 0 0 0

s13 1 0 0 0 0

Table 6. The execution number of each statement in Program 1.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

3 1 2 3 7 4 4 3 3 1 2 1 1

60

Mathematics 2019, 7, 778

Table 7. Computation for information hidden factor of each statement in Program 1.

Statement Ratio (fac = 6 class 1) Ratio (fac = 1 class 2) Information Hidden Factor

s1 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s2 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

s3 1/2 1/2 −
(

1
2

)
log2

(
1
2

)
−
(

1
2

)
log2

(
1
2

)
= 1.0

s4 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s5 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s6 2/2 −
(

2
2

)
log2

(
2
2

)
= 0

s7 2/2 −
(

2
2

)
log2

(
2
2

)
= 0

s8 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s9 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s10 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

s11 1/2 1/2 −
(

1
2

)
log2

(
1
2

)
−
(

1
2

)
log2

(
1
2

)
= 1.0

s12 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

s13 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

In the second step, we can conclude that the time overhead used to calculate all factors of all
statement instances is roughly equal to five times ∑G

g=1 ∑K
k=1 HgkT0, where G is the total number of

statements in program under testing, K is the total number of test cases in test suite, and Hgk is the
number of times statement sg is executed by the test case tk. Because statement sg generates ∑K

k=1 Hgk
execution instances, in terms of the program under testing, the total number of executed statement
instances by the tests suite is ∑G

g=1 ∑K
k=1 Hgk. Combining with the conclusion in the first step, we get

the conclusion: In terms of the program under testing, the time overhead for computing all features of
all statement instances is roughly equal to five times ∑G

g=1 ∑K
k=1 Hgk.

In the third step, we can conclude that the time overhead for direct mutation testing is
∑G

g=1 ∑K
k=1 ng|Pk|T0, where we suppose that the statement sg generates ng mutants, and the test

case tk executes |Pk| statement instances. In the direct mutation testing, the program under testing
generates ∑G

g=1 ng mutants, each mutant is tested by the test suite, and the time overhead for the test

suite to test each mutant is ∑K
k=1 |Pk|T0. Therefore, the time overhead for direct mutation testing is

∑G
g=1 ng × ∑K

k=1 |Pk|T0 = ∑G
g=1 ∑K

k=1 ng|Pk|T0.
In the fourth step, we compare the time overhead used to calculate all features of all statement

instances and the overhead used in the direct mutation testing. The ratio of the two time overheads
is 5 ∑G

g=1 ∑K
k=1 Hgk/∑G

g=1 ∑K
k=1 ng|Pk|. Because ng
 5, |Pk|
 Hgk, we can get the final conclusion:

Compared with the time required for direct mutation testing, the time overhead used to calculate all
statement features can be neglected.

5. Machine Learning Algorithms Comparison and Modelling

Taking the Brier scores as a criterion, we compared the prediction effects of the following five
models on statement mutation scores: artificial neural networks (ANN), logical regression (LR),
random forests (RF), support vector machines (SVM) and symbolic regression (SR). The experiment
result shows the artificial neural network algorithm has the highest prediction precision.

61

Mathematics 2019, 7, 778

We did not try very complex models because the model should not be too complicated. First,
our sample size should not be too large. Our data records need to be extracted in real time, so that
the excessively large sample size will cause the user to wait a long time. In the case of a small sample
size, over-complexing models can cause over-fitting. Secondly, according to the introduction of the
Section 3, we can know that the relationship between the dependent variable and each independent
variable is monotonic, so we estimate that the available model should not be very complicated.

5.1. Experimental Subjects

In this paper, there are two programs under testing: schedule.c and tcas.c. We explain our
experiment with schedule.c as the main part and tcas.c as the auxiliary part. The program schedule.c
realizes a CPU process management, and the program tcas.c realizes an aircraft early warning system.
A more specific introduction is as follows.

The program schedule.c [16] realizes a priority scheduling algorithm. A computer has only one
CPU, but sometimes multiple programs simultaneously request to be executed. For solving this
problem, the priority scheduling algorithm assigns each program a priority. When a program needs to
use CPU, it is first stored in a queue so that the program with a higher priority gets a CPU, whereas
the program with a lower priority can wait. The schedule.c consists of 73 lines of C code including
one branch statement, two single-loop statements and two double-loop statements. The test cases are
included in its usage instructions. We take these test cases as a test suite of schedule.c.

The program tcas.c [17] is used to avoid collision of aircraft, which consists of 135 lines of C
code with 40 program branch statements and 10 compound predicates. The tcas.c is able to monitor
the traffic situation around a plane and offer information on the altitude of other aircraft. It can also
generate collision warnings that another aircraft is in close vicinity by calculating the vertical and
horizontal distances between the two aircrafts. The Software artifact Infrastructure Repository (SIR)
also supplies some types of test case suites for tcas.c. From the SIR, we randomly selected a branch
coverage test suite suite122 as the test suite used in our experiment.

5.2. The Construction Method of Data Set

To compare the prediction accuracy of the five machine learning models, we did two experiments
with schedule.c and tcas.c, respectively. No matter the experiment, the data set is created in the same
way. In each experiment, the data set contains 200 data records. Each data record rp is established with
one corresponding mutant sample mp and contains seven independent variables and one dependent
variable. If mp is generated by modifying the statement sq, then the seven independent variables of rp

are the seven features of the statement sq, and the dependent variable of rp is the identification result
of the mutant mp.

We take an example to explain the construction process of a data record. We might as well assume
that a mutant sample mp is generated by modifying statement s2 and identified by the test suite.
Now, we use mp to construct one data record rp. Because mp is generated by modifying s2, the values
of seven independence variables in rp are the seven features of statement s2, i.e., (1, 4, 2, 1, 2, 1, 0) as
shown in Tables 5–7. Because mp is identified by the test suite, the value of dependence variable in rp

is 1. Therefore, the data record rp is (1, 4, 2, 1, 2, 1, 0, 1).

5.3. Performance Metrics

A model may be considered good when it is evaluated using a metric, but, at the same time,
the model may be considered bad when assessed against other metrics. For this reason, we will
compare a few different common evaluation metrics and decide which of them is more suitable to our
statement mutation score prediction.

62

Mathematics 2019, 7, 778

5.3.1. Area under Curve

The two coordinates of the receiver operating characteristic (ROC) curve represent sensitivity and
specificity, respectively. Through these two indicators, the ROC curve displays the two types of errors
for all possible thresholds. The area AUC under the ROC curve is the quantitative indicator commonly
used to evaluate a binary classification algorithm [18].

5.3.2. Logarithmic Loss

Logarithmic Loss works by penalising the false classifications [18]. It works well for
both binary classification and multi-class classification generally. For a binary classification,
the logarithmic function

− 1
n

n

∑
i=1

I(yi = 1) log
[
p̂(Y = 1|xi)

]
+ I(yi = 0) log

[
1 − p̂(Y = 1|xi)

]

is often used as a classifier’s loss function. Logarithmic Loss closer to 0 indicates higher accuracy for
the classifier.

5.3.3. Brier Score

The basic idea of Brier score is to compute the mean squared error (MSE) between the predicted
probability scores and the true class indicator [19], where the positive class is coded as yi = 1,
and negative class yi = 0. The most common formulation of the Brier score is shown as follows:

BS =
1
n

n

∑
i=1

[yi − p̂(Y = yi|xi)]
2.

The Brier score is a loss function, which means the lower its value, the better the machine
learning model.

5.3.4. Metric Comparison

In the cross-validation process, we choose the Brill score as the model evaluation criterion.
Our purpose is only to tell our users how likely the software bug in a statement will be detected
by a test suite. Therefore, AUC is not suitable for us because it is also not directly related to the
predicted probability. Because the logarithmic loss function may lead to an infinite penalty, it is
also not used by us. The Brier score is the good score function because it is related to the predicted
probability and is bounded. For the above reasons, we take the Brier score as an evaluation criterion in
the cross-validation.

5.4. Model Comparing and Tuning

Under the condition of the same partitioning of the data set, we take the Brier score as a standard
to evaluate the model. In our experiment, we tune hyperparameters and compare the prediction
accuracies of five machine learning models. We use the same partitioning of the data set and the
repeated 5-fold cross-validation to evaluate the prediction accuracy of the models because of the two
following reasons.

(1) We tune some hyperparameters to find the optimal model settings with the help of the
repeated 5-fold cross-validation method. During the 5-fold cross-validation, the samples are randomly
partitioned into five equally sized folds. Models are then fitted by repeatedly leaving out one of
the folds. In our each experiments, our data set contains 200 data records, so that the training and
validation sets contain 160 and 40 data records, respectively. However the result from cross-validation
is more or less uncertain generally. Therefore, in our experiment, five repeats of 5-fold cross-validation
are used to effectively reduce this uncertainty and increase the precision of the estimates. Because each

63

Mathematics 2019, 7, 778

5-fold cross-validation supplies a Brier score, five repeats of 5-fold cross-validation supply 5 Brier
scores. Under each candidate combination of hyperparameters, we use the average of the five Brier
scores to represent the prediction effects of the corresponding model.

(2) Because the performance metric is sensitive to the data splits, we thus compare the machine
learning models based on the same partitioning of the data. Otherwise, the difference in performance
will come from two different sources: the differences among the data splits and the differences among
the models themselves. If one model is better than the other, we don’t know if all performance
differences are caused by model differences.

The compared models include the logistic regression, random forest, neural network, support
vector machine and symbolic regression. We use their average Brier scores to assess their
prediction effects.

5.4.1. Logistic Regression

(1) Introduction to Logistic Regression

Conventional logistic regression [20,21] can predict the occurrence probability of a specific
outcome. The conditional probability of a positive outcome could be expressed with the formula below:

p(xi) = p(Y = 1|xi) =
1

1 + eβ0+β1x1+β2x2+···+βdxd
,

where βi is the coefficient for the ith feature, and d is the total number of features. β1, β2, · · · , βd can
be solved by the elastic net approach [22–24] as follows:

maxβ0,β
1
n

n

∑
i=1

{
I(yi = 1)logp(xi) + I(yi = 0)log

(
1 − p(xi)

)}− λ
[
(1 − α)

1
2
‖β‖2

2 + α‖β‖1
]
, (14)

where
‖β‖2

2 = β2
1 + β2

2 + · · ·+ β2
d and ‖β‖1 = |β1|+ |β2|+ · · ·+ |βd| .

