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Abstract: In the theory of analytic and univalent functions, coefficients of functions’ Taylor series
representation and their related functional inequalities are of major interest and how they estimate
functions’ growth in their specified domains. One of the important and useful functional inequalities
is the Fekete-Szegö inequality. In this work, we aim to analyze the Fekete-Szegö functional and to
find its upper bound for certain analytic functions which give parabolic and petal type regions as
image domains. Coefficient inequalities and the Fekete-Szegö inequality of inverse functions to these
certain analytic functions are also established in this work.

Keywords: analytic functions; starlike functions; convex functions; Fekete-Szegö inequality

MSC: Primary 30C45, 33C10; Secondary 30C20, 30C75

1. Introduction and Preliminaries

Let A be the class of functions f of the form

f (z) = z + ∑∞
n=2 anzn, (1)

which are analytic in the open unit disk U = {z : |z| < 1} and S be the class of functions from A which
are univalent in U . One of the classical results regarding univalent functions related to coefficients an

of a function’s Taylor series, named as the Fekete-Szegö problem, introduced by Fekete and Szegö [1],
is defined as follows:

If f ∈ S and is of the form (1), then

∣∣∣a3 − λa2
2

∣∣∣ ≤
⎧⎪⎨⎪⎩

3 − 4λ, if λ ≤ 0,

1 + 2 exp
(

2λ
λ−1

)
, if 0 ≤ λ ≤ 1,

4λ − 3, if λ ≥ 1.

This result is sharp. The Fekete-Szegö problem has a rich history in literature. Several results
dealing with maximizing the non-linear functional

∣∣a3 − λa2
2

∣∣ for various classes and subclasses of
univalent functions have been proved. The functional has been examined for λ to be both a real and
complex number. Several authors used certain classified techniques to maximize the Fekete-Szegö

Mathematics 2018, 6, 298; doi:10.3390/math6120298 www.mdpi.com/journal/mathematics1
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functional
∣∣a3 − λa2

2

∣∣ for different types of functions having interesting geometric characteristics of
image domains. For more details and results, we refer to [1–11]. The function f is said to be subordinate
to the function g, written symbolically as f ≺ g, if there exists a schwarz function w such that

f (z) = g (w (z)) , z ∈ U , (2)

where w (0) = 0, |w (z)| < 1 for z ∈ U . Let P denote the class of analytic functions p such that p (0) = 1
and p ≺ 1+z

1−z , z ∈ U . For details, see [12].
In 1991, Goodman [13] initiated the concept of a conic domain by introducing generalized

convex functions which generated the first parabolic region as an image domain of analytic functions.
He introduced and defined the class UCV of uniformly convex functions as follows:

UCV =

{
f ∈ A : �

(
1 + (z − ζ)

f ′′ (z)
f ′ (z)

)
> 0, z, ζ ∈ U

}
.

Later on, Rønning [14], and Ma and Minda [7] independently gave the most suitable one variable
characterization of the class UCV and defined it as follows:

UCV =

{
f ∈ A : �

(
1 +

z f ′′ (z)
f ′ (z)

)
>

∣∣∣∣ z f ′′ (z)
f ′ (z)

∣∣∣∣ , z ∈ U
}

.

This characterization gave birth to the first conic (parabolic) domain

Ω = {w : �w > |w − 1|} .

This domain was then generalized by Kanas and Wiśniowska [15,16] who introduced the domain

Ωk = {w : �w > k |w − 1| , k ≥ 0} .

The conic domain Ωk represents the right half plane for k = 0, hyperbolic regions when 0 < k < 1,
parabolic region for k = 1 and elliptic regions when k > 1. For more details, we refer [15,16]. This
conic domain Ωk has been extensively studied in [17–19]. The domain Ω was also generalized by Noor
and Malik [20] by introducing the domain

Ω [A, B] =
{

u + iv :
[(

B2 − 1
) (

u2 + v2
)
− 2 (AB − 1) u +

(
A2 − 1

)]2

>
(
−2 (B + 1)

(
u2 + v2

)
+ 2 (A + B + 2) u − 2 (A + 1)

)2
+ 4 (A − B)2 v2

}
.

The domain Ω [A, B] represents the petal type region, for more details, we refer to [20]. Now,
we consider the following class of functions which take all values from the domain Ω [A, B] , −1 ≤
B < A ≤ 1.

Definition 1. A function p (z) is said to be in the class UP [A, B] , if and only if

p (z) ≺ (A + 1) p̃(z)− (A − 1)
(B + 1) p̃(z)− (B − 1)

, −1 ≤ B < A ≤ 1, (3)

where p̃(z) = 1 + 2
π2

(
log 1+

√
z

1−√
z

)2
, z ∈ U .

It can be seen that Ω [1,−1] = Ω1 = Ω. This fact leads us to the following implications of different
well-known classes of analytic functions.

1. UP [A, B] ⊂ P
(

3−A
3−B

)
, the well-known class of functions with real part greater than 3−A

3−B , see [12].

2
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2. UP [1,−1] = P ( p̃) , the well-known class of functions, introduced by Kanas and
Wiśniowska [4,21].

Now we consider the following classes UCV [A, B] of uniformly Janowski convex functions and
ST [A, B] of corresponding Janowski starlike functions (see [20] ) as follows.

Definition 2. A function f ∈ A is said to be in the class UCV [A, B] , −1 ≤ B < A ≤ 1, if and only if

�

⎛⎜⎝ (B − 1) (z f ′(z))′

f ′(z) − (A − 1)

(B + 1) (z f ′(z))′

f ′(z) − (A + 1)

⎞⎟⎠ >

∣∣∣∣∣∣∣
(B − 1) (z f ′(z))′

f ′(z) − (A − 1)

(B + 1) (z f ′(z))′

f ′(z) − (A + 1)
− 1

∣∣∣∣∣∣∣ ,

or equivalently,
(z f ′(z))′

f ′ (z)
∈ UP [A, B] . (4)

Definition 3. A function f ∈ A is said to be in the class ST [A, B] , −1 ≤ B < A ≤ 1, if and only if

�

⎛⎝ (B − 1) z f ′(z)
f (z) − (A − 1)

(B + 1) z f ′(z)
f (z) − (A + 1)

⎞⎠ >

∣∣∣∣∣∣
(B − 1) z f ′(z)

f (z) − (A − 1)

(B + 1) z f ′(z)
f (z) − (A + 1)

− 1

∣∣∣∣∣∣ ,

or equivalently,
z f ′(z)
f (z)

∈ UP [A, B] . (5)

It can easily be seen that f ∈ UCV [A, B] ⇐⇒ z f ′ ∈ ST [A, B] . It is clear that UCV [1,−1] =
UCV and ST [1,−1] = ST, the well-known classes of uniformly convex and corresponding starlike
functions respectively, introduced by Goodman [13] and Rønning [22].

In 1994, Ma and Minda [7] found the maximum bound of Fekete-Szegö functional
∣∣a3 − λa2

2

∣∣ for
uniformly convex functions of class UCV and then Kanas [21] investigated the same for the functions
of class P ( p̃) . Our aim is to solve this classical Fekete-Szegö problem for the functions of classes
UP [A, B] , UCV [A, B] and ST [A, B] . We need the following lemmas (see [7]) to prove our results.

Lemma 1. If p (z) = 1 + p1z + p2z2 + · · · is a function with positive real part in U , then, for any complex
number μ, ∣∣∣p2 − μp2

1

∣∣∣ ≤ 2 max {1, |2μ − 1|}

and the result is sharp for the functions

p0 (z) =
1 + z
1 − z

or p∗ (z) =
1 + z2

1 − z2 , (z ∈ U ) .

Lemma 2. If p (z) = 1 + p1z + p2z2 + · · · is a function with positive real part in U , then, for any real
number v, ∣∣∣p2 − vp2

1

∣∣∣ ≤
⎧⎪⎨⎪⎩

−4v + 2, v ≤ 0,
2, 0 ≤ v ≤ 1,
4v − 2, v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p (z) is 1+z
1−z or one of its rotations. If 0 < v < 1,

then, the equality holds if and only if p (z) = 1+z2

1−z2 or one of its rotations. If v = 0, the equality holds if and
only if,

p (z) =
(

1 + η

2

)
1 + z
1 − z

+

(
1 − η

2

)
1 − z
1 + z

(0 ≤ η ≤ 1) ,

3
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or one of its rotations. If v = 1, then, the equality holds if and only if p (z) is reciprocal of one of the function
such that equality holds in the case of v = 0. Although the above upper bound is sharp, when 0 < v < 1, it can
be improved as follows: ∣∣∣p2 − vp2

1

∣∣∣+ |p1|2 ≤ 2
(

0 < v ≤ 1
2

)
and ∣∣∣p2 − vp2

1

∣∣∣+ (1 − v) |p1|2 ≤ 2
(

1
2
< v ≤ 1

)
.

2. Main Results

Theorem 1. Let p ∈ UP [A, B], −1 ≤ B < A ≤ 1 and of the form p (z) = 1 + ∑∞
n=1 pnzn. Then,

for a complex number μ, we have∣∣∣p2 − μp2
1

∣∣∣ ≤ 4
π2 (A − B) . max

(
1,
∣∣∣∣ 4
π2 (B + 1)− 2

3
+ 4μ

(
A − B

π2

)∣∣∣∣) (6)

and for a real number μ, we have

∣∣∣p2 − μp2
1

∣∣∣ ≤ 2 (A − B)
π2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3 − 8

π2 (B + 1)− 8
π2 (A − B) μ, μ ≤ − π2

12(A−B) −
B+1
A−B ,

−−−−−−−−−−−

2,
− π2

12(A−B) −
B+1
A−B ≤ μ

≤ 5π2

12(A−B) −
B+1
A−B ,

−−−−−−−−−−−
− 4

3 + 8
π2 (B + 1) + 8

π2 (A − B) μ, μ ≥ 5π2

12(A−B) −
B+1
A−B .

(7)

These results are sharp and the equality in (6) holds for the functions

p1 (z) =
2(A+1)

π2

(
log 1+

√
z

1−√
z

)2
+ 2

2(B+1)
π2

(
log 1+

√
z

1−√
z

)2
+ 2

(8)

or

p2 (z) =
2(A+1)

π2

(
log 1+z

1−z

)2
+ 2

2(B+1)
π2

(
log 1+z

1−z

)2
+ 2

. (9)

When μ < − π2

12(A−B) −
B+1
A−B or μ > 5π2

12(A−B) −
B+1
A−B , the equality in (7) holds for the function p1 (z) or

one of its rotations. If − π2

12(A−B) −
B+1
A−B < μ < 5π2

12(A−B) −
B+1
A−B , then, the equality in (7) holds for the function

p2 (z) or one of its rotations. If μ = − π2

12(A−B) −
B+1
A−B , the equality in (7) holds for the function

p3 (z) =
(

1 + η

2

)
p1 (z) +

(
1 − η

2

)
p1 (−z) , (0 ≤ η ≤ 1) , (10)

or one of its rotations. If μ = 5π2

12(A−B) −
B+1
A−B , then, the equality in (7) holds for the functions p (z) which is

reciprocal of one of the function such that equality holds in the case for μ = − π2

12(A−B) −
B+1
A−B .

Proof. For h ∈ P and of the form h (z) = 1 + ∑∞
n=1 cnzn, we consider

h (z) =
1 + w (z)
1 − w (z)

,

4
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where w (z) is such that w (0) = 0 and |w (z)| < 1. It follows easily that

w (z) =
h (z)− 1
h (z) + 1

=

(
1 + c1z + c2z2 + c3z3 + · · ·

)
− 1

(1 + c1z + c2z2 + c3z3 + · · · ) + 1

=
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · · .

(11)

Now, if p̃ (z) = 1 + R1z + R2z2 + · · · , then from (11), one may have

p̃ (w (z)) = 1 + R1w (z) + R2 (w (z))2 + R3 (w (z))3 + · · ·

= 1 + R1

(
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · ·

)

+R2

(
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · ·

)2

+R3

(
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · ·

)3
+ · · · ,

where R1 = 8
π2 , R2 = 16

3π2 and R3 = 184
45π2 , see [21]. Using these, the above series reduces to

p̃ (w (z)) = 1 +
4

π2 c1z +
4

π2

(
c2 −

1
6

c2
1

)
z2 +

4
π2

(
c3 −

1
3

c2c1 +
2

45
c3

1

)
z3 + · · · . (12)

Since p ∈ UP [A, B], so from relations (2), (3) and (12), one may have

p (z) =
(A + 1) p̃ (w (z))− (A − 1)
(B + 1) p̃ (w (z))− (B − 1)

=
2 + (A + 1) 4

π2 c1z + (A + 1) 4
π2

(
c2 − 1

6 c2
1

)
z2 + · · ·

2 + (B + 1) 4
π2 c1z + (B + 1) 4

π2

(
c2 − 1

6 c2
1

)
z2 + · · ·

.

This implies that

p (z) = 1 + (A − B) 2
π2 c1z + (A − B) 2

π2

(
c2 − 1

6 c2
1 − 2

π2 (B + 1) c2
1

)
z2+

(A − B) 8
π2

((
(B+1)2

π4 + B+1
6π2 + 1

90

)
c3

1 −
(

B+1
π2 + 1

12

)
c2c1 +

1
4 c3

)
z3 + · · · .

(13)

If p (z) = 1 + ∑∞
n=1 pnzn, then equating coefficients of z and z2, one may have

p1 =
2

π2 (A − B) c1,

p2 =
2

π2 (A − B)
(

c2 −
1
6

c2
1 −

2
π2 (B + 1) c2

1

)
.

Now for a complex number μ, consider

p2 − μp2
1 =

2
π2 (A − B)

[
c2 − c2

1

(
1
6
+

2
π2 (B + 1) + μ

2
π2 (A − B)

)]
.

5
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This implies that∣∣∣p2 − μp2
1

∣∣∣ = 2
π2 (A − B)

∣∣∣∣c2 −
(

1
6
+

2
π2 (B + 1) + μ

2
π2 (A − B)

)
c2

1

∣∣∣∣ . (14)

Using Lemma 1, one may have∣∣∣p2 − μp2
1

∣∣∣ ≤ 2
π2 (A − B) .2 max (1, |2v − 1|) ,

where
v =

1
6
+

2
π2 (B + 1) + μ

2
π2 (A − B) .

This leads us to the required inequality (6) and applying Lemma 2 to the expression (14) for real
number μ, we get the required inequality (7). Sharpness follows from the functions pi (z) ; i = 1, 2, 3,
defined by (8)–(10), and the following series form.

p1 (z) = 1 +
4 (A − B)

π2 z +
8 (A − B)

π2

(
1
3
− 2 (B + 1)

π2

)
z2 +

16 (A − B)
π2

(
4

(
(B + 1)2

π4 +
B + 1
6π2 +

1
90

)
− 2

(
B + 1

π2 +
1
12

)
+

1
4

)
z3 + · · · ,

p2 (z) = 1 +
4 (A − B)

π2 z2 +
8 (A − B)

π2

(
1
3
− 2 (B + 1)

π2

)
z4 +

16 (A − B)
π2

(
4

(
(B + 1)2

π4 +
B + 1
6π2 +

1
90

)
− 2

(
B + 1

π2 +
1
12

)
+

1
4

)
z6 + · · · .

Corollary 1. Let p ∈ UP [1,−1] = P (p1) = P ( p̃) and of the form p (z) = 1 + ∑∞
n=1 pnzn. Then, for a

complex number μ, we have ∣∣∣p2 − μp2
1

∣∣∣ ≤ 8
π2 . max

(
1,
∣∣∣∣ 8μ

π2 − 2
3

∣∣∣∣) (15)

and for real number μ, we have

∣∣∣p2 − μp2
1

∣∣∣ ≤ 4
π2

⎧⎪⎨⎪⎩
4
3 − 16

π2 μ, μ ≤ −π2

24 ,
2, −π2

24 ≤ μ ≤ 5π2

24 ,
− 4

3 + 16
π2 μ, μ ≥ 5π2

24 .

(16)

These inequalities are sharp.

In [4,21], Kanas studied the class P (pk) which consists of functions who take all values from the
conic domain Ωk. Kanas [21] found the bound of Fekete-Szegö functional for the class P (pk) whose
particular case for k = 1 is as follows:

Let p (z) = 1 + b1z + b2z2 + b3z3 + · · · ∈ P (p1) . Then, for real number μ, we have

∣∣∣b2 − μb2
1

∣∣∣ ≤ 8
π2

⎧⎪⎨⎪⎩
1 − 8

π2 μ, μ ≤ 0,
1, μ ∈ (0, 1] ,

1 + 8
π2 (μ − 1) , μ ≥ 1.

(17)
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We observe that Corollary 1 improves the bounds of the Fekete-Szegö functional
∣∣p2 − μp2

1

∣∣ for
the functions of class P (p1).

Theorem 2. Let f ∈ UCV [A, B], −1 ≤ B < A ≤ 1 and of the form (1). Then, for a real number μ, we have

∣∣∣a3 − μa2
2

∣∣∣ ≤ A − B
3π2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3 − 8

π2 (B + 1) + 4
π2 (A − B) (2 − 3μ) ,

μ ≤ 2
3 − π2

18(A−B) −
2(B+1)
3(A−B) ,

−−−−−−−−−−−−

2,
2
3 − π2

18(A−B) −
2(B+1)
3(A−B) ≤ μ

≤ 2
3 + 5π2

18(A−B) −
2(B+1)
3(A−B) ,

−−−−−−−−−−−−
− 4

3 + 8
π2 (B + 1)− 4

π2 (A − B) (2 − 3μ) , μ ≥ 2
3 + 5π2

18(A−B) −
2(B+1)
3(A−B) .

(18)

This result is sharp.

Proof. If f ∈ UCV [A, B], −1 ≤ B < A ≤ 1, then it follows from relations (2)–(4),

(z f ′ (z))′

f ′ (z)
=

(A + 1) p̃ (w (z))− (A − 1)
(B + 1) p̃ (w (z))− (B − 1)

,

where w (z) is such that w (0) = 0 and |w (z)| < 1. The right hand side of above expression gets its
series form from (13) and reduces to

(z f ′ (z))′

f ′ (z)
= 1 + (A − B)

2
π2 c1z + (A − B)

2
π2

(
c2 −

1
6

c2
1 −

2
π2 (B + 1) c2

1

)
z2+

(A − B)
8

π2

((
(B + 1)2

π4 +
B + 1
6π2 +

1
90

)
c3

1 −
(

B + 1
π2 +

1
12

)
c2c1 +

1
4

c3

)
z3 + · · · .

(19)

If f (z) = z + ∑∞
n=2 anzn, then one may have

(z f ′ (z))′

f ′ (z)
= 1 + 2a2z +

(
6a3 − 4a2

2

)
z2 +

(
12a4 − 18a2a3 + 8a3

2

)
z3 + · · · . (20)

From (19) and (20), comparison of coefficients of z and z2 gives

a2 =
1

π2 (A − B) c1 (21)

and

6a3 − 4a2
2 = (A − B)

2
π2

(
c2 −

1
6

c2
1 −

2
π2 (B + 1) c2

1

)
.

This implies, by using (21), that

a3 =
1

3π2 (A − B)
(

c2 −
1
6

c2
1 −

2
π2 (B + 1) c2

1 +
2

π2 (A − B) c2
1

)
. (22)

7
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Now, for a real number μ, consider∣∣∣a3 − μa2
2

∣∣∣ =

∣∣∣∣(A − B)
1

3π2

(
c2 −

1
6

c2
1 −

2
π2 (B + 1) c2

1

)
+

2
3π4 (A − B)2 c2

1 − μ
1

π4 (A − B)2 c2
1

∣∣∣∣
=

A − B
3π2

∣∣∣∣c2 − c2
1

(
1
6
+

2
π2 (B + 1)− 2

π2 (A − B) +
3μ

π2 (A − B)
)∣∣∣∣

=
A − B
3π2

∣∣∣c2 − vc2
1

∣∣∣ ,

where
v =

1
6
+

2
π2 (B + 1)− 1

π2 (A − B) (2 − 3μ) .

Applying Lemma 2 leads us to the required result. The inequality (18) is sharp and equality holds
for μ < 2

3 − π2

18(A−B) −
2(B+1)
3(A−B) or μ > 2

3 + 5π2

18(A−B) −
2(B+1)
3(A−B) when f (z) is f1 (z) or one of its rotations,

where f1 (z) is defined such that (z f ′1(z))
′

f ′1(z)
= p1 (z) . If 2

3 − π2

18(A−B) −
2(B+1)
3(A−B) < μ < 2

3 + 5π2

18(A−B) −
2(B+1)
3(A−B) , then, the equality holds for the function f2 (z) or one of its rotations, where f2 (z) is defined

such that (
z f ′2(z))

′

f ′2(z)
= p2 (z) . If μ = 2

3 − π2

18(A−B) −
2(B+1)
3(A−B) , the equality holds for the function f3 (z) or

one of its rotations, where f3 (z) is defined such that (z f ′3(z))
′

f ′3(z)
= p3 (z) . If μ = 2

3 + 5π2

18(A−B) −
2(B+1)
3(A−B) ,

then, the equality holds for f (z), which is such that (z f ′(z))′

f ′(z) is reciprocal of one of the function such

that equality holds in the case of μ = 2
3 − π2

18(A−B) −
2(B+1)
3(A−B) .

For A = 1, B = −1, the above result takes the following form which is proved by Ma and
Minda [8].

Corollary 2. Let f ∈ UCV [1,−1] = UCV and of the form (1). Then, for a real number μ,

∣∣∣a3 − μa2
2

∣∣∣ ≤ 2
3π2

⎧⎪⎪⎨⎪⎪⎩
4
3 + 8

π2 (2 − 3μ) , μ ≤ 2
3 − π2

36 ,

2, 2
3 − π2

36 ≤ μ ≤ 2
3 + 5π2

36 ,

− 4
3 − 8

π2 (2 − 3μ) , μ ≥ 2
3 + 5π2

36 .

This result is sharp.

Theorem 3. Let f ∈ ST [A, B], −1 ≤ B < A ≤ 1 and of the form (1). Then, for a real number μ,

∣∣∣a3 − μa2
2

∣∣∣ ≤ A − B
π2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3 − 8

π2 (B + 1) + 8
π2 (A − B) (1 − 2μ) ,

μ ≤ 1
2 − π2

24(A−B) −
B+1

2(A−B) ,

−−−−−−−−−−−−

2,
1
2 − π2

24(A−B) −
B+1

2(A−B) ≤ μ

≤ 1
2 + 5π2

24(A−B) −
B+1

2(A−B) ,

−−−−−−−−−−−−
− 4

3 + 8
π2 (B + 1)− 8

π2 (A − B) (1 − 2μ) , μ ≥ 1
2 + 5π2

24(A−B) −
B+1

2(A−B) .

(23)

This result is sharp.

Proof. The proof follows similarly as in Theorem 2.

For A = 1, B = −1, the above result reduces to the following form.

8
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Corollary 3. Let f ∈ ST [1,−1] and of the form (1). Then, for a real number μ,

∣∣∣a3 − μa2
2

∣∣∣ ≤ 2
π2

⎧⎪⎪⎨⎪⎪⎩
4
3 + 16

π2 (1 − 2μ) , μ ≤ 1
2 − π2

48 ,

2, 1
2 − π2

48 ≤ μ ≤ 1
2 + 5π2

48 ,

− 4
3 − 16

π2 (1 − 2μ) , μ ≥ 1
2 + 5π2

48 .

Now we consider the inverse function F which maps petal type regions to the open unit disk
U , defined as F (w) = F ( f (z)) = z, z ∈ U and we find the following coefficient bound for inverse
functions. As the classes UCV [A, B] and ST [A, B] are the subclasses of S . Thus the existence of such
inverse functions to the functions from UCV [A, B] and ST [A, B] is assured.

Theorem 4. Let w = f (z) ∈ UCV [A, B] , −1 ≤ B < A ≤ 1 and F (w) = f−1 (w) = w + ∑∞
n=2 dnwn.

Then,

|dn| ≤
4 (A − B)

n (n − 1)π2 (n = 2, 3, 4) .

Proof. Since F (w) = F ( f (z)) = z, so it is easy to see that

d2 = −a2, d3 = 2a2
2 − a3, d4 = −a4 + 5a2a3 − 5a3

2.

By using (21) and (22), one can have

d2 =
−1
π2 (A − B) c1 (24)

and

d3 =
A − B
3π2

[(
1
6
+

2
π2 (B + 1) +

4
π2 (A − B)

)
c2

1 − c2

]
. (25)

From (19) and (20), comparison of z3 gives

a4 =
A − B
3π2

[(
1
45

+
1

π2

(
1
3
(B + 1)− 1

4
(A − B)

)
+

1
π4

(
2 (B + 1)2 − 3 (A − B) (B + 1) + (A − B)2

))
c3

1

−
(

1
6
+

1
π2

(
2 (B + 1)− 3

2
(A − B)

))
c2c1 +

1
2

c3

]
.

Using the values of an; n = 2, 3, 4, we get

d4 = − A − B
3π2

[(
1

45
+

1
3π2

(
B + 1 +

7
4
(A − B)

)
+

1
π4

(
2 (B + 1)2 + 7 (A − B) (B + 1) + 6 (A − B)2

))
c3

1

−
(

1
6
+

2
π2

(
B + 1 +

7
4
(A − B)

))
c2c1 +

1
2

c3

]
.

(26)

Now, from (24) and (25), one can have

|d2| ≤
2

π2 (A − B)

and

|d3| ≤ A − B
3π2

∣∣∣∣1
6
+

2
π2 (B + 1) +

4
π2 (A − B)

∣∣∣∣ ∣∣∣c2 − c2
1

∣∣∣
+

A − B
3π2

∣∣∣∣5
6
− 2

π2 (B + 1)− 4
π2 (A − B)

∣∣∣∣ |c2| .

9
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Application of the bounds
∣∣c2 − c2

1

∣∣ ≤ 2 and |c2| ≤ 2 (see Lemma 2 for v = 1 and v = 0) gives

|d3| ≤ 2(A−B)
3π2 . Lastly, (26) reduces to

|d4| ≤
A − B
3π2

[
|λ1|

∣∣∣c3 − 2c2c1 + c3
1

∣∣∣+ |λ2| |c3 − c2c1|+ |λ3| |c3|
]

, (27)

where

λ1 =
1
45

+
1

3π2

(
B + 1 +

7
4
(A − B)

)
+

1
π4

(
2 (B + 1)2 + 7 (A − B) (B + 1) + 6 (A − B)2

)
,

λ2 =
11
90

+
4

3π2

(
B + 1 +

7
4
(A − B)

)
− 2

π4

(
2 (B + 1)2 + 7 (A − B) (B + 1) + 6 (A − B)2

)
and

λ3 =
16
45

− 5
3π2

(
B + 1 +

7
4
(A − B)

)
+

1
π4

(
2 (B + 1)2 + 7 (A − B) (B + 1) + 6 (A − B)2

)
.

Applying the bounds
∣∣c3 − 2c2c1 + c3

1

∣∣ ≤ 2, see [23], |c3 − c2c1| ≤ 2 and |c3| ≤ 2, see [7] to the
right hand side of (27) and using the fact that λi ≥ 0; i = 1, 2, 3, we have |d4| ≤ A−B

3π2 and this completes
the proof.

For A = 1, B = −1, the above result takes the following form which is proved by Ma and
Minda [8].

Corollary 4. Let w = f (z) ∈ UCV and F (w) = f−1 (w) = w + ∑∞
n=2 dnwn. Then,

|dn| ≤
8

n (n − 1)π2 (n = 2, 3, 4) .

Theorem 5. Let w = f (z) ∈ UCV [A, B] , −1 ≤ B < A ≤ 1 and F (w) = f−1 (w) = w + ∑∞
n=2 dnwn.

Then, for a real number μ, we have

∣∣∣d3 − μd2
2

∣∣∣ ≤ A − B
3π2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3 − 8

π2 (B + 1)− 4
π2 (A − B) (4 − 3μ) ,

μ ≥ 4
3 + π2

18(A−B) +
2(B+1)
3(A−B) ,

−−−−−−−−−−−−

2,
4
3 − 5π2

18(A−B) +
2(B+1)
3(A−B) ≤ μ

≤ 4
3 + π2

18(A−B) +
2(B+1)
3(A−B) ,

−−−−−−−−−−−−
− 4

3 + 8
π2 (B + 1) + 4

π2 (A − B) (4 − 3μ) , μ ≤ 4
3 − 5π2

18(A−B) +
2(B+1)
3(A−B) .

This result is sharp.

Proof. The proof follows directly from (24), (25) and Lemma 2.
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1. Introduction and Preliminaries

We consider the class of analytic functions f in the open unit disk U = {z : |z| < 1}, defined as

f (z) = z +
∞

∑
n=2

anzn. (1)

We also consider S , the class of those functions from A which are univalent in U . Fekete-Szegö
problem may be considered as one of the most important results about univalent functions, which
is related to coefficients an of a function’s taylor series and was introduced by Fekete and Szegö [1].
We state it as:

If f ∈ S and is of the form (1), then

∣∣∣a3 − λa2
2

∣∣∣ ≤
⎧⎪⎨⎪⎩

3 − 4λ, if λ ≤ 0,

1 + 2 exp
(

2λ
λ−1

)
, if 0 ≤ λ ≤ 1,

4λ − 3, if λ ≥ 1.

The problem of maximizing the absolute value of the functional a3 − λa2
2 is called Fekete-Szegö

problem. This result is sharp and is studied thoroughly by many researchers. The equality holds true
for Koebe function. The case 0 < λ < 1 provides an example of an extremal problem over S in which
Koebe fails to be extremal. In this regard, one can find a number of results related to the maximization of
the non-linear functional

∣∣a3 − λa2
2

∣∣ for various classes and subclasses of univalent functions. Moreover,
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this functional has also been studied for λ as real as well as complex number. To maximize Fekete-Szegö
functional

∣∣a3 − λa2
2

∣∣ for different types of functions, showing interesting geometric characteristics of
image domains, several authors used certain classified techniques. For in-depth understanding and
more details, we refer the interested readers to study [1–11].

Subordination of two functions f and g is written symbolically as f ≺ g, and is defined with
respect to a schwarz function w such that w (0) = 0, |w (z)| < 1 for z ∈ U , as

f (z) = g (w (z)) , z ∈ U . (2)

We now include P, the class of analytic functions p such that p (0) = 1 and p ≺ 1+z
1−z , z ∈ U .

For details, see [12].
Goodman [13] opened an altogether new area of research with the initiation of the concept of

conic domain. He did it in 1991, by introducing parabolic region as image domain of analytic functions.
Related to the same, he introduced the class UCV of uniformly convex functions and defined it
as follows:

UCV =

{
f ∈ A : �

(
1 + (z − ζ)

f ′′ (z)
f ′ (z)

)
> 0, z, ζ ∈ U

}
.

The most suitable one variable characterization of the above defined class UCV of Goodman was
independently given by Rønning [14], and Ma and Minda [6]. They defined it as follows:

UCV =

{
f ∈ A : �

(
1 +

z f ′′ (z)
f ′ (z)

)
>

∣∣∣∣ z f ′′ (z)
f ′ (z)

∣∣∣∣ , z ∈ U
}

.

It proved its importance by giving birth to a domain, ever first of its kind, that is, conic (parabolic)
domain, given as Ω = {w : �w > |w − 1|} . Later on, β−uniformly convex functions were introduced
by Kanas and Wiśniowska [15], which are defined as:

β − UCV =

{
f ∈ A : �

(
1 +

z f ′′ (z)
f ′ (z)

)
> β

∣∣∣∣ z f ′′ (z)
f ′ (z)

∣∣∣∣ , z ∈ U
}

.

This proved to be a remarkable innovation in this area since it gave the most general conic domain
Ωβ, given as under, which covers parabolic as well as hyperbolic and elliptic regions.

Ωβ = {w : �w > β |w − 1| , β ≥ 0} .

For different values of β, the conic domain Ωβ, represents different image domains. For β = 0,
this represents the right half plane, whereas hyperbolic regions when 0 < β < 1, parabolic
region for β = 1 and elliptic regions when β > 1. For further investigation, we refer to [15,16].
Another breakthrough occurred in this field when Noor and Malik [17] further generalized this domain
Ωβ. They introduced the domain

Ωβ [A, B] =
{

u + iv :
[(

B2 − 1
) (

u2 + v2)− 2 (AB − 1) u +
(

A2 − 1
)]2

> β2
[(
−2 (B + 1)

(
u2 + v2)+ 2 (A + B + 2) u − 2 (A + 1)

)2
+ 4 (A − B)2 v2

]}
.

(3)

The class of functions given in the following definition takes all values from the above domain
Ωβ [A, B] , −1 ≤ B < A ≤ 1, β ≥ 0. For more details, we refer to [17].

Definition 1. A function p (z) is said to be in the class β − P [A, B] , if and only if,

p (z) ≺
(A + 1) p̃β(z)− (A − 1)
(B + 1) p̃β(z)− (B − 1)

, −1 ≤ B < A ≤ 1, β ≥ 0, (4)

13
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where p̃β(z) is defined by

p̃β(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+z
1−z , β = 0,

1 + 2
π2

(
log 1+

√
z

1−√
z

)2
, β = 1,

1 + 2
1−β2 sinh2 [( 2

π arccosβ
)

arctanh
√

z
]

, 0 < β < 1,

1 + 1
β2−1 sin

⎛⎜⎝ π
2R(t)

u(z)√
t∫

0

1√
1−x2

√
1−(tx)2 dx

⎞⎟⎠+ 1
β2−1 , β > 1,

(5)

where u(z) = z−
√

t
1−

√
tz

, t ∈ (0, 1), z ∈ U and z is chosen such that β = cosh
(

πR′(t)
4R(t)

)
, R(t) is the Legendre’s

complete elliptic integral of the first kind, and R′(t) is complementary integral of R(t). For more details about
the function p̃β(z), we refer the readers to [15,16].

It may be noted that if we restrict the domain as Ωβ [1,−1] = Ωβ, then it becomes the conic
domain defined by Kanas and Wiśniowska [15,16]. With the help of this important fact, we notice the
following important connections of different well-known classes of analytic functions.

1. β − P [A, B] ⊂ P
(

2β+1−A
2β+1−B

)
, the class of functions with real part greater than 2β+1−A

2β+1−B .

2. β − P [1,−1] = P
(

p̃β

)
, the well-known class introduced by Kanas and Wiśniowska [15,16].

3. 0 − P [A, B] = P [A, B] , the well-known class introduced by Janowski [18].

We now include the two very important classes β − UCV [A, B] of β−uniformly Janowski
functions and β− ST [A, B] of corresponding β−Janowski starlike functions which are used in Section 2
of this paper. These are introduced in [17] and defined as follows.

Definition 2. A function f ∈ A is said to be in the class β − UCV [A, B] , β ≥ 0, −1 ≤ B < A ≤ 1, if and
only if ,

�

⎛⎜⎝ (B − 1) (z f ′(z))′

f ′(z) − (A − 1)

(B + 1) (z f ′(z))′

f ′(z) − (A + 1)

⎞⎟⎠ > β

∣∣∣∣∣∣∣
(B − 1) (z f ′(z))′

f ′(z) − (A − 1)

(B + 1) (z f ′(z))′

f ′(z) − (A + 1)
− 1

∣∣∣∣∣∣∣ ,

or equivalently,
(z f ′(z))′

f ′ (z)
∈ β − P [A, B] . (6)

Definition 3. A function f ∈ A is said to be in the class β − ST [A, B] , β ≥ 0, −1 ≤ B < A ≤ 1, if and
only if ,

�

⎛⎝ (B − 1) z f ′(z)
f (z) − (A − 1)

(B + 1) z f ′(z)
f (z) − (A + 1)

⎞⎠ > β

∣∣∣∣∣∣
(B − 1) z f ′(z)

f (z) − (A − 1)

(B + 1) z f ′(z)
f (z) − (A + 1)

− 1

∣∣∣∣∣∣ ,

or equivalently,
z f ′(z)
f (z)

∈ β − P [A, B] . (7)

It can easily be seen that f (z) ∈ β − UCV [A, B] ⇐⇒ z f ′ (z) ∈ β − ST [A, B] . It is clear that
β−UCV [1,−1] = β−UCV and β− ST [1,−1] = β− ST, the well-known classes of β-uniformly convex
and corresponding β-starlike functions respectively, introduced by Kanas and Wiśniowska [15,16].

