Embedded Firmware
Solutions

Jiming Sun
Marc Jones
Stefan Reinauer
Vincent Zimmer

“open

Embedded Firmware Solutions: Development Best Practices for the Internet of Things
Jiming Sun, Marc Jones, Stefan Reinauer, and Vincent Zimmer
Copyright © 2015 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use

or alter any source code in this Work for any commercial or non-commercial purpose which must be
accompanied by the licenses in (2) and (3) below to distribute the source code for instances of greater than 5
lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the text of
the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights

reserved. Use of this Work other than as provided for in this license is prohibited. By exercising any of the
rights herein, you are accepting the terms of this license. You have the non-exclusive right to copy, use and
distribute this English language Work in its entirety, electronically without modification except for those
modifications necessary for formatting on specific devices, for all non-commercial purposes, in all media and
formats known now or hereafter. While the advice and information in this Work are believed to be true and
accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses (2)
and (3) must accompany the source code. If your use is an adaptation of the source code provided by Apress
in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, excepting the source code
copyrighted by Intel Corp from Embedded Firmware Solutions: Development Best Practices for the
Internet of Things, ISBN 978-1-4842-0071-1 is copyrighted by Apress Media, LLC, all rights reserved. Any
direct reproduction of this Apress source code is permitted but must contain this license. The following license
must be provided for any use of the source code from this product of greater than 5 lines wherein the code

is adapted or altered from its original Apress form. This Apress code is presented AS IS and Apress makes no
claims to, representations or warrantees as to the function, usability, accuracy or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code, excepting the
source code copyrighted by Intel Corp provided are used or adapted from Embedded Firmware Solutions:
Development Best Practices for the Internet of Things, ISBN 978-1-4842-0071-1 copyright Apress Media
LLC. Any use or reuse of this Apress source code must contain this License. This Apress code is made available
at Apress.com/9781484200711 as is and Apress makes no claims to, representations or warrantees as to the
function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4842-0071-1
ISBN-13 (electronic): 978-1-4842-0070-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are

not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editors: Steve Weiss (Apress); Stuart Douglas (Intel)
Coordinating Editor: Melissa Maldonado

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://Apress.com/9781484200711
http://orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com

About ApressOpen

What Is ApressOpen?

ApressOpen is an open access book program that publishes
high-quality technical and business information.

e ApressOpen eBooks are available for global,
free, noncommercial use.

e ApressOpen eBooks are available in PDF, ePub, and Mobi formats.

e The user-friendly ApressOpen free eBook license is presented on
the copyright page of this book.

iii

Contents at a Glance

About the AUthors.........cccimmmmme e —————— Xv
About the Technical ReVIEWErScccsssesssssssssssmsassssnsssassssnssssnsnses xvii
Acknowledgments......ccccuseemmmmssssnsmmsssssssnmsssssnsnssssssnsnsssssnnsnnssssnnnnnns Xix
FOrewordcccuvsmsmmssmmsmmssmissssssssssss s s s ssss s sm s snnnssnnnsnnns XXi
Introduction.........ccvcmmimmmsmms s ———— xxiii
Chapter 1: Introductionc.ccccismmnismmnismmmssmmmsssessssesssass 1
Chapter 2: Firmware Stacks for Embedded Systemsccccuveuns 13
Chapter 3: Intel® Firmware Support Package (Intel® FSP) 25
Chapter 4: Building coreboot with Intel FSPccccuscinninennssnnnns 55
Chapter 5: Chrome book Firmware Internalsccunsemmeeennnnnnns 97
Chapter 6: Intel FSP and UEFI Integrationcccuccmminsssecnnsnans 121
Chapter 7: Building Firmware for Quark Processors..........ccuuuss. 145
Chapter 8: Putting It All Togetherccoccccmnninnemnmnnssseennnssssesnnn 173
Appendix A: Sample Boot Setting File (BSF)......cccoiussseenrrnsssennnnas 179
111 - 191

Contents

About the AUtROrS.........cocmmmmmmmnmsnmmmssnss s nns Xv
About the Technical REVIEWErSccosssemmmsssmsmsssmsssssmsssssmsssssansnsss xvii
Acknowledgments........cccumsemsmmsmsmmsnsmmsnsmsssnsmssnssnssnssnssnssnssnnsnnsnns Xix
FOrewordccoccemmmssssmsnmmssssnsnmsssssnsnnssssnnssnssssnnssnssssnnsnnssssnnsnnnsnnnnns XXi
Introduction.........ccccunimmnienmmmsenmmnsnn s xxiii
Chapter 1: Introductioncccunnmeemmmmmmmmmmmmssessss s ——————— 1
What Is Embedded Firmware?ccoernnnnnnnnennssssesssessessssesssennens 1
Where IS FIrMWArE?cccoiverenencrinsesssesesssssssssssesssssssssssssssssssssssnsens 3
What Do Firmware Engineers DO?ccocvvevererevenesessesseseessesseseessenns 3
Firmware Preparation for New Hardwareccccccecvvrcrnencnncncennennn 3
The Mystery of BilSccoccvrneiennnennsissssse s s snsnens 4
Programming GUIAES........cccvererereerereressesssssessessessessessesssssessesssssessessess 6
The Intel® Firmware Support PACKAge............ccueereveeererssesssesssssssssneens 7
The Uniqueness of Embedded Firmwarecccoeeveveveneneseseeseennens 8
The Choice of Firmware Stackscccorvererrnenernsnesssssesesesesessesesnns 9
Welcome to the Era of the Internet of Things........cccocceveervvrcrienceniennnns 9
Technical Coverage in ThiS BOOK.........ccccveererererenesesesesessesessesaesans 10
The Future of FIrMWare..........ccccovrnnnrerese s 10
Chapter 2: Firmware Stacks for Embedded Systemscccuveuns 13
Is a One-Size-Fits-All Solution PoSSIDIE?ccccveieeerrrierereeiesereneeeas 15
o 0] =T g] 16

