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Delphine M. Pott, José G. Vallarino and Sonia Osorio

Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits
Reprinted from: Metabolites 2020, 10, 187, doi:10.3390/metabo10050187 . . . . . . . . . . . . . . . 143

v



Anastasiya Kuhalskaya, Micha Wijesingha Ahchige, Leonardo Perez de Souza, 
José  Vallarino, Yariv Brotman and Saleh Alseekh

Network Analysis Provides Insight into Tomato Lipid Metabolism
Reprinted from: Metabolites 2020, 10, 152, doi:10.3390/metabo10040152 . . . . . . . . . . . . . . . 167
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Abstract: Over the past 10 years, knowledge about several aspects of fruit metabolism has been greatly
improved. Notably, high-throughput metabolomic technologies have allowed quantifying metabolite
levels across various biological processes, and identifying the genes that underly fruit development
and ripening. This Special Issue is designed to exemplify the current use of metabolomics studies of
temperate and tropical fruit for basic research as well as practical applications. It includes articles
about different aspects of fruit biochemical phenotyping, fruit metabolism before and after harvest,
including primary and specialized metabolisms, and bioactive compounds involved in growth and
environmental responses. The effect of genotype, stages of development or fruit tissue on metabolomic
profiles and corresponding metabolism regulations are addressed, as well as the combination of other
omics with metabolomics for fruit metabolism studies.

Keywords: fruit metabolomics; developmental metabolomics; stress metabolomics; spatial metabolomics;
central metabolism; specialized metabolism; mass spectrometry; nuclear magnetic resonance spectroscopy;
omics; multi-omics integration

The growth and ripening of fruit are multifaceted and highly regulated developmental processes
which yield colorful and flavorful tissues for organisms that consume and disperse the seeds therein [1].
Fruits are economically essential and vital for human nutrition and health owing to their content in
sugars, organic acids, pigments, volatiles and other nutraceutical compounds [2,3], the metabolisms of
which have been widely studied (e.g., [4–6]). The shift from single-metabolite analyses to analytical
platforms that provide information on hundreds of metabolites has allowed researchers to better describe
the links both within metabolites and between metabolism and important agronomic-associated traits.
Metabolomics has permitted the identification of changes in the chemical composition of transgenic
plants, mutants or populations and has allowed for identifying genomic regions associated with
metabolite traits of agronomical value in model fruit species such as tomato and strawberry [7].
Tomato metabolomic studies have been numerous in the past decade [8,9] and have allowed the
development of a comprehensive understanding of primary and specialized metabolism pathways
and their interplay during fruit growth and development, and in diverse environmental conditions.

The number of teams involved in, and of articles published on, fruit metabolomics has been
regularly and progressively increasing. Searching for articles in the Web of Science core collection for
metabolomic(s) or metabolome, and fruit in the last decade (Figure 1) revealed an increment from about
20 articles per year in 2010 to about 200 in 2019. The application domains are also increasingly diverse,
as illustrated by very recent works ranging, for instance, from the study of the regulation of steroidal

Metabolites 2020, 10, 230; doi:10.3390/metabo10060230 www.mdpi.com/journal/metabolites1
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glycoalkaloids biosynthesis in Solanaceae [10] to that of the effect of scion/rootstock interaction on the
metabolic composition in citrus fruit [11].

Figure 1. Number of articles published about fruit metabolomics over the past 10 years. Search in
Web of Science core collection for TS = (metabolome OR metabolomics *) AND (TS = fruit) NOT
(TS=mushroom * OR TS = fruit-fly).

This Special Issue focuses on applications of metabolomics within the field of plant sciences for
the study of fruit. It contains 12 original research articles and one review article. The contributed
research articles are exemplary studies covering primary research applied to fruit species from a basic
understanding of metabolism regulation to applications for phenotyping for breeding or defence
priming (Figure 2).

This Special Issue covers a range of fruit species, including model fruit (tomato [12–14]),
temperate (kiwifruit [15], mulberry [16]) or tropical fruit crops (pineapple [17], cashew [18]),
genetic resources (melon [19]), and indigenous fruit (Davidson’s plum, finger lime and native pepper
berry [20]). Different analytical approaches are covered also: near-infrared spectroscopy (NIRS) [18],
gas chromatography coupled to mass spectrometry (GC-MS) [17], liquid chromatography coupled
to mass spectrometry (LC-MS) [16,18,21,22], LC-MS/MS [20], and a combination of several analytical
strategies including nuclear magnetic resonance spectroscopy (NMR), GC-MS and LC-MS [19] or
several omics [15].

Figure 2. Summary of the works presented in the Special Issue on “Fruit Metabolism and Metabolomics”.
GC-MS, gas chromatography coupled to mass spectrometry; 1H-NMR, proton nuclear magnetic
resonance spectroscopy; LC-MS, liquid chromatography coupled to mass spectrometry; NIRS,
near-infrared spectroscopy.
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The original research articles can be classified according to scientific domains: biochemical phenotyping
of genetic resources for collection maintenance or intraspecific classification, generating knowledge about
fruit growth, ripening and post-harvest, understanding metabolism, characterizing defence priming,
identifying bioactive compounds for human nutrition and health.

Biochemical phenotyping of cashew apple based on LC-MS and near-infrared spectroscopy [18]
allowed the identification of a group of accessions, as a proof of concept for their use for the
maintenance of a germplasm bank. For melon genetic resources [19], a combination of metabolome
approaches enabled an evaluation of metabolomic relationship and its correlation with the genetic
genome-by-sequencing distance of melon accessions, revealing that several melon groups, such as
Inodorous, grouped in parallel with the genetic classifications, while other genome to metabolome
and mineral element associations appeared less clear. A multi-approach study of color mutations
introduced in a tomato Italian landrace [12] revealed unexpected biochemical changes. The double
mutants expanded the effect on the metabolism of the single mutations by revealing additional additive
or epistatic effects that could be of interest for the improvement and diversification of the landrace.

Fruit are complex organs constituted of different tissues. The distribution of metabolites
throughout the different fruit tissues, pericarp, placenta, and seeds, was described in chilli pepper [22].
Pericarp showed a higher content of glycosides and terpenoids compared with other parts of the
fruit. Placenta was the tissue having the highest content in alkaloids related to capsaicinoids and
in tocopherols.

The mechanisms underlying fruit growth during kiwifruit development were investigated using
phytohormone profiling with transcriptomics under two carbon supply levels [15]. The results suggest
that cytokinins, known to be implicated in cell division, are also involved in fruit cell expansion and
growth in kiwifruit. Pineapple ripening was characterized using GC-MS of crown, flesh, and peel
samples [17]. Samples could be separated according to ripening phases from early-ripening to
late-ripening phases for flesh and peel, which allowed highlighting metabolites correlated to ripening.

Concerning metabolism regulation, a cross-species study using LC-MS was performed to clarify
the metabolic regulation of fruit phenolics among three Solanaceae crops, tomato, eggplant and
pepper [21]. It allowed identifying the metabolic signatures of phenolics in each species from different
fruit tissue-types and ripening stages and provided information for future functional genomics or
breeding approaches. The metabolic changes during fruit postharvest storage were reviewed [23],
emphasizing the roles that metabolomic platforms can play for better understanding the biochemical
bases of postharvest physiology and identifying the numerous, often species-dependent, pathways
affected during fruit senescence.

Metabolic correlation networks covering a variety of metabolic traits such as lipophilic and volatile
compounds in tomato fruit have shown how the individual metabolic classes are related to yield-related
phenotypic traits [13]. Moreover, metabolite-transcript correlation analysis exposed crucial putative
genes involved in the biosynthesis of lipids.

Fruit metabolism is tuned in interaction with the abiotic and biotic environments. Immune priming
of tomato fruit by the defence inducer ß-aminobutyric acid (BABA) was investigated against
three different fruit pathogens using a combination of targeted and untargeted metabolomics [14].
While BABA resulted in a long-lasting induced resistance in tomato fruit against those pathogenic
microbes, the primed responses were likely specific to the infection nature, rather than characterizing a
common pattern of BABA-induced priming. Further, modelling approaches established that soluble
sugars were essential to predict resistance to fruit pathogens.

In relation to human health, in white and black mulberry fruits, combining an LC-MS method with
assays for (i) α-glucosidase inhibitory activity and (ii) antioxidant activity [16], allowed for identifying
a list of key bioactive compounds with antioxidant and/or α-glucosidase inhibitory activities. Similarly,
based on targeted and untargeted metabolite profiling and antioxidant assays on selected Australian
native fruits, a number of compounds that provide the antioxidant activities were identified [20].

3
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The latter results open new possibilities of using these indigenous fruits in the nutraceutical and
food industries.

Wine is a famous product derived from fruit for which a range of metabolomic studies have
been performed [24,25]. Here, combining non-targeted metabolite profiling by UPLC-Orbitrap-MS/MS
profiling and sensory analyses revealed commonalities and differences of wines made with different
grape cluster types obtained each from three Vitis vinifera cv. Pinot noir putative-clones grown in
identical field environments [26]. In addition, a set of molecular-feature (metabolite) markers was
selected as being associated with these sensorial attributes.

Overall, these 13 articles demonstrate that metabolomics is a powerful and insightful tool to
address numerous biological issues that link to fruit biology before or after harvest. The future
improvement of metabolite annotation workflows will certainly help to decipher more ambitious
questions when metabolomics biomarker discovery broadens our understanding of fruit processes.
A greater number of fruit metabolomics studies, especially for tropical species or species other than
major crops, will allow for a better depiction of fruit mechanisms that govern development and
responses to environmental fluctuations.

To conclude, we would like to thank each of the authors who contributed to this Special Issue
on fruit metabolism and metabolomics, the peer reviewers who allowed for improving the quality of
submitted manuscripts, and the staffmembers of the Metabolite Editorial Office for their support.
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Abstract: The objective of the present work was to develop an advanced fast phenotyping tool to
explore the cashew apple compositions from different genotypes, based on a portable near-infrared
(MicroNIR) spectroscopy. This will be in addition to associating the variability of the respective cashew
apple pulps with the genotypes by ultra-performance liquid chromatography (UPLC), coupled with
high-resolution mass spectrometry (HRMS). The NIR analysis is a non-destructive, low-cost procedure
that provides prompt results, while considering the morphology of different cashew apples (shape,
size, and color). The UPLC-HRMS analysis is characterized by specific bioactive compounds, such
as the derivatives of hydroxybutanoic acid, galloyl, and flavonoids. Furthermore, both techniques
allowed the identification of a group of accessions, which presented similarities among the chemical
profiling. However, to improve the understanding of cashew chemical and physical variability, further
variables related to the cashew apple composition, such as edaphoclimatic conditions, should be
considered for future studies. These approaches lead to the conclusion that these two tools are useful
for the maintenance of BAG-Caju (Cashew Germplasm Bank) and for the cashew-breeding program.

Keywords: Anacardium occidentale; fast phenotyping; NIR; UPLC-HRMS; chemometrics

1. Introduction

Cashew (Anacardium occidentale L.) is a fruit tree originating from the north of South America,
with greater dispersion in the coastal regions, from the state of Rio de Janeiro to the Amazon, where it is
possible to find spontaneous populations with great genetic and, consequently, phenotypic variability.
To conserve part of this variability, Embrapa maintains a germplasm bank (BAG-Caju) holding almost
seven hundred accessions with important variability [1].

Nuts are true fruits with hard shells that are inedible due to the presence of cardol and cardanol
(caustic substances). The cashew nut consists of nut kernels that are edible and commercially known
as cashew nuts. This complete fruit forms on the distal end of the false fruit that is also edible (called
cashew apple or peduncle) [2]. Cashew nut (kernel) is the main product of this crop marketed globally.
However, Brazil, by tradition and culture, has the habit of consuming the cashew apple (false fruit)
in different ways, e.g., as fresh fruit, juice, or sweets. Thus, BAG-Caju that was initially established
based on the size and weight of the cashew nut began to include the variability related to the false fruit,
such as vitamin C, sugars, acidity, astringency, color, and bioactive compounds [3].
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Due to the elevated number of cashew apple accessions, we have investigated the applicable
potential of various technologies to develop simple, precise, and low-cost methods for studying the
physico-chemical and nutritional features of this fruit. Among the technologies, the near infrared
(NIR) spectroscopy is considered to be an economical, fast, and efficient technique for the evaluation of
foodstuffs [4–6]. The NIR analysis produces an electromagnetic spectrum (reflectance or transmittance)
between 780 nm and 2,500 nm, where the wavelength depends on the scattering and absorption
processes according to the chemical compositions: molecular functional groups, C-H, N-H, S-H, or O-H
bonds. A MicroNIR spectrometer is a portable NIR device for real-time, in situ, and non-destructive
chemical and physical analyses [7].

In particular, the cashew apple exhibits beneficial characteristics to human health, such as antitumor,
antimicrobial, urease inhibitory, and lipoxygenase activities [3,8–10]. The genetic enhancement of
the quality and attributes of the cashew apple is still under development in Brazil, although the
knowledge of genetic diversity for the construction of germplasm banks exists. Most cashew breeding
programs are based on traditional selection approaches, including the size and weight of nuts or
yield of a cashew tree, and efforts have also been applied in the prospection of dwarf genotypes
with enhanced fruit quality and resistance to pests and diseases [11]. Therefore, the identification
of the characteristics with economic interest, related to conserved or cultivated accessions, may be
appropriated by breeding programs aimed at launching high-performance cultivars to meet specific
demands, such as cultivars with high levels of bioactive compounds. The analysis of unique chemical
fingerprints, based on ultra-performance liquid chromatography (UPLC), coupled with high-resolution
mass spectrometry (HRMS) has been successfully applied for the study of fruit pulps. In such
foodstuff studies, a large number of samples have to be screened for identifying metabolites and
their classification according to the geographic origin, climate conditions, genotype, and cultural
practices using multivariate statistics [3,12–15]. Usually, multivariate analyses are applied, in order to
explore complex matrices, such as foodstuff to determine the variations and relationships among the
compositions of the samples [16,17]. This untargeted approach is advantageous when the compounds
and degradation products are not known.

From the foregoing studies, the aim of the present study was to evaluate the potential of a
MicroNIR spectrometer to explore the composition of different genotypes of intact cashew apple
from the Embrapa germplasm bank, as well as to create multivariate regression models considering
◦Brix, total acidity, and concentrations of ascorbic acid (vitamin C). Furthermore, due to the need to
investigate plants that produce fruits with numerous compounds beneficial to human health, the study
of metabolite profiling (nutritional and functional compounds) to reveal the variability of pulps from
different genotypes of cashew apple was also investigated.

2. Results

The results were divided according to the analytical technique applied to evaluate the cashew
apple variability: Section 2.1 for MicroNIR and Section 2.2 for UPLC-HRMS.

2.1. Exploratory Multivariate Analysis of the MicroNIR Dataset

The NIR analysis contains undesirable sources of error (intrinsic imperfections) for multivariate
studies, and therefore, pre-treatments can correct many systematic or random errors. The information
from the cashew apple composition was partly obscured (overlapped), and the distribution of the
variables was highly skewed by usual and expected spectral imperfections. Three pre-treatments
of the MicroNIR dataset were tested to assess the features regarding the cashew apple composition,
minimizing irrelevant variations within the spectra to obtain quality data: Multiplicative scatter
correction (MSC), standard normal variate (SNV), and first derivatives, using Savitzky–Golay filter
with a second order polynomial for five points (Figure S1 in Supporting Information). Therefore,
the pre-processing by MSC was chosen as an input for the following chemometric analysis.
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To comprehend and classify the variability of the organic compounds in intact cashew apples
according to the genotype, via detecting the tendencies related to the composition, a method based on
hierarchical clustering was developed to segregate the samples in groups according to the composition
similarity. Figure 1 presents a 3D dendrogram in heat map form: Genotypes with the harvest year in
columns; wavelength in rows, and the signals intensities illustrated in colors. The relatively deep red
represents the high relative intensity (wavelength); the relatively deep blue, the low relative intensity;
and white, the intermediate intensity. Important tendencies for four cluster formations were observed
in the heat map based on genotype dissimilarity (Figure S3 in Supporting Information). Cluster 4
presented the most dissimilar genotypes (zero similarity). The results reflected the natural differences
among the groups, which were formed by different spectroscopic information from cashew genotypes
pulp composition.

 

Figure 1. Three-dimensional (3D) dendrogram (sample × wavelength from MicroNIR × intensity)
representing the chemical composition similarity relationships among the genotypes.

Multivariate Regression Analysis of the MicroNIR Dataset

Prior to performing the partial least squares (PLS) analysis, the ◦Brix value, total acidity,
and concentrations of ascorbic acid (vitamin C) were determined in 31 cashew apples randomly
chosen from the set of accessions. Three regression models were created for each dependent variable
(◦Brix, total acidity, and ascorbic acid) with spectroscopic data to evaluate the association between the
chemical variability, genotype and NIR profile. Sequential to these supervised regression modeling,
the PLS by intervals, known as iPLS (interval PLS), was developed to maximize the covariance
between the independent variables on the MicroNIR dataset (X matrix) and each dependent variable.
This method realizes individuals PLS models for each pre-defined spectra intervals, optimizing the
predictive capacity of the model, while assisting the interpretation by reducing the number of variables,
thereby providing superior prediction capacity using all the variables [18]. Figure 2 illustrates the
relevant intervals (highlighted in green color) for regression modeling, based on RMSECV using the
Brix values (a) and total acidities (b). The modeling using the concentrations of ascorbic acid was
weakly adjusted based on statistical parameters (data not shown).
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Figure 2. Spectral average (black line) of the MicroNIR spectra from different genotypes of cashew.
The relevant absorbance selected by the iPLS model (green) for the genotype discrimination based on
(a) ◦Brix and (b) total acidity.

The merit graph obtained by regression modeling, using ◦Brix and total acidities, were evaluated
to assess the quality of the calibration models, which are illustrated in Supplementary Information
(Figures S4 and S5). The Hotelling’s T2 ×Q residuals graph indicates that the sample did not negatively
influence the modeling [19]. The leverage plot revealed the influence of each genotype on models
based on Hotelling’s T2, and the studentized residuals (mean zero and unit variance) indicated the
lack of fit of some quantitative parameters [20]. However, despite the high leverage and high residuals,
the respective genotypes expressed a very low studentized Y residual, and therefore, the regression
model was still able to sufficiently predict the ◦Brix and total acidity based on selected MicroNIR spectra
(green region in Figure 2). The robustness of both prediction models (◦Brix and total acidity) was
achieved by the proximity between both regression curves from calibration and cross-validation (red
and green lines). Furthermore, the statistical parameters used to assess the modeling quality (Table 1)
indicated a well-adjusted models for both ◦Brix and total acidity, according to the high total variance
cumulated using three latent variables (LVs) (higher than 94%), low bias model, low calibration and
cross-validation errors, and proximity between the calibration and cross-validation errors. Additionally,
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the root mean square error of calibration (RMSEC) and root mean square error of cross-validation
(RMSECV) ratio, close to 0.75, is indicative of a well-adjusted model [21,22].

Table 1. Statistical parameters obtained by multivariate regression modeling of MicroNIR spectra with
◦Brix and total acidity using 3 LV.

Model 3 LV1 (%) r2 cal2 RMSEC3 r2 CV4 RMSECV5 RMSEC/RMSECV6 Bias7 CV Bias8

◦Brix 96.5 0.74 0.11 0.46 0.16 0.69 3.3 × 10−15 −0.004

Acidity 97.1 0.66 1.19 0.46 1.53 0.78 1.8 × 10−15 0.064
1 Percentage variance captured by the regression model; 2 Coefficient of correlation between the real and predicted
values during the calibration; 3 Root mean square error of calibration; 4 Coefficient of correlation between the real
and predicted values during the cross-validation; 5 Root mean square error of cross-validation; 6 Similarity criterion;
7 Average difference between the estimator and real values during the calibration; 8 Average difference between the
estimator and real values during the cross-calibration.

2.2. UPLC-HRMS

Commonly, in UPLC-HRMS analysis, some organic compounds may preferentially ionize in
the positive or negative ionization mode, as phenolic and carboxylic derivatives ionized well in
negative ionization mode, while flavonoids and alkaloids ionize better in positive ionization mode.
Therefore, the cashew apple pulps were analyzed under a negative ionization mode to screen the
aforementioned compounds and differentiate each cashew apple pulp according to the genotypes.
Due to the complexity of the chromatographic data, visual differentiation of the sample composition
could not be achieved. Therefore, non-targeted multivariate analyses by hierarchical cluster analysis
(HCA) and principal component analysis (PCA) were applied to comprehend the variability of the
secondary metabolites in cashew apple pulps according to the genotype.

Initially, the unsupervised method HCA was applied: Segregating the pulps in groups according
to similarity. Important tendencies for four cluster formations were observed in the dendrogram based
on the genotype at a similarity index of 0.362 (Figure S3 in Supporting information). Cluster 4 presented
the most distant samples included in the study, with zero similarity (as also observed in Figure 1).
The results reflected the natural differences among the groups, which were formed as a function of pulp
composition, dependent on the cashew genotype. In addition, the PCA method was applied to assist
the modeling and interpretation of the multivariate data, with the scores graph presented in Figure 3a,
and the respective loadings (plotted in lines) in Figure 3b. The tentatively identified biomarkers are
presented in Table S1 (Supporting information). The main separation tendencies of the samples were
observed with respect to PC1 and PC2 axes with a total explained the variance of 36.7%. The clusters
observed in HCA were important for identifying the resultant grouping in the scores graph. The pulps
were assigned symbols according to the clustering tendency: Blue triangles for negative scores of PC1
and PC2; red squares for positive scores of PC1 and negative scores of PC2; black stars for positive
scores of PC1 and PC2; and green circles for positive scores of PC2. The samples with no relevant result
were symbolized by gray circles considering the unrepresentative replicates according to the year.
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Figure 3. Principal component analysis (PCA) multivariate analysis of UPLC-HRMS data from cashew
apple pulps of different genotypes: a) PC1 × PC2 scores coordinate system for the cashew apple pulps
from different genotypes; b) respective loadings plotted in lines form. The samples were assigned
symbols according to the clustering tendency: blue triangles for negative values of PC1 and PC2;
red squares for positive values of PC1 and negative values of PC2; black stars for positive values of PC1
and PC2; green circles for positive values of PC2. The samples that did not present relevant results
were symbolized by gray circles.

Compounds with significant changes, based on genotypes according to the chemometric evaluation,
and not exhibiting overlapping signals, were integrated (details in Experimental Section 4.2.2), and their
variations were expressed as the relative contribution. The relative peaks areas were calculated for
quantitative expression of the chemical properties, with the differences evaluated by ANOVA single
factor. Figure 4 illustrates the relative contributions of the total ion abundance of the peaks in the pulps,
since the relative amplitude of the peaks provided the relative population of the isotopic forms in the
chromatograms. The results from the signal area of the base peak intensity (BPI) corroborated the
PCA results, considering the deviation of the method from the three replicates of sampling during two
years, which totaled 6 pulps for each genotype, with the hydroxybutanoic acid ethyl ester-hexoside (at
3.28 min) being responsible for the pulps clustering at the red group, and galloylhexose I (at 1.60 min)
and digalloylhexoside I (at 2.82 min) for the pulps clustering in the blue group.
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Figure 4. Relative contributions of the isotopic forms in chromatograms (UPLC-HRMS) for the
compounds at retention times of 1.60, 2.82, 3.23, 3.82, and 4.25 min.

2.2.1. Multivariate Classification Analysis of the UPLC-HRMS Dataset

Based on the non-targeted chemometrics results and the relative quantification, the classification
modeling by partial least squares-discriminant analysis (PLS-DA) was employed to improve the
association of the chemical variability of the pulps according to the cashew genotype, which is
illustrated in Figure 5. The model presented a classification ability of 88.05% using 3 LVs, considering
the year replicate. The statistical parameters used to assess the quality of the modeling (Table 2)
indicated a well-adjusted classification, with an RMSEC/RMSECV ratio close to 0.75 (similar values) [22].
The low calibration and cross-validation errors expressed a suitable predictive performance of the
model estimated as a function of the global error, samples leverage, and the sample residual X-variance.
The low error values indicated the similarity between the pulps used for prediction and those used to
make the calibration model.

Table 2. Parameters from partial least squares-discriminant analysis (PLS-DA) classification model of
UPLC-HRMS data from cashew apple pulps of different genotypes.

Model LV1+LV2+LV31 r2 cal2 RMSEC3 r2 val4 RMSECV5 RMSEC/RMSECV6

PLS-DA 88.05% 0.88 0.298 0.85 0.341 0.874
1 Total variance percent in X matrix refer to 3 LVs; 2 Coefficient of correlation between the real and predicted groups
during the calibration; 3 Root mean square error of calibration; 4 Coefficient of correlation between the real and
predicted groups during the cross-validation; 5 Root mean square error of cross-validation; 6 Similarity criterion.

13



Metabolites 2019, 9, 121

Figure 5. PLS-DA classification model of UPLC-HRMS data from cashew apple pulps of different
genotypes: (a) LV1 × LV2 × LV3 scores 3D plot; (b) respective loadings potted in lines form
(b) from PLS-DA for classification of the cashew apple pulps. Legend: 1-galloylhexose I (1.60
min); 2-digalloylhexoside I (2.82 min); 3-hydroxybutanoic acid ethyl ester-hexoside (3.28 min);
4-myricetin-3-O-glucoside (3.83 min); and 5-myricetin-3-O-rhamnoside (4.25 min).

3. Discussion

It is known that NIR spectroscopy is a non-destructive, low-cost, and non-invasive procedure
providing prompt results for a sample composition: Any molecule containing C-H, N-H, S-H, or O-H
bonds. However, due to the intrinsic overlapping of the signals, pre-processing is mandatory. The MSC
and SNV algorithms presented similar effects, which were considered as exchangeable (Figure S1 in
Supporting Information). After the application of the MSC algorithm, the spectra were adjusted to
present the same scatter level estimated by a mean spectrum. Conversely, the SNV algorithm treated
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each spectrum separately by absorbance autoscaling [23]. The derivative algorithm emphasized steep
peaks and enhanced the overlapping peaks, as well as reduced the measurement variations, thereby
improving the differentiation of the bands. The first and/or second derivatives are more commonly
applied, and the second derivative NIR spectrum may result in sharp signals [24,25]. Therefore,
the MSC algorithm was chosen for the development of the experiments.

According to the HCA-heat map (Figure 1), important tendencies for four main cluster formations
were observed based on the genotype, even with differences in fruit morphology, such as shape, size,
and peel color. Another disadvantage of NIR analysis was the penetration of radiation into the tissues
of fruits, which skin may reduce the light penetration that decreases with the depth [26]. The results
reflected the natural differences among the cashew apple groups formed as a function of the composition
intrinsically related to the genotype. Cluster 4 presented the most dissimilar samples compared to
those of the other groups. The main absorbance peaks, related to the clustering, were located between
1150 and 1340 nm, 1370 and 1850 nm, and 1900 and 2020 nm. The absorbance from 2040 to 2170 nm was
characterized as indicative of non-relevant functional groups. The absorbance from 1400 to 1620 nm
and 1900 to 2020 nm were characterized as the second and first overtone of the OH stretch, respectively.
The absorbance from 1150 to 1340 nm and 1650 to 1850 nm were due to the C-H stretches related
to the second, and first overtone, respectively, which may be from carbohydrates and other organic
compounds present in the cashew apple skin and/or pulp. The band at 1340 nm is attributed to the
CH group from cellulose [27]. Additionally, it was highlighted that the O-H group from monomeric
organic acids presented the first overtone at 1445 nm; and a characteristic overtone around 1890 nm
indicative of the O-H stretching combined with C-O stretching from organic acids [26,28]. However,
it is known that all these absorption bands are close to the stronger water absorption regions, hindering
the signals observation [29].

The iPLS evaluation highlighted the region between 1250 and 1400 nm as the most important for
fruit discrimination, based on the calibration modeling by ◦Brix values and total acidity (statistical
parameters, described in Table 1. The modeling for ascorbic acid was weakly adjusted based on
statistical parameters. In particular, the absorbance range between 1570 and 1650 nm was important
for the ◦Brix model, while the absorbance between 1800 and 1900 nm was important for the total
acidity. The absorbance between 1650 and 1850 nm may be related to the C-H stretches from the
second, and first overtone, respectively (Figure 1), which may be from carbohydrates and other organic
species in cashew apple skin and/or pulp; and between 1800–1900 nm may be related to carbonyl and
carboxyl groups from carboxylic acids [27]. The regression modeling ◦Brix values (a) and total acidities
(b) were well adjusted based on statistical parameters, and the modeling for ascorbic acid was weakly
adjusted. This may be because the MicroNIR was operated between 1150–2170 nm, and some organic
acids found in fruits typically show bands from O-H group related to the second and third overtones
approximately at 1000, and 800 nm, respectively, as well as starch and sugars to the second (920 nm)
and the third (720 nm) overtones of O-H stretching, and the third (910 nm) and the fourth (750 nm)
overtones of C-H stretching [28].

The relatively low correlation coefficients (r2) for both models (◦Brix values and total acidity)
express the rather weak calibration performances estimated as a function of the global model error,
samples leverage, and the sample residual X-variance. Therefore, the cross-validation results indicated
that further parameters related to the fruits morphology (shape, size, and color), non-homogeneous
distribution of particles into the fruits (density variations), and environmental factors that may affect
the instrument performance as the illumination (since all the analysis was developed during the year),
must be taken into account for improving the comprehension of the chemical and physical variability of
the cashew apples from the germplasm bank of Embrapa. For instance, small physical variations from
sample to sample may lead to light scattering that influences the MicroNIR measurement, resulting in
baseline shifts and scaling variations (intensity variations), and consequently, disturbing the future
predictions evaluation.
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Prior to the chemometric analysis of the HPLC-HRMS analysis, a valuable feature of
chromatograms acquisition was taken into account, since the retention times of the chromatographic
peaks are sensitive to minor fluctuations in temperature, pH, flow, pump operation, etc. To solve the
problem of small peaks shifts related to the same compound inter-chromatograms, some different
peak alignment methods were tested. The alignment practice can be performed manually, using COW
(correlation optimized warping) [30], or using the bucketing method, which reduces the chromatogram
dimensionally by slicing it into equal sized regions [31], making it easier to analyze the respective
loadings. Therefore, all the chromatogram peaks were previously aligned using the COW method,
which is illustrated in Figure S2 in Supporting Information.

Significant composition variability was detected in PCA regarding cashew genotypes despite the
low cumulated variance, which indicated the existence of further factors beyond the scope of this study,
such as seasonality. An examination of the loadings provided evidence of the variables (compounds)
responsible for the separations or clustering observed in scores. The signals from galloylhexose I
(at 1.60 min, 331.0650 m/z), digalloylhexoside I (at 2.82 min, 483.0741 m/z), hydroxybutanoic acid
ethyl ester-hexoside (at 3.28 min, 293.1242 m/z), myricetin-3-O-glucoside (at 3.83 min, 479.0826 m/z),
myricetin-3-O-rhamnoside (at 4.25 min, 463.0875 m/z), and a mixture of unknown compounds (at 4.82
min) were responsible for the pulps placement based on genotypes. Minor compounds were irrelevant
due to the pretreatments of mean centering applied over the samples [16]. According to Figure 3,
the negative loadings of PC1 are the pulps symbolized by blue triangles (2001/3, 2001/6, 2005/122,
B 963, and B967) with relatively high amounts of galloylhexose I and digalloylhexoside I. This latter
compound is a trihydroxybenzoic acid derivative, which provides astringent flavor and can contribute
to the characteristic bitter taste of immature cashew apple [32]. The pulps symbolized by red squares
(CP 06, CP 09, B 393, and BRS 275) and black stars (2005/127, 2005/133, 2005/102, BRS 226, CP 76, 98/101)
exhibited tendencies of having relatively high amounts of hydroxybutanoic acid ethyl ester-hexoside
at a retention time of 3.28 min according to positive loadings of PC1. Hydroxybutanoic acid ethyl
ester-hexoside has been previously described in melon fruit and it is considered a precursor of volatile
compounds [33]. The presence of this compound has been associated with some amino acids, such as
alanine, glutamine, isoleucine, phenylalanine, tryptophan, and tyrosine. Alanine has been reported as
one of the key amino acids of the characteristic profile of cashew apple. Phenylalanine and tyrosine
have also been detected but in small amounts [34]. The positive loadings of PC2 exhibited the tendency
of the cashew apple pulps symbolized by green circle (2005/111, 2005/223, 2001/13, 98/116, and B 741)
and black stars (2005/127, 2005/133, 2005/102, BRS 226, CP 76, 98/101) to have relatively high amounts
of the flavonoids, myricetin-3-O-glucoside, myricetin-3-O-rhamnoside, and an unknown mixture of
compounds between the retention times of 4.79 and 4.85 min. The presence of myricetin-derived
and other flavonoids compounds in pulps may offer biological benefits, including the reduction of
cardiovascular disease and risks of cancer [3], as well as antihyperglycemic property [35]. Furthermore,
these compounds have been reported in methanol-water extracts of cashew apple [3]. The corroborative
results between quantitative and chemometric analyses confirm the advantages of an untargeted
multivariate analysis, since the compounds and degradation products are not always known, and it is
sometimes difficult to find certified standards.

According to Figure 5, the LV1 axis was most relevant in clustering the cashew apple pulps
in black color (2005/102, 2005/111, 2005/127, 2005/133, 2005/223, 2001/13, 98/101, 98/116, BRS 266,
B 741, CP 76), and in separating them from those in red (CP 06, CP 09, B 393) and blue (2001/3,
2001/6, 2005/122, B 963, B 967). In addition, the LV2 axis was important in clustering the red samples
at the positive scores, and LV3 was relevant in the separation of the red and blue cashew apple
pulps. The interpretation of the loadings revealed that the pulps in black had higher amounts of
galloylhexose I and digalloylhexoside I than those of in red and blue. The results corroborated that
the pulps in red color have a higher amount of hydroxybutanoic acid ethyl ester-hexoside than those
in the black and blue pulps; in addition, opposite behavior between the hydroxybutanoic acid ethyl
ester-hexoside and galloylhexose I was presented. Finally, the LV3 axis confirmed the relatively high
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amount of the flavonoids, myricetin-3-O-glucoside and myricetin-3-O-rhamnoside, in the pulps in
blue and presented the opposite behavior between these flavonoids and hydroxybutanoic acid ethyl
ester-hexoside. Therefore, the statistics data indicated that the model could be acceptable to classify
new or unknown cashew apple pulps based on the main secondary metabolites.

4. Materials and Methods

4.1. Sampling and Experimental Planning

Based on experimental viability, 764 cashew apples (Anacardium occidentale, L.) from 24 different
accessions were randomly harvested at the Embrapa experimental station (Pacajus, Ceará, Brazil)—
coordinates 4◦11′07”S; 38◦30′07”W; altitude: 70 m. The region has a tropical climate, average
temperatures of 26 to 28 ◦C, and 1020 mm average annual rainfall. The soil is classified as Ultisol and
has a sandy/medium texture with low organic matter content. The cashew samplings were collected
between August and December in two years. Table 3 presents the different genotypes with their
respective accession numbers and morphoagronomic characteristics.

Table 3. Illustration of the cashew genotypes associated with the accession number and
morphoagronomic characteristics: plant size, tree appearance, fruits color and shape, and origin
(county-state).

Accession
Number

Plant Size
Tree

Appearance
Fruit Color Fruit Shape Sampling Origin Illustration

CP 76 tall Open erect orange pyriform crop*/Maranguape-CE

 

Clone
98/101 semi tall compact

erect orange pyriform breeding
program*/Pacajus-CE

Progeny
2005/127 semi tall compact

erect dark red pyriform breeding
program/Beberibe-CE

 

Progeny
2005/133 semi tall open erect orange spherical breeding program/Cruz-CE
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Table 3. Cont.

Accession
Number

Plant Size
Tree

Appearance
Fruit Color Fruit Shape Sampling Origin Illustration

BRS 226 dwarf compact
erect orange pyriform crop/Pio IX-PI

Clone
2005/102 tall compact

erect orange pyriform breeding
program/Beberibe-CE

CP 09 semi tall compact
erect orange pyriform crop/Maranguape-CE

B 393 tall compact
erect light red spherical germplasm*/Aracati- CE

 

BRS 275 semi tall open erect orange pyriform crop/Pacajus-CE and
Maranguape-CE

B 963 tall open erect yellow
orange pyriform germplasm/Maranguape-CE

Hybrid
2001/3 semi tall compact

erect orange pyriform
breeding

program/Maranguape-CE
and Pio IX–PI
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Table 3. Cont.

Accession
Number

Plant Size
Tree

Appearance
Fruit Color Fruit Shape Sampling Origin Illustration

Hybrid
2001/6 semi tall compact

erect
yellow
orange pyriform

breeding
program/Maranguape-CE

and Pio IX-PI

B 967 tall open erect orange cylindrical germplasm/Pacajus-CE

 

CP 06 tall open erect yellow conical
obovate crop/Pacajus-CE

Progeny
2005/122 semi tall open erect yellow spherical breeding

program/Beberibe-CE

Hybrid
2001/13 semi tall open erect orange pyriform breeding

program/Pacajus-CE

Clone
2005/111 semi tall open erect orange pyriform breeding program/Serra do

Mel-RN

Clone 98/116 semi tall open erect orange pyriform breeding program/São Luiz
do Curu-CE
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Table 3. Cont.

Accession
Number

Plant Size
Tree

Appearance
Fruit Color Fruit Shape Sampling Origin Illustration

B 741 semi tall compact
erect orange pyriform

breeding program (CP 76 x
A.

microcarpum)/Maranguape-CE

Progeny
2005/223 semi tall open erect orange pyriform breeding

program/Beberibe-CE

Embrapa 51 semi tall open erect orange pyriform crop/Pacajus-CE

M 886 tall open erect yellow spherical breeding
program/Beberibe-CE

1001 tall open erect orange pyriform crop/Pacajus-CE

Clone
2003/102 semi tall compact

erect orange pyriform breeding program/Pio IX
-PI

* Legends: crop means registered product on market; breeding program means plant before crossbreed; germplasm
means plant collected and conserved in the germplasm bank.

4.2. Portable NIR Spectrometer Analysis

The portable NIR (MicroNIR) analysis of the cashew apple composition was divided into two
stages. First, all the 764 intact fruits were analyzed by MicroNIR. After that, 31 fruits were randomly
selected for the determination of quantitative parameters, such as ◦Brix, total acidity, and concentration
of ascorbic acid (vitamin C) to develop multivariate regression models.

The NIR experiment was acquired using a portable NIR spectrometer (MicroNIR 1700, Viavi,
Milpitas, CA, USA), which operated in a range between 1150 and 2170 nm (spectral resolution of
10 nm,), with dimensions of 45 mm diameter × 42 mm high, two tungsten sources for reflectance
measurements, and a continuous monochromator based on a linear variable filter. The parameters for
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spectral data acquisition were set at 50 ms integration time and an average of 100 scans. The reference
spectrum for the absorbance calculation was obtained from a piece of Spectralon™, and the dark signal
was obtained by pointing the measurement window of the instrument to the ambient environment.

4.2.1. Determination of ◦Brix, Total Acidity, and Concentration of Ascorbic Acid

The ◦Brix, total acidity, and concentration of ascorbic acid (vitamin C) were determined in 31
cashew apples randomly chosen from the set of accessions. These experiments were carried out to use
the quantitative results as categorical variables (Y column) to develop multivariate regression models
by partial least square (PLS) analyses by maximizing the covariance between X matrix (NIR spectral
data) and Y responses (◦Brix, total acidity, and ascorbic acid as dependent variables).

The ◦Brix (concentration of sucrose w/w) was determined following the AOAC method (2005) [36]
(soluble solids content), which was obtained by refractometry using a digital refractometer (ATAGO™
N1, Kirkland-WA-USA) with automatic temperature compensation.

The total acidity was determined as follows: Total titratable acidity (TTA) determined by titration
with NaOH solution (0.1 N) in 1 g of the pulp diluted to approximately 50 mL of distilled water,
containing 3 drops of 1% phenolphthalein until pink coloration, was observed. The results were
expressed as the percentage of malic acid according to IAL (1985) [36].

The concentrations of ascorbic acid were determined by titration with 0.02%
2,6-dichloro-indophenol (DFI) as reported by Strohecker and Henning (1967) [37]. One gram of
pulp was diluted to 100 mL with 0.5% oxalic acid and homogenized. Subsequently, 5 mL of this
solution was diluted to 50 mL with distilled water and titrated. The results were expressed as mg·100
g−1 FW (fresh weight).

4.2.2. Chemometric Analysis of the MicroNIR Dataset

Different multivariate approaches were performed on the numerical matrix from 764 cashew apple
fruits (Section 2.1). The averaging method was applied on those fruits from the same accession (from
four to six replicates), resulting in 135 mean spectra. The spectral region between 1150 and 2170 nm
was used for the modeling, and a matrix with the dimensionality of 16,875 data points (135 spectra ×
125 variables into each spectrum) was generated. The samples were named according to the accession
number and year of harvest.

For numerical matrix construction, each spectrum was converted to an American Standard
Code for Information Interchange (ASCII) file and imported by the Origin™ program (version 9.4).
To reduce the dimensionality of the original data and to assist the interpretation of the multivariate
dataset, the matrix was averaged along variables by a factor of 2 using the PLS-Toolbox™ program
(version 8.6.2, Eigenvector Research Incorporated, Manson, WA USA), and imported by GENE-E
program (https://software.broadinstitute.org/GENE-E/index.html) for pattern recognition through
the hierarchical clustering algorithm by heat map. The Euclidean distance was used to measure
the proximity between the samples (columns), and the average linkage method (sum-of-squares
approach in calculating intercluster distances) was applied. The results were presented as heat maps
(three-dimensional (3D) dendrogram = sample ×wavelength × intensity) [22].

In addition to the unsupervised analysis, supervised methods by PLS were developed using the
◦Brix values, total acidity, and concentrations of ascorbic acid previously calculated in Section 2.2.1 to
improve the identification of chemical changes according to genotypes by MicroNIR. The simplified
PLS (SIMPLS) algorithm was applied to build the models and the LVs were selected in accordance with
the statistical parameters based on the full cross-validation method: RMSEC, RMSEV, and calibration
and cross-validation coefficients (r2) [16].

4.3. UPLC-HRMS Analysis

Due to the health benefits of the cashew apple, additional experiments were developed in parallel
by non-targeted UPLC-HRMS analysis. A total of 24 different genotypes of cashew apple (as described
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in Section 2.1) were evaluated. The cashew apples were manually pressed to obtain the resultant pulp,
followed by centrifuged for 5 min at 804.6 g (IEC clinical centrifuge, Damon/IEC Division, Needham,
MA, USA). The samples were preserved at −80 ◦C until the analysis.

Prior to the UPLC-HRMS analysis, the samples were filtered using PTFE membranes of 0.22 μm.
The analysis was performed on an Acquity system (Waters) coupled with quadrupole/TOF (Waters)
equipped with an ESI source operated in the positive ion mode. The chromatographic separation was
performed using Waters Acquity UPLC BEH (150.0 × 2.1 mm, 1.7 μm) column with the temperature
set at 40 ◦C. Water and acetonitrile were used for the mobile phase, both with 0.1% formic acid.
The gradient ranged from 2% to 95% of water in 15 min in a flow of 0.4 mL·min−1 and injection volume
of 5.0 μL per sample. The desolvation gas was N2. The desolvation temperature was set at 350 ◦C at
a flow rate of 350 L·h−1 and a source temperature of 120 ◦C. The capillary voltage was set to 3200 V.
The collision energies/cone voltages were set at 6 eV/15 V (low) and 30–50 eV/30 V (high) to achieve
sufficient fragmentation. Data were collected using the negative ionization mode between 100 Da and
1180 Da, and the mode tandem was MSE.

4.3.1. Chemometric Analysis of the HPLC-HRMS Dataset

Chemometric analysis was performed on the numerical matrix from 24 cashew apples harvested
in duplicates this year, and analytical triplicate, resulting in 144 chromatograms. The chromatographic
region between 0.65 and 7.12 min was selected. The samples were named according to the accession
numbers (Table 3).

The same procedure applied for numerical matrix construction from MicroNIR (Section 4.2.2)
dataset was also applied for the UPLC-HRMS dataset. Therefore the chromatograms were converted
to an American Standard Code for Information Interchange (ASCII) file and import by the Origin™
program (version 9.4) in order to build the matrix. The final matrix was exported for chemometric
analyses by HCA, PCA, and PLS-DA using PLS Toolbox™ program (version 8.6.2, Eigenvector Research
Incorporated, Manson, WA, USA).

The normalized scaling parameter and baseline correction, using linear fit algorithms, were applied
over the variables, and mean-centered processing was applied over the samples, which reduced the
noise and minor analytical errors [38,39]. For HCA, the matrix was mean-centered, and the incremental
linkage method (sum-of-squares approach in calculating the inter-cluster distances) was applied.
The Euclidian distance was used for distance metric. The PCA was performed using singular value
decomposition (SVD) algorithm. To improve the identification of the chemical constituents associated
with cashew genotype, a supervised method by PLS-DA was employed using the SIMPLS algorithm.
The number of LVs were selected in accordance with the statistical parameters: RMSEC; RMSECV;
calibration and cross-validation coefficients (r2); and similarity criterion RMSEC/RMSECV ratio above
0.75 [16,21].

4.3.2. Relative Contribution

The peaks detected as exactly as possible, in both m/z and retention time, were used for determining
the peak area for achieving the relative contribution of the compounds with less overlapped signals
in the chromatograms. The relative contribution of the areas was calculated based on the total ion
abundance from the peaks in the samples, since the relative amplitude of the peaks provides the
relative abundance of the isotopic forms in the chromatograms. Therefore, the normalized means in the
base peak intensity (BPI) at the retention times of 1.60, 2.82, 3.28, 3.83, and 4.25 min were determined.

The results were evaluated using the analysis of variance ANOVA single factor (significance level
of 0.05; means comparison using Tukey test; Levene’s test for the homogeneity of the variance) to
statistically certify the differences among the relative contributions. The deviation of the method was
estimated based on the null hypothesis (p-value) from the three replicates of sampling for two years,
totaling 6 samples for each cashew genotype.
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5. Conclusions

It was demonstrated that MicroNIR spectroscopic analyses of the cashew apple composition
provided a non-destructive and low-cost method for obtaining prompt results. In addition, important
composition tendencies were observed with four fruits clusterings according to their composition
similarity, and genotype, even considering the morphologic differences, including shape, size, and color.
The multivariate regression results, obtained using ◦Brix and total acidity, showed that it is possible to
satisfactorily predict ◦Brix and total acidity within the cashew genotypes. However, the parameters
related to the fruit composition, and the environmental factors that affect the instrument performance
must be taken into account to improve the comprehension of the chemical and physical variability of
the cashew apples from the germplasm bank of Embrapa.

Additionally, the chemometrics evaluation of the UPLC-HRMS dataset was suitable to follow
changes in the composition of cashew apple pulps according to genotype. The current study
resulted in the identification of relatively high amounts of different bioactive compounds, including
galloylhexose I, digalloylhexoside I, hydroxybutanoic acid ethyl ester-hexoside, and the flavonoids,
myricetin-3-O-glucoside and myricetin-3-O-rhamnoside, in different genotypes. This information
is useful for breeding programs to establish accessions with higher concentrations of important
compounds for human health.
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values: a) influence plot of Hotelling’s T2 × Q residuals, (b) leverage × studentized residuals, c) Y calibration
× cross-validated Y with 95% confidence limits, and d) scores on LV1 × LV2. Figure S5: Regression modeling
using the MicroNIR dataset from different genotypes of cashew apples based on total acidity: a) influence plot of
Hotelling’s T2 × Q residuals, (b) leverage × studentized residuals, c) Y calibration × cross-validated Y with 95%
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Abstract: The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to
conventional classification and organization within the species. To shed further light on the
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infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among
44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided
over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and
rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary
metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite
fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile
and non-volatile metabolites. Together these results enabled an estimate of “metabolomic/elemental
distance” and its correlation with the genetic GBS distance of melon accessions. This study indicates
that extensive and non-targeted metabolomics/elemental characterization produced classifications
that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon
Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome
to metabolome/element associations proved less clear. We suggest that the combined genomic,
metabolic, and element data reflect the extensive sexual compatibility among melon accessions and
the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.

Keywords: genetic resources; melon; genotype by sequencing; elemental analysis; metabolome;
Cucumis melo

1. Introduction

Cucumis melo L., melon, is a phenotypically highly variable species with respect to fruit
characteristics [1]. Melon fruits vary not only in size and shape but also in the accumulation of
various metabolites, the most obvious of which include the horticulturally important metabolites
of external and internal pigmentation, volatiles responsible for fruit aroma, and carbohydrates and
organic acids accounting for sweetness and acidity [2]. Melon fruit range in sizes up to 20 kg; in shape
from spherical to very long; in taste from insipid to sweet, acidic, or bitter; have external colors of green,
yellow, orange, and red, with internal flesh colors of white, green, orange, or cream; and encompass a
broad range, from highly aromatic to almost non-aromatic types. The species is unique in that it has
representatives of both climacteric and non-climacteric ripening physiology [3], which further impacts
on the metabolite components of the ripe fruit.

The extreme fruit variation within Cucumis melo does not easily lend itself to conventional
infraspecific classification. Kirkbride [4] suggested that the species should be considered to consist of
two subspecies, based on the pubescence of ovaries and young fruits. Accordingly, ovaries and young
fruits having appressed short hairs were assigned to C. melo subspecies agrestis and those having pilose
or lanate, spreading, long hairs were assigned to C. melo subsp. melo. However, it is often not easy to
reconcile young fruit pubescence with the melon fruits seen in marketplaces in various parts of the
world. Although markets in some regions feature young cucumber-like melons, most markets feature
mature ripe sweet dessert melons, others ripe and highly aromatic but insipid “duda’im” melons, and
yet others fully grown but unripe “snap” melons [1,5].

Attempts to classify melons according to fruit characteristics date to the first half of the 19th
century, and over the past two centuries, a great number of proposed infraspecific classifications for
melons have accumulated (reviewed in [6]). Among these proposed classifications are “lumpers”,
which have not indicated enough divisions within the species to adequately reflect its wide variation,
and “splitters”, which have fragmented the species into an unwieldy number of units. To be feasible,
any useful infraspecific classification must at once be reflective of genetic relationships and also be
easily observed by those for whom the classification is intended, which should be a wide international
audience that includes scientists and non-scientists alike. For melons, this means that the characteristics
of fruits should serve as the basis for any such classification. Given all of the above considerations, our
view is that the infraspecific breakdown to 16 varietas first proposed by Pitrat et al. [6] or cultivar-groups
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(“Groups”) (adopted by Burger et al., [2]) is currently the most useful. Groups are lower ranking than
the subspecies, but each Group can consist of more than one market type.

The economically most important Groups are the Reticulatus (climacteric, netted), Cantalupensis
(climacteric, non-netted), Inodorus (non-climacteric), and Ameri (climacteric, dryland cultivation,
Asian), all of which have sweet flesh when ripe and belong to subsp. melo. Other Groups include
the Flexuosus (snake melon), Duda’im (pocket melon), Momordica (snap melon), and Khandalak,
and the East Asian Conomon (Oriental pickling), Makuwa, and Chinensis Groups. However, even
the placement of the various Groups into the two subspecies is not fully agreed upon, as may be
expected from a somewhat subjective classification based on the single trait of ovary pubescence.
The recent attempts at making order within the melon species, at the subspecies level, literally focused
on hair-splitting. For example, while the agrestis subspecies proposed by Pitrat et al. [6] encompasses
five Groups (Conomon, Makuwa, Chinensis, Momordica, and Acidulus), the agrestis as described by
Decker-Walters et al. [7] combines Momordica, Conomon, Duda’im, and Chito. The latter two Groups,
Duda’im and Chito, were placed in subsp. melo by Pitrat et al. [6], and Zhao et al. [8] recently traced
the Momordica Group to subsp. melo. Furthermore, the distinction between Reticulatus (climacteric,
netted) and Cantalupensis (climacteric, non-netted) based on netting is particularly unclear since
the netting phenotype is expressed as a continuum of what is basically a quantitative trait. Thus,
semi-netted Charentais-type melons have vacillated between the two infraspecific Groups [6,9,10].

The difficulty of clear infraspecific classification of the species is further confounded by the ease
of crossbreeding within the species, as well as the undocumented history, both early and more recent,
of most accessions, and the widespread occurrence of feral melons. Even the natural range of melon
species has been the subject of ongoing studies. Traditionally, melon has been grouped with other
Cucumis spp. associated with African origin [4]. However, recent studies indicate a closer relationship
to an Australian/Asian clade, suggesting that C. melo has origins in Asia [11,12]. Inodorous Group
melons have a Central Asian origin, traceable to the mid-9th century and had arrived in Spain by
the 11th century [13]; Duda’im Group melons have been traced to mid-9th century Persia [14]; and
Flexuosus Group melons have been traced back 4000 years to ancient Egypt [15,16].

Molecular-based phylogenetics contributed to the infraspecific classification of C. melo, consistently
supporting a subspecies separation, with small differences in the placement of some of the Groups [17,18].
Recently, Endl et al. [19] pointed to the complexity within the agrestis subspecies and showed that
there is likely a complex African/Asian/Australian origin of the agrestis types of C. melo, based on
polymorphisms in seven DNA regions. The most recent and encompassing phylogenetic classification
of the species was reported by Zhao et al. [8], which corroborated the subspecies classification but
placed the Indian Momordica Group within the melo subspecies. Interestingly, Leida et al. [20], based on
ca. 200 single nucleotide polymorphisms (SNPs), identified what they refer to as Spanish and European
Inodorus Group landraces within the agrestis subspecies, distinct from the well-known cultivated
Inodorus Group, suggesting that the non-climacteric genetic trait may have evolved independently
multiple times.

Metabolomic-based phylogeny, or chemosystematics, has regularly been attempted from the
early part of the last century [21], and was especially popular in the 1970s. However, these studies
focused on intra-family classification at the species level and were generally based on the measurement
of individual components of single biochemical families, frequently alkaloids, as allowed by the
technologies of the period. For example, the chemical systematics of the family Rutaceae and the order
Rutales attracted much research attention. This chemosystematic classification has been compared
to the phylogeny determined by molecular polymorphism strategies and found to be generally
confirmatory [22]. However, chemical systematics has not been attempted at the infraspecific level
for the obvious reason that a limited number of chemicals are unlikely to be adequate for describing
the extent of varietal differences. Furthermore, relatively minor differences due to few, or even single,
genes may still be causal of large differences in metabolic components. For example, the genetic
polymorphism controlling ripening physiology in melons, whether climacteric or non-climacteric,
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although essentially a simply inherited trait [3], will likely be accompanied by major changes in the
primary and specialized metabolomes.

While small subsets of metabolites may not be useful for infraspecific systematics and phylogenetics,
the number of metabolites available that can be analyzed by large-scale metabolomic strategies has
potential discriminatory power. The advances in metabolomics technologies now allow for these
techniques to be used and to attempt to analyze infraspecific relationships [23]. Recently, we described
a metabolomic comparison of two melon cultivars [24], and the results were encouraging regarding
the relevance of such analyses to a larger infraspecific classification. Furthermore, we performed a
targeted metabolomic characterization of 77 metabolites, primarily of quality-determining volatiles,
sugars, and carotenoids, of a novel segregating genetic population derived from random introgressions
between two distantly related melon accessions [25]. The results indicated the potential of metabolomic
analyses of genetic variability for the discovery of associations between metabolites and metabolic
pathways. Esteras et al. [26] also recently surveyed the volatile and carotenoid profiles of broad genetic
variability of melon and emphasized the value of unidentified and untapped diversity for melon fruit
quality improvement.

Considering the presence of hundreds of thousands of primary and specialized metabolites in
the plant kingdom, no single metabolomics platform is capable of describing the plant metabolome;
however, the combination of multiple platforms can approach that goal. In this study, the metabolite
profile of 51 melon accessions, representing the broad genetic variability in the species, was characterized
in depth using an orchestra of metabolomic strategies. The metabolomic technologies used comprised
flow injection electrospray mass spectrometry (FIE-MS) fingerprinting of semi-polar extracts, untargeted
proton nuclear magnetic resonance (1H-NMR) profiling of polar or semi-polar extracts, liquid
chromatography coupled to QTOF (quadrupole time-of-flight) mass spectrometry (LC-QTOF-MS)
of semi-polar compounds, gas chromatography coupled to mass spectrometry (GC-MS) of polar
extracts, solid-phase microextraction (SPME) GC-MS of volatiles, and inductively coupled plasma
mass spectrometry (ICP-MS) of mineral elements [27]. This broad array of technologies collected over
80,000 metabolite signatures, i.e., molecular features.

The analyses detailed in this report are based on the comparison of the infraspecific classification
as determined by metabolomic profiling of an extensive collection of accessions representing most
of the cultivar-groups of Cucumis melo, with the classification derived from extensive comparative
genotyping. The unique combination of >80,000 specific molecular features and >20,000 genetic
polymorphisms obtained in this study allowed us to compare the inferred infraspecific phylogenies
derived from each of the strategies and to test the relationships between metabolomic and genetic
distance in this complex widely cultivated species.

2. Results

2.1. Infraspecific Structure of Cucumis melo

Fifty-one accessions of Cucumis melo, representing the cultivar-groups Reticulatus, Cantalupensis,
Inodorus, Ameri, Flexuosus, Duda’im, Momordica, Khandalak, Conomon, Makuwa, and Chinensis,
were grown in Israel during a spring-summer season and flesh and rind samples of mature fruit were
harvested and distributed to the collaborating laboratories for the respective metabolomics analyses
(Figure 1, Table 1; Table S1). In our classification into subspecies and cultivar-groups, we followed the
proposed classifications of Pitrat et al. [6] and Burger et al. [2], with the exception of the placement of
the single Momordica accession PI414723, which we included among the subspecies melo.

In parallel, 44 accessions could be genotyped by sequencing (GBS), which, in brief, is based
on high-throughput sequencing of restriction enzyme fragments of sample DNA. For the present
study, GBS provided 23,931 informative SNPs, which were selected for genome-wide analyses and
phylogenetic classification. The accessions not included in the GBS analysis were provisionally
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genotyped by direct sequencing of over 11,000 bps, derived from 20 PCR reactions, yielding 116
informative SNPs (Figure S1).

Figure 1. Fruits of the accessions used for this study, representing most of the cultivar-groups of
Cucumis melo (listed in Table 1 and Table S1): Cantalupensis, Reticulatus, Inodorus, Ameri, Flexuosus,
Dudaim, Momordica, Khandalak, Conomon, Chinensis, and Makuwa.

Table 1. List of melon accessions used in this study. All accessions were analyzed for metabolites.
The seven accessions not included in the GBS analysis are noted as NI. Further details regarding the
accessions, including classification of climacteric behavior, are presented in Table S1.

Accession
Name

Subspecies
Cultivar
Group

Accession
Abbreviation

Included in
GBS

Clade (as in
Figure 2)

Batley’s
Hermaphrodite agrestis Chinensis BAH x I

PI161375 agrestis Chinensis PI161375 x I
Black Skin agrestis Conomon BSK NI
Freeman’s
Cucumber agrestis Conomon FRC x I

Tokyo Giant agrestis Conomon TOG x I
Early Silver

Line agrestis Makuwa ESL x I

Ohgon agrestis Makuwa OHG x I
PI157071 agrestis Makuwa PI157071 x I
PI157080 agrestis Makuwa PI157080 x I

Sakata’s Sweet agrestis Makuwa SAS x I
Ananas

Yoqne‘am melo Ameri AYO x IIa2

Ananas ‘En Dor melo Ameri EDO x IIa2
Bellegarde melo Cantalupensis BEL x IIc2

Charentais Fom
2 Res. melo Cantalupensis CHF x IIc2

Charentais melo Cantalupensis CHT x IIc2
Doublon melo Cantalupensis DOU x IIc2

Noy Yizre‘el melo Cantalupensis NOY x IIb1
Ogen melo Cantalupensis OGE x IIb1

PH 406 melo Cantalupensis PH406 x IIb1
Védrantais melo Cantalupensis VEP x IIc2
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Table 1. Cont.

Accession
Name

Subspecies
Cultivar
Group

Accession
Abbreviation

Included in
GBS

Clade (as in
Figure 2)

Indian Best melo Khandalak INB x II
Duda’im melo Duda’im DUD x II
PI435288 melo Flexuosus PI435288 NI

Armenian Yard
Long melo Flexuosus AYL x IIa3

Doya melo Flexuosus DOY x IIa3
Faqqous melo Flexuosus FAQ x IIa3
Striped

Armenian melo Flexuosus STA NI

Amarillo Pipa
Blanca melo Inodorus AMP x IIa1

Amarillo Oro melo Inodorus ARO x IIa1
Crenshaw melo Inodorus CRE NI

Golden Beauty melo Inodorus GOB x IIa2
Gold King melo Inodorus GOK x IIa1

Honey Dew
Green melo Inodorus HDG x IIa1

Noy Zahov melo Inodorus NZA x IIa1
Piel de Sapo melo Inodorus PDS x IIa1

PI 334107,
Kirkagac melo Inodorus PI334107 x IIa2

PI 201581b,
Kirkagac melo Inodorus PI201581 NI

Piel de Sapo
Redon melo Inodorus PSR x IIa1

Rochet melo Inodorus ROC x IIa1
Tendral Verde

Tardio melo Inodorus TVT x IIa1

Yellow Canary melo Inodorus YCA x IIa1
PI414723 melo Momordica PI414723 x II
Bender’s
Surprise melo Reticulatus BES x IIc1

Dulce melo Reticulatus DUL x IIc1
Fordhook Gem melo Reticulatus FOG x IIc1

Hale’s Best
Jumbo melo Reticulatus HBJ x IIc1

Krymka melo Reticulatus KRY x IIb2
Magyar Kincs melo Reticulatus MAK x IIb2

PMR45 melo Reticulatus PMR NI
Top Mark melo Reticulatus TPM x IIc1
PI149169 undecided undecided PI149169 NI

Qishu
Meshullash (outlier) (feral) QME x (outlier)

Based on 23,931 genetic polymorphisms, the 44 accessions could be classified into two well-defined
clusters (referred to as I and II) clearly distinguishing between the subspecies agrestis and melo (Figure 2).
A more distant accession designated Qishu Meshullash (QME), either Cucumis trigonus or C. colossus,
both of which have been included in agrestis by Endl et al. [19], was included in the GBS analysis as an
outlier. The smaller cluster I consists entirely of the subsp. agrestis accessions of the Chinensis, Makuwa,
and Conomon Groups. Within the Conomon Group, accessions FRC and TOG are weakly separated
from the accessions of the Chinensis and Makuwa Groups, which are interspersed among themselves.
The Momordica and Duda’im accessions are distinct from the agrestis subspecies but are also separated
from the rest of cluster II, which contains accessions of subsp. melo and consists of a number of
sub-clusters (Figure 2). Ten accessions of the Inodorus Group form a sub-cluster IIa1, which is distinct
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from, but closely related to, sub-cluster IIa2 comprising the Kirkagac-type Inodorus accessions and
the two Ananas-type Ameri Group accessions. The Flexuosus Group accessions (IIa3) also Group
together and are most closely related to the Inodorus and Ameri accessions. An additional cluster (IIb)
includes both the green-fleshed Ha‘Ogen-type Cantalupensis accessions (IIb1) and the closely related,
yet distinct, green-fleshed Galia-type Reticulatus (IIb2). A third cluster IIc consists of two sub-clusters
of orange-fleshed cultivars, one of which consists of the five orange-fleshed American accessions
of the Reticulatus Group (IIc1) and, the other of four European accessions of the orange-fleshed
Charentais-type Cantalupensis Group. The most unexpected placement was that of BEL, which we
assumed to be a Charentais-type Cantalupensis melon. However, it was genetically distinct from the
other subspecies melo types in clades IIa,b,c.

Figure 2. Phylogram representing the phylogenetic relationships of the 44 accessions of C. melo used for
GBS analysis in this study. The feral QME serves as outlier. Bootstrap values are based on 100 iterations.

The seven accessions, which were solely characterized metabolomically, are PI2015801, STA,
PI435288, BSK, PMR, PI149169, and CRE, and these were classified based on 116 informative SNPs
as shown in Figure S1 and Table S2. PI2015801 is a Kirkagac type of Inodorus and the PCR-based
sequencing placed it near the Kirkagac-type PI334107. CRE is a unique orange-fleshed Inodorus
accession and was genotypically closer to the two Kirkagac Inodorus accessions than to the more
typical Inodorus accessions, HDG and PSR. BSK was classed together with the two other Conomon
accessions, FRC and OHG. PI435288 has the appearance of a characteristic long-fruited Flexuosus type
(Figure 1) and was genotypically classed as being closely related to the FAQ variety. PMR was most
similar to the American netted Reticulatus accessions, both in appearance and based on the genetic
polymorphisms. STA and PI149169 classed closely together, and related to PI435288 and FAQ.

2.2. Combined Analysis of All Metabolomic and Elemental Data

We analyzed fruit flesh and rind samples of the 51 melon accessions (Table 1). An independent
duplicate of one accession, namely subsp. melo Duda’im (DUD), was included for control purposes,
i.e., for internal validation of profile similarity.

A total of >80,000 molecular features were collected from the combination of nine analytical
profiling strategies applied to the samples of melon flesh and rind, yielding more than 36,000 and 46,000
features for the flesh and rind, respectively (Table 2). The vast majority of features were collected by
the two non-targeted MS-TOF techniques, UPLC profiling of semi-polar metabolites, and GC profiling
of a polar fraction enriched for primary metabolites, including taste-relevant sugars and organic acids.
For the metabolic classification purpose of this study, these molecular features remained non-annotated.
However, for the selection of molecular features that were relevant to build a classification model
of melon accessions (refer to Section 2.4.), we used a subset of annotated features [27]. In addition,
three global variables of fruit quality were included, percent dry matter (%DM), total soluble solids
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(TSS), and pH, with mean values of 11.5 %DM, 9.7 ◦Brix, and pH 5.9, These showed considerable
variability among the accessions as illustrated by their coefficients of variation of 10.4%, 26.2%, and
11.0%, respectively (n = 52, Table S1, Figure S2).

Table 2. Summary of the metabolome and elemental data measured using MS or NMR analytical
strategies in extracts of fruit flesh or rind samples from of 52 melon accessions.

Analytical Strategies and Corresponding Examples of Covered Compounds
or Compound Families

Number of Molecular Features

Flesh Rind
GC-MS of polar extracts:

soluble sugars, sugar-alcohols, organic acids, amino acids, polyamines 12 397 13 200
1H-NMR fingerprints of polar extracts:

major soluble sugars, organic acids, amino acids and other amino compounds
40 28

1H-NMR quantitative profiles of polar extracts:
major soluble sugars, organic acids, amino acids and other amino compounds

108 108

1H-NMR fingerprints of semi-polar extracts:
major soluble sugars, organic acids, amino acids and major semi-polar

specialized metabolites
839 819

DI-ESI-MS of semi-polar extracts:
positive ionization mode
negative ionization mode

semi-polar major and specialized metabolites

931931 931931

LC-QTOF-MS of semi-polar extracts:
negative ionization mode

non-volatile specialized metabolites and their conjugates including the flavonoid-
and hydroxycinnamate-families

20 785 30 695

SPME GC-MS of volatiles:
volatile specialized metabolites including alcohols, aldehydes, terpenoids 282 -

ICP-MS of mineral elements:
mineral elements including P, K, Fe, Ni, and

low-abundant trace elements
20 -

We combined the data sets of the profiled molecular features (Table 2) after 0.1–0.9 quantile range
normalization of each of the sub-datasets, separately. Unique features of melon accessions were given
high weight in our analyses through missing value substitution by zero. We combined all normalized
sub-datasets into a single matrix of melon accessions characterized by all available molecular features
of both flesh and rind samples.

