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Foreword

By Ron Minnich
Creator of LinuxBIOS (later renamed coreboot)
Software Engineer at Google, Inc.

I started the coreboot project at Los Alamos National Lab in 1999. At the time, it was
seen by hardware vendors as an impractical idea that would soon vanish. Now, 15 years
later, it is mainstream: millions of x86- and ARM-based Chromebooks and Chromeboxes
run coreboot, as its speed and reliability are an essential part of the Chrome OS user
experience. coreboot is now a key component of the fastest-growing consumer laptop
segment.

It might come as a surprise to embedded programmers that the initial goal of
coreboot was to make very large supercomputing clusters manageable. We had a 128-
node VA Linux cluster at Los Alamos in 1999 that had no keyboards or displays. BIOS
upgrades required that we wheel around a “crash cart” with a keyboard and monitor;
boot DOS on a floppy, which in turn started an autoexec.bat script; and wait 5 to 10
minutes for the process to complete for each node. If anything went wrong, it got more
fun: we had to crack open the case, move a jumper, and do the recovery with no working
graphics. As if this were not bad enough, the vendor BIOS had a habit of coming up
displaying “No keyboard present—hit F1 to continue” on a nonexistent monitor, asking us
to hit F1 on a keyboard that it had already discovered was not there!

Could this possibly get any worse? It could, and did, on the Thunderbird cluster at
Sandia National Labs: 4400 nodes, none having a keyboard or a monitor, came up one
day with that same vendor BIOS message. The fix? Dispatch 20 people with 20 keyboards
to 220 machines each; they had to plug in the keyboard, hit F1, and hope it all went well.

By 2002, we had a 1024-node Linux cluster using coreboot. The reflash process for
all 1024 nodes took 30 seconds total, not five days. If something went wrong, coreboot
would figure it out on the next boot, switch to a backup BIOS image, and boot up: the
nodes could not be put into an unrecoverable state. There was no longer a need to open
the nodes and move a jumper. coreboot represented a huge jump in the manageability of
cluster nodes.
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coreboot has had many uses since its inception: everything from the smallest
systems (Apache Military Modem II) to some of the largest supercomputers. While there
is wide adoption in Chrome OS systems, coreboot’s earliest and continuing use is in
embedded systems such as televisions, network switches, and robotic systems. In fact,
about the same time we deployed a supercomputer using coreboot, iRobot had ported
coreboot to its Packbot robot.

Embedded systems used to be very simple: a low-power CPU connected to low-
performance memory and peripherals, used in low-performance and limited applications
such as digital clocks and automobile computers. But in the last ten years, we can see
low-power embedded CPUs used in unexpected places. The highest-end systems—such
as IBM Blue Gene supercomputers, which were the fastest in the world for many years—
used 65,536 embedded PowerPC CPUs with 18 cores each. We now see higher-power
CPUs used in small embedded systems such as Chromebox videoconferencing systems—
an inexpensive system with a very powerful Intel CPU.

These embedded Intel CPUs have memory bandwidth much higher than classic Cray
vector supercomputers and hence are fiendishly complex to design. Once designed, this
high-performance hardware is quite difficult to initialize, and even should we wish to
write the code to manage the initialization, the programming information is not public.

This has led to a dilemma: How can we enable coreboot on complex systems that are
not fully open?

This book shows one path. Intel has released in binary form a basic set of functions
to initialize the messiest—and hardest to program—bits of the Intel chipset. The calling
conventions and behavior of the binary are completely and clearly documented. The
developer is freed from having to deal with very difficult chipset setup. Upgrades of this
software are simple: just replace the old binary with a new one. This code is called the
Firmware Support Package, a.k.a. FSP.

The result is that high-performance Intel chipsets can be used with coreboot in all
kinds of systems, including embedded ones, with a binary supplied by Intel that removes
much of the porting difficulty.

Wearable embedded systems are a growing area right now, and many use the CPU
described in this book. This book is an ideal companion for those wishing to be current
with current and future embedded technology.

coreboot has succeeded because of the efforts of the many talented people involved
in the project for the last 15 years. The reader is fortunate that this book is written by four
of the best minds in the business. There is a lot to learn here and it will stand you in good
stead if you continue to work in embedded systems.

I'd like to thank Jiming Sun and the team for conceiving FSP and bringing it to
fruition. Without their tireless efforts and diplomacy, we would not have FSP or this book.
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Introduction

We consider ourselves lucky enough to live in an era when new things and new ideas
seem to come out every few years, if not every few days. We are not only experiencing an
explosion of new ideas, but also witnessing some existing technologies being completely
maxed out in our lifetime, including the semiconductor technology. Since Brattain and
H. R. Moore made a demonstration of the first transistor at Bell Labs on December 23, 1947,
the semiconductor, as we know it today, is reaching its physical limit, even though we are
still trying very hard to shrink it below 10 nanometers. For the sake of argument, even if we
can still shrink a couple of nanometers below 10 nanometers, how much further can we
really go without changing the fundamental theory the technology is based on?

In the meantime, there are many other technologies that are approaching the limits
of our sense and sensibility. Do we need more than 12 bits of color depth that shows more
than billions of colors? Do we need a frame rate that is beyond what our eyes and brain
can process? Do we need cars that go faster than our own response time? We now have
display devices, media playback technologies, and transportation vehicles that achieve
the best that they need to be.

Even though that is the case, there are still unlimited opportunities to make devices
smarter and more connected to make our lives easier and safer. People are calling these
devices the Internet of Things, or IoT for short. The explosive cycle of the IoT has just
begun: cars will be talking to cars in the near future, thermostats and sprinkler systems
can adjust themselves based on current weather forecast, buildings can manage lighting
and air circulation based on where people are, and the list goes on and on.

Yes, this book is related to the explosion of the Internet of Things. We are addressing
atechnical area that is rarely talked about—the firmware inside of the Internet of Things.
Firmware is the first piece of software that runs after silicon, coming out from the power-
on reset state. Sometimes it is mysterious to people why building a firmware stack is
hard and why firmware can be problematic. Considering the fact that the time it takes to
run a piece of firmware is only between subseconds to a few minutes at most, why are
we writing a book about it? After all, there are already books that talk about BIOS, UEFI
(beyond BIOS), and techniques to optimize the firmware to boot faster. Why do we need
yet another book to talk about firmware for the Internet of Things and the embedded
system in general? There is one important reason: the firmware for IoT is different from
the firmware running on a PC (BIOS or UEFI-based firmware), and there are many
unique requirements for IoT firmware, and we will talk about them in the second chapter
of this book.

This is what this book is about. We are going to examine the uniqueness of firmware
requirements in embedded systems and IoT devices, and then we are going to introduce
the technique Intel introduced to help IoT system firmware developers overcome the
steep learning curve in developing a firmware stack for their versatile IoT products.
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In this book, we are going to use two open source firmware stacks—coreboot and
UEFI—to demonstrate the concept and show the steps to develop a workable firmware
stack using widely available platforms from Intel. We are also going to show how the
firmware works in a Chromebook, and what it does in a Chromebook, and we will also
discuss the firmware for Intel® Quark family.

The targeted audience for this book are firmware engineers, hardware engineers,
software engineers, and other professionals curious about IoT firmware. This is a good
book for students who are learning about firmware, because we are going to give step-
by-step instructions about how to build a workable firmware stack using commercially
available platforms. For developers who have been involved in PC firmware, this can
be a good reference book to understand the differences between PC and IoT, and
the alternative solutions available. For people who have been struggling with Intel®
Architecture (IA) and its firmware stack due to a lack of technical information from
Intel in the past, this book reveals an opportunity for you to quickly get over the silicon
initialization hump, and you will be able to quickly develop an effective firmware stack
using the techniques learned from this book.

This book uses a lot of pages to describe the Intel® Firmware Support Package
(Intel FSP) because it is a way to encapsulate the complexity of silicon initialization
to make firmware development work easier. Since its launch in October, 2012, many
developers and designers of alternative architectures have benefited from this product.

Why Should You Read this Book?

There are not many books out there talking about firmware because it is not a standard
discipline that can be talked about generically. Every subject in the realm of firmware
can be a book of its own, and there have been books about UEFI, BIOS, Fast Boot,

RTOS, assembly languages, and so forth. There are also many system requirements and
constraints that can dictate how a firmware is chosen and written; therefore, it is a topic
that cannot be easily addressed holistically without an objective. Our objective is to show
you how you can take advantage of Intel Architecture, and how to prepare a firmware
stack for Intel microprocessors regardless of the firmware stack that you choose. There
will be areas that are not covered in this book, such as power management and secure
boot features, but readers can certainly find in-depth discussion of those topics in other
technical books in the market. This book is written to help you build a workable firmware
stack for Intel Architecture.

What Chapters Should You Read?

Since there are many interesting but distinctly different topics surrounding IoT device
firmware, busy readers can pick and choose the chapters to read and skip if needed.

If you are just curious about what firmware options you may have for IoT devices,
you may read Chapters 1 and 2 before diving too deeply into actual implementations.

If you are interested in developing a coreboot-based firmware solution for Intel
Architecture, you can get a complete picture of the process by reading Chapters 1, 3, and 4.
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If you are more interested in developing an EDK II-based firmware solution for Intel
Architecture, you can get a complete picture of the process by reading Chapters 1, 3, and 6.

If you are more curious about what Chromebook is about and how the firmware for
Chromebook works, you can read Chapters 1, 3, 4, and 5.

If you have heard about Quark and you are interested in building firmware for
Quark, you can read Chapters 1, 2, 3, 4, 6, and 7. Why do you need to read more chapters
for Quark? It is not because it is complicated, it is because it can be used in many
varieties of applications using different firmware stacks. If you want a complete picture
about firmware solutions for embedded applications and IoT devices, you should take
your time and read all of the chapters in this book. After all, this is the purpose of the
book: to give you a complete picture of the firmware solutions for IoT devices.

Hobbyists should be able to obtain a platform mentioned in the chapters, follow the
instructions to download the source trees and tools, build a firmware image to try on a
real platform, and enjoy the accomplishments.

Every firmware stack has its advantages and disadvantages; there will be situations
when a developer needs to pick a different and unfamiliar firmware stack for the
applications at hand. From time to time throughout the book, you might find some
unfamiliar terminologies. We will list them here for reference. If you are still puzzled by
a specific terminology, Wikipedia is probably the best resource to check. Internet search
engines may be the second best source, but careful filtering of information is needed.

e  Bootloader: This term might be confusing from time to time. In
coreboot, bootloader is identified as the payload, which loads
the OS, but in some cases, bootloader is used to represent the
code from the reset vector to the hand-off point to an OS. The
definition changes based on context. Also, this term is mostly
used outside of the Intel Architecture (x86) world, where
hardware initialization is not as complicated. In this book, we
will not use bootloader to represent the complete firmware stack.
When you see this term in this book or outside this book, you
need to read the context to see which part of the firmware stack it
is referring to.

e  Firmware stack: In this book, we use the term to represent all the
components in a firmware solution; there might be phases in the
boot process of a firmware solution, but the term firmware stack
will cover them all. We will also refer the firmware stack used to
integrate Intel FSP as the “host firmware”.

e  Pland UEFT: Platform Initialization and Unified Extensible
Firmware Interface. These are two major standards governed by
the UEFI Forum. People are frequently using UEFI to represent
the modern firmware stack that boots 64-bit OS in a PC. “UEFI
BIOS” is frequently used to represent the firmware stack
developed based on UEFI and PI specifications. PI specifications
is a set of specifications that focuses on platform and silicon
initialization.
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BIOS: Basic Input/Output Systems. This is a term that is used
“conveniently” to represent the firmware stack of a PC, even
though it is no longer the same 16-bit hardware abstraction layer
to interface with a 16-bit OS. Today, as a habit, people are still
using this term to call the firmware stack of a PC, even though the
firmware stack has become more powerful, more dynamic, and
has more features. You will see “legacy BIOS” and “UEFI BIOS”
terms in the book when we describe the implementations of PC
firmware stacks today. Some companies might still use “BIOS” in
the names of their products, but the purpose is to associate their
products to a more familiar terminology so that PC developers
understand the products better.

FSP: Firmware Support Package. Intel FSP is the silicon
initialization module that Intel produces to encapsulate basic
silicon initialization code.

Microprocessors, CPU (Central Processing Unit), chips: These three
terminologies are used interchangeably to represent the silicon
that does more of the general computing and control tasks.

I/0: Input and output.

SoC, SOC, SIP: Silicon-on-Chip, Silicon-in-Package. This
represents silicon designed to include more than one component
on a die or in a package; typically these components are CPU
cores, northbridge(s), I/O components, and other glue logic.
From the outside, they function as an integral unit.

Southbridge, northbridge, and companion chips: Today’s SoC
still contains components that we used to call northbridge and
southbridge for two distinct functions that used be on different
sides of a front-side bus (or a high-speed point-to-point bus) that
connects all the components internal to the chip. Even though
internal buses have evolved in modern SoC designs, the names
northbridge and southbridge remain in many code bases to
represent the functions that used to be there: northbridge deals
with CPU, memory controllers, and other related features, and
southbridge deals with I/O-related features.

Obviously, this book cannot cover all of the peripheral knowledge that you might be

interested in. Here are online resources and links for further reading and research:
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