vii

CONTENTS

Real-Time Operating System (RTOS)........cccocevrererereninnienenenesessessenns 16
Legacy BIOS ... s 17
Implementations of the UEFI Framework............ccccoeeverercevierencnennene 18
Open Source Firmware Stacks........ccvveververiennesssssessssssessesssesssesseses 18
Proprietary Firmware Stacksc.ccooeevievnirncnscnnscrerese e 19
MaKE OF BUY ... 20
The Advantages of QUESOUICING........cccvveerererssesesesseese s ssssenens 22
The Disadvantages 0f QUISOUICING.........cccceerernnesmrerssesesesesssese e s sessnsnsens 22
IN-HousSe DEVEIOPMENTcceeerereeerre s e 23
SUMMANYciiierere e s s s s s s ae s ae e ne e 24
Chapter 3: Intel® Firmware Support Package (Intel® FSP) 25
The Intel FSP PhiloSOPNYccccevererrrerere e 27
What IS in INtel FSP? ... 28
Intel FSP Binary Format ... 31
Sample BOOt FIOWcccvverieereriee v sses s sse s s ssesssssessessessssassnnes 33
Locating the Entries of Intel FSP ... 36
The Hard Way to Find Intel FSP APIs: Use Data Structure.........c.ccoccevnnveserernieens 36
The Easy Way to Find FSP APIs: Use Hard-Coded Constants...........c.coeveeverernnenene 38
Programming Interface: The APIs of Intel FSP.........ccccveverererenenene 39
TEMPRAMINIL........coeieicceere e nan e 39
FSPINIEENTNY ..o e 42
NOLIFYPRASE ...t s 43
Intel FSP QUEPUL ...t n e 44
APl EXECULION STAUS........cevererererererereseresesesss s 45
Temporary Memory Data HOBccccovvereeercenrerersereseresesesesseses e saesessenesseens 45
Non-Volatile Storage HOB............cccocceeeee e s 46
Sample Code for Parsing HOBSccccccevverrrerssereneresesenesessssessesessessssesessesanns 46

viii

CONTENTS

Customization of INtel FSP ..o s 47
Downloading INtel FSPcooevevrrrrrrer e e e 49
Microcode PatChes..........ccoeevreercecrcrcer e 52
Relocating INtel FSP ... s 53
Integration and Build ... 53
The Future of Intel FSP........cocrrrrrrr e 53
What Is Coming in the Following Chapters........c..ccccvvrvrvrrersenserseriennes 54
Chapter 4: Building coreboot with Intel FSPcccciniinecnninnns 55
The Introduction of COrebootcccevcereeriernr e 55
The Philosophy of coreboot..........cccocvcrirircrcrcr e 56
A Brief HISTOrYccovceicrerierec s ss s sns e enas 57
V12 1999-2000........000000ueereueeesseseessssesssessssssssaessssssssssessassssssssssasesssssessasssssassssansssses 57
V2: 20007200500c00vueerreessasessssssssasessssssssassssssssssssssassssssssssasesssassssasesssassssasssaes 57
V242 20052008oovurrereeesasessssssssssesssssssssssssssssssssssassssssssssasssssessssasssssassssasssses 58
V32 2006=2008...........000uerrveeesaresssssssasessssssssassssssssssssssassssssssssasesssessssasssssassssasssaes 59
2008 LinuxBIOS Renamed “COrehoot”.........cevurenmrernneneseressesesesesesesesessssssssessnnes 59
V42 2000-2012.......ouerevuerrreessasessssssssaessssssssasssssssssssssssasssssssssasesssassssassssssssssasssans 59
VA4 20122014 ..ot sbses s bbb ss bbb s aensaas 59
FUIthEr REATING........ceceeereeeerisire e 60
Prerequisites for Working with coreboot...........ccovvrvrvrcrircncencennne 61
Community Organizationcceeeveerervererrerssere s s e s ressessesessesessesessesessesas 61
Git AN GEITIE ...veveeecerrrsecre s s r e srsas e nrnnn s 61
Git COMMIL MESSAGES.......cerererererrerererereresseresserassessesesseressessssessessssessssesessenssesses 62
c0oreboot Sign-0ff PrOCEAUIEccecevererererrerersereesere s sereseressessesessesesaesessenessenses 63
Working with the coreboot Community.........ccceceveerireeniennscresenennns 64
COTEN0O0T DO’S....c.ceiereiresrresrr e e s s a e p e e nr e n s nan 64
COreD00t DONEScoveiicirerir e nan 65
Nonsource Binaries in COrehootcccvereiniccniesnnss e sesnens 65