Preliminary analyses by principal components analyses (PCA) and independent components
analyses (ICA) verified the complex nature of the combined dataset and revealed that only 23.3%
of the total variance was represented by the first three principal components. ICA of the first three
principal components (Figure 3A,B) relaxed the orthogonality criterion of PCA and instead optimized
independent component kurtosis as a measure of bi- or multi-modality of the scores’ values of the
resulting ICA axes [28]. The ICA scores plot array indicated separate clusters of subsp. agrestis and
subsp. melo, with full or partial separation of respective accession Groups.

To transform the multi-dimensional ICA clusters of melon accessions into a mono-dimensional
tree structure comparable to conventional genetic distance representations, e.g., by phylogenic or
genetic distance trees, we created a covariance matrix of the complete accession profiles. For this
purpose, we did not preselect features and did not apply dimension reduction methods to consider
the complete molecular variance reflected by the data set. The covariance matrix was subsequently
subjected to hierarchical cluster analysis (HCA) and bootstrapped to generate an HCA support tree
(Figure 3C), with the node confidence validated by the bootstrap values. These values ranged from 2
to as high as 92 on a scale of 0–100. High bootstrap support was given to the terminal nodes of similar
melon accessions with two of the Duda´im profiles giving an estimate of a bootstrap threshold of 82
that was indicative of the level of metabolic similarity of genetically identical melon accessions. The
basal nodes of the HCA tree, however, received low bootstrap support. These results indicated that
alternative basal classifications may be present in the data set.
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Figure 3. Metabolic classification of Cucumis melo accessions using the combined dataset of melon flesh
and rind analyzed by multiplexed metabolome and elemental profiling. (A,B) ICA of the first three
PCs obtained from the complete data set of >80,000 molecular features. The first three PCs comprised
23.3% of the total variance of the data set. (C) Covariance matrix of the complete molecular profiles of
C. melo accessions, with HCA of the matrix using covariance distance metrics and complete linkage for
clustering. HCA included support analysis by bootstrapping with 1000 iterations. Bootstrap support
values of all HCA nodes and a scale of node height are included. Boxed regions of the covariance
matrix indicate examples of additional alternative metabolic associations described in detail in the text.
Cluster cones were arbitrarily set at the 75% tree height.

This interpretation was supported by alternative highly correlated groups of melon accessions that
became apparent in the covariance matrix (Figure 3C). Multiple instances of alternative associations
were apparent. One example was provided by the accessions of the Cantalupensis Group. This Group
split between two HCA sub-branches, but alternative associations of the two Cantalupensis splits were
also detected. In one HCA branch, the Cantalupensis accessions OGE, NOY, and PH406 clustered with
the Reticulatus accessions KRY and MAK and the Ameri accessions AYO and EDO. In the second HCA
branch, the remaining Cantalupensis accessions clustered with Inodorus accession CRE, Khandalak
INB, and Reticulatus BES.

We concluded that the reduction of all paired metabolic similarities into a tree structure perhaps
only reflects in part the complex metabolic similarities that were generated by the melon breeding
process. This breeding process may have included crossbreeding beyond the Group or subspecies
boundaries within Cucumis melo. Such breeding events may cause genetic introgressions with transfers
of large gene sets. In addition, breeding for metabolic quality traits may have caused partial convergence
of metabolic profiles from genetically distant accessions. We found a matrix representation of accession
similarity more adequate in representing a complex intra-species breeding history. Consequently, we
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took this approach to also compare and correlate metabolic to genetic distance matrices instead of
analyzing tree similarities only (Figures S3 and S4).

The highly supported nodes of our current HCA tree (Figure 3C) were useful to evaluate the
closest metabolic neighbors among the GBS-characterized and the seven PCR-characterized accessions
(Table 1). The Conomon cultivar BSK (Black Skin) of subsp. agrestis grouped at a medium bootstrap
support of 44 with TOG, a Conomon Group accession of subsp. agrestis. A higher-level metabolic
cluster with a bootstrap support of 32 contained all five Flexuosus accessions of subsp. melo, including
non-characterized accession STA, PI435288, and accession PI149169 of undecided Group affiliation.
A well-supported cluster consistently contained 13 Inodorus accessions. This cluster included both
Kirkagac-type accessions, PI201581 and PI334107, and their closest neighbor, GOB. As reported above,
non-characterized CRE, provisionally classified as Inodorus, grouped to a high-level cluster of diverse
subsp. melo accessions and was metabolically most similar to INB of the Khandalak Group. Finally,
PMR membership to the Reticulatus Group was confirmed with nearest neighbor TPM (Figure 3C).
PMR and TPM had high similarity to a highly supported (bootstrap value 68) cluster containing three
other Reticulatus accessions.

2.3. Platform-Specific Metabolomic Analyses of Melon Flesh or Rind Tissue

For each analytical strategy, an HCA of accession samples was separately performed, based on
the range-normalized levels of all features detected per strategy (Table 2). This HCA was performed
for both the flesh (eight technological platforms, Figure S3) and rind (six technological platforms,
Figure S4) of the fruits, and the similarity of the grouping of the 52 accession samples based on the
observed variation in their metabolome or element composition was compared to the results based on
the variation in their genome (Figure 2, Table S3).

For flesh samples (Figure S3), the HCA showed a partial or complete clustering, depending
on the analytical strategy, of accessions from the Inodorus Group. Likewise, the accessions of the
Flexuosus Group were closely clustered, except for data from the NMR profiling and volatiles SPME
GC-MS platforms. Grouping of Cantaloupe accessions was also clear, with the four analytical strategies
detecting specialized metabolites (semi-polar extracts and volatiles) as well as for 1H-NMR fingerprints
of polar extracts and the mineral element platform. Overall, grouping was less clear for the three
platforms, detecting mainly primary metabolites (polar extracts). The grouping of accessions based
on metabolites detected by SPME-GCMS and especially LC-QTOF-MS mostly showed a relatively
high correlation with the genetic distances between accessions, while grouping based on primary
metabolites targeted by NMR profiling data showed a relatively lower correlation. For rind samples
(Figure S4), the HCA showed a partial or complete clustering of accessions from the Inodorous Group
for all six platforms, except for LC-QTOF MS of semi-polar extracts for which distances within and
between clusters were similar. Grouping of Cantaloupe accessions was also clear with GC-MS of polar
extracts, except for one accession.

For the 44 accessions having both GBS and metabolome or elemental data, the association between
the genetic distance matrix and each metabolomic or elemental distance matrix was measured using a
Mantel test, separately for flesh and rind data (Table 3). Among the 14 associations between genetic and
metabolomic/elemental distances that could be tested, namely 8 for flesh, and 6 for rind (volatiles and
microelements were not measured in rind), 13 including the flesh microelement-based matrix, showed
a significant association with a p-value <0.0001. Only the metabolomic distance matrix based on
LC-QTOF-MS of semi-polar extracts in rind was not related to genetic distances. For flesh, the highest
two correlations between the genetic and a metabolic/elemental distance matrix were observed for
specialized metabolites, i.e., for LC-QTOF-MS of semi-polar extracts (r = 0.56) and for SPME GC-MS of
volatiles (r = 0.39). For rind, the highest two correlations between the genetic and metabolic/elemental
distance matrix were observed for the 1H-NMR fingerprints of semi-polar extracts (r = 0.56) and for
FIE-MS of semi-polar extracts (r = 0.47).
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2.4. Feature Selection by Random Forest Technology

To select molecular features that were relevant for the metabolic classification of melon accessions,
we applied random forest (RF) machine learning technology. RF technology tuned towards metabolic
feature selection enables the selection of small sets of molecular features that, if manually supervised,
can be relevant for sample classification [29]. For this purpose, we used the set of 605 provisionally
annotated molecular features from the combined >80,000 data set (Table S4). To create approximately
balanced classes, we split the available melon accessions into six subsets, namely 1) all accessions of
subsp. agrestis, 2) the Cantalupensis accessions, 3) the Flexuosus accessions, 4) the Inodorus accessions,
5) the Reticulatus accessions of subsp. melo, respectively, and 6) a class that contained all other melon
Groups that were represented by only one or two accessions (Figure 4A). Because of the diverse nature
of the sixth class, we did not expect good classification results, but we added this class to contrast with
the remaining more populated classes that had 5–14 members (Figure 4).

Figure 4. Random forest (RF) analysis (A) and decision tree classification (B) of six C. melo accession
classes using a subset of 605 provisionally annotated molecular features. Classification of six pre-defined
melon accession classes was performed. The classification table (A) lists classes, class size, the
actual and predicted class membership, and the classification error (means of 10 iterations using
hyperparameter-tuned RF settings). The decision tree uses the top 20 most informative molecular
features ranked by the mean decrease in accuracy. The node information of the decision tree reports
the used molecular feature code (Table S4) and threshold value. The branch information (colored
ovals) lists the main class, the fraction of classified samples, left to right, subsp. agrestis, Cantalupensis,
Flexuosus, Inodorus, miscellaneous, and Reticulatus accessions of subsp. melo. The percentage value
indicates the fraction of the 52 accession samples that fall into each of the diagnostic categories.
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Hyperparameter tuning of the RF procedure was applied to the six melon classes and based on the
annotated data subset, provided the parameter settings: Sampled fraction of 0.899 for RF-classification,
minimal node size of 2, and mtry value of 59. The estimate of the overall error rate across 10 repeated
RF classifications was 23.9% ± 2.9 %, mean ± standard deviation (SD). The classification error differed,
however, between tested classes. Subsp. agrestis classified best, with an average classification error
of 0.02, followed by subsp. melo Inodorus with an error of 0.05. Subsp. melo Cantalupensis and
subsp. melo Reticulatus classified with errors of 0.17 and 0.19, respectively. Unexpectedly, Flexuosus
accessions were difficult to classify using the annotated metabolites. Molecular features relevant for the
classification of the Flexuosus Group may be present among the non-annotated features (Figure 3B,C).
Using annotated molecular features, the Flexuosus classification failed and had a high classification
error, similar to the class of miscellaneous accessions (Figure 4A).

The annotated mass features were ranked by RF analysis according to the variable selection
parameter mean decrease in accuracy (Table S4). A decision tree based on the top 20 ranks of annotated
mass features used only three features (Figure 4B). This decision tree had four classes but failed to
define a diagnostic rule for the Flexuosus and miscellaneous classes. One decision rule defined a class
that only contained subsp. agrestis accessions to 100%. A second class defined Cantalupensis accessions
to 89% with a minor contribution of subsp. agrestis accessions (11%). A third class contained 87%
Inodorus accessions with 6% each of subsp. agrestis and Flexuosus. The fourth class was, with 42%,
enriched for Reticulatus accessions but contained, in addition, 21% Flexuosus and 37% miscellaneous
accessions. The top 20 informative molecular features according to RF analysis were glucose, formic
acid, glycerol, arabitol, galactinol, and raffinose in rind; xylose and 1-kestose in flesh; 10 volatile
organic compounds detected in melon flesh; and Cr and As elements detected in melon flesh (Table S4).
These features provide additional supporting information for melon classification.

3. Discussion

3.1. Phylogenomic and Phytochemical Relationships Partly Coincide in C. melo

Besides contributing to the genetic classification of the species, the goal of this research was to
determine whether phylogenomic and phytochemical relationships in melon coincide and are mutually
supportive. Studies of this nature have been carried out for over 50 years but have been limited in two
significant respects. Firstly, due to the limiting nature of the targeted chemical analyses performed
in earlier studies, chemosystematics was limited to interspecific classification where biochemical
differences were large. Thus, interspecific chemosystematics, in conjunction with genomic classification
were successfully implemented to distinguish, for example, among Capsicum (pepper) species [30],
Brassica species [31], and Citrus species [32]. However, large-scale infraspecific classification based on
chemosystematics has not been successful to date. Secondly, the comprehensiveness of metabolomic
analyses, as is presented here, was made possible only recently, and earlier studies attempting
chemosystematics focused on only single metabolite families, such as volatiles and carotenoids [26].
This inevitably not only limited the breadth of the characterization but also could cause strong bias
in the results, especially if the metabolites most impacting the clustering have also been of selective
value, either through natural selection or human selection via breeding. The variability of select
metabolite families is generally controlled by few genes, which are strongly affected by selection
pressure. Hence, for crop varieties, targeted analyses of metabolite variation may not reflect the genetic
distance. For example, the impact of a trait, such as non-climacteric ripening, although determined by
few genes, is expected to have wide-ranging pleiotropic effects on numerous secondary metabolites,
including volatiles [33].

Our study, which is based on the combination of large-scale unbiased genetic and similarly
broad characterization of metabolomic phenotypes, allowed us to determine the degree of coincidence
between the phylogenetic and chemosystematic classification of the C. melo species. We expected to
have improved representation of phylogenetic/genomic relationships in our data set by including
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non-targeted metabolomic technologies, as compared to a multi-targeted approach that may cover
predominantly those metabolic traits that were directly subject or linked to the selective breeding
process. Human breeding in melon largely aims for metabolic traits and therefore, breeding can lead to
convergence of such traits in cultivars of different genotypic backgrounds and evolutionary histories.
We hypothesized that non-targeted metabolites, such as those detectable by the UPLC-TOF-MS and
GC-TOF-MS technologies, were presumably of less selective value during domestication and breeding
than the targeted metabolites of volatiles, sugar, and organic acid levels, which together comprise the
major determinants of quality and hence selection. We therefore predicted that our broad non-targeted
profiling would cover the potentially convergent breeding traits, but these would be diluted by
metabolic and elemental traits that were not targeted by breeding and hence hypothesized to have
higher discriminatory power. Thus, chemosystematics based on non-targeted metabolites would be
more likely to reflect true genetic relationships.

Systemization of melon variation goes back at least as far as the 1832 monograph of Jacquin [34].
These early classifications and nearly all subsequent ones were based primarily on fruit traits. The
introduction of molecular genetic technologies has helped greatly in evaluating prospective infraspecific
relationships. For example, the infraspecific classification proposed for the extremely variable Cucurbita
pepo L. (Cucurbitaceae) that was based mainly on fruit shape [35] was supported and clarified by
polymorphisms in 134 simple sequence repeat loci [36]. Rapid development of new technologies has
allowed for successively and increasingly more comprehensive and precise identification and analyses
of genetic variability. Most recently, high throughput sequencing and massive GBS strategies have been
applied to melon variability in representative GWAS populations [8,37], yielding 17,000 and 22,000
genetic polymorphisms, respectively. Such large-scale genotyping allows for a more precise assessment
of genetic relationships within species. The genotype classification of 44 of the 51 accessions used in
this study was derived from the GWAS GBS previously reported by Gur et al. [37]. The remaining
accessions not included in that GWAS study but screened metabolomically in this study could be
reliably placed within Groups based on an additional smaller set of polymorphisms identified by direct
PCR product sequencing.

Our results present a mixed picture; on the one hand the metabolomics-based infraspecific
classification indeed largely reflects the phylogenetic classification. The correlation between genetic
and metabolomics distance increases with the addition of metabolite signals, as expected, and the
>80,000 combined metabolite signals best mirror the genetic classification (Figure 3). However, on
the other hand, there are exceptions to a straightforward correlation, as will be discussed here further,
and the metabolomics-based classification at times may better reflect the market-type classification
rather than the genotype classification. This may indicate that selection and breeding for particular
fruit characteristics may have had a disproportional impact on metabolites for which breeding did not
directly select.

The present phylogenetic results substantiate the dichotomy within Cucumis melo to subsp.
agrestis and subsp. melo (Figure 2). Furthermore, the results suggest that only the East Asian
cultivar-groupGroups, Chinensis, Makuwa, and Conomon, belong to subsp. agrestis. The Duda’im
and Momordica accessions that were included in our study are allied with subsp. melo but form an
outlying cluster within that subspecies, as recently suggested [8,17,19]. However, with respect to the
comparison of phylogenetic and the combined metabolomics-based classification (Figures 2 and 3),
the agrestis subspecies does not behave as a single Group. The two Chinensis and five Makuwa types
of the agrestis subspecies are similar to each other based on their metabolite composition and clearly
clade together. However, they are distinct metabolomically from the other agrestis subspecies Group
Conomon. Instead, the three Conomon accessions, BSK, FRC, and TOG, clade with the Flexuosus
Group, along with the single Momordica accession PI414723 and the undecided accession PI149169.
Thus, the Flexuosus and Conomon accessions are metabolically more similar to each other than would
be expected based on their genetic relationships. Fruits of both Groups are used primarily when young,
either fresh or pickled, similar to cucumbers. The mature fruit of both Groups are characterized by an
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acidic pH and low sugar content, in contrast to the dessert melons with low acidity and high sugar
content in the edible mature fruit [38]. In light of the fact that these two traits are governed by only a
few genes [38–40], we expected that the large-scale metabolomics studies would overcome the bias
of these few targeted metabolites and would more closely reflect the unbiased genetic relationships
combining the three agrestis Groups. Our results with respect to agrestis suggest otherwise.

3.2. Cantalupensis and Reticulatus Accessions are Separated from Each Other Both Genotypically and
Metabolomically

With regard to the Cantalupensis and Reticulatus accessions, the combined metabolomics-based
classification does strongly parallel the phylogenetic classification. The separation of
Reticulatus/Cantalupensis into two individual clades, IIb and IIc (Figure 2), that we observed in
the genetic cladogram is similarly evident in the metabolomics classification (Figure 3). The Reticulatus
Galia types (MAK, KRY) and the Cantalupensis Ha‘Ogen types (OGE, NY, PH406) have a distinct
metabolite profile from the Reticulatus/Cantalupensis Groups of American cantaloupes and Charantais.
Furthermore, within each of the two Reticulatus/Cantalupensis Groups, the Cantalupensis and
Reticulatus accessions are separated from each other, both genotypically and metabolomically. This is
evident in the separation between the Ha‘Ogen and Galia types, as well as the American cantaloupe
and Charentais types from each other. The Ananas-type Ameri accessions, EDO and AYO, group with
the Galia and Ha‘Ogen accessions, as they did in the phylogenetic classification. Thus, the results
relating to the climacteric, netted, and semi-netted melo subspecies (Reticulatus/Cantalupensis/Ameri)
do support the similarity between genetic and metabolomics-based classification.

The Cantalupensis and Reticulatus Groups are horticulturally distinguished largely according
to the extent of rind netting or reticulation, which is actually a continuous trait rather than two
distinct phenotypes of netted versus smooth. The trait of rind reticulation is presumed to be relatively
simply inherited [39,41,42], but there remains the possibility that the netting trait, present in the
different clades of Reticulatus/Cantalupensis, may be under separate genetic control. The most visual
distinction between the different clades of Reticulatus/Cantalupensis is the flesh color. While the
Charentais-type Cantalupensis are orange-fleshed, the Ha‘Ogen-type Cantalupensis are green-fleshed.
Similarly, the American cantaloupe Reticulatus varieties are orange-fleshed while the Galia Reticulatus
are green-fleshed. Flesh color is also determined by relatively few genes [40,43–45], but the associated
pleiotropic metabolomic effects due to chloroplast to chromoplast transformations are expected to
be large.

3.3. The Metabolomic-Based Classification May Indicate That Two Independent Evolutionary Events Led to
Non-Climacteric Ripening

The results of the GC-MS analysis of melon volatiles (Figure S3) indeed showed that volatile
metabolites alone distinguish between the non-climacteric and climacteric groups. However, our
comprehensive genomic and metabolomic results also indicate that the Inodorus Group is genetically
distant from the other cultivar-groups and this large genetic distance cannot be attributed only to the
limited climacteric-related genetic differences but also primarily to other unrelated genetic evolution.

Concerning the Inodorus Group, most accessions are clearly sorted on the basis of their combined
metabolites, similar to their phylogenetic classification. The inclusion of the Kirkagac Inodorus
accessions clearly within the Inodorus metabolite group even though they were genetically distinct
from it further indicates that the relationship between genetic and metabolomics-based classification is
not simple, even when the latter is based on a large number of metabolic signatures as in our study. The
genetic distinction between the characteristic Inodorus Group melons and non-characteristic Inodorus
types referred to as European types was also noted by Leida et al. [20].

These results regarding the genetic relationships between most of the Inodorus accessions of clade
IIa (Figure 2) and those of the Kirkagac accessions in clade IIb are significant as they indicate that
there may have been two independent evolutionary events leading to non-climacteric ripening, one
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represented in the large Inodorus Group and the other more closely related to the clade IIb climacteric
types. The genetic control of climacteric ripening in C. melo has been studied and found to be due to
mutations in just a few genes [46,47]. However, these genetic studies were performed using typical
Inodorus accessions as a genetic source for the non-climacteric trait and typical climacteric Cantalupensis
(Charentais) accessions. The possibility remains that the genetic cause of non-climactericism in the IIa
and IIb clades may not be identical and may even be due to mutations in different genes. In support
of this possibility, Eduardo et al. [48] and Vegas et al. [49] reported that a supposed non-climacteric
Conomon accession, crossed with the non-climacteric Inodorus PDS, yielded climacteric phenotypes,
indicating independent genetic mutations. In fact, Saladie et al. [50] pointed out that classification
of melon fruit ripening behavior into just two distinct types is an over-simplification, and that, in
reality, there is a continuous spectrum of fruit ripening behavior. If so, further study of the relationship
between the non-climacteric traits of Kirkagac and other Inodorus genotypes could broaden the
genetic variability available for this important characteristic for genetically improving fruit quality by
extending the harvest period as well as the shelf life of the horticultural product.

While practically all the Inodorus accessions metabolomically clade together, the CRE variety
is a striking exception (Figure 3). CRE is most similar with respect to its metabolite signature to the
single Khandalak accession INB, and together are most closely related to the Charentais Cantalupensis
accessions. In fact, CRE is strikingly distinct phenotypically from the other Inodorus accessions, as can
be seen in Figure 1. Whereas all the Inodorus lines studied are green-fleshed, as are non-climacteric
Inodorus lines in general, the CRE variety is orange-fleshed and likely also climacteric. In fact, the
GC-MS volatile results of flesh (Figure S4e) also distinguish between CRE and the other Inodorus
lines and place CRE together with the BEL Ha‘Ogen-type Cantalupensis. The CRE accession is
a Crenshaw market type, which is considered to be a hybrid derivative of the non-climacteric,
green-fleshed, smooth-skinned Casaba market-type melon and the climacteric cream/orange-fleshed
Persian Cantalupensis melons and thus this may explain that metabolomically, it is similar to the latter.

The different analytical strategies and over all the different types of compounds targeted (primary
or specialized metabolites, mineral elements) contributed differently to the classification of melon
accessions. This may be related to the fact that some metabolite classes were under breeding selection
and may represent convergence of metabolic traits rather than genetic distance. The latter seems
probable for major primary metabolites, measured using 1H-NMR or GC-MS of polar extracts in flesh
and implicated in sweetness or acidity. Convergence may also be the case for different families of
specialized metabolites measured using LC-MS of semi-polar extracts, such as phenolics or alkaloids
with an astringent or bitter taste, or GC-MS of volatiles, such as esters and alcohols. Even mineral
elements in flesh contributed to accession classification, possibly through a link with flesh acidity, for
instance, for K, or metabolic links between metabolites and mineral elements as shown previously [27].
Selection may have been less stringent for rind than for flesh composition, as for five out of the six
analytical strategies used for both flesh and rind analyses, the correlations between compositional
distances and genetic distances were higher for rind than for flesh (Table 3).

The correlation between genetic and metabolomics distance increased with the addition of the
>80,000 combined molecular features and best mirrored the genetic classification. Nevertheless,
information reduction by RF analysis allowed pointing to 20 informative molecular features that
differentiate several accession groups. In flesh, 10 volatiles and xylose are possibly linked with
climactericity as discussed above. Of these top 10 volatiles, 6 could be reliably annotated and are well
known components of melon fruit, including (Z,E)-3-hexen-ol and 1-octen-3-ol, which result from fatty
acid degradation, and also two typical acetate esters (2-methyl butyl acetate and pentyl acetate) as
well as alpha-ionene [27,51]. Xylose is a major non-cellulosic neutral sugar of cell walls in cucurbit
fruit [52]. Fruit softening during maturation involves cell wall degradation. For cell wall-related genes,
specific genes of each gene family can be categorized as totally ethylene dependent, totally ethylene
independent, or partially ethylene dependent [3]. Surprisingly, two mineral elements were in the
top 20 molecular features highlighted by the RF analysis. Among the six compounds highlighted in
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peel, glycerol may be related with the fruit surface, such as cuticular waxes [53] or suberization [54].
Galactinol and raffinose linked classification to the raffinose family and to oligosaccharides metabolism
in the peel (Table S4). Galactinol and raffinose linked with the raffinose family of oligosaccharide
metabolism after phloem unloading into the melon fruit may be related to fruit sweetness [55].

4. Conclusions

The main objective of this research was to determine whether classification by large-scale,
non-targeted metabolomic and element profiling technologies recapitulates or extends the
phylogenomic relationships within Cucumis melo. Our results indicate that, in general,
metabolomic/elemental means of classification can indeed significantly reflect the genetic relationships.
Nevertheless, there are deviations of metabolomics and elemental groupings from genetic classifications.
These differences indicate that the selection for major phenotypic quality traits by the breeding process
has been influential. Some of the quality traits that can be controlled by single or few enzymatic or
regulatory genes, include changes of metabolite levels that define color, taste, and flavor. In addition,
some traits change fruit development and thereby have pleiotropic effects on fruit metabolomics.

Large-scale information on genomic sequence and metabolomic/elemental variation of a broad
range of genetic diversity can serve for dissecting the genetic basis of metabolic diversity. This process
has been recently referred to as mGWAS (metabolite genome wide association study) [56]. mGWAS
presents a powerful tool for attributing metabolite variation to particular genetic regions. In melon,
GWAS based on GBS was even capable of mapping traits to the single candidate gene level [37] and
it is expected that the comprehensive metabolomics data presented here will allow for a large-scale
mapping of metabolic traits.

Furthermore, this work sets the stage for an unlimited number of metabolic QTL (mQTL) analyses
based on recombinant populations generated from selected metabolically characterized parental lines.
The identification of valuable genetic and metabolic variability forms the basis for directed crop
diversification and genetic improvement by breeding. The future combination of the results of this
study with gene expression data of the developing melon fruit rind and flesh provides an ‘omics’ blend
of genomics, metabolomics, and transcriptomics that will be especially useful for the identification of
the genetic basis of metabolic diversity [44].

5. Materials and Methods

5.1. Plant Material Description, Cultivation, and Sampling

An initial core collection comprised of 51 Cucumis melo accessions representing a broad spectrum
of melon genetic variation was grown as a spring-summer crop in an open field at the Newe Ya‘ar
Research Center in the Yizre‘el Valley, northern Israel. The accessions prospectively represented both
subspecies and 11 of the cultivar-groups (Table 1; Figure 1; Table S1). These 51 accessions were a
representative subset of a larger collection of 177 accessions that were used for detailed characterization
of fruit trait variation and evaluation of the potential of genome-wide association (GWA) for trait
mapping in melon [37].

Of the 51 accessions used for metabolomics analysis, 7 were not included in the GBS study but
were genotypically classified in a less encompassing sequencing project based on direct sequencing of
20 PCR products of known genes. This direct sequencing comprised a total of nearly 12,000 bp and
provided 116 polymorphisms for which haplotypes were produced and used for the phylogenetic
analysis (Table S2). This phylogenetic analysis is not as comprehensive as the GBS but was useful in
placing those accessions for which GBS data was missing.

Among these 51 accessions were included two closely related Duda’im melons (DUD2, DUD3) for
a total of 52 sampled accessions. Each accession was represented in three replicated plots of five plants
each. A minimum of 10 ripe fruits were harvested from each accession. Fruit were photographed
prior to sampling. For sample preparation, a midsection of each fruit was excised, and its seed
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cavity removed. For the rind sample, the rind was removed using a vegetable peeler to a depth of
approximately 2–3 mm and the rinds from all fruit of each accession were combined into a single
sample. Similarly, the flesh samples of each accession were combined. Combined bulk samples were
ground to a powder in liquid nitrogen. Falcon tubes were filled with approximately 50 mL of powdered
sample and a total of 104 tubes (flesh and rind samples of 52 accessions) were stored at −80 ◦C until
shipment under dry ice to each of the participating laboratories where two replicate samples were
analyzed per accession/per platform.

5.2. Genotype and Phylogenetic Analysis

5.2.1. DNA Isolation for Genotype by Sequencing (GBS)

For the GBS of the melon collection, leaf tissue was taken from 44 of the 51 accessions, listed
in Table 1. Total genomic DNA isolation was performed as described by Gur et al. [37] using the
GenEluteTM Plant Genomic DNA miniprep kit (Sigma, St. Louis, MO, USA). The quality of the
DNA was analyzed with an ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE)
and by electrophoresis on agarose gel. The concentration of DNA was estimated using a Qubit® 2.0
Fluorometer (Life Technologies, City, Singapore) and a Qubit® dsDNA BR Assay Kit (Life Technologies,
Eugene, OR, USA).

5.2.2. GBS Analysis

DNA was analyzed at the Institute for Genomic Diversity facility at Cornell University for GBS.
GBS 96-plex libraries were prepared using the restriction enzyme ApeKI, following an established
protocol [57]. Fragments were sequenced on an Illumina HiSeq 2500 as 100 bp, single-end reads and
aligned to the reference genome of C. melo [58] available at https://melonomics.net/files/Genome/Melon_
genome_v3.5.1/. TASSEL pipeline v3.0.173 was used for sequence alignment and single nucleotide
polymorphism (SNP) calling [59]. Further filtration was performed using TASSEL v5.2.33 [60]; the
SNP list was filtered to MAF > 0.05 and a maximum of 6% missing data per site.

5.2.3. Phylogenetic Analysis

TASSEL software (v5.2.33) was used to estimate the distance matrix for all pairwise combinations.
The phylogenetic tree based on the GBS results of the 44 accessions was assembled using the
neighbor-joining function. In addition, we constructed a more limited phylogenetic tree based on 116
polymorphic sites derived from direct sequencing of 11,950 bp derived from 23 genomic sequences
(Table S2). The sites were concatenated to create a pseudo-sequence haplotype, which was then aligned
(Figure S1a). The aligned sequences were used to build a neighbor-joining tree, and a Phylip distance
matrix (Figure S1b). The final alignment, tree, and distance matrix were performed using Clustal
Omega version 3.0, www.ebi.ac.uk/Tools/msa/clustalo.

5.3. Global Measurements of Fruit Quality

Fruit total soluble solids (TSS, as degrees Brix) and pH were measured on a set of the frozen
powdered samples. Portions were allowed to defrost, and juice was measured using a hand-held
refractometer (Atago A-10) and a pH meter for each of the 52 accessions used for metabolomic and
elemental measurements. Percent of dry matter (%DM) was measured by drying a representative
sample in a 60 ◦C oven and weighing before and after. Means per accession were calculated.

5.4. Metabolomics and Elementals Analysis

5.4.1. NMR-Based Metabolomic Analyses

For targeted 1HNMR, polar metabolites were extracted from 50 mg of lyophilized powder using
a hot ethanol/water series, and then analyzed, identified, and quantified by 1H-NMR profiling as
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previously described [27,61]. For the preparation of extracts and NMR acquisition parameters, special
care was taken to allow absolute quantification of individual metabolites. Quantitative 1H-NMR
spectra were recorded at 500.162 MHz and 300 K on a Bruker Avance spectrometer (Wissembourg,
France) with a 5-mm inverse probe using a 90◦ pulse angle and an electronic reference for quantification
with calibration. Two replicates were extracted and analyzed for each accession. Unknown metabolites
were named using the mid-value of the chemical shift and the multiplicity of the corresponding
resonance group and quantified in arbitrary units. The same spectra issued from polar extracts were
also processed as fingerprints: The spectra from δ9.40–0.40 ppm (without the residual water resonance)
were binned to chemical shift regions of 0.04 ppm and data were scaled to the total signal intensity.

For untargeted NMR fingerprinting of semi-polar extracts, metabolite extraction was carried
out according to the methods described by Ward et al. [62]. Briefly, triplicate aliquots (15 mg) of
freeze-dried powder were extracted with an 80:20 D2O:CD3OD mixture (1 mL) containing d4-TSP
as the internal standard (0.01% w/v). Samples were extracted for 10 min at 50 ◦C. Supernatants were
transferred to a clean tube and heated to 90◦C for 2 min. Samples were cooled and centrifuged.
For 1H-NMR, 200 μL of the supernatant was evaporated to dryness and reconstituted in 650 μL of
deuterated sodium phosphate buffer solution (pH 6.0, 200 mM). Samples were mixed and allowed
to stand at room temperature for 1 h after which 600 μL were then transferred to a 5-mm NMR tube
for 1H-NMR analysis. 1H-NMR spectra were collected at 600 MHz on a Bruker Avance spectrometer
equipped with a 5-mm selective inverse probe. Parameters for data acquisition are as described in Ward
et al. [62]. 1H-NMR data (δ9.395–0.505 ppm) were binned to chemical shift regions of 0.01 ppm and
data were scaled to the total signal intensity. Regions corresponding to residual water and methanol
were removed (H2O 4.775–4.865; MeOH 3.285–3.335 ppm set to zero).

5.4.2. GC-MS-Based Metabolomic Analysis of Polar Compounds

GC-MS profiling analysis of a polar metabolite fraction enriched for primary metabolites, including
sugars, amino acids, and organic acids, was performed as described earlier [63] with modifications
reported by Moing and co-authors [27]. Samples were extracted, partitioned into a polar liquid phase,
and dried for chemical derivatization, as described. Methoxymation was performed with 40 μL of
pyridine containing 1 mg/mL methoxyaminohydrochloride and 80 μL silylation-mixture, containing
7:1 (v/v) N,O-bis(trimethylsily)-trifluoroacetamide (BSTFA, Macherey-Nagel, Düren, Germany) and
a mixture of alkanes in pyridine. GC-MS was by splitless mode after injection of 1 μL of chemically
derivatized sample. Evaluated mass features had intensities of ≥ 50 arbitrary intensity units. Peak
heights of mass features defined by nominal mass to charge ratios (m⁄z) and n-alkane based retention
indices were normalized to the sample fresh weight and the internal standard, succinic-d4 acid
(Sigma-Aldrich, Deisenhofen, Germany). The internal standard was added to the extraction solution.
Normalized mass spectral features were aligned, correlated across all recorded samples, and placed
into clusters and time groups using TagFinder [64]. Metabolite annotations of mass spectral features
were manually supervised using TagFinder visualizations for mass spectral matching [64]. Metabolite
annotation required a match of at least three co-eluting and correlated mass features and a retention
index deviation < 5% [65] compared to the reference data of the Golm Metabolome Database,
http://gmd.mpimp-golm.mpg.de/ [66].

5.4.3. GC-MS-Based Metabolomic Analysis of Volatile Compounds

For GC-MS of volatile organic compounds, headspace-solid phase micro extraction (SPME) with a
65-mm polydimethylsiloxane-divinylbenzene fiber (Supelco, Bellefonte, USA) was used as described
previously [67]. In short, 200 mg of frozen powder was mixed with 4 mL of 4.6 M CaCl2 containing
5 mM EDTA in a 10-mL vial. Volatiles in the sample headspace were trapped for 20 min at 50 ◦C with
agitation (CombiPAL autosampler, CTC Analytics, Switzerland) and thermally desorbed in the GC
injection port for 1 min at 250 ◦C. A HP-5 column, 30 m x 0.25 mm ID, 1.05 μm – film thickness (Hewlett
Packard, Palo Alto, CA, USA) was used to separate the volatile compounds, applying a temperature
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gradient from 44 to 250◦C at a speed of 5 ◦C min−1. All masses from m/z 35 to m/z 400 resulting from
70 eV electron impact ionization were recorded (MD800 electron impact MS, Fisons Instruments, Milan,
Italy). Metalign software [68] was used to extract and align all mass features in an untargeted manner
and masses originating from the same molecule were then clustered to reconstruct the relative intensity
and mass spectrum of each detected compound, using MSClust software [69]. Volatiles were putatively
annotated by matching the reconstructed mass spectra of detected compounds to the electron impact
mass spectral libraries of NIST (National Institute of Standards and Technology, Gaithersburg, MD,
USA) and Wiley. Subsequently, for the random forest (RF) machine learning analysis on the putatively
annotated data (Supplementary Table S4), the top 10 volatiles arising as potential markers were then
further manually checked for matching of the retention index and mass spectra. Annotations with an
RI >20 and/or a match factor <750 were reclassified as ‘unknowns’.

5.4.4. FIE- or LC-MS-Based Metabolomics Analysis

For FIE-MS, 50 μL of the semi-polar extract supernatant prepared for NMR fingerprinting was
diluted with 80:20 H2O:CH3OH (950 μL). Samples were analyzed using an Esquire 3000 spectrometer
(Bruker Daltonics, Coventry, UK) in both positive and negative ionization modes as described
previously [24]. Spectral data were exported as ASCII files containing mass-intensity pairs and
automatically reduced using AMIX software version 3.9.11 (Bruker Biospin, Coventry, UK), to a single
CSV file for each ionization mode, containing integrated regions of equal width (m/z width = 1).
Individual signal intensities were scaled to the total intensity and m/z regions relating to d4-TSP and
its isotope peaks were removed from the data prior to statistical analysis.

For LC-QTOF-MS, ground frozen rind and flesh tissue (0.5 g) were extracted in 1.5 mL of methanol,
containing 0.1% formic acid. The samples were vortexed vigorously, sonicated for 20 min, and
centrifuged for 15 min at 4400 g. For rind samples, the supernatant was filtered through a 0.22-μm
PVDF filter directly to HPLC vials. Flesh samples were further concentrated as follows: 1 mL of
supernatant was freeze-dried and resuspended in 150 μL of 75% aqueous methanol, containing 0.1%
formic acid, sonicated for 20 min, and filtered through a 0.22-μm PVDF filter directly to the insert of the
HPLC vial. Melon samples were injected into a UPLC-QTOF-MS (HDMS-Synapt, Waters, Manchester,
UK) in negative ionization mode as in [70] with some modifications: Short 9.5-min gradient was used
for metabolite separation. The linear gradient program was as follows: 100% to 90% phase A over
1 min, 90% to 75% phase A over 3 min, 75% to 55% phase A over 2 min, and 55% to 0% phase A
over 0.5 min; held at 100% phase B for 1 min; and then returned to the initial conditions (100% phase
A) in 1 min and conditioning at 100% phase A for 1.0 min. A divert valve (Rheodine) excluded the
first 1.3 min and last 1.8 min of injection. A mixture of 15 standard compounds, injected after each
10 samples, was used for quality control. XCMS software [71] was used for peak picking and peak
alignment. Intensity values were loge-transformed.

5.4.5. Elemental Analysis

For microelements, frozen milled melon samples were freeze-dried and 200–250 mg dry material
was wet digested (5 mL 65 % HNO3 and 5 mL 15 % H2O2) at 210 ◦C in 100-mL closed vessels using a
microwave oven (Multiwave 3000 software version 1.24, Anton Paar, Graz, Austria). Before analysis,
the digests were diluted to a final concentration of 3.5% HNO3. Multi-element analysis was performed
using an ICP-MS (Agilent 7500ce, Agilent Technologies, Wokingham, UK) as described in Bernillon et
al. [24]. The impact of spectral interferences was reduced using an octopole ion guide, pressurized with
He or H2 certified reference material (NIST 1515, apple leaves, particle size <75 μm; National Institute
of Standards and Technology, Gaithersburg, MD, USA) were included. Only elements deviating less
than ±10 % from the certified reference values are reported.
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5.4.6. Data Handling and Mining

Metabolome and elemental data, i.e., the means of at least two technical replicates per accession
sample and of each fruit tissue, were gathered from the consortium of laboratories. Initial
response/abundance values below zero were judged to be missing data and removed. Data of
each molecular feature were log10-transformed response ratios relative to the median across all samples.
Subsets of each analytical technology, including both concatenated flesh and rind profiles, were 0.1 - 0.9
quantile range-normalized to harmonize the diverse linear response ranges of each profiling technology.
Missing data were replaced by zero to give enhanced weight to subspecies- or group-specific molecular
features rather than inferring values by more elaborate means, e.g., [72,73]. The resulting data set of >
80,000 molecular features was analyzed either in combined mode or divided into subsets.

Independent component analysis (ICA) of 52 samples included 51 accessions (Table 1) and a second
independent sample of the Duda´im accession. ICA was applied to the first three components of a
preceding principal component analysis and was performed using the MetaGeneAlyse web-application,
https://metagenealyse.mpimp-golm.mpg.de/ [28]. ICA scores values were plotted. The Multi
Experiment Viewer software v 4.9 [74] generated the covariance matrix of the combined data set and a
support hierarchical cluster analysis (support HCA) using covariance distance, complete linkage, and
bootstrapping by 1000 iterations. Bootstrap values range from 1–100 and represent the frequency of
tree-node occurrence across the iterations.

In order to compare accession clustering based on genetics with the ones based on compositional
distances for each tissue and each analytical strategy separately, Euclidian distances were calculated
using the corresponding metabolome or ionone sub-dataset with zeros for undetected metabolomic
features for the 52 accession samples with Multi Experiment viewer v 4.9. Then, accession sample
clustering based on compositional data was performed under R (https://www.R-project.org/) using the
Euclidian distance matrices calculated with Multi Experiment viewer and with the “complete” method
for sample hierarchical clustering. In order to compare distances between accessions based on genetics
with the ones based on composition, each compositional Euclidian distance matrix was restricted to
the 44 accessions having both molecular and fruit metabolome or elemental data. Then, a Mantel test
was done to measure the association between the molecular distance matrix and each metabolomic or
elemental distance matrix by calculating the Pearson correlation between these two matrices, with its
p-value calculated with 10000 Monte Carlo simulations using XLSTAT (v2019, Addinsoft, Paris, France).
When the p-value was below 0.001, the two matrices were considered as significantly correlated.

To select annotated metabolic features that are relevant to classifying the C. melo accessions,
random forest (RF) analysis was performed using the subset of annotated molecular features [27] from
the combined data set (Table S4). Feature selection by RF technology was as described earlier [29] using
hyperparameter optimization proposed by [75]. The R-package randomForest v 4.6–14 [76,77] was
used for training classification trees. The hyperparameter tuning was performed using the tuneranger
function from the tuneRanger package V 0.2 [75]. The optimized parameters were mtry, node size, and
sample size. Other non-tuned RF parameter settings were ntree = 10,000, importance = TRUE, replace
= TRUE. The decision tree was created by the functions rpart and rpart.plot from the rpart V 4.1–13 and
rpart.plot V 2.2.0 packages, respectively, using the method “class”. We selected the top 20 molecular
features according to the mean decrease of accuracy from 10 repeated RF analyses. A decision tree was
created, limiting the tree to only those branches that contain all members of a class. The averaged mean
decrease of accuracy and mean decrease of the Gini index were correlated by Pearson’s correlation
coefficient (r2) 0.931 assuming linear association.

All data were visualized by the respective R-packages and the Multi Experiment Viewer [74] in
combination with Microsoft Excel and PowerPoint.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/121/s1,
Figure S1: Phylogenetic tree and alignments based on direct PCR sequencing of melon accessions not included in
GBS, Figure S2: Fruit quality global measurements of 52 accession samples, Figure S3: Hierarchical clustering
analysis of 52 accession samples performed per analytical platform for fruit flesh, Figure S4: Hierarchical clustering
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analysis of 52 accession samples performed per analytical platform for fruit rind, Table S1: Description of the
melon accessions used in this study, Table S2: Genes and primers used for PCR-based genome sequencing
and polymorphism identification, Table S3: Genetic distance matrix of the 44 GBS-sequenced accessions, Table
S4: List of 605 provisionally-annotated molecular features from the combined data set with assignment of
variable-importance obtained by RF technology.
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Abstract: San Marzano (SM) is a traditional Italian landrace characterized by red elongated fruits,
originating in the province of Naples (Italy) and cultivated worldwide. Three mutations, yellow
flesh (r), green flesh (gf ) and colorless fruit epidermis (y) were introduced into SM by backcross and
the resulting introgression lines (ILs) produced the expected yellow, brown and pink fruit variants.
In addition, ILs carrying double combinations of those mutations were obtained. The six ILs plus the
SM reference were analyzed for volatile (VOC), non-polar (NP) and polar (P) metabolites. Sixty-eight
VOCs were identified, and several differences evidenced in the ILs; overall gf showed epistasis
over r and y and r over y. Analysis of the NP component identified 54 metabolites; variation in
early carotenoids (up to lycopene) and chlorophylls characterized respectively the ILs containing r
and gf. In addition, compounds belonging to the quinone and xanthophyll classes were present in
genotypes carrying the r mutation at levels higher than SM. Finally, the analysis of 129 P metabolites
evidenced different levels of vitamins, amino acids, lipids and phenylpropanoids in the ILs. A
correlation network approach was used to investigate metabolite–metabolite relationships in the
mutant lines. Altogether these differences potentially modified the hedonistic and nutritional value
of the berry. In summary, single and combined mutations in gf, r and y generated interesting visual
and compositional diversity in the SM landrace, while maintaining its original typology.

Keywords: fruit pigmentation; introgression lines; metabolomics; mass spectrometry; San Marzano
landrace; tomato

1. Introduction

In tomato (Solanum lycopersicum L.), fruit color is one of the most important traits affecting
consumer liking, and it is the result of combined effect of carotenoids, flavonoids and eventually
chlorophylls. The red color of ripe fruit comes from the accumulation of all-trans-lycopene; mutants
affected in the carotenoid pathway have an altered carotenoid composition, resulting in different
fruit colors [1,2]. Besides carotenoids, flavonoids play a role in determining the color of tomato fruit,
particularly at the epidermal level [3]. One of the most abundant flavonoids in tomato fruit peel is
the yellow-colored naringenin chalcone, often preceding and paralleling the production of lycopene
in the pericarp [4]. Lastly, chlorophylls can eventually have a role in defining the color of the fruit;
although they are normally degraded during ripening, “stay green” (SGR) mutants exist, that maintain
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important chlorophyll levels in the ripe fruit. Color variations do not only change fruit pigmentation,
but they also affect the entire set of tomato fruit attributes, adversely or positively impacting the
organoleptic and nutritional properties. Indeed, ripening involves a number of physiological processes
ranging from the chlorophyll breakdown to the consecutive carotenoid accumulation, but also of other
compounds belonging to the secondary metabolism, which play functional roles in plants [5], and
have a potential in preventing diseases and promoting health in animals and humans [6,7]. Among
them, acids, tocochromanols, quinones, fatty acids, sugars and polyols, as well as glycoalkaloids vary
during ripening, thus modifying the nutritional value and the antioxidant activity of the fruit [8]. Three
tomato mutants, yellow flesh (r), colorless fruit epidermis (y) and green flesh (gf ), which are representative
of the main classes of color pigments, were chosen to be studied at metabolite level, with the aim of
assessing the impact of these mutations on the fruit metabolome with emphasis on compounds that
co-participate in defining fruit qualities.

Yellow-fruited tomatoes have been documented since the first introduction in Europe [4,9].
The yellow color is due to the r mutation, represented by loss-of-function alleles of phytoene synthase
1 (Psy1; Psy1 catalyzes the first rate-limiting step in the carotenoid pathway, the condensation of two
molecules of geranylgeranyl diphosphate in phytoene [10]), which results in the inhibition of the whole
carotenoid biosynthesis [11]. Recently, r tomatoes have been meeting with an increasing success, for
the color novelty and the peculiar organoleptic qualities [12].

The y fruit mutant was originally described as a monogenic recessive variant leading to the
formation of a colorless fruit peel [13]. The mutation, mapped on the short arm of Chr1 [14], involves
the SlMYB12 transcription factor, causing the lack of naringenin chalcone, one of the major flavonoids
in tomato fruit peel, which gives the yellow color and has been proposed to influence the characteristics
and function of the cuticular layer [15,16]. The pink y-type fruit mutation has been identified in
numerous cultivated varieties that are highly consumed in Asian countries.

Fruits of gf tomato mutant were described for their characteristic muddy brown color, resulting
from the accumulation of lycopene coupled with the heterochronic presence of chlorophyll in the ripen
fruit due to a lack of chlorophyll degradation [17]. In S. lycopersicum, the Gf locus maps on the long arm
of Chr8. Further studies indicated that gf is a member of the SGR gene family, SlSGR1, a Mg-decheletase
gene needed for chlorophyll catabolism [18,19]. Nowadays, many cultivated tomatoes, heirloom
varieties but also modern hybrids, exhibiting the gf phenotype are commercially available; indeed, these
varieties are appreciated and have been reported to be superior for taste-related compounds [20,21].

San Marzano (from now on referred to as SM) is a traditional variety grown in the region of
Naples, Italy; it is considered an important model for fruit quality parameters, because of its intense
and uniform red color, which revealed peculiar sensory profiles. Indeed SM fruits are covered by the
leaves, which promotes the lycopene accumulation, but at the same time reduces the sugar content,
giving birth to its typical bittersweet flavor; this is also mainly due to the ratio between the sugar
content, where fructose and galactose are the main carbohydrates, and organic acids, mostly citric acid,
a major factor in determining sourness, but also flavor intensity [22–24]. The effect of San Marzano
extracts has also been the object of studies aimed at assessing nutraceutical properties [25].

The r, y and gf mutations, together with other variants affecting the tomato fruit phenotype, have
been introgressed by backcrossing into the common genetic background SM; the single mutant lines
have also been used to express two variants in double combinations [26].

In this work, we analyzed the effect of introducing color mutations in the metabolite complement
of the SM fruit. Namely we compared a comprehensive set of fruit volatile compounds (VOCs),
including those involved in flavor, and both non-polar (NP) and polar (P) specialized metabolites,
including those involved in health properties, in the r, y and gf single mutant lines and their respective
double mutants, to the ripe fruit of the SM genetic background. The double mutants expanded the
effect on metabolism of the introduced single mutations by revealing additional additive or epistatic
effects that could be further exploited for the improvement and diversification of the SM landrace by
introducing innovation, while maintaining the characteristic SM typology.
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2. Materials and Methods

2.1. Plant Material and Growth Conditions

Three single mutant lines harboring r, y and gf and the double mutants representing all the
possible combinations in the SM background were studied in comparison with the corresponding
wild-type (Table 1). Details on the backcross scheme used to obtain these introgression lines, as well
as the growth conditions used were reported before [26]. Briefly, eight plants per accession were
transplanted and cultivated in twin rows in an unheated tunnel following standard cultural practices
for indeterminate tomatoes, using tutors and weekly removal of lateral shoots. Daily temperature was
controlled by a ventilation system and plants were irrigated through a drop system. The trial was
repeated with identical materials and methods for two consecutive years (2017 and 2018).

Table 1. Extended names, genetic symbols and description of the berry color of the seven studied
genotypes, including San Marzano (SM), three single mutant and their respective double mutants.

Class of Material Class of Variation Name Genetic Symbol Fruit Color

Wild-type - San Marzano SM Red

San Marzano fruit
variants

Chlorophyll green flesh gf Muddy brown
Carotenoids yellow flesh r Yellow
Flavonoids colorless fruit epidermis y Pink

Double mutants yellow flesh + green flesh r_gf Light yellow

- colorless fruit epidermis +
green flesh y_gf Wine-coloured

- colorless fruit epidermis +
yellow flesh y_r Green

2.2. Fruit Sampling

Before sampling, berries were visually inspected and only intact and healthy tomatoes were
collected. Two biological replicates for genotype, each represented by four fully ripe berries, were
harvested over a period of three days, during the first week of August, for each year. A longitudinal
pericarp wedge was excised from each of the four appropriately washed berries and cut into cubes;
each replica, consisting of about 30 g of fresh material, was immediately frozen in liquid nitrogen
and homogenized until a fine powder was obtained. Aliquots of about 10 g of this material were
freeze-dried for the analysis of non-volatile secondary metabolites. All samples, both frozen and
freeze-dried, were stored at −80 ◦C until analysis.

2.3. Volatile Detection and Quantification

For volatile analysis, two biological replicates and two technical replicates were processed and
analyzed independently for the two year experiments. Prior to the analysis, frozen fruit powder
(0.5 g fresh weight) from each sample was weighed in a 15 mL vial, closed and incubated at 37 ◦C
for 10 min. Then, 1.1 g of CaCl2·2H2O and 500 μL of EDTA 100 mM (pH 7.5) were added; samples
were then gently shaken and sonicated for 5 min. Then,1 mL of the homogenized mixture was
transferred into a 10 mL screw cap headspace vial, where volatiles were collected by head space
solid-phase microextraction as previously described [27]. A 65 μm PDMS/DVB SPME fiber (Supelco
Analytical, Bellefonte, PA, USA) was used for all the analysis. Pre-incubation and extraction were
performed at 50 ◦C for 10 and 20 min respectively. Desorption was performed for 1 min at 250 ◦C in
splitless mode. Volatile extraction and injection were performed by means of a CombiPAL autosampler
(CTC Analytics AG, Zwingen, Switzerland)). Separation and detection were performed by a 6890N
gas chromatograph coupled to a 5975B mass spectrometer (Agilent Technologies Inc., Waldbronn,
Germany) with DB-5ms fused silica capillary column (60 m, 0.25 mm, 1 μm) (J&W Scientific, Agilent
Technologies Inc., Santa Clara, CA, USA). Oven temperature conditions were 40 ◦C for 2 min, 5 ◦C/min
ramp until 250 ◦C and then held isothermally at 250 ◦C for 5 min. Helium was used as carrier gas
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at 1.2 mL/min constant flow. Ionization was performed by electron impact (ionization energy, 70 eV;
source temperature 230 ◦C). Data acquisition was performed in scan mode (mass range m/z 35–250; 6.2
scans per second). Chromatograms and spectra were recorded and processed using the Enhanced
ChemStation software (Agilent). Untargeted analysis of all the compounds in the chromatogram was
performed by means of the MetAlign 3 software [28]. Compounds were unequivocally identified by
comparison of both mass spectra and retention time to those of pure standards (SIGMA-Aldrich, St.
Louis, MO, USA). For quantification, peak areas of selected specific ions were integrated for each
compound and normalized by comparison with the peak area of the same compound in a reference
sample injected regularly, in order to correct for variations in detector sensitivity and fiber aging. This
reference sample consisted of a homogeneous mixture of all the samples analyzed. Data for each
sample were expressed as the relative content of each metabolite compared to those in the SM reference.

2.4. Non-Volatile Detection and Quantification

For both non-volatile P and NP metabolites, two biological replicates and two technical replicates,
for two years, were processed and analyzed independently. Prior to analysis, 10 mg of freeze-dried
fruit powder from each sample were weighed and extracted (i) with 0.75 mL cold 75% (v/v) methanol
with for 0.5 mg/L formononetin as internal standard (IS) for P metabolites, as previously described [29];
and with (ii) 0.25 mL cold 100% (v/v), 1 mL of chloroform spiked with 25 mg/L α-tocopherol acetate as
internal standard and 0.25 mL 50 mM Tris buffer (pH 7.5, containing 1 M NaCl) as described in [30].
Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) conditions were as
previously reported for, respectively, polar [31] and non-polar [32] metabolomes.

Metabolite identification was performed by comparing chromatographic and spectral/MS
properties with authentic standards, if available, and reference spectra, and based on the m/z accurate
masses as found in the Pubchem database for monoisotopic masses, or in the Metabolomics Fiehn Lab
Mass Spectrometry Adduct Calculator for adduct ions. Quantification of each metabolite was carried
by calculating the relative contents to the formononetin (P) and α-tocopherol acetate (NP) IS levels.

2.5. Statistical and Bioinformatics Analyses

Raw data were firstly inspected and manually curated for the presence of outliers (e.g., when
% st.dev./avg exceed 30%). For principal component analysis (PCA), the complete dataset after log2

transformation and including all replicates was considered. Untargeted analysis of VOC, and NP and
P metabolomes was carried out as previously reported using, respectively, MetAlign and the SIEVE
software (v2.2, ThermoFisher Scientific, Waltham, MA, USA; [33]).

As untargeted analysis revealed a consistent year effect, the “Gen*Year” interaction was
investigated by two-way multivariate analysis of variance (MANOVA) on those metabolites than
presented less than 30% missing values. The analysis was performed with the PROC GLM procedure
and the MANOVA statement implemented in the SAS software package (v9.4M6, SAS® University
Edition, SAS Institute Inc., North Carolina State, USA). Since “Gen*Year” interaction was found to
be the less consistent source of variation, allowance was made for the existing interaction, data were
mediated over the two years and all genotypes were presented with a single mean value. PCA was
performed with SIMCA-P version 11 (Umetrics, Umea, Sweden) with Unit Variance normalization.
The differences between each line and the SM reference were assessed using Student’s t-test at the
5% significance level (p < 0.05). Graphs were elaborated with Excel (Microsoft Office 2013, Microsoft
Corporation, Washington, DC, USA).

Venn diagrams were generated using Venny software (https://bioinfogp.cnb.csic.es/tools/venny/
index.html, v2.1). Correlation networks were generated using average values over the two years
under study, as previously described [34,35]. To better evaluate most robust metabolite-metabolite
associations (e.g., significant correlations), the MCODE Cytoscape plugin was used [36].
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3. Results

3.1. Untargeted Analysis of Volatile, Non-Polar and Polar Metabolites

Untargeted metabolomics aims to gather information on global metabolic profiles by retrieving,
in an unsupervised way, as many metabolites are detectable in a GC-MS/LC-HRMS chromatograms.
The comparison of the entire VOC, NP and P metabolome between the SM control and the six mutated
lines detected the total features of their metabolic profile differences, setting the stage for a more
specific targeted metabolomics study later in this paper. By using this approach, 263 VOCs, 746 NP and
110 P compounds were identified in the samples, many of which were differentially accumulated in, at
least, one pairwise comparison (Table S1). For VOCs, the first two principal components explained
over 51% of total variance; PC1 separated gf and y from the other lines, while PC2 kept r plus all
the combinations harboring the y mutation distinct from the others (Figure 1a). In Figure 1b, PCA
of the first two components for the NP compounds explained almost 53% of the total variance; SM
and two green flesh genotypes were clearly separated from y mutants plus r by the PC1, and r mutants
were grouped in the lower quadrants by the PC2. For P metabolites, the first two PCA components
explained the over 55% of total variance (Figure 1c); PC1 kept more clearly SM and the lines carrying r
separated from y mutants, and y_r was positioned exactly halfway between its parental lines. PC2
separated lines carrying yellow flesh, plus y from SM, which was in the upper side of the graph together
with gf and y_gf. Overall, the untargeted metabolomic analysis revealed that the mutations mostly
affected NP rather than VOC and P metabolome, with the r mutant showing the highest extent of
changes, including 112 NP compounds (106 down- and 6 up-regulated; Table S1). In addition, r also
displayed the highest epistatic attitude towards y (in the VOC and NP fractions) and gf (P metabolome),
while, notably, y was epistatic to gf in the NP untargeted metabolome.

Figure 1. PC1 × PC2 score plots of the six mutated lines plus San Marzano (SM) according to relative
values of 263 VOCs (a), 746 NP (b) and 110 P (c) metabolites measured by GC-LS and LC-HRMS. Line
symbols are explained in Table 1.

3.2. Estimation of “Gen*Year” Interaction in the Quantification of Targeted Metabolites

Analysis of untargeted metabolites revealed the presence of a consistent Year effect (Figure S1).
Seventy-eight VOCs, 33 NP and 69 P metabolites were independently subjected to multivariate ANOVA;
the interaction was not significant for VOCs, but it was highly significant for NP and significant for P
compounds (Table S2). “Gen*Year” interaction was found to be the least consistent source of variation;
therefore, data were mediated over the two years and all genotypes were presented with a single mean
value in targeted analyses.
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3.3. Targeted Analysis of Volatile Compounds

In order to give a more specific characterization of the flavor, volatile composition of each of the
mutated lines in comparison with the wild-type SM was carried out. The selected analytical strategy
allowed the relative quantification of 68 VOCs unequivocally identified by both mass spectra and
retention index with those of authentic standards (Table S3). Overall, eight compounds were related to
benzenoids (B), ten to branched-chain amino acid-relatives (BCAA), nine to apocarotenoids (C), two to
esters (E), twenty-four to fatty acids derivatives (L), four to phenylalanine derivatives (Phe), two to
sulfur compounds (S) and six to monoterpenoids (T).

PCA of the volatile composition revealed that the first two components explained about the
54% of the total variance; the score plot showed the position of the double mutants, related to their
parental lines, and with respect to SM (Figure 2a). Indeed, r and y_r were co-located in the same dial,
in agreement with the VOC untargeted metabolome plot; conversely, r_gf placed halfway between r
and gf according to PC1 (Figure 2a). Moreover, PC1 kept the mutants r and y_r separated from the
other lines. PC2 placed y_r and its parental lines in the upper side of the graph, together with SM.
The corresponding loading plot was able to identify groups of metabolites, often belonging to the
same metabolic pathways, as apocarotenoids (C, in red) and lipids (L, in light blue), terpenoids (T, in
green blue) and branched-chain amino acid derivatives (BCAA, in blue; Figure 2b). A comparison
between the score and the loading plots revealed the overall compositional differences between the
mutated lines.

Figure 2. PCA of log2 values of 68 volatile compounds measured by a solid-phase micro-extraction
gas-chromatography coupled to mass spectrometry (HS-SPME/GC-MS). (a) PC1 × PC2 score plot of the
six mutated lines plus San Marzano (SM). (b) PC1 X PC2 loading plot. Line (a) and metabolite class (b)
abbreviations are explained in Tables 1 and 2 respectively.

Indeed, one of the most obvious features was that all the lines harboring the yellow flesh mutation
(r, y_r and r_gf ) and, in a lesser extent, also the double mutant y_gf, were characterized by producing
lower levels of volatile apocarotenoids, which was particularly dramatic in the case of some linear
apocarotenoids such as 6-methyl-5-hepten-2-one (Figure 3). In the case of the mutants for yellow flesh
this was in accordance with the scarcity of their carotenoid precursors. These lines also showed lower
levels of several phenylalanine derivatives. A characteristic feature of the lines y, r and y_r was the
high production of fatty acid derivatives together with low levels of branched-chain amino acid-related
volatiles, conversely to double mutant lines y_gf and r_gf, which showed the opposite pattern. Finally,
y and gf lines were characterized by higher levels of apocarotenoids and terpenoids (Figure 2b).
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Table 2. Number of compounds in the different categories and classes of metabolites that are significantly
different from San Marzano (SM) in each of the six lines under study.

Metabolomics
Fraction

Metabolic Class Abbreviation
No. of

Compounds

No. of Differentially Accumulated Compounds Over SM

gf r y r_gf y_gf y_r

Volatile Benzenoids B 8 2 2 3 2 3
Branched-chain amino

acid derivatives BCAA 10 3 3 2 4 1

Apocarotenoids C 9 3 5 3 6 3 5
Esters E 2

Fatty acid derivatives L 24 3 4 6 1 4

Others Phe, S, T,
No ID * 15 6 4 8 4 6

Total VOCs 68 17 18 22 17 3 19

Non-polar Carotenoids CAR 15 2 5 3 7 5 7
Chlorophylls CHL 8 2 1 2 3

Fatty acids FA 14 1 1
Phospholipids PHO 1 1 1

Quinones QUI 6 1 2 2 3
Tocopherols TOC 5 1 1 1 1 2

Others STE,
No ID * 5 1 1 1

Total NP 54 8 10 5 13 10 12

Polar Amino acids AA 19 2 6 3 4 3 6
Acids AC 17 5 5 6 5 4 4

Amines AM 4 1 1 1
Sugars and polyols SAP 15 3 3 3 2 4 2

Alkaloids ALK 11 1 4 2 3 1 2
Phenylpropanoids PHE 55 6 13 24 18 18 16

Vitamins VIT 3 1 2 1

Others A, NU, LI,
No ID * 5 1 2 1

Total P 129 18 33 40 33 32 33

Gran total 251 43 61 67 63 45 64

* Undefined compounds.

To further investigate the volatile compounds content of each of the mutated line in comparison
with their original parental SM, a t-test analysis was performed. Out of 68 VOCs identified, the line
with the highest number of compounds significantly different from SM was y, mainly because of
differences in fatty acid derivatives, among other VOCs (Table 2). The lines containing the r mutation
strongly differed for apocarotenoid volatiles, a group of metabolites considered to be involved in
tomato flavor [37], representing the metabolic pathways most notably altered in these ILs (Figure 3).
Some volatiles, such as the benzenoid eugenol, had higher levels in all mutant lines (Figure 3a).
Mutants carrying yellow flesh had lower levels of the apocarotenoid β-ionone (Figure 3b), as well
as 6-methyl-5-hepten-2-one, where y_gf acquired lower levels too (Figure 3c). Furthermore, r, y
and their double mutant had higher levels of many fatty acid derivatives, such as (E)-2-pentenal
(Figure 3d) and 1-penten-3-one (Figure 3e). Lastly, y was enriched in phenylalanine derivatives, such
as 2-phenylethanol (Figure 3f).
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Figure 3. Relative log2 variation in selected volatiles involved in tomato flavor: (a) eugenol, (b) β-ionone,
(c) 6-methyl-5-hepten-2-one, (d) (E)-2-pentenal, (e) 1-penten-3-one, (f) 2-phenylethanol in the six fruit
mutant lines in San Marzano (SM) background compared with the recurrent parent. Line symbols are
reported in Table 1. Bars colored in grey and black indicate means significantly lower and higher than
SM for p ≤ 0.05 after Student’s t-test, respectively.

3.4. Targeted Analysis of Non-Polar Metabolites

To investigate changes at the NP specialized metabolome, LC-HRMS was used to determine the
level of 54 known and previously validated compounds. They were divided in different metabolic
classes, including 14 fatty acids (FA), one phospholipid (PHO), two sterols (STE), 15 carotenoids (CAR),
eight chlorophylls (CHL), six quinones (QUI), and five tocochromanols (TOC; Table S4). The score
plot of the first two PCA components explained about the 57% of the total variance, with double
mutants differently spaced from their parental lines (Figure 4a). Indeed, PC1 kept the mutants carrying
r separated from SM and the other lines. PC2 clearly separated y_r and its parental lines from the three
mutants carrying gf plus SM, partially confirming untargeted metabolomics results. The loading plot
grouped metabolites belonging to the same metabolic pathways (Figure 4b). A comparison between the
score and the loading plots revealed the compositional differences between the mutated lines. Indeed,
the chlorophyll group in the upper side of PC2 characterized the green flesh genotypes, while two
quinones were in the lower side of PC2, in correspondence of the yellow flesh genotypes. The carotenoid
group was split into early carotenoids (up to lycopene) and xanthophylls at the opposite sides of PC1;
they were respectively decreased and increased in the yellow flesh mutant lines (Figure 4b).
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Figure 4. PCA of log2 values of 54 NP (a,b) and 128 P (c,d) metabolites measured by LC-HRMS. (a–c) PC1
×PC2 score plot of the six mutated lines plus San Marzano (SM). (b–d) PC1×PC2 corresponding loading
plots. Line (a,c) and metabolite class (b,d) abbreviations are explained in Tables 1 and 2 respectively.