As it is mentioned earlier that a number of well known researchers contributed in the development
of this area of study, to mark the importance of our work in this stream of work, we take a quick
review of what is done so far. In 1994, Ma and Minda [6] found the maximum bound of Fekete-Szegö
functional

∣∣a3 − λa2
2

∣∣ for the class UCV of uniformly convex functions whereas Kanas [19] solved the

14
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Fekete-Szegö problem for the functions of class P
(

p̃β

)
. Further, for the functions of classes β − UCV

and β − ST, the same problem was studies by Mishra and Gochhayat [20]. Keeping in view the
ongoing research, our aim for this paper is to solve the classical Fekete-Szegö problem for the functions
of classes β − P [A, B] , β − UCV [A, B] and β − ST [A, B] . To prove our results, we need the following
lemmas. For the proofs, one may study the reference [6].

Lemma 1. If p (z) = 1 + p1z + p2z2 + · · · is a function with positive real part in U , then, for any complex
number μ, ∣∣∣p2 − μp2

1

∣∣∣ ≤ 2 max {1, |2μ − 1|}

and the result is sharp for the functions

p0 (z) =
1 + z
1 − z

or p∗ (z) =
1 + z2

1 − z2 , (z ∈ U ) .

Lemma 2. If p (z) = 1+ p1z + p2z2 + · · · is a function with positive real part in U , then, for any real number v,

∣∣∣p2 − vp2
1

∣∣∣ ≤
⎧⎪⎨⎪⎩

−4v + 2, v ≤ 0,
2, 0 ≤ v ≤ 1,
4v − 2, v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p (z) is 1+z
1−z or one of its rotations. If 0 < v < 1,

then, the equality holds if and only if p (z) = 1+z2

1−z2 or one of its rotations. If v = 0, the equality holds if and only if,

p (z) =
(

1 + η

2

)
1 + z
1 − z

+

(
1 − η

2

)
1 − z
1 + z

(0 ≤ η ≤ 1) ,

or one of its rotations. If v = 1, then, the equality holds if and only if p (z) is reciprocal of one of the function
such that equality holds in the case of v = 0. Although the above upper bound is sharp, when 0 < v < 1, it can
be improved as follows: ∣∣∣p2 − vp2

1

∣∣∣+ |p1|2 ≤ 2
(

0 < v ≤ 1
2

)
and ∣∣∣p2 − vp2

1

∣∣∣+ (1 − v) |p1|2 ≤ 2
(

1
2
< v ≤ 1

)
.

2. Main Results

Theorem 1. Let p ∈ β − P [A, B] ,−1 ≤ B < A ≤ 1, 0 < β < 1, and of the form p (z) = 1 + ∑∞
n=1 pnzn.

Then, for a complex number μ, we have

∣∣∣p2 − μp2
1

∣∣∣ ≤ (A − B) T2

1 − β2 · max
(

1,
∣∣∣∣ (B + 1) T2

(1 − β2)
+ μ

(A − B) T2

(1 − β2)
− T2

3
− 2

3

∣∣∣∣) (8)

and for real number μ, we have

∣∣p2 − μp2
1

∣∣ ≤ (A−B)T2

1−β2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3 + T2

3 − (B+1)T2

1−β2 − μ(A−B)T2

1−β2 , μ ≤ − 1−β2

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) ,

1,
− 1−β2

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) ≤ μ

≤ 5(1−β2)
3(A−B)T2 − B+1

A−B + 1−β2

3(A−B) ,

− 2
3 − T2

3 + (B+1)T2

1−β2 + μ(A−B)T2

1−β2 , μ ≥ 5(1−β2)
3(A−B)T2 − B+1

A−B + 1−β2

3(A−B) ,

(9)
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where T = T(β) = 2
π arccos(β) and the equality in (8) holds for the functions

p1 (z) =
A+1
1−β2 sinh2 [( 2

π arccosβ
)

arctanh
√

z
]
+ 1

B+1
1−β2 sinh2 [( 2

π arccos β
)

arctanh
√

z
]
+ 1

(10)

or

p2 (z) =
A+1
1−β2 sinh2 [( 2

π arccosβ
)

arctanh (z)
]
+ 1

B+1
1−β2 sinh2 [( 2

π arccosβ
)

arctanh (z)
]
+ 1

. (11)

When μ < − 1−β2

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) or μ >
5(1−β2)

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) , the equality in (9) for the

function p1 (z) or one of its rotations. If − 1−β2

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) < μ <
5(1−β2)

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) ,

then the equality in (9) holds for the function p2 (z) or one of its rotations. If μ = − 1−β2

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) ,
the equality in (9) holds for the function

p3 (z) =
(

1 + η

2

)
p1 (z) +

(
1 − η

2

)
p1 (−z) , (0 ≤ η ≤ 1) , (12)

or one of its rotations. If μ =
5(1−β2)

3(A−B)T2 − B+1
A−B + 1−β2

3(A−B) , then, the equality in (9) holds for the function p (z)

which is reciprocal of one of the function such that equality holds in the case for μ = − 1−β2

3(A−B)T2 − B+1
A−B +

1−β2

3(A−B) .

Proof. For h ∈ P and of the form h (z) = 1 + ∑∞
n=1 cnzn, we consider

h (z) =
1 + w (z)
1 − w (z)

,

where w (z) is such that w (0) = 0 and |w (z)| < 1. It follows easily that

w (z) =
h (z)− 1
h (z) + 1

=

(
1 + c1z + c2z2 + c3z3 + · · ·

)
− 1

(1 + c1z + c2z2 + c3z3 + · · · ) + 1

=
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · · . (13)

Now, if p̃β (w (z)) = 1 + R1 (β)w (z) + R2 (β)w2 (z) + R3 (β)w3 (z) + · · · , then from (13),
one may have

p̃β (w (z)) = 1 + R1 (β)w (z) + R2 (β)w2 (z) + R3 (β)w3 (z) + · · · ,

= 1 + R1 (β)

(
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · ·

)
+

R2 (β)

(
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · ·

)2
+

R3 (β)

(
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c2c1 +
1
8

c3
1

)
z3 + · · ·

)3
+ · · · ,
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where R1 (β) , R2 (β) and R3 (β) are given by

R1 (β) =
2T2

1 − β2 ,

R2 (β) =
2T2

3 (1 − β2)

(
2 + T2

)
,

R3 (β) =
2T2

9 (1 − β2)

(
23
5

+ 4T2 +
2
5

T4
)

,

and T = T (β) = 2
π arccos (β) , 0 < β < 1, see [19]. Using these, the above series reduces to

p̃β (w (z)) = 1 +
T2

1 − β2 c1z +
T2

1 − β2

((
T2 − 1

) 1
6

c2
1 + c2

)
z2 +

T2

1 − β2

(
1
9

(
2
5
− 1

2
T2 +

1
10

T4
)

c3
1 −

1
3

(
1 − T2

)
c2c1 + c3

)
z3 + · · · . (14)

Since p ∈ β − P [A, B] , 0 < β < 1, so from relations (2), (4) and (14), one may have

p (z) =
(A+1) p̃β(w(z))−(A−1)
(B+1) p̃β(w(z))−(B−1)

= 1 + (A−B)
2

T2

1−β2 c1z + (A−B)
2

T2

1−β2

(
T2c2

1
6 − 1

6 c2
1 −

(B+1)T2

2(1−β2)
c2

1 + c2

)
z2 + · · · .

(15)

If p (z) = 1 + ∑∞
n=1 pnzn, then equating coefficients of like powers of z, we have

p1 =
(A − B)

2
T2

1 − β2 c1,

p2 =
(A − B)

2
T2

1 − β2

(
T2c2

1
6

− 1
6

c2
1 −

(B + 1) T2

2 (1 − β2)
c2

1 + c2

)
.

Now for complex number μ, consider

p2 − μp2
1 =

(A − B)
2

T2

1 − β2

(
T2c2

1
6

− 1
6

c2
1 −

(B + 1) T2

2 (1 − β2)
c2

1 + c2

)
− μ

(A − B)2 T4

4 (1 − β2)
2 c2

1.

This implies that

∣∣∣p2 − μp2
1

∣∣∣ = (A − B) T2

2 (1 − β2)

∣∣∣∣c2 − c2
1

(
1
6
− T2

6
+

(B + 1) T2

2 (1 − β2)
+ μ

(A − B) T2

2 (1 − β2)

)∣∣∣∣ . (16)

Now using Lemma 1, we have

∣∣∣p2 − μp2
1

∣∣∣ ≤ (A − B) T2

2 (1 − β2)
· 2 max (1, |2v − 1|) ,

where

v =
1
6
− T2

6
+

(B + 1) T2

2 (1 − β2)
+ μ

(A − B) T2

2 (1 − β2)
.

This leads us to the required inequality (8) and applying Lemma 2 to the expression (16) for real
number μ, we get the required inequality (9).

For A = 1, B = −1, the above result reduces to the following form.

17
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Corollary 1. Let p ∈ β − P [1,−1] = P
(

p̃β

)
, 0 < β < 1, and of the form p (z) = 1 + ∑∞

n=1 pnzn.
Then, for a complex number μ, we have

∣∣∣p2 − μp2
1

∣∣∣ ≤ 2T2

1 − β2 · max
(

1,
∣∣∣∣μ 2T2

(1 − β2)
− T2

3
− 2

3

∣∣∣∣) (17)

and for real number μ, we have

∣∣∣p2 − μp2
1

∣∣∣ ≤ T2

1 − β2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
3 + 2

3 T2 − 4μT2

1−β2 , μ < − 1−β2

6T2 +
(1−β2)

6 ,

2, − (1−β2)
6T2 +

(1−β2)
6 ≤ μ ≤ 5(1−β2)

6T2 + 1−β2

6 ,

− 4
3 − 2

3 T2 + 4μT2

1−β2 , μ >
5(1−β2)

6T2 + 1−β2

6 .

(18)

These results are sharp.

In [3,19], Kanas studied the class P
(

p̃β

)
which consists of functions who take all values from the

conic domain Ωβ. Kanas [19] found the bound of Fekete-Szegö functional for the class P
(

p̃β

)
whose

particular case for 0 < β < 1 is as follows:
Let p (z) = 1 + b1z + b2z2 + b3z3 + · · · ∈ P

(
p̃β

)
, 0 < β < 1. Then, for real number μ, we have

∣∣∣b2 − μb2
1

∣∣∣ ≤ 2T2

1 − β2

⎧⎪⎪⎨⎪⎪⎩
1 − μ 2T2

1−β2 , μ ≤ 0,

1, μ ∈ (0, 1] ,
1 + (μ − 1) 2T2

1−β2 , μ ≥ 1.
(19)

For certain values of β and μ, we have the following bounds for
∣∣p2 − μp2

1

∣∣, shown in Table 1.

Table 1. Comparison of Fekete-Szegö inequalities.

β μ Bound from (18) Bound from (19)

0.3 3 4.8652 5.51463
0.3 2 2.82267 3.47193
0.5 2 1.84841 2.5939
0.5 −1 2.37422 2.5939
0.7 3 2.28155 3.03221
0.7 −1 1.7698 2.01932

We observe that Corollary 1 gives more refined bounds of Fekete-Szegö functional
∣∣p2 − μp2

1

∣∣ for
the functions of class P

(
p̃β

)
, 0 < β < 1 as compared to that from (19) as can be seen from above table.

Theorem 2. Let f ∈ β − UCV [A, B] , −1 ≤ B < A ≤ 1, 0 ≤ β < 1 and of the form (1), then for a real
number μ, we have

∣∣∣a3 − μa2
2

∣∣∣ ≤ (A − B) T2

12 (1 − β2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3 + 2T2

3 − 2(B+1)T2

1−β2 + (2 − 3μ) (A−B)T2

1−β2 , μ ≤ 2
3 − 2(1−β2)

9(A−B)T2 − 2(B+1)
3(A−B) +

2(1−β2)
9(A−B) ,

2,
2
3 − 2(1−β2)

9(A−B)T2 − 2(B+1)
3(A−B) +

2(1−β2)
9(A−B) ≤ μ

≤ 2
3 +

10(1−β2)
9(A−B)T2 − 2(B+1)

3(A−B) +
2(1−β2)
9(A−B) ,

− 4
3 − 2T2

3 + 2(B+1)T2

1−β2 − (2 − 3μ) (A−B)T2

1−β2 , μ ≥ 2
3 +

10(1−β2)
9(A−B)T2 − 2(B+1)

3(A−B) +
2(1−β2)
9(A−B) .

(20)

18
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Proof. If f (z) ∈ β − UCV [A, B] , − 1 ≤ B < A ≤ 1, 0 ≤ β < 1, then it follows from relations (2),
(4), and (6) that

(z f ′ (z))′

f ′ (z)
=

(A + 1) p̃β (w (z))− (A − 1)
(B + 1) p̃β (w (z))− (B − 1)

.

This implies by using (15) that

(z f ′ (z))′

f ′ (z)
= 1 +

(A − B)
2

T2

1 − β2 c1z +
(A − B)

2
T2

1 − β2

(
T2c2

1
6

− 1
6

c2
1 −

(B + 1) T2

2 (1 − β2)
c2

1 + c2

)
z2 + · · · . (21)

If f (z) = z + ∑∞
n=2 anzn, then one may have

(z f ′ (z))′

f ′ (z)
= 1 + 2a2z +

(
6a3 − 4a2

2

)
z2 +

(
12a4 − 18a2a3 + 8a3

2

)
z3 + · · · . (22)

From (21) and (22), comparison of like powers of z gives

a2 =
(A − B) T2

4 (1 − β2)
c1, (23)

and

a3 =
(A − B) T2

12 (1 − β2)

(
c2 −

(
1
6
− T2

6
+

(B + 1) T2

2 (1 − β2)
− (A − B) T2

2 (1 − β2)

)
c2

1

)
. (24)

Now, for a real number μ, we consider

∣∣∣a3 − μa2
2

∣∣∣ =
(A − B) T2

12 (1 − β2)

∣∣∣∣c2 −
(

1
6
− T2

6
+

(B + 1) T2

2 (1 − β2)
− (A − B) T2

2 (1 − β2)

)
c2

1 − μ
3 (A − B)

4
T2

1 − β2 c2
1

∣∣∣∣
=

(A − B) T2

12 (1 − β2)

∣∣∣∣c2 −
(

1
6
− T2

6
+

(B + 1) T2

2 (1 − β2)
− (A − B) T2

2 (1 − β2)
+ μ

3 (A − B) T2

4 (1 − β2)

)
c2

1

∣∣∣∣ .

Now applying Lemma 2, we have the required result. The inequality (20) is sharp and equality

holds for μ < 2
3 − 2(1−β2)

9(A−B)T2 − 2(B+1)
3(A−B) +

2(1−β2)
9(A−B) or μ > 2

3 +
10(1−β2)
9(A−B)T2 − 2(B+1)

3(A−B) +
2(1−β2)
9(A−B) when f (z)

is f1 (z) or one of its rotations, where f1 (z) is defined such that (z f ′1(z))
′

f ′1(z)
= p1 (z) . If 2

3 − 2(1−β2)
9(A−B)T2 −

2(B+1)
3(A−B) +

2(1−β2)
9(A−B) < μ < 2

3 +
10(1−β2)
9(A−B)T2 − 2(B+1)

3(A−B) +
2(1−β2)
9(A−B) , then, the equality holds for the function

f2 (z) or one of its rotations, where f2 (z) is defined such that (
z f ′2(z))

′

f ′2(z)
= p2 (z) . If μ = 2

3 − 2(1−β2)
9(A−B)T2 −

2(B+1)
3(A−B) +

2(1−β2)
9(A−B) , the equality holds for the function f3 (z) or one of its rotations, where f3 (z) is

defined such that (
z f ′3(z))

′

f ′3(z)
= p3 (z) . If μ = 2

3 +
10(1−β2)
9(A−B)T2 − 2(B+1)

3(A−B) +
2(1−β2)
9(A−B) , then, the equality holds

for f (z), which is such that (z f ′(z))′

f ′(z) is reciprocal of one of the function such that equality holds in the

case of μ = 2
3 − 2(1−β2)

9(A−B)T2 − 2(B+1)
3(A−B) +

2(1−β2)
9(A−B) .

For A = 1, B = −1, the above result takes the following form which is proved by Mishra and
Gochhayat [20].

Corollary 2. Let f ∈ β − UCV [1,−1] = β − UCV, 0 ≤ β < 1 and of the form (1), then

∣∣∣a3 − μa2
2

∣∣∣ ≤ T2

6 (1 − β2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
3 + 2T2

3 + (4 − 6μ) T2

1−β2 , μ ≤ 2
3 − 1−β2

9T2 + 1−β2

9 ,

2, 2
3 − 1−β2

9T2 + 1−β2

9 ≤ μ ≤ 2
3 +

5(1−β2)
9T2 + 1−β2

9 ,

− 4
3 − 2T2

3 − (4 − 6μ) T2

1−β2 , μ ≥ 2
3 +

5(1−β2)
9T2 + 1−β2

9 .
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Theorem 3. If f (z) ∈ β − ST [A, B] , − 1 ≤ B < A ≤ 1, 0 < β < 1 and of the form (1), then for a real
number μ, we have

∣∣∣a3 − μa2
2

∣∣∣ ≤ (A − B) T2

2 (1 − β2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3 + T2

3 − (B+1)T2

1−β2 + (1 − 2μ) (A−B)T2

1−β2 , μ ≤ 1
2 − 1−β2

6T2(A−B) −
B+1

2(A−B) +
1−β2

6(A−B) ,

1,
1
2 − 1−β2

6T2(A−B) −
B+1

2(A−B) +
1−β2

6(A−B) ≤ μ

≤ 1
2 +

5(1−β2)
6(A−B)T2 − B+1

2(A−B) +
1−β2

6(A−B) ,

− 2
3 − T2

3 + (B+1)T2

1−β2 − (1 − 2μ) (A−B)T2

1−β2 , μ ≥ 1
2 +

5(1−β2)
6(A−B)T2 − B+1

2(A−B) +
1−β2

6(A−B) .

This result is sharp.

Proof. The proof follows similarly as in Theorem 2.

For A = 1, B = −1, the above result takes the following form which is proved by Mishra and
Gochhayat [20].

Corollary 3. Let f ∈ β − ST [1,−1] = β − ST, 0 < β < 1 and of the form (1). Then, for a real number μ,

∣∣∣a3 − μa2
2

∣∣∣ ≤ T2

1 − β2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3 + T2

3 + (1 − 2μ) 2T2

1−β2 , μ ≤ 1
2 − 1−β2

12T2 + 1−β2

12 ,

1, 1
2 − 1−β2

12T2 + 1−β2

12 ≤ μ ≤ 1
2 +

5(1−β2)
12T2 + 1−β2

12 ,

− 2
3 − T2

3 − (1 − 2μ) 2T2

1−β2 , μ ≥ 1
2 +

5(1−β2)
12T2 + 1−β2

12 .

Now we consider the inverse function F which maps regions presented by (3) to the open unit
disk U , defined as F (w) = F ( f (z)) = z, z ∈ U and we find the following coefficient bound for
inverse functions. The functions of classes β − UCV [A, B] and β − ST [A, B] have inverses as they are
univalent too.

Theorem 4. Let w = f (z) ∈ β − UCV [A, B] , −1 ≤ B < A ≤ 1, 0 ≤ β < 1 and F (w) = f−1 (w) =

w + ∑∞
n=2 dnwn. Then,

|dn| ≤
(A − B) T2

2 (1 − β2)
(n = 2, 3) .

Proof. Since F (w) = F ( f (z)) = z, so it is easy to see that

d2 = −a2, d3 = 2a2
2 − a3, d4 = −a4 + 5a2a3 − 5a3

2.

By using (23) and (24), one can have

d2 = − (A − B) T2

4 (1 − β2)
c1 (25)

and

d3 = (A−B)T2

12(1−β2)

[(
1
6 − T2

6 + (B+1)T2

2(1−β2)
+ (A−B)T2

1−β2

)
c2

1 − c2

]
= (A−B)T2

12(1−β2)

(
1
6 − T2

6 + (B+1)T2

2(1−β2)
+ (A−B)T2

1−β2

) (
c2

1 − c2
)

− (A−B)T2

12(1−β2)

(
11
6 + T2

6 − (B+1)T2

2(1−β2)
− (A−B)T2

1−β2

)
c2 +

(A−B)T2

12(1−β2)
c2.

(26)
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Now, from (25) and (26), one can have

|d2| ≤
(A − B) T2

2 (1 − β2)

and

|d3| ≤ (A − B) T2

12 (1 − β2)

∣∣∣∣1
6
− T2

6
+

(B + 1) T2

2 (1 − β2)
+

(A − B) T2

1 − β2

∣∣∣∣ ∣∣∣c2 − c2
1

∣∣∣
+
(A − B) T2

12 (1 − β2)

∣∣∣∣11
6

+
T2

6
− (B + 1) T2

2 (1 − β2)
− (A − B) T2

1 − β2

∣∣∣∣ |c2|+
(A − B) T2

12 (1 − β2)
|c2|

=
(A − B) T2

12 (1 − β2)

{
|λ1|

∣∣∣c2 − c2
1

∣∣∣+ |λ2| |c2|+ |c2|
}

,

where λ1 = 1
6 − T2

6 + (B+1)T2

2(1−β2)
+ (A−B)T2

(1−β2)
and λ2 = 11

6 + T2

6 − (B+1)T2

2(1−β2)
− (A−B)T2

(1−β2)
. We see that λi ≥

0; i = 1, 2 for −1 ≤ B < A ≤ 1, 0 ≤ β < 1. Thus, the application of bounds
∣∣c2 − c2

1

∣∣ ≤ 2 and |c2| ≤ 2
(see Lemma 2 for v = 1 and v = 0) gives

|d3| ≤ (A − B) T2

6 (1 − β2)
{λ1 + λ2 + 1}

=
(A − B) T2

2 (1 − β2)

Theorem 5. Let w = f (z) ∈ β − UCV [A, B] , −1 ≤ B < A ≤ 1, 0 ≤ β < 1 and F (w) = f−1 (w) =

w + ∑∞
n=2 dnwn. Then, for a real number μ, we have

∣∣∣d3 − μd2
2

∣∣∣ ≤ (A − B) T2

12 (1 − β2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3 + 2T2

3 − 2(B+1)T2

1−β2 − (4 − 3μ) (A−B)T2

1−β2 , μ ≥ 4
3 +

2(1−β2)
9(A−B)T2 − 2(1−β2)

9(A−B) + 2(B+1)
3(A−B) ,

2,
4
3 − 10(1−β2)

9(A−B)T2 − 2(1−β2)
9(A−B) + 2(B+1)

3(A−B) ≤ μ

≤ 4
3 +

2(1−β2)
9(A−B)T2 − 2(1−β2)

9(A−B) + 2(B+1)
3(A−B) ,

− 4
3 − 2T2

3 + 2(B+1)T2

1−β2 + (4 − 3μ) (A−B)T2

1−β2 , μ ≤ 4
3 − 10(1−β2)

9(A−B)T2 − 2(1−β2)
9(A−B) + 2(B+1)

3(A−B) .

This result is sharp.

Proof. The proof follows directly from (25), (26), and Lemma 2.
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1. Introduction

Since their appearance in the literature [1] on nonharmonic Fourier series, frames for Hilbert
spaces have been a useful tool and applied to different branches of mathematics and other fields.
For details on frames, the reader can refer to the papers [2–11]. The author in [12] extended the concept
of frames to bounded linear operators and thus gave us the notion of g-frames, which possess some
properties that are quite different from those of frames (see [13,14]).

In the past decade, much attention has been paid to the extension of frame and g-frame theory from
Hilbert spaces to Hilbert C∗-modules, and some significant results have been presented (see [15–23]).
It should be pointed out that, due to the essential differences between Hilbert spaces and Hilbert
C∗-modules and the complex structure of the C∗-algebra involved in a Hilbert C∗-module, the problems
on frames and g-frames for Hilbert C∗-modules are expected to be more complicated than those for
Hilbert spaces. Also, increasingly more evidence is indicating that there is a close relationship between
the theory of wavelets and frames and Hilbert C∗-modules in many aspects. This suggests that the
discussion of frame and g-frame theory in Hilbert C∗-modules is interesting and important.

The authors in [24] provided a surprising inequality while further discussing the remarkable
identity for Parseval frames derived from their research on effective algorithms to compute the
reconstruction of a signal, which was later generalized to the situation of general frames and dual
frames [25]. Those inequalities have already been extended to several generalized versions of frames in
Hilbert spaces [26–28]. Moreover, the authors in [29–31] showed that g-frames in Hilbert C∗-modules
have their inequalities based on the work in [24,25]; it is worth noting that the inequalities given in [30]
are associated with a scalar in [0, 1] or [ 1

2 , 1]. In this paper, we establish several new inequalities for
g-frames in Hilbert C∗-modules, where a scalar λ in R, the real number set, and an adjointable operator
with respect to two g-Bessel sequences are involved. Also, we show that some corresponding results
in [29,31] can be considered a special case of our results.

We continue with this section for a review of some notations and definitions.
This paper adopts the following notations: J and A are, respectively, a finite or countable index

set and a unital C∗-algebra; H, K, and Kj’s (j ∈ J) are Hilbert C∗-modules over A (or simply Hilbert
A-modules), setting 〈 f , f 〉 = | f |2 for any f ∈ H. The family of all adjointable operators from H to K is
designated End∗

A(H,K), which is abbreviated to End∗
A(H) if K = H.

Mathematics 2019, 7, 25; doi:10.3390/math7010025 www.mdpi.com/journal/mathematics23
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A sequence Λ = {Λj ∈ End∗
A(H,Kj)}j∈J denotes a g-frame for H with respect to {Kj}j∈J if there

are real numbers 0 < C ≤ D < ∞ satisfying

C〈 f , f 〉 ≤ ∑
j∈J

〈Λj f , Λj f 〉 ≤ D〈 f , f 〉, ∀ f ∈ H. (1)

If only the second inequality in Equation (1) is required, then Λ is said to be a g-Bessel sequence.
For a given g-frame Λ = {Λj ∈ End∗

A(H,Kj)}j∈J, there is always a positive, invertible,
and self-adjoint operator in End∗

A(H), which we call the g-frame operator of Λ, defined by

SΛ : H → H, SΛ f = ∑
j∈J

Λ∗
j Λj f . (2)

For any I ⊂ J, let Ic be the complement of I. We define a positive and self-adjoint operator in
End∗

A(H) related to I and a g-frame Λ = {Λj ∈ End∗
A(H,Kj)}j∈J in the following form

SΛ
I : H → H, SΛ

I f = ∑
j∈I

Λ∗
j Λj f . (3)

Recall that a g-Bessel Γ = {Γj ∈ End∗
A(H,Kj)}j∈J is an alternate dual g-frame of Λ if, for every

f ∈ H, we have f = ∑j∈J Λ∗
j Γj f .

Let Λ = {Λj}j∈J and Γ = {Γj}j∈J be g-Bessel sequences for H with respect to {Kj}j∈J. We observe
from the Cauchy–Schwarz inequality that the operator

SΓΛ : H → H, SΓΛ f = ∑
j∈J

Γ∗
j Λj f (4)

is well defined, and a direct calculation shows that SΓΛ ∈ End∗
A(H).

2. The Main Results

The following result for operators is used to prove our main results.

Lemma 1. Suppose that U, V, L ∈ End∗
A(H) and that U + V = L. Then, for any λ ∈ R, we have

U∗U +
λ

2
(V∗L + L∗V) = V∗V + (1 − λ

2
)(U∗L + L∗U) + (λ − 1)L∗L ≥ (λ − λ2

4
)L∗L.

Proof. On the one hand, we obtain

U∗U +
λ

2
(V∗L + L∗V) = U∗U +

λ

2
((L∗ − U∗)L + L∗(L − U)) = U∗U − λ

2
(U∗L + L∗U) + λL∗L.

On the other hand, we have

V∗V + (1 − λ

2
)(U∗L + L∗U) + (λ − 1)L∗L

= (L∗ − U∗)(L − U) + (U∗L + L∗U)− λ

2
(U∗L + L∗U) + (λ − 1)L∗L

= L∗L − (U∗L + L∗U) + U∗U + (U∗L + L∗U)− λ

2
(U∗L + L∗U) + (λ − 1)L∗L

= U∗U − λ

2
(U∗L + L∗U) + λL∗L = (U − λ

2
L)∗(U − λ

2
L) + (λ − λ2

4
)L∗L ≥ (λ − λ2

4
)L∗L.

This completes the proof.
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Theorem 1. Let Λ = {Λj}j∈J be a g-frame for H with respect to {Kj}j∈J. Suppose that Γ = {Γj}j∈J and
Θ = {Θj}j∈J are two g-Bessel sequences for H with respect to {Kj}j∈J, and that the operator SΓΛ is defined in
Equation (4). Then, for any λ ∈ R and any f ∈ H, we have∣∣∣∣∑

j∈J
(Γj − Θj)

∗Λj f
∣∣∣∣2+ ∑

j∈J
〈Λj f , ΘjSΓΛ f 〉 =

∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2+ ∑
j∈J

〈(Γj − Θj)SΓΛ f , Λj f 〉

≥ (λ − λ2

4
) ∑

j∈J
〈Λj f , (Γj − Θj)SΓΛ f 〉+ (1 +

λ

2
− λ2

4
) ∑

j∈J
〈Λj f , ΘjSΓΛ f 〉

− λ

2 ∑
j∈J

〈ΘjSΓΛ f , Λj f 〉. (5)

Proof. We let
U f = ∑

j∈J
(Γj − Θj)

∗Λj f and V f = ∑
j∈J

Θ∗
j Λj f (6)

for each f ∈ H. Then, U, V ∈ End∗
A(H) and, further,

U f + V f = ∑
j∈J

(Γj − Θj)
∗Λj f + ∑

j∈J
Θ∗

j Λj f = ∑
j∈J

Γ∗
j Λj f = SΓΛ f .

By Lemma 1, we get

|U f |2 + λ

2
(〈V f , SΓΛ f 〉+ 〈SΓΛ f , V f 〉)

= |V f |2 + (1 − λ

2
)(〈U f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉) + (λ − 1)|SΓΛ f |2.

Hence,

|U f |2 = |V f |2 + (1 − λ

2
)(〈U f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉) + (λ − 1)|SΓΛ f |2

− λ

2
(〈V f , SΓΛ f 〉+ 〈SΓΛ f , V f 〉)

= |V f |2 + 〈U f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉 − λ

2
(〈U f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉)

− λ

2
(〈V f , SΓΛ f 〉+ 〈SΓΛ f , V f 〉) + (λ − 1)|SΓΛ f |2

= |V f |2 + 〈U f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉 − λ

2
(〈U f , SΓΛ f 〉+ 〈V f , SΓΛ f 〉)

− λ

2
(〈SΓΛ f , U f 〉+ 〈SΓΛ f , V f 〉) + (λ − 1)|SΓΛ f |2

= |V f |2 + 〈U f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉 − λ|SΓΛ f |2 + (λ − 1)|SΓΛ f |2

= |V f |2 + 〈U f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉 − 〈U f , SΓΛ f 〉 − 〈V f , SΓΛ f 〉.

It follows that
|U f |2 + 〈V f , SΓΛ f 〉 = |V f |2 + 〈SΓΛ f , U f 〉, (7)

from which we arrive at∣∣∣∣∑
j∈J

(Γj − Θj)
∗Λj f

∣∣∣∣2+ ∑
j∈J

〈Λj f , ΘjSΓΛ f 〉 =
∣∣∣∣∑

j∈J
Θ∗

j Λj f
∣∣∣∣2+ ∑

j∈J
〈(Γj − Θj)SΓΛ f , Λj f 〉.

We are now in a position to prove the inequality in Equation (5).
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Again by Lemma 1,

|U f |2 ≥ (λ − λ2

4
)|SΓΛ f |2 − λ

2
(〈V f , SΓΛ f 〉+ 〈SΓΛ f , V f 〉)

= (λ − λ2

4
)〈U f , SΓΛ f 〉+ (λ − λ2

4
)〈V f , SΓΛ f 〉 − λ

2
〈V f , SΓΛ f 〉 − λ

2
〈SΓΛ f , V f 〉

= (λ − λ2

4
)〈U f , SΓΛ f 〉+ (

λ

2
− λ2

4
)〈V f , SΓΛ f 〉 − λ

2
〈SΓΛ f , V f 〉. (8)

Therefore,∣∣∣∣∑
j∈J

(Γj − Θj)
∗Λj f

∣∣∣∣2+ ∑
j∈J

〈Λj f , ΘjSΓΛ f 〉 = |U f |2 + 〈V f , SΓΛ f 〉

≥ (λ − λ2

4
)〈U f , SΓΛ f 〉+ (1 +

λ

2
− λ2

4
)〈V f , SΓΛ f 〉 − λ

2
〈SΓΛ f , V f 〉

= (λ − λ2

4
) ∑

j∈J
〈Λj f , (Γj − Θj)SΓΛ f 〉+ (1 +

λ

2
− λ2

4
) ∑

j∈J
〈Λj f , ΘjSΓΛ f 〉 − λ

2 ∑
j∈J

〈ΘjSΓΛ f , Λj f 〉

for any f ∈ H.

Corollary 1. Suppose that Λ = {Λj}j∈J is a g-frame for H with respect to {Kj}j∈J with g-frame operator SΛ
and that Λ̃j = ΛjS−1

Λ for each j ∈ J. Then, for any λ ∈ R, for all I ⊂ J and all f ∈ H, we have

∑
j∈I

〈Λj f , Λj f 〉+ ∑
j∈J

〈Λ̃jSΛ
Ic f , Λ̃jSΛ

Ic f 〉 = ∑
j∈Ic

〈Λj f , Λj f 〉+ ∑
j∈J

〈Λ̃jSΛ
I f , Λ̃jSΛ

I f 〉

≥ (λ − λ2

4
) ∑

j∈Ic
〈Λj f , Λj f 〉+ (1 − λ2

4
)∑

j∈I
〈Λj f , Λj f 〉.

Proof. Taking Γj = ΛjS
− 1

2
Λ for any j ∈ J, then it is easy to see that SΓΛ = S

1
2
Λ. For each j ∈ J, let

Θj =

{
Γj, j ∈ I,
0, j ∈ Ic.

Now, for each f ∈ H,∣∣∣∣∑
j∈J

(Γj − Θj)
∗Λj f

∣∣∣∣2 =

∣∣∣∣∑
j∈Ic

S− 1
2

Λ Λ∗
j Λj f

∣∣∣∣2= |S− 1
2

Λ SΛ
Ic f |2 = 〈S− 1

2
Λ SΛ

Ic f , S− 1
2

Λ SΛ
Ic f 〉

= 〈SΛ
Ic f , S−1

Λ SΛ
Ic f 〉 = 〈SΛS−1

Λ SΛ
Ic f , S−1

Λ SΛ
Ic f 〉

= ∑
j∈J

〈ΛjS−1
Λ SΛ

Ic f , ΛjS−1
Λ SΛ

Ic f 〉 = ∑
j∈J

〈Λ̃jSΛ
Ic f , Λ̃jSΛ

Ic f 〉. (9)

Since |∑j∈J Θ∗
j Λj f |2 = |∑j∈I Γ∗

j Λj f |2 = |∑j∈I S− 1
2

Λ Λ∗
j Λj f |2, a replacement of Ic by I in the last

item of Equation (9) leads to ∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2= ∑
j∈J

〈Λ̃jSΛ
I f , Λ̃jSΛ

I f 〉. (10)

We also have

∑
j∈J

〈Λj f , ΘjSΓΛ f 〉 = ∑
j∈I

〈Λj f , Λj f 〉, ∑
j∈J

〈(Γj − Θj)SΓΛ f , Λj f 〉 = ∑
j∈Ic

〈Λj f , Λj f 〉. (11)
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Hence, the conclusion follows from Theorem 1.

Let Λ = {Λj}j∈J be a Parseval g-frame for H with respect to {Kj}j∈J; then, SΛ = IdH. Thus,
for any I ⊂ J,

∑
j∈J

〈Λ̃jSΛ
Ic f , Λ̃jSΛ

Ic f 〉 = ∑
j∈J

〈ΛjSΛ
Ic f , ΛjSΛ

Ic f 〉 = |SΛ
Ic f |2 =

∣∣∣∣∑
j∈Ic

Λ∗
j Λj f

∣∣∣∣2.

Similarly,

∑
j∈J

〈Λ̃jSΛ
I f , Λ̃jSΛ

I f 〉 =
∣∣∣∣∑

j∈I
Λ∗

j Λj f
∣∣∣∣2.