ix

CONTENTS

A Hands-on Example: Building coreboot for

the MinnowBoard MAX Mainboard............ccovnnnnnnnnnnncnncnnna 65
ENVIFONMENT ... 66
Development DIrCLOrYcccvcciieersersse st sn s 67
Downloading INtel FSP.........ccvierrrncercrir st see s 67
INStalling INTEI FSP.......ceeircrr e e e 67
Downloading the coreboot SOUICEccoecveerccerrrr e 68
€oreboot TOOICha@IN........cv v ———— 68
coreboot COMMIt HOOKS ..o s sses 69
Creating a coreboot Development Branch..........c.ccccovnvcnnnnncncnnnnnnscnenesnssesenenns 69
Building the Mainboard ..o s 70
Flashing the ROM ...t enes 75

coreboot INternals ... —— 76
BOOT STAQES ...cvecrerieee e e 76
AAItioNal FIlEScoovrerecerererere s 77
CBFS ...oetctetreseses s s e e s 77
CBFS SZE ...ucvreueuressessisessessessesessssssesse s s sssss s ssssessesssssssssssssessesssssssssss 79
SPECIAl BINAMES.....cceeererecerersseere s s 79

Boot Flow Using INtel FSPcovvererrrere e sse s 80
Reset Vector and BoothlocK...........cnns 80
0] 015] 72 Vo T S S SSTS 80
FAMSTAQE ..o e 81
PaYload........ccoceieririrer s 82

COrEDOOt SOUICEcuvucucscissssssrs s 82
COren0O0t DEVICE TIB ...vvvvvverereresesese e e s e 82
coreboot Hardwaremain State Machineg ... 87
MaINDOAIT......ccii i ————————— 88

The ChIiPSET DHVENcocerverieriererserse s s 90

CONTENTS

coreboot Troubleshooting and Debugging........cccocvvrvernerrersencersensennens 94
0Ly (00T TP 94
LT T L 0 o o 95
EHCI USB DEDUGovvevereerseesseessseeessmsssesssanes 95

SUMMANY ... r e n e s sne e nnn 95

Chapter 5: Chrome book Firmware Internalscccuusseemnnnnnnnnns 97

About Chrome book and Chrome 0S..........ccccerrvenrnneserssssesessesesennes 97

Chrome 0S Firmware OVErvIeWcccoccverrerrersessessessessessessessessessensens 98

Chrome 0S Security PhiloSOphy........c.ccocrvrvervrnerserserrer s 98

Chrome 0S Security Guiding PrinCiplescccecvrernvrrennierssesesenens 98

POWET WaSH.......cocecireecrrre e s 99

Chrome 0S BoOt MOTEScoceerreeererrenereressesse e sss e s sesse s 99
Verified (NOrmal) MOGE..........ccccoerererrererereerereesereres e res e res e saesessesessessssessssesaesessenes 99
RECOVEIY MOUE...... .ottt 99
Developer MOGE.........cceverrerirer e 100

Chrome 0S COoreboot..........ccooceveererenrrerre e 100
. OO 101
ARMcooorevuesesasssssesssasssssssssssssssssessssssssssessssssssssesssssassssssssssessssssssasesssssassasesssanes 101

Depth charge Payloadcccceeeerverrercersssr s 101
DPAYIOAU ... 102
Verified BOOL ... e 103
Verified Boot and Kernel SECUNitY........ooccerrercnennsscsesess s 104

Chrome 0S Firmware Boot LOg.........ccccvververrerrernernensersesses e sessenenns 104
BOOt TIMES LOG ..cuveuereeereeererereressereesessesessersssesassessssessessssessssesassssssssssersssesasnssanns 105

Chrome 0S Firmware Event Logccoceerverrnriecnscnesesesense e 105
Google SMI Linux Kernel DIVELcccounevcnernesenesensssesesssssesesesssesesessssessssssenes 106

Xi

CONTENTS

Chrome 0S Extensions to the Firmware Image.........c.ccoccveerierierernennen 106
FIMAP ...t e e s 106
Google Binary BIOCK (GBB)..........ccocvrererereererenererereresserasessesessensssessssesassessenessenes 109
Vital Product Data (VPD)cccvvererverersereerereserereresessessssessesessessssessssessssessensssenens 112
Firmware TPIM USAQE........ccovvererrerenerererererserasersssessesessesessessssessssesssssssnessensssesens 112

Chrome 0S Firmware Update..........ccocvrrrenniennscnesse s seseennens 113

Chrome 0S ULIHEIEScovveerreeercrireresssesesess s e s snnnens 113
FIASAIOM ... 114
GO _ULIIEY. .. e e 114
[0 (0L (T 115
110 117

Google Embedded Controller..........cccocevvervenrerienienienenessese e ssessesnes 118
POWET SEQUENCING....ceceererererererenerererereresasersssesasessessssessssessssessssssssnessenssserens 118
Battery Charging.........ccoovecrerrererrerenerieseserersessssersssessssessessssessssessssesssessenessensssenens 119
Thermal Management ... s sses 119
Keyboard CONEIOIIEceuveererrererererererer e res e rae e sae e sae e s e res e sas e sas e saesessenensenens 119
Other Peripheral CONTrOISccccovverervereerererererer s s sae e e ses e sas e saesesaenes 119
Chrome EC SOftWare SYNC........cccevverervererererererersererserasesaesessesesessssesassesassessenes 119