To further investigate the metabolic changes of each mutated line in comparison with the original
parental SM, a t-test analysis was performed (Table 2; Table S4), and we particularly focused on
metabolites with sensorial (color, taste) and health-related properties. The lines carrying r showed
the highest number of NP compounds different from SM, mainly due, as expected, to differences in
carotenoids (Table 2). The lower number of differences was shown by the single mutant y, indicating
that this genotype is more similar to SM for NP targeted compounds.

r, r_gf and y_r were characterized by levels of phytoene (Figure 5a), β-carotene (Figure 5b) and
lycopene (Figure 5c) lower than SM and the other lines, in agreement with previous reports; r, r_gf, y_gf,
and y_r reported higher levels of the xanthophylls all-trans-neoxanthin (Figure 5d) and luteoxanthin
(Table S4). At chlorophyll metabolism level, gf was characterized by higher contents of both chlorophyll
a (Table S4) and b, with the latter also higher in y_gf and r_gf (Figure 5e). Moreover, r_gf showed
higher levels of pheophytin a and pheophorbide a (Table S4). Drawing the attention on quinones,
plastoquinone increased in lines carrying r (Figure 5f) and plastoquinol-9 in r and y_r (Table S4). Lastly,
δ-tocopherol amount was higher than SM only in r_gf, while γ-tocopherol and β-tocopherol enhanced
in r_gf and y_gf (Figure 5g,h).
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Figure 5. Relative log2 variation in (a) phytoene, (b) β-carotene, (c) lycopene, (d) all-trans-neoxanthin,
(e) chlorophyll b, (f) plastoquinone, (g) δ-tocopherol, (h) β-/γ-tocopherol, of six fruit mutant lines in
San Marzano (SM) background compared with the recurrent parent. Line symbols are reported in
Table 1. Bars colored in grey and black indicate means significantly lower and higher than SM for p ≤
0.05 after Student’s t-test, respectively.

3.5. Targeted Analysis of Polar Metabolites

The relative quantification of 128 polar metabolites allowed to complete the metabolomics
characterization of the six mutants under study. P metabolites were divided into different metabolic
classes, including 19 amino acids (AA), 17 acids (AC), four amines (AM), two lipids (LI), one nucleic
acid (NU), 15 sugars and polyols (SAP), 11 alkaloids (ALK), 55 phenylpropanoids (PHE) and three
vitamins (VIT; Table S5). The score plot of the first two components explained about the 52% of the
total variance, with PC1 that particularly separated r and r_gf from all the other lines, and PC2 that
identified a group including gf and r_gf together with SM (Figure 4c). Interestingly, P untargeted
and targeted metabolomes differently separated the mutants under study, providing clues about a
large extent of distinct metabolic components contributing to their chemical profiles. The loading plot
grouped metabolites belonging to the same metabolic pathway (Figure 4d). By the comparison of
the score and the loading plots, the position of some metabolites in relation to the lines studied was
highlighted; indeed, many kaempferols and quercetins were in the PHE group corresponding to the
area of the y mutants. On the contrary, many naringenins grouped in the opposite side. Most AAs
were grouped together, matching with r and in opposition to the SAP group (Figure 4d).

To investigate the P metabolite content of each of the mutated lines in comparison with SM,
a t-test analysis was performed (Table 2; Table S5), giving emphasis to nutritional- and sensorial
attribute-related molecules. The line with the highest number of differentially accumulated polar
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compounds was the y single mutant, with a preponderance of down-regulated metabolites, as expected;
the PHE group mostly contributed to this diversity (Table 2). On the contrary, gf was the line more like
SM. Notably, lines containing r showed a higher number of AA over SM (Table 2).

As already highlighted in the corresponding loading plot (Figure 4d), lines carrying y had
lower levels of the PHE naringenin chalcone glucoside (Figure 6a), and conversely higher levels of
kaempferol-hexose deoxyhexose-pentose compared to SM, a biochemical phenotype also observed in
gf and r_gf too for the latter (Figure 6b). Regarding the ALK group, calystegine B1 resulted statistically
lower in all the lines, with exception of gf and y_gf, which however displayed reduced amounts
compared to SM (Figure 6c). In addition, a series of primary metabolites were characterized by higher
levels in the mutants under study: for example, the AA proline in r and y_r (Figure 6d) and the VIT
nicotinamide in gf, r and y_r (Figure 6e). Similarly, the SAP glucoheptulose was higher in gf, whereas
all the other lines were more similar to SM (Figure 6f). The LI phosphocoline displayed lower levels in
lines carrying the y mutation (Figure 6g), while the AC sinapinic acid was higher in all lines, with the
only exception of r (Figure 6h).

Figure 6. Relative log2 variation in (a) naringenin chalcone glucoside,
(b) kaempferol-hexose-deoxyhexose-pentose, (c) calystegine B1, (d) proline, (e) nicotinamide,
(f) glucoheptulose, (g) phosphocoline, (h) sinapinic acid, of six fruit mutant lines in San Marzano (SM)
background compared with the recurrent parent. Line symbols are reported in Table 1. Bars colored in
grey and black indicate means significantly lower and higher than SM for p ≤ 0.05 after Student’s
t-test, respectively.
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3.6. Bioinformatics to Investigate Metabolite-Metabolite Relationships

Bioinformatic approaches, including Venn diagram visualization and correlation network analysis,
were used in order to achieve a deeper understanding of the biochemical perturbations and relationships
occurring in the SM mutants under study. Venn diagrams showed the degree of overlap for VOC,
NP and P metabolites in each double mutant and its two parental single mutants. For line-specific
metabolites in each group, all lines, except y_gf and y_r, showed a higher number of significantly
up-regulated metabolites (Figure 7). When the overlaps between single mutants and the respective
double combinations were considered, the epistasis of r over gf (29 metabolites were in common
between r and r_gf ) and y (28 metabolites in common between r and y_r) and of y over gf (21 metabolites
in common between y and y_gf ) were found (Figure 7).

Figure 7. Venn diagrams for (a) gf, r and r_gf ; (b) gf, y and y_gf ; (c) r, y and y_r. Red and black numbers
correspond to up- and down-regulated metabolites, respectively.

Furthermore, we used a correlation network approach to investigate mutation-induced alteration
at VOC, NP and P metabolome levels. To this purpose, three networks were built by integrating
all differentially accumulated metabolites in, at least, each single mutant and the corresponding
double mutants (Figure 8). Overall, the three force-directed networks allowed the achievement of
specific topologies according to the distribution of the significant correlation networks existing in each
metabolite-metabolite interaction; notably, a high extent of conservation was observed in each network,
either in the direct (PHE in the y- and CAR in the r-yielding networks) or not direct (L volatiles in r,
y and r_y; and AA in r, gf and r_gf ) targets of the mutations. In order to evidence the more robust
and strongest correlations, the MCODE Cytoscape plugin was applied to each of the three networks
(Figures S2–S4). In this way, it was possible to identify the highly interconnected regions, which
resulted particularly abundant in the r/gf mutants, with a lower number of greatly dense clusters
including primary (SAP, AA) and secondary (isoprenoids as CAR, CHL, QUI, T and PHE) compounds;
on the contrary, the y/r mutants were characterized by a higher number of clusters with lower density,
and with a high representation of amino and organic acids, besides CAR and PHE.
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Figure 8. Correlation networks of metabolomics data in (a) y, gf and y_gf ; (b) y, r and y_r; (c) r, gf and
r_gf mutants. All the data from volatile (VOC), non-polar (NP) and polar (P) analyses were used as
fold change to the San Marzano (SM) reference. Network topology was directed by the force of Pearson
correlation coefficient index (Table S6). Each node represents VOC (turquoise circle), a NP (diamond) or
a P (triangle) metabolite. Lines joining the nodes represent positive (red) or negative (blue) correlations.
Node sizes are proportional to the respective node strengths, which are shown in Tables S7–S9. Node
color is depending on the metabolic class of each compound as indicated in the figure. Number of
nodes (n) and network strength (NS) are shown at the top of each network. Only correlations with |ρ| >
0.95 are shown (p ≤ 0.05).

4. Discussion

This study focused on the analysis of the volatile and non-volatile compounds of six tomato lines
introgressing mutations that have been selected as representative for affecting the main classes of
fruit pigments. Interest towards these mutations is proved by the increasing introduction of cultivars
with yellow, pink and brown fruits in the fresh tomato market and by scientific studies addressing
the properties of single [38,39] and multiple [40] mutants. The characterization of the biochemical
effects of these mutations was based on the comparison with the SM original parent, with the final aim
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of defining whether the lines showing aesthetic novelty were also diversified for organoleptic and
nutritional characteristics.

When the studied compounds were considered all together, y showed the highest level of
variation. Venn diagrams indicated epistasis of r over both gf and y, as highlighted by the univariate
analysis. Interestingly, when integrated and subjected to a correlation network analysis, differentially
accumulated metabolites in any of the six single and double mutant ILs exhibited a strong level of
coordination: indeed, irrespectively to the metabolic class object of the mutation, metabolites acting
in the same pathway clustered together, thus indicating a great conservative capacity of the fruit
metabolism in its mutation-derived reorganization. This finding is consistent with previous reports
showing, either in tomato and grape, a general phenotypic-metabolic plasticity in response to genetic
or environmental changes [24,30,41]. However, looking at the sub-clusters generated by each network,
distinct and specific relationships were unraveled, with the mutants carrying the y and r mutations
involving the largest number of metabolites belonging to highly diversified pathways.

4.1. Biochemical Changes in Fruits of Yellow Flesh and of Its Combinations with y and gf

Mutants containing r were clearly separated from the other lines by NP targeted metabolites,
mainly due to the compositional differences of carotenoids. The double mutant r_gf mapped in
a distinct position compared with r and y_r, indicating partially additive and partially synergistic
effects of this combination. The primary effect of the r mutation in the carotenoid pathway was to
strongly reduce phytoene, and the colored carotenoids β-carotene and lycopene, as expected [42].
Phytofluene was also reduced in r genotypes, as previously described in tomato accessions [43] and in
ripening fruits of Psy1 knockout lines [44]. In the latter case, a concomitant decrease in the volatile
apocarotenoids was also observed [44]. In literature, the study of r metabolites was often limited to the
analysis of carotenoids, including the xanthophyll lutein, whose levels, in line with our results, did not
vary [11]. Intriguingly, we evidenced that all-trans-neoxanthin, the last xanthophylls in the carotenoid
pathway, in r mutants showed levels higher than SM; it is possible that this represents a cellular strategy
implemented to compensate for the decrease of other carotenoids. Indeed, xanthophylls act in flowing
the energy through the photosynthetic apparatus and protecting organisms against damage caused
by photosynthesis itself [45]. In addition, both violaxanthin and neoxanthin are key substrates in
ABA biosynthesis, and their variation can influence fruit ripening and the attitude towards abiotic
stresses [46]. In this context, enhanced levels of xanthophylls could provide enough metabolic flux
to guarantee an adequate ABA production. The same hypothesis can be extended to the analysis of
quinones, such as plastoquinone and plastoquinol-9, whose levels increased in yellow flesh mutants.
The importance of quinones in basic metabolic processes, such as respiration and photosynthesis, has
been established [47] and an increase in their content is plausible, in a scenario where it is necessary to
compensate for the lack of carotenoids.

Important metabolic changes occurred in the r mutants for P compounds; several amino acids
positively varied, as proline in the single mutant and in combination with y, and valine/norvaline in
the single mutant or combined with gf. Proline and valine have significant functions in plant cells as
plant stress sensor, ABA and polyamines interactors, and precursors of BCAA-derived volatiles [48,49].
Similarly, the vitamin nicotinamide, that plays a primary role in pyridine metabolism [50], also
increased in r, alone or with y.

Carotenoid-derived volatiles have an important role in tomato flavor, as their levels positively
correlate with tomato acceptability [51]. Loss-of-function of Psy1 in yellow flesh mutants led to the lack
of substrates for apocarotenoid production [52], thus justifying the low amount of C VOCs such as
β-ionone [53] and 6-methyl-5-hepten-2-one [54]. Conversely, the L 1-penten-3-one and (E)-2-pentenal
increased in r and r_y, suggesting a role for the lipoxygenase–linoleate (LOX) enzyme that catalyzes
the oxidation of polyunsaturated fatty acids by molecular oxygen with the formation of unstable
hydroperoxides which in turn oxidize carotenoid pigments [55].
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In summary, compensating the depletion of the principal carotenoids, lines carrying the r mutation
offer peculiar nutraceutical properties, for an increased content of amino acids, vitamins, xanthophylls
and quinones. Xanthophylls have been highlighted in recent studies for their positive contribution
towards total dietary carotenoid intake [56], whereas quinones showed positive properties in treating
cardiovascular diseases, chronic gingivitis and periodontitis and a favorable impact on cancer treatment
and human reproductive health [57]. Differently, tomato r lines will probably show a lower score
for the aroma, considering that some of the apocarotenoids providing floral or fruity notes are less
represented in yellow fruits.

4.2. Biochemical Changes in Fruits of Colorless Fruit Epidermis and of Its Combinations with r and gf

Multivariate analysis of targeted P compounds tightly grouped lines carrying the y mutation, an
expected result as y is characterized by substantial modifications of the class of phenylpropanoids,
mainly due to the lack of yellow pigment naringenin chalcone [15]. As also observed in the case of the
NP fraction, untargeted and targeted metabolomes did not perfectly matched, suggesting the existence
of larger, still unexplored, metabolic changes. The decrease or absence of naringenins also characterized
y and its two double mutants, leading to the conclusion that y is epistatic on gf and r for this class
of compounds. Compared to red SM fruits, kaempferol-hexose-deoxyhexose-pentose was higher
in y mutants, even if many other kaempferols showed no differences. Similarly, several quercetins
showed higher levels in lines carrying y. Variations in the PHE pathways could explain the reduced
phosphocholine levels detected in the three y mutants, since increased activity of pathways generating
cuticular lipids in tomato fruit peel precedes that of phenylpropanoid and flavonoid biosynthesis
pathways [58].

No substantial differences in carotenoids were found between y and SM, except the higher
all-trans-neoxanthin levels in y_gf and y_r. Conversely, tocochromanol metabolism was altered in y
mutant berries as there was a decrease in tocopherols, mainly affecting y and y_r, confirming previous
reports [15,59].

Among VOCs, differences were found in compounds derived from phenylalanine, such as eugenol
and 2-phenylethanol, in line with the known alterations of y in the phenylpropanoid branch of
phenylalanine catabolism [54]. Indeed, a significant number of VOCs derived from amino acids, are
considered to have an influence on tomato flavor and liking, such as guaiacol and eugenol. In addition,
2-phenylethanol is a main contributor to tomato flavor, increasing floral aroma and the perception of
sweetness [60,61], it is plausible that increase of these class of volatiles exerts a positive effect on the
aroma in lines carrying the y mutation. In addition, y mutants were characterized by higher production
of many fatty acid derivatives, which are the most abundant volatiles produced in the tomato fruit [62].
These VOCs include several C5 compounds such as 1-penten-3-one or (E)-2-pentenal, and C6 volatiles
such as 1-hexanol, (Z)-3-hexenal, (E)-2-hexenal, or hexanal, among others, that are classified as “green
leaf” volatiles due to their ‘green’ characteristic, with a fresh aroma of cut grass. Although some
studies suggested a reduced impact on tomato flavor and no effect on consumer preference of these
compounds [63,64], others claim their potential impact on overall flavor intensity and liking [37].

In addition to variation of the aroma, y mutants are endowed of higher kaempferol and quercetin
levels, but also present the drawback of lower naringenin and tocopherols. Since all tocochromanols
are potent lipid-soluble antioxidants and are essential dietary nutrients for mammals as vitamin E [65],
this aspect represents a negative trait in y tomato lines.

Therefore, the y mutation is to be considered as a source of more aesthetic (color) and organoleptic
(aroma) than nutritional novelty. Although no clear relationship between colorless epidermis and
fruit shelf-life, peculiar mechanical properties of the y epicarp were manifested by the fact that the
peel of the mutant fruit was richer of lignin [15,66]. Intriguingly, the SM lines carrying y, alone or
in combination, showed a higher resistance to storage, indicating that pigment variation in the peel
implicates different mechanical properties and post-harvest behavior of the fruit [26].
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4.3. Biochemical Changes in Fruits of Green Flesh and of Its Combinations with r and y

The group of green flesh mutants showed no changes in carotenoids, but as expected, it was
primarily affected in the content of chlorophylls. gf belongs to the so-called cosmetic-type SGR mutants,
that have been described in several plant species to retain substantial amount of chlorophylls in fruits
during ripening, maintaining other ripening-related metabolites, such as lycopene, unchanged [67].
Accordingly, all the SM lines containing gf showed fruits with higher amounts of chlorophylls. Among
other NP metabolites, several tocopherols increased in gf single and double mutants, confirming
previous data that showed higher tocopherol levels in gf [68,69] and r_gf (A. Mazzucato and G.P.
Soressi, unpublished results) mutants.

For P metabolites, gf was similar to SM, with few notable exceptions involving flavonoids, such
as kaempferols, and sugars, such as glucoheptulose.

No substantial variations were found for gf mutants in VOCs except for a high eugenol content
that was paralleled by the other lines.

Because of the positive effects of chlorophylls and chlorophyll-related metabolites on cellular
inflammation and as anti-mutagen and anti-carcinogen agent [70,71], and of the antioxidant function of
vitamin E-producing metabolites, that reduce free-radical damage to membrane lipids by scavenging
peroxyl radicals [72,73], tomato lines carrying gf may be considered an alternative to red tomatoes
offering added nutraceutical value. In addition, gf may play important roles in enhancing organoleptic
qualities. Although a direct, positive effect of gf on soluble solids content has not clearly been
established, an SlGLK2-enhanced chlorophyll content in immature green fruits led to an increment
in total soluble solid content in ripe fruits, possibly by the positive regulation of sugar metabolism
enzyme-encoding genes [69]. This effect will be additive to that of other taste-related compounds,
such as glutamate [20]. In our gf lines, glutamic acid was not significantly different from SM, but,
considering only data in one year, it was substantially higher in all lines. All these properties justify
the interest towards breeding new gf tomato lines and the present success in the market promises a
further development in the near future.

5. Conclusions

This work was based on the study of the effects of mutations with an emerging commercial
interest, compared within the traditional Italian tomato variety San Marzano. This biochemical and
bioinformatics characterization has given further insights on the effect of each mutation on fruit
aesthetic, flavor and nutritional composition. The analysis of the respective three double mutants
offered an added value, making it possible to establish epistatic or synergistic effects between each pair
of mutations and represented a starting point for breeding new tomato lines with different phenotypes.
Although r and y cause the decrement of the most important classes of health-related pigments
(carotenoids and flavonoids), the compensating increase of other metabolites with nutraceutical
(xanthophylls, tocopherols, amino acids) or flavor-related (phenylalanine and fatty acid derivatives)
positive properties make the studied lines worthy of attention for breeding novel and better tomatoes.
Novel phenotypes could take advantage of new breeding techniques as genome editing to recapitulate
the original mutations in different tomato backgrounds, or in different species, and obtain the wanted
variation directly avoiding backcrossing and linkage drag effects. Ultimately, advanced breeding
programs will convert the new lines into novel elite varieties of commercial interest.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/110/s1,
Figure S1: PC1 × PC2 score plots of the six mutated lines plus San Marzano (SM), sampled in two different
years, according to relative values of 263 volatile (a), 746 non-polar (b) and 110 polar (c) metabolites
measured by a solid-phase micro-extraction gas-chromatography coupled with a mass spectrometry instrument
(HS-SPME-GC-MS), Figure S2: Subnetworks generated from the y, gf and y_gf global network of Figure 8, using
the MCODE Cytoscape plugin. Each subnetwork highlights the highest densely connected regions present in
the global network. Each node represents a VOC (turquoise circle), non-polar (diamond) or a polar metabolite
(triangle). Lines joining the nodes represent correlations; direct and inverse correlations are shown in red and
blue, respectively. Node sizes are proportional to the corresponding node strengths (nss), which are shown in
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Supplemental Table S7. Node color is depending on the metabolic class of each compound as indicated in the
figure. Number of nodes (n) and network strength (NS) are shown on top of each network. Only correlations with
|ρ| > 0.95 are shown (p-value 0.05), Figure S3: Subnetworks generated from the y, r and y_r global network of
Figure 8 using the MCODE Cytoscape plugin. Each subnetwork highlights the highest densely connected regions
present in the global network. Each node represents a VOC (turquoise circle), non-polar (diamond) or a polar
metabolite (triangle). Lines joining the nodes represent correlations; direct and inverse correlations are shown in
red and blue, respectively. Node sizes are proportional to the corresponding node strengths (nss), which are shown
in Supplemental Table S7. Node color is depending on the metabolic class of each compound as indicated in the
figure. Number of nodes (n) and network strength (NS) are shown on top of each network. Only correlations
with |ρ| > 0.95 are shown (p-value 0.05), Figure S4: Subnetworks generated from the r, gf and r_gf global network
of Figure 8 using the MCODE Cytoscape plugin. Each subnetwork highlights the highest densely connected
regions present in the global network. Each node represents a VOC (turquoise circle), non-polar (diamond) or
a polar metabolite (triangle). Lines joining the nodes represent correlations; direct and inverse correlations are
shown in red and blue, respectively. Node sizes are proportional to the corresponding node strengths (nss),
which are shown in Supplemental Table S7. Node color is depending on the metabolic class of each compound as
indicated in the figure. Number of nodes (n) and network strength (NS) are shown on top of each network. Only
correlations with |ρ| > 0.95 are shown (p-value 0.05), Table S1: Number of volatile (VOC), polar (P) and non-polar
(NP) untargeted metabolites significantly different from Sam Marzano (SM) in the six introgression lines. Line
symbols are explained in Table 1, Table S2: Fisher’s F test (F) and relative degree of significance (P) after two-way
multivariate analysis of variance (MANOVA) for three main categories of metabolites analyzed, Table S3: Mean
(M) and standard deviation (SD) of volatile compounds in two years for the fold change of individual values
over the San Marzano value and significance of Student’s t test between each mutant line and San Marzano. Line
symbols are explained in Table 1, Table S4: Mean (M) and standard deviation (SD) of non-polar compounds in
two years for the fold change of individual values over the San Marzano value and significance of Student’s t
test between each mutant line and San Marzano. Line symbols are explained in Table 1, Table S5: Mean (M) and
standard deviation (SD) of polar compounds in two years for the fold change of individual values over the San
Marzano value and significance of Student’s t test between each mutant line and San Marzano. Line symbols are
explained in Table 1, Table S6: Metabolite-metabolite significant correlations (Pearson coefficient; r > |0.95|, p-value
< 0.05) in tomato single mutant and the corresponding double mutants (r, y and r_y; r, gf and r_gf ; y, gf and y_gf ),
Table S7: Node table of y, gf and y_gf double mutant Network. For each node the corresponding node strength
(ns) is reported, Table S8: Node table of y, r and y_r double mutant Network. For each node the corresponding
node strength (ns) is reported, Table S9: Node table of gf, r and r_gf double mutant Network. For each node the
corresponding node strength (ns) is reported.
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Abstract: Chili pepper (Capsicum spp.) is one of the most important horticultural crops worldwide, and
its unique organoleptic properties and health benefits have been established for centuries. However,
there is little knowledge about how metabolites are distributed throughout fruit parts. This work
focuses on the use of liquid chromatography coupled with high resolution mass spectrometry
(UHPLC-ESI-HRMS) to estimate the global metabolite profiles of the pericarp, placenta, and seeds of
Tabasco pepper fruits (Capsicum frutescens L.) at the red mature stage of ripening. Our main results
putatively identified 60 differential compounds between these tissues and seeds. Firstly, we found
that pericarp has a higher content of glycosides, showing on average a fold change of 5 and a fold
change of 14 for terpenoids when compared with other parts of the fruit. While placenta was the
richest tissue in capsaicinoid-related compounds, alkaloids, and tocopherols, with a 35, 3, and 7 fold
change, respectively. However, the seeds were richer in fatty acids and saponins with fold changes
of 86 and 224, respectively. Therefore, our study demonstrates that a non-targeted metabolomic
approach may help to improve our understanding of unexplored areas of plant metabolism and also
may be the starting point for a detailed analysis in complex plant parts, such as fruits.

Keywords: Capsicum frutescens L.; non-targeted metabolomics; secondary metabolism; Liquid
Chromatography coupled to Mass Spectrometry (LC-MS)

1. Introduction

Chili pepper (Capsicum spp.) is one of the most important crops worldwide. It is used
as a main ingredient for many dishes in different cultures, such as Asian, Latin-American, and
Mediterranean cultures, due to its organoleptic properties [1]. There are 40 accepted chili species
but only five are considered domesticated: C. annuum, C. chinense Jacq, C. frutescens, C. baccatum,
and C. pubescens [2]. In 2017, 36 million tons of chili peppers were produced globally, with Mexico
being the second largest producer [3]. Wild pepper populations of Tabasco pepper (C. frutescens
L.) and C. annuum can be found in some states of Mexico, increasing the relevance for collecting
and characterizing these species as resources for the breeding of cultivated peppers [4,5]. Previous
studies have extensively described metabolite diversity in C. annuum [6,7] but very little is known on
C. chinense and C. frutescens. Most of these studies have undertaken a targeted approach, where the
main focus has been to quantitate for specific metabolites, such as capsiate, dihydrocapsiate, capsaicin,
dihydrocapsaicin, carotenoids, fatty acids, and amino acids [8,9]. To date, there are no studies with a
comprehensive global profiling of tissue specific in C. frutescens and C. chinense.
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Capsicum species are known to be rich in compounds such as capsaicinoids, capsinoids, carotenoids,
flavonoids, vitamins, essential oils, and other phytochemicals, which provide a unique taste, aromatic
properties, and health benefits [10–14]. Capsaicinoids consist mainly of two congeners, capsaicin and
dihydrocapsaicin. Capsinoids also have two major analogues, capsiate and dihydrocapsiate. However,
there are structural differences: Capsaicinoids are fatty acid amides linked with vanillylamine,
whereas capsinoids are fatty acid esters linked to vanillyl alcohol [15,16]. Several compounds
identified in the Capsicum species have been studied, because the medicinal potential examples of
these compounds are icariside E5, capsosides, and capsianosides [17]; hydroxycinnamic derivatives,
O-glycosides of quercetin, luteolin, and chrysoeriol [7]. The reported medicinal benefits are related to
areas, such as anti-inflammatory [18], anti-cancer [19], anti-microbial, antioxidant properties [1,20,21],
and those with weight-loss properties [22]. In addition, some epidemiological studies of a number
of these antioxidants reported that they possess anti-atherosclerotic, antitumor, antimutagenic or
anticarcinogenic activity [23–25]. It may be that these properties have the ability to help us to
address the identification, isolation, and production of nutraceutical compounds or new natural
medicinal compounds.

Nevertheless, the location and relative abundance of these metabolites and their precursors in
different parts of the chili pepper fruit, such as the pericarp, placenta and seed, remain unclear. It is
known that some compounds are synthesized and accumulated into specific tissues in the Capsicum
genus [1,26]; for example, capsaicin is synthesized mainly in the placenta [27,28], while anthocyanins
are described as being accumulated in pericarp during fruit development [29]. Materska, reported a
placental and pericarp comparison in chili pepper fruit, where placenta was the richest in flavonoids,
while the pericarp presented a larger diversity in glycosylated compounds. Despite this, little is
known about the tissue specific spatial-temporal location of other classes of compounds and products
of the secondary metabolism in Capsicum fruits [30]. Investigating the metabolic diversity on fruit
tissues is essential in order to gain a comprehensive understanding of the function of specific parts
of the fruit at the fundamental level. Consequently, this will enable the possible exploitation of
natural products either for pharmaceutical or food products. In the past, these have been done with
histochemical methods, by staining tissues sections with various chemical to reveal the presence of
specific compounds either by visual or microscope inspection [31].

Metabolomics is defined as the comprehensive analysis of all low molecular weight organic
compounds (<1500 Da) in a biological system [32]. Mass spectrometry has become the most widely
applied platform for metabolomics, due to the wide range of molecules that can be analyzed on a
single run [33]. Global profiling or non-targeted mass spectrometry-based metabolomics have gained
importance in the study of crop species and have been applied to investigate potato, tomato, rice, wheat,
strawberry, cucumber, and tobacco [34–37]. In the field of plant metabolomics, liquid chromatography
coupled with electrospray ionization high resolution mass spectrometry (UPLC-ESI-HRMS) has
emerged as the technique of choice for the putative identification of metabolites in complex matrices.
This technique has been widely used, due to its sensitivity, selectivity, and analysis capability [38,39].
Nevertheless, metabolite identification for unknown compounds still remains a big challenge to
overcome. In that respect, the recommendations by the Metabolomics Standards Initiative (MSI)
recognize five different levels for metabolite confidence annotations. Level 0 requires the full
compound 3D structure and stereochemistry information. Levels which are more common include:
Level 1 identifications need a confirmation by two orthogonal parameters such as retention time
and MS/MS spectrum, normally with match reference standards; and Level 2 requires at least two
orthogonal pieces of information, including evidence that excludes all other candidates. Data for Level
2 should describe probable structure and be matched to literature data or databases by diagnostic
evidence [40].

Combining existing bioinformatic tools with high resolution mass spectrometry data can reveal
unclear relationships of metabolites and their possible function at a spatial-temporal distribution level.
As a first attempt to construct the chili fruit metabolome, we produced a hand curated dataset,
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that contains 60 putative identified metabolites, which include alkaloids and terpenoids that
are unreported in Capsicum, with significant differences and relative abundances between three
sections (pericarp, placenta, and seed) of Tabasco pepper fruit at the mature red stage, using an
UHPLC-QTOF-HRMS platform, combined with the use of Progenesis QI for small molecules, as a
tool for the pre-identification of unknown metabolites. Our results underline the global metabolic
differences in complexity, mainly based on the secondary metabolism of these fruit parts.

2. Results

2.1. Non-Targeted Metabolomic Analysis

Our data for two tissues and the seed of Tabasco chili fruit comprised a total of 87 files or
chromatograms per ionization mode (positive and negative polarities) as shown in Figure 1 and were
uploaded into Progenesis QI. The dataset was first aligned (retention time): Each chromatogram
was aligned against each other and automatically compared to a reference profile selected by the
software that contained the highest number of features (potential compounds). Then, peak picking
was performed by default parameters. A total of 1980 features were detected in the aqueous phase and
1481 were detected in the diethyl ether extract, for both ionization modes. Figure 1 shows a typical
chromatographic profile in positive and negative ionization mode of placenta tissue, displaying some
representative compounds of chili pepper fruit.

Figure 1. (a) Base peak intensity chromatographic profile of placenta tissue from chili
pepper fruit on a Charged Surface Hybrid (CSH) C18 column obtained with Electrospray
Ionization (ESI) positive mode on a mass range from 100 to 1500. 1. 2-[(1H-Indol-3-ylacetyl)
amino]-4-methylpentanoate; 2. Indole-3-acetamide; 3. L-cis-Cyclo (aspartylphenylalanyl);
4. Capsicosin; 5. Yamogenintetroside B; 6. Capsaicin; 7. Dihydrocapsaicin; 8. Homodihydrocapsaicin;
9. β-Carotinal. (b) Base peak intensity chromatographic profile of placenta tissue
from chili pepper fruit on a CSH C18 column obtained with ESI negative mode.
10. Oleandrigenin monodigitoxoside; 11. β-d-fructofuranosyl 6-O-octanoyl-α-d-glucopyranoside;
12. β-(1->6)-galactotriitol; 13. (2S,3R)-2-Azaniumyl-3-hydroxyoctadecyl phosphate.
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Distribution of the features between parts was compared using principal component analysis
(PCA) of loading and score plots describing a significant grouping by part for both extraction
phases (Figure 2). In addition, quality controls (QC samples) were also considered, as shown in
Figure 2. The QC samples cluster tightly in comparison to the total variance in the projection,
suggesting a dataset deemed to be of high quality. Tables 1 and 2 describe loadings that mostly
contribute to principal components for each extraction. Putative organic compounds catalogued as
saponins (SPNS), such as Tuberoside J, Matesaponin 5, and Asparagoside B significantly contributed
to component 1 in the aqueous phase, while other important features for component 2 belong to
flavonoid class (FLV) and SPNS compounds. Furthermore, both components in the organic phase
were mainly composed of glycerolipids (GL) and terpenoids (TER), as well as a putative carotenoid,
(5cis,5′cis,9cis,11′cis)-1,2,7,7′,8,8′-Hexahydro-1,2-epoxy-ψ, ψ-carotene were important for contribution
of component 1 in organic phase.

Figure 2. (a) Principal Component Analysis (PCA) Bi-plot of loadings (features: crosses) obtained in ESI
positive mode and scores (samples: colored circles) extracted with methanol:water phase (component
1:33.10%; component 2: 15.72%; loadings = 1294 features; n = 26); (b) PCA Bi-plot of loadings (features:
crosses) and scores (samples: colored circles) extracted with diethyl ether phase (component 1:37.15%;
component 2: 15.14%; loadings = 1391 features; n = 24).
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Table 1. Loadings most contributing to principal components for the aqueous phase.

Putative Identification Class PC1

Tuberoside J SPNS 0.2012
Asparagoside B SPNS 0.1939
Matesaponin 5 SPNS 0.1871
Oleanolic acid

3-O-[O-β-d-glucopyranosyl-(1->4)-O-β-d-glucopyranosyl-(1->3)-O-
α-l-rhamnopyranosyl- (1->2)-α -l-arabinopyranoside]

SPNS 0.1822

Capsicosin SPNS 0.1650
PC2

(3”-Apiosyl-6”-malonyl) astragalin FLV 0.1401
Pratenol B BZD 0.0881

Asparagoside B SPNS 0.0750
Matesaponin 5 SPNS 0.0673

Kaempferol 3-xylosylglucoside FLV 0.0658

PC1: Principal Component 1; PC2: Principal Component 2; BZD: benzoyl derivate; FLV: flavonoid; SPNS: saponin.

Table 2. Loading most contributing to principal components for the organic phase.

Putative Identification Class PC1

Abietane TER 0.1450
(5cis,5′cis,9cis,11′cis)-1,2,7,7′,8,8′-Hexahydro-1,2-epoxy-ψ,

ψ-carotene CARO 0.1429

Lycoperoside D SPNS 0.1324
Phyllohydroquinone TER 0.1302

2-Caprylooleomyristin GL −0.0796
PC2

α,α′-Trehalose 6-mycolate GL 0.1505
2-Caprylooleomyristin GL 0.1226

MG(14:0/0:0/0:0) GL −0.1284
Uralenneoside BZD −0.0757

Abietane TER 0.0719

PC1: Principal Component 1; PC2: principal Component 2; BZD: benzoyl derivate; Caro: carotenoid; GL:
Glycerolipids; SPNS: saponin; TER: terpenoid.

2.2. Level 1 and 2 Metabolomic Identification Analysis

We putatively identified approximately 270 compounds and classified them in 52 compound
classes (Table S1). Putative identifications were taken into consideration with a high match score
(>90%). Terpenoids, fatty acids, and glycosylated compounds were the most abundant groups. As was
predicted, different capsaicinoid compounds were also detected with a high match score. Alkaloids,
carotenoids, saponins, and phenolic compounds were also detected in our study.

Capsaicin and dihydrocapsaicin were validated by matching their retention times and MS/MS
spectra with those of the analytical standard (Level 1 identification). Furthermore, commonly reported
compounds, such as carotenoids and capsaicin related compounds, were detected and putatively
identified in the same manner in our samples (Figure 3).
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Figure 3. Mass spectrum of most common compounds in Tabasco chili pepper using Ultra High
Pressure Liquid Chromatography MSMS Quadrupole Time of Flight (UHPLC-MS2 Q-TOF; collision
energy ramp: 20–40 eV) ESI positive ionization mode of placenta tissue, as putatively identified by
Progenesis QI for small molecules. (a) Capsaicin; (b) β-carotinal; and (c) dihydrocapsaicin.

2.3. Different Metabolomic Profiles in Capsicum Sections

Based on results from volcano plot comparisons, we found a total of 60 putative compounds with
significant differences between the parts of the Tabasco pepper fruit. Figure 4 shows the distribution
of features between placenta and pericarp tissues. As was expected [28], capsaicinoids were more
abundant in placenta than pericarp. In contrast, pericarp was richer in glycosylated compounds and
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terpenoids such as acalyphin, capsiate, and capsidiol. Some significant ions remain unknown that still
need to be identified.

Figure 4. Volcano plot comparison of relative abundance between tissues of 1394 features in ESI positive
ionization mode: Placenta (left), and pericarp (right), unchanged (green); one-way ANOVA p = 0.05
(dotted line) Y axis: p value, X axis: fold change.

After feature screening and putative identification, Venn diagrams were generated (Figure 5) to
show similarities and differences between fruit parts, according to the fold change values obtained
in Table S1. Noticeably, around 30% of the complete dataset of identification was shared by all three
fruit parts in almost all the extraction solvents, the exception being for the organic phase in the
negative ionization mode, which only share 9.32% similarities. As can be seen in the Venn diagrams,
a greater number of putative metabolites were identified in the positive ionization mode. Those easily
detected in the positive ionization mode were the compound classes alkaloids, carotenoids, fatty acids,
glycosylated compounds, terpenoids, and saponins; while in the negative ionization mode amino
acid-derivate compounds, sphingolipids, and phospholipids were detected.

Figure 5. Venn diagrams of the complete dataset of putative metabolites in different fruit parts at the
red mature stage of Tabasco chili pepper (C. frutescens); labels are in percent and number of metabolites.

Listed in Table 3 is the putative identification that presents a differential abundance between fruit
parts, including the fragmentation pattern (MS2) and adducts for putative annotation. Fold change
values are shown in Table S1.
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3. Discussion

The global metabolic comparison between the tissues and seeds of C. frutescens showed several
feature differences between the pericarp, placenta, and seed. The Level 1 and 2 confidence metabolite
annotations allowed us to assign a putative identification to these ions. Around 30% of metabolites were
shared between all three parts. Compounds related to the primary metabolism showed few significant
differences, they included amino acid related compounds, fatty acids, and phospholipids. As shown
in the Venn diagram (Figure 5) and Table S1, placenta and pericarp have the biggest compound
class diversity. Significantly, the seeds presented a higher number of putative identifications, and these
were primarily saponins, terpenes, and fatty acids.

Pericarp compound classes were mainly composed of glycosylated compounds and terpenoids.
Complementary to these findings, Materska demonstrated that chili pepper pericarp is abundant in
glycosylated compounds [30]. Likewise, terpenoids were distributed in the whole fruit but pericarp
showed a slightly higher proportion of them. These compounds are highly abundant in spices and
herbs and give a wide range on the aroma and flavor spectrum [1]. Similarly, terpenoids have been
described as showing antibiotic properties [41] and have been used in fragrances [42].

Placental tissue showed a large number of previously reported compounds with bioactivity, mainly
capsaicin- and capsinoids-related compounds. In addition, alkaloids and tocopherols were present, a
fact that is in agreement with current literature [28,30]. Found to be abundant in this fruit compartment
were 6-O-acetylaustroinulin (terpenoid) and Myrciacitrin V (flavonoid) and they have not been reported
in the Capsicum fruit.

The compounds found in chili seeds were predominantly fatty acids (3,16-Dihydroxypalmitate,
Sterculynic acid) and saponins (Capsicoside A, Eleutheroside L and Tragopogonsaponin F) where they
function as reserve nutrients for embryo development and propagation [43]. Moreover, seeds showed
the presence of terpenes (Ursolic acid 3-[glucosyl-(1->4)-xyloside]) which are known to function as a
natural promoter of predation and, as a consequence, a seed disperser [44]. Ritota et al. (2010) reported
an abundance of fatty acids in sweet pepper species by nuclear magnetic resonance spectroscopy,
in which polyunsaturated fatty acids were easily detected and pre-identified [6].

Our results were consistent with previously reported findings regarding the large diversity
of secondary metabolites in fruits of Capsicum species and the non-targeted metabolomics
profiling of Solanaceae [10,26,39,45–48]. Furthermore, new compounds, such as Myrciacitrin V,
Feruloyl-β-sitosterol, 6-O-acetylaustroinulin and others, were putatively annotated as statistically
significant in specific fruit parts.

Capsaicin, Dihydrocapsaicin, and capsaicinoids derivatives mainly accumulate in the placenta,
as previously reported [27,49]. This class of compounds represents the most described and abundant
metabolite in this genus and are predominantly known as being responsible for the pungency. Different
bioactivity assays have been developed, demonstrating properties of capsaicinoids over different
cell lines and metabolism, including as an analgesic and for weight-loss [22,50]. Large abundance of
capsaicinoids in the chili fruit placenta was proposed by Tewksbury and Nabhan (2001), who suggest
that capsaicin selectively discourages vertebrate predators (capsaicin has been found to repel or poison
mammals) without deterring more effective and important seed dispersers, such as birds. [51].

A variety of new compounds in Capsicum genus, also reported in different species, were detected
in pericarp, including isopimaric acid [41], which is a terpenoid with bioactive properties. Additionally,
other compounds such as Pedalitin [52], Xi-8-acetonyldihydrosanguinarine [53], Pratenol B [54],
Uralenneoside [55] were detected in pericarp and have been previously reported as bioactive
compounds. Quercetin 3-(6”-malonyl-glucoside) is an anthocyanin-related compound that has
not been reported in pepper fruit, but this compound class is well known to be localized mainly in
pericarp [56,57], due to its involvement as a protection system against solar damage in plants and to
attract potential pollinators [29].

New putative compounds in placental tissue, such as Lycopodane [58], 2,4-
Pentadiynylbenzene [59], Myrciacitrin V [60], Cinncassiol C [61], and 6-O-acetylaustroinulin [62]

84



Metabolites 2019, 9, 206

have been reported as bioactive compounds, supporting the nutraceutical properties of chili pepper
against metabolic disorders.

The existence of terpenes in seeds may result in different aromas that have been shown to firstly
attract birds to mature fruits during the day [63] and secondly, to promote the dispersal of seeds.
This function supports the ecological relationship between birds and chili pepper fruits, attracting the
most beneficial vertebrate predators [51].

In summary, the non-targeted LC-MS metabolomics method that was developed in this study is
shown to be a powerful tool for the putative identification of tissue-specific secondary metabolites
at the red mature stage of chili pepper fruit. The use of databases available online gave rise to a
faster comprehensive elucidation of global characteristics of a complex matrix than more traditional
phytochemical studies. Nutraceutical, aroma, flavor, and new compounds that have not been reported
before were putatively identified and related to pericarp, placenta or seeds of C. frutescens. As presented
here, some of these compounds have been reported with bioactivity properties, supporting empirical
properties of pepper fruit that have been known for centuries. The procedure developed here will
be utilized for further studies in our laboratory, including to enable the exploration of comparisons
between wild cultivars of chili pepper fruit with their cultivated counterparts and for the further
understanding of secondary metabolism in this crop. We recommend that complementary analysis
should be carried out to confirm structural elucidation. In addition, compound isolation and bioactivity
properties should be considered in future studies.

4. Materials and Methods

4.1. Plant Material and Dissection of Tissues and Seed

Seeds of Tabasco pepper (C. frutescens L.) were treated with 3% hypochlorite solution. Plants were
grown in optimum conditions (30–32 ◦C), at greenhouse facilities between June and September of 2016.
Fruits from different plants were collected at 60 DPA (red ripe stage), washed with deionized water
and immediately frozen with liquid nitrogen and stored at −80 ◦C until dissection and analysis.

Five biological replicates (plants) were considered for the experiment and three fruits per plant
were collected. Each fruit was first placed into dry ice to facilitate hand dissection into pericarp,
placenta, and seed using a sterile scalpel. All fruit parts were ground using a ball mill (Retsch MM301)
under cold conditions and applying liquid nitrogen.

4.2. Chemicals, Reagents, and Standards

All chemicals and reagents were purchased from AccesoLab S.A. de C.V. (Mexico, Mexico).
Capsaicin and dihydrocapsaicin analytical standards, formic acid, methanol, acetonitrile were HPLC
grade and purchased from Sigma–Aldrich (Mexico, Mexico).

4.3. Sample Extraction and UHPLC-MS Analysis

For metabolite extraction, the method employed was adapted from Matyash [64] as follows:
Methanol, 1.5 mL, was added to 100 mg of sample in a test tube and vortexed for 1 min, then, 5 mL
of diethyl ether was added. The mixture was incubated with gentle stirring for one hour at room
temperature. Next, 1.5 mL of ultra-pure water (18 Ω, milli-Q system) was added and mixed vigorously
for a further minute then kept at room temperature for 10 min to allow phase separation. After that,
the sample was centrifuged at 1000 × g for 10 min. Aqueous and organic layers were recovered
separately and vacuum dried (miVac®, Genevac) at 30 ◦C for 30 min and finally kept at −80 ◦C until
further analysis.

Three quality control (QC) samples were prepared to account for instrument drift and system
calibration during analysis in UHPLC-QTOF-HRMS; each QC sample was prepared by mixing
homogenously all sample extracts into a new single vial, in both separated phases containing polar
and non-polar compounds. QC samples were distributed at the beginning, middle, and end of the
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injection run list. Analytical standards of capsaicin and dihydrocapsaicin were injected under the same
conditions as samples. Extraction blanks were also considered during the experiment.

For LC-MS analysis, all samples (including QC, analytical standards and blank extraction) were
resuspended in 1 mL of acetonitrile/ultra-pure water 50:50 (v/v) and filtered through a membrane
of 0.2 μm (PTFE, Agilent Technologies, Santa Clara, USA). Samples were injected according
to a randomized list order on an UPLC®(Acquity class I, Waters, Milford, CA, USA) coupled
with an orthogonal QTOF (SYNAPT G1 HDMS, Waters, Milford, CA, USA) mass spectrometer.
Chromatographic separation was achieved on a reversed phase CSH C18 column (2.1 mm × 150 mm,
1.7 μm, Waters, Milford, USA) maintained at 30 ◦C during chromatographic separation. Auto-sampling
of 10 μL per sample was injected. Compounds were eluted using ultra-pure water with 0.1% (v/v)
formic acid (solvent A) and acetonitrile with 0.1% (v/v) formic acid (solvent B) with a flow rate of
0.3 mL/min with the following gradient program: From 0.5 to 30 min, 1–75% B; 30 to 31 min, 75% B;
31 to 31.5 min, 75–100% B; 31.5 to 34.5, 100% B; 34.5 to 34.6, 100-1% B; 34.6 to 36 min, 1% B. The mass
spectrometer mass range was set from 50 to 1500 Da. Both ionization modes were injected separated.
For negative electrospray ionization (ESI) mode, the conditions were set as follows: Capillary voltage
2 kV; cone voltage 40 V; source temperature 150 ◦C; cone gas flow 20 L/h; desolvation temperature
350 ◦C; desolvation gas flow 600 L/h. For the positive ESI mode: Capillary voltage 3 kV; cone voltage
40 V; source temperature 130 ◦C; desolvation temperature 350 ◦C; desolvation gas flow 700 L/h.
Leucine-Enkephalin (2 ng/mL) was infused as LockSpray reference internal mass calibrant at a flow
rate of 5 μL/min and its signal was monitored every 10 s. The data format was collected in a continuum
mode with a MS scan time of 1.5 s. In both the positive and negative ionization mode, data were
acquired in MSE experiments; using Argon as the collision gas with a collision energy in the trap region
of 6 eV (Function 1, low energy) and ranged from 20–40 eV (Function 2, high voltage).

4.4. Data Analysis

Raw data was imported to Progenesis QI for small molecules software (Non-Linear Dynamics,
Waters, Milford, MA, USA) for automatic alignment, normalization, deconvolution, and compound
pre-identification over all samples separating the aqueous and organic phases. The RT range was
limited from 0.5 to 35 min for pre-identification method. Pre-identification was performed using
Chemspider Databases (PlantCyc, Plant Metabolic Network, KEGG, HMDB and ChEBI) and with
an in-house database with a minimum match of 90% for precursor ions, MS/MS data and isotope
distribution was included for increasing match score values. Statistics and graphics were performed
using EZinfo 3.0 (Waters, Milford, MA, USA) and R (3.3.3v, Vienna, Austria) [65] software. Compounds
were grouped according to their compound classes. The resulting data was first mean centered and
scaled to Pareto and then submitted to a principal component analysis (PCA) using the first three
components. Results were analyzed using one-way ANOVA and q-values were established using
the false discovery rate (FDR < 0.01) to correct multiple comparisons by the Benjamini–Hochberg
procedure [66].

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/10/206/s1,
Table S1: Putative identification.xlsx.
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Abstract: Following cell division, fruit growth is characterized by both expansion through increases in
cell volume and biomass accumulation in cells. Fruit growth is limited by carbon starvation; however,
the mechanism controlling fruit growth under restricted carbohydrate supply is poorly understood.
In a previous study using red-fleshed kiwifruit, we showed that long-term carbon starvation had
detrimental effects on carbohydrate, anthocyanin metabolism, and fruit growth. To elucidate the
mechanisms underlying the reduction in fruit growth during kiwifruit development, we integrated
phytohormone profiling with transcriptomic and developmental datasets for fruit under high or
low carbohydrate supplies. Phytohormone profiling of the outer pericarp tissue of kiwifruit showed
a 6-fold reduction in total cytokinin concentrations in carbon-starved fruit, whilst other hormones were
less affected. Principal component analysis visualised that cytokinin composition was distinct between
fruit at 16 weeks after mid bloom, based on their carbohydrate supply status. Cytokinin biosynthetic
genes (IPT, CYP735A) were significantly downregulated under carbon starvation, in agreement with
the metabolite data. Several genes that code for expansins, proteins involved in cell wall loosening,
were also downregulated under carbon starvation. In contrast to other fleshy fruits, our results
suggest that cytokinins not only promote cell division, but also drive fruit cell expansion and growth
in kiwifruit.

Keywords: cytokinin; fruit expansion; kiwifruit; phytohormone

1. Introduction

Actinidia Lindl. spp. (kiwifruit) fruit growth and development is characterised by a rapid growth
phase, where cell numbers in the ovary tissue rapidly increase by cell division (up to four weeks after
full bloom [1] in the outer pericarp), and a cell expansion phase where cell volume increases and starch
accumulates in cells [2]. Later in development, cell expansion and fruit growth slow down, with fruit
progressing through maturity and ripening [3]. Carbohydrate supply manipulation of girdled canes
(removal of a bark strip around the cane containing the phloem tissue) during Actinidia chinensis var.
deliciosa ‘Hayward’ fruit development significantly increased fruit weight, whilst fruit weight was not
affected in ungirdled canes due to the ability of kiwifruit to redistribute photosynthates within the
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vine [4]. In addition to ‘Hayward’, A. chinensis var. chinensis ‘Zes006′ fruit weight was also affected
when carbohydrate supply was manipulated in girdled shoots [5–7].

The dynamic interplay of phytohormones regulates the growth and development of fleshy fruit [8].
Cell division is primarily driven by cytokinins, whilst auxins and gibberellins are major players
in cell expansion [9,10]. Abscisic acid increases as the fruit approaches maturity and together with
ethylene is responsible for fruit ripening [11]. Studies on endogenous hormone profiles during kiwifruit
development are limited, with most of the studies focused on the effects of exogenous hormone
applications on fruit growth [12,13]. In kiwifruit, increases in endogenous cytokinin concentrations
have been associated with cell division [14], fruit maturity, and ripening [14,15]. It has also been shown
that exogenous cytokinin applications to developing kiwifruit after cell division had ceased increased
both cell and fruit expansions [12]. In plants, cell expansion is the result of turgor pressure stress caused
by an increase in cell osmotic potential and cell wall relaxation mediated by low-pH activated expansin
proteins [16]. Expansin genes have been reported to be amongst genes induced by cytokinin [17],
but their role in cytokinin-driven growth has not been elucidated.

Sugar and hormone signalling networks have been extensively studied in vegetative tissues
(reviewed by Ljung et al. [18]) and to a lesser extent in reproductive tissues [19]. Cytokinins, in particular,
have been implicated in the control of source–sink relationships of carbon compounds [20], and a role for
them in controlling the availability of sugars in sink tissues has been proposed [21,22]. In Arabidopsis,
high quantities of photosynthetically generated sugars have an effect on plant growth and on de novo
cytokinin biosynthesis through the upregulation of two genes coding for key enzymes catalysing
active cytokinin precursors synthesis: isopentenyltransferase (AtIPT3) and cytokinin hydroxylase
(CYP735A2) [23]. Arabidopsis type-B response regulators, part of the MYB transcription factor family,
mediate cytokinin transcriptional regulation [24]. A meta-analysis of published transcriptomic data
identified a number of primary metabolic genes that are regulated by cytokinins including trehalose
6-phosphate pathway genes [17] and the bZIP11 transcription factor. These genes are involved in
the growth regulatory network including the sucrose non-fermenting-1 related protein kinase 1,
which controls carbohydrate metabolism [25].

Kiwifruit carbon starvation mainly occurs when the leaf-to-fruit ratio on vines is low, but it can also
be caused by environmental factors such as high temperature or low light during critical fruit growth
phases reducing the photosynthetic carbon supply to fruit. In this study, we hypothesized that fruit
growth under restricted carbohydrate supply was controlled at the phytohormonal level. To test this,
we integrated phytohormone profiles with transcriptomic and developmental datasets for fruit grown
under high or low carbohydrate supplies. Of all the phytohormones, cytokinin concentration positively
correlated with fruit weight and the carbohydrate supply treatment. Cytokinin biosynthetic genes
were also significantly downregulated under carbon starvation. As several expansin genes were also
significantly downregulated under carbon starvation, we propose that cytokinin signalling affects fruit
weight via regulation of cell expansion through expansins.

2. Results

2.1. Fruit Weight and Phytohormone Correlations

Carbon starvation during fruit development significantly restricted kiwifruit fruit growth by
16 weeks after mid bloom (WAMB; Figure 1a). Low carbohydrate supply fruit (carbon starved) were 25%
smaller than untreated control fruit from ungirdled shoots, and 45% smaller than high carbohydrate
supply fruit.

Phytohormones from the following classes were quantified in kiwifruit tissues: cytokinins,
gibberellins, auxins, jasmonates, salicylates, and abscisates.

To ascertain if a particular phytohormone class was correlated with fruit weight, Pearson correlation
analysis was performed. Phytohormones were measured from the fruit outer pericarp as this is the
major fruit tissue, representing 60% of fruit tissue proportion [26,27]. Fruit weight was positively and
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highly correlated with total cytokinin concentration (r = 0.91, p < 0.0001, Figure 1b). Fruit weight was
also negatively and significantly correlated with total gibberellins (r = −0.61, p < 0.001, Figure 1c),
positively and significantly correlated with abscisic acid (r = 0.65, p < 0.0001, Figure 1d), and negatively
and significantly correlated with jasmonic acid (r = −0.55, p < 0.001, Figure 1e). Fresh weight was not
significantly correlated with other phytohormones such as salicylic acid and auxin (data not shown).

Figure 1. Fruit weight of kiwifruit (a) at three key stages of development: 8, 12, and 16 weeks after
mid bloom (WAMB). Untreated control (black bar; vine standard), low carbohydrate supply (blue bar),
and high carbohydrate supply (red bar). Values are averages ± SEM (n = 3 or 4). Statistical analysis by
linear mixed effects model with type 3 sums of squares Kenward–Roger’s method; different letters
mean a statistical difference, adjusted for multiple comparison by Tukey’s correction (p < 0.05). Pearson
correlation analysis of between fruit weight and (b) total cytokinins, (c) total gibberellins, (d) abscisic
acid, and (e) jasmonic acid concentration in fruit outer pericarp. n = 33 for cytokinins and n = 35 for the
other phytohormones. FW, fresh weight.
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2.2. Carbon Starvation Reduced Cytokinin Concentration in Fruit Outer Pericarp

The following cytokinin were quantified in kiwifruit outer pericarp tissue and were above the
limit of detection (LOD): trans-zeatin (tZ), isopentenyl adenine (iP), cis-zeatin (cZ), dihydrozeatin
riboside (DZR), isopentenyl adenine riboside (iPR), trans-zeatin riboside (tZR), cis-zeatin riboside (cZR),
trans-zeatin-O-glucoside (tZROG), isopentenyl adenine-9-glucoside (iP9G), and trans-zeatin-9-glucoside
(tZ9G) (Figure 2).

Figure 2. Cytokinin concentrations in the outer pericarp of developing kiwifruit: (a) iP, isopentenyl
adenine; (b) iPR, isopentenyl adenine riboside; (c) tZ, trans-zeatin; (d) tZR, trans-zeatin riboside;
(e) tZROG, trans-zeatin-O-glucoside; (f) DZR, dihydrozeatin riboside; (g) cZ, cis-zeatin; (h) cZR,
cis-zeatin riboside.. Untreated control (black bar; vine standard), low carbohydrate supply (blue bar),
and high carbohydrate supply (red bar). Values are averages ± SEM (n = 3 or 4). Statistical analysis by
linear mixed effects model with type 3 sums of squares Kenward–Roger’s method; different letters
mean a statistical difference adjusted for multiple comparison by Tukey’s correction (p < 0.05). Fruit age
is in weeks after mid bloom (WAMB). FW, fresh weight.

tZ and iP had similar concentrations and represented the major active cytokinins in developing
kiwifruit, followed by cZ with a concentration that was one order of magnitude lower (Figure 2a,c,g).
Dihydrozeatin (DZ) concentration was below the detection level. In untreated control fruit,
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the proportional concentration of active cytokinins to the total cytokinin pool decreased during
development from 10% at 8 WAMB to 6% at 16 WAMB (Table S1). Cytokinin ribosides iPR and tZR
were the major cytokinins (Figure 2b,d). Other ribosides DZR and cZR were also detected, but their
concentrations were one order of magnitude lower than those of iPR and tZR (Figure 2f,h). In untreated
control fruit, the proportional concentration of cytokinin ribosides increased during development
from 50% at 8 WAMB to 90% at 16 WAMB (Table S1), and this pattern was shared with the other
two treatments. For the reversible O-glycosylated conjugates, only tZROG was above the detection
level and its proportional concentration decreased in untreated control fruit from 10% at 8 WAMB to
2% at 16 WAMB (Table S1). Irreversibly N-glycosylated cytokinins (iP9G and tZ9G) also decreased
in untreated control fruit during development, from 25% at 8 WAMB to 2% at 16 WAMB (Table S1).
By 16 WAMB, carbon starvation significantly reduced the majority of the active cytokinins and their
metabolic or glycosylated intermediates (Figure 2). iP and its riboside iPR were significantly lower in
carbon-starved fruit (low carbohydrate supply; Figure 2a,b). Carbon starvation had a similar effect on
tZ, tZR, and tZROG, and their concentrations were significantly lower in carbon-starved fruit than in
high carbohydrate supply fruit (Figure 2c,d,e). DZR concentration was also significantly lowered by
carbon starvation (Figure 2f). cZ was not affected by carbon starvation, but cZR concentrations were
significantly higher in high carbohydrate supply fruit than in carbon-starved fruit and the untreated
control (Figure 2g,h).

We further employed principal component analysis to assess the effects of the treatment on
cytokinin composition. It is shown in Figure 3 that 59%, 57%, and 76% of variation can be explained
by principal component 1 (PC1) at 8, 12, and 16 WAMB, respectively. An effect was first observed at
12 WAMB, with the cytokinin composition of high carbohydrate supply treatment fruit being distinct
from that of the untreated control fruit and low carbohydrate supply treatment. At 16 WAMB, the data
clustered into three distinct cohorts, of which high and low carbohydrate supply treated fruit showed
the highest divergence in cytokinin composition. Dimension 1 was strongly and positively driven by
all the measured cytokinins, with the exception of cZ, which mainly drove dimension 2 (Figure S1).

2.3. Carbon Starvation Had Lesser Effects on Other Phytohormones

Gibberellins GA1, GA19, and GA20 were present in the outer pericarp of kiwifruit in concentrations
above the limit of detection (Figure 4a–c). Active gibberellin GA1 concentrations were 4-fold
lower than concentrations of its precursor GA19. GA19 was the most abundant gibberellin, and
its concentration decreased 2-fold during fruit development. GA20 was present at 4- to 8-fold lower
concentrations than GA19, and its concentrations were stable during development. Under carbon
starvation, GA19 concentrations decreased less during fruit development than in the other treatments
(Figure 4b), and at 16 WAMB, it was about 3-fold higher than in high carbohydrate supply fruit
(p < 0.0001).

Indole-3-acetic acid (IAA) was the only auxin detected by our system and its concentration slightly
increased during fruit development (Figure 4d). Carbon starvation had no effect on IAA concentrations.

The concentration of the stress hormone abscisic acid (ABA) was stable during fruit development,
although by 16 WAMB, its concentration in high carbohydrate supply fruit was significantly higher
than in fruit from the other treatments (Figure 4e). This suggests that high carbohydrate supply fruit
was the main driver of the positive correlation between fruit weight and ABA observed in Figure 1d
(data not show). Jasmonic acid (JA) concentration decreased during fruit development and at 8 WAMB,
its concentration was significantly higher in high carbohydrate supply fruit than in fruit from the other
treatments (Figure 4f). JA bioactive isoleucine conjugate (JA-Ile) was below the detection level.

95



Metabolites 2020, 10, 23

 
Figure 3. Principal component analysis (PCA) based on cytokinin concentrations in the outer pericarp
of developing kiwifruit: (a) 8 weeks after mid bloom (WAMB); (b) 12 WAMB; (c) 16 WAMB. Black,
untreated control (vine standard); blue, low carbohydrate supply (carbon starvation); red, high
carbohydrate supply. PC, principal component. Confidence ellipses: p < 0.05.
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Figure 4. Gibberellins, auxin, abscisic acid, and jasmonic acid concentrations in the outer pericarp of
developing kiwifruit: (a) GA1, gibberellin A1; (b) GA19, gibberellin A19; (c) GA20, gibberellin A20;
(d) IAA, indole-3-acetic acid; (e) ABA, abscisic acid; (f) JA, jasmonic acid.. Untreated control (black bar;
vine standard), low carbohydrate supply (carbon starvation; blue bar), and high carbohydrate supply
(red bar). Values are averages ± SEM (n = 4). Statistical analysis by linear mixed effects model with type
3 sums of squares Kenward–Roger’s method; different letters mean a statistical difference, adjusted for
multiple comparison by Tukey’s correction (p < 0.05). Fruit age is in weeks after mid bloom (WAMB).
FW, fresh weight.

2.4. Carbon Starvation Downregulates Cytokinin Biosynthetic Genes

The cytokinin biosynthetic and catabolic pathway was constructed (Figure 5) using published
information [28,29]. Gene models that code for the enzymes in the cytokinin pathway were identified
by gene mining the kiwifruit genome [30] on the basis of previously published kiwifruit data [15] and
homologues from other species [31,32], marked as blue in the chart (Figure 5). Where genes coding for
a particular enzyme were unknown in Arabidopsis or were not found for kiwifruit, the enzymes were
marked in grey.
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Figure 5. Cytokinin biosynthetic and catabolic pathways. Enzymes in blue are known and
have been identified in kiwifruit; enzymes in grey are unknown and/or not identified in kiwifruit.
Modified from [28,29]. βGLU, β-glucosidase; CK, cytokinin; CK-N-GT, cytokinin N-glucosyltransferase;
CKX, cytokinin dehydrogenase; CYP735A, cytokinin hydroxylase; cZ, cis-zeatin; cZR, cZ riboside;
cZRM(/D/T)P, cZ nucleotides; DMAPP, dimethylallyl pyrophosphate; DZ, dihydrozeatin; DZR, DZ,
riboside; DZRM(/D/T)P, DZ nucleotides; HMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase;
iP, N6-(Δ2-isopentenyl)adenine; iPR, iP riboside; iPRM(/D/T)P, iP nucleotides; IPT, adenosine
phosphate-isopentenyltransferase; MEP, methylerythritol phosphate pathway; LOG, LONELY GUY
(cytokinin riboside 5’-monophosphate phosphoribohydrolase); MVA, mevalonate pathway; tRNA, transfer
RNA; tZ, trans-zeatin; tZR, tZ riboside; tZRM(/D/T)P, tZ nucleotides; ZOG, zeatin O-glucosyltransferase.

The expression of a number of genes involved in cytokinin biosynthesis was reduced under
carbon starvation. Five genes of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 family were
expressed in kiwifruit and the HMGR1.1 gene was significantly downregulated under carbon starvation
(Figure 6). We identified nine adenylate isopentenyltransferase (IPT) genes: three IPT1, one IPT2,
two IPT3, and three IPT5. Of these, IPT1.2, IPT1.3, and IPT5.1 were significantly downregulated under
carbon starvation from 12 WAMB. Of the four cytokinin hydroxylase 1 genes (CYP735A1) expressed,
CYP735A1.1 was significantly downregulated under carbon starvation from 12 WAMB.

Expression of cytokinin catabolic genes were also affected by carbon starvation, although to
a lesser extent than the biosynthetic genes, with an overall upregulation of the genes involved in
reversible conjugation (zeatin O-glucosyltransferase, ZOG; β-glucosidase, βGLU) or irreversible
cleavage (cytokinin hydrogenase, CKX) (Figure 7). The main cytokinin dehydrogenase (CKX5.3) was
only significantly upregulated at 12 WAMB.

2.5. Carbon Starvation Effects on the Genes in the Multistep Phosphorelay (MSP) Cytokinin Signalling

The genes involved in the first two steps of the multistep phosphorelay (MSP) cytokinin signalling
were upregulated by carbon starvation (Figure S2). Histidine kinases AHK2.1, AHK3.5, AHK4.2,
and AHK4.3 were significantly upregulated at 16 WAMB (2-, 1.8-, 1.6-, and 1.6-fold, respectively).
The histidine-containing phosphotransfer protein AHP1.7 was 5-fold upregulated under carbon
starvation. Four of the 12 A-type Arabidopsis Response Regulators (type-A ARR) genes identified in
kiwifruit, which are negative regulators of cytokinin signalling, were downregulated under carbon
starvation whilst four of the 19 type-B ARRs genes, which act as positive regulators of cytokinin
signalling, were upregulated by this treatment (Figure S3). ARR12.5 was 1.5-fold upregulated by
carbon starvation from 12 WAMB.
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Figure 6. Heat-map of kiwifruit cytokinin biosynthetic genes. DESeq comparison of low carbohydrate
supply (carbon starvation) versus high carbohydrate supply treatments. Differentially expressed genes
were identified based on the DESeq analysis from Nardozza et al. [6]. For each gene, the expression
level (base mean) and the log2 fold-change are presented. Fruit age is in weeks after mid bloom
(WAMB). Bold figures mean differences are significant for adjusted p < 0.05 (DESeq analysis).
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Figure 7. Heat-map of kiwifruit cytokinin catabolic genes. DESeq comparison of low carbohydrate
supply (carbon starvation) versus high carbohydrate supply treatments. Differentially expressed genes
were identified based on the DESeq analysis from Nardozza et al. [6]. For each gene, the expression
level (base mean) and the log2 fold-change are presented. Fruit age is in weeks after mid bloom
(WAMB). Bold figures mean differences are significant for adjusted p < 0.05 (DESeq analysis).
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2.6. Carbon Starvation Results in Downregulation of Expansin Genes

Expansins are a class of cell wall proteins able to drive non-enzymatic pH-dependent cell
wall relaxation by partnering with H(+)-ATPAses proton pumps [16,33]. Of the expansin genes
identified in kiwifruit [30], the expansin A class genes were the most affected by carbon starvation at
16 WAMB. EXP2-7 and EXP24 were significantly downregulated under carbon starvation (Figure 8).
Highly expressed EXP3, EXP5, and EXP6 were downregulated by 3.5-, 4.5-, and 9-fold, respectively.
In addition, plasma membrane H(+)-ATPase genes were also downregulated (Figure S4).

 

Figure 8. Heat-map of kiwifruit expansin genes. DESeq comparison of low carbohydrate supply
(carbon starvation) versus high carbohydrate supply treatments. Differentially expressed genes were
identified based on the DESeq analysis from Nardozza et al. [6]. For each gene, the expression level
(base mean) and the log2 fold-change are presented. Fruit age is in weeks after mid bloom (WAMB).
Bold figures mean differences are significant for adjusted p < 0.05 (DESeq analysis).
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3. Discussion

In kiwifruit, fruit growth increases with an increase in carbohydrate supply [4,5]. The fruit
expansion phase in kiwifruit appears to differ from those of other fleshy fruits. Auxin and/or gibberellins
drive fruit expansion in strawberry [34], apple [10], and tomato [35]. Our results showed that cytokinins
are key phytohormones during fruit expansion in kiwifruit. Phytohormone profiling revealed that
fruit weight differences obtained under contrasting carbohydrate supplies positively correlated with
cytokinin concentrations in the fruit outer pericarp. Changes in gibberellin, jasmonic acid, and abscisic
acid concentrations were mostly developmental in nature and not strongly affected by carbohydrate
supply. Interestingly, gibberellin precursor GA19 increased under carbon starvation, however, this
effect was not maintained downstream in the biosynthetic pathway, and both GA20 and active GA1
concentrations were unaffected, suggesting that the role of gibberellin was not significant in the
kiwifruit cell expansion phase. Surprisingly, unconjugated auxin concentrations were not correlated
with fruit growth and were also not affected by fruit carbohydrate supply. This is in contrast to
observations in fleshy fruit types [10,34,35], suggesting that free auxin is not critical during the fruit
expansion phase of kiwifruit. However, we cannot rule out that conjugated auxins, which were not
measured in this study, may play a role.

Similar to Arabidopsis seedlings, where de novo cytokinin synthesis is induced by sugar, our data
showed that in carbon-starved kiwifruit, cytokinin synthesis is repressed. This is via downregulation
of the cytokinin biosynthetic genes IPTs and CYP735As, suggesting that sugar control over cytokinin
production could apply to sink tissues. Signalling of carbon starvation in kiwifruit is mediated by
the sucrose non-fermenting-1 related protein kinase 1 via trehalose 6-phosphate [6]. In Arabidopsis,
it has been proposed that cytokinins have a role in regulating the genes of the trehalose 6-phosphate
pathway [17]. A similar scenario may occur in kiwifruit outer pericarp tissue, where the observed
reduction of trehalose 6-phosphate concentration in carbon-starved fruit [6] could be triggered by
cytokinin signalling.

In maturing kiwifruit, cytokinin catabolism was not critical for controlling cytokinin
concentrations [15], whilst in other plant species (e.g., cabbage, maize, and wheat) it has been
suggested that IPT and CKX transcription levels are coupled [31,36,37] and CKX is a key enzyme for
cytokinin homeostasis. Our results show that genes coding for cytokinin catabolic enzymes were only
marginally affected by carbon supply treatments and cytokinin dehydrogenase was not associated with
different cytokinin concentrations (Figure 2; Figure 7). These data suggest that, in kiwifruit, carbon
starvation affects de novo synthesis rather than irreversible cleavage of cytokinins during the fruit
expansion phase.

Whilst transcriptional data for cytokinin biosynthetic genes supported the phytohormone data, the
regulation of the multistep phosphorelay cytokinin signalling was less clear. Under carbon starvation,
we observed an upregulation of the genes involved in the multistep phosphorelay pathway (histidine
kinase, histidine phosphotransferase, and type-B RRs), suggesting that they might not be controlled at
the transcriptional level as transcription is triggered by decreased cytokinin concentrations. Multistep
phosphorelay signalling is triggered by cytokinin binding, which leads to autophosphorylation of
histidine kinase. The phosphate is then transferred to histidine phosphotransferase and the final
acceptor type-B RR proteins, which positively regulate transcription in the nucleus (reviewed by
Kieber and Schaller [38]). In contrast, type-A RRs are negative feedback regulators in cytokinin
signalling and are transcriptionally activated by type-B RRs [39]. In kiwifruit outer pericarp, type-A
RRs were mostly downregulated when cytokinin concentrations were low. This is in agreement with
findings from Bhargava et al. [40], where type-A response regulators were upregulated in response
to exogenous cytokinin applications, suggesting an increase in endogenous cytokinins could lead to
a similar response.

Expansins are proteins involved in the acidic relaxation of plant cell walls and drivers of
short-term cell expansion [41]. Effects of cytokinins on expansin-mediated cell wall relaxation and cell
expansion has been suggested [42]. A meta-analysis of cytokinin effects on Arabidopsis transcriptome
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identified expansins as targets of cytokinin signalling [43]. Expansins drive acidic cell elongation
in Arabidopsis roots, where α-expansinA genes and plasma membrane H(+)-ATPase are controlled
by cytokinins via ARR1 [44]. In soybean, cytokinins regulate the expression of expansin and cell
wall expansion [45]. The effects of cytokinins on expansin during cell expansion and fruit expansion
have not been well characterised. A study of grape berries associated cytokinin concentrations with
post-veraison cell expansion and berry growth [19]. Exogenous cytokinin application induced expansin
expression in white sweet clover (Melilotus alba) [42]. In kiwifruit, under carbon starvation, we observed
significant decreases in cytokinin concentrations, cytokinin biosynthetic genes transcription, a-expansin
transcription, and fruit weight, suggesting a role for expansin in driving cell expansion and fruit
expansion. Cytokinin concentrations were developmentally driven as the positive correlation between
total cytokinin concentration and fruit weight held true also within each treatment, in agreement with
Pilkington et al. [15]. Further experimentation will be required to clarify the mechanism and if, similar
to Arabidopsis roots, the signalling may be mediated by a type-B RR [44].

In conclusion, our results suggest a new role for cytokinins in kiwifruit growth, where they
contribute to stimulate cell expansion via a mechanism that could involve expansin protein. This is in
contrast to other fleshy fruits where cytokinins are a key phytohormone class during cell division, and
further supports the responsiveness of kiwifruit to exogenous cytokinin treatments following the cell
division phase. We acknowledge a limitation of this study in discussing the functional role of cytokinin
in kiwifruit as developmental phases were inferred from the literature [1,2], rather than defined from
direct cell number and cell size observations. Overall, these findings contribute to expand the current
knowledge on fruit weight determination in kiwifruit.

4. Materials and Methods

4.1. Plant Material

Actinidia chinensis (Planch.) var. chinensis ‘Zes006′ (red fleshed) kiwifruit was sampled as per the
experiments described in Nardozza et al. [6]. The outer pericarp tissue from the following treatments
was used: high carbohydrate supply (girdled shoot with leaf to fruit ratio of 4), low carbohydrate
supply (girdled shoot with a leaf to fruit ratio of 1), and untreated control (ungirdled shoot with
a leaf to fruit ratio of 1; vine standard [5]). Individual shoots represented the experimental unit.
Girdles were applied to shoots at 4 WAMB and maintained open until the end of the experiment. Only
samples collected at 8, 12, and 16 WAMB were considered to match the transcriptomic data. Fresh fruit
weight data are given in Nardozza et al. [6]. Outer pericarp tissues were collected to include three to
four biological replicates (due to lost samples in the field or during analysis; see details in Table S2),
snap frozen in liquid nitrogen, and stored at –80 ◦C until further analysis.

4.2. Phytohormones

4.2.1. Phytohormone Extraction and Fractionation

Frozen plant material was ground in liquid nitrogen to a fine powder using a mortar and pestle
and stored at –80 ◦C for chemical analysis. To each sample (200 mg fresh weight), 1 mL chilled (4 ◦C)
extraction solvent 80:20 CH3CN:H2O, labelled internal standard mix ([2H5] Z 10 ng, [2H5] (9R)Z 3 ng,
[2H5] t-ZROG 30 ng, [2H5] (9G)Z 3 ng, [2H6] iP 0.5 ng, [2H6] (9R) iP 1 ng, [2H6] iP9G 3 ng, [2H5]
t-ZOG 7 ng, [2H2] GA7 0.5 ng, [2H4] SA 1 ng, [2H6] ABA 2 ng, [2H5] JA 2 ng, [2H10] JA-Ile 2 ng, [13C6]
IAA 10 ng; OlchemIm Ltd., Olomouc, Czech Republic), and 0.8 g stainless steel beads 0.9–2 mm
(Next Advance Inc., Troy, NY, USA) were added. Samples were bead beaten for 5 min (Bullet Blender
24 Gold, Next Advance Inc., Troy, NY, USA) and then extracted overnight in the dark at 4 ◦C using
an end-over-end rotator at 30 rotations/min. After centrifugation at 13,000× g for 5 min, the supernatant
was transferred into a 96-well collection plate (Phenomenex, Torrance, CA, USA). The remaining pellet
was re-extracted twice with 1 mL 80:20 CH3CN:H2O overnight, and combined with the first supernatant,
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and evaporated to dryness using a CentriVap concentrator (Labcon, Petaluma, CA, USA). Samples
were reconstituted in 1 mL 1 M formic acid (aq) and placed on an orbital shaker at room temperature for
1 h at 230 rpm (IKA Labortechnik, Staufen, Germany). To remove interfering compounds, the extract
was passed through a SOLA SCX 96-well plate (10 mg/2 mL, Thermo Scientific) equilibrated with 4 mL
acetonitrile and conditioned with 4 mL 1 M formic acid (aq). After conditioning, the reconstituted
samples were loaded, washed with 3 mL of 1 M formic acid (aq), 3 mL of water, and the acidic plant
hormones were eluted with 1.5 mL acetonitrile (Fraction A). The plate was then washed with 1 mL
water, followed by 1.5 mL of 0.35 M ammonium hydroxide and the cytokinins were eluted with 0.5 mL
of 0.35 M ammonium hydroxide in 60% acetonitrile (Fraction B). Each fraction was evaporated to
dryness using a CentriVap concentrator (Labcon, Petaluma, CA, USA).

Prior to derivatisation with bromocholine bromide (BETA), Fraction A was further purified using
a modification of a method described by Kojima et al. [46] to increase the sensitivity of analysis for
gibberellins. Briefly, samples were reconstituted in 1 mL 80:20 CH3CN:H2O + 4% trimethylamine and
applied to a Hypersep 96-well plate (Hypercarb 25 mg/1 mL, Thermo Scientific) equilibrated with
1 mL acetonitrile and conditioned with 1 mL water. The sample eluate was collected into a 96-well
collection plate and a further 0.5 mL CH3CN + 4% trimethylamine was applied to the Hypersep plate
and collected into the same collection plate. After evaporation, the samples were reconstituted with
160 μL CH3CN and to each sample 40 μL of derivatisation solution (6.25 M BETA in 86% acetonitrile)
and 20 μL 4% trimethylamine in CH3CN was added. The mixed solution was incubated at 50 ◦C at
300 rpm for 24 h (Eppendorf, ThermoMixer C, Hamburg, Germany) and then evaporated to dryness.

4.2.2. Liquid-Chromatography Tandem Mass-Spectrometry (LC-MS/MS) Analysis

Liquid-Chromatography Tandem Mass-Spectrometry (LC-MS/MS) experiments were performed
on a 5500 QTrap triple quadrupole/linear ion trap (QqLIT) mass spectrometer equipped with
a TurboIon-SprayTM interface (AB Sciex, Concord, ON, Canada) coupled to an Ultimate 3000 UHPLC
(Dionex, Sunnyvale, CA, USA).

4.2.3. Cytokinins

For cytokinins, dried samples from Fraction B were reconstituted in 200μL 10:90 CH3OH:H2O+ 1%
acetic acid and filtered through a conditioned (200 μL CH3OH) 96-well 0.45 μm hydrophobic filter
plate (Pall Filters, AcroPrep, Cortland, NY, USA) prior to mass spectrometric (MS) analysis. Cytokinins
were separated on an Acquity UPLC BEH C18 1.7 μm 2.1 × 150 mm ID column (Waters, Wexford,
Ireland) maintained at 70 ◦C. Solvents were (A) 15 mM ammonium formate adjusted to pH 4 with
formic acid and (B) methanol with a flow rate of 350 μL min−1. The initial mobile phase, 15% B was
held for 6.5 min, then ramped linearly to 20% B at 9 min, then to 50% B at 12.5 min and 100% B at 14 min
and holding at 100% B for 1 min before resetting to the original conditions. Injection size was 10 μL.
MS data were acquired in the positive ion mode using a scheduled multiple reaction monitoring (MRM)
method. The transitions monitored (Q1 and Q3) are listed in Table S3. Other operating parameters
were as follows: ion spray voltage 4500 V; temperature 600 ◦C; curtain gas 45 psi; ion source gas 1
60 psi; ion source gas 2 60 psi; collision gas set to medium.

4.2.4. Acidic Phytohormones

For acidic phytohormones (gibberellins, auxins, jasmonates, salicylates and abscisates), Fraction
A dried and derivatised samples were reconstituted in 100 μL 5% (CH3OH:CH3CN): 95% (5 mM
ammonium formate adjusted to pH 3.7 with formic acid). An internal standard for each analyte was
created by derivatising a mixed analytical standard with a deuterated analogue of bromocholine
bromide ([2H9]-BETA) using a modified method to that described by Sun et al. [47], as here detailed.
To each sample, 100 μL of internal standard (5 ppb [2H9]-BETA) was added. Samples were filtered
through a 0.7-μm glass filter plate prior to LC-MS analysis. Acidic phytohormones were separated on
an Acquity UPLC BEH C18 1.7 μm 2.1 × 150 mm ID column (Waters, Wexford, Ireland) maintained
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at 40 ◦C. Solvents were (A) 5% (CH3OH:CH3CN):95% (5 mM ammonium formate adjusted to pH
3.7 with formic acid) and (B) 95% (CH3OH:CH3CN):5% (5 mM ammonium formate adjusted to pH
3.7 with formic acid) with a flow rate of 250 μL min−1. The initial mobile phase, 0% B was held for
1 min before ramping linearly to 5.3% B at 2 min, 7.5% B at 5.5 min, 40% B at 11 min, and holding for
3.5 min before ramping to 100% B at 15.5 min and holding at 100% B until 21 min before resetting to
the original conditions. Injection size was 2 μL. MS data were acquired in the positive mode using
a scheduled MRM method. The transitions monitored (Q1 and Q3) are listed in Table S4. Transitions
for compounds other than gibberellins were detuned from optimum to reduce their sensitivity to
fit within the dynamic linear range of the instrument. Other operating parameters were as follows:
ion spray voltage 4500 V; temperature 600 ◦C; curtain gas 45 psi; ion source gas 1 60 psi; ion source gas
2 60 psi; collision gas set to medium.

4.2.5. Phytohormone Identification and Quantification

Identification and quantification of all compounds were confirmed through the comparison of the
acquired spectra with spectra from the authentic standards. All data were analysed and processed
using Analyst version 1.6.2 and MultiQuant version 3.0 software packages. Concentrations were
calculated for each compound in equivalence to their respective stable isotope as the internal standard.

4.3. Transcriptomic Data

The Red5 A. chinensis var. chinensis genome [30] was mined for the gene models involved in the
cytokinin biosynthetic, catabolic, and signalling pathways, and for plasma membrane H(+)-ATPase
genes. The expansin gene models list was sourced from Pilkington et al. [30]. Gene models were then
searched in the differentially expressed gene (DEG) lists generated by Nardozza et al. [6] (Bioproject ID
PRJNA593615) and heat maps were created to visualise the effect of the carbohydrate supply on gene
transcription, with a focus on the two girdled treatments. DESeq output is shown in Figure S5.

4.4. Statistical Analysis

The effect of the carbohydrate supply and fruit age (factors) on fruit weight and phytohormone
concentrations were analysed using a linear mixed effects model (LME, type 3 sums of squares
Kenward–Roger’s method) in R (version 3.5.1) [48]. The biological replicates were treated as random
effects. When significant effects or interactions were present, the means were separated on the basis of all
pairwise comparisons of least-squares means, adjusted for multiple comparison by Tukey’s correction
(letters assigned; confidence level 95%). Residual plots were inspected to check for the assumptions
of normality and constant variance. Where appropriate, a log-transformation was used prior to
analysis with the fitted means back-transformed onto the original scale. Pearson correlation analysis
was performed to identify positive or negative correlations between fruit weight and phytohormone
concentration. Principal component analysis for cytokinin hormones were also performed in R using
the MixOmics libraries [49]. Data were plotted using package ggplot2 [50] with 95% confidence
interval ellipses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/1/23/s1.
Figure S1: Cytokinin biplot at 16 weeks after mid bloom; Figure S2: Heat-map for multistep phosphorelay
(MSP) pathway kiwifruit genes: cytokinin receptors histidine kinases and positive regulators histidine-containing
phosphotransfer proteins; Figure S3: Heat-map for multistep phosphorelay (MSP) pathway kiwifruit genes:
negative regulators A-type Arabidopsis Response Regulators (ARR) and positive regulators B-type ARR; Figure
S4: Heat-map of kiwifruit plasma membrane H(+)-ATPase genes; Table S1: Proportion of cytokinins types on
total cytokinin concentrations in different treatments; Table S2: List of collected samples and biological replicates
used for the experiments; Table S3: Multiple reaction monitoring (MRM) transitions used for cytokinin analysis;
Table S4: Multiple reaction monitoring (MRM) transitions used for acidic phytohormone analysis; Table S5: DESeq
pairwise comparison between low carbohydrate supply (LC) and high carbohydrate supply (HC) samples at 8, 12
and 16 weeks after mid bloom.
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Abstract: Pineapple is one of the most cultivated tropical, non-climacteric fruits in the world due to
its high market value and production volume. Since non-climacteric fruits do not ripen after harvest,
the ripening stage at the time of harvest is an important factor that determines sensory quality and
shelf life. The objective of this research was to investigate metabolite changes in the pineapple ripening
process by metabolite profiling approach. Pineapple (Queen variety) samples from Indonesia were
subjected to GC-MS analysis. A total of 56, 47, and 54 metabolites were annotated from the crown,
flesh, and peel parts, respectively. From the principal component analysis (PCA) plot, separation
of samples based on ripening stages from C0–C2 (early ripening stages) and C3–C4 (late ripening
stages) was observed for flesh and peel parts, whereas no clear separation was seen for the crown part.
Furthermore, orthogonal projection to latent structures (OPLS) analysis suggested metabolites that
were associated with the ripening stages in flesh and peel parts of pineapple. This study indicated
potentially important metabolites that are correlated to the ripening of pineapple that would provide
a basis for further study on pineapple ripening process.

Keywords: pineapple; metabolomics; ripening; non-climacteric

1. Introduction

Pineapple (Ananas comosus) market value is approximately 14.7 billion USD with a production
volume of around 25 million metric tons in the world [1]. Pineapple is categorized as a non-climacteric
fruit. The major difference between climacteric and non-climacteric fruit is non-climacteric fruit
produces low levels of ethylene and does not show any major peak in the respiration rate during
the ripening process, whereas climacteric fruit depends on ethylene bursts during ripening [2,3].
In addition, ethylene treatment does not give any effect to non-climacteric fruit with the exception of
degreening (removal of chlorophyll) [4]. Another distinct characteristic of non-climacteric fruit is the
fruit will not continue its ripening process after harvest, thus making it important to be harvested in
the right ripening stage to ensure proper quality [3]. The ripening stage of pineapple is divided into
5 stages, C0–C4, with the green-ripe fruit at C0 and the full-ripe fruit at C4 based on United Nations
Economic Commission for Europe (UNECE) Standard for pineapple (FFV-49) as seen in Figure 1 [5].
This classification is based on the peel color of pineapple, in which C0 stage contains 0% yellow color,
C1 stage contain 0%–25% yellow color, C2 stage contain 25%–50% yellow color, C3 stage contain
50%–75% yellow color, and C4 stage contain 75%–100% yellow color [5]. Pineapple is usually exported
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in the C1 stage [6], while the fully ripe fruit (C4 stage) is mainly for domestic consumption. The fruit
of pineapple consists of the fusion of individual fruits. These individual fruits are developed from a
single flower and the external of these fruits were protected with a hard-polygonal shield, commonly
called as pineapple peel [7]. On top of pineapple fruit, there are leaves that can be used for vegetative
reproduction of pineapple commonly called the pineapple crown. This crown part is commonly
harvested along with the fruit harvest [7]. Crown and peel parts develop during pineapple fruit
development. Therefore, to understand the pineapple ripening process comprehensively, analysis of
pineapple peel and crown is needed in addition to flesh analysis. At present, there is limited information
on the differences in metabolite composition of pineapple from different ripening stages [8]. Monitoring
metabolites changes using tools such as metabolomics, a comprehensive study of metabolite, is a
powerful tool for further understanding pineapple ripening process.

 
Figure 1. Pineapple sample from all ripening stages. From left to right: C0 until C4 stages.
This classification is based on the peel color of pineapple, in which C0 stage contains 0% yellow
color, C1 stage contain 0%–25% yellow color, C2 stage contain 25%–50% yellow color, C3 stage contain
50%–75% yellow color, and C4 stage contain 75%–100% yellow color [5].

Recent studies about fruit ripening metabolomics mostly focused on climacteric fruits, such as
banana, mango, capsicum, dates, avocado, peach, climacteric melon, and mangosteen [9–16].
On the other hand, only a few of non-climacteric ripening processed fruit had been elucidated
using metabolomics approach, such as cherry, blackcurrant, blueberry, non-climacteric melon,
and pineapple [15,17–21]. Previous metabolomics studies on non-climacteric fruit employed
mass spectrometry-based instruments, such as gas chromatography-mass spectrometer (GC-MS)
or liquid chromatography-mass spectrometer (LC-MS). Several studies performed a combination of
headspace-solid phase microextraction (HS-SPME) with GC-MS to measure volatile compounds during
the ripening process [15,20]. Reports on pineapple ripening have been focused in volatile and phenolic
compounds using HS-SPME-GC-MS, high-performance liquid chromatography with diode array
detection and electrospray ionization multiple-stage mass-spectrometry (HPLC-DAD-ESI-MSn), and
electrospray ionization mass spectrometry (ESI(-)FT-ICR MS) [21–24]. The outcome from these previous
reports suggested the changes in phenolic patterns, such as coumaroyl isocitrate and S-p-coumaryl,
and volatile compounds, such as methyl 3-(methylthio)propanoate and δ-octalactone, along the
pineapple ripening process.

As mentioned previously, previous studies on pineapple ripening were on the targeted analysis
of volatile and phenolic compounds using the flesh part as a sample. To date, there is no study that
analyzed different parts of pineapple including flesh, peel, and crown parts, and incorporating broad
coverage of primary metabolites such as sugar, organic acid, amino acid, sugar alcohol, sugar acid,
and amine compounds. In order to suggest metabolites that are associated with ripening, there are
several different multivariate analyses that can be used. The most common multivariate analysis is
principal component analysis (PCA) and orthogonal projections to latent structures (OPLS) regression
analysis [25,26]. In this study, a metabolite profiling approach using GC-MS in combination with PCA
and OPLS was conducted to monitor the changes of primary metabolites (sugar, organic acid, amino
acid, etc.) during pineapple ripening process by analyzing pineapple fruit (crown, flesh, and peel)
from different ripening stage (Figure S1). OPLS model was constructed using metabolites annotated by
GC-MS as an explanatory variable and ripening stages as a response variable. The constructed model
from flesh and peel samples indicated several potentially important metabolites that were correlated
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with the pineapple ripening process. This study would be important to complement the knowledge
of the pineapple ripening process and could serve as a basis for post-harvest handling strategy in
pineapple industries.

2. Results

2.1. Optimization of Sample Preparation Methods in Pineapple Fruit

The first analysis was to compare two different sample preparation methods, namely food
processor and freeze-drying. This analysis was conducted to optimize sample preparation of pineapple
fruit in GC-MS analysis. A total of 47 metabolites belonging to various metabolite classes were
annotated by GC-MS analysis in flesh samples (Table S1). These metabolites comprise of 26 metabolites
belongs to sugars class, 12 metabolites belong to amino acids and amines, and 9 metabolites belong to
organic acids. These annotated metabolites were subjected to PCA to clearly visualize the differences
in metabolite levels in pineapple flesh prepared by food processing and freeze-drying methods.

Figure 2 shows the comparison between these two methods after analysis by GC-MS. From the
score plot, flesh samples prepared by two different methods were clearly separated along the PC1
with a 95.2% variance. The loading plot showed that almost all metabolites were accumulated in the
flesh samples prepared by freeze-dry method. Only sucrose was found to accumulate in samples
prepared by food processor method. In the next analysis, we applied the freeze-drying method to
analyze different parts of pineapple in GC-MS. A total of 54, 44, and 50 metabolites were annotated
from crown, flesh, and peel, respectively (Table S2). PCA score plot from Figure 3 clustered pineapple
fruit into three different parts (crown, flesh, and peel) based on the metabolite distributions. Amino
acid and organic acid were found to be accumulated in crown part, while the peel and flesh part show
accumulation of sugar and sugar-acid. Due to the separation for each part, this result becomes the
basis to analyze three parts of pineapple separately.

Figure 2. PCA of comparison of different sample preparation methods: Food processor method and
freeze-drying method. 47 annotated metabolites from GC-MS analysis were auto-scaled prior to PCA.
(Left: Score plot between food processor and freeze dry samples; Legends represent the samples and
colored as follow: food processor: light brown circle, freeze dry: red circle. Right: Loading plot shown
almost all metabolites (except sucrose shown by light brown arrow) showed higher accumulation by
freeze-dry method).
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Figure 3. PCA result from different parts of pineapple. 64 tentatively identified metabolites from
GC-MS analysis were auto-scaled prior to PCA. Left: Score plot between crown, flesh, and peel part.
Legends represent the sample and colored as follows: crown: green circle, flesh: yellow triangle, peel:
red square. Right: Loading plot shown that crown part accumulates organic and amino acid, while
flesh and peel accumulate sugar and sugar acid.

2.2. GC-MS and Principal Component Analysis of Pineapple from Different Ripening Stages

Analysis of crown, flesh, and peel parts of pineapple from different ripening stages was conducted
separately. Metabolite profiling approach using GC-MS instrument could detect 351 metabolite peaks
in the crown part, 297 metabolite peaks in the flesh part, and 359 metabolite peaks in the peel part.
Among those peaks, 85 peaks in the crown part, 74 peaks in the flesh part, and 73 peaks in the peel part
were annotated using MSP Library containing RI and EI-MS from our laboratory experimental data.
Metabolites from QC samples with RSD more than 20% were excluded from the analysis [27]. After
exclusion of metabolites with RSD higher than 20%, the number of annotated metabolites in crown
part were 56 metabolites, in the flesh part were 47 metabolites, and in the peel part were 54 metabolites.
A complete list of these metabolites during ripening analysis is shown in Table S3.

Figure 4 shows the score plot from PCA for pineapple from different ripening stages (C0 to C4
stage) as observed in three different parts of pineapple. As seen in Figure 4b,c, flesh and peel part
showed two distinct clusters along PC1. Less ripe samples (C0–C2) were clustered together and
ripe fruit samples (C3 and C4) formed a separate cluster. This trend was explained by 63.9% and
53.3% variance in the flesh and peel part, respectively. However, this trend was not shown in the
crown part of pineapple from all principal components. Loading plot in Figure 4b,c showed the
metabolite accumulation in the less ripe and ripe samples for flesh and peel part, respectively. These
metabolite intensities that used to create a score plot were normalized using an internal standard,
ribitol. The internal standard was chosen because it is not present in pineapple samples and stable in a
mixed solvent solution.
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(a) (b) (c) 

Figure 4. PCA result from flesh, crown and peel parts of pineapple from different ripening stages.
Variables used for PCA were 56, 47, and 54 annotated metabolites by GC-MS from crown, flesh, and peel
parts respectively. Data was auto scaled prior to PCA. (a) Score and loading plot from the crown part;
(b) score and loading plot from the flesh part; (c) score and loading plot from the peel part. Legends
represent the samples and colored as follows: brown: C0 stage, red: C1 stage, green: C2 stage, blue: C3
stage, black: C4 stage. Upper part show score plot; Bottom part show loading plot. Loading plot was
colored based on metabolite classes: green: sugars; red: organic acids; yellow: amino acids and amines.

2.3. Orthogonal Projection to Latent Structures of Pineapple Ripening Process

Orthogonal projection of latent structures (OPLS) regression analysis was conducted to identify
metabolites that were highly influenced by the process related to the response variable [28]. In this
study, two latent variables were used to construct the model using flesh and peel parts of pineapple.
Crown part was not analyzed based on the previous result in PCA which indicated that crown part
was not able to show any trend in ripening process. Response variables that were used to generate
the model were ripening stages from C0 as 1, C1 as 2, C2 as 3, C3 as 4, and C4 as stages 5, while
the explanatory variables were metabolites annotated by GC-MS analysis. Pineapple from C0 to C4
ripening stages harvested in April 2019 were used as a training set to generate the model (Figure 5).
Model validation was conducted by leave-one-out cross-validation from each replicate.
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(a) (b) 

Figure 5. Orthogonal projection to latent structures (OPLS) results from flesh and part of pineapple.
Explanatory variables in flesh part are 47 metabolites, while in peel part are 54 metabolites. Response
variable for both models is the ripening stages with numbered as follows: C0 stage as 1, C1 stage as 2,
C2 stage as 3, C3 stage as 4, and C4 stage as 5. Value of R2, Q2, RMSEE, and RMSECV were used to
evaluate the model. (a) OPLS model of flesh part; (b) OPLS model of peel part.

The constructed OPLS regression model with R2 of 0.888 and 0.931 for flesh and peel part,
respectively, are shown in Figure 5. In the OPLS regression analysis, statistically important metabolites
for the models were indicated by the score of variable important in projection (VIP). Metabolites with a
VIP score of more than 1 considered important for the model [28] (Table S4). Contributing metabolites
were chosen based on the five highest VIP scores. The metabolites were melezitose, inositol, xylonic
acid, gluconic acid, and raffinose in the flesh model, whereas inositol, mannose, galactose, sucrose,
and aspartic acid were the top five highest VIP metabolites in the peel. Among these highest VIP
metabolites in both flesh and peel, melezitose, xylonic acid, gluconic acid, and sucrose have a positive
correlation with the ripening stages, while inositol, raffinose, mannose, galactose, and aspartic acid
showed a negative correlation with the ripening process (Figure 6).

3. Discussion

Metabolite profiling is known to be useful to analyze a large group of metabolites that belong to a
specific class of compounds that reflects the dynamic response to physiological change or developmental
stimuli [29,30] In this study, a metabolite profiling approach using GC-MS was employed for the
study of pineapple ripening process. GC-MS is suitable for metabolite profiling because it provides
high sensitivity, reproducibility, and quantitation of a large number of metabolites with a single-step
extraction [31,32]. Metabolite annotated in pineapple crown, peel and flesh were classified as sugars,
amino acids, amines, organic acids, and other compounds. Sugars were found to be the most abundant
in pineapple. This is in agreement with previous work that mentioned the high content of sugars was
observed in pineapple flesh samples [21]. In this study, we conducted for the first time the analysis
of peel and crown parts of pineapple in addition to flesh samples. Annotated metabolites from each
part were subjected to PCA and OPLS analyses. Principal component analysis (PCA) is a multivariate
data analysis that could show the variance among the samples using metabolites as the explanatory
data [33]. Based on the PCA, pineapple ripening was clustered into two major phases namely C0-C2
stages (early ripening) and C3-C4 stages (late ripening). The trends above were observed only in
flesh and peel samples, whereas there was no clear trend of ripening in crown part. It was previously
suggested that crown photo-assimilation seems to be derived from its own photosynthesis, not from
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the fruit [34]. It is also well known that pineapple maturation developed from the bottom, not from the
top [35]. Therefore, crown part is considered to have no correlation with fruit ripening.

 
(a) 

 
(b) 

Figure 6. Bar graph of five highest variable important in projection (VIP) metabolites related to
pineapple ripening process in (a) flesh and (b) peel part. The relative intensity of the five highest VIP
metabolites was normalized by the internal standard. Vertical axis represents metabolites relative
intensity and horizontal axis represents ripening stages. Significant differences (p < 0.05) are indicated
with the different letters based on mean comparison Tukey’s test.

Further analysis to identify potentially important metabolites that are correlated with the ripening
process was conducted using OPLS regression analysis. OPLS regression analysis is known to be
more powerful to explain the relationship between the response variable and explanatory variable
because it is a supervised multivariate analysis [28]. The OPLS regression model shown in Figure 5
has some parameters that could be used to evaluate the quality of the model itself. These parameters
are R2, Q2, RMSEE, and RMSECV. R2 is defined as the square of the correlation coefficient between
observed and predicted value in a regression [36]. Q2 is known to be a reliable parameter for model
predictivity [16,36]. RMSEE or root mean square error of estimation and RMSECV or root mean square
error of cross-validation are the values to evaluate accuracy, prediction, and model robustness [36,37].
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A good model would have an R2 value of more than 0.6, Q2 value of more than 0.6, and a low value of
RMSEE and RMSECV [36]. We constructed 3 OPLS models from metabolites annotated in flesh, peel
and crown. The constructed model of flesh and peel showed R2 value of more than 0.6, Q2 value of
more than 0.6, and a low value of RMSEE and RMSECV, whereas crown model showed R2 value of
0.896, Q2 value of 0.432, RMSEE value of 0.509, and RMSECV value of 1.066. These results indicated
that only peel and flesh model meet the thresholds for a valid model with a good fit. The low Q2 value
in crown model showed that the samples from crown part cannot be used to predict ripening stages in
pineapple. This is in line with the results obtained from PCA.

Contributing metabolites related to ripening stages could be obtained from the variable importance
in the projection (VIP) scores. Based on these scores, the five highest VIP metabolites in the flesh
part are melezitose, inositol, xylonic acid, gluconic acid, and raffinose; while for peel part are inositol,
mannose, galactose, sucrose, and aspartic acid. Figure 6 shows the dynamic of these VIP metabolites
relative intensity (normalized with ribitol) along the ripening process of pineapple. These metabolites
were shown to be increased or decreased during the pineapple ripening process. From these VIP
metabolites in flesh parts, the raffinose level was in agreement with the previous report that showed
a decreased level during ripening process [38]. In addition to the previously reported metabolites
that correlate with the ripening process, this study also reports the dynamics of inositol, melezitose,
xylonic acid, and gluconic acid in the flesh part during ripening process. Inositol or commonly known
as myo-inositol was known to regulate osmotic pressure in blueberry fruit thus maintaining turgor
and fruit firmness between the firm cultivar and soft cultivar [19]. In addition to that, inositol might
be oxidized to D-glucuronic acid known as a major precursor of the cell wall in Arabidopsis [39].
Therefore, the presence of inositol might also relate to the cell wall in fruit. Melezitose is known
to play a role in osmoregulation system [40]. However, comparing the relative intensity trend
with inositol, the mechanism underlying these two metabolites might be different to regulate the
osmoregulation system during the pineapple ripening process. Even though melezitose relative
intensity was considered low compared to other sugar, it was reported in the previous study that it
could attract ants in honeydew fruit [41]. Therefore, the accumulation of melezitose in the latter stage
of ripening might reflect the attractancy of the fruit in the fully ripe stage.

Xylonic acid relative intensity was shown to be increased during the ripening process (Figure 6a).
The increase of this organic acid might be related to the reactive oxygen species (ROS). During
fruit ripening, oxidative stress was increased and might result in some changes in fruit, such as
changes in skin color or fruit softening. Due to the presence of ROS, fruit antioxidants might act
to balance the reduction–oxidation homeostasis [42]. One of the most known fruit antioxidants is
ascorbic acid. The previous report stated that xylonic acid is a product of ascorbic acid degradation,
thus explaining the increase of xylonic acid during the ripening process [43]. During the pineapple
ripening process, raffinose was found to be decreased along with the progression of ripening (Figure 6).
In agreement with this result, previous report showed that the raffinose level also decreases in Japanese
plum non-climacteric cultivar during its ripening [38]. They reported that the raffinose level in
non-climacteric fruit might be related to its ability to alleviate the oxidative process during fruit
ripening [38]. Therefore, not only xylonic acid but the level of raffinose might also be related to the
reduction–oxidation process along the ripening process. The gluconic acid concentration was shown to
be increased during the late-ripening process in pineapple (Figure 6a). This increase might be triggered
by the increase of carbon molecules availability during the later stage of pineapple ripening [44].
In addition, gluconic acid intensity increase might also cause by the effect of cell wall degradation,
change in cuticle composition and pH of host cells that allow the transition of fungi into their aggressive
colonization [44]. The presence of gluconic acid might indicate an infection that could secrets gluconic
acid and acidify the pH in fruit such as in apple and mango [45,46].

Metabolite that shows the highest VIP score in peel after inositol is mannose. Mannose is known
as a component of the plant cell wall, specifically hemicellulose [47]. The previous report mentioned
that the concentration of mannose was decreased during fruit development, hence support our findings
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shown in Figure 6b [48]. Similar to mannose, decrease level of aspartic acid in the pineapple ripening
process were also reported during ripening of banana [49]. Aspartic acid was known to be a source
for umami taste along with glutamic acid [50]. Its level was known to be varied among the fruits. In
banana and Vasconcellea quercifolia, the level of aspartic acid was found to be decreased along with the
ripening progress, while mature or ripe tomato contained more aspartic acid that brings out the umami
taste [49,51,52]. Other than the source of umami taste, the level of aspartic acid might also connect
with the free auxin level in fruits that affect its ripening [53]. Aspartic acid was found to be conjugated
with indole acetic acid (IAA) and lead to degradation of the IAA hormones [53].

Other than the previously reported metabolites, this study found the change of sucrose and
galactose level in the peel part might correlate with the pineapple ripening process. This study showed
the sucrose level in pineapple peel part was increased during ripening (Figure 6b) while previous
report mentioned the increase of sucrose during ripening process in pineapple flesh [21]. Sucrose
was known to become a source of sweet taste in food and commonly used as a standard solution
for sweetness [54]. However, sucrose in the peel part might not directly affect the sweetness in the
flesh. It is reported that sucrose in the peel is lower if compared with the flesh part [55]. Sucrose not
only contributes to sweetness, but it also plays a role to regulate fruit development and ripening in
strawberry fruit, a non-climacteric fruit [56]. Sucrose accumulation might induce the expression level
of the key enzymes in abscisic acid (ABA) hormones pathway, hence promote ripening process in
non-climacteric fruit via ABA hormones [57]. Galactose in Figure 6b was shown a decreasing trend
along the ripening stages. This might be explained by the relation of galactose with the plant cell
wall. The previous report showed that galactose is the major non-cellulosic sugar in the cell wall and
significantly decreased during fruit ripening [58,59]. All these metabolites with high VIP score consist
of sugars (melezitose, inositol, raffinose, mannose, galactose, and sucrose) and organic acids (xylonic
acid, gluconic acid, and aspartic acid).

During ripening process, many biological processes occur, such as cell wall loosening, texture
changes, flavor development, chlorophyll degradation, and pigment accumulation [60]. Changes in
melezitose and inositol level might indicate the texture changes during pineapple ripening process.
Melezitose and inositol are known to regulate fruit firmness that affects the texture or hardness of
fruit [19]. In addition to that, inositol, galactose, and mannose levels might be related with cell wall
loosening during ripening. Inositol were known to be precursor of D-glucuronic acid of plant cell wall,
galactose is a major non-cellulosic sugar in plant cell wall, and mannose are component of hemicellulose
in plant cell wall. Therefore, the decrease of these three metabolites might correlate with loosening of
cell wall that usually accompanied with decrease level of firmness and increase of gluconic acid [19,44].
Reactive oxygen species also play a role in ripening process to regulate programed cell death and cell
aging [61]. This report in line with our results that show decrease level of xylonic acid and increase
level of raffinose during ripening process. Both metabolites were known to respond to reactive oxygen
species as discussed previously. These biological processes that affected by the ripening process are
product of biochemical changes that mediated by plant hormone. Abscisic acid (ABA) and auxin
were known to be affecting the ripening process in non-climacteric fruit [60]. Changes in sucrose and
aspartic acid during ripening process might affected abscisic acid and auxin, respectively. Therefore,
it might modulate ripening process in pineapple fruit.

This study showed the significance of sample preparation to gain more metabolite coverage that is
useful for further analysis. Based on metabolites data acquired from GC-MS analysis, flesh and peel data
could show clustering separation between C0-C2 stages and C3-C4 stages using principal component
analysis (PCA), while the crown part does not show correlation with the ripening process. Orthogonal
projection to latent structures (OPLS) regression analysis reveals metabolites that have possible relations
to the pineapple ripening process in flesh and peel parts. In the flesh part, melezitose, inositol, xylonic
acid, gluconic acid, and raffinose were found to be the five highest important metabolites, while for the
peel part are inositol, mannose, galactose, sucrose, aspartic acid. These metabolites were known to be
involved during plant cell wall metabolism and osmoregulation system thus affecting the firmness and
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shelf life of pineapple, in addition to the redox defense system and non-climacteric ripening hormones.
For future applications, these VIP metabolites could be added exogenously to regulate specific effects,
for example, the addition of polyamine and ascorbic acid to regulate the shelf life of fruit, as shown in
the previous reports [62,63]. In addition, influencing the level of the metabolites through post-harvest
treatment was also feasible to be conducted, such as regulating inositol, galactose, and raffinose by
cold or heat treatment [64–66]. It must be noted that this study only limited to the “Queen” cultivar.
Future study using other widely known cultivars, such as “Smooth Cayenne”, is still needed to enrich
the information regarding pineapple ripening process. Regardless, this study might become a basis
for resolving the post-harvest issue in the pineapple industry by controlling important metabolites
influenced in the ripening process.

4. Materials and Methods

4.1. Plant Materials

Pineapple (Ananas comosus) fruit from Indonesia corresponding to 5 different ripening stages
were used in this study (Figure 1). To set the same harvest time at the end of April 2019, ethephon
treatment was used to induce fruit development around November to December 2018. Cultivars of
pineapple used in this study to represent the important cultivar from the pineapple Industry is cv.
Mahkota Bogor ‘Queen’. Three samples (biological replicates) from different plants were collected
from each ripening stage for Queen cultivars from the cultivation period of November 2018—April
2019 in Center for Tropical Horticulture Studies, Bogor Agricultural University (CENTROHS, Bogor
Agriculture University), Bogor, Indonesia (minimum temperature 21 ◦C and maximum temperature
35 ◦C). Ripening stage determination was conducted with the help of a trained panelist according to
peel color changes [5].

4.2. Optimization of Sample Preparation

4.2.1. Comparison between Food Processor and Freeze-Drying Methods

Pineapple fruit was cut into half then the flesh was diced using a stainless-steel knife. Diced
flesh with 1 × 1 cm size from one half of fruit was subjected to freeze dry-extraction method using
VD-800F Freeze dryer (Taitec, Saitama, Japan). This flesh was put into a Pyrex tube and closed with
holed parafilm before being quenched with liquid nitrogen and lyophilized. Diced flesh with 1 × 1 cm
size from the other half of the fruit was homogenized using hand immersion-blender WSB-33XJ
(Waring Commercial, Pennsylvania, United States of America) before extraction. Ten milligrams of
both samples were subjected to extraction following the method described previously prior to GC-MS
analysis [66].

4.2.2. Comparison of Crown, Flesh, and Peel of Pineapple Fruit

The pineapple was cut into three different parts, crown, flesh, and peel. Crown part was analyzed
by cutting the leaves into a 1x1 cm size before quenching by liquid nitrogen and freeze-dried. Peel part
was analyzed by scraping the peel into a 1x1 cm size using a stainless-steel knife before quenching
and freeze-drying. Flesh part was analyzed according to above description. Lyophilized sample
was homogenized using Multi-beads shocker (Yasui Kikai, Osaka, Japan). Ten milligrams of the
homogenized sample of each part of pineapple was subjected to extraction and GC-MS analysis [66].

4.3. Sample Preparation and Extraction of Pineapple from Different Ripening Stages

Pineapple fruit of different ripening stages collected in Indonesia was divided into three parts:
Crown, flesh, and peel. Each part was cut into small pieces and placed into a Pyrex tube covered
with holed parafilm. Samples were quenched by immersing the Pyrex tubes in liquid nitrogen prior
to lyophilization using the VD-800R Freeze dryer (Taitec, Saitama, Japan). Freeze-dried pineapple
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samples were transported from Indonesia to Japan within a day. The samples were homogenized and
ground into a fine powder using Multi-beads shocker. This extraction method was conducted based
on the method described in our previous study [66]. Pineapple samples (10 mg), blank samples and
quality control (QC) samples were extracted together and lyophilized in a single day. QC samples
were prepared by collecting small aliquots of each sample obtained in this study.

All samples were extracted using the mixture of methanol (Wako Chemical, Osaka, Japan),
chloroform (Kishida Chemical Co. Ltd, Osaka, Japan), ultrapure water (Wako Chemical, Osaka, Japan);
in the ratio of 2.5/1/1 (v/v/v) containing 100 μg/mL ribitol as an internal standard. The mixture was
incubated at 37 ◦C, 1200 rpm for 30 min followed by centrifugation for 3 min at 40 ◦C. Six hundred
microliters of supernatant was transferred to a new 1.5 mL microtube and 300 μL water was added
into the mixture. The sample mixture was centrifuged for 3 min at 40 ◦C and 400 μL of supernatant
was transferred to a new microtube and closed with a holed cap. The solvent from the sample mixture
was evaporated for 1 h at room temperature followed by lyophilization overnight. All samples were
analyzed in triplicates (n = 3). One hundred microliters of methoxyamine hydrochloride (20 mg/mL
in pyridine) was added into lyophilized samples and incubated in thermomixer for 90 min at 30 ◦C.
Subsequently, 50 μL N-Methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (GL Sciences) was added
to the samples and incubated for 30 min at 37 ◦C.

4.4. GC-MS Analysis

GC-Q/MS analysis was performed on a GC-MS QP2010 Ultra (Shimadzu, Kyoto, Japan) equipped
with an InertCap 5 MS/NP column (GL Sciences). Tuning and calibration of the mass spectrometer
were done prior to analysis. One microliter of the derivatized sample was injected in split mode,
25:1 (v/v), with an injection temperature of 230 ◦C. The carrier gas (He) flow was 1.12 mL/min with a
linear velocity of 39 cm/s. The column temperature was held at 80 ◦C for 2 min, increased by 15 ◦C/min
to 330 ◦C, and then held for 6 min. The transfer line and ion source temperatures were 250 and 200 ◦C,
respectively. Ions were generated by electron ionization (EI) at 0.94 kV. Spectra were recorded at
10,000 u/s (check value) over the mass range m/z 85−500. A standard alkane mixture (C8–C40) was
injected prior to analysis for peak identification.

4.5. GC-MS Data Analysis

The raw data obtained from the analysis was converted to the AIA file using GCMS solution
software package (Shimadzu, Kyoto, Japan). Peak alignment, peak filtering and annotation
was conducted by MS-DIAL ver. 4.00 using GCMS-5MP Library (Riken, Kanagawa, Japan).
Peak confirmation of important metabolites, namely inositol, mannose, galactose, melezitose were
conducted by co-injection with authentic standard (Wako Pure Chemical Industries Ltd., Osaka, Japan;
Sigma-Aldrich Japan Ltd., Tokyo, Japan; Alfa Aesar Ltd., Heysham, UK).

4.6. Statistical Analysis

Annotated metabolites from GC-MS analysis were pre-treated by normalizing each metabolite
peak height to internal standard (ribitol). Normalized data were scaled by autoscaling and without
transformation subjected to PCA (Principal Component Analysis) using SIMCA-P+ version 13
(Umetrics, Umea, Sweden). Principal component analysis is an unsupervised analysis that is useful as
a dimension-reduction tool in order to easily observe trends, clusters and outliers [25]. Other than PCA,
a projections to latent structures (PLS) regression model that is constructed from the maximal correlation
of explanatory variable (x-variable) with response variable (y-variable) offers ranking of metabolites
correlation with a certain quantitative phenotype [67,68]. In particular, orthogonal projections to
latent structures (OPLS) regression model is very useful for reducing many variables to limited latent
variables [26]. Parts that show ripening trends in PCA were subjected to OPLS (Orthogonal Projections
to Latent Structures) analyses using SIMCA-P+ version 13. From OPLS analyses, variable importance
in projection (VIP) were calculated for each metabolite. The top five highest VIP score’s metabolites in
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each pineapple part were statistically analyzed by analysis of variance (ANOVA) with Tukey’s post
hoc test performed using JASP Version 0.11.1 (JASP Team, Amsterdam, Netherlands). The statistical
analysis was conducted to evaluate the differences among mean values of VIP metabolites obtained
from all ripening stages. Differences were considered significant if p < 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/134/s1,
Table S1: Complete list of annotated metabolites with RSD < 20% for sample preparation analysis, Table S2:
Complete list of annotated metabolites with RSD < 20% for different part analysis, Table S3: Complete list of
annotated metabolites with RSD < 20% for ripening process analysis, Table S4: metabolites with VIP score (more
than 1) and its coefficient, Figure S1: Visual experimental design on pineapple ripening study, Figure S2: Venn
diagram of annotated metabolites in crown, flesh, and peel part on different parts analysis, Figure S3: Venn
diagram of annotated metabolites in crown, flesh, and peel part on pineapple ripening analysis.
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Abstract: Many solanaceous crops are an important part of the human daily diet. Fruit polyphenolics
are plant specialized metabolites that are recognized for their human health benefits and their
defensive role against plant abiotic and biotic stressors. Flavonoids and chlorogenates are the
major polyphenolic compounds found in solanaceous fruits that vary in quantity, physiological
function, and structural diversity among and within plant species. Despite their biological significance,
the elucidation of metabolic shifts of polyphenols during fruit ripening in different fruit tissues, has not
yet been well-characterized in solanaceous crops, especially at a cross-species and cross-cultivar level.
Here, we performed a cross-species comparison of fruit-metabolomics to elucidate the metabolic
regulation of fruit polyphenolics from three representative crops of Solanaceae (tomato, eggplant,
and pepper), and a cross-cultivar comparison among different pepper cultivars (Capsicum annuum cv.)
using liquid chromatography-mass spectrometry (LC-MS). We observed a metabolic trade-off between
hydroxycinnamates and flavonoids in pungent pepper and anthocyanin-type pepper cultivars and
identified metabolic signatures of fruit polyphenolics in each species from each different tissue-type
and fruit ripening stage. Our results provide additional information for metabolomics-assisted
crop improvement of solanaceous fruits towards their improved nutritive properties and enhanced
stress tolerance.

Keywords: polyphenolics; solanaceous crops; capsicum annuum; pepper; tomato; eggplant; fruit
ripening; metabolomics; tissue-specificity; flavonoid

1. Introduction

Solanaceae (nightshade family) is an agronomically- and botanically-diverse plant taxonomic
group, with members ranging from vegetable crops through medicinal plants to ornamentals.
Few representative crops of economic importance include tomato (Solanum lycopersicum), eggplant
(Solanum melongena), and pepper (Capsicum annuum). With available genome sequences [1,2] and
genetic resources from different tomato varieties and natural mutants [3], tomato has become the
first model crop for fleshy fruit ripening, fruit pigmentation, specialized (secondary) metabolism,
and plant defense [4–9]. Subsequently, metabolomic data of specialized metabolites from tomato
fruits [4,10–12] and a tomato metabolite database [5,13–15] have been published and developed via a
mass-spectrometry (MS)-based metabolomic analysis for fruit-omics approach. The metabolomics
approach, focusing on specialized metabolism, is also being used on other solanaceous plants, including
tobacco (Nicotiana spp.) [16,17], potato (Solanum tuberosum) [18–20], petunia (Petunia spp.) [21], and
Atropa spp. [22]. However, developing similar resources for related crops is still a goal of the scientific
community [23].
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In the point of fruit-omics, pepper (Capsicum spp.) is increasingly gaining recognition as an
excellent model plant for solanaceous fruit-omics [8,12,24,25]. Pepper (Capsicum spp.) has a world
yield of 184,742 hg/ha and a world production of almost 40 million tons in 2018 [26]. Consumed either
raw, cooked, as a spice, or food colorant [27], pepper have known human health benefits, such as
weight reduction [28], pain relief [29], and cancer prevention [30]. Peppers can also be used as sprays
for crowd control and personal defense since some cultivars cause skin irritation [31,32]. Capsaicinoids
(e.g., capsaicin, 8-methyl-N-vanillyl-6-nonenamide) have been the main focus of metabolic diversity
studies in pepper due to their dramatic bioactivities; however, pepper polyphenols are less highlighted,
since fruit metabolomics focusing on polyphenols have already been well-investigated in tomato
species. Furthermore, tissue-specific patterns of polyphenol distribution in pepper fruit have not
been well-characterized during fruit ripening, specifically in the peel and pericarp. There is still
a need to investigate metabolic shifts of polyphenols among different fruit tissues during different
stages of ripening in pepper through fruit-omics analysis, because of the fact that significant metabolic
shift of polyphenolic compounds during fruit ripening is observed in different fruit tissues, such
as in the case of tomato species [10,33–35]. Furthermore, capsaicinoids share the same biosynthetic
precursors, e.g., phenylalanine and p-coumarate, which can cause differences in metabolic shifts of
polyphenols in pepper versus tomato. The pungent properties in pepper are due to the bioactivity of
capsaicinoids, an exclusive trait amongst capsicum species and is not exhibited by other solanaceous
crops. Pepper also has a variety of fruit colors among cultivars during fruit ripening, which mainly
indicate variation in fruit carotenoids and chlorophylls, but also in fruit polyphenolics, in the case of
purple pepper cultivars. While total amount of flavonoid aglycones have been compared between
pungent and non-pungent pepper cultivars [36], further metabolomic analysis of fruit polyphenolics
in terms of their tissue specificity and metabolic shift during fruit ripening should be highlighted.

On the other hand, fruit-metabolomics on eggplant polyphenolics is still in progress with only a
few studies having been performed. The metabolomic analysis of different Solanum species, including
five eggplant (S. melongena) accessions, three accessions from an eggplant wild ancestor (Solanum
insanum), and two from scarlet eggplant (Solanum aethiopicum), through a LC-MS based strategy revealed
metabolic diversity of anthocyanins, chlorogenic acid derivatives, flavonoids, triterpenoid alkaloids
and triterpenoids, and novel biosynthetic frameworks [37]. In the untargeted metabolomics of the fruit
of twenty-one eggplant (S. melongena) accessions using GC-MS and LC-MS, some accession-specific
specialized metabolites were putatively identified [38]. Moreover, the metabolic quantitative trait locus
(mQTL) from eggplant fruit was investigated for identification of a genomic region of productivity for
chlorogenic acid and two anthocyanin pigments [39].

Plant polyphenols are a large group of plant specialized metabolites, which can be
subdivided into several large sub-groups of major phyto-antioxidants, for example flavonoids and
hydroxycinnamates [40,41]. In solanaceous plants, flavonoids involved in the stress resistance against
abiotic and biotic stressors, such as pathogen infection [42,43], ultraviolet light (UV) [44,45], nitrogen
deficiency [46], and cold temperature [47]. Flavonoids are also involved in plant reproduction, such as
attracting insect pollinators and seed dispersers [48]. Pigment flavonoids, such as anthocyanins, upon
absorbing visible (VIS) light contribute to the red and purple pigmentation of solanaceous fruits [8].
Intake of flavonoids and hydroxycinnamates also reduce the risk of human disease due to their
anti-cancer and antioxidant activities based on in vitro assays [49–51]. Chlorogenates have recognized
human health benefits, such as antioxidant, antiviral, hepatoprotective, and anti-hypoglycemic
properties [52]. With their beneficial roles in human health, tissue-specific accumulation patterns of
polyphenols in pepper fruit during ripening can be focused. Since polyphenols contribute a role in
plant stress response, there is a propensity for such compounds to accumulate more in the fruit peel
than in the pericarp, which has already been observed in tomato fruit [10,53–56].

To develop a baseline on the polyphenolic compounds already detected in our solanaceous
crops of study, a phytochemical survey of polyphenolics reported in the fruits of tomato, eggplant,
and pepper was investigated via a phytochemical database KNApSAcK (http://www.knapsackfamily.
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com/KNApSAcK_Family) and literature search of fruit metabolomic analyses conducted on these
species [4,10,25,57–59] (Figure 1A, Table 1). In tomato species, major polyphenolic compounds include
derivatives of hydroxycinnamates, flavonols, and anthocyanins [5,10,13–15,57]. For eggplant, its
fruit peel is rich in anthocyanins, mainly delphinidin derivatives [60], while the pericarp consists
mainly of chlorogenates (CGAs) [61]. Flavonol glycosides have also been detected in the pericarp
of eggplant fruit [62]. Polyphenolic compounds detected from pepper are much more diverse,
with flavonoids being the main compound group and flavones and flavonols the major flavonoid
subfamilies detected. Chlorogenates have also been identified from pepper fruit [59]. Based on
the data for all three solanaceous crops of study, common polyphenolic compounds present in
their fruit include hydroxycinnamates (specifically chlorogenates and their positional-isomers),
chalconoids/stilbenoids, flavanones, and flavonol derivatives, such as rutin (quercetin-3-O-rutinoside)
and kaempferol-3-O-glucosides (Figure 1A, Table 1). A survey of representative polyphenolic
compounds have been reported in the metabolic analysis of the solanaceous fruits, a metabolic
framework of major polyphenolics among three solanaceous species is illustrated (Figure 1B).
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Figure 1. Major polyphenolic compounds reported in mature fruit of solanaceous crops. (A) chemical
structure of major polyphenolic specialized metabolites found in solanaceous crops. Chlorogenates
(CGAs), naringenins, and flavonols are shown. (B) the biosynthetic framework of polyphenolic
compounds in solanaceous crops. Biosynthetic pathways were constructed by an online database
search and literature review of major polyphenolic compounds in solanaceous crops. Color: Blue,
hydroxycinnamates; black, stilbenoids/flavanones and chalcones; purple, anthocyanins; and green,
flavonols/flavones; orange, amino acid. Yellow color inside of circle indicates major accumulation
form in the plant. Abbreviations: Phe, phenylalanine; cou, coumaroyl; caf, caffeoyl; fer, feruloyl; sin,
sinapoyl; glyc, glycoside; deriv, derivative. K, kaempferol; Q, quercetin; Narichal, naringenin chalcone;
CGA, chlorogenate; DiCGA, dicaffeoyl-chlorogenate; Glc, glucose; Rha, rhamnose; Api, apiose; and
hex, hexose.

Peppers consist of approximately 35 species [63] with five of them domesticated independently
(C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). C. annuum is the largest and
most widely-cultivated species having both spicy (chili) and sweet varieties with different kinds
of pigmentation in their fruits [8,64]. However, due to hybridization, pepper currently has around
50,000 varieties, providing a wide range of chemical variability within the same species exhibiting
similar physical characteristics [12]. Despite such physical similarity within species, such genetic
diversity still provides a large pool of chemical variability within species in terms of tissue-specificity,
developmental ripening stage, and cultivar. Furthermore, the process of fruit ripening involves a tight
metabolic regulation in conjunction with developmental stage [65], involving biochemical reactions
resulting in changes in fruit flavor, texture, aroma, hardness, nutrient composition, and color [25,66].
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Since some polyphenolic compounds are involved with flavor and fruit color, changes in polyphenolic
content can occur during fruit ripening [15,67]. Accumulation patterns of major flavonoid glycosides
in terms of subspecies and cultivar–specificity were evaluated from ripe fruits across thirty-two pepper
accessions, including C. annuum, C. chinense, C. frutescens, and C. baccatum [25]. As one of the results
given by this research, main pepper flavonoid decorations were observed as a metabolic polymorphism
within these pepper species. Previously, primary metabolites (sugars, amino acids, and organic
acids) were compared between tomato (S. lycopersicum) and pepper (Capsicum chilense) during fruit
ripening [66,68] but not specialized metabolites, specifically polyphenols. Since some metabolomic
studies of primary metabolites have been conducted for pepper fruit, such fruit-metabolomics studies
should be expanded to include tissue-specificity of polyphenol accumulation in pepper peel versus
pericarp during different stages of fruit ripening among various pepper cultivars. Furthermore, after
metabolic polymorphisms of polyphenolic profiling were characterized through metabolic profiling
with acid hydrolysis [49], a complete representation of the polyphenolic profile for this pepper variety
can additionally be focused with metabolic profiling of the individual derivative forms. Meanwhile
in hot pepper (Capsicum annuum “CM334”) fruit, only the pericarp was analyzed for polyphenolic
accumulation patterns during ripening [69]. Additionally, the identification of polyphenolic compounds
specific for pepper against other solanaceous crops has not yet been performed, nor have the patterns
of accumulation in relation with fruit tissue type been reported in some pepper species. Therefore,
polyphenolic fruit-omics data developed in tomato research can possibly be used for the extension to
other solanaceous crops, such as pepper species and cultivars through other fruit-omics approaches.

Table 1. Major polyphenolic compound groups reported in the solanaceous fruits.

Compound Family Compound Group
Tomato

(S. Lycopersicum)
Eggplant

(S. Melongena)
Pepper

(C. Annuum)

Hydroxycinnamates
CGAs

√ √ √
di-CGAs

√ √
tri-CGA

√
p-coumaroyl-glycosides

√ √
caffeoyl-glycosides

√ √ √
feruloyl-glycosides

√ √ √
sinapoyl-glycosides

√ √ √
Chalconoids/stilbenoids

phloretin deriv.
√ √

naringenin chalcone deriv.
√ √

naringenin deriv.
√ √

Flavonoids
flavonols kaempferol deriv.

√ √ √
quercetin deriv.

√ √ √
isorhamnetin deriv.

√ √
myricetin deriv.

√ √
anthocyanins delphinidin deriv.

√ √ √
petunidin deriv.

√ √ √
malvidin deriv.

√
flavones apigenin deriv.

√
luteolin deriv.

√

Here, we performed a cross-species comparison of representative phenolic compounds among
three solanaceous crops (tomato, eggplant, and pepper) during fruit ripening, additionally including
different pepper cultivars to address metabolic regulation of fruit polyphenolic metabolism among
pepper varieties exhibiting differences in pigmentation and pungency. We focused on differences in the
metabolic accumulation pattern between tissue types (peel and pericarp) and three fruit ripening stages
(immature, green/purple mature, and final mature) to develop a better understanding of metabolic
trade-off in fruit polyphenolics. Such information can allow breeders to optimize the biosynthesis
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of health-related polyphenolic compounds in pepper during their developmental stage of harvest.
Metabolic signatures provided here, provide significant information for future functional genomics
approach as well as for the metabolomics-assisted crop breeding of solanaceous fruits towards their
nutritive improvement and stress tolerance enhancements.

2. Results

2.1. Metabolite Profiling of Major Polyphenolic Compounds in Fruit Tissues Among Solanaceous Crops

Metabolomic profiling of representative polyphenolic compounds from the fruit extracts of
two tissue types (peel and pericarp) was conducted on three major solanaceous crops through
liquid-chromatography-mass spectrometry (LC-MS) (Supplemental Table S1). Tomato, eggplant, and
pepper were cultivated in the field and harvested for fruit-metabolomics analysis. Jalapeño pepper,
a variety of chili pepper producing capsaicinoid compounds [70], was chosen for our cross-species
analysis in order to understand tissue-specific metabolic trade-offs during metabolic shifts in fruit
polyphenolics. Due to available studies on tissue-specific accumulation patterns of polyphenolic
compounds in tomato fruit, tomato was used for the reference extracts for the peak annotation and
analysis of metabolic change during fruit ripening. In our analysis, thirty-nine polyphenolic compounds
were detected and annotated (Figure 2A; log2FC (mature/immature), up, > 2.0; down, < 0.5), including
eggplant and pepper-specific flavonoid-derivatives. An upregulation of 19 polyphenolic compounds
in the peel (4 chalcones, 9 flavonols, and 6 hydroxycinnamates) and 14 polyphenols in the pericarp
(4 chalcones, 5 flavonols, and 5 hydroxycinnamates), were observed (Figure 2B) in tomato. Additionally,
8 polyphenolic compounds had higher upregulation in the peel than in the pericarp for tomato, which
include one hydroxycinnamate (cou_hex_II, coumaroyl-hexoside II) and 7 flavonols (Q3G2′′A6′′R7G,
quercetin-3-O-(2′′-O-apiosyl-6′′-O-rhamnosyl)glucoside-7-O-glucoside; Q3G2′′A6′′R, quercetin-3-O-
(2′′-O-apiosyl-6′′-O-rhamnosyl)glucoside; K3G2′′A6′′R, kaempferol-3-O-(2′′-O-apiosyl-6′′-O-rhamnosyl)
glucoside; rutin; K3G6′′R, kaempferol-3-O-(6′′-O-rhamnosyl)glucoside; Q3G, quercetin-3-O-glucoside;
Q3R, quercetin-3-O-rhamnoside; and K3R, kaempferol-3-O-rhamnoside), as reported by Mintz-Oron
et al. 2008 [10] in metabolomic analysis of tomato cv. Ailsa Craig. As reported in the other
reports [53–56], the most abundant flavonol-glycoside, rutin, had more elevated levels in the peel than
the pericarp (Figure 2A).

A cross-species comparison of the accumulation patterns of representative polyphenolic
compounds between two tissue types from the fruits of three solanaceous crops was conducted.
Two hydroxycinnamates (cou_hex_II; caf_hex_III, caffeoyl-hexoside III) were upregulated in the fruit
peel among all three crops, while none were commonly upregulated in the pericarp. Between tomato
cv. M82 and Jalapeño pepper, six polyphenols were commonly upregulated among their fruit peel
while none were upregulated in the pericarp. Out of the six polyphenols upregulated in the fruit
peel of both tomato cv. M82 and jalapeño pepper, two were hydroxycinnamates (caff_hex_I and
caf_hex_II), two were flavonols (Q3G6′′R7G; K3G6′′R), and two were chalcones (narichal, naringenin
chalcone; narichal_hex_I, naringenin chalcone-hexoside I). Meanwhile, a comparison between jalapeño
pepper and eggplant indicated an upregulation of three hydroxycinnamates (cou_hex_III; feru_hex_I,
feruloyl-hexoside I; feru_hex_II) in both crops for their fruit peel, while only feru_hex_I was upregulated
in the pericarp for both. Species-specific polyphenols were also upregulated in jalapeño pepper, wherein
coumaroyl-hexoside I (cou_hex_I) was specific for pepper in both the fruit peel and pericarp. Two
other hydroxycinnamates were specifically upregulated only in pepper, with 5-chlorogenate (5CGA)
upregulated in the peel and feru_hex_II in the pericarp. Jalapeño pepper showed a greater number of
downregulated polyphenols in the peel (14) and pericarp (26), with an especially significant reduction
of flavonol-derivatives in both peel and pericarp at fruit mature stage. Our cross-species comparison
of fruit-omics with tissue specificity, indicated that pepper polyphenolic metabolism clearly has an
opposite metabolic shift between hydroxycinnamate and flavonoid biosynthesis during fruit ripening
in both peel and pericarp (Figure 2).
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Figure 2. Metabolite profiling of major polyphenolic compounds between fruit tissues among
three major solanaceous crops. (A) metabolic shift during fruit ripening (log2FC(mature/immature))
in peel and pericarp of tomato, eggplant and pepper fruits is presented. (B) venn’s diagrams
show conserved metabolic changes within and between fruit tissues among three solanaceous crops.
Metabolites which are commonly up- (>2.0) or down-regulated (<0.5) are shown. MeV software
(http://www.mev.tm4.org/) was used for data visualization. Abbreviations: cou, coumaroyl; caf, caffeoyl;
fer, feruloyl; CGA, chlorogenate; DiCGA, dicaffeoyl-chlorogenate; K, kaempferol; Q, quercetin; Glc/G,
glucose; Rha/R, rhamnose; Api/A, apiose; hex, hexose; Phi, phloretin; narichal, naringenin-chalcone; flv,
putative flavonol-derivatives.

2.2. Metabolic Shifts of Polyphenolics Different Pepper Cultivars During Fruit Ripening

The metabolic analysis of polyphenolic compounds in pepper fruits was extended from the
pungent jalapeño pepper to include other sweet pepper cultivars. Due to the high variability among
pepper cultivars in terms of color, shape, and pungency, six pepper cultivars of different visible
phenotypes caused by differences in pigment composition (elphinidinnone, carotenoid-type, and
anthocyanin-type) were selected. Six different cultivars of pepper (C. annuum) including four sweet
cultivars (green paprika, green pepper, yellow paprika, and red paprika), a pungent cultivar (jalapeño
pepper), and an anthocyanin-type pepper (purple pepper) were selected for comparison during three
fruit ripening stages (immature, green mature, and red or final mature) (Figure 3). In terms of color,
five cultivars had red-colored final mature fruits while yellow paprika was yellow at final maturity.
During the immature and green mature stages of ripening, purple pepper was purple-colored while
the other five cultivars were colored green. In terms of pungency, jalapeño pepper was the only
pungent cultivar and the other cultivars were non-pungent or sweet. In terms of fruit shape, purple
and jalapeño peppers were pointed while the other cultivars were bell-shaped. Purple pepper differs
from other sweet pepper cultivars since most sweet cultivars are bell-shaped [71].

Upon comparing the polyphenol distribution patterns between fruit peel and pericarp, no clear
common pattern was observed among the six pepper cultivars, however they are slightly separated
in each tissues and cultivars (Figure 4A). All anthocyanins which are involved in pigmentation,
specifically purple to black pigmentation in pepper tissues [72], were only detected in purple pepper
and not in other pepper cultivars, since purple pepper is the only cultivar exhibiting a developmental
stage with purple color fruit (Figure 4B and Supplemental Table S1).
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Figure 3. Pepper cultivars used in this study. Fruits from jalapeño pepper cv. “Jalapeño”, red paprika
pepper cv. “Flupy Red EX”, purple pepper cv. “Nara Murasaki”, green pepper cv. “Miogi”, yellow
paprika cv. “Sonia Gold”, and green paprika pepper cv. “New Ace”, were cultivated for our analysis.

In the pungent cultivar (jalapeño pepper), most polyphenols were upregulated in the peel
during both green mature (14 polyphenols) and final mature (14 polyphenols) stages. Meanwhile,
most polyphenols were upregulated in the pericarp during its immature stage (24 polyphenols).
More hydroxycinnamates were upregulated in the peel (9) than in the pericarp (4) during its red
mature stage. An elevation of eight hydroxycinnamates, namely coumaroyl-hexosides (cou_hex I,
II, III), caffeoyl-hexosides (caff_hex I, II, III), and feruloyl-hexosides (feru_hex I and II), as well as a
reduction of almost all flavonoids except rutin and putative flavonoid one (flv_1), were suggested as
candidate fruit ripening markers in the peel in pungent jalapeño pepper. However, these metabolic
shifts were not observed in the other pepper cultivars except purple pepper. For the non-pungent
cultivar (green pepper), more hydroxycinnamates were upregulated in the pericarp (11) than in
the peel (1) at its red mature stage. Reduction of chlorogenates (3CGA, 4CGA, and 5CGA), were
observed in the peel, but CGAs were elevated in the pericarp. Di-caffeoyl-chlorogenate_I (DiCGA_I)
is the product of both 3CGA and 4CGA while DiCGA_II is the product of both 3CGA and 5CGA.
The upregulation of both DiCGA_I and DiCGA_II suggested to explain the absence of 3CGA from the
pericarp. In the sweet green paprika pepper, flavonoids were upregulated in the pericarp during its
red mature stage. Furthermore, more hydroxycinnamates were upregulated in the pericarp (11) than
in the peel (1) at its red mature stage. Eleven candidate ripening markers were identified for green
paprika pepper, which include: Three chlorogenates (3CGA, 4CGA, and 5CGA), three di-chlorogenates
(DiCGA I, II, III), two coumaroyl-hexosides (cou_hex II, III), one caffeoyl-hexoside (caff_hex_III), and
two feruloyl-hexosides (feru_hex I, II). In red paprika pepper, most polyphenols were upregulated
in both peel (21 polyphenols) and pericarp (22 polyphenols) during its immature stage. Only two
hydroxycinnamates were upregulated its red mature stage in the peel (cou_hex_I and cou_hex_III)
while one hydroxycinnamate accumulated more at its red mature stage in the pericarp (cou_hex_I).
In yellow paprika pepper, only two hydroxycinnamates (3CGA and DiCGA_III) were upregulated
in the peel, while three hydroxycinnamates (DiCGA_III, fer_hex_I and fer_hex_II) were upregulated
in the pericarp at its red mature stage. Flavonoid mono- and di-glycosides were upregulated during
the course of ripening for both tissues, specifically K3G6′′R in the peel and K3R in the pericarp.
In purple pepper, more hydroxycinnamates were upregulated in the peel (7) than in the pericarp (3)
in its red mature stage. Finally, one chlorogenate (3CGA), two di-chlorogenates (DiCGA I, III), one
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coumaroyl-hexoside (cou_hex_I), two caffeoyl-hexosides (caff_hex I, II), and one feruloyl-hexoside
(fer_hex_II), were selected as ripening marker for polyphenolics of purple pepper (Figure 4B). K3G6′′R,
Q3R, rutin, and Q3G2′′A6′′R were upregulated in both tissues during immature stage in purple pepper.
Finally, the metabolic shifts observed in the cross-species comparison was the opposing direction of
metabolic shift between hydroxycinnamate and flavonoid biosynthesis during fruit ripening in both
the pungent cultivar (jalapeño pepper) and anthocyanin-producing purple pepper, but not in other
carotenoid-type pepper cultivars.

Figure 4. Metabolic shifts of polyphenolics in different fruit tissue among six pepper cultivars during
fruit ripening. (A) principal component analysis (PCA) of polyphenolics in different pepper cultivars
during fruit ripening. The plots were applied for the 39 metabolites with the average values from 3
biological replications. PCA was conducted by the MultiExperiment Viewer [73]. Principal component
(PC) triangles and circles indicate peel and pericarp, respectively. Coefficient correlation was estimated
by person correlation method using MeV software. (B) heatmap visualization of metabolite data is
normalized and scaled by log2FC (mean/average_mean) for each metabolite. Abbreviations: cou,
coumaroyl; caf, caffeoyl; fer, feruloyl; CGA, chlorogenate; DiCGA, dicaffeoyl-chlorogenate; Glc/G,
glucose; Rha/R, rhamnose; Api/A, apiose; hex, hexose; Phi, phloretin; flv, putative flavonol-derivatives;
Narichal, naringenin chalcone; Im, immature stage; Gm(Pm), green mature (or purple mature stage);
and Rm(Ym), red mature (or yellow mature stage).
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3. Discussion

Polyphenols are primarily involved in physiological response against abiotic and biotic stressors [42,
44,46,47] and occasionally in plant reproduction [48]. Due to the phytochemical functions of these
compounds, polyphenolic which are accumulating on the surface of the fruit, have been focused.
Tomato polyphenols including flavonoids and hydroxycinnamates indeed were identified at higher
levels in the fruit peel than in the pericarp [10]. Because of the recognized human health benefits of
these polyphenolic compounds, their accumulation patterns during different stages of ripening in
economically-important crops would be important to both farmers and consumers. Comparison of
representative polyphenolic compounds that accumulate in the peel and pericarp during three different
stages of fruit ripening, particularly polyphenols that are specifically up-regulated only in jalapeño
pepper. These polyphenolic compounds are also upregulated in the other sweet pepper cultivars,
but at different stages of fruit ripening (Figure 4).

Comparison of individual polyphenolic compounds suggest possible metabolic markers that
are specifically upregulated during fruit ripening. In the pungent pepper cultivar (jalapeño
pepper), we observed an elevation of three coumaroyl-hexosides, three caffeoyl-hexosides, and
two feruloyl-hexosides, as well as reduction of almost all flavonoids in the peel at the final mature
stage (Figure 4B). However, these metabolic shifts were not observed in the other pepper cultivars
except purple pepper, which happens to be non-pungent but is the only cultivar in our study that
has purple pigmentation before reaching its final maturity stage. In the previous study of hot
and semi-hot pepper cultivars (C. annuum cvs. Cyklon, Bronowicka Ostra, Tajfun, and Tornado),
individual hydroxycinnamate content increased in the pericarp from green mature to red mature
stage of development in all cultivars [74]. Additionally, in the analysis of a sweet bell pepper cultivar
(C. annuum L. cv. Vergasa) exhibited a decrease in total hydroxycinnamate content in the pericarp from
their immature green to green mature stage and then slightly increasing to immature red and red mature
stages [75]. Taking into both results and our result in this study, results from the previous studies are
consistent with our results such that hydroxycinnamate content increased in pungent cultivars from
green to red stages of fruit ripening while hydroxycinnamate content decreased in sweet cultivars
from immature to mature stages. Interestingly, purple pepper which is an anthocyanin-producing
type of pepper cultivar showed similar metabolic changes with the pungent pepper cultivar, wherein
the accumulation of hydroxycinnamates is inversely related with that of flavonoids. In both cultivars,
hydroxycinnamates were generally upregulated while flavonoids were downregulated in the peel
during their red mature stage. The pungent nature of jalapeño pepper due to its production of
capsaicinoids could explain its downregulation of flavonoids during its red mature stage, given that
both compounds groups share the same biosynthetic precursor.

Previously, in the metabolic analysis of fruit pericarp of the pungent hot pepper (Capsicum annuum
“CM334”) during six stages of fruit ripening, the flavonoid, Q3R, had high levels during earlier stages
(16 and 25 DPA) and then gradually decreased until their last stage (48 DPA) [69]. In our study,
Q3R in the pericarp of the hot cultivar (jalapeño pepper) was upregulated during its immature stage
and then downregulated at its green and red mature stages, which are consistent with the decrease
in Q3R observed from the previous study. Total flavonoid content, total O-glycosylflavone content
and total C-glycosylflavone content in the pericarp of the sweet cultivar (C. annuum L. cv. Vergasa)
decreased during four stages of ripening. Q3R decreased in the pericarp during the four stages of
ripening [75], while in our study, Q3R was upregulated in the pericarp during immature stage and
then downregulated in the middle stage (green or purple mature) and final mature (red or yellow
mature) stages in the sweet cultivars (red paprika, yellow paprika), a non-pungent cultivar (purple
pepper), and a pungent cultivar (jalapeño pepper). However, in another sweet cultivar (green paprika),
Q3R was downregulated in immature and green mature stages and upregulated during red mature
stage. In another non-pungent cultivar (green pepper), Q3R was upregulated during immature and
red mature stages and downregulated in green mature stage of ripening. Variability in Q3R regulation
among the six pepper cultivars is consistent with the subspecies or genotype-specific accumulation
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pattern of flavonoid glycosides among 32 pepper accessions from a previous study, wherein specific
accessions contained higher levels of flavones, flavanones, and flavonol glycosides [25].

In our results, flavonol mono-glycosides (Q3G, Q3R, and K3R) were generally decreased during
ripening in the peel for almost all pepper cultivars. This metabolic shift pattern was observed inversely
in the level of naringenin chalcones which increased in the peels during fruit ripening. In spite of
the metabolic changes of flavonol mono-glycosides in peel, these flavonols were increased in green
paprika pericarp during fruit ripening which also the same for the naringenin chalcones, including
Phi35diGlc. Rutin and flavonol-tri-glycosides showed a slight shift in decrease at late stages among
all pepper cultivars for both peel and pericarp during ripening. In green pepper, flavonol di- and
tri-glycosides decreased in the peel during ripening, were increased in the pericarp during fruit
development. The flavonol-tetra-glycosides, Q3G2′′’A6′′R7G which was detected in tomato fruits,
was not detected in all pepper species in both tissue types. In red paprika pepper, flavonol di- and
tri-glycosides decreased in the peel during fruit ripening, while in the pericarp, flavonol di-glycosides
also decreased. There were nine putative flavonoids identified during analysis with most of them
decreasing in the peel and pericarp of three cultivars (red paprika, jalapeño, and purple peppers).
For green pepper, most of the putative flavonoids decreased in the fruit peel during ripening but
increased in the pericarp. No obvious pattern among the nine flavonoids were observed for green and
yellow paprika peppers. Flavonol mono-glycosides (Q3G, Q3R, and K3R) decreased in the peel during
fruit development for most pepper cultivars, except in green paprika pepper which exhibited highest
accumulation during its green mature stage. Meanwhile, in pepper pericarp, flavonol mono-glycosides
decreased during maturity only for both red paprika and jalapeño peppers, while no concrete pattern
was present for the other pepper cultivars.

Anthocyanin derivatives (anthocyanin_I, delphinidin-3-O-(-feruloyl) rutinoside; anthocyanin_II,
delphinidin-3-O-(-p-coumaroyl) rutinoside-5-O-glucoside) were upregulated in purple pepper during
either the purple immature or purple mature stages in both fruit tissues (Figure 4). Anthocyanin II
(delphinidin-3-O-(-p-coumaroyl)rutinoside-5-O-glucoside) was also previously detected in immature
purple pepper whole fruit [76] and peel [77]. Anthocyanin I being one of the major anthocyanins
identified from eggplant fruit peel [78]. Anthocyanins I, II, and III were also upregulated in eggplant
peel in our study (Figure 2). Anthocyanins are involved in pigmentation, specifically purple to black
pigmentation in pepper fruit tissues [72] and in the purple pigmentation in the peel of eggplant
fruit [78]. Metabolic changes of these anthocyanins are slightly different in terms of ripening stage
in peel and pericarp. Anthocyanins I and II were upregulated in the peel during immature stage in
purple pepper while they were upregulated in the pericarp during purple mature stage. Purple pepper
is the only cultivar that was unable to detect more than one of the putative flavonoid compounds and
the only cultivar that detected anthocyanins, indicating a possible inverse relationship between the
two compound groups.

Most naringenin chalcones and Phi35diGlc (phloretin-3′,5′-di-C-glucoside) were upregulated
in the fruit peel in sweet and non-pungent cultivars during their final mature stage (red or yellow
mature). Most naringenin chalcones and Phi35diGlc were upregulated in the peel of pungent jalapeño
pepper during green mature stage. Due to the pungent nature of jalapeño pepper, differences in
metabolic regulation with sweet cultivars could account for the down-regulation of most naringenin
chalcones during red mature stage in jalapeño pepper. The pattern of accumulation is different in
the fruit pericarp, with all three naringenin chalcones being upregulated at final maturity only for
green pepper and green paprika peppers. Only naringenin-chalcone-hexose and phloretin dihexoside
have been previously detected in non-pungent pepper (C. annuum) cultivars [79]. Accumulation of
naringenin chalcones in the fruit peel is related with their functions of attracting seed dispersers,
moderating damage against UV-light [55], and providing a structural role in the cuticle by controlling
water movement [80]. Concentration of naringenin chalcone and its derivatives might have important
roles after fruit maturation, particularly in the non-pungent and sweet cultivars where naringenin
chalcones are upregulated in the peel during final mature stage of ripening.
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Environmental stress, such as high temperature and UV-light, can increase reactive oxygen
species (ROS) concentration resulting in fruit oxidative damage. Specialized metabolites can act as
antioxidants protecting the fruit against photooxidative damage [81,82]. Polyphenols, such as flavonoids
and hydroxycinnamates, act as antioxidants [40,41]. In solanaceous crop tomato (S. lycopersicum),
total antioxidant activity in ripe fruit was in agreement with their total polyphenol content which
corroborates that polyphenols can act as antioxidants [83]. In the perennial shrub Ribes stenocarpsum
Maxim, polyphenol content was significantly higher in immature than in mature fruits, with antioxidant
activities consequently being higher in immature fruits [84]. In Alphonso mango (Mangifera indica) fruit,
a positive correlation between phenolic and antioxidant content in healthy tissues was present during
the course of fruit ripening [85]. Ripening in sweet pepper (C. annuum) is associated with oxidative
stress due to an increase in lipid peroxidation [86,87] and decrease in antioxidant enzymes during its
red ripe stage [86]. In our study, polyphenols were generally upregulated during red mature stage in
the pericarp of sweet green paprika (C. annuum) and non-pungent green pepper (C. annuum), which is
in agreement that fruit ripening in sweet pepper is related with oxidative stress since polyphenols
can act as antioxidants. In tomato, total phenolics and free radical scavenging activity increased
during ripening for all cultivars under study [88]. Decrease in antioxidant enzyme activity during fruit
ripening involved the enzymes catalase [89] and ascorbate peroxidase [86] which are not relevant with
polyphenol biosynthesis.

Comparing the number of polyphenolic compounds that accumulated more in the peel against
the pericarp showed difference between fruit tissue type for the six pepper cultivars. However, not in
all cases were the polyphenolic compounds more abundant during the same stage of development
between tissue types. In peel, the compounds upregulated were 5CGA and fer_hex_II. 5CGA only
increased during fruit ripening for the pungent cultivar and decreased for the sweet cultivars. Fer_hex_I
and fer_hex_II increased remarkably in the peel of the pungent cultivar (jalapeño pepper) although
some increase was observed in purple pepper as well. In the fruit pericarp, fer_hex_I increased
noticeably in the pungent jalapeño pepper; however, there was also some increase in yellow and green
paprika peppers. To determine whether such accumulation patterns are specific to pungent cultivars
or whether this accumulation is only cultivar-specific, accumulation patterns for these polyphenolic
compounds need to be conducted among pungent pepper cultivars during fruit ripening. We also
observed that similar metabolic shift of pepper specific flavonoid derivatives between green pepper
and green paprika, but these metabolic changes were negatively correlated to the metabolic shift in the
jalapeño pepper which is the capsaicinoids producing-type of cultivar. This result provides a metabolic
trade-off of fruit polyphenolics metabolism in capsaicinoids-producing cultivars, since polyphenolics
and capsaicinoids share the biosynthetic precursors. In contrast to this point, jalapeño pepper showed
clear elevation of hydroxycinnamates, such as caffeoyl-hexosides, in both peel and pericarp. However,
these metabolic changes were also observed in the peel of green pepper and green paprika, but not in
the other red, yellow, and purple peppers. Taking into account both metabolic changes of polyphenolic
subgroups, changes of metabolic flux in polyphenolics are specific metabolic regulation in each types
of peppers with different tissue specific manners. Finally, our results may have been convoluted by
the absence of any pattern among polyphenols in terms of maturity stage and cultivar type, however
integration of metabolomics data with previous studies [24] will provide other novel insights to
understand this convoluted metabolic regulations. Importantly, naringenin chalcone which is one of
the major ripening marker metabolites in tomato fruits, was conserved among almost all pepper species.
Metabolomics analysis presented here suggested metabolic shift including convoluted metabolic
trade-off in the solanaceous crops and provided hints for metabolomics-assisted crop improvement for
the polyphenolic metabolism in the solanaceous fruits for the improvement of nutritive properties and
enhanced stress tolerance.
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4. Materials and Methods

4.1. Plant Material and Sampling

Fruits from tomato (S. lycopersicum cv. “M82”) (TGRC, Tomato Genetics Resource Center, Davis,
CA, USA), eggplant cv. “Ryoma” (S. melongena) (Takii, Japan), and different pepper (C. annuum)
cultivars (green paprika cv. “New Ace” (Takii, Japan), red paprika cv. “Flupy Red EX” (e-taneya,
Japan), purple pepper cv. “Nara Murasaki” (Tsurushin, Japan), green pepper cv. “Miogi” (e-taneya,
Japan), yellow paprika cv. “Sonia Gold” (Sakata-no-Tane, Japan), and jalapeño pepper cv. “Jalapeño”
(Marche, Japan)) were grown from May–December 2019 in standard soil under open field (longitude,
34.734433; latitude 135.736754) conditions. Three developmental stages were defined for analysis from
fruit peel and flesh. Immature fruit, mid-stage, and final mature stages were selected and defined
based on the height of each fruit and the color of peel and seeds. Immature fruit are half the height of
mature fruit and green in color. In the case of purple pepper and eggplant, the immature fruit color was
purple. Green mature fruit had approximately the same height as the final mature stage but still green
in color. Purple pepper was also purple during its green mature stage. The final mature stage is when
peel color has completely changed from green to its ripe fruit color (red, yellow). Mature eggplant
fruit were distinguished through their dark brown seed color. Three independent biological replicates
per plant tissue during each ripening stage were harvested and used for metabolomic analysis. After
tissue separation, fruit peel and pericarp were grounded into powder using liquid nitrogen and stored
at −80 ◦C for further analysis.

4.2. Sample Extraction and LC-MS Analysis

Metabolite extraction was performed as described previously [90,91]. Fifty milligrams of powdered
frozen tissue sample were aliquoted and weighed in a 2.0 mL centrifuge tube. Two hundred fifty
microliters of extraction solvent (80% methanol in LC-MS grade water with 5 μg/mL isovitexin standard)
were added per tissue sample in liquid nitrogen and a Zirconia bead. All frozen tissue samples were
ground into powder using Mixer Mill TissueLyser II (Qiagen, Hilden, Germany) for 3 min at 25l/s at
room temperature, and centrifuged at 15,366× g at 4 ◦C for 10 min. After centrifugation, to take an
additional cleaning step of extracts to exclude plant tissues, two hundred microliters of supernatant
per sample were transferred into a 1.5 mL centrifuge tube then all 1.5 mL tubes were centrifuged at
15,366× g at 4 ◦C for 10 min. One hundred microliters supernatant per sample were transferred into
LC-MS vials and stored at 4 ◦C in the dark until analysis. For detection of polyphenolic metabolites,
LC-electrospray ionization (ESI)-MS was used. Nanoflow-HPLC “Paradigm MS4 system” (Michrom
BioResources, Inc., Auburn, CA, USA), equipped with a Luna C18 column (150 by 2.00 mm i.d.
3 micron particle size, Phenomenex, Torrance, CA, USA) operated at a temperature of 25 ◦C was
used. The mobile phases consisted of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in
acetonitrile (Solvent B). The flow rate of the mobile phase was 200 μL/min, and 10 μL sample were
loaded per injection. The following gradient profile was applied: The concentration of mobile phase
A was 100% at 0 min, 93% at 1 min, decreased to 80% at 8 min, 60% at 17 min, 15% at 21 min, and
0% at 25 min and 28 min for column wash, then increased to 100% at 28.01 min and 31 min for the
equilibration of the column in the gradient description. The LC was connected to an MS TSQ Vantage
(Thermo Fisher Scientific, San Jose, CA, USA). The spectra were recorded using full scan mode, covering
a mass range from m/z 200–1500 by both positive and negative ion detection. The transfer capillary
temperature was set to 350 ◦C. The spray voltage was fixed at 3.00 kV. Peak identification of major
polyphenolic compounds (rutin, quercetin-3-O-rutinoside; Q3G, quercetin-3-O-glucoside; and 3CGA,
chlorogenate) was performed using standard compounds. Peak annotation of major polyphenolic
compounds in Solanaceae species was performed via combination approach of co-elution profile of
common tomato fruit extracts and phytochemical database (KomicMarket [14] and MotoDB [13,92]) as
well as metabolites table in the literatures [5,15].
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4.3. Data Analysis

Molecular masses, retention time, and associated peak intensities were extracted from the raw files
using the Xcalibur software version 4.1.31.9 (Thermo Fisher Scientific, San Jose, CA, USA). Compounds
were identified and putatively identified by comparing with corresponding retention time (minutes)
and molecular weight with those provided by tomato cv. M82 and eggplant. Previous information on
polyphenolic compounds identified from different pepper species and varieties from published journal
articles were also used for cross-referencing. Peak picking in the Xcalibur software was performed
with the parameter of RT tolerance window (20 s), base window 80, area noise factor 5.0, peak noise
factor 10, and “nearest RT”. MeV software version 4.9.0 (http://www.mev.tm4.org/, Dana Farber Cancer
Institute, Boston, MA, USA) was used for data visualization and PCA analysis. The plots were applied
for the 39 metabolites with the average values from 3 biological replications. Heatmap visualization
of metabolite data is normalized and scaled by log2FC (mean/average_mean) for each metabolite.
Coefficient correlation was estimated by person correlation method using MeV software.

5. Conclusions

With several fruit-metabolomics studies on the specialized metabolism of tomato recently available,
such an approach could, therefore, be extended to generate information on other members from
Solanaceae. Comparing the number of polyphenolic compounds that accumulated more in the peel
against the pericarp showed differences between fruit tissue type in the six pepper cultivars. However,
not in all cases were the polyphenolic compounds more abundant during the same stage of development
between tissue types. We also observed that a similar metabolic shift of pepper-specific flavonoid
derivatives between green pepper and green paprika cultivars, but these metabolic changes were
negatively correlated to the metabolic shift in jalapeño pepper, which biosynthesizes capsaicinoids.
This result exhibits a metabolic trade-off in fruit polyphenolics metabolism in the capsaicinoid-producing
cultivar, since polyphenolics and capsaicinoids share the biosynthetic precursors. In support of this
point, hydroxycinnamates in the pungent jalapeño and anthocyanin-producing purple pepper cultivars
were clearly elevated in both peel and pericarp during red mature stage. However, flavonoids from
both cultivars were downregulated during red mature stage suggesting a metabolic trade-off between
both compound groups during fruit development. Taking into account both metabolic changes of
polyphenolic subgroups, changes of metabolic flux in polyphenolics are specifically regulated in each
pepper cultivar with different tissue specific manners. Finally, our results may have been convoluted
by the absence of any accumulation patterns of polyphenol in terms of ripening stage and cultivar
type, however integration of metabolomics data with previous studies [24] will provide other novel
insights to understand these convoluted metabolic regulations. Importantly, naringenin chalcone
which is one of the major ripening marker metabolites in tomato fruits, was conserved among almost all
pepper cultivars. Metabolomic analysis presented here suggested metabolic shift including convoluted
metabolic trade-off in three solanaceous crops and provided hints for metabolomics-assisted crop
improvement of polyphenolic metabolism in three solanaceous crops towards their improved nutritive
properties and enhanced stress tolerance.
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Abstract: Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to
a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound
generation. As a consequence, measures to reduce economic losses have to be taken by the fruit
industry and have mostly consisted of storage at cold temperatures and the use of controlled
atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms
underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense,
metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and
health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a
powerful tool for further understanding the biochemical basis of postharvest physiology and have
the potential to play a critical role in the identification of the pathways affected by fruit senescence.
Here, we provide an overview of the metabolic changes during postharvest storage, with special
attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to
yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions
is highlighted.

Keywords: fruit; postharvest; metabolomics; quality traits; stress; biomarkers

1. Introduction

Fruit growth, ripening and senescence are complex processes, controlled by multiple
developmental and environmental signals, and their molecular mechanisms remain unclear [1].
Fruits undergo important metabolic changes during ripening, including chlorophyll breakdown,
anthocyanin or carotenoid pigment accumulation, cell wall degradation and the synthesis of low-weight
metabolites (such as sugars, acids and volatiles), which function to increase their attractiveness to seed
dispersers [2]. Once fruits are removed from the plant and until they reach consumers on the market,
a period known as postharvest ripening or senescence occurs—the duration of which is variable (from
days to weeks) and the effects of which mainly depend on fruit metabolism and ripening status at
harvest. Indeed, climacteric fruits, such as tomatoes, kiwi or avocados, which exhibit a concomitant
peak of ethylene production and a sudden rise in respiration at the onset of ripening [3], can ripen after
harvest. In this sense, the control of ethylene production is fundamental to optimize the postharvest
storage of these types of fruits [4]. On the other hand, non-climacteric fruits, e.g., strawberries and
grapes, do not exhibit respiration and ethylene production peaks, and have to be harvested (almost)
fully ripe. Postharvest storage initiates fruit senescence—the effects of which on biological processes are
unavoidable and largely negative. Senescence leads to protein, lipid and nucleic acid degradation and
cell dysfunction, disintegration and death [5]. Several factors influence and accelerate fruit senescence,
with the most relevant being respiration, providing energy for maintaining metabolism, dehydration
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and fungal activity [6]. Consequently, the degradative processes associated with postharvest senescence
impact fruit quality traits, i.e., aspect, texture, taste, aroma and nutritional characteristics, leading to
consumer rejection and important economic losses for the fruit industry.

Currently, depending on fruit crops, different postharvest strategies are commercially practiced in
order to adapt ripening to industry needs, delay senescence, maintain fruit quality attributes and, thus,
prolong shelf-life. In general, fruits are highly perishable at ambient temperature. Thus, refrigerated
storage is the most common method used to delay ripening, fruit respiration, enzymatic activities,
and the development of pathogen infections, and, therefore, extend fruit shelf-life [7]. However,
cold storage can provoke the development of a physiological disorder called chilling injury (CI).
Although CI symptoms are species dependent, CI includes internal and external browning, mealiness,
flesh bleeding, pitting or the inability to soften. These physiological disorders tend to appear once
the fruits are acquired by consumers, having a negative impact on palatability and acceptance [8,9].
To reduce CI symptoms and depending on the type of fruit, the industry combines low-temperature
storage with some complementary strategies. For example, prior heat treatment to cold storage is
widely used in several crops, including Citrus and loquat [10], while controlled atmosphere (CA,
increased CO2 and decreased O2 levels) is commonly applied to apple, strawberry, peach and pear,
among others [11]. Additionally, delayed cooling has been successfully applied in apple to reduce
soft scald, a chilling-dependent physiological disorder [12]. While CA reduces fruit respiration, heat
treatment has a protective effect by acting on membrane integrity and heat shock protein accumulation
and by promoting antioxidant and sugar metabolism [13]. Further, it is known that heat treatment
induces defense mechanisms and induces physiological changes that allow Citrus fruit to withstand
stressful conditions during storage. For example, GC–MS analysis in heat-treated oranges during
storage showed a higher concentration of sugars while no changes were observed in organic acid
levels [14].

In the case of climacteric fruits, such as tomato or banana, the application of ethylene
antagonist 1-methylcyclopropene (1-MCP) is commonly used to increase shelf-life [15]. However,
the aforementioned strategies have different degrees of effectiveness at reducing CI and prolonging
shelf-life, depending on fruit species and varieties. In addition, it must be highlighted that these
postharvest techniques constitute abiotic stresses for the fruits, which have to adapt their metabolism to
maintain homeostasis [16]. In particular, stress situations induce the synthesis of compounds involved
in plant protection, and trigger the accumulation of compatible metabolites, reactive oxygen species
(ROS)-scavenging enzymes and changes in carbon metabolism [17,18]. In this sense, metabolomic
platforms, allowing the simultaneous detection and quantification of hundreds of metabolites, offer the
possibility to improve our knowledge about the molecular mechanisms underlying fruit senescence
under commercial storage conditions.

2. Metabolomic Platforms in Postharvest Studies

The plant metabolome comprises a wide range of small molecules, with a large variety in
physico-chemical properties and extremely variable concentrations. Metabolomics is defined as the
field of the research that generates a profile of small molecules in a biological system. Thus, it can
directly reflect the outcome of complex networks of biochemical reactions and, therefore, provides
essential information about the underlying biological status on the system in question.

For these reasons, successful analysis of the complex network of fruit metabolites requires
highly sensitive and selective analytical techniques, with each displaying both advantages and
limitations and showing differential coverage depending on the nature of the metabolite. In particular,
mass spectrometry (MS) coupled with gas chromatography (GC), liquid chromatography (LC) and,
to a lesser extent, capillary chromatography (CE) and nuclear magnetic resonance spectroscopy (NMR)
have been the most extensively applied methodologies to study the plant metabolome, including its
reconfiguration during fruit postharvest senescence [17,19,20].
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GC–MS is the technique of choice for measuring small polar metabolites, which are thermally
stable and can be made volatile through a derivatization approach [21]. The main advantages of
GC–MS are its robustness and reproducibility, which have allowed the establishment of libraries and
databases facilitating the identification of metabolites. As a result of its characteristics, GC–MS is
mainly used in plant metabolomic studies to investigate central primary metabolism, which includes
sugars, sugar alcohols, amino acids, organic acids and polyamines [17,19]. In addition, GC–MS can be
coupled with headspace solid-phase microextraction (HS-SPME), which allows the detection of specific
volatiles present in a sample [22]. Both volatile and primary metabolite changes occurring during fruit
postharvest storage have been extensively studied, as they are key compounds of fruit taste and aroma.

To overcome the limitations of GC–MS, which is restricted to volatile and thermally stable
molecules, LC–MS is broadly used to detect a wider range of metabolites. In particular, the enormous
diversity of plant secondary metabolites, which includes tens of thousands of different compounds [23],
is mainly studied using LC–MS due to its versatility. However, and as a consequence of LC–MS
flexibility, metabolite identification remains difficult, as no universal mass spectral library has been
created [24].

Another technique used to study plant metabolomics, although rather uncommon, is capillary
electrophoresis (CE)–MS. This technique allows the detection of a wide range of highly polar or charged
metabolites by separating them based on their mass-to-charge ratio [25]. In this sense, this method has
been proposed as a valuable complementary approach for samples that cannot be readily resolved by
the more established GC– and LC–MS platforms [26].

Even if NMR presents a low sensitivity compared to that of MS approaches, it provides a series of
advantages over the previously mentioned approaches by providing structural information, involving
non-destructive sample preparation and providing rapid metabolite screening [19,27]. Integrated NMR
platforms, allowing the monitoring of changes in both primary and secondary metabolites, have been
developed and can be useful to study metabolic shifts in senescent fruits during postharvest [28].

3. Primary Metabolic Pathways Affected by Postharvest Storage: Effects on Fruit Texture
and Taste

Fruit organoleptic quality is a complex trait that is influenced by taste, aroma, color and texture.
In particular, fruit acceptance by consumers is directly influenced by sugar and acid content and the
ratios of both groups of primary metabolites [29,30]. Fruit respiration during postharvest storage directly
affects primary metabolic pathways, such as glycolysis, starch metabolism, and the tricarboxylic acid
cycle (TCA), which account for changes in sugar, amino and organic acid levels. Indeed, carbohydrates,
organic acids, proteins and fats are the main respiratory substrates during fruit storage. Furthermore,
they are involved in gluconeogenesis, a process which has been described to be upregulated during
the postharvest in orange and apple fruits [31–33]. Thus, it contributes to fruit depletion and also to
important changes in primary metabolite composition. In the next paragraphs, we described alterations
in sugars, organic and amino acids as a consequence of postharvest storage.

3.1. Sugars and Sugar Derivatives

Sugar content, which is commonly estimated by the soluble solid content (SSC), shows differential
behavior during postharvest, depending mainly on the species and storage conditions. The SSC trend
normally coincides with changes in the main sugar profiles present in ripe fruits, i.e., glucose, fructose
and sucrose.

While main carbohydrates tend to decrease in some species, as profiled by GC–MS and NMR
analysis in tomatoes kept at room temperature [34] or blackberries stored at 4 ◦C [35], in other fruits,
such as bananas and kiwis, their level increases as a consequence of starch hydrolysis, which takes
place during postharvest storage [36,37]. In turn, sucrose can be hydrolyzed, leading to a concomitant
increase in hexoses, as monitored by GC–MS in Powell oranges stored at room temperature [33].
Interestingly, growing evidence seems to point to sugars playing a regulatory role in senescence
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processes [38,39]. During fruit ripening and senescence, cross-talk between sugars and hormones
involved in ripening and senescence processes, such as abscisic acid, ethylene and auxin, has been
described [40–43], and sucrose degradation during postharvest storage can be crucial for inducing
senescence [33,44]. Furthermore, sugar uptake during fruit ripening may affect postharvest water loss
by interfering with cuticle development. Indeed, stable silencing of the cell wall invertase LIN5, a key
determinant of SSC content, led to a diminished water loss rate and wrinkling in transgenic tomato
fruits kept at room temperature for 12 days. Even though the complete molecular mechanism has not
been described, it was clearly established that sugar entry during fruit development impacts the cell
wall and cuticle structure, resulting in a radical effect on tomato senescence [45].

Apart from the most abundant sugars, i.e., sucrose, glucose and fructose, fruits also contain minor
sugar and alcohol derivatives, such as sorbitol, galactinol, raffinose, myo-inositol and trehalose [46].
Even if those compounds may be at low concentrations, they seem to be crucial for fruit behavior
during storage, as they can alleviate the negative effects of the abiotic stresses underlying postharvest
conditions. Indeed, soluble sugars are important metabolites in ROS metabolism, being the primary
carbon and energy source and contributing to the generation of reducing power generation via the
oxidative pentose phosphate pathway [41,47,48]. Furthermore, they play key roles in osmoprotection
and cell membrane stabilization [49–51]. As an example, important increases in raffinose and galactinol
levels were measured by GC–MS in peaches after heat treatment (three days at 39 ◦C) followed by
storage at 0 ◦C for two days and may confer improved tolerance to CI [52]. Moreover, comparing the
levels of galactinol (detected by LC–MS/MS), raffinose, trehalose and myo-inositol (identified by NMR)
in climacteric and non-climacteric plum varieties during postharvest storage at 20 ◦C and in presence
of 1-MCP, propylene (ethylene analogue) or control air, Farcuh et al. [46] noticed that the levels were
more enhanced in the latter variety. These data could explain the capacity of the non-climacteric variety
to cope better with postharvest stress conditions, and the identified sugars could be used as biomarkers
to evaluate fruit physiological status during storage (Table 1).

Softening during postharvest storage is a key physiological process leading to ripe fruit firmness;
however, excessive loss of firmness as a consequence of overripening can prompt physical damage
and pathogen attack, and consequently lead to an important decrease in fruit quality. Softening is the
result of several factors, including cell wall disassembling metabolism. Metabolites originated from
cell wall disassembly, mainly monosaccharides, can be monitored by primary metabolite profiling.
Indeed, in pitaya fruit, the content of several monosaccharides, including xylose, galactose, arabinose,
and mannonic acid and glucuronic acid, which originate from cell wall disassembly, was measured by
GC–MS [53]. Interestingly, these metabolites were decreased after blue light treatment (2 h at 25 ◦C
under blue light emitting diode) compared to control fruits kept in the dark, suggesting that this
treatment has a significant effect in delaying cell wall degradation and postharvest decay of pitaya
fruit [53]. Another study, using LC coupled with tandem MS (LC–MS/MS), detected an increase in
glucuronic acid, a component of pectin, among the major elements of plant cell wall, in pears stored
18 days at room temperature [54]. Pectin de-polymerization and de-esterification were also evidenced
by the detection of galacturonic acid by two-dimensional GC–MS (GC x GC–MS) in overripe kiwi fruits
stored at 20 ◦C and treated for 24 h with 200 ppm ethylene. On the contrary, no increase in galactose
was observed using GC–MS measurements, suggesting that this sugar is directly metabolized after
its release from cell wall, or that it is liberated as different form [55]. Among the main symptoms of
CI in peach is mealiness, which is the result of a cell wall metabolism disorder. Xylose, the central
constituent of hemicellulose, among the key components of plant cell wall, was increased during cold
storage in peach chilling-susceptible genotypes, but not in the varieties resistant to CI, confirming a
link between cell wall disassembly and mealiness in sensitive cultivars [56].
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3.2. Organic Acids

Several organic acids are related to fruit postharvest metabolism. Surprisingly, particularly in
tomato, the levels of malate, among the most abundant organic acids, impact fruit shelf-life (Table 1).
The malate content, measured by GC–MS, decreases during the ripening and postharvest storage at
room temperature of several tomato genotypes, including delayed fruit deterioration, non-ripening and
ripening inhibitor mutants as well as genotypes that are commercially used because of their delayed
maturation and senescence. Interestingly, it was also shown that malate levels were lower in mature
tomato fruits that ripened on the vine than off the vine [34]. However, when the malate concentration
in tomato fruits was manipulated by reducing the expression of two TCA cycle enzymes (fumarase
and malate dehydrogenase (MDH)), a differential postharvest behavior was observed compared to
that in wild-type fruits at room temperature. Interestingly, fruits of the MDH-deficient genotype
showed higher malate content and poorer postharvest behavior than non-transformed fruits by losing
more water and being more susceptible to opportunistic fungal infections and Botrytis cinerea spores.
In contrast, the fumarase-deficient genotype, with a relatively low malate content, presented a decrease
in water loss and in susceptibility to opportunistic fungi [57]. The mechanism underlying malate’s role
in postharvest responses could not be clearly explained; however, the authors suggested a role for SSC,
which changes in the opposite manner in MDH- and fumarase-silenced lines, in osmotic potential and
subsequent water loss during storage. Another study using recombinant inbred lines originating from
the cultivated tomato Solanum lycopersicum and the wild-type species Solanum pimpinellifolium also
pointed out the association between malate content, fruit firmness and shelf-life [58]. A comprehensive
polar metabolite profiling was performed by GC–MS and NMR and a combination of neuronal clustering
and network construction displayed a strong correlation between glycerate and malate content and
postharvest, which also showed a negative correlation with fructose levels [58]. This association
between metabolites and agronomic traits such as firmness and storage behavior suggested that
malate could be a good biomarker to select genotypes with enhanced quality traits, such as improved
postharvest life [58].

By performing a GC–MS metabolic characterization of S. lycopersicum cv. ‘Plaisance’ fruits
during ripening and postharvest stages, Oms-Oliu et al. [59] showed that one sugar (mannose) and
three organic acids (citramalate, gluconate and keto-gulonate) were strongly increased once the
fruit was removed from the vine and that these compounds could be indicators of metabolic shifts
during postharvest storage [59] (Table 1). As an example, the enhanced gluconate levels could be a
consequence of tartarate biosynthesis from ascorbate degradation or energy balance changes during
tomato storage [62,63]. Free mannose levels are generally low, as this monomer usually composes
carbohydrate polymers. However, it can be found in a free form as a result of cell wall disassembly and
hemicellulose breakdown during fruit senescence, as described in tomato, apple and pear [59,62,64].

Organic acids, particularly citric acid, accumulate at high levels in Citrus fruits, such as lemons,
oranges, grapefruits or pummelos. A study on ‘Hirado Buntan’ pummelo focused on the relationship
between organic acids, measured by high-performance capillary electrophoresis, and fruit senescence
during postharvest storage at both ambient and cold temperatures. The authors observed a general
decrease in malate, citrate, aconitate and fumarate during storage, accompanied by important
fluctuations in their levels; this decrease was associated with a loss of fruit quality [31]. The combination
of transcriptomic analysis paralleled the metabolomic data, suggesting that the peroxisomal MDH—the
expression of which correlated with malate levels—is responsible for organic acid metabolism
regulation during postharvest. This result indicated that the glyoxylate cycle, which occurs in
peroxisomes and glyoxysomes, is central to organic acid regulation by supplying succinate for the
TCA cycle [31]. Tang et al. [33] also observed a decrease in several organic acids analyzed by GC–MS,
such as malate, citrate and α-ketoglutarate, during postharvest storage of ‘Powell’ oranges at room
temperature. In this case, they suggested that malate could be used as a substrate for gluconeogenesis,
being converted into phosphoenolpyruvate (PEP) by the action of two enzymes upregulated in oranges
kept at room temperature: PEP carboxykinase and pyruvate orthophosphate dikinase (PPDK). Similarly,
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an increased abundance of PPDK proteins associated with decreased malate content was observed in
peaches subjected to heat treatment followed by storage at 20 ◦C [65]. Another study using GC–MS
analysis in different varieties from the Citrus genus suggested that a conversion of organic acids to
sugars during fruit postharvest senescence at ambient temperature occurs, as negative correlations were
frequently observed between metabolites belonging to the two groups and that the SSC/titratable acidity
ratio increased during storage [66]. The succinate content increased during pummelo postharvest
storage, showing a positive correlation with GABA and glutamine [31]. In addition, GABA increased
during the postharvest senescence of Powell oranges, matched by an upregulation of the genes involved
in the GABA shunt [33]. In this sense, the GABA shunt was outlined as an important pathway for
organic acid catabolism and for balancing organic acid and amino acid levels. Indeed, superfluous
citrate can be converted into amino acids via the GABA shunt [33,67]. Moreover, Sun et al. [31]
observed an increase in ROS during pummelo storage, which correlated with enhanced mitochondrial
damage. Cross-talk between ROS and organic acids could occur during postharvest senescence, as TCA
enzymes have been described to be very sensitive to inhibition by ROS [68,69], while organic acids
could be involved in the direct ROS scavenging [70,71].

3.3. Amino Acids

Amino acid content is also affected to a large extent by postharvest storage, as these compounds
are involved in several pathways induced during fruit ripening [47]. In particular, during senescence,
amino acid catabolism can counteract the reduction in electron supply from the TCA cycle [72].
Ubiquitination of proteins controls their degradation to free amino acids, and upregulation of the
ubiquitin pathway has been reported in stored peaches that were previously were heat treated [73].
Dopamine, a derivative of the aromatic amino acid tyrosine, has been proposed as a postharvest
marker in banana fruit stored at 25 ◦C [36] (Table 1). Indeed, NMR-based metabolite profiling of the
senescence of bananas stored at room temperature showed that dopamine levels were undetectable at
the last postharvest stage. Concomitant with dopamine disappearance was the sudden appearance of
salsolinol, which has been described to originate from dopamine and acetaldehyde, the latter formed
from ethanol, which is also generated in the late postharvest stage [36,74]. The authors concluded that
the conversion of dopamine to salsolinol led to a decrease in fruit quality, making bananas less fit for
consumption [36].

Additionally, several amino acids play a key role in tolerance to abiotic stresses in fruits during
postharvest senescence. Indeed, a GC–MS comparative study between pineapple varieties tolerant
and susceptible to CI stored at 10 ◦C outlined that amino acid increases during chilling stress may
be associated with a delay in symptom appearance, such as internal browning, by presumably
contributing to the synthesis of enzymes involved in tissue repair and, in the case of cysteine, aspartate
and valine, by acting as osmoprotectants [75]. Proline is a well-documented stress-related amino
acid and among the main osmolytes that are accumulated during plant stresses, playing important
membrane protection and ROS-scavenging functions [76,77] (Table 1). Grape storage in a CO2-enriched
atmosphere resulted in a threefold endogenous proline increase when compared to that in air-stored
grapes [60], and proline accumulation is a common trend in postharvest fruits subjected to treatments to
attenuate CI, such as zucchinis [61], mangoes [78], bananas [79], pears [80] and loquats [81]. However,
the possible role of amino acids in counteracting CI seems to be species dependent, as GABA, aspartate,
phenylalanine and proline increase in peach stored at 0 ◦C for 21 days was not associated with CI
protection, since their levels, quantified by GC–MS, were enhanced in both resistant and susceptible
genotypes [56].

A recent study in strawberry also outlined the possible role of amino acids in plant defense,
as pathogen resistance mechanisms implicated this group of metabolites [82]. The increase in asparagine,
aspartic acid, threonine, glutamic acid, glutamine, alanine and glycine in CO2-treated strawberries
compared to control fruits could, at least partially, explain the lower fungal decay observed in the first
group [83].
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4. Postharvest Impact on Secondary Metabolites

The two main families of secondary metabolites present in fruits are polyphenol and terpenoid
compounds, responsible for their appealing color and also important for their organoleptic and
nutritional characteristics [84]. Apart from their importance in the human diet, these molecules are
involved in plant defense and responses against biotic and abiotic stresses. In particular, metabolomic
approaches have helped in deciphering their role during fruit storage and how different postharvest
strategies impact on them. Here, impact on polyphenols, including anthocyanins, and carotenoids
during fruit shelf-life is discussed in the next paragraphs.

4.1. Polyphenol Compounds

Dynamic metabolite changes, profiled by high-performance LC–MS (HPLC–MS), were observed
during grape postharvest ripening and dehydration, the metabolic responses being genotype
dependent [85]. A particular feature was the cultivar-specific accumulation of stilbenes, a class
of phenylpropanoid compounds, with antifungal activity. On the other hand, anthocyanins and
other flavonoids, belonging to another phenylpropanoid class, were depleted along postharvest
dehydration [85]. An untargeted HPLC–MS profiling during grape ripening and withering (postharvest
drying), combined with transcriptomic and proteomic data integration, also correlated the presence
of stress-related secondary compounds (stilbenes and acylated anthocyanins) with the postharvest
phase. The synthesis of defense molecules could be a response to abiotic stress (dehydration)
or biotic stress (eventual pathogen attack). In addition, three metabolites (two taxifolins and
tetrahydroxyflavanone-O-deoxyhexoside), belonging to the flavonoid class, have been proposed as
putative markers in order to assess berry fruit quality traits (Table 2) [86]. In grapes, the accumulation of
different stilbenes during cold postharvest storage was monitored by UHPLC–MS/MS [87]. This increase
was also observed when grape fruits were kept at high CO2 [87]. In contrast, CA storage has been
described to have negative effects on anthocyanin accumulation in strawberry fruits, compounds
responsible for the color of the ripe fruit [88]. In this sense, postharvest cold storage is a mandatory
strategy to enhance anthocyanin content in some fruits such as blood oranges, some varieties of plums
and anthocyanin-rich tomatoes [89,90]. Interestingly, it has been described that tomato anthocyanin-rich
lines are able to maintain fruit quality for longer during storage, mainly by reducing their susceptibility
to Botrytis cinerea [91,92].

In mandarins, heat treatment previous to storage at 12–16 ◦C positively impacts polyphenol
metabolism by increasing flavonoids and lignin content (flavonoids measured by HPLC–MS). The effect
of this postharvest strategy can be seen as a modulation of fruit defense against biotic and abiotic stress
during postharvest storage, by supplying chemical (flavonoids) and physical barriers against pathogen
attack [93]. The relationship between polyphenol content and resistance to postharvest decay caused
by Penicillium expansum has also been described in apple; indeed, resistant and susceptible apple
genotypes could be discriminated based on polyphenol content, measured by UPLC–MS (Table 2) [94].
However, a general polyphenol increase during fruit shelf-life does not always occur, as described
by untargeted UHPLC–MS in several mango varieties stored at room temperature during six days,
in which it was found that only gallic acid and epicatechin content was enhanced after storage [95].
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4.2. Carotenoids

Carotenoids are an important class of terpenoids, responsible for the attractive color of many fruits
and vegetables. While their low stability during postharvest storage, mainly due to a rapid turnover of
β-carotene, has been described in many staple crops, postharvest accumulation in Citrus and tomato
seems to be temperature dependent [96,97]. Carotenoid levels in grapefruit, determined by HPLC,
stored at 2 and 12 ◦C established a link between carotenoid content and CI symptom suppression,
suggesting that they play a role in preventing cold damage by protecting plastid structures [98,99].
Furthermore, the ratio between 9-Z-violaxanthin (yellow hues) and β-citraurin (orange-red pigments),
responsible for the external orange fruit color, was lower in sweet oranges stored at 12 ◦C than at
2 ◦C, outlining that this important quality indicator is better maintained at moderate temperatures.
Additionally, increased levels of β-cryptoxanthin in orange pulp stored at 12 ◦C should be pointed
out, due to health-beneficial provitamin A activity (Table 2) [96]. Carotenoid content, measured by
HPLC, was also drastically increased during postharvest storage of winter squash at 21 ◦C, even if
no induction of the biosynthetic genes could be observed. Starch degradation during winter squash
storage, with the concomitant release of soluble sugars which may act as substrates for terpenoid
synthesis, and downregulation of genes involved in carotenoid turnover, could be the explanation of
their enhanced content [100]. In other fruits, such as green pepper, carotenoid accumulation during
postharvest storage has a negative impact on consumer acceptance. Pepper reddening depends
on the metabolic dynamic of chlorophyll degradation and active synthesis of carotenoids, such as
β-carotene and capsanthin, as depicted by HPLC-based profiling of these pigments [101]. Quantification
of chlorophyll by spectrophotometry has also pointed out its breakdown as a deterioration factor
occurring during pear or lime shelf-life [102,103]. In this sense, postharvest strategies, such as chlorine
dioxide fumigation or hot water treatment, may be effective in downregulating genes involved in
chlorophyll-degrading enzymes [101,102].

5. Volatile Profiles during Postharvest and Their Impact on Fruit Aroma

In fruits, there are three major classes of metabolites responsible for flavor: sugars, acids,
and volatile. While fruit taste is mostly dependent on the ratio of sugars and acids, it is the volatiles that
determinate the unique flavor of fruits. Most volatiles present in mature fruits originate from terpenoid
and phenylpropanoid pathways or are fatty and amino acid derivatives [104]. Volatile profiling is
typically achieved by extracting them from the headspace (HS), i.e., the airspace around the fruit, and
detecting them by GC–MS. Sampling from headspace is most often performed by the adsorption of the
volatiles on a stationary phase coated on a fused silica fiber and is known as solid-phase microextraction
(SPME) [104]. Another GC–MS-based strategy for volatile profiling is their collection from chopped
fruits on a Super Q column, followed by elution with methylene chloride [105]. To overcome metabolite
co-elution by one-dimensional GC, GC x GC–MS has been implemented to increase separation
efficiency and volatile detection [106,107]. As not all volatiles impact fruit aroma, a complementary
approach, known as GC—olfactometry, can be used to determine odor-active compounds [108].
During postharvest, it could be established that important shifts in fruit volatile profiles are normally
observed and are often responsible for the decreased sensory acceptability after prolonged storage.
For instance, general trends profiled by GC–olfactometry, describe a loss of ‘green’ or ‘fresh’ notes
and a concomitant increase in ‘fruity’, ‘overripe’ or ‘musty’ aromas [109]. Changes in aroma are a
consequence of metabolic pathways that are active during postharvest and, in turn, appear to be
largely depend on the storage strategies used by industry. For example, among the symptoms related
to CI is the negative impact perceived on aroma production, a phenomenon described in many species,
such as strawberries [110], kiwifruit [111], tomatoes [112] and peaches [113]. Tomatoes stored at 5 ◦C
for 7 days were significantly less palatable than fruits recently harvested, and this decrease in consumer
acceptance, established by taste panels, was a consequence of changes in volatile emissions [105].
Furthermore, a higher increase in ‘musty’ and ‘damp’ aroma notes was observed in tomatoes stored
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at 10 ◦C than in those stored at 12.5 ◦C, suggesting that the latter temperature storage was able to
maintain better sensory attributes [114].

Fermentation metabolism and amino acid and fatty acid catabolism are of great importance
regarding the production and accumulation of volatiles in harvested fruits. Indeed, the activation of
amino acid and fatty acid degradation to generate TCA cycle acetyl-CoA precursors and thus maintain
energy production leads to the accumulation of specific substrates for volatile formation. In mandarin,
a combination of metabolomic and transcriptomic data outlined the upregulation of genes involved in
branched-chain amino acid catabolism, fatty acid cleavage and ethanol fermentation, which suggested
that central metabolism modifications are accountable for the increase in branched-chain esters (‘fruity’,
‘overripe’ aroma), fatty acid-derived volatiles (‘musty’ notes) and ethanol [115]. The activation
of anaerobic fermentative metabolism due to postharvest abiotic stress is especially important in
‘off-aroma’ compound generation and has been described in fruits of several species, including
strawberries [116–119], apples [120], mandarins [109] and peaches [121], among others. Indeed,
the glycolysis end-product pyruvate can alternatively serve as a substrate for anaerobic respiration
and ATP production under O2-limiting conditions, which produces a shift from aerobic respiration to
the fermentation pathway [16,120,122,123]. As a consequence, off-aroma volatiles, namely ethanol,
acetaldehyde and ethyl acetate, accumulate, playing a key role in fruit quality decline [117,124] (Table 3).
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Fermentative metabolism activation and off-flavor compound formation are mainly associated
with low oxygen concentration under CA storage [118,123,124,131]. However, the production of
ethanol via fermentation may also be a consequence of a decline in cellular energy status [132].
As long as energy demand is maintained, fermentation can be endured; nevertheless, failure of cellular
homeostasis, such as an imbalance in the pH or ROS production, will lead to storage-induced disorders,
strongly affecting fruit quality [133]. Understanding how or when fermentation occurs can help to
limit ethanol production. Metabolomic approaches using 1H NMR and GC–MS profiling were used
to assess metabolite gradients within the fruit, which may be related to in situ hypoxia in the central
part of the ripening fruit [134,135]. CA is of special importance for the long-term storage of fruits
such as apples, and could maintain a better aroma quality [136,137]. It appears that the low-oxygen
pressure employed during CA affects volatile emissions in a genotype-dependent manner [11]. Indeed,
a multiplatform metabolomic approach (proton-NMR, GC–MS and HS-SPME–GC–MS) comparing ‘Red
Delicious’ and ‘Granny Smith’ apple varieties showed strong activation of fermentative metabolism
in the former, with ethanol and acetaldehyde accumulation, while the latter dealt with hypoxia by a
reconfiguration of nitrogen metabolism through the intensification of alanine levels to prevent excessive
accumulation of pyruvate [11]. Low oxygen may induce changes in metabolite concentrations that
reflect a decrease in biosynthetic process, inhibition of the TCA cycle, and activation of anaerobic
metabolism, which means accumulation of sucrose and organic acids and diversion of pyruvate
to ethanol and alanine [134]. Table grapes stored under elevated CO2 concentrations (5 kPa O2

and 15 kPa CO2) showed an upregulation of genes involved in pyruvate synthesis (pyruvate kinase,
PEP carboxykinase and NADP-dependent malic acid enzyme) and a concomitant increase in volatiles,
detected by HS-SPME–GC–MS, derived from pyruvate degradation—some of which were suspected
to generate ‘off flavor’. Additionally, the increased expression of a specific alcohol dehydrogenase gene
(ADH) under anaerobic atmospheric conditions enhanced the accumulation of off-aroma volatiles,
including ethanol, acetaldehyde and ethyl acetate [87].

Metabolic reconfiguration during postharvest affects volatile patterns beyond the generation of
off-aroma compounds, and changes occurring in most important volatile classes are described in the
next sections.

5.1. Fatty and Amino Acid-Derived Volatiles

Fatty acid-derived volatiles, responsible for aldehyde, alcohol and ester accumulation, the last
being the predominant class of aromatic compounds in fruits of several species, seem to be strongly
impacted by low-temperature storage [110,138,139]. Free fatty acids such as linoleic acid and linolenic
acid are reduced to aldehydes by the lipoxygenase pathway (LOX). Next, aldehydes are reduced to
alcohols followed by alcohols to esters by ADH and alcohol acyltransferase (AAT), respectively (for a
review, see [84]). Interestingly, correlations among LOX, ADH and AAT activities, gene expression
and decreased volatile production under refrigerated postharvest conditions have been established
in several fruit-bearing species [140,141]. In particular, a relationship between a reduction in ADH
activity and decreased ester content, monitored by SPME–GC–MS technology, during pear cold storage
has been established [138]. In tomatoes, ADH activity was diminished as a consequence of refrigerated
conditions at both 10 and 12.5 ◦C, and storage was associated with an increase in the aldehyde/alcohol
ratio at 10 ◦C [112,114]. Furthermore, a decrease in ADH2, LoxC and AAT1 transcripts after 8 days
of cold storage (5 ◦C) was associated with lower levels of C6 and C5 (fatty acid-derived) volatiles in
chilled tomatoes [105]. Additionally, low temperature also seems to affect upstream lipid catabolism
by downregulating the expression of several genes involved in the formation of the unsaturated free
fatty acids linoleic acid and linolenic acid, limiting substrate availability for ester biosynthesis [142].
Furthermore, membrane damage during cold storage has also been suggested to impair ester synthesis,
as a relatively high leakage rate, a commonly used marker for membrane permeability, was measured
in pears stored for a long time under refrigerated conditions [138]. The impact of cold storage on
the aromatic compound profile reaches further than that on the pattern of lipid-derived volatiles.
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Branched-chain volatiles derived from the direct precursors of branched-chain amino acids, measured
by GC, after methylene chloride extraction, were also shown to decrease during tomato cold storage and
are correlated with a lower expression of two branched-chain aminotransferases (BCAT1 and BCAT7)
involved in the first step of the catabolism of these amino acids [105]. Additional treatments, such as
hot air or UV-C, combined with cold storage could counteract the negative effect on ester biosynthesis
by promoting the LOX pathway, as has been demonstrated in peaches [143]. Similarly, a pre-chilling
heat treatment (52 ◦C, 5 min) has been shown to alleviate the depletion of important volatiles for
tomato aroma quality during its postharvest storage; in this case, the volatiles include amino acid-
and carotenoid-derived compounds profiled by HS-SPME–GC–MS [144]. Fatty acid-derived alcohols
were also higher under elevated CO2 concentrations compared to those of recently harvested grapes
and cold-stored berries under atmospheric conditions due to the upregulation of the LOX pathway,
together with ADH [87].

Low-oxygen storage has a broader impact on volatile content than ethanol and off-aroma
compound generation, as demonstrated by the different content of ethyl esters between ‘Granny Smith’
and Red Delicious’ apples [11]. Indeed, ethanol can serve as a substrate for ethyl esters, enhancing
their synthesis [136,145,146] and competitively inhibiting the formation of esters originated from other
alcohols [147]. As a consequence, an imbalance between the ratio of ethyl and the remaining esters
occurs during postharvest storage of fruits of ethanol-accumulating apple varieties and those of many
other fruit-bearing species, most likely affecting aroma perception. The fruits of ‘Granny Smith’ and
‘Royal Gala’ apple varieties did not seem to accumulate ethanol under low-oxygen-pressure storage;
however, a negative effect on ester synthesis, in particular straight-chain esters, was observed, with the
impact proportional to the decrease in O2 pressure [148–154]. This decrease can be explained by the
fact that the LOX pathway requires the presence of oxygen. This effect has also been described in
other apple varieties. [137,153]. In contrast, the concentration of branched-chain esters, monitored
by HS-SPME–GC–MS, did not seem to be negatively affected by low oxygen, possibly because
branched-chain amino acid levels were unaltered [154]. Furthermore, low oxygen suppresses the
production of the hormone ethylene, which is involved in ester synthesis, as demonstrated during
apple or banana storage in the presence of its antagonist 1-MCP [155–157].

5.2. Terpenoid Volatiles

Several studies in Citrus have highlighted important changes in terpenoid volatiles monitored
by HS-SPME–GC–MS. These changes were related to CI and tolerance to cold storage. In mandarins,
the accumulation of terpenoid volatiles is associated with chilling-sensitive fruits [158]. This increase is
temperature dependent, and the authors suggest that it was responsible for decreased fruit palatability,
as terpenes can contribute to an unpleasant aroma, providing ‘musty’, ‘resinous’ and ‘oily’ notes.

Another study on volatile emission by intact grapefruits stored at 12 and 2 ◦C for 7 weeks outlined
important differences in the profiles of the terpenoid volatiles as a consequence of temperature [98].
Interestingly, grapefruits stored at 2 ◦C experienced a strong increase in monoterpene content,
particularly in limonene and β-myrcene levels; this group of volatiles was strongly decreased in fruits
stored at 12 ◦C at the beginning of the postharvest period, after which their content remained unchanged.
In contrast, sesquiterpene emissions were predominant in the fruits stored at 12 ◦C [98]. While the
accumulation of the monoterpene β-myrcene under 2 ◦C can negatively impact negatively consumer
acceptance, by providing ‘musty’ and ‘wet soil’ aroma notes to the fruits [108], sesquiterpene ketone
nootkatone levels, an important volatile in grapefruit aroma, seems to be promoted (in term of it content)
under moderate–intermediate-temperature storage, but not refrigerated conditions [98,159] (Table 3).
Taken together, these data suggest that the aroma quality of grapefruits could be better maintained
during intermediate-temperature storage, as has been previously demonstrated in mandarins [126,149].

The trend in the accumulation of the monoterpene limonene and the sesquiterpene α-farnesene,
which showed a transient increase after one week of storage under the two different temperatures,
could be related to cold-induced responses. Limonene release, measured both by HS-SPME–GC–MS and
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capillary gas–liquid chromatography–MS, has also been described in other Citrus species [125–127,160]
and could be a consequence of cell wall and plasmatic membrane disruptions in the oil glands [99,125].
The degree of accumulation ofα-farnesene is correlated with the susceptibility of different cold-sensitive
Citrus species to CI development at 0 ◦C storage [128]. Interestingly, α-farnesene stopped being emitted
by grapefruits after 3 weeks of storage at 12 ◦C, which coincided with the decrease in the observed
CI symptoms, i.e., peel injury. At 2 ◦C, α-farnesene emissions were maintained during the whole
postharvest period, concomitant with the CI symptom progression, confirming the relation between
the detection of this volatile and CI manifestation. In this sense, the detection of α-farnesene by
metabolome-driven approaches could be of high value as a potential biomarker to assess Citrus
quality during postharvest (Table 3). Similarly, the monoterpene linalool, a key component of the
aroma of papaya, was negatively affected by cold postharvest storage at 10 ◦C, and a concomitant
downregulation of linalool synthase expression was also observed, suggesting that this volatile could
be used as a marker to define papaya quality during postharvest storage [129] (Table 3). Linalool is
also the predominant compound responsible for flavor in Muscat table grapes, a highly appreciated
quality trait [161]. The postharvest storage of ‘Shine Muscat’ grapes at different temperatures between
0 and 10 ◦C showed that the decrease in linalool, profiled by HS-SPME–GC–MS, was enhanced at
relatively low (0, 2 and 5 ◦C) temperatures in both fruit skin and flesh. Concomitant with linalool
levels, grapes stored for four weeks at 10 ◦C presented a higher Muscat flavor than grapes stored
at 0 ◦C for the same duration [130]. A possible effect of temperature on linalool synthesis or on the
interconversion of free (aroma-producing) linalool and its glycosidically (odorless) bound form could
be responsible for the observed differences in its concentration. In this sense, optimal storage at 10 ◦C
for a short period or at relatively low temperatures followed by poststorage conditioning at 10 ◦C is
fundamental for maintaining aroma quality for consumers [130] (Table 3).

The combination of 1-MCP with high O2 or high CO2 seemed to favor terpene content, as did the
CO2-enriched atmosphere in lemon [162]. CA storage under an elevated CO2 atmosphere (8% CO2

and 2%–3% O2) could also promote terpene accumulation in mango. Indeed, fruit injury as a result of
CA can enhance the activity of glycosidases, releasing monoterpenes, such as linalool or terpineol,
from their glycoside-bound forms [163]. However, all tested CA treatments resulted in a reduction in
total sesquiterpenes and also enhanced levels of ethanol, acetaldehyde and esters compared to those
under atmospheric conditions. In addition, it was established that mangoes should not be stored
under 3%–5% O2 to avoid excess fermentative compound accumulation and maintain fruit aroma
quality [163,164].

6. Conclusions

Although fruit responses to postharvest storage conditions are species and even cultivar dependent,
making them especially complicated to study, metabolomic approaches alone or combined with
transcriptomic/proteomic analyses are highly useful for understanding how metabolic changes affect
quality traits. In particular, reconfiguration of fruit metabolism as a consequence of the abiotic/biotic
stress encountered during postharvest storage conditions (cold, hypoxia, pathogens, etc.) has a direct
impact on the accumulation of taste- and aroma-producing metabolites, which are decisive attributes
for consumers and thus for the fruit industry. Even though many molecular mechanisms active during
fruit postharvest storage and senescence remain elusive, future omic studies will shed light on them to
optimize fruit storage conditions.

Furthermore, the recent advances in metabolomic-driven technology allows the identification of
valuable biomarkers that can be employed by the fruit industry to tightly monitor changes in quality
attributes during postharvest storage. In this sense, the use of multiplatform approaches offers the
possibility to select a set of metabolite markers, which could better depict the impact of postharvest
storage on aroma, taste, appearance and nutritional value [165].
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Abstract: Metabolic correlation networks have been used in several instances to obtain a deeper insight
into the complexity of plant metabolism as a whole. In tomato (Solanum lycopersicum), metabolites
have a major influence on taste and overall fruit quality traits. Previously a broad spectrum of
metabolic and phenotypic traits has been described using a Solanum pennellii introgression-lines
(ILs) population. To obtain insights into tomato fruit metabolism, we performed metabolic network
analysis from existing data, covering a wide range of metabolic traits, including lipophilic and volatile
compounds, for the first time. We provide a comprehensive fruit correlation network and show how
primary, secondary, lipophilic, and volatile compounds connect to each other and how the individual
metabolic classes are linked to yield-related phenotypic traits. Results revealed a high connectivity
within and between different classes of lipophilic compounds, as well as between lipophilic and
secondary metabolites. We focused on lipid metabolism and generated a gene-expression network
with lipophilic metabolites to identify new putative lipid-related genes. Metabolite–transcript
correlation analysis revealed key putative genes involved in lipid biosynthesis pathways. The overall
results will help to deepen our understanding of tomato metabolism and provide candidate genes for
transgenic approaches toward improving nutritional qualities in tomato.