This fact, together with Corollary 1, yields

Corollary 2. Suppose that Λ = {Λj}j∈J is a Parseval g-frame for H with respect to {Kj}j∈J. Then, for any
λ ∈ R, for all I ⊂ J and all f ∈ H, we have

∑
j∈I

〈Λj f , Λj f 〉+
∣∣∣∣∑

j∈Ic
Λ∗

j Λj f
∣∣∣∣2= ∑

j∈Ic
〈Λj f , Λj f 〉+

∣∣∣∣∑
j∈I

Λ∗
j Λj f

∣∣∣∣2
≥ (λ − λ2

4
) ∑

j∈Ic
〈Λj f , Λj f 〉+ (1 − λ2

4
)∑

j∈I
〈Λj f , Λj f 〉.

Corollary 3. Suppose that Λ = {Λj}j∈J is a g-frame for H with respect to {Kj}j∈J with an alternate dual
g-frame Γ = {Γj}j∈J. Then, for any λ ∈ R, for all I ⊂ J and all f ∈ H, we have

∣∣∣∣∑
j∈I

Γ∗
j Λj f

∣∣∣∣2+ ∑
j∈Ic

〈Λj f , Γj f 〉 =
∣∣∣∣∑

j∈Ic
Γ∗

j Λj f
∣∣∣∣2+∑

j∈I
〈Γj f , Λj f 〉

≥ (λ − λ2

4
)∑

j∈I
〈Λj f , Γj f 〉+ (1 +

λ

2
− λ2

4
) ∑

j∈Ic
〈Λj f , Γj f 〉 − λ

2 ∑
j∈Ic

〈Γj f , Λj f 〉.

Proof. We conclude first that SΓΛ = IdH. Now, the result follows immediately from Theorem 1 if,

for any I ⊂ J, we take Θj =

{
Γj, j ∈ Ic,
0, j ∈ I.

Remark 1. Theorems 4.1 and 4.2 in [31] can be obtained if we take λ = 1, respectively, in Corollaries 1 and 2.

Theorem 2. Let Λ = {Λj}j∈J be a g-frame for H with respect to {Kj}j∈J. Suppose that Γ = {Γj}j∈J and
Θ = {Θj}j∈J are two g-Bessel sequences for H with respect to {Kj}j∈J and that the operator SΓΛ is defined in
Equation (4). Then, for any λ ∈ R and any f ∈ H, we have∣∣∣∣∑

j∈J
(Γj − Θj)

∗Λj f
∣∣∣∣2+∣∣∣∣∑

j∈J
Θ∗

j Λj f
∣∣∣∣2 ≥ (λ − λ2

2
)

∣∣∣∣∑
j∈J

Γ∗
j Λj f

∣∣∣∣2−(1 − λ) ∑
j∈J

〈(Γj − Θj)SΓΛ f , Λj f 〉

+ (1 − λ) ∑
j∈J

〈Λj f , ΘjSΓΛ f 〉.

Moreover, if U∗V is positive, where U and V are given in Equation (6), then
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∣∣∣∣∑
j∈J

(Γj − Θj)
∗Λj f

∣∣∣∣2+∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2
≤ ∑

j∈J
〈(Γj − Θj)SΓΛ f , Λj f 〉+ ∑

j∈J
〈Λj f , ΘjSΓΛ f 〉. (12)

Proof. Combining Equation (7) with Lemma 1, we obtain∣∣∣∣∑
j∈J

(Γj − Θj)
∗Λj f

∣∣∣∣2+∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2
= |U f |2 + |V f |2 = 2|V f |2 + 〈SΓΛ f , U f 〉 − 〈V f , SΓΛ f 〉

≥ (2 − λ2

2
)|SΓΛ f |2 − (2 − λ)(〈SΓΛ f , U f 〉+ 〈U f , SΓΛ f 〉) + 〈SΓΛ f , U f 〉 − 〈V f , SΓΛ f 〉

= (2 − λ2

2
)|SΓΛ f |2 − (2 − λ)〈SΓΛ f , U f 〉 − (2 − λ)〈U f , SΓΛ f 〉

− (2 − λ)〈V f , SΓΛ f 〉+ (1 − λ)〈V f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉

= (2 − λ2

2
)|SΓΛ f |2 − (1 − λ)〈SΓΛ f , U f 〉 − (2 − λ)|SΓΛ f |2 + (1 − λ)〈V f , SΓΛ f 〉

= (λ − λ2

2
)|SΓΛ f |2 − (1 − λ)〈SΓΛ f , U f 〉+ (1 − λ)〈V f , SΓΛ f 〉

= (λ − λ2

2
)

∣∣∣∣∑
j∈J

Γ∗
j Λj f

∣∣∣∣2−(1 − λ) ∑
j∈J

〈(Γj − Θj)SΓΛ f , Λj f 〉+ (1 − λ) ∑
j∈J

〈Λj f , ΘjSΓΛ f 〉

for any f ∈ H. We next prove Equation (12). Since U∗V is positive, we see from Equation (7) that

|U f |2 = |V f |2 + 〈SΓΛ f , U f 〉 − 〈V f , SΓΛ f 〉 = 〈SΓΛ f , U f 〉 − 〈V f , U f 〉 ≤ 〈SΓΛ f , U f 〉

for each f ∈ H. A similar discussion gives |V f |2 ≤ 〈V f , SΓΛ f 〉. Thus,∣∣∣∣∑
j∈J

(Γj − Θj)
∗Λj f

∣∣∣∣2+∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2 = |U f |2 + |V f |2 ≤ 〈SΓΛ f , U f 〉+ 〈V f , SΓΛ f 〉

= ∑
j∈J

〈(Γj − Θj)SΓΛ f , Λj f 〉+ ∑
j∈J

〈Λj f , ΘjSΓΛ f 〉.

Corollary 4. Let Λ = {Λj}j∈J be a g-frame for H with respect to {Kj}j∈J with g-frame operator SΛ,
and Λ̃j = ΛjS−1

Λ for each j ∈ J. Then, for any λ ∈ R, for all I ⊂ J and all f ∈ H, we have

(λ − λ2

2
) ∑

j∈J
〈Λj f , Λj f 〉 − (1 − λ) ∑

j∈Ic
〈Λj f , Λj f 〉+ (1 − λ)∑

j∈I
〈Λj f , Λj f 〉

≤ ∑
j∈J

〈Λ̃jSΛ
I f , Λ̃jSΛ

I f 〉+ ∑
j∈J

〈Λ̃jSΛ
Ic f , Λ̃jSΛ

Ic f 〉 ≤ ∑
j∈J

〈Λj f , Λj f 〉.

Proof. For every j ∈ J, taking Γj = ΛjS
− 1

2
Λ and Θj =

{
Γj, j ∈ I,
0, j ∈ Ic,

then the operators U and

V defined in Equation (6) can be expressed as U = S− 1
2

Λ SΛ
Ic and V = S− 1

2
Λ SΛ

I , respectively. Hence,

U∗V = SΛ
Ic S−1

Λ SΛ
I . Since S− 1

2
Λ SΛ

I S− 1
2

Λ and S− 1
2

Λ SΛ
Ic S− 1

2
Λ are positive and commutative, it follows that
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0 ≤ S− 1
2

Λ SΛ
Ic S− 1

2
Λ S− 1

2
Λ SΛ

I S− 1
2

Λ = S− 1
2

Λ SΛ
Ic S−1

Λ SΛ
I S− 1

2
Λ ,

and, consequently, SΛ
Ic S−1

Λ SΛ
I ≥ 0. Note also that

∣∣∣∣∑
j∈J

Γ∗
j Λj f

∣∣∣∣2= ∣∣∣∣S− 1
2

Λ ∑
j∈J

Λ∗
j Λj f

∣∣∣∣2= |S
1
2
Λ f |2 = 〈SΛ f , f 〉 = ∑

j∈J
〈Λj f , Λj f 〉.

Now, the result follows by combining Theorem 2 and Equations (9)–(11).

Theorem 3. Let Λ = {Λj}j∈J be a g-frame for H with respect to {Kj}j∈J with g-frame operator SΛ. Suppose
that Γ = {Γj}j∈J and Θ = {Θj}j∈J are two g-Bessel sequences for H with respect to {Kj}j∈J and that the
operator SΓΛ is defined in Equation (4). Then, for any λ ∈ R and any f ∈ H, we have

∑
j∈J

〈Λj f , ΘjS
1
2
Λ f 〉 −

∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2 ≤ ∑
j∈J

〈Λj f , Θj(S
1
2
Λ − SΓΛ) f 〉 − λ

2 ∑
j∈J

〈Λj f , (Γj − Θj)SΓΛ f 〉

+ (1 − λ

2
) ∑

j∈J
〈(Γj − Θj)SΓΛ f , Λj f 〉+ λ2

4

∣∣∣∣∑
j∈J

Γ∗
j Λj f

∣∣∣∣2.

Moreover, if U∗V is positive, where U and V are given in Equation (6), then

∑
j∈J

〈Λj f , ΘjS
1
2
Λ f 〉 −

∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2≥ ∑
j∈J

〈Λj f , Θj(S
1
2
Λ − SΓΛ) f 〉.

Proof. Combining Equations (7) and (8) leads to

∑
j∈J

〈Λj f , ΘjS
1
2
Λ f 〉 −

∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2= 〈S
1
2
ΛV f , f 〉 − |V f |2

≤ 〈S
1
2
ΛV f , f 〉 − (λ − λ2

4
)〈U f , SΓΛ f 〉 − (

λ

2
− λ2

4
)〈V f , SΓΛ f 〉

+
λ

2
〈SΓΛ f , V f 〉 − 〈V f , SΓΛ f 〉+ 〈SΓΛ f , U f 〉

= 〈V f , (S
1
2
Λ − SΓΛ) f 〉 − (

λ

2
− λ2

4
)(〈U f , SΓΛ f 〉+ 〈V f , SΓΛ f 〉)− λ

2
〈U f , SΓΛ f 〉

+
λ

2
(〈SΓΛ f , V f 〉+ 〈SΓΛ f , U f 〉) + (1 − λ

2
)〈SΓΛ f , U f 〉

= 〈V f , (S
1
2
Λ − SΓΛ) f 〉 − (

λ

2
− λ2

4
)|SΓΛ f |2

− λ

2
〈U f , SΓΛ f 〉+ λ

2
|SΓΛ f |2 + (1 − λ

2
)〈SΓΛ f , U f 〉

= 〈V f , (S
1
2
Λ − SΓΛ) f 〉+ λ2

4
|SΓΛ f |2 − λ

2
〈U f , SΓΛ f 〉+ (1 − λ

2
)〈SΓΛ f , U f 〉

= ∑
j∈J

〈Λj f , Θj(S
1
2
Λ − SΓΛ) f 〉 − λ

2 ∑
j∈J

〈Λj f , (Γj − Θj)SΓΛ f 〉

+ (1 − λ

2
) ∑

j∈J
〈(Γj − Θj)SΓΛ f , Λj f 〉+ λ2

4

∣∣∣∣∑
j∈J

Γ∗
j Λj f

∣∣∣∣2, ∀ f ∈ H.
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Suppose that U∗V is positive; then, |V f |2 ≤ 〈V f , SΓΛ f 〉. Now, the “Moreover” part follows from
the following inequality:

∑
j∈J

〈Λj f , ΘjS
1
2
Λ f 〉 −

∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2 = 〈S
1
2
ΛV f , f 〉 − |V f |2 ≥ 〈S

1
2
ΛV f , f 〉 − 〈V f , SΓΛ f 〉

= 〈V f , (S
1
2
Λ − SΓΛ) f 〉 = ∑

j∈J
〈Λj f , Θj(S

1
2
Λ − SΓΛ) f 〉.

Corollary 5. Let Λ = {Λj}j∈J be a g-frame for H with respect to {Kj}j∈J with g-frame operator SΛ. Then,
for any λ ∈ R, for all I ⊂ J and all f ∈ H, we have

0 ≤ ∑
j∈I

〈Λj f , Λj f 〉 − ∑
j∈J

〈Λ̃jSΛ
I f , Λ̃jSΛ

I f 〉

≤ (1 − λ) ∑
j∈Ic

〈Λj f , Λj f 〉+ λ2

4 ∑
j∈J

〈Λj f , Λj f 〉.

Proof. For each j ∈ J, let Γj and Θj be the same as in the proof of Corollary 4. By Theorem 3, we have

∑
j∈I

〈Λj f , Λj f 〉 − ∑
j∈J

〈Λ̃jSΛ
I f , Λ̃jSΛ

I f 〉 = ∑
j∈J

〈Λj f , ΘjS
1
2
Λ f 〉 −

∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2
≤ −λ

2 ∑
j∈Ic

〈Λj f , Λj f 〉+ (1 − λ

2
) ∑

j∈Ic
〈Λj f , Λj f 〉+ λ2

4 ∑
j∈J

〈Λj f , Λj f 〉

= (1 − λ) ∑
j∈Ic

〈Λj f , Λj f 〉+ λ2

4 ∑
j∈J

〈Λj f , Λj f 〉.

By Theorem 3 again,

∑
j∈I

〈Λj f , Λj f 〉 − ∑
j∈J

〈Λ̃jSΛ
I f , Λ̃jSΛ

I f 〉 = ∑
j∈J

〈Λj f , ΘjS
1
2
Λ f 〉 −

∣∣∣∣∑
j∈J

Θ∗
j Λj f

∣∣∣∣2
≥ ∑

j∈J
〈Λj f , Θj(S

1
2
Λ − SΓΛ) f 〉 = 0,

and the proof is finished.

Remark 2. Taking λ = 1 in Corollaries 4 and 5, we can obtain Theorem 2.4 in [29].
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1. Introduction

Throughout this paper, H is a separable Hilbert space, and IdH is the identity operator on H.
The notations J, R, and B(H) denote, respectively, an index set which is finite or countable, the real
number set, and the family of all linear bounded operators on H.

A sequence F = { f j}j∈J of vectors in H is a frame (classical frame) if there are constants A, B > 0
such that

A‖x‖2 ≤ ∑
j∈J

|〈x, f j〉|2 ≤ B‖x‖2, ∀x ∈ H. (1)

The frame F = { f j}j∈J is said to be Parseval if A = B = 1. If F = { f j}j∈J satisfies the inequality to
the right in Equation (1) we say that F = { f j}j∈J is a Bessel sequence.

The appearance of frames can be tracked back to the early 1950s when they were used in the
work on nonharmonic Fourier series owing to Duffin and Schaeffer [1]. We refer to [2–16] for more
information on general frame theory. It should be pointed out that frames have played an important
role such as in signal processing [17,18], sigma-delta quantization [19], quantum information [20],
coding theory [21], and sampling theory [22], due to their nice properties.

Motivated by a problem deriving from distributed signal processing, Bemrose et al. [23] put
forward the notion of (discrete) weaving frames for Hilbert spaces. The theory may be applied to deal
with wireless sensor networks that require distributed processing under different frames, which could
also be used in the pre-processing of signals by means of Gabor frames. Recently, weaving frames
have attracted many scholars’ attention, please refer to [24–30] for more information.

Balan et al. [31] discovered an interesting inequality when further discussing the remarkable
Parseval frames identity arising in their work on effective algorithms for computing the reconstructions
of signals, which was then extended to general frames and alternate dual frames [32], and based on the
work in [31,32], some inequalities for generalized frames associated with a scalar are also established
(see [33–35]). Borrowing the ideas from [34,35], Li and Leng [36] have generalized the inequalities for
frames to weaving frames with a more general form. In this paper, we present several new inequalities
for weaving frames and we show that our results can lead to the corresponding results in [36]. We also
obtain a triangle inequality for weaving frames, which differs from previous ones in the structure.

Mathematics 2019, 7, 141; doi:10.3390/math7020141 www.mdpi.com/journal/mathematics33
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One calls two frames F = { f j}j∈J and G = {gj}j∈J in H woven, if there exist universal constants
C and D such that for each partition σ ⊂ J, the family { f j}j∈σ ∪ {gj}j∈σc is a frame for H with frame
bounds C and D and, in this case, we say that { f j}j∈σ ∪ {gj}j∈σc is a weaving frame.

Suppose that F = { f j}j∈J and G = {gj}j∈J are woven, then associated with every weaving frame
{ f j}j∈σ ∪ {gj}j∈σc there is a positive, self-adjoint and invertible operator, called the weaving frame
operator, given below

SW : H → H, SW x = ∑
j∈σ

〈x, f j〉 f j + ∑
j∈σc

〈x, gj〉gj.

We recall that a frame H = {hj}j∈J is said to be an alternate dual frame of { f j}j∈σ ∪ {gj}j∈σc if

x = ∑
j∈σ

〈x, f j〉hj + ∑
j∈σc

〈x, gj〉hj (2)

is valid for every x ∈ H.
For each σ ⊂ J, let Sσ

F be the positive and self-adjoint operator induced by σ and a given frame
F = { f j}j∈J of H, defined by

Sσ
F : H → H, Sσ

F x = ∑
j∈σ

〈x, f j〉 f j.

Let F = { f j}j∈J, G = {gj}j∈J, and H = {hj}j∈J be Bessel sequences for H, then it is easy to check
that the operators

SFGH : H → H, SFGHx = ∑
j∈σ

〈x, f j〉hj + ∑
j∈σc

〈x, gj〉hj (3)

and
SHFG : H → H, SHFGx = ∑

j∈σ

〈x, hj〉 f j + ∑
j∈σc

〈x, hj〉gj (4)

are well-defined and, further, SFGH, SHFG ∈ B(H).

2. Main Results and Their Proofs

We start with the following result on operators, which will be used to prove Theorem 1.

Lemma 1. If P, Q, L ∈ B(H) satisfy P + Q = L, then for any λ ∈ R,

P∗P +
λ

2
(Q∗L + L∗Q) = Q∗Q + (1 − λ

2
)(P∗L + L∗P) + (λ − 1)L∗L ≥ (λ − λ2

4
)L∗L.

Proof. We have
P∗P +

λ

2
(Q∗L + L∗Q) = P∗P − λ

2
(P∗L + L∗P) + λL∗L,

and

Q∗Q + (1 − λ

2
)(P∗L + L∗P) + (λ − 1)L∗L = P∗P − λ

2
(P∗L + L∗P) + λL∗L

= (P − λ

2
L)∗(P − λ

2
L) + (λ − λ2

4
)L∗L ≥ (λ − λ2

4
)L∗L.

Thus the result holds.

Taking 2λ instead of λ in Lemma 1 yields an immediate consequence as follows.
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Corollary 1. If P, Q, L ∈ B(H) satisfy P + Q = L, then for any λ ∈ R,

P∗P + λ(Q∗L + L∗Q) = Q∗Q + (1 − λ)(P∗L + L∗P) + (2λ − 1)L∗L ≥ (2λ − λ2)L∗L.

Theorem 1. Suppose that two frames F = { f j}j∈J and G = {gj}j∈J in H are woven, and that H = {hj}j∈J
is a Bessel sequences for H. Then for any σ ⊂ J, for all λ ∈ R and all x ∈ H, we have∥∥∥∥∑j∈σ〈x, f j〉hj

∥∥∥∥2

+Re ∑j∈σc〈x, gj〉〈hj, SFGHx〉 =
∥∥∥∥∑j∈σc〈x, gj〉hj

∥∥∥∥2

+Re ∑j∈σ〈x, f j〉〈hj, SFGHx〉

≥ (λ − λ2

4 )Re ∑j∈σ〈x, f j〉〈hj, SFGHx〉+ (1 − λ2

4 )Re ∑j∈σc〈x, gj〉〈hj, SFGHx〉
(5)

and∥∥∥∥∑j∈σ〈x, hj〉 f j

∥∥∥∥2

+Re ∑j∈σc〈x, hj〉〈gj, SHFGx〉 =
∥∥∥∥∑j∈σc〈x, hj〉gj

∥∥∥∥2

+Re ∑j∈σ〈x, hj〉〈 f j, SHFGx〉
≥ (2λ − λ2)Re ∑j∈σ〈x, hj〉〈 f j, SHFGx〉+ (1 − λ2)Re ∑j∈σc〈x, hj〉〈gj, SHFGx〉,

(6)

where SFGH and SHFG are defined respectively in Equations (3) and (4).

Proof. For any σ ⊂ J, we define

Px = ∑
j∈σ

〈x, f j〉hj and Qx = ∑
j∈σc

〈x, gj〉hj, ∀x ∈ H. (7)

Then P, Q ∈ B(H), and a simple calculation gives

Px + Qx = ∑
j∈σ

〈x, f j〉hj + ∑
j∈σc

〈x, gj〉hj = SFGHx.

By Lemma 1 we obtain

‖Px‖2 + λRe〈S∗
FGHQx, x〉 = ‖Qx‖2 + 2(1 − λ

2
)Re〈S∗

FGHPx, x〉+ (λ − 1)‖SFGHx‖2.

Therefore,

‖Px‖2 = ‖Qx‖2 + 2(1 − λ

2
)Re〈S∗

FGHPx, x〉+ (λ − 1)Re〈SFGHx, SFGHx〉 − λRe〈S∗
FGHQx, x〉

= ‖Qx‖2 + 2Re〈S∗
FGHPx, x〉 − λRe〈(P + Q)x, SFGHx〉+ (λ − 1)Re〈SFGHx, SFGHx〉

= ‖Qx‖2 + 2Re〈S∗
FGHPx, x〉 − Re〈SFGHx, SFGHx〉

= ‖Qx‖2 + 2Re〈Px, SFGHx〉 − Re〈Px, SFGHx〉 − Re〈Qx, SFGHx〉
= ‖Qx‖2 + Re〈Px, SFGHx〉 − Re〈Qx, SFGHx〉,

from which we conclude that∥∥∥∥∑
j∈σ

〈x, f j〉hj

∥∥∥∥2

+Re ∑
j∈σc

〈x, gj〉〈hj, SFGHx〉

= ‖Px‖2 + Re〈Qx, SFGHx〉 = ‖Qx‖2 + Re〈Px, SFGHx〉 (8)

=

∥∥∥∥ ∑
j∈σc

〈x, gj〉hj

∥∥∥∥2

+Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉.
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For the inequality in Equation (5), we apply Lemma 1 again,

‖Px‖2 + λRe〈S∗
FGHQx, x〉 ≥ (λ − λ2

4
)〈S∗

FGHSFGHx, x〉

for any x ∈ H. Hence

‖Px‖2 ≥ (λ − λ2

4
)〈S∗

FGHSFGHx, x〉 − λRe〈Qx, SFGHx〉

= (λ − λ2

4
− λ)Re〈Qx, SFGHx〉+ (λ − λ2

4
)Re〈Px, SFGHx〉 (9)

= (λ − λ2

4
)Re〈Px, SFGHx〉 − λ2

4
Re〈Qx, SFGHx〉,

and consequently,∥∥∥∥∑
j∈σ

〈x, f j〉hj

∥∥∥∥2

+Re ∑
j∈σc

〈x, gj〉〈hj, SFGHx〉 = ‖Px‖2 + Re〈Qx, SFGHx〉

≥ (λ − λ2

4
)Re〈Px, SFGHx〉+ (1 − λ2

4
)Re〈Qx, SFGHx〉

= (λ − λ2

4
)Re ∑

j∈σ

〈x, f j〉〈hj, SFGHx〉+ (1 − λ2

4
)Re ∑

j∈σc
〈x, gj〉〈hj, SFGHx〉.

Similar arguments hold for Equation (6), by using Corollary 1.

Corollary 2. Let two frames F = { f j}j∈J and G = {gj}j∈J in H be woven. Then for any σ ⊂ J, for all λ ∈ R
and all x ∈ H, we have

∑
j∈σ

|〈S−1
W Sσ

F x, f j〉|2 + ∑
j∈σc

|〈S−1
W Sσ

F x, gj〉|2 + ∑
j∈σc

|〈x, gj〉|2

= ∑
j∈σ

|〈S−1
W Sσc

G x, f j〉|2 + ∑
j∈σc

|〈S−1
W Sσc

G x, gj〉|2 + ∑
j∈σ

|〈x, f j〉|2

≥ (λ − λ2

4
) ∑

j∈σ

|〈x, f j〉|2 + (1 − λ2

4
) ∑

j∈σc
|〈x, gj〉|2.

Proof. For each j ∈ J, taking

hj =

⎧⎨⎩ S− 1
2

W fj, j ∈ σ,

S− 1
2

W gj, j ∈ σc.

Then, clearly, H = {hj}j∈J is a Bessel sequence for H. Since for any x ∈ H, SFGHx =

∑j∈σ〈x, f j〉S
− 1

2
W fj + ∑j∈σc〈x, gj〉S

− 1
2

W gj = S− 1
2

W SW x = S
1
2
W x, we have SFGH = S

1
2
W . Now

∥∥∥∥∑j∈σ〈x, f j〉hj

∥∥∥∥2

=

∥∥∥∥∑j∈σ〈x, f j〉S
− 1

2
W fj

∥∥∥∥2

=

∥∥∥∥S− 1
2

W ∑j∈σ〈x, f j〉 f j

∥∥∥∥2

= ‖S− 1
2

W Sσ
F x‖2 = 〈S− 1

2
W Sσ

F x, S− 1
2

W Sσ
F x〉

= ∑j∈σ〈S−1
W Sσ

F x, f j〉〈 f j, S−1
W Sσ

F x〉+ ∑j∈σc〈S−1
W Sσ

F x, gj〉〈gj, S−1
W Sσ

F x〉
= ∑j∈σ |〈S−1

W Sσ
F x, f j〉|2 + ∑j∈σc |〈S−1

W Sσ
F x, gj〉|2.

(10)
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A similar discussion leads to∥∥∥∥ ∑
j∈σc

〈x, gj〉hj

∥∥∥∥2

= ∑
j∈σ

|〈S−1
W Sσc

G x, f j〉|2 + ∑
j∈σc

|〈S−1
W Sσc

G x, gj〉|2. (11)

We also get

Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉 = Re ∑
j∈σ

〈x, f j〉〈S
− 1

2
W fj, S

1
2
W x〉 = ∑

j∈σ

|〈x, f j〉|2, (12)

and
Re ∑

j∈σc
〈x, gj〉〈hj, SFGHx〉 = Re ∑

j∈σc
〈x, gj〉〈S

− 1
2

W gj, S
1
2
W x〉 = ∑

j∈σc
|〈x, gj〉|2. (13)

Thus the result follows from Theorem 1.

Corollary 3. Suppose that two frames F = { f j}j∈J and G = {gj}j∈J in H are woven. Then for any σ ⊂ J,
for all λ ∈ R and all x ∈ H,

Re
(

∑
j∈σ

〈x, hj〉〈 f j, x〉
)
+

∥∥∥∥ ∑
j∈σc

〈x, hj〉gj

∥∥∥∥2

= Re
(

∑
j∈σc

〈x, hj〉〈gj, x〉
)
+

∥∥∥∥∑
j∈σ

〈x, hj〉 f j

∥∥∥∥2

≥ (2λ − λ2)Re
(

∑
j∈σ

〈x, hj〉〈 f j, x〉
)
+(1 − λ2)Re

(
∑

j∈σc
〈x, hj〉〈gj, x〉

)
,

where H = {hj}j∈J is an alternate dual frame of the weaving frame { f j}j∈σ ∪ {gj}j∈σc .

Proof. For any σ ⊂ J, since H = {hj}j∈J is an alternate dual frame of the weaving frame { f j}j∈σ ∪
{gj}j∈σc , Equation (2) gives

x = ∑
j∈σ

〈x, hj〉 f j + ∑
j∈σc

〈x, hj〉gj

for any x ∈ H and thus, SHFG = IdH. By Theorem 1 we obtain the relation shown in the corollary.

Remark 1. Corollaries 2 and 3 are respectively Theorems 7 and 9 in [36].

Theorem 2. Suppose that two frames F = { f j}j∈J and G = {gj}j∈J in H are woven, and that H = {hj}j∈J
is a Bessel sequences for H. Then for any σ ⊂ J, for all λ ∈ R and all x ∈ H, we have

Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉 −
∥∥∥∥∑

j∈σ

〈x, f j〉hj

∥∥∥∥2

≤ λ2

4
Re ∑

j∈σc
〈x, gj〉〈hj, SFGHx〉+ (1 − λ

2
)2Re ∑

j∈σ

〈x, f j〉〈hj, SFGHx〉,
(14)

and ∥∥∥∥∑
j∈σ

〈x, f j〉hj

∥∥∥∥2

+

∥∥∥∥ ∑
j∈σc

〈x, gj〉hj

∥∥∥∥2

≥ (2λ − λ2

2
− 1)Re ∑

j∈σ

〈x, f j〉〈hj, SFGHx〉+ (1 − λ2

2
)Re ∑

j∈σc
〈x, gj〉〈hj, SFGHx〉,

(15)

where SFGH is defined in Equation (3).
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Moreover, if the operators P and Q given in Equation (7) satisfy the condition that P∗Q is positive, then

0 ≤ Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉 −
∥∥∥∥∑

j∈σ

〈x, f j〉hj

∥∥∥∥2

,

and ∥∥∥∥∑
j∈σ

〈x, f j〉hj

∥∥∥∥2

+

∥∥∥∥ ∑
j∈σc

〈x, gj〉hj

∥∥∥∥2

≤ ‖SFGHx‖2.

Proof. For any σ ⊂ J, let P and Q be defined in Equation (7). Then all λ ∈ R and all x ∈ H, we see
from Equation (9) that

Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉 −
∥∥∥∥∑

j∈σ

〈x, f j〉hj

∥∥∥∥2

= Re〈Px, SFGHx〉 − ‖Px‖2

≤ Re〈Px, SFGHx〉+ λ2

4
Re〈Qx, SFGHx〉 − (λ − λ2

4
)Re〈Px, SFGHx〉

=
λ2

4
Re〈Qx, SFGHx〉+ (1 − λ +

λ2

4
)Re〈Px, SFGHx〉

=
λ2

4
Re〈Qx, SFGHx〉+ (1 − λ

2
)2Re〈Px, SFGHx〉

=
λ2

4
Re ∑

j∈σc
〈x, gj〉〈hj, SFGHx〉+ (1 − λ

2
)2Re ∑

j∈σ

〈x, f j〉〈hj, SFGHx〉.

We next prove Equation (15). By combining Equation (8) with Equation (9) we conclude that∥∥∥∥∑
j∈σ

〈x, f j〉hj

∥∥∥∥2

+

∥∥∥∥ ∑
j∈σc

〈x, gj〉hj

∥∥∥∥2

= ‖Px‖2 + ‖Qx‖2 = 2‖Px‖2 + Re〈Qx, SFGHx〉 − Re〈Px, SFGHx〉

≥ (2λ − λ2

2
)Re〈Px, SFGHx〉 − λ2

2
Re〈Qx, SFGHx〉+ Re〈Qx, SFGHx〉 − Re〈Px, SFGHx〉

= (2λ − λ2

2
− 1)Re〈Px, SFGHx〉+ (1 − λ2

2
)Re〈Qx, SFGHx〉

= (2λ − λ2

2
− 1)Re ∑

j∈σ

〈x, f j〉〈hj, SFGHx〉+ (1 − λ2

2
)Re ∑

j∈σc
〈x, gj〉〈hj, SFGHx〉, ∀x ∈ H.

Suppose now that P∗Q is positive, then for any x ∈ H,

Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉 −
∥∥∥∥∑

j∈σ

〈x, f j〉hj

∥∥∥∥2

= Re〈Px, SFGHx〉 − Re〈Px, Px〉

= Re〈Px, Qx〉 = Re〈P∗Qx, x〉 ≥ 0.

Noting that

‖Px‖2 = ‖Qx‖2 − Re〈Qx, SFGHx〉+ Re〈Px, SFGHx〉
= Re〈Qx, Qx〉 − Re〈Qx, SFGHx〉+ Re〈Px, SFGHx〉
= −(Re〈Qx, SFGHx〉 − Re〈Qx, Qx〉) + Re〈Px, SFGHx〉
= −Re〈Qx, Px〉+ Re〈Px, SFGHx〉 ≤ Re〈Px, SFGHx〉,
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and similarly,
‖Qx‖2 ≤ Re〈Qx, SFGHx〉,

we obtain ∥∥∥∥∑
j∈σ

〈x, f j〉hj

∥∥∥∥2

+

∥∥∥∥ ∑
j∈σc

〈x, gj〉hj

∥∥∥∥2

= ‖Px‖2 + ‖Qx‖2

≤ Re〈Px, SFGHx〉+ Re〈Qx, SFGHx〉
= Re〈Px + Qx, SFGHx〉 = ‖SFGHx‖2,

and the proof is completed.

Remark 2. Suppose that the weaving frame { f j}j∈σ ∪ {gj}j∈σc is Parseval for each σ ⊂ J, and letting hj = f j
if j ∈ σ and hj = gj if j ∈ σc, then it is easy to check that the operator P∗Q is positive.

Corollary 4. Suppose that two frames F = { f j}j∈J and G = {gj}j∈J in H are woven. Then for any σ ⊂ J,
for all λ ∈ R and all x ∈ H, we have

0 ≤ ∑
j∈σ

|〈x, f j〉|2 − ∑
j∈σ

|〈S−1
W Sσ

F x, f j〉|2 − ∑
j∈σc

|〈S−1
W Sσ

F x, gj〉|2

≤ λ2

4 ∑
j∈σc

|〈x, gj〉|2 + (1 − λ

2
)2 ∑

j∈σ

|〈x, f j〉|2.
(16)

(2λ − λ2

2
− 1) ∑

j∈σ

|〈x, f j〉|2 + (1 − λ2

2
) ∑

j∈σc
|〈x, gj〉|2

≤ ∑
j∈σ

|〈S−1
W Sσ

F x, f j〉|2 + ∑
j∈σc

|〈S−1
W Sσ

F x, gj〉|2

+ ∑
j∈σ

|〈S−1
W Sσc

G x, f j〉|2 + ∑
j∈σc

|〈S−1
W Sσc

G x, gj〉|2

≤ ∑
j∈σ

|〈x, f j〉|2 + ∑
j∈σc

|〈x, gj〉|2.

(17)

Proof. Let H = {hj}j∈J be the same as in the proof of Corollary 2. By combining Equations (10) and (12),
and Theorem 2 we arrive at

∑
j∈σ

|〈x, f j〉|2 − ∑
j∈σ

|〈S−1
W Sσ

F x, f j〉|2 − ∑
j∈σc

|〈S−1
W Sσ

F x, gj〉|2

= Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉 −
∥∥∥∥∑

j∈σ

〈x, f j〉hj

∥∥∥∥2

≤ λ2

4
Re ∑

j∈σc
〈x, gj〉〈hj, SFGHx〉+ (1 − λ

2
)2Re ∑

j∈σ

〈x, f j〉〈hj, SFGHx〉

=
λ2

4 ∑
j∈σc

|〈x, gj〉|2 + (1 − λ

2
)2 ∑

j∈σ

|〈x, f j〉|2

for each x ∈ H. Let P and Q be given in Equation (7). Then a direct calculation shows that P = S− 1
2

W Sσ
F

and Q = S− 1
2

W Sσc

G and, P∗Q = Sσ
FS−1

W Sσc

G as a consequence. Since S− 1
2

W Sσ
FS− 1

2
W and S− 1

2
W Sσc

G S− 1
2

W are
positive and commutative,

0 ≤ S− 1
2

W Sσ
FS− 1

2
W S− 1

2
W Sσc

G S− 1
2

W = S− 1
2

W Sσ
FS−1

W Sσc

G S− 1
2

W ,
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implying that Sσ
FS−1

W Sσc

G = P∗Q ≥ 0. Again by Theorem 2,

0 ≤ Re ∑
j∈σ

〈x, f j〉〈hj, SFGHx〉 −
∥∥∥∥∑

j∈σ

〈x, f j〉hj

∥∥∥∥2

= ∑
j∈σ

|〈x, f j〉|2 − ∑
j∈σ

|〈S−1
W Sσ

F x, f j〉|2 − ∑
j∈σc

|〈S−1
W Sσ

F x, gj〉|2.

We are now in a position to prove Equation (17). By Equations (10) and (11) we have∥∥∥∥∑
j∈σ

〈x, f j〉hj

∥∥∥∥2

+

∥∥∥∥ ∑
j∈σc

〈x, gj〉hj

∥∥∥∥2

= ∑
j∈σ

|〈S−1
W Sσ

F x, f j〉|2 + ∑
j∈σc

|〈S−1
W Sσ

F x, gj〉|2 + ∑
j∈σ

|〈S−1
W Sσc

G x, f j〉|2 + ∑
j∈σc

|〈S−1
W Sσc

G x, gj〉|2
(18)

for any x ∈ H. We also have

‖SFGHx‖2 = ‖S
1
2
W x‖2 = 〈SW x, x〉 = ∑

j∈σ

|〈x, f j〉|2 + ∑
j∈σc

|〈x, gj〉|2.