ST 11342 120

Chapter 6: Intel FSP and UEFI Integrationcccccusseeennnnssncnnnnns 121

Introduction 10 EFl ... 121
INtroduction 10 FSP ... 123
Introduction 0 EDK Il.......cccoiiiiniissnns 125
SUMMANY ..ot e e e s e s e e e e se e e e et s 125

FSP COMPONENTS......ccoecreecccecrr e 125

FSP Wrapper Boot FIOW..........cccvvevcerrerierre s ssee e ssevsessse e sssesse s 126
Generic FSP Wrapper Boot FIOW.........c.ccoeverererverersererseren s seseseressesessesassesaenes 128

xii

CONTENTS

NOIrmal BOOt ..o 128
BOOt FIOW.....cucrcccccrr s 128
Memory Layout for a Normal Boot FIOW...........cccccveeeervererverensereserenessereseressenaens 129
FSP Normal Boot Data StruCtureouveenrmnmscnnnmcsnsssssssnessssssseenns 130

S BOOL......cccciei i —————————— 132
BOOt FIOW.....cciiiiiiiiciissi s 132
S3 MemOry LAYOUL........ccoeerrerrrcrrsscee s se s e sss e s e s sesessssessssessssssnssssnens 132
S3 NV Data PaSSiNGccoceerrierrrsernnsesrnnessesssessssessssessssessssessssssssssssessssessssssnsssnens 133

Capsule Flash Update............ccccrvrrerrernrseriensesresseses s 134
BOOE FIOW.....cociiiccicccceeeee s 134
Capsule Update Memory LaYOUL..........ovoeeeeerennenenenenesesesesesesesessssesesesssseesessnnes 135
ReCOVErY BOO FIOW........cooecirirccesesiseesesss e s sessnsenens 136
FSP Recovery Memory LaYOUL...........ooccceererenneneneseneesesessesesesessssesesessssssssesssssnens 137

coreboot Payload Based upon EDKIIcocreerrcencrceree e, 138

Building Minnow and MinnowMax with FSP..........cccooeeiievniiccennene. 140

Future of the Intel FSP..........cccovvreeirrre s 143

CONCIUSION.....vierciice e 144

Chapter 7: Building Firmware for Quark Processors........oeeuueees 145

Overview of UEFI and Pl ... 145
History of Implementations and Specifications...........ccocvervrerverrvenrsernseresenens 146

Introduction to EDK Il Building BIOCKS..........cccceeereereercercercer e 147
PKG: PACKAGING.......ccoeierrerrerrnieerssesessse s e sss s s ssssessesnssesss s snssssssssssessssssnsnssnens 147
PACKAGEScucorreerrirre e s e n s ne e n s n e sne e s n st s ene e nnns 149
PCD: Platform Configuration Database.............cccocunverennninncnnnnnscnennsssesesesssenens 150
DEC: Platform Declaration File.........c.coouerennmnncnnsnessssssssssssesssssesesnns 153
DSC: Platform DesCrption File.........c.ccvvevriererrernreresesseressessssessesessssessessssessssessens 155
FDF: Flash Description Filec.ccuvvvrvnvnininissensenessessessessessesses e ssessessessessenns 156

xiii

CONTENTS

Build: The EDK Il Build COMMANcooeiniierecererseere e 156
INF2 INF Fl8 vovvoereeeesssereessssesessnseses 158
More INfOrmation...........cco i 159
Introduction to the EDK Il SUDSELccoceevcerennicrnsresese s 160
Introduction 10 QUATKcoemreicrerecrr e 160
ROM Flash Image Size Optimization............ccoeveerrereriererierrseresseressesesessesessesessenens 161
RAM Footprint Optimization..........ccccveeevverrrernsersrerereresereresseressesse e ssesessesessenens 168
0] 1 o (1 [0 o 17
Chapter 8: Putting It All Togetherccoccccmnnneemnnnnssseennnssssensnns 173
RTOS and INtel FSP.......couoeirireecreses s 174
Intel FSP and Open Source Philosophyccccevevevenenenesencneene, 175
Customization and Production of Intel FSPccocorvevrniencrenccnnns 176
It Is a Community Effort After Allcooeeerverererere e 176
Appendix A: Sample Boot Setting File (BSF).......ccceussseenrrssssannnnns 179
T 191

Xiv

About the Authors

Jiming Sun is a firmware and BIOS industry veteran
who started to write RTOS kernel code (pSOS) for Bell
Labs in 1986. After changing career paths from telecom
to PC, he was involved in the early laptop PC evolution,
and was among the first batch of firmware engineers

to implement System Management Mode (SMM) code
for 386SL in the early 1990s. After joining Intel in 1993,
Jiming did early APM (Advanced Power Management)
and ACPI (Advanced Configuration and Power
Interface) implementation. Jiming is one of the creators
of Tiano, which turned into UEF]I, at Intel, and he is

the major contributor of AMD’s AGESA (AMD Generic
and Encapsulated Software Architecture). Besides

his experience with Intel, Bell Labs, and AMD, Jiming has also worked for Zenith Data
Systems, HP (Compagq), Insyde Software, Dell, and Apple. Jiming recently grandfathered
Intel Firmware Support Package (Intel FSP) and was instrumental in launching the
product in October of 2010. Jiming has master’s degrees in Electrical Engineering and
Management of Science and Technology, and he has 19 granted and one pending US
patents. He currently lives in the Bay Area of California with his wife and two sons.

