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Preface to ”Impacts of Landscape Change on Water

Resources”

In order to manage our valuable water resources, it is imperative to understand the degree of

vulnerabilities and resiliency towards changes in the landscape. Continuous changes in land use and

land cover can have many drivers, including population growth, urbanization, demand for food,

evolution of socio-economic structure, policy regulations, and climate variability. Potential impacts

due to these changes could range from changes in water availability (due to changes in losses of

water to evapotranspiration and recharge) to degradation in water quality (increased erosion, salinity,

chemical loadings, and pathogens). Fields studies are conducted to understand this complexity at

local scales, while analyses at regional or watershed scales adopt modeling and simulation strategies.

A range of tools, including hydrological, biophysical and ecosystem models, are used (stand-alone

or in combination) to investigate important questions regarding impacts in order to inform the

decision-making process. These decision analysis tools identify landscape-change impacts, risks, and

uncertainties to provide guidance in making key management decisions. In this Special Issue, we

include research and discussion topics from field investigations, as well as analytical and modeling

studies to better understand the connection between landscape change and water resources at

various scales.

Manoj K. Jha

Editor
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Abstract: Changes in land use and land cover can have many drivers, including population
growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy
regulations, and climate variability. The impacts of these changes on water resources range from
changes in water availability (due to changes in losses of water to evapotranspiration and recharge)
to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens).
The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore
the need for integrated scientific approaches to understand the impacts of landscape change on
water resources. Several techniques, such as field studies, long-term monitoring, remote sensing
technologies, and advanced modeling studies have been contributing to better understanding the
modes and mechanisms by which landscape changes impact water resources. Such research studies
can help unlock the complex interconnected influences of landscape on water resources for quantity
and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight
peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated
impacts on water resources.

Keywords: landscape change; water resources analysis; water modeling; impact assessment

1. Introduction

Landscape change and its impact on water resources is a vast topic that encompasses fundamental
and applied research in multiple dimensions including water resources science and engineering,
agriculture, geology, geography, economics, and social sciences. Landscape change can have many
manifestations, such as changes due to urbanization, industrialization, commercialization of marginal
lands, agriculture, farmers’ decisions on the use of croplands, increased use of land through deforestation
and drainage of wetlands, government policy decisions for environmental regulations, natural disasters
such as floods and droughts, changing climatic and environmental conditions, and others. Subsequently,
the impacts of these changes in one form or another on water resources are realized at spatial
scales (local impacts contributing to regional scales), temporal scales (short-term vs. long-term
changes), changes in water footprints through changes in hydrological processes, and changes in
water/environmental quality (sediments, nutrients, and pathogens). For example, changing land
use through deforestation and/or drained wetland will influence changes in infiltration and runoff
characteristics, thereby affecting evapotranspiration, groundwater recharge, and sediment and water
yield [1–4].

It is well-known that the changes in land use have large impacts on water resources; however,
quantifying these impacts remains among the more challenging problems in managing water
resources [5]. One of the major challenges is the complex interconnection of water within the
hydro-bio-geo-climate characteristics [6]. As land use changes, it will alter the water balance through
changes in groundwater recharge, runoff, and evapotranspiration. Water movement will be affected
due to changes in soil physical properties such as moisture content and soil temperature. Variety of
land use types will have associated changes in land characteristics affecting the movement of water in

Water 2020, 12, 2244; doi:10.3390/w12082244 www.mdpi.com/journal/water1
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variety of ways. Added to this challenge is the response time of the impacts. For example, groundwater
systems response to changes in land use may vary widely from days to decades. Similarly, large scale
changes in land use will impact evapotranspiration to a large extent that will be propagated through
hydrologic systems and may potentially modify regional weather patterns and climate variability in
an unknown future time.

Technological advancements over the years and continuous research efforts have pushed the
boundary of science to better understand and quantitatively assess the impacts of landscape change
on water resources. While field studies have been proven useful to understand the complexity of
impacts at local scales [7], analyses at regional or watershed scales adopt modeling and simulation
strategies [8,9]. A range of tools, including hydrological, biophysical, ecosystem models have been
developed and used (stand alone or in combination) for investigation and inform the decision-making
process. These decision analysis tools identify landscape-change impacts, risks, and uncertainties to
provide guidance to make key management decisions [10,11].

This Special Issue presents studies [12–19] that describe the application of a variety of observational
and modeling tools and techniques to evaluate the impacts of landscape changes on water resources
in watersheds. Landscape changes included change due to agricultural best management practices
(BMPs), low impact development (LID) in urban settings, conservation agriculture practices, conversion
of erosion hot spot cropland into forest, and others. The impact on water resources included the changes
in streamflow, stream and soil temperature, evapotranspiration, sediment, and others. The application
of methods included study watersheds in U.S., Hungary, China, South Korea, and Ethiopia.

2. Summary of Papers in the Special Issue

Table 1 shows the comparative analysis of all articles of this Special Issue in terms of the type
of the land use change analysis, evaluated impact assessment parameters, and the methods used.
Brief summaries of each of the eight published papers are also presented.

Table 1. Comparative analysis of research presented in Special Issue papers.

Landscape Change
Analysis

Impact
Assessment
Parameter(s)

Approach Used Study Area Paper

Impact of LID at
watershed scale

Surface runoff,
subsurface runoff,

peak flow,
evapotranspiration

Application of an
ecohydrological model,

Visualizing Ecosystems for
Land Management

Assessments (VELMA)

East Fork Little
Miami River

Watershed, OH,
USA

[12]

Impact of land use
change on stream

temperature

Streamflow, stream
temperature

Develop a mechanistic
stream temperature model in
Soil and Water Assessment

Tool (SWAT) model

Marys River
Watershed, OR,

USA
[16]

Impact of open and
forested landscapes on

soil temperature
Soil temperature Extending soil temperature

model in VELMA

Crest-to-Coast
Environmental

Monitoring
Transect

(O’CCMoN) sites,
OR, USA

[17]

Impact of landscape on
river meandering

system

Channel sinuosity
vs. forest density

and ecological
value

GIS analysis of meandering
bends between 1952 and
2017 using aerial imagery

and UAV (unmanned aerial
vehicle)-surveys

Sajó River,
Hungary [18]
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Table 1. Cont.

Landscape Change
Analysis

Impact
Assessment
Parameter(s)

Approach Used Study Area Paper

Impact of optimal
placement of BMPs for

environmental
effectiveness

Streamflow,
sediment, BMP cost

Watershed modeling
framework using SWAT and

optimization algorithm
NSGA-II.

Youwuzhen
Watershed, China [13]

Impact of converting
erosion hot spot into

forested area
Sediment yield Morgan–Morgan–Finney

(DMMF) model
Haean Catchment,

South Korea [14]

Impact of conservation
agriculture on a
regional scale

Crop yield, water

Agricultural Policy
Environmental eXtender
(APEX) and GIS-based

multi-criteria evaluation
(MCE) technique

Ethiopia [15]

Impact of landscape on
vulnerability of flood

in an urban watershed

Streamflow, flood
extent, inundation

Hydrodynamic model
HEC-RAS (Hydrologic

Engineering Center—River
Analysis System) and

hydrologic model SWAT

Blue River, MO,
USA [19]

2.1. Cumulative Effects of Low Impact Development on Watershed Hydrology in a Mixed Land-Cover System,
by Hoghooghi et al., 2018

LID practices are designed to reduce the impact of land use change on hydrology. This study
used a spatially explicit ecohydrological model VELMA, to assess the impact of LID techniques at the
watershed scale. The authors calibrated and validated the model for streamflow. Hydrological effects of
three common LID practices (rain gardens, permeable pavement, and riparian buffers) were tested on a
0.94 km2 mixed land cover semi-urban watershed (27 percent impervious) in Ohio, USA. LID practices
were shows to perform as expected for effectively reducing the peak flow and increasing infiltration
but with limited efficiency in semi-urban watershed.

2.2. Modeling Landscape Change Effects on Stream Temperature Using the Soil and Water Assessment Tool,
by Mustafa et al., 2018

Stream temperature is an important factor in regulating fish behavior and habitat. This study
investigates the impact of landscape change on stream temperature. The authors developed a
mechanistic stream temperature module within the watershed modeling environment of the SWAT
model and applied it to the 782 km2 watershed in Oregon, USA. The model was calibrated for flow and
stream temperature before examining the changes in stream temperature due to change in land use.
The model was able to capture the increased stream temperatures in agricultural sub-basins compared
with forested sub-basins.

2.3. Improved Soil Temperature Modeling Using Spatially Explicit Solar Energy Drivers, by Halama et al., 2018

Soil temperature affects ecosystem properties including increasing the water temperature.
This study demonstrated that local solar energy information improved soil temperature modeling
estimates simulated by a soil temperature subroutine within a larger ecohydrological watershed
model VELMA. Authors calibrated the model using the data available from Oregon’s Crest-to-Coast
Environmental Monitoring Transect (O’CCMoN) sites. Results demonstrated the benefit of including
spatially explicit representations of solar energy within watershed-scale models that simulate
soil temperature.
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2.4. Issues of Meander Development: Land Degradation or Ecological Value? The Example of the Sajó River,
Hungary, by Bertalan et al., 2018

River channels and their surrounding floodplains enhance landscape evolution and the
diversification of environments. This study investigates the geomorphological development and
effects of bank erosion along meandering Sajó River in Hungary. Authors performed GIS analysis
of three consecutive meandering bends over 10 periods between 1952 and 2017 based on archive
aerial imagery and UAV-surveys. Analyses revealed that the meandering (channel sinuosity) was
directly proportional to forest density (dominant, compact, and connected) which provided high
ecological value.

2.5. Effects of Different Spatial Configuration Units for the Spatial Optimization of Watershed Best
Management Practice Scenarios, by Zhu et al., 2019

Variation in spatial configurations of BMPs at the watershed scale may have significantly different
environmental effectiveness. This study investigated and compared the effects of four main types of
spatial configuration units for BMP scenarios optimization. Optimization was conducted based on a
fully distributed watershed modeling framework, the Spatially Explicit Integrated Modeling System
(SEIMS) using SWAT, and an intelligent optimization algorithm Non-dominated Sorting Genetic
Algorithm II (NSGA-II). Results showed that the different BMP configuration yielded significant
differences in near-optimal Pareto solutions, optimizing efficiency, and spatial distribution of BMP
scenarios. BMP configuration units that support the adoption of expert knowledge on the spatial
relationships between BMPs and spatial locations (e.g., hydrologically connected fields, slope position
units) are considered to be the most valuable spatial configuration units for watershed BMP scenarios
optimization and integrated watershed management.

2.6. Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load
in an Upland Agricultural Catchment of South Korea, by Choi et al., 2019

Soil erosion has a negative impact on the environment and socioeconomic factors by degrading
the quality of both nutrient-rich surface soil and water. This modeling study demonstrated the
effectiveness of converting soil erosion hot spots within the watershed into forest for reducing the
sediment yield significantly.

2.7. Scaling-Up Conservation Agriculture Production System with Drip Irrigation by Integrating MCE
Technique and the APEX Model, by Assefa et al., 2019

Conservation agriculture, which promotes no-till, mulching, and diverse cropping, provides higher
water use efficiency in addition to improving soil fertility and crop yield. This study demonstrated
the scaling-up impacts of conservation agriculture on a regional scale. The calibrated biophysical
model APEX in combination with GIS-based multi-criteria evaluation (MCE) technique was used to
extend the modeling analysis to the national scale in Ethiopia. Results indicated that the conservation
agriculture with drip irrigation technology could improve groundwater potential for irrigation up to
five folds and intensify crop productivity by up to three to four folds across the nation.

2.8. Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling
Approaches, by Jha and Afreen, 2020

Urban landscape dictates the extent of inundation during a flood event, affecting vulnerable
infrastructures. This study presents a systematic approach of combining hydrodynamic model
HEC-RAS with hydrologic model SWAT in delineating flood inundation zones, and subsequently
assessing the vulnerability of critical infrastructures in the Blue River Watershed in Kansas City,
Missouri. Results demonstrate the usefulness of such combined modeling systems to predict the
extent of flood inundation and thus support analyses of management strategies to deal with the risks
associated with critical infrastructures in an urban setting.

4
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3. Conclusions

Landscape changes have direct linkages with changes in hydrology in terms of water balance
components. As land use characteristics change, it will alter the hydrology at the local scale, leading
to the impacts on water availability and associated water quality to regional scales and at various
temporal scales. The papers in this Special Issue describe the applications of a variety of observational
and modeling tools and techniques to evaluate the impacts of landscape changes on water resources.
The studies can be categorized into four subject areas: (1) impact assessment due to implementation
of management practices [12–15], (2) impact of landscape on stream and soil temperature [16,17],
(3) landscape and river meandering [18], and (4) landscape for flood inundation [19].

Funding: This received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Low Impact Development (LID) is an alternative to conventional urban stormwater
management practices, which aims at mitigating the impacts of urbanization on water quantity
and quality. Plot and local scale studies provide evidence of LID effectiveness; however, little is
known about the overall watershed scale influence of LID practices. This is particularly true in
watersheds with a land cover that is more diverse than that of urban or suburban classifications alone.
We address this watershed-scale gap by assessing the effects of three common LID practices (rain
gardens, permeable pavement, and riparian buffers) on the hydrology of a 0.94 km2 mixed land cover
watershed. We used a spatially-explicit ecohydrological model, called Visualizing Ecosystems for
Land Management Assessments (VELMA), to compare changes in watershed hydrologic responses
before and after the implementation of LID practices. For the LID scenarios, we examined different
spatial configurations, using 25%, 50%, 75% and 100% implementation extents, to convert sidewalks
into rain gardens, and parking lots and driveways into permeable pavement. We further applied 20 m
and 40 m riparian buffers along streams that were adjacent to agricultural land cover. The results
showed overall increases in shallow subsurface runoff and infiltration, as well as evapotranspiration,
and decreases in peak flows and surface runoff across all types and configurations of LID. Among
individual LID practices, rain gardens had the greatest influence on each component of the
overall watershed water balance. As anticipated, the combination of LID practices at the highest
implementation level resulted in the most substantial changes to the overall watershed hydrology.
It is notable that all hydrological changes from the LID implementation, ranging from 0.01 to 0.06 km2

across the study watershed, were modest, which suggests a potentially limited efficacy of LID
practices in mixed land cover watersheds.

Keywords: LID practices; watershed scale; impervious area; peak flow; surface runoff; shallow
subsurface runoff and infiltration; evapotranspiration

Water 2018, 10, 991; doi:10.3390/w10080991 www.mdpi.com/journal/water7
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1. Introduction

Urbanization alters natural hydrological systems by altering stream channel networks (e.g.,
channelization and burial), creating microclimates (e.g., urban heat islands), and generating rapid
runoff from precipitation and snowmelt events [1]. These changes have direct impacts on surface and
groundwater quantity and quality. Conventional urban stormwater management practices are often
developed to control runoff and minimize flooding; however, these systems can be costly and may
not directly address issues, such as reductions in infiltration and groundwater storage via impervious
surfaces that may lead to urban flooding, erosion, and the degradation of water quality [2].

In recent years, alternative stormwater management practices, such as Low Impact Development
(LID), have been adopted (e.g., bioretention cells or rain gardens, permeable pavements, and bioswales)
in many urban and suburban areas [3,4]. LID, also called sustainable urban drainage systems (SUDSs),
among other globally varying names [5], is an approach that uses soils, vegetation, and landscape
design to control nonpoint source runoff and pollutants in urban systems. A goal of LID is to promote
watershed resilience through “green” design [6].

There is a growing body of literature focused on evaluating the local (e.g., plot or site) scale
effectiveness of LID. Several recent papers have synthesized the key findings of studies assessing
the effects of different LID practices, including field experiments and modeling studies, on water
quantity (e.g., peak flow and runoff volume) and water quality (e.g., nitrogen, phosphorous, and total
suspended solids) at local scales [7–11]. These previous studies provide foundational research for
scaling LID approaches to watersheds. However, limited evidence of LID effectiveness at the watershed
scale exists [12,13], and research focusing on LID impacts at watershed scales is just beginning to
emerge [14]. Therefore, questions remain about how LID practices can individually or cumulatively
affect watershed hydrology [14,15].

Experimental studies, designed to investigate the watershed-scale effects of LID, have provided
critical insights into how watershed hydrology responds to these approaches. For example,
Jarden et al. [16] designed a paired watershed approach to quantify the effect of street-connected
bioretention cells, rain gardens, and rain barrels on peak discharge and total storm runoff. The results
from the subwatershed with smaller LID lots and underdrain connections showed a substantial reduction
in peak discharge (up to 33%) and total storm runoff (up to 40%). Additionally, recent field-based research
provides evidence of the cumulative watershed scale effects of LID on hydrologic responses, such as peak
flows and pollutant loads [17–20]. Such experimental studies can be resource intensive (e.g., financial,
personnel, time) [21]; however, process-based models provide a means to go beyond measured data
and explore the projected “what if” LID scenarios using potentially less resources.

Process-based or mechanistic watershed models, which simulate hydrological (and other)
processes and outputs for different water balance components (e.g., streamflow, evapotranspiration),
are critical tools to understand the influence of LID practices on watershed processes [22]. The Storm
Water Management Model (SWMM) [23] has been used to simulate the effects of different LID practice
implementations (porous pavement, rain barrels, and rain garden) on runoff and flood risk reductions
in an 87.6 km2 urban watershed and model the cumulative effects of street-side bioretention cells,
rain gardens, and rain barrels in a 0.12 km2 residential watershed [21]. Overall, the results indicate
increases in evaporation and infiltration, as well as decreases in surface runoff and discharge, across
different return periods. The performance of LID practices (rain gardens, permeable pavements, and
rainwater harvesting tanks) has also been evaluated under different urban land use densities using the
Soil and Water Assessment Tool (SWAT) [24], demonstrating that the effectiveness of LID practices
differs among the urban land use densities [25].

The aforementioned studies and others (e.g., [26–29]) advance current knowledge on the
effectiveness of LID practices at watershed scales using various process-based model approaches;
however, all of these studies focus on watersheds that are entirely urban or suburban. A clear need
exists for an understanding of the extent to which LID approaches are effective in mixed land
cover watersheds, i.e., those with urban and suburban land cover in addition to others (e.g., forest
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and agriculture). Furthermore, a spatially explicit approach toward representing LID practices and
associated hydrological processes to analyze the effects of varying patterns of mixed land use and land
cover under different management practices is critical [30], as most approaches are challenged with
representing spatial landscape heterogeneities [31].

In this paper, we assess how LID implementation affects watershed hydrologic responses in a
mixed land cover watershed. Specifically, we ask: How does the type and extent of LID practices
affect water balance components, including surface runoff, peak flows, evapotranspiration, shallow
subsurface flow, and infiltration, in a mixed land cover watershed? We do this by using a spatially-
explicit ecohydrological model, called Visualizing Ecosystems for Land Management Assessments
(VELMA) [32] for a variety of scenarios associated with LID and the implementation of forested
riparian buffers. Our study is one of the first, to our knowledge, to examine LID implementation at
the watershed scale using spatially explicit modeling approaches in a system with mixed suburban,
agricultural and forest land cover. As a result, we discuss the implications of this study for effective
stormwater management in mixed land cover systems and future research directions toward this goal.

2. Materials and Methods

2.1. Study Area Description

The Shayler Crossing (SHC) watershed is a subwatershed of the East Fork Little Miami River
Watershed in southwest Ohio, USA and falls within the Till Plains region of the Central Lowland
physiographic province. The Till Plains region is a topographically young and extensive flat plain,
with many areas remaining undissected by even the smallest stream. The bedrock is buried under
a mantle of glacial drift 3–15 m thick [33,34]. The Digital Elevation Model (DEM) has a maximum
value of ~269 m (North American_1983 datum) within the watershed boundary (Figure 1). The soils
are primarily the Avonburg and Rossmoyne series, with high silty clay loam content and poor to
moderate infiltration [35]. Average annual precipitation for the period, 1990 through 2011, was
1097.4 ± 173.5 mm. Average annual air temperature for the same period was 12 ◦C [36].

We considered SHC a mixed land cover watershed, located on the east side of Cincinnati,
Ohio, with a drainage area of 0.92 km2 (Figure 1). The primary land uses consist of 64.1% urban
or developed area (including 37% lawn, 12% building, 6.5% street, 6.4% sidewalk, and 2.1% parking
lot and driveway), 23% agriculture, and 13% deciduous forest (Table 1). Total imperviousness covers
approximately 27% of the watershed area, the majority of which is directly connected to a storm sewer
system without any intermediary controls [30]. The watershed was chosen for this study because it
is part of the East Fork Little Miami River Watershed, where a long-term monitoring and focused
modeling effort is being conducted by the US Environmental Protection Agency (EPA), Office of
Research and Development (ORD), Ohio Environmental Protection Agency (Ohio EPA), and Clermont
County (Ohio) Stormwater Division.

2.2. Input Data

We obtained average daily precipitation and temperature data from a weather station, located
approximately 13 km from the north boundary of the watershed at 84.2909◦ W, 39.194◦ N [37].
Streamflow has been monitored, from 3 April 2006 to the present day, using a stage sensor (600 LS
Sonde with temperature, conductivity, and shallow vented level sensors, YSI Inc., Yellow Springs,
OH, USA) at the watershed outlet. Water depth was recorded at 10-min intervals and converted to
streamflow (m3 s−1) using a rating curve, developed by US EPA. We obtained a 10 m resolution DEM,
Soil Survey Spatial Tabular (SSURGO 2.2) soil data, and National Land Cover Dataset (NLCD) land
use data from the Natural Resources Conservation Service (NRCS) Geospatial Data Gateway [38].
We further used an impervious area shape file from Clermont County, Ohio through the Center for
Urban Green Infrastructure Engineering, Inc. (Milford, OH, USA).
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Figure 1. The study area is a 0.92 km2 subwatershed (Shayler Crossing) of the East Fork Little Miami
River watershed, located on the east side of Cincinnati, Ohio in Clermont County, USA. The watershed
outlet is identified as a red triangle.

Table 1. Summary of Shayler Crossing watershed land use area and characteristics.

Land Use Type Area (km2) % of Watershed % of Total Imperviousness

Lawn 0.34 37.0 -
Agriculture (corn) 0.21 23.0 -

Forest 0.12 13.0 -
Building 0.11 12.0 44.5

Street 0.06 6.5 24.0
Sidewalk 0.06 6.4 23.5

Parking Lot and Driveway 0.02 2.1 8.0

2.3. Model Description

To simulate the effect of LID on watershed hydrology, we used the Visualizing Ecosystems for
Land Management Assessments (VELMA) model. VELMA is a spatially distributed ecohydrological
model that couples watershed hydrology and carbon (C) and nitrogen (N) cycling in plants and
soils, and the transport of water, C, and N from the terrestrial landscape to streams [32]. VELMA
is not an “urban hydrology” model according to the strict tradition of stormwater management
models (e.g., SWMM). Its key strengths are its spatially explicit representation of hydrological and
biogeochemical processes and broad applicability to a variety of ecosystems, such as forest, agricultural,
and urban, in order to assess the effects of LID in mixed land cover systems. Urban LID practices
can be represented in the model using modifications to present watershed permeability, lateral and
horizontal hydraulic conductivities, and land cover (see Section 2.5). VELMA’s spatially explicit
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grid-based structure affords the capacity to represent transitions from directly connected to indirectly
connected impervious areas by replacing values on a cell by the cell basis for the aforementioned
model representations. The model is also capable of scaling hydrologic and biogeochemistry responses
across multiple spatial (hillslopes to basins) and temporal (days to centuries) scales [21]. VELMA’s
visualization and interactivity features are packaged in an open-source, open-platform programming
environment (Java/Eclipse) [32].

VELMA’s modeling domain is a three-dimensional matrix that includes information regarding
surface topography, land use, and four soil layers. VELMA uses a distributed soil column framework
to model the lateral and vertical movement of water and nutrients through the four soil layers.
A soil water balance is solved for each layer. The soil column model has three coupled submodels:
(1) A hydrological model that simulates the vertical and lateral movement of water within the soil and
losses of water from soil and vegetation in the atmosphere; (2) a soil temperature model that simulates
daily soil layer temperatures based on surface air temperature; and (3) a biogeochemistry model that
simulates C and N dynamics.

A simple logistical function, based on the degree of saturation, is applied to capture the
breakthrough characteristic of soil water. Potential evapotranspiration (PET) is estimated using
the simple temperature-based method of Hamon [39]. Evapotranspiration (ET) increases exponentially
as soil water storage increases, and it reaches the PET rate as the soil water storage reaches saturation.
The VELMA simulator engine allows for the specification of a spatial data map, with permeability
fractions for each grid cell value (here, each 10 m grid cell). The grid’s permeability fractions are taken
into account when determining how much of a cell’s total water inflow (e.g., from rain, snow melt,
and lateral surface movement) penetrates into the first layer of the soil column. A permeability of
0 is completely impermeable (no water penetrates from the surface to the first soil layer), and 1 is
completely permeable (all water penetrates from the surface to the first soil layer).

The soil column model is placed within a watershed framework to create a spatially distributed
model applicable to watersheds (Figure 2, shown here with LID practices). Adjacent soil columns
interact through down-gradient water transport. Water entering each pixel (via precipitation or flow
from an adjacent pixel) can either first infiltrate into the implemented LID and the top soil layer,
and then to the downslope pixel, or continue its downslope movement as the lateral surface flow.
Surface and subsurface lateral flow are routed using a multiple flow direction method, as described
in Abdelnour et al. [21]. A detailed description of the processes and equations can be found in
McKane et al. [32], Abdelnour et al. [21], Abdelnour et al. [40].

2.4. Watershed Model Setup

We used VELMA’s pre-processor tool (called Java Processing Digital Elevation Model
(JPDEM) [32,41]) to fill sinks, determine flow direction, and compute the flow contribution area
of a 10 m DEM [32]. The watershed boundary was delineated, and the watershed outlet was assigned
using VELMA’s pre-processor [32]. All DEM, soil, and land use maps were clipped so that they have
the same number of columns and rows for the American Standard Code for Information Interchange
(ASCII grid, Esri, Inc., Esri grid format ArcGIS Desktop 10.0 Help, http://desktop.arcgis.com/en/
arcmap/10.3/manage-data/raster-and-images/esri-grid-format.htm) input in VELMA. The soil and
the land use maps contained ID numbers for every cell in the simulation area, which corresponded to
one or more of VELMA’s simulator configurations. We assigned two of VELMA’s soil configurations
to represent Rossymoyne and Avonburg soil types and seven land use configurations to represent
agriculture, forest, lawn, buildings, streets, sidewalks, parking lots and driveways. We merged wet
pond pixels with lawn pixels because currently lakes and ponds are not implementable in VELMA.
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Figure 2. Generalized structure of the VELMA model, and applications for LID. VELMA’s domain is
a watershed (a). Each grid cell within the watershed has four soil layers (b), including LID applied
to the land surface). Infiltration from LID is transported to the first soil layer (black arrow). Further
vertical transport of water (in this paper), carbon, and nitrogen transport can occur between each
grid cell’s four layers (white arrows), and surplus water (or carbon, nitrogen) is transferred from a
grid cell to the adjacent, most down gradient cell(s) in the watershed (blue arrows). P = Precipitation;
ET = evapotranspiration. Modified from Abdelnour et al. [21].

2.5. Base Model Parameterization, Calibration and Validation

We performed the base model calibration with daily streamflow at the outlet of the watershed from
1 January 2009 to 31 December 2010 with 2008 as a model warmup period and from 1 January 2011
to 31 December 2011 as a validation period. Our calibration period (2009 and 2010) included normal
precipitation years (1040 and 1046 mm), and our verification period (2011) was a wet year (1660 mm).
We defined a ‘wet’ period as greater than one standard deviation from the mean precipitation
(>1270.1 mm) and a dry period as less than one standard deviation (<923.9 mm).

Calibration was conducted through both semi-automatic and manual calibrations. We used
autocalibration to screen for sensitive parameters and reduce the solution space. Manual calibration
was implemented as a second phase to further refine the parameter values. For the initial automatic
calibration, we used the MOEA-VELMA calibration tool that links VELMA with the Multiobjective
Evolutionary Algorithm (MOEA) [42] framework in Java. The MOEA framework uses evolutionary
algorithms to solve multiobjective optimization problems, and the MOEA-VELMA calibration tool
leverages this ability to tune model input parameters to minimize the differences between simulated
results and observed data. Several parameters were chosen to calibrate the model, including soil layer
thickness, saturated hydraulic conductivity, porosity fraction, bulk density, wilting point, field capacity,
and PET parameters. The MOEA-VELMA calibration tool then implemented NSGA-II [43], using the
MOEA framework, and searched for the optimal set of input parameters to optimize our objective
function, that is, Nash Sutcliffe Efficiency (NSE) [44] for the observed and predicted daily streamflow:

NSE = 1 − ∑n
i=1|Oi − Pi|2

∑n
i=1

∣∣Oi − O
∣∣2 (1)

where Oi is the ith measured variable (e.g., discharge), Pi is the ith predicted variable, O is the arithmetic
average of the measured variable, and n is the total number of observations. The NSE coefficient
ranges between 1 (perfect fit) and negative infinity. An efficiency below zero implies that the mean
value of the observed value is a better predictor than the model.

12



Water 2018, 10, 991

After almost 500 simulations, we narrowed the range of selected sensitive parameters and ran the
MOEA-VELMA calibration tool for an additional 500 simulations. Then, we picked the solutions with
a higher NSE and used those parameter ranges in the manual calibration.

After the initial semi-automatic calibration, we conducted manual calibration through visual
analysis to capture trends in observed streamflow, using NSE in addition to percent bias (PBIAS) [45]
and root mean squared error (RMSE) [46]. PBIAS measures the average tendency of the predicted data
to be larger or smaller than observed values. It is also measures over- and underestimation of bias [44]:

PBIAS =
∑n

i=1(Oi − Pi)

∑n
i=1 Oi

× 100 (2)

and RMSE is the square root of the mean square error and varies from zero to large positive values:

RMSE =

√
1
n ∑n

i=1(Oi − Pi)
2 (3)

To ensure the simulations provided reasonable volumetric matches with observed data, we also
used a total simulated to total observed annual streamflow ratio (Sim:Obs) for each simulation year.
If the Sim:Obs was >1, simulated streamflow from the year exceeded that of the observed streamflow.
If it was <1, the opposite was true, and Sim:Obs = 1 suggested a perfect match between the total annual
simulated and observed streamflow.

The soil thickness of each layer was parameterized using United States Department of Agriculture
(USDA) soil survey data for the study area [35]. We used the MOEA-VELMA calibration tool to
calibrate saturated vertical and horizontal hydraulic conductivities for each soil layer. Other soil
physical characteristics (porosity, field capacity, wilting point, and bulk density) were obtained based
on soil texture class (Table 2) [32]. We obtained the first term of the PET Hamon equation (petParam1)
for different cover types using the MOEA-VELMA calibration tool, with the second term of Hamon
equation set to a constant value of 0.622, based on Abdelnour et al. [21]. A be parameter is a calibration
constant; it is an ET coefficient used in the logistic equation that computes ET from PET. We estimated
this parameter value from autocalibration. Air density (roair) was constant and set to 1300 g m−3

(Table 3). We adjusted all soil physical characteristics and PET parameters to best match the observed
streamflow during manual calibration. The parameters and their final model values are shown in
Tables 2 and 3. Setting soil parameters to zero produces an error in the VELMA output; therefore,
we set soil parameter values for impervious areas to those of the clay soil texture class, using the
approach by McKane et al. [32].

Table 2. Soil parameters for the base model (* = calibrated; all other values from McKane et al. [32]).
R stands for Rossmoyne and A stands for Avonburg soil type.

Parameter Description Soil Type Layer Value Unit

z Soil layer thickness All 1, 2, 3, 4 500, 500, 12,000, 12,000 mm

Ks,l * Saturated lateral hydraulic conductivity R and A
1, 2, 3, 4

130, 100, 80, 30 -
Impervious area 50, 30, 15, 10

Ks.v * Saturated vertical hydraulic conductivity R and A
1, 2, 3, 4

14, 14, 10, 10 -
Impervious area 7, 7, 5, 5

n Porosity fraction R and A
All

0.501 -
Impervious area 0.475 -

Pb Bulk density R and A
All

1.42
g cm–3

Impervious area 1.21

θwp Wilting point R and A
All

0.133 -
Impervious area 0.272 -

θfc Field capacity R and A
All

0.33 -
Impervious area 0.396 -
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Table 3. Calibrated Potential Evapotranspiration parameters for the base model.

Parameter Description Cover Type Value Unit

PetParam1 First term of PET Hamon equation

Agriculture (corn) 0.20

-Forest 0.30
Lawn 0.15

Impervious area 0.05

PetParam2 Second term of PET Hamon equation

Agriculture (corn)

0.622 -Forest
Lawn

Impervious area

TemperaturePetOff PET is only active when air temperature
is greater than this value

Agriculture (corn)

−3 C◦Forest
Lawn

Impervious area

roair Air density

Agriculture (corn)

1300 g m–3Forest
Lawn

Impervious area

be
ET coefficient used in the logistic

equation that computes ET from PET

Agriculture (corn)

3.07 -Forest
Lawn

Impervious area

noTranspirationPetFraction The fraction of PET available outside of
this cover’s growing season

Agriculture (corn)

1 -Forest
Lawn

Impervious area

2.6. Low Impact Development (LID) Configurations, Scenarios, and Model Parameters

To evaluate the effectiveness of LID practices based on the relative daily changes in watershed
hydrology compared to the calibrated base model, we simulated three types of LID scenarios: Rain
gardens (RG), permeable pavements (PP), and forested riparian buffers (RB). Our goal was to derive a
relative understanding of how different spatial distributions of select LID types may affect hydrology
in this mixed land over system; therefore, we did not aim to represent specific stakeholder-selected
LID practices for the watershed (e.g., exact sites where landowners would agree to implementation).

To implement the LID scenarios, we replaced grid cells in the calibrated base model, identified
as impervious, areas with one of two LID practices: RG or PP, depending on the impervious area
type (see below). We further replaced grid cells in agricultural land cover along a stream with RB.
We ran each scenario as a separate model using evenly distributed spatial configurations of 25%, 50%,
75% and 100% conversions for RG (in sidewalk locations) and PP (at parking lots and driveways; see
Figure 3 for an example). Each spatial distribution of RG and PP met or exceeded the watershed’s water
quality volume for bioretention (i.e., generally speaking, the volume of water treated by LID practices
to control in low to medium magnitude storm events), as recommended by the Ohio Department
of Natural Resources [47]. We also placed RP at 20 m and 40 m on each side of the stream in the
agricultural land of the Northern part of the watershed (Figure 1). This resulted in 10 simulated
LID scenarios (4 RG, 4 PP, and 2 RB) for comparison. We note here that a large-scale conversion of
impervious areas to LIDs (e.g., our 100% conversion scenarios) may not be reasonable, in terms of both
financial cost and the willingness of the community [46]; however, these conversion configurations can
provide a maximum mitigation potential for decision support.

RG and PP were chosen for the scenarios because they are reasonable retrofitting measures for
the studied watershed, are the most promising LID practices for reductions in peak flow and runoff
volume [8,48], and can be applied and assessed in the VELMA model. RBs were selected because
they currently do not exist in the agricultural land of the watershed (and therefore the base model).
Their addition was used for comparisons of the watershed-scale hydrological responses of RG and
RB conversions on impermeable areas. We selected 20 m and 40 m buffers to go beyond Ohio EPA’s
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requirement that forested area must be maintained for a minimum of the first 15 m of the area on either
bank [49].

We assessed the effect of the LID scenario implementation: (a) Individually and (b) using an
LID combination scenario (i.e., fully implementing RG, PP, and RB with the maximum level of
implementation). The individual model scenario runs of land cover conversions to RG and PP, for each
spatial configuration, included: (a) Sidewalks were converted to RG and (b) parking lots and driveways
were converted to PP (Table 4 and Figure 3). Lawns were not converted to RG. The percentage of the
watershed that was converted to RG, PP, and RB practices at different implementation levels is shown
in Table 5.

Table 4. LID configurations in the model and conversion levels.

Type of Current
land use

Type of Spatial Configuration
Maps Under LID Scenarios

Type of LID
Practices

Conversion
Level

Sidewalks Soil map, cover map, and
permeability fraction map Rain Garden (RG) 25%, 50%,

75%, 100%

Parking Lots and
Driveways

Soil map and permeability
fraction map

Permeable
Pavement (PP)

25%, 50%,
75%, 100%

Agriculture Soil map, cover map, and
permeability fraction map

Riparian Buffer
(RB)

20 m and
40 m

(a) (b) 

Figure 3. The spatial configuration of different land covers in the SHC watershed, with 10m cell
resolution: (a) Current land cover, and (b) after LID implementation: Conversion of a 100% spatial
configuration of the sidewalks to rain gardens, and driveways and parking lots into permeable
pavements, and the implementation of 40 m forest buffers along both sides of the stream on the
agricultural land. The watershed outlet is identified as a red triangle.
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Table 5. The percent of the watershed converted to each LID practice and implementation level.

Type of LID Practices
Percent Watershed Converted

25% 50% 75% 100%

RG 1.6 3.2 4.8 6.4
PP 0.5 1.1 1.6 2.1

20 m 40 m - -
RB 1.5 3.0 - -

To implement LID into each scenario, we parameterized the soil texture, soil physical
characteristics, and PET parameter values for LID practices, based on Ohio EPA requirements
(Table 6) [49]. To do this for the RG scenarios, we created soil maps with a new soil class, “RG,”
for each spatial configuration (i.e., 25% to 100%). The RG soil maps, one for each implementation level,
replaced the sidewalk pixels of the original soil map. Soils in the new RG maps were adjusted for
soil depths, texture classes, and physical parameters to represent soils associated with rain gardens.
The RG soil maps were based on Ohio EPA requirements for rain gardens (Table 6), which suggest
that the soil media depths of a rain garden are 60–100 cm deep with loamy sand [49]. In the updated
model configurations for each implementation scenario, we assumed no underdrain pipes and no
outlet pipes, which are currently not implementable in VELMA.

In addition to the soil maps, we created new land cover maps for each spatial implementation
level of RG (25% to 100%). We defined a new land cover, “RG,” where existing sidewalks were located.
For example, at the 50% RG implementation level, 50% of sidewalk’s pixels of original were defined as
“RG” land cover. For each new “RG” map, we parameterized the PET parameters of “RG” land cover
to lawn values (Table 7).

For PP scenarios, we generated soil maps with a new soil class, “PP” which replaced parking lots
and driveways at each conversion level (25% to 100%). We modified the original soil depths, soil texture
classes, and soil physical parameter values for the “PP” soil class (Table 6) using the same values
at each conversation level. According to the Ohio EPA Stormwater Management Practices manual,
the recommended thickness of a PP system is 40–76 cm, depending on frost depth [49]. Therefore,
for PP, we parameterized the hydraulic conductivity and other soil physical parameter values of the
first 100 cm of the “PP” soil class [32]. We assumed that permeable pavement is a continuous pavement
system (gravel) and well maintained with no clogging issues.

For RB, we created soil maps with a new soil class (Table 6) and a new land cover class (Table 7),
“RB” to replace current soils and land cover at 20 m and 40 m on each side of streams where agriculture
exists. Because most riparian buffers for Ohio streams are forested [49], we parameterized the soil
parameters and PET values of the buffer area in the new soil and cover maps to reflect the effect of a
forest rooting system and forest canopy on infiltration and ET (Tables 6 and 7).

For RG, PP and RB, new permeability fraction maps were also created for each implementation
level to replace the original permeability fraction map in each model scenario. In the new permeability
fraction maps, permeability fractions of 0 for impervious surfaces, such as sidewalks, parking lots and
driveways, were changed to 1 and 0.95 for RG and PP, respectively. The permeability fraction for the
RB scenario was changed from 0.95 for agriculture to 1 for RB forested land cover.

Once the base model was calibrated, we ran the model for each of the 10 scenarios under the
different LID spatial configurations to evaluate changes in peak flows, surface runoff, ET, subsurface
runoff and infiltration, and compared them to that of the base model (existing conditions).
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Table 6. Soil parameter values used in the LID practice scenarios. RG: Rain Garden, PP: Permeable
pavement, and RB: Riparian Buffer.

Parameter Description LID Practice Layer Value Unit

z Soil layer thickness 1 All 1, 2, 3, 4 500, 500, 12,000, 12,000 mm

Ks,l Saturated lateral hydraulic conductivity 2
RG 1, 2, 3, 4 200, 200, 80, 30

-PP 1, 2, 3, 4 250, 250, 80, 30
RB 1, 2, 3, 4 300, 300, 80,30

Ks.v Saturated vertical hydraulic conductivity 2
RG 1, 2, 3, 4 50, 50, 10, 10

-PP
1, 2, 3, 4

100, 100, 10, 10
RB 50, 30, 15, 10

n Porosity fraction 2
RG

All
0.437

-PP 0.437
RB 0.437

Pb Bulk density 2
RG

All
1.65

g cm–3PP 1.65
RB 1.65

θwp Wilting point 2
RG

All
0.055

-PP 0.033
RB 0.055

θfc Field capacity 2
RG

All
0.125

-PP 0.091
RB 0.125

1 Ohio EPA [49]; 2 McKane et al. [32], based on the Ohio EPA recommended soil texture class of loamy sand and
sand for RG and PP [49]. For the RB scenario, the values were set to the loamy sand soil texture class to represent a
forest rooting system [32].

Table 7. Potential Evapotranspiration parameter values used in the LID practice scenarios. RG: Rain
Garden, PP: Permeable Pavement, and RB: Riparian Buffer.

Parameter Description LID Practice Value Unit

PetParam1 1 First term of PET Hamon equation
RG 0.15

-PP 0.05
RB 0.30

PetParam2 Second term of PET Hamon equation
RG

0.622 -PP
RB

TemperaturePetOff PET is only active when air
temperature is greater than this value

RG
−3 C◦PP

RB

roair Air density
RG

1300 g m−3PP
RB

be
ET coefficient used in the logistic

equation that computes ET from PET

RG
3.07 -PP

RB

noTranspirationPetFraction The fraction of PET available outside
of this cover’s growing season

RG
1 -PP

RB
1 The values for RG and RB were set to the calibrated values for lawn and forest land cover (Table 3). The value for
PP set to minimum value for impervious area (Table 3).

3. Results

3.1. Calibration and Validation of the Base Model

Daily streamflow calibration suggests acceptable model results across the simulation period
(Figure 4a–c). The NSE, R2, root mean square error (RMSE), and percent bias (PBIAS) for the calibration
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period (2009 and 2010) were 0.50, 0.53, 3.12 and −2.40, respectively. Moriasi et al. [50] recommended
that an NSE ≥ 0.50 and PBIAS ≤ ±15 can be considered satisfactory for daily streamflow simulations.
RMSE varies from 0 to large positive values. The lower the RMSE, the better the model fit [46].
The optimum value for PBIAS is zero, and low magnitude values indicate better simulations. Negative
values indicate model overestimation [51]. While the daily model calibration is acceptable, it tends
toward underestimating peak flows (Figure 4a,b). This is confirmed by a negative PBIAS; however,
the magnitude is low, which means that the bias toward peak flow underestimation is minimal. Further,
the Sim:Obs were 0.77, 1.10 and 0.96 (for 2009, 2010, 2011, respectively), all of which indicated that
annual volumetric streamflow estimates in the base model were satisfactory.

Figure 4. Plots of (a,b) calibration (NSE = 0.54, R2 = 0.53, RMSE = 3.12, and PBIAS = −2.40) and (c)
validation (NSE = 0.40, R2 = 0.48, RMSE = 5.27, and PBIAS = 13.84) of the VELMA model output at the
watershed outlet. The model was calibrated at a daily time step from 1 January 2009 to 31 December
2010 and validated at a daily time step from 1 January 2011 to 31 December 2011.

Simulations during the validation period captured general daily streamflow patterns; however,
the model fit was less satisfactory than the calibration period (NSE of 0.40, R2 of 0.48, RMSE of 5.27,
and PBIAS of 13.84). Moreover, visual inspection of the validation plot (Figure 4c) indicated that the
calibrated parameters were less successful during 2011, suggesting that calibrated model simulations
may have increased limitations during wet years.
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The average annual water balance components of the calibrated base model across the watershed,
for the simulation period (2009–2011), are shown in Table 8. Evapotranspiration accounts for about
44% of precipitation, which approximates the lower end of the Sanford and Selnick [52] estimates of
the fraction of precipitation lost to evapotranspiration in Southwest Ohio, USA.

Table 8. Average annual water balance components of the base model for the entire watershed, from
2009–2011. Note that precipitation is lower than the sum of the other water balance components
because of the structure of VELMA’s hydrological model output, which couples shallow subsurface
runoff with infiltration.

Water Balance Component Value (mm)

Precipitation 1249
Surface runoff 444

ET 548
Shallow subsurface runoff + infiltration 427

3.2. LID Scenarios

We compared the simulated water balances for the three LID practices at 25%, 50%, 75% and
100%, 20 m and 40 m implementation levels and one combined LID scenario at the maximum level of
implementation. Our results suggest that LID practices decreased surface runoff and peak flow, and
increased ET, shallow subsurface runoff and infiltration as the LID implementation level increased
(Figure 5). However, the response varied among different LID practices (Figure 5).

Figure 5. Percent change for watershed water balance components for three different types of LID
practices at the outlet of the watershed (RG: Rain Garden, PP: Permeable Pavement, and RB: Riparian
Buffer), (a) peak flow; (b) surface runoff; (c) ET (evapotranspiration); and (d) shallow subsurface runoff
and infiltration. At the maximum level of implementation (100% and 40 m) RG, PP, and RB cover 6.4%,
2.1%, and 3% of the total watershed area, respectively.

Reduction in peak flows varies from about 0.5% to 5.5% among all individual LID practice
scenarios, with the high reduction observed for the RG scenario at 100% and 75% implementation
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levels (5.5% and 4%, respectively), followed by 50% RG and 40 m RB scenarios (Figure 5a). Surface
runoff decreased across all LID scenarios, with the largest reductions resulting from the RG scenario at
25%, 50%, 75% and 100% implementation levels (7%, 10.5%, 16% and 22%, respectively) (Figure 5b).
PP and RB scenarios showed smaller reductions in surface runoff, ranging from 0.4 (for 25% PP) to
3.4% (for 100% PP). Reductions in surface runoff for 40 m and 20 m RB scenarios were 1.4% and 0.6%,
respectively (Figure 5b). The percentage reduction in surface runoff was more than peak flows across
all scenarios.

Retrofitting the baseline model with the LID increased shallow subsurface runoff and infiltration
with increasing implementation levels as shown in Figure 5c,d. ET increased 2–15% for RG and RB
scenarios across implementation levels, with higher increases in the 100%, 75% and 50% RG scenarios
(11%, 8% and 5%, respectively). The RG scenario resulted in higher increases for both processes in
comparison to other individual scenarios. Following the same trend, PP and RB scenarios increased
shallow subsurface runoff and infiltration, ranging from 0.2% to 6% for different implementation levels
(Figure 5d). Changes in ET for PP scenarios were negligible (Figure 5c).

Combining the three LID practices (RG, PP, and RB) at the highest implementation levels (100%
for RG and PP, and 40 m for RB) resulted in the largest reductions in peak flows and surface runoff
compared to individual LID implementations. The reductions in peak flow (8.5%) were modest,
but considerably greater in surface runoff (26%; Figure 5a,b). The combined LID scenario resulted
in the greatest increase in ET (15%), as well as a shallow subsurface runoff and infiltration (21%),
in comparison with individual LID scenarios (Figure 5c,d).

The RG scenario showed the highest reduction in peak flows in comparison with PP and RB
scenarios (Figure 5a). Therefore, we compared the peak flow to the percent of reduction in peak
flow after RG implementation (100% scenario) during the simulation period (Figure 6). Peak flows
were defined as one standard deviation above the mean simulated daily streamflow (here, 3.18 mm).
We also considered the streamflow one day after we considered the peak flows to include a portion of
the falling limb of the hydrograph. The percentage reduction in peak flows after RG implementation
decreased exponentially with increasing peak flow conditions R2 of 0.47; p-value < 0.001 (Figure 6).

Figure 6. Percentage reduction in peak flow after RG implementation (100% scenario) vs. peak flow
(mm) during the simulation period at the watershed outlet. Peak flow was estimated as any flow that
was one standard deviation above the mean simulated daily flow for the study period or flow on the
day following peak flow conditions, as described (to capture part of the falling limb of the hydrograph).
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4. Discussion

4.1. LID Practices and Watershed-Scale Hydrological Effects

We assess, via spatially explicit model simulations, the relative effects of different types and
configurations of LID practices on watershed hydrology in a mixed land cover system. Model simulation
results suggest reductions in peak flows and surface runoff, and increases in evapotranspiration and
subsurface flow and infiltration, with all spatial configurations of LID at the watershed scale. This is
consistent with Gagrani et al. [19], Fry and Maxwell [53], and Avellaneda et al. [54], who reported similar
effects on water balance components and peak flows after the placement of different LID practices in
urban watersheds, with 42–55 percent impervious surfaces and drainage areas ranging from 0.2 km2

to 12 km2.
The magnitudes of simulated water balance responses to LID placement in our watershed

study were lower than other studies in strictly urban watersheds (e.g., Fry and Maxwell [53] and
Avellaneda et al. [54]) and more similar to a pilot study in a small suburban watershed (1.8 km2) of
Cincinnati, Ohio, where retrofitted rain gardens and rain barrels did not result in substantial runoff
reductions [55]. The more limited response in our study watershed reflects, in part, the smaller extent
of urban and suburban land cover compared to studies in other watersheds. Only 27 percent of our
study watershed was covered in impervious surfaces, and only 31 percent of this area was converted to
LID at the highest level of implementation. Therefore, our results are not completely unexpected and
may point to important scale issues regarding the extent to which LID influences hydrologic regimes
in mixed land use watersheds.

The simulated RB scenario did not result in a significant effect on peak flow at the watershed outlet
and other water balance components. This is likely because only 3% of the total watershed area (and
13% of the watershed’s agricultural land cover) was converted to RB at the highest implementation
level (40 m). This indicates that the type and extent of LID practices affects cumulative watershed-scale
hydrological effects [15,56].

In the mixed land cover SHC watershed, model comparisons among LID scenarios suggested
that the RG was most effective across all implementation levels at reducing runoff and peak flow, and
promoting ET, compared to PP and RB. RG also exerted greater control over modifying watershed
water balance components, in terms of per unit area LID conversions. For example, at the 100%
implementation level, RG reduced peak flows by 73% and 2%, decreased surface runoff by 50% and
86%, and increased ET by ~100%, which was 23% more than PP and RB, respectively. PP was 28%
more effective at increasing shallow subsurface runoff and infiltration than RG. Recent studies point to
a similar effectiveness of RG on water balance components at watershed scales [16,18]. Studies also
have shown that PP can effectively mitigate surface runoff [57,58]; however, the degree of RG and PP
functionality depends on the extent of the application area of LID within the watershed [59].

We found that 100% implementation of RG across the watershed was more effective at reducing
peak flows during small storms than during larger ones (Figure 6). At the plot scale, Speak et al. [60]
found that a green roof runoff retention significantly decreased during high rainfall events. These
indicate that the effectiveness of any type of management practice, including LID, may be exponentially
diminished as it loses storage capacity and becomes saturated. This counters Wadzuk et al. [61], who
concluded, at the plot scale, that antecedent soil moisture conditions and “back-to-back events” are not
a primary concern for biofiltration rain garden and green roof practices in recovering their infiltration
capacity. However, based on our results, this finding may not be transferable to watershed scales,
especially when LID practices receive both precipitation and appreciable surface runoff loading [62].
Our findings also highlight the potential importance of RG in controlling the first flush of pollutant
loads and channel erosion [63,64] during more frequent storm events and a need for future research on
the impact of LID practices across variable sequences of wet weather events.
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4.2. Implications for Stormwater Management and Future Research

Our study provides scientists and watershed managers a glimpse into the potential influence of
LID practices in mixed land cover systems, where only a portion of the watershed is converted to LID.
Watershed-scale models, such as VELMA, can provide a physically-based and systematic means of
projecting and evaluating the influence of various LID configurations in heterogeneous watersheds.
Using this approach, our results suggest modest to minimal changes in most components of the water
balance in response to LID, though these responses may be much more considerable if the watershed
was exclusively urban or suburban land cover and converted to LID.

It is important to note that the location of the LID implementation with respect to the watershed
outlet may also be critical [56]. For example, in our study, the watershed in agricultural areas are in
the headwaters and LID implementation is in the lower portion of the watershed. Therefore, while
our results suggest a limited shift in watershed hydrological dynamics with LID implementation,
if LID was implemented into the upgradient of agricultural or forested land, then the magnitude of the
response may be even less substantial due to attenuation from downgradient watershed processes.
Based on these results, we suggest that future research needs to evaluate the hydrological effects of
LID using distributed models, with a particular focus on how configurations of different land cover
types influence watershed-scale LID responses, retiming of runoff delivery from subbasins of differing
land cover, and antecedent soil moisture, as affected by storm sequences.

Model selection for assessing the hydrological effects of watershed-scale LID implementation
is challenging because it involves trade-offs in achieving the necessary fidelity (i.e., the extent
to which the model faithfully represents the modeled system) to hydrological, biological, and
biogeochemical processes for prediction accuracy, while minimizing complexity and uncertainty [14].
Careful consideration of these tradeoffs is needed for future work that addresses how LID affects
watershed-scale hydrological processes, particularly in mixed land cover systems. For example,
existing models that explicitly integrate LID practices have been developed for urban systems and have
specific LID modules for urban-based hydrological processes (e.g., SWMM and Green Infrastructure
Flexible Model (GIFMod) [65]). On the other hand, models that have been explicitly developed
to assess the effects of LID practices in mixed land cover watersheds (e.g., VELMA and Regional
Hydro-Ecological Simulation System (RHESSys) [66]) may have a strong biogeochemical module
(because of their mixed land cover focus) but a more limited hydrological capacity to physically
represent LID practices, as compared with a model such as SWMM. Responses to these challenges are
evolving by incorporating LID modules within ecohydrological models, such as VELMA, that provide
mechanistic representations of LID performance [14] and coupling models to quantify how LID affects
the fate and transport of various pollutants, as well as couple SWMM with other watershed models to
improve simulations of urban hydrology [67].

Our findings suggest a clear need for the evaluation of the influence and benefits of LID in
the context of other watershed land uses and their associated management [68]. For example,
the incremental influence of LID on overall watershed responses, relative to management targets
at different locations along the stream network, should be assessed. In this example, if a management
goal is peak attenuation at the watershed outlet, a cost-benefit analysis, of how “best” to manage
diffuse sources of runoff across different land cover types for peak flow reduction, would be beneficial.

Advancing the scientific understanding of the hydrological responses to LID in mixed land
cover systems and linkages with the provision of diverse benefits is imperative because of the large
number of watersheds globally that have mixed land cover. Future research may focus on upscaling
fine scale studies to watersheds, applying a host of hydro-ecological models with LID modules or
model parameter representations to address LID challenges in suburban watersheds (e.g., to provide
multiple lines of evidence to support predicted outcomes), understanding LID’s role in modifying
baseflow (e.g., Bhaskar et al. [20]), and advancing these studies across diverse physiographic regions.
Furthermore, given that we simulated and interpreted LID effects in this relatively small mixed land
cover watershed, future research that applies continuous model simulations to project the hydrological
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effects of different LID configurations in mixed land cover watersheds with even greater complexity
than ours will help to set realistic expectations for long term LID performance in these systems. Finally,
research is also needed that expands our approaches to quantifying the effects of LID practices on
nutrient and sediment loads, and links LID modules within watershed-scale ecohydrology models
with simulated or measured in-stream processes.

5. Conclusions

We provide one of the first studies, to our knowledge, that assesses the relative watershed-scale
hydrological effects of different types and configurations of LID practices in a mixed land cover
watershed using a spatially explicit modeling approach. We simulated 10 scenarios across multiple
spatial configurations of LID to evaluate the watershed hydrological responses of three practices—rain
gardens (RG), permeable pavements (PP), and riparian buffers (RB)—in a 0.92 km2 watershed with
mixed suburban, agricultural, and forest land cover. A spatially-explicit ecohydrological model
(VELMA) was used to compare changes in the watershed’s water balance before and after LID
practice implementation.

Overall, we found that the type and extent of LID practices influence watershed hydrological
responses in our study system. Our simulation results indicate that LID practices decreased surface
runoff and peak flow, and promoted ET, shallow subsurface runoff and infiltration. However,
hydrologic responses and effectiveness varied among LID practices and implementation levels. When
LID practices were considered individually, on a LID per unit area basis across all LID implementation
levels, RG was more effective in reducing runoff and peak flow, and promoting ET, than PP and
RB. However, our results indicated that the 100% implementation of RG was more effective at
reducing peak flows during small storms than larger ones, suggesting that LID storage capacities are
reduced due to soil saturation during and following large events. Further, both RG and PP increased
shallow subsurface runoff and infiltration to almost the same extent at the watershed outlet and the
combined LID scenario resulted in the highest performance by increasing shallow subsurface runoff
and infiltration, and evapotranspiration by 21% and 15%, respectively, and reductions in peak flow
and surface runoff of 8.5% and 8%, respectively.

We conclude that the spatial configurations and extent of LID practices, as well as the model
selection and degree of watershed heterogeneity, might be critical for assessing the hydrological
responses of watershed-scale LID implementation and must be considered in future research. Further
research is needed to apply different LID configurations within mixed land cover watersheds to better
understand LID performance and to evaluate the effect of LID practices on nutrient and sediment loads.
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Abstract: Stream temperature is one of the most important factors for regulating fish behavior
and habitat. Therefore, models that seek to characterize stream temperatures, and predict their
changes due to landscape and climatic changes, are extremely important. In this study, we extend
a mechanistic stream temperature model within the Soil and Water Assessment Tool (SWAT) by
explicitly incorporating radiative flux components to more realistically account for radiative heat
exchange. The extended stream temperature model is particularly useful for simulating the impacts
of landscape and land use change on stream temperatures using SWAT. The extended model is
tested for the Marys River, a western tributary of the Willamette River in Oregon. The results are
compared with observed stream temperatures, as well as previous model estimates (without radiative
components), for different spatial locations within the Marys River watershed. The results show
that the radiative stream temperature model is able to simulate increased stream temperatures in
agricultural sub-basins compared with forested sub-basins, reflecting observed data. However,
the effect is overestimated, and more noise is generated in the radiative model due to the inclusion
of highly variable radiative forcing components. The model works at a daily time step, and further
research should investigate modeling at hourly timesteps to further improve the temporal resolution
of the model. In addition, other watersheds should be tested to improve and validate the model in
different climates, landscapes, and land use regimes.

Keywords: stream temperature; SWAT; Marys River watershed

1. Introduction

Stream temperature is an important water quality parameter that affects physical and chemical
processes in streams [1]. Higher stream temperatures in river systems represent a growing concern
worldwide and can affect the habitat and life spans of fish [2,3]. According to Eaton and Scheller [4],
some fish species will disappear from the water body, if stream temperature transcends an upper limit.
Using historical data ranging from 30 to 100 years, Kaushal et al. [5] reported that stream temperatures
have been increasing throughout the United States at a rate of 0.009–0.077 ◦C/year, with a significant
increase in the western United States. In particular, stream temperatures in the Pacific Northwest have
reached historical records—at times, they have exceeded the lethal limit of 21.1 ◦C for some aquatic
species such as salmon. For example, in the summer of 2015, the river temperature in the Columbia
River in the State of Washington reached the level of 24.5 ◦C and led to the death of 235,000 sockeye
salmon out of the total 507,000 that passed through the Bonneville Dam [6].

Water 2018, 10, 1143; doi:10.3390/w10091143 www.mdpi.com/journal/water27
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Similarly, Marys River (Hydrologic Unit Code 17090003) is a tributary of the Willamette River in
Northwest Oregon and has experienced increasing temperatures over the last few years. The Oregon
Department of Fish and Wildlife (ODFW) conducted a stream survey on flow conditions between the
years of 1991 and 1993 and observed that the maximum stream temperature reached the maximum
limit of 17.8 ◦C (ODFW). However, recently, increasing levels of human activities have resulted in even
higher water temperatures. For example, high water temperatures between 21.1 ◦C and 26.7 ◦C were
observed from June to August for some tributaries of Marys River (Marys River Watershed Council),
which has resulted in several United States Environmental Protection Agency (USEPA) 303(d) listings
for temperature exceedances. These trends may be related to changing climatic drivers as well as land
use practices (e.g., harvest of timber, increasing barren lands and clear-cutting areas throughout the
watershed) and landscape changes (e.g., urban and agricultural development).

Amidst large-scale landscape and land use changes, preservation of riparian buffers can increase
stream shading, thereby helping regulate water temperature along stream reaches [7]. Stream shading
intercepts and absorbs a large portion of solar radiation before it reaches the water surface, resulting in
less thermal energy that reaches and is stored in streams, which indirectly helps to cool stream
temperatures. Brown et al. [8] conducted a study in the Alsea watershed in Oregon along the coast
range to study the impact of shading on stream temperatures before and after clear cuts in the
watershed. They found that clear-cutting resulted in stream temperature increases of 7.8 ◦C one year
after the cuts. Bond et al. [9] investigated the impact of riparian reforestation on summer stream
temperatures in the Salmon River in northern California, and they found that partial reforestation
lowered stream temperatures by 0.11–0.12 ◦C/km and by 0.26–0.27 ◦C/km for full reforestation.

Since increasing water temperatures have remained a major concern in many watersheds, many
models have been proposed to simulate stream temperatures at time scales varying from minutes
to months (see Ficklin et al. [10] for a brief review). For this paper, we specifically focus on a
semi-distributed mechanistic watershed model called the Soil and Water Assessment Tool (SWAT) [11],
which has been extensively used to evaluate the effects of landscape and land use changes on
different hydrologic components. Ficklin et al. [10] improved the original stream temperature model
within SWAT, which was a linear regression model by Stefan and Preud’homme [12] that correlates
thermal energy exchange of air temperature to water temperature. Ficklin et al. [10] developed a
daily-scale model for stream temperature prediction by integrating multiple climate and hydrological
components, including snowmelt, surface runoff, lateral flow, groundwater flow, and finally air
temperature. Several studies have found the Ficklin et al. model [10] produces more realistic
simulation results compared to the linear regression proposed by Stefan and Preud’homme [12]
(Barnhart et al., 2014; Ficklin et al., 2012; Ficklin et al., 2014 [10,13,14]). However, the model
developed by Ficklin et al. [10] does not explicitly account for the different types of radiation that
affect thermal energy of water systems, and only recent work has attempted to improve the model
by incorporating select radiative components [15]. In general, thermal energy added and removed
from any water system consists of incoming radiation that adds thermal energy to the water and
results in increasing stream temperatures. This incoming radiation mainly consists of solar radiation
coming from the sun, atmospheric longwave radiation, landcover longwave radiation, convection,
and evaporation. In contrast, backscattered radiation removes thermal energy and helps to cool
temperatures. This radiation consists of emitted longwave radiation from the water surface as well
as convection and evaporation. Convection and evaporation radiative components can either add
or remove energy from any water body depending on stream temperatures and climate conditions,
specifically air temperature, humidity, and wind speed.

This paper highlights model development to explicitly incorporate multiple thermal radiation
components into the Ficklin et al. [10] stream temperature model within SWAT. These thermal radiation
equations are used within the widely used HEATSOURCE model [16], but until now, these equations
have yet to be incorporated into SWAT. HEATSOURCE differs from SWAT because it is a reach-based
stream temperature model, whereas SWAT is a watershed model. This means that SWAT simulates
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upland processes in addition to in-stream processes. HEATSOURCE can model stream temperatures at
hourly timesteps and requires site-specific data (e.g., shading, canopy structure, stream morphology)
that is oftentimes not available over the entire spatial extent of watersheds. Conversely, SWAT simulates
hydrologic components and stream temperatures throughout a watershed using a daily time step
and utilizes generally obtainable input data, such as spatially distributed precipitation, temperature,
elevation, land use, and soil type. Users may prefer to use SWAT instead of HEATSOURCE when
site-specific data is unavailable or when the study goal is to determine the effect of alternative land
management scenarios on stream temperatures throughout large, heterogeneous watersheds.

The paper is organized as follows. First, the study area and the SWAT model setup are
described. Then, three different SWAT stream temperature models are analyzed, including Stefan
and Preud’homm [12] air temperature regression, a mechanistic model by Ficklin et al. [10], and an
extension of the Ficklin et al. [10] model in which we specifically incorporate radiative components.
We calibrate SWAT for hydrologic discharge in the Marys River watershed, and we compare the
three stream temperature models to examine their relative performance for multiple sub-basins with
different land use/land cover. We demonstrate the utility of our results by comparing simulations for
sub-basins within primarily forested and agricultural landscapes.

2. Methodology

2.1. Study Area

The Marys River watershed, shown in Figure 1, is located in the Pacific Northwest of the United
States (Hydrologic Unit Code (HUC) 17090003) and is part of the Willamette River basin (HUC 170900)
in Oregon. It is one of five major river systems located on the western side of the Willamette River.
The area of the watershed is of 782 square kilometers. The highest point of the watershed is at Marys
Peak at an elevation of 1280 meters above sea level, and the lowest point is in Corvallis, Oregon, where
Marys River drains into the Willamette River at an elevation of 76 meters above sea level. The climate
of the watershed in the winter season is mild and wet, with an average winter temperature of 5 ◦C
and rainfall during the winter ranges from 1000 mm downstream of the watershed to more than
2500 mm at the highest elevation upstream of the watershed. In general, the watershed tends to be
dry, sunny, and warm throughout the summer (Marys River Watershed Council). It has an average
summer temperature of 17.5 ◦C. High rainfall intensity results in high stream discharge during winter
and spring and mean annual flows of 12–13 m3/s. However, during the summer, flows are generally
very low, and discharge sometimes drops below one cubic meter per second. Base flow is a major
contributor to the flow of the river, where 61–70% of the total stream flow comes from groundwater
contributions [17].

The watershed is divided into three different land use categories: Forest, agricultural, and urban.
Most of the watershed (65% of the total area) consists of forest, which is largely located along the
western portion of the watershed. In these mixtures of deciduous and evergreen forests, small streams
flow over beds of gravel and cobbles with high velocities due to steep slope gradients. Flow leaving the
forested region then enters agricultural land in the Willamette Valley that consists mainly of cultivated
crops, hay, pasture, wheat, and grass seed production. The streams in this region flow on sand and silt
with mild slope gradients, resulting in decreased flow velocities. Furthermore, urban areas are situated
further downstream within the Willamette Valley (e.g., the cities of Philomath and Corvallis), and the
stream flows over mostly flat to nearly flat gradients. Stream velocities decrease significantly as Marys
River enters Philomath, Oregon, and then continues eastwards into Corvallis, Oregon, until it meets
the Willamette River at the lowest point located in the watershed.
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Figure 1. (a) Overview of Marys river watershed, and (b) land use in Oregon, USA.

2.2. Soil and Water Assessment Tool (SWAT)

The Soil and Water Assessment Tool (SWAT) is a semi-distributed watershed model that is
designed to predict the impact of management on water, sediment, and agricultural chemical yields in
gauged and ungauged watersheds [11]. In this study, SWAT was used to simulate the hydrologic and
stream temperature dynamics within the Marys River watershed and to evaluate a model extension
to the stream temperature model developed by Ficklin et al. [10]. The Marys River watershed was
divided into smaller sub-watersheds using pre-defined drainage boundaries and a 10-meter digital
elevation model, and then the sub-watersheds in the SWAT model were further divided into smaller
units called hydrologic response units (HRUs) using ArcSWAT, a toolbox within ArcGIS for SWAT,
with a HRU percentage threshold of 5%. Each HRU is a unique combination of land-use, soil type,
and topographic slope and represents the basic unit for conducting mass balances and hydrologic flow
in SWAT. The area of the 46 predefined sub-basins varies from 35 square kilometers for the largest
sub-basin to 3.0 square kilometers for the smallest. The average sub-basin area is 17 square kilometers.
The watershed slope was divided into two categories: (1) A steep gradient area located mostly within
the forested regions in the western portion of the watershed, and (2) the nearly flat region located
within the Willamette valley, east of the watershed where the cities Philomath and Corvallis are located.

SWAT’s input data types include spatial GIS input files such as a Digital Elevation Model (DEM),
a land use land cover layer, and a soil layer [18]. Input data needed to delineate the watershed including
the DEM, sub-basins, and stream layers in addition to necessary land use and soil SSURGO (Soil
Survey Geographic Database) layers to build the HRUs were acquired from United States Department
of Agriculture [19]. Three weather stations were used as climate forcings: Corvallis Water Bureau
(CWB) COOP ID of (351877), Hyslop weather station, which is also known as Oregon State University
weather station (OSU) COOP ID of (351862), and finally Corvallis municipal airport (KCVO) weather
station. Weather data of the Corvallis Water Bureau (CWB) and Hyslop weather station were obtained
from National Oceanic and Atmospheric Administration (NOAA) for 2005 to 2014. Weather data
for Corvallis Water Bureau station included only precipitation and minimum and maximum air
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temperature. The Hyslop weather station and Corvallis municipal airport stations included data for
precipitation, minimum and maximum temperature, wind speed, and humidity for the period of
2005 to 2014. SWAT was used to simulate flow and stream temperature throughout the Marys River
watershed for the period 2005–2014. This includes the period 2010–2014 when observations for stream
temperature were available.

2.3. Stream Temperature Models

2.3.1. Model 1: Linear Regression

The default SWAT stream temperature model uses a linear relation between air temperature and
stream temperature developed by Stefan and Preud’homme [12] to calculate stream temperature in the
Mississippi River basin, as shown in Equation (1):

Twater = 5.0 + 0.75 × Tair (1)

Twater is the average daily water temperature (◦C), and Twater is the average daily water
temperature (◦C). Stream temperatures predicted from the above equation will always be higher
than air temperature, which is generally a fair assumption for small streams with shallow water
depths where stream temperature is primarily controlled by air temperature. However, this may
not be necessarily true for streams influenced by snowmelt, surface runoff, and groundwater
contributions [10].

2.3.2. Model 2: A Mechanistic Approach Involving Air Temperature and Hydrological Flows

Ficklin et al. [10] developed a mechanistic stream temperature model within SWAT by
combining air temperature (heat exchange) and hydrological inputs (flow mixing) including different
hydrological parameters, surface runoff, lateral flow, snowmelt, and groundwater contributions.
The Ficklin et al. [10] stream temperature model discretizes stream temperature determination into
three components: (1) Within the sub-basin, (2) contribution of upstream sub-basins to the targeted
sub-basin, and (3) finally heat exchange between air temperature and the stream.

The first part of the stream temperature calculation within the sub-basin (Equation (2)) calculates
the local temperature based on a mixing of surface runoff, lateral flow, groundwater, and snowmelt
temperatures within the sub-basin flowing to the main stream:

Tw,local =
α(0.1 Subsnow) + β(Tgw Subgw) + λ(Tair,lag Subsurq + Sublatq)

Subwyld
(2)

Tair,lag is average daily air temperature with a lag (◦C), and α, β, and λ are calibration coefficients
that relate the relative contribution of the hydrologic components to local water temperature
(dimensionless). Subsnow is the snowmelt contribution in sub-basin (m3/day), Subgw is the
groundwater contribution in sub-basin (m3/day), Subsurq is the surface runoff in the sub-basin
(m3/day), Sublatq is the lateral soil flow in sub-basin (m3/day), and Subwyld is the water yield in
the sub-basin combining all of the above hydrological inputs (m3/day).

The second part of the Ficklin et al. [10] calculates the effect of upstream sub-basin flow on stream
temperature, as shown in Equation (3):

Twaterinitial =
(Tw,upstream)(Qoutlet − Subwyld) + (Tw,local × Subwyld)

Qoutlet
(3)

Twaterinitial is the stream temperature adding the effects of flow within the sub-basin, Tw,local was
calculated previously, Tw,upstream is the water temperature of streams entering the sub-basin (◦C),
and Qoutlet is the stream flow discharge at the outlet of sub-basin (m3/day).
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The final step is to calculate the stream temperature by including the effect of air temperature:

Twater = Twaterinitial + K(Tair − Twaterinitial)(TT) if Tair > 0

Twater = Twaterinitial + K((Tair + ε) − Twaterinitial)(TT) if Tair < 0
(4)

Twater is the final stream temperature of water (◦C) for a given sub-basin, Tair is the average daily
air temperature (◦C), K is the bulk coefficient of heat transfer (1/h), TT is travel time of water through
the sub-basin (hour), and finally ε is air temperature addition coefficient (for when air temperature
drops below zero).

This mechanistic stream temperature model requires calibration coefficients α, β, γ, k, lag as
well as annual groundwater temperatures as inputs. All of the other inputs needed to run the model
are provided by SWAT. Groundwater temperature can be estimated from weather data provided as
the annual average air temperature, and it is often taken 1–2 ◦C higher than the average annual air
temperature [20].

2.3.3. Model 3: A Mechanistic Approach Involving Air Temperature, Hydrological Flows,
and Radiative Components

Changes in stream temperature are affected by heat and mass transfers [16] that are dependent
on channel morphology, hydrology, and stream vegetation, which provides shading near streams.
Vegetation especially helps in cooling temperatures by intercepting and absorbing incoming solar
radiation. The mechanistic model introduced in the last section accounts for flow transfer and mixing of
various hydrologic components, including sub-basin surface runoff, lateral flow, snowmelt, and ground
water, which oftentimes help to reduce temperatures, depending on the season. However, the model
utilizes a bulk heat coefficient to account for radiative heat exchange between the air-water interface
and does not account for land cover or vegetation near streams. The dependency of the model on
the air-water correlation of heat exchange can thereby lead to over-prediction of stream temperatures.
Water temperature change related to heat transfer is a function of several sources of radiative heat
exchange, as shown in Equation (5):

Φtotal = ΦSR + Φlongwave-atmosphere + Φlongwave-landcover+ Φconvection + Φconduction + Φevaporation (5)

where, Φtotal is the net radiation exchange and is equal to the direct and diffuse solar radiation ΦSR as
well as the longwave-atmosphere, longwave-landcover, convection, and evaporation components.

Direct and diffusive solar radiation represent the largest sources of incoming thermal energy into
streams. Longwave radiation from different sources also plays a role in increasing and decreasing
temperatures: Atmospheric and land-cover longwave radiation add energy to water volumes and
increase water temperature, while longwave radiation from the water surface emits radiation from
the water surface to the atmosphere to cool streams. Energy loss due to evaporation is considered
a larger contributor of decreasing stream temperatures when the required energy is met to change
the water phase from liquid to gas. Overall, convection or the air-water interface is considered a very
small portion of the total energy budget. Groundwater flux also helps to decrease stream temperatures
when added as a thermal input.

These radiative components have been included in the HEATSOURCE model but have not been
incorporated explicitly within spatially distributed watershed models such as SWAT. Each of the
components are defined as follows.

ΦSR = Hday − 0.5 × Hday(1 − e−k × LAI) (6)
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ΦSR is the amount of solar radiation reaching the water surface, Hday is the incident total solar
radiation per day (MJ/m2·day), k is the light extinction coefficient, and LAI is the leaf area index.
Atmospheric solar radiation is calculated as follows:

Φlongwave-atmosphere = 0.96 × εatm × σ × (Tair + 273.15)4 (7)

Φlongwave-atmosphere is the longwave radiation emitted from the atmosphere, εatm is the emissivity
of the atmosphere (unitless), σ is the Stefan-Boltzmann constant (MJ·m−2·day−1·K−4), and Tair is the
average air temperature per day (◦C). The atmospheric solar radiation depends on the emissivity of
the atmosphere (εatm), in which the percent of cloudiness and type of landuse can increase or decrease

atmospheric emissivity. The emissivity of the atmosphere is calculated as εatm = 0.767 × (ea)
1
7 ,

where ea is the vapor pressure of air (mbar) (i.e., H × es), es is the saturation vapor pressure (mbar)

(i.e., 6.1275 × e
17.27 × Tair
237.3+Tair ), and H is the relative humidity (unitless).

The longwave radiation emitted from landcover Φlongwave-landcover is dependent on the view to
the sky θVTS (unitless) and can be calculated as follows:

Φlongwave-landcover = 0.96 × (1 − θVTS) × 0.96 × σ × (Tair + 273.15)4 (8)

The last component of longwave solar radiation is the water surface longwave:

Φlongwave-water surface = εw × σ × (Ts + 273.15)4 (9)

Φlongwave-water surface surface is the longwave radiation emitted from the water surface, εw is the
water emissivity taken as 0.97, and Ts is the stream temperature (◦C). The evaporation from the water
surface is the most effective component in decreasing the thermal energy stored in water:

Φevaporation =ρ × L e × E (10)

ρ is the density of water (kg/m3), Le is the latent heat of vaporization (MJ/kg), which is calculated
as Le = 2.501 − 2.361 × 10−3 × Tair. E is the evaporation rate of the water surface (m/day) and
is calculated using a mass transfer method: f(w) × (esw − eaw), where f(w) is the wind function
a + b × w that depends on coefficients a and b (mbar−1) and the wind speed w (m/s) measured 2 m
above the water surface [16]. Finally, esw is the saturation vapor pressure of water (mbar), and eaw is
the vapor pressure of water (mbar).

The convection radiation component is calculated using the previously calculated evaporative
flux Φevaporation and Bowen’s ratio BR:

Φconvection = BR × Φ evaporation (11)

Here, BR is unitless (i.e., 0.00061 × PA × Twater − Tair
(esw − eaw)

), and PA is the adiabatic air pressure (mbar)
[i.e., 1013 − 0.1055 × z]. z is the measurement height in meters [i.e., >zd + zo]; zd is the zero-plane
displacement (m) [i.e., 0.7 × HLc], zo is the roughness height = 0.1 × HLc, and HLc is the height of
emergent vegetation (m).

The change of stream temperature due to thermal energy flux is calculated as follows:

Tw − TD =
Φtotal

ρw × Cw × dW
(12)

Here, Tw−TD(
◦C
day ) is the temperature change generated from the thermal components, Φtotal is

the net driver (MJ/m2·day), Cw (MJ/kg·C) is the specific heat capacity of water, and dw (m) is the
depth of water in the channel, which is estimated by the SWAT model.
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The final stream temperature is calculated by replacing the second term in Equation (4) by the
new generated stream temperature, as follows:

Twater = Twaterinitial + Tw − TD (13)

Note that, as mentioned above, the majority of the components are calculated within the SWAT
model automatically.

Overall, this model is useful because it utilizes all of the distributed information (mechanistically
simulated via SWAT) regarding stream temperature and its relation to hydrologic components within
a networked watershed, yet it also explicitly incorporates radiative energy exchange at the surface of
the stream.

2.4. Model Calibration/Validation Methodology

SWAT was used to simulate daily hydrologic discharge at each of the sub-basins within the Marys
River watershed from 2010–2014 in order to match observed discharge and stream temperature data.
The SWAT model was manually calibrated for stream flow between 2010–2014 using the United States
Geological Survey (USGS) (14171000) Philomath flow gauge, which is located 6.7 km southwest of
where the Marys River meets the Willamette River, covering a 394 km2.

The model was only calibrated without validation due to the availability of observations for
flow since the available observations only included a period of less than 10 years. Based on the data
availability, the model was calibrated for the period of January 2010 to December 2014.

The Nash Sutcliffe efficiency (NSE; Nash and Sutcliffe (1970)) criterion Equation (14) and Pearson’s
product moment correlation coefficient (1999; Equation (15)) were used to evaluate hydrologic model
efficiency:

NSE = 1 − ∑n
i = 1 (Oi − Si)

2

∑n
i = 1 (Oi − Oavg)

2 (14)

R2 =

⎛
⎜⎝ ∑n

i = 1 (Si − Savg)(Oi − Oavg)[
∑n

i = 1 (Si − Savg)
2
]0.5[

∑n
i = 1 (Oi − Oavg)

2
]
⎞
⎟⎠

2

(15)

O is the observed value, S is the model prediction, Oavg is the overall observed mean, and Savg

is the overall simulated mean. The NSE values range from −∞ to one; a NSE value of less than
0.5 designates an ‘unsatisfactory’ model, while a NSE value above 0.75 is considered a ‘very good’
model [21]. R2 values range from zero to one, with zero indicating a nonlinear relationship between
the observed and predicted value and one indicating a perfect fit and a linear relationship between the
observed and simulated variables.

The stream temperature models were manually calibrated using root mean square error (RMSE)
values as well as percent bias (PBIAS). According to Chai et al. [22], RMSE is widely used as a statistical
metric tool to assess performance of models. RMSE can be calculated as follows:

RMSE =

√
∑n

i = 1 (Oi − Si)
2

n
(16)

Where O is observed value, S is model predicted value, and n is the total number of the points.
A RMSE value of zero indicates a perfect fit. According to Singh et al. [23], values of RMSE less than
half of the standard deviation of the measured data can be taken as acceptable for the model evaluation.

In addition to RMSE, PBIAS was also used to evaluate the models. PBIAS measures the average
tendency of the simulated data to be larger or smaller than their observed counterparts [24]. Zero is
the optimal value of PBIAS, and a low absolute value implies an accurate model. According to
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Gupta et al. [24], positive PBIAS values indicate a model underestimation bias, and negative PBIAS
values indicate a model overestimation bias. PBIAS can be calculated as follows:

PBIAS =
∑n

i = 1 (Oi − Si) × 100
∑n

i = 1 (Oi)
(17)

A set of seven calibration parameters were selected and manually modified to calibrate SWAT
for hydrology (Table 1), and five parameters were manually modified to calibrate SWAT for stream
temperature (Table 2). Observed daily stream temperature data corresponding to SWAT’s sub-basins 8,
15, and 17 were available from 2010 through 2014, while observations for sub-basin 36 extended from
2011 through 2014.

Table 1. Streamflow calibration parameters.

Parameter Name File Range Calibration Value

CANMX Maximum canopy storage (mm H2O) HRU +25 for FRSE, FRSE
SMFMX Melt factor for snow on 21 June (mm H2O/C-day) BSN 0–10 8
SMFMN Melt factor for snow on 12 December (mm H2O/C-day) BSN 0–10 1

LAT_TTIME Lateral flow travel time (days) HRU +5
CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) RTE 0–150 +6

GWQMN Threshold depth of water in the shallow aquifer required for return
flow to occur (mm H2O) GW 0–5000 * 2.5

CN2 Initial SCS runoff curve number for moisture condition II MGT 0–100 * 0.978
ESCO Soil evaporation compensation factor BSN or HRU 0–1 −0.25

* Values are percentages of the original values.

Table 2. Basin-wide stream temperature calibration parameters.

Parameter Name Range Calibrated Values

α
Coefficient influencing snowmelt

temperature contributions (unitless) 0–1 1.0

β
Coefficient influencing groundwater
temperature contributions (unitless) 0–1 0.97

λ
Coefficient influencing surface and lateral
flow temperature contributions (unitless) 0–1 1.0

K Bulk coefficient of heat transfer (1/h) 0–1 0.025
Lag Average air temperature lag (days) 0–14 6

To compare the differences in model performance, kernel density estimates were calculated using
R software. This nonparametric technique is similar to using histograms to highlight the differences
between model simulations and observed data for the three tested models.

3. Results and Discussion

3.1. Hydrology Calibration in SWAT

As mentioned previously, SWAT was used to simulate daily hydrologic discharge at each
of the sub-basins within the Marys River watershed for 2005–2014, which included 2010–2014,
when observations for stream temperature were also available. The NSE and R2 values of the default
model’s simulated flow (no calibration) were −0.37 and 0.50, respectively, indicating an unsatisfactory
model. From Figure 2, it is clear that the uncalibrated model overpredicts the peaks during storm
events. Also, the model’s responses to each rain event are very rapid, and the water loss rates are
excessive, which results in zero flow for late summer periods.
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Figure 2. (a) Uncalibrated daily SWAT discharge simulations compared with observations (2010–2014)
from the USGS (14171000) Philomath flow gage. (b) Uses a log scale to emphasize low-flow conditions.

Manual calibration resulted in model improvement of NSE values from −0.37 to 0.72. This designates
a ‘good’ model according to Moriasi et al. [21], since it is >0.65. The R2 value of the model increased to
0.80. Figure 3 shows that the calibrated model matches both the base flow and peaks well, whereas all
of the peaks were mainly over predicted by the default model. The default model could not capture the
very low stream flows for some summer days and resulted in zero flow (Figure 2), but the calibrated
model (Figure 3) fixed the low-flow problem and improved the results. Figure 2 shows that the
maximum simulated peak for the uncalibrated model was around 500 m3/s, whereas the calibrated
model (Figure 3) reduced this value to match the peak observed around 300 m3/s. The rapid response
of the main channel to any storm event led to the over-prediction of peaks even for small rain storms
in the uncalibrated model. Also, the lateral flow travel time parameter helped to slow the response
to storm events and smoothed the hydrograph. The other major problem was associated with the
excessive loss of water in a short period of time after a rapid response to any storm; water in the
uncalibrated model was lost instantaneously and therefore resulted in zero flow for late summer days.
The effective hydraulic conductivity in the main channel (CH_K2) was used to prevent the excessive
loss from the main channel and managed to eliminate the zero flow days. Also, this parameter helped
to smooth and eliminate the transient fluctuations in the hydrograph. The SCS curve number for
moisture conditions II (CN2) was used to reduce or increase the simulated peaks to match the observed
hydrograph. The canopy interception parameter for specified land cover types (CANMX) as well as the
minimum and maximum snowmelt factors (SMFMN, SMFMX) all helped to increase the evaporation
rate. The high surface runoff surge was decreased using the soil evaporation compensation factor

36



Water 2018, 10, 1143

(ESCO), the SCS curve number for moisture conditions II (CN2), and the threshold depth of water in
the shallow aquifer (GWQMN).
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Figure 3. (a) Manually calibrated daily Soil and Watershed Assessment Tool (SWAT) discharge
simulations compared with observations (2010–2014) from the United State Geological Survey (USGS)
(14171000) Philomath flow gage. (b) Uses a log scale to emphasize low-flow conditions.

3.2. Stream Temperature Calibration in SWAT

After a satisfactory hydrologic calibration was performed, manual calibration was performed
for two of the three stream temperature models that will be tested in the Marys River using SWAT.
The first model is the linear regression model from Stefan and Preud’homme [12] and was not
calibrated. The second model is the Ficklin et al. [10] model, and the third model is our extension to the
Ficklin et al. [10] model. As shown in Table 2, we manually calibrated five parameters to best match
the second and third models to the stream temperature observations between 2010 and 2014. Note that
only summer stream temperature observations were available and that only a single set of calibration
parameters were used for the entire watershed.

3.3. Stream Temperature Model Comparison

After satisfactory hydrologic and stream temperature calibrations were performed, three models
were tested to simulate stream temperature in the Marys River using SWAT. The first was the linear
regression model from Stefan and Preud’homme [12], the second the Ficklin et al. [10] model, and the
third is our extension to the Ficklin et al. [10] model that incorporates HEATSOURCE radiative forcing
components to the Ficklin et al. [10] model. For the remainder of this paper, these models will be
referred to as Model 1, Model 2, and Model 3, respectively.
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Table 3 shows RMSE and PBIAS results for these three models using daily data. Kernel density
estimates for the differences between simulated and observed stream temperatures for the four
sub-basins are plotted in Figure 4.

Table 3. Comparison of root mean square error (RMSE) and percent bias (PBIAS) values for the three
tested stream temperature models (daily).

Sub-Basin Period
RMSE PBIAS (%)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

8 2010–2014 3.74 2.18 2.36 23.2 6.9 2.3
15 2010–2014 3.46 1.96 1.96 21.2 3.9 −0.5
17 2010–2014 2.6 1.88 2.72 13.4 −2.6 −8.3
36 2011–2014 2.85 2.28 3.12 13.6 −2.2 −1.0

Figure 4. Kernel density estimates for the differences between observed and simulated stream
temperatures as calculated using the three models for four sub-basins (a–d). The vertical line at
zero indicates simulations that exactly match the observed data.

In general, Model 1 performed the worst among all three models (see Table 3 and Figure 4),
and Model 2 outperformed Models 1 and 3 for all sub-basins. Model 1 consistently overestimated
stream temperatures for all of the sub-basins. This is apparent in Figure 4, where the distributions of
the differences between the simulated and observed temperatures are shifted from zero for Model 1.
The coefficients of Model 1 guarantee that the simulated stream temperature will be above average
daily air temperature values when the average air temperature is less than 20 ◦C. Therefore, inclusion of
cold water from groundwater or upstream sources is not captured in this model, thus resulting in
overestimations. Model 2, which is the calibrated Ficklin et al. [10] model, showed improvements
compared to the linear model (Model 1) in both Table 3 and Figure 4, which agrees with previous
studies (Barnhart et al., 2014; Ficklin et al., 2012; Ficklin et al., 2014) [10,13,14]. This is presumably
because Model 2 incorporates hydrologic components, including groundwater upstream temperatures,
in addition to an air-heat exchange transfer coefficient. Model 3, which replaced the simple
air-heat exchange transfer coefficient from Model 2 with explicitly calculated radiative components,
shows similar distributions with Model 2 (Figure 4), yet the performance values of Model 2 are
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generally better. This is likely due to the high variability of the radiative components included in
Model 3, which will be discussed further in the next section.

3.4. Land Cover Effects on Stream Temperature

We now compare Models 2 and 3 to demonstrate that the incorporation of radiative components
is able to simulate the influence of land use and land cover on stream temperatures (e.g., forested vs.
agricultural regions). Stream temperature simulations for two sub-basins—a forested area (sub-basin 8)
and an area dominated by agriculture with low vegetation (sub-basin 36)—are shown in Figure 5.

Figure 5. Stream temperatures simulated using the Ficklin et al. [10] model (Model 2; panel (a)) and the
extended version that includes radiative components (Model 3; panel (b)). Model 2 does not capture
changes in stream temperature associated with land cover type, while Model 3 simulates increased
temperatures for agricultural regions.

Model 2 simulates nearly identical stream temperatures for both forested and agricultural
sub-basins. Conversely, by including the various radiative components into the model, Model 3
simulates consistently increased stream temperatures associated with the agricultural sub-basin.
This is especially apparent during the early summer months. To examine differences in the models
further, Figure 6 compares the net radiative components of Model 3 Equation (5) with the K-component
second term in Equation (4) of Model 2.

Figure 6 shows that the net radiation as calculated using Model 3 (orange lines) changes according
to the primary land use cover for a given sub-basin in SWAT. For example, agricultural sub-basins
have larger incoming (positive) radiation contributions that help to increase stream temperatures,
whereas forested areas have small or negative radiative effects, depending on the season, due to
increased LAI, reduced solar radiation reaching the water surface, and evaporative fluxes. Model 2
uses a bulk coefficient of heat transfer in the second term of Equation (4). This reflects a convection
component of the net radiative balance, but it does account for the other radiative energy terms,
including solar radiation, atmospheric longwave, land surface longwave, water surface longwave,
and evaporation. Therefore, it is not able to capture cover-related differences in net radiation and
therefore changes in stream temperature due to landscape and land use changes.

Figure 6 also shows that the net radiative driver as calculated in Model 3 has much higher
variability than the K-component used in Model 2. We found that the high variability (i.e., noise) is
mainly due to SWAT’s estimation of solar radiation as well as the evaporation calculations, which are
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not explicitly accounted for in Model 2. This likely led to the reduced model performance exhibited
when comparing model simulations to observed data.

Figure 6. Comparison of the thermal energy impacts on stream temperatures for Models 2 and 3 in
both primarily forested and agricultural sub-basins.

Figure 7 compares these data further by plotting the observed stream temperature as well as
simulations using Models 2 and 3 for both the forested (sub-basin 8) and agricultural (sub-basin
36) sub-basins.

Figure 7. Comparison of observed and simulated stream temperatures for agricultural and forested
sub-basins. The observed data (black) show a consistent increase in stream temperatures for the
agricultural sub-basin (sub-basin 36). Model 2 does not capture consistent changes in stream
temperature associated with land cover type. Model 3 simulates increased temperatures for the
agricultural sub-basin, but it overestimates the effect compared to the observed data.
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The mean (standard deviation) differences between the stream temperature simulations for the
forested sub-basin (8) and the agricultural sub-basin (36) were −0.68 ◦C (1.30 ◦C) and −4.1 ◦C (2.34 ◦C)
for Models 2 and 3, respectively. These simulations can be compared with the difference between the
observed data for the forested and agricultural sub-basins (8 and 36): −1.07 ◦C (0.63 ◦C). Note that
Model 2 gives estimates that are closer to the observed values than Model 3; this is not surprising since
the RMSE values for Model 2 were lower than the values for Model 3 (Table 3). However, Model 2 is
symmetric about the 1:1 line shown in Figure 7 and does not capture the positive bias of agricultural
stream temperatures that is shown by the observed values as well as in the simulated values of Model
3. Model 3 captures the increases in stream temperature associated with the lack of forest cover in the
agricultural sub-basin, yet Model 3 overpredicts this effect, and the variation in the simulated values
are much greater than Model 2 or the observed data.

Overall, Model 3 may be useful for simulating the watershed-scale impacts of land use conversion
from forest to agriculture on stream temperatures; however, model improvement—potentially through
improved calibration—is needed to better match observed data. In addition, while Model 3 is able to
simulate impacts of land use on stream temperature, this advantage is produced with the trade-off
that radiative components exhibit much higher variability, and this noisy fluctuation (which can be
seen directly from Figures 5–7) further decreases RMSE values (Table 3).

4. Conclusions

This study sought to explicitly incorporate radiative forcing components into an existing
mechanistic, semi-distributed stream temperature model Ficklin et al. [10] using SWAT. Ultimately,
stream temperature is controlled by different climate components including humidity, wind speed,
evaporation, and solar radiation besides air temperature and is also heavily dependent on hydrologic
components including surface flow, groundwater, and snow melt processes. Our new model leverages
the Ficklin et al. [10] stream temperature model, which accounts for hydrological and climatological
components and discretizes the prediction of stream temperature into three parts: (1) Streamflow
within a sub-basin, (2) contributing upstream sub-basin hydrologic components, and (3) accounting
for the heat exchange between air and water surface, which can be described as a convection term.
The extended model replaces the convection K-component term within the Ficklin et al. [10] model
with a more comprehensive characterization of radiative energy terms, including solar radiation,
atmospheric longwave, land surface longwave, water surface longwave, evaporation, and finally
convection drivers. The extended model was used along with the Ficklin et al. [10] model and the
linear regression model to simulate stream temperatures within agricultural, forested, and mixed
sub-basins within the Marys River watershed. Results showed that all models performed reasonably
well, and the Ficklin et al. [10] model outperformed the others. However, the extended model
was capable of simulating differences between stream temperatures associated with agricultural
and forested watersheds that reflected observed data, although the differences were overestimated.
The reduced performance of the extended model that included radiative components might be able
to be improved by further calibration; yet, the high variability of the radiative terms is also limiting.
For example, the model relies on incoming solar radiation as well as wind velocity, which are difficult to
represent over large spatial scales and feature high variability. Alternative formulations of the radiative
components should be considered in future work. Bogan et al. [1] suggests using a shading factor
instead of a leaf area index, which may lead to more accurate results, assuming shading information
is available for the watershed of interest. In addition, alternative estimations for solar radiation,
or perhaps any of the radiative energy terms, could improve the model and should be pursued.
Overall, incorporating radiative components into the Ficklin et al. [10] stream temperature provides a
new mechanism for simulating the effects of alternative land uses on stream temperature within SWAT.
This will be especially useful for land managers and decision makers when considering alternative
land management scenarios and conservation strategies using SWAT.
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Abstract: Modeling the spatial and temporal dynamics of soil temperature is deterministically
complex due to the wide variability of several influential environmental variables, including soil
column composition, soil moisture, air temperature, and solar energy. Landscape incident solar
radiation is a significant environmental driver that affects both air temperature and ground-level
soil energy loading; therefore, inclusion of solar energy is important for generating accurate
representations of soil temperature. We used the U.S. Environmental Protection Agency’s Oregon
Crest-to-Coast (O’CCMoN) Environmental Monitoring Transect dataset to develop and test the
inclusion of ground-level solar energy driver data within an existing soil temperature model currently
utilized within an ecohydrology model called Visualizing Ecosystem Land Management Assessments
(VELMA). The O’CCMoN site data elucidate how localized ground-level solar energy between open
and forested landscapes greatly influence the resulting soil temperature. We demonstrate how the
inclusion of local ground-level solar energy significantly improves the ability to deterministically
model soil temperature at two depths. These results suggest that landscape and watershed-scale
models should incorporate spatially distributed solar energy to improve spatial and temporal
simulations of soil temperature.

Keywords: soil temperature; solar energy; watershed model; landscape scale; VELMA

1. Introduction

Soil temperature affects several key ecosystem properties. Through surface runoff and subsurface
groundwater transport, soil temperatures can lead to increased stream temperatures, which in turn
impact salmonid and other fish habitats [1]. Soil temperatures mediate rates of biogeochemical
transformations in soils, strongly influencing local to global-scale patterns in the cycling, retention
and loss of carbon and nutrients from ecosystems [2]. Seasonal soil temperature trends can shift
photosynthetic recovery timing and therefore impact overall net primary production (NPP) [3].
Such soil temperature effects are subject to modification by physical landscape factors, such as object
shading, slope aspect and thermal isolation from a detritus layer or snow pack [4].
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Mechanistic watershed models such as Visualizing Ecosystem Land Management Assessments
(VELMA) (2.0, U.S. Environmental Protection Agency—Western Ecology Division, Corvallis, OR,
USA) [5], Soil and Water Assessment Tool (SWAT) (2009, Texas A&M, College Station, TX, USA) [6],
Regional Hydro-Ecologic Simulation System (RHESSys) (2004, University of California, Santa Barbara,
CA, USA) [7], and Hydrologic Simulation Program—Fortran (HSPF) (11, U.S. Environmental Protection
Agency—National Exposure Research Laboratory, Athens, GA, USA) [8] use a mechanistic (as opposed
to statistical) approach to model hydrodynamics throughout a watershed using sub-daily or daily time
steps. Models such as these utilize equations to simulate hydrologic dynamics and soil moisture by
tracking the rate of water transfer based on soil porosity, soil depth and the available precipitation.

Watershed models simulating soil temperature at multiple depths rely on several observed and
simulated environmental variables including air temperature, precipitation, soil moisture, soil depth,
and physical soil properties. For national and regional-scale modeling purposes, climate data can
often be obtained from various governmental agencies such as the National Oceanic and Atmospheric
Administration (NOAA), Natural Resources Conservation Service (NRCS) and others that maintain
large-scale networks of climate monitoring stations such SNOTEL and SCAN [9]. At more local scales,
climate data collection tends to focus on site-specific requirements, such as municipal airports, Long
Term Ecological Research Stations and university research forests [10–13]. This can result in data
limitations for spatially explicit models [14]. Several groups process the site data to produce spatial
datasets at various spatial scales (e.g., Parameter-elevation Regressions on Independent Slopes Model
(PRISM) and Daily Surface Weather Data (Daymet)) [15,16]. Soil column properties can be acquired
through field work or obtained by utilizing soil datasets (e.g., State Soil Geographic (STATSGO) and
Soil Survey Geographic (SURGO)) [17].

While climate and soil properties influence soil temperatures, solar energy is the most significant
environmental variable influencing soil temperature. There are existing spatial models that account for
solar energy inputs at a local or stream reach scale: SHADE2 (1.0, University of Georgia, Athens, GA,
USA) [18], HeatSource (8.0, Oregon Department of Environmental Quality, Portland, OR, USA) [19],
and iLand (1.0, Seidl and Rammer, Vienna, Austria) [20], utilize small-area representations of solar
energy. However, these model’s spatial heterogeneity of shade is utilized for quantifying shade along
stream reaches or within forest plots; not ground-level irradiance within models representing complete
watersheds or landscapes.

Previous methods of incorporating solar energy within model representations of complete
watersheds employ one or more proxy variables (e.g., canopy coverage or air temperature), or they
simply utilize an average daily global irradiance value. Current environmental mechanistic models
(e.g., VELMA, SWAT, RHESSys, HSPF) [5–8] use a global solar irradiance subroutine to calculate
the total solar energy (W/m2) for the entire watershed or for sub-catchments. Due to their simpler
ground-level solar energy representations, although these models capture the seasonal pattern of
irradiance, they lack a spatially heterogenous representation of topographic and landscape object
shading that affects ground-level solar energy levels. Solar energy estimate methods themselves include
uncertainty due to environmental variables like cloud fraction and albedo [21]. Additional variables
(i.e., aerosol optical properties, cloud asymmetry, water vapor distribution) may have seasonal and
regional influence on the accuracy of solar energy estimates [22].

There remains a gap in soil temperature modeling where current approaches utilize global solar
energy models that are not capturing local energy interactions. Finer-scale spatially distributed
estimates of ground-level shade or solar energy could provide improved soil temperature estimates.
This paper addresses this gap by incorporating local solar energy data within the soil temperature
subroutine of an ecohydrological watershed model to determine its effect on simulated soil temperature
predictions at multiple depths.

To demonstrate the utility of linking spatially explicit, ground-level solar energy data with an
environmental model, we focus on improving VELMA’s soil temperature subroutine by incorporating
spatially heterogeneous solar energy as an input driver. First, we discuss a commonly used global
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solar energy model and soil temperature model that are found in many deterministic watershed
models, including VELMA. Next, we present VELMA’s original soil temperature subroutine that
incorporates spatially explicit inputs of soil moisture and air temperature but does not employ any
form of solar energy presentation. Following the original model, we then present VELMA’s modified
soil temperature subroutine that incorporates spatially explicit inputs of ground-level solar energy,
along with the inclusion of soil moisture and air temperature. We compare the predictive skill of
the original and new forms of VELMA’s soil temperature subroutines using multiple United States
Environmental Protection Agency (EPA) Oregon Crest-to-Coast Environmental Monitoring Transect
(O’CCMoN) sites. This transect consists of several paired sites of forested and open landscapes [23].
We present results that demonstrate the benefit of including spatially explicit representations of solar
energy within watershed-scale models that simulate soil temperature.

2. Materials and Methods

Watershed models typically include solar energy directly or through a proxy variable to facilitate
energy requirements needed within subroutine routines. Plant growth models may require a
daily input of solar energy reaching the canopy to drive photosynthesis [24]. Stream temperature
models predict shifts in water temperature through variables representing landscape shading, water
temperatures, and air temperatures, all of which are solar energy proxies. Snowmelt models may need
a daily input of solar energy or air temperature to drive snow melt [25]. While all these subroutines
rely on solar energy at the earth’s surface, mechanistic models generally lack the ability to capture the
spatiotemporal dynamics of solar energy reaching the ground post shadowing.

The soil temperature subroutine from VELMA [5] was chosen for testing. VELMA is a spatially
distributed watershed model that simulates hydrologic and biogeochemistry processes within a
gridded framework under mechanistic cell interactions. Using a gridded framework, VELMA describes
each grid cell as having a ground-level surface and four sub-surface voxels representing the landscapes
soil strata. Each subsurface voxel is characterized by soil porosity and soil depth. Water transfers at
a daily time step through VELMA’s voxel framework. Based on water transmission, nutrients and
thermal energy migrate through the simulated soil substrate under mechanistic rules.

2.1. Previous Solar and Generalized Soil Modeling Methods

Watershed models often employ a clear-sky solar energy model when direct solar energy units
are required. A common approach, and the method used by VELMA, is to calculate the clear-sky solar
energy that reaches the earth’s surface as in Equation (1), where R is solar irradiance (W/m2), ecc is the
eccentricity correction factor, w is the Earth’s constant angular velocity, T is the time frequency, dec is
the solar declination, and γ is latitude [26]:

R = (24/π) × 4.921 × ecc × [wT × sin(dec) × sin(γ) + cos (dec) × sin(wT) × cos(γ)] (1)

The VELMA model uses Equation (1) to describe the amount of solar energy reaching the
troposphere under clear sky conditions. This approach does not account for the topographic or
object shading that locally reduces ground-level solar energy.

Soil temperature modeling within many watershed models, whether utilizing a gridded
representation of the landscape or aggregating to sub-catchment scales, typically uses some version of
the Carslaw and Jaeger equation to quantify seasonal variation in soil temperature [27]:

Tsoil(z, dn) = TAA + Asurf × e−z/dd × sin(ω × dn − z/dd) (2)

where Tsoil(z, dn) is the soil temperature (◦C) at depth z (mm) for day of the year dn, TAA is the average
annual soil temperature, Asurf is the amplitude of the surface fluctuations, dd is the damping depth
(mm), and ω is the angular frequency of the damping oscillations by day (dn). At z = 0, the soil
temperature reduces to the following:
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Tsoil(0, dn) = TAA + Asurf × sin(ω × dn) (3)

which is the average soil temperature perturbed by surface temperature fluctuations and reflects
seasonal solar patterns. Conversely, at infinite depth, the soil temperature becomes equal to the annual
average soil temperature. This formulation provides a relatively simple method for calculating soil
temperatures at multiple depths throughout a watershed. However, the model requires specification
of soil heat capacity as well as thermal conductivity to correctly specify the amplitude coefficient and
the damping depth.

2.2. Soil Temperature Variations Due to Landscape Coverage

Temperature profiles of soils can dramatically vary between a forested versus open environment,
even if the sites are located proximally near one another. Two sites can be exposed to very similar
climate conditions, though due to forest canopy shading, the forested site will have reduced air
temperature and a reduction in solar energy loading upon the soil surface. Figure 1 shows observed
2005 daily soil temperature differences between open (clear-cut harvested) site data minus forested
site data for the O’CCMoN Soapgrass field site in Oregon (see Section 2.5.1 for field site locations).

 

Figure 1. Daily differences in soil temperature (◦C) between open (clear-cut) and forest sites at the
O’CCMon Soapgrass site. Temperature differences were calculated as the Open Site temperature minus
the forest site temperature at each Julian day during the year 2005. Thus, positive values denote days
where the open site soil temperature was warmer than the forest site soil temperature. Open minus
forest soil temperature differences were calculated for each of the two soil depths, 15 cm (red line)
and 30 cm (blue line) below the soil surface. The data gap between Julian days 67 and 74 was due to
sensor errors.

Figure 1 highlights the soil temperature differences between open and forested sites. A positive
temperature means the open site temperature was warmer than the forest site; conversely, negative
temperature means the open site temperature was colder than the forest site. Two main observations
should be made here: (1) layer 1 is always warmer than layer 2, and (2) for both soil layers the open site
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is always warmer in summer than the forest site, but is comparatively colder in winter and especially
so in layer 2. The open site is significantly warmer from Julian day 45 through 310 (14 February
through 6 November), with a peak difference of 4.2 ◦C on Julian day 111 (21 April).

Seasonal differences in the warming and cooling of soils in the open and forest sites (Figure 1)
certainly reflect changes in air temperature along with some complicating effects associated with
inter-site variations in snow pack and associated insulative properties (Figure 2). Other factors
undoubtedly also come into play, such as the effects of seasonal changes in soil moisture (dry summers,
wet winters) on soil thermal transmissivity.

Nevertheless, observed increases in summer air temperatures for the open site tended to be
2.12 ◦C warmer than the forest site (Figure 2). The lowest thermal difference was −7.65 ◦C while the
highest thermal difference was 8.0 ◦C. During the same period, soil layer 1 open site averaged 1.71 ◦C
warmer than the forest site with a minimum of 1.0 ◦C and a maximum of 2.6 ◦C. However, soil layer 2
open site averaged −0.16 ◦C cooler than the forest site with a minimum of −1.0 ◦C and maximum of
1.3 ◦C. That is, while air temperature differences are driven by differences in solar radiation, in the
open site there is clearly an additional direct effect of solar radiation on heat transfer to the ground
surface and consequent warming of the soil column. This observation underscores the importance of
quantifying the direct effect of solar radiation on soil temperature, in combination with effects of soil
moisture and other factors mentioned above.

 

Figure 2. Daily air temperature (◦C) and snow depth (cm) for both the forest and open sites at the
Soapgrass station. A positive air temperature difference means the open site was warmer than the
forest site. A positive depth difference means the open site had more snow than the forest site.

2.3. Original VELMA Air Soil Temperature (AST) Subroutine

For calculating spatially distributed soil temperature, VELMA accounts for soil moisture damping
and the oscillatory effects of solar energy through a modified version of the Carslaw and Jaeger
equation. This approach accounts for the seasonal solar energy variability through a time phase lag
modification of observed air temperature combined with a temperature modification based on a soil
depth attenuation. VELMA’s subroutine, along with the equation previously presented by Carslaw
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and Jaeger (1959) (Equations (2) and (3)), does not account for spatial heterogeneity of solar energy
reaching the ground due to topographic or object shading; instead, VELMA’s input variables account
for the shift in soil temperature due to daily air temperature, soil moisture and soil depth (Figure 3).

 

Figure 3. Combined AST and AST-Solar subroutines’ schematic depicts the input data driving both
models and displays the crucial data input difference between AST and AST-Solar with Temporal
Phase Lag influencing only AST and Solar Energy influencing only AST-Solar.

For each layer, the AST subroutine calculates the soil temperature based on the thermal attenuation
of daily air temperature. The input variables for the AST and AST-Solar models are mostly the same
but might be utilized differently within each subroutine’s equation setup, with the exceptions of the
AirLAG and ReducerSOLAR (Table 1).

Table 1. AST and AST-Solar subroutine input variables.

AST Variables Descriptions

AirAVETEMP Fixed value of 8.2 (◦C)
AirLAG Historic air temperature derived from the PhaseLAG.
LSDEPTH Soil column depth to center (mm) per layer of interest
LTDACCUMULATION Summation of the thermal deltas per layer of interest
SoilBELOW Soil layer below the current layer being calculated

AST-Solar Variables Descriptions

AirTEMP Daily average air temperature in the open site
SoilAVE_TEMP Two-day running average (◦C)
ReducerSOLAR Derived value from the input solar energy data
LayerSM Volume to volume soil moisture level
SoilTemp(JDAY) Current time steps soil temperature value
SoilTemp(JDAY−1) Prior time steps soil temperature value

The degree of attenuation is adjusted daily by the depth and soil moisture of each soil
layer. GTEMP is the resulting soil temperature due to: AirAVETEMP being the daily average air
temperature (Table 1), AirLAG (Equation (5) from a prior AirAVETEMP (Table 1) based on seasonal
oscillation, SoilDAMPING (Equation (7) influencing the soil moisture based on seasonal oscillation,
DepthATTENUATION (Equation (9) based on soil depth and soil damping (Equation (7), PhaseLAG

(Equation (6) influenced by the AirAVETEMP (Table 1) based on seasonal oscillation driven by LSDEPTH

(depth to surface) (Table 1), SoilDAMPING (Equation (7), LTD (Equation (8) being the soil temperature
accumulation at depth, and SoilBELOW (Table 1) influencing soil temperature from the lower soil layer:

GTEMP = AirAVETEMP + (AirLAG − AirAVETEMP − SoilDAMPING) × DepthATTENUATION (4)

AirLAG = Past Air Temperature at Julian Day’s PhaseLAG (5)

PhaseLAG = (LSDEPTH/SoilDAMPING) × (365/2π) (6)
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SoilDAMPING =

√
LTD × 365

π
(7)

LTD = LTDACCUMULATION/SoilBELOW (8)

DepthATTENUATION = eˆ(−LSDEPTH/SoilDAMPING) (9)

Each day, the air temperature is given as an input for each cell within VELMA’s watershed
framework. The SoilDAMPING (Equation (7) and LSDEPTH (Table 1) variables are used to dampen the
variations of soil temperature at larger depths. Any soil temperature shifts due to solar energy are
incorporated via a proxy of two oscillatory equations driven by past air temperature (Equation (5) and
soil moisture damping (Equation (7). VELMA AST subroutine’s performances for open and forested
landscapes are tested in the model testing section below.

2.4. New VELMA Air Soil Temperature-Solar (AST-Solar) Subroutine

The previously described soil temperature model does not utilize spatially explicit solar
energy data, so we improved the model by adding the capacity to utilize spatially distributed
ground-level solar energy to the current VELMA AST subroutine. This new model is called Air
Soil Temperature-Solar (AST-Solar). The inclusion of solar energy within VELMA’s original AST model
was mainly accomplished through the addition of the new parameter ReducerSOLAR (Equation (12).
Like a natural system, solar energy, via the variable ReducerSOLAR (Equation (12), only impacts the top
soil layer, called NetSoilTEMP1 (Equation (10). NetSoilTEMP1 is defined as the following:

NetSoilTEMP1 = AirTEMP × ReducerSOLAR × DampingSOIL (10)

where daily average air temperature (AirTEMP; Table 1), DampingSOIL (Equation (11), and
ReducerSOLAR (Equation (12) are multiplied together. AST soil moisture damping was included,
yet simplified to only the inversion of each layer’s fraction of volume to volume (v/v) soil moisture
(LayerSM; Table 1):

DampingSOIL = 1 − LayerSM (11)

Solar energy was built into the AST-Solar approach by accounting for the proportional relationship
between each cell’s solar energy to the landscape cell with the maximum solar energy. At each
simulation timestep, the spatially distributed solar energy and the watershed’s maximum solar energy
at any location are both used to calculate the solar energy reduction called ReducerSOLAR (Equation (12).
ReducerSOLAR represents the localized reduction in soil temperature due to shadowing in relation to
the watershed’s maximum ground-level solar energy. The reduction of solar energy is calculated as
follows:

ReducerSOLAR = 1 − α × (1 − (CellSOLAR/MaxSOLAR)) (12)

where CellSOLAR is each cell of interest within the VELMA framework, MaxSOLAR is the landscape’s
maximum solar energy value amongst all landscape cells per time step, and α is a calibration factor.
The calibration factor α is a fraction [0.0–1.0, where 0.0 is no solar energy and 1.0 is no change to the
solar energy] that allows control over the influence of ReducerSOLAR. But, to allow a direct and fair
comparison of AST to AST-Solar, calibration factor α was not used in these tests.

VELMA utilizes four soil layers, and the thickness of each layer is customizable. VELMA soil
temperature is not directly affected by solar energy, but rather through soil depth attenuation. For
layers 2, 3 and 4, the soil temperature (NetSoilTEMPX) is calculated using the 2-day running average
temperature of the soil layer directly above, plus a reduction by DampingSOIL (Equation (11):

NetSoilTEMPX = SoilAVE_TEMP × DampingSOIL (13)

SoilAVE_TEMP = (SoilTemp(JDay) + SoilTemp(JDay−1))/2 (14)
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where SoilTemp(JDay) (Table 1) is the current time steps soil temperature, and SoilTemp(JDay−1) (Table 1)
is the prior time steps soil temperature. The soil moisture is applied as the DampingSOIL coefficient
(Equation (11).

2.5. Subroutine Testing

We utilized data from EPA’s O’CCMoN sites to test any change in accuracy and seasonal
performance between the AST versus AST-Solar soil temperature subroutines. The O’CCMoN transect
dataset provided observed driver data of air temperature, photosynthetic active radiation (PAR) as
micromoles/meter2/second (μmoles/m2/s), and soil moisture as volume to volume at two soil layer
depths [23]. EPA’s observed O’CCMoN data helped to compare the AST versus AST-Solar models.
Each O’CCMoN site also provided observed soil temperature at two depths. The soil temperature data
were used to generate goodness-of-fit metrics against the simulated model results.

2.5.1. O’CCMoN Testing Sites

For model testing, the four following O’CCMoN locations were chosen: Cascade Head, Moose
Mountain, Soapgrass, and Toad Creek. Each O’CCMoN location contains one forested site and one
open clear-cut site (Figure 4).

 

Figure 4. EPA Oregon Crest-to-Coast Environmental Monitoring (O’CCMoN) transit sites with
environmental West to East trends and details for the sites used in this study. Figure adapted from the
Crest to Coast Overview document [28].

Overall, these sites span a wide range of elevations and habitat diversities between the coast and
the Cascade Mountain snow zone (Table 2).

The Cascade Head open site was installed outside the Cascade Head Experimental Forest and
Scenic Research Area-Forestry Sciences Laboratory (EFSRA-FSL) in the managed landscape at an
elevation of 157 m (Table 2). The Cascade Head forest site is located 190 m to the northeast in a
predominantly Douglas-fir forest at an elevation of 190 m (Table 2). The Moose Mountain, Soapgrass,
and Toad Creek sites are positioned on the western side of the Cascades Mountain Range at increasing
elevations and experience moderate to extreme weather. The Moose Mountain open site was installed
within a forest clear-cut at an elevation of 668 m with the forest site located 460 m to the northeast in
a predominantly Douglas-fir forest at an elevation of 658 m (Table 2). The Soapgrass open site was
installed within a forest clear-cut at an elevation of 1298 m with the forest site located 1190 m to the
northeast in a predominantly Douglas-fir forest also at an elevation of 1190 m (Table 2). The Toad
Creek open site was installed within a forest clear-cut at an elevation of 1202 m with the forest site
located 471 m to the east in a predominantly Douglas-fir forest at an elevation of 1198 m (Table 2).

The soil temperature probes were all installed in the same manner at all EPA O’CCMoN locations
for both the open site and forested site. In each location, two soil temperature sensors were installed
at a depth of 15 cm and 30 mm, respectively, from the mineral soil surface, i.e., just below the
O-horizon [23]. The testing of the AST and AST-Solar subroutines did not involve any data collection,
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but rather leveraged the data collected through the EPA O’CCMoN project. These data and the details
of field work can be found in the documents at the data repository [23].

Table 2. O’CCMoN Open and Forest Site Characteristics.

Site Name
Elevation

(m)
Vegetative

State
Annual

Rainfall (cm)
Tree

Height (m)
Soil Parent

Material

Cascade Head: Open (CHO) 157 Lawn

200–250

-
Marine

SedimentCascade Head: Forest (CH14) 190
Alder

Douglas-fir
Sitka Spruce

50–60

Moose Mountain: Open (MMO) 668 Clear-cut
150–180

-
Volcanic

Moose Mountain: Forest (MMF) 658 Douglas-fir 50–60

Soapgrass: Open (SGO) 1298 Clear-cut
180–200

-
Volcanic

Soapgrass: Forest (SGF) 1190 Douglas-fir 60–70

Toad Creek: Open (TCO) 1202 Clear-cut
180–200

-
Volcanic

Toad Creek: Forest (TCF) 1198 Douglas-fir 50–60

Note: All information in this table was obtained from the O’CCMoN dataset documentation, except the annual
rainfall which was obtained through the PRISM 1981–2010 annual rainfall normals [29].

2.5.2. AST versus AST-Solar Subroutine Setup

The AST and AST-Solar subroutines were both ran from 1 January 2005 through 31 December
2005 at a daily time step. For each site, the same O’CCMoN observed air temperature and soil moisture
data were used as the data drivers for both subroutines [23]. The O’CCMoN data are measured in
30-min intervals, yet the VELMA model functions at a daily time step. To match the VELMA temporal
grain, all observed O’CCMoN data were averaged to a 24-h period.

The VELMA spatial framework, per cell, contains four voxel layers; therefore, the AST and
AST-Solar subroutines function under this spatial framework. Yet, the O’CCMoN dataset contains soil
temperature probe data at only two depths. The AST and AST-Solar soil moisture probe depth variables
for layer 1 and 2 were set to match the sensor depths of 15 cm and 30 cm [23]. Since the O’CCMoN
data sites contained only two soil moisture probe depths for the sites selected, the AST and AST-Solar
voxel layer three and four soil temperature results could not be evaluated and were excluded.

The AST-Solar model utilized the additional solar energy driver data. For the AST-Solar open
site simulations, the CellSOLAR and MaxSOLAR variables utilized open site solar energy data. For the
AST-Solar forest site simulations, the CellSOLAR variable utilized the forest site solar data, while the
MaxSOLAR variable was calculated using the open site solar energy data.

The variable ReducerSOLAR is utilized as a fractional variable scaled from zero to one
(Equation (12). This setup allows any solar energy units to be implemented through this method.
CellSOLAR being the solar energy per location and MaxSOLAR representing the location with the most
solar energy means for an open site, the CellSOLAR and MaxSOLAR values will similar if not the same.
In this scenario, ReducerSOLAR will cause minimal to no reduction to the soil temperature. Conversely,
forest site CellSOLAR and MaxSOLAR values will be quite different. In this scenario, ReducerSOLAR will
cause a reduction in the soil temperature.

3. Results

Model results for each of the O’CCMoN sites are summarized in Table 3. Overall, the inclusion of
spatially distributed solar energy improved the simulated solar temperature results. Both open and
forested sites exhibit gains in accuracy, though the inclusion of spatially distributed solar energy was
most beneficial for the forest sites. Below, all data are distinguished using the following attributes:
site location, open versus forest environment, and soil layer. O’CCMoN sites with open versus forest
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locations are listed with abbreviations under “Sites” in Table 3. Soil Layer 1 and Soil Layer 2 are
referred to as SL1 and SL2, respectively.

Table 3. VELMA-AST and VELMA-AST3 O’CCMoN results.

O’CCMoN Location Sites
Soil Layer 1 Soil Layer 2

AST (r2) AST3 (r2) AST (r2) AST3 (r2)

Cascade Head
Open Site (CHO) 0.83 0.76 0.71 0.95
Forest Site (CH14) 0.74 0.87 0.71 0.94

Moose Mountain
Open Site (MMO) 0.81 0.92 0.67 0.93
Forest Site (MMF) 0.89 0.93 0.70 0.94

Soapgrass Open Site (SGO) 0.80 0.85 0.69 0.90
Forest Site (SGF) 0.69 0.92 0.57 0.89

Toad Creek
Open Site (TCO) 0.82 0.83 0.72 0.92
Forest Site (TCF) 0.83 0.90 0.64 0.89

The performance of the AST-Solar model at the Soapgrass site increased for soil layers 1 and 2
at both the open and forest sites compared to the AST model, but especially for soil layer 2 (Table 3).
Specifically, the SGO-SL1 performance increased from a r2 of 0.80 to 0.85 (Table 3; Figure 5A), while the
SGO-SL2 performance increased from a r2 of 0.69 to 0.90 (Table 3; Figure 5C). The SGF-SL1 performance
increased from a r2 of 0.69 to 0.92 (Table 3; Figure 5B), while SGF-SL2 performance increased from a r2

of 0.57 to 0.89 (Table 3; Figure 5D).
The results among all sites are unique for each site, though the seasonal pattern and increased

performance are similar over the year. Since the patterns are similar for each of the different sites,
only the Soapgrass site results are graphically represented. Due to the 100-day PhaseLAG (spin-up)
requirement of the AST model, only Julian days 101 through 365 are graphically represented.

The performance at Cascade Head (CH) increased for the AST-Solar subroutine compared with
the AST subroutine for soil layers 1 and 2 for the forest site, but the performance only improved soil
layer 2 of the open site. The open site soil layer 1 was the only simulation that exhibited a decrease in
simulated versus observed agreement by decreasing from a r2 of 0.83 to 0.77. In contrast, the CHO-SL2
performance increased from a r2 of 0.71 to 0.95. All CH14 simulations improved. The CH14-SL1
performance increased from a r2 of 0.74 to 0.87, while the CH14-SL2 performance increased from a r2

of 0.71 to 0.94.
The performance of the AST-Solar subroutine compared with the AST subroutine at the Moose

Mountain (MMO) increased for soil layers 1 and 2 at both the open and forest sites, particularly for
soil layer 2. The MMO-SL1 performance increased from a r2 of 0.81 to 0.92 (Table 3). The MMO-SL2
performance increased from a r2 of 0.67 to 0.93 (Table 3). The MMF-SL1 performance increased from a
r2 of 0.89 to 0.93 (Table 3). The MMF-SL2 performance increased from a r2 of 0.70 to 0.94 (Table 3).

The performance of the AST-Solar subroutine over the AST subroutine at the Toad Creek increased
for soil layers 1 and 2 at both the open and forest sites. The TCO-SL1 performance increased from a r2 of
0.82 to 0.83, while the TCO-SL2 performance increased from a r2 of 0.73 to 0.92 (Table 3). The TCF-SL1
performance increased from a r2 of 0.83 to 0.90, while the SGF-SL2 performance increased from a r2 of
0.64 to 0.89.
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4. Discussion

VELMA’s original soil temperature model functioned well without the inclusion of spatially
distributed solar energy (see Table 3; Figure 5), yet the inclusion of spatially distributed solar energy
can provide significant improvements to simulated ecological processes driven by solar energy.
The inclusion of local ground-level solar energy data improved VELMA’s AST subroutine simulations
of soil temperature from more than one perspective. First, the observed versus modeled comparisons
for all sites improved, with one exception. The only exception was the CHO site, which was a landscape
anomaly amongst the sites due to the station existing within a regularly maintained grass lawn at
the headquarters of the research area (i.e., Cascade Head EFSRA-FSL). The TCO site received the
smallest soil temperature modeling improvement with SL1 r2 increasing from 0.82 to 0.83, yet the TCF
site showed a significant SL2 improvement with a r2 increase of 0.73 to 0.92. The largest single layer
improvement was observed at the SGF site with the SL1 r2 increasing from 0.69 to 0.92 and SGF-SL2
r2 increasing from 0.57 to 0.89. It is worth reiterating that though the AST-Solar subroutine has a
calibration parameter, no calibration was applied when simulating any of the sites to ensure the AST
to AST-Solar estimates of soil temperature were a fair comparison of the subroutine performance.

Beyond the r2 goodness-of-fit metrics, the daily variability in the modeled AST-Solar soil
temperature data was reduced. This can be seen in all the graphs presented above by comparing how
the AST subroutine demonstrated a repeated overestimation and underestimation of soil temperature
compared to the observed data. However, the AST-Solar subroutine’s noise was greatly reduced.
This noise pattern in AST was due to the significant influence from the daily average air temperature
driver data. Therefore, the static equations that provided oscillatory proxies for solar energy did
not fully parallel the environmental phenomena of solar energy. In part, this disparity explains
the resulting noisy estimations of soil temperature when solar energy was not directly included in
the subroutine.

VELMA’s AST soil temperature subroutine required a 100-day soil temperature simulation spin-up
period. This time lag allowed for a sufficient temporal delay in the driver data utilized by Equation (6)
(note that this time lag is only required for the first year of multi-year AST simulations). The purpose
of the lag time was to account for the seasonal weather influence on the soil column. For the new
AST-solar subroutine, this lag was no longer required due to the addition of localized daily solar
energy data interacting with the existing soil moisture within layer 1.

Both the AST and AST-Solar subroutines do not model the insulation effects of snow pack [4].
Further work could include snow depth and its insulative effects on soil temperature. This would
improve the soil temperature estimates in the winter, due the insulation of heat from the snow pack
preventing the soil temperature from getting colder or even freezing. For the AST-Solar model, this
may further improve performance with observed data (Figure 5, panels A–D) for days where snow
pack persisted at Soapgrass (Figure 2) as well as goodness-of-fit metrics for the other O’CCMoN
monitored sites. Similarly, further improvements in AST-Solar soil temperature estimates may be
possible by including VELMA predictions of surface detritus (dead leaves and wood) and ground-level
leaf biomass (proxy for leaf area index) that contribute to near-surface shading of mineral soil surfaces
in open and forest sites.

The subroutine performance improvements reported here are due to the influence of local solar
energy, which alters the resulting soil temperature. The prior soil temperature model predominantly
utilized average air temperature as a proxy for energy, which is commonly done in watershed models.
Though VELMA is a spatially distributed model, the default weather model is driven by single
site location climate data. This setup resulted in homogeneous average air temperature across the
simulated watershed. This is true for all forest cells and bare open prairie or forest clear-cut cells
alike. By including local solar energy representation, the subsequent modeling of soil temperature was
enhanced due to the improved model representation of the real world. This mainly was accomplished
through the inclusion of the environmental variable solar energy that causes direct and significant
influence on the phenomena soil temperature.
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5. Conclusions

Watershed models are widely used to simulate the effects of land use change on the environment
and the quantity and quality of hydrologic components throughout a watershed. In this paper, we
demonstrated that local solar energy information improved soil temperature modeling estimates
simulated by a soil temperature subroutine within a larger ecohydrological watershed model.
These models were compared with observed data for soil temperatures at two depths within both open
and forested environments among four observed data sites (i.e., EPA’s O’CCMoN transect data) [23].

Overall, by including explicit information regarding the spatial distribution of solar energy across
a landscape, watershed models can better capture the spatiotemporal variations of soil temperature in
both forested and open sites. Therefore, researchers that utilize spatially distributed or semi-distributed
mechanistic watershed models should consider incorporating spatially explicit solar energy models
(e.g., Penumbra [30,31]) or other spatially heterogeneous descriptions of ground-level solar energy
to better represent energy exchange at the surface. This is especially true when modeling discrete
landcover types such as forested, open, water, and agricultural cover and when modeling the impacts
of riparian shading on soil temperature and stream temperature, as well as the effect of solar energy
on fish habitat.

Finally, while we presented improvements of a soil temperature subroutine within an
ecohydrological model, other subroutines can also benefit by the inclusion of spatiotemporal
representations of ground-level solar energy. The integration of local solar energy information
with watershed models and all their subroutines could potentially benefit several processes, such as
snow melt, water temperature, and plant growth via photosynthesis. Integration of spatially explicit
ground-level solar energy models with environmental models can provide dynamic feedbacks between
other environmental processes, such as tree growth and shade. As tree growth is simulated within
watershed models, their heights could be transferred back to the ground-level solar energy model in a
dynamic mechanism, which then would alter the amount of solar energy that is intercepted by the
canopy and does not reach the ground. This dynamic integrated modeling approach could be extremely
beneficial for looking at the long-term effects of planting riparian buffers and determining the duration
required for stream temperatures to be reduced by some threshold. Because solar energy is amongst
the most impactful environmental variables in natural and managed ecosystems, further investigations
would greatly benefit from the application of watershed-scale models that are dynamically coupled
with spatially-explicit solar energy models.
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Abstract: The extensive destruction of arable lands by the process of lateral bank erosion is a major
issue for the alluvial meandering type of rivers all around the world. Nowadays, land managers,
stakeholders, and scientists are discussing how this process affects the surrounding landscapes.
Usually, due to a land mismanagement of agroforestry activities or urbanization plans, river
regulations are designed to reduce anthropogenic impacts such as bank erosion, but many of these
regulations resulted in a degradation of habitat diversity. Regardless, there is a lack of information
about the possible positive effects of meandering from the ecological point of view. Therefore,
the main aim of this study was to investigate a 2.12 km long meandering sub-reach of Sajó River,
Hungary, in order to evaluate whether the process of meander development can be evaluated as
a land degradation processes or whether it can enhance ecological conservation and sustainability.
To achieve this goal, an archive of aerial imagery and UAV (Unmanned Aerial Vehicle)-surveys was
used to provide a consistent database for a landscape metrics-based analysis to reveal changes in
landscape ecological dynamics. Moreover, an ornithological survey was also carried out to assess
the composition and diversity of the avifauna. The forest cover was developed in a remarkable
pattern, finding a linear relationship between its rate and channel sinuosity. An increase in forest
areas did not enhance the rate of landscape diversity since only its distribution became more compact.
Eroding riverbanks provided important nesting sites for colonies of protected and regionally declining
migratory bird species such as the sand martin. We revealed that almost 70 years were enough to
gain a new habitat system along the river as the linear channel formed to a meandering and more
natural state.

Keywords: bank erosion; landscape metrics; diversity; Sajó River; UAV

1. Introduction

Alluvial rivers represent dynamic landforms of the watersheds all over the world [1].
Under minimal regulation, these rivers can generate diverse landscapes by shifting back and forth along
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their floodplain [2,3]. In meandering rivers, the channel flow undercuts the outside banks resulting in
seepage outflow or mass failure processes i.e., slab failures, rotational slides and sloughings or slump
blocks eroding into the water body [4,5]. These materials can form point bar accretion at the inside
banks downstream due to the lower current velocity at the inner side, as opposed to the outer side of the
bends [6]. The cross-sections of meandering riverbeds are complex showing asymmetric bathymetric
and flow patterns, which is reflected in habitat diversity as well [7]. Point bars are specific fluvial
geomorphic features inside a meandering river bend [8]. They are deposited from finer sediments by
the low energy parts of the river along the inside bank driven by recirculation zones [9]. The ridge
and swale topography produce undulating bar surfaces [10] and the long-inundated periods of the
depressions allow pioneer bush and tree species colonizing the fine-grained surfaces. Intensive channel
migration maintains ideal conditions for vegetation succession processes [11], since the bend migrates
forward through lateral aggradation, the colonization process increases [12]. Generally, the maxima of
lateral bank erosion rates are concentrated downstream of the point bar symmetry-axis [11] resulting
elongated, skewed or compound meander bends [13].

River channels and their surrounding floodplains enhance landscape evolution and the
diversification of environments [14]. Quasi-natural rivers without extensive channelization, bank
protection and embankments, are susceptible to rapid changes in their hydro-geomorphological
features. One of the main reasons for this is that vegetation colonizing riparian zones are affected
by frequent flood-disturbances or even severe droughts, therefore, they have adapted to variable
water levels. These plants have a major influence on the initiation of geomorphic and hydraulic
processes of the channel and floodplain as they regularly stabilize organic matter from sediment
fluxes [15]. The majority of these species need sunlight for growth that is not available under
dense canopy levels; therefore, they colonize freshly formed open spaces, and the resulting patchy
vegetation mosaics well-represent the habitat diversity established through flooding, scouring and
sedimentation [16]. Furthermore, the resistance properties of the vegetation on channel flow is
recognized as a potential factor in the mitigation of land degradation processes [17,18]. River corridors,
as linear features of fluvial landscapes, are such integrated ecological systems that connect identical
landscape elements. Due to the dynamic interactions within climatic factors, catchment geology, relief,
inundation and nutrients, the ecological turnover can be outstanding in these features [12]. The aquatic
and terrestrial vegetation patches provide heterogeneous and diverse habitat for fish, water birds and
macroinvertebrates [19]. The initial colonizers maintain their stands, preventing further recruitment
of vegetation beneath their canopy level [20,21]. Furthermore, vegetation patches substantially block
and divert river flow around their canopy, and flow velocities decrease along the vegetation patch and
increase in the surrounding channel area; thus, they determine the future occupancy patterns of trees
along the point bars [22]. The succession of even ephemerally emerging bar surfaces provides suitable
foraging and nesting sites for water birds. Moreover, due to their isolated nature, these sites are often
free from human disturbance as well [19,23].

Lateral bank erosion of meandering rivers is responsible for extensive destruction of arable
lands and usually threatens human environments [24,25]. These phenomena, accompanied by
riparian deforestation and serious flood inundation, provide the necessity for the protection of most
European river networks [26–28]. Regulated river channels have less cross-sectional diversity from
both geomorphological and ecological point of view. In the past years, several studies revealed
that channelization and bank protection works are responsible for an extensive, global-scale habitat
and river ecosystem degradation [29–32]. It is also proven that river regulation impacted fish and
macroinvertebrates negatively due to the degradation of habitat heterogeneity [33]. Recent studies
found ‘re-meandering’ as an effective practice for the restoration of habitat diversification at short-
and medium-terms [34], since lateral erosion and the channel migration maintain sediment supply
for vegetation colonization [35]. However, long-term ecological consequences of re-meandering have
not been well-studied yet [36]. Only a few studies found positive trends in diversification but many
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restoration projects were not able to demonstrate significant differences in biodiversity between the
before and after periods of the restoration project over short (5 to 10 years) time periods [9,37,38].

In Hungary, the majority of rivers had been regulated and channelized, starting in the 19th
century [39–42]. However, few medium-size rivers of the Tisza River Basin such as the Sajó River
remained in a quasi-natural state since economic issues had prevented the total channelization [43].
Along with several reaches of Sajó River, extensive lateral erosion threatens the agricultural areas.
However, there is a lack of information about this vital issue, which could be included as key
information for land management plans. Thus, the main aims of this research were (i) to investigate
the geomorphological development and effects of bank erosion along a meandering sub-reach of
Sajó River; and, (ii) to assess the possible impacts on ecological diversity in case there will not be
further interventions on channel morphology. To achieve these goals, we performed a GIS (Geographic
Information System)-analysis of three consecutive meandering bends over 10 periods between 1952
and 2017 based on archive aerial imagery and UAV-surveys. Moreover, an ornithological survey was
also carried out to assess the composition and diversity of the avifauna.

2. Materials and Methods

2.1. Study Area

Sajó River (or Slaná in Slovakia) is a transboundary river of Slovakia and Hungary having a total
length of 229 km (124 km in Hungary). It is the main tributary of Tisza River before it reaches the Great
Hungarian Plain. The river catchment is situated at the Eastern-Carpathians with a total area of 5545 km2.
The stream gradient is much higher in Slovakian territory, then the river becomes alluvial downstream
from the Hungarian state border. The mean discharge of the river is around 24 m3/s. The total average of
suspended sediment load varies between 828,000 m3/y and 1,927,000 m3/y [44]. The Hungarian reach of
Sajó River is mainly the alluvial meandering-type with a total sinuosity of 1.78.

Although extensive river regulation plans had been established in the early 20th century to
facilitate shipping towards the Carpathians, eventually, most of the works had to be cancelled
due to the economic issues associated with World Wars [45]. Only a few minor river management
works had been carried out mainly around industrial areas. Most of these are artificial cutoffs, small
groynes, and another bank protection. Even though their spatial distribution is broad (58.3%) [43,46]
along the Hungarian reach of Sajó River, this is one of the least regulated rivers in the country.
The abovementioned geographical settings and the low rate of human intervention lead to the situation
of lateral bank erosion that can reach the 4–7 m/y rate in several sub-reaches [46,47].

The Hungarian National Ecological Network (Phase 2) had been established between 1999–2001
according to the legislation of the Pan-European Ecological Network (PEEN). The components of
the network provide the following landscape element categories: well-known core-areas, ecological
corridors, buffer zones and restoration areas [48]. Core areas provide the main habitats and genetic
reserves while the strip-like ecological corridors serve as continuous habitats or chains linking the
smaller and larger habitat patches together [49]. This study focuses on a selected 2.12 km long sub-reach
of the Sajó River consisting of three consecutive river bends near the town of Nagycsécs, Hungary
(Figure 1). The further calculations were performed on this 68.4 ha large rectangular area around
the river channel. This sub-reach of Sajó River can be considered as a free-forming meandering type
located between major river engineering works both upstream and downstream. The study area as
part of the Sajó River floodplain belongs to the PEEN category of ecological corridors between two
main Natura2000 areas.
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Figure 1. Overview of the study area. (A) Location of the study area in Europe; (B) Location of the
main rivers in the region of study area; (C) Detailed overview of the selected sub-reach of Sajó River.

We observed that the land mosaic of the study area was represented by a patch-complex
consisting of bare surfaces, perennial grasslands, forests and bushes, the river channel, arable
lands, and settlements. Bare plots, grasslands, and arboreal vegetation were considered as patches
connected to each other by their own successive development controlled by the river channel
changes and flood dynamic. On the other, arable lands and settlements were considered as mainly
human-controlled elements of this structure. Bare surfaces meant patches not completely in a lack
of vegetation, but with a low cover. Plant species of these sites are mainly disturbance-tolerant
species such as Chenopodium album, Chenopodium ambrosioides, Bidens tripartitus, at their wet riverside
edges Polygonum hydropier, Polygonum minus, Polygonum mite, Rorippa amphibia, Rumex crispus, and
Rumex obtusifolius. Perennial grasslands are dominated by diverse grass species like Phalaris arundinacea,
Agrostis stolonifera, Alopecurus pratensis, and Agropyron repens, varying by land use and duration of
floods. In forest and bush patches grow Salix purpurea, Salix triandra, Salix alba, and Populus spp.

2.2. Datasets

This study aims to develop a spatiotemporal analysis on the river channel development and the
ecological diversity based on a set of aerial imagery in 10 different time periods (Table 1). A set of
black/white military-based historical aerial photographs of the study were available from the year of
1952, 1956, 1975 and 1988 given by the Hungarian Military History Museum. The archive aerial imagery
was scanned in 600 dpi resolution and then orthorectified using the ERDAS Imagine software. However,
orthophotographs of 2011 were used as a reference (datum: Hungarian HD72/EOV), but we included
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Topographical maps of 1980 as well since there were few field objects on the aerial imagery between
1952 and 1988, that w not possible to identify on the orthophotographs of 2011. During the process,
15–20 ground control points (GCP) were used for each image to provide accurate georeferencing.
The RMSE (Root Mean Square Error) values varied between 3.4 to 6.7 m with an average of 4.8 m.
We purchased digital colour orthophotographs of 2000, 2005 and 2011. The scale range of the aerial
imagery and orthophotographs were found between 1:7000 and 1:12,000. After 2011, there were no
official orthophotographs available from the study area. Nowadays, UAVs offer a valuable solution
to produce high-resolution aerial imagery from a few km2 large areas [50,51]; thus they are widely
used for mapping wetland areas, especially for disaster management [52,53]. UAV-based surveys were
conducted in 2015 by using DJI Phantom drones in order to provide orthophotographs for 2015, 2016
and 2017. Each flight was performed at low-flow conditions while, at least, 20 GCPs were measured by
a Stonex RTK-GPS system. UAV image acquisition was performed at 150 m A.G.L. with 75% frontlap
and sidelap between flight paths to provide a ground resolution of 0.07 to 0.09 m. Agisoft Photoscan
software was used for the photogrammetric processing and the creation of orthophotographs with an
overall accuracy of around 0.05 m.

Table 1. Basic parameters of aerial imagery and orthophotographs used in this study.

Year Number of Images Type Scale Resolution (m) RMSE (m)

1952 22 B/W Aerial photo 1:7000 0.5 2.7
1956 18 B/W Aerial photo 1.7000 0.5 3.9
1975 15 B/W Aerial photo 1:12,000 0.5 2.2
1988 17 B/W Aerial photo 1:12,000 0.5 2.8
2000 22 Ortophoto 1:10,000 0.5 -
2005 22 Ortophoto 1:10,000 0.5 -
2011 22 Ortophoto 1:10,000 0.4 -
2015 1 UAV-Orthophoto 1:7498 0.09 0.05
2016 1 UAV-Orthophoto 1:8272 0.07 0.05
2017 1 UAV-Orthophoto 1:7669 0.07 0.05

2.3. Indices of River Channel Development

In order to quantify the extent of degradation by the lateral bank erosion, overlays of pairs
(Figure 2) related to consecutive time periods of the river channel polygons were composed [3]. In this
research, we consider that understanding the area of accretion also plays a key role in the case of
ecosystem diversity analysis. These two variables were derived at the same time. The crosshatched
area represents that part of the floodplain where the two-channel planforms overlap and it appears
that the channel did not change position, without any pronounced erosion or accretion.

 
Figure 2. Methodology for calculating areas of erosion and accretion.

The value of sinuosity index (SI) was calculated as the ratio of channel length to valley length [54];
consequently, not just the areal but morphological trend of river channel development could be
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assessed too. We determined the channel length as the length of channel centerline while valley
length was measured as the distance between the point where Sajó River crosses the Hungarian
border and the point of the Tisza River confluence. We calculated total SI values for each investigated
time-period. We determined the mean channel migration rate based on polygons drawn by the
overlapping centerlines in each consecutive time periods. The mean lateral channel shift is a ratio of
polygon area and the half of the polygon perimeter [55]. Regarding erosion/accretion and channel
shift, we normalized the values by the number of years covering each different periods.

We identified the meander parameters e.g., chord length (straight line distance between two
inflexion points; but this value is not equal with meander wavelength, that is the straight line distance of
two consecutive meander apexes of the same side of the river banks), amplitude, the width-normalized
radius of curvature (R/w). Channel widths were also determined in every 20 m along the centerlines
of each time periods; therefore, a detailed mean channel width was given at the end.

2.4. Ornithological Survey

The avifauna of the study area via transect and point count surveys during the breeding season
of 2018 was assessed. We selected two 200 m long line transects traversing the recently deposited
areas as well as an observation point along an eroding section of the river to be able to detect birds
along the full length of the study area. The transects were 500 m apart, while the point was 225 m and
580 m from the transects. We conducted the survey on 26 June between 10:00 a.m. and 12:40 p.m. Each
transect survey lasted for 30 min and the point count for 20 min during which the observer recorded
all species seen or heard in the vicinity of the river channel and the surrounding floodplain that are
potentially using the habitat (i.e., not just flying over it at a high altitude).

We also quantified the size of the sand martin colonies of the eroding river banks of the study area
from photo-mosaics. We applied close-range terrestrial photogrammetry to compose the mosaic view
of the eroding river bank. For this purpose, a Nikon D5300 camera with a 70–300 mm tele-objective
lens was used to capture the necessary photo-sequences of 218 images from tripod stands from the
opposite side of the river. The datasets were processed in Agisoft Photoscan software. We printed
coded targets of the software in A4 size in order to place them on the bank edges. We measured their
precise coordinates by Stonex RTK-GPS system in order to provide a reliable scaling of the mosaic in
Agisoft Photoscan.

2.5. Landscape Metrics

Class and landscape level landscape metrics to reveal the ecological features and processes along
the changing river channel were applied. Initially, landscape patches were manually vectorized with
a scale of 1:1000 in ArcGIS 10.3 on the aerial imagery in each investigated time-period. During the
process, we have delineated the following land use categories: forests and bushes, grasslands, arable
lands, bare point bar surfaces, settlement and the river channel itself (Figure 3). Aerial photographs
of 1952, 1956, 1975 and 1988 are black and white ones and sometimes the quality is far from good,
however, these photographs ensure a larger time range to monitor the changes. Land cover classes
had to be consistent; therefore, we merged the bushes and trees of forests. We decided to apply this
approach considering the four stage successional model of Corenblit [56]. In our case bare surfaces
represents the vegetation recruitment phase, grasslands are in phase of vegetation establishment and
succession continues with development of bushes and forests, which consists the same spectrum
of species but in different age and development phase. The river channel itself is the main factor
for diaspore dispersion. Arable lands and settlements are totally controlled by the society, until
the migration of the river channel does not alter this situation and shift them to a previous phase
of succession.
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Figure 3. Aerial overview of the study area with the different land use categories (1—forests and
bushes; 2—grasslands; 3—arable lands; 4—bar surfaces; 5—river channel). (A) Oblique aerial photo
by L.B., 11 June 2017; (B) Black & White archive aerial photo from 1975; (C) UAV-based orthophoto
from 2017.

In order to quantify and evaluate the direct changes in land cover and the transformation of
land patches related to vegetation succession, channel migration or human agricultural management,
we calculated a confusion matrix based on the vectorized land cover files in Idrisi software. In these
tables, the diagonal values related to a pair of a given land cover category represents the proportion
of area where no changes were found. The columns represents the initial land cover category while
the rows will define the land cover categories that the given column category were transformed into.
The values represents their proportion from the total area.

We concentrated on the metrics which reflect the diversity of the floodplain and its environments:

• Patch Density (PD): we calculated the index on landscape level as the number of patches per unit
area (Equation (1)).

PD =
N
A
(10, 000)(100) (1)

where N is the number of patches in the landscape, and A is the total area (m2), and the outcome
is expressed in number. per 100 ha−1 [57].

• Interspersion and Juxtaposition Index (IJI): we calculated the index on landscape level as the
function of observed interspersion and the maximum possible interspersion for the given number
of patch types (Equation (2)).

IJI =
−∑m

i=1 ∑m
k=i+1[(Eik)× ln(Eik)]

ln
(

m(m−1)
2

) (2)

where Eik: the total edge between patch types i and k; m: number of patch types. IJI is expressed
in per cent (0–100); low values indicate unevenly distributed or isolated patches in the area, the
largest value is acquired when all patch types have a common edge with all possible other patch
types [57,58].
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• Shannon’s Diversity Index (SHDI): We calculated the index on landscape level as the sum of the
proportional abundance of each patch type multiplied by that proportions (Equation (3)).

SHDI = −
m

∑
i=1

(Pi.lnPi) (3)

where Pi is the proportion of the landscape occupied by the patch type i. When the landscape
is occupied by only one patch SHDI = 0 and increases with the number of patch types and their
proportional area without upper limit [57,59].

• Class Area of the forests (CA_F): we considered the forests’ area as the indicator of landscape
change (in the initial phase, in 1956, there were only a few small patches and later, with the river
bed development, the area relevantly increased). The index was calculated as the proportion of
the forest land cover type and the total area and was expressed in per cent.

2.6. Statistical Analysis

After the calculation of descriptive statistics, the connection between the indices of river channel
development (Sinuosity—SI, Area of erosion—Er, Area of Accretion—Ar) and the landscape metrics
was also investigated. Regression analysis and Principal Component Analysis (PCA) were applied.
While the regression analysis pointed on the changes directly with the given variables and provided
valuable information on the temporal features and breakpoints of the surface development, PCA
helped to identify the years when both the landscape and the river bed had deterministic relations.

Standardized PCA was conducted using the correlation matrix with Varimax rotation to gain
orthogonal axes, i.e., non-correlating principal components (PCs) [60,61]. PD, CA_F, IJI, and
SHDI landscape metrics and the Er, Acc and SI indices of riverbed development were involved.
Thus, it became possible to identify both the cross-connections among the variables and to visualize the
dates of different stages of surface development on a biplot diagram. Model fit was controlled with the
Root Mean Square Residual (RMSR), which is determined using the residuals of the original correlation
matrix and the estimation of the PCA [62]. RMSR values of <0.05 indicates very good fit [63].

We applied the Jonckheere-Terpra test to reveal whether there was a trend in river channel change
over the studied period. Statistical analysis was performed using the software Past 3.19 [64] and
R 3.5 [65] by applying the psych [66] and GPArotation [67] packages; furthermore, the lattice [68],
the clinfun [69] and ggplot2 [70] packages were applied for the data visualization.

3. Results

3.1. Changes in Land Cover and Channel Morphology

Detailed land cover changes based on the vectorization of the available aerial imagery are shown in
Figure 4. After a visual interpretation of the figure, it is clearly visible that significant changes occurred
over the investigated periods (65 years). The channel developed at a remarkable rate developing three
main meandering bends with high sinuosity.

According to the results of the normalized erosion and accretion rates, the first period between
1952 and 1956 showed the second highest bank erosion (0.85 ha·year−1) rate (Figure 5A). Bank erosion
activity radically decreased with three times by 1975. It was followed by a gentle increase between
1975–1980 but after that, it decreased again and reached the lowest bank erosion rate (0.16 ha·year−1)
in 2005. A notable increase started in 2010 with an outstanding maximum value of 1.12 ha·year−1

in the period of 2015–2016. Except for the first period (1952–1956), accretion rates followed closely
the erosion rates; moreover, from the period of 2000–2005, except the above-mentioned extremely
erosive year between 2015 and 2016, they exceeded their contribution over the eroded areas in the
channel development. Lateral migration rates (Figure 5B) primarily followed the trend of erosion rates
as it started from a relatively high rate (5.3 m) of channel shift and decreased by 1975. Its minimum
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(0.8 m) was also found in 2005 then similarly started to increase, however, its peak of 2016 was not as
outstanding, due to its erosion rates.

Figure 4. Land cover changes of the study area.

Figure 5. (A) Time series of normalized accretion and erosion rates in the studied period; (B) Time
series of mean lateral channel shift rates in the studied period.

The parameters of meander evolution are summarized in Figure 6. The chord length (Figure 6A)
increased in Bend 1 from 460 m to 634 m until 1988 but it was followed by a slight decrease. However,
Bend 2 showed the opposite trend as it decreased to 299 m by 1988, but then the chord length increased
intensely with almost 200 m by 2017. Bend 3 decreased monotonously and the total change was almost
350 m from 1952 to 2017. Amplitude (Figure 6B) increased in all the bends but the expansion of Bend 1
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was almost two times higher (+127.49 m) than the others. The change in width-normalized radius of
curvature (Figure 6C) showed a similar increase as it was in chord length between 1952 and 1988 but it
was also found at Bend 3 as well. It was followed by an intensive decrease, especially in Bend 3.

Figure 6. Parameters of meander evolution and channel shift (A) chord length (m); (B) bend amplitude
(m); (C) width-normalized radius of curvature (m).

We justified a significant decreasing trend in case of river channel width (Figure 7) as a function of
time (J-T statistic = 80298; p = 0.0004) and there was a negative correlation between the mean channel
width and sinuosity (r = −0.93, p < 0.001).

Figure 7. Changes in the mean channel width.

Land cover changes can be divided into two groups: (1) settlement, river channel and point
bars where the changes were minimal (the area was more or less constant but the patches had spatial
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changes); (2) arable land, grassland and forests where the changes were relevant (these patch types
turned into another, at least, partly). The area of grasslands decreased transforming into arable
land and forest (Figure 8). The extent of the forests and bushes increased by 25% since the share
of grasslands showed a decrease in similar rate and bare surfaces were not changed considerably.
The extent of human-controlled arable lands was increased at the beginning but slightly decreased in
the last decades. Extents of the river channel and settlement were not changed considerably.

Figure 8. Changes in land cover over the studied period by patch types.

The detailed contingency tables of land cover changes between each consecutive time periods were
summarized and available in Supplementary File S1. In Table 2, we presented the changes of selected
pairs of land use category transformations that showed higher conversion proportions. The first
four rows represent the successional phases that follow the channel migration: The second highest
transformation rates were connected to the transformation from former river channel to bar surfaces.
It was followed by colonization of the bar surfaces by grasslands where the transformation rates were
found also lower and totally stopped by 2005. However, generally, direct transformation from bar
surfaces to forests showed some higher values but it could have been expressed by the longer time
periods covered. The highest transformation rates were found in the transformation from grasslands
to forests. The last four rows represents transformation categories that were controlled by the channel
migration and bank retreat except the changes from grasslands to arable lands. This type also resulted
in an outstanding proportion (0.326) between 1975 and 1988 and it radically decreased afterwards.

Table 2. Conversion matrix (changes in percent) of LC categories in the investigated periods.

Conversion Type
1952–1956 1956–1975 1975–1988 1988–2000 2000–2005 2005–2011 2011–2015 2015–2016 2016–2017

Initial Final

RC BS 0.016 0.019 0.028 0.007 0.013 0.014 0.018 0.005 0.004
BS G 0.008 0.016 0.005 0.008 0.002 0 0 0 0
BS F 0.002 0.005 0.021 0.026 0.012 0.013 0.006 0.005 0.009
G F 0.010 0.030 0.049 0.008 0.023 0.088 0.030 0.014 0.007

G RC 0.008 0.025 0.042 0 0.001 0.005 0.001 0 0
G AL 0.001 0.008 0.326 0.002 0.006 0.010 0.007 0.001 0.001
F RC 0.001 0.002 0.004 0.007 0.003 0.004 0.004 0.006 0.002

AL RC 0.011 0.011 0 0.017 0.006 0.018 0.015 0.004 0.004

AL—Arable lands, BS—Bar surfaces, F—Forests, G—Grasslands, RC—River channel.
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A linear relationship between the increase of forest areas and the SI (R2 = 0.94, p < 0.001; Figure 9A)
was revealed. At the first date of the study period (1956), only a few patches of the forest were observed,
which reached a 25% proportion till 2017; besides, SI indicated a straight river channel section in 1956
and it became a complex form up to 2017. Thus, the forest areas increased directly as the river channel
transformed and appropriate areas developed in the floodplain.

Figure 9. Sinuosity as independent factor of land cover changes and landscape diversity in the
study area. (A) The relationship between the SI (Sinuosity Index) and CAF (Class area of Forests);
(B) Relationship between the SI (Sinuosity Index) and SHDI (Shannon’s Diversity Index) metrics.

There was a significant connection between the SI and SHDI variables (R2 = 0.93, p < 0.001).
However, unlike in the case of forest areas, the connection was not linear (Figure 7B); a second-order
polynomial regression indicated that there was a change in the trend after 2011: next years (2015–2017)
were outside of the linear trend and the curve showed saturation; moreover, there was a small decrease
in the diversity in 2017.

PCA explained the 94% of the total variance. Three principal components (PC) were justified by
the RMRS (0.03). PC1 correlated with the Er (Area of Erosion), Acc (Area of Accumulation) and PD
(Patch Density) explaining 40% of the total variance. PC2 correlated with the SI, SHDI, and CAF and
accounted for 37% of the total variance, while PC3 was formed by solely the IJI having 18% in the
explanation of the total variance. Acc and Er correlated with the PD and SI with the SHDI and CAF.

The ordination diagram showed that years formed two distinct groups differentiated by the Er,
Acc and PD indices (Figure 10). The first group was situated in the negative part of the diagram, and
the second, with a larger range, in the positive part. Considering the vertical axis (PC2), the distribution
followed a monotonous increasing trend between 1956 and 1988 but it became sparse after 2000 with
2005 having the lowest value and after another increase, it started to decrease from 2015.

3.2. Avifauna

Since the biodiversity can be affected by the different land cover and morphological river changes,
we surveyed the avifauna as a possible bioindicator. Result of the snapshot faunistic survey is shown
in Table 3. A total of 26 species were detected breeding or using the habitat during the breeding season,
of which 23 are protected under the Hungarian law including the strictly protected European bee-eater
(Merops apiaster) [71].
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Figure 10. Biplot of the PCA model conducted with the landscape metrics and river channel
development indices (dashed arrows: involved variables).

Table 3. List of bird species seen and/or heard during the censuses listed in taxonomic order.

Common Name Scientific Name

1 Grey heron Ardea cinerea
2 Common buzzard Buteo buteo
3 Common kestrel Falco tinnunculus
4 Eurasian hobby Falco subbuteo
5 Common pheasant Phasianus colchicus
6 Common sandpiper Tringa hypoleucos
7 Woodpigeon Columba palumbus
8 Turtle dove Streptopelia turtur
9 Common cuckoo Cuculus canorus

10 Common kingfisher Alcedo atthis
11 European bee-eater Merops apiaster
12 Green woodpecker Picus viridis
13 Great spotted woodpecker Dendrocopus major
14 Sand martin Riparia riparia
15 Common blackbird Turdus merula
16 River warbler Locustella fluviatilis
17 Eurasian blackcap Sylvia atricapilla
18 Chiffchaff Phylloscopus collybita
19 Great tit Parus major
20 Common starling Sturnus vulgaris
21 Golden oriole Oriolus oriolus
22 Eurasian jay Garrulus glandarius
23 Hooded Crow Corvus cornix
24 Common chaffinch Fringilla coelebs
25 European greenfinch Carduelis chloris
26 European goldfinch Carduelis carduelis
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The nest cavities of both the bee-eater and the steeply declining Sand martin (Riparia riparia) was
found along the eroding section of the Sajó River bank. Approximately, 80–100 pairs of sand martins
were feeding young at the time of the survey at the focal section of the river. However, based on the
number of visible nest cavities (Figure 11), the two colonies could have consisted of a total of 446
breeding pairs.

Figure 11. Nest cavities along the eroding river banks of Sajó River at the study area. (A) The overview
of the cavities; (B) Examples of cavities along the recently eroded slump blocks; (C) Red circles indicates
the cavities identified on one part of the mosaic.

4. Discussion

Fluvial morphological changes are able to generate intensive modifications, which can affect
hydrological processes and, even, biodiversity. One clear example is the Sajó River, which was assessed
in this research. Sajó River itself is regulated only in particular reaches, but its morphological evolution
is affected by the Tisza River. Sajó River as a tributary joins Tisza River and the study area is located
only about 20 km upstream from the confluence, which is strongly affects the sediment transport and
channel development of the studied Sajó River sub-reach. The Tisza was regulated during the second
half of the 19th century, and as a result of these regulations, its riverbed was incised for its straightened
channel and increased energy [42,43]. This process could be also responsible for the morphological
changes of Sajó River. The characteristics of Tisza channel development basically changed after the
construction dams on Tisza River, both on upstream (1954, Tiszalök) and on downstream (1978, Kisköre)
sections around the firth of Sajó. The establishment of these dams could cause a reduction of sediment
supply [54] which generally leads to further channel incision. However, we determined the narrowing
(Figure 7), and therefore, similarly to Tisza River, a possible incision, of the Sajó River but its channel
started to develop in a different way, namely increased meandering started instead of a former incision,
which has diverse effects on land cover, conservational value and productivity on surrounding
landscape [72].
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Morphological changes allow registering high rates of bank erosion, which in similar
investigations in other European rivers, was also calculated [3,73,74]; however, the extent of arable
lands lost by lateral erosion is not an outstanding value compared to other rivers with similar
geomorphological patterns [75]. In this way, it would be a great opportunity to include in future
investigations the correlation between these morphological alterations, the changes in the biodiversity
and the bank erosion rates.

It is notable that the accretion of the river bank mainly followed the rate of eroding outer
banks; therefore, new bare point bar surfaces had been developed in a short time period. Although
these surfaces are not valuable ecologically, at the beginning phase, they represent potential future
habitats [74]; our study pointed out that in case the vegetation can rapidly occupy the area, then the
process can increase the extent of habitat in the ecological corridors. Moreover, the studied sub-reach
is situated between two Natura2000 areas, thus, channel migration can enhance the habitat diversity
and species connectivity between these sub-groups of the ecological network, that strengthen the role
of an ecological corridor, as a possible compensation of the land degradation processes.

The majority of previous studies were focusing on the extensive negative effects of river
bank erosion i.e., spreading pollutants from upstream reservoirs or remobilizing heavy metal
contaminants [76–78] but only a few discuss their ecological consequences. In some cases, under
different climate conditions, the lateral shifts of river channels rapidly decrease the biodiversity of
the neighbouring flora and fauna [79] but in this case, it affects only agricultural areas. In our study,
we demonstrated an opposite dynamic: How the process can be valuable. Regarding the changes in
landscape metrics, as SI values increased, the forest areas (CA-F) also increased. SI reflected how the
planform of the river channel was developed, and the positive connection with the forest areas indicate
that instead of the arable lands, a natural afforestation process was initiated. Small grassland patches
can be merged into forest cover without appropriate management [80] but in this case, the increase of
SI provided the criteria of the forest cover extension. The newly developed point bars were occupied
by plants (firstly with herbaceous plants) and later became forested following a successional process.
Diversity did not follow the linear trend because the area of the forests reached a threshold when the
further increase did not increase the diversity of the mosaic of land cover patches (Figure 9). This is
the explanation of the two kinds of the relationship of the SI with the landscape metrics. The analysis
on the conversion matrix between land cover categories showed higher values on the changes related
to vegetation succession phases while the lower values were found in connection with the channel
migration. However, we found outstanding transformation from grasslands to arable lands between
1975 and 1980 but this can be clearly explained by human intervention on the land management.

Multivariate analysis revealed that 1956–1988 period had rather similar features considering the
erosion-accretion processes and the PD, and there was another group of years between 2000 and 2017
that can be distinguished according to the remaining variables. However, considering the results of
PCA, SI, SHDI, and CA_F variables differentiated the points a sparse distribution: As the erosion
and accretion processes increased or decreased, or were larger or smaller compared to each other, the
forest areas and the diversity also reacted differently. This process became the major regulator of the
ecological process from 1988 to 2000 when the river channel development reached SI = 1.4 and in
2015 when it reached SI = 1.6, the pace of the lateral movement slowed down. At the beginning of
meander development, the chord length remains stable and an extension, with increasing amplitude,
occurs [11]. We observed similar changes along the studied Sajó River reach since the chord lengths
showed only minor changes until 1975 from where both increase (bend 2) and decrease (bend 1, 3) took
place. According to [13] the decreasing normalized curvature (R/w) accelerates the channel migration
as it was also found (Figures 5b and 6c) in the studied Sajó River reach. The proportion of the forests
increased from 1 to 25%, and, what is important, these areas were constant (if a patch type transformed
into forest, most of the area remained forest in the consecutive years, too), while the grasslands, arable
lands, and especially the point bars changed in spatial terms (changes can occur back and forth, or the
formation and diminishing is a common process).
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The development of successional riparian and fluvial forests on recently deposited point bars
significantly increases biodiversity locally [81] but more importantly, it facilitates the movement of
organisms across an otherwise cultivated and homogenous landscape, thus, allows the maintenance
of gene flow between meta-populations. Indeed, the classification of the study area is “ecological
corridor” within the National Ecological Network, which connects ecologically important core areas
along the river. The avifauna of the study area is similar to communities detected along with other
reaches of the river over two decades ago [82] suggesting that the newly formed habitats are quickly
colonized by protected species from nearby areas.

The eroding banks provide important nesting sites for colonies of protected and regionally
declining migratory bird species such as the sand martin and the European bee-eater [83] further
increasing the ecological importance of the new habitats created by this dynamic river. In fact,
an effective way to improve the availability of nesting sites and facilitate the recolonization of an area by
sand martins is the removal of bank erosion control projects from heavily regulated river channels [84].
This may be particularly important for maintaining viable populations of sand martins in agricultural
landscapes as these birds usually do not reuse their nests from previous years to avoid the costs of
heavy infestation with parasites [85,86], rather select nesting sites along river banks and sand quarries
where periodically renewing vertical surfaces are available at the beginning of the nesting season.
Eroding river banks at our study area provide just that, the continuous renewal of this critical resource,
the nesting site, which often limits the distribution of both sand martins and bee-eaters [71,85].

The increase in the extent of the most stable successive landscape element (forests) and a decrease
of elements in middle-phase of succession (grasslands) suggest that the land-mosaic alteration during
the investigated time resulted in higher diversity and stability. This process is important regarding
laterally active channels; therefore, identification of the relationship between morphological changes
in river channel and landscape evolution is vital [2,56]. Changes of arable lands could not be used
as an indication for river development since it is controlled by human actions related to agricultural
management. As a main controlling factor for successive landscape elements, the altered dynamic
of meandering could be evaluated. Even if no relevant human interventions were present within
the study area, the changes in meandering-dynamic can be highly influenced by the anthropogenic
changes in the flood-dynamic of the main stem Tisza River. Decreasing agricultural productivity due
to bank failures and channel shifting seems to be balanced by increasing habitat diversity by recent
point bar deposits, succession areas, and bushes. Considering the increasing share of cultivated areas
during last decades within a floodplain, which is part of a national ecological network, positive effects
of the meandering of the river exceeds the negative effects of land loss and lateral erosion.

Another important topic to be assessed in the future would be the connectivity processes [87].
It is clear that the studied river and surrounding landscapes are connected by different processes such
as nutrient transport or sediment mobilization, both of these are also conditioned by the vegetation
colonization [88–90]. The application of modelling techniques and connectivity indexes allow us
detecting how meandering is influenced by other dynamic fluxes such as agricultural fields [91] or
urban areas [92] and at which level. Therefore, undoubtedly, understanding connectivity processes in
the Sajó river would help land plan managers and stakeholders to design correct and sustainable soil
erosion control measures and water conservation practices, as other authors also confirmed in other
degraded areas [93,94].

5. Conclusions

River channel development is a natural process, which usually considered to have a negative
effect due to the damages caused to agriculture or infrastructure. Our hypothesis was that, besides
the detrimental phase, there is also a positive effect because of the newly developed habitats on the
opposite side of the river. We revealed that 65 years were enough to gain a new habitat system along
the river as the linear channel formed into a meandering and more natural state. At the beginning
phase, there were only a few patches of forests and the matrix had been dominated by the surrounding
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arable lands, while nowadays the forests have a major role in the landscape mosaic. There was a linear
relationship between the sinuosity and the class area of the forests; i.e., the more developed the
meanders were, the more forest patches appeared in the area. However, Shannon’s diversity did not
follow a linear trend with sinuosity and instead of reaching its maximum it showed a polynomial
trend; i.e., the areal increase of forests did not increase the landscape diversity as the patches became
dominant, compact and connected. Consequently, this was an advantageous process from ecological
aspects. Although the plant species were not of significant conservation value (mostly pioneers and
weeds) but provided habitats for several protected bird species. Besides, the eroding side of the
riverbed also serves as a nesting place for birds, too. Accordingly, we emphasize the positive effects of
the erosion and accretion processes, as nature conservation benefits from the new geomorphological
forms of river channel development.
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Ježková, J., Nováková, E., Kuda, F., Eds.; Masaryk University: Brno, Czech Republic, 2018; pp. 13–14.

44. Bogárdi, J. A Sajó hordalékszállítása és a hordalékos víz ülepítése. (Sediment transport and deposition of
Sajó River). Hidrológiai Közlöny/Hung. J. Hydrol. 1949, 29, 376–379.

45. Kákóczki, B. A Szederkényi Uradalom Történeti Földrajza, 1st ed.; Tiszaújváros város Önkormányzata
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Abstract: Different spatial configurations (or scenarios) of multiple best management practices
(BMPs) at the watershed scale may have significantly different environmental effectiveness,
economic efficiency, and practicality for integrated watershed management. Several types of spatial
configuration units, which have resulted from the spatial discretization of a watershed at different
levels and used to allocate BMPs spatially to form an individual BMP scenario, have been proposed
for BMP scenarios optimization, such as the hydrologic response unit (HRU) etc. However, a
comparison among the main types of spatial configuration units for BMP scenarios optimization
based on the same one watershed model for an area is still lacking. This paper investigated and
compared the effects of four main types of spatial configuration units for BMP scenarios optimization,
i.e., HRUs, spatially explicit HRUs, hydrologically connected fields, and slope position units (i.e.,
landform positions at hillslope scale). The BMP scenarios optimization was conducted based on a
fully distributed watershed modeling framework named the Spatially Explicit Integrated Modeling
System (SEIMS) and an intelligent optimization algorithm (i.e., NSGA-II, short for Non-dominated
Sorting Genetic Algorithm II). Different kinds of expert knowledge were considered during the BMP
scenarios optimization, including without any knowledge used, using knowledge on suitable landuse
types/slope positions of individual BMPs, knowledge of upstream–downstream relationships, and
knowledge on the spatial relationships between BMPs and spatial positions along the hillslope.
The results showed that the more expert knowledge considered, the better the comprehensive
cost-effectiveness and practicality of the optimized BMP scenarios, and the better the optimizing
efficiency. Thus, the spatial configuration units that support the representation of expert knowledge
on the spatial relationships between BMPs and spatial positions (i.e., hydrologically connected fields
and slope position units) are considered to be the most effective spatial configuration units for BMP
scenarios optimization, especially when slope position units are adopted together with knowledge
on the spatial relationships between BMPs and slope positions along a hillslope.

Keywords: spatial configuration units; best management practices (BMPs); spatial optimization;
hydrologic response units (HRUs); hydrologically connected fields; slope positions; watershed
process simulation
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1. Introduction

Different best management practices (or beneficial management practices, BMPs for short)
scenarios (i.e., spatial configurations of multiple BMPs) at the watershed scale may have significantly
different environmental effectiveness, economic efficiency, and practicality [1–6]. They are valuable
for decision-making of integrated watershed management to assess the environmental effectiveness
and economic efficiency of watershed BMP scenarios and then propose optimal ones. Currently,
a popular approach to achieving this target is based on watershed modeling [7–9] coupled with
intelligent optimization algorithms [2,4,5,10–13], so-called BMP scenarios optimization. To conduct
the BMP scenarios optimization, each individual BMP scenario is created by automatically selecting
and allocating BMPs on spatial configuration units (also called BMP configuration units hereafter),
which have resulted from the spatial discretization of a watershed at one among different levels (such
as subbasins, and hydrologic response units; Figure 1). When a specific type of BMP configuration
unit is chosen for the BMP scenarios optimization of a watershed, normally each individual BMP
configuration unit in the watershed is allowed to be configured with only one type of BMP (as the
situation in this study). Then the effects of the scenario on watershed behavior are simulated by
watershed models [4,13]. The simulation result is the basis of the automatic spatial optimization of
BMP scenarios. Therefore, the determination of the BMP configuration units becomes the one key
issue for the BMP scenarios optimization.

 

Figure 1. Schematic diagram of spatial discretization of a watershed at different levels (such as
sub-basins, hydrologic response units (HRUs), farms, hydrologically connected fields, slope position
units, and grid cells) and the corresponding best management practice (BMP) scenario examples after
allocating multiple types of BMPs based on different kinds of expert knowledge.

Currently, spatial configuration units used in BMP scenarios optimization mainly include five
types with different levels, i.e., subbasins [14–17], hydrologic response units (HRUs) [12,18,19],
farms [10,11], hydrologically connected fields [5], and slope position units (i.e., landform positions at
hillslope scale, such as ridge, backslope, etc.) [2].

Subbasins are normally regarded as relatively closed and independent spatial configuration units
which can be further delineated into different levels of spatial configuration units such as landform
positions, HRUs, and gridded cells [20]. Thus, subbasins are coarse-grained units for configuring
spatially explicit BMPs, and it is suitable to serve as BMP configuration units for situations in which
the potential locations of BMPs are predefined within each subbasin [17]. Meanwhile, using subbasins
as BMP configuration units can decrease the search space of spatial optimization more than that of the
adoption of other more detailed spatial configuration units, and thus can achieve a better optimizing
efficiency [15]. However, using subbasins as BMP configuration units is not available for configuring
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multiple spatially explicit BMPs within one subbasin while BMPs often have different effects on
different spatial positions of a hillslope [2,21,22].

HRUs are delineated as hydrologic homogeneous areas according to landuse, soil, and topography
(commonly presented through slope percentage) within one subbasin [23]. HRUs are extensively
used for the sake of convenience, especially when the Soil and Water Assessment Tool (SWAT) [23] is
applied to watershed modeling. However, an HRU is spatially discrete—it may occupy the hillslope
from ridge to valley bottom—and is even spatially ambiguous when the three thresholds introduced
in SWAT for delineating HRUs (i.e., the minimum percentage of the landuse area over the subbasin
area, the soil area over the landuse area, and the slope class area over the soil area) are set as non-zero
values [24]. Although setting these thresholds to be non-zero can reduce the count of HRUs and hence
improve the computational efficiency of simulations, the inappropriate representation of the study area
may introduce some levels of ambiguity in simulations. Therefore, the selected optimal BMP scenarios
may not be easy to implement spatially explicitly. Similar to subbasins, HRUs are also inappropriate to
serve as BMP configuration units for spatially explicit BMPs. Furthermore, the impact of BMPs of an
upslope HRU on a downslope HRU cannot be represented [24], although this impact is important for
incorporating the expert knowledge of spatial relationships between BMPs and spatial positions [2,5].

To improve the practicality of BMP scenarios, some studies adopted farms [10,11], or the so-called
spatially explicit HRUs that are directly defined by farm boundaries [25] or landuse/landcover field
maps [26], as BMP configuration units. These BMP configuration units are spatially one-to-one matched
with farm or landuse/landcover fields and thus can be collectively referred to as spatially explicit
HRUs [26]. Compared with spatially discrete HRUs, spatially explicit HRUs can make corresponding
BMP scenarios more practical to stakeholders (such as farmers, landowners, or land managers).
Meanwhile, due to the ignorance of topographic variance inside each farm or landuse/landcover field,
such BMP configuration units normally have a smaller count than spatially discrete HRUs for a study
area, which means higher optimizing efficiency [1,26]. However, there are still no explicitly defined
upstream–downstream relationships between spatially explicit HRUs, which means that the spatial
relationships between BMPs and spatial positions cannot be represented effectively [2,5].

Wu et al. [5] proposed hydrologically connected fields with upstream–downstream relationships
to be BMP configuration units, which can be delineated by considering spatial topology based on
flow directions and a landuse map. With hydrologically connected fields, a set of expert rules of
BMP interactions based on the upstream–downstream relationships can be developed in the form of
“if-then” rules, i.e., if a field has been configured with one BMP, its adjacent upstream fields should not
be configured with BMP, otherwise, BMP will be randomly selected and configured on the adjacent
upstream fields according to their landuse type [5]. To the best of our knowledge, the study of
Wu et al. [5] is the first work on incorporating the spatial relationships between BMPs and spatial
positions into BMP scenarios optimization, so that its cost-effectiveness and optimizing efficiency
could be improved. However, hydrologically connected fields may be delineated across multiple
landform positions or subbasins, since the hydrological relationship, considered by Wu et al. [5], is
built at the watershed scale rather than the hillslope or subbasin scale. This means that hydrologically
connected fields have weak spatial relationships to homogeneous functional units at the hillslope scale
from the perspectives of physical geography such as geomorphic, soil, and hydrologic conditions [2].
Therefore, hydrologically connected fields also face the shortcoming that the spatially explicit BMPs
cannot be represented effectively. A possible way for spatially explicit HRUs and hydrologically
connected fields to overcome the above-mentioned shortcoming is to delineate them so as to be small
enough patchworks of gridded cells within homogeneous functional units, or even individual gridded
cells [27–29]. However, this approach will render the optimization based on such spatial configuration
units computationally intensive or even unsolvable [27]. This makes such an approach only suitable
for the spatial optimization of one single BMP within a little watershed [28,29], thus having too narrow
applicability for normal watershed management which considers multiple BMPs.
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More recently, Qin et al. [2] proposed slope position units [30,31] as BMP configuration units, so
as to overcome the above-mentioned shortcomings of hydrologically connected fields and other BMP
configuration units. Slope position units (e.g., ridge, backslope, and valley), as spatially contiguous
and topographically connected units along the hillslope, are inherently related to physical watershed
processes [20,30,32], and thus affect the effectiveness of BMPs [2]. Besides, the count of slope position
units is comparatively limited, so as to ensure optimizing efficiency. Therefore, the spatial relationships
between BMPs and slope positions along the hillslope could be explicitly and effectively considered
during the spatial optimization of BMP scenarios. According to the preliminary study [2], this
spatial-relationship-considered way of using slope position units as BMP configuration units is
effective, efficient, and practical for BMP scenarios optimization, compared to a standard random
optimization way of selecting and allocating BMPs randomly on configuration units.

Although many studies have assessed the cost-effectiveness of each individual type of
above-mentioned BMP configuration units for the spatial optimization of BMP scenarios, as far
as we know, a comparison among main types of BMP configuration units based on the same one
watershed model for an area is still lacking. To discuss the effects of different BMP configuration units
for watershed BMP scenarios optimization with regard to cost-effectiveness, optimizing efficiency,
and practicality, this paper compares four types of BMP configuration units (i.e., HRUs, spatially
explicit HRUs, hydrologically connected fields, and slope position units) in the spatial optimization of
configuring multiple spatially explicit BMPs for mitigating soil erosion based on a spatially distributed
watershed model. Subbasins are not included in this study, because subbasins are too coarse-grained
to represent multiple spatially explicit BMPs.

2. Materials and Methods

2.1. Methodology

To compare the effects of these four types of BMP configuration units for watershed BMP
scenarios optimization, a widely used spatial optimization framework of BMP scenarios based on
watershed modeling coupled with intelligent optimization algorithms [2,10,12] was adopted in this
study. As shown in Figure 2, the spatial optimization framework of watershed BMP scenarios
mainly consists of four components: (1) BMP configuration units for allocating BMPs within the
watershed; (2) a BMP knowledge base together with BMP configuration units as inputs to generate
and evaluate BMP scenarios; (3) models for evaluating each watershed BMP scenario, including
a distributed watershed model that can simulate spatial interactions between spatially explicitly
distributed BMPs and effectively assess the environmental effectiveness of each BMP scenario [2,5,33],
and a BMP scenario cost model for estimating the economic efficiency of each BMP scenario;
(4) a multi-objective optimization component based on an intelligent optimization algorithm such
as NSGA-II (Non-dominated Sorting Genetic Algorithm II) [34], which includes initializing BMP
scenarios based on BMP configuration units and a BMP knowledge base, and generating new BMP
scenarios or proposing optimal ones based on the evaluation results of all current BMP scenarios.
These components are elaborated in four subsections (Sections 2.3–2.6) followed by the subsection of
the study area and dataset (Section 2.2).
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Figure 2. Framework comparing the effects of different BMP configuration units for the spatial
optimization of watershed BMP scenarios in this study (extended from [2]).

Besides knowledge on the environmental effectiveness and cost-benefit of individual BMPs, BMP
configuration knowledge (such as the suitable landuse types/slope positions for individual BMPs,
and the spatial relationships between BMPs and spatial positions) is necessary for BMP scenarios
optimization (Figure 2). According to the characteristics of BMP configuration units, different kinds
of BMP configuration knowledge can be saved in the BMP knowledge base and applied (hereafter
referred to as BMP configuration strategy) (Figure 2). For example, the simple rule of suitable landuse
types/slope positions is applicable for all types of BMP configuration units, while the expert rules based
on upstream–downstream relationships between BMPs can only be applied to the BMP configuration
units which have upstream–downstream relationships [5], such as hydrologically connected fields and
slope position units. Furthermore, the expert rules based on the spatial relationships between BMPs
and slope positions along the hillslope are only applicable for slope position units [2]. Section 2.4
contains more detailed information about the BMP knowledge base and BMP configuration strategies
adopted in this study.

To assess the effects of four types of BMP configuration units for watershed BMP scenarios
optimization, all feasible combinations of BMP configuration units and BMP configuration strategies
were investigated by the same watershed BMP scenarios optimization framework (Figure 2). The
results of different BMP configuration units applied with available BMP configuration strategies are
discussed from the perspectives of cost-effectiveness, optimizing efficiency, and practicality (Figure 2).
The detailed experimental design is described in Section 2.7.
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2.2. Study Area and Dataset

The Youwuzhen watershed (~5.39 km2), located in the typical severely eroded red-soil hilly region
in southeastern China, was selected as the study area (Figure 3). Low hills with steep slopes (up to 52.9◦

and with an average slope of 16.8◦) and broad alluvial valleys are the primary geomorphology forms [2].
Forest (59.8%), paddy field (20.6%), and orchard (12.8%) are the primary landuse types in the study
area (Figure 4). Additionally, forests in the study area are dominated by secondary or human-made
forests with low coverage due to the destruction of vegetation caused by soil erosion and economic
development in the past [35] (Figure 4). Soil types in the study area are red soil (78.4%) and paddy
soil (21.6%) which can be classified as Ultisols and Inceptisols in US Soil Taxonomy, respectively [36].
Red soil is mainly distributed in the hilly region, while paddy soil is mainly distributed in the broad
alluvial valleys with a similar spatial pattern of paddy rice landuse (Figure 4). The climate belongs
to the mid-subtropical monsoon moist climate with an annual average temperature of 18.3 ◦C. The
annual average precipitation is 1697.0 mm [35].

Figure 3. Map of the Youwuzhen watershed in Fujian Province, China (adapted from [2]).

 
Figure 4. Map of landuse in the study area.

The basic spatial data collected for watershed modeling of the Youwuzhen watershed include a
gridded Digital Elevation Model, a soil type map, and a landuse type map, which were all unified to be
of 10 m resolution [2]. Soil properties were derived from field sampling data [35]. Landuse/landcover
related parameters were referenced from the SWAT database [37] and relevant literature [38]. The
climate data containing daily meteorological data and precipitation data from 2012 to 2015 were
derived from the National Meteorological Information Center of China Meteorological Administration
and local monitoring stations, respectively. The periodic site-monitoring streamflow and sediment
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discharge data of the watershed outlet from 2012 to 2015 were provided by the Soil and Water
Conservation Bureau of Changting County, Fujian province, China.

With an accumulated threshold of 0.185 km2 for the study area [35], the Youwuzhen watershed
was delineated into 17 subbasins (Figure 3). The streamflow and sediment discharge data were
screened by a rule that requires complete records of rainstorms with more than three consecutive days
for watershed modeling due to the limited data quality [2]. Finally, the year 2012 was selected as a
warm-up period for watershed modeling, the years 2014 and 2015 for calibration, and the year 2013
for validation.

2.3. Delineation of BMP Configuration Units

2.3.1. HRUs

The QSWAT, an open source user interface for the SWAT model [39], was used to delineate the
typical spatially discrete HRUs by overlaying the landuse map, soil map, and the classification map
of the slope percentage. The slope percentage was classified into five classes with nearly equal areas
according to the quantile classification method, i.e., 0%–9%, 9%–23%, 23–36%, 36%–48%, and larger
than 48%. Three threshold values introduced in SWAT to delineate HRUs were all set to 0%, so as to
obtain a full spatial coverage of HRUs (Figure 5a). Finally, a total of 355 HRUs were generated in the
study area (Figure 5a).

Figure 5. Delineations of BMP configuration units of the Youwuzhen watershed: (a) HRUs; (b) spatially
explicit HRUs; (c) hydrologically connected fields; (d) slope position units.

2.3.2. Spatially Explicit HRUs

The method proposed by Teshager et al. [26] was adopted to delineate the spatially explicit HRUs.
First, the landuse map was split by river and road networks—not forest type—in the map. Then,
the split landuse map was intersected by the subbasin boundary. After eliminating small polygons,
landuse polygons were re-labeled by assigning different codes for the polygons with the same landuse
type within a subbasin. For example, three polygons with a landuse of orchard (ORCD) within a
subbasin were re-assigned to ORCD1, ORCD2, and ORCD3, respectively. Similarly, the processed
landuse map was intersected by the soil map and the landuse-soil polygons with the same soil type
within a subbasin were re-labeled according to soil types. A single slope percentage class was implicitly
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used in this method to avoid HRU fragmentation and ensure that each HRU matched individual fields
in a subbasin. Finally, 166 spatially explicit HRUs were generated (Figure 5b).

2.3.3. Hydrologically Connected Fields

The basic idea of the delineation algorithm of the hydrologically connected field proposed by
Wu et al. [5] is to build a gridded cell tree structure based on flow directions and then merge gridded
cells with the same landuse type in this tree structure into one field. A threshold value of the minimum
size of a field was set to eliminate tiny fields by aggregating them into their downslope large ones.
The smaller the threshold value, the more the fields will be delineated. The threshold value was
insensitive to the cost-effectiveness of the optimization of BMP scenarios according to the sensitivity
analysis conducted by Wu et al. [5]. Therefore, under the consideration of optimizing efficiency and
comparability with other BMP configuration units, 103 hydrologically connected fields were delineated
with a threshold value of 70 cells (Figure 5c).

2.3.4. Slope Position Units

The same as in the case study of Qin et al. [2], a simple system of three types of slope positions (i.e.,
ridge, backslope, and valley) was adopted to delineate slope position units. The automated program
developed by Zhu et al. [31] was used to derive fuzzy memberships of gridded cells to each slope
position and then a crisp classification map of slope positions was generated by the maximization
principle [30]. The slope position map was then intersected by the hillslope boundary to ensure each
hillslope had a full sequence of slope position units from the top to the bottom of the hillslope. Finally,
105 slope position units within 35 hillslopes were delineated.

2.4. BMP Knowledge Base and BMP Configuration Strategies

As shown in Table 1, four BMPs that had been widely implemented in Changting County for
ecological restoration and soil and water conservation were selected in this study, i.e., Closing measures
(CM), Arbor-bush-herb mixed plantation (ABHMP), Low-quality forest improvement (LQFI), and
Orchard improvement (OI) [2,40].

The BMP knowledge base used in this study mainly includes two categories of knowledge, i.e.,
the environmental effectiveness and cost-benefit knowledge used for evaluating BMP scenarios, and
the BMP configuration knowledge used with BMP configuration strategies. The four BMPs considered
in this study can improve soil properties through long- or/and short-term processes and thus achieve
environmental effectiveness (i.e., improving water conservation and mitigating soil erosion) [39].
Therefore, the environmental effectiveness of the four BMPs considered in this study can be mainly
represented by the improvements of soil properties and the change of USLE (Universal Soil Loss
Equation) factors in the area with these BMPs in the watershed model [2,5,8]. The Fujian Soil and
Water Conservation Monitoring Station monitored the dynamic changes in the soil properties such
as organic matter, bulk density, and total porosity improved by various BMPs by taking samples
annually from 2000 to 2008 [41]. This study assumed that the long-term environmental effectiveness of
BMPs can reach relative stability after several years of maintenance from their first establishment [42].
Therefore, the relative changes of the 8-year sampled and derived soil properties (Table 2) were used
to represent the environmental effectiveness of BMPs in the watershed modeling. Besides, the relative
changes of the conservation practice factor of USLE (i.e., USLE_P) in Table 2 were adopted from the
calibrated SWAT model for this area [35]. The BMP cost-benefit data including initial implementation
cost, annual maintenance cost, and annual benefit, were estimated from reports of local government
projects [2] (Table 2).
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Table 1. Brief descriptions of the four BMPs considered in this study (adapted from [2,40]; photos from
[35]).

BMP Photo Brief Description

Closing measures
(CM)

 

Closing the ridge area and/or upslope
positions from human disturbance

(e.g., ban on felling tree and grazing)
to facilitate afforestation.

Arbor–bush–herb
mixed plantation

(ABHMP)

 

Planting trees (e.g., Schima superba and
Liquidambar formosana), bushes (e.g.,

Lespedeza bicolor), and herbs (e.g.,
Paspalum wettsteinii) in level trenches

with compound fertilizer on
hillslopes.

Low-quality forest
improvement

(LQFI)

 

Improving the infertile forest located
in the upslope and steep backslope
positions by applying compound
fertilizer to the hole with a size of

40 cm × 40 cm × 40 cm in the uphill
position of crown projection.

Orchard
improvement (OI)

 

Improving orchards on the middle
and down slope positions under

better water and fertilizer conditions
by constructing level terraces,

drainage ditches, storage ditches,
irrigation facilities, and roads,
planting economic fruit, and

interplanting grasses and Fabaceae
(Leguminosae) plants.

BMP configuration knowledge is normally in the form of rules. They include knowledge on
individual BMPs (such as its suitable landuse types, suitable slope positions, and overall environmental
effectiveness grade; Table 3) according to the characteristics of individual BMPs [35,41] (Table 1), and
knowledge on spatial relationships between BMPs (such as the upstream–downstream relationships
between BMP configuration units, see below) [2,5]. The overall environmental effectiveness grade of a
BMP ranges from 1 to 5 which represents the improvement degree of mitigating soil erosion for an
area with the BMP (the higher the better; Table 3). The overall environmental effectiveness grade can
be used to formalize the expert knowledge on the spatial configuration of BMPs along the hillslope
scale [2].
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Table 2. Environmental effectiveness and cost-benefit knowledge of the four BMPs (CM = Closing
measures, ABHMP = Arbor–bush–herb mixed plantation, LQFI = Low-quality forest improvement, OI
= Orchard improvement) (adapted from [2]).

BMP
Environmental Effectiveness 1 Cost-Benefit (CNY 10,000/km2)

OM BD PORO SOL_K USLE_K USLE_P Initial Maintain/yr Benefit/yr

CM 1.22 0.98 1.02 0.81 1.01 0.90 15.5 1.5 2.0
ABHMP 1.45 0.93 1.07 1.81 0.82 0.50 87.5 1.5 6.9

LQFI 1.05 0.87 1.13 1.71 1.71 0.50 45.5 1.5 3.9
OI 2.05 0.96 1.03 1.63 1.63 0.75 420 20 60.3

1 Environmental effectiveness of BMPs includes soil property parameters (i.e., OM = organic matter, BD = bulk
density, PORO = total porosity, and SOL_K = soil hydraulic conductivity) and universal soil loss equation (USLE)
factors (i.e., USLE_K = soil erodibility factor and USLE_P = conservation practice factor). Values in this column
represent relative changes (i.e., multiplying) to the original property values and thus have no units.

Table 3. Suitable landuse types/slope positions and the overall environmental effectiveness grade
of the four BMPs (CM = Closing measures, ABHMP = Arbor–bush–herb mixed plantation, LQFI =
Low-quality forest improvement, OI = Orchard improvement) (adapted from [2]).

BMP Suitable Landuse Types Suitable Slope Positions Effectiveness Grade

CM forest ridge, backslope 3
ABHMP forest, orchard ridge, backslope, and valley 5

LQFI forest backslope 4
OI forest, orchard valley 4

According to knowledge (or rules) used for BMP configuration, four BMP configuration strategies
were adopted during assessment of the effects of four types of BMP configuration units for BMP
scenarios optimization (Figure 2).

1. Random configuration strategy (RAND for short). Without knowledge used, the RAND strategy
randomly selects and allocates one of the four BMPs on the BMP configuration units. Thus, it can
be used for any type of BMP configuration unit considered in this study.

2. Strategy with knowledge on the suitable landuse types/slope positions of individual BMPs (SUIT
for short). The SUIT strategy is to randomly select and allocate one of the suitable BMPs according
to its suitable landuse type and/or slope position to the BMP configuration unit. This strategy is
applicable for any BMP configuration units with landuse type and/or slope position type.

3. Strategy based on expert knowledge of upstream–downstream relationships [5] (UPDOWN for
short). Extended from the SUIT strategy, the UPDOWN strategy applies the expert rules of BMP
interactions (“if–then” rules) based on the upstream–downstream relationships between BMP
configuration units to generating BMP scenarios. That is, if a field has been configured with one
BMP, its adjacent upstream fields should not be configured with a BMP; otherwise the BMP will
be randomly selected and configured on the adjacent upstream fields according to their landuse
types. This strategy is available for hydrologically connected fields and slope position units.

4. Strategy with expert knowledge on the spatial relationships between BMPs and slope positions
along the hillslope [2] (HILLSLP for short). The HILLSLP strategy further extends the SUIT
strategy to consider spatial constraints among BMPs on different slope positions along the
hillslope from upstream to downstream. Such expert knowledge used in this study was adapted
from Qin et al. [2], i.e., the effectiveness grade of the BMP configured on the downstream unit
of a hillslope should be greater than or equal to that of the BMP configured on the upstream
unit of the same hillslope. For example, according to the knowledge in Table 3, if the backslope
unit has been configured with ABHMP, the downstream valley unit of the same hillslope may be
configured with ABHMP or without BMP, while the upstream ridge unit has three configuration
options (i.e., CM, ABHMP, and without BMP).
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2.5. Watershed Model and BMP Scenario Cost Model

Note that BMP configuration units are not necessary to be consistent with the basic simulation
unit (e.g., gridded cell) of watershed models. To simulate the spatial interactions between spatially
explicitly distributed BMPs effectively, a fully distributed watershed model was constructed based
on an open-source, modular, and parallelized watershed modeling framework, Spatially Explicit
Integrated Modeling System (SEIMS, https://github.com/lreis2415/SEIMS; [33]) in this study. With
the flexible modular structure and the parallel-computing middleware [33,43], SEIMS allows users
to add their own algorithms in a nearly serial programming manner and to customize parallelized
watershed models according to the characteristics of the study area and the application requirements.
SEIMS also supports model-level parallel computation for applications which need numerous model
runs, such as BMP scenarios optimization in this study.

To evaluate the long-term effects of BMP scenarios on mitigating soil erosion, a SEIMS-based
watershed model with gridded cells as the basic simulation unit was constructed to simulate hydrology,
soil erosion, plant growth, and nutrient cycling processes at a daily time-step [2]. The hydrology
processes considered in this watershed model include interception, surface depression storage, surface
runoff, potential evapotranspiration, percolation, interflow, groundwater flow, and channel flow. Soil
erosion on hillslopes was estimated by the Modified Universal Soil Loss Equation (MUSLE) [44], and
sediment routing in channels was simulated by a simplified Bagnold stream power equation adapted
in the SWAT model. The plant growth process and nutrient (i.e., nitrogen and phosphorous) cycling
process were also adapted from SWAT. More details about the corresponding simulation algorithms
can be found in Qin et al. [2].

Note that the BMP module of SEIMS applies BMP knowledge to update the input parameters
on each of the gridded cells configured with BMP suitable for current landuse on the cell before the
simulation, while the non-effective configurations are ignored. The non-effective configurations may
occur in two circumstances: (1) the BMP configuration unit includes multiple landuse types (e.g., the
generalized hydrologically connected fields and slope position units) and some of them with small
areas are unsuitable for the currently configured BMP; (2) the BMP configuration unit applied with the
random configuration strategy, e.g., the BMP configuration unit with paddy rice landuse configured
with Low-quality forest improvement (LQFI) or Orchard improvement (OI) practices.

After conducting the parameter sensitivity analysis using the Morris screening method [45], the
SEIMS-based watershed model in the study area was calibrated by an auto-calibration procedure
based on the NSGA-II algorithm (a multi-objective optimization algorithm extended from the
Genetic Algorithm; [34]) provided in SEIMS [33]. The Morris screening method is a so-called
one-step-at-a-time (OAT) global sensitivity analysis method, which was used to qualitatively identify
important parameters for the simulation of streamflow and sediment export at the outlet in this study.
Then a small number of sensitivity parameters (such as the baseflow exponent and the baseflow
recession coefficient for groundwater and soil water capacity) were selected for auto-calibration in
this study [33]. The NSGA-II was also applied to BMP scenarios optimization in this study, and is
described in detail in Section 2.6. One optimal calibration solution was selected as the baseline scenario
(Table 4). The calibration and validation results of streamflow (m3 s−1) and sediment export (kg) at the
outlet of Youwuzhen watershed were evaluated by widely-used model performance indicators such
as NSE (Nash–Sutcliffe Efficiency), PBIAS (Percent BIAS), and RSR (Root mean Square error–standard
deviation Ratio) [46]. According to the general performance ratings for simulations at a monthly time
step [46], the model performance is satisfactory when NSE ≥0.50, RSR ≤0.70, and the absolute value
of PBIAS ≤25% (55% for sediment). Thus, the streamflow performance is nearly satisfactory, while
the sediment is relatively poor because of a few unreasonable peak values (Table 4). Nevertheless,
the general trends of hydrographs in the study area can be captured by the calibrated SEIMS-based
model according to visual judgement. Therefore, it is acceptable to apply the calibrated SEIMS-based
watershed model to BMP scenarios optimization. The annual average sediment yields from 2013 to

93



Water 2019, 11, 262

2015 of the entire watershed, under each BMP scenario for spatial optimization, were calculated by
this model.

Table 4. The calibration (2014–2015) and validation (2013) results of the baseline scenario by the
Spatially Explicit Integrated Modeling System (SEIMS)-based watershed model. (NSE = Nash–Sutcliffe
Efficiency, RSR = Root mean Square error–standard deviation Ratio, PBIAS = Percent BIAS).

Constituent
Calibration Period (2014–2015) Validation Period (2013)

NSE RSR PBIAS (%) NSE RSR PBIAS (%)

Streamflow (m3 s−1) 0.50 0.71 13.55 0.57 0.65 −14.71
Sediment export (kg) 0.30 0.84 13.93 0.45 0.74 −42.39

Besides the SEIMS-based watershed model for evaluating environmental effectiveness, a simple
BMP scenario cost model (Equation (1)) was adopted to calculate the net cost of each BMP scenario
according to the cost-benefit knowledge in the BMP knowledge base [2].

fnet−cost(X) =
n

∑
i=1

A(xi)× {[C(xi) + yr × (M(xi)− B(xi))]} (1)

where f net-cost(X) is the net cost of a BMP scenario (represented as X); n is the count of BMP
configuration units; A(xi) is the area covered by the BMPs implemented in the i th configuration
unit; yr is the years when the effectiveness of BMPs reach stability, which is 8 in this study (see
Section 2.4); C(xi), M(xi), and B(xi) are unit costs (CNY 10,000/km2) for initial implementation, annual
maintenance, and annual benefit (Table 2), respectively.

2.6. Multi-Objective Optimization by an Intelligent Optimization Algorithm

The objectives in this study are to minimize the net cost of the BMP scenario (Equation (2)) and
maximize the reduction rate of soil erosion. The reduction rate of soil erosion of each BMP scenario is
the relative change compared to the baseline scenario (Equation (3)).

optimal solutions = min(− freduction−rate(X), fnet−cost(X)) (2)

freduction−rate(X) = (v(0)− v(X))/v(0) (3)

where f reduction-rate(X) is the reduction rate of soil erosion under the BMP scenario X compared to that
under the baseline scenario; v(0) and v(X) are the total amount of soil erosion (kg) under the baseline
scenario and the X scenario, respectively.

The NSGA-II [33], which has been successfully applied to many similar studies [2,16–18], was
selected as the intelligent optimization algorithm in this study. As shown in Figure 2, the NSGA-II
algorithm first initializes the initial BMP scenarios (called “population” in NSGA-II) based on one type
of BMP configuration unit and one available BMP configuration strategy as described in Sections 2.3
and 2.4. A BMP scenario (called “individual”) is represented as an array with a length equal to the
number of BMP configuration units (called “chromosome”) with the corresponding reduction rate
of soil erosion and net cost values (called “fitness”) to be evaluated. Each value of the chromosome
(called “gene”) stands for one selected BMP type or without BMP on a BMP configuration unit. Then,
each individual of the initial population, as the initial “generation” for the following optimization, is
evaluated by objective functions, i.e., the reduction rate of soil erosion is assessed by the calibrated
watershed model and the net cost estimated by the BMP scenario cost model. The evaluated individuals
are sorted, based on the non-domination of fitness, and selected by a specified number as an elite set
for each generation which is known as near-optimal Pareto solutions [33]. Then a circular process
of regenerating and evaluating BMP scenarios (i.e., new generation) proceeds until a user-assigned
maximum generation number is reached. Individuals of current generation (called “offspring”)
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combined with the near-optimal Pareto solutions of former generation (called “parent”) are proceeded
by non-dominated sorting, selection, crossover, and mutation operations to regenerate new BMP
scenarios [33].

When a BMP configuration strategy with knowledge (i.e., SUIT strategy, UPDOWN strategy, or
HILLSLP strategy) was adopted, it was incorporated into not only the initialization [5] but also the
regeneration of BMP scenarios, i.e., crossover and mutation operations [2]. The crossover operation of
the UPDOWN strategy proposed by Wu et al. [5] was extended as follows. The randomly selected BMP
configuration unit (i.e., the position of the crossover gene) is first checked to see whether it can ensure
that the two generated “children” individuals still conform to the “if–then” rules after the exchange of
the subtrees in which the selected unit is the most downstream unit. If the current selected unit fails to
meet the condition, the downstream units of the current one will be checked in order, until a qualified
unit is reached. The finally reached unit, except for the most downstream unit of the entire study
area, will be used as the crossover gene. Under the HILLSLP strategy, the BMPs are configured along
each hillslope from bottom to top during the initialization, and the crossover operation is to exchange
the randomly selected hillslopes (without breaking the configuration among all slope position units
along the same hillslope). Such generated “children” individuals conform to the HILLSLP strategy.
As for the mutation operation of the UPDOWN strategy and HILLSLP strategy, the potential BMP
types for a BMP configuration unit (i.e., a mutant gene) are first determined according to the rule set of
adopted knowledge and the BMP types of its upstream and downstream units (i.e., gene values). Then,
a different BMP from the current one will be randomly selected for the mutant gene. In such a way,
every BMP scenario generated during spatial optimization is reasonable in terms of the corresponding
knowledge, and may result in higher optimizing efficiency.

2.7. Design of Comparison Experiment

In this study, four types of BMP configuration units (i.e., HRUs, spatially explicit HRUs
(EXPLICITHRU), hydrologically connected fields (CONNFIELD), and slope position units (SLPPOS))
and four BMP configuration strategies (i.e., RAND strategy, SUIT strategy, UPDOWN strategy,
and HILLSLP strategy) were combined according to their availability (see Section 2.4) for the
spatial optimization of multiple spatially explicit BMPs. This means that, in total, 11 experiments
of feasible combinations were conducted, i.e., HRU+RAND which means the combination
of using HRU as BMP configuration units applied with the random configuration strategy
(ex analogia), HRU+SUIT, EXPLICITHRU+RAND, EXPLICITHRU+SUIT, CONNFIELD+RAND,
CONNFIELD+SUIT, CONNFIELD+UPDOWN, SLPPOS+RAND, SLPPOS+SUIT, SLPPOS+UPDOWN,
and SLPPOS+HILLSLP. The Python script of the BMP scenarios optimization based on slope position
units developed by Qin et al. [2] was extended to support multiple types of BMP configuration units
and BMP configuration strategies considered in this study. The script built on the model-level parallel
framework of SEIMS [32] distributes computing tasks dynamically across a Linux cluster to improve
computation efficiency.

The parameter settings of the NSGA-II algorithm were kept the same for all experiments. The
initial population size was 480 with a selection rate of 0.8 and a maximum generation number of
100 [5]. The crossover probability and the mutation probability were 0.8 and 0.1, respectively.

To explore the effects of different BMP configuration units for the spatial optimization of
spatially explicit BMPs, the results of different BMP configuration units applied with the same BMP
configuration knowledge are first compared. Then, the combinations of BMP configuration units and
the corresponding optimal configuration strategies are compared. The optimal configuration strategy
for a type of BMP configuration unit was considered to be the most reasonable one based on a BMP
knowledge base and not necessarily the one with the best non-dominated Pareto solutions from the
mathematical perspective. Thus, SLPPOS+HILLSLP, CONNFIELD+UPDOWN, EXPLICITHRU+SUIT,
and HRU+SUIT were selected for this comparison according to the available level with the most BMP
configuration knowledge for each BMP configuration unit (Section 2.4).
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The results of different BMP configuration units will be discussed from the perspectives of
cost-effectiveness, optimizing efficiency, and practicality. The near-optimal Pareto solutions plotted as
a scatter plot can give a simple and direct interpretation of the convergence and diversity of different
spatial optimization results. When the near-optimal Pareto solutions from different combinations
are compared, the one with more non-dominated solutions indicates a better cost-effectiveness [33],
which means more BMP scenarios with better multi-objective optimization provided as optimized
solutions for decision-making. Besides, the hypervolume index [47], which measures the volume (or
area for two-dimensions) of objective space covered by a set of near-optimal Pareto solutions, provides
a quantitative comparison of the cost-effectiveness considering both convergence and diversity [48]. A
higher hypervolume index indicates a better quality of solution.

The changes of the hypervolume index with generations can provide a qualitative estimation of
the optimizing efficiency. For an ideal optimization, the hypervolume index will increase rapidly at the
beginning of the optimization, then increase slowly, and eventually remain stable. Therefore, the faster
the hypervolume index reaches stability, the better the optimizing efficiency. For convenience and
consistency of comparison, a criterion is adopted to judge whether the hypervolume index has reached
stability in this study, i.e., if the increment rate of the hypervolume index compared to the former
generation is lower than 0.1% for three consecutive generations and there are also no three consecutive
increment rates greater than 0.1% in the following generations. For comparability in this study, the
worst reference point for calculating the hypervolume index of all experiments was set to (300, 0),
which represents the net cost being CNY 3 million and the reduction rate of soil erosion being zero.

Note that both the near-optimal Pareto solutions and hypervolume index represent evaluations
from a mathematical perspective, which have less practical meaning than the practicality of the spatial
distribution of BMP scenarios for decision-making in integrated watershed management [2]. Therefore,
the practicality of the spatial distributions of selected near-optimal Pareto solutions from different BMP
configuration units with the corresponding optimal BMP configuration strategy will be qualitatively
discussed based on the visual interpretation and local experiences of the study area.

3. Results

3.1. Comparison among Different BMP Configuration Units with the RAND Strategy

Figure 6 shows the near-optimal Pareto solutions of the 100th generation (Figure 6a) and
the hypervolume index with generations (Figure 6b) from four types of BMP configuration
units applied with the random configuration strategy (i.e., SLPPOS+RAND, CONNFIELD+RAND,
EXPLICITHRU+RAND, and HRU+RAND). Effective but different near-optimal Pareto solutions are
generated by all combinations in almost the same solution space, i.e., soil erosion reduction rates
range from 0.10 to 0.50 with the net cost range from CNY 0.03 to 1.50 million (Figure 6a). The
near-optimal Pareto solutions of SLPPOS+RAND and EXPLICITHRU+RAND are nearly overlapped,
while HRU+RAND produced the most non-dominated solutions at the nearly entire solution space and
CONNFIELD+RAND was dominated by the other three combinations. HRU+RAND achieved the best
overall performance considering convergence and diversity, compared to the other three combinations
with the RAND strategy (Figure 6a). All four of these combinations obtained approximately the same
values of the hypervolume index with generations, which showed a similar change trend, i.e., the
hypervolume index increased rapidly for about the first 20 generations (e.g., with increment rates of the
hypervolume index greater than 1%) and then increased slowly until stability was reached at the 46th,
41th, 56th, and 68th generations for SLPPOS+RAND, CONNFIELD+RAND, EXPLICITHRU+RAND,
and HRU+RAND, respectively (Figure 6b), among which CONNFIELD+RAND showed the best
optimizing efficiency.
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(a) (b) 

Figure 6. Comparisons among four types of BMP configuration units applied with the random
configuration (RAND) strategy: (a) near-optimal Pareto solutions of the 100th generation and, (b) the
hypervolume index with generations.

As the BMP configuration strategy remained the same, the characteristics of BMP configuration
units are the main causes of the differences among the optimization results. Compared to the other
three types of configuration units, HRUs in the study area obtained the largest count of units and the
most detailed spatial delineation. This means that under the RAND strategy, a small number of HRUs
configured with BMPs (i.e., at a low net cost) at some critical erosion zone may result in a relatively
higher soil erosion reduction rate (i.e., better cost-effectiveness). The generalized hydrologically
connected fields with upstream–downstream relationships at the watershed scale usually have large
areas and may occupy most of the upslope positions of subbasins, where the critical erosion zone
is often located. Therefore, CONNFIELD+RAND performed less effectively at low net costs than
the other three combinations and obtained relatively stable high soil erosion reduction rates with
relative greater net costs (Figure 6a). Since, in the study area, both landuse and soil types have a
similar spatial pattern to the topography (Section 2.2), and spatially explicit HRUs were overlaid by
landuse, soil types, and subbasin boundaries, EXPLICITHRU can represent the spatial distribution of
topographic characteristics to some degree (Figure 5b). Considering that the slope position units were
totally delineated according to topographic characteristics, the similarity between these two spatial
configuration units maybe the reason for the quite similar results between EXPLICITHRU+RAND
and SLPPOS+RAND. With consistent crossover and mutation operations during optimization, the
hypervolume index trends with generations are very similar among four types of BMP configuration
units applied with the RAND strategy (Figure 5b). It might be inferred that the optimizing efficiency
under the RAND strategy is negatively correlated with the count of BMP configuration units.

3.2. Comparison among Different BMP Configuration Units with the SUIT Strategy

Figure 7 shows a comparison among four types of BMP configuration units applied with the
SUIT strategy (i.e., SLPPOS+SUIT, CONNFIELD+SUIT, EXPLICITHRU+SUIT, and HRU+SUIT). The
solution spaces of the spatial optimization of EXPLICITHRU+SUIT and HRU+SUIT were inclined to
reach higher net costs, while SLPPOS+SUIT and CONNFIELD+SUIT comparatively concentrated on
the solution spaces with low net costs (Figure 7a). HRU+SUIT and SLPPOS+SUIT obtained the most
non-dominated solutions when the corresponding net costs were greater or less than about CNY 1.10
million, respectively. For HRU+SUIT and EXPLICITHRU+SUIT, the soil erosion reduction rate reached
relative stability at about 0.52 when the corresponding net costs were greater than CNY 1.60 million
(Figure 7a). The solutions of SLPPOS+SUIT obtained very similar hypervolume index values to those
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from CONNFIELD+SUIT in the first stage of optimization (about the first 35 generations) and then a
higher hypervolume index during the following generations (Figure 7b). The EXPLICITHRU+SUIT
and HRU+SUIT produced worse diversity than SLPPOS+SUIT and CONNFIELD+SUIT (Figure 7a).
This phenomenon can also be observed from the lower hypervolume index from EXPLICITHRU+SUIT
and HRU+SUIT (Figure 7b). The SLPPOS+SUIT, CONNFIELD+SUIT, EXPLICITHRU+SUIT, and
HRU+SUIT reached stability at the 46th, 36th, 45th, and 60th generations, respectively (Figure 7b),
among which the CONNFIELD+SUIT showed the best optimizing efficiency.

(a) (b) 

Figure 7. Comparisons among four types of BMP configuration units applied with the suitable landuse
types/slope positions of individual BMPs (SUIT) strategy: (a) near-optimal Pareto solutions of the
100th generation, and (b) the hypervolume index with generations.

Since the HRUs and spatially explicit HRUs delineated in this study have a single landuse type
for each spatial configuration unit, the non-effective configurations caused by BMP configuration
units with multiple landuse types (e.g., hydrologically connected fields and slope position units)
(Section 2.5) do not exist. Therefore, under the same parameter-settings of the optimization algorithm,
EXPLICITHRU+SUIT and HRU+SUIT inherently generate more effective BMP configurations in
locations within spatial configuration units than SLPPOS+SUIT and CONNFIELD+SUIT and thus
result in a solution space with relatively high net costs.

With the best near-optimal Pareto solutions, the highest hypervolume index, and the satisfied
optimizing efficiency, SLPPOS+SUIT obtained the best overall performance compared to the other
three combinations with the SUIT strategy. This may be attributed to the knowledge used by the SUIT
strategy for slope position units that considers not only suitable landuse types but also suitable slope
positions of individual BMPs.

3.3. Comparison between Feasible BMP Configuration Units with the UPDOWN Strategy

Figure 8 presents a comparison between two types of BMP configuration units applied with the
UPDOWN strategy (i.e., SLPPOS+UPDOWN and CONNFIELD+UPDOWN). CONNFIELD+UPDOWN
and SLPPOS+UPDOWN obtained most of their non-dominated solutions when the corresponding net
costs were greater or less than about CNY 0.25 million, respectively (Figure 8a). SLPPOS+UPDOWN
had a narrower solution space than CONNFIELD+UPDOWN and hence had worse diversity and
a lower hypervolume index. CONNFIELD+UPDOWN showed a more steady hypervolume index
trend with generations and better optimizing efficiency since it reached stability at the 39th generation
which is lower than the 55th generation for SLPPOS+UPDOWN (Figure 8b). SLPPOS+UPDOWN

98



Water 2019, 11, 262

reached slightly better hypervolume index stability after about the 70th generation, i.e., a slightly
better convergence than CONNFIELD+UPDOWN.

(a) (b) 

Figure 8. Comparisons between two types of BMP configuration units applied with the UPDOWN
strategy: (a) near-optimal Pareto solutions of the 100th generation, and (b) the hypervolume index
with generations.

Although the same strategy was applied, the upstream–downstream relationships of slope
position units were built at the hillslope scale instead of the watershed scale of hydrologically connected
fields. This means that the number of slope position units within one hillslope (i.e., three in this
study) is the maximum number of genes allowed to be exchanged during crossover operation in
NSGA-II (Section 2.6). This puts the SLPPOS+UPDOWN result in a slightly better convergence and
worse diversity than CONNFIELD+UPDOWN. The non-dominated solutions with low net costs of
SLPPOS+UPDOWN indicated the better cost-effectiveness of slope position units under a tight budget,
while its worse cost-effectiveness with higher net costs than CONNFIELD+UPDOWN may imply
that the UPDOWN strategy initially developed for hydrologically connected fields [5] is not the most
effective strategy for slope position units.