This together with Equations (12), (13) and (18), and Theorem 2 gives Equation (17).

Remark 3. Inequalities (16) and (17) in Corollary 4 are respectively inequalities in Theorems 14 and 15 shown
in [36].

Suppose that F = { f j}j∈J, G = {gj}j∈J, and H = {hj}j∈J are Bessel sequences for H, and that
{αj}j∈J is a bounded sequence of complex numbers. For any σ ⊂ J and any x ∈ H, we define linear
bounded operators Eσ, Eσc

, Fσ and Fσc
respectively by

Eσx = ∑
j∈σ

(1 − αj)〈x, hj〉 f j, Eσc
x = ∑

j∈σc
(1 − αj)〈x, hj〉gj,

and
Fσx = ∑

j∈σ

αj〈x, hj〉 f j, Fσc
x = ∑

j∈σc
αj〈x, hj〉gj.

We are now ready to present a new triangle inequality for weaving frames.

Theorem 3. Suppose that two frames F = { f j}j∈J and G = {gj}j∈J in H are woven. Then for any bounded
sequence {αj}j∈J, for all σ ⊂ J and all x ∈ H, we have

3
4
‖x‖2 ≤

∥∥∥∥ ∑
j∈σc

αj〈x, hj〉gj + ∑
j∈σ

αj〈x, hj〉 f j

∥∥∥∥2

+Re
(

∑
j∈σ

(1 − αj)〈x, hj〉〈 f j, x〉+ ∑
j∈σc

(1 − αj)〈x, hj〉〈gj, x〉
)

≤ 3 + ‖(Eσ + Eσc
)− (Fσ + Fσc

)‖2

4
‖x‖2,

(19)

where H = {hj}j∈J is an alternate dual frame of the weaving frame { f j}j∈σ ∪ {gj}j∈σc .
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Proof. For any σ ⊂ J, since H = {hj}j∈J is an alternate dual frame of the weaving frame { f j}j∈σ ∪
{gj}j∈σc , Eσ + Eσc

+ Fσ + Fσc
= IdH. For any x ∈ H we obtain

∥∥∥∥ ∑
j∈σc

αj〈x, hj〉gj + ∑
j∈σ

αj〈x, hj〉 f j

∥∥∥∥2

+Re
(

∑
j∈σ

(1 − αj)〈x, hj〉〈 f j, x〉+ ∑
j∈σc

(1 − αj)〈x, hj〉〈gj, x〉
)

= 〈(Fσ + Fσc
)∗(Fσ + Fσc

)x, x〉+ Re(〈Eσx, x〉+ 〈Eσc
x, x〉)

=
1
2
〈(Eσ + Eσc

+ (Eσ)∗ + (Eσc
)∗)x, x〉+ 〈(IdH − (Eσ + Eσc

))∗(IdH − (Eσ + Eσc
))x, x〉

=

〈(
IdH − 1

2
(Eσ + Eσc

+ (Eσ)∗ + (Eσc
)∗) + (Eσ + Eσc

)∗(Eσ + Eσc
)

)
x, x

〉
=

〈((
(Eσ + Eσc

)− 1
2

IdH

)∗(
(Eσ + Eσc

)− 1
2

IdH

)
+

3
4

IdH

)
x, x

〉
=

∥∥∥∥((Eσ + Eσc
)− 1

2
IdH

)
x
∥∥∥∥2

+
3
4
‖x‖2

≥ 3
4
‖x‖2.

(20)

On the other hand we get∥∥∥∥ ∑
j∈σc

αj〈x, hj〉gj + ∑
j∈σ

αj〈x, hj〉 f j

∥∥∥∥2

+Re
(

∑
j∈σ

(1 − αj)〈x, hj〉〈 f j, x〉+ ∑
j∈σc

(1 − αj)〈x, hj〉〈gj, x〉
)

= 〈(Fσ + Fσc
)x, (Fσ + Fσc

)x〉+ Re〈(Eσ + Eσc
)x, x〉

= 〈(Fσ + Fσc
)x, (Fσ + Fσc

)x〉+ Re(〈x, x〉 − 〈(Fσ + Fσc
)x, x〉)

= 〈x, x〉 − Re〈(Fσ + Fσc
)x, x〉+ 〈(Fσ + Fσc

)x, (Fσ + Fσc
)x〉

= 〈x, x〉 − Re〈(Fσ + Fσc
)x, (Eσ + Eσc

)x〉

= 〈x, x〉 − 1
2
〈(Fσ + Fσc

)x, (Eσ + Eσc
)x〉 − 1

2
〈(Eσ + Eσc

)x, (Fσ + Fσc
)x〉

=
3
4
‖x‖2 +

1
4
〈((Eσ + Eσc

) + (Fσ + Fσc
))x, ((Eσ + Eσc

) + (Fσ + Fσc
))x〉

− 1
2
〈(Fσ + Fσc

)x, (Eσ + Eσc
)x〉 − 1

2
〈(Eσ + Eσc

)x, (Fσ + Fσc
)x〉

=
3
4
‖x‖2 +

1
4
〈((Eσ + Eσc

)− (Fσ + Fσc
))x, ((Eσ + Eσc

)− (Fσ + Fσc
))x〉

≤ 3
4
‖x‖2 +

1
4
‖(Eσ + Eσc

)− (Fσ + Fσc
)‖2‖x‖2

=
3 + ‖(Eσ + Eσc

)− (Fσ + Fσc
)‖2

4
‖x‖2.

(21)

This along with Equation (20) yields Equation (19).

Corollary 5. Suppose that two frames F = { f j}j∈J and G = {gj}j∈J in H are woven. Then for all σ ⊂ J and
all x ∈ H, we have

3
4
‖x‖2 ≤

∥∥∥∥∑
j∈σ

〈x, hj〉 f j

∥∥∥∥2

+Re ∑
j∈σc

〈x, hj〉〈gj, x〉 ≤
3 + ‖Sσc

HG − Sσ
HF‖2

4
‖x‖2,

where Sσc

HG , Sσ
HF ∈ B(H) are defined respectively by

Sσc

HGx = ∑
j∈σc

〈x, hj〉gj and Sσ
HF x = ∑

j∈σ

〈x, hj〉 f j,
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and H = {hj}j∈J is an alternate dual frame of the weaving frame { f j}j∈σ ∪ {gj}j∈σc .

Proof. The conclusion follows by Theorem 3 if we take

αj =

{
1, j ∈ σ,
0, j ∈ σc.
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Abstract: In the present paper, we obtain some new inequalities for weaving K-frames in subspaces
based on the operator methods. The inequalities are associated with a sequence of bounded complex
numbers and a parameter λ ∈ R. We also give a double inequality for weaving K-frames with the
help of two bounded linear operators induced by K-dual. Facts prove that our results cover those
recently obtained on weaving frames due to Li and Leng, and Xiang.
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1. Introduction

This paper adopts the following notations: J is a countable index set, H and K are complex Hilbert
spaces, and IdH and R are used to denote respectively the identical operator on H and the set of real
numbers. As usual, we denote by B(H,K) the set of all bounded linear operators on H and, if H = K,
then B(H,K) is abbreviated to B(H).

Frames were introduced by Duffin and Schaeffer [1] in their study of nonharmonic Fourier series,
which have now been used widely not only in theoretical work [2,3], but also in many application
areas such as quantum mechanics [4], sampling theory [5–7], acoustics [8], and signal processing [9].
As a generalization of frames, the notion of K-frames (also known as frames for operators) was
proposed by L. Găvruţa [10] when dealing with atomic decompositions for a bounded linear operator
K. Please check the papers [11–17] for further information of K-frames.

Recall that a family {ψj}j∈J ⊂ H is called a K-frame for H, if there exist two positive numbers A
and B satisfying

A‖K∗ f ‖2 ≤ ∑
j∈J

|〈 f , ψj〉|2 ≤ B‖ f ‖2, ∀ f ∈ H.

The constants A and B are called K-frame bounds. If K = IdH, then a K-frame turns to be a frame.
In addition, if only the right-hand inequality holds, then we call {ψj}j∈J a Bessel sequence.

Inspired by a question arising in distributed signal processing, Bemrose et al. [18] introduced the
concept of weaving frames, which have interested many scholars because of their potential applications
such as in wireless sensor networks and pre-processing of signals; see [19–24]. Later on, Deepshikha
and Vashisht [25] applied the idea of L. Găvruţa to the case of weaving frames and thus providing us
the notion of weaving K-frames.

Balan et al. [26] obtained an interesting inequality when they further examined the remarkable
identity for Parseval frames deriving from their work on signal reconstruction [27]. The inequality
was then extended to alternate dual frames and general frames by P. Găvruţa [28], the results in which
have already been applied in quantum information theory [29]. Recently, those inequalities have been
extended to some generalized versions of frames such as continuous g-frames [30], fusion frames and
continuous fusion frames [31,32], Hilbert–Schmidt frames [33], and weaving frames [34,35].

Mathematics 2019, 7, 863; doi:10.3390/math7090863 www.mdpi.com/journal/mathematics44
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Motivated by the above-mentioned works, in this paper, we establish several new inequalities
for weaving K-frames in subspaces from the operator-theoretic point of view, and we show that our
results can naturally lead to some corresponding results in [34,35].

One says that two frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H are woven, if there are universal
constants CΨ and DΨ such that, for any σ ⊂ J, {ψ1j}j∈σ ∪ {ψ2j}j∈σc is a frame for H with bounds CΨ

and DΨ. If CΨ = DΨ = 1, then we call Ψ1 and Ψ2 1-woven. Each family {ψ1j}j∈σ ∪ {ψ2j}j∈σc is said to
be a waving frame, related to which there is an invertible operator SΨ1Ψ2 : H → H, called the frame
operator, given by

SΨ1Ψ2 f = ∑
j∈σ

〈 f , ψ1j〉ψ1j + ∑
j∈σc

〈 f , ψ2j〉ψ2j.

Recall also that a frame Ψ3 = {ψ3j}j∈J is called an alternate dual frame of {ψ1j}j∈σ ∪ {ψ2j}j∈σc ,
if for each f ∈ H we have

f = ∑
j∈σ

〈 f , ψ1j〉ψ3j + ∑
j∈σc

〈 f , ψ2j〉ψ3j, ∀ f ∈ H.

Lemma 1. Suppose that P, Q, and K are bounded linear operators on H and P + Q = K. Then, for each f ∈ H,

‖P f ‖2 + Re〈Q f , K f 〉 ≥ 3
4
‖K f ‖2.

Proof. We have

‖P f ‖2 + Re〈Q f , K f 〉 = 〈(K − Q) f , (K − Q) f 〉+ 1
2
(〈Q f , K f 〉+ 〈K f , Q f 〉)

= 〈(Q∗Q − (K∗Q + Q∗K) +
1
2
(K∗Q + Q∗K)) f , f 〉+ 〈K∗K f , f 〉

= 〈(Q − 1
2

K)∗(Q − 1
2

K) f , f 〉+ 3
4
〈K∗K f , f 〉 ≥ 3

4
‖K f ‖2

for any f ∈ H.

The next two lemmas are collected from the papers [36] and [32], respectively.

Lemma 2. If Φ ∈ B(H,K) has a closed range, then there is the pseudo-inverse Φ† ∈ B(K,H) of Φ such that

ΦΦ†Φ = Φ, Φ†ΦΦ† = Φ†, (ΦΦ†)∗ = ΦΦ†, (Φ†Φ)∗ = Φ†Φ.

Lemma 3. If P and Q in B(H) satisfy P + Q = IdH, then, for any λ ∈ R, we have

P∗P + λ(Q∗ + Q) = Q∗Q + (1 − λ)(P∗ + P) + (2λ − 1)IdH ≥ (2λ − λ2)IdH.

2. Main Results

We start with the definition on weaving K-frames due to Deepshikha and Vashisht [25].

Definition 1. Two K-frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H are said to be K-woven, if there are
universal constants CΨ and DΨ such that, for any σ ⊂ J, the family {ψ1j}j∈σ ∪ {ψ2j}j∈σc is a K-frame for H
with K-frame bounds CΨ and DΨ. In this case, the family {ψ1j}j∈σ ∪ {ψ2j}j∈σc is called a weaving K-frame.

Given a weaving K-frame {ψ1j}j∈σ ∪ {ψ2j}j∈σc for H, recall that a Bessel sequence Φ = {φj}j∈J
for H is said to be a K-dual of {ψ1j}j∈σ ∪ {ψ2j}j∈σc , if

K f = ∑
j∈σ

〈 f , ψ1j〉φj + ∑
j∈σc

〈 f , ψ2j〉φj, ∀ f ∈ H.
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Let Ψ1 = {ψ1j}j∈J be a given K-frame for H. For any σ ⊂ J, we can define a positive operator Sσ
Ψ1

in the following way:
Sσ

Ψ1
: H → H, Sσ

Ψ1
f = ∑

j∈σ

〈 f , ψ1j〉ψ1j.

In the following, we show that, for given two K-woven frames, we can get some inequalities
under the condition that K has a closed range, which are related to a sequence of bounded complex
numbers, the corresponding K-dual and a parameter λ ∈ R.

Theorem 1. Suppose that K ∈ B(H) has a closed range and K-frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in
H are K-woven. Then,

(i) for any f ∈ Range(K), for all σ ⊂ J, {aj}j∈J ∈ �∞(J), and λ ∈ R,

∥∥∥∥∑
j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

+ Re
(

∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

=

∥∥∥∥∑
j∈σ

(1 − aj)〈K† f , ψ1j〉φj + ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉φj

∥∥∥∥2

+ Re
(

∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

≥ (λ − λ2

4
)Re

(
∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

+ (1 − λ2

4
)Re

(
∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

, (1)

where Φ = {φj}j∈J is a K-dual of {ψ1j}j∈σ ∪ {ψ2j}j∈σc .
(ii) for any f ∈ Range(K∗), for all σ ⊂ J, {aj}j∈J ∈ �∞(J), and λ ∈ R,

∥∥∥∥∑
j∈σ

aj〈(K∗)† f , φj〉ψ1j + ∑
j∈σc

aj〈(K∗)† f , φj〉ψ2j

∥∥∥∥2

+ Re
(

∑
j∈σ

(1 − aj)〈(K∗)† f , φj〉〈ψ1j, f 〉+ ∑
j∈σc

(1 − aj)〈(K∗)† f , φj〉〈ψ2j, f 〉
)

=

∥∥∥∥∑
j∈σ

(1 − aj)〈(K∗)† f , φj〉ψ1j + ∑
j∈σc

(1 − aj)〈(K∗)† f , φj〉ψ2j

∥∥∥∥2

+ Re
(

∑
j∈σ

aj〈(K∗)† f , φj〉〈ψ1j, f 〉+ ∑
j∈σc

aj〈(K∗)† f , φj〉〈ψ2j, f 〉
)

≥ (2λ − λ2)Re
(

∑
j∈σ

aj〈(K∗)† f , φj〉〈ψ1j, f 〉+ ∑
j∈σc

aj〈(K∗)† f , φj〉〈ψ2j, f 〉
)

+ (1 − λ2)Re
(

∑
j∈σ

(1 − aj)〈(K∗)† f , φj〉〈ψ1j, f 〉+ ∑
j∈σc

(1 − aj)〈(K∗)† f , φj〉〈ψ2j, f 〉
)

,

where Φ = {φj}j∈J is a K-dual of {ψ1j}j∈σ ∪ {ψ2j}j∈σc .
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Proof. We define two bounded linear operators P1 and P2 on H as follows:

P1 f = ∑
j∈σ

aj〈 f , ψ1j〉φj + ∑
j∈σc

aj〈 f , ψ2j〉φj,

P2 f = ∑
j∈σ

(1 − aj)〈 f , ψ1j〉φj + ∑
j∈σc

(1 − aj)〈 f , ψ2j〉φj.
(2)

Then, clearly, P1 f + P2 f = K f for each f ∈ H and thus P1 + P2 = K. Since K has a closed range,
by Lemma 2, we have

P1K† + P2K† = KK† = PRange(K),

where PRange(K) is the orthogonal projection onto Range(K). Thus,

P1K† |Range(K) +P2K† |Range(K)= IdRange(K).

By Lemma 3 (taking λ
2 instead of λ), we get

‖P1K† f ‖2 + λRe〈P2K† f , f 〉 = ‖P2K† f ‖2 + (2 − λ)Re〈P1K† f , f 〉+ (λ − 1)‖ f ‖2,

for any f ∈ Range(K). Hence,

‖P1K† f ‖2 = ‖P2K† f ‖2 + 2Re〈P1K† f , f 〉 − λ(Re〈P1K† f , f 〉+ Re〈P2K† f , f 〉) + (λ − 1)‖ f ‖2

= ‖P2K† f ‖2 + 2Re〈P1K† f , f 〉 − λ‖ f ‖2 + (λ − 1)‖ f ‖2

= ‖P2K† f ‖2 + 2Re〈P1K† f , f 〉 − Re〈P1K† f , f 〉 − Re〈P2K† f , f 〉.

It follows that

‖P1K† f ‖2 + Re〈P2K† f , f 〉 = ‖P2K† f ‖2 + Re〈P1K† f , f 〉, (3)

from which we arrive at∥∥∥∥∑
j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

+ Re
(

∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

=

∥∥∥∥∑
j∈σ

(1 − aj)〈K† f , ψ1j〉φj + ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉φj

∥∥∥∥2

+ Re
(

∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

.

For the inequality in Equation (1), we apply Lemma 3 again,

‖P1K† f ‖2 ≥ (λ − λ2

4
)‖ f ‖2 − λRe〈P2K† f , f 〉 (4)

= (λ − λ2

4
)Re〈P1K† f + P2K† f , f 〉 − λRe〈P2K† f , f 〉

= (λ − λ2

4
)Re〈P1K† f , f 〉 − λ2

4
Re〈P2K† f , f 〉.
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Thus, for any f ∈ Range(K),∥∥∥∥∑
j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

+ Re
(

∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

≥ (λ − λ2

4
)Re〈P1K† f , f 〉+ (1 − λ2

4
)Re〈P2K† f , f 〉

= (λ − λ2

4
)Re

(
∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

+ (1 − λ2

4
)Re

(
∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

.

(ii) The proof is similar to (i), so we omit the details.

Corollary 1. Suppose that two frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H are woven. Then, for any
f ∈ H, for all σ ⊂ J and all λ ∈ R, we have

∑
j∈σc

|〈 f , ψ2j〉|2 + ∑
j∈σ

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ1j〉|2 + ∑
j∈σc

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ2j〉|2

= ∑
j∈σ

|〈 f , ψ1j〉|2 + ∑
j∈σ

|〈Sσc

Ψ2
f , S−1

Ψ1Ψ2
ψ1j〉|2 + ∑

j∈σc
|〈Sσc

Ψ2
f , S−1

Ψ1Ψ2
ψ2j〉|2

≥ (λ − λ2

4
) ∑

j∈σ

|〈 f , ψ1j〉|2 + (1 − λ2

4
) ∑

j∈σc
|〈 f , ψ2j〉|2.

Proof. Letting K† = IdH and

φj =

{
S−1/2

Ψ1Ψ2
ψ1j, j ∈ σ,

S−1/2
Ψ1Ψ2

ψ2j, j ∈ σc.

In addition, taking S−1/2
Ψ1Ψ2

ψ1j, S−1/2
Ψ1Ψ2

ψ2j and S1/2
Ψ1Ψ2

f instead of ψ1j, ψ2j and f respectively in (i) of
Theorem 1 leads to∥∥∥∥∑

j∈σ

aj〈 f , ψ1j〉S−1/2
Ψ1Ψ2

ψ1j + ∑
j∈σc

aj〈 f , ψ2j〉S−1/2
Ψ1Ψ2

ψ2j

∥∥∥∥2

+ Re
(

∑
j∈σ

(1 − aj)〈 f , ψ1j〉〈ψ1j, f 〉+ ∑
j∈σc

(1 − aj)〈 f , ψ2j〉〈ψ2j, f 〉
)

=

∥∥∥∥∑
j∈σ

(1 − aj)〈 f , ψ1j〉S−1/2
Ψ1Ψ2

ψ1j + ∑
j∈σc

(1 − aj)〈 f , ψ2j〉S−1/2
Ψ1Ψ2

ψ2j

∥∥∥∥2

+ Re
(

∑
j∈σ

aj〈 f , ψ1j〉〈ψ1j, f 〉+ ∑
j∈σc

aj〈 f , ψ2j〉〈ψ2j, f 〉
)

≥ (λ − λ2

4
)Re

(
∑
j∈σ

aj〈 f , ψ1j〉〈ψ1j, f 〉+ ∑
j∈σc

aj〈 f , ψ2j〉〈ψ2j, f 〉
)

+ (1 − λ2

4
)Re

(
∑
j∈σ

(1 − aj)〈 f , ψ1j〉〈ψ1j, f 〉+ ∑
j∈σc

(1 − aj)〈 f , ψ2j〉〈ψ2j, f 〉
)

. (5)
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A direction calculation shows that∥∥∥∥∑
j∈σ

〈 f , ψ1j〉S−1/2
Ψ1Ψ2

ψ1j

∥∥∥∥2

=

∥∥∥∥S−1/2
Ψ1Ψ2 ∑

j∈σ

〈 f , ψ1j〉ψ1j

∥∥∥∥2

= ‖S−1/2
Ψ1Ψ2

Sσ
Ψ1

f ‖2

= 〈S−1/2
Ψ1Ψ2

Sσ
Ψ1

f , S−1/2
Ψ1Ψ2

Sσ
Ψ1

f 〉 = 〈SΨ1Ψ2 S−1
Ψ1Ψ2

Sσ
Ψ1

f , S−1
Ψ1Ψ2

Sσ
Ψ1

f 〉
= ∑

j∈σ

〈S−1
Ψ1Ψ2

Sσ
Ψ1

f , ψ1j〉〈ψ1j, S−1
Ψ1Ψ2

Sσ
Ψ1

f 〉+ ∑
j∈σc

〈S−1
Ψ1Ψ2

Sσ
Ψ1

f , ψ2j〉〈ψ2j, S−1
Ψ1Ψ2

Sσ
Ψ1

f 〉

= ∑
j∈σ

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ1j〉|2 + ∑
j∈σc

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ2j〉|2, (6)

and, similarly,∥∥∥∥ ∑
j∈σc

〈 f , ψ2j〉S−1/2
Ψ1Ψ2

ψ2j

∥∥∥∥2

= ∑
j∈σ

|〈Sσc

Ψ2
f , S−1

Ψ1Ψ2
ψ1j〉|2 + ∑

j∈σc
|〈Sσc

Ψ2
f , S−1

Ψ1Ψ2
ψ2j〉|2. (7)

Thus, the result follows if, in Equation (5), we take aj =

{
1, j ∈ σ,
0, j ∈ σc.

Corollary 2. Suppose that two frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H are woven. Then, for any
σ ⊂ J, for all λ ∈ R and all f ∈ H, we have∥∥∥∥∑

j∈σ

〈 f , φj〉ψ1j

∥∥∥∥2

+Re ∑
j∈σc

〈 f , φj〉〈ψ2j, f 〉

=

∥∥∥∥ ∑
j∈σc

〈 f , φj〉ψ2j

∥∥∥∥2

+Re ∑
j∈σ

〈 f , φj〉〈ψ1j, f 〉

≥ (2λ − λ2)Re ∑
j∈σ

〈 f , φj〉〈ψ1j, f 〉+ (1 − λ2)Re ∑
j∈σc

〈 f , φj〉〈ψ2j, f 〉,

where Φ = {φj}j∈J is an alternate dual of {ψ1j}j∈σ ∪ {ψ2j}j∈σc .

Proof. The result follows immediately from (ii) in Theorem 1 when taking K† = IdH and

aj =

{
1, j ∈ σ,
0, j ∈ σc.

Suppose that two frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H are 1-woven. For any σ ⊂ J and

any j ∈ J, taking φj =

{
ψ1j, j ∈ σ,
ψ2j, j ∈ σc.

Then, obviously, Φ = {φj}j∈J is an alternate dual of the frame

{ψ1j}j∈σ ∪ {ψ2j}j∈σc . Thus, Corollary 2 provides us a direct consequence as follows.

Corollary 3. Let the two frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H be 1-woven. Then, for any σ ⊂ J,
for all λ ∈ R and all f ∈ H, we have∥∥∥∥∑

j∈σ

〈 f , ψ1j〉ψ1j

∥∥∥∥2

+ ∑
j∈σc

|〈 f , ψ2j〉|2 =

∥∥∥∥ ∑
j∈σc

〈 f , ψ2j〉ψ2j

∥∥∥∥2

+ ∑
j∈σ

|〈 f , ψ1j〉|2

≥ (2λ − λ2) ∑
j∈σ

|〈 f , ψ1j〉|2 + (1 − λ2) ∑
j∈σc

|〈 f , ψ2j〉|2.
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Remark 1. Corollaries 1 and 2 are respectively Theorems 7 and 9 in [34], and Theorem 5 in [34] can be obtained
if we put λ = 1

2 in Corollary 3.

Theorem 2. Suppose that K ∈ B(H) has a closed range and that K-frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J
in H are K-woven. Then, for any f ∈ Range(K), for all σ ⊂ J, {aj}j∈J ∈ �∞(J), and λ ∈ R,

∥∥∥∥∑
j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

+

∥∥∥∥∑
j∈σ

(1 − aj)〈K† f , ψ1j〉φj + ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉φj

∥∥∥∥2

≥ (2λ − λ2

2
− 1)Re

(
∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

+ (1 − λ2

2
)Re

(
∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

,

where Φ = {φj}j∈J is a K-dual of {ψ1j}j∈σ ∪ {ψ2j}j∈σc .
Moreover, if (P1K†)∗P2K† is a positive operator, then∥∥∥∥∑

j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

+

∥∥∥∥∑
j∈σ

(1 − aj)〈K† f , ψ1j〉φj + ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉φj

∥∥∥∥2

≤ ‖ f ‖2

for any f ∈ Range(K), where P1 and P2 are given in Equation (2).

Proof. For any f ∈ Range(K), for all σ ⊂ J, {aj}j∈J ∈ �∞(J), and λ ∈ R, we know, by combining
Equation (3) and Lemma 3, that∥∥∥∥∑

j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

+

∥∥∥∥∑
j∈σ

(1 − aj)〈K† f , ψ1j〉φj + ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉φj

∥∥∥∥2

= ‖P1K† f ‖2 + ‖P2K† f ‖2 = 2‖P2K† f ‖2 + Re〈P1K† f , f 〉 − Re〈P2K† f , f 〉

≥ (2 − λ2

2
)‖ f ‖2 − (4 − 2λ)Re〈P1K† f , f 〉+ Re〈P1K† f , f 〉 − Re〈P2K† f , f 〉

= (2λ − λ2

2
− 1)Re〈P1K† f , f 〉+ (1 − λ2

2
)Re〈P2K† f , f 〉

= (2λ − λ2

2
− 1)Re

(
∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

+ (1 − λ2

2
)Re

(
∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

.

For the “Moreover” part, we have for any f ∈ Range(K) that

‖P1K† f ‖2 = ‖P2K† f ‖2 − Re〈P2K† f , f 〉+ Re〈P1K† f , f 〉
= Re〈P2K† f , P2K† f 〉 − Re〈P2K† f , f 〉+ Re〈P1K† f , f 〉
= −(Re〈P2K† f , P1K† f + P2K† f 〉 − Re〈P2K† f , P2K† f 〉) + Re〈P1K† f , f 〉
= −Re〈P2K† f , P1K† f 〉+ Re〈P1K† f , f 〉 ≤ Re〈P1K† f , f 〉.

50



Mathematics 2019, 7, 863

With a similar discussion, we can show that ‖P2K† f ‖2 ≤ Re〈P2K† f , f 〉. Thus,∥∥∥∥∑
j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

+

∥∥∥∥∑
j∈σ

(1 − aj)〈K† f , ψ1j〉φj + ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉φj

∥∥∥∥2

≤ Re〈P1K† f , f 〉+ Re〈P2K† f , f 〉 = Re〈P1K† f + P2K† f , f 〉 = ‖ f ‖2.

Corollary 4. Suppose that two frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H are woven. Then, for any
σ ⊂ J, for all λ ∈ R and all f ∈ H, we have

(2λ − λ2

2
− 1) ∑

j∈σ

|〈 f , ψ1j〉|2 + (1 − λ2

2
) ∑

j∈σc
|〈 f , ψ2j〉|2

≤ ∑
j∈σ

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ1j〉|2 + ∑
j∈σc

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ2j〉|2

+ ∑
j∈σ

|〈Sσc

Ψ2
f , S−1

Ψ1Ψ2
ψ1j〉|2 + ∑

j∈σc
|〈Sσc

Ψ2
f , S−1

Ψ1Ψ2
ψ2j〉|2

≤ ∑
j∈σ

|〈 f , ψ1j〉|2 + ∑
j∈σc

|〈 f , ψ2j〉|2. (8)

Proof. Letting K† = IdH and for any σ ⊂ J, taking

aj =

{
1, j ∈ σ,
0, j ∈ σc,

φj =

{
S−1/2

Ψ1Ψ2
ψ1j, j ∈ σ,

S−1/2
Ψ1Ψ2

ψ2j, j ∈ σc.

If, now, we replace ψ1j, ψ2j and f in the left-hand inequality of Theorem 2 respectively by S−1/2
Ψ1Ψ2

ψ1j,

S−1/2
Ψ1Ψ2

ψ2j and S1/2
Ψ1Ψ2

f , then

∥∥∥∥∑
j∈σ

〈 f , ψ1j〉S−1/2
Ψ1Ψ2

ψ1j

∥∥∥∥2

+

∥∥∥∥ ∑
j∈σc

〈 f , ψ2j〉S−1/2
Ψ1Ψ2

ψ2j

∥∥∥∥2

≥ (2λ − λ2

2
− 1)Re ∑

j∈σ

〈 f , ψ1j〉〈ψ1j, f 〉+ (1 − λ2

2
)Re ∑

j∈σc
〈 f , ψ2j〉〈ψ2j, f 〉

= (2λ − λ2

2
− 1) ∑

j∈σ

|〈 f , ψ1j〉|2 + (1 − λ2

2
) ∑

j∈σc
|〈 f , ψ2j〉|2.

This along with Equations (6) and (7) gives the left-hand inequality in Equation (8), and the proof
of the right-hand inequality is similar and we omit the details.

Theorem 3. Suppose that K ∈ B(H) has a closed range and that K-frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J
in H are K-woven. Then, for all σ ⊂ J, for any {aj}j∈J ∈ �∞(J), λ ∈ R and f ∈ Range(K),

Re
(

∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)
−
∥∥∥∥∑

j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

≤ (1 − λ

2
)2Re

(
∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

+
λ2

4
Re

(
∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

,
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where Φ = {φj}j∈J is a K-dual of {ψ1j}j∈σ ∪ {ψ2j}j∈σc .
Moreover, if (P1K†)∗P2K† ≥ 0, then

Re
(

∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)
−
∥∥∥∥∑

j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

≥ 0

for any f ∈ Range(K), where P1 and P2 are given in Equation (2).

Proof. For all σ ⊂ J, for any {aj}j∈J ∈ �∞(J), λ ∈ R and f ∈ Range(K), we see from Equation (4) that

Re
(

∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)
−
∥∥∥∥∑

j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

= Re〈P1K† f , f 〉 − ‖P1K† f ‖2

≤ Re〈P1K† f , f 〉 − (λ − λ2

4
)Re〈P1K† f , f 〉+ λ2

4
Re〈P2K† f , f 〉

= (1 − λ

2
)2Re

(
∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)

+
λ2

4
Re

(
∑
j∈σ

(1 − aj)〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

(1 − aj)〈K† f , ψ2j〉〈φj, f 〉
)

.

Suppose now that (P1K†)∗P2K† is a positive operator. Then

Re
(

∑
j∈σ

aj〈K† f , ψ1j〉〈φj, f 〉+ ∑
j∈σc

aj〈K† f , ψ2j〉〈φj, f 〉
)
−
∥∥∥∥∑

j∈σ

aj〈K† f , ψ1j〉φj + ∑
j∈σc

aj〈K† f , ψ2j〉φj

∥∥∥∥2

= Re〈P1K† f , f 〉 − ‖P1K† f ‖2 = Re〈P1K† f , P1K† f + P2K† f 〉 − Re〈P1K† f , P1K† f 〉
= Re〈P1K† f , P2K† f 〉 = Re〈 f , (P1K†)∗P2K† f 〉 ≥ 0.

Corollary 5. Let the two frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H be woven. Then, for any σ ⊂ J, for
all λ ∈ R and all f ∈ H, we have

0 ≤ ∑
j∈σ

|〈 f , ψ1j〉|2 − ∑
j∈σ

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ1j〉|2 − ∑
j∈σc

|〈Sσ
Ψ1

f , S−1
Ψ1Ψ2

ψ2j〉|2

≤ (1 − λ

2
)2 ∑

j∈σ

|〈 f , ψ1j〉|2 +
λ2

4 ∑
j∈σc

|〈 f , ψ2j〉|2.

Proof. The proof is similar to Corollary 4 by using Theorem 3, so we omit it.

Remark 2. Corollaries 4 and 5 are respectively Theorems 15 and 14 in [34].

We conclude the paper with a double inequality for K-weaving frames stated as follows.
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Theorem 4. Suppose that K-frames Ψ1 = {ψ1j}j∈J and Ψ2 = {ψ2j}j∈J in H are K-woven. Then, for any
σ ⊂ J, for all {aj}j∈J ∈ �∞(J) and all f ∈ H, we have

3
4
‖K f ‖2 ≤

∥∥∥∥∑
j∈σ

aj〈 f , ψ1j〉φj + ∑
j∈σc

aj〈 f , ψ2j〉φj

∥∥∥∥2

+ Re
(

∑
j∈σ

(1 − aj)〈 f , ψ1j〉〈φj, K f 〉+ ∑
j∈σc

(1 − aj)〈 f , ψ2j〉〈φj, K f 〉
)

≤ 3‖K‖2 + ‖P1 − P2‖2

4
‖ f ‖2,

where P1 and P2 are given in Equation (2), and Φ = {φj}j∈J is a K-dual of {ψ1j}j∈σ ∪ {ψ2j}j∈σc .

Proof. For any σ ⊂ J, for all {aj}j∈J ∈ �∞(J) and all f ∈ H, it is easy to check that P1 + P2 = K.
By Lemma 1, we get∥∥∥∥∑

j∈σ

aj〈 f , ψ1j〉φj + ∑
j∈σc

aj〈 f , ψ2j〉φj

∥∥∥∥2

+Re
(

∑
j∈σ

(1 − aj)〈 f , ψ1j〉〈φj, K f 〉+ ∑
j∈σc

(1 − aj)〈 f , ψ2j〉〈φj, K f 〉
)

= ‖P1 f ‖2 + Re〈P2 f , K f 〉 ≥ 3
4
‖K f ‖2.

We also have∥∥∥∥∑
j∈σ

aj〈 f , ψ1j〉φj + ∑
j∈σc

aj〈 f , ψ2j〉φj

∥∥∥∥2

+Re
(

∑
j∈σ

(1 − aj)〈 f , ψ1j〉〈φj, K f 〉+ ∑
j∈σc

(1 − aj)〈 f , ψ2j〉〈φj, K f 〉
)

= 〈P1 f , P1 f 〉+ 1
2
〈P2 f , K f 〉+ 1

2
〈K f , P2 f 〉

= 〈P1 f , P1 f 〉+ 1
2
〈(K − P1) f , K f 〉+ 1

2
〈K f , (K − P1) f 〉

= 〈K f , K f 〉 − 1
2
[〈P1 f , K f 〉 − 〈P1 f , P1 f 〉]− 1

2
[〈K f , P1 f 〉 − 〈P1 f , P1 f 〉]

= 〈K f , K f 〉 − 1
2
〈P1 f , P2 f 〉 − 1

2
〈P2 f , P1 f 〉

=
3
4
〈K f , K f 〉+ 1

4
〈P1 f + P2 f , P1 f + P2 f 〉 − 1

2
〈P1 f , P2 f 〉 − 1

2
〈P2 f , P1 f 〉

=
3
4
〈K f , K f 〉+ 1

4
〈(P1 − P2) f , (P1 − P2) f 〉

≤ 3
4
‖K‖2‖ f ‖2 +

1
4
‖P1 − P2‖2‖ f ‖2 =

3‖K‖2 + ‖P1 − P2‖2

4
‖ f ‖2,

and the proof is over.