Vincent Zimmer is a senior principal engineer in the
Software and Services Group at Intel Corporation.

With over 23 years’ experience in embedded software
development and design, Vincent holds more than

310 US patents and was awarded two Intel Achievement
Awards for his development of firmware architecture
and security. He has a Bachelor of Science in Electrical
Engineering degree from Cornell University, Ithaca,
New York, and a Master of Science in Computer Science
degree from the University of Washington, Seattle.

XV

ABOUT THE AUTHORS

Marc Jones is an accomplished firmware developer
with over 18 years’ experience in x86 embedded
systems development. Marc has been a vital, active
member of the coreboot community since 2007.

As alead firmware developer at Sage Electronic
Engineering, his most recent focus has been on

Intel FSP coreboot integration, Google Chromebook
development, and AMD embedded APU solutions.
Marc got started with coreboot as the lead developer
and coreboot project liaison at AMD. As a senior
software engineer, he developed coreboot source code for the AMD Barcelona Family10
processor, AMD Geode processor, and AMD CS5536 chipset. In addition, he contributed
to the development of support for the AMD RS690 and SB600 chipsets along with
reference mainboards. Prior to coreboot, Marc was one of the primary architects of

the AMD GeodeROM BIOS, the basis of most Geode systems. He has also developed
firmware and BIOS for Cyrix and National Semiconductor. Marc has been a proponent
of open source development for years and has written papers and blog posts that
spotlight its merits. He has presented coreboot at the Southern California Linux Expo
(SCaLE) 2013, 2012, 2010, the Free Software Foundation (FSF) Libre Planet 2009, the
2008 High Performance Computer Science Week Conference, and the 2007 Ottawa Linux
Symposium. For the past five years, Marc has been the coreboot administrator and a
mentor for Google Summer of Code, which provides students summer internships with
open source software projects.

Stefan Reinauer is a staff engineer/manager in the
Chrome OS Group at Google Inc. He has been working
on open source firmware solutions ever since he
started the OpenBIOS project in 1997. Stefan joined
the LinuxBIOS project in 1999, and worked on the first
x64 port for LinuxBIOS back in 2003. In 2005, Stefan
founded coresystems GmbH, the first company to

ever provide commercial support and development
around the coreboot project, working on ports to new
chipsets and mainboards. In 2008, Stefan took over
maintainership of the LinuxBIOS project and renamed
it “coreboot” He was the original implementer of the
project’s ACPI and SMM implementations. Since 2010,
Stefan is leading the coreboot efforts at Google and
contributed significantly to what is the largest coreboot deployment in the history of the
project. Stefan currently lives in the San Francisco Bay Area.

Xvi

About the Technical

Reviewers

Xiang (Maurice) Ma is an Intel software architect

on IA firmware, BIOS, and bootloader. He has more
than 15 years’ extensive experience in the legacy
BIOS, UEFI firmware, bootloader, and embedded OS
development for various Intel IA platforms, including
embedded systems and workstation/servers, focusing
on the core architecture, silicon reference code design
and prototyping, as well as platform enabling and
porting. Xiang Ma now works in the Intel IOTG group
on the Intel firmware and bootloader initiatives. He is
the primary architect who defined the Intel FSP design
specification and prototyped the initial Intel FSP

solution on Intel Haswell and Bay Trail platforms. He holds a master’s degree in Control
Theory and Control Engineering from Huazhong University of Science & Technology

in China.

Ravi Rangarajan is a firmware architect with 15 years’
experience in a range of areas, from embedded
systems to server firmware development. He has a
bachelor’s degree in electronics and a master’s degree
in computer applications. He is currently working for
the Intel Corporation. Ravi’s interests include computer
architecture, firmware, and operating systems.

Ravi was one of the original authors of the FSP
Architecture Specification and was part of the team
that prototyped, designed, and developed the Intel
Firmware Support Package. His involvement continues
in the evolution of the Intel FSP.

XVii

ABOUT THE TECHNICAL REVIEWERS

xviii

Edward Roache graduated from Dublin City University
in 1993 with a B. Eng in Electronic Engineering. He has
been working with BIOS for 15 years. He joined Stratus
Technologies, Inc. in 1999 and worked on BIOS for their
ftServer Fault-Tolerant servers. From 2006, he worked
for Ircona providing BIOS services for companies such
as Fyjitsu-Siemens and NettApp. He joined Intel in
2011 as the BIOS technical lead for Quark X1000. He
lives with his wife, Ann, and their son, Darragh. He’s a
keen GAA follower and helps coaching of the underage
teams in Ratoath, Co. Meath where he lives.