(2) Logistic regression tuning

Glmnet [25] is an R language software package that can fit linear, logistic and multinomial,
Poisson, and Cox regression models by maximizing the penalized likelihood. In order to predict
the mutant score of each program statement in schedule.c, we use the ridge penalty algorithm in a
glmnet software package to fit the logistic regression mode. Hence, during tuning hyper parameters,
the penalized parameter α in the formula (14) is set to 0, and the penalized parameter λ is set to 10i

where i takes each integer from −7 to 7 in turn. In the cross-validation process, we use the Brier
score as the model evaluation criterion. Under each penalized parameter, the five repeats of 5-fold
cross-validation generate five Brier scores. We calculate the average of the five Brier scores under each
candidate penalized parameter λ, so that we can use the average Brier score to represent the prediction
effect of the model under the each candidate penalized parameter.

Figure 4 and Table 8 show the average Brier Score under each candidate value of the penalized
parameter λ . In Figure 4, the profile shows a decrease in the average Brier score until the penalized
value λ is 10−2. Therefore, the numerically optimally value of the penalized parameter is 10−2.

64

Mathematics 2019, 7, 778

Table 8. Average Brier scores for the logistic regression model.

λ 10−7 10−6 10−5 10−4 10−3

Mean 0.1095 0.1062 0.1075 0.1016 0.0955

λ 10−2 10−1 1 101 102

Mean 0.0950 0.1090 0.1321 0.1374 0.1380

λ 103 104 105 106 107

Mean 0.1381 0.1381 0.1381 0.1381 0.1381

Figure 4. The performance profile of the logistic regression for predicting the statement mutation scores.

5.4.2. Random Forests

(1) Introduction to Random Forest

The random forest model [26,27] can work for regression tasks and classification tasks generally.
It is a tree-based model consisting of multiple decision trees. Each decision tree is created on an
independent and random sample taken from the training data set.

The decision tree algorithm [18,28] is a top-down “greedy” approach that partitions the dataset
into smaller subsets. This algorithm has a tree-like structure that predicts the value of a target variable
based on several input variables. At each decision node, the features are split into two subsets and this
process is repeated until the number of data in the splits falls below some threshold. According to
the target variable’s type, decision trees can be divided into regression trees and classification trees.
The purpose of classification tree is to classify, and its target variable takes discrete values. The purpose
of regression trees is to build a regression model, its target variable takes continuous values.

65

Mathematics 2019, 7, 778

For regression, the regression tree algorithm begins with the entire data set S and searches every
distinct value of every independent variable to find the appropriate independent variable and split its
value that partitions the data into two subsets (S1 and S2) such that the overall sums of squares error

SSE = ∑
i∈S1

(yi − y1)
2 + ∑

i∈S2

(yi − y2)
2 (15)

are minimized, where y1 and y2 are the averages of the outcomes within subsets S1 and S2, respectively.
Then, within each of subsets S1 and S2, this method searches again for the independent variable and
splits its value that best reduces SSE. Because of the recursive splitting nature of regression trees,
this method is also known as recursive partitioning.

For classification, the aim of classification trees is to partition the data into smaller,
more homogeneous groups. Homogeneity in this context means that the nodes of the split are
more pure. This purity is usually quantified by the entropy or Gini index. For the two-class problem,
the Gini index for a given node is defined as

p1(1 − p1) + p2(1 − p2), (16)

where p1 and p2 are the probabilities of Class 1 and Class 2, respectively.
In order to make a prediction for a given observation, the regression tree first analyzes which class

this observation belongs to, and then takes the mean of the training data in the class as the prediction
of this observation. When random forest algorithms are used, the result of regression question can be
obtained by averaging predictions across all regression trees, and the result of the classification question
can be obtained by a majority vote across all classification trees, respectively. The generalization error
of a random forest depends on the errors of individual trees and the correlation between the trees.

(2) Random forest tuning

The randomForest package [29] implements the random forest algorithm in the R environment.
We use this software to predict statement mutation scores generated when the test suite executes on
the program schedule.c. Because the statement mutation score can be considered as the probability
of positive class in binary classification, we denote the positive class and negative class as 1 and 0,
respectively, and let Random Forests run under regression mode to predict the probability of a positive
class [30]. In order to obtain a good prediction model, the different hyper parameter combinations are
tried. The most important hyper parameter is mtry, which is the number of independent variables
randomly selected at each split. In our experiment, we tried multiple candidate values of mtry (from
1 to 7). The other important tuning parameter is ntree, which is the number of bootstrap samples
in the random forest algorithm. In theory, the performance of a random forest model should be a
monotonic function of the number of trees (ntree). However, when ntree is greater than a certain
number, the performance of a random forest model can only improve slowly. In our experiment, ntree
is set to 1000. Under each candidate value of the parameter mtry, we calculate the average of the five
Brier scores generated from the five repeats of 5-fold cross-validation. Furthermore, we use these
averages to express the prediction effects of the random forest model under different candidate values
of hyperparameter mtry. Figure 5 and Table 9 show the average Brier score under each candidate value
of the hyperparameter mtry. As shown in Figure 5, the average Brier scores show a U shape, whose
minimum value occurs in mtry = 3. Therefore, 3 is the optimal value of mtry.

Table 9. Average Brier scores for the random forest model.

mtry 1 2 3 4 5 6 7

Mean 0.1166 0.0923 0.0888 0.0897 0.0914 0.0928 0.0925

66

Mathematics 2019, 7, 778

Figure 5. The performance profile of the random forest for predicting the statement mutation scores.

5.4.3. Artificial Neural Networks

(1) Introduction to neural network

Neural networks [18,31] can be used not only for regression but also for classification. The outcome
of a neural network is modeled by an intermediary set of unobserved variables called hidden units.
The simplest neural network architecture is the single hidden layer feed-forward network.

The working process of the single hidden layer feed-forward neural network is as follows.
During the entire work of the neural network, all input neurons representing the original independent
variables x1, x2, · · · , xs are first activated through the sensors perceiving the environment. Next,
inside each hidden unit hk, all original independent variables are linearly combined to generate

uk(x) = β0k +
s

∑
j=1

β jkxj, (17)

where k = 1, 2,· · · , r and r is the number of the hidden units. Then, by a nonlinear function gk, uk(x) is
typically transformed into the output of hidden unit hk as follows:

gk(x) =
1

1 + e−uk(x)
. (18)

(i) When treating the neural network as a regression model, all gk(x) are linearly combined to
form the output of neural network:

f (x) = γ0 +
r

∑
k=1

γkgk(x). (19)

67

Mathematics 2019, 7, 778

All of the parameters β and γ can be solved by minimizing the the penalized sum of the
squared residuals:

n

∑
i=1

(yi − f (xi))
2 + λ

r

∑
k=1

s

∑
j=0

β2
jk + λ

r

∑
k=0

γ2
k , (20)

where f (xi) and yi are the predicted result and the actual result related to the ith observed
data, respectively.

(ii) Neural networks can also be used for classification. Unlike neural networks for regression,
an additional nonlinear transformation is used on the linear combination of the outputs of hidden units.

When the neural network is used for binary classification, it uses

f ∗(x) =
1

1 + e− f (x)
=

1

1 + e−(γ0+∑r
k=1 γk gk(x))

(21)

to predict the class probability. The estimation of the parameters γ and β can be solved by minimizing
the penalized cross-entropy

−
n

∑
i=1

yi log f (xi) + (1 − yi) log(1 − f (xi)) + λ
r

∑
k=1

s

∑
j=0

β2
jk + λ

r

∑
k=0

γ2
k , (22)

where yi is the 0/1 indicator for the positive class. The neural network algorithm can also be used
for multi-class classification. In this situation, the softmax transform outputs the probability that the
sample x belongs to the lth class. Except the single hidden layer feed-forward network, there are
many other types of models. For example, the famous deep learning approaches consist of multiple
hidden layers.

(2) Neural network tuning

As we said before, the our model must not be too complicated, so we select R package nnet [32]
to predict the statement mutation scores of the test suite on schedule.c. The software package nnet
implements a feed-forward neural network with a single hidden layer. The λ and r in formula (22)
represent the weight decay and the number of units in the hidden layer, respectively. They are denoted
as decay and size in nnet package, respectively. Therefore, decay is the regularization parameter to
avoid over-fitting.

In our experiment, size is set in turn to each integer value between one and then. At the same
time, the decay was set to 10i where i takes each integer value from −4 to 5 in turn.

Figure 6 and Table 10 show the average Brier scores under the each candidate combinations of size
and decay. From them, we can know that the optimal combination of the weight decay and hidden unit
number is decay = 10−2 and size = 8 because, at this time, the minimum average Brier score appears.

Table 10. Average Brier scores for neural network models.

Size
Decay

10−4 10−3 10−2 10−1 1 101 102 103 104 105

1 0.1180 0.0984 0.0928 0.0968 0.1111 0.1397 0.1956 0.2419 0.2491 0.2499
2 0.0915 0.0869 0.0883 0.0876 0.1104 0.1379 0.1889 0.2404 0.2489 0.2498
3 0.0953 0.0890 0.0865 0.0867 0.1099 0.1371 0.1835 0.2390 0.2488 0.2498
4 0.0897 0.0889 0.0863 0.0881 0.1094 0.1367 0.1791 0.2375 0.2486 0.2498
5 0.0874 0.0890 0.0865 0.0880 0.1093 0.1366 0.1753 0.2361 0.2484 0.2498
6 0.0881 0.0869 0.0865 0.0881 0.1093 0.1365 0.172 0.2348 0.2483 0.2498
7 0.0896 0.0887 0.0862 0.0878 0.1093 0.1364 0.1694 0.2334 0.2481 0.2498
8 0.0884 0.0878 0.0856 0.0882 0.1093 0.1364 0.1670 0.2321 0.2479 0.2497
9 0.0884 0.0871 0.0869 0.0881 0.1093 0.1364 0.1649 0.2308 0.2478 0.2497

10 0.0870 0.0880 0.0867 0.0878 0.1093 0.1365 0.1631 0.2295 0.2476 0.2497

68

Mathematics 2019, 7, 778

Figure 6. The performance profile of the neural network for predicting the statement mutation scores.

5.4.4. Support Vector Machines

(1) Introduction to support vector machine

Given a set of n training instances x1, x2, · · · , xn, the goal of support vector machine is to find a
hyperplane that separates the positive and the negative training instances with the maximum margin
and minimum misclassification error. The training of support vector machine is equivalent to solving
the following optimization problem:

min
w,b,ζi

1
2
‖w‖2 + C

n

∑
i=1

ζi

subject to yi(wTxi + b) ≥ 1 − ζi

ζi ≥ 0, i = 1, 2, · · · , n,

where w is the normal vector of the maximum-margin hyperplane wTx + b = 0, C is the regularization
parameter, ζi indicates a non-negative slack variable to tolerant some training data falling in the wrong
side of the hyperplane, and b is a bias. The parameter C specifies the cost of a violation to the margin.
When C is small, the margins will be wide and many support vectors will be on the margin or will
violate the margin. When C is large, the margins will be narrow and there will be few support vectors
on the margin or violating the margin.

The maximum-margin hyperplane can be obtained by solving the above problem. Given new
data x, f (x) = wTx + b represents the signed distance between x and the hyperplane. We can classify
the new data x based on the sign of f (x).

If the original problem is stated in a finite-dimensional space, it often happens that the sets to
discriminate are not linearly separable. For solving this problem, a support vector machine maps
the original finite-dimensional space into a higher-dimensional space, making the separation easier.

69

Mathematics 2019, 7, 778

Let φ(x) denote the vector after x mapping. In this higher-dimensional space, the optimization problem
can be rewritten into

min
w,b,ζi

1
2
‖w‖2 + C

n

∑
i=1

ζi (23)

subject to yi(wTφ(xi) + b) ≥ 1 − ζi (24)

ζi ≥ 0, i = 1, 2, · · · , n (25)

or expressed in the dual form

min
α

−
n

∑
i=1

αi +
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjk(xi, xj) (26)

subject to
n

∑
i=1

αiyi = 0 (27)

0 ≤ αi ≤ C, i = 1, 2, · · · , n, (28)

where k(xi, xj) = φ(xi)
Tφ(xj) defines the kernel function greatly reducing the computational cost.

By solving the above optimization problem, the optimal α∗i and b∗ can be obtained. Therefore, the
maximum-margin hyperplane in the higher-dimensional space is

w∗Tφ(x) + b =
n

∑
i=1

α∗i yiφ(xi)
Tφ(x) + b∗ =

n

∑
i=1

α∗i yik(xi, x) + b∗. (29)

The kernel trick allows the support vector machine model to produce extremely flexible decision
boundaries. The most common kernel functions are listed in Table 11:

Table 11. Kernel functions.

Name Expression Parameter

linear kernel k(xi, xj) = xi
T xj

polynomial kernel k(xi, xj) = (γxi
T xj + θ)d γ, θ, d

radial kernel exp(−σ‖xi − xj‖2) σ

The original SVM can be used for classification and regression without probability information.
To solve this problem, Platt [33] proposed to use a logistic function to convert the decision value from
a binary support vector machine to a probability. Formally, the probability of data xi being a positive
instance is defined as follows:

P(yi = 1|xi) =
1

1 + exp(A f (xi) + B)
,

where f (x) = wTφ(x) + b is the maximum-margin hyperplane. The parameters A and B are derived
by minimizing the negative log-likelihood of the training data:

−
n

∑
i=1

[tilog(P(yi = 1|xi)) + (1 − ti)log(1 − P(yi = 1|xi))]

where

ti =

{
n++1
n++2 i f yi = 1,

1
n−+2 i f yi = −1.

n+ denotes the number of positive training instances (i.e., yi = 1), and n− denotes the number of
negative training instances (i.e., yi = −1). Newton’s method with backtracking is a commonly used

70

Mathematics 2019, 7, 778

approach to solve the above optimization problem [34] and is implemented in LibSVM. Besides the
binary classification, the support vector machine can also compute the class probabilities for the
multi-class problem using one-against-one (i.e., pairwise) approach [35] .

(2) Support vector machine tuning

Support vector machine algorithms are provided in the software package kernlab [36] written
in the R language. We built the support vector machine based on the radial basis kernel function
provided by this package. A radial basis kernel function maps the independent variables to an
infinite-dimensional space. The regularization parameter C in formula (23) is called cost parameter in
kernlab. A smaller C results in a smoother decision surface and a larger C results in a flexible model
that strives to classify all training data correctly. The radial basis kernel function in kernlab package is
shown in Table 11, where the parameter σ represents the inverse kernel width. A larger σ means a
narrower radial basis kernel function.

When we use kernlab to predict the statement mutation scores of schedule.c, we hope to get the
Brier score as small as possible by tuning C and σ. For this purpose, we first set the parameter σ to
the median of ‖x − x′‖2 [18,37,38]. Next, let the parameter C take respectively as 2−5, 2−3, 2−1, 21, 23,
25, 27, 29, 211, 213 and 215. Then, under each candidate value of C, we use the five repeats of 5-fold
cross-validation to calculate the average Brier scores.

Figure 7 and Table 12 show the average Brier score generated by five repeats of 5-fold
cross-validation at each candidate value of C. As shown in Figure 7, although there was a relatively
large fluctuation, the average Brier score shows a general trend of first decreasing and then rising.
From this figure, we can know that C = 2−1 is the optimally value of the regularization parameter.
At this time, the average Brier score reaches a minimum 0.0933.

Figure 7. The performance profile of the support vector for predicting the statement mutation scores.

71

Mathematics 2019, 7, 778

Table 12. Resampled Brier score for the support vector machine model.

C 2−5 2−3 2−1 21 23 25 27 29 211 213 215

Mean 0.0984 0.0967 0.0933 0.0978 0.0978 0.0985 0.1004 0.1008 0.0997 0.1003 0.1002

5.4.5. Symbolic Regression

(1) Introduction to symbolic regression

Symbolic regression can also be called function modeling. Based on the given data, it can
automatically find the functional relationship, such as 2x3 + 5, cos(x)+ 1/ey, etc., between independent
variables and dependent variables.

Throughout the modeling process, a function model f (x) is always coded as a symbolic expression
tree. The input of symbolic regression is a data set, and the genetic programming method is often
used to determine f (x). The genetic programming constantly changes an old function model into a
new better fitted one by selecting the function with the better fitness value. A possible and frequently
used fitness function is the average squared difference between the values predicated by f (x) and the
actually observed values y as follows:

MSE(f (x), y) =
1
n

n

∑
i=1

(f (xi)− yi)
2.

Mutation operations and crossover operations are the two important ways to change function
model f (x). A mutation operation directly changes a symbolic expression sub tree, and a crossover
operation cuts a symbolic expression sub tree and replace it with a sub tree in another symbolic
expression tree.

(2) Symbolic regression tunning

The symbolic regression tool rgp [39] is an implementation of genetic programming methods in
the R environment. We use rgp to predict the statement mutation scores of schedule.c. In our symbolic
regression experiment, the most basic mathematical operators are set to the operators +, −, *, /, sin.
An important tuning parameter in rgp is populationSize, which means the number of individuals
included in a population, and is set to 100 in our experiment.

Another important tuning parameter is the number of evolution generations. Too few evolutionary
generations produce an under-fitting, whereas too many evolutionary generations produce an
over-fitting. We did a grid search to determine the optimal number of the generations, which minimizes
the average Brier score. Because we need to complete the model fitting in a relatively short time,
the number of evolution generations cannot be set too large. In our experiment, the candidate
number of evolution generations is set to 3, 6, 9, 12, 15, 18, respectively. The five repeats of five-fold
cross-validation are used to calculate the evolution effects (i.e., the average Brier scores) under each
candidate number of evolution generations.

As shown in Table 13 and Figure 8, the average Brier scores oscillated down. In the 12th generation
evolution, the smallest average Brier score 0.1504 appeared.

Table 13. Average Brier scores for the symbolic regression.

Generation 3 6 9 12 15 18

Mean 0.1640 0.1546 0.1548 0.1504 0.1527 0.1515

72

Mathematics 2019, 7, 778

Figure 8. Rgp tuning.

5.4.6. Comparing Models

Once the hyper parameters in the above five models have been determined for the above five
models, we face the question: how do we choose among multiple models? The logistic regression
model is used to set the baseline performance because its mathematical expression is simple and
operation speed is fast. If other predictive models do not surpass it, the logistic regression model is
used in future actual forecasting.

The boxplot in Figure 9 shows, under the condition that the Brier score is the standard, the neural
network does the best job about predicting the statement mutation scores. The second best is the
random forest model, which is a little better than the support vector machine model. The logistic
model is second to last and greatly exceeded the symbolic regression.

Figure 9. Comparison of the Brier scores of the five machine learning models for schedule.c.

73

Mathematics 2019, 7, 778

5.4.7. Testing Predictions in Practice

According to Figure 9 and Tables 8–10, 12 and 13, we know that, in the process of repeated
cross-validation, the average Brier scores of the logistic regression, random forest, neural network,
support vector machine and symbolic regression are 0.0950, 0.0888, 0.0856, 0.0933 and 0.1504,
respectively. Therefore, the neural network is the best model because its average Brier score is
lower than other models. To further demonstrate the predictive effect of the neural network model
on the schedule.c, we did the two following things. Firstly, we apply the neural network model,
whose hyper-parameters have been tuned according to the method in Section 5.4.3, to predict the
statement mutation scores of schedule.c. Under the condition that the schedule.c is used as the
experiment subject, we calculate the mean absolute error between all statement mutation scores
obtained by the neural network prediction and all real statement mutation scores. The experiment
result shows the mean absolute error reaches 0.1205. Secondly, we randomly select 34 statements in
schedule.c, and their two kinds of statement mutation scores are shown in Figure 10. In this figure,
the horizontal coordinate represents the real statement mutation score, and the vertical coordinate
represents the statement mutation score predicted by the neural network model. Each circle represents
a statement, and the distance between each short dashed line and diagonal line is 0.1. From this figure,
we can see that more than 60% of the statements are located between the two short dashed lines.

Figure 10. Comparing the real statement mutation scores and the predicted statement mutation scores
in schedule.c by the artificial neural network.

5.5. Further Confirmation of the Optimization Model

To further confirm that the prediction effect of the neural network is the best, we compared the five
machine learning models again under the condition that the program tcas.c is used as the experimental
subject. In the process of repeated cross-validation, the average Brier score of the neural network model
reaches 0.1164. The average Brier scores of the logistic regression, the support vector machine, the
random forest and the symbolic regression are 0.1233, 0.1249, 0.1289 and 0.1373, respectively. Therefore,
the neural network is once again considered the best model because its average Brier score is lower
than other models. To further demonstrate the predictive effect of the neural network model on the
tcas.c, we apply the neural network model, whose hyper-parameters have been tuned according to the
method in Section 5.4.3, to predict the statement mutation scores of tcas.c. Under the condition that the

74

Mathematics 2019, 7, 778

tcas.c is used as the experiment subject, the mean absolute error between real statement mutation scores
and the statement mutation scores predicted by the tuned neural network reaches 0.1198. In order to
illustrate the prediction results of the neural network more vividly, we randomly selected 31 statements
in the program tcas.c. Their real statement mutation scores and the corresponding predicted mutation
scores are shown in Figure 11.