Remark 3. Theorem 3 in [35] can be obtained when taking K = IdH in Theorem 4.
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Abstract: New versions of a Gronwall–Bellman inequality in the frame of the generalized
(Riemann–Liouville and Caputo) proportional fractional derivative are provided. Before proceeding
to the main results, we define the generalized Riemann–Liouville and Caputo proportional fractional
derivatives and integrals and expose some of their features. We prove our main result in light of some
efficient comparison analyses. The Gronwall–Bellman inequality in the case of weighted function
is also obtained. By the help of the new proposed inequalities, examples of Riemann–Liouville
and Caputo proportional fractional initial value problems are presented to emphasize the solution
dependence on the initial data and on the right-hand side.

Keywords: Gronwall–Bellman inequality; proportional fractional derivative; Riemann–Liouville and
Caputo proportional fractional initial value problem

1. Introduction

Integral inequalities have been used as fabulous instruments to explore the qualitative properties
of differential equations [1]. Over the years, there have appeared many inequalities which have been
established by many authors such as Ostrowski type inequality, Hardy type inequality, Olsen type
inequality, Gagliardo–Nirenberg type inequality, Lyapunove type inequality, Opial type inequality and
Hermite–Hadamard type inequality [2,3]. However, the most common and significant inequality is
the Gronwall–Bellman inequality, which they introduced in [4,5]. The Gronwall–Bellman inequality
allows one to provide an estimate for a function that is known to satisfy a certain integral inequality by
the solution of the corresponding integral equation. In particular, it has been employed to provide a
comparison that can be used to prove uniqueness of a solution to an initial value problem (see some
recent relevant papers [6–9]).

Fractional differential equations (FDEs) is a rich area of research that has widespread applications
in science and engineering. Indeed, it describes a large number of nonlinear phenomena in
different fields such as physics, chemistry, biology, viscoelasticity, control hypothesis, speculation,
fluid dynamics, hydrodynamics, aerodynamics, information processing system networking, notable
and picture processing, control theory, etc. FDEs also provide marvellous tools for the depiction of
memory and inherited properties of many materials and processes. In view of recent developments,
one can consequently conclude that FDEs have emerged significant achievements in the last couple of
decades [10–16]. The study of integral equations in the scope of non-integer-order equations has been
in the spotlight in the recent years. Many mathematicians in the field of applied and pure mathematics
have dedicated their efforts to extend, generalize and refine the integral inequalities carried over
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Mathematics 2019, 7, 747

from integer order equations to the non-integer order equations. Meanwhile, different definitions of
fractional derivatives have been recently introduced [17,18]. The Gronwall–Bellman inequality, which
is our concern herein, has been under investigation and different versions of it have been established
for different types of fractional operators [19–25].

In this paper, new versions for a Gronwall–Bellman inequality in the frame of the newly defined
generalized (Riemann–Liouville and Caputo) proportional fractional derivative are provided. Before
proceeding to the main results, we define the generalized Riemann–Liouville and Caputo proportional
fractional derivatives and integrals and expose some of their features [26]. We prove our main result in
light of some efficient comparison analysis. The Gronwall–Bellman inequality in the case of a weighted
function is also obtained. By the help of the new proposed inequalities, examples of Riemann–Liouville
and Caputo generalized proportional fractional initial value problems are presented to emphasize the
solution dependence on the initial data and on the right-hand side. It worth mentioning that the new
proposed derivative is well-behaved. Indeed, it has nonlocal character and satisfies the semigroup
or the so-called index property. Besides, the resulting inequalities converge to the classical ones
upon considering particular cases of the derivative. That is, our results not only extend the classical
inequalities but also generalize the existing ones for non-integer-order equations.

2. The GPF Derivatives and Integrals

We assemble in this section some fundamental preliminaries that are used throughout the
remaining part of the paper. For their justifications and proofs, the reader can consult the work
in [26].

In control theory, a proportional derivative controller (PDC) for controller output u at time t with
two tuning parameters has the algorithm

u(t) = κpE(t) + κd
d
dt

E(t),

where κp is the proportional gain, κd is the derivative gain, and E is the input deviation or the error
between the state variable and the process variable. Recent investigations have shown that PDC has
direct incorporation in the control of complex networks models (see [27] for more details).

For ρ ∈ [0, 1], let the functions κ0, κ1 : [0, 1]×R → [0, ∞) be continuous such that for all t ∈ R
we have

lim
ρ→0+

κ1(ρ, t) = 1, lim
ρ→0+

κ0(ρ, t) = 0, lim
ρ→1−

κ1(ρ, t) = 0, lim
ρ→1−

κ0(ρ, t) = 1,

and κ1(ρ, t) �= 0, ρ ∈ [0, 1), κ0(ρ, t) �= 0, ρ ∈ (0, 1]. Then, Anderson et al. [28] defined the proportional
derivative of order ρ by

Dρξ(t) = κ1(ρ, t)ξ(t) + κ0(ρ, t)ξ ′(t) (1)

provided that the right-hand side exists at t ∈ R and ξ ′ := d
dt ξ. For the operator given in Equation (1),

κ1 is a type of proportional gain κp, κ0 is a type of derivative gain κd, ξ is the error and u = Dρξ is the
controller output. The reader can consult the work in [29] for more details about the control theory
of the proportional derivative and its component functions. We only consider here the case when
κ1(ρ, t) = 1 − ρ and κ0(ρ, t) = ρ. Therefore, Equation (1) becomes

Dρξ(t) = (1 − ρ)ξ(t) + ρξ ′(t). (2)

It is easy to find that lim
ρ→0+

Dρξ(t) = ξ(t) and lim
ρ→1−

Dρξ(t) = ξ ′(t). Thus, the derivative in

Equation (2) is somehow more general than the conformable derivative, which certainly does not
converge to the original functions as ρ tends to 0.

In what follows, we define the generalized proportional fractional (GPF) integral and derivative:

57



Mathematics 2019, 7, 747

Definition 1 ([26]). For 0 < ρ ≤ 1, α ∈ C and Re(α) > 0, the GPF integral of ξ of order α is

(a Iα,ρξ)(t) =
1

ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−τ)

(t − τ)α−1ξ(τ)dτ = ρ−αe
ρ−1

ρ t(
a Iα

(
e

1−ρ
ρ t

ξ(t)
))

. (3)

Definition 2 ([26]). For 0 < ρ ≤ 1, α ∈ C, Re(α) ≥ 0 and n = [Re(α)] + 1. Then, the Riemann–Liouville
type GPF derivative of f of order α is

(aDα,ρξ)(t) = Dn,ρ
a In−α,ρξ(t) =

Dn,ρ
t

ρn−αΓ(n − α)

∫ t

a
e

ρ−1
ρ (t−τ)

(t − τ)n−α−1ξ(τ)dτ. (4)

Remark 1. If we let ρ = 1 in Definition 2, then one can obtain the left Riemann–Liouville fractional
derivative [12,14,15]. Moreover, it is obvious that

lim
α→0

(Dα,ρξ)(t) = ξ(t) and lim
α→1

(Dα,ρξ)(t) = (Dρξ)(t).

Proposition 1 ([26]). Let α, β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any 0 < ρ ≤ 1, we have

(1)
(

a Iα,ρe
ρ−1

ρ t
(t − a)β−1)(x) = Γ(β)

Γ(β+α)ρα e
ρ−1

ρ x
(x − a)α+β−1, Re(α) > 0.

(2)
(

aDα,ρe
ρ−1

ρ t
(t − a)β−1)(x) = ραΓ(β)

Γ(β−α)
e

ρ−1
ρ x

(x − a)β−1−α, Re(α) ≥ 0.

In the following lemmas, we expose some features of Riemann–Liouville type GPF operator.
The first result concerns with the index property of GPF which is of great significance.

Lemma 1 ([26]). If 0 < ρ ≤ 1, Re(α) > 0 and Re(β) > 0. For a continuous function ξ defined on [a, ∞),
we have

a Iα,ρ(a Iβ,ρξ)(t) =a Iβ,ρ(a Iα,ρξ)(t) = (a Iα+β,ρξ)(t). (5)

The action of the operator aDα,ρ on the integral operator is demonstrated in the following results.

Lemma 2 ([26]). Let 0 < ρ ≤ 1, 0 ≤ m < [Re(α)] + 1 and ξ be integrable in each interval [a, t], t > a. Then,

aDm,ρ(a Iα,ρξ)(t) = (a Iα−m,ρξ)(t). (6)

Corollary 1 ([26]). Let 0 < ρ ≤ 1, 0 < Re(β) < Re(α) and m − 1 < Re(β) ≤ m. Then, we have

aDβ,ρ(a Iα,ρξ)(t) = (a Iα−β,ρξ)(t).

Lemma 3 ([26]). Let f be integrable on t ≥ a and Re[α] > 0, 0 < ρ ≤ 1, n = [Re(α)] + 1. Then, we have

aDα,ρ(a Iα,ρξ)(t) = ξ(t).

Lemma 4 ([26]). Let 0 < ρ ≤ 1, Re(α) > 0, n = [Re(α)] + 1, ξ ∈ L1(a, b) and (aIα,ρξ)(t) ∈ ACn[a, b]. Then,

a Iα,ρ(aDα,ρξ)(t) = ξ(t)− e
ρ−1

ρ (t−a)
n

∑
j=1

(a I j−α,ρξ)(a+)
(t − a)α−j

ρα−jΓ(α + 1 − j)
. (7)

The GPF derivative of Caputo type is defined as follows:
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Definition 3 ([26]). For 0 < ρ ≤ 1, α ∈ C, Re(α) ≥ 0 and n = [Re(α)] + 1. Then, the GPF derivative of
Caputo type of ξ of order α is

(C
a D

α,ρ
ξ)(t) = a In−α,ρ(Dn,ρξ)(t) =

1
ρn−αΓ(n − α)

∫ t

a
e

ρ−1
ρ (t−τ)

(t − τ)n−α−1(Dn,ρξ)(τ)dτ. (8)

Proposition 2 ([26]). Let α, β ∈ C be such that Re(α) > 0 and Re(β) > 0. Then, for any 0 < ρ ≤ 1 and
n = [Re(α)] + 1, we have

(C
a D

α,ρ
e

ρ−1
ρ t

(t − a)β−1)(x) =
ραΓ(β)

Γ(β − α)
e

ρ−1
ρ x

(x − a)β−1−α, Re(β) > n.

For k = 0, 1, . . . , n − 1, we have
(C

a Dα,ρe
ρ−1

ρ t
(t − a)k)(x) = 0.

Lemma 5 ([26]). For ρ ∈ (0, 1], Re(α) > 0 and n = [Re(α)] + 1. Then, we have

a Iα,ρ( C
a D

α,ρ
ξ)(t) = ξ(t)− e

ρ−1
ρ (t−a)

n−1

∑
k=0

(aDk,ρξ)(a)
ρkk!

(t − a)k. (9)

3. Main Results

This section is devoted to provide our main results of this paper. We formulate new versions of
the Gronwall–Bellman inequality within GPF operators in Riemann–Liouville and Caputo settings.

3.1. Gronwall–Bellman Inequality via the GPF Derivative of Riemann–Liouville Type

Consider the following generalized proportional Riemann–Liouville fractional initial value problem⎧⎪⎨⎪⎩
(

aDα,ρy
)
(t) = f (t, y(t)), 0 < α ≤ 1, t ∈ [a, b],

lim
t→a+

(
a I1−α,ρy

)
(t) = y(a) = ya.

(10)

Applying the operator a Iα,ρ to both sides of Equation (10), we obtain

y(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a) + a Iα,ρ f (t, y(t)), (11)

In the following, we present a comparison result for the GPF integral operator.

Theorem 1. Let η and ζ be nonnegative continuous functions defined on [a, b] and satisfying

η(t) ≥ e
ρ−1

ρ (t−a)
(t − a)α−1η(a) + a Iα,ρ f (t, η(t)), (12)

and
ζ(t) ≤ e

ρ−1
ρ (t−a)

(t − a)α−1ζ(a) + a Iα,ρ f (t, ζ(t)), (13)

respectively. Suppose further that f satisfies a one-sided Lipschitz condition of the form

f (t, x)− f (t, y) ≤ L

e
ρ−1

ρ (a−t)[e
ρ−1

ρ (t−a)
(t − a)α−1 + (t−a)α

α + 1
] (x − y), for x ≥ y, L > 0, (14)

and f (t, y) is nondecreasing in y. Then, η(a) ≥ ζ(a) and L <
(
1 + α

(t−a)α

)
Γ(α)ραe−

ρ−1
ρ (t−a) imply that

η(t) ≥ ζ(t) for all t ∈ [a, b].
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Proof. We start by setting

ηε(t) = η(t) + ε
[
e

ρ−1
ρ (t−a)

(t − a)α−1 +
(t − a)α

α
+ 1

]
, for small ε > 0, (15)

so that we have
ηε(a) = η(a) + ε > η(a) and ηε(t) > η(t), t ∈ [a, b]. (16)

It follows that

ηε(t) ≥ e
ρ−1

ρ (t−a)
(t − a)α−1η(a) +

1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)α−1 f (s, η(s))ds

+ ε
[
e

ρ−1
ρ (t−a)

(t − a)α−1 +
(t − a)α

α
+ 1

]
or

ηε(t) ≥ e
ρ−1

ρ (t−a)
(t − a)α−1η(a) +

1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)α−1 f (s, η(s))ds

− 1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)α−1 f (s, ηε(s))ds

+
1

Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)α−1 f (s, ηε(s))ds

+ ε
[
e

ρ−1
ρ (t−a)

(t − a)α−1 +
(t − a)α

α
+ 1

]
.

Using the Lipschitz condition in Equation (14) and the relations in Equations (15) and (16),
we obtain

ηε(t) ≥ e
ρ−1

ρ (t−a)
(t − a)α−1ηε(a)− εL

Γ(α)ρα

∫ t

a
(t − s)α−1ds

+
1

Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)α−1 f (s, ηε(s))ds + ε
[ (t − a)α

α
+ 1

]

Since
∫ t

a (t − s)α−1ds = (t−a)α

α and L <
(
1 + α

(t−a)α

)
Γ(α)ραe−

ρ−1
ρ (t+a), we arrive at

ηε(t) > e
ρ−1

ρ (t−a)
(t − a)α−1ηε(a) +

1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)α−1 f (s, ηε(s))ds.

The remaining part of the proof can be completed by adopting the same steps followed in the proof
of Theorem 2.1 in [30,31] to get ηε(t) ≥ ζ(t), t ∈ [a, b]. However, and since ε is arbitrary, we conclude
that η(t) ≥ ζ(t), t ∈ [a, b] holds true.

Remark 2. The Lipschitz condition in Equation (14) can be relaxed by relaxing the upper bound for the
constant L.

For our purpose, we replace f (t, y(t)) in Equation (11) by x(t)y(t) where |x(t)| < 1, t ∈ [a, b].
Define the following operator

Ωxφ = a Iα,ρx(t)φ(t). (17)

The following results are important in the proof of the main theorem. We only state these lemmas
as their proofs are straightforward.
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Lemma 6. For any constant λ, one has

∣∣Ωλe
ρ−1

ρ (t−a)
(t − a)α−1∣∣ ≤ Ω|λ|e

ρ−1
ρ (t−a)

(t − a)α−1. (18)

Lemma 7. For any constant λ, one has

∣∣Ωn
λe

ρ−1
ρ (t−a)

(t − a)α−1∣∣ = |λ|n(t − a)(n+1)α−1Γ(α)
ρnαΓ((n + 1)α)

e
ρ−1

ρ (t−a), n = 0, 1, 2, · · · . (19)

Lemma 8. Let λ > 0 be such that |y(t)| ≤ λ for t ∈ [a, b]. Then,

∣∣Ωn
y e

ρ−1
ρ (t−a)

(t − a)α−1∣∣ ≤ Ωn
λe

ρ−1
ρ (t−a)

(t − a)α−1, n = 0, 1, 2, · · · . (20)

Theorems 1 and 2 together give us the desired proportional Riemann–Liouville fractional
Gronwall–Bellman-type inequality.

Theorem 2. Let y be a nonnegative function on [a, b]. Then, the GPF integral equation

y(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a) + a Iα,ρx(t)y(t), t ∈ [a, b], (21)

has a solution

y(t) = y(a)
∞

∑
k=0

Ωk
xe

ρ−1
ρ (t−a)

(t − a)α−1. (22)

Proof. The proof is accomplished by applying the successive approximation method. Set

y0(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a)

and

yn(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a) + a Iα,ρx(t)yn−1(t), n ≥ 1.

We observe that

y1(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a) + a Iα,ρx(t)y0(t)

= y(a)Ω0
xe

ρ−1
ρ (t−a)

(t − a)α−1 + y(a)Ω1
xe

ρ−1
ρ (t−a)

(t − a)α−1,

and

y2(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a) + a Iα,ρx(t)y1(t)

= y(a)Ω0
xe

ρ−1
ρ (t−a)

(t − a)α−1 + Ω1
x

[
y(a)Ω0

xe
ρ−1

ρ (t−a)
(t − a)α−1 + y(a)Ω1

xe
ρ−1

ρ (t−a)
(t − a)α−1

]
= y(a)Ω0

xe
ρ−1

ρ (t−a)
(t − a)α−1 + y(a)Ω1

xe
ρ−1

ρ (t−a)
(t − a)α−1 + y(a)Ω2

xe
ρ−1

ρ (t−a)
(t − a)α−1.

It follows inductively that

yn(t) = y(a)
n

∑
k=0

Ωk
xe

ρ−1
ρ (t−a)

(t − a)α−1, n ≥ 0. (23)
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Formally, taking the limit as n → ∞ to obtain

y(t) = y(a)
∞

∑
k=0

Ωk
xe

ρ−1
ρ (t−a)

(t − a)α−1. (24)

We use Lemmas 6–8, the comparison test and the d’Alembert ratio test to show the absolute
convergence of the series in Equation (24). Indeed, the infinite series

∞

∑
n=0

λn(t − a)(n+1)α−1Γ(α)
ρnαΓ((n + 1)α)

e
ρ−1

ρ (t−a),

is convergent for all t ∈ [a, b] and for all 0 < λ, ρ ≤ 1. Let an be defined as

an =
λn(t − a)(n+1)α−1Γ(α)

ρnαΓ((n + 1)α)
e

ρ−1
ρ (t−a). (25)

Then, we have

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = λ(t − a)α

ρα
lim

n→∞

∣∣∣∣Γ((n + 1)α)
Γ((n + 2)α)

∣∣∣∣ .

Next, we use Stirling approximation formula for the Gamma function xΓ(x) ∼
√

2πx
( x

e
)x, where

x is large enough. It is a straightforward computation using this formula to show that

lim
x→∞

xΓ(x)√
2πx

( x
e
)x = 1 and lim

x→∞

(
x

x + 1

)x
=

1
e

,

which are all we need. Hence, we have

lim
n→∞

(n + 1)αΓ((n + 1)α)√
2π(n + 1)α

(
(n+1)α

e

)(n+1)α
= 1 and lim

n→∞

(n + 2)αΓ((n + 2)α)√
2π(n + 2)α

(
(n+2)α

e

)(n+2)α
= 1.

Thus,

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ =
λ(t − a)α

ρα
lim

n→∞

∣∣∣∣Γ((n + 1)α)
Γ((n + 2)α)

∣∣∣∣
=

λ(t − a)α

ρα
lim

n→∞

[√
n + 2
n + 1

(
n + 1
n + 2

)α ( e
α

)α
(

n + 1
n + 2

)nα (
1

n + 2

)α
]

=
λ(t − a)α

ρα

[( e
α

)α
(

1
e

)α

0
]

= 0 < 1.

Hence, convergence is guaranteed. Besides, one can easily show that Equation (22) solves
Equation (21).

Remark 3. Note that Equation (22) solves the inequality

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t − a)α−1ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b], (26)

where ζ and y are nonnegative real valued functions such that 0 ≤ y(t) < λ < 1.

Now, we are in a position to state the main theorem, which is a new version of the Gronwall–Bellman
inequality within the generalized proportional fractional Riemann–Liouville settings.
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Corollary 2. Let ζ and y be nonnegative real valued functions such that 0 ≤ y(t) < λ < 1 and

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t − a)α−1ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b]. (27)

Then,

ζ(t) ≤ ζ(a)
∞

∑
k=0

Ωk
ye

ρ−1
ρ (t−a)

(t − a)α−1. (28)

The proof of the corollary is a straightforward implementation of Theorems 1 and 2. Indeed, it is

immediately obtained by setting η(t) = ζ(a)
∞

∑
k=0

Ωk
ye

ρ−1
ρ (t−a)

(t − a)α−1.

3.2. Gronwall–Bellman Inequality via the GPF Derivative of Caputo Type

Consider the following generalized proportional Caputo fractional initial value problem⎧⎨⎩
(C

a D
α,ρ

y
)
(t) = f (t, y(t)), 0 < α ≤ 1, t ∈ [a, b],

y(a) = ya.
(29)

Applying the operator a Iα,ρ to both sides of Equation (29), we obtain

y(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρ f (t, y(t)), (30)

The results of this subsection resemble the ones proved in Section 3.1. To avoid redundancy,
therefore, we skip some steps of the proofs. We start by the following comparison result for the
generalized proportional Caputo fractional integral operator.

Theorem 3. Let η and ζ be nonnegative continuous functions defined on [a, b] and satisfy

η(t) ≥ e
ρ−1

ρ (t−a)
η(a) + a Iα,ρ f (t, η(t)), (31)

and
ζ(t) ≤ e

ρ−1
ρ (t−a)

ζ(a) + a Iα,ρ f (t, ζ(t)), (32)

respectively. Suppose further that f satisfies one-sided Lipschitz condition of the form

f (t, x)− f (t, y) ≤ L

e
ρ−1

ρ (a−t)
[

e
ρ−1

ρ (t−a)
+ (t−a)α

α

] (x − y), for x ≥ y, L > 0, (33)

and f (t, y) is nondecreasing in y. Then, η(a) ≥ ζ(a) and L < Γ(α)ραe−
ρ−1

ρ (t−a) imply that η(t) ≥ ζ(t) for
all t ∈ [a, b].

The proof of the above theorem can be completed by setting ηε(t) = η(t) + ε

[
e

ρ−1
ρ (t−a)

+ (t−a)α

α

]
,

for small ε > 0, and following similar steps as the proof of Theorem 1.
In the sequel, we replace f (t, y(t)) in Equation (30) by x(t)y(t), where |x(t)| < 1, t ∈ [a, b]. Define

the following operator
Φxφ = a Iα,ρx(t)φ(t). (34)

In similar manner, the following lemmas are formulated for Caputo type operator.
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Lemma 9. For any constant λ, one has

∣∣Φλe
ρ−1

ρ (t−a)∣∣ ≤ Φ|λ|e
ρ−1

ρ (t−a). (35)

Lemma 10. For any constant λ, one has

∣∣Φn
λe

ρ−1
ρ (t−a)∣∣ = |λ|n(t − a)nα

ρnαΓ(nα + 1)
e

ρ−1
ρ (t−a), n = 0, 1, 2, · · · . (36)

Lemma 11. Let λ > 0 be such that |y(t)| ≤ λ for t ∈ [a, b]. Then,

∣∣Φn
y e

ρ−1
ρ (t−a)∣∣ = Φn

λe
ρ−1

ρ (t−a), n = 0, 1, 2, · · · . (37)

Theorem 4. Let y be a nonnegative function on [a, b]. Then, the generalized proportional fractional
integral equation

y(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρx(t)y(t), t ∈ [a, b], (38)

has a solution

y(t) = y(a)
∞

∑
k=0

Φk
xe

ρ−1
ρ (t−a). (39)

Proof. We employ the successive approximation method to complete the proof. Set

y0(t) = e
ρ−1

ρ (t−a)y(a)

yn(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρx(t)yn−1(t), n ≥ 1.

We observe that

y1(t) = y(a)Φ0
xe

ρ−1
ρ (t−a)

+ y(a)Φ1
xe

ρ−1
ρ (t−a)

and

y2(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρx(t)y1(t)

= y(a)Φ0
xe

ρ−1
ρ (t−a)

+ y(a)Φ1
xe

ρ−1
ρ (t−a)

+ y(a)Φ2
xe

ρ−1
ρ (t−a).

It follows inductively that yn(t) = y(a)
n

∑
k=0

Φk
xe

ρ−1
ρ (t−a). Taking the limit as n → ∞ to obtain

y(t) = y(a)
∞

∑
k=0

Φk
xe

ρ−1
ρ (t−a). (40)

Following the same arguments as in the proof of Theorem 2, we use Lemmas 9–11, the comparison
test and the d’Alembert ratio test to show the absolute convergence of the series in Equation (40).
Moreover, it is clear to verify that Equation (39) solves Equation (38). The proof is finished.

Remark 4. Note that Equation (39) solves the inequality

ζ(t) ≤ e
ρ−1

ρ (t−a)
ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b], (41)

where ζ and y are nonnegative functions on [a, b] such that 0 ≤ y(t) < λ < 1.

The Gronwall–Bellman inequality in generalized proportional Caputo fractional is stated as follows.
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Corollary 3. Let ζ and y be nonnegative real valued functions such that 0 ≤ y(t) < λ < 1 and

ζ(t) ≤ e
ρ−1

ρ (t−a)
ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b]. (42)

Then,

ζ(t) ≤ ζ(a)
∞

∑
k=0

Φk
ye

ρ−1
ρ (t−a). (43)

To prove Equation (43), we set η(t) = ζ(a)
∞

∑
k=0

Φk
ye

ρ−1
ρ (t−a) and the rest follows as a direct application

of Theorems 3 and 4.

4. Gronwall–Bellman Inequality via Weighted Function

In this section, we extend the results obtained in Section 3 to the case of weighted function.
The analysis can be carried out for the Riemann–Liouville and Caputo operators. However, we only
present the results for the case of Riemann–Liouville proportional fractional operator. Unlike previous
relevant results in the literature [32], the weighted function w in the following first two theorems
requires no monotonic restriction.

Theorem 5. Let η, ζ, w be nonnegative continuous functions on [a, b] where η and ζ satisfy

η(t) ≥ e
ρ−1

ρ (t−a)
(t − a)α−1η(a) + w(t)a Iα,ρ f (t, η(t)), (44)

and
ζ(t) ≤ e

ρ−1
ρ (t−a)

(t − a)α−1ζ(a) + w(t)a Iα,ρ f (t, ζ(t)), (45)

respectively. Suppose further that f satisfies one-sided Lipschitz condition of the form

f (t, x)− f (t, y) ≤ L

e
ρ−1

ρ (a−t)[e
ρ−1

ρ (t−a)
(t − a)α−1 + w(t) (t−a)α

α + 1
] (x − y), for x ≥ y, L > 0, (46)

and f (t, y) is nondecreasing in y. Then, η(a) ≥ ζ(a) and L <
(
1 + α

w(t)(t−a)α

)
Γ(α)ραe−

ρ−1
ρ (t−a) imply that

η(t) ≥ ζ(t) for all t ∈ [a, b].

To prove the above theorem, we set ηε(t) = η(t) + ε
[
e

ρ−1
ρ (t−a)

+ w(t) (t−a)α

α + 1
]
, for small ε > 0, and

follow similar steps as the proof of Theorem 1.

Remark 5. The Lipschitz condition in Equation (46) can be relaxed by relaxing the upper bound for the
constant L.

Theorem 6. Let x, y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that |x(t)| < 1 for t ∈ [a, b] and max

t∈[a,b]
w(t) = M. Then, the generalized proportional

fractional integral equation

y(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a) + w(t)a Iα,ρx(t)y(t), t ∈ [a, b], (47)

has a solution

y(t) = y(a)Ω0
xe

ρ−1
ρ (t−a)

(t − a)α−1 + y(a)w(t)
∞

∑
k=1

Mk−1Ωk
xe

ρ−1
ρ (t−a)

(t − a)α−1. (48)
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Remark 6. Note that Equation (48) solves the inequality

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t − a)α−1ζ(a) + w(t)a Iα,ρζ(t)y(t), t ∈ [a, b], (49)

where ζ, y are nonnegative functions on [a, b] and w is a nonnegative continuous function defined on [a, b] and
0 ≤ y(t) < λ < 1 and max

t∈[a,b]
w(t) = M.

The Gronwall–Bellman inequality in case of weighted function w is stated as follows.

Theorem 7. Let ζ, y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that 0 ≤ y(t) < λ < 1 for t ∈ [a, b] and max

t∈[a,b]
w(t) = M and

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t − a)α−1ζ(a) + w(t)a Iα,ρζ(t)y(t), t ∈ [a, b]. (50)

Then,

ζ(t) ≤ ζ(a)Ω0
ye

ρ−1
ρ (t−a)

(t − a)α−1 + ζ(a)w(t)
∞

∑
k=1

Mk−1Ωk
ye

ρ−1
ρ (t−a)

(t − a)α−1. (51)

If the weighted function w possesses a monotonic behavior, then Theorem 6 and Theorem 7 can
be reformulated, respectively, in the following forms.

Theorem 8. Let y, x be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that |x(t)| < 1 for t ∈ [a, b] and w is a nondecreasing function. Then, the generalized
proportional fractional integral equation

y(t) = e
ρ−1

ρ (t−a)
(t − a)α−1y(a) + w(t)a Iα,ρx(t)y(t), t ∈ [a, b], (52)

has a solution

y(t) = y(a)
∞

∑
k=0

wk(t)Ωk
xe

ρ−1
ρ (t−a)

(t − a)α−1. (53)

Theorem 9. Let ζ, y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Assume that 0 ≤ y(t) < λ < 1 for t ∈ [a, b] and w is a nondecreasing function and

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t − a)α−1ζ(a) + w(t)a Iα,ρζ(t)y(t), t ∈ [a, b]. (54)

Then,

ζ(t) ≤ ζ(a)
∞

∑
k=0

wk(t)Ωk
ye

ρ−1
ρ (t−a)

(t − a)α−1. (55)

5. Applications

In this section, two examples of Riemann–Liouville and Caputo generalized proportional
fractional initial value problems are presented. By the help of the new proposed Gronwall–Bellman
inequalities in Theorems 2 and 3, we show that the solution of the initial value problems depend on
the initial data and on the right-hand side.

Consider the proportional Riemann–Liouville fractional initial value problem in Equation (10). In
the remaining part of this section, we assume that the nonlinearity function f (t, y) satisfies a Lipschitz
condition with a constant L ∈ [0, 1) for all (t, y).
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Example 1. Consider the following Riemann–Liouville proportional fractional initial value problems of the form

(aDα,ρβ)(t) = f (t, β(t)), lim
t→a+

(
a I1−α,ρβ

)
(t) = β(a) = β0, 0 < α ≤ 1, t ∈ [a, b], (56)

and
(aDα,ργ)(t) = f (t, γ(t)), lim

t→a+

(
a I1−α,ργ

)
(t) = γ(a) = γ0, 0 < α ≤ 1, t ∈ [a, b]. (57)

We claim that a small change in the initial condition implies a small change in the solution.

Proof. Applying the generalized proportional fractional integral operator in Equations (56) and (57),
we have

β(t) = e
ρ−1

ρ (t−a)
(t − a)α−1β0 + a Iα,ρ f (t, β(t)),

and

γ(t) = e
ρ−1

ρ (t−a)
(t − a)α−1γ0 + a Iα,ρ f (t, γ(t)).

It follows that

β(t)− γ(t) = e
ρ−1

ρ (t−a)
(t − a)α−1(β0 − γ0

)
+ a Iα,ρ[ f (t, β(t))− f (t, γ(t))].

Taking the absolute value, we obtain

|β(t)− γ(t)| ≤ e
ρ−1

ρ (t−a)
(t − a)α−1|β0 − γ0|+ a Iα,ρ| f (t, β(t))− f (t, γ(t))|

≤ e
ρ−1

ρ (t−a)
(t − a)α−1|β0 − γ0|+ La Iα,ρ|β(t)− γ(t)|.

By employing Theorem 2, we get

|β(t)− γ(t)| ≤ |β0 − γ0|
∞

∑
k=0

Ωk
Le

ρ−1
ρ (t−a)

(t − a)α−1

= |β0 − γ0|
∞

∑
k=0

Lk(t − a)(k+1)α−1Γ(α)
ρkαΓ((k + 1)α)

e
ρ−1

ρ (t−a).

Consider the initial value problem⎧⎪⎨⎪⎩
(aDα,ρν)(t) = f (t, ν(t)), 0 < α ≤ 1, t ∈ [a, b]

lim
t→a+

(
a I1−α,ρν

)
(t) = ν(a) = βn,

(58)

where βn → β0. If the solution of Equation (58) is denoted by νn, then, for all t ∈ [a, b], we have

|β(t)− νn(t)| ≤ |β0 − βn|
∞

∑
k=0

Lk(t − a)(k+1)α−1Γ(α)
ρkαΓ((k + 1)α)

e
ρ−1

ρ (t−a).

Hence, |β(t)− νn(t)| → 0 when βn → β0 as n → ∞. We conclude that a small change in the initial
condition implies a small change in the solution.

Example 2. Consider the following Caputo generalized proportional fractional initial value problems of the form

(C
a Dα,ρ

β)(t) = f (t, β(t)), β(a) = β0, α ∈ (0, 1], t ∈ [a, b]. (59)
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and
(C

a Dα,ρ
σ)(t) = f (t, σ(t)) + g(t, σ(t)), σ(a) = σ0, α ∈ (0, 1], t ∈ [a, b]. (60)

We claim that the solution of Equation (60) depends continuously on the right-hand side of Equation (60) if

|g(t, σ)| ≤ Ke
ρ−1

ρ (t−a) for all t ∈ [a, b] and for a positive number K.

Proof. If the solution of Equation (60) is denoted by σ, then, for all t ∈ [a, b], we have

|β(t)− σ(t)| ≤ e
ρ−1

ρ (t−a)|β0 − σ0|+ a Iα,ρ| f (t, β(t))− f (t, σ(t))|+ a Iα,ρ|g(t, σ(t))|

≤ e
ρ−1

ρ (t−a)|β0 − σ0|+ L a Iα,ρ|β(t)− σ(t)|+ a Iα,ρ|g(t, σ(t))|.

By the assumption, we have

|β(t)− σ(t)| ≤ e
ρ−1

ρ (t−a)|β0 − σ0|+ L a Iα,ρ|β(t)− σ(t)|+ a Iα,ρKe
ρ−1

ρ (t−a)

or

|β(t)− σ(t)|+ K
L

e
ρ−1

ρ (t−a) ≤ e
ρ−1

ρ (t−a)
(
|β0 − σ0|+

K
L

)
+ L a Iα,ρ

(
|β(t)− σ(t)|+ K

L
e

ρ−1
ρ (t−a)

)
.

Let r(t) = |β(t)− σ(t)|+ K
L

e
ρ−1

ρ (t−a). Then, if we apply Theorem 3, we obtain

r(t) ≤
(
|β0 − σ0|+

K
L

) ∞

∑
k=0

Φk
Le

ρ−1
ρ (t−a),

or

|β(t)− σ(t)| ≤
(
|β0 − σ0|+

K
L

) ∞

∑
k=0

Lk(t − a)(k+1)α−1

ρkαΓ((k + 1)α)
e

ρ−1
ρ (t−a) − K

L
e

ρ−1
ρ (t−a).

For a ≤ t ≤ b, letting Ke
ρ−1

ρ (t−a)
< δ implies that

|β(t)− σ(t)| ≤ |β0 − σ0|
∞

∑
k=0

Lk(t − a)(k+1)α−1

KρkαΓ((k + 1)α)
δ +

δ

L

[
∞

∑
k=0

Lk(t − a)(k+1)α−1

ρkαΓ((k + 1)α)
− 1

]

≤ δ

{
|β0 − σ0|

∞

∑
k=0

Lkb(k+1)α−1

KρkαΓ((k + 1)α)
+

1
L

[
∞

∑
k=0

Lkb(k+1)α−1

ρkαΓ((k + 1)α)
− 1

]}
= ε,

which implies that a small change on the right-hand side of Equation (59) implies a small change in
its solution.

6. Conclusions

One of the most crucial issues in the theory of differential equations is to study qualitative
properties for solutions of these equations. Integral inequalities are significant instruments
that facilitate exploring such properties. In this paper, we accommodate a newly defined
generalized proportional fractional (GPF) derivative to establish new versions for the well–known
Gronwall–Bellman inequality. We prove our results in the frame of GPF operators within the
Riemann–Liouville and Caputo settings. The main results are also extended to the weighted function
case. One can easily figure out that the current results generalize the ones previously obtained in
the literature. Indeed, the case ρ = 1 covers the results of classical Riemann–Liouville and Caputo
fractional derivatives. As an application, we provide two efficient examples that demonstrate the
solution dependence on the initial data and on the right-hand side of the initial value problems.
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The results of this paper have strong potential to be used for establishing new substantial investigations
in the future for equations involving the GPF operators.
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Abstract: We introduce the concept of interval (h1, h2)-convex functions. Under the new concept,
we establish some new interval Hermite-Hadamard type inequalities, which generalize those in the
literature. Also, we give some interesting examples.
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1. Introduction

Interval analysis was introduced in numerical analysis by Moore in the celebrated book [1].
Over the past 50 years, it has attracted considerable interest and has been applied in various fields,
such as interval differential equations [2], aeroelasticity [3], aerodynamic load analysis [4], and so on.
For more profound results and applications, see [5–9].

It is known that inequalities play an important role in almost all branches of mathematics as
well as in other areas of science. Among the many types of inequalities, those carrying the names of
Jensen, Hermite-Hadamard, Hardy, Ostrowski, Minkowski and Opial et al. have a deep significance
and have made a great impact in substantial fields of research. Recently, some of these inequalities
have been extended to interval-valued functions by Chalco-Cano et al.; see, e.g., [10–16]. Surprisingly
enough, interval Hermite-Hadamard type inequalities has perhaps not received enough attention [17].
For convenience, we recall the classical Hermite-Hadamard inequality. Let f be convex, then

f
(u + v

2

)
≤ 1

v − u

∫ v

u
f (t)dt ≤ f (u) + f (v)

2
.

This inequality has been developed for different classes of convexity [18–26]. Especially, since the
h-convex concept was proposed by Varosanec in 2007 [27], a number of authors have already studied
more refined Hermite-Hadamard inequalities involving h-convex functions [28–33].

In 2018, Awan et al. introduced (h1, h2)-convex functions and proved the following inequality [34]:

Theorem 1. Let f : [u, v] → R. If f is (h1, h2)-convex, and h1(
1
2 )h2(

1
2 ) �= 0. Then

1
2h1(

1
2 )h2(

1
2 )

f
(u + v

2

)
≤ 1

v − u

∫ v

u
f (t)dt ≤

[
f (u) + f (v)

] ∫ 1

0
h1(x)h2(1 − x)dx.

Motivated by Awan et al., our main objective is to generalize the results above by constructing
interval Hermite-Hadamard type inequalities for (h1, h2)-convex functions. Also, we present some
examples to illustrate our theorems. Our results generalize some known inequalities presented
in [17,32,34,35]. Furthermore, the present results can be considered as tools for further research
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in interval convex analysis, interval nonlinear programming, inequalities for fuzzy-interval-valued
functions, among others.

We give preliminaries in Section 2. In Section 3, we introduce interval (h1, h2)-convex concept,
and obtain some interval Hermite-Hadamard type inequalities. Moreover, some interesting examples
are given. In Section 4, we give conclusions and future work.

2. Preliminaries

For the basic notations and definitions on interval analysis, see [17]. The family of all intervals
and positive intervals of R are denoted by RI and R+

I , respectively. For interval [u, u] and [v, v],
the Hausdorff distance is defined by

d
(
[u, u], [v, v]

)
= max

{
|u − v|, |u − v|

}
.

Then, (RI , d) is complete.
A set of numbers {ti−1, ξi, ti}m

i=1 is said to be a tagged partition P of [u, v] if

u = t0 < t1 < · · · < tm = v

and if ti−1 ≤ ξi ≤ ti for all i = 1, 2, . . . , m. Moreover, if we let Δti = ti − ti−1, then the partition is
called δ-fine if Δti < δ for each i. We denote by P(δ, [u, v]) the family of all δ-fine partitions of [u, v].
Given P ∈ P(δ, [u, v]), we define a integral sum of f : [u, v] → RI as follows:

S( f , P, δ, [u, v]) =
m

∑
i=1

f (ξi)(ti − ti−1).

Definition 1. Let f : [u, v] → RI . f is called IR-integrable on [u, v] with IR-integral A = (IR)
∫ v

u f (t)dt,
if there exists an A ∈ RI such that for any ε > 0 there exists a δ > 0 such that

d
(
S( f , P, δ, [u, v]), A

)
< ε

for each P ∈ P(δ, [u, v]). Let IR([u,v]) denote the set of all IR-integrable functions on [u, v].

Definition 2. Let h1, h2 : [0, 1] ⊆ J → R+ such that h1, h2 �≡ 0 (Awan et al. [34]). f : J → R+ is called
(h1, h2)-convex, or that f ∈ SX((h1, h2), J,R), if for any s, t ∈ J and x ∈ (0, 1) one has

f (xs + (1 − x)t) ≤ h1(x)h2(1 − x) f (s) + h1(1 − x)h2(x) f (t). (1)

Remark 1. If h2 ≡ 1, then Definition 2 reduces to h-convex in [27].
If h1 = h2 ≡ 1, then Definition 2 reduces to P-function in [18].
If h1(t) = ts, h2 ≡ 1, then Definition 2 reduces to s-convex in [36].

We end this section of preliminaries by introducing the new concept of interval (h1, h2)-convexity.
This idea is inspired by Costa [12]. Note that for interval [u, u] and [v, v], the inclusion “ ⊆ ” is
defined by

[u, u] ⊆ [v, v] ⇐⇒ v ≤ u, u ≤ v.

Definition 3. Let h1, h2 : [0, 1] ⊆ J → R+ such that h1, h2 �≡ 0. f : J → R+
I is called interval

(h1, h2)-convex, if for all s, t ∈ J and x ∈ (0, 1) one has

h1(x)h2(1 − x) f (s) + h1(1 − x)h2(x) f (t) ⊆ f (xs + (1 − x)t). (2)

The set of all interval (h1, h2)-convex function is denoted by SX((h1, h2), J,R+
I ).
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3. Interval Hermite-Hadamard Type Inequality

In what follows, let H(x, y) = h1(x)h2(y) for x, y ∈ [0, 1].

Theorem 2. Let f : [u, v] → R+
I , h1, h2 : [0, 1] → R+ and H( 1

2 , 1
2 ) �= 0. If f ∈ SX((h1, h2), [u, v],R+

I )
and f ∈ IR([u,v]), then

1
2H( 1

2 , 1
2 )

f
(u + v

2

)
⊇ 1

v − u

∫ v

u
f (t)dt ⊇

[
f (u) + f (v)

] ∫ 1

0
H(x, 1 − x)dx. (3)

Proof. By hypothesis, we have

H
(1

2
,

1
2

)
f (xu + (1 − x)v) + H

(1
2

,
1
2

)
f ((1 − x)u + xv) ⊆ f

(u + v
2

)
.

Then ∫ 1

0
f (xu + (1 − x)v)dx +

∫ 1

0
f ((1 − x)u + xv)dx ≥ 1

H
( 1

2 , 1
2
) ∫ 1

0
f
(u + v

2

)
dx,

∫ 1

0
f (xu + (1 − x)v)dx +

∫ 1

0
f ((1 − x)u + xv)dx ≤ 1

H
( 1

2 , 1
2
) ∫ 1

0
f
(u + v

2

)
dx.

It follows that

2
v − u

∫ v

u
f (t)dt ≥ 1

H
( 1

2 , 1
2
) ∫ 1

0
f
(u + v

2

)
dx =

1
H
( 1

2 , 1
2
) f

(u + v
2

)
,

2
v − u

∫ v

u
f (t)dt ≤ 1

H
( 1

2 , 1
2
) ∫ 1

0
f
(u + v

2

)
dx =

1
H
( 1

2 , 1
2
) f

(u + v
2

)
.

This implies

1
H
( 1

2 , 1
2
) [ f

(u + v
2

)
, f

(u + v
2

)]
⊇ 2

v − u

[ ∫ v

u
f (t)dt,

∫ v

u
f (t)dt

]
.

Thus,
1

2H
( 1

2 , 1
2
) f

(u + v
2

)
⊇ 1

v − u

∫ v

u
f (t)dt.

In the same way as above, we have

1
v − u

∫ v

u
f (t)dt ⊇

[
f (u) + f (v)

] ∫ 1

0
H(x, 1 − x)dx,

and the result follows.

Remark 2. If H(x, y) ≡ h1(x), then Theorem 2 reduces to ([17], Theorem 4.1).
If h1(x) = xs, h2 ≡ 1, then Theorem 2 reduces to ([37], Theorem 4).
If h1 = h2 ≡ 1, then inequality (3) in Theorem 2 reduces to inequality for P-function.
If f = f , then Theorem 2 reduces to ([34], Theorem 1). Furthermore, If h2 ≡ 1, then we get ([32],

Theorem 6).
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Example 1. Suppose that h1(x) = x, h2(x) ≡ 1 for x ∈ [0, 1], [u, v] = [−1, 1], and f : [u, v] → R+
I be

defined by f (t) = [t2, 4 − et]. Then

1

2H
(

1
2 , 1

2

) f
(u + v

2

)
= f (0) = [0, 3],

1
v − u

∫ v

u
f (t)dt =

1
2

[ ∫ 1

−1
t2dt,

∫ 1

−1
(6 − et)dt

]
=

[1
3

, 4 − e − e−1

2

]
,

[
f (u) + f (v)

] ∫ 1

0
H(x, 1 − x)dx =

[
1, 4 − e + e−1

2

]
.

Then, we obtain that

[0, 3] ⊇
[1

3
, 4 − e − e−1

2

]
⊇

[1
3

, 4 − e + e−1

2

]
.

Consequently, Theorem 2 is verified.

The next result generalizes Theorem 3.1 of [35] and Theorem 4.3 of [17].

Theorem 3. Let f : [u, v] → R+
I , h1, h2 : [0, 1] → R+ and H

(
1
2 , 1

2

)
�= 0. If f ∈ SX((h1, h2), [u, v],R+

I )

and f ∈ IR([u,v]), then

1

4H2
(

1
2 , 1

2

) f
(u + v

2

)
⊇ Δ1 ⊇ 1

v − u

∫ v

u
f (t)dt

⊇ Δ2 ⊇
[

f (u) + f (v)
][1

2
+ H

(1
2

,
1
2

)] ∫ 1

0
H(x, 1 − x)dx,

where

Δ1 =
1

4H
( 1

2 , 1
2
) [ f

(3u + v
4

)
+ f

(u + 3v
4

)]
,

Δ2 =
[ f (u) + f (v)

2
+ f

(u + v
2

)] ∫ 1

0
H(x, 1 − x)dx.

Proof. For [u, u+v
2 ], one has

H
(1

2
,

1
2

)
f
(

xu + (1 − x)
u + v

2

)
+ H

(1
2

,
1
2

)
f
(
(1 − x)u + x

u + v
2

)
⊆ f

( xu + (1 − x) u+v
2

2
+

(1 − x)u + x u+v
2

2

)
= f

(3u + v
4

)
.

Consequently, we get

1
4H

( 1
2 , 1

2
) f

(3u + v
4

)
⊇ 1

v − u

∫ u+v
2

u
f (t)dt.

In the same way as above, for [ u+v
2 , v], we have

1
4H

( 1
2 , 1

2
) f

(u + 3v
4

)
⊇ 1

v − u

∫ v

u+v
2

f (t)dt.
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Hence,

Δ1 =
1

4H
( 1

2 , 1
2
) [ f

(3u + v
4

)
+ f

(u + 3v
4

)]
⊇ 1

v − u

∫ v

u
f (t)dt.

Thanks to Theorem 2, one has

1

4
[

H
( 1

2 , 1
2
)]2 f

(u + v
2

)

=
1

4
[

H
( 1

2 , 1
2
)]2 f

(1
2
· 3u + v

4
+

1
2
· u + 3v

4

)

⊇ 1

4
[

H
( 1

2 , 1
2
)]2

[
H
(1

2
,

1
2

)
f
(3u + v

4

)
+ H

(1
2

,
1
2

)
f
(u + 3v

4

)]
⊇ Δ1

⊇ 1
v − u

∫ v

u
f (t)dt

⊇ 1
2

[
f (u) + f (v) + 2 f

(u + v
2

)] ∫ 1

0
H(x, 1 − x)dx

= Δ2

⊇
[ f (u) + f (v)

2
+ H

(1
2

,
1
2

)
( f (u) + f (v))

] ∫ 1

0
H(x, 1 − x)dx

⊇
[

f (u) + f (v)
][1

2
+ H

(1
2

,
1
2

)] ∫ 1

0
H(x, 1 − x)dx,

and the result follows.

Example 2. Furthermore, by Example 1, we have

Δ1 =
1
2

[
f
(
− 1

2

)
, f

(1
2

)]
=

[1
4

, 4 − e
1
2 + e−

1
2

2

]
,

Δ2 =
1
2

([
1, 4 − e + e−1

2

]
+ [0, 3]

)
=

[1
2

,
7
2
− e + e−1

4

]
,

[
f (u) + f (v)

][1
2
+ H

(1
2

,
1
2

)] ∫ 1

0
H(x, 1 − x)dx =

[
1, 4 − e + e−1

2

]
.

Then, we obtain that

[0, 3] ⊇
[1

4
, 4 − e

1
2 + e−

1
2

2

]
⊇

[1
3

, 4 − e − e−1

2

]
⊇

[1
2

,
7
2
− e + e−1

4

]
⊇

[
1, 4 − e + e−1

2

]
.

Consequently, Theorem 3 is verified.

Similarly, we get the following result, which generalizes Theorem 3 of [34] and Theorem 4.5
of [17].

Theorem 4. Let f , g : [u, v] → R+
I , h1, h2 : [0, 1] → R+ and H

( 1
2 , 1

2
)
�= 0. If f , g ∈ SX((h1, h2), [u, v],R+

I )
and f g ∈ IR([u,v]), then

1
v − u

∫ v

u
f (t)g(t)dt ⊇ M(u, v)

∫ 1

0
H2(x, 1 − x)dx + N(u, v)

∫ 1

0
H(x, x)H(1 − x, 1 − x)dx,
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where
M(u, v) = f (u)g(u) + f (v)g(v), N(u, v) = f (u)g(v) + f (v)g(u).

Example 3. Suppose that h1(x) = x, h2(x) ≡ 1, [u, v] = [0, 1] and

f (t) = [t2, 4 − et], g(t) = [t, 3 − t2].

Then

1
v − u

∫ v

u
f (t)g(t)dt =

∫ 1

0
[t3, (4 − et)(3 − t2)]dt =

[1
4

,
35
3

− 2e
]
,

M(u, v)
∫ 1

0
H2(x, 1 − x)dx = M(0, 1)

∫ 1

0
x2dx =

[1
3

,
17
3

− 2
3

e
]
,

N(u, v)
∫ 1

0
H(x, x)H(1 − x, 1 − x)dx = N(0, 1)

∫ 1

0
x2dx =

[
0, 3 − e

2

]
.

It follows that [1
4

,
35
3

− 2e
]
⊇

[1
3

,
17
3

− 2
3

e
]
+

[
0, 3 − e

2

]
=

[1
3

,
26
3

− 7
6

e
]
.

Consequently, Theorem 4 is verified.

The next result generalizes Theorem 2 of [34] and Theorem 4.6 of [17].

Theorem 5. Let f , g : [u, v] → R+
I , h1, h2 : [0, 1] → R+, and H

( 1
2 , 1

2
)

�= 0. If f , g ∈
SX((h1, h2), [u, v],R+

I ) and f g ∈ IR([u,v]), then

1
2H2

( 1
2 , 1

2
) f

(u + v
2

)
g
(u + v

2

)
⊇ 1

v − u

∫ v

u
f (t)g(t)dt + N(u, v)

∫ 1

0
H2(x, 1 − x)dx

+ M(u, v)
∫ 1

0
H(x, x)H(1 − x, 1 − x)dx.

Proof. By hypothesis, one has

f
(u + v

2

)
g
(u + v

2

)
⊇ H2

(1
2

,
1
2

)[
f (xu + (1 − x)v)g(xu + (1 − x)v), f (xu + (1 − x)v)g(xu + (1 − x)v)

]
+ H2

(1
2

,
1
2

)[
f (xu + (1 − x)v)g((1 − x)u + xv), f (xu + (1 − x)v)g((1 − x)u + xv)

]
+ H2

(1
2

,
1
2

)[
f ((1 − x)u + xv)g(xu + (1 − x)v), f ((1 − x)u + xv)g(xu + (1 − x)v)

]
+ H2

(1
2

,
1
2

)[
f ((1 − x)u + xv)g((1 − x)u + xv), f ((1 − x)u + xv)g((1 − x)u + xv)

]
⊇ H2

(1
2

,
1
2

)[
f (xu + (1 − x)v)g(xu + (1 − x)v) + f ((1 − x)u + xv)g((1 − x)u + xv)

]
+ H2

(1
2

,
1
2

)[(
H(x, 1 − x) f (u) + H(1 − x, x) f (v)

)(
H(1 − x, x)g(u) + H(x, 1 − x)g(v)

)
+

(
H(1 − x, x) f (u) + H(x, 1 − x) f (v)

)(
H(x, 1 − x)g(u) + H(1 − x, x)g(v)

)]
= H2

(1
2

,
1
2

)[
f (xu + (1 − x)v)g(xu + (1 − x)v) + f ((1 − x)u + xv)g((1 − x)u + xv)

]
+ 2H2

(1
2

,
1
2

)[
H(x, x)H(1 − x, 1 − x)M(u, v) + H2(x, 1 − x)N(u, v)

]
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Integrating over [0, 1], and the result follows.

Example 4. Furthermore, by Example 3, we get

1

2H2
(

1
2 , 1

2

) f
(u + v

2

)
g
(u + v

2

)
= 2 f

(1
2

)
g
(1

2

)
=

[1
4

, 22 − 11
2
√

e
]
,

N(u, v)
∫ 1

0
H2(x, 1 − x)dx = N(0, 1)

∫ 1

0
x2dx =

[
0, 6 − e

]
,

M(u, v)
∫ 1

0
H(x, x)H(1 − x, 1 − x)dx = M(0, 1)

∫ 1

0
(x − x2)dx =

[1
6

,
17
6

− e
3

]
.

It follows that[1
4

, 22 − 11
2
√

e
]
⊇

[
0, 6 − e

]
+

[1
6

,
17
6

− e
3

]
+

[1
4

,
35
3

− 2e
]
=

[ 5
12

,
123
6

− 10
3

e
]
.

Consequently, Theorem 5 is verified.

4. Conclusions

We introduced interval (h1, h2)-convex and presented some new interval Hermite-Hadamard
type inequalities. Our results generalize some known Hermite-Hadamard type inequalities and will
be useful in developing the theory of interval differential (or integral) inequalities and interval convex
analysis. As a future research direction, we intend to investigate inequalities for fuzzy-interval-valued
functions, and some applications in interval nonlinear programming.
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1. Introduction

Let I be an interval in R. A function f : I → R is said to be convex on I if

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y)

for all x, y ∈ I and t ∈ [0, 1]. The following inequalities which hold for convex functions is known in
the literature as the Hermite–Hadamard type inequality.

Theorem 1 ([1]). If f : [a, b] → R is convex on [a, b] with a < b, then

f
( a + b

2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
.

Many authors have studied and generalized the Hermite–Hadamard inequality in several ways
via different classes of convex functions. For some recent results related to the Hermite–Hadamard
inequality, we refer the interested reader to the papers [2–11].

In 2016, Gordji et al. [12] introduced the concept of η-convexity as follows:

Definition 1 ([12]). A function f : I → R is said to be η-convex with respect to the bifunction η : R×R →
R if

f (tx + (1 − t)y) ≤ f (y) + tη( f (x), f (y))

for all x, y ∈ I and t ∈ [0, 1].

Mathematics 2019, 7, 183; doi:10.3390/math7020183 www.mdpi.com/journal/mathematics80
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Remark 1. If we take η(x, y) = x − y in Definition 1, then we recover the classical definition of
convex functions.

In 2017, Awan et al. [13] extended the class of η-convex functions to the class of strongly η-convex
functions as follows:

Definition 2 ([13]). A function f : I → R is said to be strongly η-convex with respect to the bifunction
η : R×R → R with modulus μ ≥ 0 if

f (tx + (1 − t)y) ≤ f (y) + tη( f (x), f (y))− μt(1 − t)(x − y)2

for all x, y ∈ I and t ∈ [0, 1].

Remark 2. If η(x, y) = x − y in Definition 2, then we have the class of strongly convex functions.

For some recent results related to the class of η-convex functions, we refer the interested reader to
the papers [8,12–16].

Definition 3 ([17]). The left- and right-sided Riemann–Liouville fractional integrals of order α > 0 of f are
defined by

Jα
a+ f (x) :=

1
Γ(α)

∫ x

a
(x − t)α−1 f (t)dt

and

Jα
b− f (x) :=

1
Γ(α)

∫ b

x
(t − x)α−1 f (t)dt

with a < x < b and Γ(·) is the gamma function given by

Γ(x) :=
∫ ∞

0
tx−1e−tdt, Re(x) > 0

with the property that Γ(x + 1) = xΓ(x) .

Definition 4 ([18]). The left- and right-sided Hadamard fractional integrals of order α > 0 of f are defined by

Hα
a+ f (x) :=

1
Γ(α)

∫ x

a

(
ln

x
t

)α−1 f (t)
t

dt

and

Hα
b− f (x) :=

1
Γ(α)

∫ b

x

(
ln

t
x

)α−1 f (t)
t

dt.

Definition 5. Xp
c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) denotes the space of all complex-valued Lebesgue measurable

functions f for which ‖ f ‖Xp
c
< ∞, where the norm ‖ · ‖Xp

c
is defined by

‖ f ‖Xp
c
=

(∫ b

a
|tc f (t)|p dt

t

)1/p

(1 ≤ p < ∞)
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and for p = ∞

‖ f ‖X∞
c = ess sup

a≤t≤b
|tc f (t)|.

In 2011, Katugampola [19] introduced a new fractional integral operator which generalizes the
Riemann–Liouville and Hadamard fractional integrals as follows:

Definition 6. Let [a, b] ⊂ R be a finite interval. Then, the left- and right-sided Katugampola fractional integrals
of order α > 0 of f ∈ Xp

c (a, b) are defined by

ρ Iα
a+ f (x) :=

ρ1−α

Γ(α)

∫ x

a

tρ−1

(xρ − tρ)1−α
f (t)dt

and

ρ Iα
b− f (x) :=

ρ1−α

Γ(α)

∫ b

x

tρ−1

(tρ − xρ)1−α
f (t)dt

with a < x < b and ρ > 0, if the integrals exist.

Remark 3. It is shown in [19] that the Katugampola fractional integral operators are well-defined on Xp
c (a, b).

Theorem 2 ([19]). Let α > 0 and ρ > 0. Then for x > a

1. lim
ρ→1

ρ Iα
a+ f (x) = Jα

a+ f (x),

2. lim
ρ→0+

ρ Iα
a+ f (x) = Hα

a+ f (x).

Similar results also hold for right-sided operators.

For more information about the Katugampola fractional integrals and related results, we refer
the interested reader to the papers [19–21]. Recently, Chen and Katugampola [20] introduced several
integral inequalities of Hermite–Hadamard type for functions whose first derivatives in absolute value
are convex functions via the Katugampola fractional integrals. We present two of their results here for
the purpose of our discussion. The first result of importance to us employs the following lemma.

Lemma 1 ([20]). Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a differentiable mapping on (aρ, bρ) with
0 ≤ a < b. Then the following equality holds if the fractional integrals exist:

f (aρ) + f (bρ)

αρ
− ρα−1Γ(α)

(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]
=

bρ − aρ

α

∫ 1

0
tρ(α+1)−1

[
f ′((1 − tρ)aρ + tρbρ)− f ′(tρaρ + (1 − tρ)bρ)

]
dt. (1)

By using Lemma 1, the authors proved the following result.

Theorem 3 ([20]). Let f : [aρ, bρ] → R be a differentiable mapping on (aρ, bρ) with 0 ≤ a < b. If | f ′| is
convex on [aρ, bρ], then the following inequality holds:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣ ≤ bρ − aρ

2(α + 1)

[
| f ′(aρ)|+ | f ′(bρ)|

]
.

The second result of importance to us also uses the following lemma.
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Lemma 2 ([20]). Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a differentiable mapping on (aρ, bρ) with
0 ≤ a < b. Then the following equality holds if the fractional integrals exist:

f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]
=

bρ − aρ

2

∫ 1

0
[(1 − tρ)α − tρα]tρ−1 f ′(tρaρ + (1 − tρ)bρ)dt. (2)

By using Lemma 2, the authors proved the following result.

Theorem 4 ([20]). Let f : [aρ, bρ] → R be a differentiable mapping on (aρ, bρ) with 0 ≤ a < b. If | f ′| is
convex on [aρ, bρ], then the following inequality holds:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ bρ − aρ

2ρ(α + 1)

(
1 − 1

2α

) [
| f ′(aρ)|+ | f ′(bρ)|

]
.

Remark 4. It is important to note that Lemmas 1 and 2 are corrected versions of [20] (Lemma 2.4 and
Equation (14)).

Our purpose in this paper is to provide some new estimates for the right hand side of the
inequalities in Theorems 3 and 4 for functions whose second derivatives in absolute value at some
powers are strongly η-convex.

2. Main Results

To prove the main results of this paper, we need the following lemmas which are extensions of
Lemmas 1 and 2 for the second derivative case of the function f .

Lemma 3. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with 0 ≤ a < b.
Then the following equality holds if the fractional integrals exist:

f (aρ) + f (bρ)

αρ
− ρα−1Γ(α)

(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]
=

(bρ − aρ)2

α(α + 1)

[ ∫ 1

0

[
1 − tρ(α+1)

]
tρ−1 f ′′((1 − tρ)aρ + tρbρ)dt

−
∫ 1

0
tρ(α+2)−1 f ′′(tρaρ + (1 − tρ)bρ)dt

]
. (3)

Proof. Let

I1 =
∫ 1

0

[
1 − tρ(α+1)

]
tρ−1 f ′′((1 − tρ)aρ + tρbρ)dt

and

I2 =
∫ 1

0
tρ(α+2)−1 f ′′(tρaρ + (1 − tρ)bρ)dt.
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By using integration by parts we have that

I1 =
∫ 1

0

[
1 − tρ(α+1)

]
tρ−1 f ′′((1 − tρ)aρ + tρbρ)dt

=
1

ρ(bρ − aρ)
[1 − tρ(α+1)] f ′((1 − tρ)aρ + tρbρ)

∣∣∣∣1
0

+
ρ(α + 1)

ρ(bρ − aρ)

∫ 1

0
tρ(α+1)−1 f ′((1 − tρ)aρ + tρbρ)dt

= − 1
ρ(bρ − aρ)

f ′(aρ) +
(α + 1)
(bρ − aρ)

∫ 1

0
tρ(α+1)−1 f ′((1 − tρ)aρ + tρbρ)dt. (4)

By a similar argument, one gets:

I2 = − 1
ρ(bρ − aρ)

f ′(aρ) +
(α + 1)
(bρ − aρ)

∫ 1

0
tρ(α+1)−1 f ′(tρaρ + (1 − tρ)bρ)dt. (5)

Using (4) and (5), we have

I1 − I2 =
(α + 1)
(bρ − aρ)

∫ 1

0
tρ(α+1)−1

[
f ′((1 − tρ)aρ + tρbρ)− f ′(tρaρ + (1 − tρ)bρ)

]
dt. (6)

The desired identity in (3) follows from (6) by using (1) and rearranging the terms.

Lemma 4. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with 0 ≤ a < b.
Then the following equality holds if the fractional integrals exist:

f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]
=

(bρ − aρ)2

2(α + 1)

∫ 1

0
[1 − (1 − tρ)α+1 − tρ(α+1)]tρ−1 f ′′(tρaρ + (1 − tρ)bρ)dt. (7)

Proof. We start by considering the following computation which is a direct application of integration
by parts.

∫ 1

0
[1 − (1 − tρ)α+1 − tρ(α+1)]tρ−1 f ′′(tρaρ + (1 − tρ)bρ)dt

=
1

ρ(aρ − bρ)
[1 − (1 − tρ)α+1 − tρ(α+1)] f ′(tρaρ + (1 − tρ)bρ)

∣∣∣∣1
0

− ρ(α + 1)
ρ(aρ − bρ)

∫ 1

0
[(1 − tρ)α − tρα]tρ−1 f ′(tρaρ + (1 − tρ)bρ)dt

=
(α + 1)
(bρ − aρ)

∫ 1

0
[(1 − tρ)α − tρα]tρ−1 f ′(tρaρ + (1 − tρ)bρ)dt. (8)

The intended identity in (7) follows from (8) by using (2) and rearranging the terms.

We are now in a position to prove our main results.
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Theorem 5. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is strongly η-convex with modulus μ ≥ 0 for q ≥ 1, then the following inequality holds:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2(α + 1)

[(
α + 1
α + 2

)1− 1
q
(

α + 1
α + 2

| f ′′(aρ)|q

+
α + 1

2(α + 3)
η
(
| f ′′(bρ)|q, | f ′′(aρ)|q

)
− μ(bρ − aρ)2 [(α + 1)2 + 5(α + 1)

]
6(α + 4)(α + 3)

) 1
q

+

(
1

α + 2

)1− 1
q
(

1
α + 2

| f ′′(bρ)|q + 1
α + 3

η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μ(bρ − aρ)2

(α + 3)(α + 4)

) 1
q
]

.

Proof. Using Lemma 3, the well-known power mean inequality and the strong η-convexity of | f ′′|q,
we obtain ∣∣∣∣ f (aρ) + f (bρ)

αρ
− ρα−1Γ(α)

(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

α(α + 1)

[ ∫ 1

0

[
1 − tρ(α+1)

]
tρ−1 ∣∣ f ′′((1 − tρ)aρ + tρbρ)

∣∣ dt

+
∫ 1

0
tρ(α+2)−1 ∣∣ f ′′(tρaρ + (1 − tρ)bρ)

∣∣ dt
]

≤ (bρ − aρ)2

α(α + 1)

[( ∫ 1

0

[
1 − tρ(α+1)

]
tρ−1dt

)1− 1
q

×
( ∫ 1

0

[
1 − tρ(α+1)

]
tρ−1 ∣∣ f ′′((1 − tρ)aρ + tρbρ)

∣∣q dt
) 1

q

+

( ∫ 1

0
tρ(α+2)−1dt

)1− 1
q
( ∫ 1

0
tρ(α+2)−1 ∣∣ f ′′(tρaρ + (1 − tρ)bρ)

∣∣ dt
) 1

q
]

≤ (bρ − aρ)2

α(α + 1)

[( ∫ 1

0

[
1 − tρ(α+1)

]
tρ−1dt

)1− 1
q

×
( ∫ 1

0

[
1 − tρ(α+1)

]
tρ−1

(
| f ′′(aρ)|q + tρη

(
| f ′′(bρ)|q, | f ′′(aρ)|q

)
− μtρ(1 − tρ)(bρ − aρ)2

)
dt
) 1

q

+

( ∫ 1

0
tρ(α+2)−1dt

)1− 1
q
( ∫ 1

0
tρ(α+2)−1

(
| f ′′(bρ)|q

+ tρη
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μtρ(1 − tρ)(bρ − aρ)2

)
dt
) 1

q
]

=
(bρ − aρ)2

α(α + 1)

[( ∫ 1

0

[
1 − tρ(α+1)

]
tρ−1dt

)1− 1
q
(
| f ′′(aρ)|q

∫ 1

0

[
1 − tρ(α+1)

]
tρ−1dt

+ η
(
| f ′′(bρ)|q, | f ′′(aρ)|q

) ∫ 1

0

[
1 − tρ(α+1)

]
t2ρ−1dt

− μ(bρ − aρ)2
∫ 1

0

[
1 − tρ(α+1)

]
t2ρ−1(1 − tρ)dt

) 1
q
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+

( ∫ 1

0
tρ(α+2)−1dt

)1− 1
q
(
| f ′′(bρ)|q

∫ 1

0
tρ(α+2)−1dt

+ η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

) ∫ 1

0
tρ(α+3)−1dt

− μ(bρ − aρ)2
∫ 1

0
tρ(α+3)−1(1 − tρ)dt

) 1
q
]

.

The desired inequality follows from the above estimation and observing that:

∫ 1

0

[
1 − tρ(α+1)

]
tρ−1dt =

α + 1
ρ(α + 2)

,
∫ 1

0

[
1 − tρ(α+1)

]
t2ρ−1dt =

α + 1
2ρ(α + 3)

,

∫ 1

0

[
1 − tρ(α+1)

]
t2ρ−1(1 − tρ)dt =

(α + 1)2 + 5(α + 1)
6ρ(α + 4)(α + 3)

,
∫ 1

0
tρ(α+2)−1dt =

1
ρ(α + 2)

∫ 1

0
tρ(α+3)−1dt =

1
ρ(α + 3)

and
∫ 1

0
tρ(α+3)−1(1 − tρ)dt =

1
ρ(α + 3)(α + 4)

.

This completes the proof of Theorem 5.

Corollary 1. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is convex for q ≥ 1, then the following inequality holds:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2(α + 1)

[(
α + 1
α + 2

)1− 1
q
(

(α + 1)(α + 4)
2(α + 2)(α + 3)

| f ′′(aρ)|q + α + 1
2(α + 3)

| f ′′(bρ)|q

+

(
1

α + 2

)1− 1
q
(

1
(α + 2)(α + 3)

| f ′′(bρ)|q + 1
α + 3

| f ′′(aρ)|q
) 1

q
]

.

Proof. The result follows directly from Theorem 5 if we take η(x, y) = x − y and μ = 0.

Theorem 6. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is strongly η-convex with modulus μ ≥ 0 for q > 1, then the following inequalities hold:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ ρ(bρ − aρ)2

2(α + 1)

[(
1
ρ

∫ 1

0

[
1 − uα+1

]s
du

) 1
s
(

1
ρ
| f ′′(aρ)|q + 1

2ρ
η
(
| f ′′(bρ)|q, | f ′′(aρ)|q

)

− μ(bρ − aρ)2

6ρ

) 1
q
+

(
1

sρ(α + 2)− s + 1

) 1
s
(
| f ′′(bρ)|q + 1

ρ + 1
η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μρ(bρ − aρ)2

(ρ + 1)(2ρ + 1)

) 1
q
]
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≤ ρ(bρ − aρ)2

2(α + 1)

[(
s(α + 1)

ρ(s(α + 1) + 1)

) 1
s
(

1
ρ
| f ′′(aρ)|q + 1

2ρ
η
(
| f ′′(bρ)|q, | f ′′(aρ)|q

)

− μ(bρ − aρ)2

6ρ

) 1
q
+

(
1

sρ(α + 2)− s + 1

) 1
s
(
| f ′′(bρ)|q + 1

ρ + 1
η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μρ(bρ − aρ)2

(ρ + 1)(2ρ + 1)

) 1
q
]

,

where
1
s
+

1
q
= 1.

Proof. Using Lemma 3, the Hölder’s inequality and the strong η-convexity of | f ′′|q, we obtain∣∣∣∣ f (aρ) + f (bρ)

αρ
− ρα−1Γ(α)

(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

α(α + 1)

[( ∫ 1

0

∣∣∣1 − tρ(α+1)
∣∣∣stρ−1dt

) 1
s
( ∫ 1

0
tρ−1

∣∣∣ f ′′((1 − tρ)aρ + tρbρ)
∣∣∣qdt

) 1
q

+

( ∫ 1

0
tsρ(α+2)−sdt

) 1
s
( ∫ 1

0

∣∣∣ f ′′(tρaρ + (1 − tρ)bρ)
∣∣∣qdt

) 1
q
]

≤ (bρ − aρ)2

α(α + 1)

[( ∫ 1

0

∣∣∣1 − tρ(α+1)
∣∣∣stρ−1dt

) 1
s
( ∫ 1

0
tρ−1

(
| f ′′(aρ)|q

+ tρη
(
| f ′′(bρ)|q, | f ′′(aρ)|q

)
− μtρ(1 − tρ)(bρ − aρ)2

)
dt
) 1

q

+

( ∫ 1

0
tsρ(α+2)−sdt

) 1
s
( ∫ 1

0

(
| f ′′(bρ)|q

+ tρη
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μtρ(1 − tρ)(bρ − aρ)2

)
dt
) 1

q
]

=
(bρ − aρ)2

α(α + 1)

[( ∫ 1

0

∣∣∣1 − tρ(α+1)
∣∣∣s tρ−1dt

) 1
s
(
| f ′′(aρ)|q

∫ 1

0
tρ−1dt

+ η
(
| f ′′(bρ)|q, | f ′′(aρ)|q

) ∫ 1

0
t2ρ−1dt − μ(bρ − aρ)2

∫ 1

0
t2ρ−1(1 − tρ)dt

) 1
q

+

( ∫ 1

0
tsρ(α+2)−sdt

) 1
s
(
| f ′′(bρ)|q

∫ 1

0
1 dt + η

(
| f ′′(aρ)|q, | f ′′(bρ)|q

) ∫ 1

0
tρdt

− μ(bρ − aρ)2
∫ 1

0
tρ(1 − tρ)dt

) 1
q
]

=
(bρ − aρ)2

α(α + 1)

[(
1
ρ

∫ 1

0

[
1 − uα+1

]s
du

) 1
s
(

1
ρ
| f ′′(aρ)|q + 1

2ρ
η
(
| f ′′(bρ)|q, | f ′′(aρ)|q

)

− μ(bρ − aρ)2

6ρ

) 1
q
+

(
1

sρ(α + 2)− s + 1

) 1
s
(
| f ′′(bρ)|q + 1

ρ + 1
η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μρ(bρ − aρ)2

(ρ + 1)(2ρ + 1)

) 1
q
]

.
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This proves the first inequality. To prove the second inequality, we observe that for any A > B ≥ 0 and
s ≥ 1, we have (A − B)s ≤ As − Bs. Thus, it follows that

[
1 − uα+1]s ≤ 1 − us(α+1) for all u ∈ [0, 1].

Hence, we have that ∫ 1

0

[
1 − uα+1

]s
du ≤

∫ 1

0
1 − us(α+1)du =

s(α + 1)
s(α + 1) + 1

.

This completes the proof.

Corollary 2. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is convex for q > 1, then the following inequalities hold:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ ρ(bρ − aρ)2

2(α + 1)

[(
1
ρ

∫ 1

0

∣∣∣1 − uα+1
∣∣∣sdu

) 1
s
(

1
2ρ

| f ′′(aρ)|q + 1
2ρ

| f ′′(bρ)|q
) 1

q

+

(
1

sρ(α + 2)− s + 1

) 1
s
(

ρ

ρ + 1
| f ′′(bρ)|q + 1

ρ + 1
| f ′′(aρ)|q

) 1
q
]

≤ ρ(bρ − aρ)2

2(α + 1)

[(
s(α + 1)

ρ(s(α + 1) + 1)

) 1
s
(

1
2ρ

| f ′′(aρ)|q + 1
2ρ

| f ′′(bρ)|q
) 1

q

+

(
1

sρ(α + 2)− s + 1

) 1
s
(

ρ

ρ + 1
| f ′′(bρ)|q + 1

ρ + 1
| f ′′(aρ)|q

) 1
q
]

,

where
1
s
+

1
q
= 1.

Proof. The result follows directly from Theorem 6 if we take η(x, y) = x − y and μ = 0.

Theorem 7. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is a strongly η-convex function on [aρ, bρ] with modulus μ ≥ 0 for q ≥ 1, then the following
inequality holds: ∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2ρ(α + 1)

(
α

α + 2

)1− 1
q
[

α

α + 2
| f ′′(bρ)|q

+

(
α + 1

2(α + 3)
− B(2, α + 2)

)
η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μ(bρ − aρ)2

(
1
6
− 2B(2, α + 3)

) ] 1
q

,

where B(·, ·) denotes the beta function defined by B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt.
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Proof. Using Lemma 4, the power mean inequality and the strong η-convexity of | f ′′|q, we obtain∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2(α + 1)

∫ 1

0

∣∣∣1 − (1 − tρ)α+1 − tρ(α+1)
∣∣∣tρ−1

∣∣∣ f ′′(tρaρ + (1 − tρ)bρ)
∣∣∣dt

≤ (bρ − aρ)2

2(α + 1)

(∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
tρ−1dt

)1− 1
q

×
(∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
tρ−1

∣∣∣ f ′′(tρaρ + (1 − tρ)bρ)
∣∣∣qdt

) 1
q

≤ (bρ − aρ)2

2(α + 1)

(∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
tρ−1dt

)1− 1
q

×
( ∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
tρ−1

(
| f ′′(bρ)|q + tρη

(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μtρ(1 − tρ)(bρ − aρ)2

)
dt
) 1

q

≤ (bρ − aρ)2

2(α + 1)

(∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
tρ−1dt

)1− 1
q

×
(
| f ′′(bρ)|q

∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
tρ−1dt

+ η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

) ∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
t2ρ−1dt

− μ(bρ − aρ)2
∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
t2ρ−1(1 − tρ)dt

) 1
q

.

The desired result follows from the above inequality and using the following computations:

∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
tρ−1dt =

1
ρ

∫ 1

0

[
1 − (1 − u)α+1 − uα+1

]
du

=
α

ρ(α + 2)
,

∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
t2ρ−1dt =

1
ρ

∫ 1

0

[
1 − (1 − u)α+1 − uα+1

]
u du

=
1
ρ

(
1
2
− B(2, α + 2)− 1

α + 3

)
=

1
ρ

(
α + 1

2(α + 3)
− B(2, α + 2)

)
and ∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]
t2ρ−1(1 − tρ)dt =

1
ρ

∫ 1

0

[
1 − (1 − u)α+1 − uα+1

]
u(1 − u) du

=
1
ρ

(
1
6
− 2B(2, α + 3)

)
.

This completes the proof of the theorem.
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Corollary 3. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is convex for q ≥ 1, then the following inequality holds:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2ρ(α + 1)

(
α

α + 2

)1− 1
q
[(

B(2, α + 2)− α2 + 3α − 2
2(α + 2)(α + 3)

)
| f ′′(bρ)|q

+

(
α + 1

2(α + 3)
− B(2, α + 2)

)
| f ′′(aρ)|q

] 1
q

.

Proof. The result follows directly from Theorem 7 if we take η(x, y) = x − y and μ = 0.

Theorem 8. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is a strongly η-convex function on [aρ, bρ] with modulus μ ≥ 0 for q > 1, then the following
inequalities hold:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2ρ(α + 1)

(∫ 1

0

[
1 − (1 − u)α+1 − uα+1

]s
du

) 1
s

×
(
| f ′′(bρ)|q + 1

2
η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μρ(bρ − aρ)2

2(ρ + 1)(2ρ + 1)

) 1
q

≤ (bρ − aρ)2

2ρ(α + 1)

(
s(α + 1)− 1
s(α + 1) + 1

) 1
s
(
| f ′′(bρ)|q + 1

2
η
(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μρ(bρ − aρ)2

2(ρ + 1)(2ρ + 1)

) 1
q

,

where
1
s
+

1
q
= 1.

Proof. Using Lemma 4, the Hölder’s inequality and the strong η-convexity of | f ′′|q, we obtain∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2(α + 1)

∫ 1

0

∣∣∣1 − (1 − tρ)α+1 − tρ(α+1)
∣∣∣tρ−1

∣∣∣ f ′′(tρaρ + (1 − tρ)bρ)
∣∣∣dt

≤ (bρ − aρ)2

2(α + 1)

(∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]s
tρ−1dt

) 1
s

×
(∫ 1

0
tρ−1

∣∣∣ f ′′(tρaρ + (1 − tρ)bρ)
∣∣∣qdt

) 1
q

≤ (bρ − aρ)2

2(α + 1)

(∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]s
tρ−1dt

) 1
s

×
( ∫ 1

0
tρ−1

(
| f ′′(bρ)|q + tρη

(
| f ′′(aρ)|q, | f ′′(bρ)|q

)
− μtρ(1 − tρ)(bρ − aρ)2

)
dt
) 1

q
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≤ (bρ − aρ)2

2(α + 1)

(∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]s
tρ−1dt

) 1
s

×
(
| f ′′(bρ)|q

∫ 1

0
tρ−1dt + η

(
| f ′′(aρ)|q, | f ′′(bρ)|q

) ∫ 1

0
t2ρ−1dt

− μ(bρ − aρ)2
∫ 1

0
t2ρ−1(1 − tρ)dt

) 1
q

,

where ∫ 1

0

[
1 − (1 − tρ)α+1 − tρ(α+1)

]s
tρ−1dt =

1
ρ

∫ 1

0

[
1 − (1 − u)α+1 − uα+1

]s
du,

∫ 1

0
tρ−1 dt =

1
ρ

,
∫ 1

0
t2ρ−1dt =

1
2ρ

and
∫ 1

0
t2ρ−1(1 − tρ)dt =

1
2(ρ + 1)(2ρ + 1)

.

This proves the first inequality. Using a similar argument as in the proof of Theorem 6, we obtain

∫ 1

0

[
1 − (1 − u)α+1 − uα+1

]s
du ≤

∫ 1

0
1 − (1 − u)s(α+1) − us(α+1)du

= 1 − 2
s(α + 1) + 1

=
s(α + 1)− 1
s(α + 1) + 1

.

This completes the proof of the theorem.

Corollary 4. Let α > 0, ρ > 0 and f : [aρ, bρ] → R be a twice differentiable mapping on (aρ, bρ) with
0 ≤ a < b. If | f ′′|q is convex for q > 1, then the following inequalities hold:∣∣∣∣ f (aρ) + f (bρ)

2
− ραΓ(α + 1)

2(bρ − aρ)α

[
ρ Iα

a+ f (bρ) + ρ Iα
b− f (aρ)

]∣∣∣∣
≤ (bρ − aρ)2

2ρ(α + 1)

(∫ 1

0

[
1 − (1 − u)α+1 − uα+1

]s
du

) 1
s

×
(

1
2
| f ′′(bρ)|q + 1

2
| f ′′(aρ)|q

) 1
q

≤ (bρ − aρ)2

2ρ(α + 1)

(
s(α + 1)− 1
s(α + 1) + 1

) 1
s

×
(

1
2
| f ′′(bρ)|q + 1

2
| f ′′(aρ)|q

) 1
q

,

where
1
s
+

1
q
= 1.

Proof. The result follows directly from Theorem 8 if we take η(x, y) = x − y and μ = 0.
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3. Conclusions

Four main results related to the Hermite–Hadamard inequality via the Katugampola fractional
integrals involving strongly η-convex functions have been introduced. Similar results via the
Riemann–Liouville and Hadamard fractional integrals could be derived as particular cases by taking
ρ → 1 and ρ → 0+, respectively. Several other interesting results can be obtained by considering
different bifunctions η and/or the modulus μ as well as different values for the parameters α and ρ.
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1. Introduction

1.1. Current State of Hermite-Hadamard Inequalities

Many important inequalities are established for the class of convex functions [1], but one of the
most famous is the so-called Hermite-Hadamard inequality, which was first discovered by Hermite in
1881, and is stated as follows: Let f : I ⊆ R → R be a convex function, where a, b ∈ I with a < b. Then

f
(

a + b
2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
.

This famous result can be considered as a necessary and sufficient condition for a function to be convex.
Hermite-Hadamard’s inequality has raised many scholars’ attention, and a variety of refinements and
generalizations have been found (see [1–20]).

In [16], Özdemir used the following lemma and established some estimates on it via
quasi-convex functions.

Lemma 1. ([16], Lemma 1) Let f : I ⊂ R → R be a twice differentiable mapping on I0, a, b ∈ I with a < b
and f ′′ be integrable on [a, b]. Then the following equality holds:

f (a) + f (b)
2

− 1
b − a

∫ b

a
f (x)dx =

(b − a)2

2

∫ 1

0
s(1 − s) f ′′(sa + (1 − s)b)ds. (1)

Theorem 1. ([16], Theorem 2) Let f : I0 ⊂ [0, ∞) → R be a twice differentiable mapping on I0, such that
f ′′ ∈ L [a, b] , a, b ∈ I with a < b. If | f ′′|r is quasi-convex on [a, b] for r ≥ 1, then the following inequality holds:

∣∣∣∣ f (a) + f (b)
2

− 1
b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

4

(
2

(r + 1)(r + 2)

) r−1
r (

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r . (2)

Mathematics 2019, 7, 152; doi:10.3390/math7020152 www.mdpi.com/journal/mathematics94
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Theorem 2. ([16], Theorem 3) Let f : I0 ⊂ [0, ∞) → R be a twice differentiable mapping on I0, such that
f ′′ ∈ L [a, b] , a, b ∈ I with a < b. If | f ′′|r is quasi-convex on [a, b] for r > 1, then the following inequality holds:∣∣∣∣ f (a) + f (b)

2
− 1

b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

21+ 1
r

(β(2, p + 1))
1
p
(

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r , (3)

where 1
p + 1

r = 1 and β(, ) is Euler Beta Function:

β(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt, x, y > 0.

In [2], Alomari et al. established the following inequalities through Lemma 1.

Theorem 3. ([2], Theorem 3) Let f : I ⊂ R → R be a twice differentiable mapping on I0, a, b ∈ I with a < b
and f ′′ be integrable on [a, b]. If | f ′′| is quasi-convex on [a, b], then the following inequality holds:∣∣∣∣ f (a) + f (b)

2
− 1

b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

12
sup{

∣∣ f ′′(a)
∣∣ ,
∣∣ f ′′(b)

∣∣}. (4)

Theorem 4. ([2], Theorem 4) Let f : I ⊂ R → R be a twice differentiable mapping on I0, a, b ∈ I with
a < b and f ′′ be integrable on [a, b]. If | f ′′|p/(p−1) is quasi-convex on [a, b] for p > 1, then the following
inequality holds:

∣∣∣∣ f (a) + f (b)
2

− 1
b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

8

(√
π

2

) 1
p
(

Γ(1 + p)
Γ( 3

2 + p)

) 1
p (

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r ,

(5)
where r = p/(p − 1).

Theorem 5. ([2], Theorem 5) Let f : I ⊂ R → R be a twice differentiable mapping on I0, a, b ∈ I with a < b
and f ′′ be integrable on [a, b]. If | f ′′|r is quasi-convex on [a, b] for q ≥ 1, then the following inequality holds:∣∣∣∣ f (a) + f (b)

2
− 1

b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

12

(
sup{

∣∣ f ′′(a)
∣∣r ,

∣∣ f ′′(b)
∣∣r}) 1

r . (6)

1.2. Motivation of Quantum Estimates

In recent years, many researchers have shown their interest in studying and investigating
quantum calculus. Quantum analysis has large applications in many mathematical areas such as
number theory ([21]), special functions ([22]), quantum mechanics ([23]) and mathematical inequalities.
At present, q-analogues of many identities and inequalities have been established ([13–15,19,20,24]).

The Hermite-Hadamard inequality has been extended by considering its quantum estimates.
For example, in [13], Noor et al. established the following lemma and developed some quantum
estimates for it.

Lemma 2. ([13], Lemma 3.1) Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I0 (the interior of I)
with aDq be continuous and integrable on I where 0 < q < 1, then

1
b − a

∫ b

a
f (x)adqx − q f (a) + f (b)

1 + q
=

q(b − a)
1 + q

∫ 1

0
(1 − (1 + q)t)aDq f ((1 − t)a + tb)0dqt.
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Theorem 6. ([13], Theorem 3.2) Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I0 (the interior
of I) with aDq be continuous and integrable on I where 0 < q < 1. If

∣∣aDq f
∣∣r , r ≥ 1 is a convex function, then∣∣∣∣ 1

b − a

∫ b

a
f (x)adqx − q f (a) + f (b)

1 + q

∣∣∣∣
≤ q(b − a)

1 + q

(
2q

(1 + q)2

)1− 1
r
(

q(1 + 3q2 + 2q3)

(1 + q + q2)(1 + q)3

∣∣aDq f (a)
∣∣r + q(1 + 4q + q2)

(1 + q + q2)(1 + q)3

∣∣aDq f (b)
∣∣r) 1

r

.

Theorem 7. ([13], Theorem 3.3) Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I0 (the interior
of I) with aDq be continuous and integrable on I where 0 < q < 1. If

∣∣aDq f
∣∣r is a convex function where

p, r > 1, 1
p + 1

r = 1, then

∣∣∣∣ 1
b − a

∫ b

a
f (x)adqx − q f (a) + f (b)

1 + q

∣∣∣∣
≤ q(b − a)

1 + q

(
2q

(1 + q)2

) 1
p
(

q(1 + 3q2 + 2q3)

(1 + q + q2)(1 + q)3

∣∣aDq f (a)
∣∣r + q(1 + 4q + q2)

(1 + q + q2)(1 + q)3

∣∣aDq f (b)
∣∣r) 1

r

.

The main purpose of this paper is to use a new quantum integral identity established in [11] to
develop some quantum estimates of Hermite-Hadamard type inequalities for quasi-convex functions
(Section 3). These quantum estimates of Hermite-Hadamard type inequalities reduces to Theorems 1–5
as q → 1.

1.3. Possible Applications of the Estimates

Quantum calculus has large applications in many mathematical areas. We expect these new
quantum estimates for Hermite-Hadamard type inequalities to have potential applications in the fields
of integral inequalities, approximation theory, special means theory, optimization theory, information
theory and numerical analysis.

2. Preliminaries

In this section, we first recall some previously known concepts on q-calculus which will be used
in this paper.

Let J = [a, b] ⊆ R be an interval and 0 < q < 1 be a constant.

Definition 1. [19] Assume f : J → R is a continuous function and let x ∈ J. Then q-derivative on J of
function f at x is defined as

aDq f (x) =
f (x)− f (qx + (1 − q) a)

(1 − q) (x − a)
, x �= a, aDq f (a) = lim

x→a aDq f (x). (7)

We say that f is q-differentiable on J provided aDq f (x) exists for all x ∈ J. Note that if a = 0 in (2.1),
then 0Dq f = Dq f , where Dq is the well-known q-derivative of the function f (x) defined by

Dq f (x) =
f (x)− f (qx)
(1 − q) x

. (8)

Definition 2. [19] Let f : J → R be a continuous function. We define the second-order q-derivative on
interval J, which denoted as aD2

q f , provided aDq f is q-differentiable on J with aD2
q f = aDq(aDq f ) : J → R.

Similarly, we define higher order q-derivative on J, aDn
q : Jk → R.
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Definition 3. [19] Let f : J ⊂ R → R be a continuous function. Then q-integral on J is defined by

∫ x

a
f (t) adqt = (1 − q) (x − a)

∞

∑
n=0

qn f (qnx + (1 − qn) a) (9)

for x ∈ J. Moreover, if c ∈ (a, x) then the definite q-integral on J is defined by∫ x

c
f (t)adqt =

∫ x

a
f (t)adqt −

∫ c

a
f (t)adqt

=(1 − q)(x − a)
∞

∑
n=0

qn f (qnx + (1 − qn)a)− (1 − q)(c − a)
∞

∑
n=0

qn f (qnc + (1 − qn)a).

Note that if a = 0, then we have the classical q-integral, which is defined by

∫ x

0
f (t) 0dqt = (1 − q) x

∞

∑
n=0

qn f (qnx) (10)

for x ∈ [0,+∞).

Theorem 8. [19] Assume that f , g : J → R are continuous functions, α ∈ R. Then, for x ∈ J,∫ x

a
[ f (t) + g(t)] adqt =

∫ x

a
f (t)adqt +

∫ x

a
g(t)adqt;∫ x

a
(α f )(t)adqt = α

∫ x

a
f (t)adqt.

In addition, we introduce the q-analogues of a and (x − a)n and the definition of q-Beta function.

Definition 4. [22] For any real number a,

[a]q =
qa − 1
q − 1

(11)

is called the q-analogue of a. In particular, if n ∈ Z+, we denote

[n] =
qn − 1
q − 1

= qn−1 + · · ·+ q + 1.

Definition 5. [22] If n is an integer, the q-analogue of (x − a)n is the polynomial

(x − a)n
q =

{
1, i f n = 0,

(x − a)(x − qa) · · · (x − qn−1a), i f n ≥ 1.
(12)

Definition 6. [22] For any t, s > 0,

βq(t, s) =
∫ 1

0
xt−1(1 − qx)s−1

q 0dqx (13)

is called the q-Beta function. Note that

βq(t, 1) =
∫ 1

0
xt−1

0dqx =
1
[t]

, (14)

where [t] is the q-analogue of t.
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At last, we present four simple calculations that will be used in this paper.

Lemma 3. Let f (x) = 1, then we have

∫ 1

0
0dqx = (1 − q)

∞

∑
n=0

qn = 1.

Lemma 4. Let f (x) = x for x ∈ [a, b], then we have

∫ 1

0
x0dqx = (1 − q)

∞

∑
n=0

q2n =
1

1 + q
.

Lemma 5. Let f (x) = 1 − qx for x ∈ [0, 1] where 0 < q < 1 be a constant , then we have

∫ 1

0
(1 − qx)0dqx =

∫ 1

0
0dqx − q

∫ 1

0
x0dqx =

1
1 + q

.

Lemma 6. Let f (x) = x(1 − qx) for x ∈ [0, 1] where 0 < q < 1 be a constant , then we have

∫ 1

0
x(1 − qx)0dqx =

∫ 1

0
(x − qx2)0dqx =

∫ 1

0
x0dqx − q

∫ 1

0
x2

0dqx

=
1

1 + q
− q(1 − q)

∞

∑
n=0

q3n =
1

1 + q
− q

1
1 + q + q2

=
1

(1 + q)(1 + q + q2)
.

In [6], we can find the notion of quasi-convex functions generalizes the notion of convex functions.
More exactly, a function f : [a, b] → R is said to be quasi-convex on [a, b] if

f ((1 − λ) x + λy) ≤ sup{ f (x), f (y)} (15)

holds for any x, y ∈ [a, b] and λ ∈ [0, 1]. It’s obviously that any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex.

In [11], we have established the following q-integral identity and used it to prove some quantum
estimates of Hermite-Hadamard type inequalities for convex functions.

Lemma 7. ([11], Lemma 4.1) Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f

be continuous and integrable on I where 0 < q < 1. Then the following identity holds:

q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx =

q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt. (16)

Remark 1. If q → 1 and substitute (1 − t)a + tb for sa + (1 − s)b, then (16) reduces to identity (1) in
Lemma 1.

3. Hermite-Hadamard Inequalities for Quasi-Convex Functions

In this section, we will give some estimates for the left-hand side of the result of (16) through
quasi-convex functions.
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Theorem 9. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] for r ≥ 1, then the following

inequality holds: ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

1 + q

)1− 1
r (

h1 sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

, (17)

where

h1 = (1 − q)
∞

∑
n=0

q2n(1 − qn+1)r.

Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
t0dqt

)1− 1
r
(∫ 1

0
t(1 − qt)r

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣r 0dqt
) 1

r

≤ q2(b − a)2

1 + q

(∫ 1

0
t0dqt

)1− 1
r
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
t(1 − qt)r

0dqt
) 1

r

Applying Lemma 4, we have∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

1 + q

)1− 1
r
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
t(1 − qt)r

0dqt
) 1

r

=
q2(b − a)2

1 + q

(
1

1 + q

)1− 1
r (

h1 sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

.

It is easy to check that

h1 =
∫ 1

0
t(1 − qt)r

0dqt = (1 − q)
∞

∑
n=0

q2n(1 − qn+1)r,

thus, we get (17).

Remark 2. If q → 1, then

h1 =
∫ 1

0
t(1 − t)rdt =

1
(r + 1)(r + 2)

.
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Inequality (17) reduces to inequality (2) in Theorem 1 due to the fact that

(b − a)2

2

(
1
2

)1− 1
r
(

1
(r + 1)(r + 2)

) 1
r (

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r

=
(b − a)2

4

(
2

(r + 1)(r + 2)

) 1
r (

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r .

Corollary 1. In Theorem 9, if r is a positive integer , then

(1 − qt)r ≤ (1 − qt)r
q,

and (17) reduces to∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

1 + q

)1− 1
r (

βq(2, r + 1) sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

.

Theorem 10. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] where p, r > 1, 1

p + 1
r = 1, then

∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2

1 + q
(l1)

1
p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
1 + q

⎞⎟⎠
1
r

, (18)

where

l1 = (1 − q)
∞

∑
n=0

q2n(1 − qn+1)p.

Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
t(1 − qt)p

0dqt
) 1

p
(∫ 1

0
t
∣∣∣aD2

q f ((1 − t)a + tb)
∣∣∣r 0dqt

) 1
r

≤ q2(b − a)2

1 + q

(∫ 1

0
t(1 − qt)p

0dqt
) 1

p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
t0dqt

) 1
r
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Applying Lemma 4, we have∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(∫ 1

0
t(1 − qt)p

0dqt
) 1

p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
1 + q

⎞⎟⎠
1
r

=
q2(b − a)2

1 + q
(l1)

1
p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
1 + q

⎞⎟⎠
1
r

.

It is easy to check that

l1 =
∫ 1

0
t(1 − qt)p

0dqt = (1 − q)
∞

∑
n=0

q2n(1 − qn+1)p,

thus, we get (18).

Remark 3. If q → 1, then

l1 =
∫ 1

0
t(1 − t)pdt = β(2, p + 1).

Inequality (18) reduces to inequality (3) in Theorem 2.

Corollary 2. In Theorem 10, if p is a positive integer and p > 1, then

(1 − qt)p ≤ (1 − qt)p
q ,

and (18) reduces to

∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2

1 + q
(

βq(2, p + 1)
) 1

p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
1 + q

⎞⎟⎠
1
r

.

Theorem 11. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] where p, r > 1, 1

p + 1
r = 1, then the

following inequality holds:∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2

1 + q
(s1)

1
p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

, (19)

where

s1 = (1 − q)
∞

∑
n=0

(qn)p+1(1 − qn+1)p.
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Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
tp(1 − qt)p

0dqt
) 1

p
(∫ 1

0

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣r 0dqt
) 1

r

≤ q2(b − a)2

1 + q

(∫ 1

0
tp(1 − qt)p

0dqt
) 1

p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
0dqt

) 1
r

Applying Lemma 3, we have∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q
(s1)

1
p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

.

It is easy to check that

s1 =
∫ 1

0
tp(1 − qt)p

0dqt = (1 − q)
∞

∑
n=0

(qn)p+1(1 − qn+1)p,

thus, we get (19).

Remark 4. If q → 1, then

s1 =
∫ 1

0
tp(1 − t)pdt = β(p + 1, p + 1).

Using the properties of Beta function, that is, β(x, x) = 21−2xβ
(

1
2 , x

)
and β(x, y) = Γ(x)Γ(y)

Γ(xy) , we can
obtain that

β(p + 1, p + 1) = 21−2(p+1)β

(
1
2

, p + 1
)
= 2−2p−1

Γ
(

1
2

)
Γ(p + 1)

Γ( 3
2 + p)

,

where Γ( 1
2 ) =

√
π and Γ(t) is Gamma function:

Γ(t) =
∫ ∞

0
xt−1e−xdx, t > 0.

Inequality (19) reduces to inequality (5) in Theorem 4 due to the fact that

(b − a)2

2

(
2−2p−1 Γ( 1

2 )Γ(p + 1)

Γ( 3
2 + p)

) 1
p (

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r

=
(b − a)2

8

(√
π

2

) 1
p
(

Γ(1 + p)
Γ( 3

2 + p)

) 1
p (

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r .
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Corollary 3. In Theorem 11, if p is a positive integer, p > 1, then

(1 − qt)p ≤ (1 − qt)p
q ,

and (19) reduces to∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2

1 + q
(

βq(p + 1, p + 1)
) 1

p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

.

Theorem 12. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] where p, r > 1, 1

p + 1
r = 1, then the

following inequality holds:∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

[p + 1]

) 1
p (

m1 sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

, (20)

where

m1 = (1 − q)
∞

∑
n=0

qn(1 − qn+1)r

and [p + 1] is the q-analogue of p + 1.

Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
tp

0dqt
) 1

p
(∫ 1

0
(1 − qt)r

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣r 0dqt
) 1

r

≤ q2(b − a)2

1 + q

(∫ 1

0
tp

0dqt
) 1

p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
(1 − qt)r

0dqt
) 1

r

Applying (14) in Definition 6, we have∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

[p + 1]

) 1
p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
(1 − qt)r

0dqt
) 1

r

=
q2(b − a)2

1 + q

(
1

[p + 1]

) 1
p (

m1 sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

.

It is easy to check that

m1 =
∫ 1

0
(1 − qt)r

0dqt = (1 − q)
∞

∑
n=0

qn(1 − qn+1)r,

103



Mathematics 2019, 7, 152

thus, we get (20).

Remark 5. If q → 1, then

m1 =
∫ 1

0
(1 − t)rdt =

1
r + 1

,

and (20) reduces to

∣∣∣∣ f (a) + f (b)
2

− 1
b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

2

(
1

p + 1

) 1
p
(

sup{| f ′′(a)|r , | f ′′(b)|r}
r + 1

) 1
r

. (21)

Corollary 4. In Theorem 12, if r is a positive integer, r > 1, then

(1 − qt)r ≤ (1 − qt)r
q,

and (20) reduces to∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

[p + 1]

) 1
p (

βq(1, r + 1) sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

.

Theorem 13. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] where p, r > 1, 1

p + 1
r = 1, then the

following inequality holds: ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q
(n1)

1
p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
[r + 1]

⎞⎟⎠
1
r

, (22)

where

n1 = (1 − q)
∞

∑
n=0

qn(1 − qn+1)p

and [r + 1] is the q-analogue of r + 1.

Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
(1 − qt)p

0dqt
) 1

p
(∫ 1

0
tr
∣∣∣aD2

q f ((1 − t)a + tb)
∣∣∣r 0dqt

) 1
r

≤ q2(b − a)2

1 + q

(∫ 1

0
(1 − qt)p

0dqt
) 1

p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
tr

0dqt
) 1

r
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Applying (14) in Definition 6, we have∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(∫ 1

0
(1 − qt)p

0dqt
) 1

p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
[r + 1]

⎞⎟⎠
1
r

=
q2(b − a)2

1 + q
(n1)

1
p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
[r + 1]

⎞⎟⎠
1
r

.

It is easy to check that

n1 =
∫ 1

0
(1 − qt)p

0dqt = (1 − q)
∞

∑
n=0

qn(1 − qn+1)p,

thus, we get (22).

Remark 6. If q → 1, then

n1 =
∫ 1

0
(1 − t)pdt =

1
p + 1

,

and (22) reduces to (21) in Remark 5.

Corollary 5. In Theorem 13, if p is a positive integer, p > 1, then

(1 − qt)p ≤ (1 − qt)p
q ,

and (22) reduces to ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q
(

βq(1, p + 1)
) 1

p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
[r + 1]

⎞⎟⎠
1
r

.

Theorem 14. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] for r ≥ 1, then

∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2

1 + q
(μ1)

1
r
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

, (23)

where

μ1 = (1 − q)
∞

∑
n=0

(qn)r+1(1 − qn+1)r.
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Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

(∫ 1

0
0dqt

)1− 1
r
(∫ 1

0
|t(1 − qt)|r

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣r 0dqt
) 1

r

≤ q2(b − a)2

1 + q

(∫ 1

0
0dqt

)1− 1
r (

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r
(∫ 1

0
|t(1 − qt)|r 0dqt

) 1
r

Applying Lemma 3, we have∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
sup{

∣∣∣aD2
q f (a)

∣∣∣r ,
∣∣∣aD2

q f (b)
∣∣∣r}) 1

r
(∫ 1

0
|t(1 − qt)|r 0dqt

) 1
r

=
q2(b − a)2

1 + q

(
sup{

∣∣∣aD2
q f (a)

∣∣∣r ,
∣∣∣aD2

q f (b)
∣∣∣r}) 1

r
(μ1)

1
r .

It is easy to check that

μ1 =
∫ 1

0
tr(1 − qt)r

0dqt = (1 − q)
∞

∑
n=0

(qn)r+1(1 − qn+1)r,

thus, we get (23).

Remark 7. If q → 1, then

μ1 =
∫ 1

0
tr(1 − t)r

0dqt = β(r + 1, r + 1),

and (23) reduces to∣∣∣∣ f (a) + f (b)
2

− 1
b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

2
(β(r + 1, r + 1))

1
r
(

sup{
∣∣ f ′′(a)

∣∣r ,
∣∣ f ′′(b)

∣∣r}) 1
r .

Corollary 6. In Theorem 14, if r is a positive integer, then

(1 − qt)r ≤ (1 − qt)r
q,

and (23) reduces to∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2

1 + q
(

βq(r + 1, r + 1)
) 1

r
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

.
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Theorem 15. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] for r ≥ 1, then

∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

1 + q

)1− 1
r (

βq(r + 1, 2) sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

. (24)

Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
(1 − qt)0dqt

)1− 1
r
(∫ 1

0
(1 − qt)tr

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣r) 1
r

≤ q2(b − a)2

1 + q

(∫ 1

0
(1 − qt)0dqt

)1− 1
r
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
(1 − qt)tr

0dqt
) 1

r

Applying Lemma 5 and the fact that (1 − qt) = (1 − qt)1
q, we have∣∣∣∣ q f (a) + f (b)

1 + q
− 1

b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

1 + q

)1− 1
r
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
tr(1 − qt)1

q0dqt
) 1

r

=
q2(b − a)2

1 + q

(
1

1 + q

)1− 1
r (

βq(r + 1, 2) sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}) 1
r

,

thus, we gett (24).

Remark 8. If q → 1, then

β(r + 1, 2) =
∫ 1

0
tr(1 − t)0dqt =

1
(r + 1)(r + 2)

,

and (24) reduces to inequality (2) in Theorem 1.

Theorem 16. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] where p, r > 1, 1

p + 1
r = 1, then

∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q
(

βq(p + 1, 2)
) 1

p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
1 + q

⎞⎟⎠
1
r

. (25)
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Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
tp(1 − qt)0dqt

) 1
p
(∫ 1

0
(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣r 0dqt
) 1

r

≤ q2(b − a)2

1 + q

(∫ 1

0
tp(1 − qt)0dqt

) 1
p
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
(1 − qt)0dqt

) 1
r

Applying Lemma 5 and the fact that (1 − qt) = (1 − qt)1
q, we have∣∣∣∣ q f (a) + f (b)

1 + q
− 1

b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(∫ 1

0
tp(1 − qt)1

q0dqt
) 1

p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
1 + q

⎞⎟⎠
1
r

=
q2(b − a)2

1 + q
(

βq(p + 1, 2)
) 1

p

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
1 + q

⎞⎟⎠
1
r

,

thus, we get (25).

Remark 9. If q → 1, then

β(p + 1, 2) =
∫ 1

0
tp(1 − t)dt =

∫ 1

0
s(1 − s)pds = β(2, p + 1).

Inequality (25) reduces to inequality (3) in Theorem 2.

Theorem 17. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣ is quasi-convex on [a, b], then

∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2 sup{
∣∣∣aD2

q f (a)
∣∣∣ ,
∣∣∣aD2

q f (b)
∣∣∣}

(1 + q)2(1 + q + q2)
. (26)
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Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣ is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q
sup{

∣∣∣aD2
q f (a)

∣∣∣ ,
∣∣∣aD2

q f (b)
∣∣∣} ∫ 1

0
t(1 − qt)0dqt

Applying Lemma 6, we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤

q2(b − a)2 sup{
∣∣∣aD2

q f (a)
∣∣∣ ,
∣∣∣aD2

q f (b)
∣∣∣}

(1 + q)2(1 + q + q2)
,

thus, we get (26).

Remark 10. If q → 1, then inequality (26) reduces to inequality (4) in Theorem 3.

Theorem 18. Let f : I = [a, b] ⊂ R → R be a twice q-differentiable function on I0 with aD2
q f be continuous

and integrable on I where 0 < q < 1. If
∣∣∣aD2

q f
∣∣∣r is quasi-convex on [a, b] for r ≥ 1, then the following

inequality holds:∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣ ≤ q2(b − a)2

(1 + q)2(1 + q + q2)

(
sup{

∣∣∣aD2
q f (a)

∣∣∣r ,
∣∣∣aD2

q f (b)
∣∣∣r}) 1

r
. (27)

Proof. Using Lemma 7, Hölder’s inequality and the fact that
∣∣∣aD2

q f
∣∣∣r is a quasi-convex function,

we have ∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
=

∣∣∣∣ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)aD2

q f ((1 − t)a + tb)0dqt
∣∣∣∣

≤ q2(b − a)2

1 + q

∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣ 0dqt

≤ q2(b − a)2

1 + q

(∫ 1

0
t(1 − qt)0dqt

)1− 1
r
(∫ 1

0
t(1 − qt)

∣∣∣aD2
q f ((1 − t)a + tb)

∣∣∣r 0dqt
) 1

r

≤ q2(b − a)2

1 + q

(∫ 1

0
t(1 − qt)0dqt

)1− 1
r
(

sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r} ∫ 1

0
t(1 − qt)0dqt

) 1
r
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Applying Lemma 6, we have∣∣∣∣ q f (a) + f (b)
1 + q

− 1
b − a

∫ b

a
f (x)adqx

∣∣∣∣
≤ q2(b − a)2

1 + q

(
1

(1 + q)(1 + q + q2)

)1− 1
r

⎛⎜⎝ sup{
∣∣∣aD2

q f (a)
∣∣∣r ,

∣∣∣aD2
q f (b)

∣∣∣r}
(1 + q)(1 + q + q2)

⎞⎟⎠
1
r

=
q2(b − a)2

(1 + q)2(1 + q + q2)

(
sup{

∣∣∣aD2
q f (a)

∣∣∣r ,
∣∣∣aD2

q f (b)
∣∣∣r}) 1

r
,

thus, we get (27).