Kangkang Shen is the chief architect for BIOS

in Huawei. As a BIOS industry veteran, he has
experienced the development of the PC industry
since its early days. After joining Award software in
1993, he became one of the key developers for BIOS
boot manager, PCI BIOS, and many other key BIOS
features. In 1998, he joined Phoenix Technologies as
engineering manager and director responsible for
Phoenix and Award BIOS kernels. In 2003, he was
assigned to lead the Phoenix R&D center in China.
In 2006, he cofounded Nanjing Byosoft, an Intel-
authorized BIOS vendor. In addition to his industry
experience, he worked in Nanjing University of
Technology as a professor from 2008-2011. He has

a Bachelor’s of Science in Optical Engineering from
Zhejiang University, China and a Ph. D. from Georgia
Institute of Technology, Atlanta.

Acknowledgments

We thank our families first for their support of us in writing this book. Since all of us have
a demanding job to focus on during the day, we frequently spent our precious family
time, evenings, weekends, and holidays, writing this book. Without our families’ support,
this book would not be possible.

We accepted the challenge of a tight publishing schedule because, like everything
else in the high-tech world, the contents are actually “perishable” We had just about
enough time to catch up with the latest development in the space; as soon as we thought
we were done, we found areas that needed to be updated. This book is useful only if we
can make it accurate and up-to-date so that developers can benefit from the information
in this book. Thankfully, we have many high-caliber reviewers and alpha book readers to
help us to correct the information in the book.

Without a particular order and with no implication of the importance of their
contributions to the book, these people include:

e Aaron Durbin

e Edward Roache

e Maurice Ma

e Ravi P Rangarajan
e Martin Roth

e Kangkang Shen

e BobHart

e Ron Minnich

We thank you for your efforts in making this book useful to many more people like you.

Xix

Foreword

By Ron Minnich
Creator of LinuxBIOS (later renamed coreboot)
Software Engineer at Google, Inc.

I started the coreboot project at Los Alamos National Lab in 1999. At the time, it was
seen by hardware vendors as an impractical idea that would soon vanish. Now, 15 years
later, it is mainstream: millions of x86- and ARM-based Chromebooks and Chromeboxes
run coreboot, as its speed and reliability are an essential part of the Chrome OS user
experience. coreboot is now a key component of the fastest-growing consumer laptop
segment.

It might come as a surprise to embedded programmers that the initial goal of
coreboot was to make very large supercomputing clusters manageable. We had a 128-
node VA Linux cluster at Los Alamos in 1999 that had no keyboards or displays. BIOS
upgrades required that we wheel around a “crash cart” with a keyboard and monitor;
boot DOS on a floppy, which in turn started an autoexec.bat script; and wait 5 to 10
minutes for the process to complete for each node. If anything went wrong, it got more
fun: we had to crack open the case, move a jumper, and do the recovery with no working
graphics. As if this were not bad enough, the vendor BIOS had a habit of coming up
displaying “No keyboard present—hit F1 to continue” on a nonexistent monitor, asking us
to hit F1 on a keyboard that it had already discovered was not there!

Could this possibly get any worse? It could, and did, on the Thunderbird cluster at
Sandia National Labs: 4400 nodes, none having a keyboard or a monitor, came up one
day with that same vendor BIOS message. The fix? Dispatch 20 people with 20 keyboards
to 220 machines each; they had to plug in the keyboard, hit F1, and hope it all went well.

By 2002, we had a 1024-node Linux cluster using coreboot. The reflash process for
all 1024 nodes took 30 seconds total, not five days. If something went wrong, coreboot
would figure it out on the next boot, switch to a backup BIOS image, and boot up: the
nodes could not be put into an unrecoverable state. There was no longer a need to open
the nodes and move a jumper. coreboot represented a huge jump in the manageability of
cluster nodes.

XXi

FOREWORD

coreboot has had many uses since its inception: everything from the smallest
systems (Apache Military Modem II) to some of the largest supercomputers. While there
is wide adoption in Chrome OS systems, coreboot’s earliest and continuing use is in
embedded systems such as televisions, network switches, and robotic systems. In fact,
about the same time we deployed a supercomputer using coreboot, iRobot had ported
coreboot to its Packbot robot.

Embedded systems used to be very simple: a low-power CPU connected to low-
performance memory and peripherals, used in low-performance and limited applications
such as digital clocks and automobile computers. But in the last ten years, we can see
low-power embedded CPUs used in unexpected places. The highest-end systems—such
as IBM Blue Gene supercomputers, which were the fastest in the world for many years—
used 65,536 embedded PowerPC CPUs with 18 cores each. We now see higher-power
CPUs used in small embedded systems such as Chromebox videoconferencing systems—
an inexpensive system with a very powerful Intel CPU.

These embedded Intel CPUs have memory bandwidth much higher than classic Cray
vector supercomputers and hence are fiendishly complex to design. Once designed, this
high-performance hardware is quite difficult to initialize, and even should we wish to
write the code to manage the initialization, the programming information is not public.

This has led to a dilemma: How can we enable coreboot on complex systems that are
not fully open?