Figure 11. Comparing the real statement mutation scores and the predicted statement mutation scores
in tcas.c by the artificial neural network.

Through the above analysis, we can see that, whether the experiment subject is schedule.c or
tcas.c, the average Brier scores of the neural network are both the minimums. Thus, we recommend the
single hidden layer feedforward neural network as the best model. In the two experiments, the mean
absolute error between the statement mutation scores predicted by the neural network model and the
real statement mutation scores both approximately reach 0.12.

6. Structure of the Automated Prediction Tool

The work process of our automatic analysis tool consists of the five parts, as shown in
Figure 12: extracting the features of the statements in the program under testing, generating mutants,
executing test suite on the each mutants, establishing the neural network model, and predicting the
statement mutation scores.

In the first part, we extract the features of statements in the program under testing. First, we
execute each test case and construct its execution impact graph with the open source software giri [40].
Giri was originally a dynamic program slice tool and is currently modified by us. Next, we traverse
the statement instances in reverse order of the execution history of the test cases. Whenever we
visit a statement instance, we compute its features. After calculating the features of each statement
instance, we calculate the features of each program statement according to the corresponding the
statement instances.

In the second part, we generate mutants. We first build a mutation operator set. In our
experiments, the mutation operator set consists of the 22 mutation operators, which exist in the open
source mutant generate tool ProteumIM2.0 [12]. These operators include u-Cccr, u-OEAA, u-OEBA,

75

Mathematics 2019, 7, 778

u-OESA, u-CRCR, u-Ccsr, u-OAAN, u-OABN, u-OALN, u-OARN, u-OASN, u-OCNG, u-OLAN,
u-OLBN, u-OLLN, u-OLNG, u-OLRG, u-OLSN, u-ORBN, u-ORLN, u-ORRN and u-ORSN. Next, we
use these mutation operators to randomly construct 200 mutants, each of which is the program with a
software bug.

In the third part, we execute the test suite on each mutant and record the corresponding
identification result.

In the fourth part, we take the features of the mutant as independent variables and the
identification result of the mutant as dependent variables to construct the prediction model with
the neural network.

In the fifth part, we predict the mutation scores of each program statement with the
constructed model.

Figure 12. The structure of Automated Analysis Tool.

7. Conclusions

In this paper, we predicted statement mutation scores while using a single hidden layer
feedforward neural network and seven statement features. As analyzed in Section 5, each experimental
result shows that the neural network is the best prediction model from the standpoint of the mean
absolute error. The experimental results on two c programs demonstrate that our method can directly
predict statement mutant scores approximately. The experiment results also show that the seven
statement features that represent the dynamic program execution and testing process can basically
reflect the impact of statements on program output.

However, two shortcomings need to be improved. Firstly, a part of statement features weakly
related to program outputs still need to be discovered. If the real mutation score of a statement is
low, then this statement usually only has some statement features weakly related to program outputs.
In this case, the prediction effect of my model is not good because we only found a part of weakly
relevant statement features, and the other part of the weakly correlated sentence features still need
to be discovered.

Secondly, in this paper, we assume the controlling expression has no side effect. However, in a few
cases, a controlling expression has a side effect. In this case, the execution instance of the controlling
expression may have some impact successors. For example, if there is a controlling expression if(x >
y++) in the original program, then the execution result of y++ will be changed when it is executed a
test case, so that it impacts subsequent statement instances containing y variables. In this situation,
the methods mentioned in Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3 are no longer applicable, and the
corresponding algorithm needs to be redesigned.

In the future, we also plan to predict the statement mutation scores with the prediction model
established by other programs. In this case, the users can train a prediction model with the data
records from other programs beforehand. Using this pre-trained model, users can directly predict the
statement mutation scores of the current program.

76

Mathematics 2019, 7, 778

Author Contributions: Conceptualization, L.T.; methodology, L.T.; Supervision, Y.W. and Y.G.; writing—original
draft preparation, L.T.

Funding: This work was supported by the National Natural Science Foundation of China (No. U1736110),
the National Natural Science Foundation of China (No. 61702044), and the Fundamental Research Funds for the
Central Universities (No. 2017RC27).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Vg value impact set of the statement sg

xvi(sg) value impact factor of the statement sg

Vh
g,tk

value impact set of the statement instance sh
g,tk

Vl
r,z,tk

value impact set of the branch instance Bl
r,z,tk

Pg path impact set of the statement sg

xpi(sg) path impact factor of the statement sg

Ph
g,tk

path impact set of the statement instance sh
g,tk

Pl
r,z,tk

path impact set of the branch instance Bl
r,z,tk

Vg generalized value impact set of the statement sg

xgvi(sg) generalized value impact factor of the statement sg

Vh
g,tk

generalized value impact set of the statement instance sh
g,tk

Pg generalized path impact set of the statement sg

xgpi(sg) generalized path impact factor of the statement sg

Ph
g,tk

path impact set of the generalized statement instance sh
g,tk

Lg latent impact set of statement sg

xli(sg) latent impact factor of statement sg

Lh
g,tk

latent impact set of statement instance sh
g,tk

xih(sg) information hidden factor of statement sg

References

1. Andrews, J.H.; Briand, L.C.; Labiche, Y. Is mutation an appropriate tool for testing experiments?
In Proceedings of the 27th International Conference on Software Engineering, St. Louis, MO, USA,
15–21 May 2005; pp. 402–411.

2. DeMillo, R.A.; Lipton, R.J.; Sayward, F.G. Hints on test data selection: Help for the practicing programmer.
Computer 1978, 11, 34–41. [CrossRef]

3. Mirshokraie, S.; Mesbah, A.; Pattabiraman, K. Efficient JavaScript mutation testing. In Proceedings of the
2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, Luxembourg,
18–22 March 2013; pp. 74–83.

4. Jia, Y.; Harman, M. An analysis and survey of the development of mutation testing. IEEE Trans. Softw. Eng.
2011, 37, 649–678. [CrossRef]

5. Frankl, P.G.; Weiss, S.N.; Hu, C. All-uses vs mutation testing: An experimental comparison of effectiveness.
J. Syst. Softw. 1997, 38, 235–253. [CrossRef]

6. Maldonado, J.C.; Delamaro, M.E.; Fabbri, S.C.; da Silva Simão, A.; Sugeta, T.; Vincenzi, A.M.R.; Masiero, P.C.
Proteum: A family of tools to support specification and program testing based on mutation. In Mutation
Testing for the New Century; Springer: Berlin/Heidelberg, Germany, 2001; pp. 113–116.

7. Acree, A.T., Jr. On Mutation; Technical Report; Georgia Inst of Tech Atlanta School of Information and
Computer Science: Atlanta, GA, USA, 1980.

8. Zhang, L.; Hou, S.S.; Hu, J.J.; Xie, T.; Mei, H. Is operator-based mutant selection superior to random mutant
selection? In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering,
Cape Town, South Africa, 1–8 May 2010; Volume 1, pp. 435–444.

9. Hussain, S. Mutation Clustering. Master’s Thesis, Kings College London, London, UK, 2008.

77

Mathematics 2019, 7, 778

10. Gligoric, M.; Zhang, L.; Pereira, C.; Pokam, G. Selective mutation testing for concurrent code. In Proceedings
of the 2013 International Symposium on Software Testing and Analysis, Lugano, Switzerland, 15–20 July 2013;
pp. 224–234.

11. Offutt, A.J.; Rothermel, G.; Zapf, C. An experimental evaluation of selective mutation. In Proceedings of
the 1993 15th International Conference on Software Engineering, Baltimore, MD, USA, 17–21 May 1993;
pp. 100–107.

12. Zhang, J.; Zhang, L.; Harman, M.; Hao, D.; Jia, Y.; Zhang, L. Predictive mutation testing. IEEE Trans.
Softw. Eng. 2018 . [CrossRef]

13. Jalbert, K.; Bradbury, J.S. Predicting mutation score using source code and test suite metrics. In Proceedings
of the First, International Workshop on Realizing AI Synergies in Software Engineering, Zurich, Switzerland,
5 June 2012; pp. 42–46.

14. Goradia, T. Dynamic impact analysis: A cost-effective technique to enforce error-propagation. In Proceedings
of the 1993 ACM SIGSOFT International Symposium on Software Testing and Analysis, Cambridge, MA,
USA, 28–30 June 1993; Volume 18, pp. 171–181.

15. C programming Language Standard—C99. Available online: https://en.wikipedia.org/wiki/C99 (accessed
on 19 August 2019).

16. The Program schedule.c. Available online: https://www.thecrazyprogrammer.com/2014/11/c-cpp-
program-forpriority-scheduling-algorithm.html (accessed on 19 August 2019).

17. The Program tcas.c. Available online: https://sir.csc.ncsu.edu/php/showfiles.php (accessed on 19 August 2019).
18. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26.
19. Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3.

[CrossRef]
20. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken,

NJ, USA, 2013; Volume 398.
21. Harrell, F.E. Regression Modeling Strategies; Springer: Berlin/Heidelberg, Germany, 2001.
22. Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations;

Chapman and Hall/CRC:Boca Raton, FL, USA, 2015.
23. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate

descent. J. Stat. Softw. 2010, 33, 1. [CrossRef] [PubMed]
24. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1994, 58, 267–288.

[CrossRef]
25. Glmnet. Available online: https://CRAN.R-project.org/package=glmnet (accessed on 19 August 2019).
26. Breiman, L. Some Infinity Theory for Predictor Ensembles; Technical Report 579; Statistics Dept. UCB: Berkeley,

CA, USA, 2000.
27. Breiman, L. Consistency for a Simple Model of Random Forests; Technical Report (670); University of California

at Berkeley: Berkeley, CA, USA, 2004.
28. Quinlan, J.R. Simplifying decision trees. Int. J. Hum.-Comput. Stud. 1999, 51, 497–510. [CrossRef]
29. The randomForest. Available online: https://cran.r-project.org/web/packages/randomForest/index.html

(accessed on 19 August 2019).
30. Li, C. Probability Estimation in Random Forests. Master’s Thesis, Department of Mathematics and Statistics,

Utah State University, Logan, UT, USA, 2013.
31. Demuth, H.B.; Beale, M.H.; De Jess, O.; Hagan, M.T. Neural Network Design, 2nd ed.; Martin Hagan: Stillwater,

OK, USA, 2014.
32. R Package nnet. Available online: https://CRAN.R-project.org/package=nnet (accessed on 19 August 2019).
33. Platt, J.C. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood

Methods. In Advances in Large Margin Classifiers; MIT Press: Cambridge, MA, USA, 1999; pp. 61–74.
34. Lin, H.T.; Lin, C.J.; Weng, R.C. A note on Platt’s probabilistic outputs for support vector machines.

Mach. Learn. 2007, 68, 267–276. [CrossRef]
35. Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans.

Neural Netw. 2002, 13, 415–425. [PubMed]
36. Software Package Kernlab. Available online: https://CRAN.R-project.org/package=kernlab (accessed on 19

August 2019).

78

Mathematics 2019, 7, 778

37. Caputo, B.; Sim, K.; Furesjo, F.; Smola, A. Appearance-based object recognition using SVMs: Which kernel
should I use? In Proceedings of the NIPS Workshop on Statistical Methods for Computational Experiments
in Visual Processing and Computer Vision, Whistler, BC, Canada, 12–14 December 2002; Volume 2002.

38. Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab—An S4 package for kernel methods in R.
J. Stat. Softw. 2004, 11, 1–20. [CrossRef]

39. The Symbolic Regression Tool Rgp. Available online: http://www.rdocumentation.org/packages/rg
(accessed on 19 August 2019).

40. Sahoo, S.K.; Criswell, J.; Geigle, C.; Adve, V. Using likely invariants for automated software fault localization.
In Proceedings of the 18th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2013, Houston, TX, USA, 16—20 March 2013; ACM SIGARCH Computer
Architecture News; Volume 41, pp. 139–152.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

79

mathematics

Article

Extending the Characteristic Polynomial for
Characterization of C20 Fullerene Congeners

Dan-Marian Joiţa 1 and Lorentz Jäntschi 1,2,*

1 Doctoral School of Chemistry, Babes-Bolyai University, 400028 Cluj, Romania; joita.danmarian@gmail.com
2 Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj, Romania
* Correspondence: lorentz.jantschi@gmail.com; Tel.: +40-264-401775

Received: 28 November 2017; Accepted: 13 December 2017; Published: 19 December 2017

Abstract: The characteristic polynomial (ChP) has found its use in the characterization of chemical
compounds since Hückel’s method of molecular orbitals. In order to discriminate the atoms
of different elements and different bonds, an extension of the classical definition is required.
The extending characteristic polynomial (EChP) family of structural descriptors is introduced in
this article. Distinguishable atoms and bonds in the context of chemical structures are considered
in the creation of the family of descriptors. The extension finds its uses in problems requiring
discrimination among same-patterned graph representations of molecules as well as in problems
involving relations between the structure and the properties of chemical compounds. The ability of
the EChP to explain two properties, namely, area and volume, is analyzed on a sample of C20 fullerene
congeners. The results have shown that the EChP-selected descriptors well explain the properties.

Keywords: characteristic polynomial (ChP); molecular descriptors; fullerene congeners; C20 fullerene;
structure–property relationships

PACS: 02.10.Ox; 02.50.Sk; 02.50.Tt

MSC: 05C31; 12E10; 60E10; 55R40; 47N60

1. Introduction

The term ‘secular function’ has been used for what is now called a characteristic polynomial (ChP,
in some of the literature, the term secular function is still used). The ChP was used to calculate secular
perturbations (on a time scale of a century, i.e., slow compared with annual motion) of planetary
orbits [1]. The first use of the ChP (|λ·Id−Ad|, where Id is the identity matrix, and Ad is the adjacency
matrix) in relation with chemical structure appeared after the discovery of wave-based treatment at the
microscopic level [2]. The Hückel’s method of molecular orbitals is actually the first extension of the
ChP definition. He uses the ‘secular determinant’—the determinant of a matrix which is decomposed
as |E·Id−Ad|, standing with the energy of the system (E instead of λ)—to approximate treatment of
π electron systems in organic molecules [2].

The second extension of the ChP was found by Hartree [3,4] and Fock [5,6] by going in a different
direction with the approximation of the wavefunction treatment. They actually found the same
older eigenvector–eigenvalue problem (§20 in [7]; T1 in [8]) in Slater’s treatment [9,10] of molecular
orbitals. More generally (and older), the eigen-problem (finding of eigenvalues and eigenvectors)
is involved in any Hessian [11] matrix [A] ([Ad] → [A], where Ad is the adjacency matrix). The
Laplacian polynomial is a polynomial connected with the ChP (in Table 1). This uses a modified form
(the Laplacian matrix, [La]) of the adjacency matrix ([Ad]), [La] = [Dg] − [Ad], where [Dg] simply
counts on the main diagonal the number of the atom’s bonds (the rest of its elements are null; for
convenience with the graph-theory-related concept, it was denoted [Dg], from vertex degree). The

Mathematics 2017, 5, 84; doi:10.3390/math5040084 www.mdpi.com/journal/mathematics80

Mathematics 2017, 5, 84

ChP is related also to the matching polynomial [12], degenerating to the same expression for forests
(disjoint union of trees). Adapting [13] for molecules, a k-matching in a molecule is a matching with
exactly k bonds between different atoms; see §3.1 & §3.3 in [14] for details. Each set containing a single
edge is also an independent edge set; the empty set should be treated as an independent edge set with
zero edges—this set is unique due to the constraint of connecting different atoms, where the matching
may involve no more than [n/2] bonds, where n is the number of atoms. It is possible to count the
k-matches [15], but, nevertheless, it is a hard problem [16], as well as to express the derived Z-counting
polynomial [17] and matching polynomial—both are defined using m(k) as the k-matching number of
the selected molecule, as shown in Table 1 (where n is the number of atoms).

Table 1. Characteristic polynomial (ChP), Laplacian polynomial (LaP), Z-counting, and Matching
Polynomials.

Name Formula

ChP |λ·[Id] − [Ad]|
LaP |λ·[Id] − [Dg] + [Ad]|

Z-counting Σk≥0 m(k)·λk

Matching Σk≥0 (−1)k·m(k)·λn−2k

A topological description of a molecule requires the storing of the bonds (as adjacencies) between
the atoms and the atoms themselves (as identities). If this problem is simplified at maximum, by
disregarding the atom and bond types, then the molecule is seen as an undirected and unweighted
graph. The graph structure can be translated into the informational space by numbering the atoms.
Unfortunately, this procedure also induces an isomorphism—the isomorphism of numbering, which
may collapse into a nondeterministic polynomial time to be solved—see [18]. This is a reason for the
desire of graph invariants, e.g., which do not depend on the numbering made on the graph.

Once the atoms (or the vertices) are numbered, the information can be simply stored as lists of
vertices (V) and edges (E), and the graph structure of the molecule is associated with the pair G = (V, E).
An equivalent representation is obtained using matrices. The adjacencies ([Ad]) are simply stored
with 0 when no bond connects the atoms and 1 when a bond connecting the atoms exists. The identity
matrix ([Id]) identifies the atoms by placing 1 on the main diagonal and 0 otherwise.

The ChP is the natural construction of a polynomial (in λ) in which the eigenvalues of [Ad] are
the roots of the ChP as follows:

λ is an eigenvalue of [Ad] → there exists eigenvector [v] 	= 0 such that λ·[v] = [Ad] × [v].

As a consequence:

(λ·[Id] − [Ad])·[v] = 0; since [v] 	= 0 → λ·[Id] − [Ad] is singular → |λ·[Id] − [Ad]| = 0.

Finally,
ChP ← |λ·[Id] − [Ad]|.

ChP is a polynomial (in λ) of degree n, where n is the number of atoms. The ChP finds its uses in
the topological theory of aromaticity [19,20], structure-resonance theory [21], quantum chemistry [22],
and counts of random walks [23], as well as in eigenvector–eigenvalue problems [24].

This definition allows extensions. A natural extension is to store in the identity matrix ([Id])
non-unity instead of unity values ([Id]i,j = 1 → [Id]i,j 	= 1) accounting for the atom types, as well as to
store in the adjacency matrix ([Ad]) non-unity instead of unity values accounting for the bond types
([Ad]i,j = 1 → [Ad]i,i 	= 1. This extension was subjected to study in the context of deriving structural
descriptors useful for structure–property relationships.

81

Mathematics 2017, 5, 84

2. Materials and Methods

2.1. Graphs, Matrices, and the Characteristic Polynomial

The topology of a graph structure could be expressed as matrices, and, in this regard, three of
them are more frequently used: identity, adjacency (vertex–vertex, edge–edge, and vertex–edge), and
distance matrices can be built (Table 2).

Table 2. Classical molecular graphs.

Definition V: Finite Set E ⊆ V × V G = G(V,E)

Name (concept) V: vertices (atoms) E: edges (bonds) G: graph (molecule)
Cardinality |V| = n |E| = m ∀n, V ↔ {1, . . . , n}

Example G = “A-B-C” V = {1,2,3} E = {(1,2), (2,3)}

The matrices reflect in a 1:1 fashion the graph if the full graph is stored (each vertex pair stored
twice, in both ways). The matrices of vertex adjacency ([Ad]) and of edge adjacency are square and the
double enumeration of the edges is reflected in symmetry relative to the main diagonal (see Figure 1).

⊆

 Graph Identity Adjacency Distance

2
1

3

[Id] 1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

 [Ad] 1 2 3
1 0 1 0
2 1 0 1
3 0 1 0

[Di] 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

Figure 1. Encoded identities [I], adjacencies [A] and distances [D]—an example.

ChP is the natural construction of a polynomial in which the eigenvalues of the [Ad] are the roots
of the ChP. ChP is a polynomial in λ of degree n, where n is the number of atoms. A natural extension
is to store in [Id] (instead of unity) non-unity values accounting for the atom types, as well as to store
in [Ad] (instead of unity) non-unity values accounting for the bond types.

An extremely important problem in chemistry is to uniquely identify a chemical compound.
If the visual identification (looking at the structure) seems simple, for compounds of large size, this
alternative is no longer viable. The data related to the structure of the compounds stored into the
informational space may provide the answer to this problem. Nevertheless, together with the storing
of the structure of the compound another issue is raised—namely, the arbitrary numbering of the
atoms (Figure 2).

⊆

& classical classical & H b.-type b.-type & H groups

num. 1

6 5

4

32

1

6 5

4

32

9

10

11

8

7

12

1

6 5

4

32

1

6 5

4

32

9

10

11

8

7

12

un-num.

a.-type C
N B

C
NB

C
N B

C
NB

H

H

H

H

H

H

C
N B

C
NB

C
N B

C
NB

H

H

H

H

H

H

classical
molecular
topology
classical
characteristic
polynomial
numbered
weighted graphs
isomorphic-free
weighted graphs
vertex-labeled
graphs
chemical
structural
formula
(labeled graphs)

Figure 2. Graphs vs molecules—an example.

82

Mathematics 2017, 5, 84

For a chemical structure with N atoms stored as a (classical molecular) graph, there exist exactly
N! possibilities for numbering the atoms. Unfortunately, storing the graphs as lists of edges and
(eventually) vertices does not provide a direct tool to check this arbitrary differentiation due to the
numbering. The same situation applies to the adjacency matrices. Therefore, seeking for graph
invariants is perfectly justified: an invariant (graph invariant) does not depend on numbering.
The adjacency matrix is not a graph invariant and, therefore, it is necessary to go further than
the adjacencies.

Important classes of graph invariants are the graph polynomials. To this category belongs the
ChP—a graph invariant encoding important properties of the graph. On the other hand, unfortunately,
ChP does not represent a bijective image of the graph, as there exist different graphs with the same
ChP (i.e., cospectral graphs—the smallest cospectral graphs occurs for 5 vertices [25]). In order to
count the cospectral graphs, one should compare A000088 and A082104 [26,27]. The ideal situation is
that the invariant should be uniquely assigned to each structure, but this kind of invariant is difficult
to find. A procedure to generate a non-degenerate invariant proposed by IUPAC is the international
chemical identifier (InChI), which converts the chemical structure to a table of connectivity expressed
as a unique and predictable series of characters [28].

Despite this inconvenience (not representing a bijective image of the graph) due to its link with
the partition of the energy [2], the ChP seems to be one of the best alternatives for quantifying the
information from the chemical structure.

Previously, researchers have shown the performance of estimation and/or prediction of the ChP
on nonane isomers [29–31] as well as in the case of carbon nanostructures [32,33]. Furthermore, an
online environment has been developed to assist researchers in the calculation of polynomials based
on different approaches; this includes the ChP [34].

2.2. Characteristic Polynomial Extension

When doing calculations on molecular graphs, it is important to consider that, with the increase
in the simplification in the graph representation (such as neglecting the type of the atom, bond orders,
geometry in the favor of topology), the degeneration of the whole pool of possible calculations increases
and there are more molecules with the same representation. This is favorable for the problems seeking
similarities but is clearly unfavorable for the problems seeking dissimilarities.

A necessary step to accomplish better coverage of similarity vs dissimilarity dualism is to build
and use a family of molecular descriptors, large enough to be able to provide answers for all. In the
natural way, such a family should possess a ‘genetic code’—namely, a series of variables from which to
(re)produce a (one by one) molecular descriptor, all descriptors being therefore obtained in the same
way. It is expected that all individuals of the family are independent of the numbering of the atoms in
the molecule (should be molecular invariants).

The construction of such a family needs to consider the following:

• Molecules carry both topological and geometrical features (see Figure 3);
• Atom and bond types are essential factors in the expression of the measurable properties;
• Atom and/or bond numbering induces an undesired isomorphism;
• Geometry and bond types induce other kinds of isomorphism.

°=∠ 0.120)BCN(°=∠ 7.125)CNB(°=∠ 3.114)NBC(

0)CNCB(CH =×⋅
°=∠ 3.124)HCB(
°=∠ 7.115)HCN(

0)NCNB(NH =×⋅
°=∠ 6.117)HNB(
°=∠ 7.116)HNC(

0)BNBC(BH =×⋅
°=∠ 0.126)HBC(
°=∠ 7.119)HBN(

1 2

3

4 5

6

B

C

N

H

493.1|BC| = Å

187.1|BH| = Å

350.1|CN| = Å

075.1|CH| = Å

448.1|NB| = Å

005.1|NH| = Å

Figure 3. Molecular geometry—an example.

83

Mathematics 2017, 5, 84

The representation of a molecule could be done using identity and adjacency (Figure 4).

[Ad] 1 2 3 4 5 6 [A] 1 2 3 4 5 6

1 0 1 0 0 0 1 1 0 a 0 0 0 c

2 1 0 1 0 0 0 2 a 0 b 0 0 0

3 0 1 0 1 0 0 3 0 b 0 c 0 0

4 0 0 1 0 1 0 4 0 0 c 0 a 0

5 0 0 0 1 0 1 5 0 0 0 a 0 b

6 1 0 0 0 1 0 6 c 0 0 0 b 0

12

3

4 5

6

B

C

N

H

[Id] 1 2 3 4 5 6 [I] 1 2 3 4 5 6

1 1 0 0 0 0 0 1 d 0 0 0 0 0

2 0 1 0 0 0 0 2 0 e 0 0 0 0

3 0 0 1 0 0 0 3 0 0 f 0 0 0

4 0 0 0 1 0 0 4 0 0 0 d 0 0

5 0 0 0 0 1 0 5 0 0 0 0 e 0

6 0 0 0 0 0 1 6 0 0 0 0 0 f

Figure 4. Molecular geometry translated into adjacency and identity—an example.

The distinct identities from Figure 4 are given using a, b, and c as variables in the case of adjacency
and using d, e, and f as variables in the case of identity. This formalism allows the introduction of a
natural extension of the ChP from graphs to molecules. There is no determinism in selecting the values
of a–f. However,

• If a = b = c = d = e = f = 1 then ChPE ← ChP as in classical molecular topology.
• If a = b = c = 1.5−1, then [A] accounts for the (inverse of the) bond order.
• If a = 1.35−1, b = 1.448−1, and c = 1.493−1 then [A] accounts for the (inverse of the) geometrical

distance (in Å).
• If d = 12/294, e = 14/294, and f = 10.8/294, then [I] accounts for atomic mass relative to Uuo, the

last element from the 7th period of the system of elements.
• If d = 2267/ρref, e = 1026/ρref, and f = 2460/ρref, then [I] accounts for the solid state relative

density (in m3/kg); ρref can be fixed to 30,000.
• If d = 2.55/4.00, e = 3.04/4.00, and f = 2.04/4.00, then [I] accounts for electronegativity relative to

Fluorine when the Pauling scale is used.
• If d = 1086.2/1312, e = 1402.3/1312, and f = 800.6/1312, then [I] accounts for the first potential of

ionization relative to the potential of ionization for Hydrogen.
• If d = 3820/3820, e = 63/3820, and f = 2573/3820, then [I] accounts for melting point relative to

the diamond allotrope of Carbon (in K).
• If d = 1/4, e = 1/4, and f = 1/4, then [I] accounts for the number of hydrogen atoms attached

relative to the score of CH4.

The full extension could include also the distance matrix (Figure 5).

[Ad] 1 2 3 4 5 6 [Id] 1 2 3 4 5 6 [Di] 1 2 3 4 5 6 [Id] 1 2 3 4 5 6
1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 2 3 2 1 1 1 0 0 0 0 0
2 1 0 1 0 0 0 2 0 1 0 0 0 0 2 1 0 1 2 3 2 2 0 1 0 0 0 0
3 0 1 0 1 0 0 3 0 0 1 0 0 0 3 2 1 0 1 2 3 3 0 0 1 0 0 0
4 0 0 1 0 1 0 4 0 0 0 1 0 0 4 3 2 1 0 1 2 4 0 0 0 1 0 0
5 0 0 0 1 0 1 5 0 0 0 0 1 0 5 2 3 2 1 0 1 5 0 0 0 0 1 0
6 1 0 0 0 1 0 6 0 0 0 0 0 1

 e
xt

en
si

on

6 1 2 3 2 1 0 6 0 0 0 0 0 1
 extension extension

[A] 1 2 3 4 5 6 [I] 1 2 3 4 5 6 [D] 1 2 3 4 5 6 [I] 1 2 3 4 5 6
1 0 a 0 0 0 c 1 d 0 0 0 0 0 1 0 a h k g c 1 d 0 0 0 0 0
2 a 0 b 0 0 0 2 0 e 0 0 0 0 2 a 0 b g j i 2 0 e 0 0 0 0
3 0 b 0 c 0 0 3 0 0 f 0 0 0 3 h b 0 c i l 3 0 0 f 0 0 0
4 0 0 c 0 a 0 4 0 0 0 d 0 0 4 k g c 0 a h 4 0 0 0 d 0 0
5 0 0 0 a 0 b 5 0 0 0 0 e 0 5 g j i a 0 b 5 0 0 0 0 e 0
6 c 0 0 0 b 0 6 0 0 0 0 0 f

 e
xt

en
si

on

6 c i l h b 0 6 0 0 0 0 0 f

Figure 5. Molecular geometry translated into adjacency, identity, and distance—an example.

The extended ChP has the following formula:

ChP ← |λ × [I] − [C]|

84

Mathematics 2017, 5, 84

where [C] is either [A] or [D], the identities (a, b, and c from [I]) and the connectivity (d, e, f, g, h, i, j, k,
and l from [C]).

The single-value entries (0 and 1 	= 0 for the classical definition of the ChP) can be upgraded to
multi-value (any value), accounting for different atoms and bonds. Obviously, the classical ChP is
found when a = b = c = d = e = f = 1 and g = h = i = j = k = l = 0.

Figure 6 shows the ChP extension differently accounting the identities from atomic properties
([I] ← AP ∈ {A, B, C, D, E, F, G, H, I, J, K, L}) and connectivity properties ([C] ← CP ∈ {t, g, c, b, T,
G, C, B,}).

AP Property AP Property AP Property AP Property
A Atomic mass D Density G Melting point J Mulliken charge
B Boiling point E Electronegativity H Hydrogen connections K Natural charge
C Count F First ionization potential I Electrostatic charge L Spin

CIChPE
def

−⋅λ= , [I] identity properties (), [C] connectivity properties ()
CP from adjacencies CP from all connections Parameters
t [C] [Ad] (classical ChP) T [C] [Di] ([Ad] [Di]) topological connections
g '1' (geometrical distance)-1 G '1' (geometrical distance)-1 geometrical coordinates
c '1' (bond order)-1 C '1' (bond orders sum)-1 conventional bond orders
b '1' (bond order)-1 B '1' (bond orders sum)-1 Mulliken bond orders

ChPE(,IP,CP) LLLILC(±d0.d1d2d3)
Linearization LL ∈ {I, R, L}, fI(x) = x, fR(x) = x-1, fL(x) = ln(x)
Identity LI ∈ {A, …, L}, Connectivity LC ∈ {t, g, c, b, T, G, C, B}
Evaluation d0 ∈ {0,1}, d1, d2, d3 ∈ {0, …, 9} (= ±d0.d1d2d3, 2001 evaluation points)

Figure 6. Extended characteristic polynomial—EChP.

The extending characteristic polynomial (EChP) is designed for estimation/prediction of
molecular properties, so a software implementation was done. EChP(λ, IP, CP) diverges as ChP(λ) does
(to ∞) quickly with the increase of λ > 1. Thus, the [−1, 1] range → ‘2001′ grid is useful for evaluation.
A linearization (LL) is required and was implemented since biological properties are expressed in log
scale. The evaluation is performed at every point (out of 2001), requiring O(n3) operations (where n is
the number of atoms).

EChP is a family with 96 (nI*nC) polynomial formulas and 288 (*nL) linearized ones, leading to
a total of 576,288 individuals. The FreePascal software was used for implementation since it is very
fast and allows a parallelized version to be used with multi-CPUs (chp17chp.pas) [35]. The program
requires input files in the ‘chp’ format (such as chfp_17_q.asc, see Figure 7), and uses a filtering (PHP)
program (→chfp_17_t.asc) as well as a molecular property file (such as chfp_17 [prop].txt). The filtering
program was designed to look for degenerations and to reduce the pool of descriptors by eliminating
the degenerated ones.

bonds
parameters

molecule data (first two lines)
& atoms parameters

Data from postHF (MP2) geometry optimization

Figure 7. EChP program: ‘chp’ input files, as an example.

85

Mathematics 2017, 5, 84

The family of EChP descriptors was then used with a series of chemical compounds to obtain
associations between the structure and properties as regression equations.

2.3. Numerical Case Study

The case study was conducted on C20 fullerene congeners with Boron, Carbon, or Nitrogen atoms
on each layer (Figure 8). A sample of 45 distinct compounds was obtained. The generic name of the
files was stored as dd_R1R2R3R4, where dd is the number of the compound in the set and R1–R4 are
the atoms on layers 1–4 (e.g., 02_bbbn.chp is the second compound in the sample and has boron of the
first three layers and nitrogen on the last layer).

R1 R2 R3 R4

Figure 8. C20 fullerene congeners (R is the symbol of the atom on the layer).

The geometries were built at the Hartree-Fock (HF) [3–6] 6-31 G [36] level of theory and calculated
properties (namely, area and volume) were extracted from these calculations. Two different structures
proved stable for bbbb (see Figure 9) and both were included in the analysis, resulting in a sample of
46 compounds.

00_bbbb

 01_bbbb

Figure 9. bbbb C20 stable fullerenes.

The values of the calculated properties are given in Table 3.

Table 3. C20 congeners: values of investigated properties.

Mol Area Volume Mol Area Volume Mol Area Volume

00_bbbb 54.641 30.063 16_cbbb 50.537 27.863 31_ccnc 42.689 22.542
01_bbbb 51.863 26.948 17_cbbc 51.114 29.107 32_ccnn 43.987 23.862
02_bbbn 54.848 32.333 18_cbbn 49.097 27.424 33_cnbb 49.186 28.569
03_bbcn 48.481 27.524 19_cbcb 51.733 30.156 34_cnbn 44.694 24.794
04_bbnb 53.093 30.658 20_cbcn 47.401 26.543 35_cncb 46.994 26.275
05_bbnn 49.797 27.573 21_cbnb 48.262 26.68 36_cncn 44.723 24.062
06_bcbb 54.597 32.043 22_cbnc 45.944 25.109 37_cnnb 45.76 24.995
07_bcbn 49.415 28.726 23_cbnn 45.578 24.689 38_cnnc 48.834 24.315
08_bccb 51.676 29.739 24_ccbb 52.365 30.954 39_cnnn 45.508 24.847
09_bccn 47.392 26.933 25_ccbc 45.618 24.718 40_nbbn 48.119 26.881
10_bcnb 48.782 26.786 26_ccbn 45.857 25.514 41_nbnn 45.726 24.275
11_bcnn 47.15 25.543 27_cccb 46.446 25.49 42_ncbn 45.735 25.533
12_bnbn 47.791 27.383 28_cccc 43.707 23.584 43_nccn 45.211 24.676
13_bncn 47.048 26.368 29_cccn 43.86 23.926 44_ncnn 44.848 24.445
14_bnnb 48.244 27.25 30_ccnb 45.901 25.525 45_nnnn 46.463 25.872
15_bnnn 47.226 25.93 - - - - - -

86

Mathematics 2017, 5, 84

Normal distribution of the data is one assumption that needs to be assessed before any linear
regression analysis. Six different tests were used (AD = Anderson-Darling, KS = Kolmogorov-Smirnov,
CM = Cramér-von Mises, KV = Kuiper V, WU = Watson U2, H1 = Shannon’s entropy [37]) [38] and
the decision was made based on the combined test proposed by Fisher [39]. The distribution of the
investigated properties proved to be not significantly different from the expected normal distribution
(see Table 4, all p-values > 0.05).

Table 4. C20 congeners: values of investigated properties. AD = Anderson–Darling; KS = Kolmogorov–Smirnov;
CM = Cramér–von Mises; KV = Kuiper V; WU = Watson U2; H1 = Shannon’s entropy.

Prop. Title AD KS CM KV WU H1 FCS(6)

area stat 0.826 0.758 0.131 1.213 0.110 22.83 3.660
p 0.462 0.423 0.548 0.552 0.770 0.565 0.723

volume
stat 0.845 0.791 0.133 1.272 0.108 22.95 3.503

p 0.445 0.477 0.552 0.633 0.765 0.525 0.744

Where for a series of cumulative distribution function values ((fi)1≤i≤n):

Statistic Formula

AD −n − 1
n

n
∑

i=1
(2 · i − 1) · ln(fi · (1 − fn+1−i))

KS
√

n · max
1≤i≤n

(
fi − i−1

n , i
n − fi

)
CM 1

12n +
n
∑

i=1

(
2·i−1

2n − fi

)2

KV
√

n ·
(

max
1≤i≤n

(
fi − i−1

n

)
+ max

1≤i≤n

(
i
n − fi

))

WU CM − n
(

1
n

n
∑

i=1
fi − 1

2

)2

H1 − n
∑

i=1
fi · ln(fi)−

n
∑

i=1
(1 − fi) · ln(1 − fi)

FCS ln(pAD·pKS·pCM·pKV·pWU·pH1)

The absences of the outliers have also been investigated using Grubb’s test [40] for the association
between volume (vol) and area on the sample of investigated C20 congeners. The analysis identified
three compounds as outliers, their exclusion leading to a performing linear association (Figure 10).

20

25

30

35

40 45 50 55 60
Area

V
ol

um
e

00_bbbb

01_bbbb

38_cnnc

Volume = linear(Area)

outliers
p-value (‰)

Grubb’s
00_bbbb 8.50
01_bbbb 0.25
38_cnnc 1.20

volume = 0.7832*area - 10.718
r2

adj = 0.9667 (n=43)

20

25

30

35

40 45 50 55 60
Area

V
ol

um
e

Figure 10. Volume as linear function of area.

The values of the EChP descriptors were generated for all molecules in the dataset and were used
as input data for searching linear regression models able to explain the investigated properties (area
and volume). Three different approaches were used, searching for additive, multiplicative, or full
linear dependence (see Table 5).

87

Mathematics 2017, 5, 84

Table 5. Approaches in bivariate (kD = 2) regression analysis.

Y ~Ŷ = a0 + a1*ChPE1 + a2*ChPE2 + a3*ChPE1*ChPE2

Effect Coefficient Constraints kC

Additive (“+”)
a0 = 0, a1 	= 0, a2 	= 0, a3 = 0 2 (a1, a2)
a0 	= 0, a1 	= 0, a2 	= 0, a3 = 0 3 (a0, a1, a2)

Multiplicative (“*”) a0 = 0, a1 = 0, a2 = 0, a3 	= 0 1 (a3)
a0 	= 0, a1 = 0, a2 = 0, a3 	= 0 2 (a0, a3)

Full
a0 = 0, a1 	= 0, a2 	= 0, a3 	= 0 3 (a1, a2, a3)
a0 	= 0, a1 	= 0, a2 	= 0, a3 	= 0 4 (a0, a1, a2, a3)

The selection of the performing models was done using the adjusted determination coefficient
(r2

adj = r2 − (1 − r2)*kD*(n − kC)−1, where n is the number of compounds in the model). The difference
between models with the same properties was tested using the studentized version of the Fisher Z
transformation [41,42].

The best-performing models identified for the investigated properties are presented in Table 6
while the characteristics of the models are given in Table 7.

Table 6. ChPE models.

Eff P Model eq

“+”
A 35.8±0.3 − 8.2±0.1 * LCG+0.238 + 1.4±0.3 * LCG−0.896 1 a

V 21.6±2.0 − 7.4±0.7 * LCG+0.238 + 1.7±0.3 * LCG−0.896 2

“*”
A 34.0±0.9 + 0.16±0.01 * LEG+0.436 * LFG−0.952 3
V 17.6±1.0 + 0.101±0.011*LEG+0.436 * LCG−0.384 4

Full
A 50.4±0.5 − 6.36±0.06 * LCG+0.276 + 2.3±0.5 * LCG-0.908 + 0.13±0.06 * LCG+0.276 * LCG−0.908 5
V 64±17 − 2.5±1.9 * LCG+0.236 + 4.5±1.2 * LCG-0.908 + 0.35±0.14 * LCG+0.236 * LCG−0.908 6

Eff = Effect; “+” = additive model; “*” = multiplicative model; P = property: A = Area, V = Volume. a 03_bbcn
excluded outlier.

Table 7. Model characteristics.

Eff P eq r2
adj se F (p-Value)

“+”
A 1 0.9934 0.2487 3386 (5.01 × 10−48)
V 2 0.9385 0.5767 344 (3.41 × 10−27)

“*”
A 3 0.9462 0.6575 931 (3.06 × 10−31)
V 4 0.8894 0.7651 372 (4.37 × 10−23)

Full
A 5 0.9940 0.2406 2413 (5.04 × 10−47)
V 6 0.9462 0.5458 258 (4.37 × 10−27)

Eff = Effect; “+” = additive model; “*” = multiplicative model; P = property: A = Area, V = Volume, r2
adj = adjusted

determination coefficient; se = standard error of estimate, F (p-value) = Fisher’s statistic (associated significance).

The relationship between volume and area is translated in the identification of the same EChP
descriptors as the explanatory variable (two descriptors for additive models and one descriptor for
multiplicative and respective full model, see Table 6). All models had a capacity of explanation higher
than 85%, with the worst performance obtained by multiplicative models and similar performances
(without significant difference) obtained by additive and full models (see Table 8).