3.4. Comparison among Different BMP Configuration Units with the Corresponding Optimal Configuration
Strategies

As shown in Figure 9a, HRU+SUIT and SLPPOS+HILLSLP generated the most effective
non-dominated solutions when the corresponding net costs were greater and less than about CNY 1.0
million, respectively. According to the hypervolume index (Figure 9b), SLPPOS+HILLSLP reached the
stable hypervolume index after the 37th generation, as well as the largest hypervolume index value,
compared to the other three combinations. Thus, SLPPOS+HILLSLP showed the best optimizing
efficiency. In summary, SLPPOS+HILLSLP showed the best overall performance (Figure 9), followed
by EXPLICITHRU+SUIT and CONNFIELD+UPDOWN. Although HRU+SUIT had non-dominant
solutions mostly at high net costs, it was still considered to have the worst overall performance because
it produced the worst diversity, lowest hypervolume index, and slowest optimizing efficiency (i.e.,
reaching stability at the 60th generation; Section 3.2).
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(a) (b) 

Figure 9. Comparisons among four types of BMP configuration units applied with the corresponding
optimal configuration strategies: (a) near-optimal Pareto solutions of the 100th generation, and (b) the
hypervolume index changed with generations.

To compare the practicality of the spatial distribution of optimized BMP scenarios, four BMP
scenarios (Figure 10) were selected in the overlapped solution space of the four combinations (i.e., at a
soil erosion reduction rate of around 0.40 and net cost of CNY 0.70–1.20 million). The most fragmented
spatial delineation of HRUs caused the worst practicality from the perspective of actual watershed
management (Figure 10a). EXPLICITHRU+SUIT (Figure 10b) generated similar BMPs regions to
HRU+SUIT (Figure 10a), but those from EXPLICITHRU+SUIT had a more concentrated and practical
distribution of BMPs than those from HRU+SUIT. The BMP scenarios from CONNFIELD+UPDOWN
required the highest net cost to achieve the same soil erosion reduction rate among these selected
BMP scenarios, since CONNFIELD+UPDOWN selected the most expensive BMP (i.e., Orchard
Improvement) for allocation (Figure 10c). With the adoption of the UPDOWN strategy and a
smaller configuration area, the BMP scenario from CONNFIELD+UPDOWN (Figure 10c) achieved
better practicality than that from EXPLICITHRU+SUIT (Figure 10b). With the SUIT and UPDOWN
strategies, the lack of precise spatial relationships between BMPs and spatial positions at the hillslope
scale may cause several inappropriate configurations (Figure 10a–c), e.g., the LQFI (Low-quality
forest improvement) configured on ridge areas (Table 1), thus reducing the practicality of the BMP
scenario from EXPLICITHRU+SUIT and CONNFIELD+UPDOWN. Depending on the HILLSLP
strategy used to adopt BMP knowledge derived from the local experience of integrated watershed
management, SLPPOS+HILLSLP concisely and precisely configured CM (Closing measures) and
ABHMP (Arbor–bush–herb mixed plantation) on slope position units at the hillslope scale, e.g.,
CM-ABHMP on the ridge and backslope sequence, and also configured the BMP with the best
overall effectiveness grade (i.e., ABHMP according to Table 3) on ridge and backslope. Thus,
SLPPOS+HILLSLP obtained the best practicality with the lowest net cost among these selected BMP
scenarios, followed by CONNFIELD+UPDOWN and EXPLICITHRU+SUIT.
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(a) (b) 

(c) (d) 
Figure 10. Comparison of the spatial distribution of selected BMP scenarios of the 100th generation
from four types of BMP configuration units applied with the corresponding optimal strategies: (a)
one HRU+SUIT scenario with a soil erosion reduction rate of 0.41 and a net cost of CNY 0.98 million;
(b) one EXPLICIT+SUIT scenario with a soil erosion reduction rate of 0.40 and a net cost of CNY 0.97
million; (c) one CONNFIELD+UPDOWN scenario with a soil erosion reduction rate of 0.40 and a net
cost of CNY 1.08 million; and (d) one SLPPOS+HILLSLP scenario with a soil erosion reduction rate of
0.40 and a net cost of CNY 0.78 million.

4. Discussion

From a mathematical viewpoint, all feasible combinations of BMP configuration units and BMP
configuration strategies generated effective near-optimal Pareto solutions (Figures 6–9). Different
delineations of BMP configuration units have different characteristics such as the number of units,
the spatial distribution characteristics, and the spatial relationships with homogeneous functional
units from the perspective of physical geography. These differences affect the characteristics of the
generated BMP scenarios and the search spaces of spatial optimization, thus resulting in the different
cost-effectiveness of near-optimal Pareto solutions and optimizing efficiency when applied with the
same BMP configuration strategy (Sections 3.1–3.3).

BMP scenarios generated based on different kinds of BMP configuration knowledge had
significant differences in the cost-effectiveness of the near-optimal Pareto solutions, optimizing
efficiency, and the spatial distribution of the BMP scenarios. Using the strategies that adopt BMP
configuration knowledge (i.e., the SUIT, UPDOWN, and HILLSLP strategies), those non-effective
configurations generated by the random configuration strategy (Section 2.5) can be avoided for all
BMP configuration units. Thus, with the BMP configuration constraint, better convergence, and
worse diversity of near-optimal Pareto solutions were obtained, as well as overall lower values of
hypervolume index and better optimizing efficiency (e.g., comparing Figure 7, Figure 8, and Figure 9
with Figure 6). Such phenomena could also be observed when the adopted knowledge extended from
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simple knowledge to knowledge on the spatial relationships between BMPs and spatial positions, i.e.,
from the SUIT strategy to the UPDOWN strategy or the HILLSLP strategy.

Besides the narrowed solution space of spatial optimization and improved optimizing efficiency,
the adoption of domain (or expert) knowledge considering spatial relationships between BMPs
and spatial positions, e.g., the UPDOWN and HILLSLP strategies in this study, can also facilitate
the optimized BMP solutions with geographical and practical meanings (Section 3.4). The formal
representation of such expert knowledge is often introduced according to the characteristics of specific
BMP configuration units, which means that one BMP configuration strategy developed associated with
one BMP configuration unit may not be effectively applied to another BMP configuration unit, e.g., the
ineffective situation in which the UPDOWN strategy was applied to slope position units (Figures 8
and 9).

The random strategy and simple knowledge-based strategy (e.g., the SUIT strategy) may obtain
more effective near-optimal BMPs solutions at higher net costs than the strategies with knowledge
on the spatial relationships between BMPs and spatial positions (e.g., the UPDOWN and HILLSLP
strategies) (Figure 9a). However, the latter type of strategies can effectively represent the local
experience of integrated watershed management with better practicality [2] and hence are more
valuable for real applications, especially when the expert knowledge on the spatial relationships
between BMPs and slope positions along a hillslope can be considered (Figure 10d).

5. Conclusions

This paper presents a comparison among the four main types of BMP configuration units
(i.e., HRUs, spatially explicit HRUs, hydrologically connected fields, and slope position units) for
watershed BMP scenarios optimization based on the same one distributed watershed model. Four BMP
configuration strategies, adopting different kinds of BMP knowledge of the study area, were considered,
i.e., the random configuration strategy, the strategy with knowledge on suitable landuse types/slope
positions of individual BMPs, the strategy based on expert knowledge of upstream–downstream
relationships [5], and the strategy with expert knowledge on the spatial relationships between BMPs
and slope positions along the hillslope [2]. A total of 11 experiments of feasible combinations were
conducted with the same optimization algorithm (i.e., NSGA-II) and then compared.

The comparison showed that different BMP configuration units applied with different
configuration strategies had significant differences in near-optimal Pareto solutions, optimizing
efficiency, and spatial distribution of BMP scenarios. Generally, the more the expert (or domain)
knowledge was considered, the better the comprehensive cost-effectiveness and practicality of the
optimized BMP scenarios, and the better the optimizing efficiency. Therefore, BMP configuration units
that support the adoption of expert knowledge on the spatial relationships between BMPs and spatial
locations [2,5] (i.e., hydrologically connected fields, and slope position units) are considered to be the
most valuable spatial configuration units for watershed BMP scenarios optimization and integrated
watershed management. Overall, using the slope position units as BMP configuration units with the
HILLSLP strategy, the best comprehensive results of BMP scenarios optimization were obtained.

This study provided a useful reference for the spatial optimization of watershed BMP scenarios
with multiple spatially explicit BMPs. For those spatially explicit BMPs, more BMP configuration
knowledge derived from local management experiences should be summarized and adopted together
with the feasible BMP configuration units for such knowledge (e.g., slope position units) during
watershed BMP scenarios optimization.
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Abstract: Upland agricultural expansion and intensification cause soil erosion, which has a negative
impact on the environment and socioeconomic factors by degrading the quality of both nutrient-rich
surface soil and water. The Haean catchment is a well-known upland agricultural area in South Korea,
which generates a large amount of sediment from its cropland. The transportation of nutrient-rich
sediment to the stream adversely affects the water quality of the Han River watershed, which supports
over twenty million people. In this paper, we suggest a spatially explicit mitigation method to
reduce the amount of sediment yield to the stream of the catchment by converting soil erosion hot
spots into forest. To evaluate the effectiveness of this reconfiguration, we estimated the sediment
redistribution rate and assessed the soil erosion risk in the Haean catchment using the daily based
Morgan–Morgan–Finney (DMMF) model. We found that dry crop fields located in the steep hill-slope
suffer from severe soil erosion, and the rice paddy, orchard, and urban area, which are located in a
comparatively lower and flatter area, suffer less from erosion. Although located in the steep hill-slope,
the forest exhibits high sediment trapping capabilities in this model. When the erosion-prone crop
lands were managed by sequentially reconfiguring their land use and land cover (LULC) to the forest
from the area with the most severe erosion to the area with the least severe erosion, the result showed a
strong reduction in sediment yield flowing to the stream. A change of 3% of the catchment’s crop lands
of the catchment into forest reduced the sediment yield entering into the stream by approximately 10%
and a change of 10% of crop lands potentially resulted in a sediment yield reduction by approximately
50%. According to these results, identifying erosion hot spots and managing them by reconfiguring
their LULC is effective in reducing terrestrial sediment yield entering into the stream.

Keywords: DMMF; landscape configuration; landscape ecology; hydrology

1. Introduction

Agriculture expansion and intensification often lead to severe soil erosion in the course of
altering naturally dominated surface configurations [1–3]. The problem is prominent in upland
agriculture areas under monsoonal climate because of the disturbed erosion-prone hill-slopes receiving
intermittent concentrated heavy rainfall [4,5]. A large amount of surface runoff from heavy rainfall
washes out nutrient-rich surface soil from deforested upland agriculture areas and degrades the soil
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quality of the agricultural area [6]. Eroded nutrient-rich soil particles cause not only soil quality
degradation of the agricultural area but also on- and off-site water deterioration when these particles
enter the stream of a catchment [7–9].

The Han River watershed in South Korea experiences extreme downpours that cause severe soil
erosion and subsequent water deterioration every summer monsoon season [3,10,11]. These problems
are worsening, as upland agricultural areas expand and the intensity of monsoonal rainfall increase
due to ongoing climate change [12,13]. The Han River is the primary freshwater source for the Seoul
Metropolitan area where over 25 million inhabitants (ca. 50% of the South Korean population) reside.
Therefore, soil erosion control in this region is highly relevant to provide clean and usable freshwater
resources to the residents [14,15]. With increasing demand for food crops, intensive upland agriculture
is expanding in the mountainous upstream regions of the Han River watershed where few agricultural
activities had been performed previously [2]. The Haean catchment is one of the largest contributors
to sediment in the watershed, where abrupt land use and land cover (LULC) changes have taken
place on forested hill-slope areas [11,16,17]. The LULC changes on the erosion-prone hill-slopes of
this catchment generate a massive amount of sediment flowing into the river system and eventually
deteriorate the water quality of the Han River [3]. Various studies have been conducted in this
catchment to understand the sediment redistribution patterns and determine optimal measures to
mitigate this problem. Field-level studies have focused on the effect of surface configurations of the
dry croplands and their field margins on sediment yields. Arnhold et al. [11] and Ruidisch et al. [16]
investigated the effect of plastic mulch applied to dry croplands on surface runoff and sediment yield.
Ali and Reineking [5] showed the effectiveness of natural field margin (i.e., vegetated filter strip next
to the dry cropland) for preventing off-site sediment yield. They reported that the natural field margin
captured sediments more efficiently under the increased rainfall and slope conditions than intensively
managed field margins with less dense vegetation cover. Arnhold et al. [17] found that organic farming
yielded less sediment than conventional farming because organic farming tends to protect the soil
surface by preserving more vegetations that are not cultivated crops.

At the catchment level, the soil and water analysis tool (SWAT) [18] has been widely used to test
the effectiveness of various best management practices (BMPs) to reduce the sediment yield under
complex terrain and landscape configurations [3,19]. Maharjan et al. [3] showed the effectiveness of
catchment-wide cover crop cultivation in the dry croplands to reduce suspended sediment yields
entering the stream. Jang et al. [19] projected vegetation filter strip, rice straw mulching, and
fertilizer control scenarios to dry croplands of the catchment and found that the application of
vegetation filter strips and rice straw mulching was efficient in reducing sediment yields from the
catchment. The BMPs suggested in the aforementioned studies are often premised on the compliance
of each stakeholder, which is not easily accomplished [20–22]. Different from the BMP approaches
relying on stakeholders participation, several studies are paying attention to the importance of the
landscape and its spatial configuration, which has a significant impact on ecosystem services and
functions, including soil erosion and water quality control [23–25]. Furthermore, these studies showed
that ecosystem services and functions often responded non-linearly to the spatial relocation of the
agricultural landscape, implying the effectiveness of spatial configuration on enhancing ecosystem
services [23,24,26]. Therefore, identifying soil erosion hot spots and assessing the sediment reduction
rate by altering the surface configuration of hot spots promise to help establishing cost-effective soil
erosion control methods in the catchment.

To consider the spatial context of soil erosion, a spatially explicit and distributed soil erosion
model that can simulate the sediment budget of each element, considering the sediment inputs
from the upslope areas is needed. Among the various soil erosion models, the daily based
Morgan–Morgan–Finney (DMMF) model [15] is one of the most appropriate tools because the model
can project soil erosion and deposition explicitly, considering the spatial connectivity, which facilitates
the assessment of the impact of the spatial context of landscape on sediment redistribution patterns.
Furthermore, the DMMF is suitable for projecting under a monsoon climate, accompanying
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concentrated rainfall during a short period [15]. Vegetative filter strips (VFSs) are known as an effective
tool for reducing sediment yield from the field or catchment because of their cost-effective surface
protecting and sediment trapping capabilities [5,19,25,27–29]. We adopt the forest, which is a type of
VFS, as an alternative LULC for soil erosion hot spots to reduce the total sediment yield into the stream
of the catchment. In this study, we assessed the importance of the spatial conversion of erosion hot
spots into forest on soil erosion control using the spatially explicit daily based Morgan–Morgan–Finney
(DMMF) soil erosion model. The detailed objectives are to:

1. determine the applicability of the DMMF model for stream discharge and suspended sediment in
the Haean catchment,

2. estimate the sediment redistribution pattern and assess the soil erosion risk of the Haean
catchment, and

3. evaluate the impact of the spatial reconfiguration of erosion hot spots into forest on soil
erosion control.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Haean catchment (Figure 1). The Haean catchment is a
bowl-shaped small mountainous erosion basin (64.4 km2) located in the northeastern part of South
Korea (38.277° N, 128.135° E). As an erosion basin, the central area is low and flat, and it becomes
higher and steeper toward the boundary. The lowest altitude of the catchment is 339 m, and the highest
one is 1321 m [2,3,11,30]. Geologically, the catchment consists primarily of two bedrocks. One is gneiss
at the higher elevation near the catchment boundary, and the other is highly weathered granite at the
flat central area [2,30]. Differential erosion between the two bedrocks formed the unique bowl-shaped
catchment [2]. The major soil type of the catchment is cambisol from weathered granite. The dominant
soil texture of the catchment is loamy sand (59.4%) followed by sandy loam (27.5%), and sand (10.5%),
which has a high infiltration capacity [3,30].

The climate of the catchment is characterized by cold and dry winter, affected by the continental
Siberian high, and hot and humid summer affected by the subtropical North Pacific high [30–32].
The average annual precipitation from 2009 to 2011 is 1599 mm, and almost 70% of the rainfall is
concentrated in the three months from June to August [3,11,19,30]. Due to climate change, the period
of rain spell, as well as the frequency and intensity of heavy rainfall, has increased in this region [33,34].

The dominant land cover type of the catchment is forest. Forest mainly covers the summit and
upper hill-slope areas around the boundary of the catchment, occupying 58% of the entire catchment
area. Dry croplands (22%), including bean, cabbage, potato, radish, and ginseng, dominate the lower
hill-slope areas adjacent to the forest edge. Rice paddies (8%) and residential areas (3%) (e.g., roads and
artificial structures) occupy the flat central area of the catchment. Semi-natural vegetation field
(8%), shrublands (1%), and bare surface (5%), including fallow and barren field, cover the remaining
areas [35].

The dry croplands have been expanded into the forest that is located in the hill-slope area. Due to
the upland agriculture expansion after deforestation, the catchment yields a massive amount of
sediment into the stream during the summer monsoon season. The sediment is transported to the
Soyang reservoir. This reservoir is the largest reservoir in South Korea as well as the crucial freshwater
source for citizens living in the Seoul metropolitan area [3,11,30]. Weather stations and hydrological
measurement facilities are installed in the catchment to monitor the climate and stream conditions,
and erosion control dams and the reservoir have been constructed to reduce the sediment yield from
the catchment [30,36].
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Figure 1. General description of the study area. Locations of the Soyang lake watershed and Haean
catchment in South Korea are described in the lower left figure. In the upper right figure, the topography
and stream networks of the study area, with the monitoring sites (red triangles) and weather stations
(yellow circles) used for the DMMF model are presented.

2.2. Model Description

We used the DMMF model [15] to assess the soil erosion risk and simulate the impact of the
spatial reconfiguration of erosion hot spots into forest on sediment yield within the Haean catchment
The DMMF model was modified from the widely used Morgan–Morgan–Finney (MMF) soil erosion
model [37], which has a simple structure while maintaining physical foundations [15,38–41].

The DMMF model has three significant modifications relative to the MMF model: the adoption of
a daily time step, the consideration of the effect of impervious ground cover on soil erosion, and the
revision of the equations and sequence of the subprocesses for a better physical representation of
physical processes, such as surface runoff and sediment redistribution [15,42]. These modifications
enable the model to be more suitable for estimating surface runoff and soil erosion on a complex
surface terrain under an intensive seasonal rainfall regime than the previous version.

The DMMF model can estimate the amount of surface and subsurface water input from the
upslope area and output to the downslope area after hydrological processes for each element
(e.g., each grid cell in a raster map). The model also estimates the sediment budget of each element by
calculating the amount of sediments flowing into and out of the element. The hydrological processes
of the model are determined by rainfall, evapotranspiration, surface/subsurface water inflows,
and initial soil water content (Figure 2). After calculating the water budget for the element, the model
calculates sediment budgets, considering the amount of sediment input from the upslope areas,
rainfall intensity, topography, soil characteristics, surface configurations, and vegetation structures
(Figure 3). The detailed input parameters are presented in Table 1 and detailed structure and equations
are described in the Appendix A.
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Figure 3. Schematic sediment phase of the DMMF model (modified from Figure 4 of Choi et al. [15]).

In contrast with the SWAT model, which has been frequently applied to this catchment, the DMMF
model can estimate the erosion and deposition of an element, considering the interconnectivity
with adjacent elements. Therefore, the model can be used to estimate the impact of the spatial
reconfiguration of erosion hot spots into forest on sediment yields more explicitly for each element
and the entire catchment.
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Table 1. Input parameters of the daily based Morgan–Morgan–Finney (DMMF) model (modified from
Table 1 of Choi et al. [15])

Type Parameter Description Unit

Topography S Slope angle (rad)
res Grid size of a raster map (m)

Climate
R Daily rainfall (mm/day)
RI Mean rainfall intensity of a day (mm/h)
ET Daily evapotranspiration (mm/day)

Soil

Pc Proportion of clay in the surface soil (proportion)
Pz Proportion of silt in the surface soil (proportion)
Ps Proportion of sand in the surface soil (proportion)

SD Soil depth (m)
θinit Initial soil water content of the entire soil profile (vol/vol)
θsat Saturated water content of the entire soil profile (vol/vol)
θ f c Soil water content at field capacity of the entire soil profile (vol/vol)
K Saturated soil lateral hydraulic conductivity of the entire soil profile (mm/day)

DKc Detachability of clay particles by rainfall (g/J)
DKz Detachability of silt particles by rainfall (g/J)
DKs Detachability of sand particles by rainfall (g/J)
DRc Detachability of clay particles by surface runoff (g/mm)
DRz Detachability of silt particles by surface runoff (g/mm)
DRs Detachability of sand particles by surface runoff (g/mm)

LULC

PI Area proportion of the permanent interception of rainfall (proportion)
IMP Area proportion of the impervious ground cover (proportion)
GC Area proportion of the pervious ground cover of the soil surface (proportion)
CC Area proportion of the canopy cover of the soil surface (proportion)
PH Average height of vegetation or crop cover (m)
D Average diameter of individual plant elements at the surface (m)

NV Number of individual plant elements per unit area (number/m2)
da Typical flow depth of surface runoff (m)
n Manning’s roughness coefficient of the soil surface (s/m1/3)

2.3. Model Parameterization

As shown in Table 1, the DMMF model requires the topography, climate, soil, and LULC datasets
to project surface runoff and sediment redistribution patterns of the catchment.

Topography data (i.e., the slope angle (S) and grid size of a raster map (res)) were derived from
the digital elevation model (DEM) with 30 m resolution. The parameter res is used to calculate the
width (w) and length (l) of an element that are equivalent to res and res/ cos(S), respectively [15].

Climate data were obtained from two sources. The daily rainfall (R) and mean rainfall
intensity of a day (RI) were obtained from weather stations installed in the catchment, and the
evapotranspiration (ET) was obtained from remote sensing data provided by the Moderate Resolution
Imaging Spectroradiometer (MODIS) [43]. We estimated R and RI from each weather station and
spatially interpolated them using inverse distance weighted (IDW) method, which showed the optimal
result on this catchment among four methods such as inverse distance weighted, spline, nearest
neighbor, and kriging, according to Shope et al. [30]. For the ET, we resampled the 8-day average
MODIS/Terra Evapotranspiration data to fit to the DEM of this catchment.

The soil data set covers the texture, depth, hydraulic properties, and detachabilities. The soil
texture (i.e., the proportion of clay (Pc), silt (Pz), and sand (Ps) in the surface soil), soil depth (SD), and
soil hydraulic properties (i.e., saturated soil water content (θsat), soil water content at field capacity
(θ f c), and saturated lateral hydraulic conductivity (K) of the entire soil profile) were derived from a
2009 catchment-wide field survey from the TERRECO project (see Table 2 and Figure 4) [30].
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Table 2. Typical soil characteristics of each represented soil class of the Haean catchment from a 2009
catchment-wide field survey from TERRECO project.

Classification SD Pc Pz Ps θsat * θ f c * K *

Very steep forest 2.55 0.17 0.33 0.50 0.47 (0.41–0.53) 0.21 (0.06–0.31) 1.97 (0.63–4.55)
Forest 4.38 0.22 0.35 0.43 0.45 (0.41–0.54) 0.17 (0.06–0.33) 2.18 (0.63–4.55)

Moderate to steep dry field 2.18 0.08 0.29 0.64 0.36 (0.34–0.39) 0.18 (0.17–0.20) 0.33 (0.18–0.66)
Flat dry field 4.85 0.03 0.15 0.82 0.36 (0.34–0.41) 0.18 (0.08–0.25) 0.49 (0.09–2.25)
Rice paddy 1.60 0.07 0.32 0.62 0.37 (0.36–0.39) 0.16 (0.14–0.18) 0.50 (0.41–0.72)

Sealed ground 2.00 1.00 0.00 0.00 - - -
* θsat, θ f c, and K were estimated with the model ROSETTA Lite v.1.1 [44]. The numbers in parentheses indicate the
range of values of soil layers that constitute each represented soil class.

Figure 4. Represented soil class from a 2009 catchment-wide field survey from the TERRECO project.

Reference values for soil detachability from Morgan and Duzant [40] were used as the initial
values of soil detachability by rainfall (i.e., for clay (DKc), silt (DKz), and sand (DKs)) and by runoff
(i.e., for clay (DRc), silt (DRz), and sand (DRs)). We assumed that the initial soil water content of the
entire soil profile (θinit) is equal to the soil water content at field capacity (θ f c) by starting the simulation
at three days after the first heavy rainfall of the year, because the excess soil water was usually drained
away two or three days after the soil was fully saturated by rainfall.

The LULC types characterize the physical structures of surface and vegetation, which regulate
the quantity of surface runoff and runoff velocity. Surface structures incorporate a portion of the
impervious cover area (IMP), such as plastic mulching and paved facilities, flow depth of surface
runoff (da), and Manning’s roughness coefficient of the soil surface (n). Vegetation structures contain
the permanent interception of rainfall (PI), pervious ground cover (GC), canopy cover (CC), average
vegetation height (PH), average diameter of individual plant elements at the surface (D), and number
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of individual plant elements per unit area (NV). LULC parameters were derived based on the LULC
map of the Haean catchment in the year 2010 from Seo et al. [35] (see Figure 5).

Figure 5. LULC classes and their spatial configurations for the Haean catchment in the year 2010 [35].

We classified the original LULCs into 14 categories (i.e., forest, rice paddy, semi-natural, bare soil,
ginseng, potato, bean, radish, cabbage, other dry crops, shrub, orchard, urban, and water bodies).
Forest, rice paddy, semi-natural, bare soil, ginseng, potato, bean radish, and cabbage are major LULCs
that covered more than 1% of the catchment area. Minor LULCs were aggregated into groups of other
dry crops, shrub, orchard, urban, and water bodies according to their physical characteristics. We used
field measurement data of CC, PH, NV, IMP, da, and n for major dry crops such as bean, cabbage,
potato, and radish, whose data were obtained from the field campaign of the TERRECO project,
which was also used in Arnhold et al. [17]. The daily forest CC was estimated using the average values
of 8-day normalized difference vegetation index (NDVI) for forest in the catchment from MODIS [45,46].
The average NDVI values were converted to canopy cover (CC), using the equation suggested by
Gutman and Ignatov [47]. LULC parameters for rice and ginseng, and the average diameter of
individual plant elements (D) for major dry crops were obtained from agricultural technology portal
provided by Rural Development Administration of South Korea (RDA) [48]. The average LULC
parameters of major dry crops were used for the LULC parameters of other dry crops, while the
guide values from Morgan and Duzant [40] were adopted for other LULC parameters. Detailed initial
parameter settings are presented in Table 3.
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Table 3. The initial parameter settings for each LULC class.

LULC
Leaf-out (a) Leaf-fall (a) PI (b)

IMP (c) GC (d) CCmax
(e) PH ( f ) D (g) NV (h) da

(i) n (j)
(Planting) (Harvest)

Forest 112 307 0.20 0.00 1.00 0.95 30.0 2.00 0.60 0.100 0.20
Semi-natural 112 307 0.30 0.00 1.00 0.95 0.50 0.01 500 0.100 0.20

Shrub 112 307 0.20 0.00 0.30 0.95 0.50 0.12 20 0.100 0.20
Rice paddy 136 283 0.30 0.00 1.00 (0.00) 0.80 1.00 0.04 200 0.050 0.10

Potato 120 243 0.12 0.50 (0.00) 0.00 (0.26) 0.71 0.45 0.10 6.00 0.150 0.10
Bean 147 304 0.20 0.50 (0.50) 0.00 (0.58) 0.89 0.70 0.02 6.00 0.150 0.10

Radish 153 235 0.15 0.50 (0.25) 0.00 (0.14) 0.64 0.48 0.06 6.00 0.150 0.10
Cabbage 140 201 0.25 0.50 (0.50) 0.00 (0.31) 0.85 0.55 0.20 3.64 0.150 0.10

Other dry crops 120 304 0.18 0.50 (0.31) 0.00 (0.32) 0.77 0.57 0.10 5.32 0.150 0.10
Orchard 120 303 0.25 0.00 0.40 0.95 4.00 1.50 0.16 0.050 0.10

Ginseng * 123 298 0.20 0.00 0.50 1.00 1.30 0.01 37.5 0.400 0.20
Bare soil - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.050 0.01
Urban - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.005 0.01
(a) Typical leaf-out and leaf-fall dates of each LULC were presented as day of the year (DOY). For annual crops,
the dates represented the typical planting and harvest date of each crop [30]; (b) The reference values from Morgan
and Duzant [40] were used for the area proportion of the permanent interception of rainfall (PI) for each LULC type;
(c) IMP for dry fields are different between cultivation and non-cultivation periods. Values in parentheses represent
IMP for non-cultivation periods; (d) GC for dry fields is different before and after harvest. After harvest, crop residues
and weeds remained as the ground cover of dry fields, according to dry crop data, from the field campaign of the
TERRECO project in 2009. GC for rice paddy in cultivation season was set to one reflecting water-filled condition
that protected the surface from erosion; (e) Because CC values varied with time, we made a list of maximum CC
(CCmax). Semi-natural, shrub, and ginseng utilize fixed reference values from Morgan and Duzant [40]; ( f ) We used
fixed reference PH values from Morgan and Duzant [40] for LULCs of other than dry crops. Maximum PH values
for dry crops were listed from the field measurement data varying with time; (g) We used fixed reference D values
from Morgan and Duzant [40] for LULCs of other than dry crops. D values for dry crops utilized typical crop
characteristics from Rural Development Administration of South Korea [48]; (h) We used reference NV values from
Morgan and Duzant [40] for LULCs of other than dry crops and ginseng. NV values which were estimated from
the field measurement data and Rural Development Administration of South Korea [48] were used for dry crops
and ginseng, respectively; (i) We assumed shallow rill condition for forest, semi-natural and shrub, and assumed
unchannelled flow condition for bare soil, rice paddy, and orchard using values presented in Morgan and Duzant [40].
da values for other LULCs derived from furrow heights of the fields, using field measurement data for dry crops and
data from the Rural Development Administration of South Korea [48] for ginseng; (j) According to the guide values
for Manning’s n from Morgan [49], the values of n for natural land covers (i.e., forest, semi-natural, and shrub), crop
fields, ginseng, and smooth surfaces (bare soil and urban) are 0.2, 0.1, 0.2, and 0.01, referring to natural range land,
average tillage conditions, wheat mulching, and smooth bare soil or asphalt conditions, respectively; * The permeable
black awning screen is generally installed 1.3 m above the ginseng field [48], and it acts as a plant canopy. Therefore,
the cover ratio of the screen in the field and height of the screen is utilized for canopy cover (CC) and plant height
(PH) values for ginseng.

2.4. Model Calibration and Validation

The DMMF model was calibrated and validated for stream discharge and suspended sediment to
test its performance in the Haean catchment. The testing was performed utilizing data from the year
2010 when the LULC map, as well as the field-measured stream discharge and suspended sediment
data, were well established [30,35]. We confined the testing period from the 67th day of the year
(DOY), which is three days after first heavy rainfall of the year, to reduce the uncertainty of initial
soil water content by equating it with the soil water content at field capacity. We equalized the two
parameters based on the field measurement guidelines for soil water content at field capacity, which
recommend soil sampling two or three days after rainfall that is heavy enough to saturate the soil.
The three sub-catchments of S1, S2, and S3 (see Figure 1) were selected for model calibration and
validation. The data from the S1 and S2 were utilized for two-step calibration, and those from the S3
were used for model validation. Two-step calibration was performed on the forest-related parameters
utilizing the data from the S1 site, and the other parameters were calibrated utilizing the data from
S2. This calibration method enables us to prevent the significance of forest-related parameters of
dominant LULC type in the entire catchment, from overtaking the importance of other parameters,
resulting in those parameters being ignored. The DMMF model can estimate the outputs of the surface
and subsurface runoff, and the sediment from the elements. However, the measured data are stream
discharge and suspended sediments at the outlet of each sub-catchment. Because the model does not
consider in-stream processes and the impact of groundwater on the base flow of the stream, it is not
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appropriate to directly compare the result from the model with the measured data. To match different
comparative objects, we compared the total daily discharge of each site to total daily surface runoff and
subsurface interflow flowing into the stream from the model, while adding a constant corresponding to
base flow from groundwater. To match the sediment yield from the terrestrial part with the suspended
sediments measured at the outlet of each sub-catchment, we should consider the in-stream sediment
processes and impact of erosion control facilities. Reflecting sediment deposition on the stream bed
load, we assumed that only a part of the terrestrial sediment yield entering the stream was sampled
at each measuring point for each sub-catchment. Therefore, we compared the suspended sediments
measured from the outlet of each measuring point to the sediment flowing into the stream from the
model, multiplied by a constant, reflecting the in-stream sediment process. Our assumptions can be
described as below,

Qm = Qs + IFs + α, (1)

SLm = β × SLs. (2)

Here, Qm represents the measured daily total discharge, and Qs, IFs, and α represent the daily
surface runoff, daily subsurface interflow simulated from the DMMF model, and a constant reflecting
the base flow from groundwater (unit: m3/s). SLm represents the total daily suspended sediments
measured at the outlet of each sub-catchment, and SLs and β represent the terrestrial sediment yield
entering the stream from the model simulation and constant representing the in-stream sediment
deposition rate, respectively.

2.4.1. Sensitivity Analysis

To select important parameters to be calibrated among unmeasured or highly uncertain
parameters, we performed site-specific sensitivity analyses, using the Sobol’ method [50–52]. The Sobol’
method is a variance based sensitivity analysis that is widely used in environmental and hydrological
modeling, such as SWAT and TOPMODEL [53,54]. This method can estimate the total effect of each
parameter on the model output, considering the combined effects among parameters. Therefore,
the Sobol’ method is more suitable for analyzing the sensitivity of non-linear and non-additive
models containing many parameters, as opposed to the local or one-at-a-time (OAT) methods [53,55].
The relative sensitivity of parameters is expressed as the Sobol’ total index (SI)—the ratio of the amount
of total variance caused by a parameter to the amount of variance induced from all parameters (i.e., the
unconditional variance of the model) [52]. If we have p-dimensional parameter set, the first-order
sensitivity of the i-th parameter can be described as,

Si =
VXi (EX−i (Y|Xi))

V(Y)
, (3)

where VX−i (EXi (Y|X−i)) is the variance of the model solely by i-th parameter (Xi). Then the total
sensitivity of the i-th parameter (SIi) can be calculated as below,

SIi = 1 − VX−i (EXi (Y|X−i))

V(Y)
, (4)

where
VX−i (EXi (Y|X−i))

V(Y)
indicates that the sum of first-order sensitivities of all parameters except i-th

parameter. Parameters with large SI indicate a relatively high impact on the model output, while those
with small SI indicate a relatively low impact on the model output.

Because the soil hydraulic parameters (i.e., θsat, θ f c, and K), soil detachabilities (i.e., DKc, DKz,
DKs, DRc, DRz, and DRs) and LULC parameters (i.e., PI, IMP, GC, CC, PH, D, NV, d, and n) were not
measured or had high uncertainties, their importance was tested on model outputs. Before performing
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sensitivity analysis, we set the range of the parameters to be tested. The ranges of soil hydraulic
parameters (i.e., θsat, θ f c, and K) were set based on the range of estimated values for each represented
soil class (see Table 2). The upper bound of θ f c was set as the minimum θsat, and the upper bound of K
was set to 18 times of the maximum K to reflect high uncertainty of the parameter [56]. The ranges of
the un-measured LULC parameters were set based on the initial parameter settings for each LULC type
(see Table 3). We adjusted the parameters using a range of ±100% for the initial parameter settings for
each LULC type. If the upper or lower limits of the proportional parameters is out of the range between
zero to one, we set the lower limits to zero and the upper limits to one. In this study, SIs for the input
parameters were estimated using the “sobolmartinez” function of the “sensitivity” package [57] on R
version 3.5.1 [58], a well-established open-source program for statistical computing, providing many
analysis packages. We used the default bootstrapping option of the function, employing a sample
size of 103.

2.4.2. Calibration

To find the optimal combination of the parameter set, which allows model outputs to explain
the measured stream discharge and suspended sediments from each site, we performed two-step
calibration. For each step, we adjusted the important parameters with SI greater than 0.05
(i.e., contributing 5% of the total variance), and we adjusted the constants for the in-stream processes
(α and β) additionally for sub-catchment S2, where data were measured in the stream outlet. We
searched for the optimal combination of the parameter set, using the differential evolution (DE)
optimization method [59,60]. The DE algorithm is a heuristic optimization method with an evolution
strategy for finding the global optimum value. Requiring few prerequisites for its execution, the
algorithm is applicable to non-differential, nonlinear, and multimodal models. As a result, the DE
algorithm has been applied to a variety of fields including hydrological model calibration [15,59–63].
We applied the DE algorithm for model calibration using the “DEoptim” package [61,64] on R version
3.5.1 [58]. We used the Nash-Sutcliffe efficiency coefficient (NSE) [65] between model outputs and
field-measured data as an objective function for the DE algorithm. To treat NSE values from stream
discharge and suspended sediments fairly, we evaluated the NSE values for each measurement and
used the average NSE value as the final objective function:

Fobj = 1 − NSE(Qm) + NSE(SLm)

2
, (5)

where Fobj is the objective function to evaluate the model performance. We ran the function for
103 iterations, and ran for three different initial states to try to find the global minimum as an
optimum value.

2.4.3. Validation

Using adjusted parameters from calibration steps, model performance was tested for the S3 site,
which is located near the catchment outlet. Considering site-specific base flow from groundwater and
in-stream sediment processes for the S3 site, we adjusted the constants for the in-stream processes
(α and β). We utilized the NSE, the percent bias (PBIAS), and the coefficient of determination (R2) as
statistical criteria for model performance evaluation [66,67]. The function “gof” from the “hydroGOF”
package [68] in R version 3.5.1 [58] was used to evaluate statistical criteria.

2.5. Identifying Annual Sediment Redistribution Patterns and Assessing Soil Erosion Risk

Projecting validated parameters on the DMMF model, we simulated and calculated the annual
sediment redistribution patterns of the catchment. Based on the simulated result, we assessed the
net soil erosion rate (SLnet: t/ha/year) for each element of the catchment. SLnet is the net soil erosion
for each element, which is the amount of sediment input to each element from upslope elements
(SLin) subtracted from the amount of sediment output from the element (SLout). Soil erosion risk was
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assessed by using SLnet of each element. We classified SLnet into five categories, namely tolerable, low,
moderate, high, and severe, as shown in Table 4 according to the soil erosion risk categories defined by
OECD [69,70] which is one of the internationally used criteria.

Table 4. Soil erosion risk categories defined by OECD [69,70].

Erosion Class Tolerable Low Moderate High Severe

Soil erosion rate (t/ha/year) <6 6–10.9 11–21.9 22–32.9 >33

Based on the net soil erosion rate of the entire catchment, we assessed the soil erosion
characteristics for each LULC class. For the assessment, we calculated the mean SLnet for each
LULC class.

2.6. Evaluation of the Impact of Spatial Reconfiguration of Erosion Hot Spots into Forest

We assessed the impact of the spatial reconfiguration of erosion hot spots into forest, based on
the annual sediment redistribution patterns of the catchment. Erosion hot spots represent elements in
which much annual net soil erosion (SLnet) occurs. To compare the impact of spatial reconfiguration,
we calculated the annual sediment yields being generated from the terrestrial area and entering to
the water bodies of the entire catchment (SYbase) as a base line condition. SYbase is the total amount of
sediment yields entering the water bodies of the entire catchment, which is equal to the total amount
of SLin flowing into water bodies. To increase the robustness of our analysis, we only used the values
between the 2.5th percentile and the 97.5th percentile for all the elements in the catchment to exclude
the impact of extreme values that can occur from model outputs. The lower extreme values were set
to the value of the 2.5th percentile and the upper extreme values were set to the value of the 97.5th
percentile. The impact of the spatial reconfiguration of erosion hot spots into forest was evaluated
by calculating the total annual sediment yields entering the stream (SYtot), using the DMMF model
as bare soil and croplands (i.e., bean, cabbage, ginseng, orchard, potato, radish and rice field) being
sequentially changed into the forest. We selected forest, the original LULC type before anthropogenic
land cover changes, as the alternative LULC to mitigate erosion-prone areas. Similar to the methods
Chaplin-Kramer et al. [23] and Chaplin-Kramer et al. [24] which compute ecosystem services by
marginally changing forest into agricultural areas, we computed SYtot by gradually converting 1% of
the bare soil and croplands in the catchment into forest until all bare soil and croplands elements are
converted into forest. Based on this result, we presented the total sediment yields (SYtot), reduction
rate of the sediment yields entering the stream compared to base line condition (SYbase), and sediment
yield reduction efficiency per conversion area (t/m2).

3. Results

3.1. Model Performance

According to the calibration and validation results, the DMMF model showed competitive
performance, predicting stream discharge, but showed poorer performance in evaluating the amount
of suspended sediments at the outlet of each sub-catchment. We performed two-step calibration by
comparing the model outputs to the measured data collected from sub-catchment S1 and S2. The LULC
and soil types of sub-catchment S1 are classified as forest and forest soil, according to Tables 2 and 3.
The calculated Sobol’ index for important parameters, both for stream discharge (SIQ) and suspended
sediments to the stream (SISL), are presented in Table 5.
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Table 5. List of important parameters from forested site with Sobol’ index greater than 0.05 for stream
discharge (SIQ) and suspended sediment to the stream (SISL), and their optimized values from the
DE algorithm.

Parameters Soil Class/LULC SIQ SISL Optimized Values

θ f c Forest soil 0.035 0.118 2.24 × 10−1

K Forest soil 0.202 0.082 6.17 × 101

DRc Forest soil 0 0.213 2.25 × 10−1

PI Forest 0.781 0.180 6.66 × 10−5

GC Forest 0 0.775 9.92 × 10−1

da Forest 0 0.144 7.77 × 10−3

According to the Sobol’ index, the amount of stream discharge was highly influenced by the
permanent interception of rainfall (PI) and lateral soil hydraulic conductivity (K), which regulate the
amount of rainfall and flow rate of subsurface interflow of the sub-catchment, respectively. Vegetation
and surface cover structures (GC, PI, and da), detachability of clay particles (DRc), soil water content
at field capacity (θ f c), and lateral soil hydraulic conductivity (K) exhibited a relatively large impact
on suspended sediments generated from the sub-catchment. This result indicates that the suspended
sediments generated from the sub-catchment are determined by the amount of surface runoff and
the erosivity of surface, because PI, K, and θ f c determine the amount of surface runoff by regulating
the amount of rainfall and partitioning the rate of surface and subsurface water. Parameters GC, da,
and DRc determine the erosivity by surface runoff.

We determined an optimized parameter set by adjusting selected important parameters from
sensitivity analysis using the DE algorithm (see Table 5). With the optimized parameter set, the stream
discharge and suspended sediment from the model outputs were compared with those from field
measurements (see Figure 6).

After calibrating the forest-related parameters, we calibrated the other parameters, based on
the measurement data collected from sub-catchment S2. We calculated the relative importance of
parameters for both the stream discharge (SIQ) and suspended sediments to the stream (SISL), using the
Sobol’ index, and presented them in Table 6.

Table 6. List of important parameters (SI > 0.05) for stream discharge (SIQ) and suspended sediment
(SISL), and their optimized values from DE algorithm.