This book shows one path. Intel has released in binary form a basic set of functions
to initialize the messiest—and hardest to program—bits of the Intel chipset. The calling
conventions and behavior of the binary are completely and clearly documented. The
developer is freed from having to deal with very difficult chipset setup. Upgrades of this
software are simple: just replace the old binary with a new one. This code is called the
Firmware Support Package, a.k.a. FSP.

The result is that high-performance Intel chipsets can be used with coreboot in all
kinds of systems, including embedded ones, with a binary supplied by Intel that removes
much of the porting difficulty.

Wearable embedded systems are a growing area right now, and many use the CPU
described in this book. This book is an ideal companion for those wishing to be current
with current and future embedded technology.

coreboot has succeeded because of the efforts of the many talented people involved
in the project for the last 15 years. The reader is fortunate that this book is written by four
of the best minds in the business. There is a lot to learn here and it will stand you in good
stead if you continue to work in embedded systems.

I'd like to thank Jiming Sun and the team for conceiving FSP and bringing it to
fruition. Without their tireless efforts and diplomacy, we would not have FSP or this book.

XXii

Introduction

We consider ourselves lucky enough to live in an era when new things and new ideas
seem to come out every few years, if not every few days. We are not only experiencing an
explosion of new ideas, but also witnessing some existing technologies being completely
maxed out in our lifetime, including the semiconductor technology. Since Brattain and
H. R. Moore made a demonstration of the first transistor at Bell Labs on December 23, 1947,
the semiconductor, as we know it today, is reaching its physical limit, even though we are
still trying very hard to shrink it below 10 nanometers. For the sake of argument, even if we
can still shrink a couple of nanometers below 10 nanometers, how much further can we
really go without changing the fundamental theory the technology is based on?

In the meantime, there are many other technologies that are approaching the limits
of our sense and sensibility. Do we need more than 12 bits of color depth that shows more
than billions of colors? Do we need a frame rate that is beyond what our eyes and brain
can process? Do we need cars that go faster than our own response time? We now have
display devices, media playback technologies, and transportation vehicles that achieve
the best that they need to be.

Even though that is the case, there are still unlimited opportunities to make devices
smarter and more connected to make our lives easier and safer. People are calling these
devices the Internet of Things, or IoT for short. The explosive cycle of the IoT has just
begun: cars will be talking to cars in the near future, thermostats and sprinkler systems
can adjust themselves based on current weather forecast, buildings can manage lighting
and air circulation based on where people are, and the list goes on and on.

Yes, this book is related to the explosion of the Internet of Things. We are addressing
atechnical area that is rarely talked about—the firmware inside of the Internet of Things.
Firmware is the first piece of software that runs after silicon, coming out from the power-
on reset state. Sometimes it is mysterious to people why building a firmware stack is
hard and why firmware can be problematic. Considering the fact that the time it takes to
run a piece of firmware is only between subseconds to a few minutes at most, why are
we writing a book about it? After all, there are already books that talk about BIOS, UEFI
(beyond BIOS), and techniques to optimize the firmware to boot faster. Why do we need
yet another book to talk about firmware for the Internet of Things and the embedded
system in general? There is one important reason: the firmware for IoT is different from
the firmware running on a PC (BIOS or UEFI-based firmware), and there are many
unique requirements for IoT firmware, and we will talk about them in the second chapter
of this book.

This is what this book is about. We are going to examine the uniqueness of firmware
requirements in embedded systems and IoT devices, and then we are going to introduce
the technique Intel introduced to help IoT system firmware developers overcome the
steep learning curve in developing a firmware stack for their versatile IoT products.

xxiii

INTRODUCTION

In this book, we are going to use two open source firmware stacks—coreboot and
UEFI—to demonstrate the concept and show the steps to develop a workable firmware
stack using widely available platforms from Intel. We are also going to show how the
firmware works in a Chromebook, and what it does in a Chromebook, and we will also
discuss the firmware for Intel® Quark family.

The targeted audience for this book are firmware engineers, hardware engineers,
software engineers, and other professionals curious about IoT firmware. This is a good
book for students who are learning about firmware, because we are going to give step-
by-step instructions about how to build a workable firmware stack using commercially
available platforms. For developers who have been involved in PC firmware, this can
be a good reference book to understand the differences between PC and IoT, and
the alternative solutions available. For people who have been struggling with Intel®
Architecture (IA) and its firmware stack due to a lack of technical information from
Intel in the past, this book reveals an opportunity for you to quickly get over the silicon
initialization hump, and you will be able to quickly develop an effective firmware stack
using the techniques learned from this book.

This book uses a lot of pages to describe the Intel® Firmware Support Package
(Intel FSP) because it is a way to encapsulate the complexity of silicon initialization
to make firmware development work easier. Since its launch in October, 2012, many
developers and designers of alternative architectures have benefited from this product.

Why Should You Read this Book?

There are not many books out there talking about firmware because it is not a standard
discipline that can be talked about generically. Every subject in the realm of firmware
can be a book of its own, and there have been books about UEFI, BIOS, Fast Boot,

RTOS, assembly languages, and so forth. There are also many system requirements and
constraints that can dictate how a firmware is chosen and written; therefore, it is a topic
that cannot be easily addressed holistically without an objective. Our objective is to show
you how you can take advantage of Intel Architecture, and how to prepare a firmware
stack for Intel microprocessors regardless of the firmware stack that you choose. There
will be areas that are not covered in this book, such as power management and secure
boot features, but readers can certainly find in-depth discussion of those topics in other
technical books in the market. This book is written to help you build a workable firmware
stack for Intel Architecture.

