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Abstract: In the theory of analytic and univalent functions, coefficients of functions” Taylor series
representation and their related functional inequalities are of major interest and how they estimate
functions’ growth in their specified domains. One of the important and useful functional inequalities
is the Fekete-Szego inequality. In this work, we aim to analyze the Fekete-Szego functional and to
find its upper bound for certain analytic functions which give parabolic and petal type regions as
image domains. Coefficient inequalities and the Fekete-Szego inequality of inverse functions to these
certain analytic functions are also established in this work.

Keywords: analytic functions; starlike functions; convex functions; Fekete-Szego6 inequality

MSC: Primary 30C45, 33C10; Secondary 30C20, 30C75

1. Introduction and Preliminaries

Let A be the class of functions f of the form

f@) =2+, ,anz", (1)

which are analytic in the open unit disk &/ = {z : |z| < 1} and S be the class of functions from .A which
are univalent in /. One of the classical results regarding univalent functions related to coefficients a,
of a function’s Taylor series, named as the Fekete-Szegt problem, introduced by Fekete and Szego [1],
is defined as follows:

If f € S and is of the form (1), then

3 —4A, if A <0,
‘ug—/\a%)g 1+2exp(%>, if 0<AL],
4A -3, if A>1.

This result is sharp. The Fekete-Szeg6 problem has a rich history in literature. Several results
dealing with maximizing the non-linear functional |a3 — Aa3| for various classes and subclasses of
univalent functions have been proved. The functional has been examined for A to be both a real and
complex number. Several authors used certain classified techniques to maximize the Fekete-Szego
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functional |a3 — )\a%| for different types of functions having interesting geometric characteristics of
image domains. For more details and results, we refer to [1-11]. The function f is said to be subordinate
to the function g, written symbolically as f < g, if there exists a schwarz function w such that

fz)=gw(z), z€lU, )

where w (0) = 0, |w (z)| < 1forz € U. Let P denote the class of analytic functions p such that p (0) =1
and p < %, z € U. For details, see [12].

In 1991, Goodman [13] initiated the concept of a conic domain by introducing generalized
convex functions which generated the first parabolic region as an image domain of analytic functions.

He introduced and defined the class UCV of uniformly convex functions as follows:

UCV:{feA:%%(l—i—(z—g)];l/((j))) >0, z,geu}.

Later on, Renning [14], and Ma and Minda [7] independently gave the most suitable one variable
characterization of the class UCV and defined it as follows:
2" (2) }
,ZEU .
f'(2)

1"
ucy = {feA:ﬂ%(Hzf (Z)) >
This characterization gave birth to the first conic (parabolic) domain

f(2)

Q={w: Rw > |w-1{}.
This domain was then generalized by Kanas and Wisniowska [15,16] who introduced the domain
QO ={w:Rw>kjw—-1|, k>0}.

The conic domain () represents the right half plane for k = 0, hyperbolic regions when 0 < k < 1,
parabolic region for k = 1 and elliptic regions when k > 1. For more details, we refer [15,16]. This
conic domain () has been extensively studied in [17-19]. The domain () was also generalized by Noor
and Malik [20] by introducing the domain

ala 8 = {uio: [(8 1) (#+7) 2048 - Dt (42 1))
> (—2(B+1) (u2+v2)+2(A+B+2)u72(A+1)>2+4(AfB)zvz}.

The domain Q) [A, B] represents the petal type region, for more details, we refer to [20]. Now,
we consider the following class of functions which take all values from the domain Q [A,B], —1 <
B<A<LT

Definition 1. A function p (z) is said to be in the class UP [A, B, if and only if

(A+1F(E) -~ (A-1)
B+DpE) - (B-1

p(z) =

—1<B<A<]1, 3)

2
where p(z) =1+ % <log }fé) ,z€eU.

It can be seen that Q) [1, —1] = ()7 = Q. This fact leads us to the following implications of different
well-known classes of analytic functions.

1. UP[A,B]CP (gj—g) , the well-known class of functions with real part greater than %:—g, see [12].
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2. UP[1,-1] = P(p), the well-known class of functions, introduced by Kanas and
Wisniowska [4,21].

Now we consider the following classes UCV [A, B] of uniformly Janowski convex functions and
ST [A, B] of corresponding Janowski starlike functions (see [20] ) as follows.

Definition 2. A function f € Ais said to be in the class UCV [A,B], —1 < B < A <1, ifand only if

(B—1) @‘g;” —(A-1) (B—1) ELEL — (a1 »
(B+1)(j:((§))) (A+1) (B+1) LA — (a+1)
or equivalently,
(zf'(2))
€ UP[A,B 4
f/ (Z) [ ] ( )

Definition 3. A function f € Ais said to be in the class ST [A,B], =1 < B < A < 1, if and only if

(B-1)FE —(a-1) (B-1)FE - (a-1)
R > ; -1,
(B+1) 48 —(a+1) (B+1) ZE —(a+1)
or equivalently,
G ¢ upia,B. ®)

f (2

It can easily be seen that f € UCV [A,B] <= zf’ € ST[A,B].Itis clear that UCV [1,-1] =
UCV and ST [1, —1] = ST, the well-known classes of uniformly convex and corresponding starlike
functions respectively, introduced by Goodman [13] and Renning [22].

In 1994, Ma and Minda [7] found the maximum bound of Fekete-Szeg6 functional ‘a3 — Aa2| for
uniformly convex functions of class UCV and then Kanas [21] investigated the same for the functions
of class P (p) . Our aim is to solve this classical Fekete-Szegt problem for the functions of classes
UP[A,B], UCV [A,B] and ST [A, B] . We need the following lemmas (see [7]) to prove our results.

Lemma 1. If p (z) = 1+ p1z + paz? + - - - is a function with positive real part in U, then, for any complex
number ji,
|p2 = uph| < 2max {1, l2u -1}

and the result is sharp for the functions

1+z 1422
= p*(z)—l_zz, (zel).

po(z) =

Lemma 2. If p(z) = 1+ p1z + ppz® + - -+ is a function with positive real part in U, then, for any real
number v,
—4v+2, v<0,
p-opd|<{ 2 0<v<1,
4v—-2, ov>1.

When v < 0 or v > 1, the equality holds if and only if p (z) is 122 or one of its rotations. If 0 < v < 1,
then, the equality holds if and only if p (z) = HZZ or one of its rotations. If v = 0, the equality holds if and

only if,
1+n\1+z 1-n\1-z
= <n<
P ( 2 >172+( 2 >1+z O=n=1),
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or one of its rotations. If v = 1, then, the equality holds if and only if p (z) is reciprocal of one of the function
such that equality holds in the case of v = 0. Although the above upper bound is sharp, when 0 < v < 1, it can
be improved as follows:

1
|p2 = oph| + I <2 (0 <v< 5)
and

1
p-of|+ -0z (3<0<1).

2. Main Results

Theorem 1. Let p € UP[A,B], =1 < B < A < 1and of the form p(z) = 1+ Y5 pnz". Then,
for a complex number y, we have

4 4 2 A—-B
2
‘pz—ypl‘gﬁ(A—B).maxo, ﬁ(B+1)—§+4y<7>‘> (6)
and for a real number y, we have
2
%—%(B—&-l)—%(A—B)y, y<712(2_3)7z§t%~3’
2 B+1
2(A—B) A E — AZE SH
2 12(A-B
‘Pz—llpl) e 2, <( oo _ B+l @)

2
S+ EBH)+5A-B)u,  w>5im - A

These results are sharp and the equality in (6) holds for the functions

e (ogiof) 42
p1(z) = 2(B+1) <log}+§) - ®)
or
( S OOg%) i ©)
$ 2(13;1) <log %) +2

When p < — (AZ 3] £+}3 or u > #ﬂiB) - %, the equality in (7) holds for the function p1 (z) or
one of its rotations. If — Az B~ f}; <pu< 12(5/7i B) A B, then, the equality in (7) holds for the function

p2 (z) or one of its rotations. If y = *ﬁ — BL the equality in (7) holds for the function

@ = () ne+ (5L ne, 0<i<y, (10)

or one of its rotations. If u = #’TZB) - B—*%}, then, the equality in (7) holds for the functions p (z) which is

reciprocal of one of the function such that equality holds in the case for y = — T AZ B — Bl
Proof. For h € P and of the form I (z) =1+ Y, ¢,z", we consider

_1+w(z)
h(z) —m/
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where w (z) is such that w (0) = 0 and |w (z)| < 1. It follows easily that

_ h(z-1
w(z) = h(z)+1
(4 oaz4a+eal+-) -1 ()
T 4zt o2 4aB )+
1 11 11 1,) 4
= EC]Z+ 227161 72 + 2 §C2C1+§Cl z7 4.
Now, if 7 (z) = 14 Ryz + Rpz? + - - -, then from (11), one may have
Pw(z) = 1+Rw(z)+ Ry (w(2)* + Ry (w(2)+ -
1 1 1 1 1 1
= 1+RK <§clz+ (Ecz — ZC%> 22+ <§C3 — 50201 + gci’> 284 >
+R ]CZ+ ! flc 22+ l 1cc +1c3 Bt ’
22T (2727 4A 20 g
+R 1cz+ 1 —lc 22+ 1C—lcc +1c3 2%+ 3+
3 1 2= 74 76— 500+ ga ,
where R = %, Ry, = 3 2 and R3 = 4155?2, see [21]. Using these, the above series reduces to
4 1 4 1 2
ﬁ(w( ))71+ 4 clz+ <62*EC%> Zz+§<63 362C1+E >Z + - (12)
Since p € UP [A, B], so from relations (2), (3) and (12), one may have
p(z) = (A+Dp(w(z) - (A-1)
(B+1)p(w(z)) = (B-1)
24 (A+1) ez + (A+1) & (- 1d) 2+
2+ (B+1) zc1z+(B+1)%(czf%c%)zz+-~
This implies that
P = 1+(A-B) haz+(A-B) % (o-id- % (B+1)aE) 2+
(13)

(A—B)%<<(BH) +B;21+90>C? (B+1+12)C201+ Cs>23+"'

If p(z) = 1+ X5 puz", then equating coefficients of z and z2, one may have

2

po= a(A=B)a,
2 1 2
p2 = ?(AfB)<czfgc%f?(B+l)c%>.

Now for a complex number y, consider

p2— ppi = 2 (A B){CZ*C%<%+%(3+1)+y%(1473)>}.
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This implies that
2 1 2 2
2| _ 2
-t = a-B) |- (54 2B+ (A-B)d). (14)
Using Lemma 1, one may have
2 2
|p2 = npd| < = (A—B) 2max (1,20 -1)),
where 1 )
v=6+;ﬂB+U+y;ﬂAfm.

This leads us to the required inequality (6) and applying Lemma 2 to the expression (14) for real

number 1, we get the required inequality (7). Sharpness follows from the functions p; (z);i1=1,2,3,

defined by (8)—(10), and the following series form.

4(A—B)  8(A—B) (1 2(B+1)\ ,
p = 1+ 2 Atz 3 22 =t
16 (A — B) (B+1)*> B+1 1 B+1 1 1\ ,
2 <4< & e T 2 2 T2 ty)E
4(A-B) ,

p(z) = 1+ z° +

8(A - B) <1 2(B+1)>Z4+

2 3 2

16 (A — B) (B+1)> B+1 1 B+1 1 1) &
2 (4( 7_(4 + 671'2 +% 2 ) +E +Z z7 4+

72

O

Corollary 1. Let p € UP[1,—1] = P (p1) = P (p) and of the form p (z) = 14 Yoy puz". Then, for a
complex number ., we have

8 8 2
‘pzfyp%’ < -2+ max (l, n—zfgb (15)
and for real number u, we have
4 _ 16 < _
5 4 37 2t W==2
2=t < 54 2 ~H<p<%, (16)
—5tan w2

These inequalities are sharp.

In [4,21], Kanas studied the class P (px) which consists of functions who take all values from the
conic domain (). Kanas [21] found the bound of Fekete-Szego functional for the class P (p;) whose
particular case for k = 1 is as follows:

Let p (z) = 1+ b1z + byz? + b323 4+ - - € P (p1) . Then, for real number y, we have

8 1- 5, u<0,
’hzf ybl‘gg 1, pe(01], (17)
1+ 5u-1), pxt
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We observe that Corollary 1 improves the bounds of the Fekete-Szegé functional |p, — ypﬂ for
the functions of class P (py).

Theorem 2. Let f € UCV [A,B], =1 < B < A < 1and of the form (1). Then, for a real number y, we have

p<2o 2 2(B+1)
$-L B+ A@A-B@-3), 7T EAE
2_ 7 2B+
2 - 3 18(A-B) _ 3(A-B) ~H
a3 — pa3| < S 2, ,oAD A (18)
’ ‘ s <53t wASE  SA-B)

2 2(B+1
4+ 5B+ -5(A-B)2-%), #2}+5iiy -y

This result is sharp.

Proof. If f € UCV [A,B], =1 < B < A < 1, then it follows from relations (2)—(4),

(zf'(2) _ (A+1)p(w(z)—(A-1)

f(2) (B+1)p(w(z) - (B-1)’

where w (z) is such that w (0) = 0 and |w (z)| < 1. The right hand side of above expression gets its
series form from (13) and reduces to

(zf' () 2 2 1 2
e 1+(A78)Fclz+(A7B)ﬁ (czfgc%fﬁ(BJrl)c%)zer
(19)
8 B+1)? B+1 1 B+1 1 1
(AfB)ﬁ <<( ; ) + 6;2 +%> c?7< 7:_2 +E>C2C1+ZC3>ZS+”'
If f (z) = z+ Y5y an2", then one may have
(zf’(z))/_ 42\ 2 B 3\ .3
S Tt (6113 4112) 24 (12114 180505 +8a2) By, (20)
From (19) and (20), comparison of coefficients of z and z2 gives
1
ar = E(A*B)Cl (21)
and ) 1 )
6az — 4a3 = (A=B) <cz—gcf—ﬁ(3+1)c$).
This implies, by using (21), that
1 1, 2 , 2 5
a3:W(A—B)(cz—gcl—ﬁ(B—&—l)cl—&—ﬁ(A—B)cl . (22)
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Now, for a real number y, consider

1 1 2
2| _ 2 2
)a3*]4a2) = ’(A B)3 5 <cz76c17?(3+1)c1> 3—(A B) ;4 - (A— B)
 A-B 2 (1 2 2 3u
_ A-B 2
- 32 ‘CZ —ealy
where
o=y 2 By -1 (A-B)2-3p)
T 6 w2 2 -
Applying Lemma 2 leads us to the required result. The inequality (18) is sharp and equality holds
forp < % — 8(27273) - 5((5%) orp>3+ 18<5AZB> ;{gﬂg)) when f (z) is f (z) or one of its rotations,
2 B 2
where fi (z) is defined such that (Zj:}( ;) =pi(z). 13— 18(:;74;) - % <u<i3+ 18&%3) -
;éBJr )) then, the equality holds for the function f, (z) or one of its rotations, where f, (z) is defined
such that (Z;?( ;) =p2(z). Ifu=%5- ﬁ — 32(<§+}3)) the equality holds for the function f3 (z) or
(@) _ _2(B+1)

one of its rotations, where f3 (z) is defined such that e ) =p3(z).Ifu=3% 24 18(A B) ~ 3(A-B)’

then, the equality holds for f (z), which is such that ( j:, ((Z))) is reciprocal of one of the function such

that equality holds in the case of y = § — ﬁ - 2((?:1%. O
For A = 1, B = —1, the above result takes the following form which is proved by Ma and

Minda [8].

Corollary 2. Let f € UCV [1,—1] = UCV and of the form (1). Then, for a real number y,

, [ 3rRe-m, HE5- 5
2 2
o — o3| < == 2, -2 au<i+ g,
~i-5e-aw,  wxi+%E

This result is sharp.

Theorem 3. Let f € ST[A,B], =1 < B < A < 1and of the form (1). Then, for a real number 1,

e e Ty
-5 B+ (A-B) (-2, =2 2A(4-B)  2(A-B)

1 B+1
A—B 7 B S H
)ﬂs B W%| < - 2 27 24(A-B)  2(A-B) 23)

1 5 B+1
<3t wiiE — wAsE
2
A+ EBI) -5 A-B)1-2), uZi+ gt - s
This result is sharp.

Proof. The proof follows similarly as in Theorem 2. [J

For A =1, B = —1, the above result reduces to the following form.
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Corollary 3. Let f € ST [1,—1] and of the form (1). Then, for a real number i,

2

) 8-, <3 %
2 2 2
‘%*le‘ﬁﬁ 2, - E<p<iyir,

2

—$-B0-2), e+

Now we consider the inverse function 7 which maps petal type regions to the open unit disk
U, defined as F (w) = F (f (z)) = z,z € U and we find the following coefficient bound for inverse
functions. As the classes UCV [A, B] and ST [A, B] are the subclasses of S. Thus the existence of such
inverse functions to the functions from UCV [A, B] and ST [A, B] is assured.

Theorem 4. Letw = f(z) € UCV[A,B], -1 < B< A<land F (w) = f 1 (w) = w+ Yoo, dno’.
Then,

4(A—B)
|dn‘§m

(n=2,34).
Proof. Since F (w) = F (f (z)) = z, so it is easy to see that
dy = —ap, dz = 2a§ —az, dy = —ay + bazaz — 5&13.

By using (21) and (22), one can have

-1
dz = F (A — B) C1 (24)
and A—B 1 2 4
_4- 2
d37 37_[2 |:(6+§(B+1)+?(A—B)>C]—C2:|. (25)
From (19) and (20), comparison of z° gives
4 = %[(%Jr%(%(E+1)—E(A—B)>+%(2(B+1)2—3(A—B)(B+1)+(A—B)z))c?
*(éﬁ“%(2(B+1)7%(A73)>)C2C1+%63}.
Using the values of a,,; n = 2,3,4, we get
4 = —%[<%+31?(B+l+Z(A—B)>+%(2(B+l)2+7(A—B)(B+l)+6(A—B)2)>c?
(26)
,(éJr%<B+1+Z(A—B)>)czc1+%q}
Now, from (24) and (25), one can have
2
do] < 2 (A~ B)
and
A-B|1 2 4 5
lds| < W‘E+§(B+l)+ﬁ(A_B) )62_51’
A—-B|5 2 4
+ 32 ‘E—?(B-‘rl)—?(A—B) lea].
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Apphcatlon of the bounds |c; — ¢3| < 2 and |cs| < 2 (see Lemma 2 for v = 1 and v = 0) gives
|d3] <2 ) . Lastly, (26) reduces to

A—B
|dg| < 32 U)\ﬂ )Cg, — 20301 +C%‘ + | Az |es — cac1] + |As] ‘C3|] , (27)
where
=21t (By1+7(a-B) +i(2(B+1)2+7(A—B)(B+1)+6(A—B)2)
1745 32 4 t ’
11 4 7.0 o) 2 ) B o
Az—%+3n2(8+1+4(A B)) n4<2(B+1)+7(A B)(B+1)+6(A B))
and
16 5 1 ) - .
A= 32<B+1+ (A— B))+?<2(B+1)+7(A B) (B+1)+6(A—B)’).

Applying the bounds |C3 — 2001 + C3‘ < 2,see [23], [c3 — cac1| < 2 and |c3| < 2, see [7] to the
right hand side of (27) and using the fact that A; > 0; i = 1,2,3, we have |dy| < A B and this completes
the proof. O

For A = 1, B = —1, the above result takes the following form which is proved by Ma and
Minda [8].

Corollary 4. Let w = f (z) € UCV and F (w) = f~! (w) = w + Y52 5 dyw™. Then,

8

Tz (n=12,3,4).

|dul| <

Theorem 5. Let w = f(z) € UCV[A,B], -1 < B < A< land F (w) = f~ 1 (w) = w+ L5, dn’.
Then, for a real number y, we have

S 4 2(B+1)
LB -SU-nE-g, M EE

4 +1
- B 3 18(A-B) T 3(a—p) = H

ds — pd3| < ——— 2, 4 2(B+1)

‘ ) 3 <3+ 1At 3A-B)

5T BED)+ 5 (A-B)(4-3r), p<3- (ZTB>+3((+11L3))

This result is sharp.

Proof. The proof follows directly from (24), (25) and Lemma 2. [
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Abstract: In this work, our focus is to study the Fekete-Szego functional in a different and innovative
manner, and to do this we find its upper bound for certain analytic functions which give hyperbolic
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1. Introduction and Preliminaries

We consider the class of analytic functions f in the open unit disk &/ = {z : |z| < 1}, defined as
f@) =z+ Y a,z" (1)
n=2

We also consider S, the class of those functions from A which are univalent in /. Fekete-Szego
problem may be considered as one of the most important results about univalent functions, which
is related to coefficients a, of a function’s taylor series and was introduced by Fekete and Szego [1].
We state it as:

If f € S and is of the form (1), then

3 —4A, if A <0,
‘ag—/\a%)g 1+2exp(%>, if 0<ALI,
41 -3, if A>1.

The problem of maximizing the absolute value of the functional a3 — Aa3 is called Fekete-Szegd
problem. This result is sharp and is studied thoroughly by many researchers. The equality holds true
for Koebe function. The case 0 < A < 1 provides an example of an extremal problem over & in which
Koebe fails to be extremal. In this regard, one can find a number of results related to the maximization of
the non-linear functional ‘113 — )\a%| for various classes and subclasses of univalent functions. Moreover,

Mathematics 2019, 7, 88; d0i:10.3390 / math7010088 12 www.mdpi.com/journal /mathematics
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this functional has also been studied for A as real as well as complex number. To maximize Fekete-5zego
functional |az — Aa3| for different types of functions, showing interesting geometric characteristics of
image domains, several authors used certain classified techniques. For in-depth understanding and
more details, we refer the interested readers to study [1-11].

Subordination of two functions f and g is written symbolically as f < g, and is defined with
respect to a schwarz function w such that w (0) =0, |w (z)| < 1forz € U, as

fz)=gw(z), zel. @

We now include P, the class of analytic functions p such that p (0) = 1 and p < %ﬂ z € U.

For details, see [12]. ’

Goodman [13] opened an altogether new area of research with the initiation of the concept of
conic domain. He did it in 1991, by introducing parabolic region as image domain of analytic functions.
Related to the same, he introduced the class UCV of uniformly convex functions and defined it
as follows:

f"(z)
UCV=SfecA:R(1+(z-10) 72 >0,z0ely.
The most suitable one variable characterization of the above defined class UCV of Goodman was
independently given by Renning [14], and Ma and Minda [6]. They defined it as follows:

ucv = {f AR (1 + Z;,//(S)) > ij,//(iz)) ,z¢€ u} 4

It proved its importance by giving birth to a domain, ever first of its kind, that is, conic (parabolic)
domain, given as Q = {w : Rw > |w — 1|} . Later on, B—uniformly convex functions were introduced
by Kanas and Wisniowska [15], which are defined as:

zf" (Z)) zf" (2) }
—Uucv = eA:§R<1+ > ,z€eU .
f {r 7@ )P

This proved to be a remarkable innovation in this area since it gave the most general conic domain
Q, given as under, which covers parabolic as well as hyperbolic and elliptic regions.

Qp ={w: Rw > Blw-1|, p>0}.

For different values of B, the conic domain g, represents different image domains. For g = 0,
this represents the right half plane, whereas hyperbolic regions when 0 < B < 1, parabolic
region for B = 1 and elliptic regions when B > 1. For further investigation, we refer to [15,16].
Another breakthrough occurred in this field when Noor and Malik [17] further generalized this domain
Q. They introduced the domain

(A B = {utiv:[(B2—1) (@ +?) —2(AB—1)u+ (42 - 1)]?
> g {(—2(B+1)(uz+vz)+2(A+B+2)u—2(A+1))2+4(A—B)2v2”4

©)

The class of functions given in the following definition takes all values from the above domain
Qp [A,B], =1 < B < A <1, B> 0. For more details, we refer to [17].

Definition 1. A function p (z) is said to be in the class p — P [A, B], if and only if,

(A+1)pp(2)
(B+1)pp(2)

(A-1)
(B—1)

p(z) < : ~1<B<A<1,B>0, )

13
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where Pg(z) is defined by

% p=0,
()
Pa(z) = 1+ 2 ﬁz sinh? [(%arccosﬁ) arctanhﬁ] , 0<B<1, )

u(z)

t
1 .
1+ o1 sin 72R7Et) )

[ S
VI—22/1—(tx)?

where u(z) = = \‘; t € (0,1), z € U and z is chosen such that p = cosh < 4R<(t))> R(t) is the Legendre’s
complete elliptic integral of the first kind, and R'(t) is complementary integral of R(t). For more details about

the function pg(z), we refer the readers to [15,16].

It may be noted that if we restrict the domain as Qg [1, —1] = Qp, then it becomes the conic
domain defined by Kanas and Wisniowska [15,16]. With the help of this important fact, we notice the
following important connections of different well-known classes of analytic functions.

1. B—-P[ABlCP (é’g:%) , the class of functions with real part greater than i/gi%.
2. B—-P[,-1]=P (5;;) , the well-known class introduced by Kanas and Wisniowska [15,16].
3. 0—PJ[A,B] = P|A,B], the well-known class introduced by Janowski [18].

We now include the two very important classes p — UCV [A, B] of f—uniformly Janowski
functions and  — ST [A, B] of corresponding f—Janowski starlike functions which are used in Section 2
of this paper. These are introduced in [17] and defined as follows.

Definition 2. A function f € A is said to be in the class p — UCV [A,B], >0, -1 < B < A <1, ifand
only if,

L ) W [l |- L
(B+1) LAk — (a+1) (B+1) EE —(a+1)
or equivalently,
(zf'(2))’
———<—¢cpB—-P|AB]. 6
o <p-PlAB) ©
Definition 3. A function f € A is said to be in the class p — ST [A,B], p >0, -1 < B < A <1, ifand
only if,
W(E-DFE (-0 E-0FE oo
(B+1) ZE — (a+1) (B+1) 248 — (a+1)
or equivalently,
!
22 cg_paB). @)

f(z)

It can easily be seen that f (z) € B —UCV[A,B] <= zf'(z) € p—ST[A, B].ltis clear that
B—UCV[1,—1] = —UCVand g — ST [1, —1] = B — ST, the well-known classes of B-uniformly convex
and corresponding pB-starlike functions respectively, introduced by Kanas and Wisniowska [15,16].

As it is mentioned earlier that a number of well known researchers contributed in the development
of this area of study, to mark the importance of our work in this stream of work, we take a quick
review of what is done so far. In 1994, Ma and Minda [6] found the maximum bound of Fekete-Szego
functional |113 - )uz%| for the class UCV of uniformly convex functions whereas Kanas [19] solved the

14
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Fekete-Szegd problem for the functions of class P (pg). Further, for the functions of classes § — UCV
and § — ST, the same problem was studies by Mishra and Gochhayat [20]. Keeping in view the
ongoing research, our aim for this paper is to solve the classical Fekete-Szeg6 problem for the functions
of classes B — P[A,B], p—UCV [A,B] and B — ST [A, B] . To prove our results, we need the following
lemmas. For the proofs, one may study the reference [6].

Lemma 1. Ifp (z) = 1+ p1z + paz? + - - - is a function with positive real part in U, then, for any complex
number ji,

|2 = up| < 2max{1, l2u -1}

and the result is sharp for the functions

1+z 1422
= ps(z) = =2 (zel).

po(z) =

Lemma 2. Ifp(z) = 1+ p1z + paz® + - - - is a function with positive real part in U, then, for any real number v,

—4v+2, ©v<0,
p-opi| <4 2 0<us<t,
4v—2, v>1.

When v < 0 or v > 1, the equality holds if and only if p (z) is %'*'i or one of its rotations. If 0 < v < 1,
then, the equality holds if and only if p (z) = HZ or one of its rotations. If v = O, the equality holds if and only if,

1+ 1+z 1-— 1—2z
”(Z):< 217>17z+< 2W>1+z O=7=1),

or one of its rotations. If v = 1, then, the equality holds if and only if p (z) is reciprocal of one of the function
such that equality holds in the case of v = 0. Although the above upper bound is sharp, when 0 < v < 1, it can
be improved as follows:

1
|2 —op}| + I <2 <0<v§5>

and

1
o+ -0) P <2 (3<o<1).

2. Main Results

Theorem 1. Letp € B—P[A,B],-1 < B< A <1,0<B <1, andof the formp(z) =1+ Y571 pnz".
Then, for a complex number p, we have

5| (A—=B)T? (B+1)T>  (A-B)T> T2 2
- <8720 1 -z 8
I e U B ©
and for real number u, we have
2 (B+DT? A-B)T? 1-p? 1—p?
%+%7%7%1 S*ﬁ*%*smf&f
1-p* 1B
_ _ + <pu
A-B 3(A-B)T? e 3(A-B)
|pa —upi| < ! 5) L < 5(1*ﬁ2) B+l , 1P ©)
= 3(A-B)T? A-B ' 3(A-B)’
2 | (B+1)T? A-B 5(1-p 1-p
-3-F+ 8 5)2 + M ;32) k2 3(1(4—3)7)"2 - 35+ satwy

15
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where T = T(B) = 2 arccos(B) and the equality in (8) holds for the functions

A+l sinh? [(%arccos‘B) arctanhy/z] + 1

1-p
z) = 10
P (@) 1Bj512 sinh? [(2 arccos B) arctanhy/z] + 1 a0
or
1’”[; sinh? [(2arccosp) arctanh (z)] + 1
z) = . 11
P2(2) lBj/;Z sinh? [(2arccosp) arctanh (z)] + 1 ()
g 1
When p < —3&‘_% - By 3(1 g By O H > (54 5)T)2 - By 3(A53) the equality in (9) for the
. . . —p2 1 2
function p1 (z) or one of its rotations. Iffﬁ - Bl 3(1 & B <K< (g 5)22 == S(AﬁB),

then the equality in (9) holds for the function py (z) or one of its rotations. If p = —3(147% - Bl 3(/47153)/

the equality in (9) holds for the function

1+ -
ps(z>=(T’7>p1(z)+< ”)m( 2, 0<n<1), (12)
B2
or one of its rotations. If y = 3?8_5)%2 - B A /SB) then, the equality in (9) holds for the function p (z)
which is reciprocal of one of the function such that equality holds in the case for y = — 3(11:722”2 - % +
1-p?
3(A-B)
Proof. For h € P and of the form h (z) = 1+ Y, ¢,2", we consider
_14w()
h(z) = 1-w(z)’
where w (z) is such that w (0) = 0 and |w (z)| < 1. It follows easily that
_ h(z)-1
wiz) = h(z)+1
(4 oazto+oal+-) -1
T 4zt o2 +aB )+l
1 1 1 1 1
= Eclz+< Z_ch>z +< Eczc1+gc§> B4, (13)

Now, if pg(w(z)) = 1+ Ry (B)w(z) + Rz (B)w? (z) + R3 (B)w? (z) + - -+, then from (13),
one may have

pp(w(z) = 1+Ri(B)w(z)+Ra(B)w’ (2) +Rs(B)w’ (2) + -+,

1 11 1
1+R; (B ( c1z+< 62*1c1>z +<§c3756261+§c%>z3+-~>+
1 1 1
<§clz < z—ﬁ)z +< 3_*CZC1+§C‘;’>ZS+ )

1cz+ 5¢ 102 22+ 1c cc+ )B4
2] 2 41 23 201 8 7

—_
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where Ry (B), Ry (B) and R3 (B) are given by

2
Ri(B)= 1
2
Ry (B) = ﬁ (2+1),
Ry (B) = (2T2ﬁ2) (23 +4T% + §T4>

and T =T (B) = 2 arccos (B), 0 < B < 1, see [19]. Using these, the above series reduces to

_ T2 T2 ’ 1, )
pp(w(z)) = 1+WC1Z+W ((T —1) e +c2)z +
T [(1/2 1 2, 1,4 1 ) N
ﬁ(§ (ngT ET) & §<17T)6261+C3>z Foe. o (14)
Since p € p— P [A,B],0 < B <1, so from relations (2), (4) and (14), one may have
(A+1)pg(w(z))—(A-1)
PE) = EREE- e
(15)
— _ 2.2
= 1+ (Az B) lfzzcler (AZB) J;z (% - %C% (If;rlz;) C% +cz) z°+-
If p (z) =1+ Y54 puz", then equating coefficients of like powers of z, we have
_(a-B T
P = 2 1-p2 1
_ (A-B) T* (T4 1, (B+1)T?,
2= g e 6 2a-pate)
Now for complex number y, consider
24
» (A=B) T> (T 1, (B+1)T?, (A=B)*T*,
y — = — = Sto|—p——e
p HpP1 2 1_‘62 6 1 ( ‘BZ) 1 y4(17ﬁ2)2
This implies that
A B) T2 ,(1 T* (B+1)T> (A—B)T?
—up?| = e 1
‘pZ Vp1’ ﬁz) 1 6 6 +2(1_‘32) +p 2(1_ﬁ2) (6)

Now using Lemma 1, we have

—B)T?
‘PZ—WH’* 20 ,52) -2max (1,20 - 1)),
where
1 1T (B+1)T>  (A-B)T?
6 6 20-p) 20

This leads us to the required inequality (8) and applying Lemma 2 to the expression (16) for real
number y, we get the required inequality (9). O

U=

For A =1, B = —1, the above result reduces to the following form.

17
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Corollary 1. Let p € B—P[1,=1] = P (pp), 0 < B < 1, and of the form p(z) = 1+ Lo puz".
Then, for a complex number y, we have

272 272 > 2
| < S5 e Lz
=] = 2 (1 o 5 -5 w
and for real number u, we have
4T 12 (1P
- 33T g 1<~ + 6 ),
_p? g g
|p2—np| < e 2, ) L) 0 g (18)
4T 5(1-p%) | 1-p2
—§-3T+ 5, p> ) Lp

These results are sharp.

In [3,19], Kanas studied the class P (ﬁﬁ) which consists of functions who take all values from the
conic domain Q4. Kanas [19] found the bound of Fekete-Szego functional for the class P (fg) whose
particular case for 0 < 8 < 11is as follows:

Letp(z) =1+ byz+ byz? + b3z’ + - € P (pg) , 0 < B < 1. Then, for real number 1, we have

212

- <
o 2T2 1=mip nso
)bzfybl i 1, ke, (19)
1+ (-1 p 2l

For certain values of § and j, we have the following bounds for | p, — pip?

, shown in Table 1.

Table 1. Comparison of Fekete-Szegt inequalities.

B p Boundfrom (18)  Bound from (19)
03 3 4.8652 5.51463
03 2 2.82267 3.47193
05 2 1.84841 2.5939
05 -1 2.37422 2.5939
07 3 2.28155 3.03221
07 -1 1.7698 2.01932

We observe that Corollary 1 gives more refined bounds of Fekete-Szegé functional |p2 — ypﬂ for
the functions of class P (pg) , 0 < p < 1 as compared to that from (19) as can be seen from above table.

Theorem 2. Let f € —UCV [A,B], -1 < B < A <1,0< B <1 and of the form (1), then for a real
number jt, we have

=37 9A-B)12 _ 3(A-B) " 9(A-B)’

2 o 2 B2 _g2
o o) UBE, <o)y o)

2 201-F) 241 | 2(1-8)
‘ﬂs _ W%| < (A-B)T ) 3~ 9(A—B()TZ ;) 3-8 9(A—(B) ZS) H (20)
SDIop g s 10(1-2) a1y, 2(1-p
(1=F) S5t oummr A T A B

2 2 -B)1? 10(1-p2 2(1-p2
N P F S (=) _ 281 | 20-5)

9(A-B)T2 ~ 3(A-B) 9(A—B) *
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Proof. If f (z) € B—UCV[A,B], —1<B< A<1,0< <1, thenitfollows from relations (2),
(4), and (6) that
(= (2) _ (A+1D)pp(w(z)) = (A-1)
f(2) (B+1)pp(w(z)) = (B-1)

This implies by using (15) that

(zf'(z)) ., (A—B) T? (A-B) T* (T3 1, (B+1)T?, 2,
) =1+ 5 17152612_‘— 5 17’52 < gcl 201 ﬁz)cl-ﬁ—cz z- 4+ . 21)
If f (z) = z+ ¥;25 42", then one may have
(zf' (2))' 2\ .2 3\ .3
W =142az+ <6a3 - 4a2> z- 4+ (12»14 — 18aza3 + 8a2> Z7 4 (22)
From (21) and (22), comparison of like powers of z gives
A—B)T?
a=_ i ;2) y (23)

and
(A—B)T? 1 T (B+1)T*> (A-B)T?

o= arp (o (5 2amm - saem) D) @

Now, for a real number y, we consider

(A—B)T?

B 1 T*> (B+1)T*> (A-B)T? 3(A-B) T?
I e e (e R
 (A-B)T? 1 T2 (B+1)T> (A-B)T> 3(A—B)T?

TR ”’(6’?%(1—132)’ 20— A ) ) i

Now applying Lemma 2, we have the required result. The inequality (20) is sharp and equality

2(1-p2 2(B+1 i 10(1-p% 2(B+1 B
holds for i < 3 (g B)Qz -5+ 9((A B)) orp >3+ (/g B)T)z -5+ 9((A B>) when f (2)
is f1 (z) or one of its rotations, where f; (z) is defined such that (z ;} ((ZZ))) =pi(z). 13— 9(5::5)?2 -

)
2
2(<§+?) + 9((;‘ F B)) <u<s3 + 189 B/j)T)Z - 2((§+,13)) + 9((; ﬂB)) then, the equality holds for the function

2
f2 (z) or one of its rotations, where f, (z) is defined such that (5E) _ =pa(z). Ifpu= 2 _2R)

@) 9(A—B)T?
32822) + 9(( = ﬁB)) the equality holds for the function f3 (z) or one of its rotations, where f3 (z) is

z 2
defined such that ( J]:?(( ; ) _ =pa(z). Mfu=3+ 1?51 B’?T)z - 2((§+}3)) + 9(( T ﬁB)) then, the equality holds

for f (z), which is such that (ZJJ:/(Z)» is reciprocal of one of the function such that equality holds in the

"(z
2(1-p2 2(B+1 1-p?
case of y = % - 9&,3)22 - 3((A )) + 9((A B)) H

For A =1, B = —1, the above result takes the following form which is proved by Mishra and
Gochhayat [20].

Corollary 2. Let f € B—UCV [1,—1] = p—UCV,0 < B < 1 and of the form (1), then

2 1-p2 1-B2
2 %+%+(476y)1252 y§%79T€+ 915’
T 2 2 _g2 2
2 2 1-p | 1-8 2, 5(1-p*) | 1-B
‘“3 M| S S By 2 3T t o SF(‘S;)JF oz T 9
5(1-p 1-82
7%7%7(4 614) ﬁ VZ%Jr 972 + 9ﬁ
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Theorem 3. If f (z) € B—ST[A,B], —1<B<A<1,0< B < 1and of the form (1), then for a real
number p, we have

2, 12 _ (B+1)T? (A-B)T? 1 1-p2 B4l 1-p2

stF - (-2 W3~ 6 AB t FAE)
1 1-p B+1 1-p

‘a WZ‘ cA-BT 1 2~ S WACE T e M

3T Hap| = ) ’ 1, 5(1-p) B+1 1-
2(1-F%) =3+ 6(A—B)T? Z(AtB) + 6(A—B)’

2 12, (B+1T (A-B)T? 1, 5(1-p) B+1 1-p2
“3-3*t -7 (1—2p) 1-p7 7 Bzt 6(A-B)T2 Z(AtB) T 5a-n-

This result is sharp.

Proof. The proof follows similarly as in Theorem 2. [

For A =1, B = —1, the above result takes the following form which is proved by Mishra and
Gochhayat [20].

Corollary 3. Let f € B—ST[1,—1] = p— ST, 0 < B < 1 and of the form (1). Then, for a real number y,

2 T 212 1 1-8 | 1-p
Tz §+?+(1 2 )17'32/ ]’lgif 127@2 JF 125 7
a2 11 1-p 1, 50-F) | 1-p
‘a3 Vuz‘gl—ﬁz L 2_127[?2"' 15 Sf(‘gzi)"‘ (12T2)+ 15/
2 T2 212 1, 5(01-p 1-p?
_E_T_(l_ZH) 1_ﬁ2/ H2§+ 1272 + 2

Now we consider the inverse function F which maps regions presented by (3) to the open unit
disk U, defined as F (w) = F (f (z)) = z,z € U and we find the following coefficient bound for
inverse functions. The functions of classes p — UCV [A, B] and B — ST [A, B] have inverses as they are
univalent too.

Theorem 4. Letw = f(z) € —UCV[A,B],-1<B<A<1,0<B<land F(w) = f!(w) =
W+ Yo, dyw". Then,
(A—B)T?

dp| <
=)
Proof. Since F (w) = F (f (z)) = z, so it is easy to see that

dy = —ay, ds = Za% —as, dy = —ay + 5azas — 5113.

By using (23) and (24), one can have

_ _(A-B)T
dz 4(] — IBZ) C1 (25)
and

_ (A-B)T*[(1 T2 | (B+D)T* | (A-B)T?\ 2

A—B)T 2 B+1)T A-B)T
= g% 5+ S *2( = (G-a) (26)

(A-B)T* (11 , 12 _ (B+1T (A-B)T (A-B)T

g (6% — faog — ) @ F s
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Now, from (25) and (26), one can have

(A—B)T?
Bl 2a—py
and
(A—B)T2|1 T> (B+1)T?> (A—B)T?

B < el e taap 1o |edl
(A—B)T?|11 T2 (B+1)T> (A—B)T? (A—B)T?
‘Raoplete 2a-m 1o |2 tunaogpl
(A—B)T?

_ m {M]‘ ‘Cz *Cﬂ + |)L2| |52‘ + |C2|},

1 12, (B+1)T*> | (A-B)T? 11, 12 (B+1)T?>  (A-B)T? )
where Ay = ¢ — & + 20— +Wand/\z = g+?foW.Weseethat/\, >
0;i=1,2for =1 <B < A <1,0<p <1 Thus, the application of bounds |c; — c%} <2and |co] <2
(see Lemma 2 for v = 1 and v = 0) gives

- (A—B)T?
- 6(1-p7)
(A—B)T?

2(1-p2)

|d3| M+ +13

O

Theorem 5. Let w = f(z) € B—UCV[A,B],-1<B<A<1,0<p<land F(w) = f ! (w)
w+ Y7, dyw". Then, for a real number y, we have

4 212 2(B+1)T? (A-B)T? 4 2084 201-82) | 2B+1)
i aii e el SRt ) R et =3+ 5uere ~ 9aB T 3aB)
4 0(0-p)  201-F%) | 2(B+1)
‘d _ d2| L (A-B)T ) 3 sA-mT %A B T3anm =H
HRE - ' iy 2008 208 s
= 3T 5A-B)Z ~ 9(A-B) T 3(A-B)’
2 | 2(B+1)T? A-B)T? 10(1-p%)  2(1-p*) | 2(B+1
%7%+(17+(473”)<175>2 ’ VS%*WEJ%* 9<(A—B)> + )

3(A=B)"

This result is sharp.