Keywords: lipophilic compounds; lipid-related genes; lipid metabolism

1. Introduction

Plants produce a wide variety of biochemical compounds, starting at the central or primary
metabolism which generates compounds absolutely vital for plant survival and continuing through the
pathways of specialized or secondary metabolism [1–5]. Specialized metabolites display a tremendous
diversity, are often specific to certain plant lineages, and play many different roles in adaptation to the
environment [6]. Volatile organic compounds (VOCs) are often discussed as a subgroup of secondary
metabolites, with their low molecular weight enabling movement across cell membranes and release
into the surrounding environment [7]. Secondary metabolites can act as direct or indirect defense
agents by deterring herbivores, fending off pathogens, and/or attracting predators or pollinators [8].
When it comes to human consumption of plants, secondary metabolites also fulfill an important role,
since they can have beneficial health effects and some of them contribute to flavor [9,10].
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Since lipids may either be primary (e.g., glycerolipids, phospholipids) or secondary (derived
from the isoprenoid pathway) metabolites, they are often discussed in the literature separately from
other metabolites [11–13]. Lipids fulfill many different functions, ranging from carbon storage via
cell-membrane components to signaling molecules [14].

The cultivated tomato (Solanum lycopersicum) has been widely used for metabolomic studies [15].
With production of over 150 million metric tonnes in 2017, tomato is the second most consumed
vegetable in Europe after potato and the first by market value (www.fao.org/faostat/en/#home).
The drought-tolerant green-fruited relative, Solanum pennellii, has been successfully hybridized with
the cultivated tomato, and the offspring from that cross has been used to identify a wide range of
phenotypic and metabolic quantitative trait loci (QTL) [16–18]. The importance of tomatoes for human
diet, combined with the availability of genetic diversity from wild relative species, makes tomato an
optimal model crop for studying different aspects of plant physiology [19]. In recent years, tomato
metabolism has been intensively studied. Tomato’s specialized metabolites in particular have received
much attention, since many compounds are known to have positive health effects [20], serving among
others as antioxidants. Many efforts have been undertaken to understand the genetic basis of their
biosynthesis and to increase the production of these compounds in fruits [21–26].

However, due to its immense complexity and interconnection, it is a great challenge to understand
plant metabolism as a whole. QTL mapping is a commonly used approach to dissect plant metabolism
and identify genes in the corresponding pathways [27]. Although QTL mapping is useful for the
elucidation of individual pathways, this approach is still not sufficient for dissecting metabolism in its
entirety due to the latter’s complexity [28]. Thus, metabolite correlation network analysis has been
suggested as an additional method for elucidating novel connections in plant metabolism [29]. Several
studies have used a network approach to display the correlation between metabolic compounds.
Schauer et al. (2006) combined mQTL and network analysis to elucidate the relationship between
metabolic and yield-related traits over two seasons of a tomato introgression-line (IL) population [30].
The study revealed a modular network with intra-modular connections of amino acids, sugars,
and phenotypic traits, and highlighted the connections between metabolic and phenotypic traits.
A similar approach was used to obtain several novel insights concerning the interrelation of seed
primary [31] and fruit secondary metabolites with yield-associated traits [22]. Production of seed oils
with desirable fatty-acid content raised the interest of oilseed breeders and biotechnologists as a result
of the growing demand for vegetable oil [13,32–35]. Studies also focused on tomato seeds because
their oil is an excellent source of important fatty acids involved in plant growth [36,37]. Following
research has also been extended to other tissues, e.g., tomato leaves [31,38].

Despite the large-scale tomato cultivation and the number of studies related to the fruit’s chemical
composition and its quality, the majority of tomato metabolome research has focused on polar (non-lipid)
primary and secondary compounds: sugars and their derivatives, amino acids, and organic acids.
Traits such as aroma, color, and nutritional values, all deriving from secondary metabolites, have been
extensively investigated, too [1,39]. However, lipid metabolism is still poorly studied in tomato,
with several investigations focusing on cuticular waxes [40–43] and the characterization of genes
involved in fatty-acid production [44].

In this study we performed a global correlation-based network analysis of metabolic traits,
including lipids, volatiles, primary, and secondary metabolites from tomato fruit pericarp, and in
addition plant phenotypic traits across a S. pennellii population in three field studies. This allowed us to
expose the connectivity network between lipids and other branches of metabolism and key agronomical
traits. We further generated a correlation network between the levels of lipophilic compounds and
the expression of 1431 lipid-related genes in fruit and leaf. We were able to identify 123 potential
lipid-related genes and obtained several novel insights concerning lipid metabolism.
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2. Results

2.1. The Overall Metabolic Network in S. pennellii ILs

S. pennellii ILs have contributed over the years to the investigation of more than 2500 QTLs
associated with plant morphology and to our understanding of the genetic regulation of primary,
secondary metabolism, and lipids [31]. Here, in order to decipher the underlying regulatory
organization of lipid metabolism together with other metabolic traits, we created a correlation-based
network using already existing data of primary metabolites [45], secondary metabolites [22], lipophilic
compounds [44], volatile compounds [10], and yield-related traits [30] across S. pennellii ILs in
three independent seasons: 2001, 2003, and 2004 (see Section 4, Supplementary material Table S1).
We correlated all metabolic and phenotypic traits against each other using Spearman’s rank correlation
coefficient. Figure 1 shows an overall view of a correlation-based network of all collected data in
S. pennellii ILs. As expected, high correlations occur more often within the same group of metabolites
or phenotypic traits than between different groups. The vast majority of overall correlations in the
network were positive (84.4%) (Supplementary material Figure S1 and Table S2).

 

Figure 1. Overall metabolic network. Each node represents a metabolite or a whole plant phenotypic
trait; edges connecting two nodes show an association between two traits. In total, the network is
composed of 455 nodes and about 15,000 edges assembled into five large groups: lipophilic metabolites
comprise of 171 nodes, primary and secondary metabolites have 89 and 147 nodes, respectively,
phenotypic traits have 38 nodes, and the smallest group consists of 10 nodes and represents volatile
compounds (Supplementary material Table S1).

2.2. Lipophilic Compounds Expose Weak Correlation with Phenotypic Traits and Primary Metabolites

We initially focused on correlations between lipids and phenotypic traits, volatiles, primary,
and secondary metabolites (see Section 4).

Few correlations between different lipid classes and yield-related traits such as brix and plant
weight were identified (Figure 2a). Specifically, galactolipids were correlated negatively to plant
weight. Our results showed correlations between phenotypic traits and other metabolic classes, with
46% of traits being connected to primary metabolites. Brix revealed more connections to primary
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metabolites (primarily sugars) than to phenotypic traits. Brix reflects the total amount of soluble solids
and therefore cannot be truly regarded as a phenotypic trait.

 

Figure 2. (a) Correlation between phenotypic traits and lipophilic compounds in Solanum
pennellii introgression-lines (ILs). Yield-related traits showed three connection with several
lipid classes such as phospho- and galactolipids. DAG—diacylglycerol; TAG—triacylglycerol;
DGDG—digalactosyldiacylglycerol; MGDG—monogalactosyldiacylglycerol. (b) Correlation between
phenotypic traits and volatiles in S. pennellii ILs. Various phenotypic traits are linked to each volatile class.

The network showed negative and positive correlations among phenotypic traits and various
volatile compounds (Figure 2b). Lipid-, amino-acid-, and carotenoid-derived volatiles showed 69.2%,
55%, and 90% positive correlations with several phenotypic traits, respectively. Lipid-derived volatile
compounds (hexanal, trans-2-hexenal, cis-3-hexen-1-ol) showed some positive correlations with flower-,
seed-, and yield-related traits. In addition, yield-related traits showed a high number of negative
correlations with amino-acid-derived volatile isovaleronitrile. Two secondary metabolites (calystegine
A3 and calystegine B2) showed several correlations with phenotypic traits (Supplementary material
Table S2).

Our data show strong, mainly positive (92.1%) correlations within the class of primary metabolites.
In agreement with previous studies, we observed a highly interconnected amino-acid module (Gly,
Ile, Val, Thr, and Ser) [31]. However, primary metabolites such as galactinol and guanidine highly
connected with specialized metabolites. In addition, two alkaloids (calystegine A3 and calystegine
B2), belonging to the class of secondary metabolites, presented a high number of correlations with
primary metabolites.

We observed seven links between primary metabolites and lipophilic compounds such as
phospholipids, glycerolipids, and galactolipids.

Analysis of primary metabolites against volatile compounds indicated no significant
correlations between amino-acid-derived volatiles like isovaleronitrile, benzaldehyde, 3-methylbutanal,
and 2-phenylethanol and their upstream biosynthesis substrates such as leucine and phenylalanine.
However, guanidine showed correlations with all amino-acid-derived volatiles. In total, amino-acid-
derived volatiles revealed 80.8% positive correlations with primary metabolites. The majority of
correlations between lipid-derived volatiles (trans-2-hexenal, hexanal, cis-3-hexen-1-ol) and carotenoid-
derived volatiles (geranylacetone and b-ionone) with primary metabolites were positive.

2.3. Lipids Are Highly Correlated with Specialized Metabolites and Show Some Negative Correlations with
Volatiles

Our results showed a high number of correlations between various lipophilic compounds and
secondary metabolites, with 4588 correlations representing 30.8% of all edges shown in the network
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(Supplementary Material Table S2). Our data introduced for the first time, a high correlation between
specialized metabolites and lipophilic compounds. For example, phospholipids were correlated to
almost all secondary-metabolite subclasses. Glycerolipids showed 1725 positive and 335 negative
correlations with secondary metabolites. A high number of positive correlations (96%) was also found
between galactolipids and secondary metabolites (Table 1, Supplementary material Figure S2).

Table 1. Percentage of positive correlations between lipids and secondary metabolites.

MGDGs DGDGs Phospholipids TAGs DAGs

Acyl sugars 100 96 50 78 100
Flavonoids 99 93 51 88 97

Hydroxycinnamate derivatives 93 94 48 82 95
N-containing compounds 93 92 49 78 90

Unspecified 100 99 50 85 100
Amino acid 100 100 45 71 100

Glycoalkaloids 100 100 50 78 100
Others (phenolics) 98 98 53 79 100

We identified 3249 correlations among various groups of secondary metabolites. Only 2% of all
identified correlations were negative. Results indicated a high connection between and within different
specialized-compound subclasses.

Correlation analysis revealed 10 positive and five negative interactions between lipid-derived
volatiles and secondary metabolites. Correlations between amino-acid-derived volatiles and secondary
metabolites showed an almost equal amount of positive and negative connections. Our observations
revealed 58.7% (27 out of 46) of negative connections between carotenoid-derived volatiles and
specialized metabolites (Figure 3a, Supplementary material Table S2). Additionally, a high number of
negative correlations between triacylglycerols and volatiles was observed. Other lipid classes were
connected to volatiles mostly positively (Figure 3b, Supplementary material Table S2).

 

Figure 3. (a) Connection between secondary metabolites and volatiles in Solanum pennellii ILs. Volatile
compounds are linked to almost all classes of specialized metabolites. (b) Correlation between
lipophilic compounds and volatiles in Solanum pennellii ILs. Lipid class of TAGs showed numerous
negative connections with all types of volatile compounds. DAG—diacylglycerol; TAG—triacylglycerol;
DGDG—digalactosyldiacylglycerol; MGDG—monogalactosyldiacylglycerol.

Within all lipid classes we identified 5841 correlations, representing 39.2% of all edges shown
in the network, with 1012 (17.3%) being negative. Lipids belonging to the same subclass showed
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strong, mainly positive connections with other members of the same class (Table 2). For example,
among different triacylglycerols (TAGs), out of 1229 identified correlations 1102 (89.7%) were positive.
There was also a minor number of negative correlations within the monogalactosyldiacylglycerol
(MGDG) and digalactosyldiacylglycerol (DGDG) subclasses. Out of all identified correlations within
the phospholipids subclass, 78.1% were positive. Moreover, there are no negative correlations between
diacylglycerols (DAGs) and DGDGs. The highest percentage of negative correlations was observed
between phospholipids and TAGs (Table 2, Supplementary material Figure S3).

Table 2. Percentage of positive correlations between different lipid subclasses.

MGDGs DGDGs Phospholipids TAGs DAGs

MGDGs 99 99 75 96 90
DGDGs 99 99 70 87 100

Phospholipids 75 70 78 60 65
TAGs 96 87 60 90 85
DAGs 90 100 65 85 100

2.4. Fruit-Specific Lipid-Related Genes Show a Mainly Positive Pattern of Change with Lipophilic Compounds

For further exploration of lipid biosynthesis in tomato fruit pericarp, we correlated lipid profiles
across 76 introgression lines [44] with multiple next-generation-sequencing gene-expression datasets
from the same introgression lines. We used data consisting of 188 and 117 different lipophilic
compounds from leaves and fruits of 74 ILs, respectively, and gene-expression data of lipid-related
genes (1431) to perform the correlation analysis.

Using Spearman rank correlation coefficient, we identified 59 positive connections out of 173
in fruits and 33 positive correlations out of 73 in leaves. Figure 4 shows the significant correlation
values between gene-expression levels and different lipid concentrations in fruits (Figure 4a) and leaves
(Figure 4b).

 

Figure 4. Heatmap of correlation values between lipid-related genes expression and lipid levels in
tomato (a) fruits and (b) leaves. The number of lipid-related genes is higher in the fruit dataset compared
to the leaf dataset (81 and 42, respectively). In tomato fruit, lipid-related genes linked mostly to TAGs,
while in tomato leaf predominantly to phospho- and galactolipids. DAG—diacylglycerol; TAG—
triacylglycerol; DGDG—digalactosyldiacylglycerol; MGDG—monogalactosyldiacylglycerol; SQDG—
sulfoquinovosyldiacylglycerol.
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Our analysis identified 123 potential lipid-related genes in both fruit and leaf datasets
(Supplementary material Table S3). In agreement with previous results [44], we observed that
lipase (Solyc12g055730) showed a significant high correlation with different levels of TAGs (Figure 4a).

Our fruit data showed that the expression of the gene for 1-acyl-sn-glycerol-3-phosphate
acyltransferase (GPAT) (Solyc11g065890) is positively correlated with 18 unsaturated TAGs, four
of which showing significant mQTLs in IL 11-2 and IL 11-3 [44]. Further, expression analysis revealed
that in IL 11-2 this gene is expressed 1.5 times lower compared to M82, and that in IL 11-3 expression of
the gene is 0.69 times higher than in M82. Moreover, various TAGs display correlations with lipid-related
genes putatively annotated as phospholipase D (Solyc01g103910), non-specific lipid transfer protein
(Solyc10g075150), acyl-ACP thioesterase (Solyc12g006930), and lipoxygenase (Solyc03g122340), whereas
another lipoxygenase (Solyc01g099210) showed five positive correlations with various phospholipids.
We also observed connections of galactolipids to several lipid-related genes (Supplementary material
Table S3).

Finally, we identified strong correlations between lipophilic compounds and the expression of
a class III lipase (Solyc09g091050) located on chromosome 9. The gene was negatively correlated
with DGDG 36:4 (–0.46). Our previous QTL data showed a significant mQTL for galactolipids and
phospholipids in this region. The QTL was mapped to a narrow overlapping region of IL 9-3, IL 9-3-1,
and IL 9-3-2. The levels of DAGs, DGDGs and MGDGs, and TAGs were significantly decreased in
IL 9-3, IL 9-3-1, and IL 9-3-2 compared to M82. Furthermore, gene expression was 4.6-fold higher in
cultivated tomato compared to introgression lines harboring the gene (Figure 5).

 
Figure 5. Transcript level of class III lipase (Solyc09g091050) in red ripe fruits of M82, Solanum pennellii,
IL 9-3, IL 9-3-1, IL 9-3-2. Expression of the gene in wild tomato species Solanum pennellii as well as in
ILs carrying the same allele version is lower in comparison to cultivated tomato variety M82. Asterisks
indicate significant differences (* p < 0.05).

To provide additional support for the observed results, we performed genomic sequence analysis
of the promoter region of the lipase (Solyc09g091050) and compared the promoter sequences of
S. lycopersicum cv. M82 and S. pennellii by genome alignment [17]. Results showed several small
deletions and nucleotide substitutions in the promotor region, while the coding region showed 99%
similarity between M82 and S. pennellii.

Additionally, we investigated several significant correlations between different lipid classes and
other lipid-related genes in tomato fruits (Supplementary material Table S3).

2.5. Leaf-Specific Lipid-Related Genes Show Many Negative Correlations with Lipophilic Compounds

Similar to the above, we extended our analysis and combined leaf lipid profiling of ILs [44]
with transcriptomic data from the same lines [46,47]. Using Spearman rank correlation coefficient,
we identified 45.2% (33 out of 73) and 54.8% (40 out of 73) positive and negative correlations,
respectively (Figure 4a). Our results show correlations between lipid transfer protein (Solyc03g079880),
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3-ketoacyl CoA thiolase 1 (Solyc09g061840), and glycerophosphoryl diester phosphodiesterase
(Solyc11g045040) with different DAGs and phospholipids. Phospholipids additionally were linked to
phospholipid-translocating flippase (Solyc01g011100), diacylglycerol kinase (Solyc01g096500), and lipid
transfer proteins (Solyc03g119210 and Solyc10g075070). Moreover, one transfer protein, Solyc03g119210,
was correlated with galactolipids (DGDG 32:3 and SQDG 32:1). Many other significant correlations
between different lipid classes and lipid-related gene candidates were identified (Supplementary
material Table S3).

The cholesterol acyltransferase gene (Solyc05g050710), located on chromosome 5 (IL 5-3), predicted
to take part in lipid catabolism, exhibited significant positive correlation with PC 32:0 (0.4). In the
same region, several significant mQTLs for different lipid classes were identified [44]. In addition,
the Solyc05g050710 expression is almost 20-fold higher in S. pennellii compared to the cultivated variety
(M82) (Figure 6a). Comparison of the coding sequence between S. pennellii and M82 revealed 99%
identity. However, there are many differences in the promotor region, including a 17-bp deletion in
S. pennellii compared to the cultivated variety, and additionally a 47-bp deletion in M82 compared to
the allele derived from the wild species. This may account for the difference in the expression levels of
Solyc05g050710 between M82 and its wild relative S. pennellii (Figure 6b).
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Figure 6. (a) Transcript levels of the cholesterol acyltransferase gene (Solyc05g050710) in red ripe
fruits of M82, Solanum pennellii, IL5-3. Expression of the gene in wild tomato species Solanum pennellii,
similar to IL 5-3 expressing the same allele version, is higher compared to cultivated tomato variety
M82. (b) Comparison between the promoter regions of allelic versions of Solyc05g050710 derived
from cultivated tomato variety M82 and wild tomato Solanum pennellii. Deletions of 47 and 17 bp can
be found in the promotor sequence of Solanum lycorepsicum and Solanum pennellii compared to the
respective other. Asterisks indicate significant differences (* p < 0.001).

3. Discussion

3.1. Network Analysis: Correlation between Metabolic and Phenotypic Traits

Numerous efforts have been made to identify and characterize metabolic quantitative trait loci
(mQTLs) in tomato, with a focus on primary and secondary metabolites [10,22,30,44,48,49]. In addition,
QTLs for volatile organic compounds from tomato fruit [24,50–52] and acyl sugars in tomato leaf
trichomes have been defined [53,54], with further studies focusing on natural variation [54–58] and
cuticle composition [59]. A series of genome-wide association studies (GWAS) contributed to assessing
the effects of domestication and crop improvement on the fruit metabolome [15,46,47,59–62]. Despite
all these studies, relatively few investigations have hitherto aimed at understanding the genetic basis
of lipid composition in tomato fruit, with few studies mainly focused on cuticular lipids [17,59,63,64].

Here, we investigated correlations between different classes of metabolites and phenotypic
traits in fruits, combined with expression analysis of lipid-related genes in tomato fruits and leaves.
The generated network partially validates previously discovered correlations and presents new ones.
For example, a QTL for brix (Brix9-2-5) deriving from green-fruited tomato species increases glucose

174



Metabolites 2020, 10, 152

and fructose contents in cultivated tomato fruits [65]. We identified in our network significant positive
correlations of brix with different sugars (Supplementary material Table S2). Additionally, we observed
strong correlations between amino acids (Gly, Ile, Val, Thr, and Ser), with an average r-value of 0.78
and small percentage of negative interactions of correlations within the class of secondary metabolites,
in agreement with previous studies [22,31,65].

Large classes of lipophilic compounds, similarly as specialized metabolites, display a considerable
diversity across different plant species, e.g., isoprenoid-derived compounds are considered “secondary”
metabolites produced in a cell-specific manner and are not directly involved in cell growth and
development [13]. Our results showed a high number of significant correlations (30.8% of all) between
lipophilic and specialized compounds. The number of significant correlations between lipids and other
metabolic traits is smaller.

Several yield-related traits showed correlations to galactolipids and to one phospholipid. Tomato
fruit as an organ, unlike maize cobs, for example, does not store much lipids. Unlike seeds, tomato
fruit and leaf cells do not accumulate high amounts of storage lipids. Lipophilic compounds in tomato
fruits and leaves participating mainly in signaling, membrane structure, and development [66–69].

Furthermore, lipids, similarly to secondary metabolites, were less correlated with phenotypic
traits (Figure 1). It has been shown experimentally that the variability in secondary metabolites does
not impact morphological and yield-related traits [21,70,71]. Therefore, the ability to change lipid
composition or levels in tomato fruits would be a valuable tool for improving fruit quality and flavor.
For example, the composition of fatty acids can be significantly changed without altering the overall
plant morphology [72]. Nevertheless, versatility of lipophilic compounds might indirectly affect traits
like shelf-life, if cuticle lipids are changed [73]. Until now, the influence of lipophilic compounds on
overall plant phenotype remains unclear.

The connection between secondary metabolites and lipids seems to be more direct since changes
in one compound class can have an effect on the other. Experimental evidence has already highlighted
the close connection between secondary metabolites and cuticle lipids [42], however, no experimental
validation exists of the relationship between those two metabolic classes in fruit pericarp.

In our data, we identified several negative correlations between lipid-derived volatiles and various
TAGs. The observations here confirmed previous finding in tomato fruit describing linkage between
decreasing levels of TAGs and simultaneously increasing levels of volatiles originating from lipids [44].
In tomato fruit some volatiles are linked to overall liking and flavor intensity [25].

In our network, we observed strong correlations within the lipid class. Lipophilic compounds
correlate mostly positively between each other. For example, most of the correlations between
galactolipids and glycerolipids are positive. However, phospholipids showed numerous negative
correlations with all other classes. These results indicate that phospholipids are functionally the most
distinct lipid class.

3.2. Network Analysis: Combining Metabolite Profiling and Expression for Gene Discovery

Plant lipid metabolism is constantly under investigation. In the well-studied model plant
A. thaliana only around 40% of the 700 genes putatively annotated as lipid related are functionally
characterized. In other plant species like tomato, that number is much smaller [74].

Recently we applied a quantitative genetic strategy to a S. pennellii IL population and mapped
more than 160 various lipid species belonging to 10 different classes, with a total of 1528 and 428
mQTLs in fruit and leaf, respectively [44]. Here, we combined lipid profiling in leaf and fruit tissues
across 76 ILs with gene expression analysis in order to identify genes involved in lipid biosynthesis.

To validate our approach, we checked whether our data confirmed previously proven correlations.
We identified connections between a class III triacylglycerol lipase (Solyc12g055730) and various TAGs
(TAG 48:2, TAG 58:0, TAG 48:3). It has been suggested that the enzyme catalyzes TAGs for further
volatiles biosynthesis [44].
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Our results highlighted several other lipid-related candidate genes in fruits and leaves (Figure 4).
In tomato fruit, for example, the eQTL of lipase (Solyc09g091050) and mQTL of DGDGs and
phospholipids confirmed high correlation between the gene and DGDG 36:4 (–0.46). Further validation
of the gene’s function is required.

Furthermore, we identified a high number of lipid-related genes that correlated positively
with TAGs. For example, the gene putatively annotated as acyl-ACP thioesterase (Solyc12g006930)
correlates positively with nine TAGs with an average r-value of 0.43. The enzyme is essential in
the process of chain termination during de novo fatty-acid synthesis [75]. Another example is
the 1-acyl-sn-glycerol-3-phosphate acyltransferase gene (GPAT) (Solyc11g065890), which correlated
with 18 unsaturated TAGs. The A. thaliana ortholog (At3g57650) was shown to be involved in
phospholipid and TAG biosynthesis [76,77]. In tomato, GPAT catalyzes acylation at the sn-1 position of
glycerol-3-phosphate to produce lysophosphatidic acid (LPA) with subsequent TAG synthesis [78].
For the same gene we found a correlation between level of expression from leaf dataset and MGDG
32:6. Differences in connections depending on the tissue type could suggest altered function of the
same gene in fruits and leaves.

Interestingly, our data revealed mainly positive correlations between expression of lipid-related
genes and levels of lipophilic compounds in tomato fruit, whereas in tomato leaves these were mostly
negative (Supplementary material Table S3). This may suggest that the genes involved in biosynthesis
and regulation of lipid metabolism are generally different between fruits and leaves. These results are
supported by a higher number of identified mQTLs in fruit compared to leaves [44]. This may indicate
that lipid-related genes were less affected in leaves than in fruits in the context of the domestication
process [79]. This could further mean that tomato fruits as sink tissues, which are dependent on carbon
supply from source tissues, might need a tighter regulation of lipid production, compared to tissues like
leaves where carbon is assimilated, making a flux to lipid metabolism “shorter” and more flexible [80].

In our leaf dataset, a high number of lipid-related genes were found to be correlated mainly with
phospholipids and galactolipids compared to other subclasses. Galactolipids, for instance, represent the
most abundant lipid class in thylakoid membranes, organelles specifically in leaves [81]. For instance,
in our study we identified correlations between phospholipids and phospholipid-translocating flippase
(Solyc01g011100), diacylglycerol kinase (Solyc01g096500), and lipid transfer proteins (Solyc03g119210,
Solyc10g075070). Moreover, Solyc03g119210 correlates with galactolipids. Another lipid-related
gene candidate expressed in tomato leaves—3-ketoacyl CoA thiolase 1 (Solyc09g061840)—exposes
correlations with DAGs and phospholipids [82]. The gene ortholog in A. thaliana was suggested to
be involved in fatty-acid beta-oxidation [83]. Several other lipid-related genes such as particle serine
esterase (Solyc04g077180) [84], cyclopropane-fatty-acyl-phospholipid synthase (Solyc04g056450) [85],
acyl-CoA-binding protein (Solyc08g075690) [86], and long-chain fatty alcohol dehydrogenase
(Solyc09g090350) [87] showed correlations with various phospholipids, galactolipids, and glycerolipids
(Supplementary material Table S3).

It has been observed that lipid metabolism could be genetically regulated on intra-class and
inter-class levels [44]. We have identified several examples of genes following the pattern of
intra-class level regulation such as GPAT (Solyc11g065890), which correlates with 18 TAGs. In contrast,
the pattern of inter-class regulation was followed by lipid transfer protein gene (Solyc03g079880) or
3-ketoacyl CoA thiolase 1 (Solyc09g061840), which contributes to regulation of two different lipid
subclasses simultaneously.

In this study, we evaluated metabolic trait correlations and performed global analysis of trait
associations across a S. pennellii IL population. This is by no means the first time that network analysis
has been used for evaluation of the relationships between traits in wide genetic populations, with many
previous examples in Arabidopsis, potato, and maize [88–90]. Besides, the analysis has been applied
for a range of different traits and tissue types in tomato populations [30,31,45]. However, here we
included for the first time three major different lipid classes and revealed several insights concerning
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the interrelation of traits from yield-associated traits, primary, and secondary metabolism, volatiles
with lipids.

Our network using correlation between gene expression and metabolite levels combined with
DNA sequence analysis highlighted several candidate genes putatively involved in lipid biosynthesis
or regulation. The presented results complement previous studies regarding metabolic traits in a
S. pennellii IL population [10,22,30,44,45] and can be used for expanding the knowledge of lipid
metabolism in tomato.

4. Materials and Methods

4.1. Plant Material

Data used in this study were based on S. pennellii ILs. The S. pennellii IL population was created
by replacement of marker-defined genetic regions of the wild species S. pennellii with homologous
fragments of the cultivated tomato S. lycopersicum (M82), representing whole wild-genome coverage of
S. pennellii [16].

We used already available data for primary and secondary metabolites, lipids, and phenotypic
traits. The data were obtained using a population grown in the Western Galilee Experimental Station
in Akko, Israel, in a completely randomized design with one plant per m2. The field was irrigated with
320 m3 of water per 1000 m2 of field area throughout the season. The harvest of fruit was done when
80%–100% of tomatoes were red [16]. All the data were obtained from peeled-off fruit pericarp. Primary
and secondary metabolites were available for three independent seasons: 2001, 2003, and 2004 [30,45].
Lipids data were available for seasons 2001 and 2003 [44]. Yield-related traits were available for seasons
2001 and 2004 [30], and flower-, seed- and fruit-related phenotypic traits—for season 2004 [30,91].

The data for volatile compounds were obtained from an S. pennellii IL population [10]. All lines
were grown in randomized, replicated plots in three different sites (Gainesville, Citra, and Live Oak,
Florida) over the seasons of 2002 to 2004. Volatile data we focused on in our study were consistently
available only for season 2003. We also used available data for volatiles of interest for season 2004.
Plants were grown using standard commercial practices in raised plastic mulched beds. Fruits from all
plants for each line were combined and analyzed as they reached the red ripe stage [10].

Transcriptomic data across S. pennellii ILs RNA-seq of 1431 lipid-related genes from young leaf [47]
and fruit peeled-off pericarp were obtained under http://ted.bti.cornell.edu [46]. We selected all
expressed lipid-related genes across the tomato genome (based on GO). We extracted 647 and 786
lipid-related genes from leaf and fruit datasets, respectively.

4.2. Correlation Analysis

All metabolite and transcript values used for correlation analysis correspond to the standard scores
of the log transformed data. Spearman correlation matrices were calculated in R (R Development Core
Team, 2010) using the cor function of the stats package (https://www.rdocumentation.org/packages/
stats). For the trait/trait correlations we used a critical p-value of 0.05, since it is a commonly used
threshold for statistical analysis. Correlation p-values were obtained by performing a permutation
test based on Spearman correlations using the using the perm.cor.test function of jmuOutlier package
(https://www.rdocumentation.org/packages/jmuOutlier/versions/2.2/topics/perm.cor.test), set for 20,000
permutations. To select the most meaningful correlations for the network analysis, arbitrary cut-offs
were set to an absolute correlation coefficient higher than 0.3 and 0.4 for trait/trait and trait/transcript
networks, respectively. We set up the cut-off for trait/trait correlations so that known correlations
would be incorporated in our network. Approved significant correlation between brix and sugars
were shown before [65]. In our network the average correlation between brix and sugars were 0.378.
Additionally, we used a relatively relaxed correlation coefficient threshold of 0.3, because we were
integrating data from different platforms. For trait/transcript cut-off 0.3 we reported in total 1537
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correlations with lipid classes. To get more insight on some of these correlations we decided to use a
stronger cut-off of correlation coefficient (≥0.40).

Depending on the measurement or dataset, we had different amounts of replicates for the different
traits in the introgression lines. For GC-MS replicate number was between 1 and 11, for LC-MS between
1 and 12, for lipids between 3 and 4, for phenotypic traits between 1 and 12 and for volatiles always 1.
The number of replicates for M82 wild type was usually much higher.

The metabolite/metabolite network plot was produced using Cytoscape version 3.6.1 with nodes
representing different metabolites and phenotypic traits and edges representing pairwise correlation
above the set threshold. All metabolites and transcripts exhibiting at least one pairwise correlation
above the metabolite/transcript correlation network cut-off were selected to be represented in the
heatmap produced using the pheatmap (https://CRAN.R-project.org/package=pheatmap) package in R.

4.3. Promoter Analysis

Promoter analysis of Solyc05g050710 and Solyc09g091050 was performed on the accessions
S. lycopersicum (M82) and S. pennellii (LA0716). Alignment of the promoter region of Solyc05g050710
and Solyc09g091050 was done with CLUSTALW (http://www.genome.jp/tools/clustalw/).

4.4. Trait Classes Used for Correlations

Phenotypic traits were divided to flower traits (anther length, anther width, anther length/width
ratio, ovary length, ovary width, ovary length/width ratio, style length, style width, style length/width
ratio), seed traits (seed length, seed width, seed length/width ratio, seed weight, seed number
per fruit, seed weight per fruit, seed number per plant, seed weight per plant, seed number per
fruit unit, inflorescence, flowers per inflorescence, flowers per plant), fruit-related (fruit length,
fruit width, fruit length/width ratio, fruit pericarp thickness, fruit length/pericarp thickness
ratio, fruit width/pericarp thickness ratio, fruit locule number) and yield-related ((brix (BX),
brix yield (BY), plant weight (PW), total yield (TY), harvest index (HI), biomass (BM), fruit number
(FN), red fruit weight (RED), earliness (EA), mean fruit weight (FW)) subgroups. Specialized
metabolites were divided to flavonoids, glycoalkaloids, phenolics, N-containing compounds,
hydroxycinnamate derivatives, acyl sugars, polyamines, and unspecified compounds subgroups,
lipophilic compounds to trialycglycerols, diacylglycerols, phospholipids, digalactoyldiacylglycerols,
monogalactoyldiacylglycerols subgroups, and volatile compounds to carotenoid-, lipid-, and amino
acid-derived subgroups. Volatile compounds were divided to carotenoid-, lipid-, and amino
acid-derived subgroups.

Supplementary Materials: The following are available online http://www.mdpi.com/2218-1989/10/4/152/s1; Figure
S1: Percentage of positive and negative correlations in overall metabolic network, Figure S2: Percentage of positive
and negative correlations between lipophilic compounds and secondary metabolites, Figure S3: Percentage of
positive and negative correlations within the class of lipophilic compounds. Table S1: classes and subclasses
of metabolic and phenotypic traits used for the network analysis, Table S2: All identified correlations between
metabolic and phenotypic traits used for the network analysis. Table S3: correlation between lipid-related genes
in fruits and leaves.
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Abstract: Tomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a
postharvest level can claim up to 50% of the total production worldwide. Due to the environmental
risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which
is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms.
Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA). In
tomato plants, BABA induces resistance against various fungal and bacterial pathogens and different
methods of application result in durable protection. Here, we demonstrate that the treatment of tomato
plants with BABA resulted in a durable induced resistance in tomato fruit against Botrytis cinerea,
Phytophthora infestans and Pseudomonas syringae. Targeted and untargeted metabolomics were used to
investigate the metabolic regulations that underpin the priming of tomato fruit against pathogenic
microbes that present different infection strategies. Metabolomic analyses revealed major changes
after BABA treatment and after inoculation. Remarkably, primed responses seemed specific to the
type of infection, rather than showing a common fingerprint of BABA-induced priming. Furthermore,
top-down modelling from the detected metabolic markers allowed for the accurate prediction of
the measured resistance to fruit pathogens and demonstrated that soluble sugars are essential to
predict resistance to fruit pathogens. Altogether, our results demonstrate that metabolomics is
particularly insightful for a better understanding of defence priming in fruit. Further experiments are
underway in order to identify key metabolites that mediate broad-spectrum BABA-induced priming
in tomato fruit.

Keywords: tomato; metabolomics; biochemical phenotyping; priming; BABA; Botrytis cinerea;
Phytophthora infestans; Pseudomonas syringae

1. Introduction

The increase in world food demand and the indiscriminate use of chemical fertilisation highlight
the need to adopt sustainable crop production strategies. Given the major threat of phytopathogenic
microbes to food production [1] and ecosystem stability worldwide [2], novel practices are needed
to combat these threats. Tomatoes are a highly consumed fruit that represent the eleventh largest
commodity, with nearly 183 million tons produced in 4 million hectares in 2017 [3]. Crop yields are
strongly affected by filamentous and bacterial pathogens, including the fungus Botrytis cinerea, the
oomycete Phytophthora infestans and the bacterium Pseudomonas syringae. These pathogens can claim
the complete loss of the crop within days of exposure [4–6]. Currently, strategies of control against
these biological threats are based on the use of chemical pesticides applied at a pre-harvest stage.
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However, up to 50% of tomato losses occur at a post-harvest stage [7] due to, among many reasons,
the inability to use chemicals at this stage due to residue toxicity. Therefore, new methods of disease
control are needed in order to control infections by pathogenic microbes. Exploiting the plant immune
system can represent an effective strategy to provide sustainable disease protection [8,9].

Plants are able to defend themselves against pathogens thanks to their innate immune system [10].
In addition, plants are able to sensitise their immune system to protect themselves against biotic
threats. This is known as the priming of defence, which is commonly referred as the adaptive part
of the plant immune system [11]. Priming occurs after the perception of stimuli that lead to an
enhanced responsiveness of defence mechanisms upon subsequent attack [12]. Among stimuli, the
chemical agent β-aminobutyric acid (BABA) has been widely studied for its capacity to result in
broad-spectrum-induced resistance (IR) in a broad range of plant species [13]. BABA is a non-protein
amino acid that has been demonstrated to be a plant product [14]. The work done in the model plant
Arabidopsis (A.) thaliana revealed that this outstanding performance is due to the priming activity
of multiple signalling pathways [13]. BABA primes salicylic acid (SA)-dependent defences and the
deposition of callose, which result in effective protection against biotrophic and necrotrophic pathogens,
respectively [15,16]. Importantly, it has been reported that, in many plant species, treatments with
BABA result in a stress phenotype that manifests as changes in plant development (e.g., growth,
yield, seed production) [17–19]. The discovery of the molecular receptor of BABA in A. thaliana sheds
light into the reasons behind the stress response associated with this chemical: BABA binds to an
aspartyl-tRNA synthetase and blocks the enzyme, consequently triggering the accumulation of its
canonical substrate, uncharged tRNA, which leads to the activation of the stress response associated
with amino acid imbalance in the plant [20]. Moreover, high concentrations of BABA or in specific plant
species such as potatoes, can also lead to stress, as the chemical directly activates defence mechanisms,
which is a costly trade-off in terms of energy resources to the plant [19,21].

In the tomato system, BABA is known to be able to induce resistance against at least 10 different
pests and pathogens, including B. cinerea, P. infestans and P. syringae [13]. Similarly to what has been
described in A. thaliana, priming of SA-dependent mechanisms has been reported [13]. However, it
is likely that further priming mechanisms are responsible for its capacity to induce broad-spectrum
resistance. Moreover, studies have demonstrated that priming of BABA is long-lasting [22]. For
instance, it has been reported that, after the treatment of tomato seedlings, BABA-IR against B. cinerea
is maintained for weeks in leaves [18]. Moreover, analysis of the resistance phenotypes in tomato fruit
demonstrated that BABA-IR reaches the fruiting stages, as tomatoes from plants that had been treated
with BABA at the seedling stage were more resistant to B. cinerea than the control [23].

Treatments of plants with BABA did not impact yield or fruit size but resulted in delayed fruit
production and ripening [23]. In fruit, durable induced resistance has been linked to the accumulation
of specific metabolites. For example, it was reported that, after treatment of seedlings with BABA, there
was an accumulation of metabolites associated with alkaloid, terpenoid or jasmonate pathways [23]. It
was therefore speculated that these metabolites could be responsible for the enhanced resistance, and
therefore could mark the priming fingerprint in tomato fruit [24]. Importantly, however, the metabolites
responsible for expression of priming of defence mechanisms after infection still remain unknown.
Here, we aimed to determine the metabolic shifts that underpin the BABA priming of immune
responses against pathogens of a different nature that infect fruit, including necrotrophic and biotrophic
microbes. A combination of targeted biochemical phenotyping for major plant compounds involved in
central metabolism and untargeted metabolomics could unveil discriminant metabolic biomarkers that
respond to BABA priming and inoculations. To the best of our knowledge, this is the first metabolomic
study with multiple fruit pathosystems in relation to the priming of immune responses.
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2. Results

2.1. Effect of BABA on Broad-Spectrum Resistance in Fruit

We determined whether the treatment of tomato plants with BABA resulted in a durable induced
resistance in tomato fruit against the fungal necrotrophic pathogen B. cinerea (Bot), the biotrophic
oomycete P. infestans (Phy) and the hemibiotrophic bacteria P. syringae pv. tomato (Pst). Box-plots
showing sample datapoints and mean of the scored symptoms (n = 11) revealed that BABA-treated
plants produced fruit that were statistically more resistant to Bot, Phy and Pst (P < 0.01) than the
controls (Figure 1). This indicates that BABA is able to induce resistance in tomato plants for a durable
fruit protection against pathogens that have different infection strategies.

Figure 1. ß-aminobutyric acid (BABA) primes tomato fruit for a durable disease resistance against
three different pathogenic microbes. (A) photographs showing tomato fruit 2 days after infection with
Botrytis cinerea (Bot, left), Phytophthora infestans (Phy, middle) or Pseudomonas syringae pv. tomato (Pst,
right). (B) box-plots of disease symptoms from fruit that originated from plants treated with water or
BABA (500 μM) then inoculated with water as a mock control or with Bot (left), Phy (middle) and Pst
(right). Symptoms were scored 2 days after inoculation from 11 biologically replicated fruit (n = 11).
Asterisks indicate statistically significant differences between water- and BABA-treated plants (t-test, P
< 0.01).

2.2. Effect of BABA on Fruit Yield and Development

We investigated whether the treatment of tomato seedlings with BABA could impact fruit
development and yield. As described previously [23], no differences were found in fruit size
(Figure 2A), but delayed fruit production (Figure 2B) and fruit ripening (Figure 2C,D) were reported.
However, it was observed that, at 13 weeks of growth, the proportion of green fruit was statistically
significantly higher in BABA-treated plants (40%) compared to control plants (33%) (Figure 2D),
indicating that fruit production did not slowdown in BABA-treated plants after ripening processes had
begun (Figure 2D). This might suggest a positive trade-off for BABA treatment on fruit development.
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Figure 2. Effect of BABA on fruit yield and development. (A) fruit size (cm) from plants treated with
water (blue) or 500 μM BABA (yellow). NS: not statistically significant (t-test, P > 0.05). (B) number
of green fruit produced from water (blue)- or BABA (yellow)-treated plants after weeks of growth.
Asterisks indicate statistically significant differences (t-test, P > 0.05). (C) number of ripped fruit
produced from water (blue)- or BABA (yellow)-treated plants after weeks of growth. Asterisks indicate
statistically significant differences (t-test, P < 0.05). (D) Proportion of fruit at different stages of fruit
ripening in control and BABA-treated plants, expressed as percentage of occurrence per treatment at
different weeks of growth. Asterisks indicate statistically significant differences between distributions
at specific timepoints (Chi-square test, P < 0.05).

2.3. Global Metabolomics after BABA Treatment and After Inoculation

In order to substantiate the disease resistance after BABA treatment (Figure 1), we investigated fruit
metabolism from ethanol extracts of freeze-dried tomato pericarps (n = 4) using i) targeted biochemical
profiling of several major compounds involved in the central metabolism [25,26], and ii) untargeted
metabolomics of semi-polar metabolites, including specialised compounds, via ultra-high-performance
liquid chromatography coupled to electrospray ionisation orbitrap high-resolution mass spectrometry
(thereafter referred to as LCMS). For this, the first, second and third fruit developed in the plants
were used for pathoassays with B. cinerea (Bot), P. infestans (Phy) and P. syringae (Pst), respectively.
Unbiased processing of LCMS data, followed by filtering of the most reliable variables, generated
6887 metabolomic features (see Materials and Methods). A global overview of metabolic profiles was
visualised by an unsupervised multivariate statistical method, Principal Component Analysis (PCA),
for all combinations of priming and pathosystems (Figure 3).

188



Metabolites 2020, 10, 96

 
Figure 3. Global metabolomic changes after BABA treatment and after pathogen inoculation. Principle
component analysis (PCA) score plots (n = 4) of 6887 LCMS-based metabolomics features (A) and 11
major compounds analysed by targeted biochemical phenotyping (B). Maximal variance explained by
each PC is given in brackets.

Firstly, for the 6887 metabolomic signals (Figure 3A), PCA explained 35% of the maximal variance
of the dataset and resulted in a clear differentiation of the water and BABA treatments, thus suggesting
a greater impact on metabolomic profiles for direct BABA application as compared to other conditions.
This was confirmed by a univariate statistical method through a two-factor ANOVA (P < 0.05), which
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quantitatively resulted in more statistically significant markers for the BABA factor (3052; 44%) than
for the inoculation factor (2309; 33%) or the interaction (401; 6%) (Table 1).

Table 1. Univariate statistical analysis of the metabolomic features and major compounds.

Two factors ANOVA
(P < 0.05)

BABA
(Water vs. BABA)

Inoculation
(Mock vs. Bot/Phy/Pst)

BABA × Inoculation

Metabolomic
features Total 6887 3052 2309 401

Major compounds Total 11 0 4 0

Secondly, we tested 10 major compounds involved in central metabolism (sucrose, fructose,
glucose, starch, fructose-6-P, glucose-6-P, glutamate, malate, fumarate and total proteins), as well
as total polyphenols. PCA explained 83% of the maximal variance in the dataset and resulted in a
separation of fruit by developmental characteristics (i.e., the first and second fruit versus the third fruit)
rather than by pathosystems (Figure 3B). Hence, this multivariate differentiation indicates that the
profiles of primary metabolites mostly respond to the developmental stage of the fruit, which supports
the idea that central metabolism is tuned to fruit growth [27–29]. Complementarily, two-factor ANOVA
(P < 0.05) only generated significant markers for the inoculation factor (4; 36%), including sucrose,
fructose, glutamate and fumarate (Table 1 and Figure S1). Interestingly, such markers dropped upon
Bot and Phy infections, while they were not drastically affected by Pst infection (Figure S1). Besides,
fructose pools remained low across all treatments within the Pst pathoassay (i.e., third fruit). Altogether,
this indicates that fruit infection affects the pools of central metabolites and those changes depend on
the pathosystem.

Furthermore, a partial segregation of pathogen inoculations was observed on the PCA score plots
obtained for each pathosystem from a dataset combining LCMS and targeted analyses (Figure 4). This
was further exemplified by a supervised Partial Least Square Discriminant Analysis (PLS-DA) allowing
a better differentiation of pathosystems and priming treatments (Figure S2). Two-factor ANOVA
(P < 0.05) for each pathosystem not only confirmed that the BABA factor quantitatively outweighed the
inoculation factor and the interaction, but also showed that all these factors were substantial (Table 2).
Hence, this indicates that microbial challenges elicit distinct metabolic profiles. Overall, these results
reveal metabolic shifts in fruit upon BABA priming and after pathogen inoculation, notably towards
semi-polar biochemicals potentially involved in plant stress mitigation (i.e., specialised metabolites).

Table 2. Univariate statistical analysis for each pathosystem.

Two Factors ANOVA (P < 0.05)
BABA Inoculation

BABA × Inoculation
Water vs. BABA Mock vs. Pathogen

Botrytis cinerea Total 6998 2297 724 482

Phytophthora infestans Total 6998 1728 805 674

Pseudomonas syringae Total 6998 2097 322 313
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Figure 4. Partial segregation of pathogen inoculations for each fruit pathosystem. PCA score plots
(n = 4) of 6898 features (6887 electrospray ionisation orbitrap high-resolution mass spectrometry
(LCMS) variables + 11 major compounds) showing metabolomics overview between the three different
pathosystems. Maximal variance explained by each PC are given in brackets.
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2.4. Primed Responses to Specific Pathogenic Microbes

To gain more insight into BABA priming upon different fruit infections, we next performed
quantitative binary comparisons of metabolic markers for each pathosystem by comparing
water-treated, mock-inoculated fruit versus i) BABA-treated, mock-inoculated fruit, ii) water-treated,
pathogen-inoculated fruit, and iii) BABA-treated, pathogen-inoculated fruit. The resulting statistically
significant metabolic markers (t-test, P < 0.01) were used to construct Venn diagrams showing common
and specific markers (Figure 5A). Very few overlaps were observed between BABA (red) and pathogen
(blue) conditions (2, 2 and 0 for Bot, Phy and Pst, respectively) and between pathogen and BABA priming
(green) conditions (7, 4 and 4 for Bot, Phy and Pst, respectively). Instead, several markers overlapped
between BABA treatment and BABA priming (118, 12 and 158 for Bot, Phy, and Pst respectively),
and most markers were found either for BABA treatment (Phy and Pst) or for BABA priming (Bot)
(Figure 5A). This suggests that BABA results largely in the accumulation of metabolites that could be
used during the expression of priming. In addition, metabolic markers that specifically responded to
BABA priming in the different fruit pathosystems were compared through a Venn diagram in order
to reveal the common metabolic signatures of BABA priming against the three different pathogens
(Figure 5B). Strikingly, no common markers were found upon the three infections, although very few
markers were observed between Pst and Bot (10), Pst and Phy (3), and Bot and Phy (1). Hence, the
primed responses are likely tailored to the encountered pathogenic microbes.

 
Figure 5. The primed responses are tailored to the encountered pathogenic microbes. (A) Venn diagrams
showing quantitative binary comparisons were performed for each pathosystem (t-test, n = 4, P < 0.01)
between water-treated, mock-inoculated fruit versus BABA-treated, mock-inoculated fruit (BABA, red);
water-treated, pathogen-inoculated fruit (pathogen, blue); BABA-treated, pathogen-inoculated fruit
(priming, green). (B) Venn diagrams showing the resulting priming clusters for each fruit pathosystem.

2.5. Putative Annotation of Metabolic Markers

We then conducted a tentative annotation of the 14 metabolic markers that were common to Pst and
Bot (10), Pst and Phy (3), and Bot and Phy (1) based on their detected m/z by high-resolution orbitrap-MS
(Table 3). A Kruskal–Wallis test with correction for false rate discovery (Benjamini–Hochberg, P < 0.05)
confirmed that these 14 metabolic markers showed statistically significant variations that were
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visualised by bar charts (Figure S3). Putative prediction of compounds and pathways indicated several
markers that belonged to the plant defence metabolism, including stress hormones and flavonoids.
Interestingly, fungal pathogens (Bot, Phy) were associated with the induction of the putative marker
jasmonoyl–isoleucine. Besides this, (hemi)biotrophic microbes (Pst and Phy) triggered the accumulation
of putative salicylic derivatives and flavonoids (Figure S3). The Pst-related primed response further
correlated with the depletion of a putative cytokinine. Hence, our results suggest that BABA priming
against three different fruit pathogens rely on the induction of pathways involved in the defence
hormonal metabolism. Further analytical studies are required to confirm the putative annotation of
these priming markers.

2.6. Modelling of Resistance to Multiple Fruit Pathogens

Using a predictive biology approach based on generalised linear models [30], we aimed to
determine whether resistance to fruit pathogens could be predicted by the detected metabolic markers
(Figure 6). Based on those models (Figure 6A), good correlations were observed between measured and
predicted values (mean = 0.87), and were statistically different from correlations based on randomly
generated resistance (t-test, P < 2.2 × 10−16), which indicated the robustness of the predictions.
Furthermore, according to the occurrence of metabolic markers in the models (Figure 6B), fructose
appeared to be the best positively correlated predictor (appearing in 99% of the models), as well as
sucrose, to a lesser extent (appearing in 41% of the models) (Table S1). Most predictors (32 out of 34)
also showed a high statistical significance from a Kruskal–Wallis test with correction for false rate
discovery (Benjamini–Hochberg, P < 0.05, Table S1). This corroborates the outcome from the two-way
ANOVA method (Tables 1 and 2, and Figure S1). Hence, this indicates that soluble sugars involved
in the central metabolism are essential to predict resistance to fruit pathogens. The analysis of such
compounds is therefore critical for studies involving fruit–pathogen interactions. In addition to sugars,
other metabolic predictors appearing in more than 25% of the models showed positive (19 markers)
and negative correlations (15 markers) (Figure 6B and Table S1). Further analytical studies are required
to annotate and/or identify such markers. Nonetheless, a tentative annotation of the top 15 predictors
based on their detected m/z by high-resolution orbitrap-MS is presented in Table S1. Unsurprisingly,
the resulting putative metabolites belonged to defence pathways (i.e., phenolics, flavonoids, terpenes,
amino acid conjugates) and lipids. This suggests that immune perception and signalling seem pivotal
in predicting resistance to fruit pathogens.
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Figure 6. Prediction of biotic resistance from metabolic markers. (A) correlation between predicted and
measured resistance based on generalised linear models. (B) occurrence (%) of the metabolic markers
in the models that showed a positive or negative correlation with the resistance to fruit pathogens.
Details of untargeted markers are presented in Table S1.

3. Discussion

In the present study, we evaluated the metabolic composition of tomato fruit in relation to the
BABA-priming of young tomato plants and the infection of three different pathogens at the fruit
stage. To the best of our current knowledge, this is the first metabolomic study on three different fruit
pathosytems interacting with BABA priming.

Firstly, untargeted metabolomic profiling indicated a great impact of BABA treatment on metabolic
profiles (Figure 3A and Table 1). Hence, the treatment of young tomato plants with BABA metabolically
primes fruit tissues, and this stimulation was likely more critical than it was for the pathogen
inoculations. This might result from the hormonal nature of BABA, which deeply affects plant
metabolism, or from stress-related responses that are activated by the chemical itself, as it has been
reported previously for high concentrations of BABA or in another Solanum species (i.e., potato) [21].
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Secondly, targeted analyses of compounds involved in central metabolism demonstrated that the
primary metabolic pools responded to the pathosystem inoculations, which reflected the developmental
stage of the fruit, as exemplified by the multivariate distinction between the first/second fruit and the
third fruit (Figure 3B). In complement, fructose, sucrose, fumarate and glutamate showed statistically
significant variations upon inoculation (Table 1). Since fruit of slightly different ages harbour different
profiles of primary compounds, we could assume that central metabolism is tuned to fruit growth,
more specifically soluble sugars, amino and organic acids. This agrees with previous phenotyping and
modelling studies on tomato that demonstrate metabolic shifts in carbon metabolism in the growing
fruit [25,28,29,31]. Furthermore, it has been recently confirmed through transcriptomics and proteomics
that the developing fruit not only undergoes metabolic shifts in central pathways, but also redox
metabolism, such as for pyridine nucleotides that are detrimental to energy homeostasis [27,32,33].
However, major questions remain regarding the nature and dynamics of shifts in central metabolism
upon pathogen inoculation. It is reasonable to expect that further investigations involving a more
comprehensive view of fruit primary metabolism and how microbial challenges dynamically affect
such pathways might significantly improve our understanding of the relationships between central
metabolism and fruit–pathogen interactions. In turn, this should provide novel strategies to obtain
fruit of better quality and stress resilience [32].

Upon pathogen challenge, while BABA is effective in leaf tissue, very little is known about its
contribution in fruit. According to our fruit pathoassays (Figure 1), the treatment of tomato seedlings
with BABA resulted in a broad-spectrum resistance against microbes that have different infection
strategies, including necrotrophic or biotrophic, and fungal, oomycete or bacterial pathogens. Further,
the primed responses are tailored to the encountered pathogen, as exemplified by the little overlap
between the different primed states of the three pathosystems (Figure 5). This implies that the induced
resistance state is very specific, which strongly suggests that BABA primes multiple signalling pathways
through which such different microbes are resisted in the fruit. Among those metabolic responses,
hormonal regulations appear detrimental to BABA-induced immunity [23,24,34]. Accordingly, putative
annotation of metabolomic markers indicates that hormone conjugates, including salicylic and jasmonic
derivatives, and other defence compounds (i.e., flavonoids), are induced upon infection and BABA
treatment (Table 3). Given the diverse set of immune responses that the fruit deploys against different
microbial stresses, our study highlights the adaptability of priming as a “stimulus-dependent plasticity
of response traits” [35]. For this reason, the exact underlying molecular mechanisms of priming are
difficult to describe precisely and their description requires further research [36].

Whilst BABA treatment in many plant species results in a stress phenotype that manifests through
developmental alterations (e.g., growth, yield, seed production) [17–19], we found no differences upon
BABA application in fruit size, but observed delayed fruit production or fruit ripening (Figure 2), as
described previously [23]. However, after the number of ripened fruit had equalised between both
treatments, BABA-treated plants continued producing fruit at a much faster rate than the water-treated
plants (Figure 2). Seemingly, through its induction of immune responses, BABA thus provides a
positive fitness element for tomato plants. This trade-offmight emerge, in part, from the stimulation
of various signalling pathways, more specifically the ones that link to the central metabolism, such
as amino acids or carbohydrates [34]. As a result, BABA-treated plants would perform particularly
well. This agrees with what we know about plant perception of BABA in A. thaliana. The binding of
BABA by an aspartyl-tRNA synthetase blocks the enzyme, consequently triggering the accumulation
of its canonical substrate, uncharged tRNA, which leads to changes in amino acid pools in the plant,
therefore affecting primary metabolism [20]. Subsequent signalling modulations might result from an
alteration in amino acid precursors (e.g., ethylene, auxin) that would alter fruit production [37].

Despite its economic importance, the molecular mechanisms underlying the pathogenicity of
B. cinerea, P. infestans and P. syringae are poorly understood in fruit. From a computational systems
biology perspective, the study of plant–pathogen interactions involved structural and comparative
genomics, transcriptomics, and protein–protein interactions [38]. Further, high-resolution metabolome
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data and sufficient datapoints over time are essential to calculate metabolite coefficients and thus predict
metabolic fluxes [39]. Recently, genome-scale metabolic models of Solanum species (i.e., potato, tomato)
and Phy have been integrated to simulate the metabolic fluxes that occur during infection [40,41].
These studies yield insights into the molecular aspects of photosynthesis suppression by Phy via the
flux of carboxylation to oxygenation reactions, or the nutrient intakes by Phy during different phases
of the infection cycle. Interestingly, stage-specific profiles embedded in the joint metabolism of the
host and pathogen could potentially be refined by integrating the high-resolution metabolome data of
tomato infection [41]. Such elegant works involve leaf tissues. Here, we show that fruit metabolomics
and modelling can assist in addressing fruit–pathogen interactions. Using top-down modelling based
on the construction of generalised linear models [30], we demonstrate that metabolomics data can be
used to accurately predict the measured resistance to various fruit pathogens (Figure 6A). Besides,
through the evaluation of the occurrence of best predictors, our data indicate that soluble sugars, more
specifically fructose [42], and defence metabolites are pivotal to predict the resistance to fruit pathogens
(Table S1). Clearly, a more global systems biology approach based on a higher level of variation in the
conditions (e.g., multiple genotypes or priming treatments, various growth stages of the fruit, several
infection points) will shed some light on the underlying mechanisms of fruit–pathogen interactions.

Overall, our study validates the value of metabolomics and modelling approaches in the field of
phytopathological investigations. This work provides a great perspective for the structural elucidation
of the key metabolites involved in broad-spectrum BABA-induced priming in tomato fruit. Although
it was only possible to tentatively annotate metabolic biomarkers on the basis of detected HR-accurate
m/z (Table 3 and Table S1), our analytical and statistical approach can be further optimised for, e.g.,
metabolite identification through structural elucidation by NMR or targeted MS/MS analyses. A
combination of LCMS with purification steps (e.g., SPE cartridge, fractionation) could prove useful for
de novo identification.

4. Materials and Methods

4.1. Tomato Cultivation

Tomato (Solanum lycopersicum) Micro-Tom was used for all experiments described in this
publication. Seeds were incubated for 4 days in wet paper at 28 ◦C to promote homogeneous
germination. Germinates were then planted in individual 80 mL pots containing M3 soil. Plants were
grown in a controlled-environment greenhouse chamber with 16h of light, at 26 ◦C, and 8 h of darkness
at 21 ◦C, and 200 μM.m−1.s−1 light intensity. Experiments were performed from November 2017 until
May 2018 in the United Kingdom.

4.2. Biochemicals, Reagents and Treatments

All solvents and reagents used in this study were of analytical or MS grades. B-aminobutyric
acid (BABA) was obtained from Sigma-Aldrich (A4420-7). Treatments with BABA were performed
entirely as described in [23]. Briefly, 2 week-old tomato seedlings were soil-drenched with 8 mL per
pot of either water or 5 mM BABA solution, to generate a final concentration of 0.5 mm in the soil.
One week post-treatment, roots were carefully washed under running tap water and then plants were
transplanted into individual 2.2 L pots containing untreated M3 soil. Plants were allowed to grow for
between 9 and 12 weeks until the fruit turned red, at which point they were harvested and infected
with the different pathogens.

4.3. Fitness Parameters of Tomato Fruit

Growth and yield were assessed entirely as described in [23]. Assessment of fruit ripening was
done as described in [29], by classifying fruit in different levels of maturity by colour.
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4.4. Pathogens and Inoculations

Cultivations of Botrytis cinerea strain R16 [43], Phytophthora infestans 88,069 [44] and Pseudomonas
syringae pv. tomato DC3000 (Pst DC3000) [45] were done as described in the corresponding publications.
For inoculations with B. cinerea, the first fruit were used. Inoculations were performed entirely
as described in [23]. For infections with P. infestans, the second fruit were used. Inoculations were
performed by placing 10μl drops of a spore concentration of 5× 104 spores/mL onto the needle-wounded
tip of the tomato fruit. After infection, fruit were kept at 20 ºC in the dark. For P. syringae infections, the
third fruit were used. Inoculations were done by spraying bacteria onto the fruit in a concentration of
108 cells/mL in 10 mM MgSO4 and 0.05% (v/v) Silwet L-77. Infected fruit were kept in the dark at 25 ◦C.
Mock inoculations were performed by following the exact same protocols but without pathogens in
the solutions. Fruit were 56 days post-anthesis (dpa), 63 dpa and 70 dpa for the first, second and third
fruit, respectively.

Scoring of B. cinerea symptoms were performed entirely as described in [23]. Scoring of P. infestans
disease was done by classifying lesions into different categories of fruit colonization: Class 0; healthy,
Class I; necrosis associated with the lesion, Class II; necrosis and mycelium associated with the lesion,
Class III; necrosis and mycelium spread in the fruit. Scoring of Pst DC3000 disease was done by
classifying lesions into different categories of fruit damage: Class 0; healthy, Class I; turgent but cracking
fruit, Class II; cracked fruit, Class III; fruit tissue collapse. Disease severity rates were calculated from
the nominal lesion categories of four fruit per plant (n = 11), as described in [46]. Statistical analysis of
disease phenotypes was performed as described in [23].

4.5. Metabolite Extraction

For metabolome analysis, the first, second and third fruit developed by plants were used for
pathoassays with B. cinerea (Bot), P. infestans (Phy) and P. syringae (Pst), respectively. Experiments
on each type of fruit were separated by one week. Infections were performed as described above
when the corresponding fruit were fully ripened. Two days after inoculation with the different
pathogens, fresh pericarps were rapidly collected into 2 mL-microtubes, then flash-frozen in liquid
nitrogen and freeze-dried for 72 h (Pilote Compact, SARL CRYOTEC, Saint-Gély-du-Fesc, France).
Fine grinding of dried material was subsequently performed using a ball mixer for 2 min at 30 Hz
(Retsch Mill MM400, fisher scientific, Bordeaux, France) after adding two metal beads (Beads inox
AISI 400C 5 mm, CIMAP, Caen, France) to each tube (Micro-tube, 2 mL PP, Sarstedt, Germany). Ten
milligrams of each replicated sample were weighed into 1.1 mL-micronic tubes (MP32033L, Micronic,
Lelystad, Netherlands), randomised onto a 96-micronic rack (MPW51001BC6, Micronic, Lelystad,
Netherlands) then capped using a robotised capper–decapper (Decapper 193000/00, Hamilton, Bienne,
Switzerland). Each rack also contained an empty tube corresponding to the extraction blank. The
resulting micronics were then stored at −80 ◦C. Extraction of metabolites was conducted on four
biologically replicated pericarp samples (n = 4) using a robotised extraction method developed at
Bordeaux Metabolome Facility (https://metabolome.cgfb.u-bordeaux.fr/en, Villenave d’Ornon, France).
The robot was a bespoken piece of equipment that allowed for pipetting solvents, mixing, cooling and
centrifuging racks of micronics. After decapping the micronics, the extraction began by adding 300
μL of solvent A containing 80% ethanol and 0.1% formic acid (v/v) with 250 μg/mL methyl vanillate
as the internal standard. Racks were agitated on the robot (30 sec, 500 rpm) then placed for 15 min
into a sonicator containing ice-cold water (Elmasonic S300, Elma, Singen, Germany). Racks were put
back on the robot and centrifuged (5 min, 1350 g). The first round of extraction stopped by pipetting
300 μL of the resulting supernatant into new 1.1 mL-micronic tubes. A second round of extraction was
performed with 300 μl of solvent A, and the resulting pellet was finally washed with solvent B (50%
ethanol (v/v)). The micronics-containing supernatants were kept for filtration and the micronics with
the pellets were kept for further starch and total protein analysis.

Filtration was also robotised (Microlab STARlet, Hamilton, Bienne, Switzerland) and allowed
for the transfer of the supernatants onto a filtration 96-well sterile clear plate (MSGVS2210, 0.22 μM,
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Hydrophil. Low Protein Binding Durapore, Millipore, Molsheim, France) according to the supplier’s
instruction. Filtrates were subsequently collected into a new micronic tube. Finally, quality control (QC)
samples were prepared by robotically pipetting 15 μL of each sample into a single tube that was mixed
afterwards (Microlab STARlet, Hamilton, Bienne, Switzerland). Each rack was supplemented with a
micronic tube containing the QC mix. The QC sample was replicated six times along the project run.

4.6. Targeted Biochemical Phenotyping

Targeted analyses of sucrose, fructose, glucose, starch, fructose-6-P, glucose-6-P, glutamate, malate,
fumarate, total soluble proteins and total polyphenols were conducted on the HiTMe plateau at
Bordeaux Metabolome Facility. Measurements were based on coupled enzyme assays as described
previously [25,26], except for total soluble proteins that were evaluated via Bradford assay [47], and
total phenols that were measured colorimetrically using a redox reaction with Folin–Ciocalteu reagent
and gallic acid as the standard [48].

4.7. Untargeted Metabolic Profiling

Untargeted metabolic profiling by UHPLC-LTQ-Orbitrap mass spectrometry (LCMS) was
performed using an Ultimate 3000 ultra-high-pressure liquid chromatography (UHPLC) system
coupled to an LTQ-Orbitrap Elite mass spectrometer interfaced with an electrospray (ESI) ionisation
source (ThermoScientific, Bremen, Germany). The system was controlled by Thermo XCalibur v.3.0.63
software. Chromatographic separation was achieved at a flow rate of 350 μL/min using a GEMINI
UHPLC C18 column (150 × 2 mm, 3 μm, Le Pecq, Phenomenex, France) coupled to a C18 SecurityGuard
GEMINI pre-column (4 × 2 mm, 3 μm, Le Pecq, Phenomenex, France). The column was maintained at
35 ◦C and the injection volume was 5 μL. The mobile phase consisted of solvent A (0.05 % (v/v) formic
acid in water) and solvent B (acetonitrile) with the following gradient: 0–0.5 min 3% B, 0.5–1 min 3% B,
1–9 min 50% B, 9–13 min 100% B, 13–14 min 100% B, 14–14.5 min 3% B, 14.5–18 min 3% B. Ionisation
of samples was performed in both negative and positive mode with the following parameters: ESI-

(Heater temp: 300 ◦C, Sheath Gas Flow Rate: 45 (arb), Aux Gas Flow Rate: 15 (arb), Sweep Gas Flow
Rate: 10 (arb), I Spray Voltage: 2.5 kV, Capillary Temp: 300 ◦C, S-Lens RF Level: 60%), and ESI+

(Heater temp: 300 ◦C, Sheath Gas Flow Rate: 60 (arb), Aux Gas Flow Rate: 20 (arb), Sweep Gas Flow
Rate: 10 (arb), I Spray Voltage: 3.2 kV, Capillary Temp: 300 ◦C, S-Lens RF Level: 55%). MS full scan
detection of ions was operated by FTMS (50–1500 Da) at a resolution of 240,000. Prior to analyses,
the LTQ-Orbitrap was calibrated by infusing a solution of the calibration dependent of the ionisation
mode (Pierce© ESI Negative Ion Calibration Solution (ref: 88324); Pierce LTQ Velos ESI Positive Ion
Calibration solution (ref: 88323). The injection sequence started with three blank extracts, then three
QC samples, then one blank extract, and each group of samples was subsequently injected, followed
by a blank extract. Another two QC samples were injected throughout the analysis. In total, six QC
samples and 16 blank extracts were injected to correct for mass spectrometer signal drift, and to filter
out variables detected in blanks, respectively.