What Chapters Should You Read?

Since there are many interesting but distinctly different topics surrounding IoT device
firmware, busy readers can pick and choose the chapters to read and skip if needed.

If you are just curious about what firmware options you may have for IoT devices,
you may read Chapters 1 and 2 before diving too deeply into actual implementations.

If you are interested in developing a coreboot-based firmware solution for Intel
Architecture, you can get a complete picture of the process by reading Chapters 1, 3, and 4.

XXiv

INTRODUCTION

If you are more interested in developing an EDK II-based firmware solution for Intel
Architecture, you can get a complete picture of the process by reading Chapters 1, 3, and 6.

If you are more curious about what Chromebook is about and how the firmware for
Chromebook works, you can read Chapters 1, 3, 4, and 5.

If you have heard about Quark and you are interested in building firmware for
Quark, you can read Chapters 1, 2, 3, 4, 6, and 7. Why do you need to read more chapters
for Quark? It is not because it is complicated, it is because it can be used in many
varieties of applications using different firmware stacks. If you want a complete picture
about firmware solutions for embedded applications and IoT devices, you should take
your time and read all of the chapters in this book. After all, this is the purpose of the
book: to give you a complete picture of the firmware solutions for IoT devices.

Hobbyists should be able to obtain a platform mentioned in the chapters, follow the
instructions to download the source trees and tools, build a firmware image to try on a
real platform, and enjoy the accomplishments.

Every firmware stack has its advantages and disadvantages; there will be situations
when a developer needs to pick a different and unfamiliar firmware stack for the
applications at hand. From time to time throughout the book, you might find some
unfamiliar terminologies. We will list them here for reference. If you are still puzzled by
a specific terminology, Wikipedia is probably the best resource to check. Internet search
engines may be the second best source, but careful filtering of information is needed.

e Bootloader: This term might be confusing from time to time. In
coreboot, bootloader is identified as the payload, which loads
the OS, but in some cases, bootloader is used to represent the
code from the reset vector to the hand-off point to an OS. The
definition changes based on context. Also, this term is mostly
used outside of the Intel Architecture (x86) world, where
hardware initialization is not as complicated. In this book, we
will not use bootloader to represent the complete firmware stack.
When you see this term in this book or outside this book, you
need to read the context to see which part of the firmware stack it
is referring to.

e Firmware stack: In this book, we use the term to represent all the
components in a firmware solution; there might be phases in the
boot process of a firmware solution, but the term firmware stack
will cover them all. We will also refer the firmware stack used to
integrate Intel FSP as the “host firmware”.

e Pland UEFT: Platform Initialization and Unified Extensible
Firmware Interface. These are two major standards governed by
the UEFI Forum. People are frequently using UEFI to represent
the modern firmware stack that boots 64-bit OS in a PC. “UEFI
BIOS” is frequently used to represent the firmware stack
developed based on UEFI and PI specifications. PI specifications
is a set of specifications that focuses on platform and silicon
initialization.

XXV

INTRODUCTION

BIOS: Basic Input/Output Systems. This is a term that is used
“conveniently” to represent the firmware stack of a PC, even
though it is no longer the same 16-bit hardware abstraction layer
to interface with a 16-bit OS. Today, as a habit, people are still
using this term to call the firmware stack of a PC, even though the
firmware stack has become more powerful, more dynamic, and
has more features. You will see “legacy BIOS” and “UEFI BIOS”
terms in the book when we describe the implementations of PC
firmware stacks today. Some companies might still use “BIOS” in
the names of their products, but the purpose is to associate their
products to a more familiar terminology so that PC developers
understand the products better.

FSP: Firmware Support Package. Intel FSP is the silicon
initialization module that Intel produces to encapsulate basic
silicon initialization code.

Microprocessors, CPU (Central Processing Unit), chips: These three
terminologies are used interchangeably to represent the silicon
that does more of the general computing and control tasks.

I/0: Input and output.

SoC, SOC, SIP: Silicon-on-Chip, Silicon-in-Package. This
represents silicon designed to include more than one component
on a die or in a package; typically these components are CPU
cores, northbridge(s), I/O components, and other glue logic.
From the outside, they function as an integral unit.

Southbridge, northbridge, and companion chips: Today’s SoC
still contains components that we used to call northbridge and
southbridge for two distinct functions that used be on different
sides of a front-side bus (or a high-speed point-to-point bus) that
connects all the components internal to the chip. Even though
internal buses have evolved in modern SoC designs, the names
northbridge and southbridge remain in many code bases to
represent the functions that used to be there: northbridge deals
with CPU, memory controllers, and other related features, and
southbridge deals with I/O-related features.

Obviously, this book cannot cover all of the peripheral knowledge that you might be

interested in. Here are online resources and links for further reading and research:

XXVi

http://www.intel.com/fsp
http://www.tianocore.org
http://www.uefi.org

http://www.coreboot.org

http://www.intel.com/fsp
http://www.tianocore.org
http://www.uefi.org
http://www.coreboot.org

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction

