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Abstract: Herbicide resistance in weeds is perhaps the most prominent research area within the discipline
of weed science today. Incidence, management challenges, and the cost of multiple-resistant weed
populations are continually increasing worldwide. Crop cultivars with multiple herbicide-resistance
traits are being rapidly adopted by growers and land managers to keep ahead of the weed resistance
tsunami. This Special Issue of Plants comprises papers that describe the current status and future outlook
of herbicide resistance research and development in weedy and domestic plants, with topics covering
the full spectrum from resistance mechanisms to resistance management. The unifying framework
for this Special issue, is the challenge initially posed to all of the contributors: what are the (potential)
implications for herbicide resistance management?

Keywords: herbicide resistance; non-target-site resistance; precision weed management; resistance
management; weed biology; weed genomics

1. Introduction

Since the first global cases of herbicide resistance in weeds in the late 1950s, there are now over
500 unique cases reported in non-cropland and almost 100 different crops in 70 countries—over 260
species compromising the efficacy of over 160 herbicides or over 20 herbicide sites of action (SOA) [1].
The current rate of increase in the number of weed species resistant to glyphosate (e.g., see Alcantara-de
la Cruz et al. [2] this issue) is second only to that of acetolactate synthase inhibitors. Since first
introduced in the early 1980s, cultivars of major agronomic field crops possessing herbicide-resistance
traits now occupy a significant proportion of the global crop production area [3,4]. This Special Issue
presents a collection of papers that highlight the continuing breadth and depth of basic and applied
herbicide resistance research and development in both weedy and crop species. As the privileged guest
editor, I share my perspectives on key messages, and future directions gleaned from these volunteered
or invited contributions.

2. Key Messages

An integral element of herbicide resistance surveillance is the periodic sensitivity analysis of
populations of a weed species in an agroregion to commonly used herbicides. Such an analysis provides
information on the inter- and intra-population variability in the effective dose (ED) required for 50 or
90%, etc., reduction in survival or biomass. Therefore, sensitivity analysis can determine if populations
are becoming less sensitive to a herbicide over time, and if label rates need to be adjusted accordingly.
These foundational studies are extremely important in mitigating quantitative (creeping) resistance
evolution, particularly for key herbicides such as glyphosate and major problematic outcrossing weeds
such as Lolium spp. [5,6]. Intentional or unintentional sublethal herbicide doses may even alter the
metabolism, growth, and survival of susceptible plants of highly-selfing species, such as demonstrated
for Avena fatua L. (wild oat) [7].

Target-site mutations conferring evolved herbicide resistance in weeds are known in nine different
herbicide SOA. An emerging trend is increased cases of multiple mutations, including multiple amino
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acid changes at the glyphosate target site as well as mutations involving two nucleotide changes
at a single amino acid codon [8]. Non-target-site resistance (NTSR) to herbicides in weeds, such as
enhanced metabolism by P450 monooxygenases, is an increasingly serious threat to sustainable weed
management as the efficacy of multiple SOA herbicides may be compromised. Although much more
difficult to investigate than target-site resistance, steady advances are being made in the physiological,
biochemical and molecular basis of NTSR mechanisms in weeds [9].

The fields of genomics, transcriptomics, proteomics, and metabolomics—collectively referred
to as ‘omics’—describe the component parts of the biological system that lead to the presentation of
traits. Unravelling the genome of major global weedy species will greatly facilitate the identity and
function of major and minor genes responsible for herbicide resistance [10]. Draft weed genomes can
provide insights on the evolutionary origins of weeds, allowing identification of management practices
that may mitigate resistance evolution. Moreover, genomics can identify strengths and weaknesses of
weed populations that can be targeted for control, while providing fundamental information on how
plants rapidly respond to herbicide selection. The weed omics era of today is enabling translational
research to bridge from basic science to field applications, by linking systems-scale science to applied
science for practitioners [11]. Weed science is still learning how to integrate omics technologies into
the discipline; however, omics techniques are more frequently being implemented in novel ways to
address basic questions in weed biology or practical questions of improving weed management; for the
latter, the potential benefits of weed omics will be best realized for farms utilizing advanced data
science approaches necessary for the implementation of digital farming [11].

After a 35-year hiatus in the commercialization of new SOA herbicides, there is now optimism in
the agri-chemical industry as new SOA herbicides are being introduced for control of key economic
weeds in major agronomic crops. A review in this issue of the current status and future prospects in
herbicide discovery offer insights into novel potential target sites in plants and innovative approaches
or processes to facilitate new herbicide SOA discovery [12]. Because of this hiatus in SOA discovery
and commercialization, cultivars of the major agronomic crops, particularly maize (Zea mays L.) and
soybean (Glycine max L. Merr.), are being conventionally bred or genetically engineered with combined
(stacked) pesticide-resistance traits. A review in this issue summarizes their current status and future
outlook [13]. Recent global developments and trends in herbicide resistance management also include
the increasing reliance on pre-emergence vs. post-emergence herbicides because of weed resistance,
breeding for weed-competitive cereal crop cultivars, expansion of harvest weed seed control practices,
and advances in site-specific or precision weed management (via prescription maps or in real-time) [14].

3. Future Directions

Natural selection for herbicide-resistant weed genotypes may act on standing genetic variation
or on a genetic and physiological background that is altered because of stress responses to
sublethal herbicide exposure. Stress-induced changes include DNA mutations, epigenetic alterations,
transcriptional remodeling, and protein modifications, all of which can lead to herbicide resistance and
various pleiotropic effects [15]. Studies examining stress-induced evolution of herbicide resistance and
related pleiotropic effects are needed to inform improved herbicide-resistant weed prevention and
management strategies [7]. As both the incidence of weed populations with NTSR and the worldwide
occurrence of environmental stress are expected to increase, expanded research on NTSR evolution
and its potential for pleiotropic effects should be a high priority [15].

A primary goal driving the need to characterize herbicide resistance mechanisms is the
management of herbicide-resistant weeds. Better understanding is needed of the relationship
between target-site resistance mutations or mechanisms in troublesome weed species, their geographic
distribution and prevalence across an agroregion, resulting in cross-resistance patterns, and associated
fitness costs. Continuing advances or improvements are expected in the efficiency and accuracy of high
throughput in vitro diagnostic techniques [16]. A uniform and replicable system for in planta functional
validation, which is the gold standard for demonstrating resistance and susceptibility, is necessary
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to facilitate high-throughput screening initiatives [8]. Because the evolution of NTSR via herbicide
metabolism is a serious threat to weed management, identification of the genes endowing resistance
and their functional characterization are important future research goals for possible mitigation
and management strategies. The increasing availability of sequenced genomes for different weed
species will greatly accelerate research in this area [10]. Accurately assessing fitness costs of resistance
and deriving practical management tactics to potentially exploit this phenomenon in resistant weed
populations will continue to be an important research endeavour [17].

Omics research in weed science faces several challenges, including management of large and
complex omics datasets, efficient and accurate annotation of reference genome assemblies and eventual
pan genomes, and the large number of weed species with a diversity of weedy traits and variation in
evolutionary strategies. Examining the diverse ways that researchers working in model systems use
omics technologies in their respective fields can provide established tools and templates to address
the future needs of the weed science community [11]. In particular, method standardization for
utilizing next generation sequencing in weed science, improving herbicide resistance diagnostics with
omics, and improved gene function validation for herbicide resistance mechanisms are attainable
medium-term (5 to 10 year) goals. Can we alter weed populations to make them easier to control?
Current and future omics tools to improve herbicide-resistant weed management, such as gene
drive systems for sensitizing herbicide-resistant weed populations, requires proof of concept studies
but has promising long-term potential [10,11,18]. A better understanding of weed species at the
population, genomic, and genic levels using population genomic approaches will help begin to address
that question.

Ultimately, basic or applied herbicide resistance research and development should inform
resistance management by growers and land managers. Sustaining the utility of existing herbicides
and effective stewardship guidelines for herbicide-resistant crops will continue to demand innovative
research and development to address these challenges. Adoption of some recommended best
management practices by end-users may require private or public sector financial incentives. Recent
advances in precision or digital agriculture have largely been driven by significant private-sector
investments. It offers the best route for optimizing crop production and crop protection across a field by
varying input levels commensurate with site-specific soil or environmental conditions that govern yield
potential. The ongoing challenge is the development of user-friendly and cost-effective technologies or
systems that can be easily integrated into existing farming enterprises.
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Abstract: Glyphosate is a cheap herbicide that has been used to control a wide range of weeds
(4-6 times/year) in citrus groves of the Gulf of Mexico; however, its excessive use has selected
for glyphosate-resistant weeds. We evaluated the efficacy and economic viability of 13 herbicide
treatments (glyphosate combined with PRE- and/or POST-emergence herbicides and other alternative
treatments), applied in tank-mixture or sequence, to control glyphosate-resistant weeds in two Persian
lime groves (referred to as SM-I and SM-II) of the municipality of Acateno, Puebla, during two years
(2014 and 2015). The SM-I and SM-II fields had 243 and 346 weeds/m?, respectively, composed mainly
of Bidens pilosa and Leptochloa virgata. Echinochloa colona was also frequent in SM-II. The glyphosate
alone treatments (1080, 1440, or 1800 g ae ha™!) presented control levels of the total weed population
ranging from 64% to 85% at 15, 30, and 45 d after treatment (DAT) in both fields. Mixtures of
glyphosate with grass herbicides such as fluazifop-p-butyl, sethoxydim, and clethodim efficiently
controlled E. colona and L. virgata, but favored the regrowth of B. pilosa. The sequential applications of
glyphosate + (bromacil + diuron) and glufosinate + oxyfluorfen controlled more than 85% the total
weed community for more than 75 days. However, these treatments were between 360% and 390%
more expensive (1.79 and 1.89 $/day ha™! of satisfactory weed control, respectively), compared to the
representative treatment (glyphosate 1080 g ae ha™! = USD $29.0 ha™!). In practical and economic
terms, glufosinate alone was the best treatment controlling glyphosate resistant weeds maintaining
control levels >80% for at least 60 DAT ($1.35/day ha™!). The rest of the treatments, applied in
tank-mix or in sequence with glyphosate, had similar or lower control levels (~70%) than glyphosate at
1080 g ae ha™!. The adoption of glufosiante alone, glufosinate + oxyfluorfen or glyphosate + (bromacil
+ diuron) must consider the cost of satisfactory weed control per day, the period of weed control,
as well as other factors associated with production costs to obtain an integrated weed management
in the short and long term.

Keywords: Citrus latifolia; hairy beggarticks; integrated weed management; junglerice; tropical sprangletop

1. Introduction

Citriculture is an important activity in Mexico occupying ~40% of the total area devoted to
fruticulture [1]. The state of Veracruz is the biggest producer of citrus fruits with ~225,000 ha, and the
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orange (Citrus sinensis) occupies the largest crop area (55%); however, the Persian lime (C. latifolia), with
~47,000 ha [2], makes the highest economic contribution [3]. In this way, Persian lime plantations receive
more care than other citrus crops from small and large growers [4], such as fertilization (foliar and soil),
prunings, control of diseases (Colletotrichum gloeosporioides), pests (Diaphorina citri and Phyllocnistis
citrella), and weeds (chemical and mechanical) [5-7].

Weed competition require special attention in young citrus trees and during blooming and fruit
setting [8], but in older plantations, the impacts of weeds are also indirect, mainly by limiting crop
management [9], in addition to the fact that weeds can be hosts for pests and diseases [6]. Thus,
weed management in the citrus-producing region of the Gulf of Mexico, by combining chemical and
non-chemical (manual or mechanical mowing) methods, is carried out four to six times a year [7,9,10],
representing ~8-12% of production costs ha™! [11].

Glyphosate is a systemic and non-residual and post-emergence (POST) herbicide that controls
a wide range of weeds [12], making it preferred by the Mexican citrus growers [7,13]. The doses
recommended by the manufacturers of this herbicide range from 700 to 2100 g ae ha™! [14], according to
the weed species, phenological stage, and infestation level. Due to the frequent glyphosate applications,
most Mexican citrus growers have widely adopted and applied doses ranging from 720 to 1080 g ae ha™!
for up to 15 years [9]. The high dependence of glyphosate-based herbicides has led to the selection
of resistant populations of Bidens pilosa [15], Eleusine indica [4], Leptochloa virgata [7], and Parthenium
hysterophorus [13] between 2010 and 2016 in the citrus-producing region of the states of Puebla and
Veracruz, Gulf of Mexico.

Despite the evident loss of glyphosate efficacy in controlling weeds, Mexican citrus growers
continue using this herbicide for its low cost, which makes it necessary to look for weed management
alternatives that help to extend the useful life of this herbicide [12]. Glufosinate and paraquat,
POST, broad-spectrum, and non-residual herbicides like glyphosate are also used in citrus groves [7].
However, these herbicides have short control periods forcing growers to make more applications,
which is more expensive than with glyphosate alone. In addition, when glufosinate or paraquat are
applied in late POST in order to reduce the number of herbicide applications, weed control is poor
(personal communication with growers). Management strategies with pre-emergence (PRE) and early
POST herbicides could reduce the selection pressure exerted by glyphosate on weeds that are difficult
to control [16], as well as production costs [11].

In this work, we evaluated the efficacy and economic viability of 13 herbicide treatments
(glyphosate combined with PRE and/or POST herbicides and other alternative treatments), applied in
tank-mixture or sequence (Table 1), to control weeds, including glyphosate-resistant species in the
citrus-producing region of the Gulf of Mexico.
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Table 1. Herbicides (Treatments), mechanism of action (MOA), field rates in g ai or ea ha~! (Rate), liters
of commercial herbicide ha™! (liters), application time (Time) of pre- (PRE) and post-emergence (POST)
herbicides for the weed control in two Persian lime groves of the “San Manuel” Farm, Puebla, Mexico,
and cost of each treatment ha=! (USD).

Treatments ! MOA 2 Rate Liters Time UsD?3
- Control - - - - -
1 Gly 1080 EPSPS 1080 3 POST 29.0
2 Gly 1440 EPSPS 1440 4 POST 38.7
3 Gly 1800 EPSPS 1800 5 POST 484
4 Gly + Flua EPSPS + ACCase 1080 + 250 3+2 POST 100.9
5 Gly + Ace t EPSPS + Mitosis 1080 + 1678 3+2 POST+PRE 57.3
6 (Gly + Oxi) + Flua t (EPSPS+PPO) + ACCase (1080 + 480) + 250 B+2)+2 POST+PRE 97.4
7 Gly + Seth EPSPS + ACCase 1080 + 368 3+2 POST 82.0
8 Gly + Cleth EPSPS + ACCase 1080 + 236 3+2 POST 70.0
9 Glufos GS 450 2 POST 54.1
10 Par + Diu PSI + PSIT 400 + 200 2 POST 26.8
11 Glufos + Oxi t GS + PPO 420 + 480 2+2 POST + PRE 134.6
12 Gly + Oxa t GS + PPO 1080 + 1000 4+3 POST + PRE 112.0

13 Gly + (Brom + Diu) ¥ EPSPS + (PSII + PSIT) 1080 + (1200 + 1200) 3+3 POST + PRE 1424

1 Gly = Faena® Fuerte 360 (SC, 35.6% glyphosate w/v); Flua = Fusilade BIW® (EC, 12.5% fluazifop-p-butyl w/v);
Ace = Harness® EC (EC, 60% acetochlor w/v); Oxi = Goal® 2XL (EC, 22.3% oxifluorfen w/v); Seth = Poast® (CL,
18.4% sethoxydim w/v); Cleth = Select® Ultra (CE, 12.5% clethodim w/v); Glufos = Finale® (CE, 15% glufosinate w/v);
Par + Diu = Gramocil® (SC, 20 + 10% paraquat + diuron w/v); Oxa= Ronstar® 25CE (CE, 24.4% oxadiazon w/v); and Brom
+ Diu = Krovar® (WG, 40 + 40% bromacil + diuron w/w). Mention of trade names in this publication is solely for providing specific
information and does not imply their recommendation. > Mechanism of action: Inhibitors of enolpyruvyl shikimate-3-phosphate
synthase (EPSPS), acetyl-CoA carboxylase (ACCase), mitosis, protoporphyrinogen oxidase (PPO), glutamine synthetase (GS),
photosystem I (PSI) and II (PSII). 3 Average exchange rate of the Mexican peso (MNX) to US dollar (USD) corresponding to
January 2014 (13.20 = 1.0) and January 2015 (14.67 = 1.0), respectively. ¥ Treatments applied in sequence 15 days after the
first application.

2. Results

2.1. Initial Weed Density

The average density of weeds was 242.9 and 345.6 plants m? in the SM-I and SM-II fields,
respectively. Weed community was composed mainly of B. pilosa and L. virgata in both fields.
In addition, Echinochloa colona was frequent in SM-II. Density of weeds showed no differences between
years and B. pilosa presented the highest density (Table 2). Species such as Amaranthus viridis, Cynodon
nlemfuensis, Digitaria sanguinalis, Eleusine indica, and Parthenium hysterophorus were sporadic in SM-I,
and E. indica and Rottboellia cochinchinesis in SM-II. Due to the low density of these weeds, they were
not considered for the analysis of herbicide control per species.

Table 2. Initial weed density (plants m?) in two Persian lime groves of the “San Manuel” Farm,
Puebla, Mexico.

. San Manuel I San Manuel II
Species
2014 2015 2014 2015
B. pilosa 1148 £ 4.6 117.3 +£3.7 1959 + 8.6 1825+ 6.3
L. virgata 98.7 +4.7 104.8 +3.4 49.8 + 3.0 58.7 + 4.6
E. colona 7.3+32 11.4 +£2.08 96.7 £ 5.9 873 +4.1
Other weeds 19.6 £ 2.6 156 +1.7 8.0+21 124 +38
Total 237.7 248.1 350.3 340.9

+Standard error of the mean (1 = 28).

2.2. Total Control of Weeds

The glyphosate treatments of 1080, 1440, and 1800 g ae ha™! presented similar control levels
at 15, 30, and 45 days after treatment (DAT) in both SM-I and SM-II fields ranging from 64% to
85%. Weed control with 1080 g ae ha™! of glyphosate was ~10-20% lower in relation to the other
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two-glyphosate treatments at the 60 and 75 DAT. Most of the herbicides, applied in tank-mix or
in sequence with glyphosate, had similar control levels (~70%) than the lowest dose of glyphosate
(1080 g ae ha™!) at 15 DAT, except clethodim and oxadiazon in both fields, and fluazifop-p-butyl,
oxyfluorfen + fluazifop-p-butyl (in sequence), and sethoxydim in SM-II that showed lower control
level than glyphosate alone. Acetochlor in SM-II and fluazifop-p-butyl, sethoxydim, and clethodim in
tank mixture, and fluazifop-p-butyl and oxadiazon in sequential application in SM-II, showed greater
control at 30 DAT than at 15 DAT. As of this period, the control of these herbicides was similar or
less than the control obtained with glyphosate at 1080 g ae ha™!, except the sequential application of
bromacil + diuron. The control level of the latter treatment increased from 30 DAT up to 90% until the
end of the experiments. Glufosinate and glufosinate + oxyfluorfen (in sequence) showed the highest
levels of control (>95%) at 15 and 30 DAT. The last treatment showed a control level above 90% at
75 DAT, while glufosinate alone decreased to 77%. Paraquat + diuron had control levels above 85% at
15 and 30 DAT but decreased to 48% at 75 DAT (Table 3).

Table 3. Total weed control percentage with pre- and post-emergence herbicides in two Persian lime
groves of the “San Manuel” Farm, Puebla, Mexico from 15 to 75 days after treatment (DAT). Visual
control was measured as 0 = no control and 100 = plant death.

Treatment ! 15 DAT 30 DAT 45 DAT 60 DAT 75 DAT

San Manuel I

Control - - - - -
Gly 1080 742 +24c¢ 642+15e 683+1.7d 483 + 2.8 ef 41.7 £ 2.5 ef
Gly 1440 725+3.1c¢ 783 +1.1cd 733 +2.1cd 64.2 +3.3 cd 492 +2.0de
Gly 1800 84.2+20b 767 +21d 783 +1.1c 62.5+28cd 55.0 + 1.8 cd
Gly + Flua 683 +1.7c 51.7+1.7f 53.3 + 3.1 ef 417 +25f 358+20f
Gly + Ace * 69.2+24c 842+20bcd 71.7+17cd 59.2 +3.0de 633+21c
(Gly + Oxi) + Flua t 71.7+25¢ 642+15e 70.8 +1.5cd 642 +24cd 525+1.7d
Gly + Seth 733 +21c¢ 375+17g 583+21e 55.0+22de  45.0 = 1.8 def
Gly + Cleth 66.7+1.7 ¢ 342+27g 46.7 +25f 425+21f 200+29¢g
Glufos 100.0+0a 975+1.1a 883+21b 858+ 1.5b 775+ 1.1b
Par + Diu 86.7+1.1b 86.7 +2.1bc 742 +0.8 cd 70.8 + 0.8 cd 542 +24cd
Glufos + Oxi 100.0+0a 99.2+0.8a 975+1.8a 963 +1.7a 91.7+17a
Gly + Oxa t 65.0+1.3¢ 68.3 £2.5de 592+ 15e 383+25f 358+24f
Gly + (Brom + Diu) 708 £ 2.7 ¢ 883+ 1.7b 91.7 £ 2.5 ab 92.5+2.5ab 89.2+27a
San Manuel 1T
Control - - - -
Gly 1080 66.7 +2.5cd 80.8 +4.0de 69.2 + 1.5bc 61.7 £33 cd 433 £ 2.1 ef
Gly 1440 76.7 +21b 80.8 +1.5de 69.2 + 2.0 bc 70.8 + 2.0 bc 51.7 +2.5de
Gly 1800 75.0+2.6bc  85.8 +2.0cde 76.7+21b 742 +£3.0Db 575+21cd
Gly + Flua 483 +1.1fg 80.0 £ 2.9 de 31.7+28f 483+25e 392+20f
Gly + Ace t 758 £3.0bc  85.0 1.8 cde 88.3+25a 875+25a 658+ 1.5¢
(Gly + Oxi) + Flua * 533 +21ef 86.7+25bcd 425+1.1de 36.7+21f 275+28¢g
Gly + Seth 408+24¢g 775+ 1.1de 458 £ 2.7 de 525+ 1.7 de 444 +1.5ef
Gly + Cleth 51.7 £ 1.1 ef 758 +15e 36.7 + 3.1 ef 492+24e 408 +1.8f
Glufos 99.2+0.8a 96.7 + 1.7 ab 933+1.7a 883+1.7a 792+20b
Par + Diu 983+1.1a 85.8 £ 1.5 cde 633+21c 575+1.7de 483 + 1.7 def
Glufos + Oxi 100.0+0a 99.2+0.8a 975+1.7a 942 +24a 908+ 1.5a
Gly + Oxa * 58.3 + 2.8 de 767 +1.7d 50.8+3.0d 542 +2.0de 45.0 + 1.8 ef

Gly + (Brom + Diu) * 742 +20bc 942 +2.0abc 958+24a 96.7+21a 90.8+27a

1 Abbreviations of herbicides: Gly = Glyphosate, Flua = Fluazifop-p-butyl, Ace = Acetochlor, Oxi = Oxifluorfen, Seth =
Sethoxydim, Cleth = Clethodim, Glufos = Glufosinate, Par = Paraquat, Diu = Diuron, Oxa = Oxadiazon, Bro = Bromacil.
* Treatments applied in sequence 15 days after the first application. Same letter within a column showed no differences
between treatments by the Tukey test (P > 0.05). + Standard error of the mean of two field trials conducted in 2014 and 2015
(n=6).
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2.3. Control of Bidens Pilosa

The control of B. pilosa with the different treatments was more heterogeneous in SM-Tat 30 DAT than
in SM-II. None of the three-glyphosate treatments showed satisfactory levels of control. Glufosinate
alone and the sequential applications of glufosinate + oxyfluorfen and glyphosate + (bromacil + diuron)
presented the best control levels of B. pilosa in both fields at 30 and 75 DAT. Paraquat + diuron presented
a control >80% at 30 DAT but decreased to 50% at 75 DAT. The other herbicides, applied in tank-mix or
in sequence with glyphosate, had similar or lower control than any glyphosate treatment alone. As
expected, graminicides such as fluazifop-p-butyl, sethoxydim, and clethodim did not contribute to the
control of B. pilosa (Figure 1).
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Figure 1. Control of Bidens pilosa in two Persian lime groves of the “San Manuel” Farm, Puebla,
Mexico, at 30 (gray bars) and 75 (dotted bars) d after treatment. Same letter within a subfigure showed
no differences between treatments by the Tukey test (P > 0.05). Vertical bars + standard error from
combined data of field trials carried out in 2014 and 2015 (n = 6).

2.4. Control of Leptochloa Virgata

Most of the treatments controlled L. virgata by 85% or higher in both fields at 30 DAT, except
glyphosate alone (1080, 1440, and 1800 g ae ha™!) and the sequential application with acetochlor in
SM-II (control ~60%). At 75 DAT, tank-mixtures of glyphosate with fluazifop-p-butyl, oxyfluorfen
+ fluazifop-p-butyl (in sequence), and clethodim had control levels of ~90% in SM-I. Oxifluorfen,
applied in sequence, extended the control of L. virgata (~80%) with glufosinate. Paraquat + diuron and
the sequential applications of glyphosate with oxadiazon and bromacil + diuron maintained control
levels of 76-82%. At SM-II, all herbicides, applied in tank-mixture or in sequence with glyphosate,
showed greater control of L. virgata compared to the glyphosate alone treatments. Oxifluorfen +
fluazifop-p-butyl, sethoxydim, oxadiazon, and bromacil + diuron contributed to maintaining control
levels >85% at 75 DAT. Treatments that did not include glyphosate had similar control levels (glufosinate)
or lower (glufosinate + oxyfluorfen and paraquat + diuron) than the previous treatments. However,
these levels of control were similar to those observed in SM-I in the same period (Figure 2).
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Figure 2. Control of Leptoclhoa virgata in two Persian lime groves of the “San Manuel” Farm, Puebla,
Mexico, at 30 (gray bars) and 75 (dotted bars) d after treatment. Same letter within a subfigure showed
no differences between treatments by the Tukey test (P > 0.05). Vertical bars + standard error from
combined data of field trials carried out in 2014 and 2015 (1 = 6).

2.5. Control of Echinochloa Colona

Echinochoa colona occurred at high density in the field SM-II, but it was controlled by most of the
treatments, including the glyphosate ones, in more than 90% at 75 DAT. Glufosinate and the mixture of
paraquat + diuron showed the lowest control levels (~75%) due to low residuality (Figure 3).

a a a ab a a a
b

% Visual control

Figure 3. Control of Echinochloa colona in the Persian lime grove “San Manuel 11" of the “San Manuel”
Farm, Puebla, Mexico, at 75 days after treatment. Same letter shows no differences between treatments
by the Tukey test (P > 0.05). Vertical bars + standard error from combined data of field trials carried
out in 2014 and 2015 (1 = 6).
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2.6. Cost of Glyphosate Resistance Management

Analyzing the cost of treatments compared to the representative treatment most used by producers
(glyphosate at 1080 g ae ha-1 = USD $29.0 ha™!), with exception of the paraquat + diuron that was 8%
cheaper, all treatments were between 33 and 391% more expensive. Taking into account the duration
of the experiments (75 days), the cheapest daily cost of weed control was $ 0.36/day for the cheapest
treatment (duron + paraquat), and glufosinate + oxyfluorfen and glyphosate + (bromacil + diuron)
were apparently the most expensive treatments (1.79 and $ 1.89 $/day ha~?, respectively) (Table 4).
The minimum satisfactoty and accdeptable level of weed control for an herbicide treatment is 80%,
according to the European Weed Research Society [17]. Based on this criterion, several treatments did
not reach this level of weed control since 15 DAT; mainly in the San Manuel I field (Table 2). Thus,
the treatments that presented most expensive cost of satisfactory weed control per day were glyphosate
(1800 g ae ha™!, $3.22/day ha~!) in San Manuel I and glyphosate + fluazifop-p-butyl in San Manuel IT
($3.36/day ha™'), since they only maintained control > 80% for 15 and 30 DAT, respectively. Glufosinate
+ oxyfluorfen and glyphosate + (bromacil + diuron) presented control levels > 80% for 75 DAT in
both fields, i.e., they were almost half-cheaper than the previous two treatments. However, the best
satisfactory cost of weed control per day (0.95 and 1.08 $/day ha~!) was achieved with glyphosate +
acetochlor (only in San Manuel II) and glufosinate (in both fields), mainly by maintaining weed control
> 80% at least 60 DAT (Table 4).

Table 4. Cost of herbicide treatments (Cost), relative daily cost considering 75 days of weed control
(R-$/day ha™!) *, percentage of cost increase (% Inc) * in relation to the representative treatment (RT;
1080 g ae ha™! glyphosate = USD $29.0 ha™!), days of weed control <80% (DAT>80%), and cost of
satisfactory weed control per day (SC $/day ha™!) * in two Persian lime groves of the “San Manuel”
Farm, Puebla, Mexico. All costs are estimated in relation to one hectare (1 ha‘l).

Treatment ! Cost R-$/day % Inc San Manuel I San Manuel II
DAT > 80% SC $/day DAT > 80% SC $/day
Control - - - - - - -
Gly 1080 29.0 0.38 RT - - 30 0.96
Gly 1440 38.7 0.51 33 - - 30 1.29
Gly 1800 484 0.65 66 15 3.22 30 1.61
Gly + Flua 100.9 1.35 247 - - 30 3.36
Gly + Ace 57.3 0.76 97 30 1.91 60 0.95
(Gly + Oxi) + Flua * 97.4 1.30 183 - - 30 -
Gly + Seth 82.0 1.09 236 - - - -
Gly + Cleth 70.0 0.93 141 - - - -
Glufos 81.2 1.08 86 60 1.35 75 1.08
Par + Diu 26.8 0.36 -8 30 0.89 30 0.89
Glufos + Oxi t 134.6 1.79 364 75 1.79 75 1.79
Gly + Oxa t 112.0 1.49 286 - - - -
Gly + (Brom + Diu) t 1424 1.89 391 75 1.89 75 1.89

* R-$/day = cost of a determined treatment/75 days; % Inc = [cost of a determined treatment/$29.0 ha~! (cost of representative
treatment)] — 100; and SC $/day = cost/DAT > 80% of a determined treatment. ' Gly = Glyphosate, Flua = Fluazifop-p-butyl,
Ace = Acetochlor, Oxi = Oxifluorfen, Seth = Sethoxydim, Cleth = Clethodim, Glufos = Glufosinate, Par = Paraquat,
Diu = Diuron, Oxa = Oxadiazon, Bro = Bromacil. ' Treatments applied in sequence 15 days after the first application.

3. Discussion

Weed community was mainly composed of B. pilosa, E. colona, and L. virgata in both SM-I and SM-II
fields. Weed control in citrus groves of the Gulf of Mexico has been based mainly on glyphosate-based
herbicides [4,7,13,15,18]. This almost exclusive dependence exerted a strong selection pressure favoring
the establishment of these species in the Persian lime groves of the San Manuel Farm. Natural weeds are
megadiverse, composed of both dicot and monocotyledons [19,20]; however, most cropping practices
reduce plant diversity favoring few weed species [21], as observed in the SM-II field that showed a
lower weed diversity than SM-I field, but higher density of plants.

11



Plants 2019, 8, 325

The glyphosate-based treatments with increasing doses did not increase the total control of
weeds, mainly, of the dominant species B. pilosa and L. virgata. Glyphosate resistance of L. virgata
in citrus groves from Martinez de la Torre and Cuitlahuac, state of Veracruz, was confirmed in
2010 [7,22], municipalities that are at least 450 km apart. Some of these populations selected glyphosate
resistance independently, but the majority have a common resistance selection origin that was spread
throughout the citrus-producing region of the Gulf of Mexico to both short and long distances mainly
by dispersing its seeds by people, tractors, and machinery used for the cultural deals [22]. Considering
that the municipality of Acateno is located ~25 km from Martinez de la Torre, it was expected that
glyphosate-resistant populations of L. virgata found in the San Manuel Farm, as well as in other
farms around the region. In addition, there could also be selection of glyphosate resistance of weeds
in situ [22], because weed management strategies based on herbicides lead to an eventual loss of
control [23], and consequently, the selection for weeds resistant to herbicides [24].

The continuous use of glyphosate in citrus groves of the San Manuel farm, in addition to
consolidating the glyphosate resistance of L. virgata, also selected for resistance in B. pilosa, as later
corroborated by characterizing representative populations (R1 and R2 collected in SM-II and SM-I fields,
respectively [15]). Some grass-controlling herbicides (fluazifop-p-butyl, sethoxydim, and clethodim),
which efficiently controlled L. virgata and E. colona, reduced the efficacy of glyphosate to control B. pilosa,
i.e., were apparently antagonistic. However, the low levels in controlling this species were perhaps
due to its resistance to glyphosate, because once grasses were controlled by the grass herbicides,
uncontrolled B. pilosa plants regrowth reached high levels of coverage, which was reflected in the low
control percentages of total weeds of these treatments. This shows that improper implementation
of a weed management strategy may indirectly favor the selection of herbicide resistance in another
weed(s) [25]. This situation is worrisome because infestations of B. pilosa may impede future manual
activities of crop management such as pruning and harvesting (Figure 4), since its achenes have
three barbed spines that easily attach to clothing or fur [26]. Bromacil + diuron applied 15 DAT
following glyphosate application controlled B. pilosa, demonstrating its contribution of bromacil +
diuron in the control of weeds. Thus, other mixtures of glyphosate with herbicides such as 2,4-D,
dicamba, or picloram, with good efficacy on dicots [27], could also contribute to controlling B. pilosa
in autumn-winter period when it reaches its highest population density, as well as other broadleaf
weeds, when trees are not blooming or setting fruits.

Figure 4. Persian lime rows infested with B. pilosa in “San Manuel 1”, Acateno, Puebla, in 2014.
(A) Untreated control plot 10 DAT, and (B) random rows at 30 DAT. Persian lime trees were 3 years old.

The poor control of L. virgata with the glyphosate-based treatments with acetochlor and oxadiazon
in both the SM-I and SM-II fields was due to regrowth of plants. In situations where glyphosate poorly
controls resistant weeds, the use of residual herbicides was proposed to control grasses that come
from seeds [28]. The mixture of glyphosate with contact or residual herbicides can improve weed
control in citrus plantations in Florida, USA, and at the same time reduce the selection of resistant
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populations and extend the weed control period [16]. Tank-mix of glufosinate + indaziflam controlled
glyphosate-resistant L. virgata populations in Persian lime and orange groves from Veracruz, Mexico,
up to 90 days due to the residually of the second herbicide [7]. However, most Mexican citrus growers
have not adopted the practice of using PRE and residual herbicides for effective and timely control
of weeds. In addition, growers are reluctant to adopt non-chemical weed control methods [29,30].
Thus, the misuse of herbicides (late application, subdose, or overdose) has selected for resistant weeds,
which increased yield losses and production costs [30].

The good control of E. colona, a weed species in high plant density in the SM-II field, and the other
sporadic weeds were also susceptible to glyphosate. However, the high occurrence rates of B. pilosa
and L. virgata resistant to glyphosate make it necessary to seek weed management strategies, including
non-chemical methods, without increasing production costs.

Without the occurrence of glyphosate resistant weeds, the cost of satisfactory weed control per day
would be $ 0.38/day ha™! (1800 g ae ha™! glyphosate). However, due to the occurrence of B. pilosa and L.
virgata populations resistant to this herbicide, no glyphosate treatment alone showed control above 80%,
classified as satisfactory or good [17], for more than 30 DAT. Glufosinate + oxifluorfen and glyphosate +
(bromacil + diuron) maintained this control level up to 75 DAT in both fields, but in global terms, they
were the more expensive treatments (1.79 and 1.89 $/day ha~!, respectively). The cost of an herbicide
treatment, without considering the application cost, is a good indicator that can help in selecting a
chemical treatment [29,31], but this cost is relevant when the choice considers the period of control. In
this sense, mixtures of glyphosate with sethoxydim, cletodim or oxadiazon were not efficient to control
weeds in practical and economic terms. However, the best treatment was glufosinate that maintained
an acceptable weed control for 60 DAT in San Manuel I ($1.35/day ha™') and 75 in San Manuel I
($1.08/day ha™!). This represents at least one application operation less in comparison to the other
treatments that presented control > 80% for up to 30 DAT. Therefore, the choice of a relative more
expensive herbicide treatments, but that provide an acceptable control of glyphosate resistant weeds
for longer in Persian lime orchards could result in fewer herbicide applications, reducing the cost of
this and other crop management tasks [32], such as pruning and harvest. Integrated herbicide-resistant
weed management programs reduce profits in the first year of its implementation, but profits increase
in the second and subsequent years [33,34], since once the seed bank decreases, less expensive and
persistent active ingredients can be used [23,35]. This could improve the yield and quality of fruits,
increasing the return, since weed management is a key component to sustaining productivity [33,34].
Therefore, the adoption of weed management strategies, either chemical, not chemical, or combined,
must consider other factors associated with production costs rather than the individual cost of a
determined control method, in order to obtain an integrated weed management in the short and long
term [29,30].

4. Materials and Methods

4.1. Local Data and Experimental Design

Field trials was carried out in two Persian lime groves, of the “San Manuel” Farm (20.10° N, 97.16° W),
in Acateno, Puebla, referred to as SM-I and SM-II (at 128 and 137 m above sea level, respectively),
which had received glyphosate applications of 720-1080 g ae ha™! between 3 and 5 times a year from
2006 to 2014. The groves were at least 800 m apart, and Persian lime trees were 3 years old and
arranged at 3 X 5 m between trees and rows, respectively. Thirteen herbicide treatments plus an
untreated control (Table 1) were distributed in each field in a randomized block design with three
replications. Each plot consisted of a 6 X 5 m area including two trees. A representative soil sample
from sub random samples (0-10 cm) taken in both fields was analyzed. The sandy clay loam (8% clay,
64% sand, and 28% silt) presented pH = 8.06, 3.3% organic matter; 10.4 and 15.1 mg kg™! of nitrates
and P; and 0.01, 24.8, 0.93, 0.03, and 0.39 Cmol kg‘1 of Ca, Mg, Na, and D, respectively. Field trials were
carried out in 2014 and repeated in 2015 and the climatic conditions, presented during the execution of
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the experiments that were recovered from the National Meteorological System of Mexico, there are
outlined in the Figure 5.
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Figure 5. Accumulated precipitation (mm) and average monthly temperatures (°C) in Acateno, Puebla,
Mexico from December 2013 to March 2014 and December 2014 to March 2015 (Source SMN, 2019 [36]).
* Data are the historical average of the parameters presented since there is no data available for
this month.

4.2. Herbicide Application

A mechanical mowing of weeds was carried out in the two experimental fields three weeks
before application of herbicide treatments, following the crop management practices of the Mexican
citrus growers. The applications were made on 10-15 cm tall weeds using a motorized manual spray
backpack (Swissmex 425 SW), equipped with pressure regulator and an AI11002 nozzle, calibrated to
spray 277 L ha~! at 40 psi. The water pH of the glufosinate and glyphosate treatments was adjusted
to 5.5 with the acidifying-buffing adjuvant pHasel® (Arysta LifeSciences México, Saltillo, México).
The PRE herbicides of the treatments 5, 6, 11, 12, and 13 were applied 15 days after application of POST
herbicides. Table 5 summarizes the action dates of field activities during the experiments.

Table 5. Summary of activities conducted for weed control with pre- (PRE) and post-emergence (POST)
herbicides in two Persian lime groves of the “San Manuel” Farm, Puebla, Mexico.

Field Activity Date
2014 2015
Weed mechanical mowing in both experimental plots 16 December 2013 19 December 2014
Initial counting of plants of each weed species 9 January2014 15 January 2015
Application of POST herbicides 10 January2014 16 January 2015
Application of PRE herbicides (treatments 5, 6, 11, 12,
P and 13), and evaluatk()n at 15 DAT 25 January 2014 31 January 2015
Evaluation at 30 DAT 9 February 2014 15 February 2015
Evaluation at 45 DAT 23 February 2014 1 March 2015
Evaluation at 60 DAT 9 March 2014 15 March 2015
Evaluation at 75 DAT 24 March 2014 29 March 2015

DAT: days after herbicide treatment.

4.3. Evaluated Variables

One day before the herbicide applications, weeds were identified and counted using a square
frame of 0.25 m?, randomly placed twice in each experimental unit. These data were expressed in
number of plants per m?2. The visual control of weeds total and by species was conducted at 15, 30,
45, 60, and 75 days after treatment (DAT). The evaluation at 75 DAT was included considering that
PRE herbicides would have 60 days of activity. The control percentage of total weeds or a determined
species was estimated with the equation X = [(A — B)/A] x 100 [37], which compares the average
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coverage of weeds in plot (B) vs. the weed population in the control plot. The parameters of equation
represent: X the control percentage of total weed or a determined species; A the coverage percentage
of total weed or a determined species in the control plot, and B the coverage percentage of total weed
or a determined species in the treatment evaluated.

Cost of herbicide treatments per ha was recorded to estimate the relative daily cost of weed control
considering the evaluation period (75 days), as well as the percentage in cost increase of each treatment
in relation to the representative treatment (1080 g ae ha~! glyphosate = USD $ 29.0) most used by
farmers. The herbicides treatments that presented weed control >80% as well as DAT that maintained
that control level were identified to estimate the cost of satisfactory weed control per day.

4.4. Statistical Analysis

Percentage data were transformed to arcsine and, then, the model assumptions of normal
distribution of errors and homogeneous variance were graphically inspected. The variance stability
tests of control percentage data showed no differences for both cropping seasons, and data were pooled
and subjected to ANOVA. Significant differences between means were analyzed using the Tukey’s
test at the 0.05 probability level. Statistical analysis was conducted using the Statistix 9.0 software
(Analytical Software, Tallahassee, FL, USA).

5. Conclusions

Glyphosate alone, even at high doses, had difficulty controlling B. pilosa and L. virgata. Glyphosate
applied in mixture with POST grass herbicides controlled E. colona and L. virgata, but favored the
regrowth of glyphosate-resistant B. pilosa plants. Glufosinate alone, glufosiante + oxyfluorfen and
glyphosate + (bromacil + diuron) controlled t weeds above 80% for at least 60 d, but they were also the
most expensive herbicides. In practical and economic terms, glufosinate alone was the best treatment
controlling glyphosate resistant weeds in Persian lime orchards. Therefore, the choice or not of these
treatments must consider the cost of satisfactory weed control per day, the period of weed control,
as well as other factors associated with production costs, and not only the relative cost of a certain
treatment. Integrated weed management programs focused on reducing herbicide dependence that
favor weed diversity in the short and long term, as well as facilitating other cultural tasks, should be
implemented in the citrus-producing region of the Gulf of Mexico.
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Abstract: Empirical observations generally indicate a shifting and decreased Lolium spp. susceptibility
to glyphosate in Italy. This is likely due to the long history of glyphosate use and to the sub-lethal
doses commonly used. There is, therefore, a need to determine the variability of response of Lolium
spp. to glyphosate and identify the optimum field dose. To perform a sensitivity analysis on Lolium
spp. populations in an agriculture area, collection sites were mainly chosen where glyphosate had
not been applied intensely. Known glyphosate-resistant or in-shifting populations were included.
Two outdoor dose-response pot experiments, including eleven doses of glyphosate, were conducted.
The dose to control at least 93%-95% of susceptible Lolium spp. was around 450 g a.e. ha~!. However,
to preserve its efficacy in the long term, it would be desirable not to have survivors, and this was
reached at a glyphosate dose of 560 + 88 g a.e. ha™!. Taking into account the variability of response
among populations, it was established that the optimal dose of glyphosate to control Lolium spp. in
Italy up to the stage BBCH 21 has to be at least 700 g a.e. ha™!. As a consequence, it is recommended
to increase the label recommended field rate for Lolium spp. control in Italy to a minimum of
720 g a.e. ha L.

Keywords: sensitivity line; ryegrass; herbicide dose; herbicide resistance; dose-response

1. Introduction

Lolium rigidum Gaud. (rigid ryegrass, LOLRI) and Lolium multiflorum Lam. (Italian ryegrass,
LOLMU) are two self-incompatible species that have a global distribution [1]. According to reported
cases [2], they are among the species most prone to evolve herbicide resistance. L. rigidum is one of the
most troublesome weeds in grain crops as well as orchards, olive groves and vineyards, where it is
also managed as a cover crop [3]. To date, L. rigidum populations resistant to 13 different herbicide
Sites of Action (SoA) have been reported [4]. L. multiflorum occurs in several temperate countries and
populations resistant to nine different herbicide SoA have been reported [4]. Both species originated
from the Mediterranean, have a C3 photosynthetic pathway and produce dense infestations [5]. The two
species are often mixed in the field and not always easily identifiable, and in those cases, the population
is defined as LOLSS (Lolium species).

The withdrawal of many herbicides from the EU market due to the strict regulation, the lack
of herbicides with new SoA [6] and the propensity of Lolium spp. to evolve resistance to the most
commonly used post-emergence herbicides have increased the importance of glyphosate for the
management of these species in agricultural and in non-agricultural areas [1]. Glyphosate is the
most successful herbicide in history [7,8], and its use is higher than any other herbicide SoA [6].
According to the HRAC (International Herbicide Resistance Action Committee) classification [9],
which is based on the herbicides” SoA, it belongs to group G and exerts its action by inhibiting
5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in plants, fungi and microorganisms, the only
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life forms that possess the shikimate pathway. Therefore, it has no measurable mammalian toxicity
at the concentrations used [10]. It acts as a competitive inhibitor to the phosphoenol-pyruvate (PEP)
binding site and a non-competitive inhibitor for the shikimate-3-phosphate (S3P) site, thus preventing
the formation of EPSP [11].

Glyphosate is a non-selective, systemic, post-emergence herbicide that controls many
dicotyledonous and monocotyledonous weeds [12]. It is neither active nor residual in the soil
and, therefore, selection pressure for resistance is only exerted on emerged seedlings [13].
Glyphosate-resistant weeds were not found during the first 22 years of glyphosate use, whereas in the
last 23 years (1996-2019), glyphosate resistance was documented in 45 weed species in 29 countries [4].

Glyphosate is also commonly used on a frequent basis between tree rows (i.e., olives, hazelnuts
and vineyards) and for roadside weed control [14]. In these situations, glyphosate can be used for many
years and applied several times per year. The continuous use of glyphosate in perennial crops, such as
orchards, has imposed intense selection pressure for resistance evolution and has led to shifts in weed
floras as well as towards glyphosate-resistant individuals [15,16]. In particular, in Europe, glyphosate
resistance has evolved most often in two genetically diverse, but at the same time, resistance-prone
genera, Conyza [17] and Lolium [18].

In Italy, the doses of glyphosate commonly used have become sub-lethal for Lolium spp. [19]. In the
past, the rate of 360 g a.e. (acid equivalent) ha~! gave satisfactory control, but it is likely that a few plants
survived each treatment. Exposure to recurrent selection at sub-lethal glyphosate doses can result in a
shift towards resistance within a few generations. It was clearly demonstrated by Busi and Powles [20]
that in allogamous species, such as Lolium, minor resistance gene trait(s) may be additively enriched
through cross-pollination among surviving plants. In Italy, empirical observations indicated a general
decrease in susceptibility of Lolium spp. to glyphosate (i.e., relatively poor control at 360 g a.e. ha™!)
and the first resistance cases were reported in 2008 [19]. At the moment, 13 municipalities in five Italian
regions and five different cropping systems (including orchards, olive groves, vineyards, wheat and
no-tillage agriculture) are affected by glyphosate resistance [21].

As part of the herbicide resistance risk analysis and management, the availability of a robust
baseline sensitivity for key-target species is critical to discriminate between susceptible (S) and
resistant (R) populations and to identify early shifts in susceptibility. From a practical point of view,
apopulation is ascribed as resistant (R) to a herbicide when more than 20% of treated plants survived the
recommended herbicide field dose [22]. The identification of a first shift in susceptibility is particularly
valuable when resistance evolution is rather slow, as in glyphosate resistance. Only a few herbicide
sensitivity analyses are available in the literature [23-26]. The European and Mediterranean Plant
Protection Organization defines the baseline as the mean of natural variability of a target species’
sensitivity before the commercial introduction of an active ingredient and can be taken as a point of
reference to be used in decision-making processes. Instead, glyphosate has been on the market for
many years, and its selection pressure has been active for a long time. In such a case, the baseline
term/approach is not correct, and a sensitivity analysis should instead be performed. The aim of a
sensitivity analysis is to determine the average efficacy of an old herbicide on weed populations that
may have been treated before with the same compound [27,28]. In other words, this is part of the
monitoring procedure of herbicide efficacy. To our knowledge, only one paper in the literature has
dealt with the glyphosate baseline sensitivity for L. rigidum in Spain using a quick Petri dishes test [29].

The establishment of a good sensitivity baseline should make it easier to identify any case of
evolved herbicide resistance [30] and would have an added value if an effective monitoring program is
initiated [29].

The aims of this research were (1) to determine the variability in glyphosate response of Lolium
spp. populations collected from Italian agricultural environments and (2) to determine the glyphosate
dose that is actually effective on the Lolium spp. populations in field conditions in order to preserve its
efficacy in the long term.
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2. Results

2.1. Dose-Response Experiments

Two outdoor pot dose-response experiments were performed during spring (March-May) and
autumn (September-November) to test the effects of increasing glyphosate dose on plant survival and
fresh weight for several Lolium spp. populations collected from Italian agricultural environments.
The effective doses—EDs—and growth rates—GRs—causing 50% and 90% reduction in plant survival
and fresh weight (ED5-EDgg and GR5y-GRgp), respectively, were calculated using a regression analysis
(see Section 4.3).

2.1.1. Spring Dose-Response Experiment

Twenty populations were included in the spring experiment (Table 1a). A variance test (F-test)
was performed to compare the dose-response curves obtained for the different populations in the
experiment. The lack-of-fit F-test on both plant survival and fresh weight indicated that it was not
possible to simplify the glyphosate regressions to a model with a common slope for all populations:
the slope tended to decrease when EDs (and GRg) increased. The data of each population were,
therefore, regressed as individual curves and treated separately.

Among the populations included in the spring experiment, eight were known resistant/shifting
populations. A Box and Whisker analysis using the median and 25-75 percentiles was used to
statistically exclude outliers. The analysis was performed including all populations, then repeated
excluding the outliers until no further outliers were identified (Figure 1). The first analysis revealed
three extreme value populations (403, 392 and 401) (Figure 1A), all previously confirmed as resistant
(Table 1). The analysis was repeated excluding those populations and limiting the ED5( range to
between 155 and 900 g a.e. ha™!. In this second step, two other populations (343 and 384L) were
found to be outliers (Figure 1B). The third analysis considered an EDsj range of 155-560 g a.e. ha™!
and highlighted three other outlier populations (384, 259 and 328) (Figure 1C), one included in the
experiment as R check (384) and the two shifting populations (Table 1). The fourth analysis with
12 populations and an EDsj range of 155-260 g a.e. ha~! did not reveal any outlier population
(Figure 1D). The Box and Whisker analysis, also repeated for the EDgy and GRs values (data not shown),
confirmed that all eight populations included in the experiment as resistant or partially resistant to
glyphosate had a reduced sensitivity or resistance to this herbicide.

Considering the data of the other twelve populations resulted as being sensitive to glyphosate,
it was highlighted that glyphosate EDsy ranged from 155 + 5.9 to 260 + 6.7 with a mean value of
206 g a.e. ha~! and EDgg from 243 = 20.8 to 506 + 79.1 with a mean value of 342 g a.e. ha™!. Concerning
fresh weight, GRsg varied from 31 + 8.8 to 98 + 14.7 with a mean value of 64 g a.e. ha~!, GRgg from
144 + 15.7 to 272 + 26.3 with a mean value of 198 g a.e. ha™'.
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Table 1. Details of the populations tested in the spring (a) and autumn (a in bold and b) dose-response

experiments: species (LOL = Lolium, RI = rigidum, MU = multiflorum, SS = multi-species), sampling year,

population code (progressive number, which, together with the sampling year, uniquely identifies

a population), geographical origin and crop or collection site, where available. S = susceptible

and R = resistant (i.e., plant survival >20% at the field dose); L = population reproduced in

Legnaro greenhouse.

Species Population Code (Mu(r?irfl; :lity) Crop or Collection Site Notes

(a)

LOL RI 07 328 Santo Stefano Belbo vineyard Partially R [19]
S check used b

LOL  RI 08 204L Legnaro wheat IPSP-ONR

LOL SS 08 259 Cortona wheat Partially R [31]

LOL SS 08 340 Collesalvetti wheat

LOL SS 08 343 Pomarance wheat R pop. [31]

LOL SS 10 381 Pontedera wheat

LOL SS 10 384 Cascina wheat R pop. [31]
Reproduced from

LOL SS 11 384L Cascina glyphosate-resistant plants

of pop. 10-384

LOL SS 10 389 Castenaso meadow

LOL MU 11 390 Legnaro field margin

LOL SS 11 392 Palo del Colle olive grove R pop. (unpublished data)

LOL RI 11 395 Acquaviva delle Fonti roadside

LOL RI 11 400 Torchiarolo set aside

LOL SS 11 401 Lamezia Terme olive grove R pop. (unpublished data)

LOL RI 11 402 Lamezia Terme meadow

LOL SS 11 403 Cascina sunflower Rpop. [31]

LOL RI 11 404 Lamezia Terme olive grove

LOL SS 11 405 Livorno lucerne

LOL MU 11 412 Commercial turf seed

LOL SS 11 425 Cascina wheat

(b)

LOL MU 12 426 Ravenna wheat

LOL SS 12 431 Duino Aurisina meadow

LOL Ss 12 432 Siena wheat

LOL SS 12 434 Sovicille wheat

LOL SS 12 444 San Casciano dei Bagni wheat

LOL MU 12 449 Marsciano vineyard

LOL SS 12 455 Gubbio wheat

LOL MU 12 458 Montecchio Emilia lucerne

LOL SS 12 461 Brisighella roadside

LOL MU 12 462 Forli roadside

LOL MU 12 466 Coriano wheat

LOL SS 12 472 Osimo wheat

LOL SS 12 477 Pozzolengo meadow

LOL SS 12 479 Cremona field margin (maize)

LOL MU 12 483 Alessandria meadow

LOL SS 12 487 Saluzzo meadow

LOL SS 12 492 Cigliano field margin

LOL SS 12 504 Pontoglio roadside
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Figure 1. Box and Whisker plots illustrating the range of plant control (EDs) for the twenty Lolium spp.
populations included in the spring experiment: (A) all populations were included; (B) extreme values
of Box Plot A were excluded; (C) extreme and outlier values of Box Plot B were excluded; (D) extreme
and outlier values of Box Plot C were excluded. The central point is the median, the box represents
the 25-75 percentiles and bars the non-outlier range, O and * represent outliers and extreme values,
respectively. Population codes excluded during the analysis are reported.

2.1.2. Autumn Dose-Response Experiment

Twelve susceptible populations selected in the spring experiment were also tested in the autumn
experiment, together with another eighteen populations reported in Table 1b. In this second experiment,
the Box and Whisker analysis did not highlight any outliers among populations.

As for the spring experiment, the lack-of-fit F-test on both plant survival and fresh weight in
the autumn experiment indicated that it is not possible to simplify the regressions to a model with a
common slope for all populations, so a single-curve analysis was preferred.

Furthermore, an ad hoc lack-of-fit F-test performed on the data of each population included in
both experiments comparing the dose-response curves obtained in the two experiments showed that
most of the curves were significantly different at p < 0.05, so the two experiments cannot be merged
(data not shown). Populations data could not be pooled considering both plant survival and fresh
weight, so it was decided to consider the two experiments separately.

EDs) based on the autumn dose-response experiment ranged from 108 + 10.1 to 282 + 7.1 with
a mean value of 186 g a.e. ha™! (Figure 2a) and EDgg from 189 + 16.7 to 561 + 87.7 g a.e. ha~! with
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a mean value of 317 g a.e. ha™! (Figure 2b); concerning fresh weight, GRs varied from 37 + 4.8 to
148 + 8.4 with a mean value of 78 g a.e. ha™!, GRyg from 136 + 10.3 to 295 + 37.6 g a.e. ha™! with a
mean value of 199 g a.e. ha™! (data not shown).

Cluster analyses were used to determine whether correlations were present between the calculated
parameters (i.e., EDs and GRs) and the collection sites or geographical origin as well as species of
the different populations. A cluster analysis based on the EDsj highlighted two clusters (Figure 2a),
whereas the data were divided into four clusters when EDgy were considered (Figure 2b). In both cases,
no correspondence was detected among these divisions and geographical origin of the populations,
Lolium species or cropping system/collection site. Similar results were obtained considering GRs;
therefore, data are not reported.
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Figure 2. Response of thirty Lolium spp. populations included in the autumn experiment estimated
by (a) the dose controlling 50% of plants (EDsp) and (b) 90% of plants (EDgj). Bars indicate standard
errors (SE). Dashed horizontal lines represent the mean values of EDs5j and EDg in graphs (a) and (b),
respectively. Different colours represent the subdivision of the populations obtained with the cluster
analysis: (a) two clusters, (b) four clusters.

2.2. Sensitivity Line Calculation

Based on the results obtained through the dose-response experiments, the range of glyphosate
susceptibility of L. multiflorum and L. rigidum sampled in Italian agricultural environments was
established, a sensitivity line was calculated and the dose of glyphosate to fully control Lolium spp. in
agronomic conditions was proposed.
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The paired t-test proved that no significant differences were found between the mean EDs and
mean GRs of the two experiments (considering only the common populations), so for calculation of
the threshold value of the sensitivity analysis, only the data of the autumn experiment, having a higher
number of populations, were considered.

Based on the mean value of EDg as well as the variability across and within populations (Figure 2b),
it was established that an agronomically suitable dose (i.e., at least 93%-95% of control) to adequately
control susceptible Lolium species was around 450 g a.e. ha™! of glyphosate. Therefore, the current dose
indicated in Italy (480 g a.e. ha™!) is enough to adequately control susceptible plants, confirming that
the old dose (360 g a.e. ha™!) was sub-lethal for many populations. As an anti-resistance measure, it is
important to keep efficacy at or near 100% to avoid, or at least slow down, the selection and eventually
the evolution of glyphosate resistance under tough climatic conditions or weed growth stages that can
affect glyphosate efficacy level.

Figure 3 demonstrates how the sensitivity analyses data can be used to identify potentially
resistant populations. The range of EDgg for the autumn experiment was 189-561 g a.e. ha™!, with a
mean sensitivity line of 317 g a.e. ha™!. A population can, therefore, be considered as shifting
(or partially resistant) if the difference between the threshold value and population is greater than 2x
(634 g a.e. ha™1) [26] (e.g., populations 259 and 328 included in the spring experiment). A population
can be considered as resistant if the difference between threshold value and population is greater than
3x (951 ga.e. ha‘l) (e.g., populations 384, 384L, 343, 392, 403 and 401 included in the spring experiment,
plus populations 332 and 336 [31]) (Figure 3).
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Figure 3. EDgy of different Lolium spp. populations: ¢ S populations tested in the autumn
dose-response experiment, A shifting populations tested in the spring dose-response experiment,
W resistant populations tested in the spring dose-response experiment and/or discussed in [19] and [31].
Continuous line at 317 g a.e. ha™! represents the sensitivity line calculated in this research, dashed lines
represent 2x and 3x the sensitivity line value.

Two parameters that illustrate the variability of the response of populations to glyphosate were
calculated (see Section 4.4). EDsqy90 variations do not fully explain the overall variability, and slope
also has to be taken into account (Figure 4). When the ratio is close to one the slope tends to be vertical,
i.e., small variations of glyphosate dose around EDs cause large variations in weed control. However,
we did not observe any relation between collection site and slope. The Sensitivity Index (S.I.) proved
to be three, demonstrating that there is a three-fold difference in sensitivity to glyphosate between
Lolium spp. populations harvested across Italian agricultural environments.
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Figure 4. Variations of the ED5y/EDg ratio among populations.
3. Discussion

Glyphosate is an efficient herbicide, and the evolution of resistant weeds is a big hindrance to
efficient control in many circumstances [7]. Given that no herbicides with truly new molecular target
sites have been marketed in the past 30 years and that there is no silver bullet chemistry ready to enter
the marketplace [32], glyphosate efficacy should be preserved in the long term, especially in those
cropping systems where there is a shortage of post-emergence herbicides (i.e., targeting grasses) or
as a tool in weed resistance management. For these reasons, efficacy of herbicide treatments should
be kept at or near 100% to avoid or at least slow down the selection and eventually the evolution of
glyphosate resistance.

The two dose-response experiments performed to calculate the sensitivity line of glyphosate in
Italian agricultural environments could not be pooled together for several reasons. First of all, in the
second experiment, a larger number of populations coming from different parts of Italy and different
agricultural systems were included in order to give a higher impact to the study. Secondly, it is very
rare that two experiments conducted in outdoor conditions can be considered together because there
are too many uncontrollable variables (e.g., variation in temperature, rainfall). In particular, this was
expected using glyphosate because its performance is known to vary seasonally [18,33].

On the basis of ED5(, GR50, EDgy, GRgg and slope, it was not possible to discriminate L. multiflorum,
L. rigidum or intermediates, and neither a difference related to geographical areas nor collection site
was found. Most probably, if a correlation is present among these values and the variables considered,
a more specific study with a larger number of populations needs to be assessed. An example was
reported for 80 accessions of Echinochloa spp. where E. crus-galli was found to be more sensitive than
other Echinochloa species when sprayed with azimsulfuron or cyhalofop-butyl [23].

On average, GR5p and GRgg (78 and 199 g a.e. ha™l, respectively) were lower than EDsy and EDg
(186 and 317 g a.e. ha™!, respectively) indicating that a significant proportion of surviving plants had a
low fitness and likely a low competitivity with the crop. However, it cannot be excluded that they
could produce some seeds [34]. Therefore, in order to not underestimate this aspect, the ED values
were used to calculate the sensitivity line.

The Box and Whisker analysis indicated that the selection of populations was adequate for the
purpose of the study; in fact, only the populations included in the spring experiment as resistant or
partially resistant checks were excluded through the analyses (Figure 2), whereas no outliers were
found in the autumn experiment.

Data variability increased with EDs, which may indicate that less susceptible populations are also
less homogeneous in terms of glyphosate susceptibility. The proposed field dose also considers this
variability and was calculated excluding the eight outlier populations identified through the Box and
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Whisker analysis in the spring experiment. The eight outliers correspond to the resistant and partially
resistant (i.e., in-shifting) populations included for comparison (Table 1a) and for which the resistance
mechanisms have been described elsewhere (Table 1a [19,31]). In this study, it was demonstrated that
the optimal glyphosate dose to control Lolium spp. in Italy at the growth stage of first shoot visible
(i-e., using the Extended BBCH scale at growth stage 21 [35]) should be 700 g a.e. ha™! of glyphosate
or higher. Indeed, in our experimental conditions no survivors were recorded for any susceptible
population treated with 560 g a.e. ha™! of glyphosate, whereas to completely control the shifting
populations, 720 g a.e. ha™! was necessary. This indicates that slightly higher doses, while remaining
abundantly within the label recommendations, may be useful to control and hopefully reduce the
evolution of resistance to this herbicide.

Guidelines for future herbicide-resistant weed management globally should focus on avoiding a
general use of reduced herbicide, especially glyphosate [36]. Successful integrated weed management
strategies should aim at decreasing weed seed banks and reducing herbicide use. This involves
adjusting the herbicide doses applied to achieve both a reduction in the number of treatments as well
as an increase in the number of weeds controlled by the treatments. In this context, this research
provides useful information to avoid or slow down the selection of glyphosate resistance in Lolium spp.
by establishing a threshold for identifying future shifts of susceptibility.

4. Materials and Methods

4.1. Plant Material

Seeds of Lolium spp. were collected in agricultural and non-agricultural sites including field
margins, organic farms (winter cereals), conventional farms (winter cereals, sunflower and perennial
crops) and roadsides (Table 1). When available, details of historical herbicide use on the sampled
fields were recorded. Sampling sites covered all major Italian agricultural areas and were chosen
according to the absence or moderate application of glyphosate during the last decade. Areas where
glyphosate-resistant Lolium spp. had been already reported were excluded [21]. Preference was given
to regions where Lolium spp. are widespread and potentially cause severe economic losses. In each site,
seeds were randomly collected from at least 30 plants spatially distributed in a sampling area of about
400 m?. Although morphological traits showed a high variability among and within populations,
all of them were classified as L. rigidum or L. multiflorum or intermediates between the two species
(LOLSS) (Table 1). The standard susceptible population S-204L, collected more than 15 years ago and
reproduced in the greenhouse of the Institute for Sustainable Plant Protection (IPSP)- CNR (45°21" N,
11°58’ E) was also tested.

After ripening, seeds were kept in paper bags and then stored in a cool chamber at 4 °C until use.

4.2. Dose-Response Experiments

4.2.1. Spring Dose-Response Experiment

Twenty populations were included in the spring experiment (Table 1a), twelve putative susceptible
populations, six known resistant and two “shifting” populations [19,31]. To break dormancy, seeds were
vernalized at 4 °C in Petri dishes on wet filter paper, in darkness for three days. They were then placed
in transparent plastic dishes on 0.6% (wt/V) agar medium and placed in a germination cabinet at the
following conditions: temperature (day/night) 25/15 °C, 12 h photoperiod with neon tubes providing a
Photosynthetic Photon Flux Density (PPFD) of 15-30 pmol m~2 s~!. Nine germinated seedlings at
similar growth stage were transplanted into pots (15 x 15 X 20 cm) filled with a standard potting mix
(60% silty loam soil, 15% sand, 15% perlite and 10% peat). To better mimic field conditions, pots were
kept outside in a semi-controlled environment, and the soil water content was maintained at or near
field capacity. Temperature ranged day/night from 18.8 °C to 7.9 °C. The experimental layout was
a completely randomized design of three replicates per dose (a total of 27 plants per dose). Eleven
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doses (geometrically distributed) of glyphosate (MON 79351) 480 g a.e. L™ were considered: 45, 90,
135, 180, 270, 360, 450, 540, 720, 1080 and 1440 g a.e. ha~!. An untreated control was included for
each population. Herbicide was sprayed when plants reached the stage BBCH 21 using a precision
bench sprayer according to the following conditions: spray volume 200 L ha~!, pressure 215 kPa,
speed 0.75 m s~! using TeeJet nozzles TP11001-VH. Plant survival and fresh weight were recorded four
weeks after the treatment.

4.2.2. Autumn Dose-Response Experiment

Thirty populations sampled as described in Section 4.1 in different Italian agricultural environments
(Figure 5) were included in the autumn experiment (Table 1, a in bold and b). All populations were
putatively susceptible to glyphosate in order to calculate the threshold value of the sensitivity analysis.
To compare the data of the two experiments, 12 susceptible populations (in bold in Table 1a) selected
for the spring experiment were also included in the autumn experiment. Seeds preparation, seedlings
transplanting and growth conditions, as well as treatment conditions, were as described in Section 4.2.1.
Temperature ranged day/night from 20.3 °C to 11.2 °C. Plant survival and fresh weight were recorded
four weeks after treatment.

458+ 389
461

Figure 5. Distribution and origin of Lolium spp. populations included in the autumn dose-response
experiment (see also Table 1b and populations in bold in Table 1a): yellow = wheat, dark blue =
Lucerne, light blue = field margin, dark green = meadow, light green = roadside, purple = perennial,
pink = set aside. For IPSP S check 204L, the origin of the original population is reported (Civitella
Paganico, GR). Population 412 is not included because it comes from a commercial seed stock.

28



Plants 2020, 9, 165

4.3. Statistical Analyses

The mean survival and fresh weight per dose were expressed as a percentage of the untreated
control. The ED5p, GRso, EDgg, GRgg and relative standard errors for the mean percentage of plant
survival and fresh weight were calculated by non-linear regression analysis performed using the macro
BIOASSAY® developed by Onofri (2005) [37] and running in Windows Excel®. The macro is based on
a log-logistic equation to fit the data: Y = C + {(D — C)/[1 + (x/Isp)b]} where Y is the fresh weight or
survival, C and D are the lower and upper asymptotes at higher and zero doses, respectively, I5y (or Igp)
is the herbicide dose resulting in a 50% (or 90%) reduction in plant biomass or survival, i.e., EDsg
and GRs, respectively (or EDgy and GRy, respectively), b is the slope. The procedure estimates the
standard error of the parameters and performs the Box-Cox power transformation family. For biological
reasons and to improve the estimates of other parameters, the upper and lower asymptotes of survival
data were forced to 100 and zero, respectively, whereas no parameters were constraints considering
fresh weight data. Data of each population were first analyzed as a single curve to estimate the
parameters and then all curves were regressed together. The data of the two experiments were analyzed
separately. No parameters were fixed in the first analyses, and this complex model was then compared
with progressively simplified models having common parameters among curves. The lack-of-fit F-test
was performed at each step, and the simplification stopped when a significant lack of fit occurred.

The Box and Whisker plot analysis was used to identify possible outliers and extreme values
described as the values greater, or lower, than 1.5 and 3 times the value of the Box, respectively [38].
The analysis was repeated excluding the outlier values at each step until no outliers were detected.

In order to determine if the data of the two experiments could be compared, an ad hoc lack-of-fit
F-test was applied to the data of each population included in both experiments by comparing
data singularly.

R software 3.2.5 and, in particular, the package NbClust [39] was applied to cluster EDsp and EDgg
data. The package compares 30 different clustering methods and chooses as best the partition proposed
by the majority of the methods.

4.4. Sensitivity Line Calculation

The mean values of EDs and GRs of the two experiments were compared using a paired t-test at
p < 0.05 (excluding populations with extreme or outlier values in the Box and Whisker analyses).

The threshold value of the sensitivity analysis (sensitivity line) was calculated as the mean of the
EDg values with a slight modification compared to the method used by Paterson et al. [26] across
biologically relevant populations and experiments. A population can be considered as shifting if the
difference between the sensitivity line and population is greater than 2x and resistant if the difference
between the sensitivity line and population is greater than 3x. To illustrate the variability of the
response of populations to glyphosate, the ED5g99 variation among populations and the S.I. were
calculated as the ratio between EDsy and EDg of each population and the EDg of the most tolerant
and most sensitive populations, respectively.

Author Contributions: The authors contributed equally to the research, in particular: conceptualization, A.C.,
M.S. and S.P.; methodology, A.C., M.S. and S.P; formal analysis, S.P. and A.C.; investigation, S.P. and A.C.; data
curation, S.P. and A.C.; writing—original draft preparation, S.P. and A.C.; writing—review and editing, S.P., M.S.
and A.C.; supervision, M.S.; project administration, M.S.; funding acquisition, M.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The research was jointly funded by the National Research Council of Italy (CNR) and Monsanto
International Srl.

Acknowledgments: The authors are grateful to Alison Garside for revising the English text, Ivo Brants (Monsanto
Europe S.A.) for helpful discussions and Erica Manesso for the advice regarding statistical analyses.

Contflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

29



Plants 2020, 9, 165

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Preston, C.; Wakelin, A.M.; Dolman, EC.; Bostamam, Y.; Boutsalis, P. A Decade of Glyphosate-Resistant Lolium
around the world: Mechanisms, genes, fitness, and agronomic management. Weed Sci. 2009, 57, 435—441.
[CrossRef]

Heap, I.; Duke, S.0. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018, 74, 1040-1049.
[CrossRef]

Fernandez-Moreno, P.T.; Bastida, F; De Prado, R. Evidence, mechanism and alternative chemical
seedbank-level control of glyphosate resistance of a rigid ryegrass (Lolium rigidum) biotype from Southern
Spain. Front. Plant Sci. 2017, 8, 1-16. [CrossRef]

Heap, M. The International Survey of Herbicide Resistant Weeds. Available online: http://weedscience.org/
(accessed on 24 January 2020).

Barroso, A.A.; de S Costa, M.G.; Neto, N.J.; dos Santos, ].I.; Balbuena, T.S.; Carbonari, C.A.; Alves, P.L. Protein
identification before and after glyphosate exposure in Lolium multiflorum genotypes. Pest Manag. Sci. 2018,
74,1125-1133. [CrossRef]

Duke, S.0. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 2012,
68, 505-512. [CrossRef]

Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 1027-1034. [CrossRef]
Duke, S.; Powles, S. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64,319-325. [CrossRef]
Mallory-Smith, C.; Retzinger, J. Revised classification of herbicides by site of action for weed resistance. Weed
Technol. 2003, 17, 605-619. [CrossRef]

Solomon, K.R. Estimated exposure to glyphosate in humans via environmental, occupational, and dietary
pathways: An updated review of the scientific literature. Pest Manag. Sci. 2019. [CrossRef] [PubMed]
Schénbrunn, E.; Eschenburg, S.; Shuttleworth, W.A_; Schloss, ].V.; Amrhein, N.; Evans, ].N.; Kabsch, W.
Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase
in atomic detail. PNAS 2001, 98, 1376-1380. [CrossRef] [PubMed]

Baylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci.
2000, 56, 299-308. [CrossRef]

Neve, P; Diggle, A].; Smith, EP,; Powles, S.B. Simulating evolution of glyphosate resistance in Lolium rigidum
I: Population biology of a rare resistance trait. Weed Res. 2003, 43, 404-417. [CrossRef]

Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci.
2008, 64, 360-365. [CrossRef]

Owen, M.D.K. Weed species shifts in glyphosate-resistant crops. Pest Manag. Sci. 2008, 64, 377-387.
[CrossRef]

Gonzalez-Torralva, F; Gil-Humanes, |.; Barro, F.; Dominguez-Valenzuela, J.; De Prado, R. First evidence for
a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards.
Agron. Sustain. Dev. 2014, 34, 553-560. [CrossRef]

Urbano, ].M.; Borrego, A.; Torres, V.; Leon, ].M.; Jimenez, C.; Dinelli, G.; Barnes, J. Glyphosate-resistant Hairy
Fleabane (Conyza bonariensis) in Spain. Weed Technol. 2007, 21, 396—401. [CrossRef]

Powles, S.B.; Lorraine-colwill, D.F; Dellow, ].].; Preston, C. Evolved resistance to glyphosate in rigid ryegrass
(Lolium rigidum) in Australia. Weed Sci. 1998, 46, 604-607. [CrossRef]

Collavo, A.; Sattin, M. Resistance to glyphosate in Lolium rigidum selected in Italian perennial crops:
Bioevaluation, management and molecular bases of target-site resistance. Weed Res. 2012, 52, 16-24.
[CrossRef]

Busi, R.; Powles, S.B. Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate
selection at sublethal doses. Heredity 2009, 103, 318-325. [CrossRef]

GIRE—Gruppo Italiano Resistenza Erbicidi. Available online: www.resistenzaerbicidi.it (accessed on
24 January 2020).

Panozzo, S.; Scarabel, L.; Collavo, A.; Sattin, M. Protocols for robust herbicide resistance testing in different
weed species. . Vis. Exp. 2015, 101, 1-10. [CrossRef]

Vidotto, E; Tesio, F; Tabacchi, M.; Ferrero, A. Herbicide sensitivity of Echinochloa spp. accessions in Italian
rice fields. Crop Prot. 2007, 26, 285-293. [CrossRef]

30



Plants 2020, 9, 165

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

Loddo, D.; Kudsk, P.; Costa, B.; Dalla Valle, N.; Sattin, M. Sensitivity analysis of Alisma plantago-aquatica L.,
Cyperus difformis L. and Schoenoplectus mucronatus (L.) Palla to Penoxsulam. Agronomy 2018, 8, 220. [CrossRef]
Davies, L.R.; Hull, R.; Moss, S.; Neve, P. The first cases of evolving glyphosate resistance in UK poverty
brome (Bromus sterilis) populations. Weed Sci. 2018, 67, 41-47. [CrossRef]

Paterson, E.A_; Shenton, Z.L.; Straszewski, A.E. Establishment of the baseline sensitivity and monitoring
response of Papaver rhoeas populations to florasulam. Pest Manag. Sci. 2002, 58, 964-966. [CrossRef] [PubMed]
Russell, P.E. Sensitivity Baseline in Fungicide Resistance Research And Management; Crop Life International:
Brussels, Belgium, 2002; pp. 1-56.

Russell, P. Resistance management and the registration of pesticide products in Europe. Pestic. Outlook 2001,
12, 56-59. [CrossRef]

Barroso, J.; Loureiro, I.; Escorial, M.C.; Chueca, M.C. The response of Bromus diandrus and Lolium rigidum to
dalapon and glyphosate I: Baseline sensitivity. Weed Res. 2010, 50, 312-319.

Moss, S.R. Baseline sensitivity to herbicides: A guideline to methodologies. In Proceedings of the British
Crop Protection Conference—Weeds, Brighton, UK, 2001; pp. 769-774.

Collavo, A.; Sattin, M. First glyphosate-resistant Lolium spp. biotypes found in a European annual arable
cropping system also affected by ACCase and ALS resistance. Weed Res. 2014, 54, 325-334. [CrossRef]
Dayan, EE. Current status and future prospects in herbicide discovery. Plants 2019, 8, 341. [CrossRef]
Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367-1377.
[CrossRef]

Pedersen, B.P; Neve, P; Andreasen, C.; Powles, S.B. Ecological fitness of a glyphosate-resistant Lolium rigidum
population: Growth and seed production along a competition gradient. Basic Appl. Ecol. 2007, 8, 258-268.
[CrossRef]

Hess, M.; Barralis, G.; Bleiholder, H.; Buhr, L.; Eggers, T.H.; Hack, H.; Stauss, R. Use of the extended BBCH
scale-general for the descriptions of the growth stages of mono and dicotyledonous weed species. Weed Res.
1997, 37, 433-441. [CrossRef]

Beckie, H.J.; Ashworth, M.B.; Flower, K.C. Herbicide resistance management: Recent developments and
trends. Plants 2019, 8, 161. [CrossRef] [PubMed]

Onofri, A. Bioassay97: A new Excel VBA macro to perform statistical analyses on herbicide dose-response
data. Riv. Ital. di Agrometeorol. 2005, 3, 40—45.

Tukey, ].W. Exploratory data analysis. In The Future of Data Analysis; Addison-Wesley: New York, NY, USA,
1977; p. 688.

Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R package for determining the relevant
number of clusters in a data set. J. Stat. Softw. 2014, 61, 1-36. [CrossRef]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

31






| plants MBPY

Article

10,000-Times Diluted Doses of ACCase-Inhibiting
Herbicides Can Permanently Change the
Metabolomic Fingerprint of Susceptible

Avena fatua L. Plants

J Anténio Tafoya-Razo ¥, Ernesto Oregel-Zamudio >%, Sabina Velazquez-Marquez ® and
Jesitis R. Torres-Garcia 24*

1 Departamento de Parasitologia Agricola, Universidad Auténoma Chapingo, Texcoco 56230, Mexico;

jtafoyar@chapingo.mx

Laboratorio de Ecologia y Evolucion Molecular, Centro Interdisciplinario de Investigacion para el Desarrollo
Integral Regional (CIIDIR) del Instituto Politécnico Nacional, Unidad Michoacan, Jiquilpan 59510, Mexico;
eoregel@ipn.mx

Laboratorio de Genética Ecolégica y Evolucion, Departamento de Ecologia Evolutiva, Instituto de Ecologia,
Universidad Nacional Autonoma de México, Ciudad de México 04510, Mexico;
svelazquez@ecologia.unam.mx

4 Catedras CONACYyT, Ciudad de México 04500, Mexico

*  Correspondence: jrtorresg@ipn.mx

1t These authors contributed equally to this work.

Received: 30 July 2019; Accepted: 20 September 2019; Published: 24 September 2019

Abstract: Intentional use of low dosage of herbicides has been considered the cause of non-target
resistance in weeds. However, herbicide drift could be a source of low dosage that could be detected
by weeds and change their metabolism. Furthermore, the minimum dose that a plant can detect in the
environment is unknown, and it is unclear whether low doses could modify the response of weeds when
they are first exposed to herbicides (priming effects). In this study, we determined the metabolomic
fingerprinting using GC-MS of susceptible Avena fatua L. plants exposed to a gradient of doses (1, 0.1,
0.001, 0.0001, and 0x) relative to the recommended dose of clodinafop-propargyl. Additionally, we
evaluated the primed plants when they received a second herbicide application. The results showed
that even a 10,000-fold dilution of the recommended dose could induce a significant change in the
plants’ metabolism and that this change is permanent over the biological cycle. There was no evidence
that priming increased its resistance level. However, hormesis increased biomass accumulation
and survival in A. fatua plants. Better application methods which prevent herbicide drift should be
developed in order to avoid contact with weeds that grow around the crop fields.

Keywords: non-target metabolomics; GC-MS; non-target site resistance; priming; hormesis

1. Introduction

Evolution of herbicide resistance is the result of the strong selective pressure exerted by
herbicides on weed populations [1]. This selection pressure is so strong that Harper predicted
the evolution of herbicide-resistant weed populations even before the appearance of the first report [2].
Early studies of resistant populations attributed resistance to non-synonymous mutations in specific
domains in herbicide target genes (Target-Site Resistance, TSR). These mutations change the protein
conformation and limit herbicide effectiveness [1,3]. For this reason, some weed management models
suggested the reduction of herbicide dosage to reduce the selection pressure in weed populations [4],
a recommendation which was implemented in many countries. However, this practice had undesired
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effects [5], including an increase in the number of populations with metabolic adaptations to degrade
herbicides (Non-Target site Resistance, NTSR) [6]. This type of resistance is due to the increase in
the activity of specific enzymes such as Cytochrome oxidase P450 (hereafter P450) and Glutathione-S
transferase [6]. NTSR has increased over time and has the potential to become a severe problem due to
the capacity of degradation of multiple herbicides [1]. Moreover, experiments have shown that this
type of resistance could evolve in less time than genetic resistance [7-9].

Other documented effects of low herbicide dosage on weeds are hormesis and priming [10-12].
Priming is defined as a physiological state caused when plants exposed to a low dose of a stressful agent
(bacterial, fungus, herbicides, among others) develop an adaptative response, which increases their
resistance to subsequent exposure [13]. This phenomenon has been documented in tumor cells, and it
is possible that it is a mechanism of NTSR [14]. On the other hand, hormesis is growth stimulation
at low doses of herbicides [12]. This phenomenon has been reported in many herbicide modes of
action [15-17], and has even been proposed to use the hormetic effects to increase yield in some
crops [18,19].

Due to the rapid evolution of NTSR based in P450, the current weed management practices
suggest avoiding the application of herbicides at lower-than-recommended doses to prevent the risk
of development of metabolic resistance [1,5,6]. However, several factors lead to this continuing in
practice. On the one hand, farmers frequently reduce the dosage of herbicide to try to save money
by purchasing less herbicide (Torres—Garcia, personal observation). Another cause of low herbicide
dosage is late application; herbicide use is recommended when weeds are about 10 cm tall. However,
farmers often apply chemical control when weeds are many times higher than the recommended size,
thus diluting the effective dose (A Tafoya, Personal Observation).

Even when following all recommendations for their use, from manual application to airplane
spraying, herbicides can be spread unintentionally, for example by leaf contact between treated and
untreated plants, protection by taller plants, and drift of spray particles to nearby fields [20]. Clouds of
vapor carrying nano-drops of herbicide could modify the metabolism of surrounding weeds. In highly
advanced agricultural systems, this is not a problem, but only a small proportion of global agriculture
has this level of mechanization.

With respect to herbicide spray particle drift, some basic questions that we asked are: (1) What is
the minimum dose of herbicide that a plant could perceive? (2) Do weeds that received a non-lethal
dose show differences in metabolism and survival when they receive a second application (i.e., are there
priming effects)? and (3) Are the metabolic changes transgenerational, and therefore, a possible cause
of metabolic resistance? The last question has been well responded by Neve and Powles [8]. However,
the first two questions remain unclear. In this study, we are interested in generating information that
could respond to the two initial questions.

Plant metabolism is complex, with a large number of chemical compounds and interactions among
them, making the identification and quantification of all metabolic changes a complicated job [21-23].
The use of high-throughput metabolic methods can detect minimal changes in the metabolic state,
giving a fingerprint of the metabolic state of the plant [24]. The metabolome is the final result of
the plant’s response and could provide us with a detailed “snapshot” of the changes caused by
herbicides [25,26]. In this study, we applied a non-target metabolomic scope based on the identification
of punctual metabolomic fingerprinting using GC-MS as an analytical approach. We expected that if
plants could detect the presence of herbicides in the environment, then they would show changes in
their global fingerprint compared to untreated plants, and this fingerprint would be different in plants
that had previously been exposed to herbicides than those that had not been previously treated.
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2. Results

2.1. Experiment 1. Biomass Accumulation and Survival

The application of clodinafop-propargyl showed a significant reduction in the dry matter
accumulation of the studied biotype compared to unexposed plants, except at the 0.001x dose.
Plants grew and accumulated significantly more dry matter even in the lowest dose (0.0001x the
recommended dose). In plants treated with 0.001x, there was an increase in the dry matter accumulation
caused by hormesis (Figure 1A). Dry matter accumulation showed a drastic reduction at the doses
from 0.01x to 1x. Survival, on the other hand, was not affected in the two least concentrated doses
(0.0001x and 0.001x) of clodinafop-propargyl, but there was a significant decrease in survival at the
0.01x dose (63% survival), and there was 100% mortality at both the 0.1x and 1x doses (Figure 1B).
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Figure 1. Dry matter accumulation (A) and survival (B) of susceptible Avena fatua L. plants treated with
clodinafop-propargyl in proportional doses of the recommend rate (1x, 0.1x, 0.01x, 0.001x, 0.0001x, and
0x). Statistical significances are indicated with different letters. Datapoints represent mean values, and
vertical bars represent standard errors. When they are absent, they are smaller than the symbol (1 = 4).

Metabolomic Fingerprinting of the First Experiment

The metabolic fingerprint of the susceptible biotype of A. fatua with the application of
clodinafop-propargyl was obtained by GC-MS recording a total of 67 metabolites. For the construction
of the heatmap, we used only the 12 metabolites that had p- and g- values < 0.05. The resulting heatmap
shows significant changes in the metabolism caused by herbicide application, even with the most
diluted concentration sprayed (Figure 2).

The dendrogram along the top Figure 2 shows the grouping among treatments. In this dendrogram,
we found the formation of two main groups (branches). One of these branches (left side of the heatmap)
includes the lower doses (including the control treatment; 0x, 0.0001x, and 0.001x; Figure 2) This
grouping also corresponds with that observed in the dry matter accumulation and survival. Inside this
branch, the control treatment (0x) comprised a different subgroup. This indicates that plants showed
changes in the metabolic fingerprint even at a 10,000-fold reduction of the recommended herbicide
dose. In the case of treatment with the 0.001x dose, there was an apparent hormetic effect on dry
matter accumulation, but there was no evidence of significant changes in their expression pattern that
would explain this effect, and the heatmap did not reveal metabolic differences between the 0.0001x
and 0.001x treatments. The second main group (right side of the heat map) included the higher-dose
treatments which caused the highest dry matter reduction and mortality. In this branch, the 0.01x
treatment was divided as a subgroup from the 0.1x and 1x treatments.
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Figure 2. Metabolomic fingerprint of susceptible Avena fatua L. plants (1 = 4) at 24 h after been sprayed
with clodinafop-propargyl in proportional doses of the recommend rate (1x, 0.1x, 0.01x, 0.001x, 0.0001x,
and 0x). The heatmap was constructed with the 12 metabolites that showed p- and g- values < 0.05.
Colors represent the abundance of metabolites; the blue color indicates down-expression and red color
over-expression. The metabolites are clustered according to their Pearson correlation as a distance
function, and the Ward clustering algorithm, the significance of the branches were of p < 0.05.

The dendrogram along the left side of the heatmap reveals the relationship among the metabolites
detected. This dendrogram also has two main branches; in the upper section, there was a marked
difference in the expression of the metabolites between the 0.0001x and 1x treatments. Metabolites of the
0.0001x treatment are shown in shades of blue, indicating that those metabolites were down-expressed.
In contrast, the 1x treatment showed an over-expression of the same metabolites.

The second branch of the dendrogram (the lower half of the heatmap), according to random
forest analysis, contains the five most important metabolites for classification (82.19/36.81; 68.18/36.81;
68.18/56.21; 56.1/36.81), such metabolites correspond to Hexane-2,6-di(isonitrile), 1-(formyloxymethyl)-Z-3,
17-Octadecadien-1-ol, and acetate(S)-2-methylbutanoic acid methyl ester 2-methylpropanoic.

In this zone, there was an evident change in expression. Treatments with the lowest doses
(including 0x) showed a down-expression of those metabolites, while treatments with the most
concentrated doses and with more biological changes (several reductions in the dry matter and high
mortality) show overexpression of those metabolites.

2.2. Experiment 2. Biomass Accumulation and Survival

In the plants treated with 0.0001x and 0.01x doses, we did not find differences in the growth
and survival among plants that had been previously sprayed with herbicides versus plants that
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were receiving their first application. In the case of the 0.001x treatment without previous herbicide
application (0.001x-U), there was a significant increase in dry matter and survival (Figure 3). A significant
increase of the dry matter was observed, even respect to control (60% of the rise). The survival was of
the 100% in all pots sampled.
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Figure 3. Dry matter accumulation (A) and survival (B) of susceptible Avena fatua L. plants that have
been treated previously, and plants that received their first application of clodinafop propargyl at rates
of 0.01, 0.001, 0.0001x of the recommended dose. Control plants only were sprayed with distillate water
and adjuvant. Statistical significances are indicated with different letters. Datapoints represent mean
values, and vertical bars represent standard errors. When they are absent, they are smaller than the
symbol (11 = 4).

Metabolomic Fingerprint the Second Experiment

In the second experiment, 51 metabolites were detected with g-values < 0.05, and 46 metabolites
had significant p-value < 0.05, so these 46 were used to construct the heatmap. Four of those metabolites
were shared with the first experiment: 220.25/48.11, 67.15/36.81, 72.12/35.72, and 220.25/32.45. According
to the NIST (National Institute of Standards and Technology, Gaithersburg, MD, USA) library, such
metabolites were 2-Methylamino-3-methylbutanoic acid, 2-methylpropanoic acid, Benzoic acid methyl
ester, and 1-(p-Methoxycarbonylphenyl)-5-phenyl-3-(2-pyridyl)-2-pyrazoline, respectively.

The resulting heatmap shows that treatments were grouped into two main branches (Figure 4).
One branch (Figure 4; right side of the heatmap) was conformed of the control, and the two most
dilute herbicide applications (0.0001x-U, 0.0001x-T). Within this branch, the control and 0.0001x-U
treatments had a very similar fingerprint, and for this reason, were grouped into the same sub-group.
On the other main branch, all treatments were grouped in closed sub-branches. The only treatment
that showed differentiation in this sub-branch was the treatment 0.001x-U. This same treatment also
showed significant differences in dry matter and survival.

The dendrogram along the left side of the heatmap in Figure 4 shows the marked differences in
metabolite expression of the treatments. The upper half of the heatmap shows that treatments with the
lowest dose of herbicide (including the control) had increased expression of 17 metabolites. On the
other branch, those metabolites were expressed less. In the lower branch, a set of tree metabolites had
an inverse expression pattern compared to the other treatments. The metabolites 46.99/1.71, 81.98/1.71
and 47.95/1.71 (2-Nonen-1-ol, (S)-2-methylbutanoic acid methyl ester, and 3-Buten-1-ol, 2-methyl,
respectively) were expressed less in the treatments with low doses of herbicide, while in the higher
dose treatments, they were expressed more.
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Figure 4. Metabolic fingerprint of susceptible Avena fatua L. plants that have been treated previously
(T = Treated) and plants that received their first application (U = Untreated) of clodinafop propargyl
at rates of 0.01, 0.001, and 0.0001x of the recommended dose. The heatmap was constructed with the
46 metabolites that showed p- and g- values < 0.05. Colors represent the abundance of metabolites; the
blue color indicates down-expression and red color over-expression. The metabolites are clustered
according to their Pearson correlation as a distance function, and the Ward clustering algorithm, the
significance of the branches were p < 0.05.
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The 0.0001x-U treatment was grouped into a separate group in the heatmap, and it also had a significant
change in dry matter and survival. In the fingerprinting of this treatment, a marked down-expression of
eight metabolites (354.35/48.13, 73.15/35.71, 73.15/38.63, 72.12/35.72, 58.04/35.73, 368.37/45.98, 44.02/32.44,
and 162.22/11.56) constitutes a notable difference compared to all of the other treatments. These compounds
correspond to aromatic compounds as 1, 2-Hexadecanediol, trans 3-penten-1-ol, 3-methyl-2-buten-1-ol,
Benzoic acid methyl ester, 1-pentenal, 1-(p-Methoxycarbonylphenyl) -5-phenyl-3-(2-pyridyl)-2-pyrazoline,
and 2-heptanol. All treatments that received herbicide application showed increased expression of these
metabolites; while the control treatment also showed decreased expression of the same metabolites, but
this expression is not so evident as in treatment 0.0001x-U.

3. Discussion

In this study, we simulated the effect of herbicide drift (or any event that leads to exposure to a
low herbicide dosage) on the metabolism of weeds surrounding crop fields. Our principal objectives
were to determine: (1) What is the minimum dose of herbicide that a plant can perceive, and (2) if
plants that received non-lethal doses show differences in their metabolism, growth, and survival when
receiving a second application. The results showed that susceptible plants of A. fatua could detect the
presence of clodinafop-propargyl in doses diluted by 10,000 fold with respect to the recommended
dose. The changes observed in the metabolomic fingerprint were present at least 21 days after herbicide
application. When the plants received a second application of herbicide, they showed differences in the
metabolomic fingerprint compared to plants that were not treated previously, but this did not lead to
changes in biomass accumulation and survival. Hormesis was observed with the application of a dose
of 0.001x, but this did not increase their tolerance to a second application. In the second experiment,
these hormetic effects also increased survival; this means that changes in plant metabolism can occur
at extremely low doses and have effects on the plants’ fitness, depending on plant age.

A. fatua plants showed reductions in their dry matter accumulation even at low doses (10,000 fold
dilution of the recommended dose). This dry matter reduction was caused by the high effectiveness of
herbicide in susceptible plants [27]. However, it is possible that other susceptible biotypes could display
a different degree of susceptibility [28]. The metabolomic fingerprinting observed in the first experiment
was congruent with the observations in dry matter and survival. Metabolic changes were observed 24 h
after the herbicide application, with clear differentiation in the expression of some metabolites among
treatments that showed high levels of damage and mortality. These differences in the fingerprint
could be used as a predictive tool for determining susceptibility or resistance. Torres-Garcia et al. [26]
using Direct-Injection electrospray ionization mass spectrometry (DIESI) detected differences in the
fingerprints of multiple herbicide-resistant biotypes of A. fatua (resistant to ACCase- and ALS-inhibiting
herbicides) when sprayed with herbicides of each mode of action.

The analytical approach used in this study (GC-MS), has the disadvantage that only volatile
compounds that can be detected, compared with other methods such as UPLC-MS, EI-MS, among
others [29,30]. However, the 12 metabolites in the first experiment and 46 in the second fulfilled
the requirements of g- and p- values < 0.05, confirming their participation in the metabolic response
to herbicide application. The non-target metabolic approach used also has the disadvantage that
the identification of metabolites could be spurious due to the lack of standards for each metabolite
found. However, one of the objectives of this study was to determine the minimum dose of
herbicide that a plant can perceive, and it was accomplished. Besides, this could be an initial step
for accurately determining the metabolites that participate in the plants’ response to herbicides,
i.e., the four metabolites that were shared in the two experiments and putatively were identified
as 2-Methylamino-3-methylbutanoic acid, 2-methylpropanoic acid, Benzoic acid methyl ester, and
1-(p-Methoxycarbonylphenyl)-5-phenyl-3-(2-pyridyl)-2-pyrazoline.

The second experiment demonstrated that previous herbicide application (priming) did not have
any effect on the biomass and survival during a second herbicide application. The expectation is that
primed plants develop defense responses that are faster, stronger, and more sustained than in plants
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that were not primed [10]. However, in the phenotypic traits measured, this did not occur. On the
other hand, there were significant changes in the metabolomic fingerprint. These changes caused by
stimulation by low doses of herbicides were present throughout the biological cycle. The metabolomic
fingerprint of plants that received a prior dose of herbicide was different from those that were receiving
herbicide application for the first time. These effects have been called “metabolic memory” or “priming”
and it has been demonstrated that this effect can be passed to the next generation, indicating an
epigenetic component of transgenerational inheritance [11]. These transgenerational priming effects
are likely one of the factors on the evolution of NTSR based in the overexpression of P450 genes. Neve
and Powles [8,9] reported that recurrent selection at low doses for three generations caused a 55-fold
increase in the resistance index. Later, Yu et al. [31] confirmed that the resistance mechanism of these
biotypes was based on the over-expression of P450.

An exception to priming effects on metabolomic fingerprinting was the treatment 0.0001x-U.
This treatment was grouped in the same branch as the control treatment. In this case, it is possible
that the dose of 0.0001x (10, 000 diluted) was too low to provoke a metabolic change in plants with
larger sizes (around 45 days after seedling). This elevated sensitivity is a factor to consider since the
metabolic response of weeds to herbicide drift will depend on the plant size.

The treatment that showed hormetic effects was the only one that increased in survival. In addition,
its metabolic fingerprint differed from those of the other herbicide treatments, particularly in eight
metabolites (1, 2-Hexadecanediol, trans 3-penten-1-ol, 3-methyl-2-buten-1-ol, Benzoic acid methyl
ester, 1-pentenal, 1-(p-Methoxycarbonylphenyl)-5-phenyl-3-(2-pyridyl)-2-pyrazoline, and 2-heptanol).
However, the hormesis is a complex phenomenon that cannot be explained by the expression of only
eight metabolites, and more research is needed [12].

The results presented in this study demonstrated the high sensitivity of susceptible biotypes to
the presence of herbicides (clodinafop-propargyl) in the environment. This could have implications in
the contamination caused by the application methods used. The unintentional low dosage caused by
the drift of micro drops carrying ultra-diluted doses of herbicide can be detected by susceptible plants
that grow around the crop fields and may cause metabolic resistance. Improvement in application
methods is required to avoid drift. This study also documents the lack of priming effects in response to
herbicides in A. fatua and that there is an increase in size and survival caused by hormesis.

4. Methods

4.1. Study System

Avena fatua L. is considered as the world’s second-worst herbicide-resistant weed due to their
worldwide presence in cereal-growing regions [32]. This weed has evolved resistance to at least
seven modes of action (antimicrotubule mitotic disrupter and ACCase-, ALS-, PPO-, cell elongation-,
long-chain fatty acids-, and lipid- inhibitors). A single biotype from Canada has even evolved multiple
resistance to 5 modes of action (ACCase-, ALS-, PPO-, long-chain fatty acids-, and lipid- inhibitors) [33].
In recent years, the increase of cases of metabolic resistance also documented A. fatua biotypes [6].

The A. fatua biotype used in this study was collected in an alfalfa crop, in a zone where cereal
has not been produced for the past 10 years (A Tafoya, personal observation). The susceptibility was
confirmed in greenhouse conditions, and this biotype has been used in other studies as a susceptible
biotype [26,34].

4.2. Experiment 1. Determination of the Minimum Dose of Herbicide That Produces Changes to
Plants” Metabolism

We separated this study into two experiments to address each of the following questions separately:
(1) What is the minimum dose that causes changes in the plants’ metabolism? and (2) do weeds that
received a non-lethal dose differ in metabolism and survival upon receiving a second dose compared
to plants that are receiving their first dose (i.e., are there priming effects)?
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Around 500 caryopses of the collected susceptible biotype of A. fatua of similar size and weight
were selected. This selection was made to ensure the physiological maturity of the caryopses used.
The florets (lemma and palea) were removed manually to synchronize the germination. Then, the
caryopses were disinfected by immersing them in a solution of water and sodium hypochlorite at 5%
for 10 min and washed three times with distilled water. Disinfected caryopses were placed in Petri
dishes with wet filter-paper and maintained to 20 °C. Germination was considered to have occurred
when the radicle measured 3 mm in length.

Plastic pots with 500 mL capacity were filled with a mix of peat moss and agrolite in a proportion
of 1:1. In each pot, six seedlings were planted. Pots were maintained in a growth chamber with a light
flux of 440 pmoles m~2 s~!, photoperiod of 16 h light/8 h dark, and constant temperature of 18 °C.
The substrate was maintained near field capacity during the experiment. The plants were fertilized
with Steiner nutrient solution (1x) every 14 days (50 mL per pot).

To determine the minimum dose of herbicide that a plant can detect in the environment, we
used the recommended rate of clodinafop-propargyl (60 g a. i. ha-1, 1x) and four 10-fold consecutive
dilutions (0.1x, 0.01x, 0.001x and 0.0001x). Each dilution represents a treatment, and for the preparation
of each dilution, the adjuvant concentration was the same. The control conditions consisted of the
application of distilled water and adjuvant (0x). This spectrum of doses ranges from the recommended
dose to an extremely diluted dose 10, 000 fold weaker than the recommended dose, which could
represent the spray particle drift that occurs during herbicide application.

The herbicide treatments were applied when plants were at least 10 cm tall, using a pressurized
CO; plot sprayer calibrated to a spray volume of 200 L per hectare. Four replicates were carried out for
each dose. After the application of herbicides, pots were kept separate for 6 h to ensure the penetration
of herbicide and avoid contamination among treatments.

Plant tissue was sampled for metabolomic analyses 24 h after the herbicide application; at that
time, plants did not show damage symptoms in any of the treatments. Two plants per pot were taken,
leaving four individuals in each pot for estimations of biomass and survival. The shoots were cut,
washed in distilled water (1 min), placed inside aluminum foil bags, and flash-frozen in liquid nitrogen.
Samples were lyophilized in a vacuum chamber at —=50 °C for 72 h. The samples were stored in airtight
bags in the dark to avoid the accumulation of moisture until their use.

4.2.1. Survival and Biomass Reduction

Twenty-one days after herbicide application, the number of live plants per pot was counted, and
the plant shoots collected to determine biomass. Plant shoots were cut, placed in paper bags, and dried
for 72 h at 80 °C until reaching constant weight. The percentage of biomass reduction (dry matter) at
each dose was obtained by subtracting from the dry matter to untreated plants (0x) and multiplying
by 100. Survival was calculated multiplying the number of live plants by 25; survival data were
arcsine transformed prior to statistical analysis. Data were analyzed with ANOVA (p < 0.05), and when
significant differences were found, a Tukey test (p < 0.05) was performed to compare among treatments.

4.2.2. Metabolic Fingerprinting Using GC-MS

Ten milligrams of lyophilized tissue was placed in a 2 mL capacity Eppendorf tube, and the
tubes were submerged in liquid nitrogen for 2 min. Then, the plant tissue was ground inside the tube
with a plastic pestle until obtaining a fine powder. 500 uL of methanol (Mass grade, Fisher Scientific,
New Bedford, MA, USA) was added to each tube. To improve metabolite extraction, samples were
homogenized for 1 h in a sonifier (Branson 1800, St. Louis, MO, USA). Tubes were centrifuged for
10 min at 13 rpm and the aqueous phase was filtered using a 0.2 um nylon filter (Millipore, Burlington,
MA, USA).

Samples were injected into a gas chromatograph (Clarus 680, Perkin-Elmer Inc., Waltham, MA,
USA), equipped with a phase capillary column: 5% diphenyl 95% dimethylpolysiloxane 30 m long,
0.32 mm i.d., 0.25 um film thickness, temperature limits between —60 a 320/350 °C (Elite-5 MS,
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Perkin-Elmer Inc., Waltham, MA, USA). The injection was by autosampler. Helium gas was used at
a flow rate of 1 mL/min, the flow remained constant, and there was an initial wait time of 0.5 min.
The column temperature was initially maintained at 50 °C for 1 min and then ramped to 250 °C at
30 °C/min, remaining at this temperature for a further 10 min. The temperature of the injector was
230 °C. A mass spectrometer (Clarus SQ8T, Perkin-Elmer Inc., Waltham, MA, USA), with an electron
impact ionization source (70 eV) in full scan mode was used. The analysis range was 40-500 m/z.
The temperatures of the transfer line and ionization source were 230 and 250 °C, respectively.

4.2.3. Data Analyses

Original files of GC-MS were analyzed in the platform XCMS Online [35]. This platform provides
the feature detection, retention time correction, peak alignment, and statistical analysis. Since the
objective of this study was to obtain a global fingerprint, a non-target metabolomics scope was
used. To avoid a wrong interpretation in the name of the metabolites, and for differentiating among
metabolites, we only used metabolites with g-values < 0.05, and the annotation of each one was
according to the m/z and the retention time (RT) of each metabolite detected.

The results were represented in an heatmap-bicluster. An ion matrix was constructed using the
metabolites with p-values < 0.05. The construction of the heatmap was made using the platform
Metaboanalyst (www.metaboanalyst.ca) [36]. In this platform, the data were normalized and
auto-scaled. The dendrograms used Pearson correlation as a distance function, and the Ward
clustering algorithm; the significance of the branches were p < 0.05. A supervised learning algorithm
(Random forest) was used to measure the importance of each metabolite in the grouping and sample
classification. When a metabolite represent an important difference among treatments, the identification
of such molecule was made using the NIST library.

4.3. Experiment 2. Responses of Weeds Treated with Non-Lethal Dose to Posterior Herbicide Application

In order to answer the second question, a second experiment was carried out. The plant material
and growth conditions were the same as for experiment 1. In this experiment, the treatments consisted
of a first application of herbicides in doses of 0x, 0.0001x, 0.001x and 0.01x. Due to the high mortality
observed in treatments with 0.1 and 1x we did not include these treatments in the second experiment.
Each treatment had four pots, with six plants per plot.

Twenty-one days after the first herbicide application, the pots were sprayed for a second time using
the same dose as the first exposure (0.0001x-T, 0.001x-T and 0.01x-T). At the same time, a set of plants
of the same age that had never have been exposed to herbicides were sprayed with herbicides at the
same doses (0.0001x-U, 0.001x-U and 0.01x-U). This second application included a control group that
was sprayed only with distilled water and adjuvant. Twenty-four hours after the herbicide application,
two plants per plot were sampled for metabolomic fingerprinting. The methods for sample collection,
processing, injection into GC-MS and data analysis, were the same as described for experiment 1.
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Abstract: Mutations conferring evolved herbicide resistance in weeds are known in nine different
herbicide sites of action. This review summarizes recently reported resistance-conferring mutations
for each of these nine target sites. One emerging trend is an increase in reports of multiple
mutations, including multiple amino acid changes at the glyphosate target site, as well as mutations
involving two nucleotide changes at a single amino acid codon. Standard reference sequences are
suggested for target sites for which standards do not already exist. We also discuss experimental
approaches for investigating cross-resistance patterns and for investigating fitness costs of specific
target-site mutations.

Keywords: D1 protein; acetolactate synthase; tubulin; ACCase; EPSPS; phytoene desaturase; PPO;
glutamine synthetase; auxin

1. Introduction

Herbicide-resistance mechanisms broadly fall under two categories: target-site mechanisms
and non-target-site mechanisms [1,2]. The former involves a change to the molecular target of the
herbicide (usually an enzyme) that decreases its affinity for the herbicide. Although much less
common, target-site resistance can also occur via increased expression of the target, which results in
more herbicide required to achieve a lethal effect [3,4]. Non-target-site resistance encompasses any
mechanism that reduces the amount of herbicide that reaches the target site, or that ameliorates the
effect of the herbicide despite its inhibition of the target site.

Our understanding of specific DNA changes that confer non-target-site resistance is still in its
infancy [5]. In contrast, the first DNA change conferring evolved target-site resistance (to triazines) was
identified over three and a half decades ago [6]. Since then, numerous resistance-conferring mutations
have been identified from dozens of weed species and now span nine herbicide target sites (Table 1).
The purpose of this review is to provide an update of new mutations that have been recently identified
for each of these nine target sites. In this review, we consider “new mutations” to be those that confer
an amino acid change that has not been reported previously from any weed species. Notably, gene
duplication is not within the scope of this review. While gene duplication events have been observed
to confer resistance to herbicide Groups 1 and 9 [3,4], the underlying genetic mechanisms for resistance
evolution lie outside of the applicable target-site coding region. We discuss each target site sequentially,
beginning with a brief description of the target. We then highlight the most recent reviews of mutations
for each target before reviewing new mutations associated with each target. Resistance cases are
discussed in order of WSSA group number, with the HRAC classification listed in parenthesis [7].
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Table 1. Identification of mutations conferring target-site resistance to herbicides.

Target Site Representative Herbicide Year !
D1 protein atrazine 1983 [6]
acetolactate synthase chlorimuron 1992 [8]
tubulin trifluralin 1998 [9]
acetyl CoA carboxylase clethodim 2001 [10]
5-enolypyruvylshikimate-3-phosphate synthase glyphosate 2002 [11]
phytoene desaturase fluridone 2004 [12]
protoporphyrinogen oxidase lactofen 2006 [13]
glutamine synthetase glufosinate 2012 [14]
auxin receptor 24-D 2018 [15]

! Indicates first year of publication in peer-reviewed literature of a resistance-conferring mutation in the target-site
from a field-evolved weed population.

2. Summary by Herbicide Group

2.1. Acetyl-CoA Carboxylase Inhibitors: Group 1 (A)

The basis of function for Group 1 chemistries was reviewed in detail by [16], and target-site
resistance to Group 1 chemistries was last reviewed in 2014 [17]. Briefly, acetyl-CoA carboxylase
(ACCase) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA through a two-step, reversible
reaction. First, biotin in complex with the enzyme is carboxylated, and second, the carboxyl
group of biotin is transferred to acetyl-CoA, producing malonyl-CoA [16]. ACCase is composed
of three domains: the biotin carboxylase domain, biotin carboxyl carrier protein domain, and the
carboxyltransferase domain. Inhibitors of ACCase are classified within three chemical families: the
aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and phenylpyrazolin (DEN) [17].
Although ACCase is present within the cytoplasm and chloroplast, ACCase inhibitors affect only
the homomeric, plastidic ACCase isoform specific to the Poaceae family, through nearly competitive,
reversible inhibition [17]. By convention, amino acid numbering follows the Alopecurus myosuroides
sequence, CAC84161 [17]. The crystal structures of the ACCase carboxyltransferase domain, as derived
from yeast, have been produced both in a native’ state [18] and in complex with representative
chemicals from all three herbicide families within the group [19-21].

Target-site ACCase resistance mutations commonly evolve in grass weed species in response
to selection and show great diversity in terms of mutation sites. Codon changes at positions 1781,
1999, 2027, 2041, 2078, 2088, and 2096 have been previously reviewed [17]. Subsequently, two new
substitutions have been reported in weedy species, including one at a new site.

The Ile-2041 position has been well characterized for resistance to FOP chemistries. In China,
a new substitution, Ile-2041-Thr, was observed in Alopecurus aequalis [22]. Dose-responses conducted
on segregants of a single, heterozygous plant revealed resistance to a number of FOP chemistries and
sensitivity to several DIMs. In addition, reduced sensitivity towards pinoxaden, a DEN chemistry, was
reported. Reduced sensitivity, and even resistance, caused by substitutions at the Ile-2041 position
have been observed to pinoxaden, although this was inconsistent between species. For instance,
the Ile-2041-Asn substitution has been reported to cause a high level of resistance to pinoxaden in
Beckmannia syzigachne [23], while providing reduced sensitivity in Lolium multiflorum [24]. Functional
validation is required to reach a consensus on the effects of Ile-2041 position on DEN chemistries.

First identified in Eleusine indica from Malaysia, the Asn-2097-Asp substitution is suggested to
provide resistance to fluazifop, a FOP [25]. While the functional effects of substitutions at the Asn-2097
position are uncharacterized, substitutions in the proximal Gly-2096 position have been characterized
to confer FOP-specific resistance [26]. However, the contribution of this new substitution to the
resistance was not explored further. As heterozygous individuals within the E. indica population of
interest were identified, cosegregation studies would provide greater evidence of the importance of
Asn-2097 towards Group 1 inhibitor resistance.
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2.2. Acetolactate Synthase Inhibitors: Group 2 (B)

Resistance to acetolactate synthase (ALS) inhibitors was most recently reviewed in 2014 [27].
Acetolactate synthase, also referred to as acetohydroxyacid synthase (AHAS), is a dual-functioning
enzyme. The enzyme catalyzes both the synthesis of acetolactate from two pyruvate molecules, and
the synthesis of acetohydroxybutyrate from ketobutyrate and pyruvate, where both reactions require
thiamin diphosphate, FAD, and Mg2+ [28]. ALS is the first enzyme in the synthesis pathway for the
branched-chain amino acids valine, leucine, and isoleucine, and the depletion of these amino acids is
the mode of action for ALS-inhibiting herbicides [27]. Encoded in the nucleus, the enzyme is localized
to plastids. Group 2 is composed of five herbicide families: sulfonylurea (SU), imidazolinone (IMI),
triazolopyrimidine (TP), pyrimidinyl-thiobenzoate (PTB), and sulfonyl-aminocarbonyl-triazolinone
(SCT). Crystal structures of Arabidopsis thaliana in complex with SU, IMI, TP, PTB, and SCT have been
generated [29-31]. The naming convention for amino acid substitutions is based on the A. thaliana
sequence AY124092, and is in agreement with the available crystal structures.

The relative ease at which weeds evolve resistance to ALS inhibitors is the Achilles heel of these
herbicides, and resistance is often due to target-site substitutions [32]. Evolved resistance in weeds has
been attributed to substitutions at each of the following eight different amino acids: Ala-122, Pro-197,
Ala-205, Asp-376, Arg-377, Trp-574, Ser-653, and Gly-654. Often, several different substitutions at
each of these eight sites are able to confer resistance. Since the last review, six new substitutions
(at previously reported sites) have been reported in weedy species and are summarized herein.

The Ala-122-Asn substitution was first reported in Echinochloa crus-galli from Italy [33]. This
substitution has been reported to confer resistance to SU chemistries in yeast [34], and substitutions
at this position can result in resistance to both SU and IMI chemistries [27]. Resistant and sensitive
plants from the same field location were identified and bulked, and resistance was characterized to
be representative of SU, IMI, TP, and PTB chemistries. Sequence analysis was used to identify the
amino acid substitution, and in vitro ALS enzyme activity bioassays supported observed resistance,
indicative of a target-site resistance mechanism. A fitness cost under ideal growth conditions, but not
under competition, was identified through comparative growth analysis.

The Ala-122-Ser substitution was first reported in Amaranthus palmeri from Argentina [35].
Previously, the Ala-122-Ser mutation has been reported to confer resistance to SU chemistries in
yeast [34]. Greenhouse screening identified consistent resistance to representative SU, IMI, and TP
chemistries when compared to an unrelated sensitive population. In vitro ALS enzyme activity
bioassays support resistance to the representative SU and IMI chemistry, but not to the representative
TP chemistry. Sequence analysis on a set of eight resistant plants revealed that the population
was a composite between the Ala-122-Ser, Ser-653-Asn, and several uncharacterized substitutions
(Pro-84-His and Ala-282-Asp). The Ala-122-Ser mutation was observed only in combination with
the uncharacterized Ala-282-Asp substitution. Functional characterization in the absence of other
substitutions is necessary to confirm this potential resistance mechanism.

As first published in 2015 by Liu et al. [36] in Myosoton aquaticum from China, the Pro-197-Glu
substitution confers resistance to representative SU, IMI, TP and PTB chemistries. Substitutions at
the Pro-197 site are generally considered to be SU-specific [27]. A homozygous-resistant population
was developed through genotypic selection, and dose-response compared to an unrelated sensitive
population identified uniform resistance. In vitro ALS enzyme activity bioassays confirmed reduced
sensitivity of the ALS enzyme when compared to the sensitive population for the SU, IMI, TP, and PTB
chemical families. The response of the Pro-197-Glu substitution to the SCT chemistries is unknown.

The Pro-197-Phe substitution was first reported in Sisymbrium orientale in Southern Australia [37].
A population survey of the species was conducted for resistance to SU and IMI chemistries, where
sequence analysis of survivors was conducted. Of the 65 populations under investigation, one
population was reported to consistently possess the Pro-197-Phe substitution, the result of a double
nucleotide substitution when compared to the wild-type sequence. This population was resistant to a
representative SU chemistry, while sensitive to an IMI chemistry. To date, functional validation of the
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Pro-197-Phe has not been conducted. The effect of the Pro-197-Phe substitution on the TP, PTB, and
SCT chemical families is unknown.

The Ala-205-Phe substitution was first reported in Poa annua in Tennessee, US [38]. Substitutions
at the Ala-205 position are considered to confer SU-specific resistance [27]. Dose-response with
representative SU chemistry [39], and delimiting rate of a representative IMI chemistry, identified in
planta resistance when compared to an unrelated sensitive population. Sequence analysis revealed the
Ala-205-Phe substitution, as derived from a double nucleotide substitution. These substitutions were
artificially introduced to the A. thaliana gene sequence, expressed, and purified from Escherichia coli for
use in in vitro ALS enzyme activity assays. These in vitro assays revealed resistance responses when
compared to wild-type to a wide range of chemistries from each of the SU, IMI, TP, PTB, and SCT
chemical families. Interestingly, no resistance was observed to florasulam, though this observation was
not confirmed in planta, perhaps due to the lack of efficacy of florasulam on grasses. The in planta
response of the Ala-205-Phe substitution to the TP, PTB, and SCT chemical families is unknown.

The Trp-574-Arg substitution was first reported in Digitaria sanguinalis in China [40]. Substitutions
at the Trp-574 site have been documented to confer broad cross-resistance to the ALS-inhibiting
chemistries. Dose-response revealed resistance to representative SU, IMI, and TP chemistries when
compared to an unrelated sensitive population. Reduced sensitivity of the ALS enzyme to the SU, IMI,
and TP chemistries was characterized with in vitro ALS enzyme activity assays. The response of the
Trp-574-Arg substitution to the PTB and SCT chemical families is unknown.

2.3. Microtubule Inhibitors: Group 3 (K;)

Resistance to microtubule inhibitors was last reviewed in 2010, though the dinitroaniline trifluralin
was reviewed in 2013 [1,41]. Tubulin heterodimers, composed of o- and 3-tubulin, polymerize to form
microtubules. Microtubules are key structural polymers, which mediate multiple cellular processes
through the dynamic reorganization of microtubules [42]. Microtubule inhibitors bind to the x-tubulin
subunit in a reversible, competitive manner, deregulating the organization of microtubules [41-43].
Currently, there are five classes of microtubule inhibitors: dinitroaniline, phosphoroamidate, pyridine,
benzamide, and benzoic acid. The crystal structure of bovine tubulin heterodimer is available, which
has been used to computationally determine dinitroaniline binding domains and validated through
mutagenesis studies [42,44,45]. Because «-tubulin is highly conserved, the need for a reference sequence
is minimal. If necessary, the authors recommend the Setaria viridis sequence CAE52514.

Resistance to Group 3 herbicides is relatively rare (reported in just 12 weed species). As of 2013,
a-tubulin substitutions implicated in resistance included Leu-125-Met, Leu-136-Phe, Val-202-Phe,
Thr-239-Ile, and Met-268-Thr [1,41]. Target-site resistance to microtubule inhibitors is unique among
herbicides in that it is a recessive trait. This recessive nature likely accounts in part for the relative
rarity of target-site resistance to these herbicides (especially, in out-crossed species) [1], despite the fact
that there appear to be numerous substitutions that can confer resistance.

The substitution of Arg-243 to Met or Lys was first reported in Lolium rigidum from Western
Australia [46]. Dose-responses of multiple dinitroaniline compounds revealed resistance when
compared to an unrelated sensitive population [47]. Sequence analysis revealed a subset of the
population possessed Arg-243 substitutions, though in combination with the known substitutions
Thr-239-Ile or Val-202-Phe. Transgenic «-tubulin genes carrying wild-type (Arg-243), Arg-243-Met, and
Arg-243-Lys were introduced into Oryza sativa and resistance to multiple dinitroaniline chemistries in
calli lines with similar recombinant protein abundance levels were observed for the mutant but not
the wild-type genes. Structural modelling revealed the substitutions are expected to reduce binding
efficiency between trifluralin and the tubulin subunit. The interaction of these Arg-243 substitutions
with the other substitutions were not documented.
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2.4. Synthetic Auxins: Group 4 (O)

Herbicides within Group 4, the synthetic auxins, are synthetic analogues of the endogenous
plant hormone indole-3-acetic acid (IAA) [48]. The deregulation of auxin-dependent plant signalling
pathways results in the efficacy of these herbicides for weed control. Synthetic auxin chemistries are
largely preferential towards dicots, with the exception of quinclorac, which has grass activity. A more
comprehensive review of the mode of action of synthetic auxin chemistries is provided by Grossmann [49].
Resistance to synthetic auxin chemistries was last reviewed in 2018, though only non-target-site resistance
mechanisms had been published in weedy species at that time [48]. Currently, synthetic auxins are
separated into seven classes: phenoxy-carboxylates, quinolone-carboxylates, pyrimidine-carboxylates,
benzoates, pyridine-carboxylates, pyridyloxy-carboxylates, and arylpicolinates [48]. Unlike other
herbicide groups, which target a specific protein, synthetic auxins interact with numerous proteins,
including from the following families: TIR1 and Auxin F-Box [50], AUX/IAA protein, AUX1/LAX influx
carrier, PIN efflux carrier, and ABCB [51]. To date, however, evolved resistance to synthetic auxins has
only been reported in the AFB and AUX/IAA families, and as such, these are discussed here.

In A. thaliana, there are six members of the AFB family, TIR1 and AFB1-5 [52]. All members of the
AFB family are nuclear-encoded and localize to the nucleus [52]. Selective, or perhaps preferencial,
binding of synthetic auxin chemistries to subsets of these protein targets has been reported [53], which
suggests the loss of sensitivity of a few, or even one, of these receptors may result in herbicide resistance.
In A. thaliana, there are 29 AUX/IAA genes [54]. AUX/IAA proteins are co-receptors, which pair with
AFB proteins in the presence of auxin to form a larger co-receptor complex, termed the SCF'TIR1 [55].
The crystal structure of the TIR1-ASK1 has been developed in the native state and in complex with IAA,
1-naphthalene acetic acid (1-NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D) [56]. As, prior to 2018,
target-site resistance to synthetic auxins had not been reported, no convention has been established for
amino acid numbering.

In 2018, LeClere et al. [15] were the first to identify a target-site resistance mechanism in
Kochia scoparia to representatives of three classes of synthetic auxins: benzoates, phenoxy-carboxylates,
and pyridine-carboxylates. Root length assays and dose-response analysis identified resistance to
the aforementioned chemical classes. Transcriptome sequencing and sequence analysis identified a
two-nucleotide substitution that results in a single amino acid substitution in the highly conserved
GWPPV/I region (GWPPV/I-NWPPV/I) of KsIAA16. Yeast Two-Hybrid assays demonstrated a
loss of interaction between the KsIAA16 and KsTIR1 in the presence of representative benzoates,
phenoxy-carboxylates, and pyridine-carboxylates as a result of the Gly-73-Asn substitution
(as numbered based on the A. thaliana IAA16 sequence). Co-segregation analysis in the F2 generation
suggests benzoate resistance is linked to the observed nucleotide substitutions. Resistance mediated
through the Gly-73-Asn substitution was confirmed through complementation in A. thaliana. A fitness
cost associated with the Gly-73-Asn substitution was observed within F2 segregants.

As LeClere et al. [15] were the first to document target-site resistance to synthetic auxins, the amino
acid numbering convention should follow their example. Within their research, LeClere et al. [15]
utilized the A. thaliana sequence AT3G04730 to number amino acids. If resistance-conferring mutations
are found on other auxin receptors, we propose amino acid numbering should occur, following the
most appropriate gene within A. thaliana.

2.5. Photosystem II Inhibitors: Groups 5 (Cy), 6 (C3) and 7 (Cy)

Herbicide resistance to photosystem II inhibitors was last reviewed in 2010 [1]. Photosystem
II inhibitors, while spread over three herbicide groups, are reversible, competitive inhibitors
of the Qb-binding niche of the D1 protein in the photosystem II complex. Photosystem II
inhibitors are further subclassified into numerous chemical classes [57]. Group 5 contains the
phenyl-carbamates, pyridazinones, triazines, triazinones, triazolinones, and uracils. Group 6 contains
the benzothiadiazinones, nitriles, and phenyl-pyridazines. Group 7 contains the amides and ureas.
Inhibition results in a disruption of the chloroplastic electron transport chain, resulting in the build-up
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of reactive oxygen species. The D1 protein is encoded by the chloroplastic psbA gene, and is expressed
within the chloroplast. The crystal structure of the D1 protein was derived from the L-protein
of Chlamydomonas reinhardtii [58], and more recently, from other purple bacteria [59]. Amino acid
numbering is based on A. thaliana.

As mentioned in the Introduction, the first identified resistance-conferring target-site mutation
was to the photosystem II inhibitors. This mutation caused a Ser-264-Gly change and, since, has
emerged as the dominant mutation for resistance to these herbicides. Other mutations, known as
of 2010, included Val-219-Ile, Ala-251-Val, Phe-255-Ile, Ser-264-Thr, and Asn-266-Thr. Target-site
resistance to photosystem II inhibitors is unique in that, because the target site is encoded by a plastidic
gene, resistance is expected to be maternally inherited in most, if not all, weed species.

A Leu-218-Val substitution was first reported in Chenopodium album from Germany [60].
Dose-response identified resistance to triazinone, but not triazine chemistries. Sequence analysis
identified the Leu-218-Val substitution unique to the resistant biotype. While the Leu-218 amino acid
is part of the Qb-binding niche, modelling was not conducted to determine the impact of the observed
substitution. Although Leu-218-Val has not been functionally validated, it is adjacent to the Val-219
site, where substitutions have been documented to confer resistance to Groups 5 and 7 [61]. Inheritance
of the observed resistance was not conducted, but it is expected to be maternally inherited.

A Phe-274-Val substitution was reported in Raphanus raphanistrum from Western Australia [62].
This is the first report of a resistance-conferring substitution at or near the Phe-274 site. Delimiting dose
and dose-response analysis identified a resistant response to representative Group 5 and 7 chemistries,
but increased sensitivity to a representative Group 6 chemistry. Structural modelling suggests that the
Phe-274-Val substitution results in a weakening in binding efficiency of representative Group 5 and
7 chemistries. Inheritance of the observed resistance was not conducted and the substitution has not
been functionally validated.

2.6. EPSP Synthase Inhibitors: Group 9 (G)

5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the reaction between phosphoenol
pyruvate and shikimate-3-phosphate to produce EPSP and inorganic phosphate [63]. Resistance to
EPSP synthase inhibitors has been well reviewed in 2014 [64] and 2018 [65]. EPSP synthase is a
nuclear-encoded, chloroplast-localized enzyme required for aromatic amino acid production [66].
Glyphosate, the only chemistry within Group 9, is a slowly reversible to irreversible competitive
inhibitor at the phosphoenol pyruvate binding pocket [63]. The crystal structure of EPSP synthase,
as derived from E. coli in complex with glyphosate, is known [63]. The numbering of amino acids
is referenced against the start of the mature EPSP synthase enzyme of plants, such as the A. thaliana
sequence, AT2G45300 [64].

Target-site resistance to Group 9 is unique due to the apparent necessity for multiple amino acid
substitutions to confer a strong phenotypic response. Substitutions at Pro-106 have been observed
in isolation; however, the Thr-102-Ile substitution has only been observed in combination with
Pro-106-Ser. Here, two new combinations of amino acid substitutions, including a triple-substitution
event, are reviewed.

The double-substitution Thr-102-Ile + Pro-106-Thr, termed TIPT, was first observed in
Bidens subalternanas in Paraguay [67]. The Pro-106-Thr substitution has been reported to confer low-level
resistance, and the Thr-102-Ile has been reported to confer resistance only when in combination
with Pro-106-Ser [65]. Dose-response conducted between the putative resistant accession and a
geographically proximal sensitive accession identified the resistance response. Shikimate accumulation
assay results suggest that the resistant accession has an insensitive target-site. No significant variation
for non-target-site mechanisms, such as reduced absorption and translocation, metabolism, gene
amplification, and vacuolar sequestration, was observed. Gene sequencing revealed the presence of
the TIPT substitutions in the resistant accession. No segregation or inheritance studies were conducted.
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Patent literature describing the TIPT double-substitution was previously reviewed by Sammons and
Gaines [64].

The triple-substitution Thr-102-Ile + Ala-103-Val + Pro-106-Ser, termed TAP-IVS, was first
identified in A. hybridus in Argentina [68]. The effect of substitutions at the Ala-103 position are
uncharacterized. Dose-response against a geographically proximal sensitive population identified
the resistance response. Shikimate accumulation assay suggests that the resistant population has
an insensitive target site. Gene sequencing identified the TAP-IVS triple substitution. While gene
amplification was observed within the resistant accession, mRNA levels of EPSP synthase did not
correlate with resistance. Structural modelling suggests that TAP-IVS results in a rearrangement of
the glyphosate binding domain, and a reduction in interaction sites is observed when compared to
wild-type and other resistance-endowing substitutions. Co-segregation and inheritance of the TAP-IVS
was not conducted. The impact of Ala-103-Val alone, or in other combinations of substitutions, was
not characterized. Functional validation of the TAP-IVS substitutions remains necessary.

2.7. Glutamine Synthetase Inhibitors: Group 10 (H)

Resistance to glutamine synthetase inhibitors was last reviewed in 2002 [69]. In short, glutamine
synthetase catalyzes the formation of L-glutamine from L-glutamate and ammonia [70]. Two primary
isoforms of glutamine synthetase exist in plants: the nuclear-encoded and cytosol-targeted GS1,
and the nuclear-encoded and chloroplast-targeted GS2. While inhibition of glutamine synthetase
results in an accumulation of ammonium, the primary cause of plant death was thought to occur via
inhibition of photorespiration [71]. The transamination of glyoxylate to glycine is a necessary step of
photorespiration, where the amino group originates from the fixation of ammonia into glutamine [71,72].
Recently, rapid accumulation of reactive oxygen species has been proposed as the primary reason
for glufosinate toxicity [73]. Phosphinotricin (glufosinate) is the only chemistry within Group 10,
and appears to inhibit both GS1 [74] and GS2 [75]. The crystal structure of GS1 was developed from
Zea mays [76] and both GS1 and GS2 from Medicago truncatula [77].

An Asn-171-Asp substitution was identified in Lolium perenne L. spp. multiflorum from the
US [14]. This is the first report of herbicide resistance due to an altered target site within Group 10.
Dose-response revealed resistance when compared to two unrelated sensitive populations. Glutamine
synthetase activity assays identified a reduced-sensitivity target site within the resistant accession.
Sequence analysis of GS2 identified the Asn-171-Asp substitution. Inheritance and co-segregation
analysis were not conducted. Fitness costs associated with Asn-171-Asp were not characterized.

2.8. Phytoene Desaturase Inhibitors: Group 12 (F1)

Resistance to inhibitors of phytoene desaturase, termed Group 12, was last reviewed in 2014 [78].
Phytoene desaturase mediates the second step of the carotenoid biosynthesis pathway. The enzyme
catalyzes the desaturation of 15-cis-phytoene, creating two of the four double bonds required for
lycopene synthesis [79]. Phytoene desaturase is a nuclear-encoded, chloroplast-localized enzyme [80].
Herbicides in Group 12 are classified into two classes: pyridazinones and pyridinecarboxamides [57].
In addition, multiple chemistries are unclassified. Recently, the crystal structure of phytoene desaturase
alone and in complex with a representative pyridazinone was reported from Oryza sativa [79], though
no standardized amino acid numbering system appears to be established. The O. sativa sequence
AAD02489 would make an excellent reference for amino acid numbering.

As of 2014, evolved target-site resistance was attributed only to substitutions of Arg-304, to either
Ser, Cys, or His [78]. Resistance to Group 12 herbicide was only reported within five weed species,
including the aquatic weed, Hydrilla verticillata.

A Leu-498-Val, (originally numbered as Leu-526-Val) substitution was first observed in
S. orientale from Australia [81]. Dose-response revealed a resistant phenotype to a representative
pyridinecarboxamide when compared to unrelated sensitive populations. Segregation analysis
suggested that the resistant phenotype was mediated by a single, co-dominant to dominant locus.

51



Plants 2019, 8, 382

Sequence analysis identified the Leu-498-Val substitution, which is equivalent to the Leu-538 position
in O. sativa. The Leu-538 position in O. sativa corresponds to the causative mechanism of resistance to
pyridazinones in numerous species [79]. No fitness costs associated with the Leu-498-Val substitution
were observed in the F2 generation when grown in monoculture or in competition with wheat [82].

A double-substitution Glu-425-Asp + Leu-498-Val was first observed in S. orientale from
Australia [83]. Dose-response revealed a resistant phenotype to diflufenican and picolinafen, which are
both pyridinecarboxamides. The single-substitution Leu-498-Val was documented as highly resistant
to diflufenican, but not picolinafen. Sequence analysis identified the presence of the Glu-425-Asp +
Leu-498-Val double substitution. Segregation analysis suggests the observed resistance is mediated
by a single, codominant to dominant locus. No fitness costs associated with double substitution
were observed in the F2 generation when grown in monoculture or in competition with wheat [82].
Functional validation of the Glu-425-Asp remains necessary.

2.9. Protoporphyrinogen Oxidase Inhibitors: Group 14 (E)

Resistance to Group 14 was last reviewed in 2014 [78] and 2018 [84]. Protoporphyrinogen oxidase
(PPO) catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX [78]. The enzyme is
nuclear encoded with two main isoforms: PPO1, which is largely localized to the chloroplast, and
PPO2, which is largely localized to the mitochondria [84]. Inhibition of PPO results in an accumulation
of protoporphyrin IX within the cytoplasm as a result of protoporphyrinogen IX ‘leaking’ out of
organelles. Inhibitors of PPO, termed Group 14, are organized into numerous classes: diphenyl ethers,
N-phenylphthalimides, oxadiazoles, oxazolidinediones, phenylpyrazoles, pyridinediones, thiadiazoles,
triazinones, and triazolinones [57]. Several chemistries remain unclassified. The crystal structure of
PPO2 is characterized from Nicotiana tabacum in complex with a phenylpyrazole chemistry [85].

To date, all the evolved substitutions reported in peer-reviewed literature for resistance to PPO
inhibitors are in PPO2, perhaps because this isoform is dual targeted to both organelles in at least
some species [84]. Because PPO inhibitors possess target sites in both mitochondria and chloroplasts,
resistance gained at both localizations (e.g., by a single mutation in the gene encoding PPO2) may be
required for a resistant phenotype. Resistance-conferring mutations, reported as of 2018, include a
deletion of a Gly codon at postion 210, and substitutions of Arg-128 (or 98, depending on the numbering
system) to Leu, Gly, or Met. The amino acid numbering system has not been consistent. For instance,
Arg-128 describes the position reflective of the N. tabacum crystal structure, while Arg-98 describes the
position reflective of the Ambrosia artemisiifolia enzyme, in which the substitution was first identified.
We recommend that the naming convention follow the N. tabacum sequence because of the available
crystal structure.

A Gly-399-Ala substitution was first reported in A. palmeri from Arkansas, US [86]. Dose-response
revealed a resistant phenotype against a representative diphenyl ether chemistry when compared to
an unrelated sensitive population. F1 inheritance suggests that the resistant phenotype is dominant.
Sequence analysis revealed the Gly-399-Ala substitution. In silico modeling with the available crystal
structure suggests that the Gly-399-Ala substitution decreases the binding-pocket size. In vitro
PPO enzyme activity assays suggest resistance to representative diphenyl ether, pyrimidinedione,
triazolinone, N-phenylphthalimide, phenylpyrazole, thiadiazole, and oxadiazole chemistries and
pyraclonil. However, the enzyme containing the Gly-399-Ala had notably reduced enzyme activity in
the absence of inhibitors and, therefore, the concentration of the Gly-399-Ala was increased relative
to wild-type. As enzyme concentrations were not constant between the Gly-399-Ala and wild-type,
further validation in vivo is necessary.

An Arg-128-Tle substitution was first reported in Amaranthus tuberculatus in the US [87].
Substitutions at the Arg-128 position have been reported to confer resistance to diphenyl ether,
pyrimidinedione, and triazolinones [88]. Resistant plants from a population survey were identified
through delimiting rate screening. DNA of each population was bulked and the gene encoding PPO2,
termed PPX2, was amplified, barcoded, and subjected to next-generation sequencing. Single-nucleotide
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polymorphism (SNP) calling revealed the Arg-128-Ile substitution, which was supported by single
plant sequence analysis. Pseudo-in vivo enzyme assays using the BT3 hemG system suggest that the
Arg-128-Ile substitution confers resistance to a representative diphenyl ether chemistry.

3. Discussion

Prior to this review, causal variants for herbicide resistance have largely been considered to be the
result of a single nucleotide change from wild-type. With the exception of the TIPS double-substitution
in EPSP synthase of E. indica [89], which was reported in 2015, nearly all characterized herbicide
resistance mechanisms have been explained through a single modification. However, of the 19 target-site
mechanisms under review, six cases spanning four herbicide groups require more than one modification
from wild-type. The question of which substitutions at a given amino acid position can mediate a
resistant phenotype is highly pertinent for resistance management. Previously, this question has been
focused to the subset of amino acids which may result from single-nucleotide substitution, as in the case
of ALS- and PPO-inhibitors [27,87]. Perhaps in response to the increase in these ‘multiple-modification’
mechanisms, the idea of screening all amino acid substitutions may gain traction.

A primary goal driving the need to characterize herbicide resistance mechanisms is the
management of herbicide-resistant weeds. Successful management of herbicide resistance is largely
dependent on (a) to which chemistries resistance is conferred, (b) the distribution of the resistance
mechanism, and, if present, (c) the associated fitness cost.

3.1. Cross-Resistance Patterns

The exhaustive characterization of cross-resistance patterns associated with a given resistance
mechanism is a daunting challenge. For instance, there are 32 published, unique amino acid
substitutions reported to confer resistance to at least one Group 2 chemistry. Fifty-seven chemistries
within Group 2 have been reported [57], resulting in over 1800 potential unique interactions. While
not universal, the use of in vitro enzyme activity assays provides rapid and excellent support for the
characterization of herbicide resistance. Furthermore, the high-throughput nature of in vitro assays
allows for rapid screening of both multiple herbicide chemical families and multiple members of each
chemical family. Together with in silico crystal structure predictions, in vitro assays could be of great
use for the development of new herbicidal compounds within existing families. For instance, the
observation that the Ala-205-Phe mediates cross-resistance to all tested chemistries, with the exception
of florasulam, in vitro could inform the production of new active compounds.

Translational issues, from in vitro to in planta, have been reported [17]. While having a much
lower throughput, functional validation in planta is the gold standard for demonstrating resistance
and susceptibility. A uniform and replicable system for in planta functional validation is necessary to
facilitate high-throughput screening initiatives. The easily transformable model organism A. thaliana
is compatible with numerous herbicide groups [15,90]. For herbicide groups which do not provide
control of A. thaliana, such as ACCase-inhibitors, S. viridis, a model system used for the study of
millets [91], may be an excellent target. S. viridis is a grassy weed readily controlled by numerous
Group 1 herbicides [92]. In addition, transformation systems within the species are well characterized
and utilize the simple floral-dip technique [93]. While transformation of S. viridis, as mediated through
floral dip, results in a notably low yield of transformants, floral dip does not require specialized tissue
culture capabilities. Should such capabilities be available, O. sativa may be another excellent choice [94].

A key problem with the use of transformation-based strategies for the functional validation of
herbicide resistance is dosage effects. In this case, dosage effects can be thought of as the increase
in protein abundance relative to wild-type. As exemplified by the gene amplification resistance
mechanism towards glyphosate, increased expression of a sensitive target protein can result in a
resistant phenotype. Even the use of the native promoter can greatly affect herbicide efficacy, as observed
by LeClere et al. [15]. Mutagenesis of the target gene would eliminate these concerns. As a particular
variant of interest may not be present within mutagenesis collections, a targeted approach is required.
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Fortunately, targeted mutagenesis techniques, such as those mediated through CRISPR/Cas
technologies, have become increasingly popular. Through the use of flanking CRIPSR sites,
homology-directed repair could be exploited to simply introduce the desired substitutions into
the native copy of the target enzyme [95], eliminating dosage-effect concerns. Alternatively, directed
base editing through cytosine base editors, which mediate C-to-T nucleotide substitutions, or adenine
base editors, which mediate A-to-G substitutions, could avoid the relatively low frequency of
homology-directed repair [96]. Through these advances, we believe that the risks involved with in
planta functional validation have been greatly diminished and could form the basis for screening
resistance-by-chemistry interactions.

3.2. Distribution of Resistance Mechanisms

The distribution of resistance mechanisms is often quantified through routine surveillance across
broad geographies. Surveys that monitor herbicide resistance within the same geography over time
can provide insights into the effectiveness of management practices in controlling, or encouraging,
herbicide resistance. An excellent example is the weed resistance monitoring program in the Northern
Great Plains of Canada, which has been routinely conducted since the mid-1990s [97]. While numerous
examples of these resistance surveys exist throughout the literature, they are not the primary subject
of this review. However, these surveys can be utilized to identify new resistance mechanisms,
as illustrated through Nie et al.’s work for the characterization of the Arg-128-Ile, PPO2 substitution of
A. tuberculatus [87].

3.3. Fitness Cost Analysis: A Major Knowledge Gap

Fitness cost analysis has been the subject of past reviews [98,99]. A primary challenge with
fitness cost studies is how to control for the genetic background between the R and S plant. From the
perspective of this review, of the 19 resistance mechanisms characterized, 13 were compared to unrelated
sensitive populations and three to geographically proximal sensitive populations. Dose-responses were
not conducted on the remaining three resistance mechanisms. While the generation of nearly-isogenic
lines (NILs) or transgenic lines provides the greatest control of genetic background, multiple factors
prevent application. NILs are time consuming and impractical to produce in species where backcrosses
are challenging. Transgenic methods often require the use of a model system, such as A. thaliana, which
abstracts the experiment from a direct field application. Furthermore, issues related to the positional
insertion of a given transgene and dosage effects may provide confounding factors, complicating the
fitness cost analysis. Finally, the concept that a genetic background itself can compensate for the fitness
cost of resistance has support [100].

We believe that the use of transgenic methods for fitness cost analysis is undervalued. Targeted
mutagenesis techniques, as previously discussed, mitigate many of the systematic errors. Here, we
provide some thoughts on the necessity of direct, in-field measurements for fitness cost analysis.

The main goal of a fitness cost analysis is to determine fitness costs associated with a given allele.
As fitness cost analysis is resource-intensive, the fitness cost observed is often extrapolated to multiple
different species [98] and environments that are subjected to different evolutionary pressures. Therefore,
fitness cost analysis within a model system may be as appropriate as such analysis within the native
system. As previously discussed, targeted mutagenesis strategies can augment or eliminate issues
related to positional and dosage effects. Compensatory effects of the genetic background are poorly
understood at a functional level. From a theoretical perspective, Liebig’s law of the minimum [101] may
be relevant. Following Liebig’s law, fecundity is determined by the most limiting factor. Within the
context of a fitness cost analysis, a cost will only be observed when the given allele results in a greater
limitation than observed within the wild-type. Therefore, a genetic background that ‘compensates’ for
a resistance trait may be less fit in the greater environment, in the absence of selection, than a genetic
background where the fitness cost is observable. An alternative form of compensation would exist
within allopolyploids, which can mitigate a present fitness cost of a mutant allele by carrying the
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wild-type allele within a separate genome. Finally, technical issues, such as positional and dosage
effects, can be largely eliminated through targeted mutagenesis, as described previously.
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Abstract: Non-target-site resistance (NTSR) to herbicides in weeds can be conferred as a result of
the alteration of one or more physiological processes, including herbicide absorption, translocation,
sequestration, and metabolism. The mechanisms of NTSR are generally more complex to decipher
than target-site resistance (TSR) and can impart cross-resistance to herbicides with different modes
of action. Metabolism-based NTSR has been reported in many agriculturally important weeds,
although reduced translocation and sequestration of herbicides has also been found in some weeds.
This review focuses on summarizing the recent advances in our understanding of the physiological,
biochemical, and molecular basis of NTSR mechanisms found in weed species. Further, the importance
of examining the co-existence of TSR and NTSR for the same herbicide in the same weed species
and influence of environmental conditions in the altering and selection of NTSR is also discussed.
Knowledge of the prevalence of NTSR mechanisms and co-existing TSR and NTSR in weeds is
crucial for designing sustainable weed management strategies to discourage the further evolution
and selection of herbicide resistance in weeds.

Keywords: non-target-site resistance; herbicide mode of action; co-existence; environmental conditions

1. Introduction

Herbicide use is indispensable in modern agriculture as it offers exceptional tool for weed
management and also facilitates no-till crop production to conserve soil and moisture. However,
repeated field applications of herbicides with the same mechanism of action resulted in the selection
of herbicide-resistant weeds. The Weed Science Society of America (http//www.wssa.net) defines
herbicide resistance as the inherited ability of a plant to survive and reproduce following exposure
to a dose of herbicide normally lethal to the wild type. Under continuous selection pressure, i.e., the
repeated use of herbicides with the same mode of action, the resistant plants increase in frequency over
time, resulting in the domination by individuals resistant to that herbicide. In addition to the selection
pressure of herbicides, biological and genetic factors of weed species, properties of herbicides, and
agronomic practices also play an important role in the evolution and spread of herbicide resistance [1].
Biological characteristics of highly troublesome weeds, including prolific seed production, high
germination percentage, a wide window of emergence, seed dispersal, and longevity, help to maintain
a high frequency of resistant individuals in the population. Genetic factors, such as natural mutations
conferring herbicide resistance, inheritance of herbicide-resistant genes in the weed population, and
fitness cost of resistance genes in the presence or absence of the herbicide, also play an important role
in the evolution and spread of herbicide resistance [2,3].

2. Mechanisms of Herbicide Resistance

A key aspect in predicting the evolutionary trajectory of herbicide-resistance traits is understanding
the mechanism(s) of herbicide resistance. Mechanisms of herbicide resistance in weeds can be broadly
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classified into target-site resistance (TSR) and/or non-target-site resistance (NTSR). The TSR mechanisms
largely involve mutation(s) in the target site of action of an herbicide, resulting in an insensitive or less
sensitive target protein of the herbicide [1]. In such cases, the TSR is primarily determined by monogenic
traits [3]. Additionally, TSR can also evolve as a result of the over-expression or amplification of the
target gene [4]. NTSR mechanisms include reduced herbicide uptake/translocation, increased herbicide
metabolism, decreased rate of herbicide activation, and/or sequestration [5]. Metabolism-based NTSR
involves the increased activity of enzyme complexes such as esterases, cytochrome P450s (CYP450s),
glutathione S-transferases (GSTs), and/or Uridine 5’-diphospho (UDP)-glucosyl transferases [1]. NTSR,
especially if it involves herbicide detoxification by these enzymes, is usually governed by many genes
(polygenic) and may confer resistance to herbicides with completely different modes of action [3,6].
However, monogenic inheritance of NTSR has also been reported in several herbicide-resistant
weeds [7-9]. The evolution of NTSR via herbicide detoxification is a serious threat to weed management
as it can bestow resistance to multiple herbicides, leaving limited herbicide options for weed control,
as well as potential resistances to herbicides not yet commercially available [10]. Comprehensive
information on the evolution of TSR-based resistance in weeds are discussed elsewhere in this special
issue. In this review recent advances in understanding the mechanisms of NTSR to herbicides with
different modes of action are discussed.

3. Known NTSR Mechanisms in Weed Species for Different Herbicide Modes of Actions

3.1. Acetyl CoA Carboxylase (ACCase)-Inhibitors

ACCase is a crucial enzyme that catalyzes the formation of malonyl CoA via the carboxylation of
acetyl CoA while using bicarbonate as the source of carbon [11]. Malonyl CoA is needed for de novo
fatty acid biosynthesis, and thus, is essential for plant survival. ACCase-inhibitors impede malonyl
CoA formation in sensitive grass species, ultimately leading to plant death [11,12]. These herbicides
are used as important post-emergence options for managing grass weeds in dicotyledonous crops.
To date, 48 weeds have been reported to have evolved resistance to these herbicides [13] via both TSR
and NTSR mechanisms. Predominantly, TSR has been reported as the leading mechanism, caused by
amino acid substitutions in the carboxyl transferase domain of the ACCase enzyme [14,15].

Metabolic resistance to ACCase-inhibiting herbicides has been documented in Asia minor
bluegrass [16], barnyard grass [17], blackgrass [18], Italian ryegrass [19,20], Japanese foxtail [21], rigid
ryegrass [22-24], and wild oat [25]. In the majority of these cases, enhanced metabolism mediated
by CYP450s was reported. For instance, rapid degradation of diclofop-methyl was observed in rigid
ryegrass populations from Australia [22,24]. Interestingly, exposure to low doses of diclofop-methyl acid
application rapidly selected for metabolic resistance in rigid ryegrass [26]. Moreover, the metabolites
produced in these resistant plants were found to be similar to those in wheat formed via ring
hydroxylation and sugar conjugation [26]. This result suggests that in resistant grasses, the metabolism
of ACCase-inhibitors occurs through a wheat-like detoxification pathway mediated by CYP450s [25,26].
Studies involving CYP450 or GST inhibitors, such as malathion and piperonyl butoxide (PBO), have
been used to indicate the involvement of these detoxification systems. The organophosphate insecticide,
malathion can decrease the rate of metabolism and increase the metabolic half-life of herbicides by
inhibiting CYP450-based hydroxylation in corn [27,28]. Pre-treatment with CYP450 inhibitors like PBO
or malathion has been shown to reduce resistance to ACCase-inhibitors in Asia minor bluegrass [16]
and Japanese foxtail [21], indicating the role of CYP450s in enhancing metabolism in these resistant
weeds. Conversely, pre-treatment with 2,4-D, a CYP450 inducer, increased the rate of metabolism of
diclofop-methyl in susceptible rigid ryegrass populations [29]. Apart from CYP450s, involvement of
GSTs and glucosyltransferases (GTs) have also been documented to govern the metabolic resistance to
ACCase-inhibitors. Transcriptome analysis of diclofop-resistant rigid ryegrass, led to the identification
of four contigs, including two CYP450s, one GT, and one nitronate monooxygenase (NMO) as potential
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candidate genes for metabolic resistance to diclofop [24]. Similarly, researchers have reported greater
GST activity in resistant plants following ACCase-inhibitor application [16,17,30].

3.2. Acetolactate Synthase (ALS)-Inhibitors

ALS inhibitors were first commercialized in 1982, and by 1998, the number of weed species
with resistance to this group of herbicides had surpassed other herbicides [31]. These herbicides,
also referred as acetohydroxy acid synthase (AHAS) inhibitors, inhibit ALS or AHAS enzyme, which is
vital for the biosynthesis of branched-chain amino acids isoleucine, leucine, and valine [32]. In general,
these are broad-spectrum, post-emergence herbicides used for controlling weeds in a variety of crops
like wheat and soybean. However, few ALS inhibitors, such as trifloxysulfuron, are also used as
pre-emergence options to control weeds. Currently, resistance to ALS inhibitors is reported in 161 weeds
globally [13]. TSR caused by single amino acid substitutions has been reported in most of these
ALS-inhibitor-resistant weeds. Until recently, detection of these mutations have highlighted more
importance on identifying TSR mechanisms compared to NTSR, even though they can co-exist in the
same population [33,34]. However, the identification of plants lacking mutations in the ALS domain
and surviving herbicide application has led researchers to focus on elucidating the NTSR mechanisms.

Enhanced metabolism conferring resistance to ALS inhibitors has been documented in several
grass and broadleaf weeds, such as barnyard grass [35], common waterhemp [36], Palmer amaranth [37],
rice barnyard grass [38,39], rigid brome [40], short awn foxtail (Alopecurus aequalis) [41,42], and water
chickweed (Myosoton aquaticum) [33]. Numerous studies have also elucidated the molecular basis of
metabolic resistance to ALS inhibitors. Though genes involved in metabolic resistance can be different
depending on the weed species and history of herbicide application [43], most of these studies have
predominantly identified multiple CYP450 genes that are either constitutively expressed or upregulated
following ALS inhibitor application [38,41,44]. For example, the mechanism of mesosulfuron-methyl
resistance in short awn foxtail was studied and two CYP450 genes, i.e., CYP94A1 and CYP71A4, were
identified to be constitutively overexpressed in the resistant plants [41]. In a similar study, two CYP450
genes, i.e., CYP81A12 and CYP81A21, were identified as candidate genes conferring resistance to
bensulfuron-methyl and penoxsulam in rice barnyard grass [38]. Several CYP450 genes mediating
NTSR to ALS inhibitors have been identified in water chickweed [44], ryegrass [45], flixweed [46],
and blackgrass [18,47]. In addition to CYP450s, involvement of GSTs, GTs, and ATP-binding cassette
(ABC) transporters have also been reported [42,44-46]. For instance, in ALS-inhibitor-resistant
water chickweed, four genes—including three CYP450s (having homology to CYP734A1, CYP76C1,
and CYP86B1) and an ABC transporter (having homology to ABCC10)—were identified as being highly
expressed in all resistant plants [44]. Another commonly used procedure to test the CYP450 mediated
metabolic resistance to ALS inhibitors has been the increase in sensitivity upon pre-treatment with
CYP450 inhibitors, such as PBO, phorate, and malathion. Such increased sensitivity was observed in
rigid ryegrass [48], short awn foxtail [41], Palmer amaranth [37], common waterhemp [36], barnyard
grass [35], and rigid brome [40]. Malathion application also reversed 2,4-D-induced protection against
chlorsulfuron in susceptible rigid ryegrass from Australia, suggesting the involvement of CYP450s in
metabolizing chlorsulfuron [29].

3.3. Synthetic Auxinic Herbicides

Synthetic auxinic herbicides (SAH) are known to mimic the natural plant hormone, indole 3-acetic
acid (IAA) [49]. These auxin analogs are mostly used for controlling broadleaf weeds in monocot crops,
except quinclorac and quinmerac, which are known to have some grass activity [50]. Despite being
introduced as early as 1945, the evolution of resistance to SAH has been slow, and so far, 39 weeds are
reported to have developed resistance [13]. In the majority of weeds, NTSR mechanism(s) via (i) reduced
uptake, (ii) decreased translocation, and (iii) increased metabolism has been documented. The reduced
uptake of SAH is often affected by the properties of the leaf cuticle or other structural barriers that
prevent absorption of the herbicide into mesophyll after herbicide application [51]. However, reduced
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uptake is a minor mechanism and has been shown to impart resistance in fewer weeds, such as ground
ivy [51] and prickly lettuce [52]. However, reduced translocation resulting in the decreased movement
of SAH to the site of action is common. Such a reduction in translocation was reported in several
weed species, such as wild radish [53], oriental mustard [54], corn poppy [55], and prickly lettuce [52].
For instance, reduced translocation was observed in oriental mustard where approximately 77% of
2,4-D (2,4-dichlorophenoxyacetic acid) was retained in the treated leaves of resistant plants compared
to 32% in susceptible plants at 72 h after treatment (HAT) [54]. In another study, the application of
auxin efflux inhibitors 1-naphthylphthalamic (NPA) and 2,3,5-triiodobenzoic acid (TIBA) via roots
of 2,4-D-susceptible wild radish plants significantly inhibited the translocation of 2,4-D out of the
treated leaves, mimicking the 2,4-D-resistant wild radish [53]. Application of the same inhibitors did
not affect the translocation of 2,4-D in the resistant biotype, suggesting alteration of the activity of
ABC-transporters present in the plasma-membrane that usually facilitate the long-distance transport of
2,4-D [53]. MCPA (2-methyl-4-chlorophenoxyacetic acid) resistance in wild radish from Australia has
been attributed to the rapid translocation to the roots [56]. At 48 HAT, a significantly lower amount
of MCPA was recovered from resistant plants compared to susceptible plants, suggesting a possible
root exudation of MCPA out of the plants [56]. Rapid metabolism of SAH is another major NTSR
mechanism reported in several dicot weed species, where similar to the naturally tolerant monocot
species, detoxification of herbicides occurs via ring-hydroxylation followed by conjugation, mediated
by CYP450s. Such rapid detoxification of SAH has been reported in common waterhemp [36,57] and
corn poppy [58]. In 2,4-D-resistant common waterhemp, 2,4-D was found to metabolize at a much
faster rate compared to the susceptible plants, resulting in a lower metabolic half-life of 2,4-D [57].
In two 2,4-D-resistant corn poppy populations from Spain, enhanced metabolism was reported [58].
Two hydroxy metabolites were detected in the roots and shoots of the resistant plants, but not in the
susceptible plants, suggesting a possible enhanced metabolism of herbicide due to CYP450-based
hydroxylation in resistant plants [58]. Increased sensitivity of SAH-resistant biotypes was observed
when pre-treated with CYP450-inhibitor malathion followed by herbicide application [36,57,58].

3.4. Photosystem II (PS-11)-Inhibitors

PS-1I inhibitors act by competitively binding to the plastoquinone binding site (Qp) on the D1
protein in the PS-II complex of the chloroplast [59]. This blockage disrupts photosynthesis since
plastoquinone is vital for the electron transfer from PS-II to PS-I, and for generating nicotinamide
adenine dinucleotide phosphate (NADPH) and ATP. The D1 protein is encoded by chloroplastic
psbA gene, and hence, TSR to PS-II inhibitors can only be inherited maternally [60]. So far, 74 weed
species have been reported to evolve resistance to PS-1I inhibitors globally, via both TSR and NTSR
mechanisms [13]. TSR to PS-II inhibition as a result of point mutations in the Qp binding site has been
reported in several weeds, such as kochia [61] and wild radish [62].

NTSR to PS-II inhibitors have been documented in annual bluegrass [63], common ragweed [64],
common waterhemp [65,66], Palmer amaranth [67,68], and wild radish [62]. In the majority of these
cases, the metabolism of PS-II inhibitors was catalyzed by the enhanced activity of GST enzymes [69]
and/or CYP450 enzymes [70]. For example, atrazine-resistant Palmer amaranth from Kansas was
found to conjugate atrazine 24 times faster than the susceptible plants via enhanced GST-activity [67].
Similarly, the enhanced metabolism of atrazine was found in two common waterhemp populations
from Illinois [10] and Nebraska [65]. In the atrazine-resistant common waterhemp from Nebraska,
at 6 HAT, approximately 92% of the atrazine was found to be conjugated by GSTs, whereas 92%
of atrazine was still retained as a parent compound in susceptible plants [65]. Involvement of a
phi-class GST, i.e., AtuGSTF2, was identified in mediating atrazine resistance in common waterhemp
from Illinois [66]. Application of GST-inhibitors like 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD-cl)
prior to atrazine application in resistant common waterhemp has resulted in greater sensitivity to
atrazine [10]. Similarly, pre-treatment with a CYP450 inhibitor, 1-aminobenzotriazole, has shown
increased sensitivity to resistant rigid ryegrass to simazine [70]. Apart from increased metabolism,

64



Plants 2019, 8, 417

reduced absorption and translocation can also impart PS-II-inhibitor resistance. Reduced absorption,
translocation and increased metabolism of atrazine were observed in a PS-II-inhibitor (atrazine, diuron,
semicarbazone)-resistant annual bluegrass population where known mutations in the psbA gene were
lacking [63].

3.5. Enolpyruvyl Shikimate-3-Phosphate Synthase (EPSPS)-Inhibitors

Glyphosate, a non-selective, broad-spectrum herbicide, inhibits EPSPS in the shikimate pathway
by acting as a transition state analog of phosphoenolpyruvate (PEP), which is a substrate for EPSPS [71].
The shikimate pathway produces the aromatic amino acids tryptophan, tyrosine, and phenylalanine,
which are vital for plant growth and development. Additionally, glyphosate can increase carbon flow
to the shikimate pathway, resulting in a shortage of carbon for other essential pathways [72]. Currently,
there are 44 weeds reported to have evolved resistance to glyphosate [13]. Many of these resistance
cases are either by alteration in the target (EPSPS) gene [73,74] or amplification and over-expression of
the target gene [75-77].

Reduced translocation of glyphosate to meristematic sinks has been reported as the most
common NTSR mechanism [78-80]. This mechanism has been reported in Palmer amaranth [81-83],
horseweed [84], hairy fleabane [84], Italian ryegrass [85], rigid ryegrass [74,86], common waterhemp [73],
Johnsongrass [87,88], sourgrass [89], and giant ragweed [90]. Reduction in translocation has been
attributed to the evolution of a transporter that sequesters glyphosate inside the plant vacuole, thus
preventing it from reaching the chloroplast [78]. In glyphosate-resistant horseweed, more (>85%)
glyphosate was present in the vacuole of the resistant compared to only 15% in the susceptible
plants [80]. Such sequestration was irreversible at least up to several days following the glyphosate
application [80,91,92]. Similar modified sub-cellular distribution of glyphosate was found in glyphosate-
resistant Conyza bonariensis [79]. ABC transporter proteins have been proposed to sequester glyphosate
via active glyphosate transport [78,93]. Through GS-FLX 454 pyrosequencing, an increased expression
of several ABC transporter genes was found in glyphosate-resistant horseweed following glyphosate
application [94]. However, the role of a specific gene or gene family mediating glyphosate sequestration
resulting in NTSR is still unknown. The reduced uptake of glyphosate has also been shown to impart
low-level resistance to glyphosate in several weeds, such as Palmer amaranth [81,83], sourgrass [89],
and Johnsongrass [87]. An enhanced metabolism of glyphosate is another mechanism responsible for
high tolerance to glyphosate and was observed in some biotypes of sourgrass [95], horseweed [96],
and Echinochloa colona [97]. In sourgrass biotypes with a greater tolerance to glyphosate, more than
56% of glyphosate was metabolized into aminomethylphosphonic acid (AMPA), glyoxylate, and
sarcosine at 168 HAT compared to 10% in susceptible biotypes [95]. Similar, rapid metabolism
of glyphosate was observed in resistant horseweed populations where almost 100% of glyphosate
metabolized into glyoxylate, sarcosine, and AMPA within 96 HAT [96]. Through RNA-seq analysis, an
aldo-keto reductase (AKR) contig with greater expression and activity, exhibiting metabolic resistance
to glyphosate was identified in an Echinochloa colona population from Australia [97]. Further, glyphosate
metabolites, such as AMPA and glyoxalate, were also found in Escherichia coli expressing the AKR gene
(EcAKR4-1), which was similar to the resistant Echinochloa colona plants [97].

3.6. 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) and Carotenoid-Inhibitors

HPPD enzyme is required for catalyzing the conversion of 4-hydroxyphenylpyruvate (HPP)
to 2,5-dihydroxyphenylacetate (homogentisate) to produce plastoquinone and tocopherols in the
carotenoid biosynthesis pathway [98]. Plastoquinone is essential for the electron transfer from PS-II
to PS-I and also as a co-factor of phytoene desaturase (PDS), required for carotenoid formation [99].
Hence, most of these herbicides inhibit carotenoid formation, ultimately resulting in photo-oxidation
of chlorophyll molecules and lipid peroxidation of the cell membranes by forming singlet oxygen [100].
So far, NTSR to HPPD-inhibitors has been reported most often. However, TSR caused by higher HPPD
gene and protein expression has been reported in mesotrione-resistant Palmer amaranth [99].
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Enhanced metabolism was the primary NTSR mechanism reported in HPPD-inhibitors-resistant
Palmer amaranth [99,101,102], common waterhemp [10,36,103-105], and rice barnyardgrass [106].
In mesotrione-resistant Palmer amaranth, more than 90% of mesotrione was metabolized at 24 HAT [99].
Rapid 4-hydroxylation, followed by glycosylation and a higher expression of certain CYP450
enzymes, were identified in tembotrione-resistant Palmer amaranth compared to the susceptible
biotype [102]. Similarly, increased mesotrione metabolism via 4-hydroxylation of the dione ring
was reported in mesotrione-resistant common waterhemp from Nebraska [105]. Pre-treatment with
CYP450-inhibitors has been shown to increase the sensitivity of resistant common waterhemp
populations to mesotrione [10,36,103]. CYP450s belonging to sub-family CYP81A were found to
impart metabolic-resistance to clomazone in rice barnyard grass [106]. Arabidopsis lines transformed
with CYP81A12, CYP81A21, CYP81A15, and CYP81A24 showed increased resistance to clomazone,
indicating their involvement in metabolizing clomazone [106].

3.7. Protoporphyrinogen Oxidase (PPO)-Inhibitors

PPO inhibitors are important broad-spectrum herbicides that growers can use to control weeds
resistant to ALS inhibitors and glyphosate [107]. PPO inhibitors impede the PPO enzyme, which is
required for catalyzing the conversion of protoporphyrinogen IX to protoporphyrin IX in the last step
of plant heme and chlorophyll biosynthesis [108,109]. The inhibition of the PPO enzyme leads to the
accumulation of intermediates in the cytosol, which are photoactively oxidized, ultimately leading to
the production of highly reactive oxygen species (ROS). These ROS attack lipids and proteins in cell
membranes and cause lipid peroxidation, leading to plant death [110]. So far, 13 weeds have evolved
resistance to PPO inhibitors [13]. The most common mechanism of resistance reported was a single
amino acid deletion (Gly210) or substitution in the PPX2 (e.g., Arg98Leu) gene [107].

NTSR-based PPO inhibitor resistance has been reported in two pigweed species: Palmer
amaranth [111] and common waterhemp [112]. A common waterhemp population resistant to
carfentrazone-ethyl lacked the presence of known mutations previously reported to confer TSR to
PPO inhibitors but exhibited increased sensitivity to carfentrazone-methyl when pre-treated with
malathion [112]. This suggests the possible involvement of CYP450 in conferring resistance to
carfentrazone-ethyl in common waterhemp [112]. Similarly, the absence of known mutations was
reported in fomesafen-resistant Palmer amaranth [111]. The same population was further found to be
cross-resistant to flumioxazin, acifluorfen, and saflufenacil [113]. Involvement of both CYP450s and
GSTs was reported to mediate fomesafen resistance in Palmer amaranth due to increased sensitivity
when pre-treated with malathion or NBD-cl [111,113].

3.8. Photosystem I (PS-I)-Inhibitors

Paraquat is a non-selective, fast-acting herbicide that diverts electrons from PS-I, leading to the
inhibition of photosynthesis. Paraquat accepts a single electron in order to generate a reduced cation
radical, that on further reaction with oxygen, generates a superoxide ion [114]. In the presence of light,
paraquat catalyzes the production of superoxide ions, which eventually form hydroxy radicals and
result in lipid peroxidation [114,115]. Only a single NTSR mechanism, i.e., reduced translocation via
vacuolar sequestration, has been reported in horseweed [84], hairy fleabane [84], rigid ryegrass [116],
and Italian ryegrass [117]. The amount of paraquat present in the leaf protoplast of resistant and
susceptible rigid ryegrass was estimated and a 2-3-fold higher retention of herbicide was found in
leaves of resistant plants, indicating possible sequestration of the herbicide in vacuoles [116]. A similar
mechanism of paraquat resistance was reported in Italian ryegrass [117]. However, the molecular basis
of such sequestration is still unknown.
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3.9. Very Long Chain Fatty Acid (VLCFA) Synthesis-Inhibitors

VLCFA inhibiting herbicides are known to affect several steps in the elongation of the carbon
chain of very long chain fatty acids [118]. VLCFAs are required for the formation of triacylglycerols,
waxes, phospholipids, and complex sphingolipids, which are essential for various plant functions [119].
For instance, phospholipids and sphingolipids are required during cell division, as well as for
maintaining membrane trafficking pathways [119-121]. The ever-increasing occurrence of ACCase
and ALS-inhibitor resistance has led growers to rely more on VLCFA inhibitors, which are important
pre-emergence herbicides for controlling grasses.

NTSR mechanisms to very long chain fatty acid (VLCFA) inhibitors have been studied in
ryegrass populations from Australia [122], U.K., and France [123], as well as Palmer amaranth from
Arkansas [124]. Metabolic resistance to pyroxasulfone was reported in a rigid ryegrass population
from Australia, where approximately 88% of parental applied herbicides was metabolized within
24 HAT [122]. Pyroxasulfone metabolites were formed via glutathione conjugation and two putative GST
genes were 2—-6-fold constitutively overexpressed in resistant ryegrass populations [122]. Interestingly,
continuous sub-optimal application of pyroxasulfone can rapidly select for resistant biotypes of rigid
ryegrass [125]. Application of herbicides at sub-optimal doses can favor the selection of several minor
resistance alleles and facilitate their accumulation in cross-pollinating weeds like rigid ryegrass, leading
to rapid evolution of polygenic NTSR [126,127]. Moreover, such selection can promote the evolution of
cross-resistance to other VLCFA inhibitors like prosulfocarb and triallate [128]. In flufenacet-resistant
ryegrass populations from the U.K. and France, enhanced metabolism due to conjugation by GSTs was
reported [123]. Similarly, enhanced metabolism of flufenacet was observed in resistant blackgrass [129].
Recently, resistance to s-metolachlor was documented in Palmer amaranth from Arkansas. A reduction
in root growth was observed when the resistant accessions were kept for germination in agar solution
containing a GST-inhibitor, NBD-cl, indicating the role of GSTs in mediating the resistance [124].

4. Influence of Environmental Factors on NTSR Mechanisms

NTSR mechanisms can be affected by changes in environmental conditions [130,131]. Factors
like the mode of action of herbicides and the physiology of weed species can contribute significantly
in the alteration of NTSR under different environmental conditions. Both herbicide-resistant and
susceptible biotypes have shown increased and decreased tolerance to herbicides under different
environmental conditions. NTSR mechanisms are suspected to develop gradually in response to
biotic and abiotic stresses, which enable them to adapt to the growing conditions [132]. Changing
environmental conditions can seriously affect herbicide efficacy and favor the selection of more tolerant
biotypes. Hence, information on how NTSR mechanisms behave in different weed species in varying
environmental conditions can be very crucial to mitigate such selection. The effect of environmental
conditions, such as temperature, CO, concentration, and relative humidity, on NTSR mechanisms has
been studied in several weed species. Altered temperature regimes were shown to impact herbicide
absorption [133-136], translocation and sequestration [133,134,136-141], and metabolism [30,139,142].
For example, exposure to high temperature was found to reduce pinoxaden sensitivity of grass
species, such as Brachypodium hybridum [142]. A higher level of inactive glucose-conjugated pinoxaden
metabolites in these grasses was observed under high- versus low-temperature conditions [142]. Such
increased detoxification of pinoxaden in Brachypodium hybridum was associated with a possible increased
enzymatic activity of reactive oxygen species scavengers [30]. In another study, the suppression
of vacuolar sequestration of glyphosate at low temperature was found to result in the increased
sensitivity of glyphosate-resistant horseweed [137]. Recently, poor control of kochia due to the reduced
absorption of glyphosate and translocation of dicamba at high temperature was reported [133].
Decreased efficacy of mesotrione in controlling Palmer amaranth due to rapid metabolism at high
temperature was documented [139]. Conversely, improved 2,4-D efficacy at high temperature due
to increased translocation was found in both glyphosate-resistant and -susceptible common and
giant ragweed [134]. Additionally, increased absorption of glyphosate in common ragweed, and
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increased absorption and translocation of glyphosate in giant ragweed, improved glyphosate efficacy
at high temperature [134]. Apart from temperature, changes in CO, concentrations can affect herbicide
translocation and sequestration in weeds [140,143]. In horseweed and lambsquarter, an increase
in glyphosate translocation was found at elevated CO, levels and increased temperature, leading
to a reduced glyphosate sensitivity [140]. Similarly, in Echinochloa colona, high CO, and increased
temperature reduced the efficacy of cyhalofop-butyl by decreasing translocation [143]. Altering relative
humidity (RH) can also affect herbicide translocation in pigweeds [144]. For instance, in Palmer
amaranth, redroot pigweed, and common waterhemp, a higher translocation of glufosinate was found
at high, compared to low, RH [144]. These findings indicate the need to further elucidate and evaluate
the impact of environmental conditions on the sensitivity of weeds to herbicides to slow evolution of
herbicide resistance.

5. Coexistence of TSR and NTSR Mechanisms

Numerous cases of TSR have been reported as a result of single nucleotide polymorphisms
resulting in amino acid substitutions in the target sites of several herbicides, such as PS-I, ALS, and
ACCase inhibitors, and glyphosate. Novel mechanisms of TSR in weeds, such as the deletion of codons,
leading to PPO-inhibitor resistance in common waterhemp and Palmer amaranth [107,145], as well as
gene amplification-based resistance to glyphosate [75,77] and ACCase inhibitors [146], were reported.
These findings will help in identifying the precise genetic elements involved in the evolution of TSR
in resistant weeds. Similarly, recent advances have also helped to understand the physiological and
molecular basis of NTSR in weed species. Interestingly, several cases of coexistence of these mechanisms
have been reported. For instance, ALS-inhibitor-resistant water chickweed [33] and barnyard
grass [147], ACCase-inhibitor-resistant Vulpia bromoides [148], Italian ryegrass [19], short awn foxtail [41],
PS-II inhibitor-resistant wild radish [62], EPSPS-inhibitor-resistant rigid ryegrass [74], common
waterhemp [73], HPPD-inhibitor-resistant Palmer amaranth [99], and microtubule inhibitor-resistant
rigid ryegrass [34] have been identified with TSR and NTSR mechanisms in the same populations.
Therefore, if TSR mechanisms are found to contribute to herbicide resistance, it is also necessary to
investigate the NTSR mechanisms and vice versa. Although deciphering both types of resistances in the
same weed species can be challenging, understanding the coexistence of TSR and NTSR mechanisms
for the same herbicide is valuable for predicting possible cross-resistance to other herbicides, thereby
assisting in management of resistance.

6. Conclusions and Prospects

Weed management practices can impact the mechanisms by which weeds evolve resistance to
herbicides. Additionally, a key aspect in predicting the evolutionary trajectory of herbicide-resistant
traits is understanding the mechanism(s) of herbicide resistance. More importantly, understanding the
relationship between the weed management tactics and their influence on evolutionary mechanisms
(TSR or NTSR) that determine herbicide resistance in weed species will help to formulate effective
future strategies to manage these increasingly problematic weeds. It has been proposed that a lower
rate of herbicides result in the evolution of polygenic traits, whereas high herbicide doses may favor
monogenic target-site-based resistances [127]. Likewise, Gressel [149] proposed that suboptimal
herbicide use rates can result in the evolution of polygenic herbicide resistance. Understanding the type
of selection pressure leading to the evolution of NTSR mechanisms, especially metabolic resistance,
is extremely valuable and needed to sustain the limited herbicide portfolio and develop integrated
weed management strategies.
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Abstract: Genomic approaches are opening avenues for understanding all aspects of biological life,
especially as they begin to be applied to multiple individuals and populations. However, these
approaches typically depend on the availability of a sequenced genome for the species of interest.
While the number of genomes being sequenced is exploding, one group that has lagged behind are
weeds. Although the power of genomic approaches for weed science has been recognized, what
is needed to implement these approaches is unfamiliar to many weed scientists. In this review we
attempt to address this problem by providing a primer on genome sequencing and provide examples
of how genomics can help answer key questions in weed science such as: (1) Where do agricultural
weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we
alter weed populations to make them easier to control? This review is intended as an introduction
to orient weed scientists who are thinking about initiating genome sequencing projects to better
understand weed populations, to highlight recent publications that illustrate the potential for these
methods, and to provide direction to key tools and literature that will facilitate the development and
execution of weed genomic projects.

Keywords: weeds; genomics; plant genome assembly; non-target site resistance; population genomics;
genome scans; population genetics

1. Introduction

Biology is currently in the midst of a revolution caused by the advances in sequencing technology
that allow us to examine genomes in detail [1]. Genomic information promises new insights for
understanding the biology, evolutionary history, and adaptive potential in ways that were recently
out of reach for laboratories studying organisms with genomes larger than model organisms (e.g.,
Arabidopsis thaliana (L.) Heyn. 135 Mb) [2-5]. Additionally, genomics at the population or species level
are now possible in some species and will likely become practical for the majority of organisms in the
near term. The huge potential of these advances has been exploited by some disciplines, such as those
investigating bacteria [6,7], viruses [8,9] or humans [10-13], with greater alacrity than others. Notably,
however, progress adopting genomic methods has been slow in weed science despite recognition of
the power of these methods [14,15].

There are numerous impediments to a greater use of genomics in weed science. One of these
elements is the lack of chromosome level reference genome sequences for weeds, as the majority
of sequencing efforts have been focused on crops. Genome sequences are foundational for many
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approaches and the relatively early availability of the human genome sequence [16], model organisms
such as Arabidopsis [17] and many crop species [18] have been essential to the rapid progress in
applying genomic approaches to a wide range of disciplines. This issue has been noted by the
weed science community and efforts such as the International Weed Science Consortium have been
initiated [14]. However, an additional impediment to using these rapidly developing and expanding
set of techniques is a lack of familiarity among weed scientists. As a result, our aim here is to provide
a brief primer and introductory “how to guide” and “why would you guide” relevant to weed science.
We briefly review de novo genome assembly and annotation as these methods are often fundamental for
further work. Then we focus on how genomic approaches can be used to answer three key questions:
1) Where do agricultural weeds come from and why are they weedy; 2) what genes underlie herbicide
resistance (HR); and, more speculatively, 3) can we alter weed populations to become easier to control?
We highlight what resources would be needed for success and provide illustrative examples from both
weed science and the broader scientific literature.

2. Developing Weed Genome Sequences as a Fundamental Tool

While some genomic approaches do not require a draft genome for the species of interest, the
majority of techniques do, or benefit from the availability of at least a rough draft. Sequencing plant
genomes is easier than ever before with the decreasing cost of sequencing and the increasing ease with
which tools such as genome assembly programs can be installed and used. However, genome assembly
remains a challenge that will require a significant investment of time and resources for the majority of
weed species [19]. Here we provide a brief outline of how to approach a de novo genome sequencing
project and provide an initial introduction to the steps required and some tools that could be used as
a starting point. We do not attempt to provide a comprehensive list of resources or tools and in every
case, there are often numerous alternatives that may be better suited to a particular weed species or
easier to install in a specific computing environment. Further, new tools are continuously emerging
(and older ones submerging) in this quickly evolving area. Various databases of these tools have been
compiled such as omictools.com and bioinformaticssoftwareandtools.co.in. Valuably, a recent review
by Jung et al. [20] is comprehensive with recommendations on the computational resources needed to
complete these assemblies.

2.1. What Is a Draft Genome?

A draft genome of a plant species is a haploid representation of a portion of the total DNA and
genes. As such, it is a simplified and limited representation of the total information contained in
the genome of the individual sequenced. It will lack information on allelic variation and portions of
the genome, especially repetitive elements and material near the centromeres [21]. A draft genome
is comprised of a group, often a large group (Table 1), of contigs that vary in size and represent the
portions of the genome assembled from overlapping and joining the smaller pieces provided by the
sequencing reads and is often presented in a multi-fasta file. These contigs can be assembled into larger
fragments, scaffolds. Finally, scaffolds can be assembled, ordered, and oriented into pseudomolecules.
At the larger end, pseudomolecules may represent chromosomes, chromosome arms or smaller features
such as the chloroplast’s genome. In general, the fewer number of contigs an assembly has the better
the assembly is considered. A metric used to compare continuity amongst genomes is the NG50
value. If one ordered all the contigs in an assembly from largest to smallest and added the length of
each contig as you went down the list, the NG50 value would be the size of the contig when 50% of
the species’ expected genome size was reached [22]. The N50 value is similar and more frequently
reported, but as the assembly size is used instead of the expected genome size, it can’t be used to
compare different assemblies even within species [22]. Drafts comprised of thousands of contigs can
be sufficient for many purposes, including understanding evolutionary relationships among species,
acting as a reference for studies of population biology, and for developing molecular identification
tools. To understand fine-scale patterns of selection, however, a chromosomal level assembly is more
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desirable, allowing for the most detailed analysis and inferences that draw on correlated shifts in allele
frequencies. In cases where a closely related species has been assembled to the chromosome level
and chromosome number is conserved, this may, by assuming synteny (preserved order), be used to
position scaffolds into pseudomolecules representing a first guess of what the genome may look like.
However, this level of information has rarely been achieved for non-model, non-crop organisms.

2.2. Preparing and Assessing Plant Material

Important initial steps to help ensure the success of a project are assessment of the plant material
to understand the species’ genome size and composition and carefully considering the starting material
including finding lower ploidy individuals or reducing heterozygosity through inbreeding or other
genetic manipulations such as creating a doubled haploid.

It is preferable to know the size of the genome before the start of a sequencing project. Several
databases have compiled information on the genome size and chromosome counts for plant species
(see Rice et al. 2015 for a list of resources). A particularly useful resource for genome size information is
the Plant DNA C-value Database (cvalues.science.kew.org) hosted by Kew Royal Botanic Gardens [23].
Similarly, chromosome counts are available from the Index to Plant Chromosome Numbers www.
tropicos.org/project/ipcn hosted by the Missouri Botanical Garden and the Chromosome Counts
Database ccdb.tau.ac.il [24].

In the absence of information from these sources, or in cases where multiple chromosome counts
or DNA contents have been reported, analysis by flow cytometry can determine the DNA content of
the material of interest [25-28]. This is relatively inexpensive and straight forward if you have access
to a flow cytometer and can take as little as a week for an experienced laboratory. Fresh tissue is
co-chopped in a buffer with the tissue of a species with known DNA content (internal standard), nuclei
are stained with a fluorophore such as propidium iodide, and peaks in fluorescence are produced as
a result of excitation by the flow cytometer’s laser. Then the position of the sample’s peak and the
known standard are determined by analysis of the resulting histogram with appropriate software
(e.g., [29]). The DNA content of the samples is then determined using these relative positions and the
DNA content of the standard. Generally, at least three individuals should be tested and each analyzed
with three technical replicates across three days. This provides the full 2C DNA content of the plant’s
nuclei in picograms. The 1C DNA content can then be calculated by dividing this value in half and
convert to Mbp by multiplying by 978 Mbp/pg [30]. Difficulties with DNA content determination with
flow cytometry typically centre around finding an extraction buffer that allows for the production of
narrow peaks and low debris levels (coefficient of variation < 5), including enough nuclei in the sample
peak (>1000), finding an appropriate standard, and understanding the data when it is complicated
by extra peaks from contamination or endopolyploidy [31,32]. Methods using an external standard
should not be used as they are less accurate. This information can be compared to DNA content and
chromosome counts for species in the same genus to make educated guesses about the chromosome
count for the material of interest, but a conclusive determination of chromosome number requires either
the counting of chromosome spreads or the use of more advanced chromosome sorting techniques [33].
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Producing chromosome spreads is generally more accessible than chromosome sorting, but
requires a significant amount of time, especially if the species’ chromosomes are small or numerous.
A pair of highly helpful videos on the technique, produced by the Beck Laboratory are available
as an introduction (www.youtube.com/watch?v=iXqni6eknH5A &t and www.youtube.com/watch?v=
xVV4qBfSQLs&t) [71,72]. Several methods that inhibit spindle formation and increase the accumulation
of metaphase cells can be used to facilitate chromosome counts. These include pre-treating material
with pressurized nitrous oxide (NO;), incubation in ice cold water, or exposing the cells to chemical
inhibitors such as 8-hydroxyquinoline or colchicine [73]. For example, for a mitotic preparation, NO,
pressurized to 8-10 atm (160 psi) can be applied for several hours to 1 cm long root tips in water using
a specially constructed air sealed, iron pressure chamber with the regulator and hoses of the correct
composition needed to attach and deliver NO, [74]. The water is then removed and replaced with fresh
Carnoy’s fixative for storage at 4 °C. Samples are then washed twice with distilled water and 1x citric
buffer respectively. This buffer is replaced with enough 0.3% pectolytic enzyme solution [75] to ensure
the material is fully submerged and incubated at 37 °C for 60 min. Digested root tips should form into
a cell suspension when they are tapped with dissecting needles on a slide. If clumps form, or cells
do not separate, incubation in the enzyme solution should be increased. Once cell suspension has
been created, a drop of orcein stain [73] can be added [73], the drop carefully spread, and a coverslip
placed on top. Then the slide is heated and squashed between filter paper using thumb pressure,
ensuring no slippage. The slide can then be examined with a phase-contrast microscope for the
quality of chromosome spread and count. If cytoplasm covers the nuclei then pepsin treatment may
be effective [75]. Obtaining a good spread that will allow for certainty in chromosome number will
generally take patience and practice.

Analternative to flow cytometry for determining genome size is to complete a k-mer plot of llumina
short read data (Illumina, San Diego, California, USA) [3] using a tool such as KmerGenie (kmergenie.
bx.psu.edu) [76] or Jellyfish (www.cbcb.umd.edu/software/jellyfish), however it is preferable to have
an estimate independent of the reference read data itself [77] (Figure 1). Following data generation
with Jellyfish a script can be written in R to visualize the data or the data can be easily visualized
using the website GenomeScope (qb.cshl.edu/genomescope). This data can also provide an indication
of heterozygosity and can be used to determine the amount of the genome comprised of repetitive
elements using tools such as RepeatExplorer (repeatexplorer.org) [78,79].
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Figure 1. Plot of k-mer frequency by length produced for Camelina neglecta ] Brock, Mandakov4d, Lysak
& Al-Shehbaz produced using Jellyfish and visualized using R. The position of the peak at a k-mer
length of 22 is used to calculate genome size based on the area under the curve as represented by the
light blue region. Here the genome size estimated is 248 Mb, while flow cytometry estimates indicate
a genome size of 264 (+9) Mbp [80].

While the addition of long-read technology is making the assembly of highly heterozygous and
repeat-rich genomes more feasible, genome assembly can be simplified by reducing heterozygosity
and repetitive elements. In species that are self-compatible, repeated self-pollination can do both and
result in a less redundant and more contiguous assembly [81]. In outcrossing or dioecious species or
species with strong inbreeding depression reducing variation can be more difficult, requiring strategies
such as repeated full sibling mating. Doubled haploids, generally produced via tissue culture of either
male or female gametophytes, can solve this problem by completely eliminating heterozygosity, but
are also a significant challenge and investment of time [82-84].

For genome sequencing, the 1C DNA content is perhaps the most important piece of information
for designing the sequencing strategy, determining the quantity of sequencing required, and providing
hints as to the species’ degree of polyploidization or genome size inflation resulting from repetitive
element proliferation.

Additional challenges await groups that wish to assemble genomes which have undergone recent
or ancient polyploidization, which are notoriously more difficult to assemble, though long reads
are making these genomes increasingly tractable. Many successfully sequenced crops fall in this
category and specific strategies have been developed to assemble these genomes (reviewed by [85]).
However, when a weed species is variable for ploidy the most feasible approach would be to select
an individual with the lowest ploidy available for sequencing. However, the conclusions about the
species’ population genetics that are drawn from this genome would only be applicable to populations
with this cytotype. In any case, a vouchered record of the material used for DNA extraction should
be created and submitted to an herbarium to provide documentation of the species that has been
sequenced [86].
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2.3. DNA Extraction

Extraction of DNA of sufficient quality and quantity can be a surprisingly difficult hurdle.
Technologies such as Pacific Biosciences’ (PacBio) single molecule real-time (SMRT) sequencing (Pacific
Biosciences, Menlo Park, California, USA) and Oxford Nanopore Technologies” sequencing systems
(Oxford Nanopore Technologies, Oxford, UK) require high molecular weight (HMW) DNA at a high
concentration (e.g., 10 ugs with an average size of 30-50 kbp for PacBio) [87]. This genomic HMW DNA
needs to have little evidence of shearing, be free of contamination from protein, RNA, or polysaccharides
and a 260/280 nm absorbance ratio of approximately 1.8-2.0. This is not always simple to achieve and
time may need to be devoted to optimizing the DNA extraction protocol.

We have observed that the method of grinding the plant tissue appears to be the most critical step
in obtaining HMW DNA with little shearing (Martin, unpublished). While many protocols suggest
using bead mills with either ceramic, metal beads and/or sand, using the least time and speed reduces
shearing. We have found that grinding tissue in 2 mL tubes with plastic pestles on dry ice, using
wide bore tips, minimizing vortexing and pipetting will limit shearing and help ensure recovery of
HMW DNA. Commercial kits are convenient and remove contaminants, but often an insufficient
amount of DNA is obtained from a single extraction. However, multiple extractions can be pooled and
concentrated to obtain the HMW at a sufficient concentration.

When sufficient tissue is available, many genome sequencing projects (e.g., [44,54,88,89]) have
found success with variations on the traditional hexadecyltrimethylammonium bromide (CTAB)
based method, described by Doyle and Doyle [90]. These methods often use a large quantity (g)
of plant tissue ground in liquid nitrogen with a mortar and pestle. Many modifications of this
original protocol are available, including Healy et al.’s [91] protocol for plants with large amounts of
phenolics and polysaccharides. These compounds can inhibit downstream library preparations and are
particularly important to eliminate. If required, further purification can be done with additional ethanol
precipitations or magnetic beads (Agilent, Santa Clara, California, USA). For example, a strategy to
prepare fragments for sequencing is to shear the DNA into large fragments of 20 kb in size using
g-TUBES (Covaris, Woburn, MA, USA) and then selecting fragments of appropriate size with an
apparatus such as the Blue Pippin (Sage Science, Beverly, MA, USA). In addition, some laboratories
have found specially designed tips, such as Qiagen Genomic Tips (Qiagen, Hilden, Germany) to be
helpful during preparation of the samples. Other technologies such as the Short Read Eliminator Kit
(Circulomics, Baltimore, MD, USA) can be used to optimize sequencing by removing shorter fragments.
Following extraction, DNA integrity and concentration need to be assessed. A variety of tools exist
to complete these steps including the Tapestation or Bioanalyzer system (Agilent Genomics) [87].
However, it has been noted that DNA quantities should be measured on a Qubit Fluorometer (Thermo
Fisher Scientific, Waltham, Massachusetts, USA) or similar as Nanodrop (Thermo Fisher Scientific) can
overestimate quantity [87].

2.4. Sequencing Strategies

Assembling a genome using large pieces is much easier than using small pieces. Therefore,
the majority of sequencing projects now combine long read (e.g., PacBio or ONT) and short read
data. Long reads, which generally average 10 kb or more in length, make assembling plant genomes
comparatively easier and general result in a more contiguous assembly. Genome assembly is sensitive
to repeated sequences and these can only be resolved if the sequencing technology spans the regions.
However, the error rate for long reads maybe as high as 15% and therefore require greater depth (30x
per haploid genome, see below) to allow a consensus to be called from the data [20]. While short
read Illumina data is unable to resolve long repeats, it has higher accuracy and can be used to correct
long read data [4] either before or after assembly to improve the accuracy or completeness of the
genome [20].

The recommended coverage for genome assembly varies from 40X to 60x at a minimum.
For example, Li and Harkness [3] suggest 40-50x and Del Angel et al. [4] and Jung et al. [20] suggest
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a minimum of 60x for small, inbred, diploid genomes. Coverage is generally estimated based on the
Lander-Waterman equation [92] as read length multiplied by read number divided by the haploid
genome size for the species. Perhaps more simply for project planning, the amount of sequencing
data needed for a project can be calculated by multiplying the estimated size of the plant’s haploid
genome by the coverage needed. However, it is important to note that coverage will be reduced by
quality control and filtering steps compared to the raw coverage. Additionally, the coverage will not
be uniform across the nuclear genome. For example, up to 20% of the raw data may be DNA from the
chloroplast resulting in relatively deep coverage of the relatively small chloroplast genome, but less
coverage of the nuclear genome [93]. After generating sequence data, there are generally five, often
iterative, steps before the “final” genome is ready for downstream analysis: 1) Data assessment and
filtering, 2) assembly (often by multiple assemblers), 3) error correction and polishing, 4) scaffolding
and/or the placement of scaffolds on chromosome sized pseudomolecules, and 5) annotation.

2.5. Data Assessment, Correction and Filtering

Before starting with the assembly process, it is advisable to assess the quality of the sequencing
data and filter the reads based on this quality. However, some assemblers integrate quality filtering
and correction as early steps in their assembly process and additional steps with alternative software
may or may not improve the final assembly. Read length can also be a consideration as, for example,
some long read assemblers will refuse to work if reads shorter than 500 bp are included in the input
data. The software FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/) provides a summary
of quality parameters that is very helpful to assess the quality of short or long read data: Average per
base quality, per tile quality, per sequence quality, per base content, per sequence GC content, per
base N content, sequence length distribution, sequence duplication level, overrepresented sequences,
adapter content and k-mer content. Overall quality of long read data can be also assessed with
tools such as Nanoplot (github.com/wdecoster/NanoPlot) [94]. Correction of long read data with
short reads can be done prior to assembly with tools such as LoORDEC (www.atgc-montpellier.fr/
lordec) [95]. Filtering can be done with a variety of tools available online such as Trimmomatic
(www.usadellab.org/cms/?page=trimmomatic) [96]. This type of software will generally remove
reads or regions in the reads that are below a certain quality threshold as well as sequencing
adapters or the “bar codes” of specific sequences that allow for identification of particular reads
following multiplexing. Many custom scripts for filtering raw data can be found online (e.g.,
filter_fastq.py github.com/nanoporetech/fastq-filter/blob/master/filter_fastq.py). Users will want to
apply the principle of caveat emptor when using these scripts, but they can provide invaluable tools.

2.6. Assembly and Assessment

Genome assemblers typically use either short or long read data as input. Short read assemblers
have a longer history and many are designed with smaller bacterial or viral genomes in mind.
However, because of their longer history, several of the programs that can handle larger genomes
have also had extensive work to reduce the amount of computational resources they need such
as ABySS 2.0 (www.bcgsc.ca/platform/bioinfo/software/abyss/releases/2.0.0) [97] and SOAPdenovo2
(github.com/aquaskyline/SOAPdenovo2) [98]. In our experience, two genome assemblers that use long
read data that are relatively easy to install and use with strong documentation and community support
are CANU (canu.readthedocs.io/en/latest) [99] and FALCON (pb-falcon.readthedocs.io/en/latest) [100].
CANU, in particular, appears to be a common choice (Table 1), perhaps because of the clarity
of its documentation and recommendations on which parameters (e.g., correctedErrorRate and
minOverlapLength) are the most likely to improve the outcome of the assembly. This type of guidance
is very helpful as the key parameters for tuning software to a particular species are not always
apparent, resulting in an overwhelming number of parameters that could be adjusted. However,
when in doubt and lacking documentation, this information can also be gleaned from other users’
experience documented in discussion groups for the particular tool. Hybrid assemblers, that use
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both short and long read data, such as SPAdes (github.com/ablab/spades) [101], and Platanus-allee
(platanus.bio.titech.ac.jp/platanus2 the recent replacement of Plantanus) [102] are available and
assembly strategies that merge the results of multiple assemblers have also been used (e.g., [89]).

Once an assembler has completed a draft assembly of the genome, the challenge is determining
how “good” the assembly is [19]. The definition of good can depend on the eventual use of the genome
and includes parameters such as how contiguous (how many pieces is the genome in) the assembly
is, how much of the genome was assembled and whether the assembly contains the expected genes.
Often the first tool applied following genome assembly is QUAST (quast.sourceforge.net/quast), which
provides a quick summary of the genome including the number of contigs, the total length of the
genome as assembled, the N50, and, if the expected genome size is included the NG50 values. This
gives an indication of contiguousness and the size of the assembly. BUSCO (busco.ezlab.org) [103,104]
is frequently used as a quantitative measure of the completeness of a genome as it indicates whether
the shared single copy genes expected in the genome are present—that is how much of the gene space
has been captured and assembled. BUSCO indicates how many and which of these are complete
and single copy, complete and duplicated, missing or fragmented (Table 1). Finally, BlobTools
(blobtools.readme.io/docs) [101] can be used to determine if the assembled sequences are DNA from the
expected organism or from contaminating organisms through taxonomic partitioning of the genome.
This tool requires the draft genome sequence, a hit file created by BLASTn (blast.ncbi.nlm.nih.gov/
Blast.cgi) [105] using the MegaBLAST option [106], a depth file created with a tool such as BWA-MEM
(bio-bwa.sourceforge.net) [107], and the raw data used to assemble the genome sequence. After
processing this information BlobTools creates a visual indication of which organisms are most closely
related to the draft genome (Figure 2). If there is substantial contamination, this information to further
filter the raw data for reassembly without the contaminating sequences.

2.7. Polishing

Polishing a genome can lead to significant improvements in the completeness of the genome
as assessed by BUSCO and some tools will use short read data to call a consensus SNP, correct
indels (insertions and deletions that are common in log read data) and misassembled contigs. Pilon
(github.com/broadinstitute/pilon) [108] uses the assembled genome and one or more files containing
the alignment of sequencing reads such as mate pairs, paired ends or unpaired sequences to the
draft assembly. The program’s output includes the files needed for visualizing the changes to the
genome using tools such as the Integrative Genomics Viewer (IGV software.broadinstitute.org/software/
igv/) [109] and can generate information on the variation with genome sequence. PacBio has developed
the tool GenomicConsensus (github.com/PacificBiosciences/GenomicConsensus), which uses mapped
PacBio reads to generate a consensus, while Nanopolish (nanopolish.readthedocs.io/en/latest/index.
html) has been developed for use with ONT data. In comparison, RACON (github.com/isovic/racon)
can be used with either short read or long read data [110].

2.8. Scaffolding

Traditionally, the ordering and orientation of contigs into scaffolds has often relied on the labor
intensive and expensive use of fluorescent in situ hybridization of bacterial artificial chromosomes
(BACs) and segregating F2 populations that allow for mapping the position of the sequences. More
recent methods: Chromosome conformation capture techniques (Hi-C), optical mapping techniques
(Bionano) and 10x Genomics Chromium™ Systems can produce data that can be generated and applied
to verify the assembly and generate scaffolds with less time and effort [3]. Chromosome conformation
capture (3-C) has been a commonly used technique in molecular biology to map chromosomal
interactions. It uses a process where genomic DNA is first digested and then ligated in conditions
that preserve the 3D organization of the genome to allow the joining of distant sequences that find
themselves to be in proximity. Using deep sequencing, the high throughput version of the technique
(Hi-C) produces a genome-wide map of proximity contacts between all the different loci. Since the
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frequency of occurrence of such contacts is based on proximity, with intrachromosome contacts most
common and the probability of contacts decreasing with distance, the technique can readily be used
for scaffolding contigs [111]. If the analysis of this proximity data is not completed by the provider
using proprietary software, once the paired end data has been mapped to assembled contigs, software
such as SALSA (github.com/machinegun/SALSA) [112] can use the information to break misassembled
contigs and scaffold the genome. FALCON-Phase (github.com/PacificBiosciences/pb-assembly) has
also integrated the use of Hi-C data into the FALCON assembly pipeline through a collaboration
between PacBio and Phase Genomics (www.phasegenomics.com) [113]. Phase Genomics is a USA
based company that can provide kits for HI-C library preparation and bioinformatics support in the use
of this data scaffolding of a de novo genome with their proprietary software Proximo. Additionally, they
provide helpful advice on how to work with Hi-C data generated by their protocols (phasegenomics.
github.i0/2019/09/19/hic-alignment-and-qc.html). Recently, chromosome level assemblies of black
raspberry (Rubus occidentalis L.) [114], an ornamental amaranth used by ancient civilizations in South
and Central America as a grain crop (Amaranthus hypochondriacus L.) [115], and broomcorn millet
(Panicum miliaceum L.) [59], genomes have been completed using Hi-C data and PacBio data.

Bionano Genomics (San Diego, CA, USA, bionanogenomics.com) contributes to scaffolding by
optically mapping specific sequences distributed across the genome. Briefly, high molecular weight
DNA is extracted, up to chromosome arm lengths, and labeled at specific sequence motifs for imaging
and identification. The DNA molecule is then linearized onto a flowcell where a gradient of micro-
and nano-structures gently unwinds and guides DNA into NanoChannels where it is imaged by
a high resolution camera. The DNA fragments with similar motif-specific label patterns are assembled
together to recreate a whole genome map assembly. This data can be used in a hybrid assembly to
scaffold contigs obtained through sequencing of the genome. It can be used to identify regions that are
incorrectly assembled or where structural variants can be found. This approach was recently used in
the improvement of wheat’s hexaploid genome assembly [116] and the large Sorghum genome [117].

An alternative approach is used by 10x Genomics Chromium™ System (www.10xgenomics.com).
DNA molecules are divided into small sets and provided with an identifying barcode before being
sequenced. This provides linked reads that are unlikely to represent the same region from homologous
chromosomes. This technique is particularly useful in genomes that are highly heterozygous and/or
polyploid because it allows the genome information to be phased, that is the two haplotypes can
be distinguished, and it can prevent the collapse of sequence from homologous chromosomes in
polyploids. This technique was recently used in the sequencing of the octaploid strawberry genome
(Fragaria X ananassa) [118].

An additional option when a related species with a chromosome-level genome sequence is
available, is that this information can be used to create reference based assembly with chromosome-level
resolution. However, this method would bias the assembly to more closely resemble that of the relative
and will, for example, lack chromosome scale rearrangements. One option for pursuing this route,
MeDuSa [119] (github.com/combogenomics/medusa/releases), can use one or more closely related
genomes for generating a chromosome-level draft.
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Figure 2. Blobplot generated for Conzya canadensis (Asteraceae) draft genome assembly showing the
genera with the closest similarity to the sequenced genome (Laforest, Martin, and Page unpublished
data). The first panel (A) indicates the percentage of reads that were mapped and the second panel (B)
shows the taxonomic break down of hits at the taxonomic level requested. In this case the majority of
hits are from other genera from the Asteraceae. The program generates a text file with more detailed
information. The three part third panel (C) shows histograms for the proportion of G and C bases in the
sequence which typically varies among species (top) and coverage (right) weighted by the cumulative
length of sequences in each bin. The main panel has circles colored by taxonomic affiliation positioned
on the x-axis by the GC proportion and on the y-axis by coverage within the raw data which gives
a sense of the relative concentration of the sequences in the DNA sample.
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2.9. Gene Prediction and Annotation

Once a genome sequence of adequate quality has been produced, genes and other genetic
elements such as transposons need to be identified. Gene prediction software such as AUGUSTUS
(bioinf.uni-greifswald.de/augustus) [120,121] can be used to locate potential coding sequences along
the genome sequence. This software has been improved over the years, starting from entirely
ab initio gene prediction to include evidence-based discovery using expressed sequence tag (EST)
sequences, RNASeq data (by way of hints) and with protein multiple sequence alignments. Repeated
elements such as transposable elements (retrotransposons and DNA transposons), tandem or inverted
repeats, can be located in the genome with software such as RepeatMasker (www.repeatmasker.org),
RepeatFinder (www.cbcb.umd.edu/software/RepeatFinder) [122], or the recently developed Generic
Repeat Finder (GRF) [123]. Additionally, there are a host of software packages and resources designed
to detect and annotate specific types of transposable elements including SINE_scan (github.com/
maohlzj/SINE_Scan) [124] for detected short interspersed nuclear elements (SINEs), the P-Mite
database (pmite.hzau.edu.cn) [125] for finding miniature inverted-repeat transposable elements, and
HelitronScanner (sourceforge.net/projects/helitronscanner) [126] for detecting helitrons—rolling circles
that often capture gene sequences leading to gene duplication.

It is useful to know what the product of identified gene sequences code for and tools have been
designed to assign gene ontology—information on a gene’s product’s molecular function, location
and role (GO, geneontology.org) using standardized language. One of the most ubiquitous tools
used is the basic local alignment search tool (BLAST) [105] in conjunction with the Genbank [34]
databases to assign putative functions through shared identity or similarity of the translated gene
product. Blast2Go (www.blast2go.com) [127] is a tool with a subscription fee that can automate this
process. Free software packages are also available including the widely used Maker-P (www.yandell-
lab.org/software/maker-p.html) [128] as pipeline designed to make the annotation of plant genomes
more accessible to new groups and incorporates many of the software packages mentioned above and
has extensive documentation and tutorials.

2.10. Examples: Three Recently Sequenced Weed Genomes

Given the wide variety of sequencing strategies and tools that can be employed (or not) at each
stage of genome assembly it is unlikely that any two projects have followed the same path to a final
assembly. Further, as noted by Del Angel et al. [4], it is important to set goals at the beginning
of a project for how contiguous and complete the genome sequence needs to be for the specific
project, otherwise the iterative process of analysis and reanalysis with alternative tools can be endless.
Given the complexities of genomes (e.g., [129]) and how this complexity is reduced in a genome
assembly, it may be helpful to consider a modification of George E. P. Box’s aphorism that all genome
sequences are wrong, but some are useful. As examples of how these techniques and programs have
been applied to weeds, we briefly summarize the methods and outcomes of three recent sequencing
projects of two diploids, kochia (Kochia scoparia (L.) Schrad. also called Bassia scoparia (L.) A.J.Scott),
common waterthemp (Amaranthus tuberculatus (Moq.) Sauer), and a hexaploid species, barnyard grass
(Echinochloa crus-galli (L.) Beauv.).

For kochia, a plant with a genome size of approximately [89] 1Gbp (2n = 2x = 18), DNA for
sequencing was extracted from a glyphosate susceptible inbred line using a modified CTAB protocol.
They sequenced three Illumina libraries, one paired end and two mate-pair libraries using three
HiSeq lanes and used 12 PacBio SMRT cells. They then assembled and merged two assembles into
a final assembly for analysis. For the first assembly, they used the paired end data and the program
Proovread (github.com/Biolnf-Wuerzburg/proovread) [130] to correct the PacBio reads, which were
then assembled with Canu. For the second assembly, ALLPATHS-LG (software.broadinstitute.org/
allpaths-Ig/blog) [131] was used to assemble all the Illumina data and scaffolding was completed
using the PacBio reads and PBJelly (sourceforge.net/p/pb-jelly/wiki/Home) [132]. They then used the
GARM Meta assembler (garm-meta-assem.sourceforge.net) [133] to merge the genomes. This final
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711 Mbp assembly consisted of 19,671 scaffolds and had an N50 of 62 kb. Completeness as indicated
by BUSCO, using the eudicotyledons odb10 dataset, was estimated at 70.3%. Kochia’s sequence was
then annotated using the WQ-Maker pipeline transcriptome data from kochia and expressed sequence
tags for kochia’s family, the Chenopodiaceae, from the National Center for Biotechnology Information
(NCBI www.ncbi.nlm.nih.gov). Then then used BLASTN and BLASTP to predict genes and proteins
and RepeatMasker to search for repetitive elements.

In the case of common waterhemp, a species with a genome size of approximately 676 Mbp
(2n = 2x = 32), DNA from a single female plant was extracted using a modified CTAB protocol and
sequenced with both PacBio reads, 15 SMRT cells, and one Illumina HiSeq lane of 150 bp paired end
library reads [88]. The long read data provide 87x coverage and was assembled using Canu and then
polished with the short read data using Arrow and Pilon. This resulted in a final genome assembly
size of 663 Mbp consisting of 2,514 contigs and an N50 of 1.7Mb. The assembly contained 88% of
BUSCO’s Embryophyta’s genes. The program REVEAL (github.com/jasperlinthorst/REVEAL) [134]
was then used to produce 16 pseudomolecules using the chromosomal level genome assembly of the
cereal crop species Amaranthus hypochondriacus L. Both this finished genome and the assembly used to
create it were annotated using the MAKER pipeline (yandell-lab.org/software/maker.html) following
identification and masking of repetitive elements with RepeatModeler and RepeatMasker.

Barnyard grass has an estimated genome size at 1.4 Gbp based on flow cytometry data and K-mer
analysis [54] and a chromosome count of 2n = 6x = 54. DNA was extracted for sequencing from a plant
collected from a rice paddy using a CTAB protocol. They sequenced the 48 SMRT cells of PacBio for long
read data and both paired end and mate pair Illumina libraries using HiSeq runs. This level of sequencing
effort resulted in 171X coverage of the genome. The short read data was assembled with SOAPdenovo2,
scaffolded with OPERA-LG (sourceforge.net/p/operasf/wiki/The%200PERA%20wiki) [135], and then
gaps in this assembly were closed with GapCloser from SOAPdenovo2. The long read data was
assembled with Canu and used to fill gaps in the short read assembly with PBJelly. The draft genome
produced was 1.27 Gbp in length with an N50 of 1.8 Mbp. The authors used BUSCO and determined
that 95.5% of the core eukaryotic genes were complete. RepeatModeler and RepeatMasker were used
to find and mask repetitive elements. Then they used transcriptome data and three programs to
predict genes GeneMark.hmm (exon.gatech.edu/GeneMark) [136], Fgenesh (www.softberry.com) [137],
and AUGUSTUS.

3. Current Application: What Are Agricultural Weeds and Where Do They Come From?

Harlan and deWet defined weediness as “an adaptive syndrome which permits a species or variety
to thrive and become abundant and difficult to eradicate within areas of human disturbance” [138].
Under this definition, crops are the result of intentional selection for vigor and fertility in the agricultural
environment and weeds are the unintentional result [139]. A classic example of this is crop mimicry,
where weeds have been selected by agricultural practices such as hand weeding to closely resemble
a crop species [140]. This includes species such as false flax (Camelina sativa (L.) Crantz), which looks
like, has similar time to maturity, and similar seed size to varieties of cultivated flax [141,142], and
rice-mimicking varieties of barnyard grass [140]. A more pressing example is the evolution of HR
(see Section 4) [143]. This second example illustrates, that as a group, weeds represent multiple
independent origins of weediness and numerous examples of rapid adaptive evolution that present
an opportunity not only to co-opt these adaptations for crop improvement or guide changes in
agricultural practices to slow or thwart this evolution [144], but to provide fundamental insights into
evolution [145]. Agricultural weed populations can be selected from populations adapted to natural
disturbance regimes or from populations selected for these characteristics as crops, from populations
of wild crop relatives, or from hybrids between the two [141,146-148]. Similarly, specific traits that
contribute to adaptation to the agricultural environment, including alleles conferring HR, are selected
within those populations. These origins and the loci underlying adaptive traits can be elucidated by
examining genomic variation with weed populations.

91



Plants 2019, 8, 354

3.1. Detecting the Signatures of Demographic Change and Selection on the Genome

Demographic and selective events change the patterns of variation across the genome, leaving
a record of these processes. In weed populations, demographic and selective events may be closely
intertwined as artificial selection from weed control measures can drastically change population
size and composition. For example, weed populations might undergo rapid declines in population
size (bottlenecks) resulting from herbicide application followed by population expansions after the
evolution of HR, or the introgression of HR genes from one population into another. These processes can
be difficult to disentangle from each other, as well as from patterns related to the variable recombination
rate across the genome. However, demographic processes generally leave a signature across the
entirety of the genome, while selection leaves a signal localized to the genes that confer higher fitness
under the given environmental regime.

Over time, adaptation of a population to its specific environment and associated demographic
events lead to divergence in allelic composition across the genome relative to other populations. This
divergence leads to population structure and can be used to infer the past history of the sample,
with populations sharing more similar allele frequencies more likely to share a recent evolutionary
history. When a species exhibits population structure, we can assign individuals to recent common
“ancestral populations” that can provide clues to their origin. This is often the basis of human ancestry
assignment through home DNA tests, where your genotyping results are compared to the frequency of
alleles across the globe to determine which geographic region contains the highest proportion alleles
similar to those comprising your genotype [149,150]. Population structure can also provide evidence
of hybridization and introgression when individuals show the signal of a mixed affinity to populations
or species (admixtures). Again, this is similar to the assignment of percentage affiliation to different
groups in human ancestry tests.

Population structure can be estimated at many hierarchical levels, from individual, to subpopulation,
and across longer timescales at the phylogenetic level (e.g.,, STRUCTURE (web.stanford.edu/group/
pritchardlab/structure.html) [151], AMOVA [152], and TREEMIX (bitbucket.org/nygcresearch/treemix/
wiki/Home) [153]). While these methods aim to cluster individuals into discretely structured groupings,
allele frequencies may instead continuously vary across space [154]. This may be especially likely for
a recently expanded species due to serial bottlenecks and expansions, or along clines in latitudinal
or environmental gradients where there is limited opportunity for long distance dispersal [155,156].
However, methods have been developed to test whether a population is more likely to showing
continuous or discrete population structure [157]. In these cases, a model free approach such as principal
component analysis may help to clarify population structure [158]. These data can also be used to
infer past demographic processes using modelling approaches that allow estimation of parameters
including ancestral population size, the number and timing of bottlenecks, time since divergence
between populations, ancestral and contemporary levels of gene flow, and contemporary effective
population sizes. Demographic modelling has been widely implemented to infer the history of sampled
populations including 4adi (bitbucket.org/gutenkunstlab/dadi/src/master/) [159] and FastSimCoal
(cmpg.unibe.ch/software/fastsimcoal2/) [160]. With genome-wide data from a population level sample,
produced either through a reduced genome representation technique (see Section 4.3) or resequencing
(sequencing of a genome of using less coverage and a template draft genome sequence) population
structure and demographic history can easily be estimated through these variety of approaches discussed
above to provide powerful insights into the source and origins of agricultural weed populations.

While genome wide information provides high resolution data on the distribution of allelic
differences among samples due to demography, allelic differences due to selection can be inferred with
care using integrative summary statistics and model based approaches. Currently, our understanding
is that HR evolution often proceeds through drastic changes in allele frequency at the target
gene—conveniently, a single locus of large effect provides the most power for detecting recent
signals of selection and differentiating independent events. Three types of signal can be used to
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recognize selection: changes in allele frequencies (differentiation and diversity), patterns associated
with linkage (homozygosity), and the pattern of nucleotide substitutions

First, regions near alleles selected by agricultural practices can be indicated by changes in allele
frequencies. When a beneficial allele changes in frequency, becoming highly prevalent or fixed in
a population sites nearby, linked to the selected allele due to a low probability of recombination, will
show a depletion of genetic variation. The pattern resulting from the fixation of nearby neutral sites
along with the selected site is termed a selective sweep [161-164]. An expectation following from
this process is that the frequency of alleles under selection is expected to differ among populations
experiencing different conditions (e.g., herbicide application or none) and this differentiation between
populations is frequently expressed as Wright's fixation index (Fst), though there are a host of related
statistics [165,166]. If the Fst of a locus is much larger than at other nearby or neutral loci, this can
indicate positive selection.

Second, in addition to differentiation, immediately following selection the frequency of linked
alleles will be fixed with new mutations causing new alleles to accrue slowly thereafter. This results in
an excess of homozygosity (lack of variant sites) directly after selection. As new alleles will be rare,
an excess of rare alleles can indicate positive selection (as well as recent population expansion) and can
be quantified by Tajima’s D, which compares the number of pair-wise differences between individuals
with the total number of segregating polymorphisms [167]. Similarly, Fay and Wu compare the number
of pair-wise differences between individuals to the number of individuals that are homozygous for the
allele [168].

Third, selection can be detected through a comparison of the rate of nonsynonymous substitutions
at a nucleotide (those that alter the amino-acid represented by the codon) to the rate of synonymous
substitutions, which are assumed to be silent and neutral. This ratio can indicate selection favoring
a change in the structure of a protein (dny/ds).

Beyond these summary statistics, many model-based approaches have been developed to
distinguish between recent, single genetic origin selective events (hard sweeps) and older or multiple
genetic origin selective events (soft sweep) by assessing differences in the magnitude of their signals
across the genome (e.g., SweeD (cme.h-its.org/exelixis/web/software/sweed/index.html) [169] and
SweepFinder2 (www.personal.psu.edu/mxd60/sf2.html) [170,171]). After assaying within population
sweep patterns, one can then compare the extent of convergence in these patterns across populations.
A greater or lesser extent of parallel changes in allele frequencies, homozygosity, and diversity in
the surrounding sequence provide evidence of shared or independent origins of resistance across
populations respectively, and more broadly, may provide the means to identify candidate genes that
appear to underlie HR in multiple populations (see Section 4).

While there is great potential to determine the source and number of independent and shared
origins of HR from genomic data (e.g., [88]), the task will be more difficult when HR is conferred by
many alleles of small effect. With polygenic trait architectures many individuals are needed to have
sufficient power to detect the individual small-effect changes, and therefore approaches often rely
on taking the sum of allele frequencies weighted by their effect size on the trait [172]. Since these
genome-wide association approaches assume allele frequency differences across the genome are all
related to selection, one must carefully account for allele frequency changes due to population structure,
which has been shown to often be confounded with polygenic signals of selection [173].

3.2. Example: Convergent Adaptation to Glyphosate in Common Waterhemp

Common waterhemp is a problematic, a wind-pollinated, outcrossing, and dioecious weed that
occurs throughout the mid-western and eastern United States of America and in Canada from Manitoba
to Quebec. It has been hypothesized that weedy agriculture populations result from human-mediated
disturbance and mixing of two closely related taxa, A. tuberculatus var. rudis, a Midwestern native,
highly associated with agricultural environments, and A. tuberculatus var. tuberculatus, a species that
occupies a constrained range, and that is limited to riparian environments [174]. Glyphosate resistance
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was first reported in 2005 in Missouri and one hypothesis is that it may have spread from there
across the United States and recently into Ontario. However, considering the strength of selection
from herbicides and the highly repetitive nature of HR evolution as suggested from independent
glyphosate resistance evolution in multiple Amaranthus species [35], it is also possible that glyphosate
resistance may have multiple independent origins with A. tuberculatus, representing a striking case of
convergent evolution.

A recent study used genomic approaches to investigate the history of the species, clarify the
origins of agricultural populations, and the evolution of glyphosate resistance [88]. Specifically, Kreiner
et al. [88] sequenced the species’ genome as described above (see Section 2.6) and then resequenced the
genomes of 163 individuals from 19 agricultural populations known to have glyphosate resistance,
varying from 13% to 88% of the population, from Missouri, Illinois, and Essex County and Walpole
Island within Ontario, as well as ten individuals from a native, non-agricultural population in Ontario
thatlacked glyphosate resistance. This data and the software freebayes (github.com/ekg/freebayes) [174]
were used to identify SNPs across the species genome and then to characterize population demographics,
diversity, differentiation, and structure. Demographic modeling completed using 6adi supported
the hypothesis of recent secondary contact between lineages. Similarly, analysis with STRUCTURE
and principal component analysis, indicated that populations were genetically differentiated by
geography and hypothesized species ranges, with populations from Missouri and Illinois clustering
and corresponding to A. tuberculatus var. rudis and natural populations from Ontario clustering and
corresponding to A. fuberculatus var. tuberculatus. These analyses also showed resistant populations
from Essex county were unlike nearby natural or agricultural populations found in Ontario, but rather
clustered with western Missouri populations. This indicates that populations from Essex County likely
represent an introduction of seed from Midwestern A. tuberculatus var. rudis populations, that harbored
multiple independent resistance haplotypes. Interestingly, the second group of resistant populations
in Ontario, those from Walpole Island, clustered with natural populations in the area, though with
signs of some introgression from the var. rudis cluster. With information on the evolutionary origins of
these populations, Kreiner et al. set out to distinguish whether populations with shared evolutionary
origins have independently evolved resistance, or if resistance spread through the expansion of these
populations into new agricultural landscapes. The authors investigated the pattern of selection on the
chromosome bearing the glyphosate target-site gene, 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS), using Sweepfinder2 and model-free summary statistics such as diversity, homozygosity, and
differentiation. This analysis indicated the plants from Walpole showed a stronger pattern of reduced
genetic diversity, increased differentiation and increased extended haplotype homozygosity around the
EPSPS genes—evidence of a hard selective sweep—distinct from plants from Essex county, Missouri,
or Illinois where a soft-sweep following multiple origins throughout the Midwest appears to have
occurred. The authors conclude that glyphosate resistance in newly problematic Ontario populations
has multiple genetic origins — both through new seed introduction events and selection on a recently
arisen mutation in a previously benign population.

4. Current Application: What Genes Underlie Herbicide Resistance?

Understanding the genetic basis of resistance to an herbicide in a plant species is an essential first
step in the development of diagnostic markers, understanding the fitness consequences of the mutation,
and, more generally, in understanding how herbicide evolution typically occurs. This information
is essential for being able to detect, monitor and develop more effective strategies for managing HR.
Of the current total of 500 unique combinations of species (256) and herbicide site mode of action,
the underlying genetic basis of these resistances is only known for a minority of cases [35]. The majority
of known cases involve mutations to the herbicide’s target site (TSR), while the specific genetic basis of
non-target site resistance (NTSR) is largely unknown [175,176].

Our lack of understanding of the genetic basis of NTSR, is a major gap in our understanding of
weed biology and the evolution and spread of HR [175-177]. Non-target site resistance is the most
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common mechanism contributing to glyphosate and acetyl CoA carboxylase inhibition resistance
(ACCase). It is also the most common mechanism for acetolactate synthase (ALS) resistance in grass
species [178] and can confer resistance to several herbicide modes of action simultaneously and
unpredictably [179]. Non-target site resistance encompasses a diverse and complex set of traits that
likely involve the full gamete of potential genetic basis including dominant to semi-dominant alleles
with major effects, copy number variation, multiple minor alleles that incrementally contribute to
resistance, and changes in epigenetic regulation (reviewed by [180]). Further, NTSR likely involves
varied aspects of the fundamental processes within cells from transcription to translation invoking
complex stress responses and altering regulatory pathways [177,180,181]. Until this gap in our
knowledge is filled in our ability to make diagnostic tests, draw conclusions about the type and
prevalence of mutations/variation that contribute to HR or develop strategies to interfere with NTSR
pathways is compromised. However, while we rarely know the specific genetic basis of NTSR in
a weed species, we have a good understanding of the types of genes are most likely involved.

4.1. Five Superfamilies of Suspects

Five gene superfamilies have members that have been identified as likely involved in NTSR.
Evidence for their involvement comes from either their ability to confer herbicide tolerance or resistance
in crop species or Arabidopsis, on enzyme and transcriptome analyses of herbicide resistant species
or investigations of the molecular mechanisms of drug resistance (reviewed by [182,183]). Evidence
from transcriptome studies suggests NTSR is often the result of the action of multiple members of
a superfamily and multiple superfamilies [184-187]. Each of these families are large, diverse, and
widely represented across the tree of life from bacteria to mammals indicating that they are fundamental
to how organisms cope with their environments. In this regard, the evolution of HR has selected
variants of genes underlying the complex regulatory and enzymatic pathways that organisms have
always used to face biotic and abiotic stresses [188]. These gene superfamilies are considered to form
part of what has been termed the xenome, the chemical detection, transport and detoxification system
of plants [189] and members of the families are spread throughout plant genomes.

4.1.1. Cytochrome P450 Monooxygenases

The cytochrome P450 monooxygenase gene superfamily (CYP) are the largest enzyme family in
plants and are known to be involved in HR [190]. This superfamily, which is involved in detoxification
and stress responses, were implicated in HR as a result of the analysis of herbicide residues from
plants, their induction following the application of safeners (chemicals that increase herbicide tolerance
in grain crops), and the observation of increased P450 metabolism levels in HR annual ryegrass
(Lolium rigidium Gaud.), black grass (Alopecurus myosuroides Huds.) and lesser canary grass (Phalaris
minor Retz.) [177]. However, the number of these genes [191], with 272 in Arabidopsis thaliana, for
example [192], and issues with purification from plant material meant that the isolation of specific CYP
genes conferring HR in plants was preceded by isolation of these genes in bacteria and mammals, which
frequently have higher activity than those from plants [193]. As an example, expression of human CYP
genes in potato [194] and rice [195-197] confer HR. Indeed, expression of CYP1A1 in rice resulted in
resistance to ten different herbicides from ten different Herbicide Resistance Action Committee (HRAC)
groups [195,198], while expression of CYP2B6 in resistance to thirteen from six HRAC groups [197].
Despite this demonstrated ability of individual CYP genes to confer broad HR, it is likely that multiple
CYP genes are involved in NSTR within each plant species [177]. Plant derived CYP genes that
have been demonstrated to confer HR have now been isolated in Jerusalem artichoke (Helianthus
tuberosus L.) [199], soybean (Glycine max (L.) Merr.) [200], Arabidopsis [201] and ginseng (Panax ginseng
Mey.) [202]. Within weeds, two CYP genes have been determined to be associated with ALS resistance
in rice barnyardgrass (Echinochloa phyllopogon (Staf).) Koso-Pol.) and overexpression of these genes in
Arabidopsis resulted in resistance to group B herbicides bensulfuron-methyl and penoxsulam [203] and
group F4 clomazone [204]. The isolation of CYP genes responsible for HR from other weed species will
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likely occur in the near future as chemical inhibition of P450 indicate that these genes are involved in
HR for flixweed (Descurainia sophia L.) [205], water hemp (Amaranthus tuberculatus (Moq.) Sauer var.
rudis (Sauer) Costea & Tardif) [206], and large crabgrass (Digitaria sanguinalis L. Scop.) [207] in addition
to the grass species mentioned above. Additionally, consistent expansion of CYP copy number across
all 69 annotated CYP genes in Amaranthus tuberculatus agricultural populations relative to natural
populations has been recently found [88].

4.1.2. Glutathione S-Transferases

Glutathione S-transferases (GSTs) are enzymes that play a strong role in plant secondary
metabolism and stress response [208-210]. For example, GSTs have been identified as playing
a role in salt tolerance [182], copper tolerance [211] and fungal disease resistance [212]. They were
first identified in mammals in the 1960s because of their role in drug metabolism and their presence
in plants was identified soon after as contributing to atrazine resistance in maize (Zea mays L.) [213].
As aresult, the role of GSTs for herbicide detoxification in maize have been extensively studied [214] and
several of the genes encoding these enzymes have been used to engineer HR. For example, GST1 [215]
expressed in tobacco (Nicotiana tabacum L.) [216], resulted in resistance to alachor (group K3) and
GST27, when expressed in wheat (Triticum aestivum L.), resulted in atrazine (group C1) and oxyfluorfen
(group E) resistance [217]. Similarly, overexpression of a GSTs from soybean, GmGSTU4, in tobacco
results in a significant increase in alachor tolerance [218]. Within weeds, two glutathione-S-transferase
genes have been identified as being involved in resistance to ACCase and ALS inhibitors in black
grass [219]. Indeed, although multiple loci are believed to be involved in NTSR HR for black grass [220],
expression of AmGSTF1 in Arabidopsis resulted in resistance to atrazine, alachor, and chlorotoluron
(group C2) [185]. Expression analysis suggests that GSTs are involved in HR for a number of other
weed species including junglerice (Echinochloa colona (L.) Link.) [221], Palmer amaranth (Amaranthus
palmeri S. Wats.) [222], annual ryegrass [184,223] and sunflower (Helianthus annuus L.) [224]. However,
as with the CYP genes, the number of GSTs in a plants species makes pinpointing the specific gene or
genes responsible for HR challenging. For example, there may be 42 in maize [225] and 54 functional
GSTs have been identified in Arabidopsis [226].

4.1.3. ATP-Binding Cassette Transporters

ATP-binding cassette (ABC) transporters are a group of proteins that mediate cross membrane
transport (reviewed by [227,228]). With more than 80 members they are the largest protein family in
Escherichia coli. Approximately 130 and 150 members have been located within the Arabidopsis [229]
and the tomato (Solanum lycopersicum (L.) H. Karst.) [230] genomes, respectively. These transporters
are understood to be involved in the transport of auxin and glyphosate and may, therefore, play
a role when reduced translocation or sequestration of these herbicides is involved in HR [177,231].
In horseweed (Conzya canadensis (L.) Cronq.) glyphosate application caused increased expression level
in at least seven ABC transporter genes [232] and a transcriptome study on the closely related hairy
fleabane (Conzya bonariensis (L.) Cronq.) indicated that there were 19 ABC transporter genes in addition
to 22 other candidates including GSTs and glycotransferases (see below). Additional evidence of the
role of this group is that overexpression of the ABC transporter gene AfPgp1 in Arabidopsis resulted in
resistance to dicamba (group O) and oryzalin (group K1) [233] and tobacco overexpressing pqrA from
the bacterium Ochrobactrum anthropi show higher resistance to paraquat (group D) [234].

4.1.4. MFS Transporters

The major facilitator superfamily (MFS) are also transporter proteins. As with the ABC transporters,
there are approximately 70 members of the family within the genome of Escherichia coli [235] with
perhaps 200 in Arabidopsis [236]. Like the ABC transporters members of the MFS family have been
identified as being upregulated following exposure to auxinic herbicides [237] and the TPO1 gene
from yeast is a member of this group and its homolog from Arabidopsis, At5g13750, are able to confer
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resistance to 2,4-D when overexpressed in yeast [238]. However, it does not appear that studies
examining the consequences of over expression of this type of gene in plants have been completed.

4.1.5. Glycosyltransferases

Glycosyltransferases (GTs), enzymes that add carbohydrates to molecules, are involved in the
detoxification of herbicides in addition to many other roles within plant cells [239,240]. They are
numerous in plant genomes with one particular family within this superfamily, the UDP-glucose
dependent glycosyltransferases (UGTs), having 107 functional members in Arabidopsis [241]. Like CYP
and GSTs genes, they are induced by the application of safeners and have been detected in transcriptome
studies following herbicide application [189] and enzymes from this group from a wide variety of
organisms have been demonstrated to have activity against atrazine and fluorodifen (group F1) [240].
However, unlike the other superfamilies discussed here, we did not find any examples of genes from
this family being used to produce HR organisms. Instead, much of the work focused on these enzymes
is examining the potential of these enzymes in phytoremediation of organic pollutants [189,242,243].
For example, a gene in Arabidopsis (UGT72B1) encodes an enzyme that detoxifies 3,4-dichloroaniline
(DCA) and 2,4,5-trichlorophenol (TCP) [244].

4.2. A Role for Genomic Approaches

Due to the complexity, diversity, and number of genes that could underlie NTSR; identification of
resistance-conferring mutations is a significant challenge even when one has a lead on the potential
genetic basis from the above insights [180]. Clearly, significant progress is being made through the
application of RNA sequencing to identify the genes being expressed following herbicide application,
expression analysis of those genes using quantitative PCR, and transformation of model organisms
such as Arabidopsis and tobacco to verify the function of the genes. Additional genomic information for
weeds is an asset for this type of investigation and can allow comparative genetic approaches and
searches with tools such as BLAST [106] to identify and classify members of the multigene families
discussed above as has been done in model organisms and crops (e.g., [225]). This can allow for
systematic testing of the activity each enzyme (e.g., [241,245]). However, there are undoubtedly more
genes and gene families involved in NTSR (e.g., [246]). As with unravelling the demographic history
and structure of populations discussed, one method of identifying these genes is to examine the
signature of the strong artificial selection pressure of herbicide application across the genome (see
Section 3.2). Additionally, a physical map combined with the tools of genetics (e.g., linkage mapping,
genome-wide association studies) can inform on small to large effect genomic loci involved in HR.

4.3. Example: Glyphosate NTSR in Morning Glory

A recent tour de force investigating glyphosate resistance in morning glory (Ipomoea purpurea
(L.) Roth.) provides a clear example of how genomics and detection of the signature of selection
can be applied to understanding the basis of non-target site resistance. In this work, Van Etten and
colleagues [187] generated genome wide DNA markers to examine population structure, the possibility
of multiple origins of HR in the species, and to provide an indication of where selection was acting in
the genomes. They then sequenced the species’ genome and re-sequenced targets within the exome,
the regions of the genome that are the parts of a gene that encode the final RNA transcripts, in regions
showing selection. This data was used to assemble multiple lines of evidence to identify the candidate
genes underlying glyphosate resistance.

To provide information of population differentiation and structure, examine the evidence for HR
genes being introduced to populations via gene flow versus the HR arising multiple times, and to
search for signatures of selection Van Etten et al. [185] used a reduced genome representation technique
(nextRAD). This approach identified single nucleotide polymorphisms (SNPs) across the species’
genome for ten individuals from each of four high and four low survival populations. This approach is
a variant of restriction site associated DNA sequencing (RADseq), which in general, use restriction
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enzymes (often a pair) to selectively amplify regions adjacent to restriction sites across a species’
genome [247,248]. The number of markers can be manipulated through the length of the restriction
enzyme’s recognition site allowing for the density of the markers to be manipulated depending on the
project’s goal and species genome size. As no sequence data is required before hand, this type of data
can be generated for species whether or not they have genome sequences available. For each individual,
enough Illumina sequencing data needs to be completed to result in approximately 30x coverage for
each amplified region. Then programs such as STACKS (catchenlab life.illinois.edu/stacks) [249-251]
or TASSEL (bitbucket.org/tasseladmin/tassel-5-source/wiki/Home) [252] can be used to either group
reads by similarity, if a sequenced genome is unavailable, or to align the reads to a draft genome
sequence to locate polymorphic (variable) SNPs. These SNPs can then be analyzed with a plethora
of packages in the free statistical programing language R [253] to understand the population biology
(reviewed by [254]). This can include calculation of population differentiation (Fst) using hierfstat [255]
or StAMPP [256]; the generation and visualization of unweighted pair group method with arithmetic
mean (UPGMA) or neighbor joining trees using poppr [257] and phytools [258]; and k-means clustering
(adegenet [259]) to further investigate population structure. In the case of glyphosate resistance,
in both morning glory [185] and Palmer amaranth (Amaranthus palmeri S. Wats.) [260], this approach
indicated that gene flow introducing HR alleles has likely been responsible for much of the pattern
of resistance and susceptible populations. However, in addition to gene flow, a second origin of
glyphosate resistance was also suggested in Palmer amaranth [260].

The population level SNP data generated by Van Etten et al. [185] was then further analyzed with
two programs, BayeScan [261], which can identify SNPs that show signs of selection and bayenv2 [262],
which indicate SNPs associated with levels of HR. BayeScan (cmpg.unibe.ch/software/BayeScan/)
calculates pairwise Fsy values between each population sampled and a theoretical population comprised
of a common gene pool from all sampled populations. Selection is implied as an explanation, if a locus
specific factor improves the logistic regression model for these Fst values that includes population
structure [261]. The program bayenv2 (bitbucket.org/tguenther/bayenv2_public/src/default/) looks for
correlations between an environmental variable, such as HR level, and SNP frequency using a Bayesian
method that estimates the pattern of covariance of allele frequencies, uses this as a null model and then
tests each SNP [262]. Putative genes in proximity to the 42 outlier SNPs identified by BayeScan and the
83 SNPs flagged by bayenv2 were then identified by annotation tools such as AUGUSTUS (see above).

Next they sequenced a morning glory (diploid, approximately 978 Mb,1C = 1.0 pg [24], 2n =
30 [24])) individual that they considered to be high homozygous using PacBio reads (11 SMRT Cells)
and Illumina short read data (100 bp paired end). They completed two genome assemblies one
using only the Illumina data with the program ABYSS (github.com/bcgsc/abyss) [263] and the other
using a hybrid approach that combined their long and short read data with the program DBG20OLC
(github.com/yechengxi/DBG20LC) [264]. This later assembly consisted of 17,897 scaffolds, had an N50
of 15,425 and a total length of 1,948 Mbp.

They then used their genome assembly to design probes (baits) to perform target-capture
resequencing of these genes, the EPSPS genes, genes previously associated with HR and a randomly
selected control group. This targeted exome re-sequencing was then completed for five individuals
from each of their eight populations. These re-sequenced contigs were aligned to the chromosome level
sequence of Japanese morning glory (Ipomoea nil (L.) Roth.) [265] to visualize the pattern of outliers
indicating selection and they identified five regions of interest which contained 945 genes—including
multiple members of the CYP, GSTs GT, and ABC transporter superfamilies. To determine if the number
of members identified in these regions was greater than expectation for these large families, they
resampled Japanese morning glory’s genome to provide a baseline estimate of the number of that would
be expected. This indicated that GT, ABC transporters and CYP genes were each overrepresented in
the identified regions. These five regions also showed high genetic differentiation between populations
with high and low glyphosate survival.
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One approximately 29 kb region aligned to Japanese morning glory’s chromosome 10 showed
reduced nucleotide diversity in resistant individuals, strong evidence of selection based on Tajima’s D
and Fay and Wu's H as well as stronger linkage among the SNPs of this region. This region contained
a tandemly repeated group of seven GT genes and nine CYP genes. For this region, they determined that
the majority of resistant individuals shared high genetic similarity and tests of convergence suggesting
that this region contains one or more beneficial genes that were introduced by gene flow and rapidly
swept through resistant populations. While none of the non-synonymous SNPs in these genes showed
fixation in the high survival populations, this region has a strong likelihood of containing loci that
underlie glyphosate resistance in the species and are strong candidates for further functional validation.

5. Future Application: Can We Genetically Alter Weed Population to Make Them Easier
to Control?

With a greater understanding of the population biology of weed species and the identification
of the DNA sequence changes that underlie HR come opportunities for new control strategies. This
is made particularly true by the development of genetic engineering methods involving clustered
regularly interspaced short palindromic repeats (CRISPR) technologies. CRISPR tools are both simple
and versatile, contributing to their successful spread in all aspects of molecular biology (reviewed
in [266]). CRISPR systems are found in bacteria and archaea where they provide acquired immunity
against invasive elements like phages. They do so by co-opting small pieces of DNA sequence
from the pathogen which they subsequently use to generate guide RNA molecules that “program”
an endonuclease (e.g., Cas9) to scan the genome and find its target. The recognition of DNA sequence
homologous to the guide triggers the cleavage of the DNA strand that leads to mutations and potential
inactivation of the targeted element.

In a landmark study, the CRISPR system of Streptococcus pyogenes was reduced to two components,
an endonuclease (Cas9) and a single guide RNA, that could efficiently and specifically cut DNA
in vitro [267]. Following this, similar two-component systems were introduced in a plethora of different
organisms to engineer mutations in the DNA sequence with outstanding success [268]. Ultimately,
the only requirement for this approach is the knowledge of the targeted DNA sequence, making
application in weed control theoretically possible [269]. Consequently, while the short answer to
the question “Can we genetically alter weed population to make them easier to control?” is probably,
there are a great number of technical [270], ethical [271] and ecological [272] hurdles and no current
examples of this approach being used in weed science. Here we focus on describing and discussing
the potential and technical challenges to developing a weed control strategy using the engineering
of whole populations. For an example, we reach beyond weed science to the control of insecticide
resistant mosquitoes, summarizing the current findings and approaches of the scientists, who are likely
to be the first to release gene drive element into the environment to control a pest population.

5.1. The Potential for Manipulation of Weed Populations

Ever since the demonstration of the repurposing of a bacterial CRISPR system as a programmable
endonuclease [267], there has been speculation about its potential use for pest control or eradication [273].
Indeed, there were early successes in the application of CRISPR-based “gene drive” systems in order
to decimate or modify populations of fruitfly (Drosophila melanogaster Meigen) and importantly,
disease-spreading mosquitoes (Anopheles stephensi Liston and Anopheles gambiae Giles) (reviewed
by [274]). The basis of a gene drive system relies on using a selfish genetic element capable of either
copying itself or biasing reproduction towards its own inheritance so that it propagates through
a population in a non-Mendelian fashion. This cheating of the classic inheritance rules can compensate
for some deleterious consequences and potentially allow a measure of population control. Adding
CRISPR components to this paradigm then allowed homing in on specific targets within the genomes
making it available to newly sequenced weed plants [269]. Such a system has yet to be created in plants,
but the rapid evolution of plant genetic engineering could make it a reality in the not too distant future.
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Indeed, in their report “Gene Drives on the Horizon” the National Academy of Sciences considers the
potential of this strategy for the control of Palmer amaranth [271].

The overarching goal of such an endeavor is to create a transgenic weed able to introduce a genetic
payload into the populations of its species using biased inheritance and resulted in populations that
are easier to control because of a vulnerability introduced with the payload. What the ideal payload
would be up for debate, but it is likely to include a CRISPR system composed of a gene encoding
a programmable endonuclease like the Streptococcus pyogenes Rosenbach Cas9 and a single or multiple
guide RNA. These guide RNA could be specifically designed to pair with the locus causing HR or, if this
basis is unknown, the target locus could be unrelated to the HR allele, with the goal of introducing
sensitivity to a new molecule altogether. The recognition of the target triggers catalytic activity and the
cutting of the target DNA creating a lesion. Since DNA breaks are highly detrimental, they are quickly
repaired by one of the many pathways existing in the host cell. The gene drive system then subverts the
DNA repair pathways ensuring its own propagation. This step represents one of the major challenges
to this approach, as plant cells are known to heavily favor non-homologous DNA repair pathways that
only produce small DNA sequence changes [275] that would fail to propagate the selfish element.

Indeed, the success of gene drive methods in fruitflies and mosquitoes is due in large part to the
frequent use of homology-guided DNA repair in insect cells. However, plant somatic cells seldom
use homologous recombination and favor non-homologous repair mechanisms [275]. For gene drive
elements to spread efficiently in a plant population, this ratio between the two types of repair would
have to be altered. This would be critical as non-homologous repair would create alleles resistant to the
CRISPR system that would counter efforts to spread the gene drive. This is why the precise insertion of
the gene drive element at a chosen location in the weed genome will likely be a sine qua non condition
to its propagation. Once integrated, the new allele can start competing with natural alleles, which
it can target for cleavage and convert using the host cell machinery. Encouragingly, the molecular
mechanism called gene targeting, which uses the same homologous host DNA repair pathways as the
gene drive approach, is of great interest in plant genetic engineering and has greatly improved the past
few years [276]. Gene targeting aims at delivering a DNA sequence of interest at a specific location
within the genome and, therefore, has also greatly benefited from advances in CRISPR technologies.
Just like gene drive, gene targeting requires the use of homology-guided DNA repair mechanisms
instead of non-homologous DNA repair. The difference between the two is that the final goal of gene
targeting is a single isolated event, while a gene drive must self-propagate indefinitely, thereby adding
to the challenge.

Excitingly, the case of a bacterial transposon that co-opted a CRISPR system as a means to guide
its own propagation within the genome was recently discovered [277]. Transposons are themselves
selfish elements that have evolved different means to copy themselves to favor their propagation.
For example, some transposons encode an enzyme called integrase that can insert a DNA fragment at
a target site in a genome. This new molecular tool has enormous potential as a gene drive system being
able to circumvent the need to coax the host repair machinery to use homologous repair mechanisms.

5.2. Additional Technical Challenges

There are a number of additional technical limitations in the creation of a useful gene drive system
for weed management beyond a need for the target species to use homologous repair mechanisms.
As a first hurdle, this approach would be restricted to plants that can be genetically transformed
and little effort has been devoted to the development of transformation techniques in weeds. Plant
susceptibility to transformation is highly variable and whether or not it is ultimately possible in
a species depends on many intrinsic factors [278]. For instance, species with unfused carpels at
the extremity of the stigma may be amenable to the convenient floral dip Agrobacterium mediated
transformation method. However, the great majority of plant species relies on other methods, such
as tissue culture with Agrobacterium tumefaciens Smith and Townsend or biolistic bombardment, both
being much more time and resource consuming. It could, therefore, take a few months to many years
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to develop a new transformation protocol for a particular plant—a potentially sizable initial investment
of resources.

When transformation is possible, the challenge of precisely integrating a given DNA construct
remains. At the molecular level, the problem can be broken down into two distinct parts; the mobilization
of the homologous repair machinery and the delivery of the DNA template to be copied in the genome.
For the first part, it has been reported that expressing the CRISPR system in specialized cells where
homology-guided DNA repair occur at higher frequencies can increase gene targeting [276]. We know
for instance that cells undergoing meiosis rely on homologous recombination between DNA molecules
for orchestrating proper chromosome segregation. One could take advantage of these cell-specific
conditions and engineer a system that would only act in a specific cell context as was recently done
in mouse female germline [279]. Another interesting avenue is the tethering of repair machinery
components to the endonuclease. Indeed, the fusion of Cas9 with different proteins offers many
opportunities including influencing downstream DNA repair as it was successfully done in human
cells [280]. Such an approach could be tailored to improve the propagation success of a gene drive
element. In the second part of the molecular cascade, a DNA template has to be provided for the
homologous repair machinery to integrate at the break site. In the case of gene drive, the engineered
allele would bear homology to the wild allele and would therefore present itself as a repair template.
Interestingly, recent studies have shown increased success in gene targeting when using components
of a geminivirus [281-283]. The rationale behind this approach is that viruses can generate multiple
extrachromosomal copies of a given DNA sequence thereby increasing the chances of any one fragment
being used as template by the repair machinery. This element could be included into a gene drive
system to increase its efficiency.

5.3. Evolutionary Consequences and the Need for Integration with Other Management Strategies

Even without the numerous technical impediments to gene drive strategies in weeds, this approach
presents enormous ethical, regulatory, and ecological challenges. Theoretically, a gene drive that
reduces the fitness of a population or its ability to reproduce could bring a species to extinction, as it
was convincingly demonstrated for caged mosquitoes [284]. Setting this as a goal seems unwise and
unlikely to gain societal support [272,285,286] or regulatory approval [287], as a result, strategies to
re-sensitized populations to an herbicide or create susceptible to a specific compound unlikely to be
found beyond the agroecosystem are likely to be more tenable. The advantage of such an approach
is that it does not reduce the fitness of the population in the wild per se. Like the use of herbicides,
altering weed populations as a management strategy would not be a silver bullet and would require
integration into integrative weed management strategies. In part, this would be a consequence of the
time needed for alleles to spread through populations as this could take 10 to 20 generations for a gene
drive system to saturate a population [288]. In the re-sensitizing approach, this would mean forsaking
the use of a given herbicide for many years thereby relying on other control strategies. In this regard,
creating a susceptibility to a new molecule would present advantages but great care would need to be
taken in choosing such a compound.

A second reason why this strategy would need to be part of an integrated weed management
strategy, comes from the lesson we have learned from our reliance on herbicides. Plants are quite
able to evolve in response to selection through modification of genetic machinery, the exome (see
Section 4), and the biotic challenge represented by a gene drive element will result in selection on similar
genetic machinery used to counter similar genetic attacks from viruses or selfish genetic elements.
For example, in the case of a CRISPR-based gene drive, any synonymous mutation to the targeted
site(s) would severely reduce the efficiency of the endonucleolytic cleavage [289]. This has already
been demonstrated in model species such as fruitflies [290]. The emergence of such allele would be
expected and could be mitigated by selecting sites where mutation would have high fitness cost would
be more likely to provide a robust solution [291]. Since CRISPR genes come from bacteria, there is
also a chance the plant cell would silence them using intrinsic mechanisms and a silenced allele could
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render then organism “immune” to the subsequent use of a CRISPR-based approach. Taken together,
all these considerations argue for thorough modelling and confined population studies before such
a strategy could be released in the fields as has been laid out in recommendations by the National
Academy of Sciences [271].

5.4. Example: Gene Drive in Malaria Vector Mosquitos

While examples of gene drive development in weed species remain for future reviews, significant
work has focused on using the technology to control mosquitoes that spread malaria. This is
a system with parallel challenges to those faced in weed science including the emergence of multiple-
insecticide resistance with both target site and NTSR mechanisms and a lack of new chemical control
options [292,293]. Malaria is a serious and prevalent disease with over 200 million cases a year. It is
often fatal, particularly in children, and disproportionally affects people living in South America,
South Asia and sub-Saharan Africa where access to health care is often limited. The World Health
Organization reported that of the 435,000 deaths reported in 2017 from malaria, ninety-two percent
occurred in Africa and sixty-two percent occurred in children under five [294]. Malaria can be caused
by any one of five Plasmodium parasites and can be transferred by several of the 450 species of
Anopheles mosquitoes [294]. Within the sub-Saharan Africa region, malaria is primarily the result of
infection by Plasmodium falciparum Welch transferred by female Anopheles gambiae mosquitoes [294].
Chemical strategies for controlling populations of these mosquitoes have resulted in the evolution
of insecticide resistance with the first cases of pyrethroid resistance reported in Sudan in the 1970s
and reports of resistance now available across Africa and in Madagascar [295]. Currently, A. gambiae
populations in regions such as the Céte d’'Ivoire and Burkina Faso, have evolved complete resistance
to all approved classes of insecticides [296,297]. In 2015, researchers developed a CRISPR-based
gene drive system designed to reduce reproductive capability by disrupting the sequence of a gene
likely involved in the development of the embryo’s body plan which results in female sterility. When
carriers of this this gene were crossed to wild type mosquitoes the gene had a transmission rate of
just over 99% and it was able to spread through a caged populations initiated from equal numbers of
wild type and transformed individuals [298]. However, nuclease-resistant variants that completely
blocked the spread of the gene could be detected as early as the second generation [285]. More
recently, in 2018, the researchers improved on these results by disruption of a gene that controls sex
differentiation and that has alternative splicing patterns in male and female mosquitoes, a characteristic
believed to increase the constraints in the development of resistant variants. One of the two cages,
initiated with 12.5% disrupted allele frequency, reached 100% allele frequency at generation 7 and
extinction at generation 8, while for the second cage these two points were reached at generation
11 and 12 respectively. Importantly, they did not detect an evidence for the evolution of resistance
to this gene drive, though they note that it may not be “resistance-proof” given a wider sample of
mutations [284]. This work relied on foundational genomic information from A. gambiae’s genome
sequence in 2002 [299] as well as detailed knowledge of the genetic basis of fundamental aspects of
A. gambia’s biology. In July 2019, the researchers initiated small scale releases of genetically modified,
sterile males (not equipped with gene drive) in Burkina Faso to produce the data required to meet
the ultimate goal of releasing individuals with gene drive to control malaria [300]. The researchers
that have developed this technology work with a consortium, Target Malaria (targetmalaria.org),
that includes scientists, regulators, and community engagement specialists. They have also worked
to understand the ecological risks associated with the unconfined release of this event [301]. This
approach to develop the social license and regulatory approval for this type of intervention provides
a valuable template for how weed scientists could approach the modification of a weed species for
population management.
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6. Conclusions

Genomic approaches are extremely powerful tools for understanding biological systems. These
tools, while currently underutilized in weed biology, are exciting in their potential to answer key
weed science questions and increasingly accessible. Here our goal is to provide a foothold for weed
scientists considering this type of research by providing an introduction to the considerations and
process of creating a draft genome and illustrating how that genome could be used as a fundamental
tool. Draft weed genomes can provide a resource for demographic analyses that examine the result
of selection on the genome. This information can shed light on the evolutionary origins of weeds
allowing us to identify management practices that could prevent HR evolution. It can identify strengths
and weaknesses of weed populations that can be targeted for control, while providing fundamental
information on how plants rapidly respond to selection from humans. The changes that selection
makes to the genome and revealed by genomic approaches can also provide evidence of which loci
are the genetic basis of NTSR. This information will allow us to form strategies to interfere with these
HR mechanisms. Finally, the insights we gain from a better understanding of weed species at the
population, genomic and genic level using these approaches open the option of altering the genome of
weed species to provide us another tool for weed management—a strategy nearing implementation in
mice and mosquitoes.
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Abstract: The rapid development of omics technologies has drastically altered the way biologists
conduct research. Basic plant biology and genomics have incorporated these technologies, while
some challenges remain for use in applied biology. Weed science, on the whole, is still learning how to
integrate omics technologies into the discipline; however, omics techniques are more frequently being
implemented in new and creative ways to address basic questions in weed biology as well as the more
practical questions of improving weed management. This has been especially true in the subdiscipline
of herbicide resistance where important questions are the evolution and genetic basis of herbicide
resistance. This review examines the advantages, challenges, potential solutions, and outlook for omics
technologies in the discipline of weed science, with examples of how omics technologies will impact
herbicide resistance studies and ultimately improve management of herbicide-resistant populations.

Keywords: weed genomics; herbicide resistance database; herbicide resistance diagnostics; precision
herbicide resistance management; functional genomics; weed biology; weed evolution; integrated
pest management

1. Introduction

Reference genome assemblies have enabled many advances in our understanding of gene
function and the linkages between the genome and phenome. Modern plant biology has become
quantitative, systems-oriented, and predictable. The fields of genomics, transcriptomics, proteomics,
and metabolomics—collectively referred to as ‘omics’—describe the component parts of the biological
system that lead to the presentation of traits. Profound developments have been realized in model
plant and crop species where the genome and associated omics systems have led to new biological
understanding and application [1]; however, the question remains—how can omics and associated
systems-scale biology contribute to our understanding of herbicide resistance and ultimately help
improve weed management? Fundamentally, this is a question of how omics discoveries can translate
into applied outcomes and innovations. Within weed science, genomics and transcriptomics have been
the most utilized of the various omics techniques and are the focus of this review. Proteomics and
metabolomics are also emerging as potential areas of research for herbicide resistance [2-4]; however,
the full potential of omics techniques has not yet been realized [5].

Several weed genomes have been completed to various levels of assembly completeness (Figure 1).
Plans are in progress to rapidly and substantially expand the availability of weed genomics resources [6].
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While the costs for sequencing are on a continuous decline and computational capacity is increasing,
major challenges remain to fully realize the potential of omics and their contribution to improved weed
management. In this review, we present what omics studies have already contributed to herbicide
resistance and weed management, explore the challenges for omics in weeds, identify translational
aspects of model systems, discuss the trajectory and impact of integrating omics in weed science,
and propose a road map for where the discipline should go in the future to harness the power of omics
for improved herbicide resistance management.

Year 2000 2005 2014 2015 2017
A
p- =
Species Arabidopsis thaliana Oryza sativa Erigeron is R Thlaspi arvense  Echinochloa crus-galli
% Completion >99% >99% 92.3% 49.3% 76.5% 90.7%
Scaffolds/Contigs 5 12 pseudomolecules  13,966/20,075 68,331 (contigs only) 6,768/44,109 4534
N50 (Scaffolds/Contigs) 33.6 kb/ 20.7 kb 10.1 kb (contigs only) ~ 140.8 kb/ 21.1 kb 1,800 kb (scaffolds only)
Year 2019 2019 2019 2020 - 2023
- - —

Species Bassia scoparia Eleusine indica palmeri Alop cle
% Completion 83.7% 84.3% 87%
Scaffolds/Contigs 19,671 (scaffolds only) 24,072/53,097 16/2,514

N50 (Scaffolds/Contigs) ~ 61.7 kb (scaffolds only) ~ 233.5 kb/32.5 kb Whole chromosome/1.7 Mb

Figure 1. Timeline of weed genome assembly in comparison to the model plants Arabidopsis thaliana and
rice. The first weed genome assembled to chromosome-level scaffolds is Amaranthus tuberculatus [7],
for which scaffolding was completed by aligning with a related crop genome, Amaranthus
hypochondriacus [8]. Other weeds with assembled genomes in various stages of completeness
include Erigeron canadensis [9], Thlaspi arvense [10], Echinochloa crus-galli [11], Bassia scoparia [12],
and Eleusine indica [13]. Assemblies for Amaranthus palmeri and Alopecurus myosuroides are in
progress. Image sources: Arabidopsis, https://www.eurekalert.org/multimedia/pub/159783.php; field
pennycress, https://www.agweb.com/article/pennycress-gets-in-the-middle-chris-bennett; horseweed,
https://oregonstate.edu/dept/nursery-weeds/weedspeciespage/horseweed/horseweed_habit.html;
wild radish, http://science.halleyhosting.com/nature/plants/4petal/must/raphanus/raphanistrum.html;
barnyardgrass, http://swbiodiversity.org/seinet/taxa/index.php?taxon=2915&taxauthid=1; kochia,
photo courtesy of Phil Westra, CSU; goosegrass, https:/www.invasive.org/browse/detail.cfm?
imgnum=>5387295; Palmer amaranth, https://www.mda.state.mn.us/plants/pestmanagement/
weedcontrol/noxiouslist/palmeramaranth; waterhemp, https://agfaxweedsolutions.com/2019/02/11/
waterhemp-scores-again-new-resistance-found/; blackgrass, https://www.fwi.co.uk/arable/crop-
management/weed-management/blackgrass/how-to-use-integrated-methods-to-control-blackgrass;
rice, http://aaasjournal.org/rice-fields-chemical-physical-properties-implications-breeding-strategies/
rice-plant/.

2. Challenges Specific to Weed Science

Omics research in weed science faces several challenges, some specific to weed science and some
generic to the entire field of omics research. Several of these will be addressed with new discoveries
and technologies that are currently being developed, while others may need a concerted effort by the
weed science community to address. We will lay out several of these challenges and some possible
solutions that may arise to meet them.
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2.1. Managing Omics Datasets

The size and complexity of omics datasets being generated necessitates excellent database resources
including large data storage, data backups, easy access, and data manipulation tools both in weed
science and omics research at large. Several toolkits for genome databases have been developed
and successfully implemented with support from both private and public sectors. For example,
Tripal was developed with support from various academic and government funding agencies and
is freely available for download [14]. Tripal was designed to streamline and simplify the process of
omics database generation and organization, even in an online format [14]. Tripal also allows for the
integration and use of several important bioinformatics tools such as BLAST, InterPro, gene function
enrichment analysis, etc., an approach employed by several plant genome groups such as the Cucurbit
Genomics Database [15] and the Genome Database for Rosaceae [16]. Other database services for omics
can be licensed from the private sector, e.g., CropPedia by KeyGene (https://www.croppedia.com/).

Aside from establishing a contemporary platform for data housing and manipulation, deciphering
a complex, quantitative phenotype still remains a challenge. Data from the genome, epigenome,
transcriptome, proteome, and metabolome can now be collected from the same plant, and even
single cells in some cases. A primary goal is to understand the latent relationships among the omics
datasets to derive a comprehensive understanding of the underlying biology. In the example above,
taking a holistic approach (e.g., collection of different omics datasets) offers power and resolution in
comprehensively understanding the cellular and molecular components (and their interactions) [17];
however, integrating discrete experimental results is still difficult because of the inherent differences
in the data [18]. Furthermore, there are limitations in omics technologies that are confounded by
the complex nature of living systems [19]. As data integration techniques and strategies continue
to advance, holistic interpretation of systems data will improve our biological understanding of
complex phenotypes.

2.2. Genome Annotation

Another significant challenge facing the entire genome community is efficient and accurate
annotation of reference genome assemblies and eventual pan genomes. Homology-based gene
annotation pipelines, such as Maker [20] and Blast2GO [21], rely heavily on well-annotated,
phylogenetically close relatives to the species of interest for gene model evidence. These tools
perform even better with the availability of transcriptome datasets that are representative of key tissue
sources selected across the developmental life cycle. Many weed species of interest do not reside close
enough to a genomically-enabled neighbor species to be useful in homology-based gene annotation.
Frequently, the closest species to weeds with sequenced genomes reside in distant plant families or even
orders. Typical gene annotation strategies include the use of several popular prediction algorithms,
such as SNAP [22], Augustus, GenesFH, GeneMark, Glimmer, and others. These algorithms can be
trained with species specific data, manual curation, and consensus predictions extracted with programs
such as EVidenceModeler [23]. In any case, weed species are often described as having exceptional
genomes, with dynamic genomic plasticity and unique genetic content that can rapidly adapt and
endow extreme phenotypes [7,12,24,25].

Another profound gap exists between computational prediction of genes and gene function,
and validation of gene expression and its role and interaction with components of the omics system.
A primary goal in weed science is to develop modern tools that leverage omics datasets to enable
the study and verification of gene function in situ. A current constraint in closing this gap is the lack
of curated and well-maintained germplasm banks and the lack of gene editing and transformation
protocols. The lack of such tools prevents functional studies on genes and gene families, limiting the
ability to fully harness the power of genomics for weedy traits.
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2.3. Diversity of Evolutionary Strategies in Weeds

Weed genomics has other challenges that are specific. One of the biggest challenges is the number
of species being studied globally. It seems impossible to select a weed species (or even a handful of
weed species) that represent the diversity in weed science (not only the phylogenetic diversity but also
the diversity of weed management problems). Currently, the priority species for genomics research are
those that have the largest economic impact; species such as Amaranthus palmeri, Alopecurus myosuroides,
Echinochloa crus-galli, and Lolium spp. However, these species are not always the most tractable for
basic biology research. For instance, Amaranthus palmeri is dioecious, confounding the development of
specific populations for population-level genetic analysis; or the fact that Alopecurus myosuroides has an
exceptionally large, repeat-rich genome (~3.5 Gb) with high amounts of heterozygosity; or polyploid
genomes like Echinochloa crus-galli. A ‘'model weed’ approach could be used to deeply investigate
fundamental questions about the great diversity of weedy traits and variation in evolutionary strategies
found in weeds [26-28], while new resources may be developed for specific applications to compare
results across multiple weed species.

One proposed explanation for the way in which some weed species continue to be dynamic in
the face of elastic environmental pressures (avoiding genetic bottlenecks) is through maintenance or
generation of genetic diversity [29]. Genetic diversity is critical for adaptation, and is perhaps, a key
component in understanding the origins of traits and speciation; however, distinguishing genetic
diversity from environmentally-induced phenotypic variability and linking phenotypes to genes poses
several challenges. First and foremost is the ability to find, maintain, and accurately characterize lines
with quantifiable heritability for traits of interest. Without consistent, well-characterized phenotypes,
finding the genes through traditional methods (test crosses, genome-wide association studies (GWAS),
QTL-seq, etc.) becomes a much more difficult task. Secondly, highly homogenous lines are desired
as the starting point for genome assembly projects. Highly heterogeneous genomes are much more
difficult to assemble and typically result in lower contiguity and completeness with a higher degree of
inaccuracy [12]. To compensate, extra sequencing and haplotype phasing is typical in the assembly
process, requiring additional time and expense. Furthermore, genetic studies that take advantage
of segregating populations comprised of recombinant inbred lines (RILs) [30] offer high degrees of
resolution and discrete QTL windows. For weed species that are obligate outcrossers (e.g., dioecious
Amaranthus spp., self-incompatible Lolium spp.), the development of homozygous populations is not
possible, leaving mapping resolution to be defined by half-sibling segregating populations and/or
GWAS approaches where population structure confounds mapping resolution.

Weed scientists have ambitious goals to study complex traits in weeds, such as abiotic stress, seed
germination, and non-target site resistance (NTSR) [6,31,32]. A major challenge is that these traits will be
investigated across multiple weed species representing diverse plant families. No one model weed can
represent the full range of life history traits and biology present across weeds. An interesting example
of a (generally, but not always) highly quantitative complex trait is NTSR to herbicides. The study of
NTSR is further complicated by the many combinations of weed species and registered herbicides for
which multiple resistance mechanisms are possible [31]. The genetic basis and inheritance of herbicide
resistance can be complex [33,34], such as NTSR mechanisms that are quantitative between populations
and between individuals in a given population [35-39]. Elucidating the basis of NTSR to one herbicide
in one species is not necessarily extensible to other herbicides and other species. In addition, NTSR
mechanisms can endow cross-resistance to multiple herbicides with different sites of action [40-42],
and single plants can contain multiple different NTSR mechanisms [36,43]. This further confounds the
use of omics strategies to disentangle the underlying genetic mechanisms. Likewise, weed species in
general display an interesting disposition of resilience for complex abiotic traits that are of agronomic
importance such as drought, heat, salt, and cold resilience, as well as seed longevity and many others.
Dissecting these traits on a molecular basis can prove to be difficult without modern omics approaches.
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3. Addressing Challenges by Looking at Other Disciplines

Many research disciplines that work in model systems have already begun to fully exploit the
decreased costs of next generation sequencing (NGS). Looking at the diverse ways researchers working
in model systems are using omics technologies in their respective fields can provide established tools
and templates to address the unmet needs of the weed science community.

3.1. Method Standardization for Utilizing NGS in Weed Science

With more and more researchers utilizing NGS, the need for quality and methods standards that
enable comparisons between studies becomes paramount. First and foremost, weed scientists need
access to reference lines used in NGS studies, especially since the high usage of herbicides worldwide
has made it more difficult to obtain purely susceptible populations. For some species, reference
susceptible lines are in common use such as the ‘Roth’ line of Alopecurus myosuroides maintained by
Rothamsted Research Institute, which has never had herbicide exposure in the past 150 years [44],
the Lolium rigidum line VLR1 from Victoria, Australia [45], and the susceptible Bassia scoparia line 7710
from Colorado [12,46]. Likewise, references exist for resistant weed populations like the established
A. myosuroides “Peldon” [44], the L. rigidum lines VLR69 [47] and SLR31 [42], and the first Amaranthus
palmeri population reported to be resistant to glyphosate [48,49]. Distribution of these reference lines is
currently only on an ad hoc basis by contacting the labs that maintain them. The greater challenge is
to capture the diversity of resistance mechanisms and combinations and maintain their availability
over a long period for future studies. Reference lines should be stored with institutions like the USDA
National Laboratory for Genetic Resource Preservation (USDA-NLGRP), which already houses a broad
germplasm collection, or an arrangement similar to the NSF-funded Sequence-Indexed Library of
Insertion Mutations for A. thaliana [50] that propagates seed for distribution to the community. Easily
accessible reference lines can then be used for sequencing projects, dose response experiments for
herbicide sensitivity or fitness penalty studies, population genetics studies, as control groups, or to test
gene function. In the future, we hope to see homozygous recombinant inbred lines (RIL) or multi-parent
mapping populations in weed science for the identification of more complex quantitative trait loci (QTL).
For situations in which homozygous lines may be difficult to produce (e.g., self-incompatible species,
dioecious species, multiple resistance mechanisms), we encourage the production and availability of
multiple reference populations.

Due to the high demand from researchers working on model systems, NGS data analysis can
be performed through several publicly available platforms, for example the NSF-funded CyVerse
with data storage and bioinformatic tools through the Discovery Environment web interface [51],
or the Galaxy project [52]. Furthermore, NSF-funded labs have produced easy to use online tools
like the Genome Sequence Annotation Server (GenSAS) that provides a pipeline for de novo gene
prediction and whole genome structural and functional annotation [53]. More tools that are weed
science specific may need to be developed or adapted from other existing tools; for instance, a database
of consistent annotations and gene ontologies. The Antibiotic Resistance Ontology (ARO) service [54]
and the Cytochrome P450 homepage [55] have shown how important proper annotations are to provide
consistent vocabulary for genes, which form much of the foundation of genomic bioinformatics.

Currently, omics techniques used for weeds are limited in scope, usually to a pair of samples
and just a few individuals per population. In the future, more NGS studies will be available for
meta-analyses that can provide insights into more complex evolutionary questions and the basic
mechanisms driving complex traits like metabolic herbicide resistance. Additionally, we may soon be
able to perform whole genome sequencing from many individuals of a single species for genome-wide
association studies (GWAS) and pangenome analysis, which will provide key information about genetic
variability and evolutionary history of individuals and populations. Similar to human genotypic
ancestry services, the more individual genome information is available for weeds, the better genetic
relatedness, movement patterns, and invasion biology can be understood.
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3.2. Improving Herbicide Resistance Diagnostics with Omics

We predict that improved resistance diagnostics in combination with field history data will allow
for field-tailored precision weed control recommendations that avoid unnecessary one-size-fits-all
treatments and improve risk prediction tools. Improved diagnostics and precision mapping might
also support or refute zero tolerance approaches in the case of new and agriculturally troublesome
herbicide resistance mutations.

Currently, the International Survey of Herbicide Resistant Weeds [56] is the main database for
herbicide resistant weeds and provides an extensive collection of new resistance reports and genomic
DNA sequences that encode for herbicide targets in various weed species. The antibiotic resistance
field maintains the Resistance Map, which provides interactive data on antibiotic use and resistance
patterns worldwide and predicts resistance trends [57]. The Comprehensive Antibiotic Resistance
Database (CARD) collects antibiotic resistance genes and associated proteins and takes the idea a step
further to also provide information on antibiotics, resistance mechanisms, antibiotic targets, associated
phenotypes, and tools to analyze molecular sequences. It also predicts putative antibiotic resistance
genes from unannotated but assembled contigs and their prevalence from sequenced genomes [54,58].
These data are also essential to weed scientists to ask questions such as when and where are the first
cases of resistance, how widespread are they, by what mechanism of resistance it is conferred, what
is the agricultural relevance for the grower, and how are herbicides being used on a global scale?
We foresee the need for weed resources such as weedscience.org expanding in scope to include more
reporting of resistance mechanism (e.g., target-site resistance, TSR, and NTSR) and being partially
modeled based on resources developed by microbiologists.

3.3. Improved Gene Function Validation for Herbicide Resistance Mechanisms

The increase in sequencing efforts to investigate mechanisms of resistance has led to an increase
in the identification of candidate driver genes that correlate with resistant phenotypes. Unfortunately,
many studies do not continue to functionally validate these candidate genes and the actual cause
for resistance remains undetermined. In successful validation studies, researchers have utilized
Agrobacterium tumefaciens-mediated transformation of candidate genes in model plant systems, such
as Arabidopsis thaliana [59-62], tobacco (Nicotiana benthamiana) [63], rice calli (Oryza sativa) [64,65],
transgenic rice [66,67], or budding yeast (Saccharomyces cerevisiae) [68]. However, most weed science
studies fall short of functionally validating identified genes due to lack of investment to date in stable
plant transformation methods for weeds. Plant transformation is an area where method development
is urgently needed.

Plant gene function can be investigated using transient expression systems to either knock out or
overexpress a candidate gene variant. Currently, there are several alternative techniques available
in non-model species for the investigation of gene function by RNA interference (RNAi) such as
virus-induced gene silencing (VIGS) [69,70]. Relevant to herbicide resistance, this technique has been
recently utilized to silence CYP749A16 in trifloxysulfuron-tolerant cotton [71] and to silence a GST gene
cluster in Verticillium wilt-resistant cotton [63]. Plants can also be inoculated with modified virus alone,
resulting in transcription of anti-sense RNA and subsequent target mRNA cleavage, such as the barley
stripe mosaic virus system used in cereals [72]. Alternative techniques to suppress target mRNA by
direct topical applications of anti-sense silencing oligos have been developed such as small interfering
RNAs (siRNAs) in a complex with a protein carrier [73], high-pressure spraying of double-stranded
RNA (dsRNA) [74], or through simple application of long dsRNA [75]. In contrast to reverse genetics
approaches that knock out gene function by anti-sense transcript silencing, gain of function due to
candidate gene variants can be assessed with transient expression in plants using promoter-targeted
RNA-directed DNA methylation (in cases where DNA methylation can affect gene transcription) [76]
and transient infection with Agrobacterium to express a candidate gene [77].

Most gene function studies in model systems have used alternative transfer DNA (t-DNA) or
transposon insertional mutagenesis to create mutant plants (gene knock-outs) for phenotype screening
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where plants with interesting phenotypes were further characterized for the affected gene(s). These
techniques require the production and maintenance of a large amount of germplasm as well as
huge resource input. This is only feasible when a large community is working on a single species
(e.g., Arabidopsis). For weed scientists it may be more viable to take a targeted approach for gene
knockouts using gene editing techniques like zinc finger nucleases (ZFNs) [78,79] or transcription
activator-like effector nucleases (TALEN) [80]. Additionally, gene editing using clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) guided by small
RNA instead of proteins for sequence-specific DNA cleavage [81] may be the quickest way to achieve
targeted gene editing. CRISPR systems have been shown to work both transiently or stably and
with high efficiency and specificity [82]. The weed science community would benefit greatly from
implementing these techniques to validate candidate gene function; however, as for other approaches
to study gene function, investment in plant transformation methods for weed species is needed to fully
enable gene editing in weeds.

4. Using Current and Future Omics Tools to Improve Herbicide Resistant Weed Management

Potential applications of genomics for improving applied weed control have been
reviewed [5,6,27,28,83]. A striking example of technology that could advance weed management is
the gene drive system [84]. Gene drives that could result in species extinction may be unfeasible for
regulatory and/or public acceptance reasons. However, some weedy traits may be excellent gene
drive targets to reduce the impacts of weeds. For example, if genomics can identify the basis of
extreme allergenicity in weeds (e.g., ragweed species), a gene drive system could target elimination
of the allergen from populations. If genomics can identify the basis of seed dormancy, a gene drive
system could lead to greater synchronization of germination. Tumbleweeds require the development
of an abscission layer at the base of the plant to break off, tumble, and disperse seed. A gene drive
system could potentially eliminate the abscission layer trait from a population, reducing spread of the
tumbleweed seeds.

Externally-applied gene silencing techniques to manipulate gene expression and potentially
reverse herbicide resistance mechanisms are another application of new knowledge gained from
genomics [85]. However, major challenges remain to utilize externally-applied gene silencing in plants,
specifically difficulties in stability, delivery, and efficacy of gene silencing oligonucleotides [74,75].
The resources from expanded weed genomics efforts will be crucial to design effective gene silencing
triggers with maximum specificity to target species and with minimal off-target effects, both in the
target organism and in non-target organisms.

Improved understanding of pathogen response pathways in weeds could lead to opportunities for
improved biocontrol. For example, pathogens could be engineered to be more virulent on weeds but
not on crops [86,87]. Gene drive systems could be combined with bio-control to spread susceptibility
to a pathogen within a weed population, potentially enabling long-term suppression of populations
without further intervention. Weeds that are alternate hosts for crop pathogens could be targeted with
gene drive or gene silencing to eliminate their ability to serve as alternate hosts.

The UK BioBank provides an example from the biomedical science field as to how large-scale
availability of genotypic and phenotypic data on thousands of individuals can democratize genomics
and make possible the discovery of the genetic basis of many diseases and traits in humans [88]. For the
model plant Arabidopsis, full genome sequences and phenotyping data exist for more than 1000 lines,
along with databases of corresponding RNA-Seq gene expression data and gene knockout mutation
phenotypic effects [89]. We envision a similar weed biobank database empowering research on weeds
across the world, consisting of reference genomes for multiple species, phenotypic data contributed
from collaborators around the world, and genome wide genotype data sets that are publicly available
and can be mined to discover the basis of quantitative traits, complex herbicide resistance mechanisms,
and other traits of interest in weeds. A weed biobank for GWAS will be complemented by other tools
from quantitative genetics, such as utilizing F2 mapping for herbicide resistance traits and abiotic stress

125



Plants 2019, 8, 607

tolerance traits. The integration of quantitative genetics with phenotyping including metabolomics,
proteomics, and transcriptomics on segregating individuals will initially enable markers associated
with traits of interest, and ultimately identify genomic regions and specific genes controlling the traits.
In addition, as in cancer therapy [90], genomic diagnostics might help to choose the best herbicide
combination(s) to mitigate the evolution of NTSR, in particular metabolic resistance.

5. Where Is Weed Omics Going?

Looking ahead to the next five to 10 years, we see several applications for weed omics. Large
scale, high-throughput detection of known resistance mutations is possible using targeted amplicon
NGS, bringing down the cost of genotyping and increasing the scope of available information [91].
The precision to identify resistant genotypes at low frequency within field-scale management units
will enable improved management recommendations specific for growers and their unique situation
of resistance mechanism(s), frequency, crop rotation, soil type, etc. The detection of low frequency
resistance will enable early warning systems, both for individual growers and within regions. The use
of metadata from digital agriculture will enable integration of field history and geospatial data on
weed populations to further inform best practice recommendations for growers.

Like the standards proposed in Section 2 for defining and characterizing the phenotype of
herbicide resistance, we envision the same standards to define and report herbicide resistance based
on characterized mutations in candidate genes. Currently, resistance is defined according to biological
criteria, primarily greenhouse dose responses, which has pros (reliable, not dependent on specific
mechanism), but it also has cons, including the cost and time required. Additionally, the current
resistance definitions in use consider resistance to be defined only when resistant individuals are at
a high frequency in a population. The common term used is biotype, which is not necessarily an
accurate term for many of the reports in the resistance database when there may be mixtures of different
resistance mechanisms within a population (e.g., TSR and NTSR). We ask to consider whether a few
highly resistant individuals within a population of mostly sensitive individuals should have a definition
(e.g., early stage resistance), as this initially rare resistance frequency is when active measures can be
taken to slow the increase in resistance. Improved diagnostics (faster, cheaper, more individuals tested)
will enable early detection of resistant individuals within populations, and corresponding management
measures to be prescribed. In-field diagnostics may have utility to provide rapid information for
grower decision making, similar to how various rapid PCR techniques can be used to identify plant
pathogens in the field [92].

We argue that resistance databases should accept molecular criteria to report known,
well-characterized cases of resistance, both for TSR and NTSR (when the genetic basis is known).
Improved resistance testing with rapid markers and database tracking is possible with modern molecular
biology. Resistance cases are likely underreported in databases because, for example, reporting the
next observation of acetolactate synthase (ALS) resistance has little incentive for researchers to conduct
laborious and expensive assays, while ALS resistance can be easily diagnosed with molecular markers
for target-site mutations. The ease in identification and reporting should help address the current bias
in data for prevalence of common herbicide resistance mechanisms, data that will be important for the
herbicide discovery industry.

In addition to utilization of molecular markers, resistance databases should be further improved
through advances from omics technologies. More technologies should be developed to diagnose
known resistance mechanisms, including nucleic acid probes, antibodies, and metabolite screens.
More knowledge gaps exist for NTSR, with a few examples of known genetic variants for metabolic
resistance characterized to date in weeds [61,64,93], but with many more cases of metabolic resistance
to be discovered. With an improved understanding of metabolic resistance genes and pathways,
transcriptional and/or protein markers can be screened as a diagnostic panel, in which the presence of
defined subsets of markers indicates a sample is positive for metabolic resistance, similar to what is
currently performed in cancer diagnostics [94,95]. Such a diagnostic panel has already been shown for
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weeds, with different sets of transcriptional markers for cytochrome P450s and other NTSR genes able
to differentiate metabolic resistant and susceptible Lolium field populations collected in France [96,97].

We propose a system to classify metabolic resistance genes, such as cytochrome P450s and GSTs, by
their capacity to metabolize the known herbicide structures. To achieve this will require both discovery
and validation of genes in these gene families utilizing genomics, as well as cloning these genes into
heterologous systems (e.g., yeast, Arabidopsis) to determine their metabolic activity on each herbicide
of interest. Undertaking this objective will require considerable investment and coordination, due to
the high number of cytochrome P450s genes in plants and their sequence and functional divergence
across plant families [98]. Collectively, this information will inform management by shedding light on
cross-resistance patterns due to metabolism, as well as enable testing of compounds in development
and those yet to be discovered for their susceptibility to metabolism by resistant weeds.

6. Summary

The weed omics era is enabling translational research to bridge from basic science to field
applications, by linking systems-scale science to applied science for practitioners. The rise of digital
farming and dense geospatial data will enable prediction tools for the occurrence and spread of herbicide
resistance within fields and across landscapes. This metainformation will improve diagnostics as well
as provide greater insight into the factors driving selection for various resistance mechanisms. Machine
learning will lead to algorithms to select the best options from chemical and non-chemical control
technologies [99]. Weed omics will contribute to better define these prediction tools and associated
algorithms. These benefits of weed omics will be more challenging to realize for farms not utilizing the
advanced data science approaches necessary for implementation of digital farming.

While there are substantial challenges today to apply omics to weed science, the coming years
will see development of new approaches to help overcome these challenges. As the increase in data
acquisition continues to coincide with the development of new statistical approaches to systems biology,
what seems like insurmountable obstacles now may soon be trivial issues. Whole genome sequencing
projects have evolved from large-scale international efforts to routine tasks often undertaken by an
individual lab. For example, obtaining a high quality reference genome of a heterozygous plant would
not have been possible only a decade ago, and now the International Weed Genomes Consortium has
pledged to generate 10 in only a few years [6], in addition to several key species recently completed
outside this collaboration [7,12].
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Abstract: Herbicides represent about 60% of the pesticides (by volume) used worldwide. The success
of herbicides can be attributed in part to a relatively steady discovery of one unique mechanisms of
action (MOA) every two years from the early 1950s to the mid-1980s. While this situation changed
dramatically after the introduction of glyphosate-resistant crops, evolution of resistance to glyphosate
has renewed the agrichemical industry interest in new chemistry interacting with novel target
sites. This review analyses recent characterization of new herbicide target sites, the chemical classes
developed to inhibit these target sites, and where appropriate the innovative technologies used in
these discovery programs.

Keywords: amino acid biosynthesis; lipid biosynthesis; mechanism of action; plastoquinone
biosynthesis; pyrimidine biosynthesis; target site

1. Introduction

The first synthetic herbicide was discovered in the early 1940s [1] and its efficacy and selectivity
caused a paradigm change in agricultural weed management practices. New herbicide mechanisms of
action (MOA) were discovered at a relatively steady rate of one unique MOA every two years from the
early 1950s to the mid-1980s. Today, herbicides represent about 60% of the pesticides used worldwide,
and most large-scale crop production systems rely extensively on synthetic herbicides to manage
weeds. This has led to the relatively slow but steady evolution of many herbicide-resistant (HR)
biotypes. The introduction of glyphosate-resistant (GR) crops in the last 25 years has compounded
the selection pressure imposed by the repeated application of herbicides over larger areas. Managing
these HR plants is problematic and the lack of control threatens farm profitability while challenging
environmentally beneficial farming practices (e.g., no-till) [2,3]. The emergence and spread of HR
weeds will require farmer cooperation to successfully control them [4].

While a tremendous commercial success, GR crops have been detrimental to herbicide discovery
programs, causing a lapse in innovative research and development programs and a dearth of new
chemistry with novel mechanisms of action (MOA) [5,6]. Factors that have contributed to a reduced
investment in herbicide research and development are multifold and have been discussed elsewhere
but include [7]:

e The success of GR crops that revolutionized weed management [8].

e The increased cost of R&D programs for production of a single new active ingredient from $184
million in 2000 to nearly $286 million in 2016 [9].

e  The increased barriers imposed by toxicological and environmental regulations that must be
fulfilled to ensure safety of the products [10].

e  The severe attrition of the Agchem industry from more than 100 R&D companies to a few
dominating companies [11]. This may in part be due to late stage failures (duPont), expense of
liabilities and the depth of intellectual property.
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Readers are encouraged to read Gerwick’s review on the problems facing the agchem industry
and Duke’s review on why no new herbicide modes of action have been commercialized in recent
years to have a broader analysis of these problems [6,12].

So what are the current status and future prospects in herbicide discovery? Herbicides are
small (usually <500 MW) molecules that tend to target plant-specific processes. Generally speaking,
herbicides can be grouped into three main categories: 1) herbicides that target biochemical pathways
and physiological processes involved with photosynthesis, 2) herbicides that inhibit the formation
of biological building blocks (i.e., sugars, amino acids and fatty acids) or their assembly into
macromolecules, and 3) herbicides with other modes of action (Table 1). The many different active
ingredients can be categorized based on their physicochemical properties [13] or organized around
their respective mechanisms of action (Table 1). This low number of mechanisms of action is somewhat
surprising, considering the thousands of potential molecular target sites that exist in plants and the
hundreds of thousands of molecules screened for herbicidal activity every year.

This review will not cover the known mechanisms of action, and readers interested in the topic
are referred to the original reports and several reviews on that topic for more information (e.g., [14,15]).
However, a good knowledge of herbicide target sites and their mechanisms of action is crucial to
decipher the way new herbicides may exert their action.

Table 1. Classification of mechanisms of action for current and potential new commercial herbicides
discussed in this review.

Group Type Mechanism/Target
Light reaction Photosystem IT
Photosystem I
Biochemical pathways and Carotenoid Deoxyxylulose-5-phosphate synthase
physiological processes involved with . Phytoene desaturas.e
photosynthesis Plastoquinone p—Hydroxthenylpyruvate dioxygenase
Homogentisate solanesyli’mnsfemse1
Solanyl diphosphate synthase'
Chlorophylls Protoporphyrinogen oxidase
Uncouplers Oxidative (photo)phosphorylation

5-enolpyruvylshikimate-3-phosphate
(EPSP) Synthase
Acetolactate synthase
Glutamine synthetase
Dihydroxy-acid dehydratase'

Amino acids

Lipids Acetyl-CoA carboxylase
Formation of biological building Fatty acid thioesterase’
blocks or their assembly into Very long chain fatty acid elongases
macromolecules Cell walls Cellulose synthase and others

Microtubule assembly
Microtubule organization
Folates

Nucleic acids

«- and/or 3-Tubulin
Microtubule organizing centers
Dihydropteroate synthetase
Dihydrofolate reductase'
DNA gyrase'
Dihydroorotate dehydrogenase'

Protein synthesis
Protein regulation

Other processes
Hormone

Peptide deformylase
Serine-threonine protein phosphatases'
Synthetic auxins
Auxin-transport inhibition

1 bold and italics indicates recently described or potentially new mechanisms or targets.

As mentioned above, no herbicides with truly new molecular targets had been introduced in the

past 30 years. Yet, the need for new tools is more dire than ever, especially to combat HR weeds, and in
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particular those that have evolved resistance to glyphosate [16]. Though there does not appear to be
a ‘silver bullet’ coming down the Agchem pipeline, there has been a recent flurry of reports of new
mechanisms of action. So what has changed?

The dominance of glyphosate has been a destabilizing force affecting other agchem companies’
decisions to move forward with new chemistry discovered through their own R&D programs.
As mentioned before, the potential market shares of new compounds were not sufficient to justify
the cost of developing these products. While the Agchem market is still relying on glyphosate for
weed control in all the major row crops, the emergence of GR weeds has begun to impact the current
usefulness and future prospect of glyphosate. Indeed, farmers are already returning to older chemistry
to control GR weeds. In this new environment, companies may be projecting that the time is ripe for
introducing new chemistry and new MOA. This seems to be reflected with recent presentations at
the 2019 International Union of Pure and Applied Chemistry (IUPAC) congress on plant protection
in Ghent, Belgium [17] and the Agrochemical Division of American Chemical Society’s program at
their 2019 national meeting in San Diego, CA. Additionally, several new startup companies have
developed innovative technologies to explore new chemical spaces and/or facilitate the elucidation of
their target sites. For example, MoA technology uses in vivo high throughput platforms, proprietary
bioinformatics and Artificial Intelligence (AI) tools to discover novel herbicides with novel MOAs.
Enko Chem Inc. aims to become a leading innovator in crop protection chemistry by utilizing a
target-based discovery platform to produce high quality and novel small molecule starting points and
a suite of tools and approaches to develop these into product candidates, and Agrematch develops Al
and big-data tools for rational identification of molecules with desired biological activity and high
potential to become crop protection products while significantly reducing R&D costs and accelerating
time to market.

2. Novel Mechanisms of Action

2.1. Lipid Biosynthesis

Lipid synthesis involves several biochemical pathways leading to the formation of important
building blocks for membranes, cuticles and waxes necessary for plant survival. Consequently, it has
been the target of several herbicide classes.

Acetyl-coenzyme A carboxylase (ACCase) catalyzes the first committed step to fatty acid
synthesis (Figure 1A). Cyclohexanediones (e.g., sethoxydim) and aryloxyphenoxypropionates (e.g.,
diclofop-methyl) are the two major groups of herbicides targeting this enzyme. Inhibitors of ACCase are
grass-selective because two forms of ACCase occur in plants. A prokaryotic form is insensitive to these
herbicides and is found only in the plastids of dicotyledonous plants, whereas the herbicide-sensitive
eukaryotic form is found in the cytoplasm of all plants and in the plastids of grasses. Non-grass plants
are resistant because they can sustain lipid biosynthesis in the presence of such herbicides.

While there are a host of enzymes catalyzing the many subsequent steps in fatty acid synthesis, the
only other herbicide target site in this pathway are the very long chain fatty acid elongases (VLCFAE)
(Figure 1A). These enzymes are much further down the metabolic pathway, responsible for synthesis
of waxes, cutins, and suberins. VLFCAE:s are the targets of several classes of herbicides, including
the chloroacetanilides (e.g., alachlor), the thiocarbamates (e.g., EPTC), and the oxyacetamides (e.g.,
flufenacet). Inhibition of VLFCAESs by these herbicides results in decreased growth and leaf curling or
twisting [14].
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Figure 1. (A) Overview of fatty acid biosynthesis and herbicide targets in plant cells. Inhibition
of acetyl-CoA carboxylase (ACCase) by haloxyfopmethyl or tepraloxydim disrupts early fatty acid
biosynthesis. Cinmethylin prevents the release of both unsaturated and saturated fatty acids from
the plastids through inhibition of fatty acid thioesterase (FAT) A and B, respectively. Inhibitors of
very-long-chain fatty acid (VLCFA) biosynthesis act at the endoplasmic reticulum. ACP: acyl carrier
protein; CoA: Coenzyme A. From [18] with permission. (B) Structure of cinmethylin.

Fatty Acid Thioesterase (FAT)

An exciting new development has been the discovery of new target sites in fatty acid synthesis of
an old herbicide, cinmethylin (Figure 1B). These are the fatty acid thioesterases (FAT) (Figure 1B) [18].
FATs are plastid localized enzymes that mediate the release of fatty acids from its acyl carrier protein
(ACP) which is necessary for FA export out of the chloroplast and transfer to the endoplasmic reticulum
as fatty acyl-CoAs.

FATs are inhibited by cinmethylin, a natural product-like benzyl ether derivative of 1,4-cineole that
was first described by Shell in 1981 and commercialized in 1989 [19]. Plants treated with cinmethylin
have reduced levels of the saturated C14:0 and C16:0 fatty acids, indicating that the herbicide inhibits
both classes of FAT proteins [18]. The direct interaction of cinmethylin with FAT proteins was confirmed
by fluorescence-based thermal shift assays and co-crystallization of cinmethylin within the FAT enzyme.

2.2. Plastoquinone Biosynthesis

Plastoquinone is a lipid (prenyl) quinone with important biological functions. It is best known
for its role as an electron acceptor in the light reaction of photosynthesis. Specifically, it accepts
electrons from photosystem II and transfers them to the cytochrome b6 complex. Its importance
in agrochemistry cannot be overstated. Some of the earliest commercial herbicides (e.g., triazines,
ureas, and nitriles) inhibit photosynthesis by competing for the plastoquinone binding site on PSII.
Later on, interest in plastoquinone renewed with the discovery of triketone herbicides that inhibit
p-hydroxyphenylpyruvate dioxygenase (HPPD), a key enzyme in plastoquinone synthesis (Figure 2).
These herbicides cause bleaching of photosynthetic tissues because plastoquinone is required for
the activity of phytoene desaturase [20], a well-known target of herbicides inhibiting carotenoid
biosynthesis (Figure 2). Consequently, industry started focusing on the biosynthesis pathway of
plastoquinone in hope of identifying additional herbicide target sites. Its biosynthesis involves the
convergence of two pathways (Figure 2). On one hand, the quinone head is derived from tyrosine
and involves HPPD to form homogentisate. On the other hand, the lipophilic tail is derived from the
2-C-Methyl-D-erythritol 4-Phosphate (MEP)-derived terpenoid pathway (Figure 2).
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Figure 2. Overview of the relationship between carotenoid and prenyl quinone biosynthesis. Biosynthesis
of carotenoids and plastoquinone requires the MEP, terpenoid and homogentisate pathways. Older
chemistry such as clomazone inhibits 1-deoxy-D-xylulose 5-phosphate synthase (DXS), the first step in
the MEP pathway; a number of chemical classes inhibit carotenoid biosynthesis by targeting phytoene
desaturase (PDS); the newer triketone herbicides inhibit p-hydroxyphenylpyruvate dioxygenase (HPPD)
involved in homogentisate biosynthesis. The two newest target sites affect solanyl diphosphate
synthase (SPS) responsible for the synthesis of the terpenoid tail of plastoquinone or homogentisate
solanesyl transferase (HST), the enzyme combining solanyl diphosphate and homogentisate to form a
plastoquinone precursor.

2.2.1. Solanyl Diphosphate Synthase (SPS)

The building block of the lipid tail of plastoquinone is solanyl diphosphate. It is obtained by
the activity of solanyl diphosphate synthase (SPS) which catalyzes the sequential addition of seven
isopentenyl diphosphate to geranyl diphosphate [21]. A collaboration between the herbicide discovery
group of Bayer CropScience and Targenomix recently discovered using a systems biology approach that
aclonifen (Figure 3) causes bleaching of treated plants by inhibiting SPS. Aclonifen is a relatively old
diphenylether herbicide whose MOA was unknown. The binding of aclonifen to SPS was confirmed by
crystallography. Phenylalanine residues within the catalytic domain of SPS are involved in the binding
of aclonifen. Plants possess three genes encoding SPS. Two of the genes encode for SPS1 and SPS2
proteins that are localized in the chloroplast and involved in plastoquinone synthesis [22]. The other
gene encodes for the mitochondrial isoforms (SPS3) involved in ubiquinone synthesis [22]. SPS1 and
SPS2 are sensitive to aclonifen, whereas SPS3 is insensitive to the herbicide.
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Figure 3. Structure of aclonifen, an inhibitor of chloroplastic solanyl diphosphate synthase (SPS).

2.2.2. Homogentisate Solanesyl Transferase (HST)

As mentioned above, plastoquinone biosynthesis involves the convergence of homogentisate
and terpernoid synthesis. This step is catalyzed by homogentisate solanesyl transferase (HST) [23].
HST catalyzes the prenylation and decarboxylation of homogentisate to form 2-methyl-6-solanesyl-1,4-
benzoquinol, the first intermediate in plastoquinone-9 biosynthesis. (Figure 2). This enzyme was
known to be sensitive to inhibition by haloxydine [23]. Haloxydine acts as a suicide inhibitor mimicking
homogentisate binding.

Mitsui Chemical Agro Inc. reported the discovery and development of cyclopyrimorate (Figure 4)
as a new bleaching herbicide inhibiting HST. This herbicide was discovered in a program aiming at
combining the pharmacophore backbone of credazine and pyridafol. Structure optimization against
the weeds Scirpus juncoides (sedge) and Sagittaria trifolia (threeleaf arrowhead) demonstrated that
the cyclopropane ring and the methyl group at the ortho positions (2 and 6, respectively) on the
phenyl ring were critical for activity. The hydrophobicity of the moiety at position 2 can modulate
activity, with cyclopropane being optimal. Additionally, a hydroxy group at position 4 on the
pyridazine ring is important. Extensive biochemical work determined that plants treated with this
herbicide have decreased levels of chlorophyll, carotenoids and plastoquinone, and accumulate
homogentisate. The effect of the herbicide was strongly reversed by decyl plastoquinone and
moderately reversed by homogentisate, suggesting that cyclopyrimorate targeted HST. Further
work demonstrated that cyclopyrimorate was a proherbicide that needed to be bioactivated into its
des-morpholinocarbonyl cyclopyrimorate (DMC) metabolite (Figure 4) to inhibit HST [24]. In planta
metabolism of cyclopyrimorate into DMC releasing the free hydroxy group on position 4 of the
pyridazine ring is critical for bioactivation of this herbicide. The I5) values for cyclopyrimorate
and DMC on HST were 3.9 and 561 uM, respectively. DMC is a competitive inhibitor of HST for
homogentisate but uncompetitive toward the prenyl diphosphate (Figure 2).
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Figure 4. Cyclopyrimorate and its bioactive metabolite des-morpholinocarbonyl cyclopyrimorate
(DMQ).

Bleaching symptoms are the results of a dramatic decrease in plastoquinone levels in treated plants.
Since this target site is downstream enzyme of HPPD in the plastoquinone biosynthesis pathway,
activity of cyclopyrimorate is enhanced in tank mix with 4-HPPD inhibitors. This herbicide will be
developed for weed management in rice paddies, including acetolactate synthase (ALS) resistant weed
species with projected commercialization in 2020.
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2.3. Amino Acid Biosynthesis and Protein Regulation
2.3.1. Dihydroxy-Acid Dehydratase (DHAD)

A large number of herbicides inhibit branched chain amino acid biosynthesis by targeting
acetolactate synthase, the first step committed in this pathway (Figure 5) [14]. In light of the commercial
success of this chemistry, industry has searched for chemicals that could inhibit this pathway by other
means. A number of inhibitors of acetohydroxy acid isomeroreductase have been discovered but none
of them have been developed into commercial products.

An innovative resistant-gene-directed discovery approach led to the discovery of a new herbicide
target site in the branched chain amino acid pathway [25]. Aspterric acid is a natural herbicide produced
by the soil fungus Aspergillus terreus (Figure 5). A research group at University of California Los
Angeles analyzed the microbial gene cluster involved in the biosynthesis of this microbial phytotoxin.
They discovered that that the cluster also included a paralog form of dihydroxy acid dehydratase
(DHAD), the last common enzyme of the branched chain amino acid biosynthesis pathway (Figure 5).
Further work demonstrated that aspterric acid targets DHAD, and the DHAD paralog present in the
gene cluster was aspterric acid-resistant, its target enzyme [25]. Aspterric acid is a relatively weak
phytotoxin which may not rise to a successful commercial herbicide, but it might serve as a structural
backbone to elaborate new herbicide classes with improved physicochemical properties. As well,
it is not clear whether DHAD is a good target site for herbicide to control weeds under agronomic
conditions, and more work must be carried out to validate it as a desirable target site. Nevertheless,
one of the advantages of this microbial gene co-clustering analysis is that it can lead to the discovery of
genes involved in a phytotoxin biosynthesis, the identification of its target site, and the isolation of a
herbicide-resistant form of this target site [26].
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Figure 5. (A) Key enzymes involved in branched chain amino acid biosynthesis. DHAD is the most
recent putative herbicide target site in this pathway. (B) Structure of the microbial metabolite aspterric
acid, an inhibitor of DHAD. ALS: acetolactate synthase; KARI: acetohydroxy acid isomeroreductase;
DHAD: dihydroxy acid dehydratase.

2.3.2. 3-Dehydroquinate Synthase

The shikimate pathway is one of the central pathways associated in plant metabolism, providing
the carbon skeletons for the aromatic amino acids r-tryptophan, L-phenylalanine, and L-tyrosine
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(Figure 6) and many important secondary metabolites (e.g., chlorogenic acid, alkaloids, glucosinolates,
auxin, tannins, suberin, lignin and lignan, and tocopherols) [27]. It is estimated that at least 30%
of all fixed carbon is directed through this pathway to support the flux required to produce these
plant components.

Since mammals cannot synthesize these amino acids, this pathway is particularly desirable as
a potential target for herbicides. To date, glyphosate is the only herbicide targeting this pathway by
acting as an irreversible inhibitor of 5-enolpyruvylshikimate-3-phospate synthase (Figure 6). While
glyphosate slowly depletes the pools of aromatic amino acids, its herbicidal activity is associated with a
deregulation of the shikimate pathway, leading to accumulation of high levels of shikimate-3-phosphate
and shikimate and siphoning of carbon and phosphate from other pathways, disrupting more than
just the shikimate pathway [14].
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Figure 6. Shikimate pathway and aromatic amino acid biosynthesis showing the metabolites formed
at each step catalyzed by the enzymes abbreviated in bold. The target site of glyphosate is EPSPS
(green). The target site of the antimetabolite 7-deoxysedoheptulose (red) is DQS (orange). DAHPS:
3-deoxy-p-arabino-heptulosonate-7-phosphate synthase, DQS: 3-dehydroquinate synthase, DHQD/SD:
3-dehydroquinatede hydratase, SK: shikimate kinase, EPSPS: 5-enolpyruvylshikimate 3-phosphate
synthase, CS: chorismate synthase, CM: chorismate mutase, PAT: prephenate aminotransferase.

Recently, a group from Tiibingen University (Germany) has focused on antimetabolites as
novel structural backbones to discover inhibitors affecting new target sites. Antimetabolites are
interesting molecules as they inhibit enzymes by mimicking their physiological substrates. Their
study identified the rare sugar 7-deoxy-sedoheptulose (7dSh) as an inhibitor of 3-dehydroquinate
synthase (Figure 6), a key enzyme of the shikimate pathway. 7dSh is active at low micromolar
range [28]. The growth of plants treated with 25 uM 7dSH was inhibited to the same degree as
an equivalent amount of glyphosate. However, treatment with 7dSH caused an accumulation of
3-deoxy-p-arabino-heptulosonate-7-phosphate, the substrate of 3-dehydroquinate synthase (Figure 6),
whereas glyphosate caused a rapid accumulation of shikimate, a well-known biomarker of
5-enolpyruvylshikimate 3-phosphate synthase inhibition [29]. Not surprisingly, plants treated with
7dSh have lower levels of free aromatic amino acids (tyrosine, phenylalanine, and tryptophan). This
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apparently deregulates the biosynthesis of other amino acids, resulting in accumulation of the branched
chain amino acids (valine, leucine, and isoleucine), as well as arginine. 7dSh did not have any
preemergence activity. However, it controlled velvetleaf (Abutilon theophrasti) when applied as a
postemergence herbicide at a rate of 2 kg ha"!. The addition of an adjuvant was required to obtain this
level of activity. On the other hand, 7dSh had no activity on green foxtail (Setaria viridis) suggesting
selectivity for broadleaf weed control.

2.3.3. Serine/Threonine Protein Phosphatases (PPs)

More than 70% of all proteins have multiple phosphorylation sites and many of these proteins’
activities are regulated via phosphorylation. This is achieved by the concerted action of protein
kinases and phosphatases, that account for between 2-4% of the protein-encoding genes of most
plants [30,31]. The specificity of protein kinases is based on primary sequence recognition, whereas
protein phosphatases tend to be non-discriminate. However, studies across many eukaryote systems
confirmed that the phosphatases are not involved in generic dephosphorylation but are in fact as
highly regulated as their kinase counterparts. Phosphoprotein phosphatases represent a large group of
proteins, that include a sub-class called serine/threonine phosphatases (PPs) [32].

As their names imply, protein serine/threonine phosphatases (PPs) remove phosphate groups
bound to serine and threonine residues. PPs are categorized into three subclasses—phosphoprotein
phosphatases, metal-dependent protein phosphatases, and aspartate-based phosphatases. The PPs in
plants belongs to the phosphoprotein phosphatase sub-class [32].

PPs are the target of endothall (Figure 7), an old herbicide that was first commercialized in the
1950s. Endothall induces severe growth inhibition [15]. Endothall is a structural analog of cantharidin,
a natural product from the blister beetle (Epicauta spp.) and the Spanish fly (Lytta vesicatoria) (Figure 7).
Both of these molecules cause similar symptoms on plants [33].
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Figure 7. Structure of endothall, cantharidin and its dicarboxylic acid analog.

Endothall and cantharidin both inhibit plant serine/threonine protein phosphatases in a
time-dependent manner, suggesting that these compounds act as slow, irreversible inactivators of the
serine/threonine protein phosphatase activities [33]. The catalytic domain of all PP highly conserved
across animals, plants and protozoans. Inhibitors, such as cantharidin and endothall, bind to a
hydrophobic pocket of the PP active site. Endothall is a very effective herbicide to manage weeds in
aquatic environments [34].

2.4. Pyruvate Dehydrogenase Complex (PDHc)

Pyruvate dehydrogenase complex (PDHc) catalyzes the oxidative decarboxylation of pyruvate to
form acetate and its subsequent acetylation of coenzyme A (CoA) to produce acetyl-CoA [35]. As such
it is a critically important for cellular processes. The complex consists of three enzymes and a number
of cofactors. Pyruvate dehydrogenase E1 is a thiamine diphosphate- and Mg?*-dependent enzyme
catalyzing the first step of the multistep process associated with PDHc [35].

The Institute of Pesticide and Organic Chemistry of Central China Normal University recently
reported novel cyclic methylphosphonates (Figure 8) that target pyruvate dehydrogenase complex
(PDHc) using molecular docking and three-dimensional quantitative structure-activity relationship
studies [36]. Early acetylphosphinates and acetylphosphonates analogs had relatively low herbicidal
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activity, but these structures served as the basis for structural optimization to generate 1-(substituted
phenoxyacetoxy)alkylphosphonate derivatives with notably higher herbicidal activities (Figure 8) [36].
Herbicidal activity is proportional to inhibition of PDHc E1.

Recent development reported that these PDHc inhibitors were most effective against broadleaf
weeds and active at rates ranging from 50 and 300 ai g/ha, whereas they had no effect on maize and rice
even at 900—-1200 ai g/ha. Some of these compounds also had activity on sedge weeds when applied at
225-375 ai g/ha [37].
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Figure 8. Structure of a potent 1-(substituted phenoxyacetoxy)alkylphosphonate that targets pyruvate
dehydrogenase complex (PDHc).

2.5. Imadazoleglycerol Phosphate Dehydratase (IGPD)

Imadazoleglycerol phosphate dehydratase (IGPD) catalyzes an important step in histidine
biosynthesis in plants and microorganisms. It has been studied for many years as a potential target
for herbicides, since this enzyme does not exist in animals. A class of phloem-mobile herbicides
(the triazole-phosphonates) act as potent inhibitors of IGPD [38]. Syngenta has been working on
this target site for many years. The triazole phosphonate inhibitor 2-hydroxy-3-(1,2,4-triazol-1-yl)
propylphosphonate (Figure 9) is structurally similar to the proposed diazafulvene intermediate in
IGPD catalysis [39]. Several triazole phosphonate inhibitors have activities similar to glyphosate [40]

Structurally, triazole phosphonate inhibitors consists of three parts, the triazole head, an
hydroxylated linker and a phosphate mimick. The position of the hydroxy group alters the binding of
the molecules to the catalytic domain of IGPD forming either 5- or 6-membered ring chelates with one
of the Mn atom [41].
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Figure 9. Structure of 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate, an herbicidal inhibitor of
imadazoleglycerol phosphate dehydratase (IGPD).

2.6. Dihydroorotate Dehydrogenase (DHODH)

De novo pyrimidine nucleotide biosynthesis (also known as the orotate pathway) consists of
six enzymatic steps leading to the formation of uridine monophosphate from carbamoylphosphate,
aspartate, and 5-phosphoribosyl-1-pyrophosphate. Because of the central role of nucleotides, inhibition
of this pathway is lethal to most organisms. The fourth step is catalyzed by dihydroorotate
dehydrogenase (DHODH), which carries out the ubiquinone-mediated oxidation of dihydroorotate to
orotate [42].

All plant DHODHs are flavoproteins located on the outer surface of the inner mitochondrial
membrane. Plant DHODHs have different substrate specificity and inhibition from the animal form
of this enzyme [43]. FMC Agricultural Solutions recently announced a new herbicide chemical class
(aryl pyrrolidinone anilide) targeting DHODH. The common chemical name of the flagship molecule
currently being developed was provisionally approved as tetflupyrolimet (Figure 10). This potent
herbicide is selective for grass control in rice. Sensitive plants treated with tetflupyrolimet have no
chlorosis but develop a unique stunting phenotype suggesting that they are lacking a key molecule for

142



Plants 2019, 8, 341

growth (pyrimidine). The target site was discovered using a combination of forward genetic screens
and metabolomics approaches and confirmed by determining intrinsic affinities of specific analogs
using biochemical methods [17]. Structure-activity studies determined that the 35-4R enantiomer
is the active form of this aryl pyrrolidinone anilide, and the 3R-4S enantiomer had no herbicidal
activity. Additionally, the presence of the electron withdrawing groups (fluorine) on the two benzyl
rings and the alkylation (methyl group) of the y-lactam heterocycle are required for herbicidal activity.
Tetflupyrolimet competes for the quinone binding site on DHODH. The activity of tetflupyrolimet
was about 10-fold greater on the foxtail DHODH enzyme (I5p = 3 nM) compared to rice (Isp = 33 nM).
However, selectivity for rice is much greater than 10-fold, suggesting that differential metabolism may
also contribute to tolerance in rice. Additional work demonstrated that tetflupyrolimet was much less
active on animal DHODH. Commercialization of this product is projected to be in 2024.

CF;

Figure 10. Structure of tetflupyrolimet, an aryl pyrrolidinone anilide targeting Dihydroorotate
dehydrogenase, a key enzyme in pyrimidine biosynthesis.

2.7. Peptide Deformylase

In higher plants, synthesis of plastid encoded proteins is initiated with N-formylmethionine.
Removal of the N-formyl group by a peptide deformylase and the methionine by methionine amino
peptidase is necessary to produce the mature protein. The initiator methionine is sometimes retained [44].
Peptide deformylase is the target of actinonin, an hydroxamic acid microbial metabolite produced by
soil actinomycetes (Figure 11) [45]. This unique MOA has received a lot of interest and the herbicidal
activity of actinonin has been patented, but no commercial product has been developed. Plants treated
with actinonin are stunted with bleached foliage which ultimately develop necrotic lesions. It has
proved effective on many important weed species [46,47].
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Figure 11. Structure of actinonin, a microbial metabolite targeting chloroplastic peptide deformylase.
2.8. DNA Gyrase

DNA gyrases are prokaryotic Type II topoisomerases that were thought to be absent from most
eukaryotes. However, ancestral forms of DNA gyrases may be present in certain organelles of plants and
apicomplexans, although their exact functions in replication are not well understood. A research group
from the University of Western Australia investigated DNA gyrase as a potential herbicide target site by
testing the activity of a number of compounds likely to interact with this enzyme. Several molecules,
including the antimicrobial ciprofloxacin (Figure 12), were herbicidal by inhibiting the function of gyrase
in higher plants [48]. Three genes (ATGYRA, ATGYRB1, ATGYRB2) encoding for plant gyrases were
identified in Arabidopsis thaliana. Forward genetic approaches led to the discovery of a point mutation
in ATGYRA that confers resistance to ciprofloxacin, thus confirming that this gene encodes a functional
organelle-localized DNA gyrase that is the target of quinolone antimalarial drugs [49].
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Subsequent work exploring the activity of ciprofloxacin analogs on DNA gyrase led to the
characterization of the pharmacophore scaffold required for activity and the discovery of structures
with improved herbicidal efficacy and diminished antibacterial activity, relative to ciprofloxacin. The
optimized experimental analog 44 (Figure 12) had an ethyl side chain and a piperidine ring instead of
a cyclopropyl side chain and a piperazine ring attached to the fluoroquinolone scaffold. This molecule
was slightly less herbicidal than ciprofloxacin, but its specificity for plant DNA gyrase was superior,
leading to a 600-fold increase in selectivity for plants relative to other organisms [50].
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Figure 12. Structure of the fluoroquinolone ciprofloxacin and structure-optimized analog 44 with
increased specificity against plants DNA gyrase and better herbicidal profile.

2.9. Dihydrofolate Reductase (DHFR)

The biosynthesis of folate has been the target for pharmaceutical and agrochemical discovery
(Figure 13). Folate is an important metabolite required for the synthesis of numerous compounds
necessary for plant growth and development. To date, asulam (Figure 13) is only one commercial
herbicide to inhibit this pathway by targeting 7,8-dihydropteroate synthetase [51]. This carbamate
herbicide is an analogue of 4-aminobenzoate, one of the substrates of 7,8-dihydropteroate synthase,
and its selectivity is based on differential metabolic degradation.
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Figure 13. Simplified biosynthesis of folate in higher plants and structures of herbicidal
compounds targeting this pathway. HPPK: 6-hydroxymethyldihydropterin pyrophosphokinase; DHPS:
dihydropteroate synthase; DHFS: dihydrofolate synthetase; DHFR: dihydrofolate reductase; FPGS:
folylpolyglutamate synthetase; ADCS: aminodeoxychorismate synthase; ADCL: aminodeoxychorismate

lyase.

Another enzyme in this pathway, dihydrofolate reductase (DHFR) (Figure 12) has already received
some interest as a target for drug development due to its essential role in the synthesis of DNA
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precursors and some amino acids. A recent study by a group at the University of Western Australia
identified DHER as a potential new target for herbicides based on the herbicidal activity of antimalarial
compounds such as pyrimethamine and cycloguanil (Figure 13) [52]. The requirement of two of the
three isoforms of DHER for seed development was identified by knockout mutant analysis. Validation
of this enzyme as a new target site was confirmed by screening mutated Arabidopsis thaliana seeds for
resistance to these antimalarial compounds. A G137D mutation in the isoform 1 of DHFR and a A71V
mutation in isoform 2 of DHFR imparted resistance, confirming that the herbicidal activity associated
with the antimalarial molecules were due to inhibition of DHFR. This discovery sets the stage for high
throughput screening of chemical libraries to identify molecules with better herbicidal profile.

3. New Insight on Known Mechanisms of Action

3.1. New Insight on Glufosinate Mechanism of Action

The MOA of glufosinate has been studied extensively. While the inhibition of glutamine synthetase
and subsequent accumulation of ammonia, disruption of amino acid balance, and reduction of both
the light and dark reaction of photosynthesis are well documented, these did not account for the rapid
desiccation of the foliage induced by glufosinate. New insight on the factors contributing to the contact
activity of glufosinate has been reported by the Weed Research Laboratory at Colorado State University.
Glufosinate triggers a rapid and massive production of reactive oxygen species (ROS) driving the
catastrophic lipid peroxidation of the cell membranes and rapid cell death (Figure 14A) [53]. The effect
was proportional to absorption of the herbicide. Interestingly, young leaves were less sensitive to
glufosinate. While older leaves absorbed more glufosinate than younger tissues (Figure 14B), similar
levels of glutamine synthetase inhibition and ammonia accumulation were observed (Figure 14C,D),
indicating that ammonia accumulation was not responsible for the toxicity of this herbicide. In contrast,
glufosinate induced a rapid and massive accumulation of ROS in older tissue and almost no ROS in
younger tissue (Figure 14E), which correlated directly with the level of injury.
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Figure 14. New insight into the mechanisms of action (MOA) of glufosinate. (A) Older leaves are more
sensitive to glufosinate than meristematic tissue and younger leaves. (B) Absorption of glufosinate.
(C) Inhibition of glutamine synthetase (GS). (D) Ammonia accumulation. (E) Reactive oxygen species
(ROS) accumulation. Reproduced from Takano et al. 2019 with permission.

3.2. New Insight on Slow-Binding Properties of HPPD Inhibitors

As mentioned in Section 2.2, inhibition of plastoquinone biosynthesis has been recognized as
an excellent target for new herbicide research since the discovery that triketone herbicides inhibit
HPPD. These herbicides bind slowly but very tightly (nearly irreversibly) to the catalytic site by
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coordinating with Fe atom involved in catalysis [54]. A research group based at Central China
Normal University provided new molecular insights into the mechanism of 4-hydroxyphenylpyruvate
dioxygenase (HPPD) inhibition using enzyme kinetics, X-ray crystallography of Arabidopsis thaliana
HPPD complexed with herbicides, and computational simulations approaches. This work dissected
the interaction between ligand and receptor to discover a novel quinazoline-2.4-dione herbicide
benquitrione (Y13161) (Figure 15) [55]. Their analysis suggests that the slow binding properties of
HPPD inhibitors may be related to steric hindrance requiring a conformational change on the enzyme
upon herbicide binding. Benquitrione has excellent herbicidal activity that compares favorably with
that of mesotrione. This molecule also demonstrated selectivity on corn and sorghum, whereas the
mesotrione caused injury to sorghum. Finally, the structural features of benquitrione can also serve as
a template to develop the next generation of high performance HPPD-inhibiting herbicides.

o O O
(L
OH N /&O
|
Figure 15. Structure of novel HPPD inhibitor Y13161 (benquitrione).
4. Promising New Chemistry

4.1. Isoxazolopyridine Herbicides

BASF recently reported a new class of herbicides based on an isoxazolopyridine (OXP) backbone
(Figure 16). Some of the compounds have selectivity on monocotyledonous crops while providing
excellent post-emergence control of dicot weeds and good activity on some grasses. Sensitive plants
treated with OXP herbicides develop necrosis on the foliage and the compounds appear to have
systemic activity, with phloem-mobility in dicots but limited translocation in monocots.

O~ OH
isoxazolopyrimidines

R4R3
o) 4
F Cl
isoxazoline-substituted uracil

benzoxaboroles

Figure 16. Structural features of the chemical classes mentioned in Section 4.

Biochemical/physiological studies excluded known MOA. Therefore, isoxazolopyridines may
have a novel mechanism of action on plant photosystems that involves carbohydrate metabolism
within the chloroplast. Cellular thermal shift assays suggest that light harvesting protein may be the
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potential target. Interestingly, a L218V mutation on the D1 protein of photosystem II from metamitron
tolerant Chenopodium album (Common lambsquarters) provided partial resistance to OXPs, whereas
the well-known 5264G mutation did not protect plants against the activity of OXPs.

4.2. Isoxazoline-Substituted Uracil Herbicides

Sinochem Agrochemicals R&D Co. Ltd. developed novel uracil herbicides containing an
isoxazolopyrimidine ring (Figure 16). These compounds effectively control a number of economically
important monocot and dicots weeds and appears to be safe to wheat, corn and rice. One of the
most promising molecules (SYP-1604) can be used alone or in combination with other herbicides.
SYP-1604 spectrum of activity outperforms saflufenacil when applied post and compared favorably to
flumioxazin when applied pre. Little is known about its MOA, but it appears to act as an inhibitor of
protoporphyrinogen oxidase.

4.3. Benzoxaboroles Herbicides

Benzoxaboroles (Figure 16) are derivatives of boronic acids that were first described over 50 years
ago. Interest in these compounds renewed in 2006, after reports of the sugar-binding properties of
certain benzoxaboroles were made public. Consequently, most of benzoxaboroles have been described
over the last decade [56]. Interest in these structures widened due to their range of biological activities,
including the commercialization of two pharmaceutical products. Benzoxaboroles have recently been
considered as starting points for new herbicides. Scientists at Corteva explored the chemical space
occupied by benzoxaboroles and uncovered a promising area for new herbicide discovery. A limiting
factor is the relatively high pka of boronic acid (8.8), but structures with constricted rings, such as the
benzoxaboroles, can be designed with lower pka values A number of benzoxaboroles were identified
herbicidal hits in initial screens, and plants treated with this type of chemistry developed unique
symptoms. However, rates required for activity were high (1-4 kg ha!). Symptoms of plants treated
with this class of chemistry varied from stunting to bleaching and necrosis on the leaf margin. While
no target site has been identified or reported to date, structure-activity work demonstrated that adding
a methyl group enhanced the activity. Replacing this methyl group with cyano group was even
more potent. Interestingly, increasing the steric bulk by adding a phenyl ring was advantageous, but
decoration with electron withdrawing groups (i.e., chlorophenyl) has a negative impact. Finally, adding
alkyl spacer to the phenyl ring positively modulated activity. While no herbicides have arisen from
this chemical class, isoxaboroles may lead to new scaffolds to develop new phloem-mobile molecules.

5. Conclusions

The time for innovative MOA and chemistry targeting these is overdue. The current crisis
experienced by farmers facing difficulties managing weeds that have evolved resistance to many of the
existing MOA must be addressed, and new weed management tools are necessary. While the current
renewed interest in research and development programs observed in the agrichemical industry, as
well as academic and governmental institutions is a positive development, there is no silver bullet
chemistry ready to enter the marketplace. Many of the MOA and associated chemistries described in
this review are at least 5 years away from commercialization or will fail to reach commercialization
due to the many hurdles facing such a process. The aggregation of the agrichemical industry is certain
to continue, further limiting diversity in creativity and discovery. One may hope that the few startup
companies using truly innovative approaches to herbicide discovery will provide platforms to explore
new chemical spaces and biochemical processes. It may also be time to incorporate non-chemical
means of weed control, such as mechanical seed destruction (e.g., Harrington seed destructor), robotic
weed management, and precision farming.
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Abstract: This article reviews, focusing on maize and soybean, previous efforts to develop
nontransgenic herbicide-resistant crops (HRCs), currently available transgenic HRC traits and
technologies, as well as future chemical weed management options over the horizon. Since the mid
twentieth century, herbicides rapidly replaced all other means of weed management. Overreliance on
‘herbicide-only” weed control strategies hastened evolution of HR weed species. Glyphosate-resistant
(GR) crop technology revolutionized weed management in agronomic crops, but GR weeds, led
by Palmer amaranth, severely reduced returns from various cropping systems and affected the
bottom line of growers across the world. An additional problem was the lack of commercialization
of a new herbicide mode of action since the 1990s. Auxinic HRCs offer a short-term alternative for
management of GR Palmer amaranth and other weed species. New HRCs stacked with multiple
herbicide resistance traits and at least two new herbicide modes of action expected to be available in
the mid-2020s provide new chemical options for weed management in row crops in the next decade.

Keywords: corn; herbicide resistance trait; maize; soybean

1. Introduction

Weeds cause extensive losses amounting to billions of US$ [1] through increased production
costs, decreased quality and quantity of produce, reduced aesthetic value of landscapes that they
thrive in, health effects on humans and pets, and other undesirable effects such as fuel for forest
fires, etc. Over the past several centuries, weeds have been controlled with mechanical, biological,
and cultural tools. Chemical weed control with inorganic compounds was extensively practiced
in the late-nineteenth to mid-twentieth century, with earliest evidence even pointing back to the
Roman era [2]. The real ‘Chemical Era” of weed control started in the 1940s with the discovery of
2,4-dichorophenoxyacetic acid (2,4-D) during World War II chemical warfare research [2]. Since then,
several herbicides belonging to different chemical classes and possessing diverse modes of action have
been synthesized and commercialized around the world. Herbicides rapidly replaced all other means
of weed management due to their superior efficacy, relatively low cost, selectivity, and targeted weed
control. There has been at least one herbicide labeled for every cropping system imagined. Herbicides
provided advantages such as increased productivity, improved quality of produce, reduced drudgery
of hand weeding, and reduced soil erosion and top soil loss due to reduced cultivation and tillage
(enhanced by less fossil fuel use). Overreliance on herbicides alone pushed weed species toward
evolving resistance to herbicides. The astronomical cost of commercializing a new herbicide active
ingredient (cost of discovery, development, and regulatory approval of a new synthetic pesticide was
estimated to be $280 million in 2016 [3] coupled with the paucity of new herbicide modes of action [3]
steered the agrochemical industry toward engineering/development of crops resistant to ‘currently
available (subject to change) herbicides. This review covers maize (Zea mays L.) and soybean (Glycine
max (L.) Merr.) only with discussion of earlier efforts to develop herbicide-resistant crops (HRCs),
currently available HRC technologies, and future developments in the HRC arena.
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2. Early Efforts

HRCs can be classified as nontransgenic (traditional genetic methods of selection of resistance traits)
and transgenic (genetically engineered). Nontransgenic HRCs were developed using conventional
breeding techniques (Table 1) such as seed mutagenesis (soybean resistant to sulfonylurea herbicides,
disclosed in 1987), pollen mutagenesis (maize resistant to imidazolinone herbicides, released in 1992),
and mutations in tissue culture (maize resistant to imidazolinone herbicides, revealed in 1991; to
sethoxydim, an acetyl-CoA carboxylase (ACCase) inhibitor, released in 1992; soybean resistant to
metribuzin, a triazine herbicide, disclosed in 1996) [4,5]. Agronomic performance of nontransgenic
HRCs met with modest acceptance in the marketplace and often did not reach the expectations of
growers and commodity groups. Scientists began to look at alternative ways to develop HRCs as weed
management tools, to manage a broad spectrum of weeds, with superior agronomic characteristics.

Table 1. Nontransgenic herbicide-resistant maize and soybean.

Selection Method Herbicide Family Crop Year of Disclosure
Seed mutagenesis Sulfonylurea Soybean 1987
Pollen mutagenesis Imidazolinone Maize 1992
Tissue culture ACCase inhibitor Maize 1992
Imidazolinone Maize 1991
Triazine Soybean 1996

Adapted from [4,5]. ACCase, acetyl-CoA carboxylase.

3. Current Transgenic HRCs

Currently commercialized transgenic HRCs (some with associated herbicide formulations
registered by the US Environmental Protection Agency (EPA)) are summarized in Table 2. The following
sections describe these HRCs separated by crop and herbicide mode of action. The context and
issues pertaining to each resistant trait are limited to the geographical region where they have been
commercialized. For example, glyphosate-resistant (GR) traits and related aspects are common across
North America (Canada and US) and South America (Brazil and Argentina), whereas dicamba-resistant
crop technologies are restricted to the US.

Table 2. Current transgenic herbicide-resistant maize and soybean and associated trait genes.

Crop Re?;::.::l ce Trait Gene Des;[;i:tion ;:;:ts Trade Name
Maize Glyphosate Three modified GA21 1998 Roundup Ready®
maize epsps
Two cp4 epsps NK603 2001 Roundup Ready® 2
Glufosinate pat T14, T25 1996 LibertyLink System®
2,4-D tfdA DHT1 2019 Enlist™ Weed Control System
AOPP aad DHT1 2019 Enlist™ Weed Control System
Soybean Glyphosate cp4 epsps GTS 40-3-2 1996 Roundup Ready®
cp4 epsps MON89788 2009 Roundup Ready® 2 Yield
Glufosinate pat A2704-12 2009 LibertyLink System®
Dicamba dmo MONS87708 2017 Roundup Ready 2 Xtend®
2,4-D tfdA DHT2 2019 Enlist™ Weed Control System

Partly adapted from [5,6]. AOPP: Aryloxyphenoxypropionate; 2,4-D: 2,4-Dichorophenoxyacetic acid.

4. Maize

The real breakthrough occurred in the 1990s with the commercial release of glyphosate-resistant
(GR) crops. These crops allowed the application of glyphosate multiple times in the growing
season without the risk of crop injury. Glyphosate was, hitherto, used nonselectively for weed
control in vineyards, orchards, rights-of-way, industrial areas, and railroads. It has been deemed
as “a once-in-a-century herbicide” [7] for its broad weed spectrum, reasonable cost, favorable
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environmental properties, and association with the widely popular GR crops. In susceptible plants,
glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the
shikimate pathway responsible for the biosynthesis of aromatic amino acids and several secondary
metabolites in the phenylpropanoid pathway.

GR maize was introduced in 1998 [5,6]. Transformation of maize plants with CP4 (an Agrobacterium
species strain) EPSPS and e35S promoter produced plants with vegetative resistance to glyphosate
but reduced male fertility [8]. Therefore, the first-generation GR maize, trademarked as Roundup
Ready® (RR) trait, GA21 utilized the rice actin 1 promoter driving the gene for a GR form of maize
EPSPS (TIPS-EPSPS) [8], (ZM-EPSPS) [5,6]. A new event NK603, with two copies of a slightly modified
EPSPS CP4 gene, was developed to improve maize tolerance to glyphosate at both vegetative and
reproductive stages, and was commercially released in 2001 in a breeding stack with glufosinate and
four insect resistance traits [5].

Glufosinate inhibits the enzyme glutamine synthetase (GS), which catalyzes assimilation of
ammonia with glutamate to form glutamine [8]. Glufosinate resistance is due to metabolic inactivation
by an acetyltransferase enzyme that catalyzes the acetylation of glufosinate [5]. Two glufosinate
resistance genes, bar and pat, encode homologous enzymes [9]. Both genes were isolated from soil
microorganisms, pat from Streptomyces viridochromogenes and bar from Streptomyces hygroscopicus [6].
Glufosinate-resistant maize was commercialized for the first time in 1996 stacked with Bt insect
resistance, as a stand-alone trait in 1997 [6], and was combined with GR maize as a “double stacked
trait” in the mid-2000s.

2,4-D is an auxin herbicide with phytotoxic action limited to broadleaf weed species. However,
2,4-D-resistant maize was developed in tandem with 2,4-D-resistant soybean, trademarked as Enlist™
Weed Control System by Corteva Agriscience (process described in a later section) and deregulated by
the US Department of Agriculture (USDA) and an associated low volatility 2,4-D choline formulation
registered by EPA for use only in 2,4-D-resistant crops, both in 2014, but not commercially launched
in the US until 2018. It is to be noted that 2,4-D had been labeled for use in maize over the past
several decades, both as preemergence and postemergence applications. A type of aryloxyalkanoate
dioxygenase (AAD) enzyme was identified that provided resistance to 2,4-D as well as a class of
ACCase inhibiting herbicides, popularly known as ‘fops’ belonging to the aryloxyphenoxypropionate
(AOPP) chemical family, for example, quizalofop [10,11]. 2,4-D and the ‘fop” herbicides possess an
identical bond that facilitates their metabolism by a common enzyme. Due to concerns that GR
grass weeds would run amuck before commercialization of 2,4-D-resistant crops, 2,4-D-resistant
maize was promoted to control GR grass. Another class of ACCase inhibiting herbicides, the ‘dims’
belonging to the cyclohexanedione chemical family, lack the above bond and can be used to manage
volunteer 2,4-D-resistant maize. Invariably, most transgenic maize HRCs on the market also carry
insect-resistance traits (Bt trait), which will not be discussed here.

5. Soybean

In 1996, GR soybean was the first GR crop to be commercialized. The first generation of GR
soybean, event 40-3-2, were the most successful outcome of over-expressing the glyphosate-insensitive
CP4 EPSPS in all tissues using strong, constitutive viral promoters such as 35S or FMV from cauliflower
or figwort mosaic viruses, respectively [8]. The first-generation GR soybean went off patent in 2015,
which means individuals can grow them and save seed for re-use as long as the seed has no other
trait or varietal patents [12]. Although the first-generation GR soybean has been phased out of the
seed stock (of formerly Monsanto Co., now Bayer Crop Science), some institutions in Missouri and
Arkansas have done breeding with this older trait and developed cultivars exhibiting the trait.

The second generation of GR soybean was commercialized in 2009 with a broader launch in 2010
as Roundup Ready 2 Yield® (RR2Y) by Monsanto Co. [8]. Several seed companies still sell RR2Y
cultivars and they were available in 2019 [12]. The RR2Y event, MON89788 contained the same CP4
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EPSPS as GTS 40-3-2, but with the gene inserted at a different site in an elite variety “A3244” with a
different promoter and regulatory elements to enhance expression in the sensitive tissues [5].

Glufosinate-resistant soybean, with the pat gene and the CaMV 35S promoter, was publicly
released for sale in 2009 as a promising tool to combat GR weeds, especially tall water hemp
(Amaranthus tuberculatus Moq. Sauer) and Palmer amaranth (Amaranthus palmeri S. Watson) [5].
The glufosinate-resistant trait in soybean has been a good candidate for stacking in other
herbicide-resistant soybean cultivars (discussed in a later section).

From the 2019 seed sales season, the glufosinate resistance technology now rests in the hands of
BASF Crop Protection, who purchased it from Bayer Crop Science as part of anti-trust remediation [12].
Glufosinate-resistant crops including soybean have been steadily gaining market share as GR weeds
spread across the southern and midwestern US, approaching 20% of the soybean market share. Low
seed prices coupled with availability of generic glufosinate herbicides make this technology, labeled
as LibertyLink System®, a viable option for soybean growers and is available on BASF’s Credenz®
soybean platform and other independent seed companies totaling 78 licensees [12].

Dicamba-resistant soybean, Roundup Ready 2 Xtend® (RR2Xtend) from formerly Monsanto
Co., now Bayer Crop Science, was deregulated by the Animal and Plant Health Inspection Service
(APHIS) of the USDA in 2015. Dicamba monooxygenase (DMO), from the soil bacterium Pseudomonas
maltophilia (strain DI-6), encodes for Rieske nonheme monooxygenase that converts dicamba to
3-6-dichlorosalicylic acid (DCSA) [13]. The genetically engineered version of the DMO gene for
expression in higher plants used the FLt36 promoter from peanut chlorotic streak virus, a translational
enhancer from the tobacco etch virus (TEV), a chloroplast transit peptide—coding region from the pea
Rubisco small subunit gene for chloroplast localization of DMO, and a terminator region from the pea
Rubisco small subunit gene (rbcS3”) [13].

Formulations of dicamba specifically labeled for use in RR2Xtend were not registered until fall 2016.
Three dicamba formulations, XtendiMax® and FeXapan®, both containing the diglycolamine (DGA)
salt of dicamba, and Engenia® comprising the BAPMA (N, N-Bis-(aminopropyl) methylamine) salt of
dicamba were registered for use in the US by EPA in 2016 until 2018; in 2018 registration was extended
until December 2020. In 2017, additional restrictions were implemented toward application of the above
formulations which were labeled for use only in dicamba-resistant crops. In 2019, Tavium® containing
dicamba DGA salt plus S-metolachlor was registered by EPA. In 2016, illegal/off-target/off-label
applications of dicamba via formulations other than XtendiMax®, FeXapan®, and Engenia® were
made on dicamba-resistant soybean and cotton (Gossypium hirsutum L.) in AR, MO, TN, MS, and
several other states, resulting in injury to non-dicamba-resistant crops and sensitive flora across the
landscape from dicamba drift (volatile/vapor drift and/or physical drift due to droplet movement
owing to temperature inversion and other factors). The issue of injury to non-dicamba-resistant crops
from dicamba drift was compounded multifold in 2017 when registered dicamba applications in
dicamba-resistant soybean were made over large swaths of the cropping area. Dicamba had been
labeled for use in maize over the past several decades, both as preemergence and postemergence
applications. However, dicamba has not been applied in the middle of the growing season, when
temperatures are usually higher than during preplant or early crop growing conditions, or when several
sensitive plant species are present, prior to commercialization of dicamba-resistant crops. In the 2017
growing season, a total of 1.44 million ha of dicamba-injured soybean were estimated from 2708 official
dicamba-related injury investigations as reported by individual state departments of agriculture and
state extension weed scientists in the US (Figure 1) [14]. It was believed, by several row-crop production
practitioners, that the soybean hectarage reported above is a gross underestimation. In 2018, there
were fewer complaints of soybean injury compared to 2017, probably, due to more growers planting
dicamba-resistant soybean as an insurance against injury, neighboring growers settling disputes off
the record, a marked improvement in efficiency of applications, or a combination of more than one of
the above reasons. Records of injury from dicamba drift in 2018 and 2019 are available elsewhere in
the literature.
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Figure 1. Official dicamba-related injury investigations as reported by state departments of
agriculture (as of October 15, 2017)
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