4.8. Processing and Statistical Analysis of Metabolomic Datasets

Processing of raw LCMS data using XCMS in R (v 3.6.1) [49] yielded 10,875 detected RT-m/z pairs
for ESI+ and 5,796 for ESI-. After data-cleaning (blank check, ΔRT < 60 s, Δm/z < 0.015 Da, CV QC < 30%),
6887 variables were retained for further chemiometrics. Both untargeted and targeted metabolomic
data were first normalised by median normalisation, cube-root transformation and Pareto scaling
using MetaboAnalyst v.3 [50] before applying multivariate and univariate statistical analyses [51]. The
normalised dataset is available as Supplemental Material 1. PCA and PLS-DA were performed with
MetaboAnalyst v.3 providing satisfactory validation parameters of the multivariate models (R2 > 0.87
and Q2 > 0.35). PC coordinates for metabolomic features that are responsible for PC1 and PC2 are
presented in Supplemental Material 2. Univariate statistical methods were performed using MeV
v.4.9.0. [52] at P < 0.05 for two-factor ANOVA and P < 0.01 for binary comparisons by t-tests. In
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addition, MarVis v 1 was used to confirm the statistically significant variation om the priming markers
through a Kruskal–Wallis test at P < 0.05 with correction for false discovery rate [53,54]. Putative
annotation of such markers was performed by screening the detected exact m/z against multiple online
databases, including METLIN chemical database (https://metlin.scripps.edu/) [55] and KNApSAcK
(http://kanaya.naist.jp/KNApSAcK/) [56]. The resulting predicted pathways were checked using the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

4.9. Top-down Modelling Approach

Generalised linear models were constructed in R (v 3.6.1) using the glmnet package (v 3.0-2) [30]
in order to identify potential links between detected metabolic markers and resistance to the fruit
pathogens. Those models were used to predict resistance values based on the detected metabolic
markers. Cross-validation was applied by randomly dividing the datasets into two parts: 80 % of the
individuals were used to construct the models and 20 % to check for the quality of the prediction. The
quality of the models was assessed based on the mean square error between real and predicted values.
To cope with this randomisation, 500 models were constructed for each measurement. Generalised
linear models contain a penalisation value, allowing less informative variables to be discarded as this
value increases (1000 values were tested for each of the 500 models), hence variables occurring the
most in the models can be seen as the most stable predictors of resistance to biotic challenges. Given
the high number of metabolic variables and the relatively small set of plants, 500 randomly generated
resistance datasets were created to estimate the chances of predicting random values. A Student’s t-test
was used to compare the quality of predictions of real and random resistances.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/96/s1,
Figure S1. Inoculation-responsive central metabolites. Major compounds involved in central metabolism
statistically responded to the inoculation factor of a two-factor ANOVA (P given into brackets). Bar charts indicate
means of normalised intensities of four independent bioreplicates (n = 4; ± SEM). Bot: Botrytis cinerea, Phy:
Phytophthora infestans, Pst: Pseudomonas syringae pv. tomato, B: BABA-treated plants, W: water-treated plants, M:
mock-inoculated fruit, P: pathogen-inoculated fruit. Figure S2. Partial least square discriminant analysis for
each pathosystem. PLS-DA score plots (n = 4) of 6898 features (6887 LCMS variables + 11 major compounds)
between the three different pathosystems. Validation parameters of the PLS model are given in red for each plot.
Figure S3. Metabolic markers for BABA primed responses against fruit pathogens. LCMS significant markers that
overlap between Bot and Phy (A), Bot and Pst (B) and Phy and Pst (C) in response to BABA priming and after
infection (see Table 3). Markers are labelled according to their high-resolution detected m/z. Bar charts indicate
means of normalised intensities (n = 4; ± SEM). See Figure S1 for sample labels. Table S1. Putative annotation
of the top 15 predictors. Supplemental Material 1: metabolomic parameters detected y LCMS. 2: P indicating
the statistical significance from a Kruskal–Wallis test followed by correction for false discovery rate using the
Benjamini–Hochberg method. Supplemental Material 1. Normalised metabolomics dataset combining 6887 m/z
features and 11 major compounds. Supplemental Material 2. Coordinates for Principal Component Analyses
ranking the important metabolomic variables.

Author Contributions: Conceptualization, E.L. and P.P.; Data curation, E.L., A.F., C.C. (Cédric Cassan) and P.P.;
Formal analysis, E.L., A.F., C.C. (Cédric Cassan), C.C. (Chloé Chevanne), C.F.K., S.P. and P.P.; Funding acquisition,
E.L., Y.G. and P.P.; Investigation, E.L., A.F., C.C. (Cédric Cassan), C.C. (Chloé Chevanne), C.F.K., S.P. and P.P.;
Methodology, E.L., A.F., C.C. (Cédric Cassan), S.P. and P.P.; Project administration, E.L. and P.P.; Resources, E.L.,
S.P., Y.G. and P.P.; Software, S.P.; Supervision, E.L. and P.P.; Validation, E.L., S.P., Y.G. and P.P.; Visualization, E.L.,
S.P. and P.P.; Writing—original draft, E.L. and P.P.; Writing—review & editing, E.L., S.P., Y.G. and P.P. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors are grateful for financial support from MetaboHUB (ANR-11-INBS-0010) and PHENOME
(ANR-11-INBS-0012) projects to INRAE, and for the BBSRC Future Leader Fellowship BB/P00556X/1 and
BB/P00556X/2 to EL.

Acknowledgments: The authors thank Sam Wilkinson for his comments on the project. P. infestans isolate was
provided by Steve Whisson (The James Hutton Institute).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.M.; Savary, S. Modelling the impacts of
pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [CrossRef] [PubMed]

200



Metabolites 2020, 10, 96

2. Sundström, J.F.; Albihn, A.; Boqvist, S.; Ljungvall, K.; Marstorp, H.; Martiin, C.; Nyberg, K.; Vågsholm, I.;
Yuen, J.; Magnusson, U. Future threats to agricultural food production posed by environmental degradation,
climate change, and animal and plant diseases – a risk analysis in three economic and climate settings.
Food Secur. 2014, 6, 201–215. [CrossRef]

3. FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 7 January 2020).
4. Fry, W. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385–402.

[CrossRef] [PubMed]
5. Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.;

Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012,
13, 614–629. [CrossRef] [PubMed]

6. Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould
disease. Mol. Plant Pathol. 2007, 8, 561–580. [CrossRef] [PubMed]

7. Arah, I.K.; Ahorbo, G.K.; Anku, E.K.; Kumah, E.K.; Amaglo, H. Postharvest Handling Practices and Treatment
Methods for Tomato Handlers in Developing Countries: A Mini Review. Adv. Agric. 2016, 2016, 1–8.
[CrossRef]

8. Luna, E. Using Green Vaccination to Brighten the Agronomic Future. Outlooks Pest Manag. 2016, 27, 136–141.
[CrossRef]

9. Pétriacq, P.; López, A.; Luna, E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? Plants
2018, 7, 77. [CrossRef]

10. Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef]
11. Mauch-Mani, B.; Baccelli, I.; Luna, E.; Flors, V. Defense Priming: An Adaptive Part of Induced Resistance.

Annu. Rev. Plant Biol. 2017, 68, 485–512. [CrossRef]
12. Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; van Dam, N.M.;

Conrath, U. Recognizing Plant Defense Priming. Trends Plant Sci. 2016, 21, 818–822. [CrossRef] [PubMed]
13. Cohen, Y.; Vaknin, M.; Mauch-Mani, B. BABA-induced resistance: Milestones along a 55-year journey.

Phytoparasitica 2016, 44, 513–538. [CrossRef]
14. Thevenet, D.; Pastor, V.; Baccelli, I.; Balmer, A.; Vallat, A.; Neier, R.; Glauser, G.; Mauch-Mani, B. The priming

molecule β-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol. 2017, 213,
552–559. [CrossRef] [PubMed]

15. Ton, J.; Jakab, G.; Toquin, V.; Flors, V.; Iavicoli, A.; Maeder, M.N.; Métraux, J.-P.; Mauch-Mani, B. Dissecting
the β-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. Plant Cell 2005, 17, 987–999.
[CrossRef] [PubMed]

16. Zimmerli, L.; Jakab, G.; Métraux, J.-P.; Mauch-Mani, B. Potentiation of pathogen-specific defense mechanisms
in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 2000, 97, 12920–12925. [CrossRef]

17. Koen, E.; Trapet, P.; Brulé, D.; Kulik, A.; Klinguer, A.; Spicher, L.; Meunier-Prest, R.; Boni, G.; Glauser, G.;
Mauch-Mani, B.; et al. β-Aminobutyric Acid (BABA)-Induced Resistance in Arabidopsis thaliana : Link
with Iron Homeostasis. Mol. Plant-Microbe Interact. 2014. [CrossRef]

18. Luna, E.; Beardon, E.; Ravnskov, S.; Scholes, J.; Ton, J. Optimizing Chemically Induced Resistance in Tomato
Against Botrytis cinerea. Plant Dis. 2016, 100, 704–710. [CrossRef]

19. van Hulten, M.; Pelser, M.; van Loon, L.C.; Pieterse, C.M.J.; Ton, J. Costs and benefits of priming for defense
in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 5602–5607. [CrossRef]

20. Luna, E.; van Hulten, M.; Zhang, Y.; Berkowitz, O.; López, A.; Pétriacq, P.; Sellwood, M.A.; Chen, B.;
Burrell, M.; van de Meene, A.; et al. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA
synthetase. Nat. Chem. Biol. 2014, 10, 450. [CrossRef]

21. Bengtsson, T.; Holefors, A.; Witzell, J.; Andreasson, E.; Liljeroth, E. Activation of defence responses to
Phytophthora infestans in potato by BABA. Plant Pathol. 2014, 63, 193–202. [CrossRef]

22. Worrall, D.; Holroyd, G.H.; Moore, J.P.; Glowacz, M.; Croft, P.; Taylor, J.E.; Paul, N.D.; Roberts, M.R. Treating
seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens.
New Phytol. 2012, 193, 770–778. [CrossRef] [PubMed]

23. Wilkinson, S.W.; Pastor, V.; Paplauskas, S.; Pétriacq, P.; Luna, E. Long-lasting β-aminobutyric acid-induced
resistance protects tomato fruit against Botrytis cinerea. Plant Pathol. 2018, 67, 30–41. [CrossRef]

24. Balmer, A.; Pastor, V.; Gamir, J.; Flors, V.; Mauch-Mani, B. The ‘prime-ome’: Towards a holistic approach to
priming. Trends Plant Sci. 2015, 20, 443–452. [CrossRef] [PubMed]

201



Metabolites 2020, 10, 96

25. Biais, B.; Bénard, C.; Beauvoit, B.; Colombié, S.; Prodhomme, D.; Ménard, G.; Bernillon, S.; Gehl, B.; Gautier, H.;
Ballias, P.; et al. Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under
Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism. Plant Physiol. 2014, 164,
1204–1221. [CrossRef]

26. Gibon, Y.; Vigeolas, H.; Tiessen, A.; Geigenberger, P.; Stitt, M. Sensitive and high throughput metabolite
assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on
a novel enzymic cycling system. Plant J. 2002, 30, 221–235. [CrossRef]

27. Belouah, I.; Nazaret, C.; Pétriacq, P.; Prigent, S.; Bénard, C.; Mengin, V.; Blein-Nicolas, M.; Denton, A.K.;
Balliau, T.; Augé, S.; et al. Modeling Protein Destiny in Developing Fruit. Plant Physiol. 2019, 180, 1709–1724.
[CrossRef]

28. Colombié, S.; Beauvoit, B.; Nazaret, C.; Bénard, C.; Vercambre, G.; Le Gall, S.; Biais, B.; Cabasson, C.;
Maucourt, M.; Bernillon, S.; et al. Respiration climacteric in tomato fruits elucidated by constraint-based
modelling. New Phytol. 2017, 213, 1726–1739. [CrossRef]

29. Colombié, S.; Nazaret, C.; Bénard, C.; Biais, B.; Mengin, V.; Solé, M.; Fouillen, L.; Dieuaide-Noubhani, M.;
Mazat, J.-P.; Beauvoit, B.; et al. Modelling central metabolic fluxes by constraint-based optimization reveals
metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit. Plant J. 2015, 81, 24–39.
[CrossRef]

30. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate
Descent. J. Stat. Softw. 2010, 33, 1–22. [CrossRef]

31. Beauvoit, B.P.; Colombié, S.; Monier, A.; Andrieu, M.-H.; Biais, B.; Bénard, C.; Chéniclet, C.;
Dieuaide-Noubhani, M.; Nazaret, C.; Mazat, J.-P.; et al. Model-Assisted Analysis of Sugar Metabolism
throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole
Expansion. Plant Cell 2014, 26, 3224–3242. [CrossRef]

32. Beauvoit, B.; Belouah, I.; Bertin, N.; Cakpo, C.B.; Colombié, S.; Dai, Z.; Gautier, H.; Génard, M.; Moing, A.;
Roch, L.; et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 2018, 122, 1–21.
[CrossRef] [PubMed]

33. Decros, G.; Beauvoit, B.; Colombié, S.; Cabasson, C.; Bernillon, S.; Arrivault, S.; Guenther, M.; Belouah, I.;
Prigent, S.; Baldet, P.; et al. Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development
Through Transcript and Protein Profiling. Front. Plant Sci. 2019, 10. [CrossRef] [PubMed]

34. Gamir, J.; Cerezo, M.; Flors, V. The plasticity of priming phenomenon activates not only common metabolomic
fingerprint but also specific responses against P. cucumerina. Plant Signal Behav. 2014, 9, e28916. [CrossRef]
[PubMed]

35. Hilker, M.; Schwachtje, J.; Baier, M.; Balazadeh, S.; Bäurle, I.; Geiselhardt, S.; Hincha, D.K.; Kunze, R.;
Mueller-Roeber, B.; Rillig, M.C.; et al. Priming and memory of stress responses in organisms lacking a
nervous system. Biol. Rev. 2016, 91, 1118–1133. [CrossRef]

36. Tugizimana, F.; Mhlongo, M.I.; Piater, L.A.; Dubery, I.A. Metabolomics in Plant Priming Research: The Way
Forward? Int. J. Mol. Sci. 2018, 19, 1759. [CrossRef]

37. Roch, L.; Dai, Z.; Gomès, E.; Bernillon, S.; Wang, J.; Gibon, Y.; Moing, A. Fruit Salad in the Lab: Comparing
Botanical Species to Help Deciphering Fruit Primary Metabolism. Front. Plant Sci. 2019, 10. [CrossRef]

38. Pinzón, A.; Barreto, E.; Bernal, A.; Achenie, L.; González Barrios, A.F.; Isea, R.; Restrepo, S. Computational
models in plant-pathogen interactions: The case of Phytophthora infestans. Theor. Biol. Med Model. 2009, 6,
24. [CrossRef]

39. Kleessen, S.; Irgang, S.; Klie, S.; Giavalisco, P.; Nikoloski, Z. Integration of transcriptomics and metabolomics
data specifies the metabolic response of Chlamydomonas to rapamycin treatment. Plant J. 2015, 81, 822–835.
[CrossRef]

40. Botero, K.; Restrepo, S.; Pinzón, A. A genome-scale metabolic model of potato late blight suggests a
photosynthesis suppression mechanism. BMC Genom. 2018, 19, 863. [CrossRef]

41. Rodenburg, S.Y.A.; Seidl, M.F.; Judelson, H.S.; Vu, A.L.; Govers, F.; de Ridder, D. Metabolic Model of the
Phytophthora infestans-Tomato Interaction Reveals Metabolic Switches during Host Colonization. mBio 2019,
10, e00454-19. [CrossRef]

42. Lecompte, F.; Nicot, P.C.; Ripoll, J.; Abro, M.A.; Raimbault, A.K.; Lopez-Lauri, F.; Bertin, N. Reduced
susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific
adjustment of fructose content in the host sugar pool. Ann. Bot. 2017, 119, 931–943. [CrossRef] [PubMed]

202



Metabolites 2020, 10, 96

43. Faretra, F.; Pollastro, S. Genetic studies of the phytopathogenic fungus Botryotinia fuckeliana (Botrytis
cinerea) by analysis of ordered tetrads. Mycol. Res. 1996, 100, 620–624. [CrossRef]

44. Whisson, S.C.; Boevink, P.C.; Moleleki, L.; Avrova, A.O.; Morales, J.G.; Gilroy, E.M.; Armstrong, M.R.;
Grouffaud, S.; van West, P.; Chapman, S.; et al. A translocation signal for delivery of oomycete effector
proteins into host plant cells. Nature 2007, 450, 115–118. [CrossRef] [PubMed]

45. Bais, H.P.; Fall, R.; Vivanco, J.M. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by
Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiol. 2004,
134, 307–319. [CrossRef]

46. Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant Disease Severity Estimated Visually, by Digital
Photography and Image Analysis, and by Hyperspectral Imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107.
[CrossRef]

47. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

48. Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol Antioxidant Quantity and Quality in Foods: Fruits.
J. Agric. Food Chem. 2001, 49, 5315–5321. [CrossRef]

49. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data
for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006,
78, 779–787. [CrossRef]

50. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0–making metabolomics more meaningful.
Nucleic Acids Res. 2015, 43, W251–W257. [CrossRef]

51. Pétriacq, P.; Williams, A.; Cotton, A.; McFarlane, A.E.; Rolfe, S.A.; Ton, J. Metabolite profiling of non-sterile
rhizosphere soil. Plant J. 2017, 92, 147–162. [CrossRef]

52. Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.;
Thiagarajan, M.; et al. TM4: A Free, Open-Source System for Microarray Data Management and Analysis.
BioTechniques 2003, 34, 374–378. [CrossRef] [PubMed]

53. Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9,
811–818. [CrossRef] [PubMed]

54. Kaever, A.; Landesfeind, M.; Possienke, M.; Feussner, K.; Feussner, I.; Meinicke, P. MarVis-Filter: Ranking,
Filtering, Adduct and Isotope Correction of Mass Spectrometry Data. J. Biomed. Biotechnol. 2012, 2012,
263910. [CrossRef] [PubMed]

55. Smith, C.; O’Maille, G.; Want, E.; Qin, C.; Trauger, S.; Brandon, T.; Custodio, D.; Abagyan, R.; Siuzdak, G.
METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2006, 27, 747–751. [CrossRef] [PubMed]

56. Afendi, F.M.; Okada, T.; Yamazaki, M.; Hirai-Morita, A.; Nakamura, Y.; Nakamura, K.; Ikeda, S.; Takahashi, H.;
Altaf-Ul-Amin, M.; Darusman, L.K.; et al. KNApSAcK Family Databases: Integrated Metabolite–Plant
Species Databases for Multifaceted Plant Research. Plant Cell Physiol. 2011, 53, e1. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

203





metabolites

H

OH

OH

Article

Identification of Bioactive Phytochemicals
in Mulberries

Gilda D’Urso 1, Jurriaan J. Mes 2, Paola Montoro 1, Robert D. Hall 3,4 and Ric C.H. de Vos 3,*

1 Department of Pharmacy, University of Salerno, 84084 Fisciano SA, Italy; gidurso@unisa.it (G.D.);
pmontoro@unisa.it (P.M.)

2 Business Unit Fresh Food and Chains, Wageningen Food & Biobased Research, Wageningen University and
Research, 6708 WG Wageningen, The Netherlands; jurriaan.mes@wur.nl

3 Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research,
6708 PB Wageningen, The Netherlands; robert.hall@wur.nl

4 Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen,
The Netherlands

* Correspondence: ric.devos@wur.nl; Tel.: +31-317480841

Received: 29 November 2019; Accepted: 18 December 2019; Published: 20 December 2019

Abstract: Mulberries are consumed either freshly or as processed fruits and are traditionally used to
tackle several diseases, especially type II diabetes. Here, we investigated the metabolite compositions
of ripe fruits of both white (Morus alba) and black (Morus nigra) mulberries, using reversed-phase
HPLC coupled to high resolution mass spectrometry (LC-MS), and related these to their in vitro
antioxidant and α-glucosidase inhibitory activities. Based on accurate masses, fragmentation data,
UV/Vis light absorbance spectra and retention times, 35 metabolites, mainly comprising phenolic
compounds and amino sugar acids, were identified. While the antioxidant activity was highest in
M. nigra, the α-glucosidase inhibitory activities were similar between species. Both bioactivities
were mostly resistant to in vitro gastrointestinal digestion. To identify the bioactive compounds, we
combined LC-MS with 96-well-format fractionation followed by testing the individual fractions for
α-glucosidase inhibition, while compounds responsible for the antioxidant activity were identified
using HPLC with an online antioxidant detection system. We thus determined iminosugars and
phenolic compounds in both M. alba and M. nigra, and anthocyanins in M. nigra as being the key
α-glucosidase inhibitors, while anthocyanins in M. nigra and both phenylpropanoids and flavonols in
M. alba were identified as key antioxidants in their ripe berries.

Keywords: mulberry; high resolution mass spectrometry; antioxidant activity; in vitro gastrointestinal
digestion; α-glucosidase inhibitory activity

1. Introduction

Mulberry belongs to the genus Morus, plant family Moraceae, which comprises 24 different
species and one subspecies, with at least 100 varieties [1]. The most commonly known Morus species
are Morus alba (white mulberry), Morus nigra (black mulberry) and Morus rubra (red mulberry.) [2].
They are deciduous trees originating from China and Japan, and have spread into America and Europe
for silkworm breeding. Globally, the main use of mulberry trees is to produce leaves as feed for
cultivating silkworms, but in various regions, they are also much appreciated for their fruit, which can
be consumed both fresh and as an ingredient in processed food products [3].
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Mulberry species have been used in Traditional Chinese Medicines (TCM) for the treatment of
several diseases, especially diabetes mellitus type II; they contain specific molecules, i.e., iminosugars
or iminocyclitols, which are low molecular weight carbohydrates in which the endocyclic oxygen
atom has been replaced by a nitrogen atom. These compounds are known to be able to inhibit the
enzyme α-glucosidase which is present in the brush border of the human intestine [4–6]. Inhibition of
α-glucosidase leads to a decreased rate of glucose absorption thus resulting in a lower postprandial
blood glucose level. Inhibitors of α-glucosidase can prevent the development of diabetes in individuals
with impaired glucose tolerance and/or impaired fasting of blood glucose [7].

Mulberries are also a good nutritional source of a variety of phenolic compounds, like flavonols
and phenolic acids, as well as coloured anthocyanins in the case of black and red mulberry fruits [8–10].
Phenolic compounds are the subject of increasing scientific interest; they are natural antioxidants
in plant-derived foods and food products and their intake is frequently related to human health.
Many of the bioactivities ascribed to mulberries, such as antioxidant action, hypolipidemic effect and
macrophage activating effect, have also been linked to their phenolic compound composition [11–14].

The present study aimed to determine differences in chemical composition between the ripe fruits of
M. alba and M. nigra, which are the major species growing in Italy, by metabolomic analysis and to identify
the bioactive compounds responsible for their antioxidant and α-glucosidase inhibitory bioactivities.
To this purpose, we used I) HPLC-PDA with an online, post-column antioxidant detection system,
and II) HPLC-PDA- HR Orbitrap FTMS with on-line fractionation into 96-wells plates followed by off
line in vitro α-glucosidase inhibitory activity testing of the contents of the individual wells. A series of
compounds present in mulberry fruits as well as major bioactives were further characterized using MSn

fragmentation. In addition, we subjected mulberries to an in vitro gastrointestinal digestion system in
order to investigate potential effects of digestion on the observed bioactivities upon consumption of
these berries.

2. Results

2.1. Identification of Phytochemicals in Morus using LC-PDA-Orbitrap FTMS

To identify the metabolites present in white and black mulberry fruits, HPLC-PDA-Orbitrap
FTMS analysis was performed on their aqueous methanol extracts, thus generating both an LC-PDA
and an LC-MS profile per extract (Figures S1 and S2, respectively). Based on the exact mass of their
molecular [M+H]+ ion masses, their MSn fragmentation patterns and their UV/Vis absorbance spectra,
we putatively identified 35 compounds in the fruits (Table 1).
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In the fruits of M. nigra, four anthocyanins with a characteristic absorbance maximum at around
500–520 nm were identified. Compound 6, cyanidin hexoside, showed a pseudomolecular ion at m/z
449.1084, corresponding to the molecular formula C21H21O11

+ that, upon fragmentation, gave one principal
product ion at m/z 287.0546; Compound 8, cyanidin hexose-deoxyhexose, showed a pseudomolecular ion
at m/z 595.1662, corresponding to the molecular formula C27H31O15

+, that fragmented into two principal
product ions at 449.1058 (C21H21O11

+: loss of deoxyhexose) and 287.0546 (loss of hexose+deoxyhexose);
Compound 9, pelargonidin hexoside, showed a pseudomolecular ion at m/z 433.1135, corresponding
to the molecular formula C21H21O10

+, and gave one principal product ion at 271.0596; Compound
11, pelargonidin hexose-deoxyhexose showed a pseudomolecular ion at m/z 579.1714 corresponding
to molecular formula C27H31O14

+ that, upon fragmentation, gave two principal product ions of m/z
433.1115 and 271.0596. Thus, anthocyanins detected represented both pelargonidin and cyanidin
conjugated with one, two or three C6-sugars. These anthocyanin compounds have previously been
identified in Morus alba fruits [17] and are responsible for the dark color of black mulberry fruits.
These anthocyanins were present in berries of M. nigra and were not detectable in those of M. alba
(Supplemental Table S1), as was expected from their differential colors.

A series of flavonols with different substituents were present in both white and black mulberry
fruits (12, 14–17, 19–24, 26, 28–30, 32, 35). All these compounds showed the characteristic flavonol
absorbance peaks at around 260 nm (resulting from the A-ring) and at around 350 nm (due to
B-ring) and producing daughter ions of m/z 303.0496 (quercetin) or 287.0547 (kaempferol); many of
the compounds detected have not previously been described for mulberry fruits. For instance,
compounds 14, 19, 22 show the same pseudomolecular ion [M+H]+ at m/z 773.2135 with the same
fragments of m/z 303.0496, 465.0995 and 611.1565, corresponding to the loss of two hexose and one
deoxyhexose moiety, but with different RTs. These compounds were thus identified as different
isomers of quercetin-hexose-hexose-deoxyhexose. A similar fragmentation pattern has been reported
for a quercetin-trisaccharide in tomato fruit [19]. Specifically, compound 14 was confirmed as
quercetin-3-O-rutinoside-7-O-glucoside based on the retention time of the reference compound
reported in tomato fruit database [19].

Compounds 17, 23, and 24 likewise showed a similar pseudomolecular ion [M+H]+ at m/z
757.2192 with the same fragments of m/z 287.0547, 449.1065 and 611.1576, corresponding to the loss
of two hexoses and one deoxyhexose moiety, but with different RTs. These were thus identified as
kaempferol-hexose-hexose-deoxyhexose isomers. The fragmentation pattern of these compounds
agrees with known kaempferol glycosides in tomato [19]. Moreover, compound 17 was confirmed
as kaempferol-3-O-rutinoside-7-O-glucoside based on the retention time of the reference compound
reported in tomato fruit database [19].

Compound 16 showed a pseudomolecular ion at m/z 713.1544 that upon fragmentation, gave
three principal product ions at m/z 303.0496, 463.1021 and 551.1015 corresponding to the loss of
two hexose moieties and one malonyl moiety; this compound was thus tentatively identified as
quercetin hexose-malonyl-hexoside. This fragmentation pattern is consistent with that reported for
a quercetin malonyl glucoside in lettuce [21]. Compound 21 showed a pseudomolecular ion at m/z
697.1597 which gave three principal product ions at m/z 287.0545, 449.1065 and 535.1076, corresponding
to the loss of two hexose and one malonyl moiety; this compound was identified as kaempferol
hexose-malonyl-hexoside. This compound showed a similar fragmentation pattern as reported in
Cycorium intibus [24]. Thus, similar flavonol conjugates consisting of both quercetin and kaempferol
esterified with one to three C6-sugars, or one or two sugars with one malonyl group, were present in
both white and black mulberries.

Compound 20 showed a pseudomolecular ion at m/z 451.1235 that gave one principal product ion
at m/z 289.0703, corresponding to the loss of a hexose moiety; this compound was tentatively identified
as dihydrokaempferol-hexoside. A similar fragmentation pattern was reported for dihydrokaempferol-
hexoside in raspberry [23].
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Three N-containing sugars, i.e., compounds (1) 1-deoxynojirimicin, (2) N-nonil deoxynojirimicin
and (3) fagomine, were found in fruits of both mulberry species. These compounds have previously
been reported for leaves of M. alba [16] and are well known for inhibiting the enzyme α-glucosidase
and consequently, might contribute to an antihyperglycemic effect [4–6].

Four piperidine alkaloids, morusimic acids B, C and E (compounds 7, 25, 27) were also identified
based on their exact molecular mass and fragmentation; these compounds have previously been
reported in fruits of M. alba from Turkey [18].

Both M. alba and M. nigra fruits also contained caffeoylquinic acids monomers (5, 10, 13) as well
as dimers (31, 33, 34). All three caffeoylquinic acid isomers (5, 10, 13) showed a pseudomolecular
ion at 355.1024 that, upon fragmentation, gave the same daughter ion at m/z 163.0386, corresponding
to the loss of their quinic acid moiety. These compounds have also been reported in M. alba fruits
from Serbia [17]. The three dicaffeoylquinic acid isomers (31, 33, 34) showed a pseudomolecular ion at
517.1341 that produced the same MS/MS base peak at 163.0387. These compounds have previously
been reported in leaves of M. alba [27].

Compound 4 showed a pseudomolecular ion at m/z 182.0817, that fragmented into two principal
product ions at 165.0544 and 136.0755. It was putatively identified as the alkaloid 2-formyl-1H-
pyrrole-1-butanoic acid, previously reported in M. alba fruits by Kim et al. [11].

2.2. Global Metabolome Differences between Morus Alba and Morus Nigra Fruits

Ripe fruits of Morus alba and Morus nigra were collected from trees growing at various locations in
the Campania Region (Italy) and subjected to untargeted LCMS-based metabolite profiling. Subsequent
unbiased data processing generated a dataset with the relative intensities and in-source mass spectra
of 361 putative metabolites in the samples (Supplemental Table S1; note that this metabolite list
misses some of the manually identified compounds described in Table 1, indicating that one or more
parameter settings in the untargeted data processing workflow appears suboptimal for these specific
compounds). An unsupervised multivariate statistical method, Principal Components Analysis (PCA),
was subsequently applied to the entire metabolite dataset resulting in a clear differentiation of M. alba
and M. nigra fruit samples (Figure S3). Among the most significantly (p < 0.05) differing metabolites
were anthocyanins (Supplemental Table S1), as was expected from the differential fruit colours of
both species. In addition, it was possible to identify two other flavonoids only detectable in M. nigra,
namely dihydroquercetin hexoside and dihydrokaempferol hexoside. In fact, an important step for
the biosynthesis of anthocyanidins is the reduction of dihydroflavonols catalysed by the enzyme DFR
(dihydroflavonol 4-reductase) converting dihydroquercetin and dihydrokaempferol into colorless
leucoanthocyanidins, which are further converted by the enzyme anthocyanin synthase (ANS) into
cyanidin and pelargonidin, respectively [29], thereby providing the fruit colour in M. nigra. Several
flavonol conjugates, including quercetin glycosides 19 and 26 and kaempferol glycoside 29 (Table 1),
were also significantly (p < 0.05) higher in M. nigra fruit, while the mono- and di-caffeoyl quinic
acids (phenylpropanoids) were not differential between both fruit species (Supplemental Table S1).
These data suggest that M. nigra fruits exhibit a higher activity of the general flavonoid pathway than
M. alba fruit. The alkaloids identified did not significantly differ between the M. nigra and M. alba fruit
samples analyzed (Supplemental Table S1).

2.3. α-Glucosidase Inhibitory Activity and Effect of In Vitro Gastrointestinal Digestion

The α-glucosidase inhibitory activity of the black and white mulberries was firstly evaluated
using the crude aqueous-methanol extracts of the fresh fruits. The extraction solvent was evaporated
by freeze-drying and the metabolites re-dissolved in MQ-water. These water extracts were then tested
for inhibiting α-glucosidase enzyme activity, monitored through the increase in the pNP product,
detected at 412 nm, using 96-wells plates kept at 30 ◦C; the α-glucosidase inhibitor acarbose was used
as a positive control (Figure 1b). Both mulberry extracts showed a marked and similar α-glucosidase
inhibitory activity as compared to the water blank (Figure 1a).
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(a) 

(b) 

Figure 1. α-glucosidase inhibitory activity of mulberry methanol extracts. The Y axis represents the
α-glucosidase activity (increase in 415 nm absorbance per minute) and the X axis the sample type tested.
(a) inhibitory activity of water extracts of Morus alba and Morus nigra compared to the negative control
(water). (b) enzyme activity inhibition by acarbose (positive control) at increasing concentrations (mM)
in the assay. Data represent means and standard deviations (n = 3 assays).

The M. nigra fruit showed an IC50 value of 0.75 ± 0.004 mg/g DW (n = 3), while that for M. alba fruit
was 0.93 ± 0.003 mg/g DW (n = 3). In comparison, the IC50 value of acarbose was 13.83 ± 0.02 mg/g.

A simulated gastrointestinal digestion was then applied to estimate the effect of consumption and
digestion on the α-glucosidase inhibitory activity of mulberry fruits (Figure 2). For both fruit types,
the bioactivity measured in the original fruit extracts was partially lost upon this in vitro digestion
(GI samples compared to MN and MA samples). Gastric digestion (PG) resulted in a slight decrease in
bioactivity in M. nigra only. The control incubation consisting of water instead of fruit extract in the
digestion test (DC samples) showed a slight inhibition of the α-glucosidase activity as compared to the
negative control (NC of undigested fruits: water instead of both fruit extract and digestion enzymes
and buffer): a decrease of 0.04 enzyme units. Taking this inhibiting effect of the digestion conditions on
α-glucosidase into account, it was calculated that the simulated gastrointestinal digestion resulted in
an overall reduction in α-glucosidase inhibitory activity of about 50% (a decrease of about 0.055 units
from 0.13 in DC to 0.075–0.08 in GI samples, compared to a decrease of about 0.115, i.e., from 0.17 units
in NC to about 0.055 in original MN and MA extracts).
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Figure 2. α-glucosidase inhibitory activity after in vitro gastrointestinal digestion. Inhibition activity of
original Morus nigra (MN) and Morus alba (MA) fruit extracts, and after their in vitro stomach (Post Gastric,
PG) digestion and in vitro gastrointestinal (GI) digestion. DC: digestion control, representing the digestion
process, including all enzymes, without plant material; NC: negative control (NC), representing only
water. Data represent means values and standard deviations (n = 3 measurements).

2.4. LCMS Combined with 96-Well Format Fractionation

In order to pinpoint those compounds in Morus fruits that are responsible for the observed
α-glucosidase inhibitory activity, we subsequently used HPLC separation combined with both 96-well
plate fractionation and Orbitrap FTMS detection. Injection, fractionation and FTMS analyses of the
M. alba and M. nigra crude extracts, as used in the α-glucosidase inhibition assay, were performed
in triplicate; a water blank was injected as a control. The fractionation plates were subsequently
dried under a gentle N2 flow at 30 ◦C, the dried well contents re-dissolved in water and tested for
α-glucosidase inhibitory activity. Compounds present in bioactive wells were then further characterized
from their corresponding UV/Vis spectra and FT-MS data.

The results of the α-glucosidase inhibitory activity of individual wells are shown in Figure 3A,B
for M. alba and M. nigra, respectively. Based on the average enzyme activity measured in the wells of
the water control sample, we set a threshold value at 0.17 absorbance units per minute, below which
we considered a sample well to possess α-glucosidase inhibitory bioactivity.

The compounds identified in the active wells of both fruit types were the amino sugar acids 1–3 and
the flavonoids 15–17, 19–20 and 32. Two anthocyanins, 6 and 9, only present in M. nigra (see Table 1),
also showed bioactivity. In addition, other fractions clearly showing α-glucosidase inhibitory were
detected e.g., between 34.7 and 35.2 min in M. alba, although we have yet been unable to pinpoint and
identify the specific bioactive compound(s) (Table 2).
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Figure 3. α-glucosidase inhibitory activity of 96-well LC-MS fractions of (A) M. alba and (B) M. nigra
extracts. The Y axis shows the enzyme activity and the X axis the retention time corresponding to the
LC-MS fraction. The vertical line at an enzyme activity of 0.17 indicates the average value in the water
control. The wells considered bioactive are the ones below an enzyme activity value of 0.15.

Table 2. Retention time window of bioactive 96-well fractions and putatively corresponding compounds
(numbers refer to Table 1) in M. alba and M. nigra. n.i. = not identified.

M. alba Retention Time (min) Bioactive Metabolite M. nigra Retention Time (min) Bioactive Metabolite

1.6–2.08 1-2-3 1.8–2.27 1-2-3
4.88–5.35 n.i. 4.13–4.6 n.i.

12.82–13.28 15 8.33–8.8 6

13.75–14.23 16/17 10.2–10.67 9

19.82–20.3 25 10.2–10.67 9

22.62–23.08 28 12.53–13 15

23.55–24.02 29 13.4–13.93 16

24.95–25.42 32 14.4–14.87 17

31.02–31.5 n.i. 15.8–16.27 19

34.7–35.2 n.i. 16.27–16.73 20

35.22–35.68 n.i. 24.67–25.12 31/32

- 40.07–40.53 n.i.

2.5. Total Antioxidant Activity and HPLC with Online Antioxidant Detection

The total antioxidant activity of the mulberry fruits was compared between other fruits well
known for their antioxidant activity: cultivated strawberry (Fragaria × ananassa) and wild strawberry
(Fragaria vesca). This antioxidant assay (Table 3) indicated that the aqueous-methanol extract of M. nigra
is slightly more active than that of M. alba; in fact the mulberry fruits showed about the same activity
as strawberry, which is among the fruit species with the highest antioxidant capacity [30].
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Table 3. Antioxidant capacity of Morus alba and Morus nigra fruits compared with strawberry fruits.
Data represent average values ± standard deviation of three independent extractions. All antioxidant
values are expressed as mg Trolox per g of fresh weight. TEAC: Trolox-equivalent antioxidant capacity.

Extracts TEAC mg/g FW

Morus alba (White mulberry) 39.40 ± 0.02
Morus nigra (Black mulberry) 49.42 ± 0.01

Fragaria vesca (Wild strawberry) 50.61 ± 0.01
Fragaria ananassa (Strawberry) 51.31 ± 0.01

Subsequently, a HPLC-PDA system coupled to online ABTS·+ cation radical reaction and
detection [31] was used to determine the relative contribution of each individual component to the total
antioxidant activity (Figure 4). Several antioxidant components could be identified by comparison of
their retention times and absorption spectra with those of the LC-PDA-FTMS/MS analysis using the same
chromatographic conditions. According to this online antioxidant assay, the key antioxidants in M. nigra
corresponded to anthocyanins, in particular, compounds 6 and 9. The other compounds responsible for
antioxidant activity in both M. alba and M. nigra were caffeoylquinic acids, like compounds 10 and 13,
and flavonols like compounds 15, 26, 28, 32 (see Table 1).

Figure 4. Antioxidant activity. Overlay of representative antioxidant chromatograms of fruit of
Morus alba (in blue) and Morus nigra (in black). Antioxidant profiles of fruit extracts were determined
online, by a post column reaction with ABTS·+ cation radicals after HPLC separation and PDA
detection of compounds. The ABTS-radicals remaining after post-column reaction were recorded
at 600 nm: negative peaks thus indicate antioxidant activity. The numbers refer to the main peaks
identified (see Table 1): 6 cyanidin hexoside, 9 pelargonidin hexoside, 10 and 13 caffeoylquinic acid
isomers, 15 dihydroquercetin hexoside, 26 quercetin hexose deoxyhexose, 28 quercetin hexoside, and 32

kaempferol hexoside.

3. Discussion

In the present study, we compared ripe fruits of Morus alba and Morus nigra for their metabolite
composition in relation to their potential relevant bioactivities upon consumption, i.e., α-glucosidase
inhibiting and antioxidative activities. Using HPLC-PDA-Orbitrap FTMS analysis of aqueous-methanol
extracts, we were able to detect a large series of compounds and identified a number of metabolites,
previously reported for mulberry or other fruit species, as well as new compounds being present in either
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or both M. alba and M. nigra. Fruit of both species exhibited a marked α-glucosidase inhibiting activity
in vitro, an indication of their potential beneficial effect with regard to type II diabetes. Moreover,
we showed that this α-glucosidase inhibiting activity was partially resistant to simulated gastric and
intestinal digestion. Anthocyanins appear among the potential bioactive compounds in M. nigra fruit
(Figure 3) and the general instability of anthocyanins at the alkaline conditions of gastrointestinal
digestion [32] may at least partly explain the loss of α-glucosidase inhibitory activity in M. nigra fruits.
When calculating the α-glucosidase inhibiting activity of mulberries in units of acarbose, a well known
type II diabetes drug based on its α-glucosidase inhibiting activity (https://www.drugs.com/pro/precose.
html), our data suggest that consumption of about 20–25 g of fresh mulberry fruit corresponds to 50 mg
of acarbose, taking into account a 50% bioactivity loss upon digestion. It has been shown that an intake
of 100 mg acarbose 3 times a day can significantly reduce type II diabetes risk factors [33]. Thus, a daily
consumption of 100–150 g fresh mulberries may exert relevant pharmacological effects with regard to
type II diabetes. Using analytical LC-based extract fractionation, it was possible to pinpoint three
known iminosugar acids, i.e., [1-deoxynojirimycin (1), N-nonil-deoxynojirimycin (2) and fagomine
(3)], and 7 phenolic compounds, including five flavonols [dihydroquercetin hexoside, (15) quercetin
hexoside malonyl hexoside (16), kaempferol-3-O-rutinoside-7-O-glucoside (17), quercetin hexose (28)
and kaempferol hexoside (32)] present in both M. alba and M. nigra, and 2 anthocyanins [cyanidin
hexoside (6), pelargonidin hexoside (9)] only present in M. nigra, as the key α-glucosidase inhibitors
in mulberry fruits. While compounds 1, 2, 3, 6, 28 and 32 have already been reported to exert this
bioactivity [5,16,34,35], in our study, we were able to detect novel α-glucosidase inhibitory compounds
in mulberries. A similar approach, using accurate mass LCMS coupled to 96-well fractionation and
bioactivity testing, has recently been used to identify novel compounds in pepper fruits interacting
with the human hot-taste receptor [36].

Although it was not yet possible to identify the novel α-glucosidase inhibitory compounds in
mulberry fruits on the basis of the observed accurate mass only, this method can well be optimized and
adapted for further structural characterization of these bioactives, e.g., by using so-called multistage
mass spectrometry at high mass resolution [19], if needed, combined with NMR experiments. For the
latter approach, the same bioactive wells from replicate plates may be pooled to get sufficient NMR
signals for the de novo identification. Alternatively, bioactive extracts can be re-injected in a LC-MS-SPE
set up to collect and concentrate individual LC-MS peaks upon repeated injections; the SPE cartridges
containing the active compounds (based on their known accurate mass and LC-retention time) can
then be subjected to NMR for structural elucidation [37].

In addition to the α-glucosidase inhibitory activity, the ABTS+-radical based total antioxidant
assay indicated significant antioxidant activity present in the same mulberries, comparable to that of
strawberries, which are among the fruit species with the highest antioxidant capacity [32]. The higher
activity in M. nigra compared to M. alba fruits is likely due to the presence of anthocyanins, which both
provide fruits with their dark color and contribute to antioxidant activity [38]. Indeed, using HPLC
with online antioxidant detection [32], we were able to pinpoint anthocyanins as the main phenolic
antioxidants in M. nigra, while both phenylpropanoids and flavonols were the key phenolic antioxidants
in M. alba.

This work shows that it is well possible, using analytical scale techniques, to pinpoint the compounds
that are key to the well described bioactivities of mulberry fruits, and to validate the value of metabolomics
technologies in the phytochemical and bioactivity evaluation of functional foods. However, further
studies towards, for example growth conditions, genotypic variation, fruit development and ripening
are needed to obtain the best material for preparation of such functional foods with optimal composition
of bioactive ingredients or for purification of the bioactive compounds.

214



Metabolites 2020, 10, 7

4. Materials and Methods

4.1. Mulberry Materials

Fruits of M. alba and M. nigra were manually picked at ripe stage in May 2014 in different areas of
the Campania region in Italy, in particular, the geographical locations Solofra (GPS coordinates latitude:
40.8291: longitude: 14.8456), Roccadaspide (GPS coordinates latitude: 40.4253: longitude: 15.1917),
Fisciano (GPS coordinates latitude: 40.7728: longitude: 14.7994), San Sossio Baronia (GPS coordinates
latitude: 410712: longitude: 15.2005). Morus alba fruits (MAF) were collected from 4 locations and
coded as MAF-S (collected in Solofra) MAF-big (collected in San Sossio Baronia), MAF-wt (collected
in San Sossio Baronia), MAF-R (collected in Roccadaspide); M. nigra fruits (MNF) were collected at
five locations and coded as MNF-R (collected in Roccadaspide), MNF-U14 (collected in Fisciano),
MNF-U13 (collected in Fisciano), MNF-S (collected in Solofra) and MNF-U13 (collected in Fisciano).
All samples were botanically identified by Prof. V. De Feo (Department of Pharmacy University of
Salerno) and compared with reference materials, then were freeze-dried before being transported to
The Netherlands. They were then ground to a fine powder and stored at −80 ◦C until analysis.

For comparing antioxidant activities, fresh frozen mulberries were compared with fresh fruit of
strawberry and wild strawberry collected in June 2014 in Campania (Italy).

4.2. Extract Preparation

The sample extracts used for LC-MS analysis were prepared essentially as described in De Vos
et al. [31]: 30 mg of freeze dried samples were extracted with 1200 μL of 75% methanol in MQ water
containing 0.1% of formic acid. Mixtures were then sonicated for 15 min, centrifuged at 12,500 g for
10 min and filtered over a 0.45 μm filter (Minisart SRP4, Biotech GmbH, Germany).

For α-glucosidase inhibitory activity testing, for both NanoMate fractionation and HPLC with
online antioxidant analysis, 1 mL of supernatant was dried in a speedvac and taken up in 250 μL
of water, sonicated and filtered through a 0.45 μm filter (Minisart SRP4, Biotech GmbH, Germany).
These concentrated extracts were prepared in 3 independent replicates.

4.3. LC-PDA-Orbitrap FTMS Analysis

A metabolite analysis was performed using an HPLC (Waters Aquity) coupled to both a photodiode
array detector (PDA; Waters) and an LTQ Ion trap-Orbitrap Fourier transformed Mass spectrometer
(FTMS; Thermo) hybrid system. A Luna 3 μm C18 150 × 2 mm column (Phenomenex, USA) at
40 ◦C was used to separate the extracted metabolites, with MQ water with 0.1% formic acid (A) and
acetonitrile with 0.1% formic acid (B) as solvents. A linear gradient from 5% to 35% B in 45 min, at a
flow rate of 0.19 mL/min, was used [33]. In order to prevent possible order and batch effects in the
LCMS analysis, all samples were analysed in a single series and in random order. Three quality control
samples (QCs) prepared from a mix of all samples were included and equally distributed over the
study samples, in order to check system stability and estimate overall technical variation.

Electrospray ionization (ESI) in positive mode was used to generate ions from eluting compounds.
ESI source parameters were as follows: capillary voltage 43 V; tube lens voltage 120 V; capillary
temperature 295 ◦C; Sheath and Auxiliary Gas flow at 40 and 3 (arbitrary units), respectively, Sweep gas
0 n, Spray voltage 5 V. MS spectra were acquired by full range acquisition covering m/z 104–1350 at a
resolution of 60,000 FWHM.

4.4. LCMS data Processing and Multivariate Analysis

The raw LCMS data files were processed using Metalign software [34] for baseline correction,
noise estimation, and ion-wise mass spectral alignment. MSClust software [35] was then used to assemble
redundant mass signals derived from the same metabolite, including natural isotopes, adducts and
in-source fragments, based on their corresponding retention times and relative abundance patterns
across samples. This resulted in the relative intensities of 361 mass peak clusters, each representing a
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(reconstructed) putative metabolite, present in at least two samples. These metabolite intensity data were
then subjected to a multivariate analysis using GeneMaths XT software version 2.12 (Applied Maths,
Belgium). Metabolite intensities were firstly log2-transformed and then mean-centred across samples.

Using multiple online databases, including KNApSAcK (http://kanaya.naist.jp/KNApSAcK/),
Dictionary of Natural Products (http://dnp.chemnetbase.com), Metlin (https://metlin.scripps.edu/),
HMD (http://www.hmdb.ca), in-house libraries based on standards, as well as the mass spectra
information within the clustered mass peaks and from additional LC-MSn runs generating accurate
mass spectral trees from the top 3 intensity ions every 30 s [19]. Selected metabolites (Table 1) were
manually annotated as far as was possible using the mass data and the UV/Vis-absorbance spectral
data available.

4.5. In Vitro Simulated Gastrointestinal Digestion

In vitro digestion was carried out on freeze-dried fruit samples of both M. alba and M. nigra, following
the protocol described by McDougall et al. [36] with slight modification. Release of phytochemicals
from fruit was checked by LC-MS at different stages of digestion, i.e., after gastric digestion (post gastric,
PG) and gastrointestinal digestion (GI). Both PG and GI samples were stored at −80 ◦C until further
analysis. During the process, three different controls were used: (1) plant material without digestion
solutions and enzymes, diluted in water using the same ratio used for the samples coming from the
digestion process (2) the solutions with all the ingredients for digestion but without plant material (DC:
Digestion control), (3) plant material with all the ingredients for digestion but without active enzymes
(the enzymes where added at the end of the digestion process, to the cold extract). Both α-glucosidase
inhibitory activity and antioxidant activity were investigated for each of these PG and GI samples using
the methods described below.

4.6. α-Glucosidase Inhibition Assay

The α-glucosidase assay uses the synthetic substrate p-nitrophenyl-α-D-glucopyranoside (pNPG),
which is hydrolyzed by α-glucosidase to release p-nitrophenol (pNP), a color agent that can be
monitored at 415 nm. Briefly, 10 μL of extract was combined with 40 μL of 100 mM phosphate buffer
(pH 6.8) and 20 μL of α-glucosidase (0.6 units per mL buffer). After mixing and incubation for 5 min
at 37 ◦C, 20 μL of a 20 mM pNPG solution in buffer was added to start the reaction. The reaction
was monitored in time at 415 nm by a TECAN SpectraFluor microplate reader. Acarbose was used
as a positive control, while water was used as a negative control for enzyme inhibition. The enzyme
activities were evaluated as increase in the absorbance at 415 nm per minute and the percentage of
enzyme inhibition was calculated. Three dilution series of extracts were used for IC50 determination.
Dose−response curves and IC50 values were obtained by use of GraphPad Prism (version 6.00.283).
The assay was performed with 3 replicates.

4.7. NanoMate LC-Fractionation of Extracts

The HPLC–PDA–FTMS system was adapted with a chip-based nano-electrospray ionization
source/fractionation robot (NanoMate Triversa, Advion BioSciences) coupled between the PDA
and the inlet of the Ion Trap/Orbitrap hybrid instrument [19]. In this system, the compounds
separated and eluting from the analytical column firstly passed the PDA detector for determining their
UV/Vis absorbance spectra and then the eluent was automatically split by a NanoMate LC-fraction
collector/injection robot (Advion) into a nanoflow for chip-based ESI nanospray Orbitrap FTMS analysis
and the rest for fractionation into microwells with a collection time of 28 sec per well. The sample
injection volume was 5 μL. The gradient and flow conditions were the same as described above, with an
additional 30 μL/min 100% isopropanol added into the LC flow via a T-junction between the PDA and
the NanoMate, in order to improve the solvent composition for generating a stable nano-electrospray.
The eluent flow was split by the NanoMate at a ratio of 219.5 μL/min to the fraction collector and
0.5 μL/min to the nano-electrospray source. LC-fractions were collected every 28.2 s (i.e., 100 μL
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solvent) into 96-well plates (Twin tec, Eppendorf). After collection, the plates were dried at 30 ◦C under
a gentle N2 flow, and then tested for α-glucosidase inhibitory activity as described above (performed
in 3 replicates).

4.8. Antioxidant Activity and HPLC Analysis with Online Antioxidant Detection

The total antioxidant capacity of fruits was analyzed using the ABTS·+ radical scavenging method,
essentially according to Capanoglu et al. [37] with slight modifications. The fruits were collected in
June 2014 and the antioxidant activity was tested on basis of fresh weight. 0.5 g of samples (fresh fruit)
were extracted in 1.5 mL of methanol (final MeOH concentration about 77%, taking into account a
fruit water content of 95%) containing 0.05% of formic acid, sonicated for 15 min and centrifuged at
12,500 g for 15 min, filtered through 0.45 μm (Minisart SRP4, Biotech GmbH, Germany) and then 10 μL
of extract was used to test the antioxidant activity. Trolox was used as a reference.

To determine total antioxidant capacity, 10 μL of sample extracts or standard solution was mixed
with 90 μL of ABTS-radical working solution (pH 7.4) and after 40 s, the remaining ABTS·+ radicals
were measured at 415 nm using 96-well microplates (Nunc, Roskilde, Denmark) and an Infinite®

M200 micro plate reader (Tecan, Gröding, Austria). The analyses were done using 3 replicates and
the results were expressed in terms of mg Trolox Equivalent Antioxidant Capacity (TEAC) per g fruit
FW. In addition, the contribution of individual antioxidants to the total antioxidant capacity of the
crude mulberry extracts was determined using an HPLC-PDA system coupled to post-column on-line
antioxidant detection [37,38]. For this, the extracts of M. alba and M. nigra fruits, also used for the
LC-MS analysis, were analyzed using a W600 Waters HPLC system coupled to a Waters 996 PDA
detector (240–600 nm) [37,38]. Eluted compounds were allowed to react online for 30 s at 40 ◦C in a
buffered solution of ABTS·+ cation radicals (pH 7.4). Then, the absorption of the remaining ABTS·+
radicals was monitored at 412 nm by a second detector (Waters 2487, dual-wavelength UV–vis detector).
Peak identification was done by comparing PDA-absorbance spectra and retention times of eluting
peaks with data taken from the literature and annotations were confirmed by HPLC-FTMS and MS/MS
analyses, as described above.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/1/7/s1,
Figure S1: Representative LC-MS chromatograms, recorded in ESI positive ionization mode, of M. nigra (upper
trace) and M. alba (lower trace) fruit extracts; Y-axes are on the same scale (1.5*E7; base peak intensity in
ion counts/sec). Values above peaks indicate retention times (in minutes) and detected m/z value, Figure S2:
Representative LC-PDA chromatograms of aqueous-methanol extracts from ripe fruits of M. nigra (A and B) and
M. alba (C and D). Figures show absorbance at 520 nm (A and C) representing elution profile of anthocyanins,
and at 355 nm (B and D) representing mainly flavonoids and phenylpropanoids, Values above peaks indicate
retention times (in minutes). Note: intensity scales (Y-axes) are similar for all traces, Figure S3: 3 dimensional
PCA plot of 5 Morus alba and 4 M. nigra fruit samples, harvested from trees spread over region Campania, Italy,
based on their variation in 371 metabolites detected by the untargeted LCMS approach. The 3 quality control
samples are technical replicates of a mix of samples. The X-axis (PC1) explains 33.2% of the total metabolites
variation, the Y-axis (PC2) 18.6% and the Z-axis (PC3) 14.2%, Table S1: Relative intensity of all putative metabolite
features (clusterID’s) for each of the analyzed mulberry samples, Table S2: Description of column heads, Table S3:
MSI Identification level.
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Abstract: Selected Australian native fruits such as Davidson’s plum, finger lime and native pepperberry
have been reported to demonstrate potent antioxidant activity. However, comprehensive metabolite
profiling of these fruits is limited, therefore the compounds responsible are unknown, and further,
the compounds of nutritional value in these native fruits are yet to be described. In this study,
untargeted and targeted metabolomics were conducted using the three fruits, together with assays
to determine their antioxidant activities. The results demonstrate that targeted free and hydrolysed
protein amino acids exhibited high amounts of essential amino acids. Similarly, important minerals
like potassium were detected in the fruit samples. In antioxidant activity, Davidson’s plum reported
the highest activity in ferric reducing power (FRAP), finger lime in antioxidant capacity (ABTS), and
native pepperberry in free radical scavenging (DPPH) and phosphomolybdenum assay. The compounds
responsible for the antioxidant activity were tentatively identified using untargeted GC×GC-TOFMS and
UHPLC-QqQ-TOF-MS/MS metabolomics. A clear discrimination into three clusters of fruits was observed
using principal component analysis (PCA) and partial least squares (PLS) analysis. The correlation
study identified a number of compounds that provide the antioxidant activities. GC×GC-TOFMS
detected potent aroma compounds of limonene, furfural, and 1-R-α-pinene. Based on the untargeted and
targeted metabolomics, and antioxidant assays, the nutritional potential of these Australian bush fruits
is considerable and supports these indigenous fruits in the nutraceutical industry as well as functional
ingredients for the food industry, with such outcomes benefiting Indigenous Australian communities.

Keywords: Davidson’s plum; finger lime; native pepperberry; antioxidant; amino acids; metabolomics;
GC×GC-TOFMS; UHPLC-QqQ-TOF-MS/MS; bush fruit

1. Introduction

Australia is famous for its rich diversity of native plant foods, which are also known as bush tucker,
or bush food. There are about 6500 types of bush foods, and only a handful have been commercialised,
and are considered to be worth about $18–25 million to the Australian economy [1,2]. Among these,
there are about 2400 native fruits found in Queensland alone. In the stocktake published by the
Australian native food industry, [joint collaboration of the Australian Native Food Industry Limited
(ANFIL) and Rural Industries Research and Development Corporation (RIRDC) now AgriFutures
Australia], emphasis has focussed on twelve key crops for further development. In the list, several
native fruits have been identified, such as Davidson’s plum, desert limes, quandong, lemon aspen,
riberry, muntries, finger lime, kakadu plum, and native pepperberry [3]. These native edible fruits
possess health benefits and can be used in applications such as functional foods and nutraceuticals,
contributing to the emerging commercialisation in pharmaceutical industries. In the present work,
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three fruits were selected for in depth metabolomic profiling based on future potential: Davidson’s
plum, native pepperberry, and finger lime.

Davidson’s plum (Davidsonia pruriens F. Muell) belongs to the Davidsoniaceae family, and it grows
mostly in north-east Queensland in areas like coastal and upland rainforests (Djirbalngan, Yidinjdji,
Djabuganjdji, Kuku-yalanji Nations). There are two other varieties; D. johnsonii, which is found in the
south-east Queensland and New South Wales (Bundjalung Nation) while D. jerseyana, cultivates in the
northern New South Wales (Bundjalung and Gumbainggir Nations) [4]. The tree can reach up to 20 m
high [5]. The fruit is a purple plum described as tasting intensely sour [6], due to a high amount of acid
with very little sugar to counteract it [6]. The fruit is rich in flavonoids, vitamins, minerals and several
other important secondary metabolites, such as anthocyanins as well as proanthocyanidins [4]. Few
preliminary studies have proclaimed that the extracts of Davidson’s plum fruit inhibited in vitro cancer
cells, metabolic syndrome enzymes, and contained high antioxidant activity [7]. Belonging to the
Rutaceae family, finger lime, Citrus australasica var. sanguinea is also called Rainforest Pearl, found in the
rainforests of Queensland (Bundjalung Nation) and northern part of New South Wales (Gumbainggir
Nation) [8,9]. The fruits come in various shapes and sizes, and a range of colours including purple,
green, yellow and pink. The native finger lime cultivated in Australia is one of the seven citrus
species with ‘caviar like’ appearance of the fruit pulp. In general, finger lime is rich in vitamins,
minerals and terpenes, such as limonene [10]. The bioactivities and phytoconstituents of finger
lime are not well-established with reported properties limited to antioxidant and anti-inflammatory
activity [9,11]. Native pepperberry [Tasmannia lanceolata (Poir.) A.C. Smith], which belongs to the
family of Winteraceae grows at highland areas in Tasmania (Palawa Nation) and southeastern Australia
(Boonwurrung, Woiworung, Jaitmatang, Bidwell, Yuin, Ngarigo Nations). As a native shrub tree, the
fruit is black (dark purple) in colour and contains many tiny black seeds [12]. Native pepperberry has
been ethnopharmacologically used as an ailment to treat stomach discomfort, and as an antifungal
for skin diseases by Indigenous people, and it has scientifically proven to inhibit in vitro platelet
aggregation, microbial activity, as well as antioxidant capacity [13–15]. Sesquiterpene polygodial,
a major phytoconstituent which is mostly found in the oil of native pepperberry makes the spicy
and pungent flavour [14]. Additionally, other major secondary metabolites like guaiol, calamenene,
hexacosanal, drimenol and linalool were also reported to possess antimicrobial properties [12,16].

In order to support the medical, nutritional and food significance of these bushfoods, it is important
to identify the functional compounds and understand their activities. In this regard, the identification
of phytoconstituents from various analyses is emphasised, considering the synergistic or antagonistic
activity of the metabolite-metabolite interactions for certain bioactivities. Plant metabolomics provides
the tools necessary to analyse and potentially identify all the metabolites that possess bioactive
properties. Analytical platforms, such as ultra-high performance liquid chromatography mass
spectrometry (UHPLC-MS), have been widely used in plant science for metabolomics applications to
identify and quantify compounds [17,18]. The comprehensive profiling and metabolomics studies of
bush fruits are important in reaping better insight into commercial viability of these fruits. Antioxidant
activity has been reported for the fruits [7,11,14,15,19], however the correlation of the activity with
bioactive compounds through metabolomics approaches has not been reported. Therefore, this study
was conducted to bridge the gap for the discovery of antioxidant-based active metabolites together with
comprehensive profiling of Davidson’s plum, finger lime and native pepperberry. In the current study,
profiling of the fruits was conducted using targeted applications such as mineral analysis and amino
acid analysis, and untargeted applications for semi-polar and aromatic compounds. Multivariate
data analysis (MVDA), both supervised and un-supervised was applied to assess the association and
discrimination of the compounds in the fruit samples. Data comparison of antioxidant scavenging
activities was carried out together with total phenolic, flavonoids and flavonols content. The correlation
between identified compounds and antioxidant activity was then conducted to identify potential
bioactive markers in the fruit samples, as a mean of comprehensive findings for the fruits to be used in
the nutraceutical industry.
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2. Results

2.1. Untargeted Metabolic Profiling Using GC×GC-TOFMS and UHPLC-QqQ-TOF-MS/MS

The aromatic compounds in the powdered fruits were analysed by two-dimensional gas
chromatography time of fight mass spectrometry (GC × GC-TOFMS), and approximately 616 peaks
were found from each sample. The samples were screened using ChromaTOF software for the presence
of common components. A total of 604 compounds were tentatively identified in the samples of fruits
based on the library match searching data in NIST 11 v 2.0 and our in-house library. The metabolite
profiles were compared in the PCA scores plots by submitting the combined Davidson’s plum, finger
lime and native pepperberry triplicate samples as shown in Figure 1a. Clustering of the scores was
observed in three groups based on the three types of fruits. Two PCs were found with the greatest
eigenvalues recorded at 55.7% and 25.7% of the total variance. The discrimination of the samples in
three clusters indicates the aroma components in these fruits were different.

(c) 

(a) (b) 

Figure 1. The principal component analysis of Davidson’s plum (DP), finger lime (FL) and native
pepperberry (NP) using (a) GC×GX-TOFMS; (b) UHPLC-QqQ-TOF-MS/MS; and (c) loading score plot
representing compounds using UHPLC-QqQ-TOF-MS/MS. Compounds are coloured to indicate the
relative density of peak areas.
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The untargeted metabolic profile of the fruit samples obtained from the negative
mode of ultrahigh-performance liquid chromatography triple quadrupole-time-of-flight mass
spectrometry/mass spectrometry (UHPLC-QqQ-TOF-MS/MS) provided 1166 compounds (after data
processing), with 542 annotated compounds tentatively identified by MS1 and MS2 matchings; 478 by
MS1 and 64 by MS2 matching only. The PCA analysis dataset of the 3 types of fruits provided distinct
differences of clustering patterns as shown in Figure 1b. Noticeably, PC1 indicated 56.1% deviation
between the 3 fruits with finger lime clustering on the right side, whereas native pepperberry was
observed towards the negative quadrant of PC1. The PCA was further analysed in loading plot to
observe the discrimination of the compounds (Figure 1c).

2.2. Antioxidant Activity Using DPPH, ABTS, FRAP and Phosphomolybdenum Assays

The fruit samples were subjected to in vitro antioxidant activity using different spectrophotometric
assays as shown in Table 1. From the table, finger lime exhibited the strongest capability in ABTS,
however the lowest in DPPH assay despite the same radical scavenging activity. In reducing power
ability, Davidson’s plum reported the highest, while finger lime and native pepperberry did not show
any significant difference. Phosphomolybdate method was later investigated for total antioxidant
activity and expressed as gallic acid equivalent (μmol/gDW). The activity was found to decrease in the
order of native pepperberry > finger lime > Davidson’s plum.

2.3. Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Total Flavonol Content (TFlC)

Further investigation was conducted for TPC, TFC and TFlC. Native pepperberry exhibited a
significantly higher amount of TPC, TFC and TFlC compared to finger lime, as shown in Table 1. Finger
lime showed the lowest gallic acid and quercetin equivalent for all the assays. These assays showed a
similar trend for the samples, with native pepperberry the highest, followed by Davidson’s plum, and
then finger lime.

2.4. Correlation Between Antioxidant Activity And Compounds in The GCMS Dataset

A supervised multivariate data, partial least squares (PLS) was applied to fathom the relationship
between antioxidant activity and the fruit extracts. Based on Figure S1 in Supplementary Materials, the
model showed cumulative R2X = 0.864 and Q2 = 0.886, indicating good fitness and high predictability
(>0.5). In this analysis, the X-variables denote the aroma compounds and Y-variables are the antioxdant
activity. Both PC1 and PC2 explained 86.4% of the variation in the aroma compounds showing
discrimination in the compounds for antioxidant activity, with Y-variables recorded at 98%. In order to
determine the aroma compounds that may contribute to the antioxidant activity, variable importance
in projection (VIP) was carried out. The potential bioactive aroma compounds were chosen from the
variables with VIP values of greater than 2.5. A total of 21 aroma compounds were sorted and the
details are tabulated in Table 2. The identified aroma compounds were categorised into 6 different
groups, namely, terpenes, aldehydes, terpenoids, furans, isoprenoids, and alkanes.