Proof. The proof follows directly from (25), (26), and Lemma 2. [J
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Abstract: In this paper, we obtain new inequalities for g-frames in Hilbert C*-modules by using
operator theory methods, which are related to a scalar A € R and an adjointable operator with respect
to two g-Bessel sequences. It is demonstrated that our results can lead to several known results on
this topic when suitable scalars and g-Bessel sequences are chosen.
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1. Introduction

Since their appearance in the literature [1] on nonharmonic Fourier series, frames for Hilbert
spaces have been a useful tool and applied to different branches of mathematics and other fields.
For details on frames, the reader can refer to the papers [2-11]. The author in [12] extended the concept
of frames to bounded linear operators and thus gave us the notion of g-frames, which possess some
properties that are quite different from those of frames (see [13,14]).

In the past decade, much attention has been paid to the extension of frame and g-frame theory from
Hilbert spaces to Hilbert C*-modules, and some significant results have been presented (see [15-23]).
It should be pointed out that, due to the essential differences between Hilbert spaces and Hilbert
C*-modules and the complex structure of the C*-algebra involved in a Hilbert C*-module, the problems
on frames and g-frames for Hilbert C*-modules are expected to be more complicated than those for
Hilbert spaces. Also, increasingly more evidence is indicating that there is a close relationship between
the theory of wavelets and frames and Hilbert C*-modules in many aspects. This suggests that the
discussion of frame and g-frame theory in Hilbert C*-modules is interesting and important.

The authors in [24] provided a surprising inequality while further discussing the remarkable
identity for Parseval frames derived from their research on effective algorithms to compute the
reconstruction of a signal, which was later generalized to the situation of general frames and dual
frames [25]. Those inequalities have already been extended to several generalized versions of frames in
Hilbert spaces [26-28]. Moreover, the authors in [29-31] showed that g-frames in Hilbert C*-modules
have their inequalities based on the work in [24,25]; it is worth noting that the inequalities given in [30]
are associated with a scalar in [0, 1] or [3,1]. In this paper, we establish several new inequalities for
g-frames in Hilbert C*-modules, where a scalar A in R, the real number set, and an adjointable operator
with respect to two g-Bessel sequences are involved. Also, we show that some corresponding results
in [29,31] can be considered a special case of our results.

We continue with this section for a review of some notations and definitions.

This paper adopts the following notations: J and A are, respectively, a finite or countable index
set and a unital C*-algebra; H, K, and K;’s (j € J) are Hilbert C*-modules over A (or simply Hilbert
A-modules), setting (f, f) = |f|? for any f € . The family of all adjointable operators from # to K is
designated End’y (%, K), which is abbreviated to End’ (#) if £ = H.

Mathematics 2019, 7, 25; d0i:10.3390 / math7010025 23 www.mdpi.com/journal /mathematics
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Asequence A = {A; € Endj(H, K;) }jcj denotes a g-frame for H with respect to {/C;} ¢y if there
are real numbers 0 < C < D < o satisfying

C{f. f) < Y (N Aif) SDIfLf), Ve (1)

jel

If only the second inequality in Equation (1) is required, then A is said to be a g-Bessel sequence.
For a given g-frame A = {A; € Endy(#,K;)};cj, there is always a positive, invertible,
and self-adjoint operator in End’ (), which we call the g-frame operator of A, defined by

SptH—H, SAf:EA;‘Ajf. )
jel

For any I C J, let I° be the complement of I. We define a positive and self-adjoint operator in
End’; (#) related to T and a g-frame A = {A; € Endy(H, K;) }jey in the following form

SAIH - H, sﬁ\f:ZA;Ajf. (3)
jel

Recall that a g-Bessel I' = {T; € End’; (#, K;) } jeJ is an alternate dual g-frame of A if, for every
f €M, wehave f =Y AITf.

Let A = {A}jcyand T = {T}};cj be g-Bessel sequences for H with respect to {KC; } ;<. We observe
from the Cauchy-Schwarz inequality that the operator

SFA cH — H, SFAf = ZF]*A]f (4)
jel

is well defined, and a direct calculation shows that Srp € End’ (H).
2. The Main Results
The following result for operators is used to prove our main results.
Lemma 1. Suppose that U, V,L € End’y(H) and that U+ V = L. Then, for any A € R, we have

2
utu + %(V*L—&-L*V) —VV+(1- %)(LI*L—FL*U) +(A-1LL>(A- AI)L*L.

Proof. On the one hand, we obtain
* A * * * A * * * * A * * *
u U+§(V L+L*'V)=U LI+§((L —UL+L*(L-U))=U UfE(U L+ L*U)+ AL*L.
On the other hand, we have
* A * * *
1% V+(1_5)(U L+L*U)+ (A—1)L*L

AU+ Lu) + (A - 1)L

= (L -U)(L-U)+ UL+ LU) - 5

=L'L—(U'L+L"U)+UU+ (U'L+L"U) - %(U*L+ L*U)+ (A —1)L*L
2 2
S U LWL LU AL = (U S0 U= S (- - DL

This completes the proof. []
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Theorem 1. Let A = {Aj}jcy be a g-frame for H with respect to {K;}jcy. Suppose that T = {T};cy and
© = {0} ey are two g-Bessel sequences for H with respect to {K;}jcy, and that the operator Sy is defined in
Equation (4). Then, for any A € R and any f € H, we have

%(rj_ Af +Z Aif,©;Sraf) = A f +E ©))Sraf, Ajf)
j€
)LZ A )\2
2(A=-7) %(Ajf/ ([ =©)Sraf) + 1+ 5 =) %<Ajfr®erAf)
J€ j€
- % %<®jSFAf/ Ajf)- ®)
j€
Proof. We let
uf = ZJ:] Af and Vf= %@* Af ©)
J€ j€

for each f € H. Then, U,V € End’j(H) and, further,

Uf+Vf=Y (T;—0,)"Aif + %@;mjf = %r;Ajf = Spaf.
j€ je

jed

By Lemma 1, we get
[uf?+ ((Vf Sraf) +
= |VfP+(1-

-~

(Sraf, V)
Y({UF, Sraf) + (Staf, Uf)) + (A — 1)|Sraf|*

N\>

Hence,

AP = [VFP+ (1= D)(US, Seaf) + (Staf, Uf)) + (A = 1)[Sraff?
~ SUVEStaf) +(Staf, V)
= [VFP + (U, Seaf) + (Staf,Uf) — 5 (UF, Seaf) + (Staf, Uf)
— 2VESeaf) +(Seaf V) + (= 1)[Seaf P
= VAP 4 {UF, Staf) + {Staf, Uf) — 5 (UF, Staf) + (V£ Staf)

— ZUSTAS UF) + (Staf, V) + (A= DIsrafP

= |VfI> 4+ (Uf, Staf) + (Sraf, Uf) — AStaf* + (A = 1)|Sraf[?
= [VFI> + (Uf, Staf) + (Staf, Uf) = (Uf, Staf) — (Vf, Sraf)-

It follows that
[Uf?+ (Vf,Staf) = VP + (Sraf US), )
from which we arrive at
Z(rj - jf +Z ]f O; SFAf 26* +Z T - SFAf A]f>

jel jel jel j€d

We are now in a position to prove the inequality in Equation (5).
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Again by Lemma 1,
uf? >

—(A- A—><er Seaf) +

2
= (= DUs saf) +
Therefore,
ZJ:](FJ'* “Ajf +Z if,©;Sraf) =
j€
A2 A A2

2 (A=) U, Seaf) + (145 =

2
S IR

jel

forany f e H. O

(=2 staf P = 2V 5t +

(A— A—><Vf Sraf) —
/\ A2

(Sraf, V£))
§<Vf Sraf) —

)<Vf Sraf) —

[UfI> + (Vf, Staf)

ANVESeaf) = S (Seaf, V)
A A2

jed

/2\ <SFAfr Vf>

A <5rAf V)

®)

O)Staf) +(1+ 5 — X)L N, 0800f) ~ 5 L (O5Staf Af)

jed

Corollary 1. Suppose that A = {A;} ey is a g-frame for H with respect to {K;}jcy with g-frame operator S
and that f\j = AjS/_\lfor each j € J. Then, forany A € R, for all 1 C Jand all f € H, we have

Y AN A + Y AASRE,ASRE) = Y (N f, Ajf) + Y (ASTf, AjSE f)

jel jel jele jel
AZ A2
()\*Z)ZﬂXAjffAjf)Jr(l TILNL AL,
jel® jel

Proof. Taking I'; =

Now, for each f € H,

2
Y (T =0y Ajf

jel jele
= (Sftf, S5 Sk f) = (SaSx Sk f/SA'SES)
=Y (ANSISRF NS ISR f) = Y (A;SR
jel jel
Since | ):]E.U oF A]f‘z | Z]EH rs A]f‘z | Z/ell
item of Equation (9) leads to
2
Y OiAf| = Y (A;S{f,AST f).
jed jed
We also have
Y (Nf,O;Sraf) =Y (Nf, Aif), Y ((Tj— ©))Sraf, Ajf) =
jel jel jel jele

jel
jel.

2 1
= |SAZSﬁ}f|2 = <SAZS]§\

26

A .qA
Cf/AjSHc

_1 1
A;S,* forany j € J, then it is easy to see that Srp = S3. Foreach j € J, let

Ty,
0- {1

~3px “3gA
=Y SN f M, S 2SR

) ©)

ZA]’fAj fI?, a replacement of I¢ by I in the last

(10)

Y (Af, Af)- 11)
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Hence, the conclusion follows from Theorem 1. [

Let A = {A}}cy be a Parseval g-frame for 7 with respect to {K;};cy; then, Sy = Idy. Thus,
forany I C J,

Y AASREASRE) = Y ANSRE, ASRS) = ISR =

jel jel

ZAA

jele

Similarly,
LAASTFASEf) =

jel

Z AJA /f
This fact, together with Corollary 1, yields

Corollary 2. Suppose that A = {A;}cy is a Parseval g-frame for H with respect to {KC;}jcy. Then, for any
AER, foralll C Jandall f € H, we have

_):H Aif Af) + /f Z< if A+ /f
] A2 A2
> (A—Z)§<Ajf,Ajf> (1—f)2< if s Ajf)-
jele jel

Corollary 3. Suppose that A = {A;}jcy is a g-frame for H with respect to {K;} jcy with an alternate dual
gframe T = {T;}cy. Then, forany A € R, for all 1 C J and all f € H, we have

iNf +Z N Tif) = | LTI Af +Z Uif, Aif)
jele ISS
22 A )Lz
Z(A_Z)Z<Ajfrrjf>+(1+§_ 4)2( Aif,Tif) = Z<rjf,/\jf>~
jel jele ]]If

Proof. We conclude first that Sy = Idy. Now, the result follows immediately from Theorem 1 if,
r, jel°
]/ 7

forany]ICJ,wetakeGj—{O jel

Remark 1. Theorems 4.1 and 4.2 in [31] can be obtained if we take A = 1, respectively, in Corollaries 1 and 2.
Theorem 2. Let A = {A;}jcy be a g-frame for H with respect to {KC;}jcy. Suppose that T = {T;};cy and

© = {0} ey are two g-Bessel sequences for H with respect to {IC;};cy and that the operator Sr is defined in
Equation (4). Then, for any A € R and any f € H, we have

Y (T —6))

2

Z@A

jel

=) LA = ©))Sraf, Af)

jel

+ (1 —A) Y (Aif,©;Sraf)

jel

Moreover, if U*V is positive, where U and V are given in Equation (6), then
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Y (T - +2.0; Jf
jel jel
<Y ((Tj = ©;)Sraf, Ajf) +Z Ajf,©;Sraf). (12)
jel

Proof. Combining Equation (7) with Lemma 1, we obtain

2 2
+ Z@jA]f

jel
= [UfP+|VFI? =2|Vf]> + (Sraf, Uf) — (V£,Staf)

22— %Z)Bmf\z = (2=A)((Sraf Uf) + (Uf,Sraf)) + (Sraf, Uf) = (Vf, Sraf)

YT -©

jel

2
= 2= 2)IStafP — (2 A){Seaf,Uf) — (2= A)US, Sraf)
= 2= M) (Vf,Sraf) + (L= A)(Vf, Sraf) + (Sraf, Uf)
= 2= ) [SeafP — (1= A)(Staf,Uf) — (2= V)ISeafP + (1= (V. Sraf)
(= ) Sea P (L= A)(Seaf U + (1= A)(VE, Saf)

A2 2
- LTAf - -
jel

A) Y AT = ©)Seaf, Ajf) + (1= A) Y (Aif, ©;Sraf)

jel jel
for any f € H. We next prove Equation (12). Since U*V is positive, we see from Equation (7) that
UfE = VI + (Seaf,Uf) = (VE,Staf) = (Staf,Uf) = (VE US) < (Sraf, Uf)

for each f € H. A similar discussion gives |V f|? < (Vf,Sraf). Thus,

2
;](Ffm Ajf| + §®}‘A;f = (U2 +|VFI? < (Sraf, Uf) + (VS Sraf)
JE j€
=Y {(Tj = ©))Sraf, Aif) +E Aif,©;Sraf).
jel

|

Corollary 4. Let A = {A;}jcy be a g-frame for H with respect to {K;}jcy with g-frame operator Sy,
and /~\]— = A,-S;l foreach j € J. Then, for any A € R, for all I C J and all f € H, we have

2
(A= 2V LA A — A=A K LA + (1= 2) T AS)

jel jele jel

< Y (ASPFASE +ZASfAS ) < Y (Af AS).
jed jel

r]', jEH,

0, el then the operators U and

_1
Proof. For every j € J, taking T; = A;S,* and ©; = {

_1 _1
V defined in Equation (6) can be expressed as U = S,25% and V = S,2S%, respectively. Hence,

211 11
UV = S5, 1S Since S, 2515, 2 and S, ? StS . ? are positive and commutative, it follows that
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1
0<S, ss s 552:5 5515A52
and, consequently, sﬁ}sxlsf > 0. Note also that

2 1
= |SA° ZAfAj
jel

Y TiAf

jel

=[S} fl2 (SAf, f) = Y ANF, N f)-

jed
Now, the result follows by combining Theorem 2 and Equations (9)-(11). [

Theorem 3. Let A = {Aj}jcy be a g-frame for H with respect to {K;} jcy with g-frame operator S . Suppose
that T = {T}}jcy and © = {©;};cy are two g-Bessel sequences for H with respect to {K;};cy and that the
operator Sy is defined in Equation (4). Then, for any A € R and any f € H, we have

Ajf

YA OS4S) -

jel

2 1
< LN OS5~ Sta)f) — 5 LIS (T~ 0)Sraf)
je

jel

(1= 5) AT - 0)Seaf, Af) +

i€l

Moreover, if U*V is positive, where U and V are given in Equation (6), then

YA, 0541)

j€l

Af

2 1
> Y (Aif,0;(S} — Sra)f)-
i€l
Proof. Combining Equations (7) and (8) leads to

(SAVE,f) — V2

Y AfOSAS)

jel

2
Y OiAf| =
jel

2 2

< (SKVEH) — (= Sup seaf) — (5 =2 s seap)
+ 2UStAf, V) — (VESeaf) + (Seaf, Uf)
= (VE (55 =St ) — (5 = ) (UF, Seaf) + (VF,Staf)) — H(UF,Seaf)
+ SUSEAS V) + {Staf Uf) + (1= 5){Staf, Uf)
— (VE (5 =St f) — (4 = 2)lseasP
~ 2UFSeaf) + S 1seaf P (1= D)iSeaf )
(

1 2
= S-S + SISt f = S{UF Staf) + (1= D) (Staf, Uf)

- s s} —sea)f) AZJ< A, (T ©)Sraf)
je
+(1f§)zj;]<<rjf st A+ 2In g, vren
j€
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Suppose that U*V is positive; then, |V f|> < (Vf, Sraf). Now, the “Moreover” part follows from
the following inequality:

2 1 1
= (SAVS f) = [VF* = (SRVS, f) = (VF, Staf)

Y (Af,©,55f)

Y OiAf
jel jel

= (VF, (2= Sta)f) = LA, 05(Sh — Sra)f)-

jel
O

Corollary 5. Let A = {A}} ey be a g-frame for H with respect to {K;} <y with g-frame operator Sp. Then,
forany A € R, forall 1 C Jand all f € H, we have

0= LAAS Aif) = LAASE At )
j€ j€
2
< (-0 TINLAS + 5 AL A,

jele jel

Proof. For each j € J, let I'; and ©; be the same as in the proof of Corollary 4. By Theorem 3, we have

1 2
%(Ajff Aif) = ;}(A]‘Sﬁ\ﬁ AiSpf) = %(Ajf/ 0,57 f) - ;:]@fAjf
jE€ JE j€ je
- A A A2
-3 ;{:(Ajf,/\jf) +(1- Z)JZHZ Nif, N f) + Z%:](Ajfr/\jf)
jele el c
2
= (-0 DA + g DS,
jele j€
By Theorem 3 again,
1 2
Z]%(Ajf/Ajﬁ - ZJ:]([\;'Sﬁ\fr AjSpf) = Zj(l\jf@jsf\ﬁ - ZJ:]®fAjf
IS IS jE je
> LA, (5% — Sra)f) =0,
je

and the proof is finished. [

Remark 2. Taking A = 1 in Corollaries 4 and 5, we can obtain Theorem 2.4 in [29].
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Abstract: In this paper, we present several new inequalities for weaving frames in Hilbert spaces
from the point of view of operator theory, which are related to a linear bounded operator induced by
three Bessel sequences and a scalar in the set of real numbers. It is indicated that our results are more
general and cover the corresponding results recently obtained by Li and Leng. We also give a triangle
inequality for weaving frames in Hilbert spaces, which is structurally different from previous ones.
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1. Introduction

Throughout this paper, H is a separable Hilbert space, and Idy is the identity operator on H.
The notations J, R, and B(H) denote, respectively, an index set which is finite or countable, the real
number set, and the family of all linear bounded operators on H.

A sequence F = {f;} ey of vectors in H is a frame (classical frame) if there are constants A, B > 0
such that

Al < Y IGx fi) 2 < Bllx?, vx € H. (1)
jel
The frame F = {f;} ey is said to be Parseval if A = B = 1. If ' = {f;}cJ satisfies the inequality to
the right in Equation (1) we say that 7 = {f;}cJ is a Bessel sequence.

The appearance of frames can be tracked back to the early 1950s when they were used in the
work on nonharmonic Fourier series owing to Duffin and Schaeffer [1]. We refer to [2-16] for more
information on general frame theory. It should be pointed out that frames have played an important
role such as in signal processing [17,18], sigma-delta quantization [19], quantum information [20],
coding theory [21], and sampling theory [22], due to their nice properties.

Motivated by a problem deriving from distributed signal processing, Bemrose et al. [23] put
forward the notion of (discrete) weaving frames for Hilbert spaces. The theory may be applied to deal
with wireless sensor networks that require distributed processing under different frames, which could
also be used in the pre-processing of signals by means of Gabor frames. Recently, weaving frames
have attracted many scholars’ attention, please refer to [24-30] for more information.

Balan et al. [31] discovered an interesting inequality when further discussing the remarkable
Parseval frames identity arising in their work on effective algorithms for computing the reconstructions
of signals, which was then extended to general frames and alternate dual frames [32], and based on the
work in [31,32], some inequalities for generalized frames associated with a scalar are also established
(see [33-35]). Borrowing the ideas from [34,35], Li and Leng [36] have generalized the inequalities for
frames to weaving frames with a more general form. In this paper, we present several new inequalities
for weaving frames and we show that our results can lead to the corresponding results in [36]. We also
obtain a triangle inequality for weaving frames, which differs from previous ones in the structure.

Mathematics 2019, 7, 141; doi:10.3390 /math7020141 33 www.mdpi.com/journal /mathematics
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One calls two frames J = {f;};cy and G = {g;}c; in H woven, if there exist universal constants
C and D such that for each partition o C J, the family {f;};c, U {gj}jcoc is a frame for H with frame
bounds C and D and, in this case, we say that {f;} e, U {g;}jco< is a weaving frame.

Suppose that F = {f;};cy and G = {g;}c; are woven, then associated with every weaving frame
{fi}jer U{gj}jcor there is a positive, self-adjoint and invertible operator, called the weaving frame
operator, given below

Sw:H—H, Swyx= Z(x,f]-)fj+ Z (x,81)8;-

jeo jeot

We recall that a frame H = {h;}cy is said to be an alternate dual frame of {f;};co U {gj}jcoe if

x =Y (x, fi)hj+ Z (x, gj)h; )

jeo jeoe

is valid for every x € H.
For each o C J, let S% be the positive and self-adjoint operator induced by ¢ and a given frame
F = {fj}jes of H, defined by

SE:H—H, SEx=)Y (xf)f

jeo

Let F = {f/-}]-eg, g = {g/'}]'ej, and H = {h/-}]-ej be Bessel sequences for H, then it is easy to check
that the operators

Sron :H—H, Srgux =) (x fi)hj+ ) (xg)h ®)
jeo jeoe
and
Surg :H —H, Syrgx =) (x,h)fi+ Y (xh)g 4)
jeo jeoe

are well-defined and, further, S rgy, Sy rg € B(H).
2. Main Results and Their Proofs

We start with the following result on operators, which will be used to prove Theorem 1.

Lemmal. IfP,Q, L € B(H) satisfy P+ Q = L, then for any A € R,

A A
PP+ QLA L'Q) = QQ+ (- B)(PLHLP)+ (A~ DL'L > (A~ )LL.
Proof. We have A )\
PP+ 2(Q'L+L°Q) = PP Z(P'L+L°P)+AL'L,
and
* )\ * * * * )\ * * *
QQ+ (1= (P L+LP)+ (A~ 1)L'L=P*P— Z(P'L+L"P) +-AL'L

A A A2 A2
—(p-"1y(p=2 — —)L*L > (A — —)L*L.
(P 2L) (P 2L)+()L 4)L L> (A 4)L L

Thus the result holds. [J

Taking 21 instead of A in Lemma 1 yields an immediate consequence as follows.
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Corollary 1. If P,Q,L € B(H) satisfy P+ Q = L, then forany A € R,
P*P+AQ'L+L*Q) =Q*Q+ (1—A)(P'L+L*P)+ (2A —1)L*L > (2A — A?)L*L.

Theorem 1. Suppose that two frames F = {f;}jey and G = {g;}jey in Hare woven, and that H = {h;}c;
is a Bessel sequences for H. Then for any o C J, for all A € R and all x € H, we have

2 2

HZ}Ea(xrfj>hj +Re Ljcoe (x,8j) (hj, SFgux) = HZjezrf<xrgj>hj +Re Yjeo (%, f;) (hj, SFgnx) 5)
> (A~ 4)Re Ljco (X, fi)(hj, Srgnx) + (1 — 2 )Re Ljcoe (%, &) (hj, Sronx)
and
2 2
‘Ejen(xlhﬁfj +Re Ljcoe (X, 1)) (8j, Surgx) = ‘Zjeaf <x/hj>gj' +Re Yo (x, 1)) (fj, Srgx) ©)

> (20— AD)Re Tjeq (3,15} (£, Srrg®) + (1~ A2)Re Ljee (x,7) (g7, Swrg),
where S rgy and Sy rg are defined respectively in Equations (3) and (4).

Proof. For any ¢ C J, we define

Px =) (x,fi)h; and Qx= Y (x,g)h;, VxeH. 7)

jeo jeo
Then P, Q € B(H), and a simple calculation gives

Px+ Qx = Z(x,fj)hj +) (x,8j)hj = SFgnx.

jeo jeot
By Lemma 1 we obtain
A
[[Px||* + ARe(S%g3 Qx, x) = [|Qx||* +2(1 — 5 Re(SFgyPx,x) + (A =1) IS Fonxl*.
Therefore,
A *
x| = [[Qx[? +2(1 — 5)Re(STg5Px, x) + (A — 1)Re(S gy, Srgnx) — NRe(SgpQx, x)
— |Qx|[2 + 2Re(Sgy P, x) — ARe((P + Q)x, Srgnx) + (A — 1)Re(Srgnx, Srgnx)
= ||Qx||2 + 2Re(S}-gHPx,x) — Re(S;ng, S]:g;.[x>

= || Qx| + 2Re(Px, S rgx) — Re(Px, Srgux) — Re(Qx, Srgnx)
= [|Qx[1* + Re(Px, S gy x) — Re(Qx, Srgnx),

from which we conclude that

2
Z(x,fﬁhj +Re Z (x,8j) (hj, SFgnXx)
jeo jeo*
= |[Px||* +Re(Qx, Srgux) = ||Qx|* + Re(Px, Srgnx) ®)
2
= || X (v8phy|| +Re Y (x, fj) (b, Srgnx).

jeoe jeo
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For the inequality in Equation (5), we apply Lemma 1 again,

/\2
[IPx|[2 + ARe(SgQx, ) > (A = “1)(SkguSFan, x)

for any x € H. Hence

A2
[Px|* > (A — 1) (SFauSFoux x) — ARe(Qx, S rgyx)
A2 A2

= (A =7 = MRe(Qx, Srgnx) + (A = - )Re(Px, S pgux) ©)

A2 A?
=(A- Z)Reﬂ’x, Sroux) — ZRe(Qx, Sroux),

and consequently,

L (x i)l

jeo

+Re Y (x,8)) (hj, Srgux) = || Px||* + Re(Qx, S pgnx)
jeoe
A2 A2
> (/\ — Z)Re(Px S}-g;{x> —+ (1 — Z)Re(Qx, S;g;.p()
/\2
/\_7 Rez f] h]/S]:ng>+(1_Z)Re Z<x,g]‘><h]‘,5]:g7.¢x>.

jeo jeot

Similar arguments hold for Equation (6), by using Corollary 1. [

Corollary 2. Let two frames F = {f;}jcyand G = {g;};cy in H be woven. Then for any o C J, forall A € R
and all x € H, we have

L 1(Sw' SEx, fi) P+ 1 1S S g P+ 1 [(x,8))

jeo jeot jeot
= L ISWsgx )P+ ¥ [SwiSGx )P + L 1(x )
jeo jeo* JjET
/\** ) L fi)lP + Z""gf
jeo jeoe

Proof. For each j € J, taking
1
SWwifis jEO,
hj = { N
Sw'gj, jeo-.
Then, clearly, H = {hj}cy is a Bessel sequence for H. Since for any x € H, Srgyx =

_1 _1 _1 1 1
Zjeg<x,fj)swzfj + Yicoe (x,gj)Swzg/- = S,,°Swx = S} x, we have Srgy = S};. Now

12 1 2
— |t st | = 5w Zjeo e 505
1 o 1
= [|S)? S%x|? = (Sy? S%x, Spy? Sx) (10)
= Zf€v<5§vlf”fxrﬁ> {fjr Sw' %) + §j6v°<5§v15”fxr 82 (8, Sw' %)
= Zjea |<S‘7v Sg-‘xrfj>|2 + Zjeo'f ‘(S;v Sg-‘xrgj”z'

Hz,»@<x,ﬁ>h,- 2

36



Mathematics 2019, 7, 141

A similar discussion leads to

2
Yo (gihi| = Y NS SG X )P+ Y [(S'Sg x, gi) I (11)
jeoe jeo jea
We also get
1 1
Re Y (x, fj) (hj, Sranx) = Re }_(x, f;) (S fi, Siyx) = Y [(x, fi) (12)
jeo jeo jeo
and . .
Re Y (x,8i) (hj,Srgnx) =Re Y_ (x,8/)(Sp?8j, Six) = Y [{x,g))|*. (13)
jeo jeo jeot

Thus the result follows from Theorem 1. [J

Corollary 3. Suppose that two frames F = {f;}jcy and G = {g;}jcy in H are woven. Then for any o C J,
forall A € Rand all x € H,

2

Y (k)i

jeo

Y (xhp)g;

jeoe

jeo

2: Re< Z (x,hj)<gj,x>> +

jeoe

Re(Z(x,hj)<f]-,x)>+

> (21— AZ)Re<2<x, h;) (fj,x>> +(1— /\Z)Re< Y (x, 1) (g x)),

jeo jeoe
where H = {h;};cy is an alternate dual frame of the weaving frame {f;}jco U {g;}jcoe-
Proof. For any ¢ C J, since H = {h;};cy is an alternate dual frame of the weaving frame {f;}jc, U
{8j}jcoc, Equation (2) gives
x= Y (o hi)fi+ ) kg
jeo jeoe

for any x € H and thus, Sy; g = Idy. By Theorem 1 we obtain the relation shown in the corollary. [
Remark 1. Corollaries 2 and 3 are respectively Theorems 7 and 9 in [36].

Theorem 2. Suppose that two frames F = {f;}jey and G = {g;}jey in Hare woven, and that H = {h;};c;
is a Bessel sequences for H. Then for any o C J, for all A € R and all x € H, we have

2
Re Y (x, ;) (hj, Srgux) — || Yo (x, fi)h
jeo jeo (14)
A2 A,
< TRe ) (x8)) Iy Srgnx) + (1= 5)"Re ) (x, fj) (hj, Srgux),
jeo* jeo
and
2 2
Yol fihi|| +| Y (%8
jeo jeo* (15)
A2 A2
> (24 == —1Re 2 (%, f) (hj, SFgmx) + (1— 5 )Re Y (x,8)) (hj, Srgnx),
jeo jeot

where S gy is defined in Equation (3).
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Moreover, if the operators P and Q given in Equation (7) satisfy the condition that P*Q is positive, then

2

0 <Re) (x,f;)(hj, Sranx) — || Y (x fihi|
jeo jeo
and
2 2
Y (x ikl +|| X (x gkl < ISFanx®.
jeo jeo

Proof. For any ¢ C J, let P and Q be defined in Equation (7). Then all A € R and all x € H, we see
from Equation (9) that

2
Re ) (x, fi)(hj, Srgnx) — = Re(Px, Srgux) — || Px|?

jeo

Y (x fi)hy

jeo

2 2
< Re(Px, S]:gy{x> + %Re(Qx, S]:gy{x> — ()\ — %)Re(Px, S]:g;{x>

A2 A2
= T Re(Qx, Srgyx) + (1= A+ -)Re(Px, Srgux)

A2 Ao
= ZR6<QX, Srgux) +(1— E) Re(Px, S rgyx)

A2 Ao
= 7 Re ) ()l Srgnx) + (1= 3)°Re }_(x, fj) (hj, Srgnx)-
jeoe jeo

We next prove Equation (15). By combining Equation (8) with Equation (9) we conclude that

2
+

2

Y {x fidh

jeo

Y (% gk
jeoe
= |[Px|]* + [|Qx|* = 2||Px||* + Re(Qx, S g3 x) — Re(Px, S gy )
2 2
> (2A - %)Re(Px, Sroux) — %R?-(Qx, Srgnx) +Re(Qx, Srgux) — Re(Px, Srgyx)

A2 A2
= (24 = 5 = DRe(Px, Srgux) + (1 = 5 )Re(Qx, Srgux)
A2 A2
= (2/\ — 7 — 1)Re Z(x,fj) <h], S]:g';.[x> -+ (1 — 7)Re Z (x,g]-)<h]-,5;g7.[x), Vx € H.
jeo jeot

Suppose now that P*Q is positive, then for any x € H,

2

Re Z(x,fj><hj, Srgux) — Z(x,f]->hj = Re(Px, Srgyx) — Re(Px, Px)
jeo jeo
= Re(Px, Qx) = Re(P*Qx,x) > 0.
Noting that

[Px|* = [|Qx|* — Re(Qx, Srgyx) + Re(Px, S rgyx)
= Re(Qx, Qx) — Re(Qx, Srgyx) + Re(Px, S pgpx)
= —(Re(Qx, Srgyx) — Re(Qx, Qx)) + Re(Px, Srgyx)
= —Re(Qx, Px) + Re(Px, S rgyx) < Re(Px,Srgux),
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and similarly,
Qx| < Re(Qx, Srgnx),
we obtain

2 2

= |[Px||? + ]| Qx]?

Y (x fi)hy

jeo

Y (x,8)h;

jeat

< Re(Px, S]:g';.@'X) + Re(Qx, S]:gq.[x>
= Re(Px + Qx, S]:gHX> = HS]:g;{tz,

and the proof is completed. [

Remark 2. Suppose that the weaving frame {f;}jcy U {8j}jcoc is Parseval for each o C J, and letting h; = f;
ifj € cand hj = g;if j € 0°, then it is easy to check that the operator P*Q is positive.

Corollary 4. Suppose that two frames F = {fj}jey and G = {g;} jey in H are woven. Then for any o C J,
forall A € Rand all x € H, we have

0< Y1 f)P = Yo S SFx, )P = 3 (S S5, )

jea jeo jeoe
(16)
<fZ|xg/\2 SPL I )P
jeoe jeo
A2 2,
@A =S =) L[ fi)l*+ 1** ) X [{x g
jeo jeoe
< Y USw!SFx )P+ X 1Sy S5, 85) I
jeo jeo* 17)
+ L HSw!SGx )P + X 145w SG % g) I
jeo ]eaf
<Y NP+ X gl
jeo jeot

Proof. Let H = {h;} ey be the same as in the proof of Corollary 2. By combining Equations (10) and (12),
and Theorem 2 we arrive at

Y16 )2 = Y Sw! ST )2 = X 1Sy S5, )1

jeo jeo jeoe

Y (X )k

j€o

2
= Re Z<x,fj><hjrs]:g7-[x> -

jeo
)\2
S ZRe Z <x,g]‘><h]‘,5]:g7{x> 2Re 2 f] h],S]:g;L[x>

jeoe jeo

:*Z\xg]|+ )Z\(J@fj)lz

jeoe jeo

_1
for each x € ]HI Let P and Q be given in Equation (7). Then a direct calculation shows that P=3S5,7S%

and Q = S, 25" and, P*Q = S%S, 1S”C as a consequence. Since Sy, ZS” SW and S, 25" S : are
posmve and commutatlve,

_1 1 1 . 1 _1 c 1
0 < S)7SESW S SE Si? = Si” SESW'SE S,
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implying that SU}-S;\IISEE = P*Q > 0. Again by Theorem 2,

2
0] S Re Z(x,f]>(h], S}‘g'HX> — Z<X,f])h]
jeo jeo
= LI HF = LSS5 )2 = X (iS58 -
jeo jeo jeoe

We are now in a position to prove Equation (17). By Equations (10) and (11) we have

2 2
Y iy +|| X (o gidh
jeo jeot (18)
= Y [(Sw'SFx )P+ 10 [(Sw'SFx, gi) P + L 1{Sw'SG x i) + 1 1(5w'SG x,8)I*
jeo jeo jeo jeot

for any x € H. We also have

IS Fgax|? = ||5 x> = (Swx,x) = Y [ f) P+ 3 [(xgpl?

jeo jeot
This together with Equations (12), (13) and (18), and Theorem 2 gives Equation (17). [

Remark 3. Inequalities (16) and (17) in Corollary 4 are respectively inequalities in Theorems 14 and 15 shown
in [36].

Suppose that ' = {fi}ic5, G = {gj}jey, and H = {h;};cy are Bessel sequences for H, and that
{aj}jey is a bounded sequence of complex numbers. For any ¢ C J and any x € H, we define linear
bounded operators E7, E*, F” and F” respectively by

Ex =Y (1—a){xh)f;, E"x=Y (1—a;)(xh)gj
jeo jeo*

and

Fix = Za]<x,h]>f], F”Cx = Z a]<x,h]>g]

jeo jeoe

We are now ready to present a new triangle inequality for weaving frames.

Theorem 3. Suppose that two frames F = {f;}jcy and G = {g;};cy in H are woven. Then for any bounded
sequence {;}jcy, for all o C J and all x € H, we have

2
ZHtzg Zaj(x,hj>g/+2aj<x,hj>ﬁ +Re<2(17¢x)< WS x) Z —aj){(x, hy)(gj, x >>
jeo* jeo jeo jeoe (19)
o oy _ (o oCy (12
§3+H(E +E L (F7+F7)|| 1|2,

where H = {h;} ey is an alternate dual frame of the weaving frame {f;}jcs U{g;} jece-
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Proof. For any ¢ C J, since H = {h;};cy is an alternate dual frame of the weaving frame {f;};c, U
{8i}jcoe, E7 + E” + F? 4 F’ = Idy. For any x € H we obtain

Z aj<x, h]'>g]‘ + Z ocj(x, hj)fj

jeot jeo

= ((F7 4+ F™)*(F" 4+ F")x,x) + Re((E7x, x) + (E” x,x))

2
+Re<£(l—aj)(x,hj)(fj, + Z 1—aj)(x, hj) (g, ))

jET jeoe

((E7+E” + (E°)" + (E7)")x,x) + ((Idm — (E” + E7))" (Idg — (E + E7))x, %)

Idg — %(E" +ET 4 (E7) + (E7)") + (BT + E7)*(E + E"f)>x,x>

((E” +E%) — %IdH> ((E" +E7) — %IdH> +ZldH> x,x>

(20)

= (e ) = G )|+ 112
> 2|2
On the other hand we get

2
2 aj(x, hi)gj + th]'(x,hj)fj +Re<£(1 —aj)(x, ) (f;, x) + 2 (1- ucj)<x,h]->(gj,x))

jeot jeo JjET jeoe
= ((F" 4+ F™)x, (F" 4+ F")x) + Re((E" 4+ E)x, x)
= ((F7 + F)x, (F" + F7)x) + Re({x,x) — ((F" 4+ F")x,x))
= (x,x) — Re((F" 4+ F7)x, x) + ((F" + F*)x, (F" + F)x)
= (x,x) —Re((F" + F")x, (E” + E™ )x)

((F" 4+ F")x, (E” + E)x) —
)x,

(B +E7)x, (F7 + F7)x)

1 I lad o lad
§<(E +E%)x, (F7 + F7 )x) 1)
§||x||2+};<<<E”+E"”>+(F”w (B +E) + (F + F)x)

— S+ P ) (B 4 E)x)

NS N\H\_/

+ i(((z—:uE”E) — (FT+F"

3 1 ‘
< Gl (BT + E7) = (B7 + F7) |22

3+ (B +E) = (FF+F)|, 1»
= 2 1.

= 22 %, (B + E7) = (F + F))x)

This along with Equation (20) yields Equation (19). [

Corollary 5. Suppose that two frames F = {f;}jcy and G = {g;} ey in H are woven. Then for all ¢ C J and
all x € H, we have

3+ IS5 — Siur I
4

Y (xhp)fi

jeo

2
+Re Y (x, k) (gj,x) <

3
2l <
jeoe

=12,
where SHg' S, 7 € B(H) are defined respectively by
S%gx =Y (x,hj)g; and S§zx = Z(x,hj>f]-,

jeoe jeo
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and H = {h;};cy is an alternate dual frame of the weaving frame {f;}jco U{g;}jeoe-

Proof. The conclusion follows by Theorem 3 if we take

o= 1, jeo,
7710, jed.
O
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Abstract: In the present paper, we obtain some new inequalities for weaving K-frames in subspaces
based on the operator methods. The inequalities are associated with a sequence of bounded complex
numbers and a parameter A € R. We also give a double inequality for weaving K-frames with the

help of two bounded linear operators induced by K-dual. Facts prove that our results cover those
recently obtained on weaving frames due to Li and Leng, and Xiang.
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1. Introduction

This paper adopts the following notations: J is a countable index set, H and K are complex Hilbert
spaces, and Idy and R are used to denote respectively the identical operator on H and the set of real
numbers. As usual, we denote by B(H, K) the set of all bounded linear operators on H and, if H = K,
then B(H, K) is abbreviated to B(H).

Frames were introduced by Duffin and Schaeffer [1] in their study of nonharmonic Fourier series,
which have now been used widely not only in theoretical work [2,3], but also in many application
areas such as quantum mechanics [4], sampling theory [5-7], acoustics [8], and signal processing [9].
As a generalization of frames, the notion of K-frames (also known as frames for operators) was
proposed by L. Gavruta [10] when dealing with atomic decompositions for a bounded linear operator
K. Please check the papers [11-17] for further information of K-frames.

Recall that a family {;};cy C His called a K-frame for H, if there exist two positive numbers A
and B satisfying

AKS? < %I(ﬁ%)lz <B|If|?> VfeH
je

The constants A and B are called K-frame bounds. If K = Idy, then a K-frame turns to be a frame.
In addition, if only the right-hand inequality holds, then we call {1;} ;< a Bessel sequence.

Inspired by a question arising in distributed signal processing, Bemrose et al. [18] introduced the
concept of weaving frames, which have interested many scholars because of their potential applications
such as in wireless sensor networks and pre-processing of signals; see [19-24]. Later on, Deepshikha
and Vashisht [25] applied the idea of L. Gavruta to the case of weaving frames and thus providing us
the notion of weaving K-frames.

Balan et al. [26] obtained an interesting inequality when they further examined the remarkable
identity for Parseval frames deriving from their work on signal reconstruction [27]. The inequality
was then extended to alternate dual frames and general frames by P. Gavruta [28], the results in which
have already been applied in quantum information theory [29]. Recently, those inequalities have been
extended to some generalized versions of frames such as continuous g-frames [30], fusion frames and
continuous fusion frames [31,32], Hilbert-Schmidt frames [33], and weaving frames [34,35].

Mathematics 2019, 7, 863; doi:10.3390 / math7090863 44 www.mdpi.com/journal /mathematics
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Motivated by the above-mentioned works, in this paper, we establish several new inequalities
for weaving K-frames in subspaces from the operator-theoretic point of view, and we show that our
results can naturally lead to some corresponding results in [34,35].

One says that two frames ¥1 = {11 };c; and Y2 = {»;};cy in H are woven, if there are universal
constants Cy and Dy such that, for any o C J, {1/} jco U {12} jco< is a frame for H with bounds Cy
and Dy. If Cy = Dy = 1, then we call ¥; and ¥ 1-woven. Each family {¢1;}jcs U {tf2)}jcoe is said to
be a waving frame, related to which there is an invertible operator Sy vy, : H — H, called the frame
operator, given by

Sy, f = Y (f, o)+ Y (f, W) .

jeo jeot

Recall also that a frame Y5 = {43;}cy is called an alternate dual frame of {1;}jcs U {12 }jeoc,
if for each f € H we have

f=Y (foo)wsi+ Y (fwop)esj, VfeH

jeo jeot
Lemma 1. Suppose that P, Q, and K are bounded linear operators on H and P + Q = K. Then, for each f € H,
IPFI + Re(Qf KF) > S K™
Proof. We have

IPFI* +Re(Qf, Kf) = (K= Q)f, (K= Q)f) + %((Qf,Kﬁ +(Kf,Qf))
={(QQ—(K'Q+Q'K) + 5(K'Q+ Q"K))f, f) + (K’Kf, f)
= Q= 3K (@~ 3Kf f) + SKKS f) = SIKFI?
forany f ¢ H. O
The next two lemmas are collected from the papers [36] and [32], respectively.
Lemma 2. If ® € B(H, K) has a closed range, then there is the pseudo-inverse &t € B(K, H) of ® such that
ote = @, TP’ = o, (P2 = 00T, (dTD)* = ot
Lemma 3. If P and Q in B(H) satisfy P+ Q = Idy, then, for any A € R, we have
PP+A(Q +Q) =Q Q+ (1—A)P"+P)+ (24 — D)Idy > (24 — A?)Idy.
2. Main Results

We start with the definition on weaving K-frames due to Deepshikha and Vashisht [25].

Definition 1. Two K-frames ¥1 = {i1j}jcy and Y2 = {42 };cy in H are said to be K-woven, if there are
universal constants Cy and Dy such that, for any o C I, the family {i1j}jco U {$2;} jeoe is a K-frame for H
with K-frame bounds Cy and Dy. In this case, the family {{1;} e, U {tp2j}jcoc is called a weaving K-frame.

Given a weaving K-frame {1} e, U {42/} jcoc for H, recall that a Bessel sequence ® = {¢; };c;
for H is said to be a K-dual of {41} jcs U {12 }jecoe, if

Kf =Y (fp1)0j+ Y. (f o), VfeH

jeo jeot
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Let ¥1 = {¢1;};ey be a given K-frame for H. For any ¢ C J, we can define a positive operator 5§,
in the following way:

5%;1 H — H, S‘I'lf Z l/)li 1/)1]
jeo
In the following, we show that, for given two K-woven frames, we can get some inequalities
under the condition that K has a closed range, which are related to a sequence of bounded complex
numbers, the corresponding K-dual and a parameter A € R.

Theorem 1. Suppose that K € B(H) has a closed range and K-frames V1 = {4y} jey and ¥2 = {2}y in
H are K-woven. Then,
(i) for any f € Range(K), forall o C J, {aj}]‘ej e (D), and A € R,

Y af (K f )9+ Y ai(KTf, ll’z;)‘l’]

& =
FRe( D) KL )+ T 1 ) K ) 911))
o AR AT 2
#Re( Dok L) 0 ) + 5 (K 1))
> (A~ A4 Re(};gaf K f, 1)@, f +]EZUCaJ K £, 92)) (9, f>)

1= 2R (L0 - ) K 00) + SO =) K ) 00)), )

jET jeot

where ® = {¢j}jej is a K-dual of{lplj}j@ U {l,sz}jegc.
(i) for any f € Range(K*), forall o C J, {a;}jey € (°(J), and A € R,

]gaj«K*)Jrf/ ) nj +j€206 i ((K*)TF, ¢1) 2
#Re( S =) ) 0 ) + T 1m0, )0
= Jg(l‘”f”( )f 95 %ﬁjél—a )+fr¢j)1/’2j2
+Re(}§a (KT £, ) (s f +]€cha] (KT £, ) (92, f>>

> (21— A?) Re(Za (K00 (i )+ Y ai (K f,07) (W), f>>

jET jeot

+(17A2)Re<2(17a)<(K*)*f¢; Wi f)+ X (= a) (K ) (g, f>),

jeo jeo*

where ® = {¢;}jey is a K-dual of {¢1}jer U {2} jece-
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Proof. We define two bounded linear operators P; and P, on H as follows:
Pf= Z”]fll’l] ¢]+2”]f¢2] Pjs
jeo jeoe

Pof =Y (L—ap){f,p1j)pj+ Y (1 —ap){f, o) 9;.

jeo jeoe

@

Then, clearly, P, f + P»f = Kf for each f € H and thus P; + P, = K. Since K has a closed range,
by Lemma 2, we have
PiK" 4 P K" = KK = Pgpge()s

where Ppg,q,(k) is the orthogonal projection onto Range(K). Thus,
PiK" | Range(x) +P2K" | Range(1)= 1dRange(x) -
By Lemma 3 (taking 4 instead of 1), we get
IPKTfII? + ARe(PK' f, f) = | PK" f|[* + (2 = A)Re(PiK'f, f) + (A = DIf]%,
for any f € Range(K). Hence,

IPK f||* = [PK f||? + 2Re(PIKTf, f) — A(Re(PIKT £, f) + Re(PoKTf, £)) + (A — DI f|?
= [|P,KT£|* + 2Re(P KT £, f) = A[IfII* + (A = DI fII?
= |PKTf||2 +2Re(P K f, ) — Re(PK'f, f) — Re(PK'f, f).

It follows that
IPLKTf||* + Re(PoK' £, f) = || 2K f||* + Re(P K £, ), ©)

from which we arrive at

2

Yo ai (KT f, )0+ Y ai (KT f, o))

jeo jeo

+Re(2(1 G (K gy )+ X (- a) (K, ¢z]><¢],f>)

jeo jeot

2
Y (1= a)(KTf, 1)y + Y (1 —a)(K'f, 2)

jeo jeot

+Re((Ta 901, 0) + X (59501

jeo jeot

For the inequality in Equation (1), we apply Lemma 3 again,

2
IPKHFIP > (= 2D)IIfI7 - ARe(PaK*, f) @
=(A— %Z)Re<P1K+f + PKf, f) — ARe(PK' £, f)

A2 . A2 .
= (A= IRe(PIKY, f) = - Re(PKTS, f).

47



Mathematics 2019, 7, 863

Thus, for any f € Range(K),

2
Z”j<K+f/ P1j)¢j + Z ai (K f, 4o;)
jET jeo*
e - ) 0,1y )+ 5 (=) K93 01,1
JET jeoe

A2 N A2 N
> (A= IRe(PKYS, f) + (1 - " )Re(PKY, f)

=(A- ); Re(Za] K+f 1/71] 47] )+ Za] Kf 1/72]><¢] f>>

jET jeot

+(1,% Re(ZU*“J WK £ 1) (@1 )+ Y (1= a) (KT, ) (¢, f))

jeET jeot
(ii) The proof is similar to (i), so we omit the details. [

Corollary 1. Suppose that two frames Y1 = {iy;}jey and ¥2 = {42 };cy in H are woven. Then, for any
feH, foralloc C Jandall A € R, we have

Z [{f, 927 )2+ Z S‘I'lf S\{qqull’l] ‘2+ 2 |<Sq‘1fr5il\yzl/’2j)‘2

jeot jeo jeo*
= LI P+ L IS% S Seiw, 1) P+ 1 (S, 1 S, ¥2))
jeo jeo jeot
A—— ) L NF )P+ Zlf%]
jeo jeoe

Proof. Letting Kt = Idy and
¢ — \yll‘{!i%blf jeo,
! ‘Y]‘P21zb2] j€ o,
In addition, taking S\I,l‘étpl, ‘Yll\{,zt,l]z] and S}Y/l %Yz f instead of ¥4, ¢»; and f respectively in (i) of
Theorem 1 leads to

2
Yo ai(f p)) \?léfll’l] +) ”j(f/¢2j>5¥114§l/’2j

jeo jeoe

+Re<2(1—a])(f Y (P f) + Y (1= ) (f, 2) (9, f>>
JE€T jeoe

Z(l_‘lj)(f lpl]) Y1T24’1]+ 2 f 1/’2]> Wl\yzlpz]

jeo

+ Re(,zﬂf(fr Y1) (aj, f) + .ZC ai(f, ¢2j>(ll’2jff>)

)\2] ]
> (A= z)Re(Zuﬂff Yaj) o f) + 1 “j(fr¢2j><l/’2j/f>)

A2 ] ]

+(171)Re<2( )<f 1/’1;> W f )+ Z 1741] (f, ¢2])<¢2] f)) (5)

J€C jeo*
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A direction calculation shows that

SN2 Y )y —||s\1134v§sxflf||z

jeo

Z<fr 1/’1j> T1Y2¢1]

jeo
= <5‘?34’§5'¥1f Swll‘ﬁswlf) = (5‘Y1‘Y25‘1!1‘1f25‘1/1f 5\111?25‘1'1f>
1 -1 1 _
= ) (%9, 5%, F 1) (W1, Sew, S, ) + Y (S, S%,f ¥27) ($2), S 1w, 5%, )

jeo jeot
- Z| S‘iflf Sl{fl\{'zlpl] |2Jr 2 | s‘flf S\yl‘{’zl/"2]>| (6)
jeo jeoe
and, similarly,
EMwmﬁw = Y (S5, Sepw, )P+ X0 (S, Sl ) I )
jeot jeo jeoe
Thus, the result follows if, in Equation (5), we take a; = L ] €
1 0, jeo.

Corollary 2. Suppose that two frames Y1 = {1;} ey and Yo = {42}y in H are woven. Then, for any
o CJ, forallA € Randall f € H, we have

2
jeo jeot
2
Y (£ i) +Re L 4F9) (9. f)
jeoe jeo
> (24— A%)Re Y_(f, ;) (1, f) + (1 = AP)Re Y (f, ) (o, f),
jeo jeoe

where ® = {§;}jcy is an alternate dual of {11j}jco U {¥2)}jeoe-

Proof. The result follows immediately from (ii) in Theorem 1 when taking K* = Idy and

o= 1, jeo,
7710, jeos
O

Suppose that two frames ¥1 = {1/} ey and ¥2 = {{2;} ;¢ in H are 1-woven. For any o C J and

Y1, jEO,
oj, € O°.
{§1j}jec U {¥2j}jcoc- Thus, Corollary 2 provides us a direct consequence as follows.

any j € J, taking ¢; = { Then, obviously, ® = {¢;};c; is an alternate dual of the frame

Corollary 3. Let the two frames Y1 = {y1;}jey and Y2 = {¢2;}jey in H be 1-woven. Then, for any o C J,
forall A € Rand all f € H, we have

2 2
2<fr Pyl + X o) P = || X (o) eoi|| + X 1CF )1
jeo jeoe jeo jeo
> (20— A%) Z [(fo i) P+ (1—A%) Z [(f, 92))I?
JjET jeot
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Remark 1. Corollaries 1 and 2 are respectively Theorems 7 and 9 in [34], and Theorem 5 in [34] can be obtained
ifwe put A = 1 in Corollary 3.

Theorem 2. Suppose that K € B(H) has a closed range and that K-frames ¥1 = {¢1;}jey and ¥2 = {2} s

in H are K-woven. Then, for any f € Range(K), forall o C J, {a;}jey € £*(J), and A € R,

2
+ Z(lfu]fowl/ ¢+ Z 1—a) Kf¢2]>¢]

jeo jeoe

Y ai (K g+ Y ai (KT f, o)

jeo jeot

/\2
> (20 -5 fl)Re<Za/<K o) ey )+ Y ai(K'f, 4’2]><¢;/f>>

jeo jeo

2
+(1—%>Re<2<1—u]><f<f¢u (9j0f) + Y. (1—a) Kf¢2/><4’wf>>f

jeo jeoe
where ® = {§;}jcy is a K-dual of {ip1;}jco U {¥h2)}jeoe-
Moreover, if (PLK")*P,K* is a positive operator, then

2

Yo ai (K o+ Y ap (KT f, o))

jeo jeot

+ < 11>

2(1_”J)<K frpipe;+ ) (1—a)(K 'f, P2j) )

jeo jeot
forany f € Range(K), where Py and P, are given in Equation (2).
Proof. For any f € Range(K), forall o C J, {aj}je; € £*(J), and A € R, we know, by combining
Equation (3) and Lemma 3, that

2

2
H X (@ = a) (KT, )+ Y (1 —a)) (KT £, 2

jeo jeot

Y ai (K )+ Y ai (KT, o))

jeo jeot

= [IPLKT £ + [|P2K £ = 2| PAKTf||* + Re(PIK, f) — Re(PK', f)

> (2= D)lIFIP - (4 20Re(PIK'S, )+ Re(PK'S, )  Re(PK' . )

= @ - & DRe(PIKTS, ) + (1- S Re(PKT )

(2)\7%71 Re<2a, (K ) (¢, )+ Y 0 (KT, wz]><¢],f>>

jeo jeoe
2
+ (= SR L - a)KLp) (03.) + T (1= (KL 05 (01.))-
jeo jeoe

For the “Moreover” part, we have for any f € Range(K) that
IPK f||* = |[PK f||* — Re(PK'f, f) + Re(PIK' £, f)
= Re(PK  f, K f) — Re(P,KT £, ) + Re(PLKT £, f)
= —(Re(PK'f, PK' f 4+ P,K' f) — Re(P,K' £, P,K ) + Re(PIK'f, f)
= —Re(PK'f, PLK ) + Re(PiKT f, f) < Re(PIK'f, f).
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With a similar discussion, we can show that || PK* f||> < Re(P,K* f, f). Thus,

2 2

[ (= a) (KT f, 1)+ Y (1 —ap) (KT, o))

jeo jeoe

Y ai (K )+ Y ap (KT, o))

jeo jeoe

< Re(PIK'f, f) + Re(PK'f, f) = Re(PIK'f + PK'f, f) = | f||*.

O

Corollary 4. Suppose that two frames Y1 = {1;} ey and Yo = {42} ;cy in H are woven. Then, for any
o CJ, forallA € Randall f € H, we have

(A_*_l Z‘fl/’l]‘z 1_* Z|f¢2]

jeo jeoe
< Z| S‘Ylf S‘fﬂfﬂ’l] |2+ Z S‘Ylf SY1W2¢2]>|

jeo jeoe

+ Y 1(S%,f, Serw, P17+ 3 I SG.fs Serw, P21

jeo jeo

< YL P+ 3 1K ®)

jeo jeo*

Proof. Letting K* = Idy and for any o C J, taking

N I A oY o = SelPpy, jeo,
= ‘ = 1/3
j 0, jeds, ! S a, jE

If, now, we replace 11, §; and f in the left-hand inequality of Theorem 2 respectively by S\;ll‘ﬁtpl i

‘1,1\1,21/12] and S}Y v, /. then

2 2
YA i Sa2ng|| +|| X (F ) Sy
jeo jeot
2 2
> (24 - % 1R Y ) (g )+ (1~ 5 Re T o (i f)
jeo jeoe
2
SR )L ) P (-2 X 1P
jeo jeot

This along with Equations (6) and (7) gives the left-hand inequality in Equation (8), and the proof
of the right-hand inequality is similar and we omit the details. [

Theorem 3. Suppose that K € B(HH) has a closed range and that K-frames ¥1 = {1;}jey and ¥2 = {2 }je1
in H are K-woven. Then, for all o C J, for any {a;};cy € £°(J), A € Rand f € Range(K),

Y al (K f )0+ Y ai(K'f, lP2])¢;

jeo jeot

Re(za] (K f 1) (95, ) + Y ai(KTf, 1P2;><4’;rf>>

JET jeoe

(1_ A 2R@<Zg] K f 1/)1] (P], + Z 11/ K f ¢2]><¢]'f>>

jET jeoe

+/ZR9(2(1711] Kfl/)1] (o, f) + Z 1—aj) Kf¢2/><¢]rf>>'

jeET jeot

51



Mathematics 2019, 7, 863

where ® = {¢;}jcy is a K-dual of {¢1}jce U {27} jeoe-
Moreover, if (PlKJr)*PzKJr > 0, then

2

Y ai K g+ Y ai (KT f, o)

jeo jeot

Re(Za] (K*fp0) (i, )+ Y aj(K'f, ¢z;><4>]/f>>*

jeo jeo

forany f € Range(K), where Py and P, are given in Equation (2).

Proof. Forallo C J, for any {a;};cy € £*(J), A € Rand f € Range(K), we see from Equation (4) that

Y al (K )0+ Y ai(K'f, llsz)ij

jeo jeoe

Re(( Loy (K L) 01 f) + X K43 ) -

jET jeoe

=Re(PK'f, f) — | PIK' f||?

< Re(PIK', ) — (A~ S Re(PIK'. ) + %zRe<PzK*f,f>

4
=(1- A 2Re<2”f (KTF )@y, f) + 3 ai(KTf, 1:"21><4’1'f>>
jET ]6(7
T3 Re(Z(l — ) (K" f, 1) (95, f) + 3 (1 - a)(K'f, 1P2/><¢],f>>-
jeo jeoe

Suppose now that (P;K")*P,K" is a positive operator. Then

2

Re( oK) 91 1) + X alK'F, 43 ) -

jeo jeae

Yoo (K )+ Y ap(KTf, )0

jeo jeoe
=Re(PIK'f, f) = | LK f||* = Re(PK"f, PIK"f + P,K' f) — Re(PiK' f, PLK" f)
=Re(PK'f, K f) = Re(f, (PLK")*P,KT ) > 0.

|

Corollary 5. Let the two frames Y1 = {41} jcy and ¥2 = {2} ey in H be woven. Then, for any o C J, for
all A € Rand all f € H, we have

0< Y [0 = Yo 1SS, Sury i) P = X (5%, £, Sy, )

jeo jeo jeoe

Z|f¢l/ ‘2+*Z|f¢2]

jeo jeoe
Proof. The proof is similar to Corollary 4 by using Theorem 3, so we omit it. [
Remark 2. Corollaries 4 and 5 are respectively Theorems 15 and 14 in [34].

We conclude the paper with a double inequality for K-weaving frames stated as follows.
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Theorem 4. Suppose that K-frames Y1 = {ip1j}jcy and Y2 = {4y;}jey in H are K-woven. Then, for any
o C I, forall {a;}icy € £°(J) and all f € H, we have

2
AL IR st A
jeo je
+ Re(Z(l —a)(f, ) (¢, Kf) + Y (1 — ”j)<lel’2j><¢jr1<f>>
jeo jeoe
3[|K|I* + [P — Py
< %llﬂlz,

where Py and P, are given in Equation (2), and ® = {¢;};cy is a K-dual of {{1;} i U {t2j}jcoc-

Proof. For any ¢ C J, for all {a;};c; € ¢*(J) and all f € H, it is easy to check that P + P, = K.
By Lemma 1, we get

2
+Re(2(1 —a)(f, 1) (¢, Kf) + Y (1 —a)){f, 1/J2j><¢erf>>

jeo jeot

Yailfowpei+ Y ailf, $2)9;
jeo jeo*

= IPLfI2 + Re(Pof, Kf) > 2 [IKSfI%

We also have

Yo ail{f, o+ Y ai(f )¢

jeo jeot
= (A Pif) + (B KF) + 3 (KF Paf)
= (PfPaf) + 5 {(K= POSKF) + 5 (KF, (K= Py)f)

= (Kf,Kf) = 2 [(Pif, KS) = (Buf, Pif)] = S [UKF PLf) = (PLf Paf)]

2
+Re(2(1 —a)(f, 1) (¢, Kf) + Y (1 —aj){f, ¢2j><¢erf>>

= jeot

= (KF,KF) = 5 (Pif, Paf) = 5 (Paf i)
= SKEK) & (P + Paf PUf + Baf) = 3 (B, Pof) = 5 (Paf P )
= 2(KEKf) + (P = P)f (B Po)f)
2 _ 2
< 2iipif+ e - popype = KRR =R

and the proof is over. [

Remark 3. Theorem 3 in [35] can be obtained when taking K = Idyy in Theorem 4.
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Abstract: New versions of a Gronwall-Bellman inequality in the frame of the generalized
(Riemann-Liouville and Caputo) proportional fractional derivative are provided. Before proceeding
to the main results, we define the generalized Riemann-Liouville and Caputo proportional fractional
derivatives and integrals and expose some of their features. We prove our main result in light of some
efficient comparison analyses. The Gronwall-Bellman inequality in the case of weighted function
is also obtained. By the help of the new proposed inequalities, examples of Riemann-Liouville
and Caputo proportional fractional initial value problems are presented to emphasize the solution
dependence on the initial data and on the right-hand side.

Keywords: Gronwall-Bellman inequality; proportional fractional derivative; Riemann-Liouville and
Caputo proportional fractional initial value problem

1. Introduction

Integral inequalities have been used as fabulous instruments to explore the qualitative properties
of differential equations [1]. Over the years, there have appeared many inequalities which have been
established by many authors such as Ostrowski type inequality, Hardy type inequality, Olsen type
inequality, Gagliardo-Nirenberg type inequality, Lyapunove type inequality, Opial type inequality and
Hermite-Hadamard type inequality [2,3]. However, the most common and significant inequality is
the Gronwall-Bellman inequality, which they introduced in [4,5]. The Gronwall-Bellman inequality
allows one to provide an estimate for a function that is known to satisfy a certain integral inequality by
the solution of the corresponding integral equation. In particular, it has been employed to provide a
comparison that can be used to prove uniqueness of a solution to an initial value problem (see some
recent relevant papers [6-9]).

Fractional differential equations (FDEs) is a rich area of research that has widespread applications
in science and engineering. Indeed, it describes a large number of nonlinear phenomena in
different fields such as physics, chemistry, biology, viscoelasticity, control hypothesis, speculation,
fluid dynamics, hydrodynamics, aerodynamics, information processing system networking, notable
and picture processing, control theory, etc. FDEs also provide marvellous tools for the depiction of
memory and inherited properties of many materials and processes. In view of recent developments,
one can consequently conclude that FDEs have emerged significant achievements in the last couple of
decades [10-16]. The study of integral equations in the scope of non-integer-order equations has been
in the spotlight in the recent years. Many mathematicians in the field of applied and pure mathematics
have dedicated their efforts to extend, generalize and refine the integral inequalities carried over
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from integer order equations to the non-integer order equations. Meanwhile, different definitions of
fractional derivatives have been recently introduced [17,18]. The Gronwall-Bellman inequality, which
is our concern herein, has been under investigation and different versions of it have been established
for different types of fractional operators [19-25].

In this paper, new versions for a Gronwall-Bellman inequality in the frame of the newly defined
generalized (Riemann-Liouville and Caputo) proportional fractional derivative are provided. Before
proceeding to the main results, we define the generalized Riemann-Liouville and Caputo proportional
fractional derivatives and integrals and expose some of their features [26]. We prove our main result in
light of some efficient comparison analysis. The Gronwall-Bellman inequality in the case of a weighted
function is also obtained. By the help of the new proposed inequalities, examples of Riemann-Liouville
and Caputo generalized proportional fractional initial value problems are presented to emphasize the
solution dependence on the initial data and on the right-hand side. It worth mentioning that the new
proposed derivative is well-behaved. Indeed, it has nonlocal character and satisfies the semigroup
or the so-called index property. Besides, the resulting inequalities converge to the classical ones
upon considering particular cases of the derivative. That is, our results not only extend the classical
inequalities but also generalize the existing ones for non-integer-order equations.

2. The GPF Derivatives and Integrals

We assemble in this section some fundamental preliminaries that are used throughout the
remaining part of the paper. For their justifications and proofs, the reader can consult the work
in [26].

In control theory, a proportional derivative controller (PDC) for controller output u at time f with
two tuning parameters has the algorithm

u(t) = xpE(t) + Kd%E(t),

where x is the proportional gain, x, is the derivative gain, and E is the input deviation or the error
between the state variable and the process variable. Recent investigations have shown that PDC has
direct incorporation in the control of complex networks models (see [27] for more details).

For p € [0,1], let the functions kg, k7 : [0,1] x R — [0, c0) be continuous such that for all t € R
we have

lim #1(p,t) =1, lim xo(p,t) =0, im x;(p,t) =0, lim xo(p,t) =1,
p—0t p—0F p—1- p—1-

and x1(p,t) #0, p € [0,1), xo(p,t) # 0, p € (0,1]. Then, Anderson et al. [28] defined the proportional
derivative of order p by

DFE(t) = r1(p, )E(t) +x0(p, ) (1) 1

provided that the right-hand side exists at t € R and ¢’ := %g’, . For the operator given in Equation (1),
K1 is a type of proportional gain «), kg is a type of derivative gain x4, ¢ is the error and u = DF( is the
controller output. The reader can consult the work in [29] for more details about the control theory
of the proportional derivative and its component functions. We only consider here the case when
x1(p,t) =1 —pand xo(p, t) = p. Therefore, Equation (1) becomes

DPE(t) = (1= p)&(t) +pg' (). b))
It is easy to find that lil’(I)l DPE(t) = ¢(t) and lir? DPE(t) = ¢&'(t). Thus, the derivative in
p—0F p—1"

Equation (2) is somehow more general than the conformable derivative, which certainly does not
converge to the original functions as p tends to 0.
In what follows, we define the generalized proportional fractional (GPF) integral and derivative:
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Definition 1 ([26]). For 0 < p <1, « € Cand Re(a) > 0, the GPF integral of ¢ of order o is

1

st [T e e = T (). @)

W) = s

Definition 2 ([26]). For0 < p <1,a € C, Re(a) > 0and n = [Re(a)] + 1. Then, the Riemann—Liouville
type GPF derivative of f of order a is

(DE)(H) = D IR (e) = D ) /te 7Dl ()t ©)

o T (n—a

Remark 1. If we let p = 1 in Definition 2, then one can obtain the left Riemann—Liouville fractional
derivative [12,14,15]. Moreover, it is obvious that

lim (D*¢)(t) = £(t) and Lm(D*E)(t) = (DPE)(H).

a—0

Proposition 1 ([26]). Let &, B € C be such that Re(x) > 0and Re(B) > 0. Then, for any 0 < p < 1, we have

() (10T (= a)F 1) (x) = 2 HEL "5 ¥ (x — @) +B1, Re(a) > 0.
() (aD""f’epﬂ;lt(tfu)/jfl)(x) = 7 (x —a)P~17%, Re(a) >0.

In the following lemmas, we expose some features of Riemann-Liouville type GPF operator.
The first result concerns with the index property of GPF which is of great significance.

Lemma 1 ([26]). If0 < p <1, Re(a) > 0and Re(B) > 0. For a continuous function ¢ defined on [a, o),
we have

AP (@O (1) =a 1P (I*E) (1) = (oI PP (1), (5)
The action of the operator ;D% on the integral operator is demonstrated in the following results.
Lemma 2 ([26]). Let0 < p <1, 0 < m < [Re(w)] + 1 and  be integrable in each interval [a,t],t > a. Then,
D™ (I FE) () = (aI*™PE)(8). (6)
Corollary 1 ([26]). Let 0 < p <1, 0 < Re(B) < Re(a) and m —1 < Re(B) < m. Then, we have
oDPP(IE) (1) = (a1 PPE) ().
Lemma 3 ([26]). Let f be integrable on t > a and Re[a] >0, 0 < p <1, n = [Re(w)] + 1. Then, we have
DY (I"PE) (1) = & ().

Lemma 4 ([26]). Let0 < p <1, Re(a) >0, n = [Re(a)] +1, & € Ly(a,b) and (,I*PE)(t) € AC"[a,b]. Then,

R GDE)(1) = 2(1) — 7§ (e a) =0

L DT tioy @

—.

The GPF derivative of Caputo type is defined as follows:
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Definition 3 ([26]). For0 < p <1,a € C, Re(w) > 0and n = [Re(«)] + 1. Then, the GPF derivative of
Caputo type of ¢ of order a is

o ool o o
(EDYD)0) = o™ DM = frmg gy [ €7 VD@ @

Proposition 2 ([26]). Let o, p € C be such that Re(x) > 0 and Re(B) > 0. Then, for any 0 < p < 1and
n = [Re(a)] + 1, we have

(ED T ¢ ) ) = g e Relp) >

-1
Fork=0,1,...,n — 1, we have (gD“’pe%t(t —a)f)(x) = 0.
Lemma 5 ([26]). Forp € (0,1], Re(x) > 0and n = [Re(x)] + 1. Then, we have

() v (D*E)(a)

P U a)t. ©)

AP(EDO) () = E(r) —e

3. Main Results

This section is devoted to provide our main results of this paper. We formulate new versions of
the Gronwall-Bellman inequality within GPF operators in Riemann-Liouville and Caputo settings.

3.1. Gronwall-Bellman Inequality via the GPF Derivative of Riemann—Liouville Type

Consider the following generalized proportional Riemann-Liouville fractional initial value problem

(D) (1) = f(Ly(H), 0<a<1, teab],

. —a (10)
Jim (aI'=y) () = y(a) = ya-
Applying the operator ,I* to both sides of Equation (10), we obtain
2 (t-a) a—1 a,0
y(t) =e v 7t —a)*y(a) +al*Pf(t y(1)), (11
In the following, we present a comparison result for the GPF integral operator.
Theorem 1. Let 17 and { be nonnegative continuous functions defined on [a, b] and satisfying
[ .
1(0) 2 e 7 (= a) () +aI £ (1 (1), (12)
and -
() <em (= a) g a) + I (1)), (13)

respectively. Suppose further that f satisfies a one-sided Lipschitz condition of the form

L

t,x)— f(Ly) < —= -
f( ) f( y) e%(”7t> [eppil(tiu)(tfu)l’(*l n (t;a)"‘ J,»]:I

(x—y), for x>y, L>0, (14

0—1
and f(t,y) is nondecreasing in'y. Then, (a) > {(a) and L < (1+ (tfu)a)r(m)pae_%(t—a) imply that
n(t) > {(t) forall t € [a,b].
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Proof. We start by setting

ne(t) = n(t) + s[e%(tﬁ)(t —a)* 14 % +1], for small e > 0, (15)
so that we have
ne(a) =n(a) +e>n(a) and ye(t) > y(t), t € [a,b]. (16)
It follows that
1 ot opo1
b5 (t-a) a1 1 b5 (t=s) a1
> o _ o _
wl) = T @) 4 g [T ) (o)
p—1 —a)®
Ee(t=a) p  Na—1 (t a)
+ s[eﬁ’ (t—a) +7IX +1]
or
() 2 TN @)+ g [T ) (s ()
= T T Ja &
1 top-1 _
- F(tx)pa/a e 7 (=) s, e(s))ds
1 Poedies -
Rl AR G R (RO

e t-a) -1, (E—0)
+ s{eﬁ (t—a)* "+ " +1].

Using the Lipschitz condition in Equation (14) and the relations in Equations (15) and (16),
we obtain

pp;l(t*”) ) a) — eL t _5)1gg
wlt) = T ) - i -9
Footg g _ —a)t
+ F(al)pa/u em (g 1f(s,;7€(s))ds+e{7(t - ) +1]

. t a—1q. _ (t—a)* o o *E(t+a> :
Since [, (t —s)* tds = “="—and L < (1+ (t_a),l)l”(a)p e v , we arrive at

) > TN 0+ [0 o oo

The remaining part of the proof can be completed by adopting the same steps followed in the proof
of Theorem 2.1 in [30,31] to get 17¢(t) > {(t), t € [a, b]. However, and since ¢ is arbitrary, we conclude
that#(t) > ((t), t € [a,b] holds true.

O

Remark 2. The Lipschitz condition in Equation (14) can be relaxed by relaxing the upper bound for the
constant L.

For our purpose, we replace f(t,y(t)) in Equation (11) by x(¢)y(t) where |x(t)| < 1, t € [a,]].
Define the following operator
Qup = %P x(t)g(t). 17)

The following results are important in the proof of the main theorem. We only state these lemmas
as their proofs are straightforward.
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Lemma 6. For any constant A, one has
= =
|Qpe 7 (¢ “)(tfa)“’1| <Qpe? (=) (p _ gya1, (18)
Lemma 7. For any constant A, one has

w BN a) a1y AM(E= @)D IT () ooty
[Qfe (t—a)* 1| = ST (15 1)) er , n=0,12---. (19)

Lemma 8. Let A > 0 be such that |y(t)| < A for t € [a,b]. Then,
-1 -1
Qe T —a) | < Qe (=0T, n=0,12,-. (20)

Theorems 1 and 2 together give us the desired proportional Riemann-Liouville fractional
Gronwall-Bellman-type inequality.

Theorem 2. Let y be a nonnegative function on [a, b]. Then, the GPF integral equation

y(t) = I a)* Yy(a) + J%x(t)y(t), t€ [ab], 1)
has a solution
©0 -1
y(t) = y(a) Y- Qe (- ayet, (22)
k=0

Proof. The proof is accomplished by applying the successive approximation method. Set

wolt) = 7 0t — a3 y(a)

and

We observe that

\
Q
|
T
A
—~
™

—a)* "ty (a) + aI*Px(t)yo(t)
= y(a)QgeT(F”)(t —a)* 4 y(a)Q,lcepTil(‘L@ (t—a)*7 1,

va(t)

It follows inductively that

yalt) = y(a) Y 0keT 00— a1, >0, 23)
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Formally, taking the limit as 7 — oo to obtain
y(0) = y(a) Y ke T (- (24)
k=0

We use Lemmas 6-8, the comparison test and the d’Alembert ratio test to show the absolute
convergence of the series in Equation (24). Indeed, the infinite series

) a)(n+1)ac 1r( ) E(FM
L e e

is convergent for all t € [4,b] and forall 0 < A,p < 1. Let a, be defined as

n n+1)a—1 —
A(t —a)(ntD) rm)%qu

a, = oRT((n 4 1)a) e (25)
Then, we have
po faa| A=t | T((nt 1)
n—oo | a, o* n—sco F((n+2)0¢) '

Next, we use Stirling approximation formula for the Gamma function xI'(x) ~ /27x (%)x, where
x is large enough. It is a straightforward computation using this formula to show that

xT (x) 1

Iim —~2— =1 and lim x _1
x—00 /D77y (%)x B x—o\x+1/) e

which are all we need. Hence, we have

lim, (n+1)ar((n+1)“&+l>a =1 and lim {n 3 2)al({ +2)a<l+z>a =1
27t(n+ 1) ((Hel)a) 27i(n +2)a << t'm)

Thus,

lim M _ /\(t*a) ((1’Z+1) )

oo | a, o~ 71*)00 I'((n+2)a

At—u n+2 n+1 u n+1\"™ 1\
= lim
n—oo n+2 IX n+2 n+2

Hence, convergence is guaranteed. Besides, one can easily show that Equation (22) solves
Equation (21). O

Remark 3. Note that Equation (22) solves the inequality
20 <7 =) @) + IO, L [, 26)
where { and y are nonnegative real valued functions such that 0 < y(t) < A < 1.

Now, we are in a position to state the main theorem, which is a new version of the Gronwall-Bellman
inequality within the generalized proportional fractional Riemann-Liouville settings.
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Corollary 2. Let  and y be nonnegative real valued functions such that 0 < y(t) < A < 1and

(1) <7 Ot — )1 (a) + TPy (E), € [ab]. 27)
Then,
2(t) < Z(a) Y Oke's (¢t — g1, (28)
k=0

The proof of the corollary is a straightforward implementation of Theorems 1 and 2. Indeed, it is

0 -1
immediately obtained by setting #(t) = {(a) } Q];EPT(F@ (t—a)* L.
k=0

3.2. Gronwall-Bellman Inequality via the GPF Derivative of Caputo Type

Consider the following generalized proportional Caputo fractional initial value problem

(ED™y)(1) = f(ty(1), 0<a<1, te[ab],
29)
y(a) = Ya-
Applying the operator ,I** to both sides of Equation (29), we obtain
_ E(t*“) w,0
y(t) = e 7 Tyla) +a I f(Ly(h), (30)

The results of this subsection resemble the ones proved in Section 3.1. To avoid redundancy,
therefore, we skip some steps of the proofs. We start by the following comparison result for the
generalized proportional Caputo fractional integral operator.

Theorem 3. Let 17 and { be nonnegative continuous functions defined on [a, b] and satisfy

0(6) > 7 U y(a) + 10 £ (8 (1), (31)

and
—1
o) < e g (@) + a1, D), (32)
respectively. Suppose further that f satisfies one-sided Lipschitz condition of the form

fltx) = fby) < - (x=y), for x>y, L>0, (33)
e

(t=a)"
«

221 (t—a)

and f(t,y) is nondecreasing in y. Then, 17(a) > {(a) and L < T(a)p%e” 7 imply that 1(t) > {(t) for
all t € [a, b].

E(t=a) ()

The proof of the above theorem can be completed by setting #:(t) = #(t) +¢ |e + =1

for small & > 0, and following similar steps as the proof of Theorem 1.
In the sequel, we replace f (¢, y(t)) in Equation (30) by x(¢)y(t), where |x(t)| < 1, t € [a, b]. Define
the following operator
e = al*Px (1) (H)- (34)

In similar manner, the following lemmas are formulated for Caputo type operator.
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Lemma 9. For any constant A, one has

p=1
|¢‘)\€ P | < QJWe e (f a). (35)
Lemma 10. For any constant A, one has

n _ ne
APt =)™ edt—a)

|©ne%<t*u) | —
A " T (ne +1)

. n=012--. (36)
Lemma 11. Let A > 0 be such that |y(t)| < A for t € [a,b]. Then,

1 -1
nepT(t*”” _ @XEPT(F‘O’ n=20,1,2---. (37)

Theorem 4. Let y be a nonnegative function on [a,b]. Then, the generalized proportional fractional
integral equation

0—1
y(t) = 7 Vy(a) + IO x(t)y(t), t€ [a,b], (38)
has a solution
00 -1
(a) Y @ke'7 (179, (39)

Proof. We employ the successive approximation method to complete the proof. Set

w() = 70

y(a)
v = €T y(a) 4 Py, (), 1> 1.
We observe that

01 (t—q)

0—1
yit) = y@dle T ) 4 y@)dle T
and

1 (t-a) a,p
7y (a) 4 ar (O (1)
H(@)@les )+ y(@@leT Y 1 y(a)ades .

ya(t)

n -1
It follows inductively that v, (t) = y(a) } ¢§3%<t7a). Taking the limit as 7 — oo to obtain
k=0

0—1
Zcbk’ (t=) (40)

Following the same arguments as in the proof of Theorem 2, we use Lemmas 9-11, the comparison
test and the d’Alembert ratio test to show the absolute convergence of the series in Equation (40).
Moreover, it is clear to verify that Equation (39) solves Equation (38). The proof is finished. [

Remark 4. Note that Equation (39) solves the inequality

-1

2 <™ Tg(a) +aI0g()y(t), 1€ lab] (41)
where  and y are nonnegative functions on [a,b] such that 0 < y(t) <A < 1.

The Gronwall-Bellman inequality in generalized proportional Caputo fractional is stated as follows.
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Corollary 3. Let  and y be nonnegative real valued functions such that 0 < y(t) < A < 1and

ot <o V(@) + IR0y (), € (b, (2)
Then,
o) < Zla) Y ke 0, 43)
k=0

o -1
To prove Equation (43), we set 77(t) = {(a) ) CI>§ep7(t7u) and the rest follows as a direct application
k=0
of Theorems 3 and 4.

4. Gronwall-Bellman Inequality via Weighted Function

In this section, we extend the results obtained in Section 3 to the case of weighted function.
The analysis can be carried out for the Riemann-Liouville and Caputo operators. However, we only
present the results for the case of Riemann-Liouville proportional fractional operator. Unlike previous
relevant results in the literature [32], the weighted function w in the following first two theorems
requires no monotonic restriction.

Theorem 5. Let 17, {, w be nonnegative continuous functions on [a, b] where n and { satisfy

n() > 7 0 (1 = a) Ty (a) + (DI F (1 (1)), (44)

and
p—1

20 <em (= 0y g (a) + w(Bal P £ (1, L)), (45)
respectively. Suppose further that f satisfies one-sided Lipschitz condition of the form
L
7 D[ ) (¢ g)a-1 4 gp() B 4 1]

14

fltx) = fty) <

(x—y), for x>y, L>0, (46)

&

and f(t,y) is nondecreasing in y. Then, n(a) > {(a) and L < (1+ Ol

-1
o )F(oc)p"‘eJT(t*”) imply that
n(t) > () forall t € [a,b].

1 (t—a) (t—a)®

o

To prove the above theorem, we set 1¢(t) = 77(t) + ¢[e +w(t) +1], for small e > 0, and

follow similar steps as the proof of Theorem 1.

Remark 5. The Lipschitz condition in Equation (46) can be relaxed by relaxing the upper bound for the
constant L.

Theorem 6. Let x,y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that |x(t)| < 1 fort € [a,b] and m[ai] w(t) = M. Then, the generalized proportional
tefa,

fractional integral equation

y(t) = ST 2)* Yy(a) + w(t) I x(t)y(t), tE€ [a,b], (47)
has a solution
y(t) = y(@) 00T I (- )t y(@(t) ¥ M0k T 70— g)e, (48)
k=1
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Remark 6. Note that Equation (48) solves the inequality

2t < e D — @) 1Z (a) + w(D)a L (1)y(H), tE [a,b], (49)

where {,y are nonnegative functions on [a, b] and w is a nonnegative continuous function defined on [a, b] and
0<y(t) <A <1land max w(t) = M.
telab)

The Gronwall-Bellman inequality in case of weighted function w is stated as follows.

Theorem 7. Let {,y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a,b]. Further, assume that 0 < y(t) < A < 1for t € [a, b] and m[a>h<] w(t) = M and
tela,

2(1) < €7 U0 (6= )1 (@) + w(t)a P (B)y(E), tE [ab]. (50)
Then,
2(6) < L)% T D (¢ — a1 g(a)w(r) Y MRS (1 — ), (51)
k=1

If the weighted function w possesses a monotonic behavior, then Theorem 6 and Theorem 7 can
be reformulated, respectively, in the following forms.

Theorem 8. Let y, x be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that |x(t)| < 1 for t € [a, b] and w is a nondecreasing function. Then, the generalized
proportional fractional integral equation

y(t) = ST )"y (a) + w(t) [P x(t)y(t), tE€ [a,b], (52)

has a solution .
y(t) = y(a) ¥ wk () Qke's 1= (1 — ), (53)

k=0

Theorem 9. Let {,y be nonnegative functions on [a,b] and w be a nonnegative continuous function defined on
[a,b]. Assume that 0 < y(t) < A < 1for t € [a,b] and w is a nondecreasing function and

2(t) < o7 (1 — )1 (@) + (DI (y(t), ¢ [ab]. (54)
Then,
2(t) < Z(a) Y wk(B)0kes 70t — )L, (55)
k=0

5. Applications

In this section, two examples of Riemann-Liouville and Caputo generalized proportional
fractional initial value problems are presented. By the help of the new proposed Gronwall-Bellman
inequalities in Theorems 2 and 3, we show that the solution of the initial value problems depend on
the initial data and on the right-hand side.

Consider the proportional Riemann-Liouville fractional initial value problem in Equation (10). In

the remaining part of this section, we assume that the nonlinearity function f(t,y) satisfies a Lipschitz
condition with a constant L € [0,1) for all (,y).
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Example 1. Consider the following Riemann—Liouville proportional fractional initial value problems of the form
D*B)(E) = f(LB(1)),  Jim (I'*B)(5) = pa) = o, O<n<Ltelabl, (6
a

and
WD(E) = Ft (1), lim (I *9)(H) = y(@) =10, 0<a<litclabl.  67)

We claim that a small change in the initial condition implies a small change in the solution.

Proof. Applying the generalized proportional fractional integral operator in Equations (56) and (57),
we have

Bty = o7 V(=) By 4 I (L B(E)),

and

Y1) = €T (= a) g+ I AL ().

It follows that

1

B — (1) = ¢ T (1 )" (Bo — 70) + TP [F(1, B(D) — F(t, (D).
Taking the absolute value, we obtain

700 (6= )5 By — x| + a I £(1, B(H) — £t 7(D)]

B -] < oF
p%(t%)(t —a)* Y Bo — ol + LaI*P|B(t) — (1))

IN
<

< e
By employing Theorem 2, we get

[Bo — 70 ZQLE 2 (- a)r !

B Lk t,u)(kJrl a— 1r(“) E(t,u)
ﬁo_’)/o'z kal—v k+1)) er .

1B(t) = (1)

IN

Consider the initial value problem
(aD*Pv)(t) = f(t,v(t)), O<a<1, teab

lim (,I'"*Pv)(t) = v(a) = Bu,

t—at

(58)

where B, — Bo. If the solution of Equation (58) is denoted by vy, then, for all t € [a, ], we have

) Lk t_a)(k+1)oc 11"( ) Pp;l(tfﬂl

B) = )] < Ipo = ol X 5 e e

Hence, |B(t) — v, (t)| — 0 when B,, — Bo as n — co. We conclude that a small change in the initial
condition implies a small change in the solution. [

Example 2. Consider the following Caputo generalized proportional fractional initial value problems of the form

(ED™B)(t) = f(t,B(t)), Bla)=Po, a€(0,1], telab]. (59)
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and
(D™ a)(t) = f(t,o(t) + g(t,0(t)), o(a) =00, a€(0,1], tE [abl. (60)

We claim that the solution of Equation (60) depends continuously on the right-hand side of Equation (60) if
[
lg(t,o)| < Ke? ¢ “)far all t € [a, b] and for a positive number K.

Proof. If the solution of Equation (60) is denoted by ¢, then, for all t € [a,b], we have

1B(t) — o(t)] < &7 D By — o] + IV |F (1, (1)) — F(E,0(D)] + I3 (t,0(8))]

—1
< o7 By — g+ LaT™|B(E) — o (1) + 1|3 (t,0(1)].

By the assumption, we have

1 —1
1B() — o(B)] < "7 By — o] + L aI%|B(t) — o(t)| + (I*PKe T )

-1
<er 70 (\50 — ool + %) + LI (us(t) —o(t) + %JT“*”)) :
K e1(—q) . .
Letr(t) = |B(t) —o(t)]| + e’ . Then, if we apply Theorem 3, we obtain

K\ & Pl
r(t) < <“30 —U’ol + 7) Zq)lie 0 (t ﬂ),
L k=0

or

K) o Lk(t,a)(kﬂq)ﬂ*l %(tfa)

) o1 < (1800l + 7 ) & e e,

e (t-a)

Fora <t < b, letting Ke < ¢ implies that

A

‘.B(t)_a(t)‘ = ‘,50_0‘0|k;0 ka“F((k+1)Dé)5+ kgo pk"‘r((k+1)¢x) -

o Lkpk+1)a—1 1 [ prpletl)a—1
1) — 0 —— + — —— 1|y =¢,
{'ﬁo O‘E)kawr((kﬂ)a) L Lg o T((k+1)a) ”

oo Lk(tia)(kJrl)a—l 5 {oo Lk(tiu)(kJrl)a—l }
L

IN

which implies that a small change on the right-hand side of Equation (59) implies a small change in
its solution. [

6. Conclusions

One of the most crucial issues in the theory of differential equations is to study qualitative
properties for solutions of these equations. Integral inequalities are significant instruments
that facilitate exploring such properties. In this paper, we accommodate a newly defined
generalized proportional fractional (GPF) derivative to establish new versions for the well-known
Gronwall-Bellman inequality. We prove our results in the frame of GPF operators within the
Riemann-Liouville and Caputo settings. The main results are also extended to the weighted function
case. One can easily figure out that the current results generalize the ones previously obtained in
the literature. Indeed, the case p = 1 covers the results of classical Riemann-Liouville and Caputo
fractional derivatives. As an application, we provide two efficient examples that demonstrate the
solution dependence on the initial data and on the right-hand side of the initial value problems.
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The results of this paper have strong potential to be used for establishing new substantial investigations
in the future for equations involving the GPF operators.
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Abstract: We introduce the concept of interval (hy, h)-convex functions. Under the new concept,
we establish some new interval Hermite-Hadamard type inequalities, which generalize those in the
literature. Also, we give some interesting examples.
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1. Introduction

Interval analysis was introduced in numerical analysis by Moore in the celebrated book [1].
Over the past 50 years, it has attracted considerable interest and has been applied in various fields,
such as interval differential equations [2], aeroelasticity [3], aerodynamic load analysis [4], and so on.
For more profound results and applications, see [5-9].

It is known that inequalities play an important role in almost all branches of mathematics as
well as in other areas of science. Among the many types of inequalities, those carrying the names of
Jensen, Hermite-Hadamard, Hardy, Ostrowski, Minkowski and Opial et al. have a deep significance
and have made a great impact in substantial fields of research. Recently, some of these inequalities
have been extended to interval-valued functions by Chalco-Cano et al.; see, e.g., [10-16]. Surprisingly
enough, interval Hermite-Hadamard type inequalities has perhaps not received enough attention [17].
For convenience, we recall the classical Hermite-Hadamard inequality. Let f be convex, then

f(u+v> <! /:]f(t)dtgw‘

2 T v—u

This inequality has been developed for different classes of convexity [18-26]. Especially, since the
h-convex concept was proposed by Varosanec in 2007 [27], a number of authors have already studied
more refined Hermite-Hadamard inequalities involving h-convex functions [28-33].

In 2018, Awan et al. introduced (1, hy)-convex functions and proved the following inequality [34]:

Theorem 1. Let f : [u,v] — R If f is (I, ha)-convex, and hy (3)ha(3) # 0. Then

1 u+v 1 v 1
(7)< 5= [ £ < [0+ 7)) [Tl - xax

Motivated by Awan et al., our main objective is to generalize the results above by constructing
interval Hermite-Hadamard type inequalities for (hy, h)-convex functions. Also, we present some
examples to illustrate our theorems. Our results generalize some known inequalities presented
in [17,32,34,35]. Furthermore, the present results can be considered as tools for further research
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in interval convex analysis, interval nonlinear programming, inequalities for fuzzy-interval-valued
functions, among others.

We give preliminaries in Section 2. In Section 3, we introduce interval (/7,1 )-convex concept,
and obtain some interval Hermite-Hadamard type inequalities. Moreover, some interesting examples
are given. In Section 4, we give conclusions and future work.

2. Preliminaries

For the basic notations and definitions on interval analysis, see [17]. The family of all intervals
and positive intervals of R are denoted by Rz and RF, respectively. For interval [u,%] and [v, 7],
the Hausdorff distance is defined by

d([u,7), [0,7]) = max {|u o, [7—7]}.

Then, (Rz,d) is complete.
A set of numbers {t;_1,;, t;}/, is said to be a tagged partition P of [u, v] if

u=ty<th <---<ty=v0v

andift; 1 < ¢; <tjforalli =1,2,...,m. Moreover, if we let At; = t; — t;_1, then the partition is
called J-fine if At; < § for each i. We denote by P (4, [i,v]) the family of all §-fine partitions of [u, v].
Given P € P (6, [u,v]), we define a integral sum of f : [u,v] — Ry as follows:

S(f, P, 5, u,0]) = if(«:,-)(ti ).

Definition 1. Let f : [u,0] — Ry. f is called IR-integrable on [u,v] with IR-integral A = (IR) [ f(t)dt,
if there exists an A € Ry such that for any € > 0 there exists a 6 > 0 such that

d(S(f,P,6,[u,0]),A) <e

oreach P € P(6,[u,v]). Let TR denote the set of all 1R-integrable functions on [u,v].
(I 8

u,0])
Definition 2. Let hy,hy : [0,1] € ] — R such that hy, hy # 0 (Awan et al. [34]). f : ] — R" is called
(hy, hp)-convex, or that f € SX((hy,h2),],R), if for any s, t € J and x € (0,1) one has

flas+ (1 —x)t) < hi(x)ha (1 —x)f(s) +h1 (1 — x)ha(x) f (). ¢))

Remark 1. If hy = 1, then Definition 2 reduces to h-convex in [27].
If hy = hy =1, then Definition 2 reduces to P-function in [18].
If hy(t) = t°, hy = 1, then Definition 2 reduces to s-convex in [36].

We end this section of preliminaries by introducing the new concept of interval (hy, hy)-convexity.

”

This idea is inspired by Costa [12]. Note that for interval [u, 7] and [v,7], the inclusion “ C ” is
defined by
(wu] Cu0 <= v<u u<u

Definition 3. Let hy,hy : [0,1] € J — RY such that hy,hy # 0. f : ] — R}r is called interval
(hy, hp)-convex, if forall s, t € ] and x € (0,1) one has

Iy (x)ha(1 —x) f(s) + (1 — x)ha(x) f(t) C fxs+ (1 —x)t). )

The set of all interval (hy, hy)-convex function is denoted by SX((h1,h2), |, R¥).
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3. Interval Hermite-Hadamard Type Inequality
In what follows, let H(x,y) = hy1(x)hy(y) for x,y € [0,1].

Theorem 2. Let f : [u,0] — RF, I, hp : [0,1] — R* and H(3, %) # 0. If f € SX((l, o), [u, 0], R¥)
Ill’ldf S IR([u,v])/ then

sy (57) 2 ot [ S0 e+ 5@ [ He1 - a o
Proof. By hypothesis, we have
H(%,%)f(xu—i—(l—x)v)+H(%,%>f((l—x)u+xv) gf(”;”’).
Then
/0-1i(xu+(lfx)v)dx+/()l£((1fx)u+xv)dx > H(ll 5 /Oli(u-é-v)dx,
22
/Olf(xu—&- (1 —x)v)dx-i—/olf((l—x)u—&-xv)dx < H(%l,%) /0117<M;U)dx
It follows that
2 v 1 1 ru 1 u
vfu/u Dt 2 H(%,%)/o i(L —Zi_v)dx: H(%,%)i( —2H)>’
2 v_ 1 1_,y4o 1 —/u+v
v—uJy f(Bdt < H(%,%)/o f( J2r )dx: H(%/%)f( JZF )
This implies
H(%l,%) ()T 2 2l [ s [T
Thus,

2H(%,%)f<M42rU> 2 viu /uvf(i)dt.

In the same way as above, we have

L s 2 [+ £@) [ G - o

U—UuJu

and the result follows. [

Remark 2. If H(x,y) = hy(x), then Theorem 2 reduces to ([17], Theorem 4.1).
If i (x) = x°, hy = 1, then Theorem 2 reduces to ([37], Theorem 4).
If hy = hy = 1, then inequality (3) in Theorem 2 reduces to inequality for P-function.

If /j = f, then Theorem 2 reduces to ([34], Theorem 1). Furthermore, If hy = 1, then we get ([32],
Theorem 6).
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Example 1. Suppose that hy(x) = x, hy(x) = 1 for x € [0,1], [w,0] = [-1,1], and f : [u,0] — RF be
defined by f(t) = [t?,4 —e']. Then
1 u+o
/() =fo =03
2H<§, 7)

viu/uvf(t)dt: %[/711 tzdt,_/711(6fet)dt] = {%,47 672671],

1

[f(u) + f(0)] /O H(x,1— x)dx = [1,4 ¢ +2371].

Then, we obtain that

[0.3] 2 {%’47 e_zeil] 2 [%’47 e+2e71]‘

Consequently, Theorem 2 is verified.

The next result generalizes Theorem 3.1 of [35] and Theorem 4.3 of [17].

Theorem 3. Let f : [u,0] — RY, by, hy 1 [0,1] — RT and H<2,2> # 0. If f € SX((h1, ha), [u,v), R¥)
Ilﬂdf (S IR([u,v])/ then

Mzé,;)f(“;”) om2 ot [

2 ;2 [f0) + @) [3 +H(33)] [ HG -

where

Ay = 4H(l%, ) U(Bu;rv) +f(u+430>},

Proof. For [u, £%], one has

(3 -057) (s )

gf(xu+(12*x)wzrv n (1*X)L;+x“+”> :f(3u+v).

Consequently, we get

3u+0v 1 e
B .
)25= [ s

In the same way as above, for [“52,v], we have

1 u+3v
4H(%,%)f( )2 Mf()
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Hence,

M= 4H(1l 5 [f(wfv) +f(”ZBU)] 2 Uiu /:f(t)dt-

272

Thanks to Theorem 2, one has
1 u+v
(5)

1 3u4+v 1 u+3v
T ulm Zf(i' 4 2 4 )

i () ()1 ()]

RRICCEENN
2N
1 v
2o, | f(t)dt
o 2 [F) + 5@ +2£(“10)] [ EG1 - e
=Ny

> [PHIO) (1) )+ 510 [ Gt -

> () +£@)] [3 +H(3 2] [ H1 - e
and the result follows. [

Example 2. Furthermore, by Example 1, we have

t =5l (- ) Q)] = -5
_1

s= (- o) - [ )

[f(u) + £(0)] [% + H(%%)} '/01 H(x,1—x)dx = [1,4— e+2671]_
Then, we obtain that
[0,3] D [%,47¥] ) [%’47 e—ze’l] 5 {%,;7 e+e’1] 5 [1’47 e+ze*l}

Consequently, Theorem 3 is verified.

Similarly, we get the following result, which generalizes Theorem 3 of [34] and Theorem 4.5
of [17].

Theorem4. Let f,g: [u,0] = RS, hy,hy 0 [0,1] = RYand H(}, 1) # 0. If f, g € SX((h1,h2), [u, 0], RF)
and fg € IR (o)), then

u,0])

1
v—u

/vf(t)g(t)dt > M(u,0) /0'1 H2(x,1— x)dx + N(u,0) /; H(x,x)H(1 - x,1 - x)dx,
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where

M(u,0) = f()g() + f(0)g(2), N(1,0) = f(u)g(0) + f(0)g ().
Example 3. Suppose that hy(x) = x, hp(x) =1, [u,0] = [0,1] and
f(t) =[A4—e",g(t) = [1,3— £].

Then

A S )
M(u,v)/Ole (x,1—x)dx = (0,1)/ x2dx = E’l?,z*%}
[

N(u,v)/olH(x,x)H(l—x,l—x)dx:N(O,l)/olxzdxf 0, 3——]

It follows that

Consequently, Theorem 4 is verified.
The next result generalizes Theorem 2 of [34] and Theorem 4.6 of [17].

Theorem 5. Let f,g : [u,0] — Rf, hi,ha : [0,1] — RY, and H(3,1) # 0. If fg €
SX((h1,h2), [u,0], R ) and fg € IR jy ), then

1 u+v u+v 1
ZHZ(%,%)f( > *v—u/ f(t) dt+Nuv)/ H%(x,1— x)dx
+ M(u, v)/o H(x,x)H(1—x,1— x)dx.
Proof. By hypothesis, one has
u+ov\ (u+v
F(557):(557)
2 HZ(E %) {f(xu + (1= x)o)g(xu+ (1 - x)0), flxu+ (1 —x)o)g(xu + (1 — x)v)}

+H2(§,%) [+ (1= x)0)g(1 — )+ x0), Floxu + (1~ x)0)g((1 ~ )u + 30|
+H2(%%) (£~ x)u -+ x0)g(x + (1~ x)0), F(1 — x)u -+ xo)g(xu + (1 - x)o)
+H2(%%) (£~ x)u+ x0)g((1 — x)u+x0), F(1 ~ x)u -+ x0)g((1 — x)u +x0)]
2H2<%%) [FOu+ (1= o)+ (1= x)o) + £((1 — x)u+ x0)g(1 — x)u +x0)]
+ 2 (3,3) [(HGo 1 = 0 0) + H(L = x,2)f(0) (H1 - % 0)g(w) + H(x 1~ 0)3(0))

+ (H(l —x,x)f(u) + H(x, 1—x)f(v)) <H(x,1 —x)g(u) +H(1 —x,x)g(v))]

= Hz(% %) {f(xu + (1 —x)v)g(xu+ (1 —x)v) + f((1—x)u+x0)g((1—x)u+ xv)]
+2H2<% %) {H(x,x)H(l —x,1—x)M(u,v) + H*(x,1 — x)N(u, v)]
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Integrating over [0, 1], and the result follows. [I

Example 4. Furthermore, by Example 3, we get
ety PR () - -
1

. 1
H2(x,1— x)dx = N(0,1) /O Pdx = (0,6,

M(u,v) [ H(x,x)H(1—x,1—x)dx = M(0,1) /Ol(x —x%)dx = [1 17 e]

6’6 31
It follows that

22 oo«

: . 117 e} [1 35 26}:[3123 10]

&6 3 lr3
Consequently, Theorem 5 is verified.

4. Conclusions

We introduced interval (hy, hy)-convex and presented some new interval Hermite-Hadamard
type inequalities. Our results generalize some known Hermite-Hadamard type inequalities and will
be useful in developing the theory of interval differential (or integral) inequalities and interval convex
analysis. As a future research direction, we intend to investigate inequalities for fuzzy-interval-valued
functions, and some applications in interval nonlinear programming.
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1. Introduction

Let I be an interval in R. A function f : I — R is said to be convex on I if

fltx+ (1 =ty) <tf(x)+ (1 -1)f(y)

forall x,y € I and t € [0,1]. The following inequalities which hold for convex functions is known in
the literature as the Hermite-Hadamard type inequality.

Theorem 1 ([1]). If f : [a,b] — R is convex on [a, b] with a < b, then

I3 2t s 10

Many authors have studied and generalized the Hermite-Hadamard inequality in several ways
via different classes of convex functions. For some recent results related to the Hermite-Hadamard
inequality, we refer the interested reader to the papers [2-11].

In 2016, Gordji et al. [12] introduced the concept of 17-convexity as follows:

Definition 1 ([12]). A function f : I — R is said to be 17-convex with respect to the bifunction 17 : R x R —

R if
flbx+ (1= 1y) < () + (FQ), f¥)

forallx,y € Land t € [0,1].
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Mathematics 2019, 7, 183

Remark 1. If we take 1(x,y) = x —y in Definition 1, then we recover the classical definition of
convex functions.

In 2017, Awan et al. [13] extended the class of #7-convex functions to the class of strongly 7-convex
functions as follows:

Definition 2 ([13]). A function f : I — R is said to be strongly 1j-convex with respect to the bifunction
7 : R xR — Rwith modulus y > 0 if

fltx+ (1= t)y) < f(y) +t1(f(x), f(y)) —ut(1 =) (x —y)?
forallx,y € ILand t € [0,1].
Remark 2. If17(x,y) = x — y in Definition 2, then we have the class of strongly convex functions.

For some recent results related to the class of 7-convex functions, we refer the interested reader to
the papers [8,12-16].

Definition 3 ([17]). The left- and right-sided Riemann—Liouville fractional integrals of order « > 0 of f are
defined by

e f ) = iy L =t 0
and

of@) = i [ =0 e

a) Jx
witha < x < band T'(-) is the gamma function given by
I'(x) ::/ #le7tdt, Re(x) >0
0
with the property that T (x + 1) = xT'(x) .

Definition 4 ([18]). The left- and right-sided Hadamard fractional integrals of order o > 0 of f are defined by

HE, F(x) = rl /: (in E)“‘l O 4

() t t

and

H ) = s [ (m%)““ 10,

Definition 5. X (a,b) (c € R, 1 < p < o0) denotes the space of all complex-valued Lebesgue measurable
functions f for which || f||y» < oo, where the norm || - || is defined by

1/p
I = (/. ' Eror) T a<p<w)
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and for p = o

[ fllxe = ess Suphlt“f(f)l-

a<t<

In 2011, Katugampola [19] introduced a new fractional integral operator which generalizes the
Riemann-Liouville and Hadamard fractional integrals as follows:

Definition 6. Let [a,b] C R bea finite interval. Then, the left- and right-sided Katugampola fractional integrals
of order a > 0 of f € XF (a,b) are defined by

ora plflx x tpfl
Ly f(x) = m/ﬂ Wf(f)dt
and
plfa b tﬂ’l
o v / _ -
Ibff(x) . r(a) /x (tp _ xp)lfaf(t)dt
witha < x < band p > 0, if the integrals exist.

Remark 3. It is shown in [19] that the Katugampola fractional integral operators are well-defined on X (a, b).

Theorem 2 ([19]). Let « > 0 and p > 0. Then for x > a

1. ngg}"lzuf(X) = Jarf(x),
2. lim P f(x) = Hp f(x).

p—0+t

Similar results also hold for right-sided operators.

For more information about the Katugampola fractional integrals and related results, we refer
the interested reader to the papers [19-21]. Recently, Chen and Katugampola [20] introduced several
integral inequalities of Hermite—-Hadamard type for functions whose first derivatives in absolute value
are convex functions via the Katugampola fractional integrals. We present two of their results here for
the purpose of our discussion. The first result of importance to us employs the following lemma.

Lemma 1 ([20]). Let &« > 0, p > O and f : [a°,b°] — R be a differentiable mapping on (a®,bf) with
0 < a < b. Then the following equality holds if the fractional integrals exist:

a—1
f(u");pf(bp) o _rj,f)l [Prf(0) + 1 f(ar)]

P —qgf 1
= bT“/ G [f’((l — t0)af + bR — f'(t0af + (1 — tP)bp)}dt. )
0
By using Lemma 1, the authors proved the following result.

Theorem 3 ([20]). Let f : [a,b°] — R be a differentiable mapping on (aP,bP) with 0 < a < b. If |f'| is
convex on [af, bP), then the following inequality holds:

I 2D o s +8 )] < o s [/ + 1 @]

The second result of importance to us also uses the following lemma.
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Lemma 2 ([20]). Let « > 0, p > O and f : [a?,bP] — R be a differentiable mapping on (af,bP) with
0 < a < b. Then the following equality holds if the fractional integrals exist:

f(a") _;f(bp) _ 52‘;(0;';1)) [P[Dé+f(hﬂ) +PIY f(a )]

_ b /;[(1 — 1) — )L (1000 4 (1 — 10)bP)dE. )

By using Lemma 2, the authors proved the following result.

Theorem 4 ([20]). Let f : [a?,b°] — R be a differentiable mapping on (aP,bP) with 0 < a < b. If |f'| is
convex on [aP, bP], then the following inequality holds:

f(aﬁ) ';f(bp) _ 52;;(0:';01)) {PI&Jrf(bP) +P1a f( )] ‘

bP — af

<t (1= ) @+ 1r o).

Remark 4. It is important to note that Lemmas 1 and 2 are corrected versions of [20] (Lemma 2.4 and
Equation (14)).

Our purpose in this paper is to provide some new estimates for the right hand side of the
inequalities in Theorems 3 and 4 for functions whose second derivatives in absolute value at some
powers are strongly #7-convex.

2. Main Results
To prove the main results of this paper, we need the following lemmas which are extensions of

Lemmas 1 and 2 for the second derivative case of the function f.

Lemma3. Leta > 0,p > Oand f : [aP,b°] — R be a twice differentiable mapping on (a,b?) with0 < a < b.
Then the following equality holds if the fractional integrals exist:

a—1 a
N = LN )
- i)) P LK CEO RN
7/01 p(at2) 1f//(tpap+( )bP)dt} ®)
Proof. Let
11:/01 [1— 0@ D] =1 ((1 = t0)a + 1000 )t
and

1
I = /O 2= (0P 4 (1 — 9)bP)dt.
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By using integration by parts we have that

1
L= / {1 - tP<“+1>] #LE (1 — t0)aP + t0b0 )t
0

1 1

= W[l — tp(lx+1)]f/((1 _ )a + 101°)

1
+ %/ D=1 (1 — 10)aP + tPBP)dt

_7¥/ “+1 p(a+1)—1 0\ 0 010
- p(bp,ap)f(” [C=ra) /t F(1—t)a + t°bP)dt. @)

0

By a similar argument, one gets:

___ 1 1(af (a+1) / plat1)=1 ¢/ (1o 10 _ 0P
L= p(bP—aP)f(a)+(bP—aP t f/(tPaf + (1 — t°)bF)dt. (5)
Using (4) and (5), we have
(v +1)
_ plat+1)— — g + PP £ aP — \pP
L—-I= beaP)/t (1= t0)al + t°bP) — ' (tPaf + (1 — )b )]dt. ©)

The desired identity in (3) follows from (6) by using (1) and rearranging the terms. I

Lemmad4. Leta > 0,p > Oand f : [aP,b°] — R be a twice differentiable mapping on (a, b?) with0 < a < b.
Then the following equality holds if the fractional integrals exist:

f(“p) ;f(bp) _ 5:;;(012;)) {P]ﬂJrf(bP) _|_P1a f( )]

P — P
= 127(“ J:ll / 1- lx+1 ot (a+1)}tﬂflf//(tpap + (1 —t)bP)dt. @)

Proof. We start by considering the following computation which is a direct application of integration
by parts.

/ [1— (1= #0)8+ L — D)=L /(00 4 (1 — 190
- 700191* ) [1— (1 —t#)s — @D (100 4 (1 — 19)bP) :
a’;‘j;p / [(1— t0)% — 8]0 =1 £/ (10aP 4 (1 — t9)bP)dt
b’:f el ;p / (1 — L (1000 4 (1 — 1))t ®)

The intended identity in (7) follows from (8) by using (2) and rearranging the terms. [

We are now in a position to prove our main results.
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Theorem 5. Let « > 0, p > Oand f : [a,bP] — R be a twice differentiable mapping on (af,bf) with
0 <a < b. If|f"|7is strongly n-convex with modulus p > 0 for q > 1, then the following inequality holds:

A e [ ) 05|

2(bF — aP)®
B — a2 [(a+1\"7 (a+1,
S 2a+) szz) <a+2‘f (@)["
a1 y p(bF — af)? [(a+1)2 +5( + 1))\ 7
+ gt (177001 @l) - P )

) T (e (@)

o (bﬁ —qaP ) ) }l:|
(. +3)(a+4) '
Proof. Using Lemma 3, the well-known power mean inequality and the strong y7-convexity of |f” |9,

we obtain

a—1
AT BT iz gv)+013 o)

bP — gP)? 1 o
< ﬁ{/o [17tp(ﬂt+1)]tﬂ 1 ‘f ((17tp)11”+tpbf’)|dt

1
+ / olat2)-1 |f" (taf + (1 —t9)bF)] dt}
0

L

1

><( P71 tp)a”+tpb”)|th>q
1-1 1
([ w) ([ i) |
1-1
< Sy [([ freeoar)
0
l
X( 0 plat1) tP 1<‘fu(ap)|ﬂ+tﬂ;7(|f”(bf’)\q \f”(a")\‘*)

— (1= tP)(bF — aP)2> dt)3
N </01 tp(oc+2)1dt>1; </0 p(a+2)— <‘f//(bp)|
(17 @O0 = (1= ) 0 — o)) q

_ % K/O»l {1 B tp(uﬁ»l)}tpldt)l; <‘f//(ap)|q /0‘1 [1 _ tp(zx+1)}tp—1dt

(1@ 1) [ - ] e

1

) 1

—u(bf — aP)Z/ [1 - tP<“+1>] 211 - tP)dt> !
0
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1 -1 1
+(/O tﬂ<"‘+2>*1dt> <\f”(bﬂ)|q/0 pola+2)-17;

1
(1" @)1, 1" 017) [ e
Jo
1
—u(P — af)? /l plat3)=1(1 _ tﬂ)dt) q] .
Jo
The desired inequality follows from the above estimation and observing that:

1 1 1 a+1
1— el gy = 21 / 1l 2p-1gp - 2T
/0 [ ] pla+2)" Jo [ ] 2p(x+3)

/] [1_tp(a+1)]t2p (1 — #)dt = (a+1)* +5(x+1) / polat2) 1,
0

6p(a+4)(a+3) ola+2)

1
pla+3)(a+4)

1 1
/ tp(:x+3)7]dt — and / tP("‘+3)*] (1 _ t:”)dt =
JO JO

1
p(a+3)
This completes the proof of Theorem 5. [

Corollary 1. Let « > 0, p > Oand f : [a°,bP] — R be a twice differentiable mapping on (a°,bP) with
0 <a <b. If|f"|7is convex for g > 1, then the following inequality holds:

[T D ) + 05 so)|

(P —af)2 [[a+1 -7 (x+1)(a+4) a+1 .,
= 2(at1) szﬂ) (2(a+2)(1x+3)‘f( Sl e Gl

1

Proof. The result follows directly from Theorem 5 if we take 7(x,y) = x —yand p = 0. O

Theorem 6. Let « > 0, p > 0and f : [a?,b°] — R be a twice differentiable mapping on (af,bP) with
0 <a < b. If|f"|7is strongly -convex with modulus p > 0 for q > 1, then the following inequalities hold:

LI S sy +orgpe]|

< BT [ e ) (Gl + (177000 7))
Wt — a2 1

) (Ferm) (e (re@nrern)

o —ar)? )]
(p+1)(20+1)
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p(bP_aP)Q s(‘x""l) l 1" 11 "
<t | Gt ) Gurar« gl wm s @)

1 1
V(bp,apy q 1 1 1 1" 1"
_T> +(m) <\f Sl sy (\f @), 1f (bP)V’)
_ w’(b"ﬂ")z)q}
(p+1)(2p+1)
where ~ ! —Q—1 =1.
q

Proof. Using Lemma 3, the Holder’s inequality and the strong -convexity of |f”|9, we obtain

a—1
f(up):pﬂbp) NG ra(f)) [P, £ (0) +01_f(af)]

< (blz,x_fpl K/ ‘1 polat1) ’ - 1dt> (/Oltp,l
+ </O pplat2) _Sdt> (/01
< (DZZIE“_J:Z?)Z K./ol ‘l _ olat1) ’sﬂ)*ldt> % </01 1 (\f”(ﬂp)w

1
+ 1y (IF )17, £ @0)1T) = ptf (1= 1) (6 — a) )dt)q

(fer) ([

+tﬁ,7(|f// (@]9, 1" (b°)] ) ut? (1= t9)(b° — af) )dt>q}

(L o) (s

£ @) [ e a2 [ tﬂ)dt)

N </01 tsp(a+2)sdt>l<f//(hp)|q _/Olldt-t,-rl(\f//(ﬂp”qr ‘f”(bP)V/) -/01 Hodt
—y(b”—a”)z/; tP(l—t”)dt)}l}

-t ?)2 K% fi [ )’ (%If”(amq a1 (1@ 1 @l

iyt
po(BP —af)? N\
‘m) }

==

(1= )P + thP)th)

f(tFaf + (1 — tf’)bﬂ)‘th> }7}

==

1

1 1" 1 1 1
Sp(oc+2)fs+l> (|f @17+ (17 @)1 17 @)1
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This proves the first inequality. To prove the second inequality, we observe that for any A > B > 0 and
s > 1, we have (A — B)® < A® — B%. Thus, it follows that [1 — u”‘“]s <1—w@ forallu € [0,1].
Hence, we have that

1 1
/ {Pumrdug/ 1 slatt) gy, — _s@+1)
0 0 s(a+1)+l

This completes the proof. [

Corollary 2. Let « > 0, p > O and f : [a°,bP] — R be a twice differentiable mapping on (a°,bP) with
0 <a <b. If|f"|7is convex for g > 1, then the following inequalities hold:

AT D [ ) 01|

<t - u““)sdu)l@f“(aﬂ)w ¥ lef”(bp)W)}]
Hows sH)i(pilf’/(bP)I"erLf”(ap)lq);]

e i) (oo o)

+(owsa _SH)g(pilf“(anu pilf"wwﬂ,

JENTN

1 1
where — + - = 1.
s q

Proof. The result follows directly from Theorem 6 if we take 77(x,y) = x —yand p = 0. O

Theorem 7. Let &« > 0, p > Oand f : [a?,b°] — R be a twice differentiable mapping on (a®,bf) with

0 <a < b. If |f"|7 is a strongly n-convex function on [a®, b°] with modulus yu > 0 for g > 1, then the following
inequality holds:

L)1) Tt fors i) oo

b —af)? 17% 11
= (2p(a—i1)) <1xj—2> Liz\f (7))
* (gler - pea+2) (17 @117 00)

— (b — af)? (% —2B(2,a +3)> } q,

1
where B(-, -) denotes the beta function defined by B(x,y) = / £ — byt
0
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Proof. Using Lemma 4, the power mean inequality and the strong 17-convexity of | f”'|7, we obtain

0 10) T o ) . )

p_ Py g1
(;(zx +“1; / ‘1 — (1= )l pelatD) ‘t”’l F(thaf + (1 — tP)bP)‘dt
0
_ 02 /g1 -7
< (;Ea fz; </ [1 _ (1 _ tp)ac+1 _ tp(a+1)} tp—ldt>
JO

1
q

y </01 [1 (1= tp(a+1)] =1 ' (tPaf + (1 — tP)bP)‘Mi)

L B —ar? </1 [1 — (1 =)t t”“*”}t*’”dt) !
JO

() T eyt = e e (o4 (1@l 1 00) 1)

1
q

— ptP(1— t°) (b — a”)2>dt>
< (gf();fgz </01 [1 S ey tp(terl)}tpfldt)
x <|f”(bf’)|'7/01 [1- (1= 0yt — gl ]ty

(17" @) e [ 1 @ e ) aoigy

1
1 1
— b =0 [ [1- (-t e |2l tP)dt> .
0
The desired result follows from the above inequality and using the following computations:

/01 {1 —(1—p)rtl tp(a+1)] o ldp — %/01 [1 (1w u,,(ﬂ]du
p(txufi- 2)’

/1 [1 (1)t tp(oc+1):|t2pfldt _1 /1 [1 (1w - quu du
JO o0Jo

:%(1—B(z,a+2)— ! )

2 a+3
1 a+1
=5 (2(a+3) —B(2,tx+2)>
and
/1 [1 — (1= )+t tW‘“)] P11~ )d = /1 [1 —(1—u)**t— u““] u(l—u) du
0 pJo
1/1
= (6 —2B(2,tx+3)> .

This completes the proof of the theorem. [J
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Corollary 3. Let « > 0, p > Oand f : [a°,bP] — R be a twice differentiable mapping on (a°,bP) with
0 <a <b. If|f"|7is convex for g > 1, then the following inequality holds:

A D [ ) 05|

(bp —ar)? a \'7d 02+ 30—2 ,
= pa+1) <a+2> {(B(Z'““)—m)\f @)

+ (2&7113) _BR2a +z)> |f”(ap)\‘7} d

Proof. The result follows directly from Theorem 7 if we take n7(x,y) = x —yand p = 0. O

Theorem 8. Let & > 0, p > Oand f : [a?,b°] — R be a twice differentiable mapping on (a®,bf) with
0 <a < b. If|f"|7is a strongly n-convex function on [a®, b°] with modulus yu > 0 for q > 1, then the following
inequalities hold:

AL D e ) o1 st

— 1 s %
(Zb:(a j?) (/0 {1 (1 —u)* fu““] du>
< (1@ + (s @l el) - (”P“’”i—”)z»

200+ 1)(20+1
(bp,ap)Z s(a+1)—1 : 1 1 " 1
< o (G0 51) (e g (e i enr)

__np(f —af)? )‘11
200+ 1)(2p+1) ) 7

1 1
where — + - = 1.
s q

Proof. Using Lemma 4, the Holder’s inequality and the strong 57-convexity of |f” |7, we obtain

LCESUR "Ebrp(”i + 1)1 iz, 00 + 1@

bp*“p)z ! pYetl _ go(at1) | o1 g1 (40 gp o
ochl)/o‘l —t ‘t £ (taf + (1 — t)bP) |dt
1
bP — ”p)z \a+1 o(a+1) s -1 :
ECEVE (/O — )L ] t dt>

X <./01t9*1 f(tPaf + (1 — )bﬂ)‘ d)z

1
(bP — ”P)Z ! (1 _ e+l pp(atl) s o—1 B
< SaED) /0 {1 (1) ¢ ] = 1dt

x ( /0‘1 (177 @01+ o (17 @)1, 1 (00)17)

ey,

—utf(1— ) (b — ap)z)dt>
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1

< % (/01 {1 —-(1- tp)a+1 - tp(tx+1)i|stp71dt> B
X <|f”(bp)‘q/(;1 tp—ldt_i_ﬁ('fu(ap)‘q, |f”(bp)|‘7) /0‘1 2oy,

1
. 1
- ap)z/o 2011 — tP)dt) !
where

1 s 1 /1 s
(1 — e\l gp(adl) | T g, _ e+l el
/0 [1 (1) t ] =1t p/o [1 (1-u) u ] du,

1 1 1 1 1 1
#ldr = =, / 214t = — and / ey ) —
/o p" Jo 20 "% Jo ( ) 2(p+1)(20+1)

This proves the first inequality. Using a similar argument as in the proof of Theorem 6, we obtain

1 1
/ [1_(1_u)a+1_ua+1]sdug/ 1— (1 —u)srD) —yslatt) gy,
0 0

g2
n s(a+1)+1
_os(a41) -1
Cos(a+ 1)+ 17

This completes the proof of the theorem. [

Corollary 4. Let « > 0, p > Oand f : [a°,bP] — R be a twice differentiable mapping on (a°,bP) with
0 <a <b. If|f"|7is convex for g > 1, then the following inequalities hold:

LGRS N R

bP — af)?

< D) (/01 {1 Syt - uaﬂ]sdu)g
< (Gl e+ gl @)’

(00 —af)? [s(a+1)—1)*
20(x+1) (S(DC+1)+1>

< (Gl @0+ 5@

<

1

q
s

1 1
where 5 +-=1

Proof. The result follows directly from Theorem 8 if we take #(x,y) = x —yand y =0. O
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3. Conclusions

Four main results related to the Hermite-Hadamard inequality via the Katugampola fractional
integrals involving strongly 7-convex functions have been introduced. Similar results via the
Riemann-Liouville and Hadamard fractional integrals could be derived as particular cases by taking
o — land p — 07, respectively. Several other interesting results can be obtained by considering
different bifunctions 7 and/or the modulus p as well as different values for the parameters a and p.
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1. Introduction

1.1. Current State of Hermite-Hadamard Inequalities

Many important inequalities are established for the class of convex functions [1], but one of the
most famous is the so-called Hermite-Hadamard inequality, which was first discovered by Hermite in
1881, and is stated as follows: Let f : I C R — R be a convex function, where a,b € I with a < b. Then

f<u42rb>_b_a/f dx<f(a);f(b),

This famous result can be considered as a necessary and sufficient condition for a function to be convex.
Hermite-Hadamard's inequality has raised many scholars” attention, and a variety of refinements and
generalizations have been found (see [1-20]).

In [16], Ozdemir used the following lemma and established some estimates on it via
quasi-convex functions.

Lemma 1. ([16], Lemma 1) Let f : I C R — R be a twice differentiable mapping on 1°,a,b € I witha < b
and f" be integrable on [a, b]. Then the following equality holds:

2
fa );rf(b _a/ fx a) /015(1_5)f”(5a+(1—s)b)ds. (1)

Theorem 1. ([16], Theorem 2) Let f : I° C [0,00) — R be a twice differentiable mapping on I°, such that
f" € L[a,b],a,be lwitha < b. If|f"|" is quasi-convex on [a, b] for r > 1, then the following inequality holds:

r=1

HOL IO 2 [ rioms| < O3 (i) (selr@l o)
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Theorem 2. ([16], Theorem 3) Let f : I0 C [0,00) — R be a twice differentiable mapping on I°, such that
f" € L[a,b],a,b € lwitha < b. If | f"|" is quasi-convex on [a, b] for r > 1, then the following inequality holds:

fla)+ £(b) _(b—ap

2 21-%—1

HIZCTE) e

(B2 p+1)7 (sup{|f"(a)]"

where % + 1 =1and B(,) is Euler Beta Function:

1
B(x,y) = / F11— Y ldt, x> 0.
0
In [2], Alomari et al. established the following inequalities through Lemma 1.

Theorem 3. ([2], Theorem 3) Let f : I C R — R be a twice differentiable mapping on 1, a,b € I witha < b
and f'" be integrable on [a, b]. If | f"'| is quasi-convex on [a, b], then the following inequality holds:

‘fﬂ)Jrf —u/f

Theorem 4. ([2], Theorem 4) Let f : I C R — R be a twice differentiable mapping on 1°, a,b € I with
a < band f" be integrable on [a,b]. If |f//|p/(p—1) is quasi-convex on [a,b] for p > 1, then the following
inequality holds:

2
O sup( (@), | )]} @

1

(b—a? (VY7 (T(1+p))’ )
< 8 (T) (W) (SUPHf (a)

o)

®)

P

wherer = p/(p—1).

Theorem 5. ([2], Theorem 5) Let f : I C R — R be a twice differentiable mapping on 1°, a,b € 1 witha < b
and f" be integrable on [a,b]. If |f"|" is quasi-convex on [a, ] for g > 1, then the following inequality holds:

f(a) 7,1/ flx ‘ a)2 <suP{|f"

1.2. Motivation of Quantum Estimates

r

A ®). ®)

In recent years, many researchers have shown their interest in studying and investigating
quantum calculus. Quantum analysis has large applications in many mathematical areas such as
number theory ([21]), special functions ([22]), quantum mechanics ([23]) and mathematical inequalities.
At present, g-analogues of many identities and inequalities have been established ([13-15,19,20,24]).

The Hermite-Hadamard inequality has been extended by considering its quantum estimates.
For example, in [13], Noor et al. established the following lemma and developed some quantum
estimates for it.

Lemma 2. ([13], Lemma 3.1) Let f : I = [a,b] C R — R be a g-differentiable function on I° (the interior of I)
with oDy be continuous and integrable on I where 0 < q < 1, then

qf(a) + f(b) _ gq(b—a)

1 b 1
m/ﬂ f(x)adgx — 17 = 15 g /0(1—(1+q)t)aqu((1—t)u—i—tb)odqt.
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Theorem 6. ([13], Theorem 3.2) Let f : I = [a,b] C R — R be a g-differentiable function on I° (the interior
of I) with 4Dy be continuous and integrable on I where 0 < q < 1. If |,Dy f ",r > 1is a convex function, then

1o qf(a) + f(b)

‘b—a/ﬂf(x)“d‘*x_ 1+q '
ab—a) (29 \'"7(_q(l+3¢+27) r, a(l+49+4%) ¥
<oy (wom)  (Ghas ot ool = s g WO )

Theorem 7. ([13], Theorem 3.3) Let f : I = [a,b] C R — R be a g-differentiable function on I° (the interior
of I) with ;Dy be continuous and integrable on I where 0 < q < 1. If |quf|r is a convex function where
p,r>1,%+%=1,then

o [ s~ S0

b—a 1+q
glb—a) ( 2q \7 ([ q(1+3¢+2¢) r q(1+49+4%) N
<L () (e s as OO + g ool )

The main purpose of this paper is to use a new quantum integral identity established in [11] to
develop some quantum estimates of Hermite-Hadamard type inequalities for quasi-convex functions
(Section 3). These quantum estimates of Hermite-Hadamard type inequalities reduces to Theorems 1-5
asq — 1.

1.3. Possible Applications of the Estimates

Quantum calculus has large applications in many mathematical areas. We expect these new
quantum estimates for Hermite-Hadamard type inequalities to have potential applications in the fields
of integral inequalities, approximation theory, special means theory, optimization theory, information
theory and numerical analysis.

2. Preliminaries

In this section, we first recall some previously known concepts on g-calculus which will be used
in this paper.
Let ] = [a,b] C Rbe aninterval and 0 < g < 1 be a constant.

Definition 1. [19] Assume f : | — R is a continuous function and let x € |. Then q-derivative on | of
function f at x is defined as

f(x)—flax+(1—-q)a)
(1-q)(x—a)

We say that f is g-differentiable on | provided ,Dy f (x) exists for all x € ]. Note that ifa = 0 in (2.1),
then oDy f = Dy f, where Dy is the well-known q-derivative of the function f (x) defined by

f(x) = f(q%)
1—q)x

Definition 2. [19] Let f : ] — R be a continuous function. We define the second-order g-derivative on
interval |, which denoted as aD%f, provided Dy f is g-differentiable on | with aD%f =aDg(aDgf) : ] = R.
Similarly, we define higher order g-derivative on |, s Dy : Jx — R.

aDgf (x) = xFa, oDyf(a) = Jl(ig}aqu(x). @)

Dyf (x) = . ®)
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Definition 3. [19] Let f : ] C R — R be a continuous function. Then g-integral on ] is defined by
"X o0
[ F gt = (1) (x=a) Y q"F (¢"x+ (1= 4")a) ©)
n=0
for x € J. Moreover, if c € (a, x) then the definite q-integral on | is defined by

| #0dgt = [ foradet = [ F(t)adt
=) -a) L "+ (0= - (- g)(e—a) ¥ a'f g+ (1 - "))

n=0 n=0

Note that if a = 0, then we have the classical q-integral, which is defined by
X (o]
[ f@odgt = =)x L q"f (") (10)
n=0

for x € [0, 4c0).

Theorem 8. [19] Assume that f,g : | — R are continuous functions, « € R. Then, for x € ],

x X X
U0 +sOladat = [ FEadgt + [ g(tradgt
x X
[ @h®radyt = [ F(t)ad
a a
In addition, we introduce the g-analogues of 2 and (x — a)" and the definition of g-Beta function.

Definition 4. [22] For any real number a,

-1
qg—1

lal, = (1)

is called the g-analogue of a. In particular, if n € Z, we denote

n
—1
["]:qq_l =q" 4 +g+1

Definition 5. [22] If n is an integer, the q-analogue of (x — a)" is the polynomial

. if n=0,
(x_a)q{(x—a)(X—qa)“-(x—q"lﬂ), if mz1 "

Definition 6. [22] For any t,s > 0,

-1

Bilts) = [

A xt_l(l — qx);_lodqx (13)

is called the q-Beta function. Note that

1
By(t,1) = /O ¥ lgdgx = - (14)

where [t] is the q-analogue of t.
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At last, we present four simple calculations that will be used in this paper.

Lemma 3. Let f(x) = 1, then we have

(=)

1
/ odgx = (1=q) }_ 4" =
Jo =0
Lemma 4. Let f(x) = x for x € [a, ], then we have

1
/xodqx_ (1—gq Zqz”:—
0

+4q

Lemma 5. Let f(x) =1—gx for x € [0,1] where 0 < q < 1 be a constant , then we have

11 d ' d ' d 1
/0( —qx)o qx—/Oqu*q/o X0 qx_l+q

Lemma 6. Let f(x) = x(1 — gx) for x € [0,1] where 0 < q < 1 be a constant , then we have

1 1 1 1
/ x(1 = gx)odgx :/ (x— qxz)od[,x = / xodqx - q/ xzod,,x
0 0 0

1 2 1
Ti4q Z 1+q BAETET
B 1

A+q)(1+q+4°)

In [6], we can find the notion of quasi-convex functions generalizes the notion of convex functions.
More exactly, a function f : [a,b] — R is said to be quasi-convex on [a, b] if

fIA=A)x+Ay) <sup{f(x), f(y)} (15)

holds for any x,y € [a,b] and A € [0,1]. It's obviously that any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex.

In [11], we have established the following g-integral identity and used it to prove some quantum
estimates of Hermite-Hadamard type inequalities for convex functions.

Lemma 7. ([11], Lemma4.1) Let f : [ = [a,b] C R — R be a twice q-differentiable function on I° with aD?,f
be continuous and integrable on I where 0 < q < 1. Then the following identity holds:

2(h _ 4)\2
f(l)jqf( ﬂl/ flx dqxf%/Olt(lfqt)aDgf((lft)a+tb)odqt. (16)

Remark 1. If ¢ — 1 and substitute (1 — t)a + tb for sa + (1 — s)b, then (16) reduces to identity (1) in
Lemma 1.

3. Hermite-Hadamard Inequalities for Quasi-Convex Functions

In this section, we will give some estimates for the left-hand side of the result of (16) through
quasi-convex functions.
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Theorem 9. Let f : [ = [a,b] C R — R be a twice q-differentiable function on I° with uD,% f be continuous
and integrable on I where 0 < q < 1. If

aD?,f)r is quasi-convex on [a,b] for r > 1, then the following

inequality holds:
qf(a) + /
' 1+ q — Jy S X)aax
2 2 1- 1
q (b - ) 1 r 3 r ¥
<7 I
< i il D) [aD3f )] }) 7)
where .
Z n+1
,
Proof. Using Lemma 7, Holder’s inequality and the fact that uD% f ‘ is a quasi-convex function,
we have
qf(a) + f(b) /
144 —a F(X)adgx
(b -a)

T4 /0 t(1—qt)aD§f((1—t)a+tb)0dqt‘

2 2 1
q°(b—a)
< (1 — gt
R /0( 9t

L A

2 2 /1 1-3
q-(b—a) ( > (
<4 7%
ST /Ofodqf sup{

Applying Lemma 4, we have

RICES RS

2 2 1-1
9 (b—a) < 1 ) <
- 1+49¢ 1+¢q

2 2 1-
_q*(b—a) 1
=14g \itq (hlsup{

It is easy to check that

WD2f((1—t)a+ tb)] odyt

1
¥

DIf((1—ta+ tb)’rodqt>

DO} [ 10 qryodt)’

D2 (@),

’

D)} [ 1= atyodet)’

D20 1)’

D2f ()|

e

D2 ()],

)

h = / H1 — qt) odgt = (1 — Z g
Jo o
thus, we get (17). O

Remark 2. Ifq — 1, then
1

1
In :/0 O 1)t = ey

9
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Inequality (17) reduces to inequality (2) in Theorem 1 due to the fact that

2 () (s o)

_ (b — u)2 2 % 1" r 1 r %

O (Y troriron)
Corollary 1. In Theorem 9, if r is a positive integer , then

(1—q)" < (1—qt)g,

and (17) reduces to

af(@)+f) 1 f°

' 144 _b—a/uf(x)“dqx

Po—a? [ 1 \'* y oyl

<TOIE (L) (b + DsupduDs )] [ D[ 1)

Theorem 10. Let f : [ = [a,b] C R — R be a twice q-differentiable function on I° with aD%f be continuous
and integrable on I where 0 < q < 1. If

,
aD%f‘ is quasi-convex on [a,b] where p,r > 1, % +1 =1, then

1

r r
’

aD:?f(“)
1+g

af(a) + £(b) D30 }

1 b
1+g 7bfa,/a f(x)”d”x

L)v

(18)

201 _ )2 su
<1 (b—na) ( 1 pt
1+

where

h=(1—-q) Y ¢ (1—q""".

n=0

Proof. Using Lemma 7, Holder’s inequality and the fact that

r
aDg f ‘ is a quasi-convex function,

we have
qaf(a) + f(b) 1 b
' 1+4¢ 7b—a/gf(x)adqx
2(h — 4)2
_ % /01 H(1 — g£)aD2f((1— £)a + th)odgt

2
g% /01 H(1 - qt) [«D2F((1 = t)a + tb)’ odgt

2 2 /1 s
(b —a) )(
<l 7 — P
T U a—aredr)” ([

(
<O (- qt)%dqt)}’ (supt

«D2f((1—t)a + tb) ‘r odqt> ’

r
’

0370 [ 1ot

aD;f(ﬂ)
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Applying Lemma 4, we have

af (@) + f(
e T

Plo—a? [ 1 ; D) [DF0)] 1
371+q (/0 t(l—qf)podﬂt) 1+q
_f0-ap 1 (sellDifa] ohro)f) '

1+g¢ 1+gq

It is easy to check that

an(l _ qn+l)p,

agk

1
h= /0 K1 —qt)Podgt = (1 —q)

n=0

thus, we get (18). O

Remark 3. Ifq — 1, then
I = /O1 H1 - t)Pdt = B(2,p +1).
Inequality (18) reduces to inequality (3) in Theorem 2.
Corollary 2. In Theorem 10, if p is a positive integer and p > 1, then
(1—gt)? < (1—qt)F,
and (18) reduces to
1

«D3f(a)
1+¢q

’

D20}

,311(2 P""l))%

I/\

qf(a) + f(b) _/f

9*(b - )2(
1+vl +q

Theorem 11. Let f : I = [a,b] C R — R be a twice g-differentiable function on I° with aD%f be continuous
r
aD%f‘ is quasi-convex on [a, b] where p,r > 1, % + % =1, then the

following inequality holds:

2(b —q)? 1 r ro\L
YOI L [ reoagr] < T2 sy (supD3sa)] 0B 1), 9)

where
(qn)p+1(1 _ qn+1)p.

e

s1=(1-9)

n=0
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Proof. Using Lemma 7, Holder’s inequality and the fact that

p
aDg f ‘ is a quasi-convex function,
we have

b
LU R

% /01 tH(1—qt)aDi f((1— t)a+ th)od,t

2 2 1
q>(b —a)
<4 1—
< | ra—an

<O (['ea qt)f’odqt); (f
<O ([Tea qt)f’odqt); (sup

Applying Lemma 3, we have

WD2f((1—t)a+ tb)] odgt

WD2F((1 = t)a+ tb)‘rodqt> ’

r
7

o3[y [ odqt>}

aD;f(”)

@)+ f(b !

’%jqﬂ) b i a /a S

2b—a)? 1 ' 1
s%(sﬂ” (Sup{ Dif(a)] “Dgf(b)‘ )"

It is easy to check that

1 oo
51 = /0 t(1—gt)Podgt = (1—q) Y (q")" (1 — "),
' n=0

thus, we get (19). O

Remark 4. Ifq — 1, then
1
5 :/ (11— 1Pt = B(p+1,p+1).
0

Using the properties of Beta function, that is, B(x,x) = 21728 <%,x) and B(x,y) = r%’?lcry()y), we can
obtain that

B(p+1,p+1)=2"2rg <%/ P+ 1) = 2*2%1M
where T'(}) = /7 and T(t) is Gamma function:
r(t) = /0Oo ey, t>0.
Inequality (19) reduces to inequality (5) in Theorem 4 due to the fact that

1
-

(b—a)? 2—2p—1r(%)r(l’ +1)
2 L3 +p)

(e (VYT (Tp) ) ,
=g (T) <F(g+p)> (sup{\f (a)

),, (supdlf" @[ 1f"®)]'})

1
r ¥
, .

f'®)[')
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Corollary 3. In Theorem 11, if p is a positive integer, p > 1, then

(1—gt)? < (1—qt)s,

and (19) reduces to

qf(a) + /f

2 r
1+ q —a aDaf (@)

Sq(l—i-q) (5q(P+LP+1))%( ’“Dgf(b)‘r}y

Theorem 12. Let f : I = [a,b] C R — R be a twice g-differentiable function on I° with ,,D% f be continuous
and integrable on I where 0 < q < 1. If

D3 f ‘r is quasi-convex on [a, b] where p,r > 1, % + 1 =1, then the
following inequality holds:

‘qf() ﬂz/ F(x)adyx

1+¢q

2 —a 2 p r
< (ﬁ) (s doito

’

D)), 20)

where

2 n+1

and [p + 1] is the g-analogue of p + 1.

r
aDg f ‘ is a quasi-convex function,
we have

qf(a) + B /f

1+q b—a

% /0 H1— qt)aDgf((l —t)a + th)odgt

g%/olt(lfqt)
£ PO (g (s
SO ([ rwe) (

Applying (14) in Definition 6, we have

'qf(l)ﬂ _a/ F(x)adyx

S%(m—iu)p(
1

:%QPH])%(

It is easy to check that

JD2F((1 - t)a+ tb)) odgt

T

JD2F((1— t)a + tb) ’rodqt>

D@ D30y [ gtyat)

D),

D0 [0 o)

1
T

DEf(a)|

)

n+1)r
’

18

1
m = [ (A=qtodyt = (1—q) Y q"(1 -4

n=0
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thus, we get (20). O

Remark 5. If g — 1, then
1 1
= (1-tdt=—
" A( yat= o

and (20) reduces to

2 b—aJa

f@1I® 1 [ fxas g(b_“)2< 1 >;(Sup{lf”(u)’,If”(b)’}>1‘ o

2 p+1 r+1

Corollary 4. In Theorem 12, if r is a positive integer, r > 1, then

(1—gt)" < (1—qt)y,

and (20) reduces to

1+q b—al,
2(b — a)? v
o (1 (o

Theorem 13. Let f : [ = [a,b] C R — R be a twice g-differentiable function on I° with aD%f be continuous

ELCES Ry e

D2 oz 1)’

p
(,Dé f ‘ is quasi-convex on [a, b] where p,r > 1, % + % =1, then the
following inequality holds:

qf(a) + f(b)

‘ 1+g¢q - u/ flx

7?(b—a)? ! HD%f( ) , asz ‘ }
where -

2 n+1

and [r + 1] is the g-analogue of r + 1.

aDEZI f ‘r is a quasi-convex function,

we have

af(a) + f(b) /f
1+ q —a

2 2 1

q°(b—a) 2

ﬁ/o H(1 — qt)a D2 (1 — D)a + th)od,t

201 2
g(b—a) <1b+q“> ./Olt(l*qt)

A= (o) ([
<R (Lo-wra)

IN

WD2f((1 - t)a+ tb)) odgt

JD2f((1—Pa+ tb)’yodqt>}

D@ D2 ) [ ot

’
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Applying (14) in Definition 6, we have

qf(a) + f(

’W —a/ f(®)adg

?(b—a)? (1 y aD%f(“) V, aD;f(b)’r}
S </o (1_qt)p°d‘7t> [r+1]
_Pb—a)* 1 sup{ |, D7 f(a 0|, D3 f(b) ‘ } y
T 1+q ! [r+1]

It is easy to check that

m= [0t =(1-g) 3 g0 -g),
thus, we get (22). O
Remark 6. If g — 1, then
= /01(1 —HyPdt = ﬁ,

and (22) reduces to (21) in Remark 5.
Corollary 5. In Theorem 13, if p is a positive integer, p > 1, then
(1=qt)" < (1-qt)y,

and (22) reduces to

qf(1)+q —a/f

D2 (@),
[r+1]

D2 (b))

2 1
PO (5, 1p+ 1))

Theorem 14. Let f : [ = [a,b] C R — R be a twice g-differentiable function on I° with ,D3 f be continuous

,
,,D% f ‘ is quasi-convex on [a, b] for r > 1, then

2 —az 1 r r %
VLI L [ ugr| < TEZEE ) (sup|u0fs)]| o)1) @)
where
& n r+1 n+1)
n:O
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r
aDg f ‘ is a quasi-convex function,
we have

f(ul)-&-q —a/ flx

% /01 H(1 — qt)aD2F((1— t)a + th)odyt

A odqt)” (f ra-anr

<EEE ([oe) (o]

Applying Lemma 3, we have

a b
‘qf( 1)_:_;(b) - bia /a f(x)ndqx

1
T

«D2f((1 - t)a + tb) ‘r Odqt>

D3 f (b) ‘} (/ |t1qt0'7”‘>1

e

’

2(h— a)2 1
S%( D (a)] DZf( (/ |1 — qt)|" odgt )
(b—a) r TN 1
:%( D} @] DF®)]) ()
It is easy to check that

M= / (1 —qt)odgt = (1—¢q Z(q ) =gy,
Jo
thus, we get (23). O

Remark 7. If g — 1, then
1
" :/O (1= 1) odgt = Br+ 1,7 +1),

and (23) reduces to

RS (R Ry LTRS

2 1 r %
< - 5 P (b1, 4+1) )7 (supd|f @] |f"®)['})

Corollary 6. In Theorem 14, if r is a positive integer, then

(1—qt)" < (1—qt)g,

and (23) reduces to

7

) o [ Fndge] < PO (5 r 1) (sup DR fa0RF 0] )

1+g¢q

106



Mathematics 2019, 7, 152

Theorem 15. Let f : [ = [a,b] C R — R be a twice g-differentiable function on I° with ,,D%f be continuous

,
aD% f ‘ is quasi-convex on [a, b] for r > 1, then

fa) +
'q 1+q —a/f
S%<$>17?(ﬁq(r—l—l,Z)sup{aD;f() D20)[}) 1)

Proof. Using Lemma 7, Holder’s inequality and the fact that

qf(1)+q B —u/f

2(p— g)2
% /01 (1 —qt)aDi f((1— t)a+ th)od,t

2 2 1

q*(b —a)

13 7 1— B
T [ =g

<LO-af (/Ol(lqt)oau,t)1£ ([a-ar

L0 ([ qt)oalqt)li (

Applying Lemma 5 and the fact that (1 —gt) = (1 — qt)}], we have

‘qf(l)ﬂf( 7a/f g

qu(lb;a)z <%>1<
q q
:q2<1b;qu>2 (ﬁ) (Bo(r+1,2)

thus, we gett (24). O

r
aDg f ‘ is a quasi-convex function,
we have

IN

D2f((1—t)a+ tb)] odgt

sz((lft)athb)‘ >}

D@ D30y [ - anadst)’

D@ D2 ) [0 aniodyt)

Sl

2| o2 )

’

Remark 8. Ifq — 1, then

1

1
pr+1,2) = [0 Dot = (e

and (24) reduces to inequality (2) in Theorem 1.

Theorem 16. Let f : I = [a,b] C R — R be a twice g-differentiable function on I° with aD% f be continuous

;
aD% f ‘ is quasi-convex on [a, b] where p,r > 1, % +1 =1, then

‘M o [ g

1
T

DEf(@)| D3 (o) }

1+g¢q

(25)
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p
aDg f ‘ is a quasi-convex function,
we have

qf(a) +
l+q —a/f

W /01 £(1— g£)aD2f (1 — t)a + th)odgt

2 2
q>(b—a) / 2
< t(1 —gqgt) |,D
S b

<‘72(1E’7J:;)2 (/O (1 - qt) Odq> </ (1-

D2f(a)[

<A (o)

Applying Lemma 5 and the fact that (1 —gt) = (1 — qt)}], we have

2F((1—t)a+ tb)‘ od,t

) [ D2F((1 = t)a + tb)‘rod,,t> '

’

WD3f (b \}/'1fmo%)

qf(a) + f(b)

’ 1+g fa/f g

2 a2 /1 i WD), .D2F(0)] '} %
g%(/{) tﬂ(kqt)glodqt) ! T o)

2p_ g2 ) «D2f(a)|, [.D2F(b)] '} ’
:%(ﬁq(p+1'2))p 1+gq ‘

thus, we get (25). O
Remark 9. If g — 1, then
1 1
B(p+1,2) :/ tp(l—t)dt:/ s(1—s)Pds = (2, p +1).
0 0
Inequality (25) reduces to inequality (3) in Theorem 2.

Theorem 17. Let f : I = [a,b] C R — R be a twice g-differentiable function on I° with aD%f be continuous

uDg f ‘ is quasi-convex on [a, b], then

7*(b—a)?sup{|sDZf(a) |, |:Df (1)}

A+ 92044+ @)

qf(a) +
1+q fu/f o] <
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Proof. Using Lemma 7,

aD% f ‘ is a quasi-convex function,
we have

af (@) + f(b)
EEETEE o [ St

7*(b—a)?

/0 (1 —qt)aDaf (1 —t)a+ tb)odqt’

1+g¢g
2(h — a)2
S%/{Jlt(l—qt) usz((l—t)a—&—tb))odqt
2
< PO D3 @) [ D)} [ 101 a0y
Applying Lemma 6, we have
qf(a) + f(b)
’ 1+g ,,1/ f(x)adyx

«D2f ()|, [:D2f(B)[}
A+q2(1+q+4%)

7*(b — a)* sup{
<

thus, we get (26). O
Remark 10. If g — 1, then inequality (26) reduces to inequality (4) in Theorem 3.

Theorem 18. Let f : I = [a,b] C R — R be a twice g-differentiable function on I° with uD%f be continuous

HD,% f )r is quasi-convex on [a,b] for r > 1, then the following

inequality holds:
af(a) + yy . - T et
' 1+q b—a f 1+q)2(1+q+q)( ”qu(a) /aqu(b)‘}) . (27)
Proof. Using Lemma 7, Holder’s inequality and the fact that QD% f ‘r is a quasi-convex function,
we have
qf(a) + f(b) 1 /"’
1+g b—a af(x)adqx
2 2 1
_|a(b—a) 2
- 17+q/0 {1 — q)aD2f((1 — t)a + th)odyt

IN

2 )2 1
%/Ot(l—qt)

s% </01 H1— qt)odqt>1} (/01 H(1 - qt)

A (L)

WD2F((1—t)a+ tb)( odt

WD2f((1—t)a + tb)‘yodqt> '

D) [ 10 gt )

D2 ()],
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Applying Lemma 6, we have

a b
‘qf(f_:_qf(b) - bia/u f(x)adgx

<q2(b—u)2 ( 1 >1*% sup{ aDgf(”) r/ uD%f(b)‘r}

- 14q \Q+q9@0+q9+4?) (1+q)1+q+4%)

_ gHb—a)?
~Tr AT ar e (Pt

r
’

D201

«Dif(a)

thus, we get (27). O
Remark 11. If g — 1, then inequality (27) reduces to inequality (6) in Theorem 5.

4. Discussion of New Perspectives

Currently, the Hermite-Hadamard inequality plays a significant role in the development of
all fields of Mathematics. It has sgnificant applications in a variety of applied Mathematics,
such as integral inequalities, approximation theory, special means theory, optimization theory,
information theory and numerical analysis. In recent years, a number of authors have discovered new
Hermite-Hadamard-type inequalities for convex, s-convex functions, logarithmic convex functions,
h-convex functions, quasi-convex functions, m-convex functions, (K, n)-convex functions, co-ordinated
convex functions, and the Godunova-Levin function, P-function, and so on. In this paper, we use a
new quantum integral identity established in [11] (Lemma 4.1) to develop some quantum estimates for
Hermite-Hadamard type inequalities in which some quasi-convex functions are involved.

Since quantum calculus has large applications in many mathematical areas such as number theory,
special functions, quantum mechanics and mathematical inequalities, we hope interested readers will
continue to explore more quantum estimates of Hermite-Hadamard type inequalities for other kinds of
convex functions, and, furthermore, to find applications in the above-mentioned mathematical areas.
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1. Notation and Preliminaries

At the beginning of this paper, we cite the following inequality which is called the operator
Kantorovich inequality [1]:

o(47) < U ot g

where @ is a normalized positive linear map from B (H) to B (K), (we represent H and K as complex
Hilbert spaces throughout the paper) and A is a positive operator with spectrum contained in [m, M| with
0 < m < M. This is a non-commutative analogue of the classical inequality [2],

(M + m)2

(Ax, x) <A*1x,x> < ANim

where x € H is a unit vector.

In recent years, various attempts have been made by many authors to improve and generalize the
operator Kantorovich inequality. One may see the basic references [3-5] and the excellent survey [6] on
this topic. In [7], it was shown that

@ (A7) < @ (i M) < (M 4 m)”

)2d>(A)’1. )
4Mm
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The main aim of the present short paper is to improve both inequalities in (2). Actually, we prove that
2 -1
CD(A‘l) §c1><<A (\/Ef\/ﬂ) r(A)) )

A-MI _ mi—A\ —1
§q><(mM,,,,MM,m) )

2
< MamP g (VM- ). r(A)
-  4Mm Mm

where 7(A) = min {%II:”‘:‘, ‘,L\‘Ai",’nl} = %I - Ml—m A— W[‘

In what follows, an operator means a bounded linear one acting on a complex Hilbert space H.
As customary, we reserve m, M for scalars and I for the identity operator. A self-adjoint operator A is said
to be positive if (Ax,x) > 0holds for all x € H. A linear map @ is positive if @ (A) > 0 whenever A > 0.
It is said to be normalized if ® (I) = I. We denote by ¢ (A) the spectrum of the operator A.

2. Main Results

Before we present the proof of our theorems, we begin with a general observation. We say that a
non-negative function f on [0, ) is geometrically convex [8] when

f(a1770%) < fla) o) ®)

foralla,b > 0and v € [0,1]. Equivalently, a function f is geometrically convex if and only if the associated
function F (y) = log (f (¢¥)) is convex.

Example 1 ([9] Example 2.12). Given real numbers c; > 0 and p; € (—o0,0] U [1,00) fori =1,--- ,n, the
function f (t) = ¥i_; c;tPi is geometrically convex on (0, 0).

Kittaneh and Manasrah [10] Theorem 2.1 obtained a refinement of the weighted arithmetic-geometric
mean inequality as follows:

ulfvbvg(lfv)aJrvhfr(\/Ef\/E)z 4)

where ¥ = min {v,1 — v}.
Now, if f is a decreasing geometrically convex function, then

f((1—v)a+ob) gf(((lfv)u+vh)fr(\/ﬁi\/g>2)

S f (alfvbv>
< f(a)' Uf(b)° ®)

<=0 f@)+of ) —r(/7 0~ \/%)2

< (1—0)f(a) +of (b)
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where the first inequality follows from the inequality (1 —v) a + vb — r(f - \/E)Z < (1—-v)a+oband
the fact that f is decreasing function, in the second inequality we used (4), the third inequality is obvious
by (3), and the fourth inequality again follows from (4) by interchanging a by f(a) and b by f(b).

Of course, each decreasing geometrically convex function is also convex. However, the converse does
not hold in general.

The inequality (5) applied toa =m, b=M,1—v = Y=L and v = L7 gives

7)< (1= (V= Vat) r(0))

t—m

< f (mie i)

< f(m) ¥ f(M) ¥ ©)
M—t t—m 2
< e )+ ) = (V) =\ F ) ) 1)
< 2L )+ (M)
with 7(f) = min {ﬁ, 1?/[47:;1} = % — Ml—m t— W‘ whenever t € [m, M].

In order to establish our promised refinement of the operator Kantorovich inequality, we also use
the well-known monotonicity principle for bounded self-adjoint operators on Hilbert space (see, e.g., [6]
(p. 3)): If A € B(H) is a self-adjoint operator, then

f)y<gt), tea(A) = f(A)<g(4) @)

provided that f and g are real-valued continuous functions. Under the same assumptions, I (t) = [t|
implies 11 (A) = |A|.

Now, we are in a position to state and prove our main results. We remark that the following theorem
can be regarded as an extension of [5] Remark 4.14 to the context of geometrical convex functions.

Theorem 1. Let A € B(H) be a self-adjoint operator with o (A [m, M| for some scalars m, M with

<
0 < m < M and ® be a normalized positive linear map from B (H) to B (KC). If f is strictly positive decreasing
geometrically convex function, then

@ <f (A — (v - m)Zr(A)» < @ (1 (mi M)

2
Szl(merf)f(fb(A))*( £ (m) - f(M)> o((4))

where r(A) = min { ‘?Vf"‘[ MI’A} =11 5 ’A — Mimp
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Proof. On account of the assumptions, from parts of (6), we have
f (tf (\/%f \/M)Zr(t)> <f (m%MA{/I%)
2
<1 (Vrm-yron) o

L(H) = L f (m) 4 2 F (M),

Note that inequality (8) holds for all t € [m, M]. On the other hand, ¢ (A) C [m, M], which, by virtue of
monotonicity principle (7) for operator functions, yields the series of inequalities

®

where

f <A - (V- m)%g) < £ (¥ MEH)

<) (yrm- \/f(M)>2r(A)»

It follows from the linearity and the positivity of the map ® that
2 - —m
@ (r (4= (vin- VM) ria) ) < (7 (mhé i)

<o)~ (V- s <M))2<I><r<A)).

Now, by using [5] Corollary 4.12 we get
@ (f (A ~(vm- \/M)Zr(A)» <@ (f (m¥5 MiF))

<o) - (yrim- W)ZMA))

< M 1) £ (@ () = (/F ) - W)zé(rw.

This completes the proof. [

As discussed extensively in [6] Cahpter 2, for f (t) = t¥, we have

1 (M-t t—m
Py = — P4 MP:
w(m, M, tP) max{tp <M7mm +M7mM>'te[m'M}}

_ (mMP—MmP) (p—1 MP—mP \P
T (p-1)(M-m)\ p mMP— MmP

Now, the following fact can be easily deduced from Theorem 1 and Example 1.
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Corollary 1. Let A € B (H) be a positive operator with o (A) C [m, M| for some scalars m, M with 0 < m < M
and @ be a normalized positive linear map from B (H) to B (K). Then for any p < 0,

O(AP) <D ((A - (\/%— \/M)zr (A)>p>
o (w2

< K (m,M,p) @(A) — ("2 — a7 )’ (r ()

IN

where
K(m,M,p) =

(mMP — MmP) <p—l MP —mP \F
(p—1)M—-—m)\ p mMP—MmP

In particular,
@ (A*I) <@ ((A - (\/%— m)2r(A)> 1)

<o ((mM—M))

o(A) - 7(@,\/@)2 (r(A)).
Mm

- M+m)?
~  4Mm
_ (Mm)? ioi i

We note that K (m, M, —1) = =g is the original Kantorovich constant.

Theorem 2. Let all the assumptions of Theorem 1 hold. Then

MI=®(A)  D(A)—ml

7 (@)~ (vin - VBI) ro(a)) < f (w5 i)

< wlm M) @ (4) = (VT ) - 5 (M))zr@m)).

Proof. By applying a standard functional calculus for the operator ®(A) such that mI < ® (A) < MI, we
get from (8)
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We thus have

f(“f‘)—(ﬂ—m)zr( (4 >>)<f( Mt M#)
(7 7

= (L(4) - (\/T Jrom) e
@) - (rom - F ) r(@(4))

where at the last step we used the basic inequality [5] Corollary 4.12.
Hence, the proof is complete. [

As a corollary of Theorem 2 we have:

Corollary 2. Let all the assumptions of Corollary 1 hold. Then for any p < 0

DAY < <<1> (A) — (\/%— \/M)zr(cp(A)))p
< K (m, M, p) ® (AP) — (JnT— \/W)zr(cp(,q)).

Remark 1. Notice that the inequalities in Corollary 2 are stronger than the inequalities obtained in [11] Corollary 2.1.
Recall that if f is operator convex, the solidarities [12] or the perspective [13] of f is defined by
Pr(A|B) = Af <A’%BA’%) Az,

Using a series of inequalities (6) we have the upper bounds of the perspective for non-negative
decreasing geometrically convex function (not necessary operator convex f). We use the same symbol
Pr (A | B) for a simplicity.

Proposition 1. Let A, B > 0 with mA < B < MA for some scalars 0 < m < M. For a non-negative decreasing
geometrically convex function f, we have

Pr(A|B) < AY3f <A*1/ZBA*1/2 Vi — m)zr(A,B)> Al/2

MI-A— 1/23A /2 4-1/2p4-1/2_ 4
SA1/2f( & M BAT )AI/Z

1244172 —1/254-1/2
Mi-A—1/2A A BA~1/ 711XIA1/2

< AV2 () M f(M)

2
M( A; _mf( ) 4 f% :ﬁm)B,( [ m) — F(Mg AV24(A, B) AV

_ MF(m) = mf(M) | FOM) — f(m)
- M-—m M—m !

IN
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where

A V2BAY2 ] MI— A"V2BA1/2
r (A, B) = min M—m , M—m
1 1 12 _12 M+m
=51 M m ‘A BA 1|
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1. Introduction

The notion of majorization was introduced in the celebrated monograph [1] by Hardy, Littlewood
and Pélya, which was used as a measure of the diversity of the components of an n-dimensional vector.

Letv = (11,12,...,Vy) and & = (&1, 0y,...,0,) be two n-tuples. The n-tuple v is said to be
majorized by ¢ (in symbols v < ¢) if ZL1 vy < Z?:l Oy fork=1,2,...,n—1and Yiavi=Yii 0,
where vy > vy = -+ = v and 8y > Fpp > --- > B, are rearrangements of v and ¢ in a
descending order.

The majorization has been found many applications in different fields of mathematics. A survey
of the applications of majorization and relevant results can be found in the monograph of Marshall
and Olkin [2]. Recently, the authors have given considerable attention to the generalizations and
applications of the majorization and related inequalities, for details, we refer the reader to our
papers [3-13].

In this paper we focus on a type of majorization inequality involving convex functions, which
reveals the correlations among majorization, convex functions and inequalities. Now, let us recall
briefly this type of majorization inequality.

The following classical majorization inequality can be found in the monographs of Marshall and
Olkin [2] and Pecari¢ et al. [14].

Theorem 1. Let v = (vy,va,...,vn), & = (81, B2, ..., 04) be two n-tuples, v;,0; € I (i =1,2,...,n), Iis

an interval. Then
n

Y(v) <) ¥(8) o

i=1

M-

Il
-

1

holds for every continuous convex function ¥ : I — R if and only if v < & holds.

Fuchs [15] gave a weighted generalization of the majorization theorem, as follows:
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Theorem 2. Let v = (v,vy,...,vn), & = (&, O2,...,0,) be two decreasing n-tuples, v;,9; € I (i =
1,2,...,n), I is an interval. Suppose l1,(s, ..., ¢y are real numbers such that Zi'c:1 liv; < Zﬁ-‘zl 0;9; for
k=12,...,n—Tand Y}, t;v; = Y11 €;9;. Then

ifz“i’(vz‘) < i Y (%) @
-1

i=1

holds for any continuous convex function ¥ : I — R.

Bullen, Vasi¢, and Stankovi¢ [16] presented a result similar to the above result, in which the
condition of the tuples v, ¢ is relaxed and the condition of the function Y is intensified.

Theorem 3. Let v = (vq,1y,...,vn), & = (%, 02,...,0,) be two decreasing n-tuples, v;,9; € I (i =
1,2,...,n), 1 is an interval. Suppose {1,(y, ..., ¢y are real numbers such that Zﬁ»‘zl liv; < Zﬁ»‘zl 0;9; for
k=1,2,...,n. If¥Y : I = Ris a continuous increasing convex function, then

Zgi‘}'(vi) < if,‘l’r(ﬂz) (3)

The aim of this paper is to establish the refinements of majorization inequalities of Theorems 1-3.
To achieve this, we will first establish an equality by using Taylor theorem with mean-value form
of the remainder, which enables us to deduce the refined versions of majorization inequalities
mentioned above.

2. Lemma

Lemma 1. Let v = (v1,va,...,V0), & = (01, 82,...,0,) be two n-tuples, v;, %; € (a,b) (i =1,2,...,n),
and let 01,0y, . .., Ly be real numbers. If ¥ : [a,b] — R is a function such that ¥ € Cla,b] and ¥" exists on
(a,b), then there exists T; between v; and O; satisfying

n n ‘Y )
LY (v) = Z‘Y (vi)ti( )+ 2

i=1 i=1

Y O¥(8) -

i=1

)

M-

Proof. Using the Taylor’s formula with the Lagrange remainder (mean-value form of the
remainder) gives

¥ (@ (% —v;)?, ©)

Y(0) ="¥(v)+ M(191' — i)+,

1!
where v;,9; € (a,b), 7; is a real number between v; and 0; (i = 1,2,...,n).
Multiplying both sides of (5) by ¢; and taking summation overi (i = 1,2,...,1), we get

n

) n ‘Y”(T,)
Z 19) = Z(‘F 1/1 lZilP (1/1')6,'(191'71/1')4*2 5 é,‘(l?i*vl')z/

i=1

which is the desired equality (4). The proof of Lemma 1 is complete. [

3. Main Results

In this section, we establish some refinements of the majorization inequality.
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Theorem 4. Let v = (vy,vy,...,Vn), & = (01, B2, ..., %) be two n-tuples, v;, %; € (a,b) (i=1,2,...,n).
Ifv < ¢and ¥ : [a,b] — Ris a twice differentiable convex function, then there exists a real number T; between
V[ and 19[1-] (i=1,2,...,n)such that

n n nog’ (o
1w (e) - 1w = 52 T 0 - vy ©
where v > V) > e > Y[y and 19[1] > 19[2] > 0 > 19[”] are rearrangements of v and ¢ in a

descending order.

Proof. Using Lemma 1 with {; =1, v; = Vi, 9 = l9[i] (i=1,2,...,n), one has

n n n

11',// T')

L ¥(00) - ¥ v) ;‘1’ D@ —ve) + L (B — vi)*
that is
n n n n ‘Y”(T[) )
Z{Y(ﬂ’)_, 1‘*’ Z{‘Y Vi) (9 V[])+Z;,T(l9[i] =)™ @)
i= i= i= i=

where v;, 9; € (a,b), 7; is a real number between vj;; and 8y (i = 1,2,...,n).
Let

k k
Akzzﬂ[i]/ BkZZV[Z-] (kZl,Z,...,ﬂ), AOZB(]:O.
i=1 i=1

Considering the first term in the right hand side of (7), we have

n

z‘FI (1/[1])(19[1] — V[i]) = é‘}/ (V[i])(Ai - Ai—l - Bi + Bi*l)
= VW () (A= B) — ¥ () Ay — Biy)

— ¥ (V) (An — Ba) + Y (F () — ¥ (W) (A — By).
i=1

It follows from v < ¢ that A, — B, =0and A; — B; > 0fori=1,2,...,n—1.
Additionally, since ¥ is a continuous convex function on [4,b], we deduce from Vi 2 Vit
(i=1,2,...,n—1)that

!

¥ (v) =¥ (V) 20 for i=1,2,...,n—1.
Hence

Z‘F —1/[1])_0,

which, along with the equality (7), leads to the required inequality (6). This completes the proof of
Theorem 4. [J

Remark 1. The inequality of Theorem 4 is a refinement of the inequality of Theorem 1, since the term

o (B — vy

in inequality (6) is nonnegative.

In the following, we provide two refinements of majorization inequality by keeping one of the
tuples decreasing (increasing).
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Theorem 5. Let v = (vq, 1y, ...,vn), 8 = (01, Oa,. .., 0y) be two n-tuples, v;,9; € (a,b) (i =1,2,...,n),
let'¥ : [a,b] — R be a twice differentiable convex function, and let {1, ¢y, ..., ¢, be real numbers such that
YE by < YR 00 for k=1,2,..,n—Tand Y1 G, = Y1, 40,

(i) If v is a decreasing n-tuple, then there exists a real number T; between 140 and 19[1'] i=1,2,...,n)

such that
GY(8) =Y ¥ (v) = ) ¥ éTi)fi(ﬂi —v)% ®)

1 i=1 i=1

-

1

(ii) If & is a increasing n-tuple, then there exists another real number o; between vy and 0 (i =1,2,...,n)
such that

/r

n n n
Y G (vi) = ) G (%) E i — )% ©)
i=1 i=1 i=1
Proof. (i) It follows from Lemma 1 that
n n no, n \I;” T
Y 4y Z E‘Y W) bi(% —vi) + Y § l)fz‘(ﬂi — )%, (10)

i=1

I
_

i i=1

where v;,9; € (a,b), 7; is a real number between v; and ¢; (i = 1,2,...,n). Let
k k
Akizf,'ﬂ,‘, Bk:Zfﬂ/i (kil,z,...,l’l), A():BO:O.
i=1 i=1

Then, wehave A; > B; (i=1,2,...,n—1), A, = B,, and

Y ()40~ ) = 3 ¥ (W) (A — Ay — Byt Biy)

71

=

¥ (vi11))(A; — By).
z:l
Noting that ¥ is a continuous convex function on [a, b], and v is a decreasing n-tuple, we obtain
Y () =¥ (vipq) > 0fori=1,2,...,n—1.
Hence

Y ¥ (1) (9 —vi) >0,
=1

which, together with inequality (10), leads to the required inequality (8).
(i) Similarly, we can prove the inequality (9) under the condition that @ is an increasing n-tuple.
The proof of Theorem 5 is complete. [

Remark 2. The inequality (8) of Theorem 5 is a refinement of the inequality (2) of Theorem 2 in the case when
01,0y, ...,y are positive numbers.

Theorem 6. Let v = (vq,1y,...,vn), 8 = (01, Oa,. .., 0y) be two n-tuples, v;,9; € (a,b) (i =1,2,...,n),
let ¥ : [a,b] — R be a twice differentiable and increasing convex function, and let {1, 0y, . .., €, be real numbers
such that Zle liv; < 25'(:1 0;9; for k=1,2,...,n. Ifvis adecreasing n-tuple, then there exists a real number
T; between v and ﬁ[i] (i=1,2,...,n)such that

f GY (%) — ifz“f’(vi) > i: ¥ éTi)fi(ﬂi )% (11)
i1 =1 ‘

i=1
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Proof. Let
k k
Ak:Z&ﬂi, Bk:ZKiI/,‘ (k:1,2,...,71), A():BO:O.
i=1 i=1

By Lemma 1, for any v;, 9; € (a,b) (i = 1,2,...,n), there exists a real number between v; and ¢;
such that

r/

n n n n
Y0~ Y 0¥ () = Y ¥ (0w + Y T e, w2
i=1 i=1 i=1 i=1
n , n Y”
— Y ¥ (1)(Ai = Ay — Bi+ Biy) (%) (8, — vy)?
i=1 i=1
, n—1 n ‘YH ,
=Y (vu)(An — By) + Z( (1/1) Y (Vit1)) )+ Z — ;).
i=1 i=1

Since ¥ is a continuous convex function on [4,b], and v is a decreasing n-tuple, we obtain
¥ (v;) =¥ (vi41) = 0 fori = 1,2,...,n — 1. In addition, since ¥ is an increasing function on [a, b],
we get ¥ (vn) > 0. Now, by using the assumption conditions A; > B; (k = 1,2,...,n), we conclude that

n—1
¥ () (A = Bu) + 1 (F (vi) =¥ (vi11))(A; = B)) 2 0.

Therefore, we have

iéi‘l’(ﬁi) - f:gi‘lj(vi) 2 i:
i=1 i

i=1

The Theorem 6 is proved. [

Remark 3. The inequality (11) of Theorem 6 is a refinement of the inequality (3) of Theorem 3 in the case when
l1,0y, ..., L, are positive numbers.

Theorem 7. Let v = (vy,va,...,vn), & = (01, Oa,...,0y) be two n-tuples, v;, 9; € (a,b) (i =1,2,...,n),
let ¥ : [a,b] — R be a twice differentiable convex function, and let (1,05, . . ., Ly, be positive numbers. If v and
¥ — v are monotonic in the same sense, then there exists a real number T; between 140 and 19[1'] (i=1,2,...,n)
such that

n n 1 n , n
;éi‘y(ﬁz) - ;&‘Y(Vi) 2 W—%;&T (Vz)i;[z(‘9 - Vi)
n ‘Y” 1
+) 2(T)€i(l9i - )% (12)

Proof. Since ¥ is convex function, and tuple v and tuple ¢ — v are monotonic in the same sense, we
conclude that ¥/ (v) and ¢ — v are monotonic in the same sense.
Using the Chebyshev’s inequality for weights ¢4, (5, ..., {;, we obtain

n

Z ZZ‘P'(V, —v;) ZZ‘F’ Vi Z&(ﬁ,-fvi).

i=1 =1

On the other hand, by Lemma 1, for any v;, 9; € (a,b) (i = 1,2,...,n), there exists a real number
T; between v; and ¢; such that

n

Y0~ Y0¥ () = Y 0 —v) + Y a0 v
i=1 i=1 I

i=1 i=1
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Hence, we get

n n 1 n

Z&"F(ﬂi) - Zfi‘Y(Vi) > W Zg‘{/ Vi le (8 —vi)

i=1

n
‘I’
1/,')2.

This proves the required inequahty (12) in Theorem 7. [J

Applying an additional condition Y} ; 4iv; < Y {;0; to inequality (12), we obtain the
following result.

Corollary 1. Let v = (vq,va,...,Vn), 8 = (81, 02, ..., 0y) be two n-tuples, v;, ¥; € (a,b) (i =1,2,...,n),
let ¥ : [a,b] — R be a twice differentiable and increasing convex function, and let {1, (s, ..., Ly be positive
numbers. If v and ¢ — v are monotonic in the same sense, and Y ;1 Liv; < Y1 £;9;, then there exists a real
number T; between v and 19[1'] (i=1,2,...,n)such that

Y G¥(0) Y (¥() > ) o8 = vi)?. (13)
i=1 i=1

i=1
4. An Application
In this section we establish a new fractional inequality to illustrate the application of our results.
Theorem 8. Let 1, G2, ¢3 be positive numbers and &y > Go > 3. Then we have the inequality

1,11 1 1
281 28 283 G1t+é G1t83 G2tGs

(81— &)? N (28, — & — &3)? n (82— 23)?

> . 14
CHE R T m@te? 6 o) .
Proof. From the given condition ¢; > § > 3, it is easy to check that
G1+622>81+83 =6 +G3 281 > 26 > 283
and
(14 82,81+ 83,62 +G3) < (261,282,283).
Using Theorem 4 and taking v = (&1 + &2, &1 + 83,82+ 3), 8 = (261,262,283), ¥(x) = }, x €
(0, +00) in (6), we obtain that there exists a real number T; between Vi) and (9 (i =1,2,3) such that
1 1 1 1 1 1
201 28 283 Git+G Gi1t+ds G+ 33
1 1 1
> 5@ -0+ 500 -0 -5+ (@) (15)
1 2 3

Further, by (5) we find that 17, T, 13 satisfy

11 a=6 1. .
26 G+ (F14 &)? * T (€1 -&)%
1 1 25,-C01—0Cs

- — 2
28, &+ & (§1+€3) + Tz( $r—C1— 63) ’
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L B ! = - 83— G i _ 2
263 CZ + 63 ((’;’2 4 (;:3)2 + Tg, (63 (:2) .

From the above equations, we have

7 =285+ 8)% T =28(5 +8)% B =288+ 5)” (16)

Combining (15) and (16) leads to the desired inequality (14). The proof of Theorem 8 is complete. [
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1. Introduction

In 1906, L. Fejér [1] proved the following integral inequalities known in the literature as
Fejér’s inequality:

(50) [ s [ soscone < L0 10 [ v

where f : [a,b] — R is convex and g : [4,b] - R" = [0,4o0) is integrable and symmetric to
x = b (g(x) = g(a+b—x),Vx € [a,b]). Ifin (1) we consider g = 1, we recapture the classic
Hermite-Hadamard inequality [2,3]:

+b fla) + f(b)
f(az _bfa/f x)dx < 2

In [4], two difference mappings L and P associated with Hermite-Hadamard’s inequality have been
introduced as follows:

L:[ab] >R, L) = f(”f(t /f 5)ds

P:lab] >R, P(t):/uf(s)ds—(f—”)fc;t)'

Some properties for L and P, refinements for Hermite-Hadamard’s inequality and some applications
were raised in [4] as well:

Mathematics 2019, 7, 802; doi:10.3390 / math7090802 126 www.mdpi.com/journal /mathematics
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Theorem 1 (Theorem 1 in [4]). Let f : I C R — R be a convex mapping on the interval I and let a < b be
fixed in I°. Then, we have the following:

(i) The mapping L is nonnegative, monotonically nondecreasing, and convex on [a, b]
(ii)  The following refinement of Hadamard'’s inequality holds:

bfla/:f( s Sbf/f dH(Z Z)f(a);f(y)gf(a);rf(b),

foreachy € [a,b].
(iii)  The following inequality holds:

NGRS CES Y

flat+ (1 —a)s) + f(a )[
2

uc/gtf(u)du +(1—w) /ﬂsf(u)du - /:Huia)s f(u)du,

forevery t,s € [a,b] and each a € [0,1].

s—a)—

+(1—a)s—a] >

Theorem 2 (Theorem 2 in [4]). Let f : I C R — R be a convex mapping on the interval I and let a < b be
fixed in I°. Then, we have the following:

(i) The mapping P is nonnegative and monotonically nondecreasing on [a, b].
(ii)  The following inequality holds:

0 < P(t) <L(t), forall t € [a,b].

(iii)  The following refinement of Hadamard's inequality holds:
a+b a+b a+
1(55) < lo-ar(55) - w-ar(557)]+

[ 76 d<—/f

forally € [a,b].

The main results obtained in [4] (Theorems 1 and 2) are based on the facts that if f : [2,b] — R
is convex, then for all x, i € [a,b] with x # y we have (see, [5,6]):

f<x;y 7x/ Flsyds < 1 );f(y),

and
fx)=fly) > (x=y)fi(y),

where f/, (y) is the right-derivative of f at y.
Motivated by the above concepts, inequalities and results, we introduce two difference mappings,
Ly and Py, related to Fejér’s inequality:

Ly :[a,b] - R, Ly(t) = M/w ds—/f
Py:la bl =R, /f dx—f(a—z”>/ w(x)dx.

In the case that w = 1, the mappings L, and P, reduce to L and P, respectively.
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In this paper we obtain some properties for L;, and P, that imply some refinements for Fejér’s
inequality in the case that w is a nonsymmetric monotone function. Also, our results generalize
Theorems 1 and 2 from Hermite-Hadamard'’s type to Fejér’s type. Furthermore as applications,
we find some numerical and special means type inequalities.

To obtain our respective results, we need the modified version of Theorem 5 in [7] which includes
the left and right part of Fejér’s inequality in the monotone nonsymmetric case.

Theorem 3. Let f : I C R — R bea convex function on the interval I and differentiable on I°. Consider a,b € I°
with a < b such that w : [a,b] — R is a nonnegative, integrable and monotone function. Then
(1) Ifw'(x) <0 (w'(x) 20),a <x<band f(a) < f(b) (f(a) > f(b)), then
b b
/ f(x)w(x)dx < M/ w(x)dx. ()
a

a

(2) Ifw'(x) >0 (w'(x) <0),a <x<band f(a) < f(*42) (f(a) > f(*42)), then

f<u —; b) Lbf(x)w(x)dx < /abf(x)w(x)dx. 3)

The main point in Theorem 3 (1) (w'(x) < 0), is that we have (2) for any x,y € [a,b] with
f(x) < f(y) without the need for w to be symmetric with respect to XTW Also similar properties hold
for other parts of the above theorem.

Example 1. Consider f(x) = + and w(x) = tlzfor t > 0. It is clear that f is convex and w is nonsymmetric
and decreasing. If we consider 0 < x < y, then from the fact that (y — x)? > 0 we obtain that

2 < x+y.
x+y — 2xy

This inequality implies that

2 <y — x) < y? —x?
x+y\ xy /T 2%y
It follows that

2 1 1 1 1
x+y(}7§> =2 22

1\ V1 v 1
<@>A tfzdtg/x Sdt,

shows that f and w satisfy (3) on [x,y], where w is not symmetric. Also, we can see that f and w satisfy (2).

So

2. Main Results

The first result of this section is about some properties of the mapping L,, where the function w is
nonincreasing.

Theorem 4. Let f : I C R — R bea convex function on the interval I and differentiable on I°. Consider a,b € I°
with a < b such that w : [a,b] — R is a nonnegative and differentiable function with w'(x) < 0 for all
a<x<b. Then

(i) The mapping Ly, is nonnegative on [a,b), if f(a) < f(t) forall t € [a, b].
(ii) The mapping Ly, is convex on [a,b], if f is nondecreasing. Also Ly, is monotonically nondecreasing
on [a,b].
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(iii)  The following refinement of (2) holds:

/bfxwx <

/f derM/yw(x)dxg
FOEIO) i,

a

foranyy € [a,b] with f(a) < f(y).
(iv) If f is nondecreasing, then the following inequality holds:

/f x)dx+ (1 —1t) /f dxf/tu+(17t)vf(x)w(x)dx§
tf( )'Zi'f( )/a w(x)dx+( *t)f( )+f(u) / w(x)dx

Ja

_flu+(1 —;) )+ fla )/m+1 v w(x)dx,

forany u,v € [a,b] and each t € [0,1].
(v) If f' € L([a, b)), then for each t € [a, b] we have

—a)2 gt
Lot < U5 [Cat)lf @)ax

Furthermore when |f'| is convex on [a, b], then:
Lo < S5 (I @1 [ (- + 170 [ -

Proof. (i) We need only the inequality

/ fx)w(x)dx < w/ﬂtw(x)dx,

forall t € [a,b]. This happens according to Theorem 3 (1).
(ii) Without loss of generality for a <y < x < b consider the following identity:

Luy(x) = Lo(y) =
M /xw(s)ds _ M /y w(s)ds — ./yxf(s)w(s)ds

Ja a
Dividing with “x — y” and then letting x — y we obtain that

!

2L, () = fla)o(v) + FW)aly) = L) [ wls)ds

Also from the convexity of f we have
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which, along with the fact that w is nonincreasing, implies that
fily )/y w(s)ds < %fg(y) /ay w(s)ds
< f) +f(a) fy) +fla) v
< /a w(s)ds — ﬁ/a w(s)ds (10)

xX—y

+1£) =~ fluty) - LI [usyas

So from (9) and (10) we get

Ly < (11)

f(x) + f(a) fy) + f(a) f)+fy) [
2(x—v) /a w(s)ds — 2x—1) /u w(s)dsfw/y w(s)ds.

On the other hand from (8) and Theorem 3 (1), we have

Ly(x) — Lo(y) >

X—y
fx)+ fla) ¥ fy) +f(a) fE)+fy) [~
2(x—y) /tzw(s)ds 2(x—) /u w(s)ds — 2x—y) /yw(s)ds,
and, along with (11), we obtain that
Lop(x)

This implies the convexity of Ly (t).
For the fact that L is monotonically nondecreasing, from convexity of f on [a, b] we have

fi) = T
forall y € [a,b] and so
Lw(xx:;w(]/) SL () = ’+(y)/a w(s)ds + LAY ) (v) f(y)zw(y)

for any x > y.
(iii) Since Ly, is monotonically nondecreasing we have 0 < Ly, (y) < Ly (b), for ally € [a,b] and so

fy) 1) [ wix = [ o <

M /ab w(x)dx — /abf(x)w(x)dx

which implies that

/b f(x)w(x)dx + M /y w(x)dx < M /bw(x)dx. (12)
Yy

Ja Ja
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Also, by the use of Theorem 3 (1) we get

/ F)w(x)dx + L@ ”;f(y) /‘y w(x)dx (13)

> /y f(x)w(x)dx + ‘/uy f(x)w(x)dx = /abf(x)w(x)dx

Now from (12) and (13), we have the result.
(iv) Since Ly, is convex, then from the fact that

Ly(tu+ (1= £)v) < tLy(u) + (1 — t)Ly(0),

forany u,v € [a,b] and each t € [0,1], we have the result.
(v) The following identity was obtained in [8]:

f—a)?
f() f(t) / dx_/f _ 2) /Olp(s)f’(sa-i-(l—s)t)ds, (14)

for any t € [a,b] where

p(s) = /51 w(ua+ (1 — u)t)du + /Sow(ua +(A—uwdy,  se[01].
Since w is nonincreasing, then we obtain
/Slw(uﬁ (1—u)t)du < w(sa+ (1—s)t)(as+ (1 —s)t —a) =
w(sa+ (1—s)t)(1—s)(t —a),
and
[ wua (1~ upr)a < w(sa+ (1 - $)0) (50— (1 5)1) =
w(sa+ (1—s)t)s(t—a).

So
lp(s)| < w(sa+ (1—s)t)(t—a), s €[0,1]. (15)

Now by the use of (15) in (14) we get
(t—a)® 1! /
[La(®)] < S5 [Cw(sa+ (1=9))If (sa+ (1=9)1)lds, (16)
for any t € [a,b]. Using the change of variable x = sa + (1 — s)t and some calculations imply that
(t—a)* rt /
La()] < S5 [Tl (],

for any t € [a,b]. Furthermore if | f’| is convex on [a, b], then from (16) and by the use of the change of
variable x = sa + (1 —s)t we get

Loty < ¢ W2 ipe

o725

which implies that
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La®)] < L2170 |/ (t = x)w(x)dx + |f (¢ |/x—a x)dx],

forany t € [a,b]. O

Remark 1. (i) By the use of Theorem 3 (1), it is not hard to see that if w is nondecreasing on [a, b], then some
properties of Ly, and corresponding results obtained in Theorem 4 may change. However the argument of proof
is similar. The details are omitted.

(ii) Theorem 4 gives a generalization of Theorem 1, along with some new results.

The following result is including some properties of the mapping P, in the case that w is

nondecreasing.

Theorem 5. Let f : I C R — R bea convex function on the interval I and differentiable on I°. Consider a,b € I°
with a < b such that w : [a,b] — R is a nonnegative and continuous function with w'(x) > 0 for all
a<x<b. Then

(i)
(ii)
(iii)

(iv)

(v)

Py, is nonnegative, if f(a) < f(%4*) forany t € [a, b].
If for any x < y we have f( x) < f(*3Y), then Py, is nondecreasing on [a, b].
If f" € L([a, b)), then for each t € [a, b] we have

att

Pulb)] < (=) [ 7wl -alf @ldx+ [ w0l @] a7

Furthermore when | f'| is convex on [a, b], then:

ot <[ [ 0t -0 txt [ o= R If @l a9

att t

|:/u ’ w(x)(x —a)?dx + w(x)(tfx)(xfu)dx} LF' ()]

att

2

The following inequality holds:

Pu(t) — Lu(t) < / F()w(x)dx, (19)

provided that f(a) < f (%) forall t € [a, b].
If for any x < y we have f(x) < f(xzﬂ) then the following refinement of (3) holds:

f(u;b)/ubw(x)dxg
/f dx+f(a+b)/ w(x)dxff(aT—H)/tw(x)dxﬁ (20)
/ f(x)w(x)dx,

forall t € [a,b].

Proof. (i) It follows from Theorem 3 (2).
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(i) Suppose that a < x < y < b. So from Theorem 3 (2) and the facts that w is nondecreasing and
f is convex, we get

Py(y) — Pu(x) =
/ F(Dw(t)dt — (a;ry>/yw(t)dt—/xftwtdt—&—f(a;rx)/axw(t)dt:
xf(tw dt+f(a+x)/a (t)dt,f(l;y)/ w(t)dt >
f(xer )/X dt+f(a+x)/a w(t)dtff(a;y i wo(t)dt >
F(EE) - ve + () (- aywla) - F(L) v - ayely) >
J

(D) -0+ () =) = () - )] wla) > 0.

This completes the proof.
(iii) The following identity is obtained in [8]:

/ﬂtf(x)w(x)dx -(*3) /atw(x)dx — (t fa)z/ol K(s)f' (sa+ (1—s)t)ds,

forany t € [a,b], where

/Osw(uaJr(lfu)t)du, s€[0,3);

k(s) = 1
—/ w(ua+ (1 —u)t)du, se€ [3,1].
s
By similar method used to prove part (v) of Theorem 4, we can obtain the results. We omitted the
details here.
(iv) By Theorem 3 (1), for any ¢ € (a, b] we have

/ f X)dx < % /%t 7(%)2”( )/u w(x)dx, 1)
and
att art
B e A

[ e < [f(45) + fl) 1)) [ wta,

which is equivalent with

/f X)dx < —Po(t) + Lot +z/f (x)dx.

This implies the desired result.
(v) The left side of (20) is a consequence of assertion (i) and the following inequality:

a+t

/;f(x)w(x)dx 7f(T> ./utw(x)dx >0,

forallt € [a,b].
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Since Py, is nondecreasing we have Py, (t) < Py (b) forall t € [a,b], 1. e.

/‘tf(x)w(x)dx - f(a —; t) /.t w(x)dx <

a

/b f(x)w(x)dx — f(a ; b) /b w(x)dx.

a

Then we have the right side of (20). O

Remark 2. (i) By the use of Theorem 3 (2) (w is nonincreasing on [a,b]) in the proof of Theorem 5, we can
obtain some different properties for P, with new corresponding results. The details are omitted.
(ii) Theorem 5 gives a generalization of Theorem 2, along with some new results.

3. Applications

The following means for real numbers a,b € R are well known:

A(a,b) = ? ; b arithmetic mean,
prt1 _ gntl % )
Ly(a,b) = {m] generalized log—mean, n € R, a < b.

The following result holds between the two above special means:
Theorem 6. Forany a,b € Rwith0 < a < band n € N we have
A"(a,b) < Lyj(a,b) < A(a",b"). (23)

In this section as applications of our results in previous section, we give some refinements for the
inequalities mentioned in (23).
Consider a,b € (0,0) with a < b. Define

w(x) =

flx) =x", x € [a,blandn > 1;
x5, x € [a,b]and s € [0,1) U (1,0).

From (4) with some calculations we have

n—s+1 _ n—s+1
b a -
n—s+1 -
n—s+1 _ yn—s+1 n n 1-s _ ,1-s
b t " a +t <t a ) -
n—s+1 2 1-s -
a4+ bt bl—s _ al—s
2 ( 1—s )’

forall t € [a,b], which implies that

(b—a)L,=3(a,b) <

tlfs _ alfs
_ n—s nogn
(b= L) + A" ) () < (24)
hl—s _ alfs
n n
A1) (=)

Inequality (24) gives a refinement for the right part of (23).
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In the case that s = 1 we have
(b—a)L""}a,b) < (b— LI~ (1) +ln£A(a”,t") < ln%A(u”,b”).

In the case that s = 0 we get

L"(a,b) < (H)Lﬁ(t,b) + (Z:Z)A(a”,t”) < A(a",b"), (25)

forallt € [a,b]. In fact inequality (25) is equivalent with the first inequality obtained in the applications
section of [4].
Now with the same assumption for f and w as was used to obtain (24), by the use of (20) we get:

A"(a,b)(%) +(t—a)L=3(ta) — A"(u,t)(%) < (26)

(b— )L (b,0),

forallt € [a,b] and s € [0,1) U (1, 00). Inequality (26) gives a refinement for the left part of (23). Also if
we consider s = 1, then we obtain

ln%A"(ﬂ,b) < anA”(a,b) + (t— a)LZj(t,a) - lnéA"(a,t) <(b- u)LZj(b,u),
forall t € [a,b]. In a more special case, if we set s = 0, then we get:

=0 (L) - A0, )] < Li(b,a),

A"(a,b) < A"(a,b) + (

forallt € [a,b].
Finally we encourage interested readers to use inequalities (4)—(7) and inequalities (17)-(20),
for appropriate functions f and w to obtain some new special means types and numerical inequalities.
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Abstract: By using Fink’s Identity, Green functions, and Montgomery identities we prove some
identities related to Steffensen’s inequality. Under the assumptions of n-convexity and n-concavity,
we give new generalizations of Steffensen’s inequality and its reverse. Generalizations of some
inequalities (and their reverse), which are related to Hardy-type inequality. New bounds of Griiss and
Ostrowski-type inequalities have been proved. Moreover, we formulate generalized Steffensen’s-type
linear functionals and prove their monotonicity for the generalized class of (1 + 1)-convex functions
at a point. At the end, we present some applications of our study to the theory of exponentially
convex functions.

Keywords: Steffensen’s inequality; higher order convexity; Green functions; Montgomery identity;
Fink’s identity

1. Introduction

Integral inequalities such as Hardy’s inequality, Steffensen’s inequality, and Ostrowski’s inequality
are topics of interest of many Mathematicians since their pronouncement. Several generalizations
of these inequalities have been proved for different classes of functions, such as convex functions,
n-convex functions, and other types of functions, for example see [1-4]. Moreover, integral inequalities
have been proved for different integrals, such as Jensen-steffensen inequality for diamond integral
and bounds of related identities have been obtained in [5]. Other than that, Hardy’s inequality for
fractional integral on general domains have been proved in [6].

Steffensen’s inequality was proved in [7]: if ¢, f : [¢c,d] — R, with ¢ be a decreasing function and
function f having range in [0, 1], then

de(z)f(z) dt < /CC+61/J(Z) dz, wheref):/cdf(z) dz. (1)

A massive literature dealing with several variants and improvements of Steffensen’s inequality
can be seen in [8,9] and references therein. A well known generalization of Steffensen’s inequality
has been presented in [4]. Several results of [4] have been recently generalized by using non-bounded
Montgomery’s identity in [10]. To proceed further, we recall a nice generalization of Steffensen’s
inequality proved by Pecari¢, see [11].

Theorem 1. Let ¢ : | — R be a increasing function (] is an interval in R such that ¢, d, f(c), f(d) € J) and
f : [c,d] — R be increasing and differentiable function.

Mathematics 2019, 7, 329; doi:10.3390 / math7040329 137 www.mdpi.com/journal /mathematics
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(i) If f(t) < t, then
[ y@< [yre e ®
f(e) e

(ii) If f(t) > t, then (2) holds in reverse direction.

Remark 1. We can consider f to be absolute continuous instead of differentiable function and the suppositions
of Theorem 1 can also be weakened. In fact for an increasing function ¢, the function ¥ (x f P(z)dz is
well defined and satisfies ¥’ = 1 at all except the set of points with measure zero. One can substztute x = f(z)
in (2) (see [12] (Corollary 20.5)), provided that f is absolutely continuous increasing function, therefore

f(d) d
F() ~¥(f(0) = [ plx)dx = / YR )iz < [ 97 ()i, @
fle) c

where the last inequality holds when f(z) < z. In [1], substitutions presented conclude that (3) yields (2) and
generalization of a result proved by Rabier in [4], which gives (1).

Recently, Fahad et al. introduced new generalization [1] of (1) by extending the results of [4,11].
By using Hermite interpolation, several inequalities related to the results of [1,4,11] have also been
proved in [13]. We consider the important conclusions given in [1].

Corollary 1. Suppose ¢ : | = R, f : [c,d] — R two differentiable functions with f non-decreasing as well,
where [ is an interval containing [c,d], f(c) and f(d). If ¢ is convex, then:

(i) If f satisfies condition (i) given in Theorem 1, then

d
YU <P + [ ¥R (@) dz @

(i) (4) holds in reverse direction, if f satisfies condition (ii) given in Theorem 1.

Corollary 1 gives (3) and therefore leads to (1), (2) and generalization of Rabier’s result in [4].
Next we narrate some further important results of [1].

Corollary 2. Consider ¢ : [0,d] — R be differentiable convex function with {(0) = 0 and f : [0,d] —
[0, +00) be another function.

(1) Ifftf(z) dz < t for every t € [0,b], then

0
d d
v ( [f@ dz) < [VEfE ©
0 0
(ii) (5) holds reversely if t < [t ) dz for every t € [0, d].

0
Corollary 3. Consider 1 and f as defined in Corollary 2 and let A : [0,d] — [0,4c0) and denote

AGz) = [A(t)dt.

“\&.
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t
(i) U{f(z) dz <t for every t € [0,d], then

t

d d
[rw ( [f@ dz) it < [ M@V ()f(z) dz.
0 0 0

t
(if) (6) holds reversely if t < [ f(z) dz for every t € [0,d].
0

Following two lemmas will be useful in our construction as well, see [14,15].
Lemma 1. For a function ¥ € C2([c,d]), we have:

90 = L4+ Sy + [TGa@upwan

where % ife<u<g
Gun(Gu) = T
A& u) w-d)e-0) iz <y <d.

_ c—u, zfcguéﬁ,

G*z(é"/“)—{ c—¢, iff<u<d

_ ¢—d, Z.fCSMS‘:/

G*,3(§r“){ u—d, ifE<u<d

- g—C, l’fCSMSg,

G*,4(C/“){ u—c, ifE<u<d.

and
| d—u, ife<u<g,
Gw(@”){ d—¢, ifé<u<d.

Lemma 2. Let ¢ € Clc,d], then

d
9@ = 9+ [ pa(uy (0 du
and

d
$@) = () + [ pal@ ') an
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t—d,

ifc<u<t<d.

where
u—c H
- q=c’ ifc<u<g,
pl(f;,u){ F deensd (20)
], ifc<u<g,
pa(E,u) = { L eewed 1)
1, ife<u<yg,
p3(€’u):{ 0 i§§<u<§i. @)
Clearly,
pi(¢,u) = BG%(EC,V,) for all i =1,2,3,
_ 9Gus5(G,m) _ 9G.a(Gu)
p2(8,u) = o and p3(g,u) = o (23)
Throughout the calculations in the main results, we will use p;(¢, u) corresponding to 25 ‘g M) for
i=1,2,3, and for Mééu) % we use p3(¢,s) and pa(¢, s), respectively.
We also require the classical Fink’s identity given in [16]:
Lemma 3. Letc,d € Rand ¢ : [c,d] — R, n > 1and p\"=) is absolutely continuous on [c,d).
o) = 7= “pes— T () (D6 - o - g D @) —d)*)
d—c S\ d=c)w!
d
—_ / (0 — BT WIEA (1, )™ (1), (24)
(n— 1
where WA (t,1) is given by:
— ifc<t<u<
Wiedl (1, u) = { E-c festsu<d, (25)

Divided differences are fairly ascribed to Newton, and the term “divided difference” was used by
Augustus de Morgan in 1842. Divided differences are found to be very helpful when we are dealing
with functions having different degrees of smoothness. The following definition of divided difference

is given in [8] (p. 14).

Definition 1. The nth-order divided difference of a function ¢ :

[c,d] — R at mutually distinct points

20, ..., Zn € [c, d] is defined recursively by
zigl =9 (z), i=0,...,n
21,z ] — (20, Zn-1s
oy znip) = 12 Y) Jzoo 2i¥] (26)
n
It is easy to see that (26) is equivalent to
Il} n
[zo, .-, zn ) = Z v where q(z) =[] (z—z)
S =0
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The following definition of a real valued convex function is characterized by nth-order divided
difference (see [8] (p. 15)).

Definition 2. A function ¢ : [c,d] — R is said to be n-convex (n > 0) if and only if for all choices of (n + 1)
distinct points z, ..., zn € [c,d), [20,. .., 2zn; ] > 0 holds.

If this inequality is reversed, then 1 is said to be n-concave. If the inequality is strict, then 1 is said to be a
strictly n-convex (n-concave) function.

Remark 2. Note that 0-convex functions are non-negative functions, 1-convex functions are increasing
functions, and 2-convex functions are simply the convex functions.

The following theorem gives an important criteria to examine the n-convexity of a function
(see [8] (p. 16)).

Theorem 2. If (") exists, then i is n-convex if and only if (") > 0.

In this article, we use Fink’s identity, Montgomery identities, and Green functions to prove some
identities related to Steffensen’s inequality. By using these identities we obtain a generalization of (4).
In addition, we construct new identities which enable us to prove generalizations of inequalities (5) and
(6) as one can obtain Classical Hardy-type inequalities from them, see [1]. We use Cebyéev functional to
construct new bounds of Griiss and Ostrowski-type inequalities. Finally, we give several applications
of our work.

2. Main Results

For our convenience, we use the following notations and assumptions:

d

S1(9, fre,d) = 9(f(c)) + / ¥ (2)f'(2) dz — p(f(d)).

c

d d t
S5(p.fwd) = [ MY (E)f(E)dz— [ A ( / f(Z)dZ) at
0 0

(A1) Forn € N,n > 3,let ¢ : [c,d] — R be n times differentiable function with w("’” absolutely
continuous on [c, d].

(Ay) Forn € N, n >3, let ¢ : [0,d] — R be n times differentiable function with g(0) = 0 and ("~ 1)
absolutely continuous on [0, d].

The first part of this section is the generalization of (4). For this, we start with the following
theorem:

Theorem 3. Consider (A1) with f be as in Corollary 1 (i) then:
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(a) Forj=1,2,4,5, we have:

i d
1(9f,c.d) = 2L [5G, (u)fcd)mzwl(%)x

(¢<w+1 fsl Guj(u), fro,d) (u —d)du — p@+(c) fsl Gl )f,c,d)<u—6)“’du> (27)

= 3 fdtp (f S1(Gu (1), e d) (u — t)"SWIA (¢, u)du> dt.

(b) Ify'(c) =0, then

d
(lprd>_Lfsl de)du+Eztrl(ndzg)uzz')X
<¢<w+n(d> 51(Guatut). £ ) a9t (e) 5160 e - c>Wdu>

d
+ iy !ﬂ” <[Sl u), f,c,d)(u— t)”‘3W[Cfd](t,u)du> dt.

Proof. (a) We first prove by fixing j = 1, other cases for j = 2,4,5 can be treated analogously.
Utilizing (7) and (17) for i and ¢’ respectively, we get

S _ (0 (1) db = EE) fle—c

W fred) =y (f(C))*lP(f(d))fcf YO (1) dt = L) + L p(a)+
d

fc*l )y (u) du — LD p(c) — LD p(d) — [ G 1 (F(d), u)y" () du

@y , § " ,
+ [ | F=E + [ (b w) g (u) du | f(¢) dt.
c c

Simplifying and employing Fubini’s theorem, we get

S1(y, f,e,d) = LT Dy(c) - LSy (g)
+ [ [Gur ((c) 1) = Gun(F(d), )] 9" (1) du

dd
+ DD () — £(e)) + [ [ pu(t,u)f (09" (u) dt du

Now by replacing n with n — 2 in (24) for ¢/, we have:

d ! /
Si(y, f,cd) = [$1(G f,gd)(%_i_zn 3<nd uc,)wz')x
d
( (@ (d) (u —d) ,¢<w+l>(c)(u,c)w> Gty J =Wl u)zp(")(t)dt) du

Rest follows from simplification and Fubini’s theorem.
(b) Using assumption ¢’ (c) = 0 and employing a similar method as in ().
O

From the next two theorems we get a generalization of Steffensen’s inequality and its reverse by
generalizing (4) and its reverse.
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Theorem 4. Consider (A1) with f be as in Corollary 1 (i) and let
(u— )" 3wl (£ u) > 0. (28)
(a) If ¢ is n-convex, then for each j € {1,2,3,4,5} (where ' (0) = 0 for j = 3), we have:

Si(y, fred) =
Mfgl o de)dM—‘r):w 1(»; Lg)—w%) «

(29)

c

d
(w“”*”(d) T $1(Gun (), f, 6, d) (o — dy®du — D) (¢ f S1(Gu (), £ d) (u - c>l”du>
(b) If — is n-convex, then for each j, (29) holds in the reverse direction.

Proof. For each j, the function G, j(., u) is convex and differentiable. Since f is non-decreasing with
f(z) < z, therefore Corollary 1 (i) gives S1(Gy1 (., u), f,c,d) > 0. On the other hand, if ¢ is n-convex
(—¢ is n-convex), then (") (z) > (<)0. Therefore, given assumption together with n-convexity of ¢

d

(—y) implies [ gp(")( (f S1(Gs i (., u), f,c,d)(u t)”3W[C'd](t,u)du> dt > (<)0. The rest follows
c

from (27). O

Theorem 5. Consider (A1) for even n and f as in Corollary 1 (i). Then

(a) If ¢ is n-convex, then (29) holds.
(b) If — is n-convex, then the reverse of (29) holds.
(c) Let (29) (reverse of (29)) holds and

w=0

Then §1(9, f,¢,d) > (<) 0.

) (¢<w+1)(d)(u — d)®du — @tV () (u — c)wdu) > (<)0. (30)

Proof.
(a), (b) We define

_ u—1t)"3(t—c), ifc<t<u<d,
H(u,t) = (u—1t)" 3W[C"”(ff”):{ Eu—tinfsgt—d)), ife<u<t<d

Clearly H(u, t) > 0 for even n. Consequently, we get (28), n-convexity of ¢ (—), and Theorem 4 (a)
(Theorem 4 (b)) yields (29) (and its reverse).

(¢) By definition of G, (., u) and assumption on f, Corollary 1 (i) gives $1(G,;(., u), f,c,d) >
Therefore, by using (30) and S1 (G, (., u), f,¢,d) > 0in (29) (and its reverse), we get S1 (9, f, ¢, d) > (< )
(<)0, which completes the proof. [

Now, we prove the following theorem which enables us to prove a generalization of (5).

Theorem 6. Consider (Ay) and let f be as in Corollary 2 (i) then:
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/ ! d
Sz(#’,f,d)iwgwofgz((? (), fd)du 4+ Y075 (1)

x (1/)(1"“) (d) 7 2(Guj(u), f,d) (u — d)“du — pl 1 (0) [ Sz(G*,j(vu),f,d)u”du>
0 0
d d
[P g‘ P () (Ofsz(c*,j(.,u),f,d)(u - t)”‘3W[0rd](t,u)du)dt
forj=1,2.
(b) IfY'(0) =0, then
d

Sz(tpff,d)+¢(d):wofsz((3 s(ou), fod)du+ 73 (12

. <¢<w“><d> 1 52(Gualo) ) () — 1) sz ), fd)u d)
(t) ( f S2(Gys(ou), f,d) (u — )" 3WOA (¢, u)du)dt.
0

(c)
Sa(y, f.d) +p(d ) dll’( )=
(n=2)(y Ei O))fSZ )fd)du—i-zw 1(;1 w— 2)
X ( (w+1)( sz u), f,d)(u— )wdu—f<w“)(0)jSZ(GM(.,u),f,d)uwdu>
0 0
(¢t

d d
+ gy | #( )(f 2(Go(cm), f,d) (= £ SWOA (1 ) .
0 0

(d) Ify'(0) =0, then

d

Sa(, f,d) — dy! (d) = 2NN OD 15,(Gs(.,u), f,d)du + 2075 (25572)
0
y <¢<w+l><d>f&(c*/&;(.,u),f,d)(ud>Wdu @) (0) [82(Gus(o ). , d)u“’du)
0 0
)

2
i
&
Ot—a.
=
=
—~
-
N2
—~
O—a.

S2(Gos(u), f,d) (u — t)"=3W0Al (¢, u)du)dt.

Proof. We give proof of our results by fixing j = 1, and other cases can be proved in the similar way.
By using (7) and (17) for ¢ and ¢’ respectively and applying assumption ¢(0) = 0, we get

d d
zpfd:ofq/ tydt—y <Off(t)dt>—

d
[ f(t)ydt
0

d
Of W(d)f(t)dt + f ¥(d)

=

f Ga (1) () d“} f(t)ydt —
G*1<ff dtu) " (u) du
52(Gup (- u), f,d)y" (u) du

o o, O%Q
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Now replacing n with n — 2 in (24) for ¢ and simplifying we get the required identities. [

Our next result gives a generalization of (5).

Theorem 7. Consider (Ay), f as in Corollary 2 (i) and let

(u— )" 3wl (1, u) >0, (1)
then the following hold:
(a) If ¢ is n-convex, then
(i)
/ / d
Sa(y, f,d) > CREPECD [8(G (), fd)du+ T (")
0 i (32)
X ( (w+1)( sz u), f,d)(u—d)du — f@D(0) [ Sy(G. (., u),f,d)uwdu>
0
forj=1,2.
(ii) Ify'(0) =0, then
! / d
S2(9, f,d) +y(d) > CREEO [55(Ga(, ), fd)du+ T (M)
’ (33)
x <zp (1) jSz ), f,d)(u—d)du — fE+( sz u), f,d)u ‘”du) .
(iif)
1A d
(n=2)(y E;Id) ¥'(0) g‘SZ(G*A u), f,d)du +Zw ] (nfz;))TZ) o
d
X <1p(“’“)(d) [S2(Gua(u), f,d) (u — d)Pdu — fle1)( jSz ),f,d)uwdu> .
0
(iv) If¢'(0) =0, then
Sa(y, f,d) — dy'(d) >
Lo
UL [5(Gus(o), fd)u+ T (H5572) 5)
d
X <l/’(w“)(d) JS2(Gus(,u), f,d) (u —d)du — fOH( sz u), f,d)u wd”) :
0
(b) Inequalities (32)—(35) are reversed provided that —i is n-convex.
Proof. The proof is similar to that of Theorem 4 except using Theorem 6 and Corollary 2 (i). O
Theorem 8. Consider (Ay) for even n and f be as in Corollary 2 (i). Then
(a) If ¢ is n-convex, then (32)—(35) hold.
(b) If —y is n-convex, then the reverse of (32)—(35) holds.
(¢) Ifany of (32)-(35) (reverse of (32)—(35)) hold and
"3 iy —w—2
n—w—=- (w+1) o \wq,, _ gp(w+l) w
P < - ) (9 (@) (e — ) dus — @D (0)udu) > (<)o (36)
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Then Sy(y, f,d) > (<) 0.
Proof. The proof is similar to that of Theorem 5 except using Theorem 7 and Corollary 2 (7). [
Next we give some generalized identities considering (6).
Theorem 9. Consider (Ay) and let f, A and A be as in Corollary 3 (i) then:
(a) Forj=1,2, we have

/ ' d
Ss(y. ) = LD [83(Guyw), £ A )+ 575 (552)

« (w(w+1>(d> 183G, £, d) (1t — dd — 1) sz Guj(co), f, A, d)u ”du>
+ T oo (O)( [ $3(Guj (o), £, )t = )" WO (1) ).
0 0
(b) Ify'(0) =0, then

Ss(w, f, A, d) + p(d) [ A(x)dx =

Ot —a=a.

MI& w), £, A, d)du+ 2175 (22

X(lﬂ“"“)(d)f S3(Gua (), £, A, d) (u — d)¥du — (1) (0 JSa (u>rfrArd>”wd”)
)(t

d d
+ iz 9O (fS3(G*,3(.,u),f,)\,d)(u—t)”‘3W[0'd](t,u)du>dt.
0 0

d
Ss(¢, f, A, d) + (p(d) — dy'(d)) Of)»(X) dx =

N d
WiwOfS?’(G*A(Vl‘)/f/)‘/d)d”""Zz,;s (n—d%I—Z)

x(zp““*”(d)fsg(c*A(.,u),f,A,d)(u—d)%lu (1) f S3(Gual ), f, A, d)u “’du)

ng(G*A(., u), f,A,d)(u— t)”*3W[0'd] (t,u)du)dt.
0

/ / d
(n=2)(y E;D*‘P (0)) Oj'Sa(G ( ) f A, d)dquZw 1("}%72)
d
x <¢<W+1>(d)fs3(c*,5(.,u),f,/\,d)(u —d)¥du — e+l fss u), f,A,d) wdu)

) (#) ( [S5(Gus(u), £, A, d) (1 — t)”*3W[O'd](t,u)du>dt.
0
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Proof. We give a proof of our results by fixing j = 1, and other cases can be proved in a similar way.
By using (7) and (17) for ¢ and ¢’ respectively and applying assumption §(0) = 0, we get:

d d X
5(4, f,A,) = [ AW OOt~ [A()g (Off(t) dt) dx =

1 d'BG*/l(t:”) " d 1 5
av(d) + oj ==y (u) du| dt — Of)‘(x) a9(d) Off(t) dt
+fc*,1 <
0
d

d d d
+ [ AW [ 22y ) dudt — [Ax) [ Gos <f £(t)dt, ) ¢ (u) du dx.
0 0 0 0

0

f(t) dt,u) zp”(u)du} dx = Ly(d)

j (B f(t)dt— fA fxf(t)dtdx}
0 0

X

Sincej/\ ) [ f(t)dtdx = jf (f/\(x) dx> fA(t t)dt, therefore
0 t

0

Ss(y, f, A, d)

d x

[aws aG“ (t,u) /A G (/f(t) dt,u) dx} ¢ (u) du
0 0

S3(Gun (1), f, A, )" (u) du.

Ot —a “—=a

The rest follows from (24). [
Next, we present a generalization of (6).
Theorem 10. Consider (Ay) and let f, A, A be as in Corollary 3 (i) and (31) holds, then:
(a) If ¢ is n-convex, then
(i) Forj=1,2, we have

g g d
S3(p, f, A, d) > URWDVO) [55(G, (., u), f,A,d)du+ Y173 (2542)
0

w=1 dw!
(37)
X ( (w+1)( ng, u), f,A,d)(u—d)du — @1 fS3 u), f, A, d)uwdu)
(i) Ify'(0) = 0, then
d
Ss(, f, A, d) +p(d) [A(x)dx >
0
(“*2)('#"('1) ¥'(0) fSS oa3(o 1), fL A, d)du+£” 3 (n}z:ﬂ—Z) (38)

d
X <1p w+1) jS3 Gia(u), f, A, d)(u—d)du — p@ (o )g S3(G*'3(.,u),f,/\,d)uwdu>.
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(iif)
d
Sa(y, f, A d) + (p(d) — dy'(d)) f/t(x} dx >

ra— d
e [ S3(Gualou) A i+ 5 () (39)

0

d d
x <¢<w+1> (d) [ S3(Gualu), £, A, d) (u — d)du — p@+1) (0) I 83(Gealo). f. A,d)u’”du> :

(iv) If¢'(0) =0, then

d
Ss(, f, A, d) d) [Alx)dx >
0
7("’2”"(5 20 { S3(Gusou), A d)du + X475 (152) (40)
d
x <1p(w“)(d){S3(G*,5(.,u),f,)t,d)(u—d)wdll (e sz ), f, A, d)u L”du>~

(b) Inequalities (37)—(40) are reversed provided that —i is n-convex.
Proof. The proof is similar to that of Theorem 4 except using Theorem 9 and Corollary 3 (i). O

Theorem 11. Consider (Ay) for even n and let f, A, and A be as in Corollary 3 (i). Then

(a) If ¢ is n-convex, then (37)—(40) hold.
(b) If —y is n-convex, then the reverses of (37)—(40) hold.
(¢) Ifany of (37)-(40) (reverse of (37)—(40)) hold and (36) is valid. Then S3(¢, f,A,d) > (<) 0.

Proof. The proof is similar to that of Theorem 5 except using Theorem 10 and Corollary 3 (i). O

3. New Upper Bounds Via Cebysev Functional
Consider the Cebysev functional for two Lebesgue integrable functions Fy,F : [c,d] — R
given as:
T(F1,Fy) = /m R )dé——/Fl g /Fz
Cerone and Dragomir in [17] proposed new bounds utilizing Cebysev functional given as:
Theorem 12. For Fy € Llc,d] and Fy : [c,d] — R be an absolutely continuous function along with
(.—c)(d = )[F,)? € Llc,d]. The following inequality holds

1 [T(F,F) (] :
1,11 / 2
Ty F)l < | TR ( / (€ -0~ D) C)

Theorem 13. For Fy : [c,d] — R be an absolutely continuous with F} € Les[c,d) and F : [c,d] — Ris an
increasing function. The following inequality holds

, d
‘g Hw) [ €= -adm ). w

|T(Fy,F2)| <

The constants % and % are the optimal constants.
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Now we utilize the above theorems to construct new upper bounds for our obtained generalized
identities. For our convenience we denote

/81 i), fre,d) (= D IWEA (L wydu, ¢ € [e,d], 43)

for {j =1,...,5}. Consider the Cebygev functional T;(95,9;) {j =1,...,5} given as:

T(0,0) / o - (1 / 0,z) ()

Griiss type inequalities associated with Theorems 12 and 13 can be given as:

Theorem 14. Under the assumptions of Theorem 3, let ¢ : [c,d] — R be absolutely continuous along with
(.—c)(d—)[p"+V]% € Lic,d) and O; {j = 1,2,3,4,5] be defined as in (43). Then

S0 ) b (B2 <
d
gl f81 G ), £, €, ) (u — d)*du — ¢<w+l><c>f&(c*/](.,u),f,c,d)(uc)“’du> @5)

c

(n—1) d) (n 1) d
—71’] @ (C = [ O;(t)dt = Rem(c,d, D5, p")
c

where

|Rem(c,d, D],yb n )

1 {T/(Dj'gj)}%

d 1
= V2(n=3)tL (d—c) C/(ffc)(dft)w"“()]zdt‘ .

Proof. Fix {j = 1,...,5}. Using Cebygev functional for F; = 9;, F, = (") and by comparing (45)
with (27), we have

1
Rem(c,d, O, tp(">) = WTj(Dj, l[)<n)).

n—

Employing Theorem 12 for the new functions, we get the required bound. [

Theorem 15. Under the assumptions of Theorem 3, let  : [c,d] — R be absolutely continuous along with
) > 0and O {j = 1,2,3,4,5) be defined as in (44). Then Rem(c,d, O;, ™) in (45) satisfies a bound

O/l (n=1) (4 (n—1) (n=2) (g} — p(n=2)
|Rem(c,d, 03, p™)| < ‘(Ll!)' p( );LIP (c) " ;,ZJ @] (46)

Proof. In the proof of Theorem 14, we have established that

1

Rem(c,d,Dj,le(")) = MTJ‘(DJ/ l/’(n))-

Now applying Theorem 13 for Fy = O;,F, = ("), we have

1

ey =
|Rem(c,d, O, ") w3

|T;(95, ™))

d
\D Ho0 )
< A= 3 / (t)dt
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Now since

d

(t—c)(d— (Dt = [ 2t — (c +d)]p™) (£)dt
= (@ [0 D(@) +40D(0)] - 2(pD () - 02 (o))

therefore the required bound in (46) follows. [

Ot —=a

Ostrowski-type inequalities associated with generalized Steffensen’s inequality can be given as:

Theorem 16. Under the assumptions of Theorem 3, let | |5 : [c,d] — R be a R-integrable function and
consider (s, s") pair of conjugate exponents from [1, 0] such that 1 + }, = 1. Then, we have

n-3 ((n—w-2
S (l/J’ f’ ¢ d) - ):w:O ((d—c)w!) %
d | d
(lp(w*’l)(d)/Sl(c*/l(,n),f,r,d](n 4)0du lp(wﬂl(c)_; 81(Gy1 (o), fre,d)(u c)“’du)

/

< ”4’7“5 (/‘/sl o), frcd) (i — )"—3w[6'd1(t,u)duSdt>w. 7)

(n—=3)

The constant on the R.H.S. of (47) is sharp for 1 < s < co and the best possible for s = 1.

Proof. Fix {j =1,...,5}. Let us denote by

3 = i (/s1 wi(t0), fre d) (u t)"’3W[”/d](t,u)du>, te [ed.

(n=3)i(d—c)

Using identity (27), we find

S1(p, £,ed) - 0% (2252 ’

d d
' <W“” 1) (d) [81(Gy (10, £ d)(u = d) ¥ = p(© D) (€) ['81 (G 1 (), fc,d) (u = c>“"““)
! l

(48)

Applying Holder’s inequality for integrals on the R. H. S. of (48), we obtain

d d
/Jj(t)lp(")(t)dt‘ < (/‘lpm t

C

1 1
s s d s/
dt) (/ |3, (1)° dt) ,
c

d , 1/s
For sharpness of the constant ( J13;() }S d t) let us define the function ¢ for which the equality
c

in (47) holds.
For 1 < s < oo let i be such that

which combined together with (48) gives (47).

" (1) = sgnd; ()[3;()| =1

and for s = co let (") (t) = sgnJ; (f).
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For s = 1, we shall show that

dt’ < max 3, (/4; ) (49)

is the best possible inequality. Suppose that |J;(t)| attains its maximum at ty € [c, d]. To start with first
we assume that J;(tg) > 0. For ® small enough we define 1o (t) by

0, c<t<t,
po(t) = { eml(t—t)", L<t<t+0O,
L=t ™, th+O@<t<d.
Then for ® small enough
3O (e s wtal = L 05 ar
[ameom| = | [ sogH = 5 [ 0
Now from inequality (49), we have
1 t0+@)j i t0+®1d 5
— (t)dt < T;(# —dt = TJ;(tp).
o Bwar<am) [T Gar =)
Since
tim L[5 e = 3yt
lim s [ 3y(0dt =310,

the statement follows. In the case when J;(t) < 0, we define fg(t) by
a(t—t—0©)"", c<t<t,
—1

Po(t) = { amt—t—0)", L <t<th+0,
0, t+@®<t<d,

then the rest of the proof is the same as above. [

Remark 3. Similar bounds of Griiss and Ostrowski-type inequalities can be obtained by using Theorems 6
and 9.

4. Monotonic Steffensen’s-Type Functionals

The notion of (1 + 1)-convex function at a point was introduced in [18]. In the current section,
we define some linear functionals from the differences of the generalized Steffensen’s-type inequalities.
By proving monotonicity of these functionals, we obtain new inequalities which contribute to the
theory of more generalized class of functions, i.e., (n 4 1)-convex functions at a point. Below is the
definition of (1 + 1)-convex function at point, see [18].

Definition 3. Let [ C R be an interval, & € I° and n € N. A function f : I — R is said to be (n + 1)-convex
at point § if there exists a constant K such that the function

is n-concave on I N (—oo, ] and n-convex on I N [&, o).
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Pecari¢ et al. in [18] studied necessary and sufficient conditions on two linear functionals ) :
C([61,¢]) = Rand T : C([g, 2] — R so that the inequality Q(f) < T'(f) holds for every function f
that is (1 4 1)-convex at point ¢. In this section, we define some linear functionals and obtained certain
inequalities associated with these linear functionals. Let n € N be even, ¢ : [c,d] — R be n times
differentiable function with (=1 absolutely continuous on [c,d]. Let ¢1, ¢; € [¢,d] and & € (c,d),
where ¢; < ¢ < . Let fi : [c1,¢] = Rand f : [, c2] — R be increasing with f;(t) < t for i = 1,2. For
j=12,...,5 we construct:

Olj(w):sl(w fuen®) - 25 (4252
¢
(VJ wt(g fgl (s ”)rflrclré)(u*g)wdu*w(wﬂ)(cl)fSI(G*,l(vu)rflrcllg)(”7C1)wdu>

€1

(50)

and

Ty () = S1(¢, fo,8,02) = Xih ((ﬁ?&}%z) x

o 51
(#’(WU(CZ) {&(G*J(-,”),fz &, c2) (u — cp)®du — p+( fS u), fa, & ca)(u— §)wd“> - L)

Theorem 5 (a) enables Ty () > 0forj=1,2,...,5 (and ¢'(0) = for] = 3), provided that i is
n-convex. Furthermore, Theorem 5 (b) enables erj(tp) <O0forj=1,2,...,5(and f'(0) =0 forj = 3),
provided that — is n-convex.

Theorem 17. Let , f1, f» be as defined above and ¥ : [c,d] — R be (n + 1)-convex at a point & for even
1> 3. If Oy j(Py) =T1;(Py), forall j=1,2,...,5and ¢'(0) = 0 for j = 3, where P, (u) = u" then:

Qp(y) <Tpj(y),
forj=1,2,...,5.
Proof. Since ¢ is (n + 1)-convex, it follows from Definition 3 that there exist Kz such that ¥ (u) =
(1) — =5 is n-concave on [cq, ¢] and n-convex on [¢, ¢o]. Therefore, for eachj = 1,2,...,5, we have
K; Kz
i) = 2y j(Pe) = 0 (F) <0 <Ti(¥) =T () = Toj(Pa).
Since Oy j(Pn) = T'1j(Px), therefore Oy ;(y) < Ty (1), which completes the proof. [

Remark 4. We may proceed further by defining linear functionals with the inequalities proved in Theorems 8
and 11. Moreover, by proving monotonicity of new functionals we extend the inequalities in Theorems 8 and 11.

5. Application to Exponentially Convex Functions

We start this section by an important Remark given as:

Remark 5. By the virtue of Theorem 4 (a), for j = 1,2, ...,5, we define the positive linear functionals with
respect to n-convex function  as follows

)= 89S ) ~ 1 3 (4252) >

Pt (g fSl u), f,c,d)(u — d)Cdu — p@+( fSl(Gk 10, u), f,e,d)(u— c)“’du) >0

(52)

Next we construct the non trivial examples of exponentially convex functions (see [19]) from
positive linear functionals Ay ; () for (j = 1,2,...,5).
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For this consider the family of real valued functions on [0, c0) given as
W‘W, s¢{0,1,...,n—1};
t
Ps(u) = %, s=te{0,1,...,n—1}. (53)

It is interesting to note that this is a family of n-convex functions as

dn
S—n
ngs(u) =u">0.
Since s — 15" = (5~ js exponentially convex function, therefore the mapping s — Ai(¥s)
is exponential convex and as a special case, it is also log-convex mapping. The log-convexity of this
mapping enables us to construct the known Lyapunov inequality given as

(B1j(9)"" < (Brj(90) " ()" (54)
forr,s,t € Rsuchthatr <s < fwherej=1,2,...,5.

Remark 6. We have not given the proof of the above mentioned results (see [19] for details). The Lyapunov
inequality empowered us to refine lower (upper) bound for action of the functional on the class of functions given
in (53) because if exponentially convex mapping attains zero value at some point it is zero everywhere (see [19]).

One can also consider some other classes of n-convex functions given in the paper [19,20] and can get
similar estimations. A similar technique can also be employed by considering the results of Theorems 7 and 10.

6. Conclusions and Outlooks

In this article, we extended the pool of inequalities by proving generalizations of well-known
Steffensen’s inequalities and their reverses. The inequalities proved in the main results provide
generalizations of the results from [1,4,7,11]. Moreover, Hardy’s inequality is also one of the
well-known inequalities. In this article, we also proved generalizations of inequalities, from [1], which
are closely related to Hardy’s inequality. We also developed new bounds of Griiss and Ostrowski-type
inequalities. Further, the contribution of these inequalities to the theory of (1 + 1)-convex functions
has been presented by defining functionals from new inequalities and describing their properties.
Lastly, new inequalities related to exponentially convex functions and log-convex functions, such as
the Lyapunov inequality, have been developed. In the future, it can be investigated whether we can
use other interpolations, such as Hermite interpolation, to prove new generalizations of Steffensen’s
inequality and related results.
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1. Introduction

IfO< Y a2 <coand 0 < Y b2 < oo, then we have the following discrete Hilbert’s inequality
with the best p0581ble constant factor 7 (cf., [1], Theorem 315):

1/2

[se] a 0o ()
Z Y m";”n LOWAW (1)
m=1n=1 m=1 n=1
Correspondingly, if 0 < fo f2(x)dx < 00 and 0 < fo y)dy < oo, we still have the following

Hilbert’s integral inequality (cf., [1], Theorem 316):

j:o j:’ %g;y)dxdy < n(fomfZ(x)dxfom gz(y)dy)l/z @

where the constant factor 7 is the best possible.

As is known to us, Inequalities (1) and (2) and their extensions with conjugate exponents as well
as independent parameters play an important role in analysis and their applications (cf., [2-13]).

Concerning with Inequalities (1) and (2), we have the following half-discrete Hilbert-type inequality
(cf., [1], Theorem 351):

If K(x)(x > 0) is a decreasing function and p > 1,% +% =10<¢(s) = fooo K(x)x*ldx < oo,
f(x) =0, 0<f0 fP(x)dx < oo, then

=)

Z n”’z(j‘00 K(nx)f(x)dx)p < ¢P(%)£w fP(x)dx. 3)

n=1 0

In recent years, some new extensions of the Inequality (3) were provided in [14-19].

Mathematics 2019, 7, 1054; doi:10.3390/math7111054 155 www.mdpi.com/journal/mathematics



Mathematics 2019, 7, 1054

In 2006, with the help of the Euler-Maclaurin summation formula, Krnic et al. [20] gave an
extension of (1) with the kernel o +(0 < A < 14). In 2019, Adiyasuren et al. [21] considered an

+n)"
extension of (1) with p, g > 1(ﬁ + ; = 1) involving the partial sums. In 20162017, by using the weight

functions, Hong [22,23] considered some equivalent statements of the extensions of (1) and (2) with
several parameters. Some related works can be found in [24-26].

In this paper, following the way of [20,22], by using the weight functions, the idea of introduced
parameters, and the Euler-Maclaurin summation formula, a reverse half-discrete Hardy-Hilbert’s
inequality with the homogeneous kernel 7(0 < A £ 5) and the reverse equivalent forms are

established. The equivalent statements of the best possible constant factor related to several parameters
are presented. As applications, two corollaries related to the case of the non-homogeneous kernel and
some particular cases are obtained.

2. Some Lemmas
In what follows, we assume that

0<p<i(g< o),%+% —1,1€(0,5],0€(0,2]n(0,1), 1€ (0,4),

f(x)20(xeRs =(0,0)),a, >0 (neN={1,2,---}) satisfying

00 Ao L o -
0< f xp[l_(\TJr%)]_lf’”(x)dx < coand0 < Z =G+l 1aq < co.
0 =

Lemma 1. Define a weight function by

> -1

@(0,x) := x*7 n—/\ (x eRy). 4)
n=1 (x + 1’1)
Then, we have
B(o,A-0)(1-ps(x)) <@(0,x) <B(o,A—0)(x €Ry), 5)
-A u .
where, ps(x) := ;]13?;8/*\)_0)% = O(%) € (0,1)(6x € (0, ) x> 0). = jg) 1;[ ]MH (u,v>0)is

the beta function.

-1
()t
formula (cf., [20]), for p(t) := t — [t] — 3, we have

Proof. For fixed x > 0, we set function gx(t) := ~ (t>0). Using the Euler-Maclaurin summation

T gen) = 7 ge(t)dt + 3 (1) + [T p(t)gh(t)dt = [ gu(t)dt —h(x),

n=1

= fo gx(f)df—zgx(l) - 7 p(hgi(yat

Thus, we obtain —1¢.(1) =

2(x+1)"
o1 _1 dt” _1_ 194t
L gx dt L X+t L X+f - T (xtt) |0 L (x-+t) /\+1
1 f dt(H»l
- (x+1 a( 0+1 0 (x4t)*T

1 1 41 AA+1) o+1
>3 <A+1)A + o(o+1) [<x+t>/\+l] S 1) (x+1) A+zf0 o dt
1_1 A 1 A(A+1) 1

o

(x+1)* R (1M T o(0+1)(042) (x41)M27
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—gi(t) = _(0—1)f“'2 ATl (o)t A2 A2
* _a (ai+t)) , (x+t)“21 (x+£)* (40" ()M
+1-0)t7%  Axo”
(x+t)" (x0)M1”

For0<o0<2,0<A<5, wefind

dl td—Z ; di t(7—2
Vgl > O

W] > O(t > 0,l = 0,1,2,3),

and then by using the Euler-Maclaurin summation formula (cf., [20]), we find

o2 A4+1-0
T4 > - 1

x+1) 12(x +1)

<A+1—o{£wpa%

xA 1972
XAfl t) “ A+1 dat > 2(x+1)A+1 ~ 720 [(x+t)A+] }t:l
(EHDA-A (DA [(A+)(A42) | 2(41)(2-0) | (2-0)(3-0)
W_ 720 [ 1)/\+3 (x+1)/\+2 + (1 A1 }
_ A _ A A (A+D(A+2) 2(A+1)(2-0) (2—0)(3—6)]
T RGr)Y T 2@t 7200 2 ()M (1"
Hence, we have
h Ah AA+1)h
> ——+ 2/\+1 + ( /\)+§’
(x+1) (x+1) (x+1)
where by 1= § =3~ Y = 00Ty = oy LD ang
hy e 1 A+2

olo+1)(c+2) 720"

For A € (0,5], % < 21—4,0 € (0,2], it follows that

1 1 1-¢ (2-0)38-0) 24-200+70%-0°
h1> =

s 2 12 24 - 240 > 0.

In fact, setting g(0) := 24 — 200 + 702 — 6° (0 € (0,2]), we obtain

, 2 2 72 1
§'(0) = =20+ 140° - 30 :—3(0—5) —?<O,
andthenweobtainh1>$zgzi—2):2i>0(ae(0 2)).
We observethath2>——ﬁ—31m:2l>0 andh32ﬂ—ﬁ70:%>0. Hence, we deduce that

h(x) > 0, and thus we have

@(0,x) =x'° E gx(n) <x}\‘“f0oo o (t)dt

A—c m [ 1df u’~ ldu _ _
= 0 (x+t J(; 1+u B g,/\ U)'

On the other-hand, we also have
Z gx(n) = [7 ga(B)dt + Jgu(1) + [[7 p(t)gh(b)dt

_fl gx(t dt+H(x)
H(x) == 1g:(1) + [~ p(t)gi(t
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We obtain 3g.(1) = 2%

~(A+1-0)t"2  Axto2

gx(t) = (er t))\ (x+ t)/\+1 .

Foro € (0,2] N (0,A),0 < A <5, by the Euler-Maclaurin summation formula, we obtain

00 -2
—(}H-l—a)f p(t) ~dt >0,
1 (x+1)
02
xA [T p it et
_ o (x+1)A-A Y A Y
e 12(x+1)‘+l TR+ T 12(1)) * 12(x+1)"1 > 12(x+1)""
Hence, we have
1 A -A
H(x) > - -6 >0,

2+ 1" 12+ 12(x4+1)"
and then -
@(0,x) = x'0 Z gx(n) > XA [ gy (t)dt

7x/\ﬂj(; tdt_/\aj(;gx

= B(o,A -0) (Mafo 1+u

By the integral mid-value theorem, we find

H o-1 %
f U Adu: 1 Af ug_ldu:;)\lg(gxe(o,l)),
0 (14+u) (14 64)" Jo o(1+46y)" X X

This proves Inequality (5). O

Lemma 2. The following reverse inequality is valid:

1
q

I:fom Y ({ﬁlﬁg’f\dx>3%(a,/\—a) (A —p)
n=1
Ao & L o i 1 (6)
XU = po) T p(gan” LT
Proof. For n € N, setting x = nu, we obtain the following weight function:
w(p,n) = n/\—yfw Ly _ foo ut=dy — B(, A1) @)
e o (x4+m* Jo (u+1) i

For 0 <p < 1,9 <0, by the reverse Holder’s inequality (cf., [27]) and the Lebesgue term by term
integration theorem (cf., [28]), we obtain

e ”/”f<xmx<" 7y anldx

x(u=1)/q nlo=1)/p an

u-1
fo x+n "Yl )(g-1) dx]a }q

jg) Y xa"dx—j(‘) L o
>, D; o )/\ T 1>]fp
1

_ {fomm(glx)xl’[l—(\?Jr%)]— £P(x)dx) {§ w(u,n)n f][l—(%+%>]—1u1}q.

Tl
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Then by (5) and (7), we obtain Inequality (6). O

Remark 1. For yu + 0 = A, we find

o-1
®(o,x) = x

( N )A(XER+),
n=1 \X 1

0< f P71 P (x)dx < o0 and 0 < Z n11=07157 < oo,
0 =

and then we reduce (6) as follows:

fmi(x+and > B(u,0) [f (1-pol(x )xp( Ei . (8)

Lemma 3. The constant factor B(y, o) in (8) is the best possible.
Proof. For 0 < ¢ < pu, we set

— 0,0<x<1, _ _eq
fx):={ L s g A= n’ 1 (neN).

If there exists a positive constant M (M > ( 0)) such that (8) is valid when replacing B(u, o) by M,

then by a substitution of f(x) = f~(x) ay = a, we get

fszrn

1
(1= po ()11 P ()] Lt

00

x|

S—

1
q

= MU (1= 0t 2"'*“3

1 e 1
ZMf X 1dx fl x0+e+1 p(f] x~¢ldx)?
= M(1-£0(1))7
For u — % >0(0 <p <1),by (7), we obtain

T= § et 9 [ 2bran) < T et (< oray

n=1 (x+n (x+11)’)l
anl (u—%,n) =B(u ——,o +E(1+ Y nEh
p P n=2
( p-50+5 )1+ [ xmeldx) :ilB(y—}%,awL%).
Then we have . c _ .
(s-i-l)B([u—’—?,o-&-;—])ZEI M(1-¢e0(1))?.

For ¢ - 07, in view of the continuity of the beta function, it follows that B(y, o) > M. Therefore,
M = B(u, 0) is the best possible constant factor of (8). Lemma 3 is proved. O
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Remark 2. Setting f1 := "TJ + %,6 = % + /\%, we have
A— A A A
pro=""C0 B 0 PR 2 2,
q p q p 9

and for A —u—o € (—=pu, p(A — 1)), we find

Ao (=pu w s (A p
fr>"= +q—0,u< v +q—/\
0<6=A-0<AB(p06)€eRy.

’

We can reduce (6) to the following

f Z f )an dx>BP(g/\ g)Bq(y,/\ 1)
e : )
><[f0 (1—po(x))xp(1*ﬁ)flfp( ]%[E pa(1=6)-1 q]

n=1

Lemma4. If A—pu—o € (—pu,p(A— p)), the constant factor B (o,A—0)B %(y,)\ ) in (9) is the best
possible, then we have 4+ o0 = A.

1
Proof. If the constant factor B” (6, A —0)B B (, A — ) in (9) is the best possible, then by (8), the unique
best possible constant factor must be B(f1, 5)(€ R+) namely,

B (0, A~ 0)B1 (1, A~ p).

u\._-

B(f,6) =

By the reverse Holder’s inequality (cf., [27]), we find

00 4fi-1 00 1 +ﬁ*
B(p,6) = (1t+¢) dt = | th —_[) i t\( T )
k (10)

> _f() 1+t t/\Uld] f(]
= B (0,4~ 0)B1 (1, A~ p).

We observe that (10) keeps the form of equality if and only if there exist constants A, B such that they
are not all zero and
AP0 = B e in Ry

Suppose that A # 0. We find that t~#70 = Z ae.in Ry, and thus we conclude that A —y -0 =0, ie,,
u+o0 = A Lemma4is proved. O

3. Main Results

Theorem 1. Inequality (6) is equivalent to the following inequalities:

1
Ay ;7

— )-1
hoo { [f x+n (11)

- 1

(0,A = )BT (1, A= ) ™ (1 = po ()17 DI o ()

)d

160



Mathematics 2019, 7, 1054

oo 5T+ -1 @ T 1
= d
]2 {fo (=pa())T [n:l (x+n) v dx}a 1 .
b i gl-(3+25E))-1 9,7
> B7(0,A—0)B7(u, A — p)f Z n a,) .

If the constant factor B (0,A—-0)B %(y, A — ) in (6) is the best possible, then so is the constant factor in (11)
and (12).

In particular, for y+ o = A in (6), (11) and (12), we have Inequality (8) and the following equivalent
versions of reverse inequalities with the best possible constant factor B(u, 0):

1 1

= oo Py 00 ;
{nZ:1 ne [ﬁ (xfixlz)Adx] } > B(u,0) [fo (1= po ()11 P (x)dx] (13)

1

0 qu=1
{fo _x qlz dx}“l>Bp, [Zn‘ﬂ“ ”}. (14)

Proof. Suppose that (11) is valid. By the Lebesgue term by term integration theorem and the reverse
Holder’s inequality (cf., [27,28]), we have

Qe My o (e 2k
I = Z fo xxayf\dx_ng‘l [HPH’# ) 0 (rf+n>) an G >”n]
T (15)

an G+ )]117}.

Then by (11), we have Inequality (6). On the other-hand, assuming that Inequality (6) is valid, we set

o A 0 p-1
ap =Pt 7 >_1[ S ~dx] ,neN.
0 (x+4mn)

If J; = oo, then Inequality (11) is naturally valid; if J; = 0, so it is impossible to make Inequality (11)
valid, namely J; > 0. Suppose that 0 < J; < co. By (6), we have

Zlnq[l_ A al 7]’17 =I> B%(U,A—U)B%(‘u,/\—y)
=
\

A-u
) (1= po ()15 a5, -G
117

1
o) A— y P 1
(X G510 = 1> B (0,4 - 0)B (4, A - )
n=1
~ ~(Aa By i

< (1= pule = g

namely, Inequality (11) follows, which is equivalent to Inequality (6).
Suppose that Inequality (12) is valid. By the reverse Holder’s inequality, we have

Sdidsa it o

) [“‘W))*l’x%“%*ﬁ)ﬂx)wq Lt

(=po ()P )2 (x+m) (16)
> {fooo (1- pg(x))xp[1 fP( )dx}%]z.

0
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Then by (12), we obtain Inequality (6). On the other-hand, assuming that Inequality (6) is valid, we set

q-1

flx) = 210D i L

X+Vl

If ] = oo, then Inequality (12) is naturally valid; if />, = 0, then it is impossible to make Inequality (12)
valid, namely J, > 0. Suppose that 0 < J, < co. By (6), we have

B @ po(a)a? (745! 1fﬁ<x)dx:ﬂ:I>B%<G,A—G>B%gy,A )
ﬁ

1

XUy~ (1= po) D )dx} =G0

1
A= | By q 1
5™ (1= po) T ()" = 1> B (0,4 - )B1 (1,4 - )
%

’

namely, Inequality (12) follows, which is equivalent to Inequality (6).
Hence, Inequalities (6), (11) and (12) are equivalent.

1 1
If the constant factor B? (5, A —)B7(u, A — ) in (6) is the best possible, then so is the constant
factor in (11) and (12). Otherwise, by (15) (or (16)), we would reach a contradiction that the constant
factor in (6) is not the best possible. This completes the proof of Theorem 1. O

Theorem 2. The following statements (i), (ii), (iii) and (iv) are equivalent.

(i) B (o,A - G)B% (u, A — w) is independent of p,q;

(if) B (o,A— U)B% (u, A — ) is expressible as a single integral;
(iii) BP (0,1 —0)BH (u, A — ) is the best possible of (6);

(iv) IfA-—u—-oe(-pup(A—p)), theny+o=A

Proof. (i) = (ii). In view of B% (0,A—0)B % (4, A — ) is independent of p, g, we find

B (0,4~ 0)B (1,1 = )

l
B?

= lim (0,A— G)B'i (4, A—u) =B(o,A-0),
p-17
q— —o0
-1
which is a single integral jg) 1+t) ——dt.
u
(ii) = (iv). Suppose that BP (o,A - U)B'i (4, A — u) is expressible as a single integral fo %d

Then (10) keeps the form of equality. By the proof of Lemma 4, for A — i — o € (—pu, p(A — 1)), we have
u+o=A
(iv) = (). If y +0 = A, then

b 1
B¥(0,A—0)Bi(u,A—u) =B(u,0),
which is independent of p, g.
Hence, (i) & (ii) & (iv).
1 1
(vi) = (iii). By Lemma 3, for t +0 = A, B¥ (6, A — )B4 (1, A — ) is the best possible of (6).
(iii) = (iv). By Lemma 4, we have ji +0 = A.
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Therefore, we show that (iv )& (iii), and then the statements (i), (ii), (iii) and (iv) are equivalent.
The proof Theorem 2 is complete. O

4. Two Corollaries and Some Particular Inequalities
Replacing x by 1, and then setting F(x) = x*2f(1) in Theorems 1 and 2, we find

1+ 9,(1)_}l

B0, A= 0) 17 =0(x°) € (0,1) (0,1 € (0,x);x>0),

po(x”!) =
and obtain the following corollaries:

Corollary 1. If F(x), a, > 0 such that

00 o Ao sl o A-u
0< f xp[l_(5+7#>]_1p’(x)dx <coand 0 < Z nq[]_<?+7!)]_1az < 00,
0 n=1

then the following inequalities are equivalent:

B E 2> B (0,0 - )8 (12— )

1(1+x)
(42 oy g b 17)
X5 (1= po ) I GH T (1)) §1n‘*“ B
(3 G E dx]"}’17
=1 0 (1am)” ) (18)

o A 5
> BY (0, A= 0)B1 (5, A= L[ (1= po (x )=+ T () axy”,
a q

,J,l ) B
{fo ki ‘*q] 21< ] dx)

—po 1+xn

==

1 oS} g, Ap % (19)
> B¥ (0, —0)B¥ (u, A — p){ ¥, nf-GH 71,07
n=1

If the constant factor B (o,A— O)B% (4, A — ) in (17) is the best possible, then so is the constant factor
in (18) and (19).

In particular, for 1 = A — o in (17), (18) and (19), we have the following equivalent inequalities with the
best possible constant factor B(A —o,0):

foo E L)‘I”Adx>B()\—a,o)

0 n=1 (1+xn) 20)
X[ (1= po ()01 ()] P £ =14,
n=1
pot P
Z n [f 1+xn x] } . (21)
> B(/\ —0,0) fo (1= po (1)) xP1=)=1FP (x)dx]
o e Z fdx}% B(A-0,0)] i n1-0)-141] ", (22)

Corollary 2. The following statements (i), (ii), (iii) and (iv) are equivalent:
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ST

(i) Br(o,A— O')B% (4, A — w) is independent of p,q;
(i)) BV (o,A— a)B% (4, A — ) is expressible as a single integral;

(iii) B?(0,A — G)B”(y,/\ W) is the best possible of (17);
(iv) If A—u—o¢€(—qo,q(A—-0)), then we have y = A —o.

Remark 3. (i) For0 =2 < A(<5), 0 = A —=2in (8), (13) and (14), since

[T

r(A-2)r(2) r(A-2) 1
BA-22) = T(A)  (A-1D(A-2T(A-2) (A-1)(A-2)
C(A-D(A-2)1 1 1.
p2(x) = Wx—z = O(x—z) €(0,1)(6x € (0, -);x > 0),

we have the following equivalent versions of reverse inequalities with the best possible constant factor m:

1
0

I Z (e (A= Sl A (Vi)

n=1

1

P

o1y [ ) 1 - o 1
{;HZP 1 dx} b > A-D0-2) [ﬁ (1= pa ()P C-N1 ()], (24

o (x+n)
= Z dx)i> — <in“"%ﬂ>% 25)
0 1 pZ '7 1 n=1 x+n (A—l)(A—Z) n=1 v
(i) Forc =2 < A(<5), 0 = A —21in (20), (21) and (22), we have
oy (A=1D(A=2) 5 2
=22 = 0(x?) € (0,1) (6,1 € (0,x);x>0),
p2(x7) 2016.) (x%) € (0,1) (651 € (0,x);x > 0)

and the following equivalent versions of reverse inequalities with the best possible constant factor m:

1
o

f ) Z A4y (A 1)](/\ ~2) (fow (1- p2<x—1>>x—p-1pv<x>dx>”’<z ), ee)

n=1

1

o T F(x) P 1 °° PR v
X (l+xn)ﬂdx}}>(/\—1)(/\—2)(j(; R

= o ‘”[,121 1dx}ﬁ 8)

=i

5. Conclusions

Let us give a brief summary of this paper, by the way of [20,22] and the use of the weight functions,
the idea of introducing parameters and the Euler-Maclaurin summation formula, a reverse half-discrete
Hardy-Hilbert’s inequality and the reverse equivalent forms are given in Lemma 2 and Theorem 1.
The equivalent statements of the best possible constant factor related to some parameters are proved in
Theorem 2. As applications, two corollaries about the reverse cases of the non-homogeneous kernel
and some particular cases are considered in Corollaries 1, 2 and Remark 3. The above-mentioned
lemmas and theorems reveal some essential characters of this type of Hardy-Hilbert inequality.
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Abstract: We establish one-sided weighted endpoint estimates for the o-variation (¢ > 2)
operators of one-sided singular integrals under certain priori assumption by applying one-sided
Calderén-Zygmund argument. Using one-sided sharp maximal estimates, we further prove that
the g-variation operators of related commutators are bounded on one-sided weighted Lebesgue and
Morrey spaces. In addition, we also show that these operators are bounded from one-sided weighted
Morrey spaces to one-sided weighted Campanato spaces. As applications, we obtain some results
for the A-jump operators and the numbers of up-crossings. Our main results represent one-sided
extensions of many previously known ones.

Keywords: ¢-variation; one-sided singular integral; commutator; one-sided weighted Morrey space;
one-sided weighted Campanato space
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1. Introduction

Given a family of bounded operators 7 = {T¢ }¢~¢ acting between spaces of functions, one of the
most significative problems in harmonic analysis is the existence of limits lim, o+ Te f and lime 00 Te f,
when f belongs to a certain space of functions. The question that arises naturally is how to measure
the speed of convergence of the above limits. A classic method is to investigate square functions of
the type (2 |Te, f — Te,., fI?)'/2. Along this line, there is a more general way to study the following
oscillation operator

O = (L swp  [Tof)-TefP)

i=1ti 15641 <6<t

with {¢;} being a fixed sequence decreasing to zero. However, beyond that, another typical method is
to consider the g-variation operator defined by

[es} l/g
Vo(T)f(x) = sup (L ITef(x) = Ten fI)
{eiN\0 “i=1

where ¢ > 2 and the supremum runs over all sequences {¢;} of positive numbers decreasing to zero.

Mathematics 2019, 7, 876; doi:10.3390 /math7100876 167 www.mdpi.com/journal /mathematics
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The investigation on variation inequalities is an active research topic in probability, ergodic theory
and harmonic analysis. The first variation inequality was proved by Lépingle [15] for martingales
(also see [25] for a simple proof). Bourgain [2] proved the similar variation estimates for the ergodic
averages of a dynamic system later. Bourgain’s work has inspired a number of authors to investigate
oscillation and variation inequalities for several families of operators from ergodic theory (see [12,13,24]
for examples) and harmonic analysis (cf. [3,4,6,11,14]). Recently, the variation inequalities and their
weighed case for singular integrals and related operators have also been studied by many authors.
The first work in this direction is due to Campbell et al. [3] who proved that O(H) and V,(H) with
0 > 2 are of type (p, p) for 1 < p < oo and of weak type (1, 1), where H = {He }¢=0 is the family of
the truncated Hilbert transforms, i.e., He f(x) = f‘ iy|>e i(fyy)dy. Subsequently, the aforementioned
authors [4] also studied the variation operators related to the classical Riesz transform in R4 ford > 2.
In 2004, Gillespie and Torrea [9] established the L? (R, w(x)dx) bounds for O(H) and V,(H) with ¢ > 2,
1< p<oandw € Ay (the Muckenhoupt weights class) (also see [10,14] for the related investigations).
Later on, Crescimbeni et al. [5] proved that O(H) and V,(H) with p > 2 map L}(R, w(x)dx) into
LY (R, w(x)dx) for w € Aj. In particular, Ma et al. [21,22] presented the weighted oscillation and
variation inequalities for differential operators and Calderén-Zygmund singular integrals. Recently,
Liu and Wu [19] established the weighted oscillation and variational inequalities for the commutator
of one-dimensional Calderén-Zygmund singular integrals.

The primary purpose of this paper is to study weighted boundedness of oscillation and variational
operators for one-sided singular integrals and their commutators. We say a function K belongs to
one-sided Calderén—Zygmund kernel OCZK(By, By, B3) if K € LL (R\{0}) satisfies the following
conditions: there exist constants By, B, B3 > 0 such that

‘ / K(x)dx‘ < B; foralle andall Nwith0 <e <N,
{e<|x|<N}

and furthermore lim. o+ [ |, <

K(x)dx exists,
|K(x)| < By|x|™! forall x #0,
[K(x —y) — K(x)| < Ba|y||x| 72 forall x and y with |x| > 2y|.

An example of a one-sided Calder6n-Zygmund kernel is K(x) = si;\(l};)ggXX)X(Olm ; see [1].

We mention here that the kernel of one-sided truncated Hilbert Transform, Ky (x) = % X(0,00), 18 MOt
a OCZK for there does not exist a By > 0 such that the first condition above holds.

Let K € OCZK(Bj, By, B3) with support in (—o0,0) and b € BMO(R). For m € N, we consider
the one-sided operator

Ty " f(x) = lim TS5 f(x) = pv. /:o(b(X) —b(y)"K(x = y)f(y)dy,

e—0"

where o

TEPMf(x) o= / (b(x) = b(y))"K(x = y)f (y)dy. @)

x+e

For m > 1, the operator T; " is the m-th order commutator of one-sided singular integral.
When m = 0, we denote by TS*? = T2, and then the operator T, reduces to the one-sided
Calderén-Zygmund singular integral operator T, which is defined by

T () = lim T () =pe [ K- () @
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In 1997, Aimar et al. [1] observed that the operator T maps LP (R, w(x)dx) into L? (R, w(x)dx)
forl<p<coandw € A;,r, and maps L' (R, w(x)dx) into LV*°(R, w(x)dx) for w € A]. Subsequently,
Lorente and Riveros [20] proved that there exist constants C > 0 such that

Ty Flle (R w(x)dz) < ClivlBmom) 111y w(x)ax)

foerA;andl < p < oo, and

({117 0)] > AD) < Com[0lhioqey) [ L5 (1410 (L82)) "

forw € Al and A > 0, where ¢, (t) = t(1 +log* t)" and z* = max{z, 0}. Other interesting related
results for the one-sided operators we may refer to [7,8,16-18], among others.

At first, we shall establish the one-sided weighted endpoint and strong estimates for the
o-variation (¢ > 2) operators of one-sided singular integral and its commutator. Let us recall the
one-sided weighted BMO spaces.

Definition 1. (One-sided weighted BMO spaces.) For a weight w, the one-sided weighted BMO spaces
BMO™ (R, w(x)dx) is defined by

BMOJr(Rrw(x)dx) = {f € Llloc(Rr dx) : “fHBMO*(]R,w(x)dx) = HM+,tfHL°°(]R,w(x)dx) < oo}

Here, M is one-sided sharp maximal operator defined by

1 ~X+h 1 ~x+2h +
M*’”("):i‘iﬁﬁ/x (f(y)fﬁ . f(z)dz) dy.

Remark 1. When w(x) = 1, the space BMO™ (R, w(x)dx) reduces to the one-sided BMO space BMO™ (R),
which was introduced by Martin-Reyes and de la Torre [23]. It was proved in [23] that

X+h x+2h
M) <supint (3 [ G -0+ [T @ f0) ) < Wflvow

>0 €R +h
for any x € R. This yields that BMO(R) C BMO™ (R).
We now list our first main result as follows:
Theorem 1. Let m € N, ¢ > 2, b € BMO(R) and K € OCZK(By, By, B3) with supported in (—oo,0).

Let T" = (T Lo and T = {T Yeso be given as in Equation (1) and (2), respectively. Assume that
Vo (Tl L (Rdx) L1 (mdx) < o0 for some q € (1,00). Then,

(i) foranyw € Al and f € LY(R,w(x)dx), it holds that

HVQ(T)f“LL‘”(R,w(x)dx) < CHf”Ll(R/w(x)dx);

(ii) foranyl <p <oo,w e A} and f € LV (R, w(x)dx), it holds that

IVo(Ty") fllr R w(xyaxy < CHPIBMoR) If1ILp (R w(x)dx)i
(iti) for a weight w satisfying w™' € Ay and f € L®(R,w(x)dx), it holds that

1Vo(T) fllamo (Rw(x)ax) < CIF Il R w(x)x)-
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In addition, we also investigate the boundedness behavior of the p-variation operators of
one-sided singular integral and its commutator on one-sided weighted Morrey spaces and Companato
spaces. In order to study the boundedness of one-sided singular integral operator on weighted Morrey
spaces and Campanato spaces, Shi and Fu [27] introduced the one-sided weighted Morrey spaces and
one-sided weighted Campanato spaces, which are defined as follows:

Definition 2. (One-sided weighted Morrey spaces and Campanato spaces.) Let 1 < p < oo, —1/p <
B < 0and w be a weight on R.

(i) One-sided weighted Morrey spaces LPP+ (w) are defined by

LPPH () = {f € L (Rodx) ¢ [ fllpppe y < +o0},

loc

where

Xo+h 1/
i = 390 (= [, L)
x0€R h>0 hP \w((xo — h, x0)) X0

(ii) One-sided weighted Campanato spaces £PF+ (w) are given by

P () 1= {f € LI (Ryd) : |l ey < +00},

loc

where

~xo+h 1/
st = sup 800 s (e Sy [, 0 = i)
(®) x0€R h>0 h# w((xo —h, xO)) X 00

Remark 2. It is well known that the following are valid:

~Xo+h 1/
£l ¢pp+ () ~ sup sup inf i(; / If (x) — u\l"dx> g )
@) xg€R h>0 4€R WP \w((xo —h,x0)) o

L”'ﬁ'Jr(w) - 2”"5'+(w).
The rest of the main results can be listed as follows.

Theorem 2. Let m € N, ¢ > 2, b € BMO(R) and K € OCZK(By, By, B3) with support in (—oo,0).
Let T = {Tj’b/m}»o and T = {T; }eso be given as in Equation (1) and (2), respectively. Assume that
Vo (Tl La(R,dx) = L9(Rax) < o0 for some q € (1,00). Then,

(i) foranyl<p<1/(B+1),-1/p<Pp<0,we Ay and f € LPFT(w),
Vo (Ty™) fllrs+ (wy S NBIBMo@m) 1 I1ps:+ ()i
(i) forany1l<p<oo,—1/p<p<0,we Afandf € PP (w),

Vel llenss oy S 1o -

Remark 3. We remark that we deal only with ¢ > 2 for the variation operators in our main theorems, since
it was pointed out in [2] that the variation is often not bounded in the case ¢ < 2. In addition, it is unknown
what are the endpoint estimates of the variation operators for the commutators of one-sided singular integrals
and whether the above operators are bounded from one-sided weighted Morrey spaces to one-sided weighted
Campanato spaces, which are interesting.
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This paper is organized as follows. In Section 2, we shall present some basic definitions and
necessary lemmas. In Section 3, we give the proofs of Theorems 1 and 2. As applications, we present
the corresponding estimates for the A-jump operators and the number of up-crossing for these operators
in Section 4. Finally, some further comments will be given in Section 5. We would like to remark that
our works and ideas are taken from [9,19]. It should also be pointed out that all results in this paper
are valid for oscillation operator with similar arguments.

Throughout this paper, for any p € (1,), we denote by p’ the dual exponent to p, i.e., 1/p +
1/p" = 1. The letter C will represent a positive constant that may vary at each occurrence but is
independent of the essential variables. For a Weight w, an interval I and a function f : R — R,
we denote by w(I) = [;w(x)dx and f; = m II J; f(x)dx. We also use the convention };c¢ a; = 0.

2. Preliminaries

We start with the definitions of one-sided Hardy-Littlewood maximal functions

x+h
M*f(x) _Suph/ y)|dy and M~ f(x )—Suph/ f()|dy.

For r > 0, we set M\ f(x) := (MT|f|"(x))"/".
By a weight, we mean a nonnegative measurable function.

Definition 3. [26] Let 1 < p < oco. A weight w belongs
to the class A (resp., A,), if [w]A; < oo (resp., [w]A; < o0), where

[w]A}7 = sup ﬁ(/ab w(x)dx) (/bc w(x)lfp’dx>p71,

a<b<c

sup ﬁ(/}jw(ﬂdx) (/ﬂh w(x)lfp/dxyil.

a<b<c

[w]A; :

A weight w belongs to the class A (resp., A7), if [w] Ay < (resp., [w] A < o), where

[w]A+ :=supw(x) !M w(x) and [w}A; = supw(x) "M w(x).
xeR xeR

Since the A;’ and A, classes are increasing with respect to p, the AL (resp., Ay) class of weights is
defined in a natural way by Al = Ur<pcco A (resp., Ag = Urcpeco Ay) with

[Wlag =, ;pﬁmngw}fm [w]ag = dnf lenAf,[w]A—

It is easy to see that A, C A}, Ay C A, and A, = AJ A, . Take e for example, e* ¢ Ay,
bute* € Af. Here, A denotes the usual Muckenhoupt weight.

It was shown in [26] that, forany 1 < p < oo, M™ : LP(R, w(x)dx) — LP(R,w(x)dx) is bounded
if and only if w € A;; moreover, M* : L(R, w(x)dx) — LV°(R, w(x)dx) is bounded if and only if
w € AT . The same results hold for M~ if w € A?,' replaced by w € A, for1 < p < oo.

The following lemma will play key roles in our main proofs.

Lemma 1.
(i) Letl<p<ooandw € A;. Then, for all xo € Rand h > 0,

w(xg —h,xo+h) < (1 +2’”[w]A;)w(x0,x0+h). (5)
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(i) Letl< pgooandweA;‘ Then, forall xo € R, h > 0and A > 1,

w(xo — Ak, xo) < AP (2P[aw] 4y + (27 [w] g1 )?)e0(x0, X0 + ). O

Proof. Fix h > 0 and xo € R and we set I = (xo — I, xo + h). Given two functions f, g defined on R,
by Holder’s inequality, we get

m/\f 0)ldx)”

/
< g5 ( [irerama) ( [istolr o >1w)” 7
1

g(m/f w(x)dx) m/\g Ol w(x)1 7 dx) /|f x)dx).

Applying Equation (7) to the functions f = x+ and g = x|+, we get
w(I7) < 2”[w]A;w(I+). 8)

Then, (5) follows easily from (8).
On the other hand, we get from (7) that

|M|/ f(x) |dx .
<|AI‘ w(x )dx |)\]|/ lg(x |p w(x)'™ pdx) ©)
N )

Applying (9) to the functions f = xj and g = x 1)+, we have
w((AD)7) < 2A)P[w] 4 w(1), (10)
which together with (5) yields (6). [

By Lemma 2.1 in [26] and the similar argument as in classical Calderén-Zygmund decomposition
for the usual Hardy-Littlewood maximal function, one can get the following Calderén-Zygmund
decomposition for M, which will be crucial for the proof of Lemma 3.

Lemma 2. Let f € L'(R,dx) and & > 0. Let Q = {x : MT f(x) > a}. Then, Q can be decomposed into
finitely many disjoint intervals of integers: Q) = (J; I; with the following properties:

(i) f=g+ ¢ whereg = fxp\qand g = fi, on L for each i;
(i) ¢ = Y i, where ¢; = (f = fr)x;

(iii) (18l roo(r,ax) < 20 and |8l maxy < It (max)

(iv) foreachi, [} ¢i(y)dy = 0and ﬁ Ji lei(w)ldy < 4a;

@ i lLl < a7 Fllg i

3. Proofs of Main Results

Following [9],let ® = {B: B = {€;},€i € R,&; \, 0} and F, be the mixed norm Banach space of
two variables function / defined on N x @ such that

I, = sup (Tiipe) " <.
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Given a family of operators 7 = {T;}~¢ defined on L” (R, dx), we consider the F,-valued operator
V(T): f — V(T)f on LP(R,dx) given by

VD) = {Toelf/ @} o

where the expression {T[ei+ veilf (x)} p={¢;}c@ is an abbreviation for the element of F, given by

(i, B) = (i{ei}) — Ty el f (%) = Tep f(x) = Te, f(x).
Observe that
Vo(T)f(x) = [V(T)f(x)llg,, Vx €R. 11
In order to prove Theorem 1, we shall establish the following key result.

Lemma 3. Let ¢ > 2 and K € OCZK(By, By, B3) with support in (—o0,0). Let T = {T; }¢~0 be given as in
Equation (2). Assume that ||[Vo(T) || La(R w(x)dx)— 19 (R,w(x)dx) < 00 for some q € (1,00) and w € A}. Then,

IVo(T)f e w()ax) < ClF IR w()axy Vf € L'(R,w(x)dx) and w € Af.

Proof. We shall adopt the classical Calderén-Zygmund argument to prove Lemma 3.
Let ) = {x: M*f(x) > 1}. Invoking Lemma 2, we can decompose Q) as ) = {J; I; and decompose
f as f =g+ ¢, where all ] are disjoint intervals, § = fxr\q + L fiX1,, ¢ = & (p], @i =(f~— 1 )XI iy
I8lle=(ax) < 2 18l ax) < IfllLi(R.ax), and for eachj, fi @j(y)dy = 0and 7 [ [9;(y)ldy < 4.
It suffices to show that

w({x s Vo(T)F() > 1)) < Clfll i1 rw(oran (12)

It is clear that
w({x: Vo(T)f(x) > 1}) Sw({x: Vo(T)g(x) > 1/2}) +w({x: Vo(T)e(x) >1/2}). (13)

By our assumption,

w({x: Vo(T)g) > 1/2}) <21 [ PT)g@lio(x)ds

(14)
<C . [§(x) T (x)dx < Cll f1l 11 (R o)) -
We set I; = (cj, ¢ + |I;]) and * = U;(¢; — 2|1j|, ¢ + 2|1j]), then
w({x: Vo(T)e(x) >1/2}) w(Q) +w({x e R\Q": Vo(T)g(x) > 1/2}). (15)
Using Lemma 1 (i) and the L' (R, w(x)dx) — LY (R, w(x)dx) bounds for M, one has
) < CEw w(Q) < ClIfll1 (R w(x)dn)- (16)
We now turn to prove
w({x e RAQ": Vo(T)@(x) > 1/2}) < Cllfll (R () 17)

For every x € R\ ", we can choose a decreasing sequence {¢;} (that depends on x) such that

Ve(T) <2(Z‘ leisre? )1/0'
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For eachiand x € R\ O, we set B;(x) = (x + €1, x + €] and
Ni,1 = {] H I] C Bi(x)} and Ni/z = {] IjﬂB,‘(X) +Q, I] SZ B,‘(X)}

We notice that the cardinal of the Nj, is at most two. Thus, it holds that

VMot <2(E| L1700 ))/QH(Z\ L Tt I
<28 3 M@l (T T e)

i jeN, i jeN,

1/0

It follows that
w({x e R\Q": Vo(T)e(x) >1/2})

<o({reman L ¥ 1T o)l >g))
i jeNi
ru({remron (L 2 17 q000) > 1))
i jEN;2

(18)

Fixx € R\ Q*. Note that [x —¢;| > 2|I;| > 2|y —¢;| forany y € I;. Then, [K(x —y) — K(x —¢;)| <
Bs|x — ¢j| 72|y — ¢;|. This together with the properties of ¢; yield that

T i) = | [ (K= ) = K= )y )] < 2Bl =g /I 1)y

Observing that T[E e ]q)]( x) = 0if x > ¢j + |I;|, we thus have

o({remion £ E m nol> 1)

i jeN

Y YT 9 () (19)

R\Q i jeN;y

w(x)
< 16B; |14\/ dx/\ (v)|dy.
; M ceoga [ =¢l> "y sy
Fix y € I;. One can easily check that ¢; — x > 2(y — x)/3 for any x < ¢; — 2|I;|. Then,

(o]
/ w(x) ‘de S 2/ w(x) de
(—eoe—2/1;]) % = ¢l i1 g2 e -24 ) |x = <

< LD P s [ (s
k:Z‘i ] ] 2k+3“j| _1/*2”3“]'\

< COILI M w(y)

(20)

for any 6 > 1. By (19) and (20) (with 6 = 2) and w € A;, we have

o({rer\0 B T, 001> 5}
i jeN,; (21)
<cr [ Ifwim- w(y)dyscuwl,q)||f\|L1<R,w<x)dx>~
] 7
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Fix x € R\ Q*. Note that T;"

i 61%( x) = 0 when x > ¢; + |[;|. Moreover, y — x > ¢; — x > 0 for
any y € I;. Then,

i ()]

" 1 .
T 900 < Ba [ Wy < Bl — 1y () L oitlay

Bi(x) ‘
Combining this with (20) (with § = ¢) implies that
. 1/¢ 1
'CU({XG]R\Q : (ZZN: |T[Z+1/€i]q)j(x)|g) >E}>
1 JjeNi2
< 16° . Cw(x)dx
< R\Q*zz]g% e, el]‘P/( x)|%w(x)
Q
<C@ [ o, D(TITE o) wr)ds
4
<cox k=g (X[ loildy) wdx
]waoo,cfzu,-u ! <2 Bix) )
w(x) / 4
— i(y)|d dx
@);'/(W’CjizujH |x_cj|g( | 9iW)] v)
_ w(x)
coyimet [ f x| fy) dy
]Z Ty Jceog—2i 12 =l

D> / F()IM™ () (y)dy

C(Q, [w]Arr ) ”fHU (Rw(x)dx)”

which together with (21) and (18) yields (17). Then, (12) follows from (13)-(17). This proves
Lemma3. O

Applying similar arguments used in deriving Lemma 3, we can get the following:

Corollary 1. Let K € OCZK(By, By, B3) with support in (—c0,0). Let ¢ > 2 and T = {T }e=o be given as
in Equation (2). Assume that |[Vo (T ) || Lo dx)— L1 (R,dx) < 00 for some q € (1,00). Then,

IVo(T)fl i (max) < Cllf I moary, Vf € L' (R, dx).

The following lemma will play a pivotal role in the proof of Theorem 1.

Lemma 4. Let m € N, ¢ > 2, b € BMO(R) and K € OCZK(By, By, B3) with support in (—o0,0). Let
T = {T:'b’m}e>0 and T = {TJ} }eso be given as in Equations (1) and (2), respectively. Assume that
Vo (Tl Lt (,dx)— 19 (R dx) < 00 for some q € (1,00). Then, for any r > 1and x € R, it holds that

MV (T")f) <c(z||b\BMo M (Ve(T) ) + b0 M7 F(x). @)

Proof. We only prove (22) for the case 1 < r < min{g,2}, since M,\ f < M} f forany r, > 1. Invoking
Corollary 1, we see that V,(T) is of weak type (1,1). By the Marcinkiewicz interpolation theorem
and our assumption, we have that V,(7') is bounded on L”(R,dx) forany 1 < p < q. Fix xp € R

and /1 > 0. We decompose f as f = f1 + fo + f3, where f] = f?([xo,xo+2h] and f, = f)(<x°+2h,oo).
Let I = [xo — 2h, x9 + 2h]. In view of (3), to prove (22), we only prove
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1 [xoth
- / Vo(TIMF(y) = Vo(T) (b = b1)™ f2) (x0) dy
(23)
<c(} 2 bl gty M (Ve (T5) £ () + 16 o M3 £(3) ),

where C > 0 is independent of x(, h. Using the arguments similar to those used in deriving the
inequality (11) in [20], we get

TSN f(y) = T (6= b)" f)(y Z Cm(b(y) = )" T f(y), Wy €R. (24)
Note that T f3(y) = 0 for anye > 0,0 <k <m—1andy > xq. (24) leads to

V(T fly) =V Tz((b —bn)"f1)(y) + V(T)((b = b1)" f2) (y)

m

Y Colb(y) — )" V(T ), Wy > xo. 9
k=0
We notice from (11) that
1 Xo+h
7 / Vo(Ty") f(y) = Vo(Ty")((b = b1)" f2) (x0) |dy
x +h
h/ ' HV(Ty") f W) le, = IV (T") (b = b1)™ f2) (x0) I, |dy
1 x0+h
< E/ V(T,") f(y) = V(T,") (b = b1)™ f2) (x0) |, dy-
xo
This together with (25) and (11) yield that
1 ~Xo+h
W / Vo (Ty") f(y) = Vo(Ty") (b = b1)™ f2) (x0) |dy
1 XOXOJrh
<3 [ v (=0
m— 1
+ 1 Cony L ) b T )y 0
xo
1 r +h
) [V(T)((b=b)"f2)(y) = V(T)((b—b1)" f2) (x0) | r,dy
=h+1DL+Is.
Observe that, forany 6 > 1and k € N,
R 6 so1( 1 6 e
T 1) il <27 (g [ 0G) b oy — ) o

< C(8)(k+1)° HbHBMo
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We set p = /7. By Holder’s inequality, the L boundedness for V,(7") and (27), we have

1/p

Xo+h
no<(p [ M- weay)
o xo-+2h
<co)( [ 106) - by s Py)
So+2h . ) ,
co) (G [ rwran) " (i [ - npray)
< Clom, ) bl gy M (x0)

1/p

IN

and

<E e[ masora) (i [ 10w -mera)”

m—1
< C(m,r kZCkabII%“Mé VM (Vo (T) ) (x0).-

For I, lety € [xo,x0 + h] and B = {¢;} € ©, since

Tiee) (@ =00)"f2)(y) = TiE (b= b1)" f2)(x0)
(K(Y = 2)X (yreray+e] (2) = K(X0 = 2) X (xger11,x0+e] (2)] (0(2) = D)™ fa(z)dz
= R(K(y —2) = K(x0 = 2))X(y+e41,9-+e:) (2) (0(2) = b1)" fa(2)dz
+ /R[K(xo = 2) (X (yrer1+e) (2) = X(xorers 1 x0+e (2)) (0(2) = b1)" fa(2)dz

It follows that
IV(T)((b=b0)"f2)(y) = V(T)((b = b1)" f2)(x0) I,
= H { /]R(K(y —2) = K(x0 = )Xy ey () (0(2) = b)"fa(2)dz |
+ H { /RK(XO - Z)(X(V+€i+1/y+€i] (Z) - X(xo+€1+1,x0+si] (Z))
x(b(z) = b1)" f2(z)dz
=: Iy + Ipp.

ieN,/i:{ei}eG)HFg

}ieN,/S:{si}e®“Fg

(28)

(29)

(30)

Since |xg — z| > 2h > 2|xg — y| for z > xo + 2h, then |[K(y — z) — K(xp — z)| < Bs|xo — yl||xo —

z|72 < Bsh|xg — z| 72 for any z > xg + 2h. Note that

H{X (yterogyre) (2 ienp=teyecollr, <1, Yy €R.
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By Minkowski’s inequality, Hlder’s inequality and (27) with § = m#’, we obtain

I < /R IK(y — 2) = K(x0 — 2) | {X (yers e (2) et pteycolI 7

<I(bz) ~ by )iz
< Bsh Mdz

xo+2h kH(Z — xp)?
S RPN (b(2) — br)" f(2)]
B L / - et s (31)
co 1 xg+2K+1 h 1 , 1/v
< 7k _ mr
<4p).2 2k+lh/x ) . /Zkl Ib(2) by dz)
k+ 1™
<4B; Z |b||BMO M+f(x0) < C(m,r, B3)||bHBMO M:rf(xo)-

It remains to estimate I1p. Fix {€;} € ©. Let Ny ={i€Z:¢€;— €1 > y—xotand N, = {i € Z:
€ — €11 <Y — Xp}. We can write

2 / K(xo - 2) (X(y+e,+1 y+e,]( z) — X<X0+€i+],xo+€z](Z))(h(z) - bl)mfZ(Z)dZ‘p

m i
< \ [ K =20 = Xisgsesnred (DOG) — )" fo(z)d]
zeNl

(32)
I3
L | %0 = 2) grasnysel () ~ Keeumspred (D) — )" o)
i€N,
=:Ju+ Ji2-
By Holder’s inequality, we obtain
(b(z) —by)" fa(z P
Jn < Bp ‘ e |X() i Z|f2( ) (X(X0+€i+lry+€i+l](z) +X(Xo+€i:y+€:](z))dz
iENy
[(b(z) —b1)" fo(2)] P
< (4B,)° by ’ / |xo - Z\f X(xo+eyte] (2)42 )
! 1
1 (b L)
(4By)PhP~ EZ,:\, / \xo — z\P P K (e e (2)82
1
4B php 1 ‘ b(z —b; mfz(z)"]
[xp — z|P
(b(z) = bp)" fa(z o
Jiz < Bg Z ‘/ (=) |X0 _lz|f( ) (X(y+si+1/y+e,v] (Z)+X(x0+e,-+1,xo+el](z))dz‘
i€ENy
1(b(z) —b)" f2(2)| P
< (2By)P P ’/ |x0 — 7 (X(yterayrel (Z)dz‘
telNy
|(b(z) = b)" f2(2)| p
+(2B2) ~ ‘/ ‘xo —Z T en—a X(oteirote] (Z)dz‘
- €Ny bR ) (34)
< T (2By)P eN \xo T ro—zp | Awtemaytel (2)dz
e\
- b(z) —by)" fo
+hP 1(232 = / ‘( |x0 _I)Zl'pf( )‘ X(XO+61+1,X(]+€,'](Z)dZ
ieN,
< 2(232)911‘)’1/ ) = b R,
R |xo — z|°
It follows from (32)—(34) that
1-1/p( [ 1(b(z) —b)"fa(2)|P | \1/e
Ly < C(By, ) (/R BT dz) . (35)
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By Holder’s inequality and (27) (with 6 = mpp’), we have

[l -uraer,,
|xo — z|f
P k1
_2 W2 |(b(2) —b)"fR)IP
=1 Jxo+2kh |20 — z[P
00 . X0+2k+1h
<Len / IR CORMOTRE
—1 X0
k+1
l 1 x0+25"h 1/p
- Z 2 2k+1h \f(z)\ﬁiz)
1/p'
|2k1|/ ) —br ‘mppdz) P
k+1
< 4Pl 3 i (M £
This yields directly
[ ACEZILEN 4, < o, ol (50 66

Combining (36) with (35) yields (37) together with (30) and (31) implies

Lo < C(m, 7, Bo)||blgyiomy My f(x0), (37)

I; < C(m,r, By, B3)Hb||glMO(R)Mr+f(xo). (38)
Combining (38) with (26), (28) and (29) yields (23). This completes the proof. [
We now turn to prove our main results.
Proof of Theorem 1. We first prove (i). For any w € A;; with 1 < p < oo, there exists r € (1, p) such

thatw € A;r/ .- Then, we have

‘|M+f||LP R,w(x)dx) < HM+|f‘ Hlp/r (R,w(x)dx) < CPI”fHLP(R,w(x)dx)' (39)

On the other hand, it was proved in [23] that

IM* £l wxyiny < CIMT o @ o) (40)
forl < p < coand w € AJ,. We get from (22), (39) and (40) and that
”VQ(T)J(”M(R/w(x)dx) < ”M+ (VQ(T)J()HLV(R,W(X)dx)

< C\\M+'t(VQ(T)f))|\LP R,w(x)dx)
< CIMY fllr @) < ClUFIlLe R w(x)d)-

This together with Lemma 3 yields Theorem 1 (i).

Applying Lemma 4 and the arguments similar to those used in deriving Theorem 1.3 in [19],
we can get Theorem 1 (ii). The details are omitted.

We now prove (iii). For wle A7, there exists r > 1 such that w™" € A] . Thus, forany x € R,

x+h r
M f) =) (sup g [ Al @)
Hf”L""(]R,w(x)dx)w(x)(MJr(wir)(x))l/r < ||u)7r||,411 ||fHL°°(R,w(x)dx)l

IN
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which together with (23) yield that

Ve(T)flemot @uwax) = M V(T )l @ 0(x)d)
< CIM fllo®wixyax) < ClFllio @ w(x)ax)

forany 1 < r < co. This proves Theorem 1. [

Proof of Theorem 2. We first prove (i). Fix xg € R and / > 0. It suffices to show that

1 xo+h - 1/p " 5
(m /xo Vo (T, )f(x)\pdx) < CHb”BMo(]R)h Hf”mﬁ#(w)f (41)

where C > 0 is independent of xo, . Let f1 = fX[x,xo420) f2 = fX[xp+2100) a0d f3 = f — f1 — fo.
Let I = [xo — 2h,xo + 2h]. Note that T:’b’"’fg(x) = 0 for any € > 0 and x > xp. It follows that
Vo(T,")f3(x) = 0 for all x > xp. Thus, we can write

1/p
w(xg —h, xg

(otiay [ VT Pas)

1/p

< (s—im /x:M Vo) fr ()17 x) W)

xo — h, xo

xo+h
+<(; /XO |V‘2(7zm)f2(x)\pdx>l/p — 545,

w(xy — h,xq)

Invoking Lemma 1 (i) and Theorem 1 (ii), there exists C > 0 independent of xg, k, such that

1 Xg+2h 1/p
St < Clliwore (gre—giay /. VC0I7x)
X0

w(xg — h, xo

w(xg — 2h, xg) 1 "Xo-+2h 1/p (43)
< Cltlivom (e —hag) o) Jy O
< C”ngMo(R)hﬂ||fHLﬂ,ﬁ,+(w)

Applying Lemma 1 (ii), there exists C > 0 independent of xo, & such that

xo+2k+1h 1/p
z)|Pdz
< w(xo *h %) xo+25h )] ) -
< ( (%0 — —2k+2p, xo —h) 1 /xo—h+2 o |f(z)‘pdz>1/li (44)
- XO—h XO) w(xo fh72k+2h,x0 7h) xo—h

< C2lk+2)( i P\ £l o s

One can easily check that |x — z| > |z — x| /2 for x € [xp, x0 + ] and z € [xg + 2h, c0). Fix x €
[x0, x0 + h]. Then, by (11) and Minkowski’s inequality, we have

Ve(TPA() = IV(TM) (),
< H{/ K(x —z)(b(x) — b(Z))’"fz(z)dz}

€41 <z—x<é; iEN/ﬁ:{Ei}E(BHFQ

< [ IKGr =200 = b)) £ i a-ve }
cc [ Lo~

|z — xo

(45)

ieN,f={e; }cOIIF,
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where C > 0 is independent of xy, . It is clear that

/ &) () = b)), _ /*0“**”’ [f (@) (b() — b)),

|z — x0| = o2k |z — xo]

Fix k > 1. By Holder’s inequality, we obtain

/xo“k“h [f(2)(b(x) —b(z))"]

o+25h |z — xo]
P xp+2K+1h xo+251h
<@ ([0 @) bz + [ @I — by )
xo+25h xo+2kh
xg+25 1/p
<27@n) () by ([ () P)
xo+2Kh

xo+2k1n xo+2K 10

1/p N
+2m(2kh)—1</ |f(z)|de) (/ Ib(z) — by ™" dz) .
xo+2kh Jxo+25h

This together with (27) and (44) yields that

/'x°+2k“h |f(2)(b(x) ~b(2))"| |
x4 2k |z — xo\k

<C2 (1+ﬁ)hﬁ|‘f||mﬂr+(w)(2 1)~ Pw((xo = b, x0)) P (b(x) = byey " + 16/lBmo(R))-
Here, C > 0is independent of xq, h. By (45) and (46) and Holder’s inequality, we have

(=)

Sa SChﬁHf“mM ZkHﬁ 2kh) 1r
k:l
~Xo+h m 1/p
«(f (500 =" ¥ )IPdx)
X0
< Chﬁufnm,ﬁ,‘ 2B (oK)= 1/p
k 1
XO m m m m m p ]/p
x( / (2"[b(x) = bil™ +2"[br — by |" + B[P0y ) )
X0

o _(k+D)"
< C”bHBMO ]/l‘BHfHLp,ﬂ,+(w> kz‘i S /p—1-pk

< C“bHBMO(R)hISHfHLp,ﬁ,+(ZU)'

(46)

(47)

Here, C > 0is independent of xq, k. In the last inequality of (47), we have used the condition

1/p > 1+ B. (47) together with (42) and (43) yield (41).

Next, we prove (ii). Let fi = fX[xx120)s f2 = fX[xg12h00) and f3 = f— f1 — fo. Let ] =

[xo — 2h, xo + 2h]. By (4), we want to show that

1 Xo+h p 1/p )
(o /. V) VoM a)dx) < Ol
where C > 0 independent of xg, i. Using (11) and Minkowski’s inequality, one has

[Vo(T)f(x) = Vo(T) f2(x0)]|
= [V f(O)lr, = IV (T) f2(x0) |, |
< V(T f(x) = V(T) fa(xo) [E, < Vo(T) () + IV(T) fa(x) = V(T) fa(x0) |-
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This together with Minkowski’s inequality again yield that

1/p

xo+h
(o= /. VT ) V(T ) )

xo — h, x0

< (% [ IVQ(T)fl(X)I”dx)l/p

XQ*h X0

xofh w(xg — h, x0) / IV(T)fa(x) - (T)fZ(xo)H?de)l/p,

We get from (43) (with m = 0) that

xo+h
(%/x |Vg(T)f1(x)\de>1/p < CHI fl o

w(xg —h, xo

(49)

(50)

where C > 0 is independent of x, k. Fix x € [xg, xo + h]. (30), (31) and (35) (with m = 0) imply that

IV(T) fa(x) = V(T) fa(x0) [IE,

1f2(2)] 1-1/ l2(2)[P NP
< P 3
< Bsh L T2 7x0|2dz+C(Bz,p)h ( e Txo —Z\sz)

It follows that

1/p

(o [ VR -V Aol )

w(xo —h,x0) Jx,
1+1/p 00 P 1/
IR TR i W g TS
w(xo =, x0) P Jygran (2= x0)? w(xg —h,x0) Jr |x0 — z|P
ZV1+V2.

By (44) and Holder’s inequality, there exists C > 0 independent of xo, &, such that

1y . xo+ 21
< -
nos (xo—h x0) /P (= 2(2 )~ /xo+2kh |f(2)ldz
1 xo+2kt1h 1/p
< k(—2+1/p") 7/ p
N ;;12 (w(xo —h,x0) Jxgt2kn f@) dz)

<C Z 2k(—2+1/p/)zk(IJr,B)hﬁHfHLp/ﬁHr ()
k:l

<C ZZk BVDRE s y < CHP | Fll o o

o xo+25+1h P 1/
vo<(Yew 1 / f(2)] dz) ’
X
C

= wlxo—hxo) Syt (2= x0)

) 1

- ( Y2 kpok(1+p) phﬁpr”Lpﬁ+ (w) ) p

< (2 29) B sy < Pl
=1

(53) together with (49)—(52) yields (48). This finishes the proof of Theorem 2. [

4. A-Jump Operators and the Number of Up-Crossing

()

(52)

(53)

This section is devoted to study the A-jump operators and the number of up-crossing associated
with the operators sequence {T+ "} e~0, which give certain quantitative information on the

convergence of the above families of operators.
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Definition 4. Given a family of bounded operators T = {Tc}eso acting between spaces of functions,
the A-jump operator associated with T applied to a function f at a point x is defined by

AN(T)f(x) :=sup{n: thereexists; <t; <sp <t <---<s, <ty
such that |Ts, f(x) — Tp, f(x)| > A}

For 0 < a < 1y, the number of up-crossing associated with T applied to a function f at a point x is
defined by
Nuqy(T)f(x) :=sup{n: thereexists; <t <sp <ty <..<sy <ty
such that Ty, f(x) < a, Ty, f(x) > 7}

It was shown in [11] that, if the Ajump operators is finite a.e. for each choice of A > 0, then we
must have a.e. convergence of our family of operators. Moreover,

A(A,\(T)f(x))l/g <Vo(T)f(x) and Ny (T)f(x) < Ay_o(T)f(x), YA >a > 0. (54)
By Theorem 1 (ii) and Theorem 2 and (54), we can get the following result.

Theorem 3. Let m € N, ¢ > 2, b € BMO(R) and K € OCZK(Bj, By, B3) with support in (—o0,0).
Let T)" = {TF"Y oo and T = {T Yeso be given as in (1.1) and (1.2), respectively. Let A > a > 0.
Assume that ||Vo(T) || La(w,dx)— 11 (R,dx) < 0 for some q € (1,00). Then,

(i) foranyl <p<oco,we€ AJand f € LP(R,w(x)dx),

@)

I T it < 2L oo |z ot

i)

I NaA (T2 @iy < = e b ltors) |1 oo

(i) foranyl <p<1/(B+1),-1/p<Pp<0,we A} and f € LPFF(w),

m C(p, m
AT sy < L ogs 1Fl y
C(p,
H(er,A(Enl)f)l/gHLp,ﬁ,+(w) < /\(Fii) Hb”glMO(]R)||fHLp,l3,+(w)~

5. Conclusions and Further Comments

It should be pointed out that our main results represent one-sided extensions of the main results
in [19,28]. Combining with the two-sided case, the one-sided case is often more complex. Our main
results not only enrich the variation inequalities for singular integrals and related commutators, but
also explore some one-sided techniques to serve our aim (for example, see Lemma 1). In fact, it is
unknown whether the variation operators for one-sided singular integrals are bounded on L?(R),
which will be our forthcoming objective of research. On the other hand, some new one-sided methods
and techniques can be explored to apply other one-sided operators.

Author Contributions: Formal analysis, Z.F; writing-original draft preparation, F.L.; writing-review and editing,
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1. Introduction

In recent years, an increasing amount of attention has been paid to the study of power-exponential
inequalities [1-10]. A review of some problems and historical landmarks are given in [2,11].
In particular, in order to contextualize, we recall that the basic problem of comparing a” and b”
for all positive real numbers a and b was presented in [12-14]. Increasing in algebraic difficulty, the
comparison of a” + b? and a’ + b® was studied independently by Laub-Ilani and Zeikii-Cirtoaje-Berndt,
see [15-18], respectively. The result is the fact that the inequality

A+ b >ab b0, abe [0, 00 (1)

holds. An extension of (1) was proposed, analyzed and proved by Matejicka, Cirtoaje and
Coronel-Huancas in [2,17,19] obtaining the inequality

a0 > a0, a,bel0,00 reloe ()

More recently, other extensions and generalizations of (1) were introduced, proved and
conjectured by Ozban in [11], where, in particular, the author proved the following inequalities:

(sin x)*"% 4 (siny)*MY > (sinx)*MY 4 (siny)s"Y, 0 < x <y < m/2,
(cos x)°%* + (cosy)®%Y > (cosx)“Y + (cosy)®Y, 0<x<y<m/2,
(cos x)*I"¥ 4 (cos Y)Y < (cosx)5MY 4 (cosy)*"Y, 0<x<y<1,
(cosx)* + (cosy)Y < (cosx)¥ + (cosy)’, 0<x<y<m/2, 3)
(sinx)* + (siny)¥ > (sinx)? + (siny)*, 0<x<y<m/2,
XCOSX | OSY £ yCOSY 4 4005 ) <y <y 1<y < 7/2,
xSINX pgsiny o gsiny L gsiny g coy <y < 7/2,
In order to extend or generalize (2) and (3), it seems natural to ask some questions: What happens

with the inequality (2) when r € R — [0, ¢[? and what happens with the inequalities in (3) if we include
a negative power ? We note that the powers in question exist, since the basis of powers in (2) and (3)

Mathematics 2019, 7, 988; doi:10.3390 /math7100988 186 www.mdpi.com/journal /mathematics
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are positive. Indeed, in this article, we study (2) for €] — oo, 0[ and establish reverse inequalities for
some cases. Moreover, we study the generalization of the inequalities in (3) with negative power r.
The main results of the paper are the following theorems:

Theorem 1. Let the function ¢, : R — R be defined by ¢, (m) = ma™ for each « > 1 and consider the
following sets:

Agg = {(a,b,r) eER’ : a>0 b>0, re [O,e[},
Aﬁew = {(u,b,r) eR® : a>1 b>1 r<0, @Qp(rb) > gob(m)}

U {(u,b,r) eR® : a>1, b>1, r<0, @rb) < p(ra), a?< 7}, 4)
Ar

new

= {(a,b,r)e]R3 © 0<a<1, 0<b<1, r<0}
U {(a,b,r) eR® : a>1, b>1, r<0, @rb) < gp(ra), o> 7},
where y €]0,1[ is such that  # b and ()% —7 — ™ 4+ b™ = 0. Then, the following inequalities

a0 > a0, (a,b,7) € AggU Ay, (5)
a0 <a® 40, (a,b,7) € Al (6)
are satisfied.
Remark 1. The inclusion of the notation % is related with the fact that the argumentation of the proof is based
on the properties of function f(t) = (£)° —t —° + ywitht = a™ s = a/band v = b'". In particular, we
observe that, if 0 < t < 7 < 1, there are two solutions of f(t) = 0 on the interval |0, 1(; one solution is clearly

y and the other solution is difficult to get explicitly and is denoted by 7.

Theorem 2. Ifx,y € (0,7t/2) and r < 0, then

(Sinx)rsinx + (Siny)rsiny < (sinx)rsiny + (Siny)rsinx, @)
(COS x)rcosx + (Cosy)rcosy < (COS x)rcosy + (Cosy)rcosx’ 8)
(cos x)"SI0% 1 (cosy)"SMY > (cos x)"SINY 4 (cosy) ST, 9)

Theorem 3. If x,y € (0,71/2) and r < 0, then

(cosx)™ + (cosy)"Y > (cosx)"V + (cosy)™, (10)
(sinx)™ + (siny)"¥ < (sinx)"V 4 (siny)™. (11)

Theorem 4. If x,y € (0,71/2), min{x,y} € (0,1] and r < 0, then

X! cosx +yrc0sy > yTcosy +yrcosx (12)
X sinx +yrsiny < xrsiny_’_yrsinx. (13)

The rest of the paper is dedicated to the proof of Theorems 1-4.
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2. Proofs of Main Results

2.1. Proof of Theorem 1

For completeness and self-contained structure of the proof, we recall the notation and a result
given in [1]. Indeed, let us consider s € R* and we define the functions f and g from R™ to R by
the relations

fy = FP—t—2"+7,

e~/ fort ¢ {0,1},
gty = e t, fort =1,

0, fort =0.

Then, the following properties are satisfied: f(y) = 0and f(0) = f(1) = —y° + ;if s > 1 (resp.
s < 1), f is strictly increasing (resp. decreasing) on ]g(s), co[ and strictly decreasing (resp. increasing) on
10,¢(s)[; and g is continuous on R* U {0}, strictly increasing on R, y = 1 is a horizontal asymptote of
y = g(t), and the range of ¢ is [0, 1]. Moreover, if we consider the function & : Rt — R¢&(m) = —m®+m
and ¢, defined in the enunciate of the theorem, we observe that the following following assertions are
satisfied: ¢(0) = ¢(1) = 0;if s > 1 (resp. s < 1) w has a maximum at g(s) (resp. minimum at g(s));
¢«(0) = 0; ¢ has a minimum at m* = —1/ In(a); ¢, has a inflection point at m** = —2/In(a); y =0
is a left horizontal asymptote of ¢, and the range of g is [@, (m*), 0o with ¢, (m*) < 0.

Let us consider t = a'?, v = b, and s = a/b and we observe that

f(t) _ (arb)u/b _ arb _ (brb)a/b + brb — " arb — b7 brh. (14)

Then, the proofs of (5) and (6) are reduced to analyze the sign of f(t) for t € [0, v]. Indeed, without
loss of generality and by the symmetric form of the inequalities in (5) and (6), we assume that 0 < b < a
(i.e.,s = a/b > 1) and consider three cases:

(i) Leta,bsuchthatl >a > b > 0. Then, for r < 0, we note that 1 < a” < b” or equivalently we have
that 1 < t < y. Moreover, observing thats > 1 and g(s) < 1, by the strictly increasing behavior of
fon [g(s),00), we deduce that f(g(s)) < f(1) < f(t) < f(vy) = 0. Thus, from (14) and f(t) < 0,
we follow that the inequality a™ + b™ < a’® + 1" is satisfied.

(i) Let a,b such thata > 1 > b > 0. In this case, we have that " < 1 < b" or equivalently
t <1 < 1. We note that s > 1 implies the strictly decreasing behavior of f on [0, g(s)] and the
strictly increasing behavior of f on [g(s), oo[. Moreover, observing that g(s) € [0,1], we deduce
that f(t) < f(1) = —y*+ 9 := &(y) forany t < 1 < 7. Now, by the fact that ¢ is decreasing on
[g(s), 00, we have that &(y) < (1) = 0 for any ¢ > 1. Thus, f(t) < &(y) <O0fort <1 < 7 and,
from (14), the inequality a™ + b’ < a'® + b' is satisfied.

(iii) Let a, b such that 2 > b > 1. Similarly to cases (i) and (ii), we have thats > 1and 0 < 2" <1 <b" <
1 or equivalently 0 < t < 7 < 1. Here, we distinguish two subcases: ¢ < g(s) and g(s) <y < 1.
First, if ¥ < g(s), we have that f is strictly decreasing on [0, v] and consequently f(t) > f(y) =0
for t € [0,7]. Second, if g(s) < v < 1, by the fact that f(0) = &(y) > 0 = f(v) > f(g(s)), we
have that there exists 7 € [0,g(s)[ such that f(7) = 0. Then, f(t) > f(¥) = 0for t € [0,7]
and f(t) < f(y) = f(7) = 0for t € [¥,7]. Thus, from both subcases, we conclude that the
inequality a™ + b"? < o' 4+ b is satisfied for t € [7,7] with ¢ €]g(s),1[ and the inequality
a4+ b > a'® 4 b is satisfied for t € [0,7] with vy €]g(s), 1] or for t € [0,v] with y €]0,g(s)].

On the other hand, by the definition of 7, s, g and ¢;, we observe that v < g(s) (resp. vy > g(s)) is
equivalent to ¢, (rb) > @p(ra) (resp. ¢p(rb) < @p(ra)). Moreover, the relation t > 7 (resp. t < 7)
is equivalent to a’® > 7 (resp. a™ < 7). Thus, the subcases can be characterized in terms of the
function ¢, and a’® > 7 or a™ < 7.
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Hence, translating (i), (ii) and (iii) to the corresponding notation in (4) and observing that the set
Ay is the set for the inequality in (2), we conclude the proof the theorem.

2.2. Proof of Theorem 2

Since sint,cost > 0 for t € (0,71/2), Theorem 1 immediately implies inequalities (7) and (8).
To prove (9), we define

f(t) — (COS t)rsint 4 (Cosy)rsiny _ (COS t)rsiny _ (Cosy)rsint

for y is fixed and arbitrarily selected such that y € (0,77/2) and 0 < t < y. We note that f(y) = 0, then
the result follows if f is decreasing. Indeed, to see this, we write

P sint
fi(t) =r|g(t) cost+ —Costh(t) ,
where

g(t) = (cos )" In(cos t) — (cosy) " In(cosy),

h(t) = (cost)" MY siny — (cost)" 5" sin t.

Now, since r < 0, it is enough to show that g(), h(t) > 0. For g, we have that

gt) = — /ty %(coss)’smtln(coss)
= /ty((COS s)" 5= 1ging)(1 4 rsintIn(coss))ds > 0
and, similarly for &, we deduce that
h(t) = /ty %(cost)rSins sins
= /ty((cost)”i“s coss)(1+ rsinsln(cost))ds > 0.

2.3. Proof of Theorem 3

Set0 <t <y < m/2andr < 0 arbitrarily. Along the proofs, we will use that sins,coss > 0 for
s (0,7/2).

In order to prove (10), let us consider f1(t) = (cost)™ + (cosy)"V — (cos )" — (cosy)"*. Observing
that f1(y) = 0, it is enough to show that f; is decreasing. Indeed, the decreasing behavior of f; follows
immediately since

£ =1 [sa(6) + Siin(0)]
where
g1(t) = (cost)" In(cos t) — (cosy)* In(cosy) = — //y %(cos )" In(cos s)

Y
= / ((coss)"Lsins)(1 + rtIn(coss))ds > 0
t
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and
hy(t) = y(cost)"Y —t(cost)" / I s(cost)"
Y
= / (cos )™ (1+ rsIn(cost))ds > 0.
Ji

We prove (11) by analogous arguments to the proof of (10). Indeed, let us introduce the notation
f2(t) = (sint)"V + (siny)™ — (sint)" — (siny)". We observe that

70 =1 [s2(t) + Sotha(t)] <0,
since
(1) = (siny)" In(siny) — (sint)" In(sint) = '/ty %(sins)” In(sins)
= /ty((sins)”*1 coss)(1+ rtin(sins))ds > 0
and

ho(t) = y(sint)"Y — t(sint)" / I s(sint)”

y
= / (sin#)™(1+rsin(sint))ds > 0.
Jt

Thus, (11) is a consequence of the decreasing behavior of f, and the fact that f,(y) = 0.

2.4. Proof of Theorem 4

Weset0 < x <y < m/2withx < 1andr < 0 arbitrarily selected. Then, by the fact that
cos x > cosy > 0, we deduce the following estimate:

A COSX _ yreosy xrcosy(xr(cosx—cosy) _ 1)

> yrcosy( r(cosx—cosy) _ 1) _ yrcosx _ yrcosy,

which implies (12). Similarly, using the fact that siny > sin x > 0 implies that

rsiny_xrsinx I’SinX(

x =5 xr(sinyfsinx) _ 1)

> yrsinX(yr(siny—sinx) _ 1) _ yrsiny _ yrsinx,

and we get the proof of (13).
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