88

Mathematics 2017, 5, 84

Table 8. Fisher’s Z model comparisons: results.

Prop. Parameter “*” vs “+” “*” vs Full “+” vs Full

Area
Stat 4.61 4.82 0.21

p-value <0.0001 <0.0001 0.4176

Volume
Stat 1.42 1.74 0.32

p-value 0.0791 0.0425 0.3752

Graphical representations of calculated and estimated area and respective volume by the
investigated effects are given in Figure 11 (eq1–eq3) and Figure 12 (eq4–eq6).

40

42

44

46

48

50

52

54

56

40 42 44 46 48 50 52 54 56
Calculated area

A
re

a
es

tim
at

ed
 b

y
eq

1

20

22

24

26

28

30

32

34

20 25 30 35
Calculated volume

V
ol

um
e

es
tim

at
ed

 b
y

eq
2

40

42

44

46

48

50

52

54

56

58

40 42 44 46 48 50 52 54 56
Calculated area

A
re

a
es

tim
at

ed
 b

y
eq

3
Figure 11. Graphical representation of eq1–eq3 model performances.

20

22

24

26

28

30

32

34

20 25 30 35
Calculated volume

V
ol

um
e

es
tim

at
ed

 b
y

eq
4

40

42

44

46

48

50

52

54

56

40 42 44 46 48 50 52 54 56
Calculated area

A
re

a
es

tim
at

ed
 b

y
eq

5

20

22

24

26

28

30

32

34

20 25 30 35
Calculated volume

V
ol

um
e

es
tim

at
ed

 b
y

eq
6

Figure 12. Graphical representation of eq4– eq6 model performances.

The model comparison strongly suggests that the best performing models are the additive or the
full model for both investigated properties. However, since 03_bbcn is an outlier for the area on the
additive model, we can say that choosing the full model will give a correct estimation.

It is important that the performing models identified using the EChP descriptors—the full
model—select the same polynomial for both descriptors when both area and volume (”CG” in
LCG+0.236, LCG+0.276, and LCG−0.908) are investigated. It should be noted that one descriptor is
common for the estimation of the area and of the volume (LCG−0.908) for the C20 fullerene congeners.
This fact, in conjunction with the higher correlation between volume and area (r2

adj ≈ 0.97), the
presence of outliers in one additive model, and the significant higher performance by full models in
estimation sustained by goodness-of-fit and the graphical representation of calculated versus estimated,
suggests that the best models are those with full effects.

3. Conclusions and Further Work

EChP proved useful for estimation of the investigated molecular properties. Both properties of
C20 congeners—volume and area—are explained by a common descriptor (LCG−0.908 (or vice versa)).

EChP is a natural extension of the ChP. The scales of the atomic properties were more or
less arbitrary selected and will be further investigated to find the optimal solution. Furthermore,
the reversed distance seemed to be the best alternative but further analysis must be conducted to
demonstrate this observation.

89

Mathematics 2017, 5, 84

Author Contributions: Dan-Marian Joiţa made the molecules and supervised the molecular geometry
optimization (energy minimization). Lorentz Jäntschi supervised the whole study and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lagrange, J.-L. Sur L’équation Séculaire de la Lune; Mémoires de l’Acadéémie Royale des Science:
Paris, France, 1773.

2. Huckel, E. Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 1931, 70, 204–286. [CrossRef]
3. Hartree, D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and

Methods. Math. Proc. Camb. Philos. Soc. 1928, 24, 89–110. [CrossRef]
4. Hartree, D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results

and Discussion. Math. Proc. Camb. Philos. Soc. 1928, 24, 111–132. [CrossRef]
5. Fock, V.A. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 1930,

61, 26–148. [CrossRef]
6. Fock, V.A. “Selfconsistent field” mit Austausch für Natrium. Z. Phys. 1930, 62, 795–805. [CrossRef]
7. Laplace, P.S. Recherches sur le Calcul Intégral et sur le Système du Monde; Mémoires 1’Académie des Sciences:

Paris, France, 1776; Volume 2, pp. 47–179.
8. Cauchy, A. Sur l’équation à l’aide de laquelle on détermine les inégalités séculaires des mouvements des

planets. Exerc. Math. 1829, 4, 140–160.
9. Slater, J.C. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1295. [CrossRef]
10. Hartree, D.R.; Hartree, W. Self-Consistent Field, with Exchange, for Beryllium. Proc. R. Soc. A Math. Phys.

Eng. Sci. 1935, 50, 9–33. [CrossRef]
11. Sylvester, J.J. On the theory connected with Newton’s rule for the discovery of imaginary roots of equations.

Messenger Math. 1880, 9, 71–84.
12. Godsil, C.D.; Gutman, I. On the theory of the matching polynomial. J. Graph Theory 1981, 5, 137–144.

[CrossRef]
13. Godsil, C.D. Algebraic Matching Theory. Electron. J. Comb. 1995, 2, #R8.
14. Diudea, M.V.; Gutman, I.; Jäntschi, L. Molecular Topology; Nova Science: New York, NY, USA, 2001.
15. Ramaraj, R.; Balasubramanian, K. Computer generation of matching polynimials of chemical graphs and

lattices. J. Comput. Chem. 1985, 6, 122–141. [CrossRef]
16. Curticapean, R. Counting Matchings of Size k Is # W[1]-Hard. In Proceedings of the 40th International

Conference on Automata, Languages, and Programming, ICALP’13, Riga, Latvia, 8–12 July 2013;
Volume 7965, pp. 352–363.

17. Hosoya, H. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of
Structural Isomers of Saturated Hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [CrossRef]

18. Schöning, U. Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci. 1987, 37, 312–323. [CrossRef]
19. King, R.B. Applications of graph theory and topology for the study of aromaticity in inorganic compounds.

J. Chem. Inf. Model. 1992, 32, 42–47. [CrossRef]
20. Santos, J.C.; Andres, J.; Aizman, A.; Fuentealba, P. An Aromaticity Scale Based on the Topological Analysis

of the Electron Localization Function Including σ and π Contributions. J. Chem. Theory Comput. 2005, 1,
83–86. [CrossRef] [PubMed]

21. Herndon, W.C. Structure-resonance theory for pericyclic transition states. J. Chem. Educ. 1981, 58, 371.
[CrossRef]

22. Bruderer, M.; Contreras-Pulido, L.D.; Thaller, M.; Sironi, L.; Obreschkow, D.; Plenio, M.B. Inverse counting
statistics for stochastic and open quantum systems: The characteristic polynomial approach. New J. Phys.
2014, 16, 033030. [CrossRef]

23. Arguin, L.-P.; Belius, D.; Bourgade, P. Maximum of the Characteristic Polynomial of Random Unitary
Matrices. Commun. Math. Phys. 2017, 349, 703–751. [CrossRef]

24. Da Lita Silva, J. On the characteristic polynomial, eigenvectors and determinant of heptadiagonal matrices.
Linear Multilinear Algebra 2017, 65, 1852–1866. [CrossRef]

25. Collatz, L.; Sinogowitz, U. Spektren Endlicher Grafen. Abh. Math. Semin. Univ. Hambg. 1957, 21, 63–77.
[CrossRef]

90

Mathematics 2017, 5, 84

26. Sloane, N.J.A. Number of Graphs on n Unlabeled Nodes; A000088; On-Line Encyclopedia of Integer Sequences
(OEIS): Highland Park, NJ, USA, 1996.

27. Weisstein, W.E. Number of Unique Characteristic Polynomials among All Simple Undirected Graphs on n Nodes;
A082104; On-Line Encyclopedia of Integer Sequences (OEIS): Highland Park, NJ, USA, 2003.

28. McNaught, A. The IUPAC international chemical identifier. Chem. Int. 2006, 28, 12–15.
29. Jäntschi, L.; Bolboacă, S.D.; Furdui, C.M. Characteristic and counting polynomials: Modelling nonane

isomers properties. Mol. Simul. 2009, 35, 220–227. [CrossRef]
30. Bolboacă, S.D.; Jäntschi, L. How good can the characteristic polynomial be for correlations? Int. J. Mol. Sci.

2007, 8, 335–345. [CrossRef]
31. Jäntschi, L. Characteristic and Counting Polynomials of Nonane Isomers; Academic Direct Publishing House:

Cluj-Napoca, Romania, 2007; ISBN 978-973-86211-3-8.
32. Bolboacă, S.D.; Jäntschi, L. Characteristic Polynomial in Assessment of Carbon-Nano Structures.

In Sustainable Nanosystems Development, Properties, and Applications; Putz, M.V., Mirica, M.C., Eds.; IGI Global:
Hershey, PA, USA, 2017; pp. 122–147, ISBN 9781522504924.

33. Bolboacă, S.D.; Jäntschi, L. Counting Distance and Szeged (on Distance) Polynomials in Dodecahedron
Nano-assemblies. In Distance, Symmetry, and Topology in Carbon Nanomaterials; Ashrafi, A.R., Diudea, M.V.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 391–408, ISBN 978-3-319-31582-9.

34. Jäntschi, L. Online Calculation of Graph Polynomials Such as Counting Polynomial and Characteristic
Polynomial. 2006. Available online: http://l.academicdirect.org/Fundamentals/Graphs/polynomials/
(accessed on 21 January 2017).

35. Gabor, B.M.; Vreman, P.P. Free Pascal: Open Source Compiler for Pascal and Object Pascal. 1988 (and to
Date). Available online: http://freepascal.org (accessed on 21 January 2017).

36. Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. Further extensions of
Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56,
2257–2261. [CrossRef]

37. Jäntschi, L.; Bolboacă, S.D. Performances of Shannon’s Entropy Statistic in Assessment of Distribution of
Data. Ovidius Univ. Ann. Chem. 2017, 28, 30–42. [CrossRef]

38. Jäntschi, L. Tests. Available online: http://l.academicdirect.ro/Statistics/tests/ (accessed on 1 March 2017).
39. Fisher, R.A. Questions and answers #14. Am. Stat. 1948, 2, 30–31.
40. Bolboacă, S.D.; Jäntschi, L. Distribution Fitting 3. Analysis under Normality Assumptions. Bull. Univ. Agric.

Sci. Vet. Med. Cluj-Napoca. Hortic. 2009, 66, 698–705.
41. Student. The probable error of a mean. Biometrika 1908, 6, 1–25. [CrossRef]
42. Welch, B.L. The generalization of student’s problem when several different population varlances are involved.

Biometrika 1947, 34, 28–35. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

91

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03928-177-0

	Blank Page