Table 1. In vitro antioxidant activity of the 3 fruit samples. Data is expressed in dry weight, DW and
presented as mean values ± standard deviation (n = 3). Different superscript letters within each column
indicate significant (p < 0.01) difference between samples.

Samples
ABTS

(GAEμmol/gDW)
DPPH

(GAEμmol/gDW)
FRAP (μmol
Fe2+/gDW)

Phosphomolybdenum
(GAEμmol/gDW)

TPC
(GAEμmol/gDW)

TFC (QTE
μmol/gDW)

TFlC (QTE
(μmol/gDW)

DP 21.92 ± 1.60 a 97.38 ± 3.93 b 500.38 ± 64.32 c 52.71 ± 5.40 a 113.58 ± 14.20 b 11.31 ± 0.52 a 5.55 ± 0.08 b

FL 62.73 ± 0.55 c 17.23 ± 2.04 a 46.16 ± 3.74 a 114.89 ± 3.25 b 63.46 ± 1.10 a 10.59 ± 0.97 a 0.56 ± 0.18 a

NP 22.06 ± 3.43 a 119.49 ± 2.72 c 48.48 ± 3.23 a 291.94 ± 2.23 c 134.82 ± 11.08 b 35.86 ± 3.99 b 9.99 ± 0.21 c

ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH: 2,2-diphenyl-1-picrylhydrazyl; FRAP: Ferric
Reducing of Antioxidant Power Assay; TPC: Total Phenolic Content; TFC: Total Flavonoid Content; TFlC: Total
Flavonol Content; DP: Davidson’s plum; FL: Finger lime; NP: Native pepperberry; GA: Gallic acid equivalent; QTE:
Quercetin equivalent.
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Table 2. Aroma compounds identified by variable importance in projection (VIP) > 2.5 selection method
for Davidson’s plum, finger lime and native pepperberry.

Peak No. Compounds Group (VIP Score) Retention Time (1tR, 2tR) a CAS No. Mf b Exact Mass Level c

526
1-methyl-4-(prop-1-en-2-yl)

cyclohex-1-ene
[Limonene]

Terpene
(7.01) 769.55, 0.72 138-86-3 C10H16 136.23 L2

329 1-R-α-Pinene Terpene
(6.34) 716.15, 637.29 7785-70-8 C10H16 136.23 L2

498 Furfural Aldehyde
(5.58) 577.36, 1.28 98-01-1 C5H4O2 96.08 L1

508 Hexanal Aldehyde
(5.12) 503.75, 0.69 66-25-1 C6H12O 100.15 L1

437
1-methyl-4-(1-methylethylidene)

-cyclohexene
[Terpinolene]

Terpenoid
(4.74) 972.00, 0.98 586-62-9 C10H16 136.23 L2

410 γ-Terpinene Terpene
(4.70) 1072.61, 1.18 99-85-4 C10H16 136.23 L2

599 Terpinen-4-ol Terpenoid
(4.49) 1038.69, 1.00 562-74-3 C10H18O 154.24 L2

397
2,2-dimethyl-3-methylidenebicy

clo[2.2.1]heptane
[Camphene]

Terpenoid
(4.28) 953.92, 1.06 79-92-5 C10H16 136.23 L2

326 α-Phellandrene Terpene
(3.78) 778.35, 0.70 99-83-2 C10H16 136.23 L2

342
1-methyl-4-(1-methylethenyl)

-benzene
[p-Cymenene]

Terpene
(3.63)

960.45, 0.88 1195-32-0 C10H12 132.20 L2

493 2-ethylfuran Furan
(3.55) 367.27, 0.88 3208-16-0 C6H8O 96.12 L2

281
1-methyl-4-(1-methylethyl)-7

-Oxabicyclo
[2.2.1]heptane

Alkane
(3.38) 757.76, 0.68 470-67-7 C10H18O 154.24 L2

1 (-)-Carvone Terpenoid
(3.11) 1170.77, 1.10 6485-40-1 C10H14O 150.21 L2

331 α-Terpineol Terpenoid
(3.05) 1072.61, 1.18 98-55-5 C10H18O 154.24 L2

527 l-menthone Terpenoid
(2.90) 1018.87, 0.87 10458-14-7 C10H18O 154.24 L2

364
4-methylene-1-(1-methylethyl)-

Bicyclo[3.1.0]hexane,
[Sabinene]

Terpene
(2.89) 799.78, 0.70 3387-41-5 C10H16 136.23 L2

399 Caryophyllene Isoprenoid
(2.82) 1399.12, 0.71 87-44-5 C15H24 204.35 L2

569 Pentanal Aldehyde
(2.81) 382.87, 0.67 110-62-3 C5H10O 86.13 L2

272 5-isopropenyl-2-methylcyclo
pent-1-enecarboxaldehyde

Terpenoid
(2.78) 1275.00, 0.95 3865-09-6 C10H14O 150.21 L2

271 4-methylene-5-hexenal Aldehyde
(2.52) 629.52, 0.90 17844-21-2 C7H10O 110.15 L2

469 Dodecane Alkanes
(2.51) 984.85, 0.61 112-40-3 C12H26 170.33 L1

a 1tR: First dimension retention time, 2tR: Second dimension retention time; b Mf: Molecular formula; c Level:
Level of identification based on the guidelines [20]. L1—level 1 identified through authentic chemical standards;
L2—putatively identified compounds through library matching.

2.5. Correlation Between Antioxidant Activity And Compounds in The LCMS Dataset

With regard to the clear variance defined by the PCA (Figure 1b) and antioxidant activity (Table 2),
a supervised multivariate data analysis, i.e., partial least squares (PLS) was utilised to organise and
distinguish the samples according to their MS dataset. The correlation of the antioxidant activity and
identified compounds was conducted by setting ABTS, DPPH, FRAP and phosphomolybdenum assays
as Y variables, while the identified compounds were assigned as the X variables (Figure 2). In this
experiment, a clear discrimination was achieved between Davidson’s plum, finger lime and native
pepperberry with good discriminant model indicators, R2Y at 0.968 with the goodness-of-prediction
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value, Q2 at 0.965. The robustness of the PLS model on the antioxidant activity for discriminating the
identified compounds was confirmed by the results of permutation tests (Figure S2 in Supplementary
Materials). The correlation of identified compounds with antioxidant acitivty showed discrimination
of the fruits with scattered Y variables as shown in Figure 2b. Y variables of DPPH and FRAP are seen
in the right quadrant of PC1 (X = 47.5%; Y = 55.1%), whereas the ABTS and phosphomolybdenum
assays are towards the left. PC2 accounts for 49.5% of X variables and 43.3% in Y variables.

(b) 

(c) 

(a) 

Figure 2. (a) Partial least square (PLS) score plot derived from UHPLC-QqQ-TOF-MS/MS on 3 fruit
sample. (b) PLS biplot plots showing correlation between identified compounds with antioxidant
activity. X = compounds, Y = antioxidant activity. (c) The variable importance in the projection (VIP)
values (>1.5) represented by red coloured bars, (1.0–1.5) in green while blue coloured bars are VIP
values (<1.0). The coloured compounds in (b) are VIP values >1.5.
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Compounds that are responsible for the separation in Figure 2b were observed through variable
importance in projection (VIP) selection approach. In this model, we set the VIP values at greater than
1.5 and loadings correlation coefficient [p(corr)] values above 0.5 to be significant for sample separation
in the PLS model. From the analysis, a total of 44 compounds displayed good VIP values as listed in
Table 3, with 7 unknown compounds. From the VIP scores, sugars, flavonoids and terpenes were the
most important classes of compounds for antioxidant activity, followed by other phenolic compounds.
Next, in order to better understand the distinctive incidence in antioxidant activity, we provide a
fold-change analysis on the compounds (LogFC, Table 3). This analysis aims to correlate the significant
value changes between the two group means. In this analysis, the fold-change was set at two, and any
numbers that surpassed the threshold were considered significant. In particular, finger lime and native
pepperberry showed the highest series of fold change with the fold-change distributions ranging from
3 to 10 times higher compared to Davidson’s plum and finger lime. Nevertheless, Davidson’s plum
and native pepperberry only exhibited 5 significant fold-change of putatively identified compounds, ie.
isovitexin, quercetagetin, racemosic acid, quercetin 3-[rhamnosyl-(1->2)-alpha-l-arabinopyranoside],
and {3-[2-(3-hydroxy-5-methoxyphenyl)ethyl]phenyl}oxidanesulfonic acid, with the last compound
also exhibited the highest fold-change (17.55).

2.6. Targeted Free And Protein Amino Acid Profilling Using UHPLC-MS

In total, 11 free amino acids were found in Davidson’s plum, 19 in finger lime and 14 in native
pepperberry (Table 4). Interestingly, essential amino acid, lysine, exhibited the highest free amino
acid for all the three fruit samples with Davidson’s plum (74.11%), finger lime (53.74%), and native
pepperberry (67.88%). Other amino acids such as isoleucine, cystine and histidine are relatively high
among the samples. Most of the free amino acids were detected in finger lime, and included aromatic
amino acids, phenylalanine, tyrosine and tryptophan; sulfur-containing amino acids, cysteic acid,
taurine and cystine; and non-essential amino acids, arginine, aspartic acid, glutamic acid, glycine,
proline, and serine, but not alanine. Trace amounts of some free amino acids (<0.7%) were detected in
native pepperberry compared to lysine, and isoleucine.

Analysis of the protein amino acids showed that Davidson’s plum exhibited 10 amino acids,
and both finger lime and native pepperberry reported all the protein amino acids (Table 4). Similar
to the profile of free amino acids, the three fruit samples demonstrated that lysine was the highest
amount of hydrolysed protein amino acid, followed by isoleucine indicating a significant difference
between the samples for isoleucine. lysine is significantly higher in Davidson’s plum compared to both
finger lime and native pepperberry, in which the content is insignificant. Different trends of amino
acids were observed for the three samples, where the percentage of amino acids in Davidson’s plum
ranged from 55.53% (lysine) to 0.08% (valine), finger lime, from 45.185% (lysine) to 0.235% (norleucine),
and native pepperberry, from 37.07% (lysine) to 0.18% (cysteic acid).

Un-supervised, PCA of the free and hydrolyed protein amino acids was later conducted to observe
the association of the amino acids with the fruits (Figure S3 in Supplementary Materials). From the
biplots, finger lime (positive PC1) is discriminated from Davidson’s plum and native pepperberry
(negative PC1) and most of the free amino acids are associated with finger lime. In contrast, hydrolysed
protein amino acids showed clustering of finger lime with native pepperberry and separating from
Davidson’s plum with negative PC1. Almost all the amino acids were associated with finger lime and
native pepperberry except lysine, cysteine and isoleucine.
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2.7. Targeted Minerals and Heavy Metals Profilling using ICP-OES

Here, we targeted 18 minerals and heavy metals for the fruit samples and the analysed data are
shown in Figure S4 in Supplementary Materials. The heat map shows the relative concentration of all
the minerals and heavy metals in each sample. Minerals (Mn, Na, Fe, Zn) are abundantly distributed
in native pepperberry compared to Davidson’s plum and finger lime. However, Davidson’s plum
contained elevated levels of Mg (816.1 ± 7.4 mg/kg) and Al (114.2 ± 1.2 mg/kg) while finger lime with
higher levels of Ca (1390.1 ± 35.8 mg/kg) and P (870.63 ± 24.2 mg/kg) than any other elements analysed
in the study (Table S1 in Supplementary Materials). From the statistical analysis, 9 elements varied
significantly (p < 0.05), i.e., Al, Ca, Fe, K, Mg, Mn, Na, P, and Zn as shown in Figure 3 and represented in
box and whiskers plot. Interestingly, the relative amount of Al, K, and Mg were highest in Davidson’s
plum compared to native pepperberry and finger lime. Al, Ca, Mg and P were moderately high in
native pepperberry except for potassium. Finger lime exhibited a relatively low amount of most
elements, but did show an amount of Ca and P compared to the other fruits.

 Davidson’s plum Finger lime Native pepperberry 

Figure 3. Box and whisker plots of nine elements varied significantly. DP: Davidson’s plum, FL: Finger
lime, NP: Native pepperberry. The Y-axis of box and whisker plots indicates the amount in mg/kg.
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3. Discussion

Davidson’s plum, finger lime and native pepperberry are among Australian native foods that are
important to be classified as functional foods due to vast biologically active primary and secondary
metabolites, especially terpenes, and flavonoids. Recently, with the inclusion of Indigenous foods in
the food industry, natural antioxidants from bush fruits have gained expanding attention due to the
growing demand for novel flavours, new functional compounds, and clean labelling. These fruits
are rich in polyphenolic compounds, which are prominent natural antioxidants. The identification of
aroma compounds using GC×GC-TOFMS provides an important factor in discriminating the clusters
of the fruit samples. Correlation between antioxidant activity and aroma compounds exhibited
abundance in terpenoid and terpene groups such as limonene, which generally contributes to the fruity
smell due to its low odour threshold. Similar with previous studies, limonene was relatively high in
finger lime, showing one of the major volatile compounds compared to other terpene groups [2,9,10].
The abundance of terpenes and terpenoids in the fruit samples suggest that they are suitable for
processing of the fruits into jam and chutneys or even other food products with pleasant aroma and
colour [9].

In the current study, we also conducted a correlation between bioactive compounds with
antioxidant activity of the fruits using LCMS metabolomics. Through the comprehensive metabolite
profiling, the results of various scavenging activities along with TPC, TFC and TFlC are presented
in Table 2. In relation to the reported studies, Davidson’s plum exhibited proportionate amount of
total phenolic content with damson plum, Prunus domestica subsp. Insititia L. (124.32 GAE μmol/gDW)
cultivated in France [21], but three times higher (38.20 GAE μmol/gDW) compared with the same plum
planted in Serbia [22]. In general, bush fruits are rich in phenolics, terpenes and flavonoids, forming the
vital class of compounds for scavenging activities in human body [14]. Each antioxidant assay provides
different data, therefore four types of antioxidant assays were conducted in order to completely
evaluate the efficacy of the powdered fruit extracts. Generally, different fruits exhibited different
strengths in their respective antioxidant assays when compared with gallic acid. The antioxidant
capacity changes with in vitro assays depending on the affinities of the active compounds present in
the fruits [23]. The outcome of this study is also synergistic with the TPC, TFC and TFlC activities
with their respective antioxidant activity. Thus, these findings support the antioxidant function of the
fruits, which is in good agreement with previous results [2,11,14,24,25].

The relative variability of the compounds in the fruits was measured using MVDA to characterise
the tentative identification of peaks that are bio-actively related to antioxidant activity. PCA and PLS
were employed with clear discrimination of the score plots among the fruits. The correlation of the
compounds with antioxidant activity (DPPH, ABTS, FRAP and phosphomolybdenum) was conducted
using a PLS biplot to reveal the dominant compounds that may be responsible for the activities.
The search of the compounds that attributed to antioxidant activity was conducted through the VIP
values greater than 1.5 (Table 3). Therefore, from the findings of both GC and LC chromatographic
analyses, the identified notable compounds were highly possible for the antioxidant activity. Some
aroma compounds such as limonene, furfural, α-pinene, terpinen-4-ol, and γ-terpinene and polar
compounds like dicaffeoylquinic acid, quercetagetin, and 2′′-O-acetylrutin have been reported to
possess potent antioxidant activity [22–32].

In addition to the secondary compounds identified, the fruits, especially finger lime and native
pepperberry, are rich in amino acids. Nevertheless, most of the essential amino acids were present in
the samples and can therefore act as a functional food in dietary supplements [33]. Though lysine is
well represented in some vegetable species [34,35], it is absent in many plants compared to other amino
acids and this is a disadvantage for vegans. According to the Academy of Nutrition and Dietetics
(AND), vegetarians are recommended to consume an array of plant-based food that are rich in protein
in order to meet nutritional and health requirements [36]. Interestingly, lysine exhibited the highest
amount in the fruits, which is suitable for vegetarians as well as those who are allergic to beans and
legumes [37].
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Minerals and trace elements in fruits are acquired and transported naturally for biological
processes in the plants. However, some of these minerals this could be toxic to humans when they
occur at particular levels. Instead of posing a threat, mineral nutrients under the normal level assist
in mitigating toxicity caused by heavy metals. In our mineral study, the ANOVA statistical analysis
highlighted nine important minerals from the heatmap (Figure S4 in Supplementary Materials) of
the fruit samples. As the major mineral in human dietary intake, potassium contributed the highest
percentage for all the samples ranging from 52–68% showing a good source of potassium, especially
for Davidson’s plum (68%). The requirement of potassium by humans is greater than 100 mg/day and
with this fact, it is anticipated that the contribution of these fruits to dietary intake will grow in future.
The potassium levels of Davidson’s plum (6877 ± 138 mg/kg), and finger lime (6697 ± 98 mg/kg) found
in this study are higher than potassium levels in any Colombian fruits [38], and subtropical fruits
grown in Spain, such as custard apple, avocado, mango, banana, papaya, persimmon and starfruit [39].
The amount of phosphorus (835 ± 49 mg/kg), calcium (788 ± 37 mg/kg) and magnesium (723 ± 23
mg/kg) were relatively high in native pepperberry, compared to jujube fruits grown in China [40]. Bush
fruits have been reported for rich sources of calcium and magnesium with an added advantage because
both minerals are important in forming DNA and are especially important in repairing damaged DNA.
They are equally crucial in segregating the chromosomes during DNA synthesis [19].

Taken together, all the data indicate that these three native fruits are excellent sources of important
compounds, that offer nutritional value to consumers. For the food industry, these fruits offer potential
to extend shelf-life naturally, and increase the functional value of the food, enabling the industry
to make health claims about the food. This information could also assist with the development of
Indigenous businesses to supply these high value foods to the food industry. In addition, this study
illustrates that the reason for different antioxidants values from the different methods is based on the
nature and classes of the secondary compounds much more than any of the other compounds.

4. Materials and Methods

4.1. Chemicals and Reagents

All organic solvents were purchased from Fisher Scientific (Pittsburgh, PA, USA) unless stated
otherwise. Ammonium ferrous sulfate, sulfuric acid, aluminium chloride, sodium nitrate, sodium
hydroxide, sodium acetate, aluminium hexahydrate, ammonium molybdate, sodium phosphate,
sodium nitrite, quercetin, gallic acid, glacial acetic acid, 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ),
2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH), potassium persulfate, formic acid, 2,2′′-azinobis
(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

4.2. Plant Materials

Davidson’s plum, native pepperberry, and finger lime and were purchased from Taste Australia
Bush Food Shop (Queensland, Australia). The samples were pulverised into fine powder using
TissueLyser II (Qiagen, Tokyo, Japan). The pulverised samples were extracted with solvent or water
(specified in respective method) in triplicates for chemical assays.

4.3. GC×GC-TOFMS Analysis

The aroma in fruits was comprehensively analysed using static headspace extraction coupled
with separation by two-dimensional gas chromatography time-of-flight mass spectrometry (GC ×
GC-TOFMS, LECO Pegasus 4D, Castle Hill, Australia). Briefly, sample (500 mg) was weighed into 20
mL silicon capped GC headspace vials (Restek, Germany) and kept at −80 ◦C until further analysis.
2.5 mL headspace syringe was used to collect 1.5 mL of sample headspace after sample agitation
of 10 min at 80 ◦C. An empty vial was used as blank and quality assurance (QA) standard was
prepared by mixing all the samples. The program settings, conditions and parameters are provided
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in Table S2 in Supplementary Materials [41]. LECO ChromaTOF 4.50 software was used to process
the GC×GC-TOFMS data for pre-processing baseline correction and identification was conducted by
library matching (NIST 11 v2.0) and from authentic reference standards created in an in-house library.
The similarity of ≥80% with the NIST library was defined as putative identification (when standards
were not available) [42–44].

4.4. UHPLC-QqQ-TOF-MS/MS Analysis

The pulverised fruits powder (10 mg) from 3 plant species were dissolved in methanol (600 μL)
and vortexed for 15 min at 30 ◦C. The mixture was then centrifuged at 28,500× g for 15 min and an
aliquot of each supernatant (100 μL) was transferred into new Eppendorf tubes. Millipore water was
added in ratio 3:1 to the supernatant. The mixture was vortexed and filtered through a 0.2 μm PTFE
filter into an autosampler vial. For pooled biological quality control (PBQC) samples, 5 μL of each
sample was taken and vortexed for 1 min. For the blank, 100 μL of Millipore water was used. The
UHPLC-QqQ-TOF-MS/MS analysis was performed using Shimadzu Nexera UHPLC system (Kyoto,
Japan; LC-30AD pump, SIL-30AC autosampler and CTO-30A column oven) equipped with Shimadzu
Q-TOFMS-9030 detector. Separation of the sample analytes was conducted on a Shimadzu Velox
C18 (2.1 × 100 mm, 1.8 μm, part number 227-32007-03, Shimadzu, Kyoto, Japan). The mobile phase
consisted of A (0.1% [v/v] formic acid in acetonitrile) and B (0.1% [v/v] formic acid in water). The flow
of the solvent gradient flow was set as follows: 97% A for 0–0.75 min, 5% A for 0.75–13 min, 97% A for
13–16 min. The sample injection volume was 1 μL with consistent flow rate at 0.4 mL/min. The column
temperature and auto-sampler were set at 40 ◦C. Negative ionisation mode was operated for mass
spectrometry analysis equipped with electrospray ionisation (ESI) source with collision energy set at
70 eV. The MS data were collected from m/z 70–700 Da; nebulisation gas at 3 L/min; source temperature,
120 ◦C; and desolvation temperature, 200 ◦C. The MS data were centroided and acquired with Lab
Solutions software version 5.80. The raw data files were exported to Lab Solutions Insight software in
LCD (*.lcd) format for pre-processing, correction of retention time, and baseline. The raw files were also
converted to mzML format for peak discrimination, filtering and alignment using MS-DIAL [45,46].

4.5. Targeted Analysis of Free Amino Acids

4.5.1. Extraction of Free Amino Acids from Fruit Samples

The samples were weighed (20 mg) in Eppendorf tube. Methanol (500 μL) was added and
vortexed. The mixture was centrifuged at 30,000× g for 5 min, then the supernatant was transferred
into a 2 mL tube. The precipitate was resuspended in 500 μL of Millipore water and vortexed. Next, the
mixture was centrifuged at the same speed for 5 min. The methanol and water extract were combined
and filtered through a 0.2 μm PTFE filter.

4.5.2. Free Amino Acid Derivatisation

The free amino acids were derivatised using AccQ.FluorTM reagent according to the Waters
AccQ.TagTM pre-column derivatisation procedure [47]. Briefly, 35 μL of borate buffer was put into a
tube (2 mL). 5 μL of sample was then mixed and vortexed for several seconds. Ten μL of reconstituted
derivatisation reagent were then admixed to the buffered samples and immediately vortexed. Next,
the mixture was left at room temperature for 1 min. After that, the samples were heated in a heating
block for 10 min at 55 ◦C to finalise the derivatisation. The derivatised free amino acids were then
transferred to autosampler vial for analysis. PBQC samples were prepared by pooling 5 μL from each
sample, vortexed for 1 min and derivatised using the same method as mentioned previously.
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4.5.3. Standards

Standard amino acid mix solution (Batch. No SLBS2232V; Sigma-Aldrich, St. Louis, MO, USA)
was used for the identification and quantification of amino acids. The standards were prepared in
serial dilutions of 40% stock solutions to 20%, 10%, 5%, 2.5% and 1.25%. Derivatisation of the standard
amino acids were conducted according to the methods explained in Section 4.5.2. As for blank, 5 μL of
Millipore water was used to replace sample at the beginning step, then followed by the derivatisation
steps mentioned in Section 4.5.2.

4.5.4. UHPLC-MS Conditions

The analysis of amino acid derivatives was analysed on a Shimadzu Nexera UHPLC system
(Kyoto, Japan; LC-30AD pump, SIL-30AC autosampler and CTO-30A column oven) equipped with
Shimadzu MS-2020 detector. Waters Acquity UPLCTM BEH C18 column (2.1 × 100 mm, 1.7 μm, part
number 186003837, Waters, Milford, MA, USA) was used for the chromatographic separation at
consistent temperature of 55 ◦C. The MS parameters were set as follows: Acquisition mode, SIM (refer
Table S3 in Supplementary Materials); detector voltage, 0.1 V; interface voltage, 2.5 V; ionisation mode,
positive; heat block temperature, 500 ◦C; interface temperature, 350 ◦C; nebulising gas flow, 1.5 L/min;
injection volume, 10 μL. The mobile phase consists of A: 0.1% formic acid (v/v) in Millipore water,
and B: 0.1% formic acid (v/v) in acetonitrile. The flow rate was set at 0.7 mL/min based on the gradient
profile: initial-0.54 min (0–0.1% B); 0.54–5.74 min (0.1–15% B); 5.74–8.74 min (15–21.2% B); 8.74–10.50
min (21.2–59.6% B); 10.50–11.50 min (59.6% B); 11.50–12.00 min (59.6–0.1% B) and finally at 0.1% B
until 13 min. The interconnected cleaning purge was set within 1 min (rinsing speed 35 μL/sec), and
equilibrium was repeated for 5 min at initial conditions. The whole cycle time took 13 min to complete
before the next injection.

4.6. Targeted Analysis of Protein Amino Acids

4.6.1. Sample Digestion

Fruit samples (20 mg each pulverised) were digested in a glass vessel containing 2 mL of 6 N HCl
and 0.1% of phenol. The glass vessels were flushed with N2 before sealing. Samples were hydrolysed
at 110 ◦C for 20 h. Next, the samples were filtered using 0.2-μm filter, and the filtrate was neutralised
with freshly prepared 6 N NaOH solution [48].

4.6.2. Protein Amino Acid Derivatisation

The protein amino acid derivatisation, PBQC and standards were prepared according to the
methods mentioned in Sections 4.5.2 and 4.5.3.

4.6.3. UHPLC-MS Analysis

The standards and derivatised protein amino acid were injected and analysed according to the
UHPLC-MS conditions mentioned in Section 4.5.4.

4.7. Targeted Analysis of Minerals and Heavy Metals

4.7.1. Sample Preparation

The fruits samples were weighed (100 mg) into new and clean 15 mL digestion tubes. To each tube,
concentrated nitric acid (2.0 mL) was added and samples were pre-digested overnight. They were then
placed into a digestion rack of Hotblock® Digestor SC100 Digestion System (Environmental Express,
Vernon Hills, IL, USA). The samples were digested for 1 h at 100 ◦C. Upon completion, the samples
were cooled, and then water added to bring the volume to 15 mL. The samples were shaken and
centrifuged for 5 min [49].
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4.7.2. ICP-OES Analysis

The operating conditions for inductively coupled plasma optical emission spectrometer (ICP-OES)
were performed according to the parameters: RF incident power, 1000 W; plasma argon flow rate,
15.0 mL/min; auxillary argon flow rate, 1.50 mL/min; nebulizer argon flow rate, 0.75 mL/min; mist
chamber, tracey and nebulizer SeaSpray, 2 mL/min flow rate. The wavelength measured for each
element is as follows: Al 396.152 nm, As 188.980 nm, Ca 422.673 nm, Cd 214.439 nm, Co 238.892 nm, Cr
267.716 nm, Cu 324.754 nm, Fe 238.204 nm, K 766.491 nm, Mg 279.553 nm, Mn 257.610 nm, Mo 202.032
nm, Na 588.995 nm, Ni 231.604 nm, P 213.618 nm, Pb 220.353 nm, S 181.972 nm, and Zn 213.857 nm.

4.8. Determination of in Vitro Antioxidant Activity

The DPPH, FRAP, ABTS and phosphomolybdenum activities of the fruit samples were evaluated
by the methods reported by [44,50,51], respectively. The ABTS, DPPH and phosphomolybdenum
assays were reported as gallic acid equivalents (GAE μmol/gDW), whereas FRAP as Fe2+ equivalents
(Fe2+ μmol/gDW).

4.9. Total Phenolic, Flavonoid and Flavonol Contents

Spectrophotometric technique was used for total phenolic, flavonoid and flavonol contents and
were quantified following the protocol of [52,53]. Total phenolic contents were expressed as gallic
acid equivalents (GAE μmol/gDW), whereas total flavonoid and flavonol contents were presented as
quercetin equivalents (QTE μmol/gDW).

4.10. Data Processing and Analysis

Data for bioactivities were presented as mean± SD for all triplicate analysis and a one-way analysis
of the variance (ANOVA) was carried out using SPSS Statistics version 25 (IBM Corp, Armonk, NY,
USA). The mean comparisons were conducted using the post-hoc Tukey’s (HSD) multiple comparison
test. Values with p < 0.05 were considered statistically significant.

The processed data from GC×GC-TOFMS were analysed using SIMCA-P software version 15
(Umeå, Sweden) for multivariate data analysis (MVDA). In order to access the clustering and trends
of the comprehensive depiction of the fruit samples, principal component analysis (PCA) was used.
Partial least squares (PLS) chemometric method was conducted to further analyse the correlation of
antioxidant activity with volatile compounds in the fruit samples [41,44]. The variables were pareto
scaled for PCA and PLS analyses. Afterwards, the variables selection namely VIP was used to select
those notable volatile compounds (VIP > 2.5).

For UHPLC-QqQ-TOF-MS/MS data, the variables were pareto scaled and log transformed for
PCA and PLS to lower heteroscedasticity and asymmetry in the statistical distribution [44]. In order
to tentatively identify the compounds, the acquired raw data in mzML format were processed using
MS-DIAL by comparing the MS/MS spectra with those in the spectral library. VIP was applied to
identify the most significant compounds contributing to the antioxidant activity [54]. Compounds
with VIP score > 1.5 were maintained for further elaboration using methods from MetaboAnalyst 4.0,
an open source web-based tools for metabolomics data analysis [55].

For targeted MVDA of amino acids, both targeted free and hydrolysed amino acids were pareto
scaled and log transformed. The heatmap and box and whiskers were generated using MetaboAnalyst
4.0 [55].

5. Conclusions

We have successfully reported that the Australian bush fruits, Davidson’s plum, finger lime
and native pepperberry are rich in terpenes, phenolics, flavonoids, flavonols, minerals, essential and
non-essential free and hydrolysed protein amino acids, and functional bioactive compounds, which are
promising fruits to be commercialised in the nutraceutical industry and food industry. We found that
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the fruits are an abundant source of antioxidant compounds (sugars, terpenes, flavonoids etc.) and
that may serve as the source of natural antioxidants in food products or as new medicines. The use of
metabolomics in correlation to the primary and secondary metabolites as well as the minerals would
render an opportunity to obtain more potential bioactivities of the Australian bush fruits as functional
food in nutraceutical industry. We also show that when reporting antioxidant activity, it is important
to use more than one method to obtain a true understanding of the activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/114/s1,
Table S1: Targeted analysis of 18 minerals and heavy metals from Davidson’s plum (DP), finger lime (FL) and
native pepperberry (NP). Results are expressed as mean values (mg/DWkg) ± SD (n = 3). Superscript letters
within each column indicate statistically significant (p < 0.05; Tukey test), Table S2: GC×GC-TOF-MS parameters
for comprehensive profiling of fruit samples, Table S3: Amino acids’ single ion monitoring for mass spectrometry
detector, Figure S1: (a) Partial least square (PLS) score plot based on GC×GX-TOFMS data. (b) PLS biplot
plots showing correlation between identified aroma compounds with antioxidant activity. X = compounds, Y =
antioxidant activity, Figure S2: Permutation test of the PLS model based on UHPLC-QqQ-TOF-MS/MS data (a)
ABTS; (b) DPPH; (c) FRAP; (d) Phosphomolybdenum assays, Figure S3: Biplot association of (a) free amino acid;
(b) hydrolysed protein amino acid in Davidson’s plum (DP), finger lime (FL) and native pepperberry (NP), Figure
S4: Heat map of 18 mineral nutrients and heavy metals found in the fruit samples.
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18. Aszyk, J.; Byliński, H.; Namieśnik, J.; Kot-Wasik, A. Main strategies, analytical trends and challenges in
LC-MS and ambient mass spectrometry–based metabolomics. TrAC Trends Anal. Chem. 2018, 108, 278–295.
[CrossRef]

19. Konczak, I.; Roulle, P. Nutritional properties of commercially grown native Australian fruits: Lipophilic
antioxidants and minerals. Food Res. Int. 2011, 44, 2339–2344. [CrossRef]

20. Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for
metabolite annotation and identification in metabolomic studies. Gigascience 2013, 2, 1. [CrossRef] [PubMed]

21. Mousavi, M.; Zaiter, A.; Modarressi, A.; Baudelaire, E.; Dicko, A. The positive impact of a new parting
process on antioxidant activity, malic acid and phenolic content of Prunus avium L., Prunus persica L. and
Prunus domestica subsp. Insititia L. powders. Microchem. J. 2019, 149, 103962. [CrossRef]
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Abstract: Grapes, one of the oldest agricultural crops, are cultivated to produce table fruits, dried fruits,
juice, and wine. Grapevine variety is composed of clones that share common morphological traits.
However, they can differ in minor genetic mutations which often result in not only notorious
morphological changes but also in other non-visible sensorial distinctive attributes. In the present
work, we identified three Vitis vinifera cv. Pinot noir clones grown under identical field conditions that
showed different grape cluster types. Here, sensorial analysis together with non-targeted metabolite
profiles by Ultra High performance Liquid Chromatography (UPLC) couples to Ultra High Resolution
Mass Spectrometry (FT-ICR-MS) of wines elaborated from the three different grape cluster types was
studied with the aim of (i) finding sensorial differences among these three types of wines, and, if there
were, (ii) determining the molecular features (metabolites) associated with these sensorial attributes
by a multivariate statistical approach.

Keywords: metabolomics; wine; clones; Vitis vinifera; sensory analysis

1. Introduction

With several thousand varieties, the Vitis genus is characterized by high levels of genetic
diversity. The Vitis international variety catalogue identifies more than 21 thousand names of varieties,
including 12.250 for Vitis vinifera. However, we have to consider that this number includes also
synonyms and homonyms [1]. Moreover, the actual number of vine varieties for V. vinifera species
is estimated at 6000 [2]. Additionally, vines are one of the most important crops in the world with a
total surface area planted reaching 7.4 million hectares (Mha and world-wine market reaching 31.3 bn
EUR in 2018. The variety Pinot noir is the 6th most widely planted red grape variety worldwide [3].
This cultivar is particularly well adapted to cool growing areas and can be grown at higher latitudes
in comparison to other varieties. In addition, the Pinot noir variety is appreciated by the quality of its
fresh and fruity monovarietal wine.

Wine can be considered a complex product whose quality is attributable to its chemical
composition, which is highly influenced by grape variety [4], viticultural practices [5,6], fermentation
conditions [7], vineyard geographical location that is related to soil and climate characteristics [8–10],
technical conditions of wine-making [11], and the quality of the grapes used for its production [12,13].
Determination of grape quality is important as grower payment per ton of fruit. Aroma is one of the
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most important factors in determining wine character and quality [14]. Another equally important
wine quality attribute is mouthfeel. Aroma descriptors include red berries, smoky, herbal, and woody,
which represent what a wine smells like; while taste is described by attributes such as astringency, bitter,
acidity, and sweetness. These characteristics are the result of complex interactions among volatile and
non-volatile compounds. So far, the contributions of these attributes to wine are determined by a tasting
panel, who must be rigorous and well trained using an appropriate and standardized vocabulary.

Metabolomic approaches can take a snapshot of the current biochemical status and are useful
to compare varieties and evaluate changes in metabolic pools. In this regard, metabolomics-based
approaches can reveal several thousand signals of candidate biomarkers providing high sensitivity
and good resolution for wine authentication purposes. Recently, there have been a number of reports
utilizing high-throughput techniques focusing on wine or grape metabolomes to discriminate wines
from distinct varieties, fermentation conditions, geographical origin, as well as different qualities [15–26].
Moreover, most of the current analysis of wine with high-throughput analytical technologies contributes
to a volatile profiling using different multivariate techniques [17,18,21,27]. However, very little is
reported on non-targeted and non-volatile metabolite profiles as a basis [19,20,22,26,28,29]. Furthermore,
to the best of our knowledge, none of the non-volatile biomarkers associated with wine quality (sensory
properties) have been targeted to assist or confirm the rating score provided by wine panelists.

Due to the unstudied phenotypic cluster variation observed in an established clonal-commercial
vineyard, the scope of this work is to use the combination of sensorial analysis and
non-targeted metabolite profiling by ultra-high-performance liquid chromatography coupled to
Ultra-High-Resolution Mass Spectrometry (UPLC-FT-ICR-MS) to determine whether both platforms
have the power to distinguish between three red wines made using the different cluster types obtained
each from three V. vinifera cv. Pinot noir putative-clones grown under identical field conditions.
In addition, if this is feasible, we are also interested in identifying molecular features which contribute
most to the distinction between the different sensory properties of the three types of red wines assessed
by an expert panel. Therefore, the selected molecular features can be used as biomarkers for certification
or assessment sensorial analysis.

2. Results

2.1. Viticultural Characteristics of Three Pinot Noir Grape Cluster Types

Different fruit size was observed between different cluster types (Figure 1). Grape cluster type iii
exhibited a significantly greater berry size in comparison to grape cluster type i, while grape cluster
type ii showed an intermediate phenotype, with large, medium, and small grape sizes. Therefore,
different ratios between skin and fresh weight were produced by the different types of berries as
expected. Although berry size was different, it is apparent that this resulted in an unaltered soluble
solids content (Brix), total acidity, and pH of grape berries (Table 1). In wines made from the three
grape cluster types, no differences in the alcohol content, residual sugar content, total acidity, and pH
were observed.
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Figure 1. (A). A comparison of the three Pinot noir grape cluster types. Scale bar = 2 cm. (B). Berry
diameter at the ripe stage. Values are mean ± standard deviation (n = 50).

Table 1. Grape and wine analysed in the experiment including some basic compositional parameters.
Values are mean ± standard deviation (n = 50 and n = 6 for grapes and wines, respectivately.

Season Cluster Type
Grapes Wines

Average ± SD Average ± SD

Season 1

Type i

ºBrix 24.8 ± 2.92 Alcohol (% vol.) 14.4 ± 0.31
Residual sugar (gr/L) 1.3 ± 0.17

Total Acidity (HSO4 gr/L) 7.5 ± 1.11 Total Acidity (HSO4 gr/L) 4.3 ± 0.27
pH 3.0 ± 0.11 pH 3.4 ± 0.01
Malic acid (mg/L) 3455.2 ± 78.82 Malic acid (mg/L) 1352.1 ± 45.89
Tartaric acid (mg/L) 5471.1 ± 61.23 Tartaric acid (mg/L) 2622.2 ± 53.21
Total phenolics (mg GAE) 539.7 ± 33.31 Total phenolics (mg GAE) 1825.1 ± 23.44

Type ii

ºBrix 23.7 ± 0.38 Alcohol (% vol.) 13.9 ± 0.12
Residual sugar (gr/L) 1.3 ± 0.31

Total Acidity (HSO4 gr/L) 6.9 ± 0.38 Total Acidity (HSO4 gr/L) 4.1 ± 0.08
pH 3.1 ± 0.04 pH 3.4 ± 0.04
Malic acid (mg/L) 3322.4 ± 86.71 Malic acid (mg/L) 1423.8 ± 54.98
Tartaric acid (mg/L) 5480.5 ± 33.11 Tartaric acid (mg/L) 2679.1 ± 57.34
Total phenolics (mg GAE) 576.1 ± 47.14 Total phenolics (mg GAE) 1870.1 ± 42.32

Type iii

ºBrix 20.9 ± 1.73 Alcohol (% vol.) 12.6 ± 0.26
Residual sugar (gr/L) 1.4 ± 0.15

Total Acidity (HSO4 gr/L) 7.5 ± 0.99 Total Acidity (HSO4 gr/L) 3.7 ± 0.33
pH 3.1 ± 0.09 pH 3.4 ± 0.12
Malic acid (mg/L) 3089.3 ± 67.32 Malic acid (mg/L) 1200.6 ± 66.67
Tartaric acid (mg/L) 5190.2 ± 45.33 Tartaric acid (mg/L) 2499.2 ± 71.10
Total phenolics (mg GAE) 557.9 ± 52.41 Total phenolics (mg GAE) 1735.2 ± 33.42

Season 2

Type i

ºBrix 23.0 ± 0.67 Alcohol (% vol.) 13.5 ± 0.89
Residual sugar (gr/L) 1.3 ± 0.10

Total Acidity (HSO4 gr/L) 5.5 ± 0.82 Total Acidity (HSO4 gr/L) 4.4 ± 0.27
pH 3.2 ± 0.11 pH 3.4 ± 0.12
Malic acid (mg/L) 3333.3 ± 66.62 Malic acid (mg/L) 1487.1 ± 87.92
Tartaric acid (mg/L) 5379.3 ± 58.32 Tartaric acid (mg/L) 2598.5 ± 58.72
Total phenolics (mg GAE) 522.1 ± 31.23 Total phenolics (mg GAE) 1799.4 ± 35.09

Type ii

ºBrix 24.0 ± 1.07 Alcohol (% vol.) 13.1 ± 0.65
Residual sugar (gr/L) 1.3 ± 0.25

Total Acidity (HSO4 gr/L) 6.0 ± 1.01 Total Acidity (HSO4 gr/L) 4.2 ± 0.08
pH 3.1 ± 0.15 pH 3.4 ± 0.04
Malic acid (mg/L) 3322.3 ± 88.10 Malic acid (mg/L) 1376.2 ± 88.78
Tartaric acid (mg/L) 5380.2 ± 30.22 Tartaric acid (mg/L) 2683.9 ± 66.91
Total phenolics (mg GAE) 518.9 ± 48.80 Total phenolics (mg GAE) 1754.3 ± 55.42

Type iii

ºBrix 23.7 ± 0.77 Alcohol (% vol.) 12.3 ± 0.35
Residual sugar (gr/L) 1.3 ± 0.15

Total Acidity (HSO4 gr/L) 5.5 ± 0.30 Total Acidity (HSO4 gr/L) 3.8 ± 0.22
pH 3.2 ± 0.12 pH 3.3 ± 0.09
Malic acid (mg/L) 3101.3 ± 65.31 Malic acid (mg/L) 1246.8 ± 86.34
Tartaric acid (mg/L) 5060.2 ± 82.23 Tartaric acid (mg/L) 2501.2 ± 79.98
Total phenolics (mg GAE) 513.1 ± 50.22 Total phenolics (mg GAE) 1765.2 ± 67.72
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2.2. Influence of Different Pinot Noir Grape Cluster Types on Sensory Evaluation of Wines

A paired comparison test was carried out to evaluate whether trained panelists were able to note
organoleptic differences in taste and aroma between wines made from the three grape cluster types.
The sensory data were the mean values of all panelists who took part in every season under evaluation.
Results showed significant differences among the three classes of wines for all the sensory properties
assessed (Figure 2). It is important to note that no significant differences were observed when data
from the two seasons were compared. As revealed in Figure 2, the aroma of wines made with grapes
from cluster type i was mainly characterized by red berries, stone fruits, caramel, and coffee/chocolate
attributes. By contrast, the herbal and vegetal attributes were especially high in the wine elaborated
with grape cluster type iii. The other attributes that varied significantly between samples were
spice, woody, and smoky which presented high scores in both samples of wine type i and type ii
compared with wine made of grape cluster type iii. In addition, we observed that the taste attributes,
acidity, and astringency notes were higher in the wines from grape cluster type i and cluster type ii,
while sweetness and bitterness attributes were lower. By contrast, in wine obtained from grape cluster
type iii, sweetness and bitterness attributes were enhanced by reduced acidity and astringency. Also,
when the panelists were asked about their general impression of these wines, again those made with
grapes from cluster type i were the best evaluated. In contrast, larger grapes seem to generate wines
with less relative balance, body, and complex attributes. Panelists were also asked to score the wines
from 0 to 100 points in terms of enological potential to be used in wine blend and also about their
commercial value if those wines were bottled and sold as monovarietal wines. As before, those wines
made with cluster type i received the best scores. Statistically significant differences were observed
between the qualifications of the wines made with all different cluster types. Overall, given these
sensory attributes for the three wine types, the panelists classified as the most well-rounded and with
better enological/commercial potential the wine made from grape cluster type i.

Figure 2. Sensory analysis. Graph of the mean sensory ratings of the three Pinot noir wines studied.
Ten experienced Pinot noir wine-makers conducted Duo-Trio test trials to determine the overall
difference between wines samples.

2.3. Untargeted Metabolite Profiles of Three Pinot Noir Wines

Given the differences in the sensory analysis of the three types of wines, we were next interested
in determining whether the unrestricted metabolomics analysis of these types of wines allowed us
to significantly associate non-volatile metabolites with specific aromatic and taste attributes. To this
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end, an exhaustive untargeted analysis of secondary metabolite profiling was conducted on wines
produced from the three grape cluster types. Wines from the two seasons were analysed using
a UPLC-FT-ICR-MS in positive and negative ionization mode. Based on visual inspection of the
raw total ion chromatograms, the wine samples showed clear differences depending on the grape
cluster types (data not shown). The data sets were examined by principal component analysis (PCA)
(Figure 3A), with two principal components explaining 50.11% and 60.72% of the overall variance
of the detected features in positive and negative mode, respectively. The PCA revealed two distinct
patterns. The analysis highlighted a sharp season-dependent trend (PC1), while PC2 showed clear
differences that were evident between the three types of wines from the same season. This result
strongly indicates that the PCA-derived separation was not based only on the presence/absence of
grape cluster type specific features but also on quantitative differences within the metabolites present
in all wines.

Figure 3. Score plots of all detected m/z features of the three Pinot noir wines from two different
seasons in positive and negative mode investigated by (A) principal component analysis (PCA) and
(B) the latent variables (LVs) in first discriminant analysis (sPLS-DA).

In light of such results, linear discriminant analysis (sPLS-DA) was used as a supervised
classification technique [30] to develop models capable of predicting the classification of wines
according to the grape cluster type and harvest year. A plot of the two first discriminant variates
(derived from all m/z features measured in either positive or negative ionization mode) is presented
in Figure 3B. When the discrimination was based on harvest year, a similar pattern was observed
compared with the unsupervised PCA (Figure 3A). However, when grape cluster type was considered
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as a variable, we observed a clear separation into three groups according to the grape cluster type
independent of harvest year (Figure 3B).

2.4. Multivariate Discrimination of Three Pinot Noir Wines Based on Metabolic Profiling and Identification of
Multiple Metabolic Features as Biomarkers of Wine Quality

Since the quality of the three wine types were scored differently based on their sensory evaluation,
we next constructed sparse Partial Least Squares (sPLS) regression models in order to identify m/z
features (biomarkers) related to sensory attributes and that also distinguished different harvest years
and cluster types. An sPLS model was generated for each dependent variable (wine attributes), and the
normalized intensity levels of the molecular features were used as predictors. The relative importance
of each independent variable (m/z feature) is measured in terms of the VIP (variable importance in
projection) scores; the higher the VIP scores, the greater the association of the analysed m/z feature
with respect to the dependent variable (sensory attribute). The m/z features with the highest VIP
score (> 1.0) are displayed in Table S1. The identified molecular features were then subjected to
compound annotation.

Annotation of metabolites based on high resolution mass spectrometry accurate mass provides
an initial indication of the potential identification. A match to a potential molecular formula,
as defined by the metabolomics standards initiative (MSI), corresponds to a level 2-based identification.
Level 3 identification is for m/z features that match multiple molecular formulas but within a single class
of metabolites, while unknown features are classified as level 4 [31]. In order to classify compounds
with higher confidence, we also used the MS2 spectral data (unit mass and peak ratio match) for
identification. When MS2 spectral data were not captured for a given metabolite, data acquired with
previous grape and wine samples analysed under identical conditions were considered, together with
published data. Where a given compound ionized in negative and positive modes and different adduct
species were observed for each, the MS2 spectra data for each ion species were manually assessed
and compared.

We were able to tentatively identify a total of 26 molecular features with a VIP score higher than 1.0
that exhibited a significant contribution to explain the variation between harvest years. In concordance
with the results obtained in the sensorial analysis with respect to the lack of discrimination of wines
made from the same cluster type but in different seasons, any of those features were in common with
the features found to be associated with all measured sensory attributes.

To better visualize the molecular features that significantly contribute to specific sensory
attributes, we performed an association study using networks (Figure 4, Table S1). In each network,
sensory attributes and molecular features are represented as nodes of different size (large and small)
and are color coded by compound category. An edge represents an association between nodes if the
corresponding VIP coefficient is greater than 1.0. The edge thickness and color indicate the strength of
the association; darker and thicker lines mean stronger associations. Network analysis emphasized
links both between and within the various sensory attributes. From the analysis for sensory evaluation
associated with aroma and taste attributes (a total of 15 sensory attributes were addressed; spice, woody,
smoky, coffee/chocolate, vegetal, animal, herbal, red berries, stone fruits, nuts, caramel, astringency,
acidity, bitterness, and sweetness), we observed a total of 65 polar m/z features that displayed good
VIP score as listed in Table S2. Following the identification process, 22 secondary metabolites were
tentatively assigned to specific compound categories, eight flavonols and flavanols, eight anthocyanins,
one hydroxycinnamic acid derivative, two ellagitannins, two cyanogenic glucosides, two classifieds as
phenols, and 43 other classes (Figure 4, Table S2).
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Figure 4. Visualization of sensory attribute-molecular feature correlations in Pinot noir wines.
(A) Network considering aroma attributes and (B) taste attributes. Notes are as follows: sensory
attributes are represented as large circles, while molecular features are represented as small circles
and are color coded by compound category. The edge thickness and color indicate the strength of
the association; darker and thicker lines mean stronger associations (only those that showed a VIP
coefficient > 1.0).

Interestingly, the network associated with aroma attributes (Figure 4A) revealed markedly higher
connectivity than the network for taste attributes (Figure 4B), suggesting that aroma attributes in
wine may represent a higher level of complexity as compared with taste attributes. Comparative
network analysis also suggested that molecular features associated with taste attributes were largely
modular, while features associated with aroma attributes showed more complex and interconnected
associations between specific features. The aroma attributes network analysis revealed five interesting
clusters, one of which included red berries, stone fruit, and caramel attributes, another involved spice
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and woody characteristics, while two other clusters contained herbaceous characters (herbal and
vegetal) and coffee/chocolate, smoky, and animal, respectively. Interestingly, we observed a strong link
between nut attributes and the two aroma attributes, coffee/chocolate and red berries. For network
involving taste attributes, we observed specific m/z features strongly associated with the four tested taste
attributes. Here, we observed an association between sweetness and bitterness attributes, while acidity
and astringency displayed non-clear association with the other analysed attributes. Interestingly,
the link between sweetness and bitterness attributes was through four m/z features; two of them
were annotated as anthocyanins (named catechylpyranopeonidin-3-O-glucose and pyranopeonidin
3-O-coumaroyl-glucose), although in general, Pinot noir wines have been described to have lower
anthocyanin concentrations [32].

3. Discussion

The quality of a wine is known to directly correlate with the quality of the grapes used for its
production [13]. Therefore, quality and character of a wine should correlate directly with the chemical
composition of grape [33].

The starting point of this study was due to an interesting observation made by the grower in an
established vineyard, in which a Pinot noir clone grown under the same mesoclimate and treated using
the same viticultural practices produced three different grape cluster types (Figure 1).

High-throughput metabolomics facilitates dissecting a phenotype at the metabolite level,
potentially allowing a more holistic perspective in monitoring and gaining information on the
winemaking process, and thus, this approach can assist in the evaluation of sensorial attributes and
can potentially help the improvement of several aspects of wine quality.

The first aim of the present study was to test if a comparative metabolome and sensorial analyses
of three Pinot noir wines made by three different grape cluster types were able to discriminate wine
types. If this was feasible, we were also interested in better understanding the diversity in the sensory
attributes of these wines. For that, we tested a multivariate statistical method to identify metabolites or
molecular patterns (biomarkers) related to different sensory attributes, which can be used to assist the
sensory analysis postulated by wine expert panelists.

The wine made from grape cluster type iii revealed significant organoleptic differences from
the other two wine types. In particular, we observed that wine produced by grape cluster type iii
was found to have greater scores for vegetal and herbal aromas. On the other hand, wine types i
and ii showed differences by displaying more canned fruity characteristics (red berries, stone fruits,
and caramel). Moreover, wine type i was the most intense in woody and coffee/chocolate characters.
This strong discrimination between herbaceous and fruity attributes within wines produced from the
same grape variety has been previously reported [34–37]. In these studies, the authors also indicated
that the descriptive profile of Cabernet Sauvignon wines displayed a dichotomy between herbaceous
and fruity characteristics.

With respect to the taste attributes, wine obtained from grape cluster iii was classified as having a
reduced mouthfeel in terms of astringency and acidity. It was also noted that wine produced from
grape cluster type iii had a noticeable increase in bitterness and sweetness. High levels of organic
acids have been associated with an increased perception of astringency. Furthermore, this perception
is also pH dependent [38]. Here, although we did not observe significant differences in total acidity
and pH, we detected differences in the level of malic acid in wine made from grape cluster type iii
compared to the other types. Moreover, astringency of high-molecular-weight polyphenolics (tannins)
can be enhanced by the presence of organic acids [38,39]. Therefore, this observation agrees with the
hypothesis that different concentrations of tannins in wine type iii can contribute to the observed
differences in astringency. Additionally, we observed increased ethanol levels in wine types i and ii,
although non-significant, which can have a greater effect on perceived astringency than the difference
between acid and high-molecular-weight polyphenol levels [40]. Similarly, a high ethanol level is
described to increase the perception of bitterness [41–43]. However, we observed that bitterness was
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perceived to be higher in wine type iii, although previous studies suggest that the bitterness perception
can be suppressed by the sweetness [41]. However, we observed that wine type iii was classified
with higher values for sweetness and bitterness attributes, suggesting that these sensory attributes
cannot reflect the same chemical properties when comparing different cultivars. Consistent with this
hypothesis, we observed no significant changes in residual sugar levels when comparing the three
wine types, although it has been described that levels of sugars in wine correlate with the sweetness
perception [44].

In view of the fact that wine is a really complex matrix and the levels of individual metabolites are
not necessarily as important as their interaction with other compounds, the use of metabolomics allows a
holistic perspective in monitoring several aspects of wine quality. Metabolomics have been successfully
applied to discriminate and classify wines according to grape variety, geographic origin, age or
winemaking practice [15–26]. Therefore, we decided to further use mass-spectrometry metabolomics
to investigate if we could establish an association between non-volatile metabolites or features and
specific sensory attributes related to wine quality.

For this purpose, wines produced by the three grape cluster types and classified differently
according to their quality by wine experts were analysed using UPLC-FT-ICR-MS. This analysis
revealed that the different wine types underwent several changes in secondary metabolite concentration,
mainly phenolic compounds. We focused on these classes of metabolites since they are important
chemical components of wines and can strongly influence the final organoleptic perception [45–47].
The content and presence of these classes of metabolites alone enabled us to discriminate between years
as demonstrated by PCA, in which the two analysed seasons can be clearly distinguished, in agreement
with previously published studies on other classes of wines [19]. In addition, this analysis was also able
to classify wines according to the grape cluster types used for winemaking as shown in the sPLS-DA
model (see Figure 3B). In this study, we have described that the putative biomarkers discriminating
the wine quality are related to changes in their abundance. Therefore, our results reveal that our
metabolite profiling provided sufficient discriminatory power to differentiate wine according to its
quality. We were then interested in identifying potential biomarkers associated with sensory wine
attributes as scored by a panel of experts. To that end, we applied sparse Partial Least Squares (sPLS)
regression models using the experts’ scores as dependent variables. From the metabolite-attribute
networks constructed from the sPLS models, we observed that the network associated with aroma
attributes revealed markedly higher connectivity than the network for taste attributes, suggesting that
aroma attributes in wine may represent a higher level of complexity as compared with taste attributes
(Figure 4). After that, we focused our attention on the molecular features that were strongly associated
with specific sensory attributes (VIP > 10) to assess whether we were able to putatively annotate them.

We found that specific anthocyanins were strongly associated with different aroma attributes
(Figure 4 and Table S1). These pigments can be grouped as glycosides (i.e., monoglucosylated
anthocyanins), acylated pigments (i.e., acylated anthocyanin monoglucosides, in which the acylated
group can be p-coumaric acid, caffeic acid or acetic acid), and anthocyanin-derived pigments
(i.e., pyranoanthocyanins and tannin-anthocyanin dimers). The Pinot noir anthocyanin profile
is unique as it lacks (except in traces) acylated anthocyanins [48,49]. In this study, we found
pyranopeonidin-3-O-glc to be associated with caramel, vegetal, herbal, coffee/chocolate, spice, woody,
and smoky attributes, while catechylpyranopeonidin-3-O-glc was associated only with the nut character.
It has been described that these chemical compounds are produced in wines during fermentation and
the aging process [50,51]. Furthermore, two other studies have demonstrated that pyranoanthocyanins
can also be found in red grapes postharvest [52,53]. In addition to these anthocyanin compounds,
we identified pelargonidin 3-O-glc to be strongly associated with the animal attribute (VIP = 28.603).
Interestingly, this anthocyanin has been detected at a very low concentration in comparison to other
anthocyanins in red and pink grape berries [54]. This finding can suggest that pelargonidin 3-O-glc
is a clear candidate to be a chemical marker associated with the animal attribute in Pinot noir wines.
In most f V. vinifera varieties, anthocyanins are known to be present only in the skin of red grape
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cultivars and together with the co-pigments or anthocyanins-related pigments are responsible fof
the red colour shown by red wine [55]. Anthocyanins are odorless molecules which can conflict our
result. However, anthocyanins are known to modulate the formation of polymeric pigments [56]
which are adducts formed during winemaking that provide mouthfeel properties [57]. In addition,
anthocyanin-derived pigments have precursors molecules of different chemistries, including vinyl-
and ethyl-phenols [58] or tannins [59], and we cannot discard their influence on aroma.

Resveratrol is a non-flavonoid compound in the stilbenoid class. In particular, the biomedical
literature focuses attention on trans-resveratrol (3,4,5’trihydroxy-trans-stilbene) because it shows a
strong antioxidant capacity and it has been positively associated with health effects, for instance,
in cardiovascular disease and colon and breast cancers [60,61]. In wine, this compound has been
found to be present around 10 times higher in red varieties than in white varieties [62]. Piceid,
the β-D-glucoside form of resveratrol (resveratrol 3-O-β-D-glucoside), is also found in wines [63] and
has been physiologically described as important as trans-resveratrol [64,65]. Interestingly, our data
revealed that the piceid level in wine was associated with coffee/chocolate. We are unaware of any
previous research that showed how the piceid level influenced wine quality; however, it has been
described that a high level of trans-resveratrol did not alter the flavor or aroma profile of Cabernet
Sauvignon [66].

Following the same strategy to identify chemical compounds associated with mouthfeel attributes,
we focused our interest on those features with a VIP score > 10. We observed that the sPLS model
associated with taste was less dense that the model from aroma characters. The model clearly showed
that the compounds responsible for the discrimination between the four tested characters (sweetness,
bitterness, acidity, and astringency), at least from the putative annotated features, are mainly represented
by anthocyanins, flavanols, and flavanols species (Figure 4). It is well understood that monomeric
flavan-3-ols and oligomeric tannins, particularly catechin and epicathechin species, are associated with
astringency perception of red wines [41,67,68]. Interestingly, we identified catechin (VIP = 17.19) that
correlated with the astringency attribute. Therefore, we can suggest that the level of catechin can act as
a chemical marker for the astringency attribute in Pinot noir wines. However, the level of variation of
this metabolite that can be associated with this sensory character will need further investigation.

From this study, we can demonstrate that wine quality in term of sensory analysis is a complex
process in which the individual level of volatile and non-volatile compounds but also their interaction
play an important role. Here, we presented a metabolic pipeline methodology allowing

(i) efficient discrimination of different wine quality
(ii) identification of m/z features associated with specific sensory attributes.

However, further research on the validation of the identified m/z features (putative annotated and
non-annotated) related to aroma and taste characters is needed to release metabolic biomarkers to
assist panelists with wine quality discrimination.

4. Materials and Methods

4.1. Chemicals

All solvents were of High Performance Liquid Chromatography (HPLC) grade and were obtained
from VWR International. Other chemicals were of the highest purity grade available and were obtained
from Sigma–Aldrich. Water was of Milli-Q quality (Millipore Corp., Bedford, MA, USA).

4.2. Experimental Design

An established commercial vineyard located in Casablanca valley, Chile (33◦18′59′′ S 71◦27′30′′W)
was used in this study. The grapevines were clonally multiplied, and the field was established seven
years before this study. The experiments were performed on V. vinifera cv. Pinot noir during the
2008/2009 and 2009/2010 seasons. Vine spacing was 1.2 m between vines and 2.2 m between rows.

250



Metabolites 2020, 10, 220

Vine management was performed by the grower according to the regional appropriate viticultural
practices for this V. vinifera cultivar. The vines were cane pruned for a vertical shoot-positioning trellis
system. No rain occurred after fruit set. Irrigation was applied to vines in order to maintain midday
leaf water potential between −0.6 and −0.8 MPa throughout the season. Considering the phenotypic
cluster difference among plants in the field, each experimental unit consisted of a few interior vineyard
panels in a randomized complete block design. Individual grapevine plants and cluster samples were
selected at random from throughout a vineyard block at the ripe stage.

4.3. Wine Samples

Clusters from the different selected blocks were used to make microvinifications. Wines were
made from each selection group according to standard winemaking practices (Centro Tecnológico de la
Vid y el Vino, Universidad de Talca) with four biological and three technical replicates. Each replicate
consisted of 100 ± 1 kg of hand-harvested fruit collected from the field-selected blocks. Grapes were
destemmed, and the berries were inoculated with yeast (Saccharomyces bayanus, EC-1118, Lallemand,
1620 Rue Préfontaine, Montréal, QC H1W 2N8, Canada) at a rate of 20 g hL−1 in stainless steel fermenters.
Cap management was performed twice per day by manual punch-downs. The fermentation temperature
was maintained between 22 ◦C and 23 ◦C at a density of 990 g/L. After alcoholic fermentation, wines were
pressed and racked into carboys and inoculated with Enoferm Alpha (Lallemand, 1620 Rue Préfontaine,
Montréal, QC H1W 2N8, Canada) to start malolactic fermentation. At the end of malolactic fermentation,
K2S2O5 was added to 30 ppm of SO2 in the wine. In addition, a cold stabilization at 2 ◦C was performed
before bottling. Bottling and capping were performed manually.

4.4. Wine Sensory Analysis

Duo-Trio test trials were conducted to determine the overall difference between wines samples.
Ten experienced Pinot noir wine-makers, highly trained and experienced as Pinot noir enologists,
formed the wine panelists (four females and six males between the ages of 30 and 58). To minimize
carry-over of flavors, the panelists were asked to rinse their mouth with water between samples,
and the test was repeated on different days. One month after bottling, the wines were evaluated.

4.5. Metabolite Measurements

Chromatographic separation, mass spectrometric measurements, and data analysis were
performed using a Waters Acquity Ultra High Resolution Liquid Chromatography (UPLC) system
(Waters, Milford, MA, USA) using an HSS T3 C18 reverse phase column (100 × 2.1 mm i.d., 1.8 μm
particle size; Waters) which operated at a temperature of 40 ◦C. The mobile phases consisted of 0.1%
formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B). The flow rate of
the mobile phase was 400 μL/min, and 2 μL of sample was loaded per injection. The gradient was:
0–1 min isocratic flow at 99% A, 1–12 min linear gradient from 95% to 65% A, 12–13.5 min linear
gradient from 65% to 20% A, 13.5–14.5 min linear gradient from 20% to 1% A, 14.5–16 min isocratic
flow at 1% A, 16–17 min linear gradient from 1% to 95% A, and 17 to 20 min isocratic flow at 95% A,
to re- equilibrate the column before to the next sample could be injected. The UPLC was connected
to an Ultra High Resolution Mass Spectrometry (FT-ICR) via a TriVersa NanoMate (Advion, Ithaca,
NY, USA). The spectra were recorded alternating between full-scan and all ion-fragmentation-scan
modes, covering a mass range from 100 to 1500 m/z using the LTQ FT-ICR-Ultra Mass Spectrometer
(Thermo-Fisher, Bremen, Germany). The resolution was set to 35,000, and the maximum scan time
was set to 250 ms. The sheath gas was set to a value of 50, while the auxiliary gas was set to 20.
The transfer capillary temperature was set to 250 ◦C, while the heater temperature was adjusted
to 350 ◦C. MS spectra were recorded from minute 0 to 19 of the UPLC gradient. All samples were
randomized prior to mass spectrometric analyses to avoid any experimental drifts. A number of
internal standards (chloramphenicol, corticosterone, and ampicillin), added to each sample just prior
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to injection, were used to control experimental variability. One month after bottling, the wines were
chemically evaluated.

4.6. Metabolite Annotation and Statistical Analysis

Pre-processing of raw chromatograms was performed using Expressionist Refiner MS 10.0
(GeneData; http://www.genedata.com) with an established workflow. This workflow included baseline
correction, removal of chemical noise, and chromatogram alignment. As output, a list of molecular
features, that is, a retention time and a m/z ratio pair, and a data matrix containing relative intensities for
each feature and for each chromatogram were obtained. All further computations, data manipulations,
and plot generation were carried out using the R programming language (http://www.r-project.org).

The data matrix was further filtered for low intense features whose mean intensity across all
samples was less than 0.1% of the highest average. Moreover, features with more than 30% missing
values were also removed as well as features that eluted before 0.45 min. After filtering, the m/z feature
data were normalized by sample volume and sample median intensity. Due to machine sensitivity
variation across different measurement runs, each feature was normalized by dividing its intensity in a
sample by the median intensity across all measurements within a batch in order to compensate for
said effect.

Principal component analysis (PCA) was performed in R using the package pcaMethods [69]
using five components and unit variance scaling. Sparse partial least squares (sPLS) and Sparse partial
least squares discriminant analysis (sPLS-DA) were performed using the package mixOmics [70].
The sPLS-DA was used for categorical variables (season and cluster type) while the sPLS was used for
quantitative data (sensorial attributes). In both cases, the metabolite levels were considered predictors.
For each response variable (categorical or quantitative), a single sPLS/sPLS-DA model was established.
To determine the optimal number of components and variables of a given model, we searched the
parameter space spanned by 1 to 12 (3 for sPLS-DA) components and 50, 100, 200, 300, 500, 1000 selected
variables. For each such component/variable combination, 100 iterations of 5-fold cross-validation
rounds were tested and the pair that resulted in the lowest (sPLS-DA) or highest R2 (sPLS) classification
error was taken as the optimal parameters. Once an optimal number of components and variables was
determined for each response variable, we computed the respective sPLS/sPLS-DA model and using
this, we obtained the variable importance in projection (VIP) coefficient for each metabolite. Finally,
we used the VIP coefficients to generate networks in which a node represents either a molecular feature
or a sensorial parameter, and an edge was drawn if the respective VIP coefficient was greater than zero.
All networks manipulations were performed using the igraph package [71].

Molecular features were putatively annotated by searching the m/z value against the KEGG
compound database. A maximum tolerance of 5 ppm was allowed, considering the following potential
known adducts: M+H, M+Na, M+NH4 for positive mode and M-H, M+AcOH-H for negative mode.
A custom Python script was written for this task. The MS/MS fragmentation of the metabolites was
compared with candidate molecules found in databases and verified with earlier literature on similar
compounds, especially when the presence of the metabolite was reported in grapes and wines.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/220/s1,
Table S1. Table of all features associated with specific attributes (VIP score > 1.0). Table S2. Identification of all
molecular features that significantly contribute to specific sensory attributes (VIP score > 1.0).
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