Parameters Soil Class/LULC SIQ SISL Optimized Values

θ f c Moderate to steep dry field soil 0.115 0.112 3.18 × 10−1

K Moderate to steep dry field soil 0.223 0.020 6.06 × 10−1

K Flat dry field soil 0.062 0.001 1.59 × 10−1

DRc Moderate to steep dry field soil 0 0.217 1.39
DRz Moderate to steep dry field soil 0 0.119 9.59 × 10−1

PI Semi-natural 0.252 0.048 4.16 × 10−4

PI Rice paddy 0.101 0.000 2.91 × 10−1

PI Other dry crops 0.178 0.011 1.28 × 10−4

GC Semi-natural 0 0.080 3.60 × 10−2

da Semi-natural 0 0.158 1.74 × 10−1

da Bean 0 0.105 2.93 × 10−1

α - - - 1.75 × 10−2

β - - - 4.57 × 10−2
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According to sensitivity analysis, model outputs were highly sensitive to soil hydraulic
characteristics of moderate to steep dry field soil and land cover structures of the semi-natural field.
In details, the stream discharge of the sub-catchment was highly sensitive to the permanent interception
of rainfall (PI) of the semi-natural, rice paddy, and other dry crops; the lateral hydraulic conductivity
(K) of the moderate to steep dry field and flat dry field soils; and the soil water content at field capacity
(θ f c) of the moderate to steep dry field. This result indicates that stream discharge is highly influenced
by the amount of rainfall reaching the ground (PIs) and the flow rate of subsurface interflow (Ks and
θ f c) of this region. The sediment yield to the stream is sensitive to the soil detachability by runoff
(DRc and DRz) of the moderate to steep dry field soil, soil water content at field capacity (θ f c) of the
moderate to steep dry field soil, flow depth (da) of the semi-natural field and bean field, and ground
cover ratio (GC) of the semi-natural field. This result emphasizes the role of the moderate to steep dry
field soil, which is the second largest soil type, following forest soil, and demonstrates the crucial role
of the semi-natural field on determining suspended sediment output from the model.

The performance statistics for the calibration and its time series plots of observed versus simulated
stream discharge and suspended sediment were presented in Figure 6. For the calibration steps,
the NSE values for stream discharge were 0.92 and 0.88 for sub-catchment S1 and S2, respectively.
The R2 values for stream discharge were 0.93 and 0.88, respectively, and the PBIAS values for stream
discharge were −18.6 and 0.1, respectively. The NSE values for suspended sediment were 0.99 and
0.43 for sub-catchments S1 and S2, respectively. The R2 values for suspended sediment were 0.99
and 0.44, and the PBIAS values for suspended sediment were −6.8 and −22.1 for the sub-catchments,
respectively. The site-specific constants reflecting the baseflow from groundwater (α) and in-stream
sediment deposition rate (β) for sub-catchment S2 are 1.75 × 10−2 m3/s and 4.57 × 10−2. In validation
steps, the NSE values for stream discharge and suspended sediment were 0.75 and 0.18, respectively,
with the site-specific α and β being 1.711 m3/s and 6.76 × 10−2, respectively. The R2 for discharge and
sediment were 0.83 and 0.39, respectively, and the PBIAS for discharge and sediment were 0 and −40.5,
respectively. According to the model performance evaluation criteria suggested by Moriasi et al. [67],
the DMMF model showed good performance for discharge in both calibration and validation steps.
Though there is no clear model performance evaluation criteria suggested for daily time scale sediment
result for watershed model due to limited reported data [67], When we apply the performance
evaluation criteria for monthly time scale sediment result for watershed scale model, the model might
be considered to have a slightly poor performance for sediment during the calibration and validation
steps, as the NSE and R2 values were less than 0.45 and 0.40, respectively.

3.2. Sediment Redistribution Pattern of the Catchment

Simulating the model with optimized parameters, we calculated the annual net soil erosion
rate (SLnet) for each element and classified them into five classes–tolerate, low, moderate, high, and
severe—as in Figure 7.

According to Figure 7, elements with severe soil erosion (>33 t/ha/year) were concentrated on
the dry crop field with moderate to steep slope conditions on the interface with the forest. The estimate
of the mean annual net soil erosion rate by each LULC type (Table 7) shows that bare soil and dry crop
field suffered from severe soil erosion. On the other hand, forest, rice paddy, orchard, and urban areas
showed good sediment capturing capabilities.
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Figure 7. (a) Annual net soil erosion (t/ha/year) of the entire Haean catchment and (b) soil erosion
class according to the soil erosion risk categories from OECD [69,70].
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Table 7. Mean annual net soil erosion rate (t/ha/year) and mean slope of each LULC type.

LULC Mean Annual Net Soil Erosion Rate (t/ha/year) Mean Slope (◦)

Bare soil 997.80 9.8
Bean 763.82 7.6

Ginseng 388.83 8.5
Potato 357.60 7.9
Radish 310.06 8.4

Other dry crops 294.23 8.4
Semi-natural 126.34 9.0

Shrub 105.54 11.1
Cabbage 79.30 7.6

Catchment average 52.68 16.0
Forest −75.25 22.0

Rice paddy −171.83 3.0
Orchard −227.14 8.1
Urban −284.71 6.0

3.3. Impacts of Conversion of Erosion Hot Spots into Forest on Total Sediment Yield Entering the Stream

The LULC conversion of erosion hot spots into forest showed a dramatic impact in the reduction
of sediment yields entering the stream, as shown in Figure 8.
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Figure 8. Total annual sediment yields entering the stream (upper panel) and sediment yield reduction
efficiency per unit conversion area (lower panel) through changing bare soil and crop fields into forest
sequentially from the area with the highest to the area with the lowest amount of net soil erosion
(SLnet), sediment inflow to the element (SLin), and sediment output from the element (SLout).
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When each bare soil and crop field element in the catchment was converted into the forest
sequentially from the area with the highest soil erosion rate to the area with the lowest soil erosion rate,
the amount of total annual sediment yield of the catchment to the stream sharply decreased having
a shape similar to an inverted sigmoid function. Changing the 3% of erosion hot spots that have
suffered the most from severe soil erosion caused a reduction in sediment yield entering the stream of
ca. 10% from the baseline condition (SYbase), and a change in 10% of most severe hot spots is expected
to reduce sediment yields by ca. 50%. Among the elements SLnet, SLin, and SLout, the altered areas
revealed that outputs from the element (SLout) proved to be the most effective in reducing the total
sediment yield into the stream. A simulation of the sediment yields entering the stream showed that
the reducing rate in sediment yield for SLnet was less effective than those for SLout and SLin. Due to
total annual sediment yields sigmoidally decreases as bare soil and crop fields begin changed into
forest, sediment yield reduction efficiency per unit conversion area increased until ca. 10% of total
crop land area converted to forest and then gradually decreased. A simulation of the sediment yield
reduction efficiency showed that the element (SLout) was most efficient for all conversion intervals.

4. Discussion

Our findings emphasize the importance of landscape configuration on regulating ecosystem
services by showing the effectiveness of spatial reconfiguration of soil erosion hot spots into forest
on reducing the amount of sediment yield entering the stream. We simulated the annual sediment
redistribution pattern in the Haean catchment, utilizing the daily based Morgan–Morgan–Finney
(DMMF) soil erosion model. According to the result, the soil erosion rate varied greatly depending on
the topography and LULC type, and the area located on the steep hill-slope, which is adjacent to the
forest severely suffered from soil erosion. When reconfiguring the landscape patterns of croplands
by sequentially altering erosion hot spots from the most severe to the least severe areas into forest,
we found dramatic effects in the reduction of sediment yields entering the stream in this catchment.
The reduction rate may reach ca. 50% when the 10% most severe erosion hot spots were altered,
and we can expect a reduction rate of over 80% when the ca. 20% most severe erosion hot spots
are altered. In the following, we first discuss model performance and limitation, and then potential
management implications.

4.1. Model Performance

The assessment of soil erosion risk and measurement of the effectiveness of the spatial
reconfiguration of erosion hot spots in reducing sediment yields entering the stream were based
on the calibrated and validated simulations of the DMMF soil erosion model. According to the model
performance criteria from Moriasi et al. [67], the DMMF model showed satisfactory performance for
predicting stream discharge during the calibration and validation processes, with mean NSE values
of 0.90 and 0.75, mean R2 of 0.91 and 0.83, and maximum PBIAS of −18.6 and 0 during calibration
and validation steps, respectively. The model showed comparatively poor performance for predicting
suspended sediment at the outlet of each sub-catchment, except the small forested site (S1) where
the stream does not exist. The mean NSE values were 0.66 and 0.18, mean R2 were 0.67 and 0.39,
and maximum PBIAS were −22.1 and −40.5, respectively. When we compared the model performance
statistics of the DMMF model to those from previous studies using soil and water analysis tool (SWAT),
the model showed competitive performance in predicting stream discharge but poorer performance in
terms of predicting suspended sediments in the stream [3,19]. Maharjan et al. [3] reported that mean
NSE values for stream discharge were 0.82 during calibration and 0.45 during validation. In addition,
they showed that mean NSE values for suspended sediment were 0.78 and 0.60 during calibration
and validation, respectively. Jang et al. [19] also reported mean NSE values for stream discharge of
0.78 and 0.66 during calibration and validation, respectively. They reported mean R2 for suspended
sediment were 0.80 and 0.76 during calibration and validation, respectively. In terms of soil erosion
rate for each crop field, the DMMF model estimated that the average annual soil loss of major dry crops
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ranged between 79.3 t/ha/year and 763.8 t/ha/year for bean, radish, potato, and cabbage, and the
average annual soil loss from whole dry crop fields was 379.7 t/ha/year. Arnhold et al. [17] reported
that 30–54 t/ha/year of soil loss occurred in the dry crop fields, including bean, radish, potato, and
cabbage, from the plot-level field measurement. Furthermore, Maharjan et al. [3] estimated that
35.5–53.0 t/ha/year of soil loss occurred in the dry crop fields from the SWAT model. When we
compared the results from the DMMF model with those from other studies, the amount of soil loss
from this study is far greater. The reasons that the DMMF model showed poor performance for
predicting suspended sediment in the stream can be analyzed from two perspectives. The first reason
involves the discrepancy of data types between the DMMF model and observed data. The observed
data were stream discharge and suspended sediment at the outlet of each sub-catchment. On the other
hand, the DMMF model can estimate the total sediment yields entering the stream that belongs to
each sub-catchment. The DMMF model is efficient for estimating sheet and rill erosion, but it has
limitations in estimating in-stream sediment processes such as stream bed deposition, channel erosion,
and sediment transport in the stream. Considering the limitations of the model, we use site-specific
coefficients, which assume that suspended sediments measured at the outlet are proportional to the
sediment yields inflowing into the stream. However, incorporating the quantity and the velocity
of stream water discharge, sediment flux, and physical characteristics of channel structures such
as gradient, width, depth, and length, into the in-stream sediment process, is complicated [71,72].
The reasons above may lead to a high sediment deposition rate in the stream (i.e., low measured
sediment ratio (β)), which in turn, causes a high soil erosion rate in the terrestrial area. Because the
study sites are affected by monsoon climate, such that its rainfall pattern is not uniform but rather
with a lot of extremes, a large amount of sediment is deposited during low rainfall events, and
the deposited sediments are washed out by a huge amount of fast stream discharge accompanying
heavy rainfall. Temporal lags between the rainfall event and stream discharge are negligible for the
Haean catchment, but for suspended sediments, the lags are significant and highly depend on the
stream length because of the difference in travel velocities between water and soil particles [73–76].
Therefore, the model performance for predicting stream discharge may be better than that for predicting
suspended sediments. The stream widens and deepens as it descends to the lower area, according to
Lee [2], and the length of the stream also increases as the size of sub-catchment grows. The uncertainty
caused by in-stream processes increases as the size of the sub-catchment grows, which reduces the
model performance in predicting suspended sediments in this study. SWAT and USLE-based models
are usually calibrated and validated at the fixed spatial area with a different temporal period. Therefore,
in-stream sediment processes can be included in the parameters, which may lead to better model
performance. However, the DMMF model is a spatially distributed semi-processed model and used
the same temporal period with a different spatial area for calibration and validation in this research,
so that the in-stream processes cannot be included in the model.

Secondly, many sediment reduction facilities, such as dams for freshwater, debris barrier and
culvert systems around crop fields, and road infrastructures, which can affect sediment transport
processes, have been installed in the Haean catchment [30,36]. The dam and debris barriers create
reservoirs that impede the stream flow and filter out sediments in the facilities. This disrupts the correct
evaluation of the model performance for this catchment. Shope et al. [30] showed complex stream
networks, including the culvert systems around crop fields and the road infrastructure. The culvert
systems extend the travel time of suspended sediments and reduce the runoff and transport velocities
of sediments by altering the flow direction abruptly. Increased travel time and decreased transport
velocity tend to increase the deposition rate of sediments compared to the condition without the culvert
system. The deposited sediments in the culvert flow into the stream by runoff, with sufficient power
to wash out. The culvert system is also responsible for the temporal lag between the rainfall event
and the presence of suspended sediments in the catchment. Sediment reduction facilities trap a huge
amount of sediments, which make the measured sediment ratio (β) in this study have very low values.
Because of the small β, the stream bed deposition rate became too large, and consequently, the overall

125



Water 2019, 11, 957

erosion rate from terrestrial area increased. To cope with this problem, the in-stream processes will
need to be considered more precisely through model improvements.

4.2. Assessment of Soil Erosion Risk and the Effectiveness of Spatial Reconfiguration of Erosion Hot Spots on
Reducing Sediment Yield Entering the Stream

We estimated the annual net soil erosion rate of the entire catchment and assessed the soil erosion
risk class according to the OECD criteria. According to this study, soil erosion is concentrated on the
hill-slope of the catchment, and the problem is more significant for the bare soil and dry crop fields,
such as bean, radish, and potato, in this area. In addition, forest in the valley showed a considerable
amount of soil loss, also suffering from erosion due to the concentrated surface runoff and steep slope.
Compared with other studies, the soil erosion risk pattern and the average annual soil loss from the
DMMF model is qualitatively consistent with the soil erosion risk map from Lee et al. [77], with average
climate conditions for the 2010s using the USLE-based SATEEC [78] model. According to this study,
urban area, orchard, and rice field showed better performance for sediment capturing capabilities than
forest. However, the urban area and rice field are located in the lower and flatter area than forest, so
that the sediment inputs from the upslope area tend to be deposited in this area. Furthermore, because
the urban area is usually paved with impervious covers, such as concrete and asphalt, and the rice
field is filled with water, which acts as a pervious cover that prevents surface erosion, these areas have
little soil loss but receive huge input from the upslope area. Though the forest is in a region where the
slope is very steep, the average amount of soil loss is smaller compared with other land types, and it
also shows excellent sediment capturing capability, in general. Like the other studies, we can conclude
that the main cause of severe erosion in the catchment is cropland extension after deforestation at the
hill-slope area of the catchment [2,3,11,17,19,77]. We also assessed the effect of spatial reconfiguration
of LULCs on reducing sediment yields entering the stream. In this study, the spatial reconfiguration
of erosion hot spots into forest showed excellent reduction efficiency in sediment yields entering the
stream. We identified that the sediment yields entering the stream were reduced sharply, as crop
lands were sequentially changed into forest from the area with the most severe soil loss to the area
with the least soil loss. An sigmoidal sediment reduction rate from altering LULCs to forest indicates
that forest is not only effective in preventing surface erosion but also effective in capturing sediment
input from the upslope area. In addition, the result suggested that altering LULCs based on the
amount of sediment output from the element is the most effective way of reducing sediment yields
entering the stream. This result is consistent with previous studies that emphasize the effectiveness of
vegetative filter strips located at sediment sources such as crop fields [3,5,19,27–29]. The result can also
be generalized to consider the effect of riparian vegetation buffer strip on reducing sediment yields
entering the stream, located at the interface between crop fields or natural sediment sources and the
stream channel [4,79,80]. This study also demonstrated that the sediment yield reduction efficiency
initially increased as the first few bare soil area and crop lands with the most severe soil loss were
converted into forest. The sediment yield reduction efficiency were maximized when ca. 10% of the
area converted, and then the efficiency decreased gradually. These patterns can be explained by two
aspects of the forest’s sediment yield reduction capability; protecting surface from soil erosion, and
capturing sediment inputs. The areas with the most severe soil loss are located at the steep hillslope
where surface runoff is concentrated. These areas have a large transport capacity of the runoff, beyond
the sediment capturing capability of forest because transport capacity is greater than the available
sediment for transport [15]. In these areas, conversion of crop lands into forest can reduce soil loss
from the surface but cannot capture sediment inputs from upslope which is larger than surface soil
loss. As slope becomes milder and the amount of surface runoff decreases due to gradual conversion
of crop lands into forest, transport capacity gradually decreases. Decreased transport capacity caused
by decreased slope gradient and surface runoff lets forest capture more sediments, maintaining the
surface protecting capability from soil loss. Therefore, the sediment yield reduction capabilities of
forest become small and the sediment yield reduction efficiency by changing crop lands into forest
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decreases gradually. According to these results, one can reduce sediment yields entering stream
efficiently by identifying an optimal percentage of crop land conversion into forest which brings out
the best efficiency of sediment yield reduction per unit conversion area.

5. Conclusions

In this study, we identified the soil erosion risk of Haean catchment spatially explicitly by
projecting sediment redistribution patterns using the DMMF model. In addition, we measured the
sediment yield reduction efficiency entering the stream by sequentially altering erosion hot spots into
forest from that which has the highest soil loss to that which has the lowest soil loss. The DMMF
model showed competitive performance estimating stream discharge but exhibited lower performance
estimating suspended sediments at each sub-catchment outlet. When we applied the DMMF model to
the Haean catchment, the bare soil surface and dry crop fields located on the steep hill-slope of the
catchment suffered mostly from severe soil erosion. On the other hand, forest, rice paddy, orchard, and
urban areas suffer less from soil erosion. By changing the erosion hot spots from cropland to forest,
the overall amount of sediments exporting to the stream of the catchment was effectively reduced.
The sediment yield reduction efficiency was maximized when ca. 10% of crop lands were converted to
forest. This study implies that one can achieve the goal of reducing sediment yields entering the stream
by identifying the location of erosion hot spots and managing the area intensively. Although previous
studies showed good mitigation effects of BMPs that require compliance of stakeholders, this may not
be easy and takes much time for stakeholders to follow the BMPs, because the degree of acceptance
of the policy depends on the situation and tendency of each stakeholder [19]. On the other hand,
the spatial reconfiguration approach proposed in this study can reduce the number of stakeholders
relevant to soil erosion mitigation measures. However, this approach reduces crop yields because
crop lands are converted to non-crop lands to reduce sediment yields from the catchment. In addition,
the sediment yield reduction efficiency decreases after a certain point of spatial reconfiguration.
Therefore, the two approaches—BMP measures such as cultivating cover crops, mulching surface with
straw, and managing field margin naturally, and conversion of crop lands with the more severe soil
loss—are complementary measures to reduce sediment yields into the stream.
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Appendix A. Detailed Structure of the Daily Based Morgan–Morgan–Finney (DMMF) Soil
Erosion Model

Morgan–Morgan–Finney (MMF) model [37] is a conceptual soil erosion model, which estimates
the annual soil erosion rate from an area by comparing the amount soil particles detached from
the surface (SS) and transport capacity of surface runoff (TC) [37,38,40]. The first version of MMF
model [37] estimated soil erosion rate of an area by comparing the amount of soil particles detached
by raindrop impact (F) and transport capacity of surface runoff (TC). The second version of model, the
revised Morgan–Morgan–Finney (RMMF) model [38] started to consider the amount of soil particles
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generated by surface runoff (H). In the third version, the modified Morgan–Morgan–Finney (MMMF)
model [40], the interconnectivity of surface runoff, various sub-processes such as the subsurface
interflow and gravitational deposition processes, and parameters such as the physical structure of
vegetation and surface ground conditions were introduced to calculate transport capacity of surface
runoff (TC) and the amount of soil particles available for transport (G) more physically rigorously [41].
The daily based Morgan–Morgan–Finney (DMMF) soil erosion model [15] is also estimates daily
soil loss from an element by comparing transport capacity of surface runoff (TC) and the available
sediment for transport (G). The DMMF model is mainly comprised of hydrological and sediment
phases. The hydrological phase determines the amount of surface runoff and subsurface interflow,
and the sediment phase determines the amount of sediment budgets of the element.

Appendix A.1. Hydrological Phase

The effective rainfall (Re f f ; mm) which is the volume of rainfall reaching the unit surface area of
an element is the main driver of hydrological phase. Following the corrected version of the effective
rainfall (Re f f ) from Choi et al. [42], Re f f is calculated as,

Re f f = R × (1 − PI)× cos(S) , (A1)

where PI is the proportion of the permanent interception area and S is the slope of an element.
Similar to MMF model, surface runoff can be generated when the total input of water to the element
exceeds the surface water infiltration capacity (SWc; mm), which is the soil moisture storage capacity
considering the proportion of the impervious area (IMP). SWc is defined as,

SWc = (1 − IMP)× (SWsat − SWinit − ΣIFin
A

) , (A2)

where SWsat (mm) is the volume of water per unit area when soil is fully saturated, and SWinit (mm) is
the volume of initial water per unit area that is already existed in the soil. ΣIFin (L) is the volume of
subsurface water inputs from upslope and A (m2) is the area of an element. The amount of the surface
runoff (Q; mm) is calculated as,

Q = Re f f +
ΣQin

A
− SWc , (A3)

where Qin (L is the volume of surface runoff inflow from upslope areas. The amount of water in the
soil also flows out from the element as a subsurface interflow (IFout; L) when the voludme of soil water
budget per unit area (SW; mm) of the element exceeds the volume of soil water at field capacity per
unit area (SWf c; mm). The soil water budget (SW) is estimated as,

SW = (SWinit +
ΣIFin

A
) + (Re f f +

ΣQin
A

− Q)− ET , (A4)

where ET (mm) is the volume of water evapotranspirates per unit area from the element. Then the
volume of subsurface water flowing out from the element (IFout) can be described as,

IFout = K × sin(S)× (SW − SWf c)× w , (A5)

where K (m/day) is the saturated soil lateral hydraulic conductivity and w (m) is the width of the
element. A part of soil water remains with remaining water content (θr; vol/vol) which can be
described as,

θr =
(SW − IFout/A)

1000 × SD
, (A6)

where SD is the soil depth of the element, and 1000 is the constant to convert meters to millimeters.
The θr can be changed into θinit for the next day.
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Appendix A.2. Sediment Phase

Sediment phase determines the total mass of soil particles which is taken out of the element
through three steps: delivery of detached soil particles into the surface runoff, gravitational deposition,
and estimation of hhe sediment loss from the element (SL) by comparing transport capacity of the
runoff (TC; kg/m2) and sediment available for tranport (G; kg/m2). In the model, soil particles are
detached from the surface by raindrop impact and surface runoff. The mass of soil particles detached
by raindrops per unit area (F; kg/m2) is described as,

F = 0.001 × DK × P × (1 − EPA)× KE , (A7)

where DK (g/J) is the detachability of soil particles by raindrop impact, P (%) is the proportion of each
soil particle size class (i.e., clay, silt, and sand), KE (J/m2) is the kinetic energy of the effective rainfall
considering direct throughfall and leaf drainage from the plant, and 0.001 is the unit conversion factor
from g to kg. Also, EPA is the erosion protected area:

EPA = IMP + (1 − IMP)× GC , (A8)

where GC is the proportion of ground cover and IMP is the proportion of the impervious area (IMP)
of the element. The mass of detached soil particles by the surface runoff (H; kg/m2) is described as,

H = 0.001 × DR × P × Q1.5 × (1 − EPA)× (sin(S))0.3 , (A9)

where DR (g/mm) is the detachability of soil particles by runoff per unit volume of surface runoff and
Q is the volume of runoff per unit area, S is the slope of the element, and 0.001 is the unit conversion
factor from g to kg. Sediment inputs from upslope elements (ΣSLin) also flows into surface runoff.
The mass of delivered sediments to the surface runoff per unit area (SS; kg/m2) is,

SS = F + H +
ΣSLin

A
. (A10)

A part of sediments delivered to the surface runoff (SS) in the runoff settle down to the ground
by gravity. The gravitational deposition rate of the suspended sediments (SS) in runoff (DEP) is,

DEP = 0.441 × Nf , (A11)

where Nf is the particle fall number which is the probabilistic ratio of falling particles [81], The Nf can
be estimated as,

Nf =
l
v
× vs

d
, (A12)

where v (m/s) is the velocity of the surface runoff, vs is the settling velocity of each particle size class,
and d (m) is the depth of the surface runoff.

The remaining suspended sediments become available for transport per unit volume of surface
runoff per unit area (G; kg/m2) and be estimated as,

G = SS × (1 − DEP) . (A13)

The part of the availabe sediments for transport (G) can flow out from the element according to the
transport capacity of the runoff (TC; kg/m2) of an element which is determined by the volume of runoff
per unit area of an element (Q), the slope angle (S) and the surface conditions [40]. Due to the physical
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condition of surface affect runoff velocity, the tranport capacity of runoff can be described using the
ratio between actual runoff velocity (v) and the reference velocity of the element (vr; m/s) [42].

TC = 0.001 ×
(

v
vr

)
× Q2 × sin(S) . (A14)

The reference velocity (vr) is,

vr =
1
nr

× d2/3
r ×

√
tan(S) , (A15)

with 0.015 for Manning’s coefficient (nr) and 0.005 for runoff depth (dr) representing for a standard
surface condition. The transport capacity of the runoff (TC) and the available sediment for transport
(G) determines the amount of sediment loss from the element (SL) [40,82]. When TC is greater than
G, the surface runoff washes out all the sediments available for transport, otherwise, the amount of
sediment (SL) which is equal to TC can be transported from the element.
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Abstract: The conservation agriculture production system (CAPS) approach with drip irrigation
has proven to have the potential to improve water management and food production in Ethiopia.
A method of scaling-up crop yield under CAPS with drip irrigation is developed by integrating a
biophysical model: APEX (agricultural policy environmental eXtender), and a Geographic Information
System (GIS)-based multi-criteria evaluation (MCE) technique. Topography, land use, proximity to
road networks, and population density were considered in identifying potentially irrigable land.
Weather and soil texture data were used to delineate unique climate zones with similar soil properties
for crop yield simulation using well-calibrated crop model parameters. Crops water demand for the
cropping periods was used to determine groundwater potential for irrigation. The calibrated APEX
crop model was then used to predict crop yield across the different climatic and soil zones. The MCE
technique identified about 18.7 Mha of land (16.7% of the total landmass) as irrigable land in Ethiopia.
Oromia has the highest irrigable land in the nation (35.4% of the irrigable land) when compared
to other regional states. Groundwater could supply a significant amount of the irrigable land for
dry season production under CAPS with drip irrigation for the various vegetables tested at the
experimental sites with about 2.3 Mha, 3.5 Mha, 1.6 Mha, and 1.4 Mha of the irrigable land available
to produce garlic, onion, cabbage, and tomato, respectively. When comparing regional states, Oromia
had the highest groundwater potential (40.9% of total potential) followed by Amhara (20%) and
Southern Nations, Nationalities, and Peoples (16%). CAPS with drip irrigation significantly increased
groundwater potential for irrigation when compared to CTPS (conventional tillage production system)
with traditional irrigation practice (i.e., 0.6 Mha under CTPS versus 2.2 Mha under CAPS on average).
Similarly, CAPS with drip irrigation depicted significant improvement in crop productivity when
compared to CTPS. APEX simulation of the average fresh vegetable yield on the irrigable land under
CAPS with drip irrigation ranged from 1.8–2.8 t/ha, 1.4–2.2 t/ha, 5.5–15.7 t/ha, and 8.3–12.9 t/ha for
garlic, onion, tomato, and cabbage, respectively. CAPS with drip irrigation technology could improve
groundwater potential for irrigation up to five folds and intensify crop productivity by up to three to
four folds across the nation.

Keywords: scaling-up conservation agriculture; drip irrigation; groundwater potential; sustainable
intensification; Ethiopia
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1. Introduction

Crop production in Ethiopia is constrained with several challenges that cause low productivity
and economic growth in the region. Soil degradation in the form of soil erosion and decline of soil
fertility is the major constraint for crop production [1]. The alarming rise in population caused the
exploitation of the rainforest and grasslands in the region to increase cultivated lands, which resulted in
soil degradation and deterioration of the environment [2–4]. Crop production in the nation is mainly a
rainfed system using traditional farming practices [2]. The expansion of cultivated land at the expense
of forest, bushes, and grassland is not a feasible option to sustain crop production let alone increased
productivity. Instead, with the current poor soil and water management practices, it contributes to
lower production efficiency [3].

On the other hand, rainfall variability is a great concern for a rainfed agricultural system in
Ethiopia [5]. Customized local strategies are needed to maximize food supply and enhance the
ecosystem at the same time. One such strategy is to enable dry season production to address the
adverse effects of rainfall variability. The conservation agriculture production system (CAPS), which
promotes no-till, mulching, and diverse cropping, has been shown to provide higher water use
efficiency in addition to improving soil fertility [6–9]. Similarly, adoption efficient water application
technologies can increase water use efficiency [10]. In relation to irrigation technology, drip irrigation is
considered the most efficient water application technology [11,12]. CAPS combined with drip irrigation
constitutes efficient soil and water management technology, which helps to maximize the potential of
water resources and consequently increase productivity in the region [8]. Another concern is the lack
of knowledge of potential to expand irrigated agriculture and maximize production. Worqlul et al., [3]
indicated that less than 5% of the potentially irrigable lands are currently under irrigation.

While the positive impacts of CAPS with drip irrigation have been identified, expanding the
impact to a large-scale adaptation on a country level and linking it with water resources availability
would provide substantial and very useful information to policymakers in a decision-making process to
improve the agriculture systems in the nation. Assessments of potentially irrigable land, corresponding
crop productivity, and availability of water resources are essential components for the scale-up of CAPS
with drip irrigation technology. There are few quantitative studies [3], that provided country-level
irrigation potential assessment under the conventional tillage production system (CTPS) with traditional
irrigation practice. However, no literature was found for a large-scale adaptation of CAPS with drip
irrigation. This study attempts to examine the country-level adaptation of CAPS with drip irrigation
technology for its impact on groundwater potential and crop productivity based on experimental
results presented in Assefa et al. [8]. The specific objectives were to (1) assess potentially irrigable
land using the multi-criteria evaluation (MCE) technique, (2) scale-up crop yields by integrating the
MCE technique and a biophysical model field-scale prediction, and (3) asses groundwater irrigation
potential for dry season production. The analyses were made for garlic, onion, tomato, and cabbage
which are commonly grown vegetables in Ethiopia [13].

2. Materials and Methods

2.1. Study Area

This study was conducted in Ethiopia, the second-largest populated country in the entire continent
of Africa, next to Nigeria (Figure 1). The landmass of the country is approximately 110 million ha, and
elevation ranges from 160 m to 4530 m above mean sea level [3]. Climate variability (as it pertains
to variability in rainfall and temperature) was observed to be very high in Ethiopia (i.e., 15% to 50%
coefficient of variation for rainfall and 1.6◦C annual average rise) based on the long-term (1955–2015)
evaluation of climate data. This poses major risks to rainfed crop production [14,15] which is the
dominant agriculture practice in Ethiopia [16]. The southwestern portion of the country receives about
2400 mm of rainfall, whereas northeastern and southeastern lowland receives less than 500 mm per
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year [17]. There are three seasons in the year locally known as Kiremt (main rainfall season), Belg
(small rainfall season), and Bega (dry season) [18].

 
Figure 1. Ethiopia and its administrative regions with water bodies.

2.2. Scale-Up of Field-Scale Parameters

The MCE technique and agricultural policy environmental eXtender (APEX) model was used to
scale-up the field-scale CAPS with drip irrigation (Figure 2). MCE was used to identify potentially
irrigable lands in the country based on various factors that affect irrigated agriculture. MCE is an
emerging approach that involves combining multiple variables to produce a single evaluation index for
an intended purpose [2,19–26]. The MCE technique has been used for various applications including
crop agriculture, water resource management, and other environmental studies [2,3,26–33].

A range of variables (Figure 2) were considered in this study to identify potentially irrigable
land in the country. These factors include topography (slope), land use/cover, proximity to road
networks, and population density. Topography affects the choice of irrigable land as it affects irrigation
practices [3]. Digital elevation model (DEM) data with 30 m resolution, was used to derive the
landscape slope for the entire nation. Land use/cover data also provide a vital figure in the selection of
economically productive lands for irrigated agriculture. Similarly, population density and proximity
to road networks were used to account market accessibility to support irrigated agriculture. Euclidean
distance was calculated to establish the proximity criteria to road networks. Factors were reclassified
into various suitability classes depending on the Food and Agricultural Organization [34] guidelines:
Highly suitable (S1), moderately suitable (S2), marginally suitable (S3), currently unsuitable (S4), and
permanently unsuitable or constraint (N1). The equal interval ranging technique was used to reclassify
population density and proximity to road networks based on Worqlul et al., [3]. The pairwise method
was used to compare each factor one-to-one and weights were scaled using works of Saaty [35] and
Worqlul et al., [3]. The pairwise method is a relatively unbiased ranking technique [2,27] and applied
to weigh each factor considered in this analysis. The pairwise technique, Saaty [35], makes use of a
scale broken down from 1 to 9 indicating the equal and absolute importance of a factor when compared
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to a one-to-one basis, respectively. Consistency ratio was used to check the consistency of the pairwise
matrix using Equation (1) described in Saaty [36]. The equal interval ranging technique was used
to distribute the weight of each factor into the suitability classes. Factors were then combined using
“weighted sum overlay” to produce a single evaluation index (0% to 100%) map, and constraints
(permanently unsuitable lands) were excluded from the analysis. Combined weights of greater than
85% were considered to be potentially irrigable lands [2,3].

CR = CI/RI, (1)

where CR = consistency ratio, CI = consistency index, and RI = consistency index of randomly
generated matrix.

Figure 2. Method of scaling-up crop production under conservation agriculture production system
(CAPS) with drip irrigation technology.

Soil and climate data were used to define unique areas for biophysical model development. Spatial
variability of parameters and the effect of scaling needs to be carefully considered while upscaling
modeling results [37–39]. Table 1 shows the type and source of data used to scale-up field-scale crop
production to the national level. The mean annual rainfall point data from observed ground weather
stations were used to compute spatial annual rainfall and classify the nation into different rainfall
regimes. Similarly, soil texture data was used to classify the nation into various soil classes. Climate
regimes and soil texture data were combined using the intersection of the ArcGIS overlay function to
identify geographical equivalence zones of similar climate and soil (i.e., 39 zones) where each zone
has the same soil texture and rainfall regimes. The APEX [40], a biophysical model, was set up on the
unique climate and soil combinations to simulate crop yield. Weather data (rainfall, maximum and
minimum temperature, wind speed, relative humidity, and solar radiation), soil characteristics, as well
as vegetation and management practices are the main inputs to the APEX model [41]. The model is
capable of evaluating the effects of soil and water conservation practices on hydrology, crop yield, and
other environmental variables such as sediment, nutrient load, and soil organic carbon [42–44]. Proper
calibration and validation of model parameters are essential steps for reliable predictions [45]. The
APEX model was calibrated and validated for a few sites in Ethiopia using adequate field data from 13
experimental plots. The calibration results (i.e., model performances) are presented in Table 5 and

138



Water 2019, 11, 2007

Table 9 of Assefa et al., [9] for hydrology and crop yield, respectively. Based on efficiency measures
suggested in Moriasi et al., [46] and Wang et al. [47], the model performance was found within the
range of acceptable to very good. Satisfactory model performance during calibration and validation
provides greater confidence in the modeling results when evaluating various plausible scenarios for
modeling prediction. The present study was built on the same model for its application in up-scaling
the impact. Input data were changed based on the unique climate-soil combinations across Ethiopia,
but the same model parameters were used which was established during the calibration. Heat unit
scheduling (OPV7 = 1) was used with shortening cropping period compared to the experimental plots
to capture crop growth variability across the unique regions.

Table 1. Data and sources for upscaling crop production to the county level.

Data Source Spatial Resolution (m)

Land use World land use database (LADA), Food and
Agricultural Organization (FAO), 2010 10,000

Soil Africa Soil Information Service (AFSIS),
2015 250

Digital Elevation Model (DEM) Unites States Geographical Survey (USGS),
2000 (2015 release) 30

Population density Global gridded pupation database, 2000 1000

MODIS potential
evapotranspiration (mm)

MOD16 Global Terrestrial
Evapotranspiration data set (2000–2010) 1000

Potential borehole yield (L/s) British Geological Survey (BGS), 2012 5000

Groundwater depth (m) British Geological Survey (BGS), 2012 5000

Rainfall (mm) Ethiopian National Meteorological Agency
(ENMA), 2000 to 2010 -

Irrigation requirement of crops is mainly a function of reference evapotranspiration and rainfall,
which are variable in space and time. Therefore, variable irrigation water volumes were applied in
the model for each climate zone depending on the type of vegetables grown and weather conditions.
The net irrigation requirement (NIR) for each of the vegetables was calculated depending on reference
evapotranspiration (ETo), crop coefficients of each vegetable at mid-stage (Kc), irrigation application
inefficiency, and effective rainfall amount (ER). Crop coefficients at the mid-stage of crop growth
(Kc-mid) were obtained from Allen et al., [48] of the Food and Agricultural Organization (FAO) for
various vegetables. The net irrigation requirement equation derived by Worqlul et al., [3] for the
country using conventional irrigation inefficacy in Equation (2) was modified in this study (Equation
(3)) to account for drip irrigation inefficiency. Howell [49] indicated that 95% efficiency can be attainable
whereas 90% is the average efficiency for drip irrigation. Thus, 10% application inefficiency was
considered for irrigation and some minor losses such as leaching [50]. Assefa et al. [8] showed that
significant (p ≤ 0.05) reduction of irrigation volume was observed in the conservation of agriculture
(CA) experimental sites when compared to conventional tillage (CT) practice. Therefore, Equation (3)
was further modified using linear coefficient (Cf) to account for the reduction of irrigation volume in
CA practice by comparing the irrigation data from the experimental sites for CA and CT managements
(Equation (4)) (net irrigation requirement for conservation practice, NIRc). The contribution of rainfall
to soil moisture, effective rainfall (ER), in the growing season of vegetables was estimated using the
United States Department of Agriculture Soil Conservation Service (USDA-SCS) method [51], which is
a function of precipitation (P), see Equation (5a) and Equation (5b).

NIR = 1.6×Kc× ETo− ER (2)

NIR = 1.1×Kc× ETo− ER (3)
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NIRc = 1.1×Cf×Kc× ETo− ER (4)

ER = P× 125− 0.2× P
125

; For P ≤ 250 mm/m (5a)

ER = 125 + 0.1× P; For P > 250 mm/m (5b)

where NIR, NIRc, Cf, Kc, ETo, P, and ER are the net irrigation requirement for the tilled system, net
irrigation requirement for conservation agriculture, the coefficient of conservation agriculture, crop
coefficient, reference evapotranspiration, precipitation, and effective rainfall, respectively.

Soil properties, weather data, net irrigation requirements, and cropping details were supplied to
the well-calibrated APEX model in each unique zone. Then, crop yield simulation was integrated with
the irrigable land to limit crop yield estimation only on the potentially irrigable land. Groundwater
source of irrigation with a depth less than 30 m from the surface was considered in this study. The
potential borehole yields and the potential numbers of wells that could be installed were used to estimate
groundwater availability in the regions. Maintaining a one-kilometer clear distance between wells (i.e.,
the radius of influence) is suggested by Howsam and Carter [52] to estimate the potential numbers
of wells that could be installed. Maintaining the radius of influence helps to avoid the groundwater
drawdown effect of one well on another. The net irrigation requirement for CA practice, groundwater
availability, and depth to groundwater were considered to determine the potential of groundwater wells
in unique zones. Vegetable yields on the irrigable land were further constrained based on groundwater
availability to identify the potential scale-up areas for CAPS with drip irrigation technology.

3. Results and Discussion

The results of scaling-up crop yield under CAPS with drip irrigation technology to country-level
were presented into three categories: (1) Assessment of potentially irrigable land in the country using
the MCE technique, (2) simulation of potential crop production under CAPS with drip irrigation
using a well-calibrated APEX model, and (3) assessment of groundwater potential for dry season
crop production.

3.1. Potentially Irrigable Land

Four basic factors (topography, land use, proximity to road networks, and population density)
were considered in the MCE technique to identify potentially irrigable land in the nation. Topography
in the nation ranges from 0% (flat land) to greater than 100% (steepest land which is about 0.07% of
the landmass) (Figure 3a). The slope was reclassified into five categories based on Worqlul et al., [27]:
Highly suitable (0%–2%), moderately suitable (2%–8%), marginally suitable (8%–12%), less suitable
(12%–30%), and unsuitable (above 30%). The various land use classes in the nation (Figure 3b) were
reclassified into four suitability classes based on Assefa et al. [2], Worqlul et al., [3], and FAO [53]:
Highly suitable (agricultural land), moderately suitable (grassland), marginally suitable class (shrubs,
bare land), and unsuitable class (forest, urban lands, wetlands, and water). Population density ranges
from 0 to 69,350 persons per square kilometer (Figure 3c), whereas proximity to road network ranges
from 0 to 118 km (Figure 3d).
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(a) (b) 

  
(c) (d) 

Figure 3. Irrigation suitability factors map: (a) Topography in terms of landscape slope, (b) land use,
(c) population density (PD), and (d) distance to road networks.

The Eigenvector was computed as the nth root of individual factors’ weight and then normalized
with the cumulative Eigenvector to derive the final weights of factors (Table 2). Topography was found
to be relatively the most influential factor in irrigated agriculture, which was consistent with Worqlul
et al.,’s [3] result. Proximity to road networks and land use were found to be the second and third most
influential factors in determining potentially irrigable land in the nation. The consistency ratio was
found to be trustworthy (CR = 0.03 ≤ 0.2) based on Chen et al., [54] and Koczkodaj et al., [55]. The final
weights of factors were distributed to the various suitability classes and factors were combined using
a weighted sum overlay. An 85% threshold was used to obtain potentially irrigable land (Figure 4).
About 18.7 Mha of land, 16.7% of the total landmass, was found to be potentially irrigable in the nation
without considering soil and weather. The suitability ranges in Figure 4 cover different portions of the
irrigable land: 85%–88% (76% of the irrigable land), 88%–91% (11% of the irrigable land), 91%–94% (1.5
of the irrigable land), 94%–97% (11.5% of the irrigable land), and 97%–100% (0.4% of the irrigable land).

Table 2. Pairwise matrix for calculation of the weight of factors.

Factors Slope Road Proximity Population Density Land Use Eigenvector Weight (%)

Slope 1.0 2.0 4.0 3.0 2.2 46.3
Road 1/2 1.0 3.0 2.0 1.3 27.5

Population density 1/4 1/3 1.0 1/3 0.4 8.5
Land use 1/3 1/2 3.0 1.0 0.8 17.6
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Figure 4. Potentially irrigable land (all green, weight≥ 85); S4 (currently unsuitable areas)- weight< 85%;
N1—constraint (permanently unsuitable areas); abbreviations in the map are administrative regions
(TG—Tigray, AM—Amhara, AF—Afar, BG—Benshangul Gumaz, AD—Addis Ababa, DD—Dire Dawa,
GP—Gambela Peoples, SNNP—Southern Nations, Nationalities and Peoples, and SM—Somali).

Irrigation demand of each vegetable was computed by considering the conservation agriculture
principles, drip irrigation technology, water use of different vegetables, and weather conditions.
Oromia regional state has the highest irrigable land (35.4%) when compared with other states. Figure 5
illustrates the degree of irrigation suitability (i.e., marginal, satisfactory, medium, high, and very high)
for potentially irrigable lands: 18.7 Mha, 4.5 Mha, 2.5 Mha, 2.2 Mha, and 0.082 Mha at 85%, 88%, 91%,
94%, and 97% suitability classes, respectively.
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Figure 5. Degree of irrigation suitability for the potentially irrigable land.

3.2. Potential Crop Production under Conservation Agriculture

Figure 6a shows the various soil texture classes in the nation. The mean annual rainfall was
computed spatially using inverse distance weighting interpolation from weather stations point data
(Figure 6b), and the spatial rainfall was reclassified using natural breaks into eight rainfall zones
(Figure 6c). Soil textures and rainfall zones were combined, which resulted in 39 unique regions for
further analyses of crop yields. The APEX model was developed for each of 39 unique zones, which
was defined using the soil texture classes and climate zones. Results were then aggregated as per
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administrative boundaries of Ethiopia (11 regional states) to provide input for decisionmakers in
developing policy and implementation strategies for water resource and agriculture-related projects.

  

(a) (b) 

 
(c) 

Figure 6. Soil textures (a), locations of rainfall gauging stations (b), and rainfall regions regimes (c).

Crop coefficients at the mid-stage of crop growth (Kc-mid) were obtained from Allen et al., [48] of
the Food and Agricultural Organization (FAO) for various vegetables. These data indicate that more
irrigation is needed for tomato during the mid-stage of growth followed by cabbage when compared
to garlic and onion. Moderate resolution image spectrum (MODIS) potential evapotranspiration
data (2000–2010) was used to estimate the net irrigation demand in the region during the dry season.
The growing period used for garlic, onion, and cabbage was December through February whereas
December through March was the growing season for tomato.

This study used these water use data for the various vegetables under CA and CT practices from
Assefa et al., [8] and developed a linear irrigation coefficient, Cf, for each vegetable to account for
irrigation volume reduction under CA during the calculation for the irrigation requirement. The value
of Cf obtained from CA and CT comparison was 0.58, 0.54, 0.80, and 0.81 for garlic, onion, tomato,
and cabbage, respectively. These coefficients explain the advantage of conservation practices over
conventional tillage systems for irrigation water savings mainly due to mulch cover and no-till practice
in CAPS plots minimized water loss through evaporation and runoff. Additionally, the water-saving
in garlic and onions was higher when compared with cabbage and tomato. This could be due to the
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less leaf area of garlic and onion, which made the impact of CAPS significant in reducing water loss
when compared with tomato and cabbage.

Net irrigation demand was computed for each vegetable over the irrigable land considering
drip irrigation efficiency, crop coefficient, effective rainfall during the growing period, and irrigation
coefficient. These data along with other inputs such as soils, weather data, cropping details, irrigation
application rate, and crop water demand were supplied to the calibrated APEX model to estimate crop
yield. Crop yield results were averaged for the simulation period (2000–2010) and limited to potentially
irrigable land in the nation. The average fresh vegetable yield under CAPS ranged from 1.8–2.8 t ha−1

for garlic (Figure 7a), 1.4–2.2 t ha−1 for onions (Figure 7b), 5.5–15.7 t ha−1 for tomato (Figure 7c), and
8.3–12.9 t ha−1 for cabbage (Figure 7d). Crop productivity was found to be higher in Oromia and
Amhara regions due to the combined effects of the weather and soil condition. The variation of yields
for tomato was found relatively high when compared to other vegetables, possibly due to weather
variations and the fact that tomato is more sensitive to cold weather. The maximum and minimum
allowable temperature for tomato is 27◦C and 10◦C, respectively, for optimal crop growth.

  
(a) (b) 

 
 

(c) (d) 

Figure 7. Potential crop yields over the irrigable lands (a) garlic, (b) onion, (c) tomato, and
(d) cabbage. Abbreviations in the map are administrative regions (TG—Tigray, AM—Amhara,
AF—Afar, BG—Benshangul Gumaz, AD—Addis Ababa, DD—Dire Dawa, GP—Gambela Peoples,
SNNP—Southern Nations, Nationalities and Peoples, and SM—Somali).
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3.3. Groundwater Potential for Crop Production under CAPS with Drip Irrigation

Groundwater depth of less than 30 m is considered feasible for irrigation in the nation
Gebregziabher [56]. Thus, depth to groundwater less than 30 m were considered in this study
for the estimation of groundwater potential. Worqlul et al., [3] validated the British Geological Survey
(BGS) groundwater borehole yield estimates in the central part of Ethiopia using actual groundwater
recharge data from the Agricultural Transformation Agency (ATA). The net irrigation requirements for
crops were deducted from groundwater potential to identify areas where groundwater fully supports
to produce vegetables during the dry season. Figure 8 depicts areas where groundwater potential can
support to produce garlic, onion, tomato, and cabbage, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 8. Crop yields over the irrigable lands (a) garlic, (b) onion, (c) tomato, and (d)
cabbage. Abbreviations in the map are administrative regions (TG—Tigray, AM—Amhara,
AF—Afar, BG—Benshangul Gumaz, AD—Addis Ababa, DD—Dire Dawa, GP—Gambela Peoples,
SNNP—Southern Nations, Nationalities and Peoples, and SM—Somali).

Table 3 presents the potential of groundwater for different vegetables as a percentage of
potentially irrigable land over the administrative regions. For instance, considering the Oromia
region, groundwater is enough to irrigate 0.95 Mha, 1.5 Mha, 0.6 Mha, or 0.5 Mha if planting garlic,
onion, tomato, or cabbage, respectively, from the potentially irrigable land (6.6 Mha) if planting garlic
or onion. That means, 8.9% to 14.3% of the potential land in Oromia could be irrigated depending on
the type of crop using groundwater if CAPS with drip irrigation is used. Similarly, 8.8% to 30% of the

145



Water 2019, 11, 2007

potential land in Amhara and 11.6% to 29.8% of the potential land in Southern Nations, Nationalities
and Peoples (SNNP) could be irrigated using groundwater. Oromia has the highest groundwater
potential (40.9% of total potential) followed by Amhara (20% of total potential), and SNNP (16%). At
country level (aggregated from administrative regions), groundwater potential was found to support
about 2.3 Mha (Figure 8a), 3.5 Mha (Figure 8b), 1.6 Mha (Figure 8c), and 1.4 Mha (Figure 8d) of land
to produce garlic, onion, cabbage, and tomato, respectively in the dry season. Onion has relatively
the least irrigation demand and thus has the highest production area coverage using groundwater,
followed by garlic, whereas tomato and cabbage have relatively high irrigation demands and thus less
area coverage for production using groundwater source.

Table 3. Irrigable land and potential of groundwater for various vegetables.

Administrative Region Irrigable land (1000 ha)
Groundwater Potential on the Irrigable Land (1000 ha)

Garlic Onion Tomato Cabbage

Addis Ababa 9.3 1.2 3.0 0.0 0.0
Afar 1539.0 255.5 303.6 239.8 236.0

Amhara 2628.0 459.2 787.3 291.4 230.0
Benshangul-Gumaz 327.0 9.6 20.0 5.9 2.7

Dire Dawa 16.7 1.5 1.5 1.5 1.5
Gambela Peoples 320.0 32.9 86.2 10.8 0.9

Harari People 11.4 0.0 0.0 0.0 0.0
Oromia 6621.0 946.7 1473.5 644.8 553.0
Somali 3990.0 49.0 55.2 48.2 46.8
SNNP 1910.0 369.7 570.0 254.9 222.0
Tigray 1326.0 152.0 175.3 148.0 146.5

Note: SNNP—Southern Nations, Nationalities and Peoples.

4. Conclusions

This study is the first of its kind in providing insight into the impacts of the large-scale adaptation
of CAPS with drip irrigation on groundwater potential and crop productivity for common vegetables
grown in Ethiopia. The results from the MCE technique indicated that there was substantial amount of
land for irrigation using groundwater source (~17% of the total landmass). A comparison between
suitable areas for irrigation and groundwater potential showed that a modest amount of land (up
to 19% of the irrigable land) could be irrigated under CAPS and drip irrigation. The potential of
groundwater, however, is a limiting factor to expand irrigated agriculture on suitable lands. Oromia
and Amhara regional states provided about 61% of the nation’s groundwater potential for irrigation,
hence it would be a wise choice for policymakers to consider these results in expanding irrigated
agriculture for dry season crop productions.

A comparison between groundwater potential results under CAPS with drip irrigation (1.4 to
3.5 Mha) and CTPS [3], showed that CAPS with drip irrigation significantly increased groundwater
potential for irrigation (i.e., 0.6 Mha under CTPS versus 2.2 Mha under CAPS on average). Groundwater
potential could be further improved if irrigation scheduling was incorporated with the drip application
system. Garlic and onion could be produced in relatively larger areas compared to tomatoes and
cabbages due to relatively lower irrigation demand. In addition, CAPS with drip irrigation could
significantly improve crop productivity in the nation when compared to CTPS with traditional irrigation.
Production potential under CAPS with drip irrigation for cabbage (8.3 t ha−1 to 12.9 t ha−1) was
substantially higher than CTPS, [57], which is 7.9 t ha−1 for the national average. Therefore, CAPS
with drip irrigation is a feasible strategy to improve groundwater potential and crop productivity in
the nation. Hence, policymakers should consider CAPS with drip irrigation in expanding small-scale
irrigated agriculture.
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Abstract: The frequency and severity of floods have been found to increase in recent decades,
which have adverse effects on the environment, economics, and human lives. The catastrophe of
such floods can be confronted with the advance prediction of floods and reliable analyses methods.
This study developed a combined flood modeling system for the prediction of floods, and analysis of
associated vulnerabilities on urban infrastructures. The application of the method was tested on the
Blue River urban watershed in Missouri, USA, a watershed of historical significance for flood impacts
and abundance of data availability for such analyses. The combined modeling system included two
models: hydrodynamic model HEC-RAS (Hydrologic Engineering Center—River Analysis System)
and hydrologic model SWAT (Soil and Water Assessment Tool). The SWAT model was developed for
the watershed to predict time-series hydrograph data at desired locations, followed by the setup of
HEC-RAS model for the analysis and prediction of flood extent. Both models were calibrated and
validated independently using the observed data. The well-calibrated modeling setup was used to
assess the extent of impacts of the hazard by identifying the flood risk zones and threatened critical
infrastructures in flood zones through inundation mapping. Results demonstrate the usefulness of
such combined modeling systems to predict the extent of flood inundation and thus support analyses
of management strategies to deal with the risks associated with critical infrastructures in an urban
setting. This approach will ultimately help with the integration of flood risk assessment information
in the urban planning process.

Keywords: flood analysis; hydrologic modeling; hydrodynamic modeling; SWAT; HEC-RAS; flood
zone delineation

1. Introduction

Over the years, the adverse effects of flooding have increased due to changing climate conditions
and human interventions [1]. The major factors which lead communities to increased exposure of such
flooding risks include urban expansion, changing demographic features within floodplains, changes in
flood regime, and human intervention (social and economic developments) in the ecological system [2].
The hydro-meteorological catastrophes of such floods cannot be totally avoided, but the impacts and
after-effects can be managed by developing the effective risk reduction and prevention strategies
through applications of advanced geospatial tools and decision support systems [3]. Among the most
effective ways of assessing the flood risk to people and infrastructures, one approach is the development
and application of flood models which identify areas prone to flooding events and support risk analysis
and mitigation processes [4]. Flood modeling has provided an indispensable tool to inform the
development of the robust flood risk management strategies to avoid or mitigate the adverse impacts of
floods on individuals, communities, and critical infrastructures such as transportation routes, hospitals,
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and others. A reliable flood model could alert the flood risk areas and warn the vulnerable population
to relocate before the hazards take place. This will potentially alleviate the extent of devastation due to
flooding and nullify causalities.

Flood modeling alludes to the process of transformation of rainfall into flood hydrographs
which are then hydraulically translated into the depths of water at a spatial scale throughout the
watershed [5]. Hydraulic models play an important role in determining flood inundation areas
using sets of hydrodynamic equations. One of the major input data is the information on flood
hydrographs at multiple locations as upstream and/or lateral boundary conditions. While these
data can be obtained from observation data at gaging stations, these are often very limited or not
available. Hydrologic rainfall-runoff models are thus frequently used, which when calibrated and
validated to a reasonable accuracy, provide hydrograph information at desired locations. There are
numerous studies that have independently evaluated the performance of hydrologic models [6–10]
and hydrodynamic models [11–14] for their ability to perform the tasks they are developed for.
New and improved algorithms have been continuously improving and evolving while capturing
more robust simulation approaches and improved capabilities. Over the years, research efforts have
been made to improve the numerical accuracy and computational efficiency of hydrodynamic flood
models. However, the existing models are still computationally prohibitive for large-scale applications,
especially in urban environments where high-resolution representation of complicated topographic
features is necessary [14,15]. Similarly, hydrologic models can be computationally efficient in simulating
hydrological processes but at the price of representing less detailed physical processes.

There have been several attempts combining hydrodynamic model with hydrological model which
may compliment and overcome the shortcomings of either type of modeling approach. The integration
of these models can be done various ways. External coupling uses the pre-acquired hydrographs
from hydrological models as the upstream and/or lateral boundary conditions for the hydrodynamic
models in flood routing analysis through complicated river network systems [16–18]. In the internal
coupling method, governing equations of the hydraulic models and hydrological models are solved
separately, with information at the shared boundaries updated and exchanged at each or several
computational time steps [19]. Fully coupling of these models are not very well understood due to
the complexities of reformulating and simultaneously solving governing equations in a single code
base [14]. Other approaches include a hybrid method where a 2-D hydrodynamic model is combined
with simplified unit hydrographs derived using variations of shallow-water equations [20–24] and
integrated catchment models, suitable for flash flood modeling that simulate the complete hydrology
and flow, generating runoff, leading to discharge, and then to flooding [25].

Combining hydrodynamic and hydrologic models for flood prediction and analysis is not new.
However, the continuous modeling advances and the increase in computational resources over the
years make it feasible to conduct flood simulations in high spatial resolution for flood risk assessment.
In addition, scientific literature in combining of these two modeling approaches for urban flood
simulation is limited [14], and thus underscores the need to continuously develop and apply robust
models of improved capabilities for more efficient and accurate analysis. This study demonstrates
the flood modeling and analysis method using advanced modeling tools of the present time via the
combined or external coupling of hydrodynamic and hydrologic models. The hydrologic model,
namely the Soil and Water Assessment Tool (SWAT) [26], was used to derive flow hydrographs at
designated locations, which then fed into the hydrodynamic model, namely the Hydrologic Engineering
Center’s River Analysis System (HEC-RAS) [27] for flood prediction. Both models were independently
calibrated and validated using sets of input databases, calibration techniques, observation data, and
statistical performance evaluation methods. The combined application was used for flood simulations
and the identification of the extent of inundation. The analysis provided the assessment of the impact
of flood hazards by the identification of flood risk zones and the threatened infrastructures. The
approach was applied in the Blue River Watershed in Missouri, USA, which has historic significance
with respect to frequent severe floods. The watershed provides a rich database of observation data
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developed over the years. The combined modeling system provides crucial flood risk information
necessary for the development of an accurate and reliable forecasting system for assist in evacuation,
relief operation route, cost estimation of the damaged properties, and other pertinent information.

2. Materials and Methods

The method included development of two mathematical models: SWAT and HEC-RAS.
The SWAT model was developed via Geographic Information System (ArcGIS) interface of the
model, called ArcSWAT, using a set of spatial datasets including topography data (digital elevation
model), land use data (National Land Cover Database), and soil types and soil characteristics data
(State Soil Geography Database), as well as time-series daily dataset on meteorological parameters,
including precipitation, maximum and minimum temperature, wind speed, solar radiation, and
relative humidity. The model was calibrated for the overall watershed hydrological water balance
followed by monthly streamflow at a gaging location at the watershed outlet by comparing model
simulated values with the observation data collected at the gaging site. Once the model is calibrated
and validated with satisfactory statistical performance measures, it was then used to develop a series
of simulated streamflow hydrographs to be used as an input to the HEC-RAS model.

The HEC-RAS model was developed for river segments within the watershed. The geometric
data and the Manning’s roughness coefficient values (n) were established for the modeling setup using
ArcGIS interface of the model, called HEC_geoRAS. It was then calibrated and validated using the
past flood data collected from the USGS gaging stations within the study area.

The flow chart in the Figure 1 portrays different step of the processes performed in this study.
Based on the streamflow input from calibrated SWAT model, the calibrated HEC-RAS model predicts
flood levels and the extent of the flood in the surrounding landscapes. Further analysis was conducted
to identify vulnerabilities of critical infrastructures including hospitals, railroads, airports, and
transportation routes by examining the proximities of these infrastructures from the flood zones.

Figure 1. Schematic of data and models for flood prediction and analysis.

2.1. Study Area

The Blue River also known as Big Blue River is a part of tributaries of Missouri River located in
Kansas City, Missouri (Figure 2). The Blue River watershed extends from the south of Johnson County
in Kansas State into the State of Missouri and drains an area of 658.9 km2 into the Missouri River in
Kansas City, Jackson County, Missouri. The Blue River Watershed spreads over roughly one-half of
the Kansas City metropolitan area south of the Missouri River. The watershed course through two
states (Missouri and Kansas), four counties (Johnson and Wyandotte in Kansas; Jackson and Cass
in Missouri), and 11 municipalities [28]. The Blue River is 39.8 mile (64.1 km) long stream, and the
mouth of the river is at 221 feet elevation in the east of Johnson County near the borders of the states of
Kansas and Missouri. The percentage of Blue river watershed within the state of Missouri is about
46%, which is within the Kansas City metropolitan area. The area is moderately to highly developed
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and contain a mix of residential and commercial structures and is subjected to flooding every year
due to urban development, dense soils, and the configuration of the Blue River basin [29]. The lower
part of the watershed is primarily industrial, whereas the middle and upper part are rapidly being
converted to residential areas [30]. Due to the flood sensitive nature of this river zone, U.S. Geological
Survey (USGS) has been studying this area closely and acquired an extensive dataset over the time.
The abundance of data in this location was very helpful in accurately calibrating the mathematical
models for flood prediction and the analysis objective of this study.

 
Figure 2. Blue River Watershed in Kansas City, Missouri, USA.

2.2. Data Collection

The development of the combined modeling system required extensive data collection from
various sources. Table 1 lists some of the major data types and their sources. Subsections below
provided more specific information on data collection efforts.

Table 1. Datasets and their sources used for creating the combined modeling system.

Dataset Source

Digital Elevation Model (DEM) United States Geological Survey (USGS)–The National Map
Streamflow United States Geological Survey (USGS)

Gage Height United States Geological Survey (USGS)
Land Use National Land Cover Database (NLCD)

Climate Data National Oceanic & Atmospheric Administration (NOAA)
Soil Classification State Soil Geography Database (STATGO)

2.3. Hydrologic Model Overview–SWAT

SWAT is a river basin scale model developed to predict the impact of land management practices
on water, sediment and agricultural chemical yields in large complex watershed with varying soils,
land use and management conditions over extended periods of time [6,20]. SWAT is a long-term
yield model extensively used to simulate watersheds on multiple spatial–temporal scales including
hydrological processes [7,9,31,32], fate and transport of sediment and nutrients [33–35], land use
change [36], climate change [37–43], and others.

The major inputs required to develop a SWAT model are topographical data which are used
to define stream network and delineate a number of subwatersheds; land use data, soil data, and
slope information to delineate each subwatershed into hydrologic response units (HRUs) which
represents unique combination of land use, soil types, and slope; (3) the daily time-series information
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on meteorological parameters, and (4) the model’s inbuilt databases and initialization assumptions.
The outputs include spatiotemporal time-series data on water balance components, streamflow,
sediment and nutrient loadings, and others.

2.3.1. Modeling Setup and Watershed Delineation

The Blue River Watershed was delineated using stream generation functionality in ArcGIS based
on the supplied 10 m resolution DEM projected in Northern America Datum NAD_1983 UTM zone 15N.
The delineated subwatersheds (Figure 3) were further subdivided into multiple lumped units within
each subwatershed. These lumped units are called HRUs, a unique combination of land use, slope,
and soil types. An HRU represents a percentage of a sub-watershed area and not spatially identified
within a subwatershed. All water balance calculations and modeling simulations are conducted at
the HRU level. Outputs from each HRU within a subwatershed are aggregated at the subwatershed
level which are then routed through the streams leading to the next downstream subwatershed.
Outputs from each subwatershed are subsequently routed all the way to the watershed outlet on
a daily basis. Muskinghum method was used in the hydrologic routing process. Other methods
include Curve-Number approach for flow generation, and Penman-Moneith method for the estimation
of evapotranpiration.

 
Figure 3. Delineation of Blue River Watershed and location of NOAA weather stations.

The land use data was obtained from National Land Cover Dataset (NLCD) from 2011 (https:
//www.mrlc.gov/nlcd11_data.php). Classification of the land use data was found to cover dense
urban areas (48%), developed open area (20%), pasture/hay (13.5%), forest (9%), cultivated crops (7%),
grassland (1%), open water (0.6%), wetland (0.5%), shrub (0.2%), and barren land (0.2%). The soil data
source was State Soil Geographic (STATSGO) database (https://catalog.data.gov/dataset/statsgo) which
was already included in the ArcSWAT inbuilt datasets. Figure 4 presents reclassified land use, soil
types and slope categories used in HRU delineation. The time-series meteorological information was
obtained for 9 weather stations located in and around the watershed (Figure 3) using data download
function at the NOAA-NCDC website (https://www.ncdc.noaa.gov/cdo-web/datatools/findstation).
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Figure 4. Reclassified land use, soil and slop data used in the HRU delineation.

2.3.2. SWAT Simulation and Calibration/Validation Approach

The SWAT modeling setup was executed on a daily time step for 8 years of simulation from
2010–2017 (2-year warm-up, 4-year calibration, and 2-year validation period). Calibration and
validation of the SWAT model was performed using SWAT’s Calibration and Uncertainty Program,
SWAT-CUP [44]. This autocalibration tool can perform sensitivity analysis, calibration, validation,
and uncertainty analysis. Sensitivity analysis of the model’s hydrologic parameters were conducted
and ten parameters were identified as the most sensitive. There are runoff curve number (CN2), soil
evaporation compensation factor (ESCO), water holding capacity of the soil (SOL_AWC), plant uptake
compensation factor (EPCO), groundwater revap coefficient (GW_REVAP), base flow alpha factor
(ALPHA_BF), threshold depth of water in the shallow aquifer required for return flow (REVAPMN),
groundwater delay (GW_DELAY), surface runoff lag coefficient (SURLAG), and threshold depth
of water in the shallow aquifer required for return flow to occur (GWQMN). The details of these
model parameters can be found in the User’s Manual. In the calibration process, defaulted values
of these parameters were adjusted within their permissible ranges to a final calibrated value after
comparing simulated results with the observations with acceptable performance measures tested
through statistical procedures [39]. The autocalibration tool identified the best fitted values of all ten
parameters while fitting the monthly comparison of simulated flow values with the observations from
gaging stations at the watershed outlet. Statistical evaluation was conducted using four indicators:
coefficient of determination (R2), Nash–Sutcliff’s efficiency (NSE), percentage bias (PBIAS), and RMSE
standard deviation ratio (RSR). Calibration process concluded with satisfactory performance in visual
comparison and acceptable statistical comparisons. During the validation process, the model was
executed with already defined value of calibration parameters (no further), followed by the same
statistical evaluation as that of the calibration duration.

2.4. Hydrodynamic Model Overview–HEC-RAS

HEC-RAS [21] can perform one and two-dimensional hydrodynamic calculations for a full network
of natural and constructed channels. The major capabilities of HEC-RAS are user interface, hydraulic
analysis components, data storage and management, graphics and reporting, and RAS Mapper. The
HEC-RAS system accommodates several river analysis components for steady and unsteady flow water
surface profile computations, movable boundary sediment transport computations and water quality
analysis. Hydrodynamic equations calculate water surface elevations at all locations of interest for a
given peak flood. The major data inputs are river geometric cross-section data, river floodplain data
(length, elevation), the distance between successive river cross-sections, manning roughness coefficient
values (n) for the land use type covering the river and the floodplain area, and boundary conditions
(flow hydrograph and normal depth). Under steady flow, the boundary conditions are a discharge
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upstream and a stage downstream. The model proceeds to calculate stages throughout the interior
points, keeping the discharge constant in space. Under unsteady flow, a discharge hydrograph is the
upstream boundary and a discharge-stage rating at the downstream boundary. The model calculates
discharges and stages throughout the interior points. Unsteady flow simulation uses the Saint-Venant
equations or the diffusion wave equations using an implicit finite volume algorithm. The outputs from
the HEC-RAS model include water surface elevations, rating curves, hydraulic properties (energy
grade line slope, elevation, flow area, velocity), and visualization of the extent of flooding.

The steady flow simulation based on a peak flow discharge throughout the river line represents
the water flow without any change over time. It consists of flow regime, discharge information and
boundary condition. Multiple profiles can be created with different discharge values. The unsteady
flow simulation is developed with a series of discharge data with respect to the time of occurrence.
The data required for the unsteady flow simulations include boundary conditions (external and
internal) and initial conditions.

The calibration of the model was initiated by calibrating for the steady flow simulation followed
by the calibration of the unsteady flow simulations. The model was calibrated for a peak flow event at
five USGS gaging stations (Figure 5) with adjustments in the parameters such as Manning’s n value
and required boundary conditions [21]. The upstream boundary condition was a flow hydrograph and
the downstream boundary condition was normal depth for steady state simulation. The HEC-RAS
was executed to develop water level data which were compared with observed water elevations.
After the calibration, the model was validated for two other flood events at all five stations based on
the calibrated parameters.

 
Figure 5. Location of USGS Gaging Stations used in the calibration.

3. Results and Discussion

3.1. Clibration and Validation of the Hydrolgic Model

The SWAT model developed for the Blue River Watershed was calibrated using the automated
calibration technique (SUFI-2) for flow by comparing simulated values with the observations at the
watershed outlet (USGS 06893500, Blue river at Kansas City, MO, USA). Table 2 lists all parameters used
in the calibration process with their permissible ranges and the final fitted values after the calibration.
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Table 2. List of parameters used for calibration with their ranges and the fitted value.

Parameter Description Range Fitted Value

CN2 Curve Number −15%–15% −5.34%
EPCO Plant Uptake Compensation Factor 0.01–1 0.73

SOL_AWC Water Holding Capacity of Soil −0.04–0.04 −0.025
GW_REVAP Groundwater Revap Coefficient 0.02–0.2 0.05
ALPHA_BF Base Flow Alpha Factor 0.05–0.8 0.1
REVAPMN Threshold Depth, Percolation to deep aq. 0–500 455

ESCO Soil Evaporation Compensation Factor 0.75–0.95 0.81
GW_DELAY Groundwater Delay 0–500 476

GWQMN Threshold Depth, Return flow to occur 0–1000 868
SURLAG Surface Runoff Lag Coefficient 1–8 6.7

Figure 6 shows the comparison of simulated versus observed streamflow at the watershed outlet
using monthly data. The comparison seems to match well except for slight underprediction of peaks.
The hydrograph seems to follow very close for its recession, baseflow and other patterns. Table 3
provides values of statistical measures for both calibration and validation periods. Overall, these values
show a strong correlation of the simulated streamflow with the observation. Thus, it can be concluded
that the SWAT model was well-calibrated to simulate streamflow with reliable performance in the Blue
River Watershed. The calibrated model output was used to generate discharge (streamflow) data at
several locations within the watershed to be used as input for the HEC-RAS model.

Figure 6. Monthly comparison of simulated and observed streamflow data for the calibration (2012–2015)
and validation (2016–2017) periods along with precipitation data for the entire range (cms: m3/s).

Table 3. Statistical Evaluation of the calibration & validation of the Blue River Watershed.

Statistical Test
Calibration Period

2012–2015
Validation Period

2016–2017
Acceptable Range

[45]

NSE 0.83 0.92 NSE > 0.50
PBIAS (%) 9.40 3.00 PBIAS < ±25%

RSR 0.41 0.28 RSR < 0.70
R2 0.84 0.93 R2 > 0.5

3.2. Clibration and Validation of the Hydrodynamic Model

The hydrodynamic model developed for the Blue River by HEC-RAS was calibrated and validated
at the five USGS gaging stations located on the River (Figure 5). Model simulated water surface
elevations were compared with the observed water surface elevations at the USGS gages. The Manning’s
roughness coefficient (n) values were adjusted until the simulated values match closely with the values
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at USGS gages. The calibration was performed for the flood event of 17 May 2015 and the results are
presented in Table 4. The results show that the difference between the observed and simulated values
were very minimal and thus justify the model’s ability to simulate water surface levels. The statistical
evaluation using two performance measures NSE and R2 yielded a strong correlation with value of
0.989 and 0.98 respectively. The validation process was conducted for two peak events: the floods on 27
April 2016 and 22 September 2017. The difference in observed and simulated water surface elevations
were small and therefore the results are considered satisfactory which is portrayed in Table 5. It can be
concluded that the HEC-RAS model developed for the Blue River performed very well to simulate
water surface elevations.

Table 4. HEC-RAS Model Calibration for the flood event of 17 May 2015.

USGS Station
Flow

(m3/s)
Simulated Stage

(m)
Observed Stage

(m)
Difference

(m)

06893500 298 7.8 7.7 −0.06
06893530 268 7.0 7.0 0.05
06893553 251 6.2 6.2 −0.01
06893578 229 6.0 6.0 −0.14
06893590 178 5.8 5.8 0.03

Table 5. HEC-RAS Model Validation for flood events of 27 April 2016 and 22 September 2017.

USGS Station
Event 4/27/2016 Event 9/22/2017

Flow
(m3/s)

Simulated
Stage
(m)

Observed
Stage
(m)

Difference
(m)

Flow
(m3/s)

Simulated
Stage
(m)

Observed
Stage
(m)

Difference
(m)

06893500 239 7.3 7.0 −0.34 1203 15.4 14.1 −1.31
06893530 1171 16.1 14.9 −1.19 237 6.6 7.2 0.59
06893553 1162 13.8 14.4 0.63 236 6.5 7.1 0.61
06893578 1154 12.6 10.7 −1.88 235 6.5 6.3 −0.23
06893590 1138 11.2 9.5 −1.63 233 6.3 5.5 −0.82

3.3. Flood Inundation Mapping

Accurate prediction of the flood inundation area for a given flood event is necessary for risk
mitigation strategies. Over the last few decades, there have been vast improvements in flood inundation
modeling [46]. While empirical methods are considered adequate for flood monitoring and post-disaster
assessment, hydrodynamic models are critical to represent detailed flow dynamics to investigate
impacts of management strategies such as dam break, flash floods, etc. Simplified conceptual models
are usually adopted for probabilistic flood risk assessment on a large floodplain with well-defined
channels. Different modeling approaches produce different predictions highlighting the uncertainty
associated with the modeling practices, which is mainly generated by uncertainty in the design flow,
terrain elevations, water surface elevations, and accuracy of the techniques used for mapping the
inundation area [47].

In this study, the flood inundation area was developed using ArcGIS based on the HEC-RAS
simulation of desired flood event. The pseudo-validation of the developed inundation map was
conducted by comparing it with inundation maps already developed by the USGS which was available
to view/download from the USGS Flood Inundation Mapper (https://wimcloud.usgs.gov/apps/FIM/
FloodInundationMapper.html). Figures 7 and 8 show the comparison between inundation maps
created by HEC-RAS simulation (right figures) with the USGS inundation maps (left figures) at two
separate locations. The comparison was done visually by comparing important features along the
Blue River. The maps fairly show comparable zones of inundated area in both cases. It is important to
note that the discharge data used by HEC-RAS in developing the inundation extent was based on the
“simulated” discharge data from the hydrologic model, which may have contributed greatly to the
disagreements between the two maps. Moreover, the comparison was against the another simulated
map as explained in the disclaimer by the USGS (https://fim.wim.usgs.gov/fim/) which states that
“the flood boundaries shown were estimated based on water stages (water-surface elevations) and
streamflows at selected USGS streamgages. Water-surface elevations along the stream reaches were
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estimated by steady-state hydraulic modeling, assuming unobstructed flow, and using streamflows
and hydrologic conditions anticipated at the USGS streamgage(s)”.

 

Figure 7. Comparison of the Inundation Map created by the HEC-RAS simulation (right-side) with the
USGS (left-side) generated Inundation Map beside the Winner Park in Kansas City, MO.

 
Figure 8. Comparison of the Inundation Map created by the HEC-RAS simulation (right-side) with the
USGS (left-side) generated Inundation Map beside the Truman Sports Complex in Kansas City, MO.

3.4. Vulnerability Assessment on Infrastructures

Vulnerability assessment is an essential part of the flood management and preparedness process
to reduce the impact. It requires an in-depth analysis of many factors including location of critical
infrastructures such as hospitals, transportation routes and density of the population in order to
increase the effectiveness of emergency plans. Indicators of flood hazard generally include the flood
extent, water depth, flow velocity, duration, propagation of waterfront, and the rate at which the
water rises [48]. These parameters are then linked with the economic damages and other vulnerability
assessment. There are many studies linking inundation extent to determine economic losses or risks for
planning purposes such as insurance, etc. [49]. The vulnerability criterion focused on human stability
(not economic values) has also been analyzed using slipping, toppling, and drowning as indicators of
human stability [50]. A flood modeling simulation in an urban area used inundation maps to analyze
transport accessibility and human safety on pedestrians and drivers for its implications on emergency
routes and service areas [51,52]. A comparative study of hydraulic models evaluated their capabilities
for estimations of the vulnerability assessment to capture the uncertainties in the prediction [53].
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In this study, we present the vulnerability assessment in terms of critical infrastructures being
exposed to floodwaters by proximity to flood inundation extent over the study area. The analysis
was based on flood event of May 2015. The infrastructures selected for vulnerability assessment
purposes were local hospitals, transportation routes, airport facilities, and railroad networks.
These infrastructures are very crucial for emergency responses such as for mitigation, preparedness,
recovery, and response. For example, emergency response teams could use the inundation maps to
optimize their routes to the flood affected locations, avoiding the inundated transportation routes.
The inundation maps could also assist in the allocation of recovery resources from the high-risk zones
following a flood event. Inundation maps could be created assuming a future storm event causing a
flood, and therefore highly threatened flood zones could be alarmed ahead of time, thereby saving
lives and resources.

3.4.1. Impact of Inundation on Local Hospitals

Hospitals are one of the major locations highly prioritized in the disaster mitigation process.
Figure 9 depicts four hospitals that could be threatened due to similar flood situation like as May 2015.
One of the four risked hospitals was identified to be almost under inundation and the rest could
be impacted with an increase of a few units of water level caused by a more hazardous flood.
The surrounding hospitals could be indirectly affected due to the closure of the nearby transportation
routes. This vulnerability identification could help the management authorities warn the hospitals
listed under the adverse impact, ahead of any upcoming hazards. The vulnerable hospitals showed in
Figure 9 are listed in Table 6 with their distance from the inundation area. To understand the different
levels of flood vulnerability, a ranking is given to the hospitals with respect to the distance of the
hospitals from the flood extent at their respective locations.

Figure 9. Location of hospitals in and around the inundated area due to Flood of May 2015.
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Table 6. List of hospitals vulnerable to the flood of May 2017 in Kansas City, Missouri.

Hospital Location (Figure 10) and Names Distance from Inundation Area (km) Vulnerability Rank

1H. Seton Center Safety Net Clinics 3.3 7
2H. Samuel U. Rodgers South Therapeutic

Intervention Center-Substance Abuse 2.9 5

3H. Samuel U. Rodgers McCoy Elementary School
Dental Clinic 0.8 3

4H. Kansas City Free Health Clinic-Eastside 1.0 4
5H. Veterans Affairs Medical Center 0.7 2
6H. Swope Health Services-Central 0.1 1
7H. Two Rivers Psychiatric Hospital 3.0 6

 

Figure 10. Location of major transportation routes under inundation due to the flood of May 2015.

3.4.2. Impact of Inundation on Transportation Routes

Intense precipitation is the foremost cause of weather-related disruption to the transportation
sector [39]. It can cause severe damage to an area by obstructing the movement of people and goods,
hampering social and economic functionality. The flooding on major transportation routes, like
interstates and state highways, cut off the flooded zone’s communication with the surrounding area
which also delays the emergency management processes. Figure 10 shows the transportation routes
that are directly affected due to the flooding scenario modeled for May 2015 flood. Parts of the interstate
I70, Blue Parkway, Highway I435, Highway US 40, and Independence Avenue are found to be under
the impact of inundation caused by the flood of May 2015 as simulated by HEC-RAS.

3.4.3. Impact of Inundation on Airport

Figure 11 shows the threatened location of Airports due to flood of May 2015. One of the airport
facilities will be directly affected by the flood and the other one is very close by the inundated regions.
A ranking is given to airports for flood vulnerability with respect to the distance of the facility from the
inundation map at their respective locations (Table 7).
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Figure 11. Location of airport under inundation due to the Flood of May 2015.

Table 7. List of airports vulnerable to the flood of May 2017 in Kansas City, Missouri.

Airport Location (Figure 12) and Names Distance from Inundation Map (m) Vulnerability Rank

1. VA Medical Center Heliport 670 2
2. Police Department Helipad Main Facility 126 1

3. Independence RGNL Health Center Heliport 3041 3
4. Truman Medical Center West Heliport 5316 4

5. Children’s Mercy Hospital Heliport 5465 6
6. Bert Walter Berkowitz Heliport 5341 5

 
Figure 12. Location of railroad routes under inundation due to the Flood of May 2015.

3.4.4. Impact of Inundation on Railroad Facilities

The railroad is one of the most used routes in big cities and metropolitan areas. Inundated railroads
could cause fatal accidents that would affect huge numbers of people travelling in the trains. Figure 12
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shows the location of railroad routes under inundation due to the flood of May 2015 as simulated by
HEC-RAS. Railroads that are subjected to inundation will result in obstruction of the whole rail route
within and surrounding the city. Table 8 provides the coverage of railroads under the flood.

Table 8. List of railroads vulnerable to the flood of May 2017 in Kansas City, Missouri.

Name of Railroad Length Under Inundation (m)

BNSF RR 3014
KCS RR 3844
KCT RR 2390

Missouri Central RR 362
Private RR 333

UP RR 5750

4. Discussion and Conclusion

This study presents a systematic approach of combining hydrodynamic model HEC-RAS
with hydrologic model SWAT in delineating flood inundation zones and subsequently assessing
the vulnerability of critical infrastructures in the Blue River Watershed in Kansas City, Missouri.
Both models were independently calibrated and validated using various datasets and proven strategies.
The HEC-RAS flood simulation model was found to be suitable in simulating flood events and spatially
depicting the vulnerability of the region towards a hazard event in terms of inundation extent, whereas
SWAT was proven to be a powerful tool in generating simulated flood hydrographs at desired locations.
The models developed can be said to have generated reliable quantified output based on the statistical
evaluation results. This study approach provides quantified information on the hydrologic modeling,
hydrodynamic modeling, and flood prediction and analysis for flood management strategies.

The catastrophic possessions of flood disaster could be mitigated by integrating scientifically
reliable information with the flood inundation map developed using this study approach.
Vulnerability assessment approach used in this study for identifying and providing a vulnerability
rank based on proximity to flood area is a simple yet powerful approach. It not only identified most to
least vulnerable critical infrastructures, but also provided enough information for flood preparedness
processes that could significantly reduce the impact. The approach could easily be extended for the
vulnerability evaluation of other infrastructures in order to estimate economic losses, navigation route
of people including high density area, and other region-specific important factors. Moreover, futuristic
higher magnitude flood events can be simulated to assess magnified vulnerability and associated
risks. Land use planning decisions could be made based on the flood inundation map which indicates
the floodplains. Following such approaches will help save lives and resources at the same time, and
provide a proven and more accurate way to contest the uncertainties of the natural events causing flood.

The flood modeling system presented in this study is an integrated system to stakeholders to
investigate potential mitigation options and strategies in response to expected flooding scenarios.
The use of hydrologic model in flood modeling proves very useful in studying alternative “what
if” scenarios such as impacts of projected land use changes, climate variabilities, urban planning
strategies and others. For all plausible scenarios, a well-calibrated hydrologic model of the region can
easily simulate new conditions and yield changes in flow hydrographs at desired locations, which
can then be translated into flood depths over the region using hydrodynamic models. A previous
flood modeling attempt in Kansas River basin, close to the study watershed, used hydrologic model
HEC-HMS (Hydrologic Modeling System) to generate estimates of peak flows for design storm for
different land use scenarios [4]. The output was then used to execute the HEC-RAS model for estimates
of water elevations and flood inundation extents for those design storms and land use scenarios.
The results provided useful information, however the study was designed at a macro scale of change
which does not necessarily reflect the flooding impacts at smaller scale.
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Added benefits of this combined modeling presented in this study system also includes the
flexibility of hydrodynamic modeling for testing flood reduction or mitigation strategies through channel
modifications and other best management practices within the floodplains areas. Such a modeling
system also enables the assessment and determination of vulnerable areas that will not be able to receive
effective adaptation solutions, which then calls for drastic measures to mitigate flood-prone impacts.

Such modeling application also comes with several limitations, including the availability, resolution,
and accuracy of the data for the development, calibration, and validation of the models, the integration
methods such as external coupling approach used in this study, flexibility provided by the statistical
performance measures for the approval of a robust model, and ability to replicate/simulate best
management practices with a degree of accuracy to support flood mitigation and adaptation options.
As such, in the application presented in this study, major limitations in using hydrologic model may
include (a) limited accuracy in model calibration and validation: resolution of the input data and
limited set of observation data, e.g., calibrating only for the monthly flow and only at the watershed
outlet, and (b) simulated data to be exported as input to another model: calibrated models produced
simulated hydrographs to be used as input boundary conditions in hydrodynamic modeling. Similarly,
sources of uncertainties in using hydrodynamic modeling may include input data quality of topography
and surface roughness characterization as it affect both flow area and velocity [54,55]. The role of
topography on flood studies has been discussed in many past studies [56], but the role of surface
roughness has received less attention. A recent study exhibits the sensitiveness of surface roughness
and highlights the source of uncertainties in flood modeling studies [57]. Reducing the uncertainty
in surface roughness will greatly enhance the calculation of flood extent on landscapes. It is also
noteworthy to mention that, while surface roughness plays an important role in simulating accurate
flow hydrodynamics in both the channel and floodplain, Manning’s n is not viewed as important
(less-sensitive parameter) in simplified hydrological modeling.

Moreover, the errors in the simulation results from the combined modeling system of flood
analysis arise from various sources of uncertainties, as discussed above, which probably propagates in
an unknown and non-linear fashion. The next level of analysis should shed light on the assessment
and quantification of these errors and how these propagate through the modeling system.
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