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Preface to ”Energy Use Efficiency”

Energy is one of the most important factors of production. Its efficient use is crucial for ensuring

production, profitability of firms and environmental quality. Unlike normal goods—which generally

have supply management procedures to maximize sales—energy is demand-managed, with the

objective to minimize its use. Efficient energy use aims to reduce the amount of energy required to

provide products and services. Energy use efficiency can be achieved in residential settings, offices,

industrial production, transport and agriculture, as well as in public lighting and services. The use

of energy can be reduced by using technology that is energy saving and by reducing energy-using

activities. There are many benefits associated with reducing energy use, including reduced energy

dependency and vulnerability, and improved energy security. Various incentive-based programs

have been introduced to the industry and public to promote the development, installation and use

of energy efficient technologies and equipment. The policy is, in general, oriented to protect the

air, water and land, and to prevent climate change and the associated negative health impacts by

reducing the generation and use of energy from fossil fuels and nuclear primary sources. Saving

energy to reserve fossil fuels for future generations and conserving natural resources has double

dividend effects in the form of cost efficiency and the realization of sustainability.

This Special Issue contains 15 papers on energy use efficiency in different countries, locations

and economic sectors. The areas of analysis include: undesirable outputs in the electricity power

generation sector; the dynamics of heat transfer in buildings; energy efficiency management in

companies; adoption of electricity smart meters in residential settings; assessment of corporate

average fuel economy standards for passenger cars; modelling the air pollutant emissions of the road

transportation sector; manufacturing energy intensity and energy efficiency in the manufacturing

industry; measurement of energy access among regions; energy use and labor productivity in the

manufacturing industry; vehicle energy consumption analysis; international comparison of energy

use efficiency; effectiveness of power factor correction policies; technological progress of the fuel

consumption rate for passenger vehicles; directed rebound effect for electricity consumption of

urban residents, and comparison of energy use efficiency at the province level. This Special

Issue provides good coverage on energy use efficiency theories, methods and diverse applications,

therefore contributing important knowledge to the literature.

Almas Heshmati

Editor
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Dynamic Data Envelopment Analysis Model
Involving Undesirable Outputs in the Electricity
Power Generation Sector: The Case of Latin America
and the Caribbean Countries
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Abstract: Studying the evolution of the efficiency of the electricity generation sector is a relevant task
for policy makers, and requires the undesirable outputs derived from the activity to be considered in
the evaluation. In this work, we propose a dynamic slack-based Data Envelopment Analysis (DEA)
model that incorporates the assumption of weak disposability between the generation of electricity
from fossil sources and the CO2 emissions caused by the sector to measure the technical efficiency of
24 Latin American and Caribbean countries in the period 2000–2016. The results show that, of the total
number of countries studied, four are efficient overall, and four groupings of countries in relation to
the levels of efficiency achieved are also identified. These results are important given that less-efficient
countries can, through learning, increase their efficiency in electricity generation or emulate the future
strategies proposed by the most efficient countries.

Keywords: dynamic DEA; efficiency measurement; electricity power generation; weak disposability;
undesirable outputs

1. Introduction

Measuring the efficiency of production systems is an important task in economic science,
and different studies have addressed this problem with different methodologies. In regulated sectors,
such as the electricity sector, the evaluation of productive efficiency has been promoted. Particularly,
in the activity of electricity power generation, this stimulus is created by the dependence that exists on
the traditional sources of generation, such as fossil sources, considering their impact on the environment
caused by emissions of greenhouse gases (GHG) [1].

Electricity generation in the Latin American region has been largely composed of two types
of sources: hydroelectric and fossil energy. In 2017, these two sources made up almost 88% of the
total generation, at 47.52% and 40.25%, respectively. There has been an important change in the use
of different types of energy compared to 1990—a time when there was almost total dependence on
generation by these two sources, at 95.76% of the total, and there was also a greater relative importance
of hydroelectric energy, which made up 65.69% of total energy compared to 33.43% of fossil sources [2].

Currently, developed and developing countries are concerned about increasing the proportion
of renewable sources within their energy matrixes, which has resulted from essential decisions to
address climate change [3]. This is supported by the fact that the electricity generation sector is the
most important for CO2 emissions, followed by the transport sector and the industrial sector [4],
although the use of renewable energy in Latin America and the Caribbean was lower in 2018, at 27.59%

Energies 2020, 13, 6624; doi:10.3390/en13246624 www.mdpi.com/journal/energies1
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of the total, compared with its usage proportion in the rest of the world, at 41.93% [5]. To this extent,
the comparison of the efficiency of electricity generation activity is a relevant task for policy makers,
particularly considering the emissions caused by generation activity.

The aim of this research is to evaluate the evolution of the technical efficiency of the electricity
generation sector of 24 countries in Latin America and the Caribbean during the period 2000–2016,
with a dynamic slack-based DEA model from an output-oriented perspective. The proposed model
considers a desirable output, an undesirable output and three inputs, of which two aim to capture the
temporal interdependence in the generation activity, which are called link variables. In our model,
the desirable output is the generation of electricity, while the undesirable output is the total CO2

emissions derived from the generation of electricity. Although Sánchez et al. [6] studied the evolution
of the efficiency of electricity generation in Latin American countries between 2006 and 2013, they did
not consider the possible temporal interdependence present in the activity, nor did they use the
installed capacity in the different generation sources as inputs or assume a weak disposability between
generation and CO2 emissions.

The contribution of this research is twofold at the country level: (1) it is the first study to incorporate
the dynamic component of the DEA methodology, capturing the possible temporary interdependencies
that exist in the generation activity when seen as a production system; and (2) it is the first investigation
to capture the assumption of weak disposability between fossil generation sources and CO2 emissions,
which affects the efficiency measures calculated by the DEA models.

The rest of the document is organized as follows. Section 2 presents the main studies related
to the DEA methodology as applied to the electricity sector. Section 3 presents the methodology,
which introduces the concepts that are used to capture the environmental and dynamic components,
and the methodology of DEA assessment by a non-radial model is also given. Section 4 shows the
descriptive statistics of the variables used in the evaluation; it also describes the electricity generation
sector and presents the results of the calculated efficiency levels for the 24 countries based on the
proposed dynamic DEA model. Section 5 presents the conclusions, discussions and limitations of
the study.

2. Literature Review

Recently, Data Envelopment Analysis (DEA) has become one of the main tools for environmental
assessment. This methodology was initially proposed by Charnes et al. [7], and since then it has
become an important tool for measuring relative efficiency in different fields [8]. This tool can serve as
a guideline for firms and policy makers. Since Faere et al. [9] introduced the concept of the undesirable
output, the use of DEA has widely spread in environmental assessment, becoming the most popular
application area within the DEA methodology [10]. This section presents a complete review of this
methodology and its application in the power generation sector, and its different variations in terms of
environmental models and dynamic models.

2.1. DEA in Power Generation

Several studies have implemented the DEA methodology to assess the efficiency of the electricity
generation sector at the generation firm level and at the geographical level.

Some works at the firm level include that of Golany et al. [11], which measured the efficiency
of power plants in Israel; the works of Shermeh et al. [12] and Khalili-Damghani et al. [13],
which investigated Iran regional power companies; the work of Yang and Pollit [14] regarding Chinese
coal-fired power plants; the work of Sueyoshi and Goto [15] regarding U.S. coal-fired power plants;
and the work of Cherchye et al. [16], which explored U.S. fossil and non-fossil plants. The last four
studies also included an environmental assessment, including the emission of polluting gases as an
undesirable output.

At the geographical level, Chang and Yang [17] measured the efficiency of the power generation
of municipalities in Taiwan, while Tao and Zhang [18] investigated 16 Chinese cities located in the
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Yangtze River Delta. These studies introduced environmental analysis considering different pollutants
of the air and water. Other works have focused on conducting electricity generation performance
assessment, and they have taken countries as decision-making units; among the researchers in this area
are Dogan and Tugcu [19], who evaluated the efficiency of the G-20 group; Whiteman [20] and Yunos
and Hawdon [21], who investigated 95 and 27 countries of the world, respectively; Bi et al. [22]
who considered 26 OECD member countries; Zhou et al. [23], who used information from 126 countries
around the world; Li et al. [24] who performed an analysis for the G-20 group; and Sánchez et al. [6],
who measured the efficiency of Latin American countries. These four last groups performed efficiency
evaluations that considered the undesirable outputs and external costs of the activity.

2.2. Environmental DEA

Policy makers must consider environmental efficiency assessment at a country level in order to
regulate to promote environmental protection and economic development. In this way, some studies
have involved undesirable outputs in the definition of DEA. The treatment of these undesirable
outputs within the DEA literature has been presented in three ways, according to Dyson et al. [25]:
(1) inverting the anti-isotonic factor, (2) subtracting the value of the undesirable factor from a large
number or (3) treating the undesirable output as an input. We have opted for the third strategy.

The DEA model for environmental assessment requires the incorporation of different production
factors (desirable outputs, undesirable outputs and inputs), and this requires all variables to be greater
than or equal to zero. Here, non-radial models satisfy this requirement; therefore, they can measure
the efficiency of DMUs (decision-making units) that contain negative or zero values in any of their
inputs or outputs.

Conventional energy efficiency measures that do not consider undesirable outputs are biased
because firms can lose their productive efficiency due to a negative output [26]. Following Faere et al. [9],
when evaluating the performance of producers, it makes sense to compensate for the supply of desirable
outputs, as well as to penalize the provision of undesirable outputs. In other words, “positive” and
“negative” factors should be treated asymmetrically when measuring a producer’s performance.
The performance measures outlined above, in fact, treat positive and negative factors asymmetrically,
valuing the former and ignoring the latter. This extreme form of asymmetry characterizes much of the
literature on measuring productivity and efficiency, so it is necessary to introduce concepts that allow
the smoothing of this approach.

Unlike traditional DEA models, the model proposed by Faere et al. [9] assumes that the reduction
of undesirable outputs is costly in terms of desirable outputs. To reduce undesirable outputs, part of
the production of desirable outputs must be sacrificed. In the literature, this implies moving from the
assumption that the technology of undesirable outputs is “freely (or strongly) disposable”, where the
variation of undesirable outputs does not represent any cost in terms of production, to the assumption of
“weakly disposable” outputs, where such variation involves a cost, given the conceptual incorporation
that implies that desirable and undesirable outputs are jointly produced. In this work, the desirable
outputs

(
ydε R+

)
are distinguished from the undesirable outputs (yuε R+) and the inputs are denoted

by x ε R+.
According to Faere et al. [9], mathematically, the concept of strong disposability between desirable

and undesirable outputs can be expressed as follows:
(
yu, yd

)
∈ P(x) →

(
yd − s

)
∈ P(x), s ≥ 0 (1)

Given a vector of inputs (x) and a production possibility frontier P(x), if a level yd can be reached,
then yd − s can also be produced for any s ≥ 0.

On the other hand, it is common that certain bad outputs cannot be separated from the
corresponding good outputs; therefore, to reduce a bad output, it is necessary to reduce the good

3
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output [27]. Within the DEA literature, this is the concept of weak disposability, and it can be denoted
as follows: (

yu, yd
)
∈ P(x) →

(
θyu, θyd

)
∈ P(x), with 0 ≤ θ ≤ 1. (2)

Given a vector of inputs (x) and a production possibility frontier P(x), on the one hand, a total
decrease of the undesirable output (yu = 0) is not possible unless the desirable output is also zero(
yd = 0

)
; on the other hand, it can only be decreased proportionally

(
yu, yd

)
when 0 ≤ θ ≤ 1. In this

case, yu and yd are called non-separable undesirable outputs and non-separable desirable outputs,
respectively. We consider that the weak disposability assumption in the activity generation activity is
necessary considering that it is not possible to generate electricity using fossil fuels without incurring
CO2 emissions.

2.3. Dynamic DEA

Traditional DEA models do not consider the interdependencies between consecutive periods.
This can be a problem in the case of electricity generation because the level of installed capacity
available for a country is determined by the installed capacity in the immediately preceding period,
which modifies the efficiency assessment [28]. Static DEA models assume that the inputs in period t
are mixed with the technology of period t to produce the outputs of period t.

Färe and Grosskopf [29] were the first to incorporate variables that connect consecutive periods,
called link flows, from carry-over equations into the DEA approach, allowing inputs to be stored by
modeling “savings” in period t to be used in period t+ 1. Later, Tone and Tsutsui [30] identified different
kinds of carry-over activities and proposed a dynamic slack-based model.

3. Materials and Methods

This section first presents the description of the data and the source of information; subsequently,
the definition of the variables that are part of the proposed model is presented; and finally, the strategy
used to measure the efficiency of the electricity generation of the countries of Latin America and the
Caribbean is shown.

3.1. Data and Sources

The data set used corresponded to annual data between 2000 and 2017 from 24 countries in
Latin America and the Caribbean. The data collected originated from two sources: The U.S. Energy
Information Administration (EIA) and the International Energy Agency (IEA). We collected the CO2

emissions from the generation of electricity from the IEA, while GDP, installed capacity and generation
of electricity were collected from the EIA.

3.2. Definition of the Variables

The proposed model includes a desirable output, an undesirable output, three inputs and two
link variables, which are described below.

• Desirable output

As a desirable output, we used the generation of electricity, measured in TWh, distinguishing
whether the generation sources were based on fossil sources—oil, gas and coal—or non-fossil
sources—nuclear, geothermal, solar, wind, biomass and waves—to capture the assumption of weak
disposability between CO2 emissions and electricity generation through fossil sources. This strategy
was used by Cherchye et al. [16] and Walheer [31] to isolate the emissions of three polluting gases,
but the latter used electricity generation as a necessary input to produce CO2 emissions and GDP.

4
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• Undesirable output

To capture the dependence between the generation of electricity based on fossil sources and the
CO2 emissions that they incur, we discriminated between energy from clean generation sources and
energy generated from fossil fuels. This strategy allowed us to capture the proportional variations
between the non-separable desirable output—fossil-generation—and the CO2 emissions, known in the
DEA literature as the assumption of weak disposability and introduced by Faere et al. [9].

As an undesirable output, we used the CO2 emissions generated by the electricity generation
activity, measured in MTm. Due to the availability of information, we used observed data for 2016 and
2017, while we estimated the data for the period 2000–2015 from the CO2 emissions from electricity and
heat production in each country in 2016 and the electricity generated from fossil sources in the same
year. For Guyana, we created an estimate for the entire period using the regression from other countries
because of the lack of information regarding CO2 emissions from electricity and heat production for
this country. We think that this measure represented a good proxy for CO2 emissions generated by the
electricity sector considering the high R-square of the regression of 0.9886.

• Inputs

We incorporated three inputs: the gross domestic product (GDP) per capita, the installed capacity
of non-fossil generation sources and the installed capacity of fossil generation sources. These last two
variables were also used to capture the inter-temporal dependence of electricity generation, entering the
model as link variables.

The GDP of each country has been used in different studies within the DEA methodology as a
desirable output [22,32–35]. We believe that, within the productive process presented by each DMU,
one of the main inputs is the GDP per capita, in the sense that high-income countries can benefit from
greater technological innovation and make greater efforts in R&D to improve energy efficiency [36].
This decision to use GDP per capita as an input was also based on studies that have evaluated the
causality between electricity generation and economic growth, finding a unidirectional relationship for
economic growth and electricity generation [37–39]. This indicator was measured in billions $2015
PPP. In addition, Dyson et al. [25] recommended the use of type of variables to control the lack of
homogeneity in the units tested.

The installed capacity has been used in different studies as an input for electricity generation.
For example, Yunos and Hawdon [21] and Li et al. [24] used the installed capacity of fossil sources
as an input without taking into account the different non-fossil sources of generation. In addition,
Whiteman [20], Chen et al. [36] and Dogan and Tugcu [19] used the installed capacity of non-fossil
sources in a disaggregated manner. This variable is measured in GW.

• Link variables

In this research, we considered that there is a dynamic component within the electricity generation
sector that depends on the installed capacity for the different generation sources. The main reasons for
this is as follows: (1) the level of installed capacity available for each country in year t is determined by
the installed capacity level in the immediately preceding term, t − 1 [28]; (2) it can be assumed that
the installed capacity in each country is a quasi-fixed input, and because of the large investment that
this entails, it makes it difficult to adjust this to optimum levels every year [40]; and (3) the level of
installed capacity in a year t has impacts on the generation in year t + 1, taking into account the fact
that this input also functions as a warehouse, either for electricity, through batteries, or of potential
generation—for example, the electricity power output that depends on the water flow in the penstock
and the water accumulated in the reservoir [41].

3.3. Model Approach

To measure the efficiency of electricity generation in the 24 countries mentioned, we propose a
dynamic slack-based DEA model and assume a constant return to scale (CRS). The model is based on
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the dynamic slack-based DEA model proposed by Tone and Tsutsui [30], which has been expanded
to include undesirable outputs and to capture the assumption of weak disposability between the
generation of electricity from fossil sources and emissions of CO2, presented in Tone [42].

The model structure is represented in Figure 1. We observe n countries over T terms. At each term
t, each country uses its respective inputs (GDP, non-fossil-fuel installed capacity and fossil-fuel installed
capacity) to produce the desirable output (non-fossil and fossil electricity generation). A variation in
fossil generation implies a proportional variation of the undesirable output (CO2). The link variables
connect consecutive terms (1, . . . , t − 1, t, t + 1, . . . , T); in our model, the level of installed capacity
available for each country in term t determines the installed capacity in the immediately succeeding
term, t + 1, and is determined by the installed capacity in the immediately preceding term, t − 1.

Figure 1. Model structure.

The dynamic DEA model defines a production possibility set for each term based on the observed
output and input values of the DMUs in each term t.

Following Zhou and Liu [43], the maximization of the desirable output and minimization of the
undesirable output can be reached with an additive DEA model with the next objective function:

max SDO_NFot + SDO_Fot + SUO_CO2ot. (3)

However, continuing to follow Zhou and Liu [43], this model cannot produce efficiency measures
directly; thus, output-oriented efficiency must be measured for each year, and the overall efficiency
measure for DMUo must be calculated while replacing the slacks in the following equations:

τ∗ot =
1

1 + 1
3

(
SDO_NFot
DO_NFot

+ SDO_Fot
DO_Fot

+
SUO_CO2ot
UO_CO2ot

) ; t = 2000, . . . , 2016 (4)

τ∗o =
1
17

2016∑
t=2000

τ∗ot (5)

where a country o will be globally efficient (τ∗o = 1) if and only if SDO_NOFot = SDO_Fot =

SUO_CO2ot = 0; ∀ t = 2000, . . . , 2016. In other words, the country will be efficient throughout
the period if it is efficient in each year. It should be noted that the evaluation of efficiency for the last
year is lost because temporary interdependence is introduced into the proposed model. We chose an
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output-oriented measure of efficiency as we aimed to evaluate, given the set of inputs, if there were
deficiencies in the desirable outputs or excesses in the undesirable output.

The production possibility set for the DMUo (country o, with o = 1, . . . , 24) under a CRS is defined
by Equations (1)–(9).

• Equations (1)–(3) are associated with constraints on inputs:

GDPot =
24∑

j=1

GDPjtλ
t
j + S_GDPot (6)

The GDP of country “o” must be less than or equal to the linear combination of the GDP of all
countries in each term t. The difference is the slack variable of the GDP of country o in term t (S_GDP).

IC_NFot =
24∑

j=1

IC_NFjtλ
t
j + SIC_NFot (7)

The non-fossil installed capacity (IC_NF) of country o must be less than or equal to the linear
combination of the non-fossil installed capacity of all countries in each term t. The difference is the
slack variable of the non-fossil installed capacity of country o in term t (SIC_NF).

IC_Fot =
24∑

j=1

IC_Fjtλ
t
j + SIC_Fot (8)

The fossil installed capacity (IC_F) of country o must be less than or equal to the linear combination
of the fossil installed capacity of all countries in each term t. The difference is the slack variable of the
fossil installed capacity of country o in term t (SIC_F).

The equation associated with the constraint on the separable desirable output is as follows:

DO_NFot =
24∑

j=1

DO_NFjtλ
t
j − SDO_NFot. (9)

The electricity generation from non-fossil sources (DO_NF) of country o must be greater than or
equal to the linear combination of electricity generation from the non-fossil capacity of all countries in
each term t. The difference is the slack variable of the electricity generation from non-fossil capacity of
country o in term t (SDO_NF).

Equations (5) and (6) capture the assumption of weak disposability between the electricity
generation from fossil sources and the emission of CO2. A variation of the non-separable desirable
output is designated by αtDO_Fot and is accompanied by the same proportional variation in
the non-separable undesirable output designated by αtUO_CO2ot. Equation (5) represents the
constraint on the non-separable desirable output. Equation (6) is the constraint of the non-separable
undesirable output:

αtDO_Fot =
24∑

j=1

DO_Fjtλ
t
j − SDO_Fot (10)

The electricity generation from fossil sources (DO_F) of country o must be greater than or equal to
the linear combination of electricity generation from the fossil capacity of all countries in each term t.
The difference is the slack variable of the electricity generation from the fossil capacity of country o in
term t (SDO_F).

αtUO_CO2ot =
24∑

j=1

UOCO2otλ
t
j + SUO_CO2ot (11)
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The CO2 emissions caused by the electricity generation activity (UO_CO2) of country o must be
less than or equal to the linear combination of CO2 of all countries in each term t. The difference is the
slack variable of the CO2 of country o in term t (SUO_CO2).

Two carry-over equations that guarantee the continuity of the link flows between the terms t and
t + 1 are as follows:

24∑
j=1

IC_NFjtλ
t
j =

24∑
j=1

IC_NFjtλ
t+1
j ; t = 2000, . . . , 2016 (12)

n∑
j=1

IC_Fjtλ
t
j =

n∑
j=1

IC_Fjtλ
t+1
j ; t = 2000, . . . , 2016 (13)

The installed capacity in non-fossil and fossil sources in each term t is determined by the respective
installed capacity in term t − 1.

The assumption of a CRS in the production possibility set is captured by the following condition:

24∑
j=1

λt
j ≥ 0 (14)

Additionally, non-negativity conditions are as follows:

S_GDPt, SDO_NFt, SDO_Ft, SIC_NFt, SIC_Ft, SUO_CO2t, ≥ 0 (15)

We test the CRS assumption using the following test introduced by Banker [44]:

Fj =

∑N
j=1

(
θ̂CCR

j − 1
)2

∑N
j=1

(
θ̂BCC

j − 1
)2 (16)

where θ̂CCR is the calculated efficiency measure that assumes a CRS, as proposed by Charnes et al. [7],
and θ̂BCC is the calculated efficiency measure that assumes a variable return to scale (VRS), as proposed
by Banker et al. [45]. This calculated value is asymptotically F-distributed with (N, N) degrees of
freedom. If not rejected, the CRS is accepted.

4. Results

This section is composed of two parts: in the first part, we show the descriptive statistics of the
variables used for the 24 countries of the sample between 2000 and 2017; in the second part, we analyze
the efficiency measure in two levels—at the aggregate level and at the country group level.

4.1. Descriptive Analysis of the Variables

Table 1 presents the mean and standard deviation of the set of data used at the country level,
which was used to assess the relative efficiency of electricity generation.

8
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Table 1. Mean and standard deviation at the country level.

Country
(1)

Statistic
(2)

Desirable Ouput Undesirable Output Input

Non-Fossil
Gen. (3)

Fossil
Gen. (4)

CO2 (5)
GDP Per
Capita (6)

Ins. Cap.
Non-Fossil (7)

Ins. Cap.
Fossil (8)

AR
Mean 41.00 70.00 44.23 18,412.81 11.78 20.53

SD 3.09 16.80 9.79 2268.57 0.68 3.40

BO
Mean 2.30 3.85 3.64 5656.90 0.56 1.22

SD 0.21 1.71 0.86 862.72 0.09 0.37

BR
Mean 400.33 62.29 40.93 14,394.79 90.36 18.26

SD 62.27 34.45 22.37 1544.55 19.02 6.45

CH
Mean 27.04 31.03 21.45 19,981.79 6.37 9.48

SD 3.83 8.83 6.83 3006.13 1.73 3.08

CO
Mean 43.89 13.62 9.84 11,522.65 9.78 4.63

SD 7.07 5.65 3.53 1833.39 1.16 0.20

CR
Mean 8.62 0.42 1.50 13,297.63 1.94 0.54

SD 1.24 0.34 0.55 1926.17 0.47 0.18

CU
Mean 0.75 15.78 10.95 10,079.38 0.45 5.25

SD 0.17 1.74 0.90 2137.05 0.25 0.87

DR
Mean 1.71 12.01 8.83 11,363.87 0.57 2.69

SD 0.58 2.37 1.48 2262.95 0.15 0.26

EC
Mean 10.42 7.51 5.98 9819.95 2.35 2.47

SD 3.55 2.75 1.71 1232.25 0.85 0.69

ES
Mean 3.17 2.09 2.54 6742.26 0.75 0.74

SD 0.64 0.34 0.50 542.44 0.15 0.17

GU
Mean 5.32 3.54 3.65 7097.37 1.36 1.51

SD 1.66 0.62 0.50 472.13 0.61 0.28

HA
Mean 0.19 0.51 1.60 1736.84 0.06 0.21

SD 0.07 0.27 0.26 59.55 0.00 0.04

HO
Mean 2.81 3.43 3.45 4118.70 0.75 0.94

SD 1.00 0.90 0.56 378.25 0.35 0.23

JA Mean 0.32 4.79 4.27 8742.39 0.09 1.03
SD 0.15 1.41 0.99 239.61 0.04 0.17

MX
Mean 50.27 201.74 126.31 17,608.92 15.22 42.87

SD 6.48 31.75 19.44 746.11 2.67 6.96

NI
Mean 1.32 2.07 2.55 4361.85 0.40 0.70

SD 0.72 0.18 0.39 581.76 0.16 0.15

PN
Mean 4.46 2.69 2.95 16,470.64 1.20 0.87

SD 1.44 0.68 0.46 4310.40 0.53 0.25

PR
Mean 54.27 0.00 1.24 9911.98 8.24 0.01

SD 4.33 0.00 0.44 1439.28 0.64 0.01

PE
Mean 21.04 12.23 8.70 9956.29 3.67 5.05

SD 3.61 6.89 3.92 2319.50 0.81 2.12

TT
Mean 0.01 7.56 5.83 29,570.22 0.01 1.92

SD 0.01 1.64 0.84 4795.99 0.00 0.49

UR
Mean 8.40 1.28 2.04 16,976.87 2.01 1.02

SD 2.71 1.12 0.91 3483.31 0.64 0.39

VE
Mean 74.21 32.30 22.05 16,547.00 14.33 11.30

SD 9.66 6.16 4.95 2198.72 0.87 3.73

GU
Mean 0.00 0.82 1.90 6075.02 0.03 0.33

SD 0.01 0.12 0.08 1059.76 0.01 0.04

SU
Mean 0.99 0.71 1.72 13,847.67 0.19 0.23

SD 0.23 0.08 0.32 1846.36 0.00 0.04

TOTAL Mean 31.79 20.51 14.1 11,845.57 7.19 5.58

Source: Own elaboration. Labels: AR: Argentina, BO: Bolivia, BR: Brazil, CH: Chile, CO: Colombia, CR: Costa Rica,
CU: Cuba, DR: Dominican Rep., EC: Ecuador, ES: El Salvador, GU: Guatemala, HA: Haiti, HO: Honduras, JA:
Jamaica, MX: Mexico, NI: Nicaragua, PN: Panama, PY: Paraguay, PE: Peru, TT: Trinidad and Tobago, UR: Uruguay,
VE: Venezuela, GY: Guyana, SU: Suriname. Inst. Cap.: installed capacity.

• Electricity generation

In 2017, the 24 countries in the study had a total electricity generation of 1545.74 TWh, representing a
growth of 63.62% compared to the year 2000, when the recorded generation was 944.73 TWh. Of the total
generated by the 24 countries over the period 2000–2017, four countries contributed 74.27% (columns 3
and 4). These countries were Brazil 36.86%, Mexico 20.08%, Argentina 8.84% and Venezuela 8.49%.

During the period 2000–2017, the generation mostly originated from non-fossil sources,
representing 60.78% of the total electricity generated. However, it is observed that there has been
a wide variation in the share of electricity generation by types of sources. For example, in 2017,

9
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Trinidad and Tobago, Guyana and Cuba had a lower share of non-fossil sources, at 0.04%, 4.04%
and 4.05%, respectively, while countries such as Paraguay, Costa Rica and Uruguay had high shares,
at 100%, 99.69% and 98.42%, respectively.

• CO2 emissions

Regarding the CO2 emissions caused by the electricity generation sector (column 5), four countries
stand out as maximum polluters: Mexico, Argentina, Brazil, Venezuela and Chile, representing 75.40%
of total emissions for the analyzed period. This is due to non-fossil sources being more involved
in the composition of their generation matrix, or the fact that these countries have high volumes of
generated electricity.

Mexico was the country with the highest level of emissions between 2000 and 2017, with an annual
average of 126.31 MTm, depending on the high level of fossil sources of the total electricity generation
in the period, at 80.05%. The country with the second highest level of emissions was Argentina, with an
annual average of 44.2 MTm emissions, because of the participation of fossil sources in its energy
matrix, which amounted to 63.06% in the period observed. The third country with the highest level
of emissions was Brazil; considering that it has been strongly oriented towards electricity generation
with non-fossil sources in the period, at 86.65%, the result can be explained by its high volume of
generation, annually emitting an average of 40.9 MTm. Venezuela had an annual average emission
level of 22.0 MTm, which is explained by the high volume of electricity generation and by the high
participation of fossil sources in the studied years, at 30.33%. Finally, Chile had an annual average of
21.45 MTm of emissions of CO2, which could be explained by its fossil-source-dominated generation
of electricity, at 53.43%.

• GDP per capita

The aggregate size of the economy of the countries analyzed, captured by the GDP, increased from
$6256 billion to $9633 billion from 2000 to 2017 ($2015 PPP), indicating an aggregate growth of 53.99%.

In per capita terms, large differences can be observed between countries in the studied period.
The country with the highest per capita income in 2017 was Trinidad and Tobago, with 30,347
($2015 PPP), followed by Chile with 23,782 ($2015 PPP), while the two poorest countries were Haiti
and Honduras, with per capita incomes of 1767 and 4773 ($2015 PPP), respectively.

• Installed capacity

Between 2000 and 2017, the installed capacity in the region showed an expansion of 87.89%,
from 222.52 GW to 418.09 GW. In addition, the weight of the installed capacity of non-fossil sources
was greater than the weight of fossil sources in the period, comprising from 59.98% to 57.34% of the
total capacity in the region.

Between 2000 and 2017, Brazil was also highlighted as the country with the highest average
installed capacity of non-fossil sources, at 90.36 GW, and Mexico was the country with the highest
installed capacity of fossil sources, at 42.87 GW.

4.2. Electricity Generation Sector and Efficiency Measure

This subsection is composed of two parts: in the first part, we analyze the global measure
of efficiency based on the spatial distribution of the measure as an aggregate; in the second part,
we analyze the relative efficiency individually and expose the sources of inefficiency according to the
averages of the relative slacks found by the model.

4.2.1. Aggregate Spatial Analysis of the Overall Efficiency Measure

We calculate the efficiencies with the proposed model with a CRS and with a VRS to test the
assumption of a CRS following the Banker test [44]. To calculate the F value, we eliminate the

10
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measured efficiency of Guyana due to the lack of information for the first five years. Our calculated F
is 1.501/7.58 = 1.981; that is smaller than 2.014, and thus, the null hypothesis of a CRS is not rejected
with a p-value of 0.05.

Figure 2 presents the spatial distribution of the overall measure of efficiency, aggregated in four
ranges from the information in Table 2.

Figure 2. Global measure of efficiency of electricity generation.
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According to the map, it is difficult to establish a spatial pattern that contributes to the explanation
of global efficiency levels for each country. However, at least three aspects can be highlighted.

On the one hand, all of the six Central American countries—Costa Rica, El Salvador, Guatemala,
Honduras, Nicaragua, and Panama—belong to the two lowest global efficiency levels. On the other
hand, of the five countries in the Caribbean—Cuba, Jamaica, Dominican Republic, Haiti and Trinidad
and Tobago—only Cuba is in the highest global efficiency level. Finally, of the 12 South American
countries, eight are in the two highest levels—Argentina, Brazil, Chile, Colombia, Ecuador, Paraguay,
Peru and Venezuela—and four are in the two lowest global efficiency levels—Bolivia, Guyana, Suriname,
and Uruguay.

It is worth investigating whether there is any spatial pattern in the distribution of the global
efficiency measure. Moran’s Index (Moran’s I) is the most commonly used measure of spatial
autocorrelation to describe the degree of spatial concentration or dispersion for variables included in
an analysis [46]. According to Moran (1950), Moran’s I is calculated as follows:

I =
N
S

∑N
i=1

∑N
j=1 wij(xi − x)

(
xj − x

)
∑

i=1(xi − x)2 (17)

where N is the number of spatial units indexed by i and j; x is the variable of interest; x is the mean of x;
and wij is a matrix of spatial weights such that (1) the diagonal elements wii are equal to zero and (2)
the non-diagonal elements wij indicate the way that a region i is spatially connected with the region j.
S is a scalar term that is equal to the sum of all wij.

When the Moran’s I is positive, this implies that large values for the variable are surrounded
by other large values, and when the Moran’s I for a variable is negative, then the large values are
surrounded by small values. Therefore, a positive spatial autocorrelation implies a spatial clustering
for a variable, whereas a negative spatial autocorrelation suggests a spatial dispersion.

Figure 3 presents the Moran’s I of global efficiency measures of electricity generation for 21
countries that have at least one neighbor.

Figure 3. Moran Index of global efficiency measure of electricity generation.

According to the figure, the global efficiency measure presents a very slight negative spatial
autocorrelation of −0.0326; thus, the null hypothesis of a random spatial distribution of the measure is
not rejected with a p-value of 0.05.
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4.2.2. Measure of Efficiency of Electricity Generation

Table 2 presents the evolution of the efficiency for each country and for each year of the period
2000–2016; in addition, it contains the global measure of efficiency for each country, which was
calculated as the yearly average of efficiency.

On the left-hand side of Figure 4, we present the evolution of the efficiency of the 24 countries
for the period 2000–2016, dividing them into the three groups. On the right-hand side, we show the
participation of slacks for each country. Slacks can be interpreted as deficits in desirable outputs or
excesses in undesirable output given the production possibilities set.

Our results confirm that, although there is currently a common agenda for Latin America to
improve its energy efficiency, the incentives granted to increase efficiency have been heterogeneous
throughout the countries in the region [47]. Usually, programs related to energy efficiency are led by
public organizations [47], who tend to be more efficient in the development of multi-tasking than private
firms [48]. Energy-efficiency entities are key to control and implement programs to support energy
efficiency, but they are not enough by themselves to promote energy-efficiency improvements [47],
and a complementary mechanism would be the use of incentives. There are different types of
incentives that can be used to improve the energy efficiency of a country; among the most used in
generation sector are mandatory performance standards and market-based and information-based
incentives [49]. Mandatory codes and standards are regulatory instruments regarding energy efficiency.
Market-based incentives are related to the development of auctions and tradable emission products,
among others [49]. Finally, governance and support represent the final step for the implementation of
energy-efficiency policies. This refers to the mechanisms used by governments in order to incentivize
energy efficiency.

According to their level of efficiency, we have classified the countries into three groups:
high efficiency level, medium–high efficiency level and low–medium efficiency level.

The first group is made up of 11 countries, four of which are not in the figure because they
make up an efficient border and registered efficiency levels of 100 for all years; they are Brazil, Cuba,
Mexico and Paraguay. These countries have an overall efficiency of 100, which is equivalent to a
solution of zero slacks in each year, and implies that they have no deficiencies in desirable outputs or
excesses in undesirable output given the set of inputs. In relation to Mexico and Paraguay, the results
coincide with the work of Sánchez et al. [6], who found complete efficiency between 2006 and 2013 for
these countries.

We highlight Mexico and Brazil because they have consolidated their institutional and regulatory
frameworks to support energy efficiency activities [50], and have been recognized by IEA [51] for having
a high coverage potential of regulatory instruments in terms of energy efficiency. Auctions focused on
improving the efficiency of energy were conducted in the state of Roraima in Brazil [47], and also this
country has implemented the Energy Efficiency Obligation Program [52]. In Paraguay, the National
Committee for Energy Efficiency (CNEE) was created in 2011, which is responsible for the preparation
and implementation of the National Plan for the Efficient Use of Energy [47]. Regarding Cuba,
we consider that it is part of this ranking because the relationship between electricity generation,
GDP and CO2 emissions corresponds to an efficient behavior, confirming the results of Somoza et al. [53],
who used a stochastic frontier as their methodology for analysis.

The other seven countries in the first group are Argentina, Chile, Colombia, Perú, Venezuela,
Ecuador and Jamaica. In this group, a greater variability of efficiency is observed for the first years
compared to the variability of the last years. For these countries, the most important source of
inefficiency was non-fossil generation. In Venezuela and Argentina, their total inefficiency came from
this source. Chile and Colombia presented deficiencies in the two desirable outputs, with non-fossil
generation being their main source of inefficiency. Finally, Jamaica, Ecuador and Peru had deficiencies
in the two desirable outputs and excesses in the undesirable output. For Jamaica and Ecuador, the main
source of inefficiency was non-fossil generation followed by fossil generation, while for Peru the main
source of inefficiency was CO2 emissions followed by fossil generation.
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Figure 4. Efficiency evolution and relative slacks by groups.

We note that the level of consolidation of the institutional environment of these countries is mixed.
Colombia, Perú, Venezuela and Ecuador established legal and regulatory frameworks; Colombia did
this in the same year as Brazil, while Peru, Venezuela and Ecuador did this long before the other
countries. Chile is currently in the process of preparing or discussing a national law, while Jamaica
does not include energy efficiency in its main national laws [47]. Similar to Mexico and Brazil, Chile is
recognized for having defined some regulatory instruments in terms of energy efficiency [51], and also,
similar to Brazil, for having an obligation scheme [52]. Colombia is the country with the highest
number of uncharged entities to regulate and monitor the energy efficiency law.

In the second group, there are eight countries with medium-high efficiency levels, ranging from
73 to 82. The countries of Bolivia, Dominican Republic, El Salvador, Guatemala, Honduras, Nicaragua,
Panamá and Suriname are included in this group. This group is characterized by exhibiting an
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increasing trend in the evolution of efficiency and degree of convergence. However, this claim should
be tested. In Suriname, Bolivia, El Salvador, Guatemala and Nicaragua, the main source of inefficiency
came from CO2 emissions followed by non-fossil generation; however, of these five, only Suriname
did not present slacks in fossil generation. In Honduras and Panama, the main source of inefficiency
was non-fossil generation, followed by CO2 emissions. Finally, almost all of the inefficiency of the
Dominican Republic came from non-fossil generation, and it did not present excesses in CO2 emissions.

The legal framework in terms of energy efficiency in these countries is varied. For example, in the
early 2010s, Panamá developed a national law on energy efficiency, while Nicaragua did so in the
mid-decade. However, Panamá is aligned with Mexican labeling standards, while the rest of the
Latin Americas countries are aligned with the programs defined in the European Union or the United
States [47]. The Dominican Republic, El Salvador, Guatemala and Honduras are currently developing
national laws, which are either in the process of preparation or in discussion, and we highlight the
fact that the Dominican Republic and Guatemala have planned to have only one uncharged entity
to regulate and monitor the national law. Finally, Bolivia is the only country that has not shown any
regulatory development in this matter [47].

Finally, the last group comprises five countries with medium and low global efficiency,
with scores below 54. The countries are Costa Rica, Guyana, Haiti, Trinidad and Tobago and Uruguay.
Regarding Costa Rica, Uruguay and Haiti, the results coincide with those obtained by Sánchez et al. [6],
who found very low efficiency levels for these countries. This group presents a very high volatility in
its efficiency levels, exhibiting scores above 70 and below 25, as is the case of Uruguay, Costa Rica,
Guyana and Trinidad and Tobago. In this group, the most important source of inefficiency was
CO2 emissions. Trinidad and Tobago was the only country in this group in which the inefficiency
measure depended on only one component: non-fossil generation. The inefficiency of Guyana and
Haiti depended on two sources—non-fossil generation and CO2 emissions—although in Guyana,
non-fossil generation was the main source of inefficiency while CO2 emissions were predominantly
responsible in Haiti. Finally, the inefficiency in Costa Rica and Uruguay was caused by deficiencies in
the two desirable outputs and excesses in the undesirable output, with the latter being the main source
of inefficiency. Finally, the inefficiency in Costa Rica and Uruguay was caused by deficiencies in the
two desirable outputs and excesses in the undesirable output, with the latter being the main source of
inefficiency. Regarding Uruguay and Costa Rica, they present an average annual efficiency of around
51 and 38, respectively, although Uruguay established both legal and regulatory frameworks in the
same year as Brazil and Mexico, and Costa Rica was the first country in Latin America to define a Law
of Rational Use of Energy [47]. In addition, IEA [51] did not report the coverage potential of existing
mandatory codes and standards in terms of energy efficiency. Haiti and Trinidad and Tobago do not
include energy efficiency in any major national laws.

5. Conclusions

In this research, we have carried out an evaluation of the evolution of the technical efficiency of
electricity generation for 24 countries in Latin America and the Caribbean during the period 2010–2016.
We used the DEA methodology, which allowed the evaluation of the relative efficiency of different
production systems for different DMUs through a dynamic model of a CRS based on slacks and
incorporated the assumption of weak disposability between electricity generation from fossil sources
and CO2 emissions. Additionally, we tested the assumption of a CRS with the test proposed by Banker
(1996) and concluded that the hypothesis of a CRS was not rejected. The proposed model allowed us
to establish inefficiencies in the generation methods of 20 of the 24 countries studied.

When both efficient countries and sources of inefficiency are identified, the results found in
the research provide relevant information for the 20 inefficient countries, because, through learning,
they can adopt best practices in the productive process of generation, with those countries that make
better use of their productive capacity as reference points.
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The methodology used has some advantages and disadvantages that are worth noting.
The advantages mainly correspond to three aspects: (i) the method does not require an explicit
mathematical specification for the production or cost function, (ii) it can handle multiple inputs and
outputs simultaneously and (iii) the source of the inefficiency can be identified, quantified and analyzed
for each DMU.

Regarding the disadvantages, five aspects are particularly important: (i) the results are sensitive
to the selection of inputs and outputs, (ii) as a non-parametric technique, the best specification cannot
be corroborated, (iii) the number of efficient DMUs increases with the number of inputs and outputs,
(iv) the measurement of efficiency is sensitive to outliers, and (v) the dynamic DEA assumes implicitly
that there is no technological change over time. Regarding the first disadvantage, in this research,
we did not have access to information associated with the labor used in the generation of electricity
in each country, which, without a doubt, is an important productive factor of the activity. Therefore,
for future studies, it would be interesting to introduce this variable, as previously incorporated in the
study of Bi et al. [22].

Another important point is that this study focuses solely on the measurement of the technical
efficiency of electricity generation, leaving aside the evaluation of the efficiency of allocation. Because of
this, we did not consider the electricity rates in each country. The countries found in this study to be the
most efficient do not have lower rates per unit of electricity than those that are less efficient (in terms
of technical efficiency). Besides, the total losses of electricity in the transmission and distribution
systems are not considered; therefore, the study does not include an evaluation of the efficiency of the
electricity systems.

Finally, the results suggest that the most efficient countries have developed an institutional and
legal context for energy efficiency, accompanied by other market incentives, as well as information
mechanisms to improve energy efficiency. While less-efficient countries have developed the legal
context recently or do not plan to do so yet, these types of countries should implement the strategies of
Brazil or Mexico, which border these countries.
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Nomenclature

DEA Data envelopment analysis
DMU Decision-making units
GHG Greenhouse gases
GW Gigawatt
TWh Terawatt-hours
MTm Million metric tons
DO_NF Desirable output: non-fossil generation
DO_F Desirable output: fossil generation
GDP Gross Domestic Product
IC_NF Installed capacity: non-fossil sources
IC_F Installed capacity: fossil sources
SDO_NF Slack associated with desirable output: non-fossil generation
SDO_F Slack associated with desirable output: fossil generation
SUO_CO2 Slack associated with undesirable output: CO2 emissions
S_GDP Slack associated with GDP per capita
SIC_NF Slack associated with installed capacity: non-fossil sources
SIC_F Slack associated with installed capacity: fossil sources
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Bożena Babiarz 1,2,* and Władysław Szymański 2
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Abstract: Changing climatic conditions cause the variability of the parameters of the building’s
surroundings, which in turn causes both the gains and losses of heat to change over time. There is
variability in both daily and annual cycles. Meeting the requirements of thermal comfort in rooms
requires maintaining the required parameters, including constant temperature. Heat gains and losses
must be balanced, and this balance is ensured through appropriate heating systems. At the same
time, the above means that the demand for heating buildings is not constant but depends on external
weather conditions and the energy efficiency of the building. This, in turn, affects the thermal inertia,
causing changes in the partition temperature to occur slower than the changes in air temperature.
Therefore, the amplitude of the heating power changes is not proportional to the amplitude of the
outside air temperature change. The paper presents an example of the analysis of thermal dynamics
in buildings. Various aspects of heat transfer in the building were investigated taking into account
the transient conditions. The variability of temperature over time at different depths of the partition
was analysed, showing the results graphically. The periodic variability of the outside air temperature
and the intensity of solar radiation were described by the Fourier series. Moreover, the article shows
the influence of the thermal insulation thickness of the external wall on the annual amplitude of
temperature changes and on the duration of the heating season, which is important from the point of
view of optimization.

Keywords: dynamics; heat transfer in buildings; heat losses; buildings; thermal power; heating

1. Introduction

The issue of heat transfer dynamics is closely related to the subject of the energy efficiency of
buildings, which is important at the design and construction stages, as well as during the operation of
buildings or their parts. This is visible in many legal regulations and policies aimed at improving the
energy efficiency of buildings. This is due to the fulfillment of the provisions of Art. 7 of Directive
2002/91/EC [1] and Art. 20 of Directive 2010/31/EU on the energy performance of buildings [2],
according to which European Union Member States must take measures to provide all participants
in the construction process with a wide range of information on different methods and practices for
improving the energy performance of buildings. Moreover, Art. 12 of Directive 2012/27/EU on energy
efficiency [3] obliges EU Member States to take appropriate measures to promote and enable the
efficient use of energy by consumers. The provisions of the above directives have been implemented in
the Polish legal system through Art. 11 sec. 1 of the Act of 15 April 2011, amended on 20 May 2016
on energy efficiency, [4] and Art. 40 of the Act of 29 August 2014 on the energy performance of
buildings [5]. According to Directive (EU) 2018/844 of the European Parliament and of the Council of
30 May 2018 [6], amending Directive 2010/31/EU on the energy performance of buildings and Directive
2012/27/EU on energy efficiency, clear and ambitious targets for the renovation of the existing building
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stock have a great significance. Therefore, efforts to improve the energy performance of buildings
would actively contribute to enhance the energy independence of the Union and would also have
enormous potential to create jobs in the Union. In this context, Member States should take into account
the need to clearly link their long-term renovation strategies to relevant initiatives to support skills
development and training in the construction and energy efficiency sectors. These provisions oblige
the minister responsible for construction, spatial planning, and development and housing to conduct
information, education, and training activities regarding available energy efficiency improvement
measures, as well as to conduct a campaign of information to improve the energy performance of
buildings. The purposefulness and methodology of determining the energy performance of a building
result from the regulations [7,8]. Activities in the field of improving the energy efficiency of buildings,
which are the subject of many scientific publications, such as [9], are part of shaping the climate and
energy policy, ensuring, inter alia, the reduction of greenhouse gas emissions and constitute one of
the most important challenges resulting from membership in the European Union. The Union is
committed to efforts to develop a sustainable, competitive, safe and low-carbon energy system while
maintaining the security of heat and energy supplies. In the context of infrastructure responsible
for ensuring the security of heat supply, an important issue is its assessment in the aspect of supply
security, taking into account economic and environmental conditions, presented in the paper [10].
The results of energy saving calculations may be of interest for the investors, engineers, and policy
makers who intend to minimize the difference between the planned and real energy savings analyzed
in the paper [11]. Aspects of energy savings and energy supply management in buildings have been
analyzed in many publications, e.g., papers [12,13], with elements of heat supply safety simulation
presented in the paper [14]. These issues play an important role in social, technical, and political terms.
These aspects are related also with heat losses in the buildings and district heating systems, which was
also underlined in the work [15]. The analysis of sensitivity of energy distribution for residential
buildings is presented in the paper [16]. The energy reduction effects of the thermal labyrinth system
were analyzed in the paper [17].

In changing climatic conditions, phenomena occurring in buildings are influenced by a number of
parameters, such as: air temperature and humidity, wind direction and speed, cloudiness, azimuth and
height of the sun, solar radiation, or even the management of the surroundings. The analysis of external
climate parameters, such as temperature, air humidity and wind conditions, for the needs of outdoor
thermal comfort have been included in paper [18].

The heat balance in buildings results from the analysis of heat losses and gains. It is made
for a building, assuming appropriate parameters in order to select appropriate devices to meet the
requirements of thermal comfort. Example of analysis of indoor air parameters contain the work [19,20].
Thermal comfort optimization in microgrids equipped with renewable energy sources and energy
storage units was analyzed in the paper [21].

Issues of heat transfer in heat exchangers was emphasized in the work [22]. There is a correlation
between some parameters of the isolation of buildings and the wind free stream velocity and
wind-to-surface angle. In the work [23], it has been shown that the convective heat transfer coefficient
value strongly depends on the wind velocity. The influence of the thermal insulation thicknesses of
external walls on heating cost from the ecological and economic assessment is analyzed in [24].

The way to achieve high energy efficiency of buildings along with the required quality of
the internal environment are advanced technologies in both control [25] and construction where,
for example, phase change materials can be used [26]. Examples of building energy management
analyzes using increased thermal capacitance and thermal storage management are shown in work [27].
Tools for increasing energy efficiency in the examples [28] and in the integration of HVAC systems are
presented in the works [29,30].

In order to analyze the modelling and simulation of heat transfer in buildings, the theory and
application of this type of tool are collected and characterized by Clarke [31]. The methods to analyzing
building energy and control systems are often used, such as using the equation-based, object-oriented
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Modelica in the paper [32]. Methods based on the coupling of three different types of simulation models,
namely spectral optical model, computational fluid dynamics model, and building energy simulation,
are presented in [33]. Physical phenomena, notably optical, thermodynamic, and fluid dynamic
processes, have been analyzed for commercial buildings with double-skin façades. The modelling
of heat transfer taking advantage of heat energy accumulation in building walls is the goal of the
work [34]. The paper is focused on the future optimization of a control strategy. The issue of simulating
heat transfer through point thermal bridges is the subject of the paper [35].

On the basis of the literature analysis of the subject of this work, it can be stated that there is a lack of
ordering and development of methods for analyzing heat transfer dynamics using changeable external
conditions. Existing works in this field mainly deal with the issues of energy control and control
of the HVAC system’s parameters, while there are no studies taking into account the changeability
of atmospheric conditions and their impact on the dynamics of heat transfer. We realize that this is
important in a changing climate, where the heating season and the summer season stand out. The issue
presented in the article may be helpful in the analysis of the thermal inertia of a building in order to
optimize the operation of HVAC systems.

The literature review presented in the article confirms that the approach to dynamics of heat
transfer in buildings, proposed in the manuscript, is innovative with regard to the analysis of the
impact of the variability of external conditions on energy efficiency and it was not previously applied
in this way. This issue was the subject of this work.

2. Methodology

The room can be treated as a closed object, limited by building partitions, located in the space,
treated as the surroundings. Due to the lack of a thermodynamic equilibrium between them, there are
energy interactions between the room and the surroundings. To explain it simply, there is a heat
transfer, considered as heat losses or gains.

Heat gains can originate from:

– heating, QH,
– the sun through non-transparent partitions, QSE,
– the sun through transparent partitions, Qos,
– permeating from adjacent rooms, Qiw,
– people, Ql,
– devices, Qu,
– lighting, Qe

Heat losses can be caused:

– by penetrating through the external partitions Qsi,
– by penetrating into adjacent Qsw rooms,
– for QV ventilation.

The thermal balance includes heat fluxes presented schematically in Figure 1.
Heat gains from people Ql, from devices Qu, and from lighting Qe can be taken together as internal

heat gains Qw.
Qw = Ql + Qu + Qe (1)

Due to variable environmental parameters, both heat gains and losses change over time. For a
room to be kept at a constant temperature, the heat gains and heat losses must be balanced, and this
balance is ensured through appropriate heating systems. At the same time, the above means that
the demand for heat for heating facilities is not constant but depends on external weather conditions.
The weather conditions that determine heat exchange are the temperature of the outside air and
solar radiation.
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Figure 1. Balance sheet diagram.

Due to the thermal inertia, changes in partition temperature are slower than changes in air
temperature. Therefore, the amplitude of changes in heating power Qg is not proportional to the
amplitude of outside air temperature change Te.

The equation for the heat balance of the room is as follows:

Qg + Qos + Qw = Qo + Qsi + QV + Qsw (2)

The individual components of Equation (1) have been explained below.
Heat transferred from indoor air to the wall:

Qsi = αi·Asi·(Ti − Twi) (3)

Heat transferred from indoor air to interior walls:

Qsw = αi·Asw·(Ti − Tsw) (4)

The heat of solar radiation penetrating the window [8]:

Qos = z·ws·I·Ao (5)

Heat from internal sources:
Qw = qA·Af (6)

Heat to prepare the ventilation air:

QV = V·ρ·cp·(Ti − Te) (7)

or
Qw = VVe·Af (8)
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Heat loss through the window:

Qo = Uo·Ao·(Ti − Te) (9)

The temperature of the internal surface of an outer wall is a result of the influence of the inner
environment and the heat conduction in this wall.

The heat conduction in the wall is caused by the temperature distribution, which is unsteady due
to changing external climatic conditions.

The temperature of the outer surface of the outer wall is influenced by the transfer of heat to the
outside air, the absorption of solar radiation, and the emission of radiation to the sky.

Heat transferred from the outer wall surface to the outside air:

Qse = αe·Ase·(Twe − Te) (10)

Radiant heat losses from the outer wall to the skyfall:

Qsen = σ·εsn·Ase·
(
T4

n − T4
we

)
(11)

Solar radiation of heat absorbed by the outer surface of the outer wall [8]:

Qre = εs·Ase·I (12)

Signs:

αi—coefficient of heat transfer from the wall surface to the internal air,
αe—heat transfer coefficient from the external wall surface to the outside air,
Asi—the surface of the outer wall inside the room,
Asw— the surface of the internal walls of the room,
Ase—the outer surface of the outer wall,
Af—reference surface (floors),
Ao—window area,
V—ventilation air stream,
qA—indicator of internal heat sources,
VVe—ventilation rate,
z—shading coefficient,
ws—radiation transmittance coefficient,
σs = 5.67 × 10−8 [W/m2K4]—radiation constant,
εsn—radiation absorption coefficient of the outer surface of the outer wall,
εs—radiation emission coefficient of the outer surface of the outer wall,
I—solar radiation intensity,
Ti—internal air temperature,
Te—outside air temperature,
Twi—temperature of the inner surface of the outer wall,
Tsw—surface temperature of internal walls,
Twe—external wall surface temperature,
Tn—skyfall temperature.

Equation (2) shows the required heat output to heat the room during the heating season.

Qg = (Qo + Qsi + QV + Qsw) − (Qos + Qw) (13)
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The use of a heating device with the required thermal power and automatic temperature control
results in maintaining the room temperature in accordance with the regulations [7].

In most cases, this temperature is taken as a constant value (Ti = const).
Outside the heating season, the heating devices are turned off (Qg = 0), and the internal air

temperature is determined based on the thermal balance.
After using the thermal balance equations and transformations, the internal air temperature is

described by the equation:

Ti =
z·ws·I·Ao + qA·Af +

(
Uo·Ao + V·ρ·cp

)
·Te + αi·Asi Twi + αi·Asw Tsw(

Uo·Ao + V·ρ·cp
)
+ αi·Asi + αi·Asw

(14)

Due to the variable temperature of the external air, outside the heating season also the temperature
of the inside air is variable. The temperature of the inner surface of the walls is also variable.

This temperature is the result of heat transfer through the external wall between the room and the
outside air.

With the simplifying assumption that the outside air temperature changes periodically according
to the cosine function, the solution to the problem of heat conduction in a semi-infinite medium is
described by the equations, according to [36,37]:

It was assumed that the air temperature changes according to the equation:

Tf = Tfo·cos(ω·t) (15)

in which
ω =

2·π
to

(16)

ν =
ω

2·π (17)

where:

Tfo—amplitude of air temperature changes,
t—time,
ω—period of temperature changes,
to—change period time,
ν—frequency of changes,

The temperature T at depth x, below the surface, is described by the following dependencies:

T = C2·Tfo·e−
√

�
2·a ··x· cos(ω·t +

√
	

2·a ·x + C2) (18)

C1 =
1√

1 + 2· λα ·
√

ω
2·a + 2·

(
λ
α ·
√

ω
2·a
)2 (19)

C2 = −arctg
1

1 + α
λ ·
√

2·a
ω

(20)

where:

λ—thermal conductivity,
a—thermal diffusivity of the area,
α—coefficient of heat transfer from air to the surface.
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The constant C1 determines the degree of air temperature reduction resulting from the transfer
of heat, while the constant C2 means the delay in wave propagation due to the transfer of heat to
the surface.

3. Dynamics of Heat Transfer through an External Wall—Case Study

The external wall of the room is subjected to variable outside air temperature.
Moreover, the external surface is influenced by the variable intensity of solar radiation.
Climatic conditions cause periodic temperature variability in daily and annual cycles. Climate changes
also cause changes in the temperature of external surfaces such as external building envelopes.
Surface temperature changes are transferred deep into the material according to the principles of heat
transfer. With a sufficient wall thickness, it can be treated as a semi-infinite medium for which the heat
conduction problem has been analytically solved.

For example data:

Tfo = 20 ◦C,
a = 0.485 × 10−6 m2/s,
to = 24 h,
α = 12 W/(m2·K),
λ = 0.82 W/(m2·K).

The tendencies of temperature changes in the semi-infinite medium is shown in Figure 2. A negative
coordinate x indicates temperature changes in the adjacent fluid.

Figure 2. Temperature changes along the depth in a semi-infinite medium [38].

The graphically presented temperature changes in the medium and equations [36,37] allow for
the following conclusions:

• There are temperature oscillations in the material with the same period in each plane, but with a
phase shift in relation to the surface.

• The amplitude of temperature changes on the surface is smaller than the amplitude of changes in
air temperature (C1 < 1).

• There is a phase shift in temperature changes (C2 < 0).
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• The amplitude of temperature changes in the material quickly decreases with depth.
• The lower the frequency of temperature changes, the greater the amplitudes at the same depth.

The variability of temperature over time at different depths is shown in Figure 3. The presented
considerations apply to a semi-infinite medium. However, they may be the basis for the analysis of
temperature distribution in media with a finite, sufficiently large thickness. An example of such a
medium are the external walls of a building, which is influenced by external air of variable temperature.
There is a daily and annual periodicity of changes. Daily changes do not significantly affect the
temperature distribution inside the wall under the surface, especially on the inner wall surface
(from the room side). Annual changes, on the other hand, affect heat losses and, consequently,
seasonal heat demand for heating.

Figure 3. An example of temperature changes with time at depth x in a semi-infinite medium [38].

In relation to the semi-infinite medium model, the following differences should be taken
into account:

• Changes in outside air temperature are periodic, but a description of the changes with a simple
cosine function would be a simplification.

• In addition to the transfer of heat between the outer surface and the air, there is a heat exchange
by radiation (solar radiation).

• The outer wall is usually multi-layered and therefore heterogeneous.

The periodic variability of outdoor air temperature and solar radiation intensity can be described
by the Fourier series of the form [39]:

y =
1
2

a0 +
k∑

i=1

i·ai·cos(ω·t) +
k∑

i=1

i·bi·sin(ω·t) (21)

The coefficients of the Fourier series should be determined on the basis of real data obtained,
e.g., from measurements.

The temperature of the outside air and the intensity of solar radiation are climatic parameters and
they are measured at meteorological stations. The results of long-term measurements are available on
the website of the Ministry of Infrastructure [40].

For the selected weather station, we can read the average monthly and hourly average outside
temperature values determined from multi-year measurements.
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Using these values, data can be approximated by a Fourier series. For the Rzeszow-Jasionka
meteorological station, the annual changes in the values of average daily outside air temperatures are
shown in Figure 4, where the line resulting from the approximation of the data by the Fourier series
(Te (apr)) is also plotted.

Figure 4. Annual variability of outside air temperature for Rzeszow city.

The parameters of the Fourier series for approximation calculations of the outside air temperature
are presented in Table 1.

Table 1. Parameters of the Fourier series for approximation calculations of the outside air temperature.

a0 a1 a2 a3 a4 a5 a6

7.5416667 −10.20434 −0.475828 0.4847788 −0.658554 −0.804472 0.1787785

b0 b1 b2 b3 b4 b5 b6

0 −2.751565 0.3030664 0.1518707 −0.543962 −0.141402 −1.064303

As can be seen from the diagram, there is a high agreement of the measurement data with
the results obtained from the approximation equation. Significant differences occur in the summer,
outside the heating season.

A similar procedure can be applied to record the variability of solar radiation, but due to the
consideration of the external wall, only the radiation to the vertical plane will be important.

The Fourier series parameters for the approximation calculations of the radiation intensity per
vertical surface (Wh/m2d) are summarized in Table 2.

Exemplary results for the Rzeszow-Jasionka actinometrical station are shown in Figure 5.
The comparison of the measurement results and those calculated from the Fourier series equation

for the direction of the southern and northern radiation is presented in Figure 5.
Marking N in Figure 5 depicts the radiation changes from the North. Labeling S denotes imaging

of changes in radiation from the southern side. Marking N-a represents the results of approximation of
radiation changes from the North using the Fourier series. Then, by analogy, S-a refers to the results of
the approximation of radiation changes from the south side.
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Table 2. Fourier series parameters for approximation calculations of the radiation intensity.

Azimuth a0 a1 a2 a3 a4 a5 a6

S-E 2148 −1086.93 −290.441 −0.1582 −57.45 61.83312 88.37249

S 2184 −808.599 −411.05 −75.1664 −56.1412 45.27268 88.73687

S-W 2052 −989.688 −246.853 −64.7049 −62.5093 29.71963 82.69103

W 1694 −1152.13 −57.8825 −50.2884 −37.8367 19.73632 68.45242

N-W 1310 −972.617 32.30067 −60.987 −11.8132 9.586983 51.39972

N 1124 −760.472 15.24531 −75.8967 1.364588 11.80952 45.10691

N-E 1358 −1040.44 28.53617 −17.6399 −36.229 17.43642 54.88028

E 1804 −1271.09 −98.6696 13.37886 −43.3159 49.50059 75.13932

S-E b1 b2 b3 b4 b5 b6 b1

S 247.2218 89.42463 44.11991 −26.3514 −60.4461 13.67889 247.2218

S-W 220.6692 208.4086 60.60816 −27.2299 −62.535 −10.4756 220.6692

W 312.2481 211.5765 38.31833 −18.5326 −63.0764 6.145611 312.2481

N-W 358.7338 142.2012 0.810727 −13.0379 −51.4592 27.8375 358.7338

N 294.664 75.47576 −16.0399 −8.85253 −30.6874 37.86873 294.664

N-E 262.2807 59.18627 21.32114 −22.0431 −30.7906 42.58792 262.2807

E 317.4635 19.13467 25.85404 −18.7495 −33.7939 45.45755 317.4635

Figure 5. Comparison of the annual variability of the intensity of solar radiation measured and from
the approximation equation for Rzeszow city.

Remarks on the compliance of the approximation with the data are the same as in the case of the
approximation of the outside air temperature.

Increasing the accuracy of the approximation is possible by increasing the amount of Fourier
series components. For the assumed purpose of the analysis of the temperature distribution in the
external wall, the assumed accuracy is sufficient.
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4. Heat Losses through the External Wall—Case Study

The external wall separates the outside environment and the interior of the room. Such a wall is
subjected to an externally variable air temperature as well as solar radiation. Climatic conditions cause
periodic temperature variability as well as the variability of radiation intensity, and these changes
occur in daily and annual periods. The resulting wall temperature distribution makes it difficult to
provide a strict analytical solution, especially in the case of a multi-layer partition.

Simplified methods can be used to solve special cases, e.g., the finite difference method (MRS).
The analysis of heat loss through the external partition is made below, with the

following assumptions.
On the side of the inner wall (in the room), the air temperature remains constant. This is the case

during the heating season with automatic temperature control (thermostatic valves).
The heat transfer from the inside air to the surface takes place by transfer, with a transfer factor

taking into account the radiation.
On the outer side of the outer wall, heat is transferred to the outside air by taking over.
On the outer side of the outer wall, heat transfer also takes place through radiation to the outer

space (the sky).
The outside air temperature changes throughout the year according to the climatic conditions.
Solar radiation falls on the outer surface of the wall with periodic, annual variability.
The values of external temperature and radiation intensity were taken as daily averages.
The image of the partition in question, with significant values marked, is shown in Figure 6.

Figure 6. Cross-section through the outer wall.

The variable temperature distribution in the wall was determined by the finite difference method
based on heat transfer equations, taking into account the thermal balance of the room.

Due to the variable temperature of the outside air, the temperature of the inside surface of the
outside walls is also variable.

This temperature is the result of heat transfer through the external wall between the room and
the outside.
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When applying the finite difference method (FDM) to solve the transient heat conduction in the
outer wall, formulas based on the calculation scheme are obtained (Figure 7).

Figure 7. Calculation scheme.

The formulas resulting from the discretization of areas were used for the calculations.
Inner surface temperature of outer wall:

Twi =
Ti +

λi
αi·Δx1

·T1

1 + λi
αi·Δx1

(22)

Surface temperature at the boundary of the layers:

Tw =

λ1
Δx1
·Tj - 1 +

λ2
Δx2
·Tj + 1

λ1
Δx1

+ λ2
Δx2

(23)

The temperature of the outer surface of the outer wall was determined from the balance sheet
(Figure 8):

Qp + Qre = Qse + Qsen (24)

Figure 8. Balance diagram of the external surface.
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Taking into account the Equations (10)–(12) and the heat conduction equation under the surface
of the partition (24), it can be concluded that:

Qp =
λ2

Δx2
·Ase·(Tk − 1 − Twe) (25)

After substitution and transformations, the temperature of the outer surface of the outer wall is
described by the relationship:

Twe =
εs·I + λ2

Δx2
·Tk − 1 + αe·Te − εn·

(
T4

we − T4
n

)
αe +

λ2
Δx2

(26)

Due to the presence of Twe, the equation is solved by the iteration method.
Signs:

Tn—skyfall temperature
σs = 5.67 × 10−8 [W/m2K4]—radiation constant
εs—surface radiation absorption coefficient
εsn—surface radiation emission coefficient
αe—heat transfer coefficient from the external wall surface to the outside air
λ2—thermal conductivity coefficient of the insulating layer
Δx2—step of discretization of the insulating layer

The above equations are completed with boundary conditions.

• The heating season was assumed to occur during the period when the outside air temperature is
lower than 12 ◦C (Te < 12 ◦C).

• If, during the heating season, the heat losses are greater than the heat gains, the heating control
system maintains a constant internal temperature (Ti = Tio).

• If in the heating season the heat losses are lower than the heat gains, the control system switches
the heating off and the internal temperature results from the thermal balance.

• Outside the heating season, the internal temperature results from the thermal balance.

5. Results and Discussion

5.1. Assumptions and Output Parameters

Using the previously given equations, calculations of the parameters of the room and the external
partition were made for variable external conditions [41].

The calculations were made for several variants of rooms with general assumptions:

• A living room.
• The heat transfer coefficient on the inside and outside is constant in accordance with the

standard [42].
• Natural ventilation with the intensity resulting from meeting the requirements of the standard [43].
• The thermal conductivity coefficient of the wall construction material and insulation is constant.
• Internal heat gains are constant.

Data for calculations, with values (according to [43]):

qA = 6.8 W/m2—single-family buildings,
qA = 7.0 W/m2—multi-family buildings,
VVe = 0.31 × 10−3 m3/(s’m2)—single-family buildings,
VVe = 0.32 × 10−3 m3/(s’m2)—multi-family buildings.
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Relationship between VVe coefficient and the number of exchanges n:

n =
3.6·VVe

h
(27)

h—room height.

Thermal conductivity:

λ1 = 0.82 W/mK (brick wall),
λ2 = 0.032 W/mK (polystyrene insulation).

Room dimensions:

a = 3.0 m—the width of the room,
b = 4.0 m—room depth,
h = 3.0 m—room height,
Ao = 1.96 m2—window area.

Meteorological data:
Sample calculations were made using the meteorological data for the Rzeszów-Jasionka

measuring station.
The table of hourly changes in outside temperature and changes in the intensity of solar radiation

was used, provided by the website of the Ministry of Infrastructure [40].
The example assumes the location of the outer wall towards the north.
It is assumed that the final result of the calculations will be the determination of the variability

of the heat demand for space heating over the year, taking into account the variability of climatic
conditions and the inertia of building partitions.

The basis for determining the heat demand is Equation (2). The components of the equation were
determined by Equations (3)–(10) using the assumptions made above.

The calculations were made for a living room with an external wall made of brick,
50-cm thick, for the cases: without insulation and with insulation with a layer of polystyrene
5-, 10-, 15-, 20-, and 25-cm thick. The results of the calculations are presented in the following charts.

5.2. Calculation of Indoor Air Temperature

In the heating season, the heat losses exceed the heat gains in the room, which are supplemented
by the heating system. The regulation of this system allows for the maintenance of the constant
temperature Ti = 20 ◦C, assumed in the example. In summer, the temperature of the indoor air is the
result of the heat balance of gains and losses. Temperature fluctuations increase as the thickness of the
insulation increases.

The calculation results of the average daily temperature of indoor air obtained using the
Equation (14) are presented graphically in Figure 9.

During the heating season, the regulation ensures a constant temperature. In summer, there is a
temperature change, and these fluctuations increase with increasing insulation thickness. The labels in
Figures 9 and 10 were signed by adding units of insulation thickness as “Ti-0 cm” and analogously
“Twi-0 cm”.

From the graph in Figure 9 you can read the time during which heating is required, i.e., the duration
of the heating season. This time depends on the insulation of the outer wall (insulation thickness).

5.3. Calculation of the Surface Temperature of the Inner Outer Wall

The temperature of the inner surface of the outer wall is the result of heat conduction through the
wall and taking heat from the inner air. It clearly depends on the wall insulation. It was calculated
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according to the Equation (22) and the results are presented in Figure 10. This temperature and its
fluctuations throughout the year clearly depend on the wall insulation.

Figure 9. Indoor air temperature.

Figure 10. The temperature of the inner surface of the outer wall.
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The annual amplitude of changes in this temperature decreases with increasing insulation
thickness. In the absence of insulation, the lowest temperatures appear around the beginning of March,
and for an insulated wallm around mid-April.

Fluctuations in the average daily temperature ΔTi (Figure 11) with efficient regulation in the
heating season are very small during the year (<0.51 ◦C) and depend to a small extent on the wall
insulation. On the other hand, the temperature fluctuations of the inner surface of the outer wall Twi

depend on the insulation. For a wall without insulation, the maximum difference in a year is 3.14 ◦C.
The difference in temperature values when changing the insulation thickness from 5 to 25 cm, equal to
0.49–0.86, is small and it has little effect on thermal comfort.

Figure 11. Maximum temperature differences on the inner surface of the outer wall.

5.4. Analysis of Thermal Power Variability for Heating Purposes

Using the proposed methodology, calculations of thermal power for heating were performed for
the conditions assumed in Section 2. The diagram given in Figure 12 shows the dependence of this
power on the insulation thickness.

The chart of changes in heat demand for heating (Figure 11) clearly shows the division into
the heating season and the summer season. The demand in the heating season depends (which is
obvious) on the insulation of the outer wall. The length of the heating season tg also depends on the
insulation performance.

The maximum heat output, which is the basis for the selection of heating devices, is also different
for each case. The comparison of these powers is shown in Figure 13. The diagram also includes heating
powers Qmaxn calculated on the basis of the applicable standards. Qmax denotes the maximum thermal
power for a given case of the partition structure, calculated according to the considered methodology.
Qmaxn means the maximum thermal power for a given case of the partition structure, calculated on the
basis of the applicable standard PN EN 12831 titled “Heating installations in buildings. Design heat
load calculation method”.
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Figure 12. Variability of thermal power for heating over time.

Figure 13. The dependence of the maximum heat output of heating on the thickness of the insulation.

Among the calculated thermal powers presented in Figure 12, the maximum powers Qgmax

necessary to ensure thermal comfort were selected. Such powers Qgmaxn were also calculated for the
considered cases in accordance with the standard. The values are presented in the Table 3 and in the
diagram in Figure 13.

37



Energies 2020, 13, 6469

Table 3. Results of thermal power calculations for various insulation thickness.

Parameter Insulation Thickness x [cm]

x [cm] 0 5 10 15 20 25

Qgmax 344.02 126.41 108.16 100.02 95.56 92.60

Qgmaxn 840.98 525.07 449.96 416.30 397.21 384.90

Qgmax/Qgmaxn 0.409 0.241 0.240 0.240 0.241 0.241

The following conclusions can be drawn from the presented values:

• Taking into account the thermal inertia of the partitions makes it possible to perform a significant
reduction in the demand for thermal power, and thus the use of smaller devices.

• For the considered partition, the calculated thermal power determined by the adopted method is
only about 40% of the value calculated according to the standard.

• The reduction in thermal power depends on the thermal inertia of the partitions.
• Due to the low thermal capacity, the insulation thickness has a little effect on the maximum

heat output.

5.5. The Dependence of the Time of the Heating Season on the Thickness of the Insulation

The dependence of the length of the heating season on the insulation thickness is shown in
Figure 14.

Figure 14. Variability of the duration of the heating season as a function of insulation thickness.

The diagram in Figure 14 clearly shows the dependence of the heating season on the “insulation” of
external walls. Increasing the thickness of the insulation shortens the heating season, which contributes
to reducing the annual heat consumption for heating purposes. For comparison, the graph also shows
(red) the time determined on the basis of the annual variability of the outside air temperature. This time
is approximately in line with the calculation method adopted for the wall without external insulation
(x = 0). This confirms the correctness of the adopted calculation methodology and the correctness of
the performed calculations.
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5.6. Validation of the Model by Using Fragmented Temperature Measurements

In order to assess the compliance of the adopted calculation methodology with the actual conditions,
fragmentary temperature measurements were performed. Measurements were made in a real facility
in a single-family residential building, on an external brick wall with the following parameters:

• Wall thickness: 50 cm,
• Thickness of the outer polystyrene insulation: 10 cm
• Thermal conductivity of the wall: λ = 0.82 W/(m·K)
• Thermal conductivity of the insulation: λ= 0.032 W/(m·K)

Following temperatures measurements were taken:

• Ti—internal air temperature
• Twi—temperature of the inner surface of the outer wall
• Te—outside air temperature

The purpose of the measurements is to show the effect of thermal inertia of the partitions on the
changes in internal temperature. The measure of the influence of inertia is the amplitude of changes
in the internal temperature and the temperature of the internal surface of the external partition as a
function of the amplitude of changes in the external air temperature.

Measurements were taken continuously and the values were averaged over an hourly period
for analysis.

This impact was initially analyzed on the basis of measurements conducted from
20–29 February 2020 and from 18–20 July 2020. The results presented in the table below were
obtained for these cases. Results of calculations and measurements have been presented in Table 4.

Table 4. Results of calculations and measurements.

Period From 20 to 29 February 2020 From 18 to 20 July 2020

Parameter Ti [◦C] Twi [◦C] Te [◦C] Ti [◦C] Twi [◦C] Te [◦C]

Calculation

Tmin 20.00 19.25 −4.40 20.00 20.23 13.60

Tmax 20.20 19.33 7.80 21.17 20.77 23.70

ΔT 0.20 0.08 12.20 1.17 0.54 10.10

Measurement

Tmin 20.10 18.90 −0.30 23.50 22.40 15.20

Tmax 21.40 19.90 11.20 24.90 23.80 28.30

ΔT 1.30 1.00 11.50 1.40 1.40 13.10

Exemplary results for several hours in the heating season (February) are shown in Figure 15
as a function of successive hours throughout the year. The graph also shows the corresponding
temperatures for these hours obtained from calculations (Tio, Twio, Teo).

On the horizontal axes of the graphs (Figure 15 and following), the time is defined as successive
hours of the year. Such a system was adopted for the purpose of comparing the results of measurements
and calculations, because the calculations used climatic data for the following hours of the year.
The hours for calculations and measurements were kept consistent.

Supplementary markings:

• Ti—measured internal air temperature
• Te—measured outside air temperature
• Twi—measured temperature of the inner surface of the outer wall
• Tio—internal air temperature adopted for calculations
• Teo—outside air temperature taken for calculations
• Twio—calculated temperature of the inner surface of the outer wall
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Figure 15. Variability of the measurement and calculation temperatures during the time from
20 to 29 February 2020.

During the heating season with variable outside air temperature, there are small changes in the
temperature of the inner surface of the outer wall. The temperature value is comparable with the value
calculated according to the adopted method.

In the summer, we can observe a similar tendency. A detailed comparison will be the purpose of
further research. We initially present sample measurement results for summer season. We presented
obtained results of researches in the Figure 16.

In order to verify the correctness of the adopted methodology, the amplitudes of differences in
temperature between the internal air and the internal surface of the external wall were determined and
presented in the Table 5.

During the measurement period, there were significant fluctuations in the outside temperature
and due to this there were also changes in the internal temperature, despite the regulation of the
heating with a thermostatic valve. For this reason, there was a change in the temperature difference
between the inside air and the wall surface. The course of amplitude changes during the period from
20 to 29 February 2020 is shown in Figure 17.

Table 5. The amplitudes of temperature differences between the internal air and the internal surface of
the external wall.

Period From 20 to 29 February 2020 From 18 to 20 July 2020

Parameter
Measurement
(Ti – Twi) [◦C]

Calculation
(Tio – Twio) [◦C]

Measurement
(Ti – Twi) [◦C]

Calculation
(Tio – Twio) [◦C]

Max 1.95 1.00 1.50 0.35

Min 1.05 0.63 0.20 −0.34

Average 1.69 0.74 9.70 0.01
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Figure 16. Variability of the measurement and calculation temperatures during the time from
18 to 20 July 2020.

Figure 17. Difference in temperature of internal air and internal wall surface during the time from
20 to 29 February 2020.

Analogically, the course of amplitude changes during the time from 18 to 20 July 2020 is presented
in Figure 18.
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Figure 18. Difference in temperature of internal air and internal wall surface during the time from
18 to 20 July 2020.

In order to verify the correctness of the adopted methodology, additional, more precise temperature
measurements were made for the period from 9 to 17 November 2020. The measurement results are
shown in Figures 19 and 20.

Figure 19. Variability of the temperature during the time from 9 to 17 November 2020.

42



Energies 2020, 13, 6469

Figure 20. Variability of internal surface temperature for the period from 9 to 17 November 2020.

The measurement results were compared with the values used in the calculations in the adopted
model and are presented in Table 6.

Table 6. Results of calculations and measurements for the period from 9 to 17 November 2020.

Measurement Calculation

Parameter Ti [◦C] Twi [◦C] Te [◦C] Tio [◦C] Twio [◦C] Teo [◦C]

Tmin 20.42 19.73 3.87 20.00 19.68 −3.90

Tmax 22.78 21.81 12.03 20.30 21.16 9.10

ΔT 2.36 2.08 9.08 0.30 1.48 13.00

The influence of the thermal inertia of partitions on changes in internal temperature was analyzed.
The results of measurements and calculations are shown in Figure 20.

Changes in the temperature of the outside air cause slight changes in the temperature of the inside
surface of the outside wall. The value of the wall surface temperature is comparable with the value
calculated in accordance with the adopted method, which is shown in Figure 20.

In order to better visualize the compliance of the measurement results with the calculations,
relative deviations calculated on the basis of the differences in the measurement and calculation results
were determined. The deviations were applied to the temperature of the inner surface of the outer wall,
because this temperature determines the transfer of heat for all three analyzed measurement series.

δ = 100·Twi − Twio

Twi
[%] (28)

when:

δ—relative deviation of the measured and calculated internal surface temperature.

The changes of the relative deviations of the values measured for the period from
9 to 17 November 2020 is shown in Figure 21. The relative deviations for all three measurement
series are presented in Table 7.
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Figure 21. Relative measurement deviations for the period from 9 to 17 November 2020.

Table 7. Relative deviations of the measured and calculated internal surface temperature.

Period
From 20 to 29
February 2020

From 18 to 20
July 2020

From 9 to 11
November 2020

Max [%] 17.3 14.39 4.19

Min [%] −3.47 8.61 −3.43

Average [%] −0.85 12.34 0.45

A small value of the average deviation of the measurement and calculation results during the
heating season indicates the correctness of the adopted analysis method. The big difference in July is
caused by very large changes in outside air temperatures, deviating from typical meteorological years.
It should be emphasized that such a result is obtained from measurements of a real object (not in a
laboratory) under very variable climatic conditions. Moreover, the temperature of the indoor air in
the summer with no air conditioning is directly related to the temperature of the outdoor air and is
not regulated.

Furthermore, complete measurements are planned to fully assess the compliance of the
calculation model.

The presented data show the following conclusions:

• In the winter period (February), the measured amplitude of changes in the outside temperature of
11.50 ◦C corresponds to the amplitude of changes in the internal temperature of 1.30 ◦C and the
amplitude of changes in the temperature of the inside surface of the external wall, which equals
1.00 ◦C.

• Similar relations exist for the period from 18 to 20 July 2020.
• In any case, the average amplitude of changes in the temperature of the internal surface of the

external wall is smaller than the amplitude of changes in the temperature of internal air.
• The same conclusion follows from the calculation results. Quantitative differences are caused by

the random selection of the measurement period and the uniqueness of the climate parameters.
• Reducing the amplitude has a positive effect on maintaining thermal comfort.
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6. Summary and Conclusions

The current regulations define the rules for calculating the heat demand for heating based on
the difference between the maximum and minimum outside air temperature for the climate zone.
The calculations do not take into account the thermal inertia of building partitions.

The main aim of the article is to determine the influence of the thermal inertia of building partitions
on the building’s heating system, taking into account changing climatic conditions.

The process of heat transfer through the partitions is described in the literature, and the
novelty in this respect is the use of boundary conditions appropriate for the nature of the partition,
i.e., variable outside air temperature and solar radiation intensity. These conditions are taken into
account in the literature—also in standards—, but in a simplified way through indicators covering
longer periods (usually monthly). This variability is not considered when constructing an ordered
diagram of heat loads, which affects the determination of the heating season time.

The thermal power of heating devices is assumed on the basis of calculations made for the steady
state with extreme parameters, without taking into account the thermal inertia. In the presented study,
the influence of the thermal inertia of the external building partition on the heat exchange between
the building’s interior and its surroundings was analyzed. Different thicknesses of the insulation of
the outer partition were considered. The ongoing dynamic processes were analyzed computationally
using the finite difference method (FDM).

Based on the obtained calculation and measurement results, the following conclusions can
be drawn:

• Maximum power for heating, determining the selection of heating devices, is lower than the
values determined according to the applicable calculation rules. The difference between the
thermal power calculated on the basis of the applicable PN EN 12831 standard and the maximum
power for a given case of the partition structure, calculated in accordance with the considered
methodology presented in the article, decreases with increasing insulation thickness and equals
from 41% to 24%.

• The reduction in heat output depends on the thickness of the insulation, but to a much lesser
extent than the increase in thickness. The economic correlation between these values requires
further analysis.

• The duration of the heating season is also dependent on the insulation of external partitions and it
is definitely shorter than that determined on the basis of changes in external temperature.

• With the efficient regulation of the internal temperature in the heating season, the insulation of
the external partition allows for very small temperature fluctuations of the internal surface of the
partitions, which has a positive effect on the thermal comfort of the rooms.

• The results of the research on temperature variability over time presented in the article confirm the
fact that the temperature fluctuations of the surface of the partitions, which reflect the heat transfer
from the internal air to the partition surface, and the heat conduction inside the partition and
heat transfer from the partition to the outside air are much less variable than the fluctuations of
outdoor and indoor temperatures. With the amplitude of changes in the outside air temperature in
summer amounting to 11.5 ◦C, the amplitude of changes in the internal temperature of the surface
of the analyzed external wall is 1.00 ◦C, while the amplitude of changes in the internal temperature
is 1.30 ◦C. In winter, these fluctuations demonstrate similar relationships with greater differences.

• The performed research confirms the compliance of the adopted model of heat transfer dynamics
testing. Average temperature deviations measured and calculated in the winter season range
from −0.85% to +0.45%. A significant deviation in the summer season is due to the lack of
temperature regulation.

The development of issues related to the dynamics of heat transfer, taking into account the
variability of weather conditions and thermal inertia in buildings, will be the subject of future research
conducted by the authors of this article.
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Abstract: In the era of expensive energy carriers and care for the climate, companies are keen
to take action towards bolstering energy efficiency. Businesses often lack data on actual energy
consumption to date, are rarely equipped with adequate analytical tools, and do not have the
know-how regarding the transition itself. Developing energy efficiency management (EEM) for a
given enterprise requires many steps, which ultimately unleash analytical potential and seamlessly
integrate the EEM framework with the business model of a given company. This study scrutinizes and
formalizes a reference process of pilot EEM implementation that involves external business partners in
a multi-facility organization. The process is tailored to the specificity of the company’s operations as
well as its technical and management capabilities regarding energy efficiency. The proposed approach,
phased in time and involving multiple stakeholders, should be especially useful for practitioners
running EEM-related projects characterized by uncertain and changing requirements.

Keywords: energy use efficiency; energy efficiency management; design science research;
pilot implementation

1. Introduction

Historically, economic growth proved to be linked to levels of energy consumption. Tugcu, Ozturk,
and Aslan argued that this is the case for both renewable and non-renewable energy consumption [1].
At the same time, rising energy consumption results in excessive carbon dioxide (CO2) emission as the
most prevalent long-lasting greenhouse gas [2] and the most important greenhouse gas with regards
to human activity. In effect, climate change may be positioned among crucial challenges of modern
times. Energy efficiency (EE) is highlighted as the largest emissions growth restraint [3] and one
of the widely acknowledged measures to meet the goal of keeping the increase in average global
temperature well below 2 ◦C above pre-industrial levels according to the Paris Agreement [4]. Thus,
societies put considerable hopes on it to mitigate the negative environmental impact and achieve
sustainable economic development in the long run [5].

EE may be considered a distinctive feature of the products concerned [6], as well as a habitat
preservation method that does not incur excessive costs, and at the same time, it provides companies
with the opportunities for positive publicity [2]. The decision to take action to improve EE might
be internal and resulting from purely economic reasons. That said, the pressure to shift towards
more energy-efficient products, services, solutions, and behavioral patterns in terms of energy savings
achieved is also likely to be enacted by governing bodies and institutions through energy efficiency
policies (EEPs) [7]. Meeting the objectives of an EEP has a direct impact on the activity of companies
operating within particular industries. All the actions taken by managers and employees of a given
company to implement the rules and measures enforced by an EEP requires a properly developed
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business model [8]. On top of that, the results of these actions need to be monitored in order to
verify whether the intended effects are achieved or not, and corrective actions are undertaken when
necessary [9]. By tailoring business models, adapting business processes, rehauling, and deploying
new IT solutions that support day-to-day EE-oriented management practices, the companies effectively
establish energy efficiency management (EEM). The motivation behind this research was to extend
the EE body of knowledge by understanding how consideration of EEPs and management practices
necessary to implement them affects business models of real-world organizations.

Involving companies in EE programs is likely to exert influence on most components of their
business models, regardless of the transformation strategies in place [10]. As implementing EEPs may
come with substantial risks regarding the cash flow and bottom line of a company [11], such transition
requires a good understanding of the constraints in place and demands on specific companies, as well
as the core processes. Having a model of EEM tailored to the organization requires designing and
implementing a process that features exploratory work and experiments. In our experience, all stages
towards EEM—from the initial idea, through to evaluation, ensuring cost-effectiveness, actual financing,
and implementation—should be considered. Therefore, the goal of this paper is to design and formalize
the reference process of a pilot EEM implementation that involves external business partners in a
multi-facility organization. The empirical study is fueled by three research questions:

RQ1: What key process steps and sources of information ought to be involved in the pilot
implementation of EEM in a multi-facility organization?

RQ2: What level of telemetry and data processing systems involvement is expected to maintain EEM?
RQ3: How the structure of a contract between the organization that sets up EEM and an external EE

solution provider should look like?

After the introduction, related research is discussed and the method is presented in Sections 2
and 3, respectively. Subsequently, the artifact as understood within the design science research is
introduced, particularized, introduced to a real-life business organization, and validated. Section 5
discusses some best practices regarding post-pilot EE-focused activities between parties involved in
setting up EEM based on the feedback collected during the study. Section 6 introduces the implications
and limitations of the study, which are followed by conclusions.

2. Research Background

2.1. EE and its Determinants

Energy efficiency may be regarded as an integrative strategy for delaying climate change,
taking care of energy security, and exerting a positive impact on economic development. EE implies
using less energy to perform the same task; that is, eliminating energy waste [12]. In quantitative terms,
EE constitutes a ratio between service outputs (result) and the energy input required to provide it [13].
Factors such as habits, attitude, awareness of EE measures, and perceptions of involved individuals
have an impact on the EE [14]. On top of that, Chai and Baudelaire linked EE to organizational
aspects and measurements [15]. Minimizing waste and reducing time or transport distances between
succeeding production processes can improve EE, which is important from both environmental and
business points of view since increased energy prices and costs related to emitting greenhouse gases
affect the company’s competitiveness [16].

Unfortunately, many organizations fail to take up the implementation of efficient EE measures
due to financial determinants, insufficient information, and limited in-house skills [17]. That is why the
concept of an energy efficiency gap, i.e., the discrepancy between actual and optimal energy use [18],
has been introduced. This gap shows a paradox where the adoption of energy-efficient solutions is
withheld despite anticipating a positive return on investment [19]. Fresner et al. argued that greater
recognition of EE requires identification of what sort of direct and indirect benefits could be gained
from adopting energy-efficient technologies [17].

Several factors contribute to the propagation of EE. Those include, but are not limited to:
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• strictly market-related factors, such as awareness of actual energy costs, anticipating high market
prices of energy in the future and subsequent attempts to constrain energy-related company costs,
or availability of favorable loans for EE financing [20];

• advances within the organization and management, including the adoption of environmental
management systems [21], benchmarking against competitors within a given industry, or enhancing
supply chain management within a company [22];

• technological progress [23];
• environmental regulation at both national and regional levels [24], including increasing energy

tariffs [25], drawing voluntary programs and agreements between industry and governing
bodies that feature negotiated targets and timetables, as well as threatening to introduce future
taxes/regulation [26].

The necessity to reduce costs were acknowledged as the main driver to EE, whereas corporate
social responsibility, regulatory compliance, and available opportunities to implement EE, were found
to have no significant effects on EE results [17]. These considerations were confirmed among others by
Thollander et al., who noted that information-related determinants, such as the public sector being a
role model, municipal membership in an EE program, or pressure from non-government organizations,
had the least impact on the behavior of decision-makers [27].

2.2. Energy Efficiency Policies

EEPs might be regarded as abstract solutions to bolstering EE in a given legislative context.
The development of an effective EEP is not a one-off activity. It is, in fact, a continuous, dynamic process
that should establish conditions and rules for energy consumers and direct that change toward
environmental and economic benefits. The policy-making cycle combines the design, implementation,
and setting up of multiple criteria for evaluating policy instruments’ impacts in a closed, repetitive loop.
However, EEPs are not universal in nature or freely transferable between markets. To develop a policy
tailored to the sector of the economy, one must understand the EE maturity level, and then develop a
customized policy as well as to adapt it to the specifics of a business branch. Bukarica and Tomšić
introduced the notion of the energy efficiency market as a concept for establishing EEPs; aside from
appliance manufacturers, energy auditors, smart meter software designers, cogeneration developers,
and their respective backgrounds, the market also covers sponsors, owners, authorities, and institutions
that provide financing and assistance in the implementation of EE projects [6].

Many countries brought up initiatives targeted at promoting low-carbon development and
improving EE in every sector of the economy that primarily features regulations and taxation [28].
On the other hand, Avgerinou, Bertoldi, and Castellazzi stress that the European Union and other major
economies introduced policies and measures that are not punitive in nature [29]. Financial support
policies constitute an important tool in that regard. In the Chinese market, two types of EE credits were
implemented [30], enabling running EE projects with institutional support from financial institutions
to counteract discontinuing investments due to the capital scarcity. As households and commercial
building upgrades and retrofits are concerned, several programs may act as a benchmark for future
ventures. From the USA market alone, the American Recovery and Reinvestment Act (ARRA) directed
as much as $58 billion towards EE; programs under ARRA targeted, inter alia, insulation of low-income
homes as well lighting/appliance upgrades with more energy-efficient solutions [31].

Some instruments covered by policies are put in place in order to prompt interest in EE projects,
while others aim to advance such projects from the early stages of development towards real-life
implementation [6]. At the company level, EEPs must be integrated into organizational economic
planning, technical and management conditions, and business development processes. A properly
developed EEP ought to increase the maturity of management, the organizational structure of the
company, as well as the competencies behind it; the joint effort of practitioners and researchers
contributes to advancing the understanding of the relationship between improving EE in business
organizations, the change processes responsible for that, and the drivers that affect these processes [19].
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We argue that effective application of austerity policies proves to be a big challenge, however,
their preparation, implementation, and continual improvement is even harder.

2.3. Energy Efficiency Management

Energy efficiency management applies to many business areas: data centers [29],
manufacturing [17,19], wastewater treatment plants [32], industry [19,28], and facility management [33]
to name just a few. EEM practices, tools, and models have been promoted as promising means of
reducing energy consumption or improving energy efficiency [2]. Such practices can have a substantial
impact on the profitability of not only energy-intensive companies but also those with low energy
costs since the reduced energy expenditures directly lead to increased profits [16]. Research conducted
by Backlund et al., highlighted that having both long-term energy strategies in place and employing
committed energy managers with high skill sets proved to be important factors behind spurring EE in
industrial companies [34]. While there is clearly a vast potential for improved efficiency in technology,
Schulze et al. stressed that available sources addressing the implementation of various efficiency
measures are highly biased towards this perspective and require further best-practices for achieving
enhanced EE by introducing new routines and implementing customized processes within energy
management [35].

Companies and individuals might not be aware of their actual energy-related expenses.
Consequently, consumers and corporate decision-makers often do not possess sufficient information
regarding the net benefits of investment in technologies that have higher EE levels [14] and credible
information is crucial. Households that have information on their energy bill or energy consumption
are not only more likely to invest in energy-efficient light sources and appliances, but there is also strong
evidence that households who regularly perform low-cost energy conservation measures are also more
likely to spend money to bolster EE [36]. Telemetry systems that have dedicated hardware components
(i.e., sensors, meters) and IT solutions integrated with them are used to monitor and control energy
consumption. Software components of such telemetry environments are often referred to as energy
management systems. The data acquired may be then processed using business intelligence (BI)
analytical systems, which enable seeking root causes of high electric power consumption as well as
monitoring the effectiveness of activities in the area of EE.

In various organizations, EE projects ultimately aim to establish an EE management model that
enables the reduction of both electric power consumption and CO2 emissions. Fernando and Hor
analyzed a number of studies to come up with a list of activities that typically comprise the energy
management process [2]:

• introducing review techniques that involve professionals who represent highly diversified
business disciplines;

• scrutinizing historical data;
• performing energy audits;
• preparing feasibility analyses of energy improvement plans prepared by a business organization

and possible implementation of those plans;
• conducting training in energy efficiency.

While both researchers and practitioners generally agree that business organizations may take
advantage of multiple EE options, Fresner et al. point out that the more sophisticated of these options
are often simply ignored [17]. Harris, Anderson, and Shafron showed that already in 2000, energy audits
were likely to be among the first steps that any company might undertake when bolstering its EE,
as the implementation rates of such audits were found to be high [37]. Although larger firms were
overrepresented in their analysis, EE audits proved cost-effective and declared worthwhile by as many
as 93% of the companies surveyed. Therefore, energy audits remain to be one of the leading instruments
for introducing EEPs to overcome barriers to EE and to promote it. An energy audit may be considered a
helpful tool for identifying opportunities and ascribing value to energy consumption to justify spending
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resources on EE projects [2]. Viable alternatives to energy audits feature a range of external energy
services that cover contractual arrangements and funding mechanisms behind improving energy
efficiency in a measurable way [27] and shifting towards a sustainable energy supply. Such services
include energy performance contracting, third-party financing as well as contract energy management.
A long-term EE strategy ought to be set up to take advantage of available options. According to
Cai et al., an energy-saving and emission reduction (ESER) strategy promotes the sustainability of
the manufacturing industry in green transition [28]. In order to address some ESER shortcomings
(primarily the short completion timeframe required, lack of process standardization, and tariff-related
issues), to improve the EE as well as to reduce waste emissions effectively, they introduce an enhanced
concept based on lean principles, i.e., lean energy-saving and emission reduction.

3. Methods

To achieve the research goal, the design science research (DSR) method was used. DSR enabled
evaluating artifacts from both a user-related and technical perspective [38]. Similarly to action
research, the DSR addresses practical challenges while contributing to both practice and theory [39],
thus gaining increasing recognition among information systems researchers in the process [40]. It was
also successfully used to make designs that provide superior utility in the context of business process
management [41]. As the current research delivered a formalization of a pilot EEM implementation
process that involved external business partners in a multi-facility organization, the area of application
of the method might be considered unconventional. It was, however, fully in line with the systematic
literature review delivered by Offermann et al., who identified such artifact types as novel system
designs, methods, languages/notations, algorithms, guidelines, requirements, patterns, or metrics [42].

Hevner et al. set forth seven guidelines that enhance the scientific rigor of the DSR approach [43]:

G1: an innovative, purposeful artifact ought to be created;
G2: the artifact must yield utility for a specified problem domain;
G3: the artifact is to be submitted for attentive evaluation;
G4: the artifact needs to address a heretofore unsolved challenge or feature a more effective solution

to a well-known problem;
G5: the artifact itself must be strictly defined, internally consistent, and represented in a formal way;
G6: developing the artifact should involve a search process whereby a problem space is constructed,

and a mechanism posed or enacted to find an effective solution;
G7: the outcomes of the DSR must be tellingly reported to practitioners responsible for putting

them into practice, to the scientific community perfecting them, as well as to decision-makers,
whose organizations shall take advantage of the artifact.

In order to (1) reliably assess the scope of data collected during the pilot EEM implementation
process along with (2) determine the technological capability regarding automatic data collection;
(3) narrow down the list of activities to those that show the greatest potential in terms of bolstering the
EE, and; (4) correctly plan its duration, a party with prior experience in offering EE services was required.
Therefore, while developing the artifact, the researchers worked hand-in-hand with the staff of SDC Ltd.,
a specialized company running engineering activities and related technical consultancy with know-how
on deploying telemetry in office buildings and retail facilities. Previous ventures that SDC had engaged
in had differed greatly in scale and were not preceded by a standardized preparatory phase that enabled
the assessment of the potential energy savings policies. Notwithstanding, their post-implementation
reports, project schedules, and work order notes constituted primary data sources while developing
the methodology.

The measurement solution used by the company is proprietary. A single control device was
installed in the electrical switchboard of each customer’s facilities. The device periodically transmitted
a JSON frame with the electricity consumption snapshot, along with a list of additional parameters.
The development of the artifact required testing the technological capabilities regarding tightening the
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interval of transmitting a set of data from the sensors experimentally, as well as analyzing the validity
of taking additional parameters into account. It was concluded that the scalability of the analytics
required admitting CO2 concentration, humidity, and internal temperature. Datasets were captured
by an application implemented in the proven PHP/MySQL tandem. Some of its data processing
functionalities were written in Scala. The application processed data and enabled the visualization
of electricity consumption. It was possible to generate simple reports. More robust data analyses
were performed by a BI solution based on the Qlik Sense engine. The solution took advantage of a
data warehouse and enabled multi-dimensional data analyses by combining data from other sources.
Those included but were not limited to, physical parameters of the facility, external weather data,
and media-related invoices.

4. Results

4.1. Conceptualization of the Artifact

The artifact delivered by this study is shown at a high level of abstraction in Figure 1. The abstract
representation of the process was formalized using BPMN, as expected per the G5 guideline, and detailed
in Table 1. The artifact introduced key steps, recommended sources of information regarding each
facility, analytical determinants, EEM application areas that featured the most likely cost reduction
opportunities as well as the projected timespan of the pilot EEM implementation. On top of that,
the minimum number of facilities that ought to be equipped with telemetry was specified, and reference
supporting IT solutions were singled out. Thus, the methodology directly addressed RQ1–2.

The pilot itself was designed for deployments in networked retail organizations. Under typical
conditions, most dispersed facilities of such organizations do not have the means to diversify energy
carriers and are strongly dependent on electricity prices. Regardless of the above, heating, ventilation,
air conditioning, and refrigeration (HVACR) hardware had a significant share in their energy balance.
Finally, energy consumption, at least partly, resulted from the necessity to operate some devices in a
continuous mode (fuel pumps, air curtains). The pilot was generally expected to last 4 months since
the telemetry had been deployed in all designated locations. The time required for installation and
parametrization of measurement systems was dependent on the type of system used—in our case,
the customer was provided with a complete solution to reduce the technological risk of the project.
A reference value of two months was required to populate the telemetry database and to collect
complementary EE-targeted data from the customer side. After these two months, austerity priorities
were set and a test of the implementation of the measures resulting from these priorities was carried out.
Further monitoring, adjustment, and a summary of pilot works were expected to last up to 2 months.
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Figure 1. Reference process of a pilot energy efficiency management (EEM) implementation within a
multi-facility organization.

Table 1. Description of pilot EEM implementation reference process steps.

Step Description

Inception
The prerequisites for the pilot works include the readiness of both the provider of a telemetry
system for measuring power consumption and the customer to jointly develop and test the
foundations of the EEM on a small pool of facilities.

Project scheduling &
selection of facilities

Five facilities shall be designated by the customer to create a pool of entities covered by pilot
works. Measurement of the power consumption exclusively on the main power input is assumed
regarding two facilities. Another two shall be provided with a multi-meter environment. Such an
approach enables performing test measurements for both configurations and identifying their
advantages and disadvantages. On top of selecting the facilities, a timetable and rules for
telemetry installations shall be worked out.

Further steps to be carried out simultaneously

Step Description Step Description
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Table 1. Cont.

Step Description

Deployment of telemetry

Putting the measurement
environment in place will not
require ceasing the operations of
any facility. Short breaks are
expected on some retail circuits
(HVACR, light sources).
The estimated duration of a
single installation varies from 2
to 6 h per facility.

Collecting additional data
on facilities

In line with telemetry readings,
additional data on facilities shall
be collected and processed.
The sources of
knowledge include:

• HVACR audits
• building/woodwork audits
• thermo-vision inspections
• events generated as a part

of the facility
management service

• customer-side internal data
regarding
asset management

IT-powered visualization of
energy consumption

Consumption-related data are to
be visualized using a dedicated
IT solution. Access to reports
shall be provided via a web
browser.

Launch of Business
Intelligence analytics

Power consumption
measurements are to be
benchmarked against several
determinants:

• the geographical location
of a given facility

• weather conditions for this
particular location

• facility area or volume
• schedule of

facility operation
• energy tariff selected
• power capacity contracted

Follow-through upon completing the aforementioned activities

Step Description

Elaborating conclusions &
recommendations

A document addressing cost reduction opportunities for the customer shall be delivered.
In particular, options to be explored in the following areas of EEM are to be unveiled:

• staff activities/staff education
• maintenance of systems and devices
• condition of buildings and woodwork
• energy tariffmanagement
• power capacity management

Development and
introduction of the primary

EEM components

Priority items that may be immediately streamlined in terms of EE are to be pointed out in this
phase. Such potential decisions include, but are not limited to, switching tariffs, rehauling or
fine-tuning devices, introducing simple automation of devices, forcing certain behaviors of the
staff, etc.

Demonstration of pilot
implementation results

A physical meeting of the interested parties that summarizes the works accomplished
throughout the implementation.

4.2. Implementation and Validation of the Artifact

DSR guidelines [43] directly stated that upon creation, the artifact needs to be evaluated (G3) and
tellingly reported to interested parties (G7). In our case, both of those scientific rigor-oriented steps
were effectuated jointly by the research teams and business partners as a part of the project aimed at
enhancing EE within the network of facilities owned/franchised by the Polish subsidiary of a global
player representing the petroleum industry. Royal Dutch Shell PLC, headquartered in the Netherlands,
is included on a Global 2000 List of the World’s Largest Public Companies, with $394 billion total assets
and over $311 billion of revenue [44]. Its retail arm by the end of 2019 covered approx. 45 thousand
facilities that operated based on different business models in close to 80 countries and handled over
30 million customer visits on a daily basis [45].

The pilot works implementation process unveiled two deviations from the original design of the
artifact, i.e., the number of areas for EEM covered by pilot works and the length of the pilot itself.
While the latter might be classified as minor, the former deserved special consideration. Pilot works
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were launched by selecting a pool of facilities (in this case: petrol stations) from among a total
of over 400 facilities located in Poland. The methodology provided for designating two groups of
facilities—with the first group being measured only at the main power input, and the second configured
with multiple meters. Electrical circuits measured by the more sophisticated configuration included
interior lighting sources of the station, air conditioning, and exterior lighting sources of a station
(roofing, driveways, illuminated advertising, etc.). All the determinants necessary to initiate analytics
(locations, weather conditions, volumes, schedules of operation, relevant contractual details between
the customer and all energy suppliers involved) were provided, integrated, and double-checked.

Installing respective meters paved the way for collecting data on electric power consumption.
Upon considering both the needs of the participating organization and the technical constraints, it was
decided to send aggregated data packages from individual facilities every 15 min. Electric power
consumption was plotted as hourly bars and supported by the BI system in place. It related power
consumption to the aforementioned determinants. Simultaneously, the collection of additional
data to support these activities was launched. In line with the construction of the artifact,
energy audits were conducted as a part of pilot works, and technical inspections of electrical devices,
thermo-vision, and building/woodwork audits constituted the primary sources of additional data.
Values and informational content, upon being subjected to analysis, influenced the EEM of each petrol
station involved.

Of the five areas of activity for EEM that the initial concept envisaged, specific actions to be
completed were listed within areas 1, 4, and 5 (see Figure 1). Areas 2 and 3 were excluded from the
pilot works. Activities in the areas undertaken for implementation were carried out until the end of
the pilot’s timeframe. The work was concluded with several recommendations, including guidelines
for staff behavior at stations, benchmarking the existing electric power tariffs against optimal ones,
selection of new tariffs for each facility, and proposing reductions in contracted power levels. It was
empirically confirmed that the actions within these three areas resulted in a net reduction in power
costs at the designated petrol stations without compromising business continuity.

Ultimately, the pilot EEM implementation lasted from 1 January 2019 to the end of May.
Project inception required 2 weeks and involved preparing measurement equipment, assembling
installation teams, training on safety at work at petrol stations as well as scheduling telemetry
installation. The actual deployment of telemetry in all five facilities totaled one month. Beginning
in mid-February, every telemetry system started generating measurement data and forwarding it to
the data processing IT solutions. While measurements were kept live until the end of the pilot works,
at the end of February, early feedback and recommendations were determined. Between the beginning
of March and the end of May, recommendations were introduced in all facilities, and the results were
observed. Upon the pilot project completion, concluding workshops were held.

As energy services tend to be settled under performance-based contracts [27], the pilot served as a
data source for elaborating pessimistic, realistic, and optimistic scenarios for increasing EE during the
course of the actual contract. The pilot showed a statistically significant potential to reduce the nominal
energy consumption. The specificity of petrol stations’ operations (24/7 mode, excluding the short
period where the customer-side systems settle daily transactions) contributed to power consumption
not being reduced by late evenings and during night times. On the contrary, consumption is statistically
lowest during (late) mornings and mid-day. This is when few light sources are used, and the Central
European climate implies less intensive use of heating systems. Regardless of the above, the selection of
energy tariffs, which were rational when signing contracts with energy suppliers, became less favorable
over time. Tariff systems tended to become increasingly complicated, and the unbundled energy
distribution market in Poland makes identifying optimal solutions on one’s own, time-consuming.
In this case, having an up-to-date tariff database that is for the needs of the entire customer portfolio
significantly facilitates optimization processes. Whereas tariffs individually tailored to the profile of
each facility where possible, show that time periods in which energy prices are higher than the base
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tariff (see Figure 2, the median case with a linear tariff), are more than compensated for over the rest of
the day.

Figure 2. Differences in energy consumption and tariff adjustment.

Given the time necessary for reflection, the participating organization committed to up-scale their
EE-oriented efforts to the entire network of Polish facilities by signing a 3-year contract at the end of
June 2019. The pilot’s pessimistic scenario for increasing EE was adopted as the benchmark for the
contract. In its first year, which also covered the 5-month-long telemetry installation phase, the provider
of the energy services took upon oneself achieving cumulative savings of 2.25% on one-third of the base
amount. Throughout the second year of the contract, a significantly higher level of EE improvement
was set: no less than 10% on two-thirds of the base amount. Such a scale of commitment was in line
with the long-term estimates formulated in the post-pilot reports and the adjustments for unsupported
areas of activity (see Table 2). The calculation took into account both the saturation of the telemetry
system with data and the development and implementation of specific policies, as well as getting to
know the facilities, personnel, and internal processes of the petrol company. Pilot-based projection
indicated the need for a conservative approach in the final year (cumulative savings of 14% of the
total base amount) due to reaching expected limits regarding opportunities for reducing electricity
consumption without affecting the continuity of business.

Table 2. Post-pilot estimates regarding the scale of savings in the long run.

Area of Activity
Estimated Reduction in Power

Consumption
[% of Current kWh]

Estimated Cost Reduction
[% of Pre-Implementation

Invoice Amounts]

Staff activities/staff education 7% 7%
Maintenance of systems and

devices (7%) (7%)

Condition of buildings and
woodwork (5%) (6%)

Energy tariffmanagement n/a 8%
Power capacity management n/a 3%

Total 18% (31%)
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5. Discussion

The study demonstrated that EEM is, on one hand, a long-term process that requires continuous
monitoring and improvement as well as adapting to constant changes both in the business environment
and within the organization. While the necessity to take advantage of enhanced procedures and
adapt business processes were explored before [35], lessons learned from this study are somewhat
polemic with previous conclusions that companies are generally uninterested in ventures lasting
beyond 3 years [17]. The recommended best practice in this respect is to stage the target contract so
that periodical milestones/review points and success fees were considered (Table 3). In this very case,
the progress is being monitored at weekly and monthly intervals. On top of that, once a year an official
presentation of the savings recorded and details of the methods to achieve them is given to a wider
audience of customer-side professionals, as indicated in the contract.

On the other hand, such a contract proves parameterizable to a large extent. The study showed
that EEM implementation features selecting a set of options that do not exhaust all the possibilities but
are favorable in a given horizon and budget/investment capabilities. In this case, three EE-improvement
areas (human behavior, tariffs, capacity management) indeed required an investment in a telemetry
system as well as developing and implementing an EEP. However, compared to the other preselected
areas, it involved no additional costs related to upgrading/replacing electrical systems or conducting
a general overhaul of a facility or its components (such as woodwork). Such fundamental ventures
depend on the firmness of financial commitment from the investor and the lack thereof put the
capability of meeting the conditions for success fee at risk. Hence, the recommended best practice
in this regard is to scale down the list of potential EE improvement areas within the first 30% of
the contract.

First-year performance indicators exceeded both the contract reference values and the average
savings of approx. 5.0% reported by Fresner et al. based on the analysis of 280 EE-targeted projects
across seven different countries [17]. It should be pointed out that the adoption of the pilot’s pessimistic
scenario did not increase the accuracy of forecasting the actual performance of the contract, which might
be assumed based on the study by Fowlie et al. [46]. Similarly, actual energy savings in Zivin and
Novan’s analysis were off by 21% [47]. Nevertheless, the energy service implemented following
the application of the methodology was beyond the scope of the energy audits covered by those
analyses. Moreover, small/medium-sized enterprises have a natural tendency to avoid the more
intrusive measures that a corporate body can easily afford, and whether the COVID-19 pandemic has
had a noticeable impact on the results remains to be seen. Adopting realistic scenarios as benchmarks
for similar contracts in our opinion requires pinpointing methods for calculating savings generated,
which will take into account factors such as volatility of electric power prices, weather anomalies
(atypically warm winters or hot summers), as well as fluctuations in equipment lists of relevant petrol
stations. The latter involves, in particular, extra electrical hardware such as HVACR devices or (super)
chargers for electric cars.

There is a need to highlight the strong feedback of the practitioners that the success of the
project and assuring the efficacy of developed measures requires the involvement of employees from
various levels, as well as adapting some business processes. This is in line with Johansson and
Thollander’s contribution, who listed top-management support as a leading success factor regarding
EEM practices [16].
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Table 3. Key activities within the EEM framework.

Year Phase of Contract Description

1

The inception of the EE
improvement contract

Based on the feedback of the pilot project implementation,
the contract between the interested parties shall be drafted
and then carried into effect. The contract itself aims to
reduce the electric power consumption/costs owing through
the design, implementation and continuously enhanced
EEM measures on the customer side.

Introduction of the EEM
measures

Accomplishing the following tasks:

• installation of the dedicated telemetry system in all
facilities covered by the contract (refining the list of
facilities and deployment timetable is required;
measurement environments in individual facilities
shall be integrated with relevant service provider’s IT
solutions at this stage)

• taking advantage of EE improvement opportunities
within telemetry-ready facilities

• identifying further options and areas for scaling up the
austerity policy

Progress towards the goal
(1st-year milestone)

Summarizing the first year of the contract. Verifying the
achievement of the adopted partial goals and indicators.
Laying down detailed goals and indicators for the following
year.

2
Refinement and monitoring of the

EEM measures

Based on the experience gained and taking advantage of the
database being populated with annual telemetry data, EE
improvement shall go on. This involves in particular:

• increased maturity of tariffs/contracted
power management

• promoting, implementing, and enforcing austerity
policies within organizational structures of
the customer

• the popularization of best practices regarding reducing
power consumption costs

• assigning a high priority to the project within the
organization and promoting the results achieved

• stimulating the customer-side involvement in EE
throughout all management levels

• planning all future investments taking the EEM
into account

Progress towards the goal
(2nd-year milestone)

Summarizing the second year of the contract. Verifying the
achievement of the adopted partial goals and indicators.
Laying down detailed goals and indicators for the final year.

3

Development and diffusion of the
EEM measures

Cleaning the project backlog of implementation-related
activities, continuous improvement, and verifying the
efficacy of measures in place. Adjusting all internal business
processes on the customer side in line with the EE
improvement best practices and available toolset.

Progress towards the goal
(3rd-year milestone)

Summarizing the third year of the contract. Verifying the
achievement of the adopted partial goals and indicators.
Laying down detailed goals and indicators for the
foreseeable future.

N/A Continuous use and development
of EEM

Further workflows related to developing techniques, tools,
and best practices in EEM. Maintaining results achieved
to date.
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6. Implications and Limitations

6.1. Implications for Theory and Practice

The current study’s results suggest several implications for both researchers and practitioners in
the field of energy efficiency management. First of all, EE-enhancement ventures can all too often be
brought down to a direct transposition of success stories advertised across other industries by the boards
of implementing companies or capitalizing on to-date experiences of operational departments of energy
service providers in the shortest timeframe possible. As multinational companies stretch their dispersed
networks of facilities across locations with diametrically different local media tariffs, weather conditions,
construction-related laws and practices, facility work schedules, or even cultural habits, such approach
often fails to deliver [17,47]. The current study’s findings strongly imply that a multiple-stakeholder
perspective must be employed while implementing EEM. Various stakeholders’ needs, expectations,
and constraints must be carefully estimated, managed, and reconciled. Managing such a diverse
set of considerations requires time, which illustrates the second major implication stemming from
our study: time-related complexity. In this respect, our findings suggest that in order to manage
EEM-related endeavors effectively, an approach phased in time ought to be adopted. Such an approach
should allow practitioners to reasonably estimate and mitigate risks associated with the full-scope EEM
implementation projects and make an informed decision about the project launching. Empirical data
obtained thanks to the implementation of the artifact can also be a valuable argument while obtaining
external financing, as both escalating the telemetry onto the entire facility network and overhauling
individual facilities go in line with discernible investments. The phased approach to managing IT
adoption projects is especially advised in changeable economic settings that result in a volatile nature
of project requirements [48].

We extended the list of activities that usually cover the energy management process [2] by
pinpointing the areas within which actions should be taken to manage energy efficiency. While fully
acknowledging prior conclusions that energy audits allow us to determine what affects electricity
losses [17], we demonstrated that pilot actions enable establishing why these losses occur—which in
turn paves the way for a long-term organizational EE strategy. The framework proposed and discussed
in the study may be applied in organizations of similar characteristics to those researched in the current
paper. In particular, adopting an implementation approach phased in time and the use of suggested IT
solutions such as sensors, data gathering, and analytical tools should help managers to better capture
and manage multi-faceted considerations experienced by EEM projects. As a result, a fuller insight into
the energy-related considerations might impact strategic decisions such as those related to a company’s
business model or business process reengineering.

6.2. Limitations and Potential Future Research Directions

The primary limitations of the current study are associated with the research setting, which features
business units (petrol stations) of a global company operating on the Polish petroleum market. First of
all, although facilities of this type might appear similar to other businesses—such as retail or grocery
stores—when energy-related considerations are taken into account, it should be born in mind that a
petrol station has its intricacies which might impact the generalization of findings to other industries.
Secondly, the country of investigation within the current study, Poland, is an example of a transition
economy and, as compared to the most industrialized economies, reveals a number of specific
considerations such as the lack of a strategic ICT role, insufficient customer orientation, and the critical
role of people-related issues [49]. Therefore, the generalization of the current study’s results to other
economic settings should be done with caution.

It would appear that a cross-industry and cross-country investigation into EEM is an important
direction of future research. A promising focus for potential studies is mapping energy consumption
carriers per industry and per specific field that are either rigid or susceptible to intensive optimization
without entertaining risk factors. Researchers and practitioners alike are also interested in how
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extensively the increased EE of retail facilities translates into the total carbon footprint of the products
or services provided.

7. Conclusions

Within the current study, the DSR’s artifact—being a formalized version of a reference EEM
implementation process for multi-facility companies—was conceptualized, implemented, evaluated,
and escalated from pilot works towards a country-wide project. The target EE improvement contract
were spread over 400 petrol stations. Our research explored key process steps, sources of information
(RQ1), reference telemetry, and data processing solutions (RQ2) as well as guidelines for framing
EE improvement contracts between implementing organizations and contractors (RQ3). The study
enabled us to identify areas for improving EE. It was confirmed that the involvement of customer-side
staff in the implementation, verification, and continuous improvement of EEM measures was crucial.
Close cooperation between the petroleum company that hosted the pilot works and the supplier of
telemetric and analytical tools that fully committed itself to support EE improvement activities also
contributed to the success of the project.

Nowadays, an effective EEM without mature IT is virtually impossible. A multitude of complex
tariffs used by multiple power suppliers, analytical challenges, patterns, and projections that quickly
lose relevance, as well as the relative diversity of implementation environments, all highlights the
value of IT for EEM. Detailed knowledge regarding the volume of electric power consumption and its
distribution over time ought to be adequately captured, up-to-date, and easy to access. Such serviceable
knowledge enables matching appropriate energy tariffs perfectly and ordering power volumes that
are technically and economically justified. Capable tools combined with know-how and efficiency of
operations lead to achieving significant savings.
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Abstract: The objective of this research was to explore correlates and predictors that play a role
in the process of adopting and withdrawing from using a smart metering information platform
(SMP). The SMP supports energy monitoring behaviors of the electricity consumers. The literature
review shows, however, that not every customer is ready to the same extent to adopt novel solutions.
Adoption requires going through stages of readiness to monitor energy consumption in a household.
In a longitudinal field experiment on Polish residential consumers, we aimed to see whether messages
congruent with the stage of readiness in which participants declared to be at a given moment will
be more effective in prompting participants to progress to the next stage than a general message
or a passive control condition. We also tested the effect of attitude and knowledge about energy
monitoring on phase changes. Our study reveals that what affects the phase change is the participation
in the study. The longer the participants were engaged in the usage of SMP, the more willing they were
to monitor their energy consumption in the future. This result sheds light on the future educational
and marketing efforts of the authorities and energy suppliers.

Keywords: energy monitoring; electricity smart meters; smart metering information platforms;
knowledge; longitudinal study; consumers

1. Introduction

Recently, many countries, for environmental and political reasons, have been striving to increase
the energy efficiency of production, distribution, and consumption of energy. The goal of increasing
energy efficiency is closely correlated with the new approach to the power system, namely the
concept of smart grids (SG). Intelligent networks use modern communication technologies to exchange
information between market agents (producers, market operators, and end users) to improve
production efficiency and energy consumption [1–4]. One of the milestone steps in the transformation
of the traditional power system to SG is the extensive implementation of the smart meters (SM) among
electricity end users [5–7]. A smart meter is an electronic device that measures energy use and sends
this information automatically over wireless networks to the energy supplier. The consumer can
benefit from SM in multiple ways—firstly, by receiving a much more accurate billing; secondly,
by gaining an opportunity to control one’s energy consumption in real time. The information
collected by SM can provide consumers with a feedback on current energy consumption and energy
efficiency via an SM information system (platform, SMP) that is a website or mobile application
connected with SM [4,8–10].
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Global roll-outs of SM are usually initiated by pilot programs and local deployment of SM
in a given region or city [11–15]. A good example of such practices is Wroclaw—a capital city
of Lower Silesia in Poland, with nearly 630,000 inhabitants. Since 2015 Tauron Dystrybucja S.A.,
the local electricity distribution system operator (DSO) has been running a project AMIPlus Wrocław,
which aimed at installing a smart meter at each household and enabling access to the SM platform
(both an Internet website and a mobile app called e-licznik).

As SM is still a novelty on the Polish energy consumer market, and most of the electricity
consumers are not fully aware of the potential of the installed devices [3,4], we have taken this
opportunity to better understand the process of adopting novel electricity solutions. Our longitudinal
field study was performed to explore individual variables that foster or hinder progression in the
stages of readiness to adopt using a smart meter platform: e-licznik. The originality of this contribution
relies on using the stage model approach, so far not explored thoroughly in the energy related studies.

The remainder of the paper is as follows. In Section 2, we provide the literature review of variables
having an impact on SM and SMP adoption and energy monitoring. We also discuss the theoretical
background of the study. Next, in Section 3, we present the methodology of the survey and its design.
In Section 4, the obtained results are presented and discussed. Finally, in Section 5, the outcomes of the
survey are concluded and some practical recommendations are provided.

2. Literature Review

2.1. Barriers in Using Smart Meter Platforms

The worldwide roll-outs of SM and the access to the information about the real-time energy
consumption create some new opportunities for consumers and suppliers [12,16,17]. The literature
provides a number of findings from the recent studies in which: (i) willingness to monitor energy in
general, and by means of SMP is investigated [4,8,10,18–20], (ii) factors influencing the acceptance of
SM and SMP by end-users are studied [3,6,15,21–25].

There is a great number of barriers to SM acceptance that limit users’ willingness to use the
enabling technologies, such as smart metering information systems (platforms, SMP) [26]. The barriers
include among others distrust in the industry, lack of familiarity, a sense of procedural fairness,
and concerns related to privacy and cost [7,23,25]. To focus on benefits of using SM, customers must
be willing to accept this technology. Various aspects of community and social SM acceptance have
been already explored [3,6,7,23–25,27–29]. As in the case of any other energy technology, the lack of
acceptance may lead to slowing or a halting of the development [7,30]. Evidence from SM roll-outs
run in various countries all over the world have shown that the widespread implementation of
SM is unlikely to be successful unless it adequately addresses the perspectives and needs of the
consumers [5,7,11,16,17,31].

Table 1 summarizes the most common incentives and barriers to SM and SMP adoption.

2.2. Monitoring of Energy Consumption

Many studies emphasize that the introduction of smart grids and a broader implementation of
SM may open new perspectives for consumers in terms of their awareness and control of energy
consumption [5,31,32]. The question is, however, if they are interested and ready to control energy
consumption and, if yes, what motivates them most: savings, environmental attitudes, social influence,
or maybe something else.

The impact of information and feedback about energy consumption on consumers’ habits and
behaviors have been already studied [17,33,34]. Especially computerized feedback, by means of
SM devices, mobile apps, and smart metering platforms have been widely explored [8,9,18,35].
These studies reveal that computerized feedback may lead to some reduction of energy consumption
by leading to habitual changes and/or prompting investments in smart and energy efficient home
appliances and smart devices (e.g., smart plugs). At the same time, the user-friendliness and ease of
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access to the information is emphasized [18,36]. These are critical conditions that the computerized
feedback must fulfill to engage consumers, especially as the general level of consumers’ interest and
knowledge is low [3,4,15,36].

Table 1. Incentives and barriers of SM and SMP adoption.

Factor Description References

Privacy concerns

These concerns originate from consumers’ beliefs that using SM
may lead to a loss of privacy by providing detailed information
about household behaviors. Data collected by SM may reveal
the activities of people inside of their home (i.e., their habits,
usage, and type of home appliances they possess, etc.) In case of
improper cyber security, SM data can be misused by authorized
and unauthorized parties.

[7,25,37,38]

Procedural fairness
It refers to access to and control in the decision-making process.
It indicates whether one has control over a certain process or
procedure—in this case, SM data transmission and usage.

[7,39]

Trust

Both previous factors connect with the issue of trust in energy
suppliers (whether they will secure the personal information
and will not share it with third parties). Trust is especially vital
in situations where familiarity with a technology is low, as it
influences perceptions of risks and benefits.

[7,25]

Financial aspects

Some consumers are afraid that, due to SM installation, their cost
of energy will increase (more adequate readings). On the other
hand, some of them may expect immediate savings from SM,
which is rather unrealistic.

[7,21,40,41]

Familiarity & knowledge

Familiarity of SM technology is still low. Consumers mistake SM
with some other smart home devices. To some extent, knowledge
and exposure to SM may be associated with increased concerns
about negative attributes of these technologies. However, at the
same time, it may increase interest and willingness to monitor
energy consumption.

[8,21,22,42]

Environmental concern

The impact of environmental beliefs and concerns on SM
acceptance is ambiguous. Generally, people who are aware of
climate change are supposed to be more willing to accept SM as a
useful and energy efficient technology.

[7]

Acceptance & engagement
There is some empirical evidence indicating an impact of
SM acceptance on SM related behaviors, i.e., energy saving
and monitoring.

[8,10]

The first step in monitoring energy consumption is its measurement [8], based on the traditional
electricity bills and/or SMP. The second step includes observations of the measurements and its
comparative analysis [4,8]. Energy monitoring behavior may increase the general awareness of one’s
energy usage, or the energy consumption of certain home appliances [43]. However, the possibility of
monitoring energy by means of SMP may still not be enough to create a habitual behavior. Consumers
may need some additional incentives, such as customized feedback [43], or some combination with
demand side management and demand response tools, such as dynamic electricity tariffs [26].

2.3. Phase Changes of Behaviors

The acceptance and use of SM platforms is a phase process, as in the case of other eco-innovations,
e.g., the use of ecological forms of transportation [44] or green energy [45]. Our study has been
motivated and inspired by the stage model of self-regulated behavioral change (SSCB), proposed by
Bamberg [46].
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This model draws from a classic action phases model proposed by Heckhausen and
Gollwitzer [47,48]. Accordingly, behavioral change, such as adoption of novel solutions, is a
goal-directed and deliberate process in which individuals take gradual steps to the goal. In the
first stage (pre-decisional), an individual has to choose a given behavior from competing options.
In the second stage (pre-actional), an individual forms an intention to perform a behavior. He or she
weighs the pros and cons of engaging in a certain behavior and specifies how the behavior will be
performed. In the third stage (actional), an individual implements an intention. The fourth stage
(post-actional) focuses on the evaluation of an action.

The model of innovation diffusion (DOI) proposed by Rogers [49] is another example of a phase
model. The SSCB model refers to the diffusion stages of DOI, but it focuses more on individual
determinants such social norms, attitudes, and perceived behavioral control as determinants of
people’s engagement in the following phases.

To illustrate four phases of behavior change in the context of using SMP, the example would be
as follows: (1) Predecisional phase—when consumers choose to use SMP or to engage in an energy
monitoring behavior; (2) Preactional phase—when consumers specify their intention to use SMP or to
perform an energy monitoring behavior, (3) Actional phase—when consumers regularly use SMP or
monitor energy consumption, and (4) Postactional phase—when consumers evaluate the satisfaction of
using SMP or monitoring energy consumption [44,46]. As different phases of behavior change involve
different psychological processes, past research has shown that consumers at different stages of the
process need different methods to encourage them to move on to the next phase [44,46].

Literature shows that consumers’ ecological behavior is strongly associated not only with
professed values and opinions, but also with norms, barriers, and difficulties with accepting new
behaviors, social norms, and legal regulations [31,50–53]. The SSCB model has been successfully used
thus far to explore behaviors related to green public transportation [46]. In the context of energy
market, phase models have not been widely used. Recently, one study applied the SSCB model and
analyzed whether German SM platforms are properly designed so that, through their use, energy
consumers can move from one decision-making phase to another [35]. The conclusions of this work
show that the SSCB model is suitable for assessing consumer behavior related to energy saving.

2.4. Specific Research Goals

Although the acceptance of the SM and SMP acceptance and diffusion have already been studied,
we still see a need to explore which factors are responsible for the transition from one behavioral
stage to another, in the process of creating awareness, acceptance, and regular usage of SMP or energy
monitoring behavior.

Hence, we aimed to see whether messages congruent with stages in which participants declared
to be at a given moment will be more effective in prompting participants to progress to the next
stage than a general message or a passive control condition. We also tested the effect of attitude and
knowledge about energy monitoring on phase changes.

Based on the current knowledge on factors enhancing SM and SMP adoption, within our
survey, we wanted to check what may enhance consumers’ willingness to regularly monitor energy
consumption by means of SMP. Hence, we checked the impact of the following issues such as:
knowledge about the energy market, participation and engagement in the longitudinal study,
environmental attitudes and behaviors, positive attitudes towards energy monitoring, and, finally,
computer skills. In particular, we tested: (i) an impact of messages (interventions), (ii) an effect of an
attitude towards energy monitoring, and (iii) an effect of knowledge about energy market on phase
change of regular energy monitoring by means of SMP.
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3. Methodology of the Study

3.1. Study Design

To address our research questions, we conducted a longitudinal experiment with six points of
measurement: pretest (T0), posttests after interventions on Monday (T1), Wednesday (T2), Friday (T3),
and Sunday (T4), and the follow-up (T5) and two control groups: one active (C1), one passive (C2),
and an experimental group (Ex).

3.2. Procedure

The study was established on an Internet platform designed for the purpose of the project.
The data were collected between July 2018 and July 2019. Participants were recruited by research
assistants from the general population as well as from the initial, preliminary study conducted in March
2018 on a sample of adult inhabitants of Wroclaw (see [4], for more details). The inclusion criteria were
living in the agglomeration of Wrocław—a large city in the southwest of Poland, having smart meters
installed in the household, being over 18 years old, and being responsible for paying electricity bills.

In the first stage of the study, participants registered on the platform and completed the base
measurement (T0) that is a questionnaire containing socio-demographic variables, knowledge about
the energy market, various items measuring attitudes, and behaviors related to energy monitoring
and environmental issues, and the declaration in which phase stage towards a smart metering
platform—e-licznik—participants were (see Appendix A for a detailed description). E-licznik is
a free mobile application and Internet widget developed by the energy supplier Tauron Dystrybucja
S.A and broadly available to customers. The application provides data based on consumption metering
from a smart electricity meter.

At least seven days after completion of T0, participants took part in the main study (T1–T4).
On Monday, they received a message (text message or email) with a request to log on the platform.
Then, they were asked to get acquainted with the instruction regarding the e-licznik platform.
Subsequently, participants were asked to report on the platform the readings from the application
regarding their energy consumption from the previous day and to complete short questionnaires
measuring the behavioral stage that the respondents were in, and attitudes towards monitoring,
environmental issues, and behaviors. The same procedure was repeated on Wednesday (T2), Friday
(T3) and Sunday (T4). On the last day, the participants also completed a post-test questionnaire,
identical to the T0 one. The study framework with a timeline is presented in Figure 1.

At T1, participants were randomly assigned either to a passive control group (C1), to an active
control group (C2), or to an experimental group (Ex). In the passive control group (C1), participants
completed the questionnaires at T1, T2, T3, and T4 without any help or reminders from the research
assistants. In the active control group (C2), they received instructions on how to log to an e-licznik
platform and were asked to do it and report their energy consumption. In the experimental group,
participants additionally received text messages adjusted to their behavioral stage (F1–F4) reported in
the last questionnaire. In particular, the following messages were sent to participants at T1, T2, T3,
and T4:

• Group C2: ”Log into the https://inteligentnylicznik.pl and fill in information about your
energy consumption.”

• Group Ex, Stage F1: ”Log into the https://inteligentnylicznik.pl. You probably think that
monitoring energy consumption is time consuming, but it only takes 10 min.”

• Group Ex, Stage F2: ”Log into the https://inteligentnylicznik.pl. Load the attached instruction.
It will help you start monitoring your energy consumption.”

• Group Ex, Stage F3: ”Log into the https://inteligentnylicznik.pl. Plan your day to find 10 min to
monitor energy consumption. For example, after checking your email in the evening, log in to the
e-licznik platform.”
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• Group Ex, Stage F4: ”Log into the https://inteligentnylicznik.pl. You can organize your time so
that you can continue to regularly monitor energy consumption for at least a month.”

Figure 1. Survey framework with six measurement points: T0–T5.

Each behavioral stage (F1, F2, F3, F4) was measured with the following questions:

• pre-decisional stage F1: “I never use e-licznik web platform/application”;
• pre-actional stage F2: “Currently, I sometimes use e-licznik web platform/application”;
• actional stage F3: “My goal is to organize my week so that I can monitor my energy

consumption regularly”;
• post-actional stage F4: “I often monitor the energy consumption of my household using e-licznik

platform/application”.

Participants responded to these questions on a Likert scale from strongly disagree (1) to
strongly agree (5).

In all groups apart from the control group C1, over the course of the study, participants were
also receiving text messages and emails reminding them about the next measurement in the study.
At least four weeks after the T4, in the last stage of the study (T5), we measured again the behavioral
stage at which participants were at the moment. We also measured their satisfaction with using the
e-licznik platform. Those participants who completed the whole survey were gifted with a smart plug
or another small smart device worth ca. 50 PLN (c.a. 11 Euro).

4. Results of the Study

4.1. Statistical Analyses

The results section is organized as follows. First, we present descriptive statistics for the
demographic and control variables. Second, we describe details on measures and materials used in a
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study, the measure of energy monitoring, the measures of an attitude towards environmental issues,
and knowledge on the energy market.

Analyses were performed using statistical language R v. 3.4.3 (RCore Team, 2019) for logistic
regression models and IBM SPSS Statistics v. 25 for the rest of the analyses performed. To construct
measures of attitudes towards energy monitoring and pro-environmental issues, we reduced
the number of the items into meaningful components by means of the Principle Components
Analysis (PCA).

Then, we directly addressed stated hypotheses and explored whether the time of measurement
(T0, T4, T5) and the experimental manipulation predicted phase changes (F1–F4). Next, we tested
correlations between monitoring of energy consumption and attitude towards pro-environmental
issues and a the level of education, and knowledge. All analyses were conducted in the frequentist
approach with α-level set to 0.05.

4.2. Participants

In total, 289 respondents have been recruited to stage T0 and 142 (49%) completed all
measurements (T0–T5). It is noteworthy that such an attrition rate is quite common in longitudinal
studies, especially with strict inclusion criteria. The final sample’s mean age was M = 35.5 years
old (SD = 0.89). The sample was equally represented by men (50.7%) and women (49.3%) and over
represented by participants with higher education (76.8%). Likely, the reason of such a distribution of
age and education is that inhabitants, having access to e-licznik, need to have better computer skills
and are more familiar with technology.

Participants were asked about their age, gender, income, the type of household, and the number of
inhabitants in the household. Figure 2 presents demographics of the respondents who have completed
the survey (all T0–T5 points of measurement). In terms of material situation, 10.5% of the respondents
stated that it is lower than average, 57% that it is similar to average, and 26.8% that it is higher or much
higher (1.4%) than average. Most of the respondents live either in blocks of flats or modern apartments,
in families with 2 (35.9%), 3 (28.2%), or more (21.1%) members. Finally, the average monthly electricity
bills did not exceed 50 PLN (11 Euro) in case of 5.6% of participants, were between 51–100 (12–22 Euro)
PLN for 39.4%, between 101–200 PLN (23–45 Euro) for 41.5%, and are higher than 201 PLN (45 Euro)
for 11.3%.

The majority of the respondents confirmed using a computer for at least an hour every day
(95%, M = 4.68, SD = 0.59), using social media and applications for communication with friends and
family (e.g., Facebook, Twitter, WhatsApp, Hangout, and others) (86%, M = 4.39, SD = 1.05), has at
least one email address (97%, M = 4.67, SD = 0.62), can download a new application or program from
the Internet to their computer or mobile phone (96%, M = 4.68, SD = 0.56).

Participants also indicated their attitudes towards SM and SMP. They expressed their willingness
to receive information and reports on their current energy consumption in general and of individual
electrical appliances in their household directly via the website or an application in their mobile phones.
The lack of trust in the energy supplier appeared not to be an issue for participants. More than 75%
of them believed that the energy consumption data collected by SM is safely stored by the energy
supplier and will not be sold to third parties without consumer’ permission. Only 11% stated that the
energy supplier had an excessive knowledge of their habits thanks to SM, and 13% were afraid that
the data provided by SM was not sufficiently secured and that unauthorized persons may have access
to them. Thanks to the installation of SM and access to the data on current energy consumption via
SMP more than 60% of participants expected to have more knowledge about the energy consumption
of individual electrical devices in their households, and 25% believed to be able to change their habits
and use more electricity when it is cheaper.

71



Energies 2020, 13, 4737

Figure 2. Frequencies of the demographics for participants who completed all measurement points of
the study (n = 142).

Finally, we asked the participants what annual savings they expect thanks to the installation
of SM in their household. Interestingly, 21% of them had no financial expectations. The rest of the
participants expected a certain level of savings starting from 1–5% per year (21% of respondents),
6–10% (30%), 11–15% (12%), 16–20% (5%), 21–25% (5%), and more than 25% (6%).

4.3. Predicting the Phase Change

We applied multinomial logistic regression model from NNet package [54] to predict phase
change (F1–F4) depending in which group a given person belonged to (C1, C2, or Ex), the time of
measurement (T0, T4, T5), and the interaction of the group and the time of measurement. As a reference
point, we took a null model with an intercept only and without any predictors entered. We performed
null, group, time of measurement, and the interaction of group × time of measurement models,
and we compared them against each other using AIC and ANOVA tests (Table 2).

Table 2. Model comparisons.

Model AIC Psuedo-R2 df LR p-Value

Null 849.35 <0.01 - - -
Group 853.34 0.01 6 8.01 0.237

Time of measurement 838.16 0.03 6 23.20 <0.001
Group × Time of measurement 858.01 0.05 18 16.15 0.582
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4.3.1. The Group Model

To test the effect of the manipulation (congruent vs. control messages) on phase changes,
we included as predictors a passive control group (C1), an active control group (C2), and the
experimental group (Ex) into the model. We performed the regression analysis, in which we compared
these groups using the contrasts. Specifically, we compared C1 to Ex and C2 to Ex. Even though
C1 and C2 had slightly different procedures, we also examined possible difference between joined
control groups (C1 + C2) and the experimental group (Ex). The analysis yielded the following results.
The omnibus group model was not significantly different from the null model, and the AIC value
(853.54) was bigger than the value of null model (849.35). Based on these results, we inferred that
experimental manipulation was not successful as assignments to the groups were not significant
predictors of the phase change. Therefore, we do not report specific results for contrasts’ analyses.

4.3.2. The Time of Measurement Model

To test the effect of the time of measurement, we entered T0, T4, and T5 measurements to the model
(see ‘time of measurement model’ in Table 2). The reason for which we chose these three measurement
points is that we were interested in possible long-term phase changes and not in day-to-day changes.
Moreover, we wanted to keep the same number of points of measurement across most of the analyses
performed. Once again, we set custom contrasts for the time of measurement model in which T0 was
compared to T4, T0 to T5, and T4 to T5. The difference between the time of measurement model and
the null model was statistically significant, and the AIC value for the time of measurement was lower
(838.16) than that of the null model (849.35). It indicated that this model fits the collected data better
than the null model.

The time of measurement model explained 3% of variance of the dependent variable (based on
McFadden pseudo-R2). The outcomes of the Wald tests revealed that the difference between T0 and
T4 and T0 and T5 for phase change from F1 to F2 were significant (see Table 3 for more details).
More specifically, the change from T0 to T4 increased the odds of phase change from F1 to F2 by 1.37.
In addition, the change from phase F1 to phase F2 was 1.48 odds higher on T5 when compared to
T0. Similar results were obtained for change from phase F3 to phase F4. The significant predictors
were contrasts between T0 and T4, and T0 and T5. Change from T0 to T4 increased the odds of phase
change by 1.48, and change from T0 to T5 increased the odds by 1.86. The contrasts between the time
of measurements did not predict the likelihood of changing from the phase F2 to the phase F3.

Table 3. Multinominal regression coefficients of the time of measurement model.

Odds Effect Estimate SE Wald p-Value Exp(β)

P(Y = F2)/P(Y = F1)

Intercept 0.60 0.17 3.45 <0.001 1.82
T0–T4 0.31 0.13 2.37 0.018 1.37
T0–T5 0.39 0.14 2.74 0.006 1.48
T4–T5 0.08 0.15 0.54 0.588 1.08

P(Y = F3)/P(Y = F2)

Intercept 0.42 0.18 2.34 0.019 1.52
T0–T4 0.04 0.13 0.32 0.750 1.04
T0–T5 0.16 0.14 1.10 0.270 1.17
T4–T5 0.12 0.16 .73 0.463 1.12

P(Y = F4)/P(Y = F3)

Intercept 0.13 0.19 0.69 0.489 1.14
T0–T4 0.39 0.16 2.53 0.012 1.48
T0–T5 0.62 0.16 3.86 <0.001 1.86
T4–T5 0.23 0.16 1.46 0.145 1.25
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4.3.3. The Interaction of the Group and the Time of Measurement

We compared the model with an interaction term (time of measurement × group) to the time of
the measurement model. They were not significantly different. In conclusion, the best fitting model
was the one with the time of measurement as the predictor of the phase change. It suggests that mere
participation in the study independent of the group was the best predictor of changes from phase 1
(pre-decisional stage) to phase 2 (pre-actional stage) and from the phase 3 (actional stage) to phase 4
(post-actional stage), see Table 2.

4.4. The Effect of the Participation in the Study on Energy Monitoring and Attitude towards
Environmental Issues

In the next step, we conducted three exploratory Principal Component Analyses (PCA),
one for each point of measurement T0 (n = 274), T4 (n = 145), T5 (n = 142), for questions
A1–A6 (pro-enviromental attitudes), B1–B5 (monitoring behaviors), and M1–M16 (attitudes towards
monitoring) with the exclusion of items M1, M2, and M10 (see Table A1 in the Appendix A for
a description of variables, their coding and scales used in the study). We excluded these items
because they were referring to energy monitoring and environment protection at the same time,
which caused ambiguity we wanted to avoid. Altogether, we included 24 items in conducted PCAs.

The results of Bartlett sphericity tests and KMO coefficients indicated that a reduction of
dimensions may be useful with collected data (see Table 4 for details). We used eigenvalues above 1
as a criterion to select the number of components. In effect, for each measurement (T0, T4, and T5),
the solution with two components best fitted the data. We based our selection of items for each
component on item loading cut-off point, which was set to 0.3.

Table 4. Coefficients of Bartlett sphericity tests, KMO, eigenvalues, and percentage of explained
variance for solutions with two components.

Measurement T χ2 df p KMO Components Eignevalue %Variance

T0 2726.58 276 <0.001 0.86 1.EM 6.20 32.62
2.EA 2.59 13.62

T4 1880.03 276 <0.001 0.86 1.EM 8.34 34.75
2.EA 2.85 11.87

T5 1976.64 276 <0.001 0.88 1.EM 10.69 39.59
2.EA 2.88 10.66

Note: d f for Bartlett sphericity test are based upon the number of variables included in the analysis.

The first component was energy monitoring (EM), which contained the following items: B1–B5,
M4, M5, M6, M7, M8, M9, M11, M12, M13, M14, M15, and M16. This component explained respectively
32.62% (T0), 34.75% (T4), and 39.59% (T5) of variance. The exemplary items that best describe this
component are: “I decided to use internet platforms/applications to monitor energy consumption in
my household” (M11), “I check monthly energy consumption according to data from the electricity
meter” (B2), “I believe that energy monitoring is good” (M9), “I feel bad when I don’t control the
energy consumption in my household” (M7).

In the second component, attitude towards environmental issues (EA), we included items
number A1, A2R, A3, A4, A5R, A6 (R—means negative loading). This component explained
respectively 13.62% (T0), 11.87% (T4) and 10.66% (T5) of variance. The items that best describe
this factor are: “In my opinion, reports about the ecological crisis are exaggerated” (A2R), “I am happy
when the climate and environment protection plays an important role in politics” (A3), “In my opinion,
every person has an impact on environmental protection through his own behavior” (A4), “Protecting
the environment is particularly important to me (A1).
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After exploring the results of PCA, we decided to remove item M3 from further analyses as it was
causing problems with coherent components’ interpretation. In T0, item M3 was loading the second
component but did not suit it from the semantic point of view. In T4, component loading of M3 did not
exceed 0.3, and, in T5, it was loading the first component. There was a small variance of item loadings
between each point of measurement, hence we decided to apply the same two component solutions
for each measurement.

Finally, we created two factors from 23 items and each factor was produced by calculating
arithmetic mean scores, where high scores mean more favorable attitude towards environmental issues
and more endorsement of energy monitoring. The reliability of these two components was examined
using the Cronbach’s alpha. Cronbach’s alpha for each component at each time of measurement was
at least on the level of 0.65. Internal reliability for monitoring of energy consumption was α = 0.90
(T0), α = 0.92 (T4), α = 0.93 (T5) and for a pro-environmental attitude was α = 0.65 (T0), α = 0.77
(T4), α = 0.74 (T5). These results indicate an acceptable consistency of the measurement items and
construct reliability. Some more descriptive statistics and normality test for EM and EA at three points
of measurement T0, T4, and T5 are presented in Appendix A in Table A2.

To explore the effect of the participation in the study on the energy monitoring and attitude
towards environmental issues, we conducted a repeated measures ANOVAs with the group variable
as a between group factor and time of measurement of energy monitoring as a dependent variable
measured at T0, T4, and T5 (n = 142). The results of the analysis showed a statistically significant
main effect of the time of measurement for energy monitoring, F(1.72, 242.09) = 14.74, p < 0.001,
partial-η2 = 10% see Table 5. The results of a post-hoc pairwise comparison with Sidak correction
revealed that participants energy monitoring at T4 (M = 3.30, SD = 0.72) was significantly higher than
in T0 (M = 3.16, SD = 0.71), � = 0.14, p = 0.009, and the energy monitoring at T5 (M = 3.39; SD = 0.75)
was significantly higher than at T0 and T4, respectively � = 0.23, p < 0.001 and � = 0.09, p = 0.020.
This outcome means that participants’ energy Monitoring (EM) was increasing with each point of
measurement. We also performed the same analysis with the attitude towards environmental issues
(EA). However, we found no significant effects of participation in the study on participants’ attitudes
towards environmental issues (see Table 5 and Figure 3).

Table 5. Results of the repeated measures ANOVA for energy monitoring (EM) and attitude towards
environmental issues (EA).

Variables Greenhouse-Geiser ε p-Value F df p-Value Partial-η2

EM 0.86 <0.001 14.74 1.72,
<0.001 0.10242.09

EA 0.88 <0.001 2.65 1.76, 0.080 0.02249.98
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Figure 3. Mean scores with SE for repeated measurements of energy monitoring (EM) and attitude
towards environmental issues (EA).

4.5. Knowledge and Education as Correlates of Energy Monitoring and Attitude towards Environmental Issues

In the last analysis, we explored relationships between energy monitoring (EM), attitude towards
environmental issues (EA), and knowledge measured at T0, T4, and T5, as well as education level.
To measure knowledge, we asked four questions (K1–K4) testing participant’s familiarity with the
following terms and issues: (K1) the concept of smart grid; (K2) the concept of smart metering; (K3) the
opportunity to change the energy supplier; and (K4) the most energy-consuming home appliance.
Each question had only one correct answer, so the sum of the collect answers might have ranged
from 0 to 4. In the T5 point of measurement, the majority of respondents knew which of the home
appliances is the most energy-intensive (91.5% correct answers). In addition, most of the respondents
(83%) were aware that SM enables remote reading of energy consumption by the energy supplier.
Less respondents were aware of who may change the electricity supplier or what smart grid means
(62.7% and 30% of the correct answers, respectively).

We used the Spearman correlation coefficient as it is less susceptible to extreme cases, and allows
for assessing the relationship for ordinal data (see Table 6). The results of the conducted analyses
showed that energy monitoring (EM) at T0 was moderately negatively correlated with education level
and positively correlated with knowledge at T0 and T4. Energy monitoring in T4 and T5 was positively
correlated with knowledge in T0, T4, and T5. Surprisingly, we found no correlations with attitude
towards environmental issues and knowledge or education.
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Table 6. Correlation analysis coefficients for relationships between energy monitoring (EM), attitude
towards environmental issues (EA), Education, and Knowledge in T0, T4, T5, and weekly attitude.

Variables Coeff. Education Knowledge T0 Knowledge T4 Knowledge T5

EM in T0 rho Spearmana −0.25 0.25 0.35 0.14
p-value <0.001 <0.001 <0.001 0.024

EM in T4 rho Spearmana −0.16 0.34 0.31 0.26
p-value 0.053 <0.001 <0.001 0.001

EM in T5 rho Spearmana −0.15 0.31 0.35 0.28
p-value 0.084 <0.001 <0.001 <0.001

EA in T0 rho Spearmana −0.02 0.00 −0.07 −0.08
p-value 0.716 0.940 0.411 0.212

EA in T4 rho Spearmana 0.03 −0.12 0.00 0.01
p-value 0.743 0.156 0.959 0.925

EA in T5 rho Spearmana 0.06 −0.02 0.02 −0.05
p-value 0.505 0.837 0.841 0.593

5. Discussion and Conclusions

Although the acceptance of smart meters has been studied in the literature, the consumers’
readiness to use SM platform still warrants exploration.

Expecting that acceptance of SMP and involvement in energy monitoring is a phase process,
we aimed to test whether messages congruent with behavioral stages in which participants declared to
be are more effective in prompting participants to progress to the next stage than general messages
or passive control conditions. Based on the current literature review, we have expected to observe
that phase change as well as participants’ attitudes to use SMP and monitor energy regularly will be
affected by their environmental attitudes, energy monitoring behaviors, and knowledge on the energy
market [18,36].

5.1. Summary of the Results

In summary, our results showed that the most important factor affecting phase change was the
participation in the study. The longer the participants remained in the study, the higher was the
chance that they progressed from the pre-decisional to pre-actional stage and from the actional to the
post-actional stage. Moreover, the time of measurement affected energy monitoring.

We found no differences between the control groups and the experimental group. One explanation
could be purely statistical, the power of the performed test was too low. That is, the effects we
tested were too small to detect with the sample size we had. Another explanation, which seems
more plausible, is that participation in such a demanding study even in the control group in which
participants completed a number of questionnaires was an experience strong enough to affect changes.
Numerous studies in psychology show that an investment of effort in some issues makes people
value the given cause more [55]. In other words, effort invested could have given additional value
to energy monitoring even in the control group. This interpretation could be additionally supported
by the results showing that participants were more eager to engage in energy monitoring as the
study progressed.

Participation in the study also affected attitudes towards environmental issues, but to a lesser
extent. Thus, the participation in the study was more effective for a variable closer related to behaviors
referring to the control of energy consumption.

Knowledge about energy market was correlated with participants’ energy monitoring. This is
quite an intuitive result as probably specific knowledge provided know-how for participants in the
study. More surprising are the results that education was negatively related to energy monitoring.
We may speculate that participants with higher education have more absorbing professional lives
and spend more time in front of the computer. Therefore, they are less willing to control energy,
using technology in their spare time.
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For most of the participants, monitoring energy by means of SMP has similar pros and cons.
The higher control over one’s energy consumption and better energy management belonged to the
biggest advantages of using SMP, whereas time consumption and low effectiveness in terms of financial
savings were mentioned as the biggest disadvantages and barriers of regular SMP usage. For such
consumers, the energy supplier should offer automatic transmission of e.g., daily reports on energy
consumption or information on exceeding a given level of energy consumption (e.g., daily limit set by
the energy consumer according to his own needs). Such services could increase the level of interest
and engagement in SMP usage.

5.2. Limitations of the Study and Future Work

The main limitation of our study was a restricted sample size, relatively small, but also composed
of volunteers. It is also possible that the study itself was overly time-consuming and difficult for
our participants. This would explain why part of the participants resigned from the participation in
the study.

Moreover, we focused on participants’ declarations and not on real behaviors as indicators of
energy consumption. We asked participants to report energy consumption, but we observed a large
proportion of missing responses for this item.

Future work should focus on larger, more diverse samples and provide easier to use applications
for participants. Ideally, some data could be collected directly from SMP and compared to survey data
in collaboration with an energy provider.

Despite a few mentioned limitations, the originality of this contribution relies on using the stage
model approach, so far not explored thoroughly in the energy related studies (see [35]). Moreover,
we tested our hypotheses in a longitudinal field experiment, which allowed us to observe changes in
the process.

5.3. Practical Recommendations

Based on our results, we may conclude that, while electricity smart meters are useful for the energy
providers, they might not offer enough real benefits for the residential consumers. Even if SM are
combined with smart metering information platforms, such as Internet widgets and mobile applications,
their role in prompting energy monitoring is very limited. At the same time, we observed that mere
participation in the study, independent on the group and getting acquainted with the e-licznik application,
enhances the phase change and the readiness to monitor energy consumption. These findings suggest
that using SMP without any prompts and instructions is unlikely to occur as there are no reasonable
incentives that could convince respondents to monitor energy. Financial, social, or environmental benefits
are probably too low and the effort too high to lead to a permanent behavioral change.

In conclusion, we believe that some good practices are needed. It is necessary to make monitoring
of electricity consumption easy, intuitive and non time-consuming. Designers and suppliers of smart
metering platforms should provide user friendly solutions. Smart meters should also be proposed
with some additional enabling technologies, such as e.g., smart plugs or smart devices, as well some IT
solutions enabling remote adjustment of energy consumption of home appliances or air conditioning
to the current electricity prices. Moreover, to raise awareness, some educational campaigns would
be helpful. Our results suggest, however, that the role of theoretical knowledge in the energy market
should not be overestimated when it comes to energy monitoring and phase changes. Knowledge
appears to affect attitudes on monitoring more than behaviors. Rather reasonable price polices, such as
additional financial incentives for consumers to control energy consumption and to shift from pick to
off-pick hours, would be more beneficial.
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Appendix A

Table A1. Definitions of the variables, coding, and description.

Variable Code Description

Demographics D1–D7

Gender D1 2 categories (nominal)
Age D2 integer (ordinal)
Education D3 5 categories (nominal)
Housing D4 4 categories (nominal)
Material situation D5 5 categories (ordinal)
Range of electricity bill (in PLN per month) D6 4 categories (ordinal)
Inhabitants in the household D7 6 categories (ordinal)

Pro-environmental attitudes A1–A6

Environmental protection is especially important to me A1

scale from 1 to 5

In my opinion, reports of the ecological crisis are exaggerated A2

I am glad that climate and environmental protection play an important role in politics A3

In my opinion, every person has an impact on environmental protection through their
own behavior A4

As an individual, I do not have much influence on environmental protection A5

I would be willing to pay higher taxes in order to protect the natural environment better
and more effectively A6

Energy monitoring behaviors B1–B6

I check monthly energy consumption according to data from electricity bills B1

scale from 1 to 5

I check the monthly energy consumption according to the data from the electricity meter B2

I use a platform or web application to monitor energy consumption B3

I use an intelligent energy management system in my household (the so-called home
area network) B4

I have an electronic device installed in my household and can see my current
electricity consumption B5

Do you use other methods of monitoring energy consumption? (open question) B6

Attitudes towards monitoring M1–M16

To care for the environment and increase energy efficiency, everyone should monitor
the energy consumption of their household M1

scale from 1 to 5
Everyone can contribute to taking care of the environment by monitoring the energy
consumed in the household using e.g., access to data from an energy meter M2

To reduce energy consumption, I turn off the lights, avoid leaving appliances on
stand-by, only turn on the washing machine and dishwasher when they are full M3
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Table A1. Cont.

Variable Code Description

Attitudes towards monitoring M1–M16

Regardless of what others may think, my own rules oblige me to monitor household
energy use M4

I know that some of my neighbors and friends reduce their energy consumption by
regularly monitoring their energy consumption by accessing data from an energy meter.
It motivates me to try to do the same

M5

I feel good when I know I am in control of my energy consumption by regularly
accessing consumption data from my energy meter, e.g., via a platform or
web application

M6

I feel bad not having control of the energy consumption in my household M7

I can see the possibility of regular energy monitoring, e.g., by accessing data from an
intelligent energy meter via a platform/web application M8

I believe that monitoring energy consumption is good M9

scale from 1 to 5

I intend to contribute to the protection of the environment by regularly monitoring
energy consumption, e.g., using a platform/web application M10

I have decided to use a web platform/application to monitor my household
energy consumption M11

I have decided to use a web platform/application to monitor my household
energy consumption M12

I foresaw possible problems that may arise and prevent me from carrying out regular
monitoring of energy consumption via the platform/web application M13

I have developed a way to avoid problems and obstacles in the implementation of
regular monitoring of energy consumption and how to flexibly adapt the monitoring to
a given situation

M14

For the next 7 days, I am going to monitor energy consumption via the
platform/web application M15

I intend to continue using the web platform/app to monitor my energy consumption
even when it is inconvenient M16

Computer skills S1–S4

I use my computer for at least an hour every day S1

scale from 1 to 5

I use social media and applications to communicate with friends and family
(e.g., Facebook, Twitter, Whatsapp, Hangout, and others) S2

I have at least one email address S3

I can download a new application or program from the Internet to my computer or
mobile phone S4

Knowledge about energy market K1–K4

How do we call an energy system that integrates the activities of all participants in the
generation, transmission, distribution and use processes (1) smart metering; (2) smart
grids; (3) advanced metering infrastructure; (4) I do not know

K1

For energy consumers who have an intelligent energy meter installed, it is possible
to: (1) Individual appointments of a collector to read energy consumption; (2) Remote
reading of energy consumption by the seller and monitoring of energy consumption
through the web portal; (3) Settlements based on forecasts of electricity consumption,
made by the electricity supplier on the basis of (4) I do not know

K2
selection test (one
answer is correct)

What is true: (1) In Poland, every energy consumer has the right to change the electricity
supplier; (2) In Poland, only industrial and institutional customers have the right to
change the electricity supplier; (3) In Poland, changing the electricity supplier requires
the consent of the President of the Energy Regulatory Office; (4) I do not know

K3

The most energy-intensive household electronics and household appliances include: (1)
computer; (2) refrigerator; (3) home lighting; (4) I do not know K4
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Table A1. Cont.

Variable Code Description

Preferences towards SM P1–P3

Access to information from e-licznik would be most useful to me for P1

My confidence in the energy supplier regarding data security is best described by
the sentence P2 selection test (option

to choose one answer)

Thanks to the installation of an intelligent energy meter and access to data on my current
energy consumption, I expect P3

Behavioral stages F1–F4

I never use e-licznik web platform /application F1

scale from 1 to 5
Currently, I sometimes use e-licznik web platform /application F2

My goal is to organize my week so that I can monitor my energy consumption regularly F3

I often monitor the energy consumption of my household using e-licznik
platform/application F4

Note: Likert scale from 1 (fully disagree) to 5 (fully agree).

Table A2. Descriptive Statistics with the Shapriro–Wilk normality test for EM and EA at T0, T4, and T5.

Variables M Me SD Sk. Kurt. Min Max W p

EA T1 2.05 2.00 0.58 0.71 1.05 1.00 4.33 0.96 <0.001
EA T4 2.13 2.17 0.63 0.19 −0.41 1.00 3.83 0.98 0.016
EA T5 2.06 2.00 0.61 0.29 −0.56 1.00 3.67 0.97 0.006

EM T1 3.16 3.18 0.71 −0.06 −0.09 1.24 4.88 0.99 0.895
EM T4 3.30 3.41 0.72 −0.21 0.16 1.29 5.00 0.99 0.364
EM T5 3.39 3.41 0.75 −0.12 0.12 1.59 5.00 0.98 0.033

References

1. Rixen, M.; Weigand, J. Agent-based simulation of policy induced diffusion of smart meters. Technol. Forecast.
Soc. Chang. 2014, 85, 153–167. [CrossRef]

2. Zhang, T.; Nuttall, J.W. Evaluating government’s policies on promoting smart metering diffusion in retail
electricity markets via agent-based simulation. J. Prod. Innov. Manag. 2011, 28, 169–186. [CrossRef]

3. Chawla, Y.; Kowalska-Pyzalska, A. Public awareness and consumer acceptance of smart meters among
Polish social media users. Energies 2019, 12, 2759. [CrossRef]

4. Kowalska-Pyzalska, A.; Byrka, K. Determinants of the willingness to energy monitoring by residential
consumers: A case study in the city of Wroclaw in Poland. Energies 2019, 12, 907. [CrossRef]

5. Ellabban, O.; Abu-Rub, H. Smart grid customers’ acceptance and engagement: An overview. Renew. Sustain.
Energy Rev. 2016, 65, 1285–1298. [CrossRef]

6. Verbong, G.P.; Beemsterboer, S.; Sengers, F. Smart grids or smart users? involving users in developing a low
carbon electricity economy. Energy Policy 2013, 52, 1175–125. [CrossRef]

7. Bugden, D.; Stedman, R. A synthetic view of acceptance and engagement with smart meters in the United
States. Energy Res. Soc. Sci. 2019, 47, 137–145. [CrossRef]

8. Foulds, C.; Robison, R.A.V.; Macrorie, R. Energy monitoring as a practice: Investigating use of the imeasure
online energy feedback tool. Energy Policy 2017, 104, 194–202. [CrossRef]

9. Schleich, J.; Faure, C.; Klobasa, M. Persistence of the effects of providing feedback alongside smart metering
devices on household electricity demand. Energy Policy 2017, 107, 225–233. [CrossRef]

10. Buchanan, K.; Russo, R.; Anderson, B. Feeding back about eco-feedback: How do consumers use and
respond to energy monitors? Energy Policy 2014, 73, 138–146. [CrossRef]

11. Crispim, J.; Braz, J.; Castro, R.; Esteves, J. Smart grids in the EU with smart regulation: Experiences from the
UK, Italy and Portugal. Util. Policy 2014, 31, 85–93. [CrossRef]

12. Zhou, S.; Brown, M.A. Smart meter deployment in Europe: A comparative case study on the impacts of
national policy schemes. J. Clean. Prod. 2017, 144, 22–32. [CrossRef]

81



Energies 2020, 13, 4737

13. Chawla, Y.; Kowalska-Pyzalska, A.; Skowronska-Szmer, A. Perspectives of smart meters’ roll-out in India:
An empirical analysis of consumers’ awareness and preferences. Energy Policy 2020, 146, 111798. [CrossRef]

14. Sovacool, B.K.; Kivimaa, P.; Hielscher, S.; Jenkins, K. Vulnerability and resistance in the United Kingdom’s
smart meter transition. Energy Policy 2017, 109, 767–781. [CrossRef]

15. Chawla, Y.; Kowalska-Pyzalska, A.; Widayat, W. Consumer Willingness and Acceptance of Smart Meters in
Indonesia. Resources 2019, 8, 177. [CrossRef]

16. Biresselioglu, M.E.; Nilsen, M.; Demir, M.H.; Royrvik, J.; Koksvik, G. Examining the barriers and motivators
affecting European decision makers in the development of smart and green energy technologies. J. Clean. Prod.
2018, 198, 417–429. [CrossRef]

17. Burchell, K.; Rettie, R.; Roberts, T.C. Householder engagement with energy consumption feedback: The role
of community action and communications. Energy Policy 2016, 88, 178–186. [CrossRef]

18. Ma, G.; Lin, J.; Li, N. Longitudinal assessment of the behavior-changing effect of app-based eco-feedback in
residential buildings. Energy Build. 2018, 159, 486–494. [CrossRef]

19. Hargreaves, T.; Nye, M.; Burgess, J. Making energy visible: A qualitative field study of how householders
interact with feedback from smart energy monitors. Energy Policy 2010, 38, 6111–6119. [CrossRef]

20. Gangale, F.; Mengolini, A.; Onyeji, I. Consumer engagement: An insight from smart grid projects in Europe.
Energy Policy 2013, 60, 621–628. [CrossRef]

21. Krishnamutri, T.; Schwartz, D.; Davis, A.; Fischoff, B.; de Bruin, W.B.; Lave, L.; Wang, J. Preparing for smart
grid technologies: A behavioral decision research approach to understanding consumer expectations about
smart meters. Energy Policy 2012, 41, 790–797. [CrossRef]

22. Kahma, N.; Matschoss, K. The rejection of innovations? rethinking technology diffusion and the non-use of
smart energy services in Finland. Energy Resour. Soc. Sci. 2017, 34, 27–36. [CrossRef]

23. Hess, D.J. Smart meters and public acceptance: Comparative analysis and governance implications.
Health Risk Soc. 2014, 16, 243–258. [CrossRef]

24. Chawla, Y.; Kowalska-Pyzalska, A.; Silveira, P.D. Marketing and communications channels for diffusion of
electricity smart meters in Portugal. Telemat. Inform. 2020, 50, 101385. [CrossRef]

25. Chen, C.F.; Xu, X.; Arpan, L. Between the technology acceptance model and sustainable energy technology
acceptance model: Investigating smart meter acceptance in the United States. Energy Res. Soc. Sci. 2017, 25,
93–104. [CrossRef]

26. Kowalska-Pyzalska, A. What makes consumers adopt to innovative energy sources in the energy market?
A review of incentives and barriers. Renew. Sustain. Energy Rev. 2018, 82, 3570–3581. [CrossRef]

27. Wolsink, M. Distributed generation for sustainable energy as a common pool resource: Social acceptance
in rural setting of smart (micro-) grid configurations. In New Rural Spaces: Towards Renewable Energies,
Multifunctional Farming, and Sustainable Tourism; Frantal, B., Martiant, S., Eds.; Czech Academy of Sciences:
Prague, Czech Republic, 2014.

28. Wuestenhagen, R.; Wolsink, M.; Buerer, M.J. Social acceptance of renewable energy innovation:
An introduction to the concept. Energy Policy 2008, 35, 2683–2691. [CrossRef]

29. Chawla, Y.; Kowalska-Pyzalska, A.; Oralhan, B. Attitudes and opinions of social media users towards smart
meters’ rollout in Turkey. Energies 2019, 3, 732. [CrossRef]

30. Negro, S.O.; Alkemade, F.; Hekkert, M.P. Why does renewable energy diffuse so slowly? A review of
innovation system problems. Renew. Sustain. Energy Rev. 2012, 16, 3836–3846. [CrossRef]

31. Avancini, D.B.; Rodriques, J.J.P.C.; Martins, S.G.B.; Rabelo, R.A.L.; Al-Mahtadi, J.; Solic, P. Energy meters
evolution in smart grids: A review. J. Clean. Prod. 2019, 217, 702–715. [CrossRef]

32. Bellido, M.H.; Rosa, L.P.; Pereida, A.O.; Falcoa, D.M.; Ribeiro, S.K. Barriers, challenges and opportunities
for microgrid implementation: The case of Federal University of Rio de Janeiro. J. Clean. Prod. 2018, 180,
203–216. [CrossRef]

33. Darby, S.; McKenna, E. Social implications of residential demand response in cool temperature climates.
Energy Policy 2012, 49, 759–769. [CrossRef]

34. Bonino, D.; Corno, F.; De Russis, L. Home energy consumption feedback: A user survey. Energy Build. 2012,
47, 383–393. [CrossRef]

35. Nachreiner, M.; Mack, B.; Matthies, E.; Tampe-Mai, K. An analysis of smart metering information systems:
A psychological model of self-regulated behavioral change. Energy Res. Soc. Sci. 2015, 9, 85–97. [CrossRef]

82



Energies 2020, 13, 4737

36. Buchanan, K.; Banks, N.; Preston, I.; Russo, R. The British public’s perception of the UK smart metering
initiative: Threats and opportunities. Energy Policy 2016, 91, 87–97. [CrossRef]

37. Hmielowski, J.D.; Boyd, A.D.; Harvey, G.; Joo, J. The social dimensions of smart meters in the United States:
Demographics, privacy, and technology readiness. Energy Res. Soc. Sci. 2019, 55, 189–197. [CrossRef]

38. Razavi, R.; Gharipour, A. Rethinking the privacy of the smart grid: What your smart meter data can reveal
about your household in Ireland. Energy Res. Soc. Sci. 2018, 44, 312–323. [CrossRef]

39. Good, N.; Ellis, K.A.; Mancarella, P. Review and classification of barriers and enablers of demand response
in the smart grid. Renew. Sustain. Energy Rev. 2017, 16, 57–72. [CrossRef]

40. Lineweber, D.C. Understanding residential customer support for and opposition to smart grid investments.
Electr. J. 2011, 24, 92–100. [CrossRef]

41. Mack, B.; Tampe-Mai, K.; Kouros, J.; Roth, F.; Diesch, E. Bridging the electricity saving intention-behavior
gap: A German field experiment with a smart meter website. Energy Res. Soc. Sci. 2019, 53, 34–46. [CrossRef]

42. Raimi, K.T.; Carrico, A.R. Understanding and beliefs about smart energy technology. Energy Res. Soc. Sci.
2016, 12, 68–74. [CrossRef]

43. Podgornik, A.; Sucic, B.; Blazic, B. Effects of customized consumption feedback on energy efficient behavior
in low-income households. J. Clean. Prod. 2016, 130, 25–34. [CrossRef]

44. Bamberg, S. Changing environmentally harmful behaviors: A stage model of self-regulated behavioral
change. J. Environ. Psychol. 2013, 34, 151–159. [CrossRef]

45. Ozaki, R. Adopting sustainable innovation: What makes consumers sign up to green electricity?
Bus. Strategy Environ. 2011, 20, 1–17. [CrossRef]

46. Bamberg, S. Applying the stage model of self-regulated behavioral change in a car use reduction intervention.
J. Environ. Psychol. 2013, 33, 68–75. [CrossRef]

47. Gollwitzer, P.M.; Heckhausen, H.; Steller, B. Deliberative and implemental mind-sets: Cognitive tuning
toward congruous thoughts and information. J. Personal. Soc. Psychol. 1990, 59, 1119–1127. [CrossRef]

48. Heckhausen, H.; Gollwitzer, P.M. Thought contents and cognitive functioning in motivational versus
volitional states of mind. Motiv. Emot. 1987, 11, 101–120. [CrossRef]

49. Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003.
50. Gadenne, D.; Sharma, B.; Kerr, D.; Smith, T. The influence of consumers’ environmental beliefs and attitudes

on energy saving behaviors. Energy Policy 2011, 39, 7684–7694. [CrossRef]
51. Nolan, J.M.; Schultz, P.W.; Cialdini, R.B.; Goldstein, N.J.; Griskevicius, V. Normative social influence is

underdetected. Personal. Soc. Psychol. Bull. 2008, 34, 913–923. [CrossRef]
52. Allcott, H. Social norms and energy conservation. J. Public Econ. 2011, 95, 1082–1095. [CrossRef]
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Abstract: The shift in consumer preferences for large-sized cars has increased the energy intensity (EI)
of passenger cars, while growth in battery electric vehicle (BEV) sales has decreased EI in recent years
in South Korea. In order to lower passenger cars’ EI, the South Korean government has implemented
the Corporate Average Fuel Economy (CAFE) standards with a credit system, in which the sale of
one energy-efficient car (for example, a BEV) can get multiple credits. This study analyzes CAFE
standards in terms of both the EI improvement sensitivity scenarios and the degree of credits for
BEVs and fuel cell electric vehicles (FCEVs) by using the Global Change Assessment Model (GCAM).
In this study, passenger cars include small, medium, and large sedans, sport utility vehicles (SUVs) of
internal combustion engine vehicles (ICEVs), BEVs, and FCEVs. The findings of this study are as
follows: First, from the policy design perspective, a proper setting of the credit system for BEVs and
FCEVs is a very important variable for automakers to achieve CAFE standards. Second, from the
technology promotion perspective, active promotion of fuel efficiency improvements through CAFE
standards are important since Better-EI and Best-EI scenarios are found to achieve CAFE standards
even when a BEV or a FCEV receives a credit of one car sale in 2030.

Keywords: Corporate Average Fuel Economy standards; Global Change Assessment Model

1. Introduction

In 2017, the transportation sector accounted for 28.9% of the total energy consumption in South
Korea [1]. Due to a heavy reliance on petroleum products, the transportation sector was the most
CO2-emitting sector among all end-use sectors in the country [2]. The South Korean government
has implemented various policies for reducing energy consumption and greenhouse gas emissions
in the transportation sector. Since the road sector accounted for 79.7% of the total transportation
energy consumption in 2017, excluding that of bunkering [3], many policies focus on the road sector
in South Korea. As many countries have adopted the Corporate Average Fuel Economy (CAFE)
standards, South Korea also implemented CAFE standards in 2008. However, CAFE standards only
deal with a tank-to-wheels analysis which is a part of a comprehensive analysis of vehicle energy use
and emissions [4], thus restricting the annual average fuel economy (km/L) or greenhouse gas (GHG)
emissions (g/km) of automobiles for automakers. To facilitate automakers in selling fuel-efficient
cars and satisfying CAFE standards, there is a credit system in the CAFE standards in South Korea.
According to this credit system, a sale of one fuel-efficient car can earn multiple credits. For example,
the sale of one battery electric vehicle (BEV) is counted as three car sales by calculating the annual
average fuel efficiency performance and annual average GHG emission performance. Even the sale of
one gasoline vehicle which has a fuel efficiency of more than 23.4 km/L is counted as two car sales. It
is worth introducing the U.S. CAFE standards here in which automakers are able to trade credits [5].
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For instance, an automaker with a CAFE performance lower than what is required can opt to buy some
credits in the credit market (that is, from other automakers). This flexibility in the U.S. CAFE standards
allows automakers to lower costs for achieving CAFE standards. U.S. CAFE standards are calculated
based on the wheelbase (length) and footprint (area) [6], causing larger cars to be less affected than
smaller cars, while the South Korea CAFE standards consider a vehicle’s curb weight.

Fuels emit GHG emissions through their life cycle—well-to-wheels process (WtW)—which can be
disaggregated into well-to-tank (WtT) (extraction, refining, and transportation) and tank-to-wheels
(TtW) (combustion). CAFE standards regulate only TtW emissions. The results of Khan et al.’s [7] WtW
study in Pakistan show that TtW emissions accounted for 73–86% of the life cycle of GHG emissions
for internal combustion vehicles (ICEVs). Song et al.’s [8] WtW study in Macau showed that for a
gasoline vehicle, TtW emissions accounted for 87% of its life-cycle GHG emissions. Jang and Song’s [9]
WtW study in South Korea showed that TtW emissions accounted for 82.8% and 83.4% of the life cycle
GHG emissions for gasoline and diesel vehicles, respectively. Previous studies have found that TtW
GHG emissions are a major contributor to life-cycle GHG emissions. Hence, this study focuses on an
analysis of TtW GHG emissions and assesses CAFE standards in South Korea using the Global Change
Assessment Model (GCAM) with a sensitivity analysis.

2. Current Status of Passenger Cars in South Korea

As shown in Figure 1, the total number of cars in South Korea has increased rapidly. This increase
has primarily been led by sales of passenger cars. Over the last ten years, the number of passenger cars
and trucks has increased by 47.2% and 13.5%, with a current total of 19.17 million passenger cars and
3.59 million trucks, while vans sales decreased by 24.9% with a total of 0.81 million vans in 2019. That
is, passenger cars will be a crucial target for reducing transportation energy consumption and GHG
emissions in the road sector.

 

Figure 1. Number of cars in South Korea.

Figure 2 shows historical trends of the share of passenger cars by engine size and average energy
intensity (EI). During 2000–2019, the share of large-sized passenger cars (more than 2000 cc) noticeably
increased from 8.6% to 28.5%, while the percentage of small-sized passenger cars (1000 cc~1600 cc)
sharply decreased from 49.3% to 21.2%. Considering that the energy intensity of large-sized cars is
usually higher than that of small-sized cars [10], this shift in consumer preferences for large-sized
cars must have had a negative impact on the overall energy intensity of passenger cars. The increase
in average energy intensity from 2.71 MJ/km to 3.37 MJ/km during 2001–2016 (Figure 2) provides
empirical evidence of such an impact.
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Figure 2. Share of passenger cars by engine size and weighted average energy intensity (EI) (source:
Ministry of Land, Infrastructure and Transport [11], Korea Transport Institute [12], Korea Energy
Economics Institute [13]). Note: MOLIT [11] changed the statistical classification of passenger cars
in 2009.

While the shift in consumer preferences for large-sized passenger cars tends to increase energy
intensity, the promotion of energy-efficient cars such as BEVs and fuel cell electric vehicles (FCEVs)
could lower passenger cars’ energy intensity. South Korea has implemented various policies for
promoting BEVs, for example, providing a subsidy for buying a BEV. As a result of this policy, for
the transportation sector, BEVs’ market share in South Korea increased from 0.05% to 1.95% during
2013–2018 (Figure 3). Even though the number of BEVs in 2018 was small, it is expected that BEVs can
be a primary technology for improving energy intensity in the transportation sector in the near future.

 

Figure 3. Market share of battery electric vehicles (BEVs) (source: International Energy Agency [14]).
Note: Market share means share of new BEV registrations as a percentage of total new passenger
car registrations.

87



Energies 2020, 13, 4533

3. CAFE Standards in South Korea and the Objective of this Study

In South Korea, the implementation of CAFE standards is based on the Energy Use Rationalization
Act [15]. During the initial period of the implementation of the standards (2008–2011), the target was
to achieve 12.4 km/L for mini and small-sized cars and 9.6 km/L for medium and large cars by 2011.
During the second period (2012–2015), no specific targets for the types of cars were given and the
overall target was to achieve 17 km/L or 140 g/km by 2015. During the current period (2016–2020),
the target is to achieve 24.3 km/L or 97 g/km by 2020. A new target of achieving 28.1 km/L or 84 g/km by
2030 [16] has also been announced. Under the current CAFE standards, the performance and standards
of annual average fuel efficiency are calculated as [17] (see Supplementary Materials).

f =
N

N∑
i=1

qi
fi

(1)

f s =
N

N∑
i=1

qi
fis

(2)

where

f : average fuel efficiency performance,
f s: average fuel efficiency standard,
N: total sales of cars,
i: car model i,
qi: sales of car model i,
fi: fuel efficiency performance of car model i,
f s
i : fuel efficiency standard of car model i.

f s
i =

{
α+ βmi i f mi > 1070 kg
δ i f mi ≤ 1070 kg

(3)

where

α, β, and δ: given parameters,
mi: the curb weight of car model i.

Fuel efficiency standard of car model i is directly given as δ regardless of its curb weight if the
curb weight of model i is less than 1070 kg and the performance and standard of annual average GHG
emissions is calculated as

e =

N∑
i=1

eiqi

N
(4)

es =

N∑
i=1

es
i qi

N
(5)

where e is average GHG emission performance, es is the average GHG emission standard, ei denotes
the GHG emission performance of car model i, and es

i denotes the GHG emission standard of car model
i, which is calculated as

es
i =

{
α′ + β′(m−w) i f m > 1070 kg
δ′ i f m ≤ 1070 kg

(6)

where w is an additionally given parameter compared to the calculation of fuel efficiency standards.
Until 2011, fuel efficiency was regulated by Federal Test Procedure-75 (FTP-75), a driving test known
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as the city driving test. Since 2012, fuel efficiency is regulated in a combined mode considering both
city driving and highway driving tests. Under current CAFE standards, the sale of one BEV or one
FCEV is counted as three car sales by calculating the annual average fuel efficiency performance and
annual average GHG emission performance. For calculating the average GHG emission performance
of BEVs or FCEVs, ei is counted as zero.

Figure 4 shows historical fuel efficiency and carbon emissions by passenger cars with their CAFE
standards. In Figure 4, neither fuel efficiency nor carbon emissions show much improvement during
2013–2018. Considering these unfavorable historical trends in passenger cars’ fuel efficiency and
carbon emissions, it would be meaningful to assess CAFE standards.

 

Figure 4. Observed versus Corporate Average Fuel Economy (CAFE) standards in terms of fuel
efficiency and carbon emissions in the passenger car sector (source: Korea Energy Agency [17]).

4. Methodology and Data

4.1. Global Change Assessment Model

GCAM was chosen as an integrated assessment model for creating representative concentration
pathways for the Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report
(AR5) [18]. GCAM represents various sectors including energy systems, agriculture, land use, land
use change and forestry (LULUCF), economy, water, and climate for an analysis of their interactions.
GCAM runs in five-year time steps, solving for market equilibrium. At the equilibrium, supply equals
demand in all markets. The transportation sector is one of the end-use sectors in GCAM’s energy
system. One of the advantages of using GCAM is a well-represented hierarchical structure of the sector
(for example, passenger road sector), mode (for example, small, medium, large car, and sport utility
vehicle (SUV)), and technology (for example, ICEV, BEV, and FCEV) [19]. Mishra et al. [20] explain the
methodological details of the GCAM transportation module. Kyle and Kim [21] and Yin et al. [22] can
also be used as reference studies for an analysis of the transportation sector using GCAM.

The passenger transportation service demand at time t is given as

Dt = σ(Yt)
α(Pt)

β(Nt) (7)

where

D: Passenger transportation demand (passenger kilometers travelled or PKT),
Y: Per capita income ($),
P: Price of transportation service ($/PKT),
N: Population,
α: Income elasticity,
β: Price elasticity,
t: Year in five-year time steps (for example, 2010 for calibration, 2015, 2020).
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The price of transportation services (P) is calculated from the weighted average cost of sector,
mode, and technology as

Pt =
∑

i

Si,tPi,t (8)

Pi,t =
∑

s
Ss,i,tPs,i,t (9)

Ps,i,t =
∑

j

Sj,s,i,tPj,s,i,t +
W

SPs,i,t
δi (10)

Pj,s,i,t =
FPj,s,i,tEIj,s,i,t + NFPj,s,i,t

Lj,s,i,t
(11)

where

i: Sector (for example, passenger road sector, passenger rail sector),
s: Mode (for example, small car, medium car),
j: Technology (for example, ICEV, BEV),
W: Hourly wage ($/h),
SP: Speed of mode (km/h),
δ: A parameter for the calculation of value of time,
FP: Fuel price ($/joule),
EI: Energy intensity (joule/VKT),
NFP: Non-fuel price ($/VKT),
L: Load factor (PKT/VKT),
S: Market share.

For example, the share of technology j in mode s is determined as

Sj,s,i,t =
(SWj,s,i,tPj,s,i,t)

λi

∑
j
(SWj,s,i,tPj,s,i,t)

λi
(12)

where SW means share-weight as a parameter for calibration and λ denotes the logit exponent.
Figure 5 shows the structure of the transportation sector used in this study. The passenger car

sector includes four different modes—small sedan, medium sedan, large sedan, and SUV. Each mode
has three technology options—ICEV, BEV and FCEV. The input data for modeling the transportation
sector are based on Jeon and Kim [23], Jeon et al. [24], Korea Energy Economics Institute [3], Korea
Transport Institute [12], Korea Energy Agency [17], and Korea Transportation Safety Authority [25].
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Figure 5. Representation of the transportation sector’s structure used in this study.

4.2. Vehicle Cost Assumptions

This study uses the default data in GCAM [26] only for the composition ratio of technology costs.
For the assumption of the year of cost parity (ICEV versus BEV), previous studies are referred to.
Lutsey and Nicholas [27] expect that 2025 is the earliest when BEVs will reach cost parity with ICEVs.
This study points out that mass production of BEVs could lower their costs, especially because of
their lower battery costs. Likewise, Soulopoulos et al. [28] expect substantial cost reductions in BEVs
because of improvements in battery technology and economies of scale. In their study, the cost parity
of ICEVs and BEVs will be realized around 2022–2026, depending on vehicle size and a BEV’s range
(for example, smaller cars will reach cost parity earlier). As shown in Figure 6, this study assumes that
ICEV costs are constant over all periods, while BEV costs are assumed to reach cost parity with ICEV
costs in 2025, as referred to in references [27–29]. Then, BEV costs will be 85% of ICEV costs from 2030.

 

Figure 6. Assumption of total costs (see Supplementary Materials).
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We refer to Morrison et al.’s [30] research on cost competitiveness between BEVs and FCEVs for
the assumption of the year of cost parity (BEV versus FCEV). In particular, it is found that a BEV with
a 150-mile range will reach cost parity with a FCEV around 2025, and after 2025 a FCEV’s costs will
be lower than a BEV’s costs (for more details and numerical values, please refer to the tables in the
Supplementary Materials).

4.3. Scenario Description

First, this study adopts Shared Socioeconomic Pathway 2 (SSP2) for socioeconomic assumptions
(see Supplementary Materials). Table 1 gives the scenario settings in terms of the relative energy intensity
of cars based on the reference case. Three additional scenarios are analyzed in this study, depending
on the degree of improvements in energy intensity in all passenger cars (Figure 5). The reference
assumes no improvement in energy intensity in the future. The ‘Mod-EI’ scenario is based on the
energy intensity improvement rate applied by Ruffini and Wei [29]. The ‘Better-EI’ and the ‘Best-EI’
scenarios have an additional 10 and 20 percentage points of energy intensity improvement compared
to the ‘Mod-EI’ scenario in 2050, respectively.

Table 1. Energy intensity improvement scenarios (unit: normalized).

Scenario Description Tech

Relative Energy Intensity of
Passenger Cars

2020 2030 2040 2050

Reference No improvement
ICEV 1 1 1 1
BEV 1 1 1 1

FCEV 1 1 1 1

Mod-EI Moderate improvement in energy intensity
ICEV 1 0.889 0.800 0.727
BEV 1 0.881 0.838 0.821

FCEV 1 0.842 0.825 0.816

Better-EI High improvement in energy intensity
ICEV 1 0.849 0.720 0.627
BEV 1 0.841 0.758 0.721

FCEV 1 0.802 0.745 0.716

Best-EI Very high improvement in energy intensity
ICEV 1 0.809 0.640 0.527
BEV 1 0.801 0.678 0.621

FCEV 1 0.762 0.665 0.616

Since GCAM does not account for the number of vehicles explicitly, a conversion of transportation
service demand into the number of cars is required. As shown in Equation (13), the number of vehicles
(Veh) can be calculated from transportation demand (D) multiplied by the inverse of the load factor
(L−1) and the inverse of the VKT per vehicle (V−1). The load factor (L) and VKT per vehicle (V) are
assumed to refer to references [12,25], respectively, for all technologies in this study.

Veh ≡ PKT × VKT
PKT

× Veh
VKT

= D× L−1 ×V−1
(13)

5. Results

Figure 7 shows the simulation results of service demand by passenger cars along with historical
trends in demand in selected OECD countries in conjunction with GDP per capita. In Figure 7,
the simulation results are from the reference case. It is found that the simulation results of service
demand by passenger cars are consistent across all scenarios. At maximum across all scenarios and
periods, the Best-EI scenario increases service demand for passenger cars 0.16% more than the reference
in 2050. That is, all the scenarios do not have a tangible impact on total service demand by passenger
cars. It should be noted that all the scenarios assume income elasticity of passenger transportation
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demand (α in Equation (7)) as 1.1 for all periods. For example, Dunkerley et al. show that the income
elasticity of passenger transportation demand is in the range 0.5 to 1.4 [31].

 

Figure 7. GDP per capita versus demand per capita for passenger cars (source: OECD [32,33]).

Figure 8, which is used for calculating CAFE’s performance, shows the market share of ICEVs,
BEVs, and FCEVs in the reference case. Since all scenarios do not have a big impact on the overall trend
in market share, only the reference results are given in Figure 8. At maximum across all scenarios and
periods, market share in 2050 is as follows: Reference (ICEV 9.6%; BEV 26.4%; FCEV 64.0%), Best-EI
(ICEV 11.1%; BEV 22.5%; FCEV 66.4%). After the cost parity point (2025), ICEVs’ market share is
expected to decline rapidly from 70.2% to 21.1% during 2025–2030. Over the same period, FCEVs’
market share will grow sharply from 9.8% to 52.1%. A slight increase of BEVs’ market share, from
20.0% to 26.8%, will also contribute to shrinking ICEVs’ market share.

 

Figure 8. Market share of ICEVs, BEVs and FCEVs; new car penetrations as a percentage of total new
passenger car penetrations.

Using their mix scenario, Krause et al. [34] expect that the market share of conventional vehicles
will be below 20% in 2050 in the European Union road transportation sector. Bloomberg New Energy

93



Energies 2020, 13, 4533

Finance [35] foresees South Korea achieving a high level of electric vehicle adoption, representing
around 60% of the market share in 2040.

The credit system in South Korea’s CAFE standards provides incentives for selling BEVs and
FCEVs. However, the credit system can change depending on market circumstances. For example, a
sale of one FCEV was counted as five car sales by calculating CAFE’s performance until 2017. Now,
the credit for one FCEV sale has decreased to three car sales. This means the credit system could be an
important variable in assessing CAFE standards. Figure 9 assesses CAFE standards in terms of the
energy intensity sensitivity scenarios and also the degree of BEV and FCEV credits. In 2025, if the credit
for a BEV or a FCEV sale is one car sale, only the Best-EI scenario will achieve CAFE standards. If the
credit for a BEV or an FCEV sale is two car sales, only the reference will not achieve CAFE standards.
If the credit for a BEV or a FCEV sale is three car sales, all scenarios will achieve CAFE standards. In
2030, if the credit for one BEV or FCEV sale is one car sale, Better-EI and Best-EI scenarios will achieve
CAFE standards. However, if the credit for a BEV or a FCEV is more than two car sales, all scenarios
will achieve CAFE standards.

Figure 9. Average greenhouse gas (GHG) emissions by scenarios and the degree of credit for BEVs
and FCEVs.

6. Conclusions

Energy intensity is one of the important factors that influence CO2 emissions [36,37]. In this
respect, this study introduced the current status of South Korea’s passenger cars from two perspectives.
First, the shift in consumer preferences towards large-sized cars is deteriorating the overall energy
intensity of passenger cars. Second, the increasing promotion of BEVs could improve the energy
intensity of passenger cars. CAFE standards were implemented for improving the energy intensity of
passenger cars in South Korea. This study assessed CAFE standards by doing a sensitivity analysis of
energy intensity improvement scenarios using GCAM. In addition to an analysis of the scenarios the
study also assessed the credit system of CAFE standards.

The results are summarized as follows. First, all scenarios have a negligible impact on total service
demand by passenger cars and on the overall trends of market share among ICEVs, BEVs, and FCEVs.
According to the CAFE performance analysis, all scenarios will achieve CAFE standards in 2030 if the
current credit system of three credits for one BEV or FCEV sale or at least two credits for one BEV or
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FCEV sale is kept. However, in the case of no additional credits for one BEV or FCEV sale (that is,
one credit for a BEV or an FCEV sale), the reference and the Mod-EI scenario will not achieve CAFE
standards in 2030.

Some other findings of this study are as follows: First, from the policy design perspective, a proper
setting of the credit system for BEVs and FCEVs will be a very important variable for automakers to
achieve CAFE standards. Second, from the technology promotion perspective, active promotion of
fuel efficiency improvements through CAFE standards is important since the Mod-EI scenario does
not achieve CAFE standards when the credit for a BEV is one car sale in 2030.

The current study can be extended to include the following issues: First, various types of hybrid
electric vehicles can be explicitly considered by extending this study. Second, various types of costs
not included in vehicle costs, such as user costs, inconvenience costs, and time costs of refueling, can
be modeled by applying this study if additional information becomes available.
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Abstract: South Korea has been suffering from high PM2.5 pollution. Previous studies have
contributed to establishing PM2.5 mitigation policies but have not considered provincial features
and sector-interactions. In that sense, the integrated assessment model (IAM) could complement the
shortcomings of previous studies. IAM, capable of analyzing PM2.5 pollution levels at the provincial
level in Korea, however, has not been developed yet. Hence, this study (i) expands on IAM which
can represent provincial-level spatial resolution in Korea (GCAM-Korea) with air pollutant emissions
modeling which focuses on the road transportation sector and (ii) examines the zero-emission vehicles
(ZEVs) subsidy policy’s effects on PM2.5 mitigation using the expanded GCAM-Korea. Simulation
results show that PM2.5 emissions decrease by 0.6–4.1% compared to the baseline, and the Seoul
metropolitan area contributes 38–44% to the overall PM2.5 emission reductions. As the ZEVs subsidy
is weighted towards the light-duty vehicle 4-wheels (LDV4W) sector, various spillover effects are
found: ZEVs’ share rises intensively in the LDV4W sector leading to an increase in its service costs,
and at the same time, driving bus service costs to become relatively cheaper. This, in turn, drives an
increase in bus service demand and emissions discharge. Furthermore, this type of impact of the
ZEVs subsidy policy does not reduce internal combustion engine vehicles (ICEVs) in freight trucks,
although diesel freight trucks are a major contributor to PM2.5 emissions and also to NOx.

Keywords: integrated assessment model; subsidy policy; air quality improvement; zero-emission
vehicles; fine particulate matter

1. Introduction

1.1. Background

In recent years, South Korea has been suffering from deteriorating air quality because of high
particulate matter (PM) levels. In capital Seoul, PM2.5 (PM of 2.5 μm or less in diameter) concentration
is nearly two times higher than what is prescribed by the World Health Organization (WHO)
guidelines [1]. According to WHO, PM2.5 exposure leads to an increase in mortality because of
respiratory and cardiovascular diseases [2]. In Korea, a total of 11,924 deaths were attributable to PM2.5

in 2015 [3].
PM2.5 can be directly emitted from human activities such as power plants, business facilities,

and internal combustion engine vehicles (ICEVs). PM2.5 can also be produced secondarily by
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photochemical reaction with PM2.5 precursor species of nitrogen oxides (NOx), sulfur oxides (SOx),
ammonia (NH3), and volatile organic carbons (VOC) in the atmosphere [4]. Regarding sources of
domestic PM2.5 emissions, of all PM2.5 in the atmosphere in Korea, half of it comes from secondary
formation. Business facilities are the largest PM2.5 emitters nationwide while diesel vehicles are the
largest emitters in the Seoul metropolitan area (Seoul, Incheon, and Gyeonggi), where almost half the
Korean population resides [5,6].

The Korean government has set up a series of countermeasures to control PM2.5 emissions
including a Comprehensive Plan on Fine Dust Management (CPFDM). CPFDM is a comprehensive
plan for cutting PM2.5 between 2020 and 2024 which aims to decrease the annual average PM2.5

concentration by 35% below the 2016 levels (26 μg/m3) by 2024. Also, domestic emission reduction
target per year with reduction rate for PM2.5 (noted in the parenthesis) was set at 3300 tonnes (8%)
for the industry sector; 2000 tonnes (63%) for the power generation sector; 8600 tonnes (35%) for the
transportation sector; and 5200 tonnes (17%) for everyday surroundings such as road-cleaning, illegal
incineration, and introduction of domestic low-NOx boilers (the term of “everyday surroundgins” is
used in the official document) [7]. That is, the transportation sector, especially the road transportation
sector, has the largest reduction target of PM2.5 emissions, although the power sector is facing a stricter
emission reduction target in terms of the reduction rate. The road transportation sector accounted for
around 70% of the total PM2.5 emissions from both road and non-road transportation sectors including
fugitive road dust (FRD) in 2016. FRD is generated by tire wear, brake wear, and road wear. It is one
of the major emitters accounting for 7% of the overall local emissions of PM2.5 in 2016. At that time,
emissions from the road transportation sector were 11% [8].

Zero-emission vehicles (ZEVs) such as electric battery vehicles (BEVs) and fuel cell electric vehicles
(FCEVs), are globally promoted for improving air quality and reducing oil consumption [9]. In Korea,
ZEVs have been strongly promoted as one of PM2.5 mitigation measures for the transportation sector.
In 2018, the government spent $757 million to carry forward PM2.5 mitigation measures for the
transportation sector, which accounted for 56% of the total budget for domestic PM2.5 mitigation
measures. In particular, budget spending on the subsidizing ZEVs’ purchase accounted for 71% of the
PM2.5 mitigation budget for the transportation sector [10].

In addition to the ZEV purchase subsidy, the government also offers tax incentives (for example,
tax breaks for special consumption tax, educational tax, acquisition tax, and automobile tax) for ZEVs’
buyers [7], and mandates automakers to supply a certain percentage of ZEVs including low-emission
vehicles (hybrid electric vehicles (HEVs) and plug in HEVs) without any incentive. Instead, the amount
of mandatory supply can be deducted if automakers invest in charging station installations as a
contribution to infrastructure construction [11]. Unlike automakers, owners of apartment houses,
business facilities, and large car parks get a subsidy for charging station installations [12].

1.2. Main Objectives of This Study

Studies have widely used an integrated assessment model (IAM) for analyzing environmental
policy within inter-related systems such as the economy, energy, land-use, agriculture, and climate [13].
IAM has also been used for emission projections, mortality costs, and air quality management for
PM2.5 (Table 1).

CPFDM was established based on the following studies but the studies have some shortcomings.
Kim et al. [14] prioritized PM reduction policies using the Analytic Hierarchy Process (AHP) and
suggested ’Mandatory reduction of air pollution in the manufacturing industry and the suspension of
such factories operation’ as the top priority. Since they did not consider provincial emissions patterns,
their suggestion may not be applicable to some provinces. For example, policies associated with diesel
vehicle reduction might have been given a higher priority than the suggested policy in the Seoul
metropolitan area if Kim et al. [14] had taken into account provincial emission patterns. In this sense,
our study can make up the gap in Kim et al.’s study.
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For the computation of PM2.5, NOx, and SOx concentrations at monthly and grid levels,
the Community Multiscale Air Quality (CMAQ) model was used with the national emissions
inventory [15–17]. Anthropogenic emissions control is constrained in socioeconomics assumptions
such as population and economic growth, as well as technology development assumptions [18].
However, since some studies are based on the point of view of atmospheric chemical reactivity, they
do not consider socioeconomics assumptions. Besides, there is also a study which estimates social
costs of PM2.5 [19].

Table 1. Previous studies on anthropogenic PM2.5 emissions using IAM.

Research Topic
Pollutant

Region
Spatial
Scope

IAM Reference
PM2.5 PM10 NOx SOx BC OC CO2

Emissions projections � � � USA US
States GCAM-USA 1 [18]

Mortality costs � � � � USA US
States GCAM-USA [20]

Emissions projections � � Europe National RAINS 2 [21]

Emissions projections and
policy impact analysis � � � USA

US
Census

Division
EPA-MARKAL 3 [22]

Global emissions aspect � � � � Global 25 Global
Regions GAINS 4 [23]

Energy efficiency measures’
impacts on emissions in the

cement industry
� � � � � China China

Provinces GAINS [24]

1 Global Change Assessment Model-USA developed by PNNL/JGCRI; 2 Regional Air Pollution INformation and
Simulation developed by IIASA; 3 Environmental Protection Agency-MARKet Allocation developed by EPA; 4 and
Greenhouse gas Air pollution Interactions and Synergies developed by IIASA.

An analysis of cross-sectoral dynamics is a pre-requisite for preventing unexpected harm of the
spillover effects in multiple sectors, but there are few studies on how the policy impact of PM2.5

emissions changes in multiple sectors. Hence, using IAM can remedy the shortcomings of previous
studies. However, to the best of our knowledge IAM has not been applied for tackling PM2.5 issues in
Korea. Moreover, IAM is also capable of analyzing PM2.5 at the provincial level and this too has not
been developed yet by researchers.

Hence, the first goal of this study is modeling air pollutant emissions using IAM that represents
Korean province partial resolution (GCAM-Korea). This study focuses on the road transportation
sector in GCAM-Korea as the first step. Pollutant coverage is primary PM2.5 as well as the precursors
NOx, SOx, VOC, and NH3. The second goal is assessing the ZEV subsidy policy’s impact on air
pollutant emissions across the road transportation sector and provinces.

2. Methodology and Data

2.1. Global Change Assessment Model and GCAM-Korea

GCAM is a community model which has been managed by the Joint Global Change Research
Institute (JGCRI) for over 30 years. As a community model, GCAM is a fully open source code and
model data on Github [25]. GCAM can investigate human-earth system dynamics alongside detailed
representation of technology. The system consists of the economy, energy systems, agriculture and
land-use, water, and the physical Earth system. As a partial equilibrium model based on a given
socioeconomic pathway, GCAM finds equilibrium in the supply and demand of goods and services
in each market and then determines market-clearing quantity and price [26,27]. GCAM models
technology competition using the logit type of share equation based on the relative costs developed by
McFadden [28]. The share of technology in each sector and period is changed smoothly by costs or
policy changes [29]. That is, the logit share equation can prevent the winner-takes-all phenomenon
which can be caused by an abrupt and slight price change in linear programming optimization [30,31].
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Population and GDP (Gross Domestic Product) are exogenous inputs and driving forces for
determining final energy service demand in conjunction with the cost of energy services and
sector-specific energy services’ price elasticity. The model is calibrated for energy consumption
and pollutant emissions at the base year. In GCAM, GDP can affect future emissions of air pollutants.
Smith et al. [32] examined the relationship between sulfur dioxide emission reduction and GDP per
capita in Purchasing Power Parity (PPP) in 17 world regions from 1850 to 2000. Their study developed
an income-based parameterization for an IAM to control sulfur dioxide emissions. Based on their
study, GCAM adopted the income-based emission control function for NOx and SOx. As a result,
fast economic growth tends to implement emission reduction rapidly. In GCAM, anthropogenic air
pollutant emissions are driven not only by fuel consumption but also GDP per capita.

While GCAM’s energy-economy system presents 32 regions globally including South Korea as a
separate region, the recent GCAM represents various spatial resolutions for capturing the heterogeneity
of certain regions which have not been modeled separately. As an example of a country-specific
GCAM, which was not modeled as a separate region before, GCAM-Ethiopia was developed by
separating Ethiopia from Eastern Africa that is one of the 32 global regions to go over biomass
policy effects on Ethiopian energy consumption [33]. GCAM-Gujarat is a bit more detailed country
GCAM. GCAM-Gujarat is an extended version of GCAM-India and was used for assessing building
energy policies in Gujarat state in India [34]. GCAM-China has a higher resolution, which represents
31 provinces in China with other global regions. GCAM-China was used for examining the role of
technologies such as carbon dioxide capture, utilization, and storage (CCUS) [35] and nuclear power
plants [36] in China at the provincial level. Another example of higher spatial GCAM is GCAM-USA,
which subdivided the USA region into 50 US states and D.C. and was also used as a PM2.5 analysis
tool for US states and D.C. Shi et al. [17] projected NOx, SO2, and PM2.5 emissions, and Ou et al. [20]
estimated PM2.5 mortality costs.

GCAM-Korea is developed based on GCAM-USA ver. 5.1.3 for investigating the South Korean
energy system at the provincial level. GCAM-Korea subdivides South Korea into 16 provinces except
for Sejong (Figure 1). As Sejong is a relatively new city established in 2012 and it has only 0.5% of
South Korea’s residents not enough information is available on the region as yet. In GCAM-Korea,
31 global regions outside South Korea interact with 16 provinces in South Korea. Socioeconomics
and energy systems are represented at the provincial level, while land-use and water systems
adopt the default GCAM system. Although GCAM-Korea operates in 5-year periods from 2010
to 2040, the operation period can be extended through further modeling work. The base year is
2010 for calibration of energy and emissions. Input data for GCAM-Korea is available at GitHub
(https://github.com/rohmin9122/gcam-korea-release) [37].

GCAM-Korea exhibits the provincial features of the energy sector. Electricity from coal power
plants is mostly generated in Chungnam and Gyeongnam. Electricity is mainly consumed by the
building and industrial sectors which are mostly located in the Seoul metropolitan area, Gyeonggi,
Chungnam, and Jeonbuk; 77% of the national industrial energy is consumed in four provinces: Jeonam,
Chungnam, Ulsan, and Gyeongbuk. Energy consumption in the building and transportation sectors
is intensive in the Seoul metropolitan area which accounted for 52% and 44% of the total energy
consumption in the building and transportation sectors, respectively, in 2015.
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Figure 1. Administration divisions in Korea [37].

2.2. Modeling Air Pollutant Emissions in GCAM-Korea

As the current GCAM-Korea is modeled only for socioeconomics and energy systems, air pollutant
emissions modeling is a new feature which requires to be augmented. Hence, this study further develops
GCAM-Korea by using air pollutant emissions data from the national air pollutant emissions inventory.

2.2.1. National Air Pollutant Emissions Inventory

The National Institute of Environmental Research (NIER) provides estimated annual emissions
through the Clean Air Policy Support System (CAPSS). The source classification code (SCC) is based
on the classification of CORe INventory AIR (CORINAIR) published by the European Environment
Agency (EEA), and it is adjusted by NIER to fit Korean activity classifications. The sources of fugitive
dust and biomass burning were not included in the annual information till 2015. SCC comprises
of 13 large categories—energy production combustion, non-industrial combustion, manufacturing
industry, industrial processes, energy transport and storage, solvent use, road transportation, non-road
transportation, waste, agriculture, other sources and sinks, fugitive dust, and biomass burning;
56 medium categories; and more than 200 small categories (activity sources) at the district level since
2016. In the national emissions inventory, air pollutants consist of CO, NOx, SOx, TSP, PM10, PM2.5,
VOC, NH3, and BC [38,39].

Road transportation is composed of eight vehicles by fuel type (gasoline, LPG, diesel and
compressed natural gas (CNG)). The vehicle types are: passenger cars, taxis, vans, buses, freight cars,
recreational vehicles, two-wheeled vehicles, and special vehicles. In the emissions inventory, emissions
from road transportation are estimated using total vehicle kilometers traveled (VKT), the statistics of
total registered motor vehicles, and emission factors by each type of vehicle, fuel, and species [38].
The total VKT is a sum of measured VKT and unmeasured VKT. Measured VKT is calculated using
traffic volume and road length by road sections. Unmeasured VKT is estimated using vehicle type,
vehicle age, and average driving speed on a district basis. All provinces are assumed to have the same
emission factors for each vehicle type and species. Emission factors, however, are known to deteriorate
with high driving speed and a vehicle’s age [40].

Fugitive dust in the emissions inventory is composed of eight sub-categories including paved
road dust, unpaved road dust, and construction. However, this study only focuses on paved and
unpaved road fugitive dust (from now on referred to as FRD). FRD’s estimation is based on total
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VKT and emission factor for wear (tire wear, brake wear, and road wear). The emission factor for tire
and brake wear is calculated using data measured by the mandatory vehicle inspection. The road
wear emission factor is calculated using vehicle weight and measured silt loading. Silt loading means
resuspended road dust per road surface [41,42].

2.2.2. Applying Air Pollutant Emissions Data in GCAM-Korea

Air pollutant emissions data obtained from the National Air Pollutant Emissions Service [43]
was reclassified to match NIER’s activity sources to road transportation modes in GCAM-Korea (see
Appendix A), fuels, and provinces in GCAM-Korea; 276 districts excluding Sejong are merged into
16 provinces. Gasoline, LPG, and diesel are aggregated into refined liquids, and CNG is mapped
to gas in GCAM-Korea. FRD sources are sub-divided based on their share of energy use that is
calculated using the energy consumption survey [44], VKT [45], and fuel efficiency [46] because the
sub-classification of FRD sources is aggregated across vehicle type, vehicle size, and fuel type in the
emissions inventory. As FRD emissions data for BEVs and FCEVs is currently not available in the
emissions inventory, these emissions models are ignored in this study.

The calibration year for GCAM-Korea is 2010. However, emissions data for various years is used
for the model’s calibration (see Table 2) on account of missing data or data which contradicts energy
use as illustrated in Figure 2.

Table 2. Year of air pollutant emissions data used for the calibration.

Year NH3 NOx
PM2.5

SOx VOC
Primary Emissions FRD

2010 � �
2013 � �
2016 � �

 
Figure 2. Reclassified emissions and energy use in road transportation. Note: Total energy use of road
transportation is from the energy balance table in the Yearbook of Energy Statistics [44], and the sectoral
share [47–49] is applied to total energy use.
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For example, SOx emissions from light-duty 4-wheel vehicles (LDV4W) were notably high only
in 2010, while its energy use increased steadily during the study period. As VKT is closely related
to energy use, comparing emissions to energy use instead of VKT is suitable under the assumption
that there is no big change of technology development or regulations on SOx emissions. In actual fact,
there is no big change. The main reason that the calibration year’s data is not used is for avoiding
overestimation or underestimation of future emissions. If SOx emissions in 2010 are used for calibration,
future emissions will be overestimated. Another reason for using different years’ emissions data is the
absence of data in the calibration year. FRD and PM2.5 emissions from light-duty vehicle 2-wheels
(LDV2W) were newly released in 2015 and 2016, respectively.

3. Scenario Design

The ZEVs purchase subsidy is provided for cars (LDV4W) and buses for both BEVs and FCEVs.
Subsidy for motorcycles (LDV2W) and freight trucks (less than 1 tonne) is available only for BEVs.
Subsidy is provided not only by the national government but also by the local government. Subsidy
from the national government is the same everywhere, but subsidy from the local government is
different. For example, local government subsidy for LDV4W’s BEVs range from $4100 in Seoul
to $10,000 in Ulleung-gun, Gyeongbuk. The national government subsidy for LDV4W is between
$5600 and $7500, depending on the vehicle model. On the other hand, local government subsidies
for LDV4W’s FCEVs are available only in eight provinces, ranging from $9100 in Incheon to $18,000
in Goseong-gun, Gangwon. The government subsidy for one of the FCEVs, NEXO, manufactured
by Hyundai, is $20,500. Note that subsidy for LDV2W, buses, and trucks is equally supported by all
local governments. Although the national government offers tax incentives for ZEV buyers, this study
considers only the ZEV purchase subsidy.

To apply subsidy to GCAM-Korea, vehicle models are first classified into vehicle types. Then,
the average subsidy of each vehicle type is calculated for each province. The calculated subsidy for
BEVs and FCEVs is given in Appendices B and C respectively.

Second, future subsidy scenarios are developed (Table 3). According to CPFDM, subsidy for
passenger cars will gradually be phased out, although the exact information on expiration has not
been announced. A ‘Sunset’ scenario, therefore, is assumed in which subsidy for only LDV4W’s BEVs
will be phased out by 2040. In this scenario, the subsidy declines linearly to zero by 2040. A ‘NoSunset’
scenario is assumed for comparison. In both the scenarios, ZEVs subsidy is available from 2020. For the
baseline analysis without any subsidy, a ‘REF’ or a reference case for the projected emissions of the
baseline is prepared.

Table 3. Description of scenarios.

Scenario Assumption

REF Baseline without any subsidies
Sunset Phaseout on subsidy for electric passenger cars only by 2040

NoSunset Maintaining current subsidies till 2040

In GCAM-Korea, new technologies such as hydrogen buses, electric buses, and electric freight
trucks (less than 1 tonne), have not been modeled yet. Hence, these new technologies are added to the
nesting structure of the transportation sector in GCAM-Korea for an analysis (Figure 3). As future
technology cost estimations largely depend on the scope of research, a relative cost approach is
adopted. Purchase costs are obtained from various sources, and maintenance costs are calculated by
applying the ratio of maintenance costs to the present value of purchase costs from previous studies
(see Appendix D). Infrastructure costs such as charging stations and hydrogen production facilities are
not considered. Future cost trends of electric buses and trucks are assumed based on the decreasing
rate of cost of electric passenger cars in GCAM version 5.1.3. Likewise, the trend of hydrogen buses is
assumed based on the trend of hydrogen passenger cars in GCAM.
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Figure 3. New nesting structure for the transportation sector in GCAM-Korea. Note: Red line indicates
a newly added technology and blurry figures denote non-road transportation sectors.

Finally, the subsidy is subtracted from the total cost of each vehicle technology. According to our
calculations, the total cost of an electric bus and a hydrogen bus is about 2.1 times and 4.0 times that of
a diesel bus respectively. The total cost of an electric freight truck is about 1.8 times that of a one-tonne
diesel truck.

4. Results

4.1. Projected Emissions at the Baseline

Table 4 summarizes projected emissions at the baseline (REF). It compares emissions from
GCAM-Korea and those from the national emissions inventory. The projected emissions are captured
fairly well in terms of sectors and provinces. The NH3, NOx, PM2.5, SOx, and VOC emissions in 2015
are projected as 80%, 94%, 97%, 81%, and 129% respectively, compared to emissions in the emissions
inventory. In REF, the LDV4W and truck sectors are the main contributors to PM2.5 emissions. The truck
sector in particular accounted for 71% of NOx emissions while the LDV4W sector accounted for 98% of
the total NH3 emissions.

Projected emissions by year and province are given in Figure 4. Sectoral emissions are projected
between 72% and 119% compared to emissions in the emissions inventory except for VOC for LDV2W
(456%) and NOx for LDV4W (53%). VOC emissions for LDV2W are overestimated because of the
abrupt decrease in emissions reported in the national emissions inventory. Its emissions in 2015
(2.96 Gg) fell by 80% as compared to emissions in 2013 (15.25 Gg), whereas energy use for LDV2W
increased slightly from 484 KTOE in 2013 to 514 KTOE in 2015. For a similar reason, NOx emissions for
LDV4W cannot be captured well. Its emissions in the emissions inventory have dramatically increased
since 2014, when it was more than two times the emissions in 2010.
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Table 4. Comparison of emissions from the national inventory and those from GCAM-Korea (2015).

(Unit: Gg) LDV2W LDV4W Bus Truck Total

NH3

REF 0.04 7.84 0.02 0.09 7.99
Inventory 0.05 9.88 0.02 0.09 10.04

REF/Inventory 0.84 0.79 0.80 1.00 0.80

NOx

REF 2.82 58.01 38.45 247.91 347.19
Inventory 2.9 109.6 47.06 208.36 367.92

REF/Inventory 0.97 0.53 0.82 1.19 0.94

PM2.5

REF 0.06 6.89 1.11 7.78 15.84
Inventory 0.07 1 7.46 0.99 7.87 16.39

REF/Inventory 0.89 0.92 1.12 0.99 0.97

SOx

REF 0.01 0.07 0.01 0.08 0.17
Inventory 0.01 0.1 0.02 0.08 0.21

REF/Inventory 0.82 0.72 0.85 0.92 0.81

VOC
REF 13.49 17.9 14.04 13.75 59.18

Inventory 2.96 18.45 12.89 11.69 45.99
REF/Inventory 4.56 0.97 1.09 1.18 1.29

1 Note: PM2.5 of LDV2W is indicated in 2016 because of no data for 2015.

Figure 4. Cont.
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Figure 4. Projected emissions from the baseline (REF) compared to the national emissions inventory.
Note: (a) Trend of the projected emissions and (b) projected emissions by provinces in 2015.

The REF scenario shows that projected emissions in the future are on a downward trajectory because
of fuel switching from refined liquids to natural gas (NG), electricity, and hydrogen (see Figure 5b,c).
The trends in NOx and PM2.5 emissions for the truck sector show a steeper decline than that for other
sectors. The difference in emissions between 2020 and 2040 is 1446 tonnes of PM2.5 and 47,050 tonnes
of NOx. The LDV4W sector, a major contributor to NH3 emissions, is expected to reduce 860 tonnes of
NH3 emissions from 2020 till 2040.

As mentioned earlier, Seoul and Gyeonggi, a populous urban area with the highest number of
vehicles [50], are expected to have most of the air pollutant emissions from all road transportation
sectors. The truck sector in particular produces large emissions in Gyeonggi. In this province, annual
VKT of trucks is the highest among all provinces because of the massive road freight volume due to
the manufacture of plastics and synthetic rubber [51].

The second most polluted area is Gyeongsang province (Gyeongbuk and Gyeongnam), since this
province is the second most populous province next to the Seoul metropolitan area which accounted
for 12% of the whole population of South Korea in 2015. In this province, energy consumption by
trucks accounted for 16% of the total truck energy consumption, serving a huge industrial complex in
this region.
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Figure 5. Service demand in the road transportation sector. Note: Total service demand: (a), Technology
share (b), Service demand of ICEVs (c). The rest of the percentage of bars in (b) is the share of service
demand for refined liquid vehicles.

4.2. ZEVs Promotion Using the Subsidy Policy

The ZEV subsidy increases ZEVs’ service demand in all the sectors (Figure 5b) while total
transportation service demand is kept almost the same (Figure 5a), showing only around 0.1%
difference depending on the scenarios. BEVs’ service demand noticeably increases in the LDV4W
sector, since LDV4W is the main target of subsidy support. In the Sunset scenario, the share of service
demand for BEVs and FCEVs is expected to be 2.6% and 0.2% respectively in 2025. In 2040, the share of
BEVs and FCEVs increases to 5.3% and 1.2% respectively. REF’s share is 0.8% for BEVs and 0.03% for
FCEVs in 2040. The share for BEVs rises further to 14.4% in 2040 if the current subsidy is maintained
till 2040 (the NoSunset case), while the share of FCEVs starts decreasing to around 1% despite the same
amount of subsidy. Even if FCEVs receive the same subsidy, their market entry is disturbed by the
introduction of BEVs considering the total service demand, which does not change significantly.

On the other hand, other vehicles excluding LDV4W, show minor effects on service demand
change. As NG vehicles dominate service demand in the truck and bus sectors, ZEVs’ share is less than
1% even in 2040. Besides, ICEVs’ service demand increases in the bus sector with the ZEV subsidy,
that is, there are intensive share increases in ZEVs’ share in the LDV4W sector leading to an increase
in its service demand and average service costs at the same time, while bus service costs become
relatively cheaper. The reason for the increase in LDV4W sector’s service costs is high-cost technologies
(BEVs and FCEVs) being introduced in this sector. In 2040, the relative service cost of the bus sector is
0.80 in the Sunset case and 0.81 in the NoSunset case based on the LDV service cost of 1. By the price
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response, bus service demand increases by 0.3–0.7% compared to REF and increases further in the
Sunset case (Figure 5c).

Demand for electricity and hydrogen increases with the growth of BEVs and FCEVs’ service
demands. In the Sunset case, electricity demand increases from 9.7PJ (REF case) to 12.2PJ in 2025,
and from 16.1PJ (REF case) to 18.8PJ in 2040. In the NoSunset case, it further increases to 13.2PJ in 2025
and 31.3PJ in 2040. In the case of hydrogen demand, while the REF case shows the demand at 0.05PJ
even in 2040, demands increases to 0.4PJ in 2025 and 2.3PJ in 2040 in the Sunset case. The NoSunset
case shows the demand decreasing rather than increasing as compared to the Sunset case, which is
0.4PJ in 2025 and 1.9PJ in 2040, because of a decrease in FCEVs’ service demand. Changes in the prices
of electricity and hydrogen are negligible ranging between 0.0% and 0.3% during the period.

Figure 6 shows the estimates of a cumulative number of ZEVs and a comparison with the
government’s target for ZEV promotion. According to CPFDM, the goal is to have 850,000 BEVs and
150,000 FCEVs by 2024. In the Sunset case, the total number of vehicles is estimated to be approximately
313,000 BEVs and 22,000 FCEVs in 2025. BEVs and FCEVs are expected to be 3 times and 44 times
more than the REF case respectively. In the NoSunset case, it is estimated at 399,000 BEVs and 21,000
FCEVs, which is a 22% increase and 3% decrease respectively compared to the Sunset case. But both
scenarios fail to achieve the government’s target of ZEV promotion.

Figure 6. Estimates of the cumulative number of ZEVs by sector (a) and by province (b).

In the Seoul metropolitan area, the cumulative number of BEVs is estimated at 128,000 in 2025,
which accounts for 41% of the total BEVs. In 2040, BEVs in this area are estimated at 307,000 in the
Sunset case and 738,000 in the NoSunset case. FCEVs are mostly promoted in provinces where local
subsidies are provided and not in the Seoul metropolitan area. Accordingly, Gangwon, where the
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largest subsidy for FCEVs is provided, is the second most diffused province. In Gangwon, the estimated
number of FCEVs is 2900 in 2025 in the Sunset scenario. Chungnam and Gyeongnam follow with
1900 FCEVs each.

Table 5 summarizes the required subsidy for meeting the ZEVs scenarios from 2020 to 2040. It is
estimated that total subsidy required during the period will be approximately $9.6 billion in the Sunset
case and $24.7 billion in the NoSunset case. Above all, around 90% of the total subsidy spending is
concentrated in the LDV4W sector.

Table 5. Required subsidy by scenarios (unit: Million $).

Year
Sunset NoSunset

LDV2W LDV4W Bus Truck Total LDV2W LDV4W Bus Truck Total

2020 10 1604 21 46 1682 10 1604 21 46 1682
2025 6 1991 27 59 2083 6 3484 27 59 3576
2030 6 1678 33 177 1894 6 4854 33 177 5071
2035 7 1662 39 309 2016 7 6894 39 309 7248
2040 7 1472 45 387 1911 7 6715 44 387 7153
Total 37 8406 165 978 9586 37 23,551 164 978 24,730

Note: Required subsidy is calculated as the average purchase subsidy multiplied by the increase in the number of
vehicles during the 5-year period.

4.3. Effects of ZEV Promotion on Air Pollution

As shown in Figure 7, most emission reductions are expected from the LDV4W sector because
ZEVs’ dissemination is mostly expected in this sector. In general, emissions slightly reduce for all
pollutants. In the Sunset case, emission reduction rates of NH3, NOx, PM2.5, SOx, and VOC are
expected to be 3.7% (254 tonnes), 0.5% (1488 tonnes), 1.2% (155 tonnes), 1.5% (2 tonnes), and 0.9%
(462 tonnes) respectively in 2040. In the NoSunset case, the NH3 emission reduction rate is expected to
be relatively higher due to the increase in ZEVs’ share in the LDV4W sector—the LDV4W sector has
high NH3 emissions. On the other hand, emissions from the bus sector rise for all pollutants compared
to REF with an increase in its service demand (Figure 5c). Estimates of PM2.5 emission reduction are
smaller than autonomously reduced emissions over time without any policy (the REF case).

According to CPFDM, the government has set a target of reducing NOx, PM2.5, SOx, and VOC
emissions in the transportation sector by 65%, 36%, 71%, and 44% of the emissions in 2024 respectively
below those in 2016. In case of NH3, there is no reduction target for the transportation sector.
To compare the simulation results, the emission reduction target in the transportation sector is divided
into emissions targets for the road transportation sector and the non-road transportation sector
according to their proportion in base year 2016. As the simulation results are represented in a 5-year
step, projected emissions are linearly interpolated.

Table 6 gives a comparison of the simulation results for emission reduction targets for the
road transportation sector. The SOx emission reduction target can be seen to be intended for the
non-road transportation sectors considering the SOx emissions portion in road transportation (0.6%).
The simulation results show that NOx, PM2.5, and VOC emission reduction targets can be achieved as
much as 4.0%, 11.5%, and 4.8% respectively in the Sunset case. According to a report released by the
National Assembly Budget Office [10], the ZEV subsidy policy does not have a significant impact on
reducing PM2.5. PM2.5 emission reductions by the ZEV subsidy policy accounted for only 3% of the
overall emission reductions by PM2.5 mitigation measures for the road transportation sector, whereas
76% of the overall budget for them was spent on the ZEVs subsidy in 2018 according to the report.
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Figure 7. Emission reductions compared to emissions in REF (each scenario minus REF). Note:
The values above the bars represent the percentage of emission reductions compared to REF.

Table 6. Expected emission reductions in 2024 compared to 2016.

Emission
Projection

in 2016
(Tonne)

Emission
Reduction
Target (%)

Proportion of
Road

Transportation’s
Emissions 1 (%)

Road
Transportation’s

Emission
Reduction

Target (Tonne)

2024 Expected
Emission Reduction

(Tonne)(Achievement Rate, %)

(A) (B) (C) (A × B × C) Sunset NoSunset

NH3
2 7910 - 99.5 - 236 (-) 288 (-)

NOx 341,056 65 71.9 159,437 6380 (4.0) 6652 (4.2)
PM2.5 15,459 36 70.9 3949 456 (11.5) 488 (12.4)
SOx 164 71 0.6 1 6 (862) 6 (925)
VOC 58,489 44 66.5 17,126 818 (4.8) 916 (5.3)

1 The base year is 2016.; 2 In CPFDM, the NH3 emission reduction target was not set for the transportation sector.

Figure 8 illustrates expected emission reductions by province. The pattern of emission reductions
is similar to expected ZEVs’ dissemination (Figure 6b). For example, the Seoul metropolitan area
has the highest transportation activities, showing the biggest emission reductions in all the scenarios.
In the Sunset scenario, the emission reductions expected in 2040 are 130 tonnes of NH3 (51% of national
emission reductions); 711 tonnes of NOx (48%); 68 tonnes of PM2.5 (44%); 1 tonne of SOx (50% );
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and 244 tonnes of VOC (53%). Chungnam and Chungbuk, which provide the highest subsidy for BEVs
in LDV4W, show the second and third-largest emission reductions, following the Seoul metropolitan
area. The expected emission reductions in these two provinces are 40 tonnes of NH3 (16%), 238 tonnes
of NOx (16%), 32 tonnes of PM2.5 (21%), 0.3 tonnes of SOx (15%), and 57 tonnes of VOC (12%) in the
Sunset case.

Figure 8. Emission reductions compared to REF in 2040.

5. Conclusions and Policy Implications

This study modeled air pollutant emissions using GCAM-Korea focusing on the road transportation
sector. The projected emissions compared to the national emissions inventory using GCAM-Korea
works fairly well with empirical data across sectors and provinces except for VOC from LDV2W in
which the reported emissions in the emissions inventory contradict energy use.

The study applied the extended GCAM-Korea with air pollutant emissions modeling for examining
the ZEV subsidy’s effects on emission reductions for PM2.5 as well as its precursors. Subsidy scenarios
based on the current policy are found to have a major impact on the LDV4W sector in terms of change
in service demand and emission reduction, whereas it is expected to have a minor impact on the other
sectors. In all the scenarios, the government’s target of ZEVs’ dissemination is expected to be not
attainable. The resulting expected emission reductions of PM2.5 are 0.6–1.2% in the Sunset case and
0.6–4.1% in the NoSunset case compared to the baseline. The Seoul metropolitan area contributes
38–44% of the total emission reductions. Chungcheong province is the second most mitigated province
next to the Seoul metropolitan area because of the second and third largest subsidy for BEVs in the
LDV4W sector, even though this province has relatively low traffic and a small population compared
to metropolitan areas. Its emission reduction accounts for 17–21% and 17–20% of the overall emission
reductions in the Sunset and the NoSunset cases respectively. NH3 is the most mitigated pollutant,
for which the emission reduction rate is 1.7–3.7% in the Sunset case and 1.7–12% in the NoSunset case.
On the other hand, NOx emissions are expected to reduce very slightly with an emission reduction rate
of 0.2–0.5% and 0.2–1.7% in the Sunset and NoSunset cases respectively.

As the ZEVs subsidy is weighted towards the LDV4W sector, as is shown in Table 5, various
spillover effects are found: ZEVs’ share rises intensively in the LDV4W sector, which leads to an
increase in its service costs, while this drives the bus service costs to become relatively cheaper.
This whole process, in turn, drives an increase in bus service demand and emissions. In other

113



Energies 2020, 13, 3999

words, an imbalanced ZEVs subsidy distribution may dampen the subsidy’s effect on air pollution
improvements. Furthermore, the ZEVs subsidy is not expected to reduce ICEVs in the truck sector,
although diesel freight trucks are a major contributor to PM2.5 emissions as also NOx. This means
targeting emission reduction by promoting ZEVs might be misleading without explicit consideration
of ICEVs in the truck sector. Another finding is that the decline in emissions over time without any
policy is more than the ZEV subsidy’s effects.

As this analysis does not cover uncertainty in the total costs of ZEVs, this should be considered in
a future study. While infrastructure costs increase ZEVs’ total costs, incentives for charging station
installations and tax incentives for buyers decrease costs. Moreover, total costs can vary under future
trends of efficiency and costs. The amount of ZEV purchase subsidy for the future is also uncertain
because the government has not decided on this as yet. The uncertainty around cost eventually
influences ZEVs’ service demand, which changes the effects of the ZEV subsidy policy on air quality
mitigation. In addition, emissions caused by increasing electricity and hydrogen consumption for
ZEVs should also be considered from the perspective of the entire energy system. Emissions modeling
for other sectors such as power generation and industry sectors will be conducted which is expected to
provide more meaningful implications for cross-sector and cross-province aspects in the future.
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Appendix A

Table A1. The Mapping of Vehicle Type in the National Inventory to Vehicle Mode in GCAM-Korea.

Classification of National Emissions Inventory GCAM-Korea

Medium Category Small Category Mode

Passenger car Compact Subcompact Car
Passenger car Small Subcompact Car
Passenger car Medium Compact Car
Passenger car Large Large Car

Taxi Medium Compact Car
Taxi Large Large Car
Van Compact Bus
Van Small Bus
Van Medium Bus
Van Large Bus
Van Special purpose Bus
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Table A1. Cont.

Classification of National Emissions Inventory GCAM-Korea

Medium Category Small Category Mode

Bus Chartered bus Bus
Bus City bus Bus
Bus Intercity bus Bus
Bus Express bus Bus

Freight car Compact Truck
Freight car Small Truck
Freight car Medium Truck
Freight car Large Truck
Freight car Special purpose Truck
Freight car Dump truck Truck

Special vehicle (SV) Recovery vehicle Truck
Special vehicle (SV) Wrecker car Truck
Special vehicle (SV) Others Truck

Recreational vehicle (RV) Small Light Truck and SUV
Recreational vehicle (RV) Medium Light Truck and SUV

Two-wheeled vehicle Less than 50 cc Motorcycle
Two-wheeled vehicle 50 cc~99 cc Motorcycle
Two-wheeled vehicle 100 cc~259 cc Motorcycle
Two-wheeled vehicle More than 260 cc Motorcycle

Appendix B

Table A2. Average Subsidy for Battery Electric Vehicles by Province in 2020 (Unit: Thous.$).

Province
LDV2W LDV4W

Bus Truck
Motor-Cycle Subcompact Compact Large SUV

SU 2.1 6.2 10.8 10.7 11.5 74.9 15.5
IC 2.1 6.1 11.9 11.8 12.7 74.9 14.6
DJ 2.1 6.4 13.0 12.8 13.8 74.9 15.2
DG 2.1 5.5 11.3 11.1 12.0 74.9 13.9
GJ 2.1 5.9 11.9 11.8 12.7 74.9 13.7
BS 2.1 6.4 11.3 11.1 12.0 74.9 14.1
US 2.1 6.4 12.1 12.0 12.9 74.9 21.8
GG 2.1 5.9 11.3 11.2 12.0 74.9 15.3
GW 2.1 6.4 12.8 12.7 13.6 74.9 18.7
CB 2.1 8.1 13.8 13.7 14.7 74.9 23.2
CN 2.1 7.0 13.7 13.5 14.6 74.9 20.0
JB 2.1 5.9 14.7 14.5 15.6 74.9 18.4
JN 2.1 6.0 13.6 13.4 14.5 74.9 23.4
GB 2.1 6.4 12.3 12.1 13.1 74.9 19.2
GN 2.1 5.6 12.5 12.3 13.3 74.9 18.7
JJ 2.1 7.3 11.3 11.1 12.0 74.9 15.2

Note: The subsidy is calculated based on information obtained from [52].
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Appendix C

Table A3. Average Subsidy for Fuel Cell Electric Vehicles by Province in 2020 (Unit: Thous.$).

Province
LDV2W LDV4W

Bus Truck
Motor-Cycle Subcompact Compact Large SUV

SU - 20.5 20.5 20.5 - 136.4 -
IC - 15.8 29.5 29.5 - 136.4 -
DJ - 20.5 20.5 20.5 - 136.4 -
DG - 20.5 20.5 20.5 - 136.4 -
GJ - 20.5 20.5 20.5 - 136.4 -
BS - 16.8 31.4 31.4 - 136.4 -
US - 20.5 20.5 20.5 - 136.4 -
GG - 15.8 29.5 29.5 - 136.4 -
GW - 20.6 38.6 38.6 - 136.4 -
CB - 15.8 29.5 29.5 - 136.4 -
CN - 16.6 31.1 31.1 - 136.4 -
JB - 20.5 20.5 20.5 - 136.4 -
JN - 17.0 31.8 31.8 - 136.4 -
GB - 20.5 20.5 20.5 - 136.4 -
GN - 16.1 30.1 30.1 - 136.4 -
JJ - 20.5 20.5 20.5 - 136.4 -

Note: The subsidy is calculated based on information obtained from [52].

Appendix D

Table A4. Assumptions for an Electric Truck, Electric Bus, and Hydrogen Bus.

Sector Bus Truck

Fuel Type Electricity Hydrogen CNG Electricity Diesel

Fuel intensity
(MJ/VKT) 5.3 1 12.9 1 5.8 1 1.2 2 1.5 2

Purchase cost
($/vehicle) 408,500 3 83,000 4 168,290 5 50,000 2 20,000 6

VKT 2

(miles/vehicle-year)
34,053 34,053 34,053 13,116 13,116

Lifetime 2

(year)
8 8 8 8 8

Non-energy
cost

($/VKT)
0.23 1 0.22 1 0.26 1 0.1 2 0.17 2

Total cost
($/VKT-year) 2.48 4.78 1.18 0.815 0.456

Relative price 2.1 4.0 1 1.8 1

Note: A 10% the discount rate is applied for calculating the present value of future vehicle purchase costs.
1 Eudy et al. [53]; 2 Dana incorporated [54]; 3 Edison motors [55]; 4 Ministry of Environment [56]; 5 Daewoo bus [57];
and 6 Kia motors [58].
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Abstract: We analyze energy use efficiency of manufacturing industries in US manufacturing
over five decades from 1960 to 2011. We apply a 4-component stochastic frontier model, which
allows disentangling efficiency into a short- and long-term efficiency as well as accounting for
industry heterogeneity. The data come from NBER-CES Manufacturing Industry Database. We
find that relative to decade-specific frontiers, the overall efficiency of manufacturing industries,
which is a product of transient and persistent efficiencies has deteriorated greatly in the 1970s and
rebounded only in the 2000s. The industries are very efficient in the short-term and this has not
changed over five decades. The high level of overall inefficiency is almost completely due to the
structural inefficiency which can be explained by what is referred to as the “energy paradox”. Finally,
higher energy-intensive industries perform worse in terms of energy use efficiency than their low
energy-intensity counterparts.

Keywords: energy efficiency; energy intensity; stochastic frontier; persistent efficiency; transient
efficiency; US manufacturing; energy paradox

1. Introduction

According to the U.S. Energy Information Administration, manufacturing industries in the US
consume about a third of total energy consumed (see also [1]). (https://www.eia.gov/consumption/)
The analysis of energy demand for manufacturing has therefore important implications for energy
policy, where energy efficiency and savings is an important agenda (see, e.g., [2]). Additionally,
improving energy use efficiency seems to be a natural way to mitigate climate change (see, e.g., [3]). If
manufacturing industries are not efficient, it puts strains on the whole economy in general and energy
producers and distributors in particular. This is especially true for the energy-intensive industries
where energy consumption relative to its output is large.

For a long time, a lot of effort has been made to develop energy-efficient technologies, not only
to lessen environmental damage but also to bring down the monetary cost of production. However,
Refernece [4] identify and discuss the wide-spread “energy-paradox”, whereby energy-efficient
technologies, that would have paid-off, are in reality not adopted. The authors of [5] find that
the adoption of energy-efficient technologies may be boosted by involving managers, who are in a
position close to operations. The existence of the “energy-paradox” may indicate that the industry
remains inefficient. Indeed, [6] find that the mean plant-level efficiency in the United States over the
time-period 1987–2012 ranges from 33% to 86% for plants in various manufacturing industries.
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Such huge inefficiencies are a matter of concern. Enormous financial savings could have been
achieved if manufacturing firms were more efficient. The performance of manufacturing in terms
of energy use is heterogeneous both in time and cross-sectional dimensions. One common factor
influencing energy consumption is the price of energy. The authors of [7] confirm that the biggest
determinant of energy intensity is the price of electricity. The cross-sectional variation is further
determined by technology, i.e., some industries require more energy than others. The time variation
has many determinants. Most important is probably the change in macroeconomic conditions.
The beginning of the 1970s was marked by the oil prices, which had a detrimental effect on costs
related to energy in manufacturing. It was an expectation that there should have been a surge in
adopting the new energy-saving technologies which would eventually improve energy efficiencies.
However, [8] finds that the energy consumption did not rebound quickly implying that the response
to a decline in real energy prices was slow.

In this paper, we investigate the energy use efficiency of US manufacturing from 1958 to 2011.
More specifically, we conduct an analysis at an aggregated level, where the unit of observation is
defined as NBER 6-digit NAICS (see [9]). We split the whole time period into five decades and assume
a decade-specific technology. We define energy intensity as energy demand per measure of economic
activity (see, e.g., [10]). In each decade, we consider 10 percent the most and least energy-intensive
industries. Further, following [11], we decompose overall inefficiency into persistent or structural
and transient inefficiencies. This has an advantage over for example [3] or [6] since we can identify if
efficiency can be improved with relatively small effort, or structural approach is required. We find
a significant drop in energy use efficiency in the 1970s, which has probably been caused by the oil
crisis. The return to the pre-1970s levels was reached only in the 2000s, which is in agreement with
slow rebound estimates of energy consumption (see, e.g., [8]). Remarkably, such low levels of overall
energy use efficiency owing to very low levels of structural inefficiency that cannot be managed with
ease. This finding goes in unison with the “energy-paradox” (see [4]). Finally, higher energy-intensive
industries are characterized by lower levels of energy use efficiency than low-intensive counterparts.

The paper is organized as follows. Section 3 introduces models that are used to measure energy
use efficiency and 4-component stochastic frontier model that accounts for heterogeneity and splits
overall inefficiency into persistent and transient components. Section 4 describes data and variable
construction. Empirical results are presented and discussed in Section 5. Section 6 concludes.

2. Literature Review

Analysis of the energy use efficiency is interesting from both academic and business perspective.
More efficient use, especially by energy-intensive industries, would result in lower demand for energy
as well as output (see, e.g., [12]). Examining efficiency estimates could also complement accounting
for rebound effects ([13]) when making energy consumption forecasts. Energy subsidies could also
be inappropriately targeted to support highly inefficient producers if inefficiency measurement is
improper (see, e.g., [14]). Here we provide a brief review of methods used in measuring energy and
technical or cost efficiency.

Depending on the available data, measurement of technical efficiency can be done by using either
stochastic frontier (SF) methods (see [15]) or data envelopment analysis (DEA) approach (see [16]). For
a cross-sectional data with fewer observations, one can opt for DEA to estimate the benchmark and
then measure inefficiency as a deviation from the benchmark. SF in contrast defines the benchmark
accommodating stochastic noise and decomposes the composed error (sum of noise and inefficiency)
into inefficiency and statistical noise. The noise can be both positive and negative and can be seen
as positive and negative shocks to the production process. In the panel-data context, there are
different possibilities to decompose the composed error term. One way is to allow inefficiency to be
persistent and hence time-invariant. This approach is referred to as the first-generation panel-data SF
modeling. The second-generation SF models assume that the inefficiency is time-varying. The first
and second-generation models assume an error term (the deviation from the frontier) that has two
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components. Applying DEA to a panel data would be comparable to a second-generation SF model,
which would produce time-varying efficiency estimates without accounting for possible noise. The
third-generation SF model considers an error term with three components. The two components are
time and firm-specific, i.e., statistical noise and time-varying inefficiency. The third component is
time constant. The authors of [17–20] propose to treat it as time-invariant inefficiency. The authors
of [21] assume it is an individual effect or firm heterogeneity. Thus, Kumbhakar and co-authors
model two types of inefficiency (persistent and transient) ignoring heterogeneity, while Greene models
transient inefficiency and heterogeneity ignoring persistent inefficiency. The fourth-generation class
of SF models is originally introduced by [22] and accounts for both types of inefficiency as well as
heterogeneity. Incidentally, the fourth-generation SF models are also known as the 4-component SF
models.

Traditionally, energy efficiency measurement is contemplated in terms of energy intensity.
However, it is argued that other measures should also be considered, for example DEA ([23]). This
was one of the first studies to consider the production theory framework as a base for energy efficiency
measurement. The authors of [23] employ DEA for the manufacturing sector constructed by the U.S.
Bureau of Labor Statistics (BLS). She finds quite high efficiency scores for aggregate manufacturing for
the 1970–2001 time period. Recall, however, that DEA does not account for heterogeneity or persistent
efficiency akin to the second generation SF models, which can be seen as a disadvantage of using DEA.
Furthermore, she finds higher efficiency scores towards the end of the sample. But because she used
an intertemporal frontier approach, she could not distinguish whether this is attributed to technical
progress or not. This can be viewed as the second disadvantage of using DEA when panel data are
available. Many other studies have used DEA to analyze energy efficiency. The authors of [24], for
example, investigate the energy efficiency of the Indian manufacturing sector for the 1998–2004 time
period. The authors of [25] apply DEA to measure economy-wide energy efficiency using aggregated
data on the OECD countries. The authors of [26] investigate energy use efficiency of canola production
in Iran. See the review of [27] for other studies that employ DEA.

SFA has also been used to measure energy efficiency and efficiency in the energy sector. The
authors of [28,29] were the first to advocate using SFA to estimate efficiency in manufacturing sectors.
However, he did not go beyond a cross-sectional analysis. The authors of [30] use the second-generation
SF model to measure energy efficiency of different states in the US residential sector. The authors
of [31] investigate energy efficiency in the automotive manufacturing sector using plant-level data.
The authors again use the second generation model. The authors of [32] are the first to use the third
generation SF model to analyze the efficiency of the Swiss electricity distribution sector. The authors
of [33] used the fourth-generation model to aggregate frontier energy demand model and estimate
economy-wide persistent and transient energy efficiency in the US. The authors confirm the findings
and arguments of [23] that energy intensity is not a good indicator of energy efficiency. The authors of
[33] as well as [34] emphasize the importance of accounting for heterogeneity as well as estimating
two types of inefficiency. This is the approach, which we apply for the first time to this type of data
using three different models. Our models are described in the next section.

3. Methodology

3.1. Models

In this paper, we apply three different models to investigate energy use efficiency. In all models,
we assume that the production technology consists of one output Y and a vector of four inputs
X = (L, K, NEM, E), where L is the labor, K is the capital stock, NEM is the non-energy materials, and
E is the energy. The production technology using multiple outputs (transformation function), can be
written, in implicit form as,

AF (Y, X) = 1. (1)
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If the manufacturing process does not experience production shocks, A = 1, and F (Y, X) = 1.
However, since both positive and negative shows hit the production, the transformation function is
made stochastic by setting A = exp(v), v can be both positive and negative. Besides, if inputs are not
used with 100% efficiency, the transformation function in (1) can be expressed as

AF (Y, θX; β) = 1, (2)

where θ < 1 is the input technical efficiency (defined as the ratio of minimum of each input required
and actual amount used) and β is the set of the technology parameters of the function F . Since the
transformation function is homogeneous of degree 1 in inputs (see [35]), so we can rewrite (2) as

AF (Y, λθX; β) = λ, λ > 0. (3)

Further, we can set λ = (Eθ)−1, where E is the energy input. Note that any other input could
have been chosen to be in place of E. Then (3) becomes

X−1
1 θ−1 = f (Y, X̃−E; β) exp v, (4)

where X̃−E = (L/E, K/E, NEM/E). Taking logs of both sides of (4) and denoting u = − log θ ≥ 0,
we obtain (Model 1)

− log E = log f (Y, X̃−E; β) + v − u. (5)

The stochastic frontier (SF) formulation in (5) is known as the input distance function formulation,
where u is input oriented inefficiency, which measures percentage (when multiplied by 100) over-use
of all the inputs. For small values of u, e−u ≈ 1 − u. That is, technical efficiency is 1 minus technical
inefficiency. It is important to keep this relationship in mind because we switch from one to the other
quite frequently. Technical efficiency in this model refers to the efficiency of all inputs including energy.
That is, in this model, inefficiency, u, is interpreted as over-use of all the all inputs, including energy, at
the same rate. The other two models focus exclusively on energy-use efficiency. Before we explain
how u can be estimated, we introduce two other approaches.

The transformation function can also be written as a factor requirement function (see, e.g., [36]).
Since the focus is on energy use, we can express the technology in terms of E, and write it as,

E = G(Y, X−E), (6)

where X−E = (L, K, NEM). Again, assuming that both positive and negative shocks v′ can influence
energy requirement and positing that energy is not used 100% efficiently used, we can rewrite (6) as

E = g(Y, X−E; γ) exp v′ exp u′, (7)

where γ is the vector of parameters of the energy requirement function, v′ is a symmetric error term and
u′ is the energy use inefficiency. Taking to logs of both sides of the (7) gives us the energy requirement
function with inefficiency, viz., (Model 2)

log E = log g(Y, X−E; γ) + v′ + u′. (8)

This approach was, for example, applied by [6,29] to plant-level data using the second-generation
SF model. Note that (8) has a stochastic cost function type formulation. Any inefficiency in the use of
energy will increase cost.

Finally, in our last model we recognize endogeneity of output Y. That is, we assume profit
maximizing behavior to derive the energy demand function

E = H(w, X−E), (9)
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where w = wE/p, wE is the energy price and p is the output price. Similar to the factor requirement
function, we can obtain energy use inefficiency from the demand function (Model 3)

log E = log h(w, X−E; δ) + v′′ + u′′, (10)

where δ is the vector of parameters of the energy demand function, v′′ is a symmetric error term and
u′′ is the energy use inefficiency.

The difference between (5) and (10) is that in the latter energy input is chosen optimally by
maximizing profit. In (5) energy overuse treats all other inputs as given. That is, inefficiency in this
model shows by how much energy is overused to produce a given level of output and all other inputs.
On the other hand, inefficiency in (10) comes from excess use of energy when all other inputs and output
are chosen optimally instead of taking them as exogenously given. From econometric estimation point
of view this means Y and X−E are exogenous in Model 2, whereas they are endogenous in Model 3.

In the next sub-section we examine all three models in more detail in the light of panel stochastic
frontier framework. In particular, we add firm-heterogeneity and decompose inefficiency into
persistent and transient components.

3.2. Stochastic Frontier Approach with Panel Data

The stochastic production frontier function approach was introduced for cross-sectional data
independently by [37,38]. This is expressed as

log qi = r(X i; ω) + vi − ui, (11)

where r(·) is the technology (namely, the production function in logarithmic form), qi is an output,
X i is a vector of inputs (in log) for a production unit i, ω is a vector of parameters that define the
technology, vi is the usual error/noise term, and ui ≥ 0 is the inefficiency. In this model, the data
are cross-sectional and hence error components vi and ui represents cross-sectional shocks to the
production and production unit-specific inefficiency. When panel data are available, shocks and
inefficiency can be both time-constant and time-varying. The authors of [22,39,40] were first to
recognize this and formulated the following 4-component stochastic frontier model for panel data. We
use this framework for our Model 1, and write it as:

log qit = r(X it, trend; ω) + v0i − u0i + vit − uit, (12)

where t is a time period in which a production unit i is observed. In (12) we have two additional
terms compared to (11). More specifically, vit is the usual symmetric error term, v0i is an individual
(production unit) effect also known to represent individual production shock (or heterogeneity),
u0i ≥ 0 is the persistent or structural time-invariant inefficiency, and finally uit ≥ 0 is the transient
or short-term time-varying inefficiency. Thus, the overall inefficiency is the sum of persistent and
transient inefficiency and overall efficiency TEoverall is decomposed into persistent TEpersistent and
transient TEtransient, i.e.,

TEoverall = TEpersistent × TEtransient (13)

Note that persistent and transient efficiency (TEpersistent and TEtransient) are defined as e−u0i and
e−uit , respectively. The originally proposed model assumed all 4 components to be random and
homoskedastic. This model did not include the determinants of inefficiency. In our analysis, we will
use the [11] model that introduces determinants of both types of inefficiency in (12).

To estimate parameters ω in (12), we assume that vit ∼ N (0, σvit), v0i ∼ N (0, σv0i ), uit ∼
N+ (0, σuit), and u0i ∼ N+ (0, σu0i ), where N+ means the positive part of the zero mean normal
distribution, making uit and u0i half-normally distributed. We assume that both noise vit and
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individual effects v0i are homoskedastic, so that σvit = σv and σv0i = σv0 . We introduce determinants of
time-varying inefficiency via the pre-truncated variance of uit. More specifically, we assume

σ2
uit

= exp (zuit ψu), i = 1, · · · , n, t = 1, · · · , Ti, (14)

where zuit denotes the vector of covariates that explain time-varying inefficiency. Since uit is

half-normal, E(uit) =
√
(2/π) σuit =

√
(2/π) exp

(
1
2 zuit ψu

)
, and therefore, anything that affects

σuit also affects time-varying inefficiency. The determinants of persistent inefficiency can be modeled
similarly. However, because the data-set does not provide natural determinants of the persistent
inefficiency, we leave it homoskedastic, i.e., σu0i = σu0 .

The parameters ω, as well as variances of the 4 components and their determinants, can be
estimated by the single stage maximum simulated likelihood (MSL) method (see Appendix B and [11]
for details of the estimation procedure). We follow [39] to calculate the persistent and transient
efficiencies. The overall efficiency is then calculated as the product of the persistent and transient
efficiencies.

We add firm-heterogeneity and decompose inefficiency into persistent and transient inefficiency
in the same way as in Model 1, for both Models 2 and 3, which are outlined in (8) and (10). After adding
these components, the models will look quite similar to (12) mathematically. Because of this, we skip
the details and avoid repetitions. However, note that the interpretation of inefficiency in these models
are different. In Model 2 inefficiency refers to overuse of energy, given everything else. Consequently,
persistent and transient inefficiency in Model 2 decompose energy overuse into a time-invariant and a
time-varying components, ceteris paribus. Similar to Model 2, inefficiency in Model 3 described in (10)
after adding firm heterogeneity and persistent inefficiency is specifically related to energy overuse.
But it does not take other inputs as given, which is what Model 2 does. In Model 3 inputs are chosen
optimally, and inefficiency in production is transmitted to overuse of inputs via demand for energy.
That is, we focus only on energy by examining the energy demand function.

4. Data

The source of the data we use in this paper is NBER-CES Manufacturing Industry Database, which
can be accessed at http://www.nber.org/nberces/. It covers 473 six-digit 1997 NAICS manufacturing
industries over 1958–2011. We split our analysis into five decades: 1958–1969 (labeled “the 1960s”),
1970–1979 (labeled “the 1970s”), 1980–1989 (labeled “the 1980s”), 1990–1999 (labeled “the 1990s”), and
2000–2011 (labeled “the 2000s”).

The output Y of an industry is calculated as the difference between the value of industry shipments,
which are based on net sales, after discounts and allowances, and the change in end-of-year inventories.
The labor L is calculated as PRODH ∗ PAY/PRODW, where PRODH is the number of production
worker hours, PAY is the total payroll, and PRODW is production workers’ wages. Capital stock K is
obtained as the sum of real equipment and real structures. Energy E is the expenditure on purchased
fuels and electrical energy. The cost of overall materials MATCOST in the database includes delivered
cost of raw materials, parts, and supplies put into production or used for repair and maintenance and
purchased electric energy and fuels consumed for heat and power and contract work done by others
for the plant. The cost excludes the costs of services used, overhead costs, or expenditures related to
plant expansion. Because the overall cost of materials includes energy, the non-energy materials, NEM
are determined as the difference between overall materials and E. See [9] for more details.

The paper analyzes the differences in energy use efficiency between industries that use relatively
little and a lot of energy in their production. We define energy intensity EN_INTENSITY as the ratio
of the expenditures on purchased fuels and electrical energy E and the value of industry shipments
VSHIP, which is the energy cost per unit of sales. The authors of [10], for example, define energy
intensity as energy consumption divided by a measure of economic activity. Alternatively, one can
define energy intensity as the cost of energy in total costs. We have tried this approach and the
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correlation coefficient between these two measures of energy intensity was 0.98. So either of them
could be used.

Table A1 shows the summary statistics for output and four inputs for 10 percent of the top and
bottom energy-intensive manufacturing industries in the respective decade. The criterion to include
an industry is that data on it is available for at least 4 years in a decade.

5. Empirical Results

5.1. Change in Energy Intensity of Industries

First, we analyze how energy intensity has evolved in US manufacturing for over the five decades.
We concentrate on the top and bottom 10% of the industries in terms of their energy intensity. More
specifically, we calculate the 10th and 90th percentile of energy intensity in the 1960s, then we consider
industries whose energy intensity is smaller than the 10th percentile and larger than the 90th percentile
in the 1960s. Of these industries, we consider only those for which data are available for a period of at
least 4 years. Then we repeat this exercise for the other four decades. Table 1 gives a summary statistics
of the energy intensity for all industries for the period 1958–2011 as well as by decade and by energy
intensity. As we can see, there are industries for which the energy use is negligible. However, some
industries consume quite a lot of energy in the production process. All parts of the distribution were
increasing up to the 1990s and then started declining.

Table 1. Descriptive statistics of energy intensity by decade and by the intensity of energy use.

Time Period Industries Median Mean SD Min Max

All Both most and least energy-intensive 0.0417 0.0489 0.0565 0.00008 0.3414

All Least energy-intensive 0.0045 0.0046 0.0015 0.00008 0.0082
All Most energy-intensive 0.0690 0.0873 0.0527 0.03169 0.3414

The 1960s Least energy-intensive 0.0035 0.0033 0.0011 0.00008 0.0046
The 1960s Most energy-intensive 0.0489 0.0627 0.0333 0.03169 0.2006
The 1970s Least energy-intensive 0.0049 0.0048 0.0009 0.00061 0.0061
The 1970s Most energy-intensive 0.0706 0.0881 0.0513 0.04258 0.3311
The 1980s Least energy-intensive 0.0068 0.0065 0.0012 0.00304 0.0082
The 1980s Most energy-intensive 0.0850 0.1128 0.0639 0.05426 0.3414
The 1990s Least energy-intensive 0.0047 0.0046 0.0010 0.00121 0.0061
The 1990s Most energy-intensive 0.0645 0.0819 0.0477 0.04202 0.2775
The 2000s Least energy-intensive 0.0042 0.0042 0.0011 0.00108 0.0058
The 2000s Most energy-intensive 0.0711 0.0921 0.0513 0.04630 0.2709

It can be seen that in each decade, the 10th and 90th percentiles are specific for the decade. The
industries that satisfy the above procedure are shown in Figures 1 and 2. The red decade-specific
horizontal lines show 10th and 90th percentiles for low and high energy-intensive industries,
respectively. The bold green solid line shows the mean of energy intensity for these industries.

One conclusion that we can draw from Figures 1 and 2 and Table 1 is that the energy intensity
has a shape that is closer to a parabola than a flat line. Whether we are looking at the 10th or the 90th
percentile, the energy intensity has been increasing from 1960s through the 1980s and then started to
fall in the 1990s and then stalled through the 2000s. One possible explanations can be that energy was
abundant and relatively cheap up until 1990s when manufacturers started to consider better and more
energy-saving technologies.
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Figure 1. Energy intensity of industries. Shown are industries whose energy intensity are lower than
the 10th percentile in a respective decade. Notes: Horizontal red lines show the 10th percentile of
energy intensity in a respective decade. The bold green solid line shows the mean of energy intensity
for industries whose energy intensity are lower than the 10th percentile in a respective decade.
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Figure 2. Energy intensity of industries. Shown are industries whose energy intensity exceeds the
90th percentile in a respective decade. Notes: Horizontal red lines show the 90th percentile of energy
intensity in a respective decade. The bold green solid line shows the mean of energy intensity for
industries whose energy intensity exceeds the 90th percentile in a respective decade.

5.2. Energy Use Efficiency

In this section, we present the results from three models that are presented in Equations (3), (8) and
(10). In all three models, the transient inefficiency is modeled to follow either linear or quadratic trend,
that is σuit is a function of time in (14). Further, in all three models, we used a translog (log quadratic)
specification for the underlying technology. The first model considers energy use inefficiency via an
input distance function (IDF). Since inefficiency is radial in the IDF formulation in (3), the energy
use efficiency is the same as the efficiency in the use of all other inputs. In the latter two models,
inefficiency comes from energy use alone. The difference is that in (10), output can be endogenous,
and manufacturing firms are assumed to be profit-maximizing.

The results from models 1, 2, and 3 by decade are presented in Tables 2–4. We observe that in
all these models, with an exception of the model 3 for the 1990s, all 4 components are statistically
significant and thus use of the [11] model is justified. So, the conclusion about appropriateness of
using the 4-component model is in line with [33,34]. This means that models that account for only
two components such as [41–43], or three components such as [21] or [18–20] are misspecified and
likely to produce wrong results on efficiency. For the 1990s, model 3 could have been estimated
using [20] approach.
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Figure 3 shows the evolution of average efficiency over time by the type of efficiency. Figures 4–6
show densities of three types of efficiencies using the formula in (13) for models 1, 2, and 3, respectively
by decade. The three columns in each of the there figures present overall, transient, and persistent
efficiencies. Recall that the overall efficiency is the product of transient and persistent efficiencies. The
rows from 1 to 5 show the decades from the 1960s through the 2000s.
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Figure 3. Average efficiency by year, energy intensity, and type of efficiency. The abbreviation HI
stands for high intensity and LI means low intensity. Notes: The dotted time-series lines are for the
high and solid lines are for low intensity industries.
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Figure 4. Overall, transient and persistent energy efficiency, Model 1. Notes: Solid black curves are
high energy-intensive industries, dotted red curves are low energy-intensive industries. Vertical lines
are respective mean values.

Models 2 and 3 measure energy use efficiency directly. Since we are applying the 4-component
model, the overall energy use efficiency is decomposed into the persistent and transient components.
The left column of Figure 5 reveals that the overall energy use efficiency has deteriorated over time.
This is also confirmed by the middle and lower panels in Figure 3. We note again that the efficiencies
are not comparable as they are measured relative to decade-specific frontiers, however, we can gauge
how industries performed within decades. The energy use efficiency was very low in the 1970s, which
could be the result of the oil crisis, which hit all industries of the economy. The overall efficiency figure
in the 1970s, however, additionally reveals that the high energy-intensive industries were hit much
harder. We have seen in Table 1 that some industries consume energy up to about a third of their actual
sales. The lower panels in the left column of Figure 5 and middle panel in Figure 3 indicate that high
energy-intensive industries were rebounding from the oil crisis and were only short of reaching the
level of overall energy use efficiency only in the 2000s. The levels of overall energy use efficiency are
still very low by any standard for energy-intensive industries. The energy use efficiency of the low
energy-intensive industries is quite stable relative to the decade specific frontiers. Clearly, if the share
of energy costs in production is very low as Table 1 suggests, the shocks to energy use are not that
profound.
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Overall Efficiency, 4 component model, the 1960s

0.00 0.25 0.50 0.75 1.00

0.00

1.85

3.70

5.55

7.40

Transient Efficiency, 4 component model, the 1960s

0.00 0.25 0.50 0.75 1.00

0.00

1.51

3.02

4.54

6.05

Persistent Efficiency, 4 component model, the 1960s

0.00 0.25 0.50 0.75 1.00

0.00

8.34

16.68

25.02

33.36

Overall Efficiency, 4 component model, the 1970s

0.00 0.25 0.50 0.75 1.00

0.00

2.01

4.02

6.02

8.03

Transient Efficiency, 4 component model, the 1970s

0.00 0.25 0.50 0.75 1.00

0.00

61.97

123.93

185.90

247.87

Persistent Efficiency, 4 component model, the 1970s

0.00 0.25 0.50 0.75 1.00

0.00

1.86

3.72

5.58

7.44

Overall Efficiency, 4 component model, the 1980s

0.00 0.25 0.50 0.75 1.00

0.00

2.31

4.61

6.92

9.23

Transient Efficiency, 4 component model, the 1980s

0.00 0.25 0.50 0.75 1.00

0.0

11.6

23.2

34.8

46.4

Persistent Efficiency, 4 component model, the 1980s

0.00 0.25 0.50 0.75 1.00

0.00

3.55

7.10

10.66

14.21

Overall Efficiency, 4 component model, the 1990s

0.00 0.25 0.50 0.75 1.00

0.00

2.54

5.08

7.62

10.16

Transient Efficiency, 4 component model, the 1990s

0.00 0.25 0.50 0.75 1.00

0.00

3.66

7.31

10.97

14.63

Persistent Efficiency, 4 component model, the 1990s

0.00 0.25 0.50 0.75 1.00

0.00

4.98

9.96

14.94

19.92

Overall Efficiency, 4 component model, the 2000s
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Figure 5. Overall, transient and persistent energy efficiency, Model 2. Notes: Solid black curves are
high energy-intensive industries, dotted red curves are low energy-intensive industries. Vertical lines
are respective mean values.

Looking at the components of the overall efficiency, we again observe that the overall inefficiency
is mainly rooted in the structural energy use inefficiency. The density of the transient efficiency with
an exception of the 1960s is concentrated around unity. The structural efficiency is shown in the
third column of Figure 5 and as persistent efficiency in Figure 3. For low energy-intensive industries,
it remains virtually unchanged, albeit relative to the decade-specific frontier. As is expected after
discussion of the overall efficiency, the persistent efficiency of the high energy-intensive industries
plummeted in the 1970s and increased gradually only in the 2000s.
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Overall Efficiency, 4 component model, the 1960s

0.00 0.25 0.50 0.75 1.00

0.00

1.79

3.59

5.38

7.17

Transient Efficiency, 4 component model, the 1960s

0.00 0.25 0.50 0.75 1.00

0.00

1.62

3.25

4.87

6.50

Persistent Efficiency, 4 component model, the 1960s

0.00 0.25 0.50 0.75 1.00

0.00

94.99

189.98

284.97

379.96

Overall Efficiency, 4 component model, the 1970s

0.00 0.25 0.50 0.75 1.00

0.00

2.78

5.56

8.33

11.11

Transient Efficiency, 4 component model, the 1970s

0.00 0.25 0.50 0.75 1.00

0.00

49.56

99.13

148.69

198.26

Persistent Efficiency, 4 component model, the 1970s

0.00 0.25 0.50 0.75 1.00

0.00

2.64

5.28

7.93

10.57

Overall Efficiency, 4 component model, the 1980s

0.00 0.25 0.50 0.75 1.00

0.0

2.5

5.0

7.5

10.0

Transient Efficiency, 4 component model, the 1980s

0.00 0.25 0.50 0.75 1.00

0.00

13.29

26.59

39.88

53.18

Persistent Efficiency, 4 component model, the 1980s

0.00 0.25 0.50 0.75 1.00

0.00

2.23

4.45

6.68

8.90

Overall Efficiency, 4 component model, the 1990s

0.00 0.25 0.50 0.75 1.00

0.00

2.62

5.23

7.85

10.46

Transient Efficiency, 4 component model, the 1990s

0.00 0.25 0.50 0.75 1.00

0.00

3.17

6.34

9.51

12.68

Persistent Efficiency, 4 component model, the 1990s

0.00 0.25 0.50 0.75 1.00

0.00

5.96

11.93

17.89

23.85

Overall Efficiency, 4 component model, the 2000s

0.00 0.25 0.50 0.75 1.00

0.00

6.39

12.78

19.17

25.57

Transient Efficiency, 4 component model, the 2000s

0.00 0.25 0.50 0.75 1.00

0.00

13.77

27.54

41.31

55.07

Persistent Efficiency, 4 component model, the 2000s

0.00 0.25 0.50 0.75 1.00

0.00

14.57

29.13

43.70

58.26

Figure 6. Overall, transient and persistent energy efficiency, Model 3. Notes: Solid black curves are
high energy-intensive industries, dotted red curves are low energy-intensive industries. Vertical lines
are respective mean values.

5.3. Discussion

It is worth noting that because we have estimated decade-specific frontiers, the efficiencies across
decades are not directly comparable. Thus, we discuss the differences in efficiencies that are estimated
relative to their frontiers. Overall, the level of efficiency is close to that reported by [44]. Based on
Model 1, one result the becomes evident is that the industries move further away from the frontier
over time. We cannot say whether this is because they were lagging behind technological progress or
whether they were becoming less efficient. The second feature is that transient inefficiency is almost
non-existent and input inefficiency almost completely stems from structural inefficiency. Third, we see
a drop in efficiency in the 2000s, which can be attributed to downturns at the beginning of the 2000s as
well as the financial crisis at the end of the decade. Finally, in terms of overall input inefficiency, both
high and low energy-intensive industries perform similarly. Only in the 2000s, low energy-intensive
industries seem to slightly over-perform high energy-intensive industries. We find confirmation for
average levels in Figure 3.

Figure 6 summarizes the energy use efficiency for the third model, which is only slightly different
from Model 2. The change that we observe in Figure 6 relative to Figure 5 is only quantitative.
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Conclusions that we drew from Figure 5 can be repeated for Model 3, so that the results of the third
model can be seen as a robustness check.

It is difficult to say why we observe the so-called “energy paradox”. The US is known to promote
energy efficiency policy (see, e.g., [33]). However, such policies lead to different outcomes. In Sweden
for example, the adoption rate of energy efficiency measures is over 40% ([45]). Although financial
intensive may be an important one in some industries and countries ([46]), Refernece [4] document
lack of adoption, which constitutes the above paradox. The authors of [47] find that the most important
barriers to more energy-efficient organization are internal economic and behavioral barriers. The
authors of [48] name additional barriers including lack of interest in energy efficient technologies.
Further, their findings suggest that adopting sound energy management practices is the most important
driver of increased energy efficiency. Adopting cost-effective technologies is also important, but less so
than the above-mentioned practices.

6. Conclusions

Energy is one of the most important inputs in manufacturing industries. It is a scarce input that
is expensive in both monetary and environmental terms. Hence, both policymakers and businesses
should consider the efficient use of this input in the long-term.

This study uses the stochastic frontier approach to measure energy use efficiency in the US
manufacturing during the time period 1958–2011 using the NBER-CES Manufacturing Industry
Database. When panel data are available as in our case, we advocate using the latest or the 4-component
SF model. We concentrate on the most and least energy-intensive manufacturing industries. More
specifically, we first define energy intensity as the costs of energy in total economic activity. Then
for each of five decades, we identify the top 10% and bottom 10% energy-intensive industries. We
apply the 4-component stochastic frontier model that decomposes overall efficiency into the long-term
or persistent and short-term efficiencies. Our main findings suggest that energy use efficiency in US
manufacturing hit hard by the oil shock in the 1970s and it did not rebound until the 2000s. The major
culprit of the low overall energy use efficiency was structural inefficiency, a finding that goes hand in
hand with the “energy paradox” (see, e.g., [4]). It seems that one of the ways to mitigate low levels of
energy use efficiency should be to do more research along the lines of [5,47,48] to promote, adopt, and
establish energy-efficient technologies as the new benchmark.
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Appendix A

Table A1. Descriptive statistics by decade and by the intensity of energy use.

Time Period Industries Median Mean SD Min Max

Y

The 1960s Least energy-intensive 832.95 1509.60 2214.52 27.10 17,931.30
The 1960s Most energy-intensive 546.85 1251.66 2780.79 79.70 21,983.20
The 1970s Least energy-intensive 1438.45 3796.49 7199.52 150.30 43,128.30
The 1970s Most energy-intensive 1128.70 3024.25 6117.26 111.60 54,446.30
The 1980s Least energy-intensive 3639.00 8997.84 14,000.49 286.80 73,925.10
The 1980s Most energy-intensive 2222.15 4855.71 8216.35 136.60 56,738.40
The 1990s Least energy-intensive 6168.60 16,492.67 23,594.40 219.30 145,256.20
The 1990s Most energy-intensive 3312.50 6678.93 10,571.67 116.30 56,895.00
The 2000s Least energy-intensive 7992.90 19,773.51 30,016.89 149.10 16,2181.80
The 2000s Most energy-intensive 4243.00 9790.06 17,328.47 130.80 123,129.80

136



Energies 2020, 13, 3954

Table A1. Cont.

Time Period Industries Median Mean SD Min Max

K

The 1960s Least energy-intensive 400.85 1131.83 1841.05 6.20 9507.70
The 1960s Most energy-intensive 1548.30 4670.45 12,180.26 111.10 90,867.10
The 1970s Least energy-intensive 631.45 2049.62 3965.95 27.60 20,595.00
The 1970s Most energy-intensive 2646.90 6482.31 14,042.12 257.70 92,312.80
The 1980s Least energy-intensive 960.60 3075.50 5135.97 52.80 25,549.50
The 1980s Most energy-intensive 2475.65 6780.63 13,499.10 236.70 91,786.60
The 1990s Least energy-intensive 1338.90 4242.53 6078.23 39.40 27,170.30
The 1990s Most energy-intensive 2933.30 6867.77 12,257.56 172.20 70,528.90
The 2000s Least energy-intensive 1605.60 5526.12 8706.73 57.30 53,612.40
The 2000s Most energy-intensive 3162.85 7044.35 11,075.66 165.70 58,371.10

L

The 1960s Least energy-intensive 72.40 127.50 147.79 1.35 1018.47
The 1960s Most energy-intensive 31.66 83.17 164.73 3.75 1145.57
The 1970s Least energy-intensive 76.74 121.04 122.07 9.94 727.97
The 1970s Most energy-intensive 30.70 80.51 150.27 3.90 1070.72
The 1980s Least energy-intensive 69.93 116.73 125.13 6.91 686.44
The 1980s Most energy-intensive 28.38 59.72 92.65 2.98 762.71
The 1990s Least energy-intensive 64.72 113.52 117.39 4.49 659.60
The 1990s Most energy-intensive 26.66 55.92 74.33 2.09 423.21
The 2000s Least energy-intensive 55.18 92.35 96.65 2.29 487.05
The 2000s Most energy-intensive 20.63 39.73 53.02 2.48 380.14

NEM

The 1960s Least energy-intensive 432.60 917.37 1687.38 16.90 15,436.70
The 1960s Most energy-intensive 193.25 555.57 1414.46 6.50 11,553.60
The 1970s Least energy-intensive 787.60 2501.26 5759.85 65.80 37,855.40
The 1970s Most energy-intensive 485.10 1460.07 3318.96 14.70 29,737.30
The 1980s Least energy-intensive 1832.10 5568.41 10,423.51 129.60 50,316.50
The 1980s Most energy-intensive 873.20 2306.36 4384.77 27.70 31,836.00
The 1990s Least energy-intensive 2950.90 9604.14 16,286.32 80.50 102,924.30
The 1990s Most energy-intensive 1276.85 3034.87 5404.51 25.30 29,446.20
The 2000s Least energy-intensive 3954.40 10,175.94 18,271.44 63.80 110,074.70
The 2000s Most energy-intensive 1602.30 4847.67 10,339.06 24.80 75,089.60

E

The 1960s Least energy-intensive 2.50 4.83 8.95 0.10 75.70
The 1960s Most energy-intensive 29.00 70.23 135.82 2.60 1056.00
The 1970s Least energy-intensive 7.00 18.22 35.64 0.40 225.20
The 1970s Most energy-intensive 96.30 248.52 513.12 7.10 5325.20
The 1980s Least energy-intensive 23.70 56.56 84.23 1.50 348.40
The 1980s Most energy-intensive 202.60 494.83 782.74 20.30 5858.60
The 1990s Least energy-intensive 29.30 66.00 86.92 1.00 350.40
The 1990s Most energy-intensive 219.90 486.65 689.62 8.90 3570.80
The 2000s Least energy-intensive 35.00 78.93 126.08 0.70 858.00
The 2000s Most energy-intensive 355.60 777.17 1158.60 12.00 6775.10

Appendix B

Here we describe how to estimate the model in (11). To facilitate the discussion, rewrite

log qit = r(X it, trend; ω) + v0i − u0i + vit − uit (A1)

as
log qit = r(X it, trend; ω) + ε0i + εit,
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where εit = vit − uit and ε0i = v0i − u0i decompose the error term into two ‘composed error’ terms
(both of which contain a two-sided and a one-sided error terms). Assume the most general case where
all four components are heteroskedastic

σ2
uit

= exp (zuit ψu), i = 1, · · · , n, t = 1, · · · , Ti, (A2)

σ2
u0i

= exp (zu0i ψu0), i = 1, · · · , n, (A3)

σ2
vit

= exp (zvit ψv), i = 1, · · · , n, t = 1, · · · , Ti, (A4)

σ2
v0i

= exp (zv0i ψv0), i = 1, · · · , n, (A5)

where zuit are the determinants of transient inefficiency, zu0i are the determinants of persistent
inefficiency, and zvit and zv0i define the heteroskedasticity functions of the noise and random
effects. The homoskedastic error component is easily derived from (A2–A5) by setting the vector of
determinants to a constant. For example if vit is homoskedastic, zvit is a vector of ones of length ∑n

i=1 Ti.
The conditional density of εi = (εi1, . . . , εiTi ) is given by

f (εi|ε0i) =
Ti

∏
t=1

2
σit

φ

(
εit
σit

)
Φ
(

εitλit
σit

)
,

where σit = [exp (zuit ψu) + exp (zvit ψv)]
1/2 and λit = [exp (zuit ψu)/ exp (zvit ψv)]

1/2.
Integrate ε0i (the distribution of which we know) out to get the unconditional density of εi

f (εi) =
∫ ∞
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where σ0i = [exp (zu0i ψu0) + exp (zv0i ψv0)]
1/2 and λ0i = [exp (zu0i ψu0)/ exp (zv0i ψv0)]

1/2. The
log-likelihood function for the i-th observation of model (A1) is therefore given by
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, (A6)

where εit = rit − (v0i + u0i) and rit = log qit − r(X it, trend; ω). We rely on the Monte-Carlo
integration as a method to approximate the integral in (A6). For estimation purposes, we write
ε0i = [exp (zu0i ψu0)]

1/2Vi + [exp (zv0i ψv0)]
1/2|Ui|, where both Vi and Ui are standard normal random

variables. The resulting simulated log-likelihood function for the i-th observation is
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where Vir and Uir are R random deviates from the standard normal distribution, and εitr = rit −
([exp (zu0i ψu0)]

1/2Vir + [exp (zv0i ψv0)]
1/2|Uir|). R is the number of draws for approximating the
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log-likelihood function. The full log-likelihood is the sum of panel-i specific log-likelihoods given
in (A7).

We use the results of [39] to calculate persistent and time-varying cost efficiencies. Using
the moment generating function of the closed skew normal distribution, the conditional means
of u0i, ui1, · · · , uiTi are given by:

E(exp{t′ui}|ri) =
ΦTi+1 (Riri + Λit, Λi)

ΦTi+1 (Riri, Λi)
× exp

(
t′Riri + 0.5t′Λit

)
, (A8)

where ri =
(
ri1, . . . , riTi

)′, A = −[1Ti ITi ], 1Ti is the column vector of length Ti and ITi is the
identity matrix of dimension Ti, the diagonal elements of V i are [exp (zu0i ψu0) exp (zuit ψu)], Σi =

exp (zvit ψv)ITi + exp (zv0i ψv0)1Ti 1
′
Ti

, Λi = V i − V i A′ (Σi + AV i A′)−1 AV i =
(

V−1
i + A′Σ−1

i A
)−1

,

Ri = V i A′ (Σi + AV i A′)−1
= Λi A′Σ−1

i , φq (x, μ, Ω) is the density function of a q-dimensional normal
variable with expected value μ and variance Ω and Φq (μ, Ω) is the probability that a q-variate normal
variable of expected value μ and variance Ω belongs to the positive orthant., ui = (u0i, ui1, . . . , uiTi )

′,
and −t is a row of the identity matrix of dimension (Ti + 1). If −t is the τ-th row, Equation (A8)
provides the conditional expected value of the τ-th component of the cost efficiency vector exp (−ui).
In particular, for τ = 1, we get the conditional expected value of the persistent technical efficiency.
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Abstract: This paper describes an innovative method to evaluate energy access in any of size
population by applying fuzzy logic. The obtained results allow ranking regions of Mexico according to
their overall energy access. The regions were determined by the country’s political division (32 states).
The results presented herein are in close correspondence with other studies undertaken. This method
is recommended because it is possible to use as an assessment tool due to its representativeness—that
is, it poses a heuristic alternative to quantify the level of Energy Access in a particular region through
qualitative data. It is also efficient and cost-effective in terms of computer resources. This is extremely
important to public policy makers that require more accurate, faster and cheaper methodologies to
assess energy access as an indicator of well-being.

Keywords: energy access; energy use; fuzzy logic

1. Introduction

Understanding the way in which people use energy at home is necessary to move forward in
the development of public policies which foster more efficient energy usage. Several surveys have
been developed to measure energy access and its use. Butera et al. [1] developed a study about Brazil
(Rio De Janeiro), in which two cities were analysed on energy access and the level of energy poverty
through questionnaires carried out in 400 households. This helped to determine the local living
conditions and the availability of basic energy services, as well as explore the actual energy access
and energy poverty in the favelas. One of its main findings was that electricity consumption is very
high compared to the service provided—as much as Italian or German households, which are much
richer—in addition to electricity access being threatened by interruptions and low tension. This method
is replicable with small adaptations; however, Butera et al. do not use fuzzy logic. Jimenez et al. [2]
performed an analysis of surveys to determine the state of the electrification barriers in Latin America.
Taking three variables—household income, household location, and the country’s level of economic
development—they analyse 12 countries in Latin America (Bolivia, Brazil, Chile, Costa Rica, Dominican
Republic, Ecuador, Guatemala, Honduras, Mexico, Peru, Paraguay and El Salvador). The study shows
serious inequality in electricity access, a family living in a poor country has a lesser chance of accessing
electricity than a family with the same income but living in a richer country. This study does not use
fuzzy logic, but it shows the application of a mathematical method—regression analysis.

In Mexico, for example, there is the Household Expenditure and Income Survey, measuring [3],
among other things, energy services and expense in Mexican households. Another, of recent
implementation, is the National Survey on Energy Consumption in Private Households (ENCEVI, its
Spanish acronym) [4]. This was designed to help better understand the existing relationship between
people and energy. Nevertheless, these exercises of information gathering do not provide simple and
reliable tools for researchers and policy makers to compare and understand energy access and use at a
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household level. It is necessary to run the data sets produced by these surveys through often costly
processing systems that require large and precise data sets to model energy access.

Addressing and measuring energy access is a complex issue. In most indicator sets that are
used to measure energy poverty or that are related to basic energy services, the closest indicator is
absolute electricity access. For instance, the World Economic Forum reports a 100% with respect to
electrification rate in 2018 for Mexico [5]. It also includes another relevant indicator, electricity supply
quality, measured by the following question: “In your country, how reliable is the electricity supply
(lack of interruptions and lack of voltage fluctuations)?” on a scale from 1 to 7, 1 being “extremely
unreliable”, 7 being “extremely reliable”, for which Mexico scored 4.9. This might be interpreted
as “reliable”. This indicator was subsequently measured differently in the following edition, also
published in 2018 [6], as the percentage of electricity losses (comprising transmission, distribution and
non-technical losses). Even though the indicator has the exact same name, it reflects very different
things. However, the World Economic Forum’s double definition of electricity access shows that the
former version of the indicator was far more representative as the impact that the quality of the service
had (or the perception from the consumer). This is the main reason behind our decision to measure
Energy Access (EA) by asking a question about the availability of energy services to the population.

It is important to highlight that we are not addressing energy poverty (or fuel poverty) in this
paper. While both energy poverty and energy access are related, energy poverty goes beyond the
availability (or the perception of the availability) of any given energy service, but also energy use and
the social behaviours that accompany said use. This is clearly defined by Thomson et al. [7], who state
that energy poverty occurs “when a household is incapable of securing a degree of domestic energy
services (such as space heating, cooling, cooking) that would allow them to fully participate in the
customs and activities that define membership in society”.

As part of your desk research, we did a small scientometric analysis using the Web of Science
database. Using the phrase “energy access” as search criteria, we found 778 articles with it in either
the title, key words or abstract. Simultaneously, we looked for articles with the phrase “fuzzy logic”
and found 48,227. Nevertheless, when we intersected the searches, we could not find a paper that
talked about both energy access and fuzzy logic. Therefore, this might present a novel methodology
for looking at this issue.

Lotfi A. Zadeh [8] defined fuzzy logic in the 1960s for issues regarding language. It has now
been applied more broadly to a diversity of knowledge areas, such as the control of automatic
electro-mechanical processes [9], human activity control [10], decision making [11], etc. Nobre et al. [12]
consider fuzzy logic a computational and mathematical framework suitable to represent approximate
reasoning. It takes into consideration everyday life concepts, experiences, observations, etc., with all of
them having “fuzzy limits” [13]. Tron y Margaliot [14] describe fuzzy logic as an effective methodology
for creating models by considering intuition and agent related behaviour.

Fuzzy logic has been used in economic topics related to energy. Spandagos et al. [15] state
that in order to understand the factors that foster consumer energy behaviour and thus enable the
development of more efficient polity, it is necessary to create energy consumption models that take
economic behaviour into consideration. With this in mind, Spandagos developed a model based
on fuzzy logic that includes concepts of bounded rationality, time discounting of gains and pro
environmental behaviour. The model is developed from the decision perspective, rules based on
human reasoning and behaviour, and also takes into consideration currency, personal comfort and
environmental responsibility related variables to generate predictions regarding purchasing decisions
and air conditioning use. An important similarity was found between the results generated by the
model and historic data on energy usage for the cooling of urban populations. This proved it to be a
trustable model. Spandagos showed the feasibility of using fuzzy logic to combine economic, physical
quantitative data with qualitative concepts.

Among the several applications of fuzzy logic, there is a model to define and measure sustainability
called SAFE, proposed by Phillis et al. [16]. In this model, fuzzy logic is used as well as 75 indicators to
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classify 128 countries, also considering expert opinions, international agreements and frameworks.
This model measures sustainability on a world scale, but it can be adapted to smaller regions since its
variables, both input and output, rules and membership functions can be modified. Fuzzy logic has
also been used in the evaluation of energy systems in dwellings, as was done by Gamalath et al. [17].
In their paper they propose an assessment framework for the condition of the energy system in
multi-unit residential buildings (MURB). Their evaluation method applies fuzzy logic to overcome
data uncertainty and imprecision. It also uses the rules to combine different performance categories
to obtain a grade on the general condition of a MURB. The application of fuzzy logic can help
to account for qualitative data that might be obtained in stakeholders’ consultations. Their study
demonstrated that fuzzy logic can be used to improve the strategies of asset management and operation
of existing buildings.

In a similar manner to Spandagos et al., that achieve a model based on fuzzy logic with concepts
both quantitative as qualitative, our work combines qualitative values with energy expenses. Our model
is also adaptive, as like that of Phillis et al., because the variables (input and output), the rules and
the membership functions can be modified in the light of each country’s context. Furthermore,
like the Gamalath et al. model, ours can be used to design public policy as well as to improve
management strategies.

Fuzzy logic can obtain results from human language, as opposed to other methods, if the variables
and their values are presented as quantifiable data. This mathematical tool is helpful for highly
complex systems that cannot be represented by differential equations or which cannot be solved
through conventional means, as their solution entails a high level of complexity. However, Fuzzy Logic
does not require complex mathematical models, but anyone with expertise on a given subject can use
the methodology, i.e., it is a heuristic tool. Within the bivalent logic of Charles Boole [18], an element
from the whole might be part or not of the whole, using Zadeh logic being a part of a fuzzy whole is
neither one nor zero, but gradually varies between one and zero.

When trying to solve a system using fuzzy techniques, there are three things the expert needs
to define. Firstly, the properties which will characterize the system (linguistic variables), and the set
of values which they will undertake (linguistic values). Having established these, they must define
the membership functions linking these properties with the system. The next and last key step is
what makes fuzzy logic a great approach for evaluating complex systems, which is the rule definition.
These are defined by an expert performing the analyses and include their biases on how the system
should behave. To quantify the membership on a given group does not represent either a probability or
a percentage, but rather how a given characteristic places us in a group we are referring to a population
group. This allows us to implement a frequently used concept in Fuzzy Logic, the membership in
a group with specific characteristics. Defining linguistic variables and rules is what brings about a
system that can be adjusted from different perspectives. Every fuzzy analysis is unique, as each expert
will attach their personal imprint.

For this study, we used data from ENCEVI, the survey conducted by National Institute of
Statistic and Geography (INEGI, its Spanish acronym) [4], which gathers data provided by the persons
interviewed. It is important to mention that there are no direct measurements involved in this
survey. As defined by the fuzzy logic methodology, we needed to select the linguistic variables for the
system. These were selected for a population by its energy access. We chose transport, cooking fuel
and electricity expenditure, as they all had an associated measure and are of key importance to an
individual’s well-being. According to Sovacool et al. [19] “ . . . for both the rural and urban poor, low
mobility—regard less of the technology or mode of transport involved—stifles the attainment of better
living standards. It reduces the ability to earn income, strains economic resources, and limits access to
education and health services and markets . . . ”. It is with this consideration that we include transport
as a variable related to energy access. Both cooking fuel and electricity expenditure have been used
on previous studies done on energy access [20] and Energy Poverty [21] in Mexico. Furthermore,
electricity access at this time of world development is crucial, as it provides numerous benefits in
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addition to other services being closely related, such as entertainment, education, communication,
etc. [22]. Furthermore, as we know, the massive trend towards electrification will make it more and
more relevant to individual and community wellbeing. Another important reason for choosing these
variables was considering that all of them can be measured in the same unit (Mexican Peso).

2. Theoretical Basis

When doing a fuzzy logic analysis, the first step is to define linguistic variables, which will be
the criteria framing the system. For our energy access analysis, we have defined them as: transport,
cooking fuel and electricity expenditure. They serve as indicators to evaluate or characterize it, and are
made up of values which we call linguistic values. Linguistics values are then subdivided into bands.
For the case presented herein, we have set them as follows: low, middle, and high.

The second step is the rule design. For this, we must first calculate the number of rules to be
applied in assessing a problem. This is calculated by the expression A=BC. In which A: number of
rules. B: number of linguistic variables. C: amount of bands.

Our energy access index will be comprised of 3 linguistic variables, framed within 3 value bands,
requiring 27 rules. The number of rules is the first filter to understand if fizzy logic is the right method
to solve the problem. It also needs to take into consideration the degree of knowledge the expert might
have about the problem, and their capacity to come up with sensible rules. Having a high number of
rules will increase the processing time. If we had chosen to evaluate 5 linguistic variables—each one
with 5 bands—the system would require 3125 rules (55).

The membership function is a very important element in problem solution. It shows the degree to
which an element is related or has a characteristic associated to a linguistic value. It defines membership.
This function might be of different types, fundamentally it could be triangular, trapezoidal, Z type and
S type—we have chosen to use the latter for this analysis [3].

2.1. Description of Experimental Data.

To have homogenized linguistic variables, the defined set of linguistic values can all be expressed
in monetary units. Data at state level were obtained from the ENCEVI survey performed in 2018
by INEGI [4]. Figures 1–3 show the averages by state for transport, fuel used in cooking and
electricity expenses.

Figure 1. Average monthly transport expenditure per household in pesos, by State. Source
ENCEVI, INEGI.
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Figure 2. Average bimonthly electricity expenditure per household in pesos, by State. In Mexico,
payment for domestic electric service is made every two months. Source ENCEVI, INEGI.

Figure 3. Average monthly cooking fuel expenditure per household in pesos, by State. Source
ENCEVI, INEGI.

It is important to mention that these variables, taken from the literature, are coupled to the
variables of the survey. Within the survey the expense for household appliances or heating is not
included, this is included in the total expenditure of electricity.

In this case, the ENCEVI survey does not consider electricity as a cooking fuel. In Mexico, very
few households use electric stoves. The selected linguistic variables show similar behaviour in all
states. This could be a problem for the precision of the method. The value-bands need to be adjusted
to refine the results (Energy Access) value-range. This procedure will also depend on the experience of
the expert in charge of designing the process.
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2.2. Calculus

Based on each state’s population sample average expenditure, we define the range for the
categories each value can fall into. The values can fall into three categories—high, medium and
low—and a number is given to each one. For the present case study, the input variables are shown in
Figures 4–6 and the Figure 7 represent the output variable.

 
Figure 4. Membership function transport.

 
Figure 5. Membership function cooking.
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Figure 6. Membership function electricity.

 
Figure 7. Membership function EA (Energy Access).

In the Figure 7 the values closer to 0 indicate a low energy access, while values closer to 1 indicate
a high availability to energy services.

The definition of the values for the membership function “Energy Access” were obtained using
a similar method to Nussbaumer et al. [22] to measure energy poverty. They used a threshold to
define energy poverty of 0.32, based on experience and through intensive tests. It is a well-known fact
that membership function values can be modified according to the context of the specific application.
We defined our values due to the similar behaviour that the results from the fuzzy logic algorithm gave
when comparing the per capita PIB of each state with the reality of each state. However, those values
on energy access in each country should be assigned by experts so to have a model that truthfully
represents any given regional context. The experts on the topic are those with the knowledge, the
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expertise and the access to high quality data, that can determine whether or not a model represents
each countries energy landscape.

The next step after defining linguistic variables, values and membership functions is to draft
the rules, then to undertake an analysis of each element. This procedure can be performed manually.
However, there are several tools that can do this task in a more efficient manner. For this study, we
used a tool designed in MATLAB [23].

The same procedure used in defining “EA” output values is used, this output has three variables:
high, medium and low, with 0.46, 0.41 and 0.32 values respectively. Below the presentation of a typical
rule is shown.

If (transportation is high) and (cooking is low) and (electricity is medium) then (AE is medium).
Using the above rule and the other 26 rules, we designed the system by applying the Mamdani

fuzzy inference systems, which closely recreates both human reasoning and the fuzzy if-and-then rules.
Moreover, we used the Mamdani method as it generates a fuzzy set as its output. This more complete
output is the reason we chose this over more popular methods such as the Sugeno method, whose
output is only linear or constant.

It is important to mention that, just as with the linguistic values, rules can be modified depending
on the person making the analysis. This presents an important advantage in comparison with other
analysis methodologies, as it allows us to assess the system under other conditions.

3. Results

Once the system is ready and the expenditure averages are defined, you can start calculating the
value of energy access for each region. Figure 8 shows how the tool works, by inputting the values
we need to be analysed and showing the energy access value as a result. For the example below,
we introduced Mexico City’s values for transportation, cooking and electricity (1901, 682 and 496
respectively). The tool shows us the EA value is of 0.762.

Figure 8. MATLAB screen results. Evaluation of the rules and their results to determine energy access.
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Figure 9 shows energy access across all states; as per our previous definition, states over 0.46 are
classified as having a high energy accessibility, and those under 0.32 as low accessibility, which means
that in general, they will face above average difficulties in gaining access to electricity, cooking fuels
and transport compared to the other states.

 
Figure 9. Energy access by state. Less than 0.32 is considered as low energy access, greater than 0.46 is
considered as high energy access. Between 0.32 and 0.46 is considered as medium energy access.

4. Discussion

We obtained a distribution of energy access (EA) across Mexico by applying fuzzy logic. As it
is a fuzzy set, it can be divided in different ranges or zones. This division varies in response to local
information on energy access and the characteristics of the locality. Since it is a heuristic criterion, the
most valuable use of the tool is to monitor Energy Access in a locality through time. When comparing
the values between regions, other socioeconomic indicators are needed in order to have a better
understanding of each region’s relationship with energy access. This is not only a strictly theoretical
absolute result; rather, it is a methodology that enables comparisons. In this specific case, when we
associate a membership function to a number, this element within the whole state reflects the specific
property to which we are referring—in this case EA. Each of the EA ranges might be called: Low EA,
Medium EA and High EA. The same rule will be used to classify all of them.

Drawing comparisons with research from other contexts is challenging, as the study of social
phenomena is complex and involves a different approach. In natural sciences, defining magnitudes
and models to estimate a given situation it is a straightforward matter. However, in social sciences,
although exact mathematical models are applied to social issues, there are many variables intervening.
Furthermore, in most cases, all the different variables and conditions that take place are unknown.
So, the application of these type of tools is helpful to grasp the context of various entities, and to start
the understanding of social phenomena. Social applications have a complex nature; describing and
modelling them is a challenge requiring a complex system approach. For our case study, we wanted to
see the relationships between EA and three factors—economic development, geographic characteristics
and socio-cultural behaviour. Figure 10 shows our comparison between EA and GDP per capita, which
we calculated using 2017 data from INEGI [24] and CONAPO [25].
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Figure 10. Comparison between GDP per capita and EA by state.

The analysis of this graph takes only one aspect related to energy access into consideration, the
overall economic activity per state. Even though the prosperity in each region has a close relationship
with the quality of energy access and the socioeconomic level of the population, it is clear that there are
several factors that we need to analyse to fully understand each individual case. In general, we can see
that the level of EA is relatively equal to or greater than the GDP per capita in almost all of the regions.
This is because the largest and most important energy and utilities companies (Pemex and CFE) are
public (owned by the state). Therefore, there is a natural bias of those public companies to promote
social well-being. However, both Campeche and Tabasco pose an exception to this trend. Campeche is
the “richest” state because most of the oil production is based there. However, that wealth is not part of
the economic activity of most of the population. Since Pemex, the public oil company, is responsible for
that income, GDP per capita does not reflect the economic behaviour of the inhabitants of Campeche.
The EA indicator shows an average value, not related to GDP per capita. In Tabasco, something similar
happens; it is the second most important oil production location. On the other hand, we have the
case of Chiapas, an extremely poor region that has a very important indigenous population and is
well known for having a strong political agenda. Its inhabitants have access not only to the services
provided by the public energy companies, but they have a long-standing tradition of using biomass, so
this analysis portrays the reality of Mexico’s landscape regarding EA.

If we were to add geographic characteristics and socio-cultural habits, then this analysis would
be even more complex. Many authors prefer to draw their analysis based solely on the “geographic
regions” variable, as if the only important factor might be the geography of the place, and they do
not take the socioeconomic reality into consideration. As we have already expressed, the solution to
social problems includes many unknown variables related to one another. This is a multi-variable
problem. When you are dealing with multi-variable problems, the mathematical problems become
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more challenging. In this case, fuzzy logic plays an important role in solving this, because we would
need to design a similar model, only with a greater number of rules.

Within the geographic division performed by INEGI [4], there is a warm region with extreme
summers, including the states of Durango and Nuevo Leon. Durango has reported a negative growth
of −1.0 while Nuevo Leon has reported a growth of 3.0. On the other hand, if we were to assess a torrid
region as defined by INEGI in its regionalization of the climate seasonality, we would find unequal
economies such as that of Mexico City and that of the state of Mexico, with other less developed States
such as Guerrero. This analysis confirms what we have been suggesting from the beginning—that we
need a comprehensive global analysis, including economic, social and climate variables.

Since the objective of this paper is to show the possible application of fuzzy logic, we have
decided to simplify the model and shorten the geographic space to states, taking only political division
into consideration. What are the advantages and disadvantages of this? The main advantage relies
on a more uniform socioeconomic data (per single state). The main disadvantage is the lack of
climate-related information, which decreases the model’s precision. This relies, on the other hand, on
our main purpose of simplifying the model: remembering that increasing the number of linguistic
variables increases the number of rules (exponentially). That is why we have decided to draw this
analysis by states and not by climate regions.

5. Conclusions

We can reach the conclusion that the method used is pertinent in most of the federate entities
when evaluating the EA in each state, especially those with similar bio-climate and/or socioeconomic
regions. This method shows that fuzzy logic might be used to measure energy access and to highlight
where it is low and deserves special attention.

Nevertheless, to obtain more accurate calculus, we should undertake several possible actions:
increase the number of linguistic variables; adjust the values of those linguistic variables; use another
survey or even organize our own survey.

We have concluded that the analysis of results by states might be an alternative to the geographic
region analysis where the exactitude will depend on the number of variables taken into consideration.
Especially when the aim is to implement energy access recovering measures, it is important to precisely
define where they will be implemented. It is not the same to define an energy access recovering
program for a small city, a municipality or a town as it is for a geographic area in general. That is why
it is necessary to include more variables that give a better characterization to the reality of the entities
in all-important energy dimensions regarding access.

If we take into consideration all the processing and calculus advantages that fuzzy logic offers us,
and combine this with the analysis made, we find out that this approach for evaluating energy access
should be taken into consideration by researchers in the field and public policy makers.

The most important result of this paper is that it provides researchers with another tool that has
been shown to be useful in the assessment of energy access—fuzzy logic. This technique entails neither
high mathematical complexity nor an excessive use of computer time and intensity, while providing a
useful model to evaluate and monitor energy access through time.
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Abstract: This study investigates the effect of energy use on labor productivity in the Ethiopian
manufacturing industry. It uses panel data for the manufacturing industry groups to estimate the
coefficients using the dynamic panel estimator. The study’s results confirm that energy use increases
manufacturing labor productivity. The coefficients for the control variables are in keeping with
theoretical predictions. Capital positively augments productivity in the industries. Based on our
results, technology induces manufacturing’s labor productivity. Likewise, more labor employment
induces labor productivity due to the dominance of labor-intensive manufacturing industries in
Ethiopia. Alternative model specifications provide evidence of a robust link between energy and
labor productivity in the Ethiopian manufacturing industry. Our results imply that there needs to be
more focus on the efficient use of energy, labor, capital, and technology to increase the manufacturing
industry’s labor productivity and to overcome the premature deindustrialization patterns being seen
in Ethiopia.

Keywords: manufacturing; labor productivity; energy; Ethiopia

1. Introduction

Industrial expansion is essential for socioeconomic development as it generates
different opportunities—capital accumulation, structural changes, technological innovations,
and productivity—that improve economic performance [1–3]. Industrialization or the shift from
agriculture to the manufacturing sector is key to development, making development without
industrialization an unthinkable process [1,4]. Industrial development is also the pathway for
the structural transformation of an economy and society. High rates of economic growth and capital
accumulation are essential but not adequate for structural transformation, unless complemented by
industrialization [2]. Industrialization promotes economic diversification, inclusive growth, and the
efficient utilization of resources, such as physical, human, and mineral resources, which help eradicate
poverty [5].

The productivity advantage of manufacturing over other sectors is a major factor for pursuing
sustained industrialization, along with the higher externalities that can arise from manufacturing
growth [6]. Unlike agriculture and the service sectors, manufacturing accelerates convergence and,
with its huge productivity advantages, will enable developing economies to catch up with their
developed counterparts [4]. Different factors are attributed to industrial growth and productivity,
including human or physical capital, labor, energy, innovations, and capacity utilization [3,7,8].
Among others, energy is critical for productivity and growth as it enables achieving both industrial
development and structural transformation [9]. In fact, the use of energy is a precondition for
the development of human society and more energy use is required for sustaining industrial
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development [9]. Energy use is directly related to growth and economic development and is an
essential input for all production and consumption activities [8,10].

The causal relationship between energy consumption and growth has been investigated in
different countries but the results remain controversial with diverse outcomes in different countries
based on the econometric approaches used and the time spans of the studies [10–14]. Some studies
validate the positive effects of energy on growth and productivity [15–17], while others empirically
confirm a negative impact of energy on growth and productivity [11,12]. Others find no causal
relationship between the two empirically [10,18]. Here we use different econometric estimators
for matters of sensitivity analysis of the result to evaluate how energy affects labor productivity in
Ethiopian manufacturing.

In Ethiopia, the share of agriculture and services in gross domestic product (GDP) has been
more than 60 percent and 20 percent, respectively, for decades, while manufacturing’s contribution to
GDP has been less than five percent, which, too, is attributable to other industries [19,20]. Currently,
the service sector contributes 47 percent, agriculture 43 percent, and industry makes up the rest, leaving
a very low share of GDP being contributed by manufacturing [21]. The existing literature confirms
that Ethiopian people have been depending on agriculture for their livelihood for decades in terms of
production and employment, with significantly small contributions from the manufacturing sector
to the economy [22,23]. The dominance of, first, the agriculture sector and, later, the service sector
shows premature deindustrialization in Ethiopia, while the low share of manufacturing implies output
deindustrialization [21,24].

The low industry performance can be attributed to several factors such as inefficient use of
labor, energy, human or physical capital, innovations and capacity utilization [3,8,24]. As established
theoretically, energy is a significant factor in determining sustainable industrial production. However,
the empirical relationship between energy and growth is mixed [10–14]. Besides, there are very few
empirical studies on energy and productivity at the industry level. This motivated us to undertake this
study on the empirical relationship between energy and labor productivity in the case of the Ethiopian
manufacturing industry. Accordingly, this study addresses the following research question:

How does energy effect labor productivity in the Ethiopian manufacturing industry?
The analysis emphasizes the role of energy use in manufacturing labor productivity in Ethiopia.

The study uses panel data for estimating the empirical model using a dynamic generalized method of
moments (GMM) estimator. The estimation results confirm that energy use positively effects labor
productivity in the manufacturing sector in Ethiopia. This implies that the efficient use of energy
is a pillar of labor productivity in the Ethiopian manufacturing industry. Thus, this study adds
to the existing literature by empirically confirming the relationship between energy use and labor
productivity across different model specifications.

The rest of this research is organized as follows. Section 2 reviews the literature on energy and
productivity. The empirical model and estimation approach are presented in Section 3, along with
the definitions of the variables used in the model. Data are discussed in Section 4. A descriptive and
regression-based analysis of the energy and labor productivity of the manufacturing sector in Ethiopia
is discussed in Section 5. The final section gives the conclusion and the implications of the findings.

2. Literature Review on Energy and Productivity Growth

This section presents a general overview of the link between energy and productivity, followed by
an empirical review of the relationship between energy and growth. It then discusses existing studies
on the determinants of labor productivity. This helps establish the rationale for undertaking this study
that links energy with labor productivity at the industry level in Ethiopia.

There are two empirically fundamental questions related to disparities in the level of economic
development across nations. Economists inquire why some economies are richer than others, and what
accounts for the huge increases in real incomes over time [25,26]. The extensive dispersion of output
growth rates across countries is documented economically [27]. A comparison between countries
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shows that countries that at one time had similar levels of per capita income consequently followed
very different patterns, with some seemingly caught in long-term stagnation while others were able to
sustain high growth rates [28].

Among others, productivity is a determining factor of growth at the national and industrial levels,
with increasing globalization and the expansion of competitive industrial product markets [16,29].
High industrial labor productivity results in lower per unit costs and increases firms’ ability to compete
in global markets [16]. There are several determinants of labor productivity, including human or
physical capital, energy, and technology [29–31]. Energy is an essential input that constrains or induces
productivity growth in different firms. It is an essential factor of production that is required in all
economic processes [29,31]. This basic production input in economic activities provides a conducive
platform for industrial growth and productivity. The efficient use of energy leads to the higher
productivity of resources and a more dynamically competitive economy that can respond to the
required economic transition from agriculture to industry dominated structure [32].

Energy has countless ways of empowering human beings through increasing productivity,
powering industrial and agricultural processes, alleviating poverty, and facilitating sound social and
economic development [33]. Limited access to energy cripples economic growth and development,
which makes universal access to energy a major emphasis of the sustainable development goals [9].
The increased availability and use of energy increases productivity and enhances economic
development [34]. Energy is primarily associated with the provision of power for agricultural
or industrial production [35,36]. In fact, sustainable development and modern industry require reliable,
affordable, and energy services available for all on a sustainable basis [9,33]. However, access to energy
is limited and is accompanied by low quality and poor reliability, affordability, and availability [9].
Energy can be measured in terms of cost or value and can be disaggregated into electricity or other
forms of energy based on types. It is possible to measure energy consumption in equivalent kilowatt
hours (KWh) [37].

Energy use is a major stimulating factor in industrial productivity [16,32]. Public services and
industrial production require access to energy use [12]. Recently, the demand for energy has been
increasing, with the world having a population of over 7.2 billion, which is increasing [38]. Access to
energy in Africa is low—for every ten people in sub-Saharan Africa (SSA), only four have access to
electricity compared to the global access of nine out of ten people having access to energy; 57 percent
of the global deficiency in access to electricity energy comes from SSA [9].

There is an increasing interest in identifying energy’s role in productivity, as empirical findings
on their causal relationship are mixed [13,39]. For instance, Schurr et al. [40] presents the association
between energy consumption and growth in the national product (GNP) in the United States over
the period 1880-1955. These authors identified two trends in the pattern of the energy share in
relation to GNP. The share of energy to GNP was rising, until it declined persistently after the war.
This change in the trend is attributed to a compositional change in the national output to light industries,
which use less energy compared to heavy manufacturing industries and services and is also due to
major improvements in the efficiency of energy conservation in light industries. In a follow-up to the
study by Schurr et al. [40], Schurr [41] explored the link between energy use, productive efficiency,
and energy efficiency from the 1920s to 1981. His study indicated that energy intensity, defined as
energy’s share in GNP, declined when multifactor productivity increased during the study period.
Unlike the share of energy in output, which is attributed to technological advances that increased
overall productive efficiency, energy intensities in terms of factor inputs increased over the study
period. This ultimately led to an increase in the final output, which was more than the consumption
of energy.

The role of electrification and non-electricity energy in productivity growth for the USA’s economy
is examined by Jorgenson [42]. His study confirms that electricity energy is related to productivity
growth. However, there is also a strong association between non-electricity energy and productivity
growth in the US economy. In another related study, Boudreaux [43] examined the impact of electricity

159



Energies 2020, 13, 2714

energy on manufacturing productivity in the US from 1950 to 1984. This study showed that growth in
electricity energy accounted for 79 percent of the value added to the manufacturing sector. Empirically,
the study showed that the decline in energy growth accounted for the slowdown in productivity and
output growth.

The role of energy in productivity growth in the European Union countries is assessed by
Murillo-Zamorano [44] who empirically confirmed that energy is a fundamental input in productivity
change. In another related study, the relationship between energy and labor productivity was examined
by studying the effect of renewable and non-renewable energy in European countries over the period
from 1995 to 2015 using the production frontier approach [45]. This study showed that renewable and
non-renewable energy had an effect on the growth of the countries in the European Union. Based on his
study, the author concluded that non-renewable energy had a positive impact, leading to divergence,
while renewable energy had a negative impact, leading to convergence.

Energy and income causality for ten emerging markets, excluding China because of limited
data availability and the G-7 countries, is examined in Soytas and Sari [17]. Their results show the
bidirectional causality in Argentina, causality running from energy to GDP in France, Germany, Japan,
and Turkey and causality running from GDP to energy consumption in Italy and Korea. The nexus
between energy and growth for 20 net importer and exporter countries from 1971 to 2002 using the
panel vector correction model is investigated by Mahadevan and Asafu-Adjaye [46]. Their findings
show that for energy exporter developed countries this causal relationship is bidirectional, while for
developing countries energy stimulates growth in the short term.

The effect of energy consumption and human capital on economic growth for 130 oil-exporting and
developed countries from 1981 to 2009 is investigated by Alaali et al. [15]. Using GMM, they estimate
an augmented neoclassical growth model, including education and health as human capital along
with energy consumption. Their results show that energy had a positive and significant effect on
growth. The empirical relationship between energy consumption and gross domestic product for six
Gulf Cooperation Council (GCC) countries using cointegration and causality methods is investigated
by Al-Irani [13]. His results show a unidirectional causal relationship running from GDP to energy
consumption, but not the other way around. Moghaddasi [11] investigated the role of energy
consumption in total-factor productivity in Iranian agriculture using the Solow residual model and
their results show a negative impact, which they attribute to cheap and inefficient use of energy in
this sector.

Kebede et al. [12] investigated energy demand in east, west, central, and south sub-Saharan
countries using time series cross-sectional data for 20 countries for a 25-year time span. Their results
show that energy demand was positively related to GDP, the population growth rate, and agricultural
expansion, while it was negatively correlated with industrial development and the price of petroleum.
The causal relationship between energy consumption and economic growth for 11 sub-Saharan African
countries is investigated by Skinlo [18] using the ARDL bound test and Granger causality. His results
show that there was cointegration between energy use and economic growth in seven countries
included in the study: Ghana, Cameron, Senegal, Cote d’Ivoire, Zimbabwe, Gambia, and Sudan.
In Sudan and Zimbabwe, the Granger causality ran from economic growth to energy use while
in Cameroon and Cote d’Ivoire he found no Granger causality between energy consumption and
economic growth.

Wolde-Rufael [39] investigated the causal relationship between energy consumption and economic
growth for 17 African countries using the variance decomposition factor and impulse response analysis.
The variance decomposition analysis confirmed that labor and capital were important, while energy
was not as important as these factors. A meta-analysis using a multinomial logit model for 174
samples was conducted by Chen et al. [10] to explore the relationship between energy and GDP, with
controversial results that show that the time span, econometric model, and selection characteristics
affected the debatable outcomes of the casual relationship significantly.
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The second part of this section explores labor productivity and its determinants, as studied by
different researchers. Su and Heshmati [30] studied the development and source of labor productivity
in 31 provinces of China during 2000-09. They used a fixed effects model adjusted for heteroscedasticity
to estimate the coefficients’ fixed assets, average labor wage, total volume of business, post and
telecommunications, and profits, which had a positive effect on labor productivity. Accounting for
heterogeneity, Velucchi and Viviani [47] examined the determinants of labor productivity in Italian
firms using panel data and a quantile regression. Their results show that human capital and assets
had a strong positive impact on fostering the productivity of low productive firms compared to high
productive ones. Islam and Syed-Shazali [48] studied the impact of the degree of skills, research
and development (R&D), and a favorable work environment on the productivity of labor-intensive
manufacturing industries in Bangladesh. Their results confirmed a positive correlation between
productivity and the degree of skills and the work environment, though it was a weak correlation;
R&D had a strong positive correlation with productivity in Bangladesh.

Recently, Heshmati and Rashidghalam [49] studied the determinants of labor productivity in
manufacturing and service sectors in Kenya using the World Bank Enterprise Survey database for
2013. Their findings confirm a positive effect of capital intensity and wages on labor productivity
while female participation reduced productivity in these sectors. In a comparative study, Nagler and
Naudé [50] examined the factors determining the labor productivity of non-farm enterprises in rural
sub-Saharan Africa in Ethiopia, Nigeria, Uganda, and Malawi using the World Bank’s Living Standards
Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) database. They found that rural
enterprises were less productive than urban enterprises. By estimating Heckman selection and using
panel data models, their study confirmed that education and credit availability induced enterprises’
labor productivity.

Samuel and Aram [51] studied the main factors that helped or hindered the realization of
industrial productivity in Africa. The study concluded that financial development, economic
development, the labor market’s flexibility, and the real effective exchange rate were clear determinants
of industrialization in the entire region. In a time-series analysis Otalu and Anderu [7], the determinants
of industrial sector growth in Nigeria were examined using the cointegration and error correction
model (ECM). Their results show that both labor and capital had significant effects on economic growth.
The exchange rate showed a positive and significant impact, signifying that currency appreciation
might be detrimental to the growth of the industrial sector. In addition, the authors also found that
these factors had a more permanent and not a transitory effect on industrial output.

In the energy literature, the contribution of energy use to productivity in practice is controversial,
with some studies claiming that energy use is a fundamental pillar of productivity growth, while others
argue that energy has little effect on productivity growth [10,44]. In studies on labor productivity,
energy seems to be missing as a major determinant factor in explaining labor productivity [47–51].
Furthermore, there is little focus on investigating the explicit role of energy in labor productivity from
the manufacturing industry’s perspective [47–49]. Most growth theories fail to include energy use as a
pillar of productivity or as one argument for the growth differences between nations [45].

Thus, this study adds to the existing literature by addressing the controversial nature of previous
studies’ results by empirically investigating the association between energy and productivity in the
Ethiopian manufacturing industry. It also considers energy as a major variable of interest for explaining
labor productivity in addition to capital and technical changes. This link is investigated from the
manufacturing industry’s perspective. Moreover, this study uses different model specifications to
confirm the consistency of this relationship by using both static and dynamic panel data estimators for
the manufacturing industry groups.
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3. Model Specification and Estimation

3.1. Model Specification

Productivity is a fundamental indicator for assessing economic performance [52]. In general
terms, productivity can be defined as the ratio of total output produced to the inputs used. There are
different measures of productivity, which can be classified as multifactor productivity measures and
single factor measures of productivity [53]. The former relate output to a bundle of inputs, while the
latter measure the ratio of output to a single input [52]. For instance, labor productivity is defined as
the ratio of the quantity index of gross output to the quantity index of labor input [53]. Among other
factors, energy is a key driver of economic growth and industrialization as it enhances the productivity
of labor, capital, and other factors of production. In fact, energy use has received considerable attention
as a pillar of productivity in the literature on energy economics, but with mixed empirical results for
different countries on the causal relationship between the two [13,15,46].

This study empirically investigates the relationship between energy use and labor productivity in
Ethiopian manufacturing industries. Like labor and capital production factors, energy is seen as an
essential factor for economic development [15]. The production function is a useful tool for analyzing
the technological relationship between labor, capital, other inputs, and the output produced [54].
The production function which relates output to the vector of inputs is mostly used for analyzing
productivity [55,56]. Accordingly, in this study, the production function developed by Cobb and
Douglas [57] is used for estimating the productivity of labor in the manufacturing sector in Ethiopia.
The Cobb–Douglas production function, with two inputs in its basic form [58,59], is represented as:

Y = ALαKβ (1)

where Y denotes the quantity of production or output or its value, L represents labor or its value, and K
stands for the value of capital. α and β are parameters of inputs labor and capital respectively and A
is technology. This standard production function can be generalized to include more inputs such as
energy and other material inputs:

Y = ALαKβEγ (2)

where the other variables are defined in the same manner as in Equation (1). E stands for energy inputs
in the production process and γ denotes a parameter to be estimated as a coefficient for energy input.
We can linearize the production function by log transformation as:

LogY = logA + αlogL + βlogK + γlogE + U (3)

if α+ β+ γ > 1, IRS
if α+ β+ γ ≺ 1, DRS
if α+ β+ γ = 1, CRS

(4)

where α, β, and γ stand for elasticities of production with respect to labor, capital, and energy
respectively. Equation (3) is the first model to be estimated to decide production’s returns to scale
in the manufacturing industry in Ethiopia. The sum of the parameters will give us a measure of the
returns to scale from a proportional increase in inputs. If the sum of the parameters is greater than one
we have increasing returns to scale (IRS); if the sum is less than one, we get decreasing returns to scale
(DRS); if the sum is one then the returns to scale are constant (CRT).

As labor productivity shows how effectively labor inputs are converted into outputs [60], we take
production or output per employee to measure labor productivity. There are two ways of doing this.
First, if one is interested in the scale effects of energy and capital use on labor productivity, then the
right-hand side of the equation to include all inputs in the original form per labor, while the left side is
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measured as productivity—that is, output is divided by labor. In this case, labor, on the right-hand
side, represents the scale of production as:

Y
L

=
ALαKβEγ

L
(5a)

Y/L = ALα−1KβEγ (5b)

LogY/Lit = logAit + (α− 1)logLit + βlogKit + γlogEit + Uit (5c)

ρ = α− 1; then,α = ρ+ 1 (5d)

LogY/Lit = λ+ ρlogLit + βlogKit + γlogEit + tit + Uit (5e)

where the dependent variable is labor productivity, which measures the scale effect of the factors on
labor productivity. Value of energy is used for the manufacturing industry as a major variable of
interest. Labor is a control variable that represents the scale of production and is defined as the number
of employees in the industry group. The second key control variable is capital, which is defined as the
value of the industry groups’ fixed assets. All variables are in logarithm form, so that the coefficients
are defined elasticities. T represents the trend, which is included for capturing the technical change
effect. U represents the error term of the panel model and subscripts i and t represent the industry
sector and time period respectively. U contains unobservable sector- and time-specific effects. βs are
unknown coefficients of the explanatory variables, where λ is the constant term.

Equations (6a) and (6b) represent the third model, which measures the intensity effect of factors on
labor productivity. The other way of specifying the model is by dividing the right-hand side variables
(L, K, E) with labor to express energy and capital in the form of capital intensity and energy intensity,
respectively, while the L ratio will end up in the intercept. Thus, the third model to be estimated is
written as:

Y
L

=
(A

L

)(L
L

)α(K
L

)β(E
L

)γ
(6a)

Y
L

=
(A

L

)(K
L

)β(E
L

)γ
;
(L

L

)α
= 1α = 1 (6b)

For all the three models to be estimated, an error term is included and the models are linearized
and transformed into logarithm forms before estimation. The third model to be estimated (7a) measures
energy and capital intensity and their effect on labor productivity in manufacturing industrial groups
in Ethiopia:

Log(Y/L)it = μ+ βlogkit + γlogeit + tit + uit (7a)

LogMLPit = α+ βlogCapital Intensityit + γlogEnergy Intensityit + λtrendit + Uit (7b)

where manufacturing labor productivity is the dependent variable defined as the manufacturing output
of an industry group per employee. μ is the intercept, β is a slope coefficient for capital intensity, γ is a
slope coefficient for energy intensity, while t stands for time trend to represent a shift in the production
function over time and thus λ is the rate of technological change. U is the error term in the model with
i and t representing industry group and time respectively. It follows an error component structure
consisting of industry effects and random error components.

3.2. Model Estimation

Panel data models can be static or dynamic. Static panel data models can be estimated using
pooled ordinary least squares (OLS), fixed effects (FE), and random effects (RE) models, but these
models do not take the problems of heteroscedasticity, serial correlation, and the endogeneity of the
explanatory variables into account [61–63]. The pooled OLS model ignores fixed industry and time
effects. In FE, these are fixed effects correlated with the inputs, while it is assumed that they do not
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correlate with inputs in the RE model. In all the models, the time effects are captured by the trend.
In the FE model, we estimate the effects in the form of industry intercepts, while, in RE, we estimate
the parameters of the distribution of the industry effects which, are assumed to have means of zero
and constant variance [63].

To solve the estimation problems related to a static panel formulation, we use the dynamic panel
model of difference GMM and system GMM estimators, as proposed by Arellano Bond [64] and
Arellano and Bover [65], respectively. The difference GMM and system GMM are dynamic panel
estimators designed for large N and small T, many groups/individuals, a few time periods, a linear
functional relationship, one left-hand side that is dynamic depending on its own past realization,
and for independent variables that are not strictly exogenous [66]. System GMM contains both level
and first difference equation parts, it uses instruments in levels for equations in first difference and
uses instruments in first difference for equations in levels [61]. After estimating the dynamic panel
data models, tests for the serial correlation of the residuals and overidentification were done using
Hausman or Sargan tests and the autoregressive AR (2) test, respectively [64,65].

4. The Data

4.1. Data and Variables

All data used in this study are taken from the Ethiopian Central Statistical Authority (CSA).
The period 2005–2016 is chosen for the study since the latest information on all variables is available only
up to 2016. The number of industry groups and the study period were determined by data availability.
A two-digit industry sector level is the most disaggregated data level available for this specific case.
The number of observations for industry groups (industrial sectors) is 15, where, for every industry
group, the relevant variables available are included. Table 1 provides a list of the industry groups.
The medium and large manufacturing industries in Ethiopia are categorized into 15 industry groups.

Table 1. List of industry groups.

Industry Code Industry Group (Sector)

1 Food Products and Beverages Industry
2 Tobacco Products Industry
3 Textiles Industry
4 Wearing Apparel, Except Fur Apparel Industry
5 Tanning and Dressing of Leather; Footwear, Luggage, and Handbags Industry
6 Wood and of Products of Wood and Cork, Except Furniture Industry
7 Paper, Paper Products, and Printing Industry
8 Chemicals and Chemical Products Industry
9 Rubber and Plastic Products Industry
10 Other Non-Metallic Mineral Products Industry
11 Basic Iron and Steel Industry
12 Fabricated Metal Products Except Machinery and Equipment Industry
13 Machinery and Equipment Industry
14 Motor Vehicles, Trailers and Semi-Trailer Industry
15 Furniture; Manufacturing Industry

Source: Central Statistical Authority (CSA).

Table 2 gives the list of variables used in this study and their definitions. To define labor
productivity, we need information on production and employment. Production, in our case, is defined
as the gross value of production by industry group. Employment is defined as the number of employees
by industry group. Accordingly, labor productivity is defined as the ratio of production to employment
by industry group or per capita employed production, labeled in the literature as labor productivity.
Energy is defined as the ratio of the value of energy consumed by the industry groups. Capital is
defined as the total value of the fixed assets by industry groups. Table 2 also shows the expected
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effects of the variables in the model on labor productivity. Labor productivity is the dependent
variable and the explanatory variables are energy use, employment, capital, and trend which are
expected to be statistically significant in the empirical estimation. The expected sign for employment is
positive as industries in Ethiopia are more labor intensive, so adding more labor is expected to increase
production. Similarly, the expected signs of the parameters for energy, capital, and technical change
are expected to be positive. It is assumed that energy use and capital will increase labor productivity
in the manufacturing industries in Ethiopia. Wages and salaries were included as a proxy for human
capital but they were excluded from the estimation due to high collinearity problem. An increase
in wages and salaries is expected to positively affect labor productivity and higher wages per capita
reflect the laborers’ skills and education levels.

Table 2. List of variables, expected level of significance, and coefficient signs.

Variables Variable Definitions Expected Effect

Dependent variable:
Labor Productivity Ratio of gross value of production to number of employees -

Independent variables:

Production Gross value of production by industrial group (in 000 Birr) -
Employment Number of employees by industrial group positive

Energy Ratio of value of energy consumed to total industrial
expenditure by industry group positive

Capital Total value of fixed assets by industry group (in 000 Birr) positive

Time trend Is a proxy for technical change and is included in the model
as a control variable positive

4.2. The Variables’ Development Over Time

Figure 1 gives the trends of production for the 15 industries included in this study. The industry
classification is standard, as provided by the Statistics Authority of Ethiopia. A list of the 15 industry
groups is reported in Table 1. Based on this, the food and beverage industry (industry code 1) shows an
increasing trend for 10 years (2005–2016). Similarly, the other non-metallic mineral products industry
(industry code 10) and the motor vehicle and trailer industry (industry code 14) show an increase in the
recent years of the study period. However, the remaining industries have constant trends in production.
Thus, the outcome of policies in the form of industrial development’s effects are heterogeneous across
industry groups. Figure 2 presents the trends of energy use across the industry groups. With the
exception of the wood products industry (industry code 6) and the non-metallic mineral industry
(industry code 10), the overall trends in energy use throughout the decade, on average, show steady
growth. However, these two industries are relatively more energy intensive and, very recently, a decline
in energy use has been witnessed in both these industries.

Figures 3 and 4 give the trends of capital and employment in the 15 industry groups in the study
period. The use of capital increased over time for the food and beverage industry (industry code 1)
and the non-metallic mineral products industry (industry code 10) compared to the other industry
groups. Employment in the food and beverage industry (industry code 1) as well as the textile industry
(industry code 3), on average, showed an upward trend throughout while the rubber and plastic
industry (industry code 9) and the metallic industry (industry code 12) had huge employment in the
second half of the study period but, overall, had a flatter upward trend over time. In the remaining
industry groups, the overall employment trend was steady.
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Figure 1. Production trends by industry groups.

Figure 2. Energy use trends by industry groups.
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Figure 3. Capital trend by industry groups.

Figure 4. Employment trends by industry groups.
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Figures 5 and 6 show the share of production and energy use by the manufacturing industry
groups. The food and beverage industry (code 1) had the lion’s share in terms of production followed
by the non-metallic mineral products industry (code 10). The apparel industry (code 4), wood industry
(code 6), and machinery industry (code 13) had the lowest shares compared to the other industry
groups. The energy use share was the highest in the metallic industry (code 10), followed by the wood
industry (code 6), the apparel industry (code 4), and the textile industry (code 3).

Figure 5. Gross value of production by industry groups.

Figure 6. Energy use across industry groups.

5. Empirical Results and Discussion

5.1. Descriptive Statistics

Table 3 gives the summary statistics of the variables of interest. It gives information about the
overall, between, and within variations in terms of mean and standard deviations, together with the
minimum and maximum values of the variables. The total sample is 180 observations: 15 industry
groups and 12 years of data from 2005 to 2016. In the summary, we included variables such as industry
production, employment, and labor productivity, defined as the ratio of production per employee in
the industry groups, capital proxied by fixed assets, and the value of energy and human capital proxied
by wages and salaries. Accordingly, for variables such as production per employee and the value of
energy, the within variations are higher than the between variations, while the within variations of
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labor and capital are higher than the between variations. The minimum and maximum values of each
variable are also given in Table 3.

Table 3. Summary statistics of the variables of interest.

Variable Variations Mean Std. Dev. Minimum Maximum Observations

ID
Overall 8 4.3349 1 15 NT = 180
Between 4.4721 1 15 N = 15
Within 0 8 8 T = 12

Years
Overall 2010.5 3.4616 2005 2016 NT = 180
Between 0 2010.5 2010.5 N = 15
Within 3.4617 2007 2016 T = 12

Production
Overall 453,240 8,002,421 13,673 5.54 × 107 NT =180
Between 5,985,648 55,1875.1 2.50 × 107 N = 15
Within 5,514,752 −1.60 × 107 3.50 × 107 T = 12

Employment
Overall 12,512.6 14,497.45 48 67,072 NT = 180
Between 12699.86 813 50190.67 N = 15
Within 7668.181 −5985.011 62091.91 T = 12

Productivity
Overall 428.838 563.5947 19.6428 4078.363 NT = 180
Between 364.3505 85.9931 1470.145 N = 15
Within 439.3695 −587.8283 3037.057 T = 12

Capital
Overall 175,329 3,860,281 4686 3.42 × 107 NT = 180
Between 2,541,552 160,494.1 9,332,244 N = 15
Within 2973086 −5173360 2.66 × 107 T = 12

Energy
Overall 0.0730 0.11774 0.0010 0.6210 NT = 180
Between 0.11285 0.0132 0.4650 N = 15
Within 0.04369 −0.1539 0.2290 T = 12

Cost of
Labor

Overall 275,439 488,709.7 1329 4,023,882 NT = 180
Between 351,034.5 30,176.83 1,466,912 N = 15
Within 350,976.4 −867,761 2,832,410 T = 12

Source: Authors’ computations using Stata.

5.2. Regression Results and Analysis

In this section, static and dynamic panel data models are estimated for the industry panel data
available from 2005 to 2016. The data contains 15 industry groups listed in Table 1 and all of them
are included in the analysis. Thus, the data includes the entire population of the industry groups.
The estimated models are pooled OLS, fixed effects (FE), and random effects (RE) models from the
static panel estimators, while difference GMM and system GMM are presented as dynamic estimators.
Three different model specifications are used in the estimation. In the first model, industry group
production is the dependent variable, while energy, labor, and capital are explanatory variables.
In this model, the returns in relation to the scale of production are calculated based on the sum of the
coefficients for the three input variables. In the second model, manufacturing labor productivity is
specified as employment (labor), capital (fixed assets), value of energy, and time trend (technology) as
the explanatory variables. In this model, the coefficients measure the scale effect of the explanatory
variables on labor productivity of the industry groups and labor represents the scale effect. In the third
model, the manufacturing sector’s labor productivity is explained by measuring energy and capital
intensities respectively. In all the three model specifications, a trend is included to capture a shift in the
labor productivity function or rate of technological change. All variables (with the exception of trend)
are transformed into logarithmic form so that the coefficients are interpreted as input elasticities.

Accordingly, Table 4 shows the results of the pooled OLS for the three model specifications. In the
first model, labor, capital, energy, and technology are found to be statistically significant and positive.
These are among the key factors used for explaining the manufacturing industry’s production growth.
The elasticity of the output with respect to capital is higher than the corresponding figures for labor
and energy in these industries. The returns in relation to the scale of the production process are
1.06 implying increasing returns in relation to scale in this specification coinciding with predictions in
the literature [1,67]. In the second model, labor is significant and positive at the one percent significance
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level. However, we do not interpret the coefficient of labor and, instead, based on Equation (5d),
we find the value of α by adding one to the estimated coefficient in our model, which is zero. Then α,
in our case, will be positive, indicating the positive effect of labor on productivity in the manufacturing
industries. This can be attributed to the increasing returns in relation to the scale of production and the
type of existing industries, which are dominated by labor-intensive industries. In this model, capital is
significant and positive for labor productivity, which is a boost for the industry groups. These results
are in accordance with Otalu and Anderu and Velucchi Viviani [7,43]. Energy use also positively
effects productivity in line with other empirical studies [40–45]. In the third model, capital and energy
intensities are significant and positive and help explain labor productivity in the manufacturing
industries in line with other studies [46,50,51]. Our results confirm that labor productivity is high
and more elastic for energy intensity than for capital in the Ethiopian manufacturing industries.
The models show that adjusted R2 is high and the probability of F-statistics is significant, confirming
the appropriateness of the model’s specifications (see Table 4).

Table 4. Pooled OLS estimation results for the three models.

Variables

Model 1 Model 2 Model 3

Robust Robust Robust
Coef. Std. Err Coef. Std. Err Coef. Std. Err

Labor (log) 0.2730 *** (0.0755) −0.7269 *** (0.0755) - -
Capital (log) 0.7029 *** (0.0544) 0.7027 *** (0.0544) 0.0014 *** 0.0004
Energy (log) 0.0895 *** (0.0146) 0.0895 *** (0.0146) 0.1082 *** 0.0127
Time trend 0.0226 *** (0.0502) 0.0226 *** (0.0050) 0.0374 *** 0.0088
Constant 0.7930 *** (0.1996) 0.7930 *** (0.1996) 1.7272 *** 0.0541

RTS 1.0655
AdjR2 0.8979 0.8285 0.6074

F-statistics
(p-value) 0.0000 0.0000 0.0000

Notes: ***, **, * denote the statistical significance levels at 1%, 5%, and 10%, respectively. *Model 1: Output is
the dependent variable. *Model 2: Labor productivity is the dependent variable (scale effect). *Model 3: Labor
productivity is the dependent variable (input intensity effect).

It should be noted that the pooled OLS model ignores industry effects that may generate biased
results. However, it serves well to establish the model’s specifications. Table 5 presents the static panel
data model estimation results. In this section, only the second and third models are estimated using
fixed effects (FE) and random effects (RE) estimation methods. The fixed effects model allows the
industry effects and inputs to be correlated, while the random effects model assumes that these are
not correlated. The fixed effects model is consistent and unbiased regardless of the correlated effects,
but the random effects model is valid and efficient. In this case, since the industry groups are made up
of the population of industries, the fixed effects model is a better choice. For a comparison, we estimate
the models using both estimation methods.

In the fixed effects model, labor is statistically significant and is a positive factor in explaining the
variations in manufacturing productivity in Ethiopia. This is expected based on theoretical predictions
as more labor employment induces labor productivity. The fixed effects model’s estimation results
confirm that energy, capital, and technology positively effects labor productivity, and all of them are
statistically significant at the one percent level of significance. The input intensity model based on the
fixed effects estimation shows that capital intensity and energy intensity are statistically significant
factors for explaining labor productivity in the Ethiopian manufacturing industries. However, in this
case, productivity is more elastic in relation to capital intensity than energy intensity. In the random
effects model, energy, capital, and technology are positive and statistically significant in explaining
the industry groups’ labor productivity, while the coefficient for labor is negative, but, based on
Equation (5d), α is found by adding one to the coefficient, which gives us a positive coefficient with a
value of 0.45. For the intensity model, the random effects estimation approach confirms the significance
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of energy and capital intensities positively effecting labor productivity. Like the fixed effects model’s
results, productivity is less elastic in relation to energy intensity than it is to capital intensity. In all
the models, the coefficients for trends are positive and significant, implying a positive shift in labor
productivity because of technological changes in Ethiopian manufacturing industries during the
study period.

The models give different results for some of the explanatory variables, so we cannot take into
account the results of all the models. Instead, we must select a model that explains the data using
different tests and base the analysis on the optimal model’s specifications. To choose between pooled
and random effects models, we used the Breusch and Pagan lagrange multiplier (LM) tests with the
null hypothesis that pooled OLS is an appropriate model that explains the data better relative to the
random effects model. The Hausman test compares the random effects model with the fixed effects
model and the null hypothesis for the Hausman test shows that the random effects model is not
appropriate for representing the data relative to the fixed effects model. Accordingly, in both cases,
the p-value of chi2 and chibar2 forces us to reject the null hypothesis. Therefore, the fixed effects model
is preferred to the pooled OLS model and the fixed effects model is preferred to the random effects
model to represent our data. To control for the heteroscedasticity problem, standard errors reported in
all the models are robust.

Table 5. Static panel estimation results for Models 2 and 3.

Fixed Effects Random Effects

Variables
Model 2 Model 3 Model 2 Model 3

Coef. Coef. Coef. Coef.

Log Labor −0.5541 ***
(0.1287)

-
-

−0.5748 ***
(0.1311)

-
-

Log Capital 0.3545 ***
(0.0420)

0.3807 ***
(0.0475)

0.4205 ***
(0.0449)

0.4513 ***
(0.0562)

Log Energy 0.0405 **
(0.0209)

0.0335 ***
(0.0113)

0.0474 ***
(0.0201)

0.0487 ***
(0.0182)

Time Trend 0.0552 ***
(0.0075)

0.0454 ***
(0.0045)

0.0486 ***
(0.0065)

0.0400 ***
(0.0046)

Constant 2.0353 ***
(0.5567)

1.3045 ***
(0.0822)

1.7624 ***
(0.4978)

1.1679 ***
(0.1056)

Test H0 & H1 Appropriate Model Prob of chi2 & chibar2 Decision
Breusch and Pagan

LM Test
H0 Pooled OLS

0.000 reject H0H1 Random Effects

Hausman test
H0 Random Effects

0.000 reject H0H1 Fixed Effects

Notes: ***, **, * denote statistical significance levels at the 1%, 5%, and 10%, respectively. *Model 2: Labor productivity
as the dependent variable (scale effect). *Model 3: Labor productivity as the dependent variable (intensity effect).

Table 6 gives the dynamic panel model’s estimation results for both the difference GMM and
system GMM models. Unlike static panel models, these models include the lag of the dependent
variable as an explanatory variable in addition to the other variables. In the dynamic models, problems
of heteroscedasticity and autocorrelation are considered. In both the scale effects (Model 2) and the
input intensity models (Model 3), lagged labor productivity is found to be significant and positive in
explaining changes in the manufacturing industry’s labor productivity in Ethiopia. This shows that the
previous year’s productivity increases current productivity, which, in our case, is labor productivity.
An increase in employment for the industry groups has a positive and significant effect which is
attributed to increasing returns to scale and the labor-intensive nature of manufacturing industries
in both the cases. In both the difference GMM and system GMM models, energy induces labor
productivity. Comparing our results with those from developing countries suggests that our results
are in line with those from some sub-Saharan African countries, such as those reported by Kebede
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et al. and Akinlo [12,18]. However, the effect of energy on productivity for some African countries
shows that it is not as important as labor and capital [10,39], signifying the mixed empirical results of
the relationship between energy and growth as one major reason for undertaking this specific study.
The empirical validation in our case is at the industry level and not at the aggregate national level and
this is one of the contributions of this study to the existing literature, as it is what makes this study
different from the existing studies. Unlike other studies, the consistency of our results is empirically
confirmed using different model specifications and alternative estimation strategies. In addition to the
role of energy in productivity, the effects of labor, capital, and technological change on manufacturing
productivity are also empirically validated in Ethiopia. This provides crucial policy input for the
country’s industrial policy.

Table 6. Dynamic panel estimation results for Models 2 and 3.

Difference GMM System GMM

Variables
Model 2 Model 3 Model 2 Model 3

Coef. Coef. Coef. Coef.

Productivity_L1 0.1443
(0.1286)

0.1210
(0.1667)

0.1342 **
(0.0592)

0.0990
(0.1004)

Log Labor −0.6557 ***
(0.1155)

-
-

−0.5997 ***
(0.0549)

-
-

Log Capital 0.5438 ***
(0.0516)

0.0007 ***
(0.0002)

0.5276 ***
(0.0442)

0.5391 ***
(0.0373)

Log Energy 0.0393 ***
(0.0188)

0.0221
(0.0153)

0.0357 ***
(0.0098)

0.0311 ***
(0.0071)

Time trend 0.0263 ***
(0.0091)

0.0451 ***
(0.0157)

0.0255 ***
(0.0039)

0.0251 ***
(0.0086)

Constant 1.1946 ***
(0.4445)

1.6935 ***
(0.3551)

1.0919 ***
(0.2333)

0.8973 ***
(0.2006)

AR (2) 0.499 0.520
Test for autocorrelation 0.1958 0.1287
Number of instruments 5 4

Number of groups 15 15

Notes: ***, **, * denote the statistical significance levels at 1%, 5%, and 10% levels respectively. *Model 2: Labor
productivity as the dependent variable (scale effect) *Model 3: Labor productivity as the dependent variable (input
intensity effect).

In the input intensity model (Model 3), the elasticity productivity for energy intensity is higher
than capital intensity, while the opposite is the case for the system GMM model. Capital is positive
and significant in all the models for increasing labor productivity. The coefficient of the time trend has
a positive sign in all the models, indicating technological progress with an expected positive effect on
the productivity of the industries (see Table 6).

Table 7 discusses the results of the system GMM dynamic estimator, including dummies for trends.
Our results show that, in both the models, energy magnitude and energy intensity are statistically
significant and positive factors in increasing labor productivity in the manufacturing industry groups;
this finding coincides with other findings in the literature [34–36]. Besides, the magnitude of capital and
capital intensity are positive factors for labor productivity. In both the models, time dummies are positive
throughout. The results show that there is no cyclical effect and, instead, labor productivity increases
in both cases over time, which can be attributed to technical changes, increasing labor productivity.
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Table 7. System GMM dynamic panel with time dummies for Models 2 and 3.

System GMM Dynamic Panel (With Time Dummies)

Scale Effect Model
(Model 2)

Input Intensity Effect Model
(Model 3)

Coff. Std. Err Coff. Std. Err

Productivity_L1 0.1653 * (0.0877) 0.1660 * (0.0874)
Log Labor −0.6872 *** (0.0607) - -

Log Capital 0.6784 *** (0.0545) 0.7145 *** (0.0481)
Log Energy 0.0954 *** (0.0171) 0.0947 *** (0.0108)
D.trend(2) 0.7977 *** (0.1921) 0.0709 (0.0805)
D.trend(3) 0.8422 *** (0.1929) 0.1068 ** (0.0805)
D.trend(4) 0.8978 *** (0.1933) 0.1632 (0.0805)
D.trend(5) 0.8448 *** (0.1982) 0.1036 (0.0807)
D.trend(6) 0.8115 *** (0.2085) 0.0744 (0.0817)
D.trend(7) 0.9268 *** (0.2058) 0.1885 ** (0.0814)
D.trend(8) 0.9867 *** (0.2121) 0.2669 *** (0.0832)
D.trend(9) 1.0325 *** (0.2178) 0.2701 *** (0.0835)
D.trend(10) 1.0505 *** (0.2191) 0.2948 *** (0.0832)
D.trend(11) 0.9460 *** (0.2271) 0.1892 ** (0.0858)
D.trend(12) 0.9808 *** (0.2277) 0.2142 ** (0.0857)

AR (2) 0.853 0.779
Test for Autocorrelation 0.1200 0.1287
Number of Instruments 14 14

Number of groups 15 15

Notes: ***, **, * denote the statistical significance levels at 1%, 5%, and 10% levels respectively. *Model 2: Labor
productivity as the dependent variable (scale effect). *Model 3: Labor productivity as the dependent variable (input
intensity effect).

One major objective of this study was to ascertain whether an empirical relationship existed
between energy and labor productivity in Ethiopian industries, along with investigating whether it
positively affected productivity or limited it. The results of all the models confirm that the energy-related
parameter is significant and positive, showing that an increase in energy consumption enhances labor
productivity in Ethiopian manufacturing industry groups. This result coincides with other empirical
studies [15–17,46]. However, in Ethiopia, agriculture was previously a major source of livelihood for
the population. Agriculture was a dominant sector in terms of the employment share up until recently,
when traditional services emerged to dominate the economy [21,23]. The share of manufacturing
in Ethiopian GDP was very low, indicating output and premature deindustrialization [20,21,24].
This requires serious engagement for identifying and prioritizing the major explanatory factors for the
manufacturing industry. Furthermore, manufacturing is more energy intensive relative to other sectors
and the interdependence between energy and industries is a crucial tool for sustainable economic
development [6,32]. Accordingly, empirically identifying the role of energy in the manufacturing
productivity of Ethiopia can contribute to industrial policy input. The labor input is significant
and positive in the scale effects model (Model 2). This means that an increase in labor employment
will increase labor productivity due to increasing returns and the labor-intensive nature of the
industries [7,30]. Finally, we reported the diagnostic tests for serial correlation and heteroscedasticity.
The AR (2) test validated the model, free from the serial correlation problem. The number of instruments
used were less than the groups in both the dynamic panel estimation approaches.

6. Conclusions and Policy Implications

This study investigated the effect of energy on manufacturing labor productivity in Ethiopia using
panel data for manufacturing industry groups. Fifteen industries were included in the study covering
12 years of data from 2005 to 2016. The number of industry groups and the period was determined by
data availability. Data were obtained from the Central Statistical Authority (CSA) in Ethiopia. We used
both descriptive and econometric approaches for examining the empirical relationships between the
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variables of interest conditional on some other variables and characteristics. This study had two specific
objectives: examining the existence of an empirical relationship between energy and labor productivity
in the manufacturing industry and estimating the elasticity effect of energy on labor productivity.

Three models were estimated. The first model is a conventional production function with labor,
capital, and energy as the explanatory variables along with a time trend to proxy for capturing
technological change. The second model measures the scale effect of energy with the control variables
labor, capital, and technology. The third model measures the intensity effect of energy and capital on
labor productivity in Ethiopian manufacturing industries. Accordingly, static and dynamic panel data
models were estimated—pooled OLS, fixed effects, and random effects static panel estimators, along
with difference and system GMM dynamic panel models.

The data for industrial group production showed that the overall trends in production were
steady and constant over the study period, except for the food and beverage industry, which rapidly
increased (industry code 1). On average, the energy use trend increased in the food and beverage
industry (industry code 1) as well as the textile industry (industry code 3). The share of production
across the 15 industry groups was dominated by the food and beverage industry (industry code 1),
followed by the non-metallic mineral products industry (industry code 10). The non-metallic mineral
products industry was found to be more energy intensive than the others.

In the first model, the manufacturing production function was estimated with labor, capital, and
energy as the inputs in the production process. The time trend was included to capture technological
change. In this model, energy, capital, and labor were statically significant and positive in augmenting
manufacturing production in Ethiopia; this result is similar to that of other empirical studies [15–17].
Technology was also significant and a positive factor in industrial growth in Ethiopia. In this model,
the sample average returns in relation to the scale of production were 1.07, implying increasing returns
in relation to the scale of the manufacturing industries. Labor and capital were statistically significant
in all the models at the one percent level of significance.

Across the models, some variables had different significance levels, which led us to select an
appropriate model that fit the data best. Both static and dynamic model estimation methods were
considered, and we got different estimated coefficient results. For the static models, limitations in
considering endogeneity, omitted variable bias, autocorrelation, and heteroscedasticity led to the
dynamic panel model estimator being selected over the static panel estimator. The system GMM
estimator was chosen over the difference GMM model based on the diagnostic tests and to overcome
the limitations of missing observations in the difference GMM model.

In all the models, an increase in employment induced labor productivity due to increasing returns
to scale and the labor-intensive nature of the industries. Energy positively explains labor productivity
in manufacturing industries in Ethiopia. This means an increase in the use of energy-enhanced labor
productivity in the industry groups. Capital intensity use gave a boost to labor productivity, which is
consistent with theoretical predictions. In addition, a system GMM model was estimated, including time
dummies for the scale effect and input intensity models. In both the cases, labor productivity increased
over time, signifying the positive effect of technical change on manufacturing labor productivity
in Ethiopia. Across the different approaches used, the role of energy use and energy intensity
was consistently significant and positive in explaining labor productivity changes in Ethiopian
manufacturing industries.

This study showed that energy induces labor productivity in the manufacturing industry groups
in Ethiopia, showing that the efficient use of energy increases industrial growth. It also empirically
identified labor and capital as essential determinant factors of productivity in the manufacturing
industries in Ethiopia, complemented by technological change effects. This indicates a need to organize
resources in a way that boosts the growth of the industries. Energy and capital should also be efficiently
used, as the results show that productivity is elastic in relation to a change in energy and capital input
intensities in the manufacturing industries in Ethiopia.
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A review of the existing literature showed that the role of energy in productivity is controversial
across countries [10,17,44,57]. This study adds to the literature by empirically validating the positive
role of energy in productivity, applying different model specifications and estimation methods to
Ethiopia’s manufacturing industries. This implies that industrial policies in Ethiopia should focus on
the efficient use of energy along with labor, capital, and technical changes to overcome the premature
deindustrialization pattern over time. Research on the energy efficiency and energy productivity of the
manufacturing industries in Ethiopia is expected to provide additional policy inputs. This type of
research can be extended to cross-country analyses in developing countries, using the manufacturing
industry as a case study.
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Abstract: The aim of this study is to comprehensively evaluate the energy consumption in the
automotive industry, clarifying the effect of its productive processes. For this propose, the material
flow of the vehicles has been elaborated, from mining to vehicle assembly. Initially, processes where
each type of material was used, and the relationship between them, were clarified. Subsequently,
material flow was elaborated, while considering materials input in each process. Consequently, the
consumption of energy resources (i.e., oil, natural gas, coal, and electricity) was calculated. Open data
were utilized, and the effects on the Japanese vehicle market were analyzed as a case study. Our results
indicate that the energy that is required for vehicle production is 41.8 MJ/kg per vehicle, where mining
and material production processes represent 68% of the total consumption. Moreover, 5.23 kg of raw
materials and energy resources are required to produce 1 kg of vehicle. Finally, this study proposed
values of energy consumption per mass of part produced, which can be used to facilitate future
material and energy analysis for the automotive industry. Those values can be adopted and modified
as necessary, allowing for possible changes in future premises to be incorporated.

Keywords: vehicle; productive process; energy consumption; material consumption

1. Introduction

Climate change is considered to be one of the major social drawbacks of the last decades.
To combat it, the Paris Agreement on climate change was established in December 2015, for which
195 nations have unified its environmental goals and agreed to maintain a global temperature increase
well below 2 ◦C [1]. In this sense, different strategies and studies regarding the efficient use of energy
are continuously conducted by governmental as well as private entities, demonstrating a global
conscience and strong necessity to change the current high energy and resource consumption of society.

The transportation sector accounts for 25% of global energy consumption [2], and it is one of the
most challenging sectors for fulfilling the proposed goals. Therefore, several studies centered on the
fuel consumption of the vehicle have been conducted over the past few decades. New technologies,
such as alternative propulsion methods (hybrid electric vehicles, battery electric vehicles, plug-in
hybrid electric vehicles, and fuel cell vehicles) and lightweight materials, have also been developed.

A widely known method to assess the environmental effect of a vehicle is through its life cycle,
and previous studies estimate that the production phase constitutes 7–22%, and the use phase 78–93%,
of the energy consumption and CO2 emission of a vehicle’s life cycle [3,4], whereas the end-of-life
vehicle (ELV) phase is considered to be almost negligible. Thus, improving the energy efficiency of
the use phase of the vehicle was prioritized and the production and ELV phases have usually been
considered less important. However, comprehensively understanding the environmental impact of the
transportation sector is also indispensable for correctly evaluating the impact of both phases [5].
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Nemry et al. [3] evaluated possible environmental advantages of the transportation sector
in Europe, O’Reilly et al. [6] proposed a lightweigh optimization method, Sato et al. [5,7] evaluated the
environmental impact of the ELV phase, Lane [8], and Vinoles-Cebolla et al. [9], Messagie et al. [10],
and Yang et al [11] evaluated the environmental impact of electric vehicles, all using life-cycle
assessment (LCA). However, even those studies included the effect of the production phase, basing its
analysis on external energy consumption or CO2 emission constant coefficients; in some cases, even the
precedence of the data used for the calculations were clarified. Those coefficients are usually presented
as an approximation of the energy that is required to produce a vehicle part and defined per unit
of mass of the material that composes it. However, they are usually close values and, in this sense,
premises considered, the processes included in their calculation did not make the level of accuracy of
the proposed values transparent [12–15]. It is worth mentioning that the International Organization for
Standardization [16,17] specifies the necessity of clarifing the sytem boundary and also lists data-quality
requirements to ensure the transparency of the LCA.

This study aims to comprehensively evaluate the energy consumption in the automotive industry,
clarifying the effect of its productive processes. This study focuses on developing a process-by-process
breakdown analysis and elaborates the material flow of vehicle production, from raw material mining
to vehicle assembly. Moreover, the results obtained for energy and material consumption have been
assessed per unit of produced vehicle as well as per mass of product. This approach is based on
open data, and the effects on the Japanese vehicle market were analyzed as a case study.

The results presented in this study allow for a comprehensive understanding of the production
phase of the vehicle and proposed values of energy consumption that can be used for upcoming
vehicle life-cycle studies, contributing to the improvement of future vehicle production and
recycling assessments. Moreover, those values can be adopted and modified, depending on necessity,
allowing for possible changes in premises to be incorporated.

2. Methodology

Figure 1 shows the boundary of this study, where material and energy consumption from
raw-material mining to vehicle assembly were considered. Moreover, this study considered the seven
main materials (i.e., steel, iron, plastic, glass, rubber, aluminum, copper) that represent 85–96% of a
vehicle’s mass in the analysis [4,18–20].

 

Figure 1. Analysis boundary of the vehicle production supply chain.

Initially, processes where each type of material used is clarified and material flow elaborated,
considering materials, were input. Consequently, energy consumption by energy resource (i.e., oil,
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natural gas, coal) and electricity were calculated in each phase of the flow. Finally, the results were
analyzed and compared for discussion to create an in-depth understanding of the industry.

2.1. Material Flow Elaboration

Firstly, the part production processes were analyzed, and Figure 2 was elaborated based on previous
studies [5,18,19] while considering the material composition of a generic vehicle (Honda Accord,
Internal combustion engine vehicle, 2011 [18]). Here, the mass percent of the material composition of
the vehicle and the principal part production process they are subjected are clarified. The mass of the
vehicle parts made by determined processes can be calculated through Equation (1):

Gm,i = Gveh ∗GRm ∗GRm,i, (1)

where Gm,i is the mass of vehicle parts made by material m and formed through productive process i,
Gveh is the mass of the vehicle, adopted as 1481 kg [18], GRm is the mass ratio of material m of a vehicle,
and GRm,i is the mass ratio of material m of a vehicle that is subjected to part production process i.

Figure 2. Material composition of a vehicle and its principal part production process.

Moreover, the material that is consumed in each analyzed part of the production process is
calculated through Equation (2):

GMCm,i = Gm,i ∗MCm,i, (2)

where GMCm,i is mass of material m consumed in productive process i, MCm,i is the mass of material
m consumed in production process i per mass of product (process output), as shown in Table 1.
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It is worth mentioning that 6.2% of the stamped and 54.7% of the forged steel parts; 95.8% of the
casted and 100% of the forged iron parts; and, 91.4% of the casted and 3.4% of the extruded aluminum
parts were also subjected to a machining process [19].

Secondly, the material flow of the material production processes was analyzed. Figure 3 was
elaborated based on Sullivan et al. [19], GREET Excel Model Platform [21], Greet 2018 Net software [22],
Ophardt [23], and Keoleian et al. [24], Brunham et al. [25]. The left side of the figure indicates the
upstream of the productive supply chain (mining), where its output (raw material) is subjected to
material productive processes before entering part production processes and it is finally assembled as
a part of a vehicle in the assembly plant. This flow is quantified when considering both equations
proposed above and through the following ones. The materials used to produce parts could be supplied
by different material production processes, as indicated by Equation (3). Moreover, different quantities
of raw materials are required to produce each material, as indicated by Equation (4).

GMCm,i =
∑

j
GMPm, j, (3)

GMCn, j = GMPm, j ∗MCn, j, (4)

where GMPm, j is mass of material m produced in productive process j, GMCn, j is mass of material n
consumed in productive process j, and MCn, j is the mass of material n consumed in productive process
j per mass material produced (process output), as shown in Table 1.

In the same way, the flow is extended upstream to cover all of the productive processes of the
materials. Pressed steel parts are produced by hot rolling, cold rolling, and galvanized steel sheets.
The first one represents 21.1%, the second one 19.1%, and the last one 59.8% of the final product
mass [21]. Moreover, casted aluminum and iron parts, such as engine blocks, engine/exhaust
components, and brake rotors, were used for its production recycled material. Here, it is considered
that 85% of casted aluminum parts and the total of casted iron parts contain recycled materials.

Finally, the material flow of the vehicle-assembly phase was elaborated, when considering that the
body of each vehicle is produced through the welding and painting of pressed steel parts. Subsequently,
the rest of the supplied parts were added to it in the line, before a final verification of the entire vehicle
to ensure its quality and functionality.
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Figure 3. Production flow for a vehicle.

2.2. Energy Consumption Analysis

The energy consumption for vehicle production was calculated while considering the product
(output) of each productive process. Equation (5) represents the consumption in the part
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production processes, and Equation (6) represents types of consumption, from resource mining
to material production.

ECPm,i = Gm,i ∗
∑

e
ECPe,i, (5)

ECMn, j = GMPn, j ∗
∑

e
ECMe, j, (6)

where ECPm,i is the energy that is consumed in the part production process i to produce vehicle parts
made by material m, ECMn, j is the energy consumed in the mining or material production process j
to produce material n, ECPe,i is the energy resource or electricity e consumed in the part production
process i per mass of part (process output), ECMe, j is the energy resource or electricity e consumed in
the mining or material production process j per mass of product (process output), as shown in Table 1.

The total energy consumption to produce a determinate part can be calculated as the sum of the
energy that is consumed by each productive stage, from material mining to part production, as shown
in Equation (7).

TECPm,i = ECPm,i +
∑

j
ECMn, j, (7)

where TECPm,i is the total energy consumed to produce parts made from material m and formed by
productive process i.

Finally, the effect of the vehicle assembly plant was added, per unit of vehicle, based on energy
consumption data of Sullivan et al. in order to calculate the total energy consumption required to
produce a vehicle [19].

3. Results and Discussions

3.1. Results of the Energy and Material Consumption Analysis

Figure 4 shows the material flow for vehicle production elaborated in this study. Here, materials that
are necessary for the production of vehicle parts, as well as energy consumed in its production processes,
are represented. The mass of oil was considered to be 22.6 g/MJ, natural gas 27.5 g/MJ, and coal
34.4 g/MJ [26,27]. Moreover, the mass of the electricity was estimated as 56.2 g/MJ, when considering
the Japanese grid mix, which is generated through oil (19.2%), natural gas (37.5%), coal (32.8%),
and others (10.3%) [28]. The efficiency of the generation facilities was considered to be between 42%
and 60%, depending on the energy resource utilized in transformation [28]. Plastics and rubbers were
made by raw material that were derived from crude oil, and those feedstocks are also represented in
the figure as energy resources.

The proposed flow emphasizes the necessity of a considerable amount of resources and material
for the production of a vehicle. As raw material, copper ore is the most consumed, due to its low
concentration of copper material, followed by iron ore and bauxite. On the other hand, energy resources
are mostly consumed in the production of steel and aluminum parts. Figure 5 summarizes those values,
where it can be observed that more than 7762 kg of raw material and energy resources is consumed in
order to produce a vehicle of 1,481 kg. This means that 5.23 kg of resources are necessary to produce
1 kg of vehicle. Here, copper ore has the highest percentage values, with 2.29 kg of raw material per kg
of vehicle (3391 kg per vehicle), followed by energy resources, with 1.46 kg of them being consumed
per kg of vehicle (2165 kg per vehicle). The values presented in Figure 5 are also included in Figure 4,
where the total raw material and energy resources on the left side of the figure are transformed in
stages to a final vehicle on the right.
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Figure 6 summarizes the results related to energy consumption. The total energy consumed to
produce a vehicle was calculated as 62 GJ (41.8 MJ/kg of vehicle). Figure 6a shows that steel parts are
the most representative, encompassing 35% of the total. Moreover, even copper parts consume a high
quantity of raw material; due to the low concentration of copper on its ore, the energy that is required
in its production processes is not as high as could be expected. It can be observed from Figure 6b that
natural gas is the highest consumed energy resource in vehicle production, and Figure 6d shows that
its consumption is almost equally distributed in aluminum, steel, and plastic parts production, as well
as in vehicle assembly. Finally, Figure 6c shows that the energy that is consumed in the production
phase of a vehicle is dominated by the mining and material production processes, which represent 68%
of total consumption, followed by the part production processes, at 19%, and vehicle assembly, at 13%.

Figure 5. Mass of materials and resources consumed in automobile production.

Figure 7 shows the energy consumption of each productive process of vehicle production.
The figure is divided into mining-material production, part production, and vehicle assembly processes.
It can be seen that 82% of the total coal is consumed in the steel production processes, 28% electricity in
the alumina reduction process, and 26% natural gas in the plastic fabrication processes, showing a
demand concentration of determinate resources in specific facilities.
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(a)  (b) 

(d)  

(c)  

Figure 6. Energy consumption in vehicle production:(a) by material; (b) by energy resource; (c) by
productive phase; (d) by material and energy resource.
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Finally, the first chart of Figure 8 shows the energy that is required to produce each type of vehicle
part per kg of material; those constants have generally been defined in previous studies as embodied
energy [5,15]. The proposed energy consumption values could vary widely by part, despite being
produced by the same material. More conspicuous are the parts that are made by steel, where the
energy that is required to produce forged products doubles that needed to elaborate the stamped ones.
Moreover, aluminum parts are the most energy-intensive parts. Figure 8 shows the energy that is
required to produce each type of part per unit of vehicle. It can be seen that the stamped steel parts
consume the major volume of energy (23%) necessary for the production of vehicles, followed by cast
and machined aluminum products (13%).

 

Figure 8. Energy required for the production of each type of vehicle part.

3.2. Energy and Material Consumption for the Entire Japanese Market

Three representative aspects were considered to estimate the total energy consumption for the
Japanese automotive industry: the average mass of a passenger car in Japan (1354 kg/vehicle) [29],
the number of passenger cars produced annually in the country (9,729,594 vehicles) [30], and the
energy that is required for the production of a vehicle (41.8 MJ/kg of vehicle) calculated in this study.
It has been calculated, though the product of the above values, that the energy consumption that is
related to the automotive industry is 0.55 EJ per year in Japan. Moreover, Figure 9a compares the
obtained consumption values and the total energy consumption for different sectors. It can be seen
that the energy consumption of the automotive industry represents 15% of the energy consumption
of the Japanese industy. This also indicates that strategic decision- or policy-making through a
comprehensive analysis of this phase could generate national-level energy benefits, emphasizing
the importance of the approach that was proposed in this study. The energy consumption of the
automotive industry is included in the “transportation equipment” sub-sector of industrial demand;
however, in contrast to the values that are presented in this study, the material production processes
are not included. In the referenced report [31], those values are distributed in the respective material
production sub-sectors (i.e., material production processes of steel parts are included in the iron
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and steel sub-sector, material production processes of plastic parts are included in the chemistry
sub-sector, etc.).

(a) 

 
(b) 

Figure 9. Effect of the automotive industry on Japanese energy and material consumption: (a) energy
consumption [31]; (b) material consumption [32]

On the other hand, the materials and resources consumed in the industry were calculated as
69 million tons per year, representing more than 9.4% of the annual imported resources of Japan,
as shown in Figure 9b.

3.3. Primary Assumptions and Limitations

Firstly, the energy required for energy resource extraction and refining, as well as the water
consumption in each productive process, have not been included in this study. Water is usually
consumed for refrigeration, and the internal reuse of it is a standard operation in the industry.
Moreover, thermal energy has been considered to be an internal process of each facility, which is
produced by the input energy resources that are listed in the study.

Secondly, this approach bases its calculation on internal combustion engine vehicles (ICEV),
which represent more than 63% of vehicle sales in Japan. Moreover, hybrid vehicles represent 31% of
the total sales. Future studies will extend this approach to electric vehicles (EV), which are even more
energy-intensive products than our base scenario. On the other hand, the material composition of the
vehicle varies depending on the model and the year of production. Thus, final energy and material
consumption values per vehicle can vary moderately, but they are also actualized when considering
the energy that is required per unit of mass, as shown in Figure 8.
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Thirdly, even this approach estimated the total energy consumption of the automotive industry
when considering the Japanese market as a case study; not all the productive processes are carried in
domestic facilities. Nonetheless, the main conclusions of this study will not change.

Finally, our analysis was centered on the seven principal materials. Miscellaneous materials are
expected to vary widely, depending on the analyzed vehicle model (i.e., leader in the case of high-spec
vehicle seats, electric and audio equipment, wood in high-end vehicles, and others).

3.4. Comparison with Results of Previous Studies

In this section, simple comparisons with previous studies are proposed in order to evaluate
the obtained energy consumption values. Our results were compared with the values calculated in
previous life-cycle approaches that were conducted by Nemry et al. [3] and Schweimer et al. [33].
The first study is a report for the European Union, which analyzed the potential ways of reducing
the life-cycle impact of the transportation sector in Europe. Here, the results of the material and part
production processes were included, but the analysis was based on external data. The second study
analyzed 1999-year Golf A4 vehicles, centering the analysis on the assembly phase. Here, inventory
data of Volkswagen plants were analyzed in detail, including material and energy inputs. However, it
did not expand, to the same degree, on the materials and part production processes.

A rough simulation of energy consumption in the use and ELV phase of the studied vehicle
was proposed. The energy that is consumed in the use phase can be calculated when considering the
fuel economy of the vehicle, as shown in Equation (8).

EU = FE ∗ d ∗ δgas ∗HHVgas (8)

where EU is energy consumed in the use phase, FE is fuel economy, e.g., of Honda Accord 2011,
9.046 l/100 km [34], d is the total traveled distance, 100,000 km, HHVgas is the higher heating value
of gasoline, 46.4 MJ/kg [35], and δgas is the density of gasoline, 0.75 kg/l [35].

The energy that is consumed in the disposal process of the ELV is calculated while using
Equation (9).

EELV = ED ∗Gveh (9)

where EELV is energy consumed in the ELV disposal process and ED is disposal energy, 0.602 MJ/kg [36].
The first column of Table 2 shows the life-cycle values that were proposed in this study. The second

and third columns compare the obtained results with previous approaches, demonstrating the
compatibility between them. It is also worth mentioning that the energy consumption per mass of
vehicle in the production phase is slightly lower when compared to previous studies. This can be
explained by the fact that the decrease in energy consumption due to the use of recycled materials
is included, and that the effects of miscellaneous materials and fluids are not included in our approach.

Table 2. Comparison of vehicle life cycle energy consumption.

Energy Consumption Values
Proposed in Our Approach

Energy Consumption Values
from Nemry et al. [3]

Energy Consumption Values
from Schweimer et al. [33]

MJ/kg of vehicle Percentage MJ/kg of vehicle Percentage MJ/kg of vehicle Percentage

Production 41.8 16.4% 53 9% 81 26%
Use 213 83.4% 557 91% 226 73%
ELV 0.6 0.2% 0 0% - -
Total 255.4 100% 610 100% 307 100%

3.5. Application of the Results

This study presents a whole picture of the energy and material consumption of the automotive
industry, allowing for automakers, part makers as well as researchers, and government bodies to
comprehensively understand the production phase of the vehicle. Here, productive processes that
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have the highest effect in the industry can be identified. Efforts could focus on improving the efficiency
of those energy-intensive facilities and processes to elevate the energy efficiency of the industry.

Energy-consumption results tha are obtained from this approach are divided into productive
processes, but also per energy resources required for each of them. In this sense, future studies could
focus on proposing optimal energy supply systems for the industry. The potential for changing the
electricity consumed from the grid to renewable energy could be exploited to improve the environmental
aspects of the sector.

This approach also allows researchers and the automotive industry to easily calculate the total
energy impact of vehicle production, contributing to upcoming vehicle life-cycle studies and material
and energy analysis of the automotive industry. When compared to constant embodied energy values
proposed by previous studies, the values presented in this approach not only focus on the automotive
industry but also clarify the material flow and processes that are considered in it. This allows for an
easy recalculation and adjustment of the values, depending on the changes or differences in production
technologies. Moreover, understanding the material flow of the industry enables new approaches for
the industry, such as the environmental evaluation of closed-loop recycling, which can identify the
process where recyclable material comes back for reprocessing.

Finally, evaluating the automotive industry through a material flow approach also allows one
to assess the environmental impact of material required in mining and resource-extraction processes
(i.e., the devastation of mining sites, disruption of natural habitats, groundwater contamination,
and landscape changes at the extraction site [37]). Moreover, the proposed approach can be applied in
risk-evaluation analysis of materials that are supplied to the automotive industry.

4. Conclusions

This study presents a whole picture of the automotive industry in terms of energy and
material consumption, allowing for us to comprehensively understand the production phase of
the vehicle. For this study, the material flow of the automotive industry has been elaborated. The main
conclusions are listed below.

• It has been calculated that for the production of 1 kg of vehicle, at least 5.23 kg of raw materials
and energy resources are required. Copper ore has the highest percentage value of 2.29 kg/kg of
vehicle, followed by energy resources, with 1.46 kg/kg of vehicle.

• Energy consumption for the production of a vehicle was calculated as 62 GJ (41.8 MJ/kg of vehicle).
Mining and material production processes dominate consumption, representing 68% of the total,
followed by the part production processes, at 19%, and vehicle assembly, at 13%.

• Natural gas is the most consumed energy resource, representing 44% of the total energy
consumption for the automotive industry. This consumption is centered on the plastic fabrication
processes, for which 26% of this resource is required. Moreover, 82% of the total coal is consumed
in the steel production processes, and 28% of the electricity in the alumina reduction process,
showing a demand concentration of determinate resources in specific facilities.

• The energy consumption that is related to the automotive industry is 0.55 EJ per year in Japan,
representing 15% of the industrial energy consumption of the country. Moreover, the materials
and resources consumed in the industry were calculated as 69 million tons per year, representing
more than 9.4% of the annual imported resources for Japan.

Finally, this study proposed values of energy consumption per mass of part that can be used
for upcoming material and energy analysis of the automotive industry. Moreover, these values can
be adopted and modified, depending on the necessity, allowing for possible changes in premises to
be reflected.
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Abstract: Despite the many benefits that energy consumption brings to the economy, consuming
energy also leads nations to expend more resources on environmental pollution. Therefore, energy
efficiency has been proposed as a solution to improve national economic competitiveness and
sustainability. However, the growth in energy demand is accelerating while policy efforts to boost
energy efficiency are slowing. To solve this problem, the efficiency gains in countries where energy
consumption efficiency is of the greatest concern such as China, India, the United States, and Europe,
especially, emerging economies, is central. Additionally, governments must take greater policy actions.
Therefore, this paper studied 25 countries from Asia, the Americas, and Europe to develop a method
combining the grey method (GM) and data envelopment analysis (DEA) slack-based measure model
(SMB) to measure and forecast the energy efficiency, so that detailed energy efficiency evaluation can
be made from the past to the future; moreover, this method can be extended to more countries around
the world. The results of this study reveal that European countries have a higher energy efficiency
than countries in Americas (except the United States) and Asian countries. Our findings also show
that an excess of total energy consumption is the main reason causing the energy inefficiency in most
countries. This study contributes to policymaking and strategy makers by sharing the understanding
of the status of energy efficiency and providing insights for the future.

Keywords: energy efficiency; data envelopment analysis; super-SBM; grey model; energy consumption

1. Introduction

In recent decades, energy is considered as the basic input of numerous productions; therefore,
energy is one of the key indicators of economic growth. According to Barney et al. [1], energy
consumption is the central operation of modern economies and drives economic productivity as well
as industrial development with at least half of industrial growth based on energy consumption [1].
However, consuming energy emits greenhouse gases, which are directly related to global warming
and climate change as well as environmental pollution [2]. According to International Energy Agency
(IEA) [3], the global energy-related carbon dioxide (CO2) emissions in 2018 increased by 1.7% and
reached its historic highest growth rate since 2013 with a total amount of CO2 emissions of 33.1 gigatons
(Gt), which is equal to 70% higher than the average increase since 2010.

Despite the many benefits that energy consumption brings to the economy, consuming energy also
leads nations to expend more resources on environmental pollution [2]. Therefore, energy efficiency,
which has featured in national and international policy for more than 40 years, has been proposed
as a solution, namely as a highly effective pathway, to improve the economic competitiveness and
sustainability of every economy, lower emissions, reduce energy dependency, and increase the security
of supply as well as job creation [4]. The idea that energy efficiency should be an important part of
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government energy policy developed in response to the first oil price crisis in 1973, when reducing
energy demand was seen as a route to greater energy security in many developed countries. Thus, energy
efficiency is already understood as a means by which to reach a variety of ends and its role in policy
making is increasing [5].

According to the IEA report [3], despite the progress on energy efficiency, the growth in energy
demand is accelerating. To solve this problem, the efficiency gains in countries where energy
consumption efficiency is of the greatest concern such as China, India, the United States, and Europe,
especially emerging economies, is central. Additionally, to obtain the targets of environmental
protection and economic growth, many countries have been implementing a suite of policies to improve
energy efficiency [3]. However, the current policy efforts to boost energy efficiency are slowing down
in a time when energy efficiency could deliver significant economic, social, and environmental benefits,
but only if governments take greater policy action.

To create efficiency gains, the right policies and greater policy actions are necessary. The throughout
energy efficiency evaluation and forecast is helpful in enhancing the understanding of the current status
and outlook for the energy efficiency of different economies, which can help in making the right policies
to boost energy efficiency. Therefore, focusing on the importance of energy efficiency evaluation in
policy making, this study used the top 25 energy consuming countries to develop a method to measure
and forecast the energy efficiency, from which a detailed energy efficiency evaluation can be made from
the past to the future. Furthermore, this method can be extended to more countries around the world.

Energy efficiency in European countries has always captured the great attention of researchers.
Therefore, many previous studies measuring energy efficiency and energy efficiency policies in
European countries can be found in the literature [6–16]. Calvet et al. [6] evaluated the environmental
performance of the European Union (EU) over the period 1993–2010. In that study, a two-stage DEA
analysis was applied to obtain the research objectives. The results of that paper indicated that the
eco-efficiency indicator has improved over the last two decades; however, in the case of traditional
indicators such as CO2 emissions, the abatement opportunities are still remarkable.

Energy efficiency in Asia, where there are many emerging economies, is the hot issue for
policymakers. However, not many studies have evaluated the energy efficiency of Asian countries
except in those related to China [17–21]. China is the largest country in terms of energy consumption
and related-energy CO2 emissions, which is why energy efficiency is one of China’s greatest concerns.
Yang et al. [17] measured the energy efficiency of 30 Chinese provinces in 2013 and 2014 by applying the
DEA Super-SBM model and found that China’s overall energy efficiency was low and had decreased
when taking the undesirable outputs into consideration.

The attention to energy efficiency has not been given in Europe and China, but also in other regions
and cross-countries, as shown in the study by Zhou et al. [22], who measured the energy efficiency of the
Asia-Pacific Economic Cooperation region (APEC) and Guo et al. [23], who evaluated the energy efficiency
of Organisation for Economic Co-operation and Development (OECD) countries. Studies measuring the
energy efficiency of different countries from different regions can also be found in the literature, for example,
Zhang et al. [24] investigated the energy efficiency of 23 different developing countries; Pang et al. [25]
evaluated the environmental efficiency of different countries; Wang et al [26] used the DEA super-SBM model
and Malmquist productivity index (MPI) to measure the energy efficiency and efficiency improvement of
17 countries; and Wang et al. [27] measured the energy efficiency of the top 25 countries by CO2 emissions
in 2017.

Despite many studies in this field, no study forecasting the energy efficiency cross-country was
found in the literature. Therefore, our study is expected to be the first empirical study to use a hybrid
model to measure and forecast energy efficiency, which sheds new light in the literature for a new
research aspect of energy efficiency. The rest of this paper is organized as follows. Section 2 describes
the research methodology measuring and forecasting energy efficiency. Section 3 presents the detailed
empirical results. Section 4 presents the discussion and the conclusions drawn from the research.
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2. Materials and Methods

In this section, the hybrid method is introduced to evaluate the energy efficiency of different
countries from the past to the future. First, the DEA slack-based measure model (SBM) is applied to
obtain the efficiency of the selected countries. Second, the grey model GM (1,1) is used for forecasting
the values of the inputs and outputs over future period. Finally, the DEA SBM is employed again to
evaluate efficiency in future years, then a comparison can be made between the results in the past
and future.

Due to the presence of undesirable outputs in this study, the SBM model, which can deal with bad
outputs, is the best choice, while the grey model GM (1,1) is a suitable forecast model for this study
because it does not require a large amount of input data.

2.1. Grey Model GM (1,1)

In recent years, the grey prediction model has been applied in many research fields thanks to
its popularity and computational efficiency. GM (1,1) represents the time-series prediction model in
the first order of placing a variable [28], and is the most popular forecast model used by scientists
because a part of GM (1,1) can deliver a relatively high predictive rate while not requiring an entire set
of historical data except for a small amount of input data (at least four). This is the reason why GM
(1,1) is suitable for almost all fields and different areas.

In this study, as the period of the past data collection was only five years, the selection of this
model to predict future results is perfectly appropriate.

The model structure of GM (1,1) is described as follows:
Denote the original form of GM (1,1) as in Equation (1)

x(0) =
(
x(0)(1), . . . , x(0)(n)

)
, n ≥ 4 (1)

The one-time accumulated generating operation (1-AGO) of the original sequence x(0) is defined
as:

x(1) =
(
x(1)(1), . . . , x(1)(n)

)
, n ≥ 4 (2)

Consider Equation (3) as the original form of the GM (1,1) model, where the symbol GM (1,1)
stands for the first order grey model in variables.

x(0)(k) + ax(1)(k) = b (3)

Consider Equation (4) as the basis form of this model.

x(0)(k) + az(1)(k) = b, k = 1, 2, . . . , n (4)

where z(1)( k) = 0.5x(1)(k) + 0.5x(1)(k− 1), k = 1, 2, . . . , n. a, b are the coefficients; in grey system
theory terms, a is said to be a developing coefficient and b the grey input; and x(0)(k) is the grey
derivative that maximizes the information density for a given series to be modeled.

According to the least square method, we have â =

[
a
b

]
= (BTB)−1BTYN.

Therefore,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z1(2) 1
−z1(3)

...
−z1(n)

1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
YN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)(2)
x(0)(3)

...
x(0)(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Here, B is called a data matrix.
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By considering the following equation dx(1)/dt + ax = b as a shadow for x(0)(k) + az(1)(k) = b,
then the response equations for GM (1,1) are as follows:

x̂(1)(k + 1) =
((

x(0)(1) − b
a

)
e−ak +

b
a

)
, k = 1, 2, 3, . . . , n. (6)

x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k) (7)

2.2. DEA Slack-Based Measure Model

With the presence of undesirable outputs, there is one popular DEA model that can deal with
this problem called Slack-based measure model (SBM), which was proposed by Tone in 2003 [29] and
extended the SBM model proposed in 2001 by Tone [30]. In this study, we followed the equations
proposed by Tone (2003) and are detailed as follows.

Suppose that n represents the number of decision-making units (DMUs) and each DMU has
inputs, desirable outputs, and undesirable outputs.

Let us decompose the output matrix Y into
(
Yg, Yb

)
, where Yg, Yb denote good (desirable) and

bad (undesirable) output matrices, respectively. For a DMU (xo, yo), the decomposition is denoted as(
xo, yg

o, yb
0

)
.

The production possibility set is defined by:

P =
{(

x, yg, yb
)∣∣∣∣x ≥ Xλ, yg ≤ Ygλ, yb ≥ Ybλ, L ≤ eλ ≤ U,λ ≥ 0

}
(8)

where λ is the intensity vector while L and U are the lower and upper bounds of the intensity vector,
respectively. Then, a DMU

(
xo, yg

o, yb
o

)
is efficient in the presence of bad outputs, if there is no vector(

x, yg, yb
)
∈ P such that xo ≥ x, yg

o ≤ yg, yb
o ≥ yb with at least one strict inequality.

In accordance with this definition, we modified the SBM in Tone (2001) as follows.

[SBM]ρ∗ = min
1− 1

m
∑m

i=m S−i
1 + 1

S1S2

(∑S1
r=1

Sg
r

yg
ro
+
∑S2

r=1
yb

r
yb

ro

) (9)

Subject to

xo = Xλ+ S−

yg
o = Ygλ− sg

yb
o = Ybλ+ Sb

L ≤ eλ ≤ U
S− ≥ 0, Sg ≥ 0, Sb ≥ 0, λ ≥ 0

where vector S− ∈ Rm: excesses in inputs and Sb ∈ RS2: excesses in bad outputs and Sg ∈ RS1 is the
shortage in the good outputs. With the presence of bad outputs, the DMU

(
xo, yg

o, yb
o

)
is efficient if and

only if ρ∗ = 1, i.e., S−∗ = 0, Sg∗ = 0, and Sb∗ = 0.

3. Empirical Results

3.1. Data Collection

There are different approaches to energy efficiency in the national and international literature as
well as in various scientific disciplines. Traditionally, energy efficiency is defined as the use of energy
in an optimum to achieve the same service that could have been achieved using a common less efficient
manner [3], however, many opinions have claimed that energy alone cannot produce any economic
output; therefore, energy efficiency should be interpreted as the use of non-energy inputs and energy
to produce economic desirable outputs while reducing greenhouse gases emissions. Energy efficiency
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can be achieved by meeting the requirements of human, institutional, legal, technical, and financial
capacities, or in general, the right energy efficiency policy combines all of the above requirements.

In this study, we followed the concept that using energy along economic inputs can produce
desirable economic outputs (i.e., gross domestic production-GDP), however, at the same time, they emit
undesirable outputs (i.e., greenhouse gas emissions such as CO2). Regarding the economy, labor force
and capital stock are two popular indicators where the data are available; therefore, these two economic
indicators were selected as the economic inputs while the total energy consumption represented the
energy inputs. GDP was selected as the desirable output while CO2 emissions were considered as the
undesirable output. Additionally, since no direct source provides data of capital stock, in this study,
we used gross capital formation to present capital.

Due to the incomplete data for some countries for 10 years, 25 countries that provided sufficient
data were chosen as the sample in this study. Data used in this study were collected from two main
sources: the Enerdata Yearbook [31] and data from the World Bank [32]. Since data for 2018 are not
available, data from the 10 years between 2008–2017 were used to measure the energy efficiency in the
first stage. In the second stage, we used data from 1990 to 2017 to forecast the efficiency for period
2018–2023. The flow of this study is described in Figure 1.
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Figure 1. Research flow.

3.2. Energy Efficiency from 2008 to 2017

In this stage, DEA-Solver-Pro software was used to measure the energy efficiency through the DEA
SBM model. The results obtained from 2008–2017 are shown in Table 1 and the graphical illustration of
the average score of each country can be seen in Figure 2.
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Table 1 indicates the low efficiency score of the 25 countries with the average score ranging from
the lowest at 0.64 in 2011 to the highest of 0.70 in 2010. As can be observed, the average score for each
year from 2008 to 2017 remained stable with insignificant change.

When considering the whole observation period from 2008 to 2017, eight out of the total of 25
selected countries were efficient in terms of energy with a corresponding score of 1 such as France,
Italy, Japan, Norway, Portugal, Sweden, the United Kingdom, and the United States. The average score
of Germany was 0.96 (relatively efficient), while the average scores of other countries were lower than
1 and ranged from the lowest of 0.17 (India) to 0.84 (the Netherlands). India had the lowest efficiency
for all of the 10 observed years with a score under 0.2, followed by China and Indonesia with average
scores around 0.2.

By examining the separate years, it can be seen that some countries were efficient for several years
from 2008 to 2017 such as Brazil, Belgium, Malaysia, Romania, and the Netherlands. On average,
the efficiency scores of these countries for the whole period of 2008–2017 were lower than 1; however;
these countries did have an efficiency score of 1 for at least one or more than one year. Other countries
suffered a poor efficiency score for all of the 10 observed years.

Table 1. Energy efficiency score during 2008–2017.

Countries 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

Belgium 0.73 0.64 0.65 0.67 0.73 1.00 0.73 0.66 0.63 0.64 0.71

Brazil 0.66 0.64 0.64 0.57 0.56 0.54 0.51 0.53 1.00 1.00 0.67

Canada 0.62 0.61 0.62 0.60 0.60 0.60 0.61 0.63 0.63 0.61 0.61

China 0.20 0.18 0.19 0.18 0.19 0.20 0.21 0.22 0.22 0.23 0.20

Czech Republic 0.60 0.62 0.60 0.57 0.55 0.54 0.54 0.55 0.55 0.57 0.57

France 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Germany 0.90 0.89 0.90 0.91 1.00 1.00 1.00 1.00 1.00 1.00 0.96

India 0.17 0.15 0.16 0.15 0.16 0.17 0.17 0.18 0.19 0.19 0.17

Indonesia 0.31 0.21 0.22 0.23 0.23 0.24 0.23 0.24 0.24 0.24 0.24

Italy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Japan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Korea, Rep. 0.35 0.35 0.36 0.34 0.35 0.36 0.36 0.36 0.35 0.33 0.35

Malaysia 1.00 1.00 1.00 0.38 0.34 0.33 0.33 0.34 0.34 0.35 0.54

Mexico 0.39 0.37 0.39 0.37 0.38 0.39 0.39 0.40 0.40 0.40 0.39

Netherlands 0.80 0.77 0.77 0.80 1.00 1.00 1.00 0.73 0.78 0.75 0.84

Norway 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Poland 0.40 0.42 0.42 0.38 0.41 0.43 0.41 0.41 0.43 0.43 0.41

Portugal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Romania 0.52 1.00 1.00 0.51 0.49 0.51 0.52 0.54 0.55 0.57 0.62

Spain 0.71 0.73 0.75 0.73 0.75 0.78 0.75 0.72 0.72 0.69 0.73

Sweden 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Thailand 0.30 0.34 0.34 0.27 0.25 0.25 0.27 0.28 0.31 0.30 0.29

Turkey 0.43 0.43 0.45 0.41 0.44 0.46 0.44 0.44 0.42 0.41 0.43

United
Kingdom 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

United States 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.68 0.69 0.70 0.64 0.66 0.67 0.66 0.65 0.67 0.67 0.67

The average score was the lowest in 2014 and reached its peak in 2008. The low efficiency scores
were mainly caused by the excess of inputs. According to the analysis, for inefficient countries,
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there was no shortage in good outputs (GDP), but there was an excess mostly in labor forces and
energy consumption as well as in CO2 emissions.

Taking China and India as examples, in 2017, China had a labor force of 790 million with a US
$4795 billion gross capital formation along with 3105 million tons of energy to create a GDP of US
$10,161 billion along with 9297 metric tons of CO2 emissions. Consequently, the efficiency score of
China was 0.23. The calculated excess for labor force, gross capital formation, and energy consumption
were 87%, 53%, and 66%, respectively while the excess in CO2 emissions was approximately 73%.
To be efficient, China needs to reduce its excess in inputs and undesirable outputs. Regarding India,
it had the lowest efficiency score of 0.17. In 2017, the GPD of India was US $2660 billion while its CO2

emissions was 2234 metric tons and the total energy consumption in that year was around 933 million
tons, causing an excess of 82.53% in energy used and 84.63% in CO2 emissions.

Figure 2. Average energy-efficiency by country from 2008 to 2017.

As observed, the efficiency scores of European countries are higher than those from the Americas
and Asia. From 2008 to 2017, the average score of European countries was 0.81, while the average score
of the Americas and Asia was 0.69 and 0.40, respectively as shown in Figure 3. The average efficiency
scores of Asian countries remained stable with a very low score from 2008 to 2017. As observed,
the average score was around 0.4. The low score was driven by China, India, and Indonesia,
whose scores was around 0.2 and 0.3. Among the Asian countries, Japan was the only country that
was efficient, thanks to the reduction in energy consumption during the observation period.

As illustrated in Figure 3, it is clear that there was a big gap between the average scores of Asia
vs. the Americas and Europe. While European countries and the United States tried to reduce their
amount of energy consumption, Asian countries such as China, India, and Indonesia have consumed
more energy to achieve their economic development targets.

It is also worth noting that the average score of European countries slightly fluctuated with an up
and down trend. However, the average score was quite stable and around 08. Of the 14 selected
European countries, six countries were efficient with a corresponding score of 1, while the score of two
countries such as Germany was 0.96. Among the European countries, Turkey had the lowest score (0.4),
followed by the Czech Republic (0.57) and Romania (0.63). The average score of European countries
remained stable during 2008–2017, which can be explained by the actions taken by the European Union,
which has stressed the economic case for increasing resource efficiency including energy efficiency.

The average score of the countries from the Americas was stable during 2008–2015, then notably
increased from 2016 to 2017. Among the selected countries from the Americas, two northern countries
had higher scores than the two southern ones from 2008 to 2015. From 2008 to 2017, the United States
was always efficient with a corresponding score of 1, while Canada and Mexico remained stable with
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average scores around 0.6 and 0.4, respectively. Regarding the data in Table 2, the average score
of Brazil fluctuated and ranged from 0.5 to 0.66 from 2008 to 2015, then rapidly increased to 1 over
2016–2017, which helped the average score of the Americas become higher in those two years and
narrowed the distance with the average score of European countries.

As a whole observation, the average energy-efficiency score of 25 countries was around 0.67
during 2008–2017, illustrated in Figure 4.

 

Figure 3. Energy efficiency of Europe, the Americas, and Asia from 2008 to 2017.

Figure 4. Average energy-efficiency score of the 25 countries from 2008 to 2017.

3.3. Forecasting Inputs and Output for 2018 to 2023

In this stage, the grey model GM (1,1) was employed to forecast the input and output data for the
future period of 2018–2023 based on the data of the past period of 1990–2017. Then, the forecasted
data were used to obtain the efficiency scores for the future period. However, before using the DEA to
measure energy efficiency over the period 2018–2023, an accuracy test must be conducted to ensure
that the forecasted data are reliable. Accuracy is controversial and of concern whenever a forecasting is
produced since an error always exists. Therefore, this study measured the accuracy by using the mean
absolute percent error (MAPE), which is applied commonly in many prediction studies.
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MAPE is the mean average absolute percent error that measures the accuracy in a fitted time
series value in statistics, specifically trending [33].

MAPE =

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
k=1

∣∣∣∣∣∣
x(0)(k) − x̂(0)(k)

x(0)(k)

∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠× 100% (10)

where n is the forecasting number of steps.
The parameters of the MAPE state the forecasting ability as follows:

- MAPE < 10% represents Excellent.
- 10% <MAPE < 20% is Good.
- 20% <MAPE < 50% is reasonable.

Table 2. Average mean absolute percent error (MAPE) of all DMUs.

Countries Labor Force
Gross Capital

Formation
Energy

Consumption
GDP

CO2

Emissions
Average

Belgium 5.2% 0.3% 3.1% 0.7% 2.5% 2.4%

Brazil 3.1% 0.4% 8.2% 3.4% 5.5% 4.1%

Canada 3.7% 0.1% 4.7% 0.8% 7.8% 3.4%

China 3.4% 0.1% 4.0% 1.4% 3.6% 2.5%

Czech Republic 1.6% 0.3% 5.5% 2.0% 2.4% 2.4%

France 1.0% 0.2% 2.8% 0.7% 2.4% 1.4%

Germany 1.7% 0.2% 3.7% 1.1% 1.8% 1.7%

India 1.0% 0.8% 3.9% 0.8% 1.5% 1.6%

Indonesia 1.5% 0.5% 6.4% 0.5% 5.1% 2.8%

Italy 2.2% 0.5% 5.9% 1.5% 2.6% 2.5%

Japan 1.5% 0.6% 3.3% 0.9% 3.0% 1.9%

Korea, Rep. 2.8% 0.4% 4.0% 0.6% 2.8% 2.1%

Malaysia 1.5% 1.0% 3.7% 0.9% 2.3% 1.9%

Mexico 1.8% 0.4% 2.6% 1.1% 1.8% 1.5%

Netherlands 3.8% 0.4% 6.4% 1.3% 2.0% 2.8%

Norway 2.1% 0.5% 3.3% 0.7% 2.3% 1.8%

Poland 2.7% 0.4% 3.8% 0.7% 1.9% 1.9%

Portugal 3.2% 0.5% 8.8% 2.0% 4.8% 3.9%

Romania 1.6% 0.5% 6.2% 3.4% 4.8% 3.3%

Spain 2.3% 0.7% 8.2% 2.5% 3.8% 3.5%

Sweden 2.6% 0.2% 4.5% 1.5% 3.1% 2.4%

Thailand 2.4% 0.8% 6.7% 1.1% 1.7% 2.5%

Turkey 2.5% 0.3% 5.1% 2.0% 3.3% 2.6%

United Kingdom 1.5% 0.1% 4.3% 1.2% 2.8% 2.0%

United States 1.1% 0.4% 3.6% 0.9% 1.3% 1.5%

Average 2.3% 0.4% 4.9% 1.3% 3.1% 2.4%

The MAPE results are displayed in Table 2, which shows that the MAPE results of all inputs and
outputs ranged from the lowest of 0.1% to the highest at 8.2% and the average MAPE of all inputs
and outputs was 2.4%. As the MAPE values obtained were all smaller than 10%, it confirmed that the
GM (1,1) has good prediction accuracy in this research and that the forecasted data can be used in the
further step of obtaining efficiency scores.
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The input “Total energy consumption” of Indonesia is used as an example to illustrate the
generation of the forecast data. The sequence of raw data during 2008–2017 is as follows:

x(0) =
(
x(0)(1), . . . , x(0)(10)

)
= (58.3, 55.9, 60.1, 56.2, 53.8, 55.9, 52.9, 53.2, 56.7, 55.6)

(11)

Simulate this sequence by respectively using the following three GM (1,1) models and comparing
the simulation accuracy:

From x(0)(k) + ax(1)(k) = b; compute the accumulation generation of x(0) as follows:

x(1) =
(
x(1)(1), . . . , x(1)(n)

)
= (58.3, 114.2, 174.3, 230.5, 284.3, 340.2, 391.1, 446.3, 503.0, 558.6)

(12)

In the next stage, the different equations of GM (1,1) are created with the mean equation:

z(1)(2) = 0.5(58.3 + 114.2) = 86.22 (13)

z(1)(10) = 0.5(503 + 558.6) = 530.8 (14)

To continue, the values for coefficients a and b are found

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−116.3
−127.3
−228.4

1
1
1

−284.5
−340.5
−396.6
−452.6
−508.7
−564.8

1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

YN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

55.9
60.1
56.2
53.8
55.9
52.9
53.2
56.7
55.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

By using the least square estimation, we can obtain the sequence of parameters
.

[a, b]T as follows:

â =

[
a
b

]
= (BTB)

−1
BTYN =

[
0.00548567
57.4599547

]
(16)

Compute the simulated value of x(0), the original series according to the accumulated generating
operation by using

x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k)
= 54.24 ( f orecasted f or 2018)

(17)

The same was used to forecast the inputs and outputs of other countries over the period 2018–2023.

3.4. Energy Efficiency from 2008 to 2017

It was observed that during 2018–2023, the average efficiency score will be stable with a score
of 0.68. This stable trend can be applied for all observed countries as the score of the later years will
remain relatively the same with the score for the previous years. Table 3 shows the forecasted efficiency
over 2018–2023 along with a graphical illustration in Figure 5, which compares the scores in the past
years and those for the future years.

As a whole, the average efficiency scores of the 25 countries over the period 2018–2023 will be
low at 0.68, with the number of efficient countries increasing to nine as one inefficient country in the
past will become efficient 2018–2023 (Brazil). From the results, we also noted that the most inefficient
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countries will witness a lower energy-efficiency score in the future period of 2018–2023 when compared
to those in the past period of 2008–2017. However, the change will be small and insignificant, as can
be seen in Figure 5, except in the case of Brazil. The higher average efficiency score of Brazil can be
explained by the faster growth of GPD than the growth of inputs and undesirable outputs.

Besides the nine efficient countries (Brazil, France, Italy, Japan, Norway, Portugal, Sweden,
the United Kingdom, and the United States), the efficiency score of Germany will remain the same as
its score over 2008–2017 (0.96), and nearly reach the efficiency frontier with a score ranging from 0.94
to 0.97 caused by around a 1.5% excess of labor force and approximately 2.3% redundancy in energy
consumption leading to around a 3.5% higher amount of CO2 emissions yearly from 2018 to 2023.
To be efficient in terms of energy, Germany should consider cutting down its energy and labor force.

Regarding inefficient countries, the average score over 2018–2023 will range from 0.19 to 0.79.
The lowest efficiency scores will be found in India (0.19), Indonesia (0.22), and China (0.26). It is noted
that the efficiency of China from 2018 to 2023 was found to be higher than this during 2008–2017 with
0.26 for the former and 0.20 for the later, indicating its energy improvement, while the average score of
Indonesia will decrease from 2018 to 2023, leading Indonesia to replace China as the second worst
country in terms of energy efficiency.

Table 3. Efficiency scores from 2018 to 2023.

Countries 2018 2019 2020 2021 2022 2023 Average

Belgium 0.77 0.77 0.76 0.75 0.75 0.74 0.76

Brazil 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Canada 0.62 0.62 0.62 0.62 0.62 0.62 0.62

China 0.25 0.25 0.26 0.27 0.27 0.28 0.26

Czech Republic 0.62 0.63 0.63 0.64 0.64 0.65 0.64

France 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Germany 0.97 0.97 0.96 0.96 0.95 0.94 0.96

India 0.18 0.19 0.19 0.20 0.20 0.21 0.19

Indonesia 0.23 0.22 0.22 0.22 0.21 0.21 0.22

Italy 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Japan 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Korea, Rep. 0.36 0.36 0.36 0.36 0.37 0.37 0.36

Malaysia 0.33 0.32 0.32 0.31 0.30 0.30 0.31

Mexico 0.38 0.38 0.38 0.37 0.37 0.37 0.38

Netherlands 0.79 0.79 0.79 0.79 0.79 0.79 0.79

Norway 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Poland 0.43 0.43 0.44 0.44 0.44 0.44 0.44

Portugal 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Romania 0.61 0.62 0.63 0.64 0.65 0.66 0.64

Spain 0.68 0.68 0.67 0.67 0.66 0.66 0.67

Sweden 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Thailand 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Turkey 0.41 0.41 0.40 0.40 0.40 0.40 0.40

United Kingdom 1.00 1.00 1.00 1.00 1.00 1.00 1.00

United States 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.68 0.68 0.68 0.68 0.68 0.68 0.68
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Additionally, by comparing the average efficiency of each country over two periods, it reveals
that 10 countries (Belgium, Brazil, Canada, China, Czech Republic, India, Korea Republic, Poland,
Romania, and Thailand) will experience an increase in efficiency while six countries will suffer the
opposite trend (Indonesia, Malaysia, Mexico, the Netherlands, Spain, and Turkey).

By analyzing countries with an increase in their efficiency score, we found that the increase was
caused by the faster growth of GDP despite the growing inputs. For example, in the case of China,
in 2017, China had a labor force of 790 million with US $4795 billion gross capital formation along with
3105 million tons of energy to create US $10,161 billion in GDP, along with 9297 metric tons of CO2

emissions, where the calculated excess for labor forces, gross capital formation, and energy consumption
were 87%, 53%, and 66%, respectively while the excess in CO2 emissions was approximately 73%.
However, in 2018, China had 821 million in labor (approximately 3.9% higher than 2017) along with
US $5425 billion of gross capital formation and 3641 million tons of energy equally higher at 13.1% and
17.3%, respectively, to generate a US $12,128 billion in GDP and emit 11,367 metric tons of CO2 emission.
Therefore, the excess in inputs will be 85.8%, 51.4%, and 62.4% for labor force, gross capital formation,
and energy consumption, respectively, while the redundancy in CO2 emissions will be 71.3%.

Regarding the six countries with a decreasing efficiency score, we found that the faster growth in
energy consumption was the main reason for most countries, with the exception of Turkey. In 2018,
the total amount of energy consumed by Turkey decreased when compared to 2017; however,
the significant increase in gross capital formation was the reason behind the lower score.

Figure 5. Energy-efficiency score from 2008 to 2017 vs. 2018 to 2023.

As above-mentioned, there is a large gap between the average score of European and countries
in the Americans versus those of Asian countries from 2008 to 2017. This will not disappear during
2018–2023, as the average score of European, American, and Asian countries will be 0.81, 0.75, and 0.38,
respectively. The gap between European countries and that of the Americas will be narrower while the
gap between European and Asian countries will widen.

As shown in Figure 6, the average score of Asian countries will continue to be stable over the
period 2018–2023 with the very low score of 0.38 driven by the poor score of all selected Asian countries
with the exception of Japan. The score of these countries ranged from the lowest at 0.19 (India) to
the highest at 0.36 (Republic of Korea). The average score of countries in the Americas will be higher
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thanks to the increase in Brazil and Canada, while the score for European countries will remain stable
and unchanged.

Figure 6. Efficiency score from 2018 to 2023.

4. Discussions and Conclusions

This paper focused on measuring and forecasting energy efficiency. First, the energy efficiency
for 2008 to 2017 was analyzed, and the results at this stage revealed that the 25 selected countries
showed an inefficiency in terms of energy. Of these 25 countries, eight countries were efficient during
2008–2017 and will continue to be efficient from 2018 to 2023 (France, Italy, Japan, Norway, Portugal,
Sweden, the United Kingdom, and the United States), indicating the good balance between economic
growth and environmental protection. Germany was the only inefficient country, with a very high
score of 0.96 over the period 2008–2023, caused by an approximately 5% excess in energy consumption,
leading to around 6.5% higher CO2 emissions. Additionally, Brazil was inefficient from 2008 to 2017,
but will become efficient over the period 2018–2023.

The findings of this study also suggest higher energy-efficiency scores for European countries than
those of countries from the Americas and Asia. The higher efficiency score of Europe is the result of
constantly reducing the amount of energy consumption in most countries in Europe. On the other hand,
the low score of Asian countries is the consequence of a higher demand of energy used in industries.
Using more energy can accelerate the growth of economic development. However, more greenhouse gases
have a negative impact on the environment. The United States, the second nation in terms of energy
consumption, was always efficient due to its the high GDP and its reduction of energy consumption in
recent years, while Canada had a score of around 0.6 to 0.7, caused by the increasing energy demand due to
climate change. Like Canada, the energy consumption of Brazil will continue to grow in future; however,
thanks to the faster growth of GPD, while inefficient during 2008–2017, it will become efficient. However,
consuming more energy to promote economic growth is not a sustainable solution.

The analyzed results found that the excess of total energy consumption was the main reason causing
the energy inefficiency of most countries. Therefore, these countries should reconsider their energy
infrastructure as well as reduce the amount of energy used in order to reach the efficiency-frontier. It was
also observed that among the 25 countries, India suffered the lowest energy efficiency score, followed
by China, Indonesia, and Thailand. The share of renewables in the total energy consumption of India
and China ranges from 14% to 18%, much higher than those of the United Kingdom, the United States,
and Japan; however, the scores of these countries were still much lower than countries that have
a moderate share of renewable energy. In fact, the increase in the use of renewable energy instead
of unrenewable energy can help in reducing the greenhouse gases emitted into the environment,
which works for every country, even China and India, as the huge and increasing amount of energy
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used in industrial zones in these countries is the main reason causing the inefficiency. Furthermore,
the price of labor in these two countries is cheaper when compared to Europe and some countries
in the Americas, causing a higher number in labor force, but lower productivity, which is the other
reason for a low efficiency score. As observed, the total amount of energy used by China in 2017 was
approximately 3105 metric tons and that for India was around 933 metric tons while the consumption
of most European countries was less than 300 metric tons. Additionally, the total energy consumption
of China and India increased year by year from 2014 to 2017 and will continue to grow from 2018 to
2023, while European countries showed a decrease in the amount of energy used year by year, not only
during 2008–2017 but also during 2018–2023.

The results of this study also reveal that emerging countries such as China, India, Indonesia, Malaysia,
Mexico, and Brazil had a low efficiency score from 2008 to 2009, which made these countries capture the
great attention of policymakers. As indicated by the IEA [3], the efficiency gains in these emerging countries
is the center of energy efficiency. However, by forecasting the performance of these countries over the period
2018–2023, the results found that with the exception of Brazil, other countries will not have significant
efficiency gains without greater policy actions, as evidenced by the very low efficiency scores.

It is clear that implementingtherightenergypoliciescouldhelp improveenergyefficiency, whichbenefits
in lowering the energy bell, improving air quality, reducing greenhouse gases, energy security, etc.
By measuring and forecasting the energy efficiency of different countries, this study helps in not only sharing
the understanding of the current status of how efficient different countries are in terms of energy, but also
provides a clear picture for the future. Therefore, this study makes a core contribution to policymaking and
strategy makers by providing useful and important information. Energy efficiency is pointed one of the
most important criteria for sustainable development, therefore understanding and having an outlook for the
future in this area are very helpful in considering the various policy strategies.
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Abstract: Confronting an energy crisis, the government of Ghana enacted a power factor correction
policy in 1995. The policy imposes a penalty on large-scale electricity users, namely, special load
tariff (SLT) customers of the Electricity Company of Ghana (ECG), whose power factor is below 90%.
This paper investigates the impact of this policy on these firms’ power factor improvement by using
panel data from 183 SLT customers from 1994 to 1997 and from 2012. To avoid potential endogeneity,
this paper adopts a regression discontinuity design (RDD) with the power factor of the firms in the
previous year as a running variable, with its cutoff set at the penalty threshold. The result shows that
these large-scale electricity users who face the penalty because their power factor falls just short of
the threshold are more likely to improve their power factor in the subsequent year, implying that the
power factor correction policy implemented by Ghana’s government is effective.

Keywords: energy efficiency; power factor; regression discontinuity design

1. Introduction

The power factor is a relevant measure of the efficiency of electrical energy use. A higher power
factor implies efficient energy use and simultaneously ensures the safe, smooth, and efficient operation
of electrical utilities. The power factor is the ratio between active power and its vector sum with reactive
power, where active power executes actual work such as producing heat, illumination, and moving
vehicles and machines. Reactive power is used to maintain the electromagnetic field that ensures
the accomplishment of the work of active power. Summing the active and reactive power vectorially
produces an amount of apparent power, which defines the total required energy capacity. A high power
factor therefore implies an efficient use of the electricity generation capacity, while a low power factor
reflects an abysmal use of energy. Facilities with a low power factor use more electricity than actually
needed to conduct useful work [1]. A poor power factor should be corrected to reduce waste and the
production costs of energy and thereby to help save the environment. There are ways to improve a low
power factor to a desirable level of efficiency. The most mature, economical, and simple method is
through an investment by energy consumers in capacitor banks [2]. These banks compensate for the
inductive load demand of reactive power and thereby minimize the stress or burden on the electricity
supply system [3].

Another alternative would be the use of synchronous alternators (or synchronous compensators).
By exciting or de-exciting the magnetic fields, these inject reactive power into the network so that
the voltage profiles of the system can be improved and the losses can be reduced. However, their
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high installation and maintenance costs make them unsuitable for such applications in developing
nations. Firms can further improve their power factor by carefully considering the design of processes
and load cycles that have a repetitive nature during the design phase. Such a technique typically
uses a computer algorithm to determine the ideal compromise in the relevant design parameters for
improved energy efficiency and power factors. This approach, however, achieves a higher power
factor at the sacrifice of reduced output levels in terms of the firms’ production.

A higher power factor results in lower energy-related costs to users. According to the literature,
improving power factors in industrial set-ups results in 10% to 30% cost savings. A study [4] estimated
the cost savings of an independent power producer that carried out a power factor correction measure
of its facility. However, the necessary investment in capacitor banks places a financial burden on
users, making them reluctant to improve their power factor. Regardless, given the growing concern
about climate change and increasing demand for electricity consumption, power factor correction has
the potential to affect long-term economic and environmental gains to society [5]. Many countries,
including Ghana, therefore urge electricity users, especially larger ones, to improve their power
factor through this policy. Since 1995, the government in Ghana has imposed a policy that penalizes
large-scale electricity users, labeled as special load tariff (SLT) customers, of the Electricity Company of
Ghana (ECG) whose power factor falls short of 90%. This paper investigates the effectiveness of this
power factor correction policy implemented by the Ghana government.

Historically, Ghana has been heavily dependent on hydro power supply, only in 2016 was it
exceeded by thermal generation. Prior to that point, hydro power had accounted for the majority of
the electricity supply of Ghana over history. As late as 2010, for example, the share of hydro power
was approximately 70%, while that of thermal was just approximately 30%. Power from renewable
energy (e.g., solar) entered the supply in 2013, but it accounts only for a negligible portion of the entire
power supply [6].

In 1983, Ghana was hit by a severe drought that continued into 1984. This situation led the
Akosombo Dam to experience a shortfall of water inflows, reaching below 15% of the long-term
projected total [6]. This shortfall impacted the electricity supply, as the country’s only electricity source
was the Akosombo and Kpong hydroelectric power stations. Volta Lake did not fully recover from
the 1983 drought before it was hit by another drought in 1993–1994, which again led to a reduction in
electricity to consumers. This crisis exposed the country’s vulnerability and security issues in terms of
hydroelectric power [7].

Previous research has revealed that power factor correction measures by industrial plants, mining
establishments, firms, and large commercial buildings can release 20 megawatts of tied-up electricity in
a year [7]. At that time, Ghana’s electricity capacity was approximately 900 megawatts, with a sizable
share exported to the Republics of Togo and Benin. In addition, SLT customers represented only a part
of the entire set of electricity users in Ghana. This release of 20 megawatts capacity from SLT customers
was therefore considered to be relevant by the government of Ghana in that context. To improve the
situation by raising the power factor among its users, in 1994, the government of Ghana announced
that it would restructure tariffs to penalize those that do not adopt power factor correction measures,
and it enacted this policy in January 1995 [7]. According to the policy, a user whose power factor is
below a certain threshold is charged a penalty. The penalty policy is applied to large-scale electricity
users, namely, the ECG’s SLT customers. Tariff categories in Ghana are classified into three main
groups, namely, (i) residential, (ii) nonresidential, and (iii) SLT customers [8]. Residential consumers are
domestic users and nonresidential customers use electricity for commercial purposes with a capacity
less than 100 kV [6]. SLT customers are defined as those that use energy for industrial purposes with
loads greater than or equal to 100 kVA. According to the policy, SLT customers of ECG whose actual
power factor falls short of 90% are to be penalized in proportion to the gap and to their size, measured
in terms of the maximum electricity demand. For example, if the actual power factor falls short of the
threshold by 5%, the penalty is 5% of the electricity bill, determined based on the maximum electricity
demand of the users. Users whose power factor is above or equal to 90% are not subject to this penalty.
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A relatively large body of literature has investigated the impact of energy efficiency enhancement
policies on economic outcomes. For example, Costantini et al. [5] claim that sectoral energy efficiency
gains display a negative effect on employment growth. They showed that this negative effect is
stronger, in particular, in energy-intensive industries using data from 15 European countries. Lee and
Min [9] found a negative correlation between green R&D and the financial performance of Japanese
manufacturing firms. A study by Lee and Min [9] is, in the literature, one of a few that analyzes at the
firm level to obtain the relationship between policy and firm economic performance.

On the one hand, these studies seem to indicate a negative relationship between energy efficiency
improvement and business and economic performance. On the other hand, some of the more
theory-based analyses derive opposite results. For example, by using the ASTRA model, or a dynamic,
integrated macroeconomic, transport and environmental impact model, Ringel [10] concludes that
enhanced green energy policies in Germany trigger tangible economic benefits in terms of GDP growth
and new jobs, even in the short term. Hartwig et al. [11] use an input–output analysis-based model to
show the positive growth effects and employment of energy efficiency policy in Germany. Henriques
and Catarino [12] also use an input–output-based model, called the impact of sector technologies
(ImSET) model, to conclude that green investment has the potential to increase employment and wage
income. Allan et al. [13] use a computable general equilibrium (CGE) model to measure the impact of
energy efficiency improvement in the UK.

In turn, there is a relatively smaller body of literature investigating the impact of policy on
improvements in energy efficiency. Tanaka [14] provided an extensive review of energy efficiency
policies implemented in the member countries of the International Energy Agency. Cox et al. [15]
provided a review of non-energy- related policies. Among these studies, Xiong et al. [16] claim that
a policy to restructure the industrial organization would have a large positive impact on provincial
industrial energy efficiency in China. They used a slacks-based measure (SBM) that is a sophisticated
variation of data-envelopment analysis (DEA), or a linear programing approach, where they allowed the
existence of undesirable outputs to address the environmental burden due to inefficiency. They used
a Tobit regression to reveal the positive association between industrial organization and energy
efficiency as the second-stage regression following the efficiency measurement by SBM. Villca-Pozo &
Gonzales-Bustos [17] found, at a provincial level, that tax policies to modernize the energy efficiency of
housing in Spain have a nonsignificant impact on energy efficiency. At a more micro level, Anderson &
Newell [18] found that manufacturing plants that receive government-sponsored energy audits have
improved energy efficiency.

While these papers use a reduced form regression, such as the Tobit, to obtain a relationship
between policy and energy efficiency, there are more model-based studies that construct a theoretical
model to describe the mechanism between policy and energy use. Ringel [10] investigated the
linkage between green energy policies in Germany and the country’s primary energy consumption
and greenhouse gases using the ASTRA model. Li et al. [19] used the VALDEX index that is a
measure of energy efficiency based on value added, to find the impact of policies on eliminating
low-efficiency production capacity and improving the energy efficiency of energy-intensive industries
in China. Using a bottom-up approach, Fleiter et al. [20] investigated the impact of grants for small
and medium enterprises in Germany to carry out energy audits of their facilities on their energy
efficiency improvements.

Most of these studies, however, either showed a correlation between policy and energy efficiency
or derived the results based on models that are dependent on their assumptions. For example, the Tobit
regression conducted by Xiong et al. [16] shows a correlation and does not reveal the causation between
policy and energy efficiency. In fact, relatively few studies have used appropriate empirical strategies to
determine policy impact on energy efficiency. Yu & Zhang [21] investigated the impact of a “smart city
policy” implemented in China on energy efficiency using a difference-in-differences (DID) approach at
a city level. However, DID only addresses the time-invariant heterogeneity and is still based on the
selections-on-observables assumption. In addition, many of these studies investigated the impacts of
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energy efficiency policies at an aggregated level. To our knowledge, no study has investigated the
impact of a power factor correction policy on its improvement by applying a reliable identification
strategy to more micro-level data.

This paper, therefore, aims to add to the literature by identifying the causal impact of the power
factor correction policy on energy efficiency improvement using firm-level data. Specifically, this study
applies a regression discontinuity design (RDD), with a cutoff at the 90% penalty threshold stipulated
by the policy, to five years of panel data consisting of 183 SLT customers of ECG for the years following
the policy announcement in 1994 to 1997 as well as in 2012. The paper shows the effectiveness of the
power factor correction policy in Ghana: firms strictly improved their power factor if it fell short of the
required threshold. This paper is organized as follows. Section 2 discusses the data and identification
strategies. Section 3 presents the estimation results. Finally, Section 4 concludes the paper.

2. Empirical Strategy

2.1. Data

A series of power crises in Ghana, mainly due to low water inflows, were recorded during multiple
periods. The first power crisis dates back to the early 1980s, and this was followed by another in 1998.
During these periods, many large-scale electricity users did not operate at their full capacity. Hence,
we constructed our time-series data set starting from the year just before the policy enforcement up to
the year just before the second power crisis took place in 1998.

Due to power crises, some large-scale electricity users ceased operations either temporarily
or permanently. We excluded those SLT users from our data and limited it to the companies that
sustained their business during our sample period to construct strongly balanced panel data. Thus,
we constructed panel data for 183 SLT companies for five years, namely, from 1994 to 1997 and for 2012,
which comprised 915 observations. Our data included power factor values of these SLT companies
obtained from the ECG. Data collection took place in 2017.

Table 1 shows the summary statistics for these 183 companies. Our outcome was a dummy
variable that indicated whether the firm improved its power factor compared to the previous year; it
took a value of one if the firm’s power factor improvement from the previous year was strictly positive,
and zero otherwise. SLT customers are categorized in terms of the voltage with which their electricity
is supplied. High-voltage SLT customers are those firms that are supplied electricity at 33,000 volts;
medium-voltage customers are supplied at 11,000 volts; and low-voltage SLT customers are supplied
at 415 volts. The observed panel data from the ECG provide information for SLT customers in Greater
Accra, which consists of Tema, East and West Accra, as well as the Western Region of Ghana. Tema is
the industrial hub of Ghana, and most SLT customers are located in these study areas.

Figure 1 provides a box plot of the power factor distribution over the sample period and clearly
shows the overall improvement of the power factor among the SLT customers over the years. The policy
was first announced in 1994 and enacted in 1995. Table 1 shows that as many as 88.5% of firms improved
their power factor between 1994 and 1995, immediately after the policy announcement. The mean
and minimum values of the power factor among these firms continuously improved over the period.
By 2012, the average was above the penalty threshold of 90% and the minimum value had reached as
high as 74%.
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Table 1. Summary statistics.

Variable N. Obs. Mean Std. Dev. Min Max

Power factor 915 0.821 0.127 0.35 0.98
Year 1994 only 183 0.765 0.127 0.35 0.96
Year 1995 only 183 0.799 0.139 0.36 0.97
Year 1996 only 183 0.810 0.132 0.37 0.98
Year 1997 only 183 0.830 0.124 0.37 0.98
Year 2012 only 183 0.903 0.042 0.74 0.97
High-Voltage SLT Customers only 395 0.818 0.142 0.35 0.98
Medium-Voltage SLT Customers only 340 0.812 0.118 0.49 0.98
Low-Voltage SLT Customers only 180 0.847 0.103 0.59 0.98
SLT Customers in Greater Accra only 520 0.842 0.106 0.44 0.98
SLT Customers in Tema only 275 0.861 0.099 0.44 0.98
SLT Customers in Western Region only 395 0.794 0.145 0.35 0.97

Improvement of power factor (a dummy variable) 732 0.701 0.458
from year 1994 to year 1995 183 0.885 0.320
from year 1995 to year 1996 183 0.623 0.486
from year 1996 to year 1997 183 0.634 0.483
from year 1997 to year 2012 183 0.661 0.475

Notes: The data includes a balanced five-year panel of 183 firms. The power factor data are provided by Electricity
Company of Ghana and measured in the incremental unit of 0.01. Year 1994 is before the policy enforcement and
years 1995 to 1997 and 2012 are after policy enforcement. Improvement of power factor is a dummy variable that
takes a value of one for the firm whose power factor has strictly improved since the previous year, and zero otherwise.

Figure 1. Box plot of power factor distribution over the sample period. A line in the middle of each box
indicates the median of the sample in each year. The left and right edges of each box show the first and
the third quartiles, respectively. Whiskers show the upper and lower adjacent values. The upper (or
lower) adjacent value is the largest (or the smallest) observation that is within 1.5 times the interquartile
range from each edge of the box. Dots are the units outside of the adjacent values.

2.2. Identification Strategies

The summary statistics above seem to indicate the effectiveness of the power factor correction
policy introduced by the government of Ghana. However, the unobserved heterogeneity between the
efficient and inefficient units may well confound our outcome in terms of whether they improved their
power factor when facing the penalty set forth by the policy. That is, we cannot simply compare the
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outcomes of inefficient firms to those of more efficient firms above the threshold when investigating
the impact of the power factor correction policy on the improvement exhibited by these firms.

We bypassed this issue of potential endogeneity by conducting an RDD with a cutoff at the penalty
threshold set by the policy. RDD is a quasi-experimental method used to identify the average treatment
effect of those units around the threshold called a cutoff (please see Appendix A for more details).
In the context of RDD, treatment assignment is performed according to whether the observation units
are below or above the cutoff. RDD enables a local average treatment effect (LATE) to be identified for
those units around the cutoff, even under a situation like ours where conducting a pure randomized
experiment or randomized controlled trial (RCT) is not possible (see, for example, Moscoe et al. [22] for
details.) When the treatment assignment is unambiguously determined by whether the unit is above
or below the cutoff, it is called the sharp RDD. In our case, units will face a penalty if the power factor
is below the threshold but not if the power factor is above or equal, without exceptions. Therefore,
we must utilize the sharp RDD strategy. In turn, if the treatment assignment depends, but not solely,
on whether the unit lies below or above the cutoff, one must use the fuzzy RDD. That is, if by the
research design, noncompliers exist, fuzzy RDD is the appropriate identification strategy.

According to the policy, firms whose power factor is below 90% are charged a penalty. Note that
firms cannot independently observe their power factor precisely, which suggests that it would be
difficult for firms to precisely manipulate their power factor values. Instead, the power factor is
measured periodically by the electricity company. In the case of Ghana, the ECG reports their power
factor to the firms along with the amount of the penalty, if any. At the end of each month, ECG delivers
the electricity bills along with the amount of penalty and the power factor to the customers. The firm
then decides whether to invest in power factor improvement. Our data only contain the annual average
of the power factor reported to the customers in our sample. To allow for this time lag in decision
making by the firms, we used the power factor in the previous year as a running variable that indicated
whether the firm faced the penalty in the previous year. Although the penalty scheme designed by
the policy in Ghana exhibits a kink at the threshold because our outcome is a binary variable, we still
adopt an ordinary discontinuity design, rather than a kink RDD. Because our outcome variable is an
indicator capturing whether the firm has improved its own power factor from the previous year, the
same company should be tracked to enable our identification. As mentioned earlier, our outcome was a
binary variable that took a value of one if a firm strictly improved its power factor independently from
the previous year, and zero otherwise. This empirical strategy with lagged and differenced variables
made our working sample a four-year panel from 1995 to 1997 plus 2012 for 183 firms, consisting of
732 observations.

ECG measures the power factor of SLT customers in the incremental unit of 1%. Thus, any firm
whose power factor is equal to or less than 89% faces the penalty, while those at 90% or above do not.
We, therefore, set the cutoff of the running variable at 89.5% in our RDD to determine whether this
policy implemented by Ghana’s government indeed induced SLT customers of the ECG to improve
their power factor.

3. Results

Table 2 presents the RDD estimation results. Column (1) shows the impact of the penalty policy,
measured as a gap in the power factor improvement probability between those two types of firms,
namely, those whose power factor in the previous year was just above and those whose power factor
was below the threshold, estimated using the full sample. Column (2) shows the same impact estimated
using only the subsample from 1995 to 1997. We refer to them as Models 1 and 2, respectively.

The coefficients were significantly negative in both models, which indicated that, relative to those
immediately below the cutoff, those firms whose power factor was immediately above the cutoff in the
previous year exhibited a strictly smaller probability of improving their power factor in the current
year. In other words, the firms that were penalized were more likely to improve their power factor in
the following year.
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Table 2. Sharp regression discontinuity design (RDD) estimation results.

(1) Full Sample (2) Subsample of Years from 1995 to 1997

Dependent Variable Power Factor Improvement Power Factor Improvement

Treatment −0.455 *** (0.104) −0.598 *** (0.127)
N. obs. 732 549

N. obs. above the cutoff 278 183
N. obs. below the cutoff 454 366
Effective N. obs. above the cutoff 116 76
Effective N. obs. below the cutoff 52 44

Bandwidth 0.020 0.020

Notes: Standard errors are in parentheses. Statistical significance at 1% is indicated as ***. The dependent variable is
a dummy variable that takes the value of one if a firm strictly improved its power factor since the previous year,
and zero otherwise. The running variable is the power factor in the previous year with a cutoff at 0.895. The model
in column (1) uses the entire sample of four years, namely, three years from 1995 to 1997 as well as 2012. The model
in column (2) uses the subsample of three years from 1995 to 1997 only. Bandwidths in both models are selected by a
mean-squared error optimal bandwidth selector. Kernel type of a triangular function is used in both models.

This result is also clearly shown in Figure 2, where the probability of power factor improvement
is shown on the vertical axis over the level of the power factor in the previous year on the horizontal
axis. Panel (a) shows the figure for Model 1, while panel (b) does the same for Model 2. In both figures,
there is a clear discontinuity at the penalty threshold, which is shown as a vertical line. The results
show that firms slightly below (i.e., on the left of the cutoff) were much more likely to improve their
power factor than firms that were slightly above the threshold line (or on the right of the vertical line).
Indeed, the probability of power factor improvement was approximately 90% for firms immediately
below the threshold, while only approximately half of the firms immediately above the threshold
exhibited an improvement (the gray dot shows the local average within each bin).

A closer look at the result reveals that the effect is stronger in Model 2 than in Model 1. The estimate
of the gap in the probability of power factor improvement between firms immediately below and those
immediately above the cutoff is as large as 59.8% in Model 2. Figure 2 also shows that the gap is larger
in Model 2. The plot of the probability of power factor improvement in Model 2 depicted in panel
(b) of Figure 2 shows that firms that were slightly above the threshold were less likely to improve
their power factor than the firms in Model 1 depicted in panel (a). In Model 2, we have only three
consecutive years; therefore, the resulting greater impact in Model 2 suggests a strong short-term effect
of the policy. These results imply that the policy was effective in giving a strong incentive to firms,
particularly those that fell slightly below the penalty threshold, to improve their power factor, even in
the short term.
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4. Concluding Remarks

In confronting its energy crisis, the government of Ghana enacted a power factor correction
policy in 1995. The policy imposes a penalty on large-scale electricity users, labeled as SLT customers
of the ECG, when their power factor falls below the threshold of 90%. This paper investigated the
policy-induced improvement in these firms’ power factor by applying RDD to panel data for 183 SLT
customers. Our sample period ranged from 1994, when the policy was first announced, to 1997 and also
included data for 2012. Specifically, we defined our running variable as the value of the power factor
in the previous year, with the cutoff being the penalty threshold. Our outcome was a binary variable
indicating whether the firm strictly improved its power factor since the previous year. The results
show that the SLT customers whose power factor fell slightly below the threshold in the previous year
were indeed more likely to improve their power factor, and the effect was stronger when we limited
our sample period to a shorter term. This finding suggests that the power factor correction policy
implemented by Ghana’s government had an immediate impact on energy efficiency improvement by
the country’s large-scale electricity users.

Over the last few decades, the total power generation capacity has been constantly increasing in
Ghana, and the majority of such change is attributable to the growth of thermal power generation.
As a result, the installed capacity of hydro power is now 1584 megawatts and that of thermal is
3456 megawatts, while renewable energy is only approximately 42 megawatts [23]. With the thermal
share of the generation mix now being at 68% and hydro set to reduce further, electricity prices will
largely depend on international fuel prices; Ghana will thus be more vulnerable to global energy
shocks. Energy efficiency has become even more relevant, and power factor improvement is one of the
most important, simplest, and inexpensive strategies for achieving efficiency. For Ghana, like other
new emerging economies with low energy efficiency, an efficient and stable electricity supply is a
prerequisite for achieving its goal of consolidating its middle-income status via industrialization.
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Appendix A

A.1. Regression Discontinuity Design

Let Ti be the treatment variable for firm i such that

Ti =

{
0, i f zi ≥ z
1, i f zi < z

where zi is a running variable for firm i, and z is the cutoff of the running variable. In our context, Ti is
an indicator that firm i faces the penalty, and zi is the power factor of firm i in the previous year.

We then describe the outcome Yi as

Yi = β0 + αTi +
K∑

k=1

βk(zi − z)k +
K∑

k=1

γk(zi − z)kTi + ui

where α gives the causal effect of the treatment.
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In estimating the causal effect α, we weight observations according to the distance to the cutoff
on the domain of the running variable. The weight is computed automatically by optimizing the
mean-squared error of the estimation.

A.2. Estimation Code

We conducted the actual estimation using STATA 15. The actual code is as follows:

rdrobust dpfpositive pf_1, c(0.895).

Here, rdrobust is the command to conduct an RDD estimation. The variable dapfpositive is an
indicator that takes a value of one if the change in power factor is strictly positive, while pf_1 is the
power factor in the previous year. The last term, c(0.895), indicates that the cutoff z in our case is 0.895,
implying that the firms with a power factor of 89% or below face the penalty, while the firms with 90%
power factor and above do not.
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Abstract: China has set stringent fuel consumption rate (FCR) targets to address the serious
environmental and energy security problems caused by vehicles. Estimating the technological
progress and tradeoffs between FCR and vehicle attributes is important for assessing the viability of
meeting future targets. In this paper, we explored the relationship between vehicle FCR and other
attributes using a regression model with data from 2009–2016. We also quantified the difference
in the tradeoff between local and joint venture brands. The result showed that from 2009 to 2016,
if power and curb mass were held constant, 2.3% and 2.9% annual technological progress should
have been achieved for local and joint venture brands, respectively. The effectiveness of fuel-efficient
technologies for joint venture brands is generally better than that of local brands. Impacts of other
attributes on FCR were also assessed. The joint venture brands made more technological progress
with FCR improvement than that of local brands. Even if 100% of technological progress (assume the
technological progress in the future were the same as that of 2009–2016) investment were used to
improve actual FCR after 2016, it would be difficult to meet 2020 target. Accelerating the adoption of
fuel-efficient technologies, and controlling weight and performance, are both needed to achieve the
2020 and 2025 targets.

Keywords: fuel consumption; trade-off; technological progress; passenger vehicle

1. Introduction

The total number of vehicles in China has increased dramatically over the past decades and
reached 231.2 million in 2018 (excluding 9.06 million three-wheeled vehicles and low-speed trucks) [1].
The rapid growth in vehicle numbers has caused serious environmental and energy security problems.
In 2015, nearly 700 million tons of carbon dioxide (CO2) was produced from China’s road traffic, and
these emissions are increasing [2]. China’s dependency on foreign countries for oil reached 68.4%
in 2017 [3]. Automotive gasoline and diesel accounted for 80% of all gasoline and diesel consumption in
2017. To reduce the fuel consumption from passenger cars, China has issued a series of fuel consumption
rate (FCR) standards and regulations for passenger vehicles. China released its first FCR limit standard
for passenger vehicles in 2004 [4]. The corporate average FCR standard for passenger vehicles was
released in 2011 [5] and updated in 2014 [6]. China also set the FCR targets for new passenger vehicles
to 5.0 L/100 km in 2020 [7] and 4.0 L/100 km in 2025.

Globally, the transport sector contributes about one-fourth of total fossil fuel greenhouse gas
(GHG) emissions, about three-quarters of that amount come from road transport [8]. To curb the GHG
emissions from road transport, ten countries and regions including China, U.S., EU, and Japan, etc.,
have established mandatory or voluntary standards for light-duty vehicles [9,10].

There are two pathways to achieve the increasingly stringent passenger vehicle FCR target for
carmakers. One is to produce more new energy vehicles (NEVs), as the electricity consumption of NEVs
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is calculated as zero, and they have multipliers in the Phase IV standard. In the Phase IV standard [6],
the equivalent energy consumption of battery electric vehicles (BEV), the electric-drive part of plug-in
hybrid vehicles (PHEV) and fuel cell vehicles (FCV) are calculated as zero. The multiplier of NEVs is
set at five from 2016 to 2017, decreasing to three from 2018 to 2019, and two in 2020. The other pathway
for compliance is to improve the FCR of conventional vehicles by deploying fuel-efficient technologies
or adjusting portfolios by producing more smaller and lighter vehicles. As there are still many barriers
to the promotion of NEVs, such as high retail prices, short electric ranges and a shortage of charging
infrastructure [11], improving the FCR of conventional vehicles has become one of the necessary paths
for carmakers to comply with their FCR targets.

With the tightening passenger vehicle FCR targets and regulations, China achieved 1.7% FCR
improvement annually for the period 2009–2017. The market penetration of fuel-efficient technologies
is increasing rapidly. The adoption rate of gasoline direct injection (GDI) and turbocharging for
new passenger vehicles in China reached 39.39% and 45.11% in 2017 [3], from 0.5% and 3.4%
in 2009 [12], respectively.

Previous research found that the official tested FCR is highly correlated with curb weight, power,
acceleration time, and other characteristics. By using the features of the U.S. car from 1975 to
2009, the research found that a 1% increase in weight results in a 0.69% increase in FCR, and a 1%
reduction in 0–97 km/h acceleration time results in a 0.44% increase in FCR when holding all else
equal [13]. Similar results were also found by using the technical specifications and fuel consumption
information of automobiles for sale in Europe from 1975 to 2015 [14]. After reviewing relevant
studies, the fuel-mass coefficients (the ratio of FCR change (%) and weight change (%)) was found
to be in the range of 0.315−0.71 [15]. By evaluating a wide range of vehicle case studies of gasoline
turbocharged cars, which represent the 2015 European market, the fuel reduction value coefficient
(the ratio of FCR achieved through mass reduction to vehicle mass reduction) was found within
the range of 0.159−0.237 L/100km*100kg for the mass reduction only and 0.252−0.477L/100km*100kg
for the secondary effect [16]. The combination of life cycle assessment with the traditional design
procedure was also proposed to assess the environmental performances of automotive component light
weighting [17]. Fuel economy standards and regulations aim to improve the FCR of new passenger
vehicles. In addition to FCR, consumers also pay attention to vehicle performance, etc., which are
highly correlated with FCR. Thus, to analyze the feasibility of achieving the targets of 5.0 L/100 km
in 2020 and 4.0 L/100 km in 2025 for new passenger vehicles in China, it is necessary to quantify the
tradeoff between FCR and other attribute parameters of passenger vehicles in China.

Many studies have been conducted on the trend of passenger vehicle FCRs and the tradeoff
between official tested FCR and other vehicle attributes. A new index called the Performance-Size-Fuel
economy Index (PSFI) was proposed by An, which is defined as the product of the vehicle performance,
size, and fuel economy [18]. The PSFI was used to assess the technical efficiency improvement rates of
cars and trucks from 1977 to 2005 in the U.S. The PSFI showed good correlations and appeared quite
linear for both cars and trucks by using the 1977 to 2005 data from the Fuel Economy Trends Report of
the Environmental Protection Agency (EPA). The PSFI provides a way to measure the technological
progress of vehicles, but it simply sets the coefficient values of the three variables to one, which requires
further study and explanation. Compared with recent research results [13,14], the impact of curb
weight on FCR could be exaggerated in the definition of PSFI. To better estimate the technological
progress and the tradeoff between FCR and other attributes, Knittel built a regression model on fuel
economy, weight, engine power, and torque, and also introduced the production possibilities frontier
(PPF) to capture the technological progress. The result showed that if the power, torque and curb
weight of the light-duty vehicle in the U.S. stayed at the same level as 1980, the fuel economy from 1980
to 2006 could have improved by nearly 50% for both passenger cars and light trucks [19]. Klier and Linn
expanded Knittel’s analysis by matching engine data to vehicle production data. The changes in the
rate were examined, and the results showed that recent changes in the U.S. and European fuel economy
standards had increased the speed of technology adoption [20]. MacKenzie and Heywood extended
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Knittel’s econometric approach by adopting both vehicle system attributes and consumer amenities
as independent variables. They found that between 1975 and 2009, per-mile fuel consumption could
have been reduced by approximately 70%, or an average of 3.4% per year, if not for reductions in
acceleration time and the introduction of new attributes and functionality to vehicles [13]. To the
best of our knowledge, this topic for China has not been carefully studied before due to a lack of
sufficient data.

In this paper, we mainly aimed to address the following points:

1. Summarize the trend of FCR and vehicle characteristics for Chinese passenger vehicles for
2009–2016 based on a comprehensive database built by China Automotive Technology and
Research Center (CATARC).

2. Construct a quantitative model between FCR and vehicle attributes to estimate the impact
of vehicle characteristics on FCR and the technological progress for local and joint venture
manufacturers (Chinese domestic carmakers are generally divided into the joint venture and
local corporations. Joint venture corporations are generally jointly invested by foreign carmakers
and Chinese carmakers, such as SAIC-Volkswagen, which was established by Volkswagen
and Shanghai Automotive Industry Corporation (SAIC). In the joint venture corporations, the
technology and brand are usually provided by the foreign side. The Chinese side usually provides
land use rights and funds. The vehicle models produced by the joint venture corporation is called
joint venture brand cars. Local corporations are usually 100% owned by Chinese companies, with
completely independent product modification rights and brand operation rights. The vehicle
models produced by local corporations are called local brands, such as BYD and Geely. Since the
local brands and joint venture brands have significant differences in the quota of different vehicle
types and technical characteristics, they are studied separately in this paper), respectively.

3. Analyze the differences between the joint venture and the local brands in the tradeoff between
FCR and vehicle attributes.

The rest of the paper is organized as follows: The data used in this paper is discussed in Section 2.
The methodology is presented in Section 3. The results are detailed in Section 4. The conclusion is
presented in Section 5.

2. Data

The data used in this paper were from the Automotive Data Center Database of CATARC,
including FCR in L/100 km, vehicle level characteristics (such as curb weight, vehicle acceleration time,
etc.), engine attributes (such as engine power, torque, etc.), fuel-efficient technology configuration
(such as engine aspiration type, fuel injection mode, etc.), and production by model and year for all
new passenger vehicles (according to GB/T 3730.3–2001, the passenger vehicle in China is defined as a
vehicle designed and constructed for the carriage of passengers and having a maximum design mass
not exceeding 3.5 tons) produced by domestic manufacturers between 2009 and 2016. Gasoline vehicles
dominated the conventional vehicle market of China and other fuel types of vehicles, such as diesel
vehicles, bi-fuel vehicles, etc., accounted for less than 2% of the total market. In this paper, we focused
only on gasoline passenger vehicles. The total number of gasoline passenger vehicle models was
14,183, which were all used to run the regression model introduced in the methodology section.

Figure 1 illustrates the production-weighted FCR of domestic passenger vehicles from 2009 to
2016. As shown in Figure 1, the average official tested FCR of gasoline passenger vehicles in China
improved from 7.71 L/100 km in 2009 to 6.82 L/100 km in 2016, with an annual improvement rate
of 1.7% (the trend is the result of both the improvement of vehicle fuel efficiency and change of
market share for different vehicle types and classes). The unadjusted average fuel economy for cars
in the U.S. market increased from 32.1 MPG (equivalent to 7.32 L/100 km after unit conversion) in
2009 to 36.9 MPG (6.37 L/100 km) in 2016 [21], with an annual improvement rate of 2.0%. In the EU
market, the average CO2 emissions from new gasoline passenger cars decreased from 146.6 g/km
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(equivalent to 6.27 L/100 km) in 2009 to 121.7 g/km (equivalent to 5.20 L/100 km) in 2016 [22], with
an annual improvement rate of 2.62%. As the passenger vehicle FCR in both the EU and China was
tested under the New European Driving Cycle (NEDC) between 2009 and 2016, the FCRs of passenger
vehicles in the EU and China were comparable. We found that the FCR improvement in the EU was
faster than China, and there was a big gap between the FCR of passenger vehicles in China and the EU.
The FCR gap between China and the EU might be due to two main reasons. Firstly, the curb weight in
the EU was lower than that of China. Secondly, the EU had a higher adoption rate of fuel-efficient
technologies for passenger vehicles than China.
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Figure 1. Production-weighted fuel consumption rate (FCR) of China’s domestic passenger vehicles
in 2009–2016.

Curb weight is the basis for the current FCR standard for passenger vehicles in China. As illustrated
in Figure 2, the production-weighted passenger vehicle curb weight increased by 13.1%, from 1222 kg
in 2009 to 1382 kg in 2016. The increasing curb weight may be mainly due to the increasing percentage
of sales and stock for sport utility vehicles (SUVs) and multi-purpose vehicles (MPVs). The SUVs
and MPVs stock dramatically increased from 10.3% and 4.3% in 2012 to 20.0% and 6.9% in 2016,
respectively [23].
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Figure 2. Production-weighted curb weight of China’s domestic passenger vehicles in 2009–2016.

As illustrated in Figure 3, the production-weighted power increased from 78.7 kW in 2009 to
101.7 kW in 2016, with an annual growth rate of 3.7%. The negative effect of increasing power on the
FCR of passenger vehicles has already been realized in the U.S. and EU markets. To better estimate the
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effect of vehicle attributes on FCR, it is necessary to explore the relationship between FCR and other
attributes of passenger vehicles in the Chinese market by using an econometric model.
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Figure 3. Production-weighted power of China’s domestic passenger vehicles in 2009–2016.

3. Methodology

There are generally two ways to achieve the desired goal in this paper. The engineering simulation
method could simulate the relationship between FCR and the influencing factors. Based on engineering
simulation analysis, the FCR can also be predicted based on the change of influencing factors. However,
the simulation method requires high quantity and quality of input data, and the simulation results for
certain models may not represent the nationwide fleet. A linear regression method based mainly on the
methodology of Knittel [19] and MacKenzie [13] was adopted in this study to analyze the relationship
between official tested FCR and observable variables such as power, curb weight, fuel-efficient
technology and other unobservable variables, such as vehicle brand, build year, etc., as shown in
Equation (1):

ln FCit = β0 + β1 ln CWit + β2 ln accit + X′itB + τt + μi + εit (1)

where FCit represents the FCR of passenger vehicle model i in year t in the unit of L/100 km. β0 is a
constant. CWit is the curb weight in kg. accit is the 0 to 100 km/h acceleration time in seconds. Xit is a
vector of dummy variables including whether the vehicle has a manual transmission, whether the
vehicle is an SUV, or whether the vehicle has a turbocharge. τt is the year fixed effects to estimate the
technological progress by year t. μi represents the difference by vehicle brands. We chose the vehicle
brand rather than the manufacturer as a variable because the same manufacturer often produces
more than one brand, and the vehicle characteristics of different brands vary widely. For instance,
Changan Ford Mazda Corporation has four brands: the brand Ford of Sino-U.S., the brand Mazda of
Sino-Japan, the brand Volvo of Sino-EU, and the local brand Changan. εit is the random error term.

As τt is a set of variables to estimate the annual technological growth, if Xit does not include any
fuel-efficient technology, then τt will capture all the technological growth in year t. If vehicle attributes
do not change, eτt represents the potential FCR improvement in year t compared with the FCR in the
base year due to the fuel-efficient technology deployment, as shown in Equation (2):

FCt

FCbase
= eτt (2)

where, FCt represents FCR in year t. FCbase represents FCR in the base year. For small values of τt,
eτt ≈ 1 + τt.
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4. Results Analysis

4.1. Model Estimation Results

Table 1 shows the estimation results of the regression models for passenger vehicle FCRs as
a function of curb weight, power, acceleration time, and other attributes based on Equation (1).
The products of joint venture brands and local brands showed great differences in both FCR and other
attributes from 2009 to 2016. In this paper, we estimated the joint venture brands and local brands
separately and compared them with each other. In each case, we estimated four models with different
sets of control variables to explore the technological progress and effects of vehicle attributes on the
FCR from 2009 to 2016. The estimated coefficients represent the elasticity coefficients of corresponding
variables to FCR. The variables of all models include vehicle types, year fixed effect, vehicle brand, and
curb weight. We captured the annual technological growth by using the year fixed effect while holding
other variables constant. The estimate results are shown in Table 1. We also explored the effects of curb
weight, acceleration time, power, drive type, turbocharging, GDI, and advanced transmissions on the
official tested FCR.

Model 1 controlled the curb weight, power, vehicle type, year fixed effect, and brands.
The fuel-efficient technologies, such as turbocharging, GDI, and advanced transmissions (Continuously
Variable Transmission (CVT), Dual-clutch Transmission (DCT), etc.), were not controlled in Model 1, so
that we could capture the technological progress for 2009–2016 through the year fixed effects while
holding curb weight, power, vehicle type, and brand constant. The estimation results of Model 1 show
that a 1% increase in curb weight results in a 0.86% and 0.85% increase in FCR for local brands and
joint venture brands, respectively. A 1% increase in power leads to a 0.061% decrease in FCR for local
brands in Model 1. The coefficient of power is negative, which is opposite to similar studies [13,14]
but consistent with the results of Figures 4 and 5. Figures 4 and 5 show the linear regression result of
power and FCR when holding curb weight constant (actually in a relatively small interval). The effect
of power on FCR in Model 1 is because models with larger power are always more expensive and
equipped with more fuel-efficient technologies, resulting in lower FCR. The coefficients of curb weight
and power will be more reasonable if the model controls more variables of fuel-efficient technologies.
More details of the results will be discussed in Model 3 and Model 4. The year fixed effect of local
and joint venture brands between 2009 to 2016 are 16.1% and 20.3%, respectively, which means that
if the controlling variables were kept constant in the base year of 2009, the local and joint venture
brands could achieve the FCR improvement rate of 16.1% and 20.3% in 2016, respectively. We can also
conclude that joint venture vehicles showed faster technological progress than that of local brands.
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Figure 4. Regression results of power and fuel consumption rate of models in the 1200–1300 kg curb
weight class.
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Figure 5. Regression results of power and fuel consumption rate of models in the 1300–1400 kg curb
weight class.

Model 2 is similar to Model 1 but replaces power with vehicle acceleration time. The coefficients
of FCR to curb weight decrease, which is inconsistent with the findings of MacKenzie and Heywood.
It is expected that the increase in weight at a constant power will result in both higher FCR and slower
acceleration, but our results show this is not the case. The explanation is that power and acceleration
time are both related to fuel-efficient technologies. In Model 2, the decreasing acceleration time may be
accompanied by the deployment of fuel-efficient technologies. A comparison of the effects of power
and acceleration time on the sensitivity of FCR to curb weight after controlling more variables will be
discussed in Models 4 and 5.

Model 3 further calls for fuel-efficient technologies, such as turbocharging, GDI, advanced
transmissions, drive type, and specific power deciles based on Model 1. Like the Model 5 proposed
by MacKenzie and Heywood, it calls for specific power deciles as dummy variables to reflect the
technical level of the engine and to make this model more robust and explanatory. The results show
that compared with Model 1, the sensitivity of FCR to curb weight increases to 0.164 for local brands
and 0.263 for joint venture brands after controlling more attributes. The sensitivities of the dummy
variables automatic transmission (AT) and CVT to the FCR for local brands are 7.8% and 5.0%, which
means that, compared with manual transmission (MT), AT and CVT could increase the passenger
vehicle FCR by 7.8% and 5.0%, respectively, when other variables are constant. For the joint venture
carmakers, the coefficients of AT and CVT are 4.5% and −4.4%. From the above, we can conclude
that, compared with joint venture brands, the effectiveness of AT and CVT for local brands needs to
be improved. The sensitivities of GDI to FCR are −3.1% for local brands and −6.5% for joint venture
brands, which means the GDI of joint venture brands has a better effect than that of local brands.

Compared with Model 3, Model 4 replaces power with vehicle acceleration time. Instead of
decreasing the sensitivity of FCR to curb weight in Model 1 and Model 2, this change increases it.
After calling for more fuel-efficient technologies, especially those related with power and acceleration
time, the change of sensitivity of FCR to curb weight is consistent with the findings of MacKenzie
and Heywood and can be explained by the increase in weight at a constant acceleration time, which
requires a higher FCR for both weight change and power change.
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4.2. Technological Growth

Technological progress is captured by the year fixed effect τt. To make technological progress
more intuitive, we define it as follows:

Tprogress = 1− eτt . (3)

The results of the technological progress estimation are shown in Table 2. The results of these four
models show that the technological progress of the joint venture is greater than that of local brands.
In Model 1, the joint venture shows an 18.4% improvement from 2009 to 2016, which is faster than
local brands, with an improvement of 14.9% from 2009 to 2016. The results are consistent with the
penetration of fuel-efficient technologies by brands from 2009 to 2016 in China [12].

Table 2. Technological progress estimates for passenger vehicles in China from 2009 to 2016 (percent).

Local Brands Joint Venture Brands

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

2010 –1.6 –1.7 –0.9 –1.0 –3.2 –3.2 –2.1 –2.2
2011 –4.0 –4.2 –2.4 –2.7 –5.5 –5.5 –3.4 –3.5
2012 –6.9 –7.4 –4.5 –4.7 –8.1 –8.1 –5.4 –5.6
2013 –8.7 –9.2 –5.9 –6.1 –10.0 –10.1 –6.9 –7.0
2014 –10.8 –11.5 –7.6 –7.8 –12.7 –12.8 –9.0 –9.1
2015 –12.6 –13.5 –8.9 –9.1 –15.6 –15.7 –10.8 –10.9
2016 –14.9 –15.9 –10.5 –10.7 –18.4 –18.5 –12.7 –12.8

When holding other variables constant at the base year, the mathematical expression of FCR
potential (FCpotential) is:

FCpotential = FCbase·eτt (4)

In this paper, we set 2009 as the base year, and the FCbase is the actual FCR in 2009. FCpotential is
regarded as the FCR reduction potential for the target year. τt is the year fixed effect.

Figure 6 shows the actual FCR and expected FCR of different models shown in Table 2 by
Equation (4). The solid and dotted lines with different colors in Figure 6 indicate the results of local
brands and joint venture brands, respectively. The blue lines indicate the actual FCR of new passenger
vehicles. The green lines show the FCR estimates if curb weight, power, and the share of vehicle types
had remained at the 2009 level (Model 1 in Table 2). The black lines represent the FCR estimates if the
curb weight, vehicle acceleration performance, and the share of different vehicle types remained at
the 2009 levels (Model 2 in Table 2). The red lines represent the FCR estimates if the weight, power,
drive type, powertrain features (turbocharging, GDI, transmission, etc.) and the share of vehicle types
remained at the 2009 levels (Model 3 in Table 2).

From Figure 6, we find that, for local and joint venture brands, 1) the actual FCR was reduced
by 5.4% and 16.1%, respectively. 2) Holding weight, power, and the share of vehicle types constant
at the 2009 levels, the FCR could have been reduced by 14.9% and 18.4%, respectively. 3) If weight,
acceleration time, and the share of vehicle types remain unchanged, the FCR could have been reduced
by 15.9% and 18.5%, respectively. 4) If weight, power, 4WD, powertrain features, and the share
of vehicle types remained constant at 2009 levels, the FCR could have been reduced by 10.5% and
12.7%, respectively.
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Figure 6. Actual FCR of average new passenger vehicles, and potential FCR if various attributes had
remained at 2009 levels for local and joint venture brands.

Table 3 summarizes some results of the analogous studies that focused on the technological progress
of U.S. and EU passenger vehicle markets and shows a comparison with the technological progress of
passenger vehicles in China. China implemented its first passenger vehicle FCR standard in 2004, and
then updated the standard in 2008, 2011 and 2014, respectively. China also set its passenger vehicle FCR
target at 5.0 L/100 km by 2020. The compliance pressure from the FCR standard forces carmakers to
accelerate the adoption of fuel-efficient technologies in the Chinese market. The technological progress
is more rapid than those of the EU and U.S., as shown in Table 3. If we hold weight and power constant,
the U.S. and Europe show a 1.7% (from 1975 to 2015) and 1.2% (from 1975 to 2009) annual technological
progress, which is lower than the 2.3% and 2.9% for local and joint venture brands from 2009 to 2015.
Even if we control more variables, such as powertrain features, the annual technological progress could
still reach 1.7% and 1.9% for local and joint venture brands, respectively. It is important to note that
technological progress is not distributed evenly over time. The results of MacKenzie show that the
U.S. would have reached an annual technological progress of 5% between 1975 and 1990, and 2.1%
between 1990 and 2009, if not for changes in acceleration, features, and functionality. The results of
Hu and Chen show that the EU had a solid improvement in fuel-efficient technology with an annual
technological progress rate of 2.8% from 2005 to 2015. However, there was no noticeable improvement
in potential FCR reduction from 1975 to 2005 in the EU.

Table 3. Comparison of annual technological progress between the results of this work and other studies.

Source Attributes Controlled Year Country
Annual Technological

Progress

HU Power, weight 1975–2015 EU 1.2%
HU Weight, accel. 1975–2015 EU 1.4%
HU Weight, engine attributes and amenities 1975–2015 EU 0.7%
HU Weight, engine attributes and amenities 1975–2005 EU No noticeable improvement
HU Weight, engine attributes and amenities 2005–2015 EU 2.8%

MacKenzie Power, weight 1975–2009 The U.S. 1.7%
MacKenzie Weight, accel. 1975–2009 The U.S. 2.2%
MacKenzie Accel. Features, functionality 1975–2009 The U.S. 2.9%
MacKenzie Accel. Features, functionality 1975–1990 The U.S. 5%
MacKenzie Accel. Features, functionality 1990–2009 The U.S. 2.1%

This work Power, weight 2009–2016 China 2.3% (local brands)
2.9% (joint venture brands)

This work Weight, accel. 2009–2016 China 2.4% (local brands)
2.9% (joint venture brands)

This work Power, weight, powertrain features 2009–2016 China 1.7% (local brands)
1.9% (joint venture brands)
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4.3. Comparison of Tradeoffs Between FCR and Other Attributes

Banddivadekar [24] introduced an index to quantify the trade-offs among vehicle fuel consumption,
performance, and size, which is called Emphasis on Reducing Fuel Consumption (ERFC). We modified
the ERFC equation by converting fuel economy (commonly expressed as miles per gallon) to FCR
(expressed as liters per 100 km) in Equation (5):

ERFC =
FCbase − FCcal

FCbase − FCpotential
(5)

where FCbase is the actual FCR in the base year, FCcal is the actual fuel consumption in the target year,
and FCpotential is the evaluated fuel consumption, as shown in Table 2, holding the other variables
constant. ERFC is the index quantifying how much technological progress is used for improving fuel
efficiency during the base year and the target year.

Figure 7 shows the comparisons of ERFC between the U.S., EU, and China (based on the results
of Model 1) during the various periods. The ERFC of the U.S. is from the results of MacKenzie and
Heywood, and the ERFC of Europe was calculated from the estimation results of Hu and Chen.
The ERFC values of the U.S. are highly correlated with the Corporate Average Fuel Economy (CAFE)
standard and fuel price. It varied between 130%, when the U.S. was facing an oil crisis at the beginning
of CAFE standard implementation during 1975–1980, and −25%, during the unchanged stringency
of the CAFE standard during 1995–2000. Europe also had a high ERFC value (ranging from 74%
to 145% during 2000–2015) after the European Commission adopted a Community Strategy based
on three pillars for reducing CO2 emissions from cars in 1995. China released its first FCR limits
standard in 2004 and updated the standard in 2008. Passenger vehicles that do not meet the FCR limit
standard were not allowed to be produced and sold. Therefore, the ERFC values of local and joint
venture brands in 2009–2012 showed a relatively high value of more than 60%. To achieve the target of
6.9 L/100 km in 2015, China introduced Corporate Average Fuel Consumption (CAFC) management
by releasing the Phase III FCR standard for passenger vehicles in 2011, but there were no effective
non-compliance penalties until China introduced CAFC and New Energy Vehicle Credits Regulation
in 2017 [25]. Local brands showed much lower ERFC than the joint venture brands, especially during
2012–2016 (9% versus 81%).

-50%

0%

50%

100%

150%

200%
U.S. Mackenzie et al. EU (Hu et al.)

China local brands China joint venture brands

Figure 7. Comparisons of Emphasis on Reducing Fuel Consumption (ERFC) between the U.S., EU,
and China.
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5. Conclusions

Our analysis showed that China’s passenger vehicles underwent significant technological progress
due to the rapidly increasing fuel-efficient technology adoption rate. However, to achieve the FCR
target of 5.0 L/100 km in 2020 and 4.0 L/100 km in 2025, more than a 5% annual FCR improvement rate
is needed from 2016. Our findings show that if we hold power and curb mass constant, a 2.3% to 2.9%
annual technological progress was achieved between 2009 and 2016 for local and joint venture brands,
respectively, which means an extra 2% technological progress is needed to achieve the future targets.
As the NEVs are included in carmakers’ CAFC calculations for compliance with the standard, and
counted as multiple vehicles, the target for gasoline vehicles in 2020 could be higher than 5.0 L/100 km.
We predicted that 1.7 million NEVs will be produced in 2020 (the target of 2 million NEVs including
passenger and commercial vehicles) with a ratio of EV to PHEV of 3:1. We found that the FCR target of
the conventional vehicle in 2020 is around 5.7 L/100 km, which means an annual FCR improvement
of 4.4% is needed based on the year 2016. If the ERFC value of 100% is retained, an extra annual
technological progress rate of about 2% is still needed to achieve the 2020 FCR target. Our results
indicate that China still faces significant challenges in achieving the FCR targets of 2020 and the future.

Our findings show that the technological progress of local brands is slower than that of joint
venture brands. The regression results show the effects of fuel-efficient technologies, such as advanced
transmission, GDI and turbocharging, for local brands are smaller than those of joint venture brands,
which gives a reasonable explanation for why the technological progress of local brands is slower than
that of the joint venture.

Our results show that the ERFC value of China’s local brands is decreasing from 63.5% (which
means that 63.5% of total FCR reduction potential is used for improving fuel efficiency) between 2009
and 2012 to 9.1% between 2012 and 2016. This is mainly due to three reasons: 1) Local brands are more
responsive to the high market demand for larger size and better performance vehicles such as SUVs
and MPVs than joint venture brands. 2) The absence of non-compliance penalties of CAFC standards
during 2012–2016. 3) Strong NEV incentive measures, such as multipliers, electric consumption
considered as zero in the FCR standard, and fiscal incentives, resulted in rapid development of the
NEV market, which reduced the willingness of local brands to develop fuel-efficient vehicles.

China introduced the CAFC and NEV Credits Regulation in 2017. All carmakers need to comply
with specific CAFC requirements, while companies with large-scale production of conventional
passenger vehicles need to comply with both CAFC and NEV targets. Under dual credit regulation,
NEV credits can balance the negative CAFC credits. The carmakers with negative CAFC or NEV credits
that are unbalanced will be not allowed to produce and sell new models that cannot comply with
specific 2020 targets in the Phase IV standard (which is a stepped curve based on curb weight). As the
deployment of NEV and fuel-efficient technology are two main compliance paths, in the future, we need
not only pay attention to the tradeoff between FCR and vehicle attributes, but also the tradeoff between
NEV and conventional vehicle technological progress under the newly introduced dual-credit scheme.
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Nomenclature

Abbreviations
FCR Fuel Consumption Rate
NEV New Energy Vehicle
BEV Battery Electric Vehicle
PHEV Plug-in Hybrid Vehicle
FCV Fuel Cell Vehicle
GDI Gasoline Direct Injection
PSFI Performance-Size-Fuel economy Index
PPF Production Possibilities Frontier
EPA Environmental Protection Agency
CATARC China Automotive Technology and Research Center
MPG Miles Per Gallon
NEDC New European Driving Cycle
SUVs Sport Utility Vehicles
MPVs Multi-Purpose Vehicles
CVT Continuously Variable Transmission
DCT Dual-clutch Transmission
AT Automatic Transmission
MT Manual Transmission
ERFC Emphasis on Reducing Fuel Consumption
CAFE Corporate Average Fuel Economy
CAFC Corporate Average Fuel Consumption
Symbols
FCit Fuel consumption rate
CWit Curb weight
accit 0 to 100 km/h acceleration time
Xit A vector of dummy variables
B A vector of coefficients

τt
The year fixed effects to estimate the technological
progress

μi The difference by vehicle brands
εit The random error term
Tprogress Technological progress
Subscripts
i Vehicle model
t Year
base Base year
cal The actual fuel consumption rate
potential Fuel consumption evaluated
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Abstract: Based on methods of price decomposition and spatial econometrics, this paper improves
the model for calculating the direct energy rebound effect employing the panel data of China’s urban
residents’ electricity consumption for an empirical analysis. Results show that the global spatial
correlation of urban residents’ electricity consumption has a significant positive value. The direct
rebound effect and its spillover effects are 37% and 13%, respectively. Due to the spatial spillover
effects, the realization of energy-saving targets in the local region depends on the implementation
effect of energy efficiency policies in the surrounding areas. However, the spatial spillover effect is
low, and the direct rebound effect induced by the local region is still the dominant factor affecting
the implementation of energy efficiency. The direct rebound effect for urban residents’ electricity
consumption eliminating the spatial spillover effect does not show a significant downward trend.
The main reason is that the rapid urbanization process at the current stage has caused a rigid residents’
electricity demand and large-scale marginal consumer groups, which offsets the inhibition effect of
income growth on the direct rebound effect.

Keywords: energy efficiency; direct energy rebound effect; spatial spillover effect; price decomposition

1. Introduction

China has been the world’s largest energy consumer since 2009, accounting for 23% of global
energy consumption and 27% of global energy consumption growth in 2016 [1]. Meanwhile, China
is currently the world’s largest emitter of carbon dioxide and sulfur dioxide. The annual economic
losses caused by air and water pollution account for 8–12% of GDP [2]. However, China’s electricity
production is still dominated by coal, and the carbon dioxide emitted by electricity and heat production
is more than 50% of the total fuel emissions, which is contrary to the current economic transformation
goals. Among all terminal electricity consumption, residential electricity consumption accounts
for a relatively large proportion, and due to the energy substitution policy effect, electric energy
substitution will further expand residents’ electricity consumption. Therefore, it is necessary to control
residents’ electricity consumption. Although improving the electricity efficiency through technical
means can inhibit the increase of household electricity consumption to a certain extent, improving
energy efficiency will induce a direct rebound effect, and its negative effect on energy conservation
and emission reduction cannot be ignored [3,4]. In view of the spatial agglomeration of electricity
consumption in China, there are two problems that need to be studied in depth: Is there a spatial
spillover effect of the direct rebound effect of residential electricity consumption? How to distinguish
the direct rebound effect and its spatial spillover effect if there is a spatial spillover effect, so as to
accurately and comprehensively examine the magnitude and trend of the direct rebound effect of
residential electricity.
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1.1. Types of the Energy Rebound Effect

The energy rebound effect can be divided into four categories [5]:

• The same consumer for the same goods or services;
• Different consumers for the same goods or services;
• The same consumer for different goods or services;
• Different consumers for different goods or services.

The first two categories correspond to the direct rebound effect; the latter two categories belong to
the indirect rebound effect, and the macroeconomic rebound effect covers all of the types above [6].
In general, the estimation of direct rebound effect follows the “bottom-up” principle and examines the
change of individual consumption patterns. However, the estimation of the macroeconomic rebound
effect follows the “top-down” principle, which examines the change of total energy consumption
without paying attention to the decomposition of the total energy consumption [7]. Some studies hold
the view that if the direct and indirect rebound effects can be identified and calculated separately,
and the macroeconomic effects are the sum of the two effects, but others have the opposite view that the
macroeconomic rebound effect is different from the direct and indirect rebound effects [8–10]. The main
economic mechanism of the macroeconomic rebound effect is composed of the economic growth
effect [11] and the change effect [12]. The former refers to the technological progress in promoting
economic growth, and in turn it results in increased energy consumption. The latter means that the
technical progress can change consumer preferences and the industry, so energy consumption is also
changed. In recent years, the study suggests that in addition to the secondary effects (indirect effect),
the indirect effect also contains an implicit effect (a so called embedded effect). For example, although
the consumer does not directly increase energy consumption with the increase of real income, they may
increase their consumption of other goods or services. The process of production and transportation of
these goods or services will consume energy, so the energy consumption increase is embedded in the
non-energy goods and services [12,13].

In fact, the direct effect is the basis of the indirect effect and the macroeconomic rebound effect.
The indirect effect is even considered to be a part of the direct effect in some studies [14,15]. For example,
if the direct effect is 30%, the average direct and indirect rebound effect (DIRE) of the European Union’s
27 countries is 73.6%. If the direct effect is 50%, the average DIRE is 81.16% [16], so restraining direct
rebound effect is the foundation of restraining indirect and macroeconomic rebound effect.

1.2. Evidences of the Direct Rebound Effect

The existing empirical studies cover personal passenger transport [17–22], household heating [23,24]
or other household services [25–30]. However, based on the data from different regions, or different
energy services, the results are controversial. The direct rebound effect of developed countries is no
more than 40%, meaning that improving energy efficiency will reduce energy consumption, and only a
part of the expected savings is offset [31]. However, the direct rebound effect of developing countries
is extremely serious, sometimes even exceeding 100% [27]. The income gap may be the main reason
behind the difference between different regions [12]. Residents in developed countries have higher
income and tend to demand saturation [32], so the energy consumption induced by the improvement
of energy efficiency will decrease, and the magnitude of the direct rebound effect is smaller than that in
developing countries. The energy demand in developing countries is far from saturated [6], so income
growth may not inhibit the direct rebound effect in developing countries in the short term.

What’s the magnitude of China’s direct rebound effect? Taking residents’ electricity consumption
as an example, the direct rebound effect for urban residents’ electricity consumption is less than
100% [18]. However, it may rise up to 165.22%, mainly due to “marginal consumer groups” [27]. If the
heterogeneity of urban and rural direct rebound effect is ignored, the direct rebound effect for residents’
electricity consumption would have a threshold effect based on per capita income [33]. With the steady
growth of per capita income, the magnitude of direct rebound effect tends to decrease. To sum up,
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the magnitude and the change of direct rebound effect for China’s residents’ electricity consumption
are still controversial.

There are three reasons that cause the difference mentioned above. First, the electricity consumption
of urban residents in China is much larger than that of rural residents, which leads to heterogeneity
between urban and rural residents. Taking the two groups as a whole to avoid differences will result in
inaccurate results. Second, the effect of power price on residents’ electricity consumption between
price increase periods and price decline periods is not completely reversible [34]. The calculation
result of the direct rebound effect for residential electricity consumption without price decomposition
will be different between the two periods. Third, the definition of direct rebound effect given by
Berkout et al. [3] and Greening et al. [35] which implies the assumption that energy consumption
among regions is independent, is the basis of the empirical studies above. However, Tobler’s First
Law of Geography shows that everything is related to everything else, but near things are more
related to each other. China’ economic development and energy consumption have obvious clustering
properties in geospatial space. Therefore, the spatial spillover effect cannot be ignored when the direct
rebound effect is explored. In essence, economic activities cause widespread connections between
regions [36]. The aggregation of users may improve the energy efficiency of users’ communities; for
instance, shared-use of common resources [37] and demand side management participation though an
aggregator [38]. Users or local governments that actively cooperate for a common goal of reducing
energy consumption may be one of the reasons for spatial aggregation. The improvement of electricity
efficiency in a local area will affect not only the residents’ electricity consumption in the local region,
but also the residents’ electricity consumption in neighboring areas, so the direct rebound effect will
spill over between regions. Ignoring the spatial dependence will confuse the direct rebound effect and
its spatial spillover effect, leading to incorrect results.

In view of this, the main contributions of this paper are in the following aspects. First, based on the
perspective of spatial spillover, the measurement model of direct rebound effect is improved, so that the
direct rebound effect can be measured more accurately and comprehensively. Second, considering the
asymmetric influence of price on demand and the heterogeneity of the direct rebound effect between
urban and rural areas, the spatial panel data of urban residents are used for empirical test, and multiple
price decomposition models are introduced to ensure the robustness of the results. Finally, the trend of
the direct rebound effect on urban residents’ electricity consumption is examined. The research results
have important reference to the realization of energy savings and emission reduction targets.

2. The Improved Method of Calculating Direct Rebound Effect

Improving energy efficiency will decrease energy consumption with the same level of energy
service. For instance, if the rate of electricity use and cooling area decrease, residents will use less
electricity cooling the same area. However, improving efficiency means a decrease in real power price,
which will incentivize residents to use more electricity in turn. Calculating the direct rebound effect is
to calculate the gap between the expected savings and the actual savings. Direct rebound effect is then
defined as: Direct rebound = (expected savings − actual savings)/expected savings. The traditional
calculation method of the direct rebound effect controls no other variables, so some studies recommend
that the price elasticity could be an ideal proxy indicator of direct rebound effect with other variables
controlled [39]. The definition and identification of direct rebound effect can be found in Appendix A.

The calculation method above only analyzes the energy consumed by the same consumers
(consumers in the local region) and does not consider other consumers (consumers in the adjacent
region). It implies the assumption that energy consumption in different regions is independent.
However, if there is a spatial “convergence effect” in energy consumption, whereby the increased
energy efficiency in a local region will have an influence on the energy consumption not only in the
local region, but also in the adjacent regions, leading to a “spatial feedback effect”. For the same reason,
the improvement of energy efficiency in the adjacent region also induces a direct rebound effect in
the local region. This paper views this as the spatial spillover effect of the direct rebound effect. It is
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impossible to distinguish whether the additional energy consumption in the local region is caused by
the energy efficiency improvement in the local region or in the adjacent region without considering
spatial spillover effect.

Based on spatial spillover effect, this paper improves the calculating model of direct rebound
effect. The spatial lag of electricity consumption is introduced into the model, and the spatial lag model
(SLM) controlling other variables is:

yt = λWyt + Xtβ+ c + ut (1)

where both the explained variable and the explanatory variable are logarithmized. yt is the urban
residents’ electricity consumption of n regions in year t. W is the space weight matrix, and Wyt is the
spatial lag of yt. λmeasures the effect of spatial lag Wyt on yt, reflecting spatial dependence. Xt is the
explanatory variables matrix of n regions in year t. β is the coefficient of the explanatory variable. c is
the individual effect of n regions. According to the individual effect, the model can be divided into
fixed effect model and random effect model.

If the spatial correlation of urban residents’ electricity consumption is not considered, Equation (1)
is reduced to a standard static panel model.

Rewrite Equation (1) as a reduced form:

yt = (I − λW)−1(Xtβ+ c + ut) (2)

E(yt
∣∣∣Xt, W) = (I − λW)−1(Xtβ) (3)

Equation (3) shows that measuring the direct rebound effect should consider the spatial feedback
effect. According to the research on direct and indirect effects in spatial econometric models by LeSage
and Pace [40], the calculation of the direct rebound effect in the space lag fixed effect model is:

RE = − 1
nT

T∑
t=1

n∑
i=1

∂E(ŷit
∣∣∣Xt, W)

∂ ln Pi
(4)

where ŷt = yt − (I − λW)−1c. The direct rebound effect calculated here is the average value of the direct
rebound effect of n regions, so it can be called the average direct rebound effect (abbreviated as RE).

The calculation of the space spillover effect of direct rebound effect is defined as:

SRE = − 1
nT(n− 1)

T∑
t=1

n∑
i=1

n∑
j=1, j�i

∂E(ŷit
∣∣∣Xt, W)

∂ ln Pj
(5)

Equation (5) also calculates the average spatial spillover effects of n regions, so it can be called the
average spatial spillover effect (abbreviated as SRE).

The spatial lag model only considers the endogenous interaction effects, ignoring the spatial
correlation of unobservable random impacts. In the case of multiple spatial interactions, a more
appropriate method is to use the spatial autoregressive model with spatial autoregressive disturbances
(SARAR) model. Since urban residents’ electricity consumption may have both the interaction of
endogenous interaction and error terms, the SARAR model is introduced to measure the direct rebound
effect and its spatial spillover effect:

yt = λWyt + Xtβ+ c + εt, εt = ρWεt + ϕt (6)

where ρ is the coefficient of spatial lag Wεt. The calculation of the average direct rebound effect and
the average spatial spillover effect of the SARAR model is consistent with the SLM model.
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The process of using spatial econometric models is as follows: before establishing a spatial
econometric model, it is necessary to test the spatial autocorrelation and heterogeneity in the data,
using two types of spatial autocorrelation test: local autocorrelation and global autocorrelation.
Then multiple models are set up. For nested models, a likelihood ratio (LR) test can be used to
choose the best model. Due to endogeneity problems, the ordinary least squares (OLS) estimators are
inconsistent. This paper uses the maximum likelihood estimator method (MLE) to get the consistent
estimator. For panel data, individual effects need to be tested, so the Hausman test is used to select
the appropriate model between the fixed effect and random effect models. And we use the method
proposed by Lee and Yu [41] to estimate the panel spatial econometric model. Firstly, the individual
effects are eliminated, then the maximum likelihood estimator method is performed.

3. Variables and Data Description

3.1. Variables Selection

Electricity consumption (y). The electricity consumption is an endogenous variable, which is
measured by the electricity consumption of urban residents.

Power price (P). The power price is the core explanatory variable, which is measured by the
average selling price of electricity used by residents. The power price has both rising and falling
periods, and the impact of rising and falling price on the demand for electricity is not completely
reversible. However, the direct rebound effect is mainly related to the falling price. So the power price
is decomposed into three parts [4]:

Pit = Pmax,it × Prec,it × Pcut,it (7)

where Pit, Pmax,it, Prec,it and Pcut,it represent the actual price, maximum price, cumulative rising price
and cumulative falling price in province i in year t, respectively. The decomposed price is calculated
as follows:

Pmax,it = max{Pi1, Pi2, · · · , Pit} (8)

Prec,it =
∏

t
j=0max

{
1,

Pmax,i j−1/Pij−1

Pmax,i j/Pij

}
(9)

Pcut,it =
∏

t
j=0min

{
1,

Pmax,i j−1/Pij−1

Pmax,i j/Pij

}
(10)

The power price is also decomposed into two parts [28]:

Pinc,it = Pmax,it × Prec,it (11)

Pdec,it = Pmax,it × Pcut,it (12)

The two decomposition methods are both used for a robust test.
Degree day (DD). The degree day, referring to the deviation between the daily average temperature

and the base temperature, is an environmental factor that should be controlled. It reflects the climate
characteristics. Urban residents will use household appliances such as air conditioners more frequently
with high degree days, so the electricity consumption is larger. Degree days are divided into heating
degree days (HDD) and cooling degree days (CDD), and their calculation is as follows [28]:

HDD =
12∑

m=1

(1− rd)(Tb1 − Tm) ×M (13)

CDD =
12∑

m=1

rd(Tm − Tb2) ×M (14)
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where HDD and CDD are the heating degree day value and the cooling degree day value. Tm is
the monthly average temperature. Tb1 and Tb2 represent the base temperature of the heating degree
day and the cooling degree day, respectively. rd is a dummy variable, and if the monthly average
temperature is higher than the base temperature, it is 1. Then, DD = HDD + CDD.

Income (I). Income is an economic factor that should be controlled, which is measured by the
per capita disposable income of urban residents. Income is an important factor affecting consumer
spending. Since 2006, urban residents’ income has been increasing with a high rate.

Population (POP). Population is measured by the number of permanent residents of urban
residents. Obviously, the more people, the greater electricity consumption. In order to accurately
measure the increase in electricity consumption induced by efficiency, it is necessary to control the
population factor.

3.2. Data Sources

The data sample is from 2006 to 2016, and includes 29 provincial units. Data come from the
China energy statistical yearbook (2007–2017), China electricity yearbook (2007–2017), China statistical
yearbook (2007–2017), China national bureau of statistics website and the Wind database. The power
price and the income are converted into constant prices based on 2006. Table 1 presents correlation
coefficients between main variables as well as their means and standard deviations. We take logarithms
of all variables to reduce heteroscedasticity.

Table 1. Statistical description and correlation table.

Variable Mean St.d (1) (2) (3) (4) (5)

(1) E 105.4 74.88 1.000
(2) P 432.2 63.41 0.545 1.000
(3) I 170.5 60.85 0.579 0.252 1.000

(4) POP 232.3 142.5 0.895 0.577 0.330 1.000
(5) DD 105.4 33.01 −0.393 −0.314 −0.165 −0.346 1.000

Table 1 shows that the average of China’s urban residents’ electricity consumption and power
price are 10.54 billion kilowatt hours and 0.432 yuan per kilowatt hours. It reflects that the cost of
electricity consumption is very small, leading to rapid electricity demand growth. Thus, the magnitude
of the direct rebound effect for urban residents’ electricity consumption in China may be larger than in
other countries whose power price is higher than in China. The standard deviation of all variables is
small, meaning that all variables are distributed very evenly. The correlation coefficients show that
there is no serious collinearity between variables.

4. Empirical Analysis

4.1. Analysis of Results of Static Panel Model

In order to compare with the calculation results of SARAR and SLM model, the static panel
model is used. Table 2 shows the static panel model estimation results. Hausman test results reject
the null hypothesis at the 1% level, meaning that the individual fixed effect model is superior to the
individual random effect model. The fixed effect estimation results show that the direct rebound effect
is 39.0%, which means that 39.0% of the electricity consumption of urban residents saved by improving
electricity efficiency is offset by the direct rebound effect. Actually only 61.0% of the expected savings
can be achieved. The fixed effect estimation results also show that population, income and degree
day have significant effects on the electricity consumption of urban residents. Then, we use improved
models to analyze the direct rebound effect and its spatial spillover effect.
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Table 2. Estimation results of static panel model.

Variable Fixed Effect Random Effect

lnPinc
0.592 ***
(0.007)

0.601 **
(0.005)

lnPdec
−0.390 *
(0.066)

−0.455 **
(0.033)

lnDD 0.344 ***
(0.002)

0.025
(0.740)

lnPOP 0.917 ***
(0.000)

0.911 ***
(0.000)

lnI 0.711 ***
(0.000)

0.718 ***
(0.000)

R2 0.882 0.878

Hausman test 19.450 ***
(0.004)

Note: The number in parentheses is the level of significance. ***, **, and * indicate significance levels at 1%, 5%, and
10%, respectively.

4.2. Spatial Correlation Test

Before applying the spatial econometric model, it is necessary to analyze the local and global spatial
correlation to test whether there is spatial dependence in the urban residents’ electricity consumption
between regions. First, the local correlation types are analyzed. Although the Moran scatter plot can
infer spatial correlation to some extent, the Moran scatter plot cannot determine whether the local
correlation type is statistically significant. So the local indicators of spatial association (LISA) map is
used to analyze the local spatial autocorrelation. Figures 1 and 2 show the LISA maps of China’s urban
residents’ electricity consumption in 2006 and 2016, respectively.

Figure 1. Spatial aggregation of urban residents’ electricity consumption in 2006.
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Figure 2. Spatial aggregation of urban residents’ electricity consumption in 2016.

The LISA maps show that there are four types of spatial agglomeration in China’s urban residents’
electricity consumption, and there is little change in local correlation patterns over time. From the
perspective of aggregation effect, various types of spatial aggregation reflect the spatial heterogeneity
of urban residents’ electricity consumption. In terms of time, although the provinces with low-low
aggregation and low-high aggregation have a small increase, it does not show a significant leap (for
example, high-high to low-low), indicating that the spatial aggregation in urban residents’ electricity
consumption is stable.

The local spatial aggregation in urban residents’ electricity consumption indicates that the spatial
dependence cannot be ignored when the direct rebound effect is examined. Table 3 lists the test results
of Moran’s I index of urban residents’ electricity consumption, in order to judge the global correlation
in urban residents’ electricity consumption.

Table 3. Spatial autocorrelation test.

Year Moran’s I Z P

2007 0.210 2.186 0.020
2009 0.235 2.366 0.013
2011 0.201 2.058 0.019
2013 0.252 2.471 0.010
2015 0.187 1.999 0.028

Table 3 shows that there is a significant spatial autocorrelation in urban residents’ electricity
consumption, and the spatial correlation is positive, indicating that the urban residents’ electricity
consumption mainly reflects convergence effect.

4.3. Analysis of Estimation Results of SARAR and SLM Models

Table 4 displays the estimation results of the SLM and the SARAR model and the robust test
results. Hausman test results of the SLM and the SARAR model reject the null hypothesis at the 1%
level, meaning that the individual fixed effect model is superior to the individual random effect model.
The SARAR fixed effect model has a larger log likelihood value than the SLE fixed effect model. The
statistic of the LR test for the SLM model and the SARAR model is 7.448, rejecting the null hypothesis
at the 1% level, showing that the SARAR fixed effect model is better than the SLM fixed effect model.
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Then the direct rebound effect for residents’ electricity consumption and its spatial spillover effect are
calculated based on SARAR model estimation results.

Table 4. Estimation results of SLM and SARAR model and robust test.

Variable
SLM SARAR

Robust Test
Fixed Effect Random Effect Fixed Effect Random Effect

Wy 0.275 ***
(0.000)

0.037
(0.156)

0.317 ***
(0.000)

0.036
(0.233)

0.318 ***
(0.000)

Wε - - −0.363 ***
(0.006)

0.017
(0.912)

−0.363 ***
(0.006)

lnPinc
0.464 **
(0.023)

0.583 ***
(0.006)

0.525 ***
(0.003)

0.578 ***
(0.008) -

lnPdec
−0.355 *
(0.074)

−0.422 **
(0.042)

−0.363 **
(0.034)

−0.422 **
(0.043) -

lnPmax - - - - 0.158
(0.321)

lnPrec - - - - 0.538 *
(0.053)

lnPcut - - - - −0.361 **
(0.036)

lnDD 0.305 ***
(0.003)

0.093
(0.331)

0.326 ***
(0.000)

0.086
(0.468)

0.326 ***
(0.000)

lnPOP 0.691 ***
(0.000)

0.888 ***
(0.000)

0.661 ***
(0.000)

0.888 ***
(0.000)

0.661 ***
(0.000)

lnI 0.541 ***
(0.000)

0.692 ***
(0.000)

0.508 ***
(0.000)

0.693 ***
(0.000)

0.508 ***
(0.000)

Log likelihood 243.326 205.289 247.050 205.295 247.052

Hausman test 63.51 ***
(0.000)

215.16 ***
(0.000) -

Note: The number in parentheses is the level of significance. ***, **, and * indicate significance levels at 1%, 5%, and
10%, respectively.

All the variable coefficients in the SARAR fixed effect models are significant. However, the absolute
value of all variable coefficients in the SARAR fixed effect model is lower than that in static panel fixed
effect model, indicating that ignoring the spatial correlation will overestimate the influence of these
variables on electricity consumption.

This is because residents’ electricity consumption in the local region is affected not only by power
price, population and per capita income in the local region, but also by the positive impact of the
spatial lag of residents’ electricity consumption. The static panel model classifies the positive impact of
spatial lag on residents’ electricity consumption into other explanatory variables. So, the contribution
of these explanatory variables is exaggerated.

4.4. Analysis of RE and SRE

In the SARAR fixed effect model, due to the existence of spatial lag, the spatial feedback effect
should be considered to measure the direct rebound effect. Combined with Equation (4), the average
direct rebound effect is 37.00%, indicating that improving the electricity efficiency does induce a direct
rebound effect. However, the direct rebound effect for urban residents’ electricity consumption is
much lower than 100%, and is lower than that of the static panel model. This means that the direct
rebound effect value is reduced after considering the spatial correlation. Increasing the efficiency of
electricity consumption will ultimately reduce the urban residents’ electricity consumption. 37% of the
expected savings are offset, and 63% of the expected targets can be achieved actually. So, improving
the efficiency plays an important role in reducing the urban residents’ electricity consumption. Table 4
also shows that in addition to the decline in power price, the growth of population, per capita income
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and degree day value will also increase the urban residents’ electricity consumption, especially when
the inter-regional urban residents’ electricity consumption has a mutual pulling effect. When the
government measures the restraining effect of electricity efficiency on residents’ electricity consumption,
the factors above should be controlled. Otherwise, the direct rebound effect for residents’ electricity
consumption will be overestimated, and the inhibition effect of improving efficiency on electricity
conservation will be underestimated.

The spatial spillover effect of direct rebound effect for urban residents’ electricity consumption
can be calculated and tested by using Equation (5). The test results confirm that the direct rebound
effect for urban residents’ electricity consumption has a significant spatial spillover effect at 1% level,
and the spatial spillover effect is 13.30%. That is to say, per 1% decrease in power price due to the
increased efficiency in adjacent areas will increase the urban residents’ electricity consumption in the
local region by 0.133%. Adding RE and SRE together, the total electricity consumption induced by the
increased efficiency is 50.30%. The proportion of RE is 73.56%, and the proportion of SRE is 26.44%.

The calculating results above show that if the spatial dependence in urban residents’ electricity
consumption is not considered, the direct rebound effect and its spatial spillover effect will be confused.
Due to the spatial spillover effect, the realization of energy-saving targets in local area depends on
the implementation effect of energy efficiency in surrounding areas. Moreover, due to the low spatial
spillover effect, direct rebound effect induced by efficiency improvement in the local region is still the
main reason affecting the implementation effect of energy efficiency policies in the local region.

4.5. Robust Test

In addition to the two-part decomposition method adopted above, some studies also adopt a
three-part decomposition method. Then the three-part decomposition method is used for a robustness
test, shown in the last column of Table 4. The results of the robustness test are consistent with the
empirical results above, indicating that the direct rebound effect measurement value for urban residents’
electricity consumption is not sensitive to the price decomposition methods.

4.6. Analysis of the Temporal Change of Direct Rebound Effect

In order to investigate the change of direct rebound effect for urban residents’ electricity
consumption, the coefficient of ln Pdec,it is allowed to change with time. The estimated results
are shown in Table 5.

Table 5. Estimation results of SARAR fixed-effect model with partial variable coefficients.

Variable Coefficient Variable Coefficient

Wy 0.318 ***
(0.000) lnPdec_2009 −0.336 *

(0.098)

Wε −0.419 ***
(0.002) lnPdec_2010 −0.332

(0.105)

lnPinc
0.472 **
(0.033) lnPdec_2011 −0.328

(0.109)

lnDD 0.330 ***
(0.004) lnPdec_2012 −0.322

(0.115)

lnPOP 0.539 ***
(0.001) lnPdec_2013 −0.315

(0.123)

lnI 0.166
(0.340) lnPdec_2014 −0.312

(0.126)

lnPdec_2006 −0.356 *
(0.078) lnPdec_2015 −0.310

(0.130)

lnPdec_2007 −0.347 *
(0.086) lnPdec_2016 −0.309

(0.133)

lnPdec_2008 −0.343 *
(0.091) Log Likelihood 250.522

Note: The number in parentheses is the level of significance. ***, **, and * indicate significance levels at 1%, 5%, and
10%, respectively.
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According to Table 5, the calculating results of direct rebound effect for urban residents’ electricity
consumption in some years are shown in Table 6.

Table 6. Calculation results of direct rebound effect for urban residents’ electricity consumption.

Year 2007 2009 2011 2013 2015

RE 35.4% *
(0.086)

34.2% *
(0.098)

33.4%
(0.109)

32.1%
(0.123)

31.6%
(0.130)

Note: The number in parentheses is the level of significance. * indicates significance levels at 10%.

Table 6 shows that direct rebound effect for urban residents’ electricity consumption declined from
2006 to 2009, but the decline is very small. The calculation results of direct rebound effect after 2009 are
not significant, indicating that there is no obvious downward trend in direct rebound effect in the short
term. The changes of RE, SRE and the total effect (abbreviated as TE) are displayed in Figure 3.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 3. The changes of RE, SRE and TE from 2006 to 2015.

Figure 3 shows that the change characteristics of the three effects are similar, and the decrease
range is small. In order to verify this conclusion, the significance of the power price and time interaction
term are tested. The test results still cannot reject the null hypothesis at 10% significance level, meaning
that the direct rebound effect is fixed over these years, so the direct rebound effect for urban residents’
electricity consumption will not decrease currently.

According to Zhang et al. [33], consumers’ energy demand tends to be saturated with income
growth, and direct rebound effect will decline. However, the empirical test in this paper shows that
direct rebound effect for urban residents’ electricity consumption in China has not shown a significant
downward trend although the urban residents’ income has been increasing. The main reason is that
China’s urbanization rate increased by 1.31% annually from 2006 to 2016, indicating that China’s
urbanization is large and the process is relatively fast. It has caused the rigidity of electricity demand.
In particular, the transfer of rural residents to urban areas will bring a large-scale marginal consumer
group. Therefore, the rigidity of electricity demand and the large marginal consumer group will
eventually offset the inhibition effect of income growth on the direct rebound effect.

5. Conclusions and Policy Implications

Based on price decomposition methods and spatial econometric models, the calculation method
of the direct rebound effect is improved. The panel data of China’s urban residents’ electricity
consumption are used for our empirical analysis. The conclusions are as follows:
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First, spatial analysis indicates that there are four types of spatial aggregation in China’s urban
residents’ electricity consumption, and the global spatial correlation has a significant positive value.
Studies of the direct rebound effect for urban residents’ electricity consumption should not ignore the
spatial feedback effect and spatial spillover effect. The improved model can subdivide the calculation
results into direct rebound effect and its spatial spillover effect, improving the accuracy and explanatory
power of the results. In addition, due to the asymmetric influence of price on demand, the introduction
of the price decomposition methods can avoid the upward bias of the calculation results to some extent.

Second, the direct rebound effect for urban residents’ electricity consumption in China and its
spatial spillover effect are 37.00% and 13.30%, respectively. This shows that although improving the
electricity efficiency has induced a direct rebound effect, the direct rebound effect is not serious,
and improving efficiency is still an important measure to curb the urban residents’ electricity
consumption. Moreover, compared with the spatial spillover effect of direct rebound effect, direct
rebound effect induced by energy efficiency improvement in the local region is still the main factor
affecting the implementation effect of energy efficiency policy in the same region.

Third, direct rebound effect for urban residents’ electricity consumption without spatial spillover
effects does not show a significant downward trend. The reason is that the rapid urbanization process
at the current stage has caused rigid residents’ electricity demand and large-scale marginal consumer
groups, which offsets the inhibition effect of income growth on the direct rebound effect.

According to the analysis above, the main policy implications are as follows: first, the government
must attach importance to the direct rebound effect, and establish a comprehensive, multi-sectoral
monitoring system for direct rebound effect, so as to avoid failure of energy efficiency policy caused by
serious direct rebound effect. Second, the direct rebound effect is mainly caused by the price effect.
The government should promote the marketization of power prices through environmental regulations
(such as resource taxes), and reduce the excessive consumption of electricity due to low cost. At the
same time, in order to achieve the expected energy-saving goals of energy efficiency policies more
effectively, local governments should focus on the synergy of policy formulation and implementation
between the local region and adjacent areas.
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Appendix A

There are some equivalent definitions of direct rebound effect, which allows identification of the
rebound effect

Firstly, we define the energy efficiency. Energy efficiency at the household level can be expressed
as the ratio of energy services to energy inputs:

ε = S/E (A1)

where ε, S, and E denote the energy efficiency, energy services and energy inputs, respectively.

Definition A1.

Direct rebound = (expected savings − actual savings)/expected savings (A2)
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• If the energy efficiency improvement does not lead to an increase in energy services, the actual
savings are equal to the expected savings, so the direct rebound effect is equal to zero.

• However, energy efficiency improvement means that real energy service cost is reduced, and
consumers will increase energy services. Therefore, the actual savings are less than the expected
savings, and the direct rebound effect is greater than zero.

• If the increase of energy service caused by the decrease of real energy service cost is greater than
the expected savings, the actual savings are less than zero, and the direct rebound effect is greater
than 100%, which is called backfire effect.

Since it is difficult to distinguish between actual savings and expected savings, Definition A1 is
rarely used for empirical research.

Definition A2.

DR = 1 + ηE
ε (A3)

where DR represents direct rebound and ηE
ε represents the elasticity of energy demand with respect to efficiency.

Definitions A1 and A2 are equivalent, and we explain in detail below.

Equation (A1) can be rewritten as:
S = εE (A4)

Total differentiation of Equation (A4) after applying natural logarithms is:

dS
S

=
dE
E

+
dε
ε

(A5)

If energy efficiency improvement does not result in an increase in energy services, then dS = 0.
Equation (A5) is simplified to:

dE
E

= − dε
ε

(A6)

then:
ηE
ε =

dE
dε
ε
E

= −1 (A7)

• The above analysis shows that if energy efficiency improvement does not lead to an increase in
energy services, the proportion of energy demand reduction is the same as the proportion of
energy efficiency improvement. That is to say, ηE

ε = −1. So, the direct rebound effect is equal
to zero.

• However, energy efficiency improvement means that real energy service cost is reduced, and
consumers will increase energy services. Therefore, dS > 0 and ηE

ε > −1. So the direct rebound
effect is greater than zero.

• If the increase of energy service caused by the decrease of real energy service cost is greater than
the expected savings, ηE

ε > 0, and the direct rebound effect is greater than 100%, which is called
backfire effect.

Energy efficiency at the household level is often unobservable, so Definition A2 is also rarely used
for empirical research.

Definition A3.

DR = −ηE
PE

(A8)

where ηE
PE

represents the elasticity of energy demand with respect to energy price.

Equation (A8) is equivalent to Equation (A3), and the derivation process of Equation (A8) will be
described in detail below.
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According to Equation (A1), the relationship between energy service price (or energy service cost)
and energy price (or energy cost) is:

PS = PE/ε (A9)

where PS represents energy service price and PE represents energy price.
Combined with Equations (A1), and (A9), Equation (A3) can be rewritten as:

DR = 1 + ηE
ε = 1 + ∂ ln E

∂ ln ε = 1 + ∂ ln(S/ε)
∂ ln ε = 1 +

(
∂ ln S
∂ ln ε − 1

)
= ∂ ln S
∂ ln PS

∂ ln PS
∂ ln ε = ∂ ln S

∂ ln PS

∂ ln(PE/ε)
∂ ln ε

= ∂ ln S
∂ ln PS

(
∂ ln PE
∂ ln ε − 1

) (A10)

Because nominal energy prices are not affected by energy efficiency, therefore ∂ ln PE/∂ ln ε = 0.
Equation (A10) is simplified to:

DR = − ∂ ln S
∂ ln PS

= − ∂S
∂PS

PS
S

= −ηS
PS

(A11)

where ηS
PS

represents the elasticity of energy service demand with respect to energy service price.

Combined with Equations (A1), and (A9), ηS
PS

can be rewritten as:

ηS
PS

= ∂ ln S
∂ ln PS

= ∂ ln S
∂ ln PE

∂ ln PE
∂ ln PS

=
∂ ln(εE)
∂ ln PE

∂ ln(εPS)
∂ ln PS

=
(
∂ ln ε
∂ ln PE

+ ∂ ln E
∂ ln PE

)(
∂ ln ε
∂ ln PS

+
∂ ln PS
∂ ln PS

) (A12)

Assuming that energy efficiency is exogenous, then ∂ ln ε
∂ ln PE

= 0 and ∂ ln ε
∂ ln PS

= 0. Equation (A12) is
simplified to:

ηS
PS

=

(
0 +

∂ ln E
∂ ln PE

)
(0 + 1) =

∂ ln E
∂ ln PE

= ηE
PE

(A13)

The electricity efficiency here mainly refers to energy efficiency ratio of household appliances,
which is usually determined by the technical level of the manufacturer. Consumers can only improve
the utilization efficiency of household appliances. In fact, some researches point out that higher
efficiency may only be achieved by purchasing more expensive new equipment in China, so the
electricity efficiency is exogenous.

Combined with Equations (A10), (A11) and (A13), Equation (A3) can be rewritten as:

DR = 1 + ηE
ε = −ηE

PE
(A14)

Equation (A14) indicates that the price elasticity could be an ideal proxy indicator of direct
rebound effect with other variables controlled.

Definition A3 allows identification of the rebound effect. Due to the ease of data acquisition, most
empirical studies have adopted Definition A3.

The above analysis shows that the direct rebound effect is mainly related to the falling of real
energy price induced by improvement in energy efficiency. However, the power price has both rising
and falling periods in the real economy, and the impact of rising and falling price on the electricity
demand is not completely reversible. Generally, price elasticity during price rise period is greater than
during the price decline period. Direct use of Definition A3 will overestimate the direct rebound effect,
and it is necessary to decompose the price, so the price decomposition method is not used to identify
the rebound effect. However, it is introduced to improve the accuracy of measurement results.
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Abstract: This paper investigates energy use efficiency at the province level in China using the
stochastic frontier panel data model approach. The stochastic frontier model is a parametric
model which allows for the modeling of the relationship between energy use and its determinants
using different control variables. The main control variables in this paper are energy policy and
environmental and regulatory variables. This paper uses province level data from all provinces
in China for the period 2010–2017. Three different models are estimated accounting for the panel
nature of the data; province-specific heterogeneity and province-specific energy inefficiency effects are
separated. The models differ because of their underlying assumptions, but they also complement each
other. The paper also explains the degree of inefficiency in energy use by its possible determinants,
including those related to the public energy policy and environmental regulations. This research
supplements existing research from the perspective of energy policy and regional heterogeneity. The
paper identifies potential areas for improving energy efficiency in the western and northeastern
regions of China. Its findings provide new empirical evidence for estimating and evaluating China’s
energy efficiency and a transition to cleaner energy sources and production.

Keywords: energy efficiency; time-variant efficiency; true fixed-effects model; four components
stochastic frontier model; determinants of inefficiency; Chinese provinces

1. Introduction

After the 2008 economic crisis, the situation in the world stabilized in 2010. According to the
yearly China Economic Report [1], China’s annual GDP increased from 6.066 trillion US dollars in 2010
to 8.271 trillion US dollars in 2017, with a total growth rate of 36.35 percent showing the highest growth
among the top 15 large global economies. But the China Energy Statistics Yearbook 2018 [2] shows that
the GDP growth rate gradually decreased from 10.7 percent in 2010 to 6.9 percent in 2017. In 2017, the
global primary energy consumption was 13.5 billion tons of oil equivalent. The annual consumption
growth rate in 2010–2017 was 1.4 percent. The economic growth rate slowed down in China.

According to the BP World Energy Statistics Yearbook [3] during 2010–2017, the gap between
China’s energy demand and energy supply increased over time. As China continues to promote
urbanization and industrialization and gradually upgrades its consumer energy consumption structure,
inequalities between China’s energy supply and energy demand will remain severe until 2020. This
gap will play an increasingly important role in energy security. In the face of rigid growth in energy
demand, China’s energy supply is expected to face severe challenges with increased supply pressures.

The BP Energy Outlook [4] predicts a radical energy transition. The ongoing transition to a
lower-carbon fuel mix is led by renewables and natural gas which account for 85 percent of the growth
in energy and are gaining in importance relative to traditional primary sources of oil and coal. It is
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forecast that the consumption of liquid fuels will grow over the next decade, but it will plateau as
efficiency improvements in the transport sector are realized. A reduced use of the abundant global oil
resources is likely to lead to a more competitive market and lower oil prices that will boost oil demand.
The use of natural gas has grown dramatically and this growth is driven by its use in industry and
power generation. Europe and China are two of the largest importers of gas. The growth in renewable
energy is faster than that in oil and dominated by the developing world with China, India, and other
Asian countries accounting for almost half the growth in global renewables. China and India drive
global economic growth and together with other developing countries account for over 80 percent of
the expansion in world output. Improvements in living standards in developing countries lead to an
increase in energy demand.

The BP Energy Outlook [4] further suggests that the pattern of energy used within industry is
expected to shift as a result of China’s changing economic role. The process leading to the growth
in energy used in industry will shift from China to other developing countries. By 2040, renewables
are expected to overtake coal as the largest source of power generation. Global coal demand flatlines,
with the fall in China and the OECD, but will be offset by gains in India and other emerging Asian
countries; however, the growth in coal consumption will still slow down. By the mid-2020s, India
will be the world’s largest economic growth market. China and India both started with relatively
coal-intensive fuel mixes. In a scenario of energy transition, China’s coal share will fall from 60 percent
in 2017 to around 35 percent in 2040 and will be offset by increasing shares of renewables, natural gas,
and nuclear energy to match the growth in Chinese energy demand over the Energy Outlook’s period,
which is 2017–2040.

Two transition scenarios are predicted—evolving and rapid transition. According to the evolving
transition scenario, the energy consumption for 1995, 2017, and 2040 is estimated at 891, 3132 and 4017
Mtoe (million tons of oil equivalent). The transition (from 1995 to 2017 and from 2017 to 2040) will lead
to changes in consumption estimated at 2241 and 885 Mtoe. This corresponds to a 252 and 28 percent
change which, on an annual basis, is 5.9 and 1.1 percent, respectively. In a rapid transition scenario,
the estimated energy consumption is 891, 3132, and 3700 Mtoe. The changes are estimated to reach
2241 and 568 Mtoe with 252 and 18 percent total changes or 5.9 and 0.7 percent changes annually (BP
Energy Outlook [4] pp. 135–137).

China’s energy consumption per unit of GDP is twice that of the world average and four times that
of developed countries. In recent decades, industrialized countries have invested in and developed
energy saving and alternative energy technologies. It is difficult to meet the fast-growing energy
demand simply by increasing energy supply. Saving energy and improving energy efficiency are
extremely important and effective ways for China to meet its energy related challenges and the
challenges of climate change. In such a situation one can ask, what is the status of energy efficiency in
China specifically at the province level?

The Chinese government’s interventions in energy use and energy efficiency mainly include
government investments in the energy industry and the enforcement of energy policies targeting the
energy industry. However, from the perspective of energy utilization and environmental protection,
government interventions should also consider such incentives as encouraging and punishing different
energy consumption industries. These include various programs such as tax incentives and subsidies
for the introduction of environmentally friendly energy-saving products.

In 2013, the State Council of China issued the ‘Action Plan for Air Pollution Prevention and
Control’ called ‘Atmosphere Ten’ which clearly states that the overall improvement in air quality in the
country in five years led to a reduction in heavy air pollution in Beijing-Tianjin-Hebei, Yangtze River
Delta, and Pearl River Delta of 15–25 percent. In 2017, the government’s work report proposed to
win the ‘blue sky defense war’ and speed up the resolution on coal-fired air pollution. As a relatively
efficient and clean energy source, natural gas is favored by the government and the market. The policy
of ‘coal to gas’ is an important substitution measure for improving air quality and it has been widely
promoted in the past. This requires Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan provinces

256



Energies 2020, 13, 1892

and other cities to complete 3.55 million units of ‘coal to gas’ and ‘coal to electricity’ transformations in
energy technology.

However, due to China’s large regional heterogeneity as compared to other countries, the feedback
on energy efficiency policies in its regions is different. Therefore, energy market reforms conductive with
environmental policy must be actively promoted, and, in parallel, reduce government interventions
in the energy market. Regional heterogeneity in energy consumption is evident in the demand for
energy and its impact on economic growth. Giving full flexibility to the endowment of energy factors
improving energy efficiency can effectively promote economic development. Given these conditions
it will be interesting to know whether China’s energy efficiency has improved with technological
innovations, and what kind of typical regional heterogeneity exists in China’s energy efficiency.

Based on existing research, the methods for measuring efficiency mainly include the data
envelopment analysis (DEA) and the stochastic frontier analysis (SFA). The former does not need to
estimate the specific production function form, thus avoiding the problems caused by the choice of
a wrong functional form. DEA uses information on inputs and outputs, but it does not describe the
production process fully. Conversely, SFA describes individual producers’ production processes by
estimating the production function, thus controlling efficiency estimates. In addition to inputs and
outputs, SFA also uses production and market environmental factors. Thus, this approach assumes a
functional form.

At present, most scholars adopt the DEA method for efficiency analyses, while the SFA method is
less frequently used. Only a few scholars have used it for empirical research related to energy use
efficiency. The simple Cobb-Douglas production function is also a commonly used functional form
for describing a regional economy. Considering the heterogeneity of China’s economic regions, it is
appropriate to use the SFA approach for measuring regional energy efficiency. Unlike DEA, SFA is a
parametric method which allows for modeling the relation between energy use and its determinants
and in addition to the inputs and outputs that one can control for firm, industry, province, and
other environmental and policy characteristics. Further, the importance of extra information can be
tested statistically.

Literature and evidence on inefficiencies and differences in regional level energy use in China is
vast. By analyzing panel data for 30 provinces in 2005–2014 using the DEA efficiency model to measure
total factor energy efficiency in China, [5] showed that total factor energy efficiency was high in the
East and low in the West of the country. The eastern region had higher total factor energy efficiency
and characteristics of lack of energy resources. However, the western region had the characteristics of
lower total factor energy efficiency while it was rich in energy resources. The allocation of production
elements of ‘more input and less output’ also existed in the central region, leading to an enormous
waste of energy resources in these areas.

Ref [6] points out that the government should and can solve the problems and inefficiencies of
energy allocation in the market and enforce these using mandatory energy policies. By studying the
relationship between government interventions, natural resources, and economic growth, [7] found
that appropriate government interventions can reduce the negative impact of pollution of natural
resources on economic growth. One can ask, what are the energy policies that China has adopted for
improving energy efficiency during the development process?

It is evident that production in China is very energy intensive. Energy sources are mainly fossil
fuel based with extremely negative health, environmental, and climate effects. This paper evaluates
energy use efficiency as a tool for reducing energy consumption and air emissions. This research does
a panel data analysis of energy use efficiency in China at the province level. The method is at the
forefront of research and allows for accounting province heterogeneity and temporal changes in energy
use efficiency, making the results informative and useful.

In analyzing energy use efficiency, this paper uses three different models—[8], the true fixed-effects
model [9,10], and four components of the stochastic frontier model. The stochastic frontier panel
model approach is parametric and allows for modeling the relationship between energy use and
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its determinants conditioned on different control variables. The main control variables are energy
policy, and environmental and regulatory variables. The data is from the province level and covers all
provinces in China (except Tibet due to lack of data availability) observed over the period 2010–2017.
Three different models are estimated accounting for the panel nature of the data; province-specific
heterogeneity and province-specific energy use inefficiency effects are separated. The models differ
because of their underlying assumptions but also complement each other considering the directions
that literature has developed in, namely assumptions about the distribution of inefficiency effects,
estimation methods, and time-variance of inefficiency and its separation from province heterogeneity.
The degree of inefficiency in the use of energy is also explained by its possible determinants including
those related to public energy policy and environmental regulations. This research supplements
existing research from the perspective of energy policy and regional heterogeneity. It shows that there
is enormous potential for improving energy efficiency in the western and northeastern regions of
China. These findings provide new empirical evidence for estimating and evaluating China’s energy
use efficiency and transition to cleaner energy sources.

The rest of the paper is organized as follows. After this brief introduction, Section 2 presents a
literature review on energy efficiency. The evolution of methods for estimating energy efficiency and
the approaches used are also discussed in this section. Section 3 outlines the methodologies of the
three different models used. Section 4 describes the data and the specifications of the empirical model.
Section 5 discusses the results both by comparing the models and by distinguishing between regional
heterogeneity in China. Section 6 gives the conclusion and implications of the findings of the study.

2. Literature Review

This section is divided into two sub-sections elaborating on the significance, concept, meaning,
and evolution of the methods of measuring and estimating energy efficiency.

2.1. Significance and Concepts of Energy Efficiency

Energy experts and research scholars in China and elsewhere have reached a general consensus
about the important role that energy plays in an economy and in society. It is believed that improvements
in energy efficiency can significantly reduce energy consumption and environmental pollution and help
in gradually achieving sustained and steady economic growth. In 1995, the World Energy Commission
defined energy efficiency as reducing energy inputs to provide equal energy services interpreted as
producing the same amount of goods and services. However, this definition is broad and does not
accurately define the concept of energy efficiency.

Ref [11] defines energy efficiency on the basis of its traditional meaning, that is, the production
of the same amount of services or desirable outputs but with less energy inputs and undesirable
outputs. [12] define and separate energy efficiency through economic and technical perspectives.
By summarizing and analyzing existing energy efficiency measurement indicators, [13] divide energy
efficiency into a number of categories—energy macro efficiency, energy physical efficiency, energy
factor utilization efficiency, energy element allocation efficiency, energy value efficiency, and energy
economic efficiency. Similarly, [14] point out that energy efficiency means producing the same amount
of effective outputs or services with less energy. They believe that the key to defining energy efficiency
is scientifically identifying effective outputs and inputs.

Based on different research fields, energy efficiency uses various quantitative indicators. Based
on an analysis of the theoretical framework, energy efficiency in this paper is defined as the overall
efficacy of energy economic efficiency and energy environmental efficiency.

2.2. Evolution of Methods for Estimating Energy Efficiency

Looking at relevant literature on energy use efficiency, we see that the research methods used for
analyzing energy use efficiency are mainly divided into two types: ‘single factor efficiency’ without
considering other factors and ‘all-factor energy efficiency’ with multiple inputs and multiple outputs.
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The former’s results only consider the proportional relationship between energy input and production
output, while the latter adds the results of all other input factors including energy in the calculation.

Because the method of measuring single factor energy efficiency is simple and intuitive and it
has strong operability, it has been favored by many scholars both in China and elsewhere, and it
has been the main method for studying energy efficiency problems over time. However, with the
continuous progress in research in the area of energy efficiency, the traditional single factor energy
efficiency measurement method has been questioned and replaced with multi-factors energy efficiency
measurement methods.

Ref [15] evaluated various indicators of traditional energy efficiency and maintained that traditional
indicators did not describe the essence of ‘energy efficiency’ because they have many defects. Using a
single-factor approach and three full-factor methods, [16] compared the energy efficiency of various
regions in China based on data for 2005. They found that the total factor approach was promising, as it
revealed the impact of a regional factor endowment structure on energy efficiency.

Because of the shortcomings and limitations of single factor efficiency research, scholars started
investigating more systematic and scientific methods for evaluating and studying energy efficiency. [17]
proposed the concept of total factor energy efficiency based on the total factor productivity framework
and measured the total factor energy efficiency of 29 provinces in China. Their results showed that
total factor energy efficiency was a more realistic measure of energy use efficiency. The approach used
in this research differs from the single factor efficiency approach, by conditioning the model on other
factors such as GDP, exports, education investments, R&D investments, environmental protection,
population, and urbanization, all of which influence energy use. Thus, the derived demand for energy
is conditional on other factors accounting for the multiple factor nature of energy use.

Researchers agree that two papers by [18] and [19] mark the birth of the stochastic frontier
methodology. Subsequently, [20] proposed a new method for effectively dividing the error terms
of the production and cost functions into technical inefficiency terms and random error terms and
using these for measuring enterprises’ technical efficiency. However, these methods are based on
cross-sectional data and cannot be technically efficient for multiple production unit observations.
In short, the measure of energy efficiency is time-invariant and restrictive. [21] applied the fixed-effects
model and the random-effects model for estimating enterprises’ technical efficiency. However, their
model assumed that the technical efficiency of each enterprise was fixed or time-invariant. To make up
for this shortcoming, [22] and [8] developed different models for estimating the time-varying technical
efficiency of enterprises.

3. Methodology

The stochastic frontier (SF) approach for estimating technical efficiency is based on the idea that
an economic unit may operate below its production potential or frontier due to low performance,
errors, and some uncontrollable factors. A study of the frontier approach started with Farrell [23] who
suggested that efficiency could be measured by comparing realized or actual output with the maximum
or potential attainable output. Other than comparing output, we can also compare the actual input use
with the minimum required input use. The two methods are called output oriented and input oriented
approaches. Their aim is maximizing output with available inputs and technology or minimizing costs
for given outputs and technology. The former is more adaptable for industry/firm data and the latter
for services data. The empirical part of this study is based on three different models— [8], the true
fixed-effects model [9,10], and four error components of the SF model with determinants of inefficiency
(following [24] and [25]).

Most theoretical stochastic frontier production functions have not explicitly formulated a model for
technical inefficiency effects in terms of appropriate determinants. By using panel data, one can remove
the limitations of depending on the distributional assumption of noise and inefficiency components
and observing each unit at several different points of time. However, the extended dimension in time
adds to the complexity, as it requires the modeler to take into account some heterogeneity effects that

259



Energies 2020, 13, 1892

may exist beyond what is possible to control using a cross-sectional approach, which lumps individual
effects with random errors. This can be achieved by introducing an ‘individual (unobservable) effect,’
say, α, that is time-invariant but individual-specific. The limitation of such a model is eliminated when
using panel data methods.

We can examine whether inefficiency has been persistent over time or whether a unit’s inefficiency
is time-varying since we have information about units over time. One component of inefficiency may
have been persistent over time while another may have varied over time. Regarding time-invariant
individual effects, we also need to consider whether an individual effect represents persistent inefficiency
or persistent unobserved heterogeneity, as well as whether individual effects are fixed parameters or
are they realizations of a random variable [26]. Thus, it is important that policies promote an efficient
use of resources that are scarce, and it can serve as an effective policy tool by separating unobserved
heterogeneity and inefficiency components.

This study outlines three panel data models which differ in terms of the underlying assumptions
made for the temporal behavior of the inefficiency components. All the models treat inefficiency
as being individual-specific. This is consistent with the notion of measuring the efficiency of
decision-making units. Model 1 allows for inefficiency to be both individual-specific and time-varying
and explains the determinants of inefficiency. Model 2 separates inefficiency effects from unobserved
individual non-inefficiency heterogeneity effects. Model 3 separates persistent inefficiency and
time-varying inefficiency from unobservable individual heterogeneity effects. Thus, the three models
are complementary and jointly provide information on province heterogeneity, province inefficiency, the
random error term, and the variations in inefficiency in energy use. The three models are now outlined.

3.1. Model 1: The Time-Variant Efficiency Model

Ref [8] considered a production model wherein technical inefficiency effects were modeled in a
stochastic frontier function for panel data. In this paper, we specify a factor demand version of the
model. The objective is to minimize the use of a factor in the production of a given output, factor
price, and technology. This is similar to [27] who analyzed labor use efficiency in the banking industry.
Here we use the same approach but in the context of energy use. Separability between energy and
other inputs is assumed. The assumption is supported by the fact that we use aggregate output and
aggregate individual inputs. A cost function is appropriate for the current case as energy use is cost
for producing a given output, which is desirable to be minimized. Provided the inefficiency effects
are stochastic, the model permits the estimation of both technical change or a shift in function over
time and time-varying technical inefficiencies. The model is estimated using the maximum likelihood
method which allows for estimating the effects of inefficiency’s determinants. In this case inefficiency
is a function of time.

In Model 1 we use the following generic formulation to discuss the various components in a
unifying network:

ENEit = f (xit, β)+ ∈it, ∈it= vit + uit,

uit = G(t)ui , vit ∼ N
(
0, σ2

v

)
, uit ∼ N+

(
μ, σ2

u

)
, G(t) = [1 + exp

(
γ1t + γ2t2

)
]
−1

where ENE is energy use and G(t) > 0 is a function of time (t); in this model, inefficiency (uit) is not
fixed for a given individual, instead it both changes over time and across individuals. Inefficiency
is composed of two distinct components: the nonstochastic time component, G(t) and a stochastic
individual component, ui. The stochastic component, uit, uses the panel structure of the data in this
model. The ui component is individual-specific and the G(t) component is time-varying and is common
for all the individuals. We consider some specific forms of G(t) used in [28] model which assumes
G(t) > 0, given that ui > 0, and thus uit ≥ 0 is ensured by having a non-negative G(t). G(t) can be
monotonically increasing (decreasing) or concave (convex) depending on the signs and magnitude of
γ1 and γ2. Inefficiency changes in this model are time driven and a nonlinear exponential function of
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time. However, the trend pattern is similar for all individuals; the differences in performance among
individuals are due to the ui component. The random and nonlinear nature of the model requires
iterative estimation by the maximum likelihood (ML) estimation method. Cost efficiency is estimated
assuming truncated normal distribution using the product of the individual specific ui and the time
variant G(t). The product of the two is in the interval between 0 and 100 where 100 represents a full
cost-efficient unit.

3.2. Model 2: The True Fixed-Effects Model

Model 1 is a standard panel data model where αi is an unobservable individual effect. The model
can be estimated using the standard panel data fixed and random-effects estimators to estimate the
model’s parameters to obtain the estimated value of ui. The highest estimated value of α̂i, namely ûi,
is used as a reference for the frontier.

However, there is a notable drawback in Model 1′s approach as it does not allow individual
heterogeneity to be distinguished from inefficiency. In other words, all time-invariant heterogeneity
such as enterprise infrastructure that is not necessarily inefficient is included as inefficiency [9,29].
Also, the time-invariant assumption of inefficiency is a potential issue with Model 1. If T is large,
it seems implausible that the inefficiency in energy use will stay constant for an extended period of
time, since the technological progress will eventually replace less efficient technologies. So, should
one view the time-invariant component as persistent inefficiency or as individual heterogeneity? The
optimal choice lies somewhere in between, that is, a part of the inefficiency might be persistent, while
another part may be transitory.

To solve the problem that the two parts cannot be separated from time-invariant individual
heterogeneity effects, we have to choose either a model wherein αi represents persistent inefficiency, or
a model wherein αi represents an individual-specific heterogeneity effect.

Following Kumbhakar and Heshmati [29] we consider both specifications in this paper. Thus, the
models we examine can be written as:

ENEit = αi + x′itβ+ ∈it, ∈it= vit + uit,
vit ∼ N

(
0, σ2

v

)
, uit = hitui, hit = f

(
z′itδ

)
, ui ∼ N+

(
μ, σ2

u

)
,

The key feature that allows for the model’s transformation is the multiplicative form of inefficiency
effects, uit, in which individual-specific effects, ui, appear in multiplicative forms with individual and
time-specific effects, hit. As u∗i does not change with time, the within and first-difference transformations
leave this stochastic term intact. Thus, the difference between Model 1 and Model 2 is that inefficiency
in Model 2 is explained by its observable determinants (z), while in the former, the time patterns of
inefficiency are explained by a trend, but inefficiency is not explained by any determinants. Thus, cost
efficiency is obtained based on the separated uit components of the residual.

3.3. Model 3: Four Components of the Model with Determinants of Inefficiency

To fully satisfy the assumptions made in the model, we introduce a final model by [24] and [25]
that overcomes some of the limitations of the earlier models. In this model, the error term is split into
four components. The four components in this paper’s context capture:

• Provinces’ latent heterogeneity [9], which has to be disentangled from provinces’ persistent
inefficiency effects;

• Short-run time-varying transitory inefficiency;
• Persistent or time-invariant inefficiency as in [30,31] and [29]; and Random shocks.

Then, our final model based on these characteristics is the Kumbhakar et al. [25] model which is
specified as:

ENEit = α0 + f (xit; β) + μi + vit + ηi + uit
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where μi is two-sided individual province heterogeneity, vit is a two-sided random error term, ηi
is one-sided time-invariant individual inefficiency, and uit is one-sided time-variant inefficiency.
In production models, the signs on the front of the inefficiency components are negative, reflecting
production below the frontier output, while in cost or energy use models they are positive, suggesting
higher cost or energy use above the minimum or frontier.

Instead of using a single stage ML estimation method based on the distributional assumption of
the four components ([32], a simpler multi-step procedure is considered and we write the model as:

ENEit = α
∗
0 + f (xit; β) + αi+ ∈it

where α∗0 = α0 − E(ηi) − E(uit); and αi = μ− ηi + E(ηi).
This model can be estimated in three steps. In the first step, we use the standard random-effects

panel regression to estimate β̂. This procedure also gives predicted values of αi and ∈it, which we
denote by α̂i and ∈̂it. In the second step, we estimate the time-varying technical inefficiency, uit, and in
the final step, we estimate ηi following a procedure similar to that in Step 2. Lastly, we estimate the
persistent efficiency, PE, as PE = − exp(ηi). The residual efficiency, RE, is obtained as in Models 1 and
2, assuming a half normal distribution or truncated normal distribution uit. The overall efficiency, OE,
following Kumbhakar et al. [28], is obtained from the product of PE and RE, that is, OE = PE × RE.

Table 1 gives the main characteristics of the three different efficiency models. The characteristics are
related to the underlying assumptions of the different models, decomposition of the error components,
time variation patterns of inefficiency, and the estimation procedure.

Table 1. Main characteristics of the different models.

Model 1 Model 2 Model 3
General firm effects are treated as: Fixed Fixed Random

Energy use inefficiency components:
Persistent inefficiency No No Yes
Residual inefficiency No No Yes

Overall energy use inefficiency:
Mean Time-inv. Zero trunc. Zero trunc.

Variance Homosc. Homosc. Homosc.
Symmetric random error term:

Variance Homosc. Homosc. Homosc.
Estimation method: ML ML Multi-step

Notes: Fixed-effects (Fixed), random-effects (Random), homoscedastic variance (Homosc.), time invariant efficiency
(Time-inv.), zero truncated error term (Zero trunc.), and maximum likelihood (ML).

4. Data

The data used in this study are from the province level observed for the period 2010–2017. It is
obtained from the National Bureau of Statistics of China [1]. The dataset is the best available and
frequently used in research and planning. This section describes the data source and provides a list of
key and control variables; it also gives a descriptive analysis of the data.

4.1. Main Variables

In this research, energy use is defined as the economic value of total energy used per capita.
It covers all economic sectors. It is reflected in both the price and quantity of energy. It is also reflected
in the value of production. The definition of energy used here is close to the one used by [11], who
defined energy efficiency as the production of the same amount of services or desirable outputs but
with less energy inputs and undesirable outputs. In the current study, the undesirable output is
controlled for by environmental stringency, carbon dioxide, and fine particulate matter. Provinces’ per
capita GDP is used as the main explanatory variable. It reflects labor productivity, size or scale in the
economy as well as opportunity for energy use or consumption.
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It should be noted that one may consider income to be endogenously determined and, as such,
it can induce biased estimation results. One way of endogenizing income is by using predicted income
or lag income as the explanatory variable. However, the two approaches may in turn lead to a bias.
Here, we ignore the issue of endogeneity with the argument that we use province level data which is
average per capita income and not endogenous to private and public users. Variations in income levels
within the province that could be a source of endogeneity are not observed. At the level of aggregate
income there is one-to-one correspondence between income and expenditure, and work is part of social
life and most people, regardless of their income per hour, work 40 h per week.

4.2. Control Variables

A review of the factors affecting energy efficiency in existing literature shows that these are mainly
focused on three aspects: technological progress; structural factors including industrial, economic, and
energy consumption structures; and system factors including energy prices, the degree of opening up
to the outside world, and the government’s environmental regulations.

Technological changes: It is generally believed that improvements in energy efficiency are mainly
through structural adjustments and technological progress. In the process of economic development,
technological progress accelerates the process of eliminating backward industrial sectors, transforming
the original industrial sectors, and improving the industry which also promotes establishing new
industrial sectors. Progress directly improves energy efficiency through the transformation of traditional
technologies, development of new technologies, and adoption of new processes. This paper uses
R&D internal expenditure (in 10,000 yuan) of industrial enterprises in each province as a proxy for
technological progress. Changes in product mix and manufacturing mix are partially controlled for
over time through investments in R&D and education, as well as time variance efficiency.

The government’s environmental regulations or environmental protection investments: [33]
targeted 14 prefectures in Xinjiang and used three indicators of the government’s environmental
pollution treatment investments to characterize the government’s environmental regulations. Their
results showed that the policy on pollution treatment investments and resource tax both generated
energy inefficiencies. [34] used Xinjiang as their research subject for measuring the intensity of
environmental regulations using the entropy method. Their results showed that the government’s
environmental regulations had an inhibitory effect on energy efficiency, which was not only reflected
in the current period, but also in three periods lagged. [35] showed that environmental protection
investments had a negative impact on energy efficiency probably because pollution treatment was not
effective and investments in treatment were often passive.

Openness defined as ((export + import)/GDP) characterizes foreign trade. Foreign trade is an
important component of economic development. The structure of foreign trade products and the
structure of foreign trade itself can affect energy efficiency. [36–39] show that the degree of openness is
positively related to energy efficiency. Some scholars have come to different conclusions though. [40]
shows that at the national level, economic openness is significantly positively correlated with the
development of electrical equipment. At the regional level, economic openness is only significantly
positively related to energy efficiency in the middle Yellow River. [14] show that for every 1 percent
increase in the value of imports and exports in GDP, energy efficiency will decrease by 0.18 percent, but
due to its dual effect, performance will vary in different regions. [41] research on single factor energy
efficiency shows that the relationship between openness and energy efficiency in typical provinces is
inconsistent, and he believes that the impact of openness on energy efficiency is a sufficient condition
and not a necessary condition.

Population and urbanization: [42] show that both endogenous innovations and human
development have a positive impact on single factor energy efficiency. [43] examined the impact of
urban morphology and transportation modes on national and regional energy efficiency. His results
showed that the former had a significant negative impact on regional energy efficiency while the latter
had no significant impact. In some previous research the impact of urban agglomeration scale density
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on urban energy efficiency is examined. The former can improve the latter, but impact on energy
efficiency can be heterogeneous. It should be noted that in this research all explanatory variables and
determinants of energy use inefficiency are province-specific and some, such as education and R&D
investments, have spillover effects. In this research, we do not account for spatial effects of investments
across provinces.

4.3. A descriptive Analysis of the Data

The energy consumption structure in China by sectors is very skewed (transport 8.2 percent,
industry 29.0 percent, building 16.7 percent, electricity 40.1 percent, and others 6.1 percent) [44].
Concerning primary energy consumption, the problems facing China’s energy use include a very high
proportion of coal use, low thermal efficiency, high unit energy consumption, high growth rate of
consumption, and trade disputes with the US which influence energy efficiency with an impact on
industry. From a spatial perspective, the level of economic development in different regions of China is
very different. While there are differences in climate, geographical environment, and resources, there
are also differences in energy structures in different regions.

The model used in this study is parametric and it allows for modeling the relationship between
energy use and its determinants conditioned on different control variables. The main control variables
are energy policy (investments in environment protection) (xenv); the degree of trade openness (xexp);
and environmental and regulatory variables including education investments (xedu), R&D investments
(xR&D), population (xpop), and urbanization (xurb). The variables which may influence energy use
efficiency are z1 (PM2.5), z2 (CO2), and (municipal solid waste treated). PM2.5 refers to atmospheric
fine particulate matter (PM) that has a diameter of less than 2.5 micro-meters. We also use the log of
GDP per capita (xgdp) as a main indicator. To see the variations in energy use, we use the cost function
approach and the log of energy use per capita (ENEcost) as the dependent variable. The series used in
this analysis is at the province level and contains all provinces in China (except Tibet due to lack of
data) observed yearly from 2010 until 2017.

Table 2 shows that all the indicators are logarithmically transformed, except for investments in
environment protection, which are defined as a percentage of regional GDP or gross regional product
GRP (xenv) and urbanization (xurb) in the production function variables. Energy use cost per capita
ranges between 427.638 and 5665.779 CNY among the sample provinces, with a mean of 1556.498 and
dispersion of 1039.165 CNY. The GRP per capita varies in the interval of 1350.430 and 89,705.230 CNY
in the provinces. The mean value is 21,652.784 with a dispersion of 16,997.766 CNY.

Table 2. Summary statistics of input and output data (2010–2017) (30 × 8 = 240 observations).

Variable Definition Mean Std. Dev. Minimum Maximum

A. Energy cost function variables:

ENEcos t Energy use per capita 1556.498 1039.185 427.638 5665.779

xgdp GRP per capita 21,652.784 16,997.766 1350.430 89,705.230

xexp Value of export 69,598,470.492 123,875,644.740 424,174.000 646,000,000.000

xedu
Education investments

(in 10,000) 9,596,653.987 5,952,569.714 994,671.000 36,587,681.000

xR&D R&D investments 2,872,909.717 3,713,827.748 57,760.000 18,650,313.000

xenv

Investments in
environmental protection,

as % of GRP
2.956 0.935 1.200 6.700

xpop Population (10,000 people) 4522.296 2705.794 563.000 11,169.720

xurb Urbanization (%) 0.560 0.127 0.338 0.896
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Table 2. Cont.

Variable Definition Mean Std. Dev. Minimum Maximum

B. Determinants of energy use inefficiency:

z1 PM2.5
(
μg/m3 ) 39.903 15.703 10.487 82.379

z2
CO2 intensity (tons/billion

yuan) 19.750 12.089 3.129 69.052

z3
Municipal solid waste

treated (tons/day) 17,269.510 13,961.950 931.000 78,185.000

Note: Monetary variables are in fixed Chinese yuan, CNY. Source: Based on data from the National Bureau of
Statistics of China (2018).

5. An Analysis of the Results

The three stochastic frontier models are specified and estimated using the data described earlier,
and the estimation results are given in Table 3.

Table 3. Stochastic frontier models’ estimation results (NT = 240 observations).

Variable Description Model 1 Model 2 Model 3

xgdp Log GDP per capita −0.563 ** −0.461 ** −0.583 **
xexp Log Exportation 0.008 −0.024 0.013
xedu Log Education Investments 0.016 0.053 0.016
xR&D Log R&D Investments 0.144 * 0.124 * 0.143 *
xenv Environment Protection −0.010 0.006 −0.012
xpop Log Population (10,000 people) −0.412 * −0.954 * −0.436 **
xurb Urbanization (%) 2.380 ** 3.390 ** 2.260 **

Note: significant at less than the 0.05 (*) and less than the 0.01 (**) percent level of significance.

In Table 3 we present the estimation results of the three energy efficiency models. In Model 1,
GDP, R&D investments, and environment protection are all statistically significant predictors of energy
use. In Model 2, GDP and R&D investments are predictors of energy use. However, environment
protection is a statistically insignificant predictor of energy use. In Model 3, GDP and R&D investments
are significant variables that predict variations in energy use. However, environment protection is not
found to be a significant predictor of energy use.

Another result that can be attained from Table 3 is attributed to the use of time as a driver of
efficiency, which reduces the inefficiency component of the overall residual.

The Wald test is a joint test for multiple regressors. It mainly tests how much the model changes if
the variables added are removed. In other words, the distance from the coefficient of each variable
to zero is measured. The test results (see Table 4) show that the independent variable contributes
significantly to the model and cannot be eliminated. The p-values of the fit of the three models are all
less than 0.01, indicating that the models fit the data well.

Table 4. Model fit test’s results.

Model Fitted Model 1 Model 2 Model 3

Wald test statistics 92.49 7684.93 109.70
Wald test p-value <0.001 <0.0001 <0.001

The rest of this section analyzes the results. The analysis is in the form of a comparison of the
different model’s estimation results and an analysis of time-variance patterns as well as regional
differences in energy use efficiency.
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5.1. A Comparative Analysis of the Models’ Estimation Results

Table 5 gives the descriptive statistics for mean energy use efficiency according to the three
models. Model 1 shows that province level energy use efficiency ranged from 0.091 to 0.937 with large
dispersions. The energy use efficiency in Model 2 ranged from 0.387 to 1.000. In Model 3 the residual
efficiency ranged from 0.013 to 0.990, the persistent efficiency ranged from 0.179 to 0.897, and the
overall efficiency ranged from 0.176 to 0.876. A number of 0.80 for Province A in a given year indicates
that province A is 80 percent efficient in energy use compared to the frontier reference Province B with
the best energy use technology. Province A has the potential of improving its efficiency by 20 percent.

Table 5. Descriptive Statistics for Energy Efficiency Measures by Different Models.

Energy Efficiency Mean Std. Dev. Minimum Maximum

Model 1 0.371 0.184 0.091 0.937

Model 2 0.968 0.092 0.387 1.000

Model 3
Residual efficiency 0.973 0.013 0.092 0.990
Persistent efficiency 0.625 0.179 0.209 0.897

Overall efficiency 0.609 0.176 0.202 0.876

Notes: Model 1: The time-variant efficiency model. Model 2: The true fixed-effects model (Greene, 2005a). Model 3:
Four components of the SF model with determinants of inefficiency.

5.2. An Analysis of Trends in Energy Use Efficiency

Table 6 gives the yearly mean of provincial energy use efficiency for the three models. The results
show that, according to the time-variant Model 1, energy use efficiency decreased during the study
period. But Models 2 and 3 show increasing energy use efficiency. However, the changes over time are
extremely small.

Table 6. Development of mean energy efficiency over time (2010–2017).

Year Model 1 Model 2
Model 3

Residual Efficiency Persistent Efficiency Overall Efficiency

2010 0.374 0.954 0.970 0.621 0.602
2011 0.373 0.971 0.973 0.622 0.606
2012 0.372 0.963 0.971 0.623 0.606
2013 0.372 0.970 0.976 0.626 0.611
2014 0.371 0.973 0.977 0.627 0.613
2015 0.370 0.971 0.974 0.627 0.612
2016 0.370 0.970 0.972 0.627 0.610
2017 0.369 0.974 0.976 0.628 0.613

Table 6 shows that the trends of national mean energy use efficiency over 2010–2017 were practically
constant over time. Although energy demand increased constantly, there was a technological revolution
and policies for improving energy efficiency were introduced continuously, there were no significant
improvements in energy use efficiency throughout the country. The possible small improvements in
energy use efficiency are eliminated by increased consumption of energy due to economic growth in
energy intensive industries.

5.3. Regional Heterogeneity in Energy Efficiency

For investigating the performance of different provinces and their positions as compared to the
best performing province, energy use efficiency was compared across provinces and major regions in
China. In the latter case, the provinces were divided into East (Beijing, Fujian, Guangdong, Henan,
Hebei, Jiangsu, Shandong, Shanghai, Tianjin, and Zhejiang), Center (Anhui, Hubei, Henan, Hunan,
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Jiangxi, and Shanxi), West (Chongqing, Gansu, Guangxi, Guizhou, Inner Mongolia, Ningxia, Qinghai,
Shaanxi, Sichuan, Xinjiang, and Yunnan), and Northeast (Heilongjiang, Jilin, and Liaoning).

Table 7 gives the summary of average energy use efficiency values by provinces for the period
2010–2017. Different models’ estimated measures of efficiency show that there were differences between
provinces in terms of energy use efficiency.

Table 7. Average energy use efficiency by provinces (2010–2017).

Provinces Model 1 Model 2
Model 3

Residual Efficiency Persistent Efficiency Overall Efficiency

East

Beijing 0.724 1.000 0.986 0.857 0.845
Fujian 0.365 0.998 0.972 0.684 0.665

Guangdong 0.332 1.000 0.980 0.634 0.621
Hainan 0.136 0.928 0.966 0.343 0.332
Hebei 0.313 0.998 0.975 0.599 0.583

Jiangsu 0.437 1.000 0.987 0.738 0.728
Shandong 0.145 1.000 0.988 0.341 0.337
Shanghai 0.437 0.999 0.984 0.743 0.731
Tianjing 0.520 1.000 0.989 0.795 0.786
Zhejiang 0.347 1.000 0.980 0.658 0.645

Center

Anhui 0.478 0.999 0.982 0.772 0.758
Hubei 0.352 1.000 0.983 0.668 0.656
Henan 0.402 1.000 0.986 0.717 0.707
Hunan 0.417 1.000 0.982 0.731 0.718
Jiangxi 0.437 0.994 0.977 0.750 0.733
Shanxi 0.699 0.974 0.962 0.849 0.816

West

Chongqing 0.937 0.997 0.980 0.892 0.875
Gansu 0.128 0.962 0.973 0.301 0.293

Guangxi 0.232 0.994 0.975 0.509 0.497
Guizhou 0.443 0.952 0.963 0.748 0.720

Inner Mongolia 0.516 0.893 0.945 0.777 0.734
Ningxia 0.281 0.537 0.940 0.555 0.522
Qinghai 0.401 0.946 0.974 0.728 0.709
Shaanxi 0.215 0.998 0.975 0.469 0.457
Sichuan 0.309 0.999 0.971 0.617 0.599
Xinjiang 0.093 0.987 0.972 0.216 0.210
Yunnan 0.383 0.932 0.959 0.702 0.674

Northeast

Heilongjiang 0.199 0.984 0.964 0.429 0.413
Jilin 0.320 0.980 0.969 0.624 0.605

Liaoning 0.138 0.999 0.972 0.311 0.302

According to the models’ results reported in Table 7, most of provinces in East China had relatively
higher energy use efficiency as compared to provinces in the Center, West, and Northeast of the country.
Provinces in the East such as Beijing, Chongqing, and Shanxi had high efficiency above 80 percent.
Conversely, an energy use efficiency of less than 40 percent was observed in Gansu, Xinjiang, Shandong,
and Liaoning provinces.

It can be seen in Table 7 that there is very obvious regional heterogeneity of energy use efficiency.
Beijing, as the main energy efficiency policy implementation region, has always maintained high
energy efficiency. Because of hosting a large proportion of secondary and tertiary industries, Changsha
and Chongqing have also maintained high values in terms of energy efficiency.
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Industrial cities such as Gansu, Shandong, and Liaoning have a very high proportion of production
using coal. It can be speculated that the use of nonclean energy and the level of technology are the
reasons for the low energy efficiency in these cities. As Xinjiang is a minority autonomous region that
lacks resources, it has low technological levels, and slow implementation of energy efficiency policies
which could have contributed to its low energy efficiency levels.

In looking at average energy use efficiency by provinces it is noted that Models 1 and 3 have
similar trend calculation results, while Model 2 shows higher results that are similar to the results of
residual efficiency in Model 3, which cannot reflect regional heterogeneity well. What we are concerned
with is why the cities/provinces of Fujian, Guangdong, Shandong, Zhejiang, Hubei, Gansu, Shaanxi,
Heilongjiang, and Liaoning have different efficiency results across different models. The reason could
be that the energy structures in these provinces are basically dominated by energy-intensive secondary
industries and there is congestion in resource inputs for achieving economic growth.

Figure 1 shows the average value of energy use efficiency by regions in the three models. It can
be seen in the figure that the central region has higher energy efficiency, which has much to do with
the good implementation of energy efficiency policies and human resource allocation structures in
this region.

Figure 1. Estimated energy use efficiency by regions (2010–2017).

Notes:

1. Model 1: The time-variant efficiency model.
2. Model 2: The true fixed-effects model.
3. Model 3: Four components residual efficiency.
4. Model 3: Four components persistent efficiency.
5. Model 3: Four components overall efficiency.

A table giving the full results (not reported here but available on request) shows all 30 provinces’
yearly energy use efficiency for the three models. From this table, we can compare the trends of energy
efficiency between provinces and regions more comprehensively, and we can also see that energy
efficiency showed slow and steady growth.

Energy efficiency in the central region before 2010 was low, and its energy efficiency in 2005–2010
was lower than that in the eastern and western regions, indicating that the central region had a weak
capacity to absorb production capacity, and the industrial market had not been fully developed. After
2010, as the country’s ‘Central Rise’ policy entered the implementation phase, the central region’s
industrial structure was adjusted, its capacity to absorb production was continuously enhanced, and
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energy resource utilization technology was improved, leading to continuous improvements in energy
efficiency year by year.

Energy efficiency in the western region declined steadily. The reason for this declining pattern
is that the western region has abundant energy endowments and the gradual implementation of the
western development policy enhanced its economic development, expanded its market capacity, and
helped achieve improved energy efficiency. However, with the country’s excessive dependence on
the western region’s policies, this region’s market could not absorb too much capacity, and energy
productivity and energy consumption capacity did not match, resulting in serious overcapacity which
led to energy efficiency falling for several years.

Affected by the world financial crisis in 2008, China’s economic development, in particular the
development of energy intensive secondary industries, was hit hard. Therefore, after experiencing a
decline in energy efficiency, the Chinese government adopted a large-scale investment stimulus package
to protect its high rate of economic growth. Vigorous development of infrastructural investments
and construction drove the development of the secondary industries. As a result, from 2010 to 2017,
energy efficiency in the eastern and central regions increased significantly and steadily. However, the
improvements were far below the optimal level required by health and environmental standards.

6. Conclusions and Implications

This study estimated three different models accounting for the panel nature of the data and
determined separate province-specific energy use inefficiency effects. It also explained the degree of
inefficiency in the use of energy using its possible determinants including those related to the public
energy policy and environmental regulations. This research supplements existing research from the
perspective of energy policy and regional heterogeneity. We observed a large potential for improving
energy use efficiency, particularly in the western and northeastern regions. This study provides new
empirical evidence for evaluating China’s energy efficiency and transitioning to cleaner energy sources.

Energy use efficiency in most provinces of China improved slowly after 2010 as did the trend of
steady regional economic growth, but the magnitude of energy efficiency improvements was small
compared to investments in technological innovations. A comparison of the results of the three
stochastic frontier models shows that there was provincial and regional heterogeneity in energy use
and its efficiency. The models complement each other and being based on different distributional
assumptions and estimation methods together provide a picture of energy consumption in China at
the province level for the period 2010–2017.

We can also see that the impact of the government’s policies on energy efficiency were significant.
As the country’s ‘Central Rise’ policy entered the formal implementation phase, the central region
showed improvements in energy efficiency. This also means that there is potential for improving
energy efficiency in the western and northeastern regions. With the ‘coal to gas’ and ‘coal to electricity’
policy, energy efficiency in Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta showed
relatively high levels of progress.

With the country’s excessive dependence on policies for the western region, this region’s market
could not absorb as much capacity and energy productivity and energy consumption capacity did
not result in production capacity, which led to decreased energy efficiency. The results of the western
region’s policy imply that the government’s energy policy should be adjusted considering regional
heterogeneity. But the low level of energy efficiency in the northeastern region still needs more empirical
analysis to find out why this is the case. The ‘Central Rise’ policy could be modified to account
for specific characteristics of the western and northeastern regions, such as resource endowments,
production capacity adjustments, and infrastructure to increase their energy use efficiency. Further, the
determinants of energy use (in) efficiency can be identified and the models be specified such that each
model can explain possible outcomes of energy use and environmental protection.

A possible and interesting extension of this study is expanding the data period to include the
period before the 2008 global economic crisis and disaggregating the province level data to the industry

269



Energies 2020, 13, 1892

level. This will help control for energy intensity and targeted energy saving policies and an evaluation
of their impact.
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