Remark 11. If q → 1, then inequality (27) reduces to inequality (6) in Theorem 5.

4. Discussion of New Perspectives

Currently, the Hermite-Hadamard inequality plays a significant role in the development of
all fields of Mathematics. It has sgnificant applications in a variety of applied Mathematics,
such as integral inequalities, approximation theory, special means theory, optimization theory,
information theory and numerical analysis. In recent years, a number of authors have discovered new
Hermite-Hadamard-type inequalities for convex, s-convex functions, logarithmic convex functions,
h-convex functions, quasi-convex functions, m-convex functions, (K, m)-convex functions, co-ordinated
convex functions, and the Godunova-Levin function, P-function, and so on. In this paper, we use a
new quantum integral identity established in [11] (Lemma 4.1) to develop some quantum estimates for
Hermite-Hadamard type inequalities in which some quasi-convex functions are involved.

Since quantum calculus has large applications in many mathematical areas such as number theory,
special functions, quantum mechanics and mathematical inequalities, we hope interested readers will
continue to explore more quantum estimates of Hermite-Hadamard type inequalities for other kinds of
convex functions, and, furthermore, to find applications in the above-mentioned mathematical areas.
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1. Notation and Preliminaries

At the beginning of this paper, we cite the following inequality which is called the operator
Kantorovich inequality [1]:

Φ
(

A−1
)
≤ (M + m)2

4Mm
Φ(A)−1 (1)

where Φ is a normalized positive linear map from B (H) to B (K), (we represent H and K as complex
Hilbert spaces throughout the paper) and A is a positive operator with spectrum contained in [m, M] with
0 < m < M. This is a non-commutative analogue of the classical inequality [2],

〈Ax, x〉
〈

A−1x, x
〉
≤ (M + m)2

4Mm

where x ∈ H is a unit vector.
In recent years, various attempts have been made by many authors to improve and generalize the

operator Kantorovich inequality. One may see the basic references [3–5] and the excellent survey [6] on
this topic. In [7], it was shown that

Φ
(

A−1
)
≤ Φ

(
m

A−MI
M−m M

mI−A
M−m

)
≤ (M + m)2

4Mm
Φ(A)−1. (2)
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The main aim of the present short paper is to improve both inequalities in (2). Actually, we prove that

Φ
(

A−1
)
≤ Φ

((
A −

(√
m −

√
M

)2
r(A)

)−1
)

≤ Φ
((

m
A−MI
M−m M

mI−A
M−m

)−1
)

≤ (M + m)2

4Mm
Φ(A)−1 −

⎛⎜⎝
(√

M −√
m
)2

Mm

⎞⎟⎠ r(A)

where r(A) = min
{

MI−A
M−m , A−mI

M−m

}
= 1

2 I − 1
M−m

∣∣∣A − M+m
2 I

∣∣∣.
In what follows, an operator means a bounded linear one acting on a complex Hilbert space H.

As customary, we reserve m, M for scalars and I for the identity operator. A self-adjoint operator A is said
to be positive if 〈Ax, x〉 ≥ 0 holds for all x ∈ H. A linear map Φ is positive if Φ (A) ≥ 0 whenever A ≥ 0.
It is said to be normalized if Φ (I) = I. We denote by σ (A) the spectrum of the operator A.

2. Main Results

Before we present the proof of our theorems, we begin with a general observation. We say that a
non-negative function f on [0, ∞) is geometrically convex [8] when

f
(

a1−vbv
)
≤ f (a)1−v f (b)v (3)

for all a, b > 0 and v ∈ [0, 1]. Equivalently, a function f is geometrically convex if and only if the associated
function F (y) = log ( f (ey)) is convex.

Example 1 ([9] Example 2.12). Given real numbers ci ≥ 0 and pi ∈ (−∞, 0] ∪ [1, ∞) for i = 1, · · · , n, the
function f (t) = ∑n

i=1 citpi is geometrically convex on (0, ∞).

Kittaneh and Manasrah [10] Theorem 2.1 obtained a refinement of the weighted arithmetic-geometric
mean inequality as follows:

a1−vbv ≤ (1 − v) a + vb − r
(√

a −
√

b
)2

(4)

where r = min {v, 1 − v}.
Now, if f is a decreasing geometrically convex function, then

f ((1 − v) a + vb) ≤ f
(
((1 − v) a + vb)− r

(√
a −

√
b
)2

)
≤ f

(
a1−vbv

)
≤ f (a)1−v f (b)v

≤ (1 − v) f (a) + v f (b)− r
(√

f (a)−
√

f (b)
)2

≤ (1 − v) f (a) + v f (b)

(5)
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where the first inequality follows from the inequality (1 − v) a + vb − r
(√

a −
√

b
)2

≤ (1 − v) a + vb and
the fact that f is decreasing function, in the second inequality we used (4), the third inequality is obvious
by (3), and the fourth inequality again follows from (4) by interchanging a by f (a) and b by f (b).

Of course, each decreasing geometrically convex function is also convex. However, the converse does
not hold in general.

The inequality (5) applied to a = m, b = M, 1 − v = M−t
M−m , and v = t−m

M−m gives

f (t) ≤ f
(

t −
(√

m −
√

M
)2

r(t)
)

≤ f
(

m
M−t
M−m M

t−m
M−m

)
≤ f (m)

M−t
M−m f (M)

t−m
M−m (6)

≤ M − t
M − m

f (m) +
t − m

M − m
f (M)−

(√
f (m)−

√
f (M)

)2
r(t)

≤ M − t
M − m

f (m) +
t − m

M − m
f (M)

with r(t) = min
{

t−m
M−m , M−t

M−m

}
= 1

2 − 1
M−m

∣∣∣t − M+m
2

∣∣∣ whenever t ∈ [m, M].
In order to establish our promised refinement of the operator Kantorovich inequality, we also use

the well-known monotonicity principle for bounded self-adjoint operators on Hilbert space (see, e.g., [6]
(p. 3)): If A ∈ B (H) is a self-adjoint operator, then

f (t) ≤ g (t) , t ∈ σ (A) ⇒ f (A) ≤ g (A) (7)

provided that f and g are real-valued continuous functions. Under the same assumptions, h (t) = |t|
implies h (A) = |A|.

Now, we are in a position to state and prove our main results. We remark that the following theorem
can be regarded as an extension of [5] Remark 4.14 to the context of geometrical convex functions.

Theorem 1. Let A ∈ B (H) be a self-adjoint operator with σ (A) ⊆ [m, M] for some scalars m, M with
0 < m < M and Φ be a normalized positive linear map from B (H) to B (K). If f is strictly positive decreasing
geometrically convex function, then

Φ
(

f
(

A −
(√

m −
√

M
)2

r(A)

))
≤ Φ

(
f
(

m
MI−A
M−m M

A−mI
M−m

))
≤ μ (m, M, f ) f (Φ (A))−

(√
f (m)−

√
f (M)

)2
Φ(r(A))

where r(A) = min
{

A−mI
M−m , MI−A

M−m

}
= 1

2 I − 1
M−m

∣∣∣A − M+m
2 I

∣∣∣ and

μ (m, M, f ) = max
{

1
f (t)

(
M − t
M − m

f (m) +
t − m

M − m
f (M)

)
: t ∈ [m, M]

}
.
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Proof. On account of the assumptions, from parts of (6), we have

f
(

t −
(√

m −
√

M
)2

r(t)
)
≤ f

(
m

M−t
M−m M

t−m
M−m

)
≤ L (t)−

(√
f (m)−

√
f (M)

)2
r(t)

(8)

where
L (t) =

M − t
M − m

f (m) +
t − m

M − m
f (M) .

Note that inequality (8) holds for all t ∈ [m, M]. On the other hand, σ (A) ⊆ [m, M], which, by virtue of
monotonicity principle (7) for operator functions, yields the series of inequalities

f
(

A −
(√

m −
√

M
)2

r(A)

)
≤ f

(
m

MI−A
M−m M

A−mI
M−m

)
≤ L (A)−

(√
f (m)−

√
f (M)

)2
r(A).

It follows from the linearity and the positivity of the map Φ that

Φ
(

f
(

A −
(√

m −
√

M
)2

r(A)

))
≤ Φ

(
f
(

m
MI−A
M−m M

A−mI
M−m

))
≤ Φ (L (A))−

(√
f (m)−

√
f (M)

)2
Φ(r(A)).

Now, by using [5] Corollary 4.12 we get

Φ
(

f
(

A −
(√

m −
√

M
)2

r(A)

))
≤ Φ

(
f
(

m
MI−A
M−m M

A−mI
M−m

))
≤ Φ (L (A))−

(√
f (m)−

√
f (M)

)2
Φ(r(A))

≤ μ (m, M, f ) f (Φ (A))−
(√

f (m)−
√

f (M)

)2
Φ(r(A)).

This completes the proof.

As discussed extensively in [6] Cahpter 2, for f (t) = tp, we have

μ (m, M, tp) = max
{

1
tp

(
M − t
M − m

mp +
t − m

M − m
Mp

)
: t ∈ [m, M]

}
=

(mMp − Mmp)

(p − 1) (M − m)

(
p − 1

p
Mp − mp

mMp − Mmp

)p
.

Now, the following fact can be easily deduced from Theorem 1 and Example 1.
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Corollary 1. Let A ∈ B (H) be a positive operator with σ (A) ⊆ [m, M] for some scalars m, M with 0 < m < M
and Φ be a normalized positive linear map from B (H) to B (K). Then for any p < 0,

Φ (Ap) ≤ Φ
((

A −
(√

m −
√

M
)2

r (A)

)p)
≤ Φ

((
m

A−MI
M−m M

mI−A
M−m

)p)
≤ K (m, M, p)Φ(A)p −

(
mp/2 − Mp/2

)2
Φ (r (A))

where

K (m, M, p) =
(mMp − Mmp)

(p − 1) (M − m)

(
p − 1

p
Mp − mp

mMp − Mmp

)p
.

In particular,

Φ
(

A−1
)
≤ Φ

((
A −

(√
m −

√
M

)2
r(A)

)−1
)

≤ Φ
((

m
A−MI
M−m M

mI−A
M−m

)−1
)

≤ (M + m)2

4Mm
Φ(A)−1 −

⎛⎜⎝
(√

M −√
m
)2

Mm

⎞⎟⎠ Φ(r(A)).

We note that K (m, M,−1) = (M+m)2

4Mm is the original Kantorovich constant.

Theorem 2. Let all the assumptions of Theorem 1 hold. Then

f
(

Φ (A)−
(√

m −
√

M
)2

r(Φ(A))

)
≤ f

(
m

MI−Φ(A)
M−m M

Φ(A)−mI
M−m

)
≤ μ (m, M, f )Φ ( f (A))−

(√
f (m)−

√
f (M)

)2
r(Φ(A)).

Proof. By applying a standard functional calculus for the operator Φ(A) such that mI ≤ Φ (A) ≤ MI, we
get from (8)

f
(

Φ (A)−
(√

m −
√

M
)2

r(Φ(A))

)
≤ f

(
m

MI−Φ(A)
M−m M

Φ(A)−mI
M−m

)
≤ Φ (L (A))−

(√
f (m)−

√
f (M)

)2
r(Φ(A)).
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We thus have

f
(

Φ (A)−
(√

m −
√

M
)2

r(Φ(A))

)
≤ f

(
m

MI−Φ(A)
M−m M

Φ(A)−mI
M−m

)
≤ L (Φ (A))−

(√
f (m)−

√
f (M)

)2
r(Φ(A))

= Φ (L (A))−
(√

f (m)−
√

f (M)

)2
r(Φ(A))

≤ μ (m, M, f )Φ ( f (A))−
(√

f (m)−
√

f (M)

)2
r(Φ(A))

where at the last step we used the basic inequality [5] Corollary 4.12.
Hence, the proof is complete.

As a corollary of Theorem 2 we have:

Corollary 2. Let all the assumptions of Corollary 1 hold. Then for any p < 0

Φ(A)p ≤
(

Φ (A)−
(√

m −
√

M
)2

r(Φ(A))

)p

≤
(

m
MI−Φ(A)

M−m M
Φ(A)−mI

M−m

)p

≤ K (m, M, p)Φ (Ap)−
(√

mp −
√

Mp
)2

r(Φ(A)).

Remark 1. Notice that the inequalities in Corollary 2 are stronger than the inequalities obtained in [11] Corollary 2.1.

Recall that if f is operator convex, the solidarities [12] or the perspective [13] of f is defined by

P f (A | B) = A
1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2 .

Using a series of inequalities (6) we have the upper bounds of the perspective for non-negative
decreasing geometrically convex function (not necessary operator convex f ). We use the same symbol
P f (A | B) for a simplicity.

Proposition 1. Let A, B > 0 with mA ≤ B ≤ MA for some scalars 0 < m < M. For a non-negative decreasing
geometrically convex function f , we have

P f (A | B) ≤ A1/2 f
(

A−1/2BA−1/2 −
(√

m −
√

M
)2

r(A, B)
)

A1/2

≤ A1/2 f
(

m
MI−A−1/2BA−1/2

M−m M
A−1/2BA−1/2−mI

M−m

)
A1/2

≤ A1/2 f (m)
MI−A−1/2BA−1/2

M−m f (M)
A−1/2BA−1/2−mI

M−m A1/2

≤ M f (m)− m f (M)

M − m
A +

f (M)− f (m)

M − m
B −

(√
f (m)−

√
f (M)

)2
A1/2r(A, B)A1/2

≤ M f (m)− m f (M)

M − m
A +

f (M)− f (m)

M − m
B,
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where

r (A, B) = min

{
A−1/2 BA−1/2 − mI

M − m
,

MI − A−1/2 BA−1/2

M − m

}

=
1
2

I − 1
M − m

∣∣∣∣A−1/2 BA−1/2 − M + m
2

I
∣∣∣∣ .
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1. Introduction

The notion of majorization was introduced in the celebrated monograph [1] by Hardy, Littlewood
and Pólya, which was used as a measure of the diversity of the components of an n-dimensional vector.

Let ν = (ν1, ν2, . . . , νn) and ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples. The n-tuple ν is said to be
majorized by ϑ (in symbols ν ≺ ϑ) if ∑k

i=1 ν[i] ≤ ∑k
i=1 ϑ[i] for k = 1, 2, . . . , n − 1 and ∑n

i=1 νi = ∑n
i=1 ϑi,

where ν[1] ≥ ν[2] ≥ · · · ≥ ν[n] and ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[n] are rearrangements of ν and ϑ in a
descending order.

The majorization has been found many applications in different fields of mathematics. A survey
of the applications of majorization and relevant results can be found in the monograph of Marshall
and Olkin [2]. Recently, the authors have given considerable attention to the generalizations and
applications of the majorization and related inequalities, for details, we refer the reader to our
papers [3–13].

In this paper we focus on a type of majorization inequality involving convex functions, which
reveals the correlations among majorization, convex functions and inequalities. Now, let us recall
briefly this type of majorization inequality.

The following classical majorization inequality can be found in the monographs of Marshall and
Olkin [2] and Pečarić et al. [14].

Theorem 1. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ I (i = 1, 2, . . . , n), I is
an interval. Then

n

∑
i=1

Ψ(νi) ≤
n

∑
i=1

Ψ(ϑi) (1)

holds for every continuous convex function Ψ : I → R if and only if ν ≺ ϑ holds.

Fuchs [15] gave a weighted generalization of the majorization theorem, as follows:

Mathematics 2019, 7, 663; doi:10.3390/math7080663 www.mdpi.com/journal/mathematics119
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Theorem 2. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two decreasing n-tuples, νi, ϑi ∈ I (i =

1, 2, . . . , n), I is an interval. Suppose �1, �2, . . . , �n are real numbers such that ∑k
i=1 �iνi ≤ ∑k

i=1 �iϑi for
k = 1, 2, . . . , n − 1 and ∑n

i=1 �iνi = ∑n
i=1 �iϑi. Then

n

∑
i=1

�iΨ(νi) ≤
n

∑
i=1

�iΨ(ϑi) (2)

holds for any continuous convex function Ψ : I → R.

Bullen, Vasić, and Stanković [16] presented a result similar to the above result, in which the
condition of the tuples ν, ϑ is relaxed and the condition of the function Ψ is intensified.

Theorem 3. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two decreasing n-tuples, νi, ϑi ∈ I (i =

1, 2, . . . , n), I is an interval. Suppose �1, �2, . . . , �n are real numbers such that ∑k
i=1 �iνi ≤ ∑k

i=1 �iϑi for
k = 1, 2, . . . , n. If Ψ : I → R is a continuous increasing convex function, then

n

∑
i=1

�iΨ(νi) ≤
n

∑
i=1

�iΨ(ϑi). (3)

The aim of this paper is to establish the refinements of majorization inequalities of Theorems 1–3.
To achieve this, we will first establish an equality by using Taylor theorem with mean-value form
of the remainder, which enables us to deduce the refined versions of majorization inequalities
mentioned above.

2. Lemma

Lemma 1. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
and let �1, �2, . . . , �n be real numbers. If Ψ : [a, b] → R is a function such that Ψ

′ ∈ C[a, b] and Ψ
′′

exists on
(a, b), then there exists τi between νi and ϑi satisfying

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)�i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2. (4)

Proof. Using the Taylor’s formula with the Lagrange remainder (mean-value form of the
remainder) gives

Ψ(ϑi) = Ψ(νi) +
Ψ

′
(νi)

1!
(ϑi − νi) +

Ψ
′′
(τi)

2!
(ϑi − νi)

2, (5)

where νi, ϑi ∈ (a, b), τi is a real number between νi and ϑi (i = 1, 2, . . . , n).
Multiplying both sides of (5) by �i and taking summation over i (i = 1, 2, . . . , n), we get

n

∑
i=1

�iΨ(ϑi) =
n

∑
i=1

�iΨ(νi) +
n

∑
i=1

Ψ
′
(νi)�i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2,

which is the desired equality (4). The proof of Lemma 1 is complete.

3. Main Results

In this section, we establish some refinements of the majorization inequality.
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Theorem 4. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n).
If ν ≺ ϑ and Ψ : [a, b] → R is a twice differentiable convex function, then there exists a real number τi between
ν[i] and ϑ[i] (i = 1, 2, . . . , n) such that

n

∑
i=1

Ψ(ϑi)−
n

∑
i=1

Ψ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
(ϑ[i] − ν[i])

2. (6)

where ν[1] ≥ ν[2] ≥ · · · ≥ ν[n] and ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[n] are rearrangements of ν and ϑ in a
descending order.

Proof. Using Lemma 1 with �i = 1, νi = ν[i], ϑi = ϑ[i] (i = 1, 2, . . . , n), one has

n

∑
i=1

Ψ(ϑ[i])−
n

∑
i=1

Ψ(ν[i]) =
n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) +

n

∑
i=1

Ψ
′′
(τi)

2
(ϑ[i] − ν[i])

2,

that is
n

∑
i=1

Ψ(ϑi)−
n

∑
i=1

Ψ(νi) =
n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) +

n

∑
i=1

Ψ
′′
(τi)

2
(ϑ[i] − ν[i])

2, (7)

where νi, ϑi ∈ (a, b), τi is a real number between ν[i] and ϑ[i] (i = 1, 2, . . . , n).
Let

Ak =
k

∑
i=1

ϑ[i], Bk =
k

∑
i=1

ν[i] (k = 1, 2, . . . , n), A0 = B0 = 0.

Considering the first term in the right hand side of (7), we have

n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) =

n

∑
i=1

Ψ
′
(ν[i])(Ai − Ai−1 − Bi + Bi−1)

=
n

∑
i=1

Ψ
′
(ν[i])(Ai − Bi)−

n

∑
i=1

Ψ
′
(ν[i])(Ai−1 − Bi−1)

= Ψ
′
(ν[n])(An − Bn) +

n−1

∑
i=1

(Ψ
′
(ν[i])− Ψ

′
(ν[i+1]))(Ai − Bi).

It follows from ν ≺ ϑ that An − Bn = 0 and Ai − Bi ≥ 0 for i = 1, 2, . . . , n − 1.
Additionally, since Ψ is a continuous convex function on [a, b], we deduce from ν[i] ≥ ν[i+1]

(i = 1, 2, . . . , n − 1) that

Ψ
′
(ν[i])− Ψ

′
(ν[i+1]) ≥ 0 for i = 1, 2, . . . , n − 1.

Hence
n

∑
i=1

Ψ
′
(ν[i])(ϑ[i] − ν[i]) ≥ 0,

which, along with the equality (7), leads to the required inequality (6). This completes the proof of
Theorem 4.

Remark 1. The inequality of Theorem 4 is a refinement of the inequality of Theorem 1, since the term

∑n
i=1

Ψ
′′
(τi)
2 (ϑ[i] − ν[i])

2 in inequality (6) is nonnegative.

In the following, we provide two refinements of majorization inequality by keeping one of the
tuples decreasing (increasing).
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Theorem 5. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b] → R be a twice differentiable convex function, and let �1, �2, . . . , �n be real numbers such that
∑k

i=1 �iνi ≤ ∑k
i=1 �iϑi for k = 1, 2, . . . , n − 1 and ∑n

i=1 �iνi = ∑n
i=1 �iϑi.

(i) If ν is a decreasing n-tuple, then there exists a real number τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n)
such that

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2. (8)

(ii) If ϑ is a increasing n-tuple, then there exists another real number σi between ν[i] and ϑ[i] (i = 1, 2, . . . , n)
such that

n

∑
i=1

�iΨ(νi)−
n

∑
i=1

�iΨ(ϑi) ≥
n

∑
i=1

Ψ
′′
(σi)

2
�i(ϑi − νi)

2. (9)

Proof. (i) It follows from Lemma 1 that

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)�i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2, (10)

where νi, ϑi ∈ (a, b), τi is a real number between νi and ϑi (i = 1, 2, . . . , n). Let

Ak =
k

∑
i=1

�iϑi, Bk =
k

∑
i=1

�iνi (k = 1, 2, . . . , n), A0 = B0 = 0.

Then, we have Ai ≥ Bi (i = 1, 2, . . . , n − 1), An = Bn, and

n

∑
i=1

Ψ
′
(νi)�i(ϑi − νi) =

n

∑
i=1

Ψ
′
(νi)(Ai − Ai−1 − Bi + Bi−1)

= Ψ
′
(νn)(An − Bn) +

n−1

∑
i=1

(Ψ
′
(νi)− Ψ

′
(νi+1))(Ai − Bi).

=
n−1

∑
i=1

(Ψ
′
(νi)− Ψ

′
(νi+1))(Ai − Bi).

Noting that Ψ is a continuous convex function on [a, b], and ν is a decreasing n-tuple, we obtain
Ψ

′
(νi)− Ψ

′
(νi+1) ≥ 0 for i = 1, 2, . . . , n − 1.

Hence
n

∑
i=1

Ψ
′
(νi)�i(ϑi − νi) ≥ 0,

which, together with inequality (10), leads to the required inequality (8).
(ii) Similarly, we can prove the inequality (9) under the condition that ϑ is an increasing n-tuple.

The proof of Theorem 5 is complete.

Remark 2. The inequality (8) of Theorem 5 is a refinement of the inequality (2) of Theorem 2 in the case when
�1, �2, . . . , �n are positive numbers.

Theorem 6. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b] → R be a twice differentiable and increasing convex function, and let �1, �2, . . . , �n be real numbers
such that ∑k

i=1 �iνi ≤ ∑k
i=1 �iϑi for k = 1, 2, . . . , n. If ν is a decreasing n-tuple, then there exists a real number

τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n) such that

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2. (11)
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Proof. Let

Ak =
k

∑
i=1

�iϑi, Bk =
k

∑
i=1

�iνi (k = 1, 2, . . . , n), A0 = B0 = 0.

By Lemma 1, for any νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n), there exists a real number between νi and ϑi
such that

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)�i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2

=
n

∑
i=1

Ψ
′
(νi)(Ai − Ai−1 − Bi + Bi−1) +

n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2

= Ψ
′
(νn)(An − Bn) +

n−1

∑
i=1

(Ψ
′
(νi)− Ψ

′
(νi+1))(Ai − Bi) +

n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2.

Since Ψ is a continuous convex function on [a, b], and ν is a decreasing n-tuple, we obtain
Ψ

′
(νi)− Ψ

′
(νi+1) ≥ 0 for i = 1, 2, . . . , n − 1. In addition, since Ψ is an increasing function on [a, b],

we get Ψ
′
(νn) ≥ 0. Now, by using the assumption conditions Ai ≥ Bi (k = 1, 2, . . . , n), we conclude that

Ψ
′
(νn)(An − Bn) +

n−1

∑
i=1

(Ψ
′
(νi)− Ψ

′
(νi+1))(Ai − Bi) ≥ 0.

Therefore, we have

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2.

The Theorem 6 is proved.

Remark 3. The inequality (11) of Theorem 6 is a refinement of the inequality (3) of Theorem 3 in the case when
�1, �2, . . . , �n are positive numbers.

Theorem 7. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b] → R be a twice differentiable convex function, and let �1, �2, . . . , �n be positive numbers. If ν and
ϑ − ν are monotonic in the same sense, then there exists a real number τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n)
such that

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) ≥
1

�1 + �2 + · · ·+ �n

n

∑
i=1

�iΨ′(νi)
n

∑
i=1

�i(ϑi − νi)

+
n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2. (12)

Proof. Since Ψ is convex function, and tuple ν and tuple ϑ − ν are monotonic in the same sense, we
conclude that Ψ′(ν) and ϑ − ν are monotonic in the same sense.

Using the Chebyshev’s inequality for weights �1, �2, . . . , �n, we obtain

(
n

∑
i=1

�i)
n

∑
i=1

�iΨ′(νi)(ϑi − νi) ≥
n

∑
i=1

�iΨ′(νi)
n

∑
i=1

�i(ϑi − νi).

On the other hand, by Lemma 1, for any νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n), there exists a real number
τi between νi and ϑi such that

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) =
n

∑
i=1

Ψ
′
(νi)�i(ϑi − νi) +

n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2.
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Hence, we get

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) ≥
1

�1 + �2 + · · ·+ �n

n

∑
i=1

�iΨ′(νi)
n

∑
i=1

�i(ϑi − νi)

+
n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2.

This proves the required inequality (12) in Theorem 7.

Applying an additional condition ∑n
i=1 �iνi ≤ ∑n

i=1 �iϑi to inequality (12), we obtain the
following result.

Corollary 1. Let ν = (ν1, ν2, . . . , νn), ϑ = (ϑ1, ϑ2, . . . , ϑn) be two n-tuples, νi, ϑi ∈ (a, b) (i = 1, 2, . . . , n),
let Ψ : [a, b] → R be a twice differentiable and increasing convex function, and let �1, �2, . . . , �n be positive
numbers. If ν and ϑ − ν are monotonic in the same sense, and ∑n

i=1 �iνi ≤ ∑n
i=1 �iϑi, then there exists a real

number τi between ν[i] and ϑ[i] (i = 1, 2, . . . , n) such that

n

∑
i=1

�iΨ(ϑi)−
n

∑
i=1

�iΨ(νi) ≥
n

∑
i=1

Ψ
′′
(τi)

2
�i(ϑi − νi)

2. (13)

4. An Application

In this section we establish a new fractional inequality to illustrate the application of our results.

Theorem 8. Let ξ1, ξ2, ξ3 be positive numbers and ξ1 ≥ ξ2 ≥ ξ3. Then we have the inequality

1
2ξ1

+
1

2ξ2
+

1
2ξ3

− 1
ξ1 + ξ2

− 1
ξ1 + ξ3

− 1
ξ2 + ξ3

≥ (ξ1 − ξ2)
2

2ξ1(ξ1 + ξ2)2 +
(2ξ2 − ξ1 − ξ3)

2

2ξ2(ξ1 + ξ3)2 +
(ξ2 − ξ3)

2

2ξ3(ξ2 + ξ3)2 . (14)

Proof. From the given condition ξ1 ≥ ξ2 ≥ ξ3, it is easy to check that

ξ1 + ξ2 ≥ ξ1 + ξ3 ≥ ξ2 + ξ3, 2ξ1 ≥ 2ξ2 ≥ 2ξ3

and
(ξ1 + ξ2, ξ1 + ξ3, ξ2 + ξ3) ≺ (2ξ1, 2ξ2, 2ξ3).

Using Theorem 4 and taking ν = (ξ1 + ξ2, ξ1 + ξ3, ξ2 + ξ3), ϑ = (2ξ1, 2ξ2, 2ξ3), Ψ(x) = 1
x , x ∈

(0,+∞) in (6), we obtain that there exists a real number τi between ν[i] and ϑ[i] (i = 1, 2, 3) such that

1
2ξ1

+
1

2ξ2
+

1
2ξ3

− 1
ξ1 + ξ2

− 1
ξ1 + ξ3

− 1
ξ2 + ξ3

≥ 1
τ3

1
(ξ1 − ξ2)

2 +
1
τ3

2
(2ξ2 − ξ1 − ξ3)

2 +
1
τ3

3
(ξ2 − ξ3)

2. (15)

Further, by (5) we find that τ1, τ2, τ3 satisfy

1
2ξ1

− 1
ξ1 + ξ2

= − ξ1 − ξ2

(ξ1 + ξ2)
2 +

1
τ3

1
(ξ1 − ξ2)

2,

1
2ξ2

− 1
ξ1 + ξ3

= −2ξ2 − ξ1 − ξ3

(ξ1 + ξ3)
2 +

1
τ3

2
(2ξ2 − ξ1 − ξ3)

2,
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1
2ξ3

− 1
ξ2 + ξ3

= − ξ3 − ξ2

(ξ2 + ξ3)
2 +

1
τ3

3
(ξ3 − ξ2)

2.

From the above equations, we have

τ3
1 = 2ξ1(ξ1 + ξ2)

2, τ3
2 = 2ξ2(ξ1 + ξ3)

2, τ3
3 = 2ξ3(ξ3 + ξ2)

2. (16)

Combining (15) and (16) leads to the desired inequality (14). The proof of Theorem 8 is complete.
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8. Adil Khan, M.; Khalid, S.; Pečarić, J.E. Refinements of some majorization type inequalities. J. Math. Inequal.

2013, 7, 73–92. [CrossRef]
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11. Adil Khan, M.; Latif, N.; Pečarić, J.E.; Perić, I. On Majorization for Matrices. Math. Balk. 2013, 27, 3–19.
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1. Introduction

In 1906, L. Fejér [1] proved the following integral inequalities known in the literature as
Fejér’s inequality:

f
( a + b

2

) ∫ b

a
g(x)dx ≤

∫ b

a
f (x)g(x)dx ≤ f (a) + f (b)

2

∫ b

a
g(x)dx, (1)

where f : [a, b] → R is convex and g : [a, b] → R+ = [0,+∞) is integrable and symmetric to
x = a+b

2
(

g(x) = g(a + b − x), ∀x ∈ [a, b]
)
. If in (1) we consider g ≡ 1, we recapture the classic

Hermite–Hadamard inequality [2,3]:

f
( a + b

2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
.

In [4], two difference mappings L and P associated with Hermite–Hadamard’s inequality have been
introduced as follows:

L : [a, b] → R, L(t) =
f (a) + f (t)

2
(t − a)−

∫ t

a
f (s)ds

P : [a, b] → R, P(t) =
∫ t

a
f (s)ds − (t − a) f

( a + t
2

)
.

Some properties for L and P, refinements for Hermite–Hadamard’s inequality and some applications
were raised in [4] as well:

Mathematics 2019, 7, 802; doi:10.3390/math7090802 www.mdpi.com/journal/mathematics126
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Theorem 1 (Theorem 1 in [4]). Let f : I ⊂ R → R be a convex mapping on the interval I and let a < b be
fixed in I◦. Then, we have the following:

(i) The mapping L is nonnegative, monotonically nondecreasing, and convex on [a, b]
(ii) The following refinement of Hadamard’s inequality holds:

1
b − a

∫ b

a
f (s)ds ≤ 1

b − a

∫ b

y
f (s)ds +

(y − a
b − a

) f (a) + f (y)
2

≤ f (a) + f (b)
2

,

for each y ∈ [a, b].
(iii) The following inequality holds:

α
f (t) + f (a)

2
(t − a) + (1 − α)

f (s) + f (a)
2

(s − a)−
f (αt + (1 − α)s) + f (a)

2
[αt + (1 − α)s − α] ≥

α
∫ t

a
f (u)du + (1 − α)

∫ s

a
f (u)du −

∫ αt+(1−α)s

a
f (u)du,

for every t, s ∈ [a, b] and each α ∈ [0, 1].

Theorem 2 (Theorem 2 in [4]). Let f : I ⊂ R → R be a convex mapping on the interval I and let a < b be
fixed in I◦. Then, we have the following:

(i) The mapping P is nonnegative and monotonically nondecreasing on [a, b].
(ii) The following inequality holds:

0 ≤ P(t) ≤ L(t), f or all t ∈ [a, b].

(iii) The following refinement of Hadamard’s inequality holds:

f
( a + b

2

)
≤

[
(b − a) f

( a + b
2

)
− (y − a) f

( a + y
2

)]
+

1
b − a

∫ y

a
f (s)ds ≤ 1

b − a

∫ b

a
f (s)ds,

for all y ∈ [a, b].

The main results obtained in [4] (Theorems 1 and 2) are based on the facts that if f : [a, b] → R
is convex, then for all x, y ∈ [a, b] with x �= y we have (see, [5,6]):

f
( x + y

2

)
≤ 1

y − x

∫ y

x
f (s)ds ≤ f (x) + f (y)

2
,

and

f (x)− f (y) ≥ (x − y) f ′+(y),

where f ′+(y) is the right-derivative of f at y.
Motivated by the above concepts, inequalities and results, we introduce two difference mappings,
Lw and Pw, related to Fejér’s inequality:

Lw : [a, b] → R, Lw(t) =
f (a) + f (t)

2

∫ t

a
w(s)ds −

∫ t

a
f (x)w(x)dx,

Pw : [a, b] → R, Pw(t) =
∫ t

a
f (x)w(x)dx − f

( a + t
2

) ∫ t

a
w(x)dx.

In the case that w ≡ 1, the mappings Lw and Pw reduce to L and P, respectively.
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In this paper we obtain some properties for Lw and Pw that imply some refinements for Fejér’s
inequality in the case that w is a nonsymmetric monotone function. Also, our results generalize
Theorems 1 and 2 from Hermite–Hadamard’s type to Fejér’s type. Furthermore as applications,
we find some numerical and special means type inequalities.

To obtain our respective results, we need the modified version of Theorem 5 in [7] which includes
the left and right part of Fejér’s inequality in the monotone nonsymmetric case.

Theorem 3. Let f : I ⊂ R → R be a convex function on the interval I and differentiable on I◦. Consider a, b ∈ I◦

with a < b such that w : [a, b] → R is a nonnegative, integrable and monotone function. Then

(1) If w′(x) ≤ 0 (w′(x) ≥ 0), a ≤ x ≤ b and f (a) ≤ f (b)
(

f (a) ≥ f (b)
)
, then

∫ b

a
f (x)w(x)dx ≤ f (a) + f (b)

2

∫ b

a
w(x)dx. (2)

(2) If w′(x) ≥ 0 (w′(x) ≤ 0), a ≤ x ≤ b and f (a) ≤ f ( a+b
2 )

(
f (a) ≥ f ( a+b

2 )
)
, then

f
( a + b

2

) ∫ b

a
f (x)w(x)dx ≤

∫ b

a
f (x)w(x)dx. (3)

The main point in Theorem 3 (1) (w′(x) ≤ 0), is that we have (2) for any x, y ∈ [a, b] with
f (x) ≤ f (y) without the need for w to be symmetric with respect to x+y

2 . Also similar properties hold
for other parts of the above theorem.

Example 1. Consider f (x) = 1
t and w(x) = 1

t2 for t > 0. It is clear that f is convex and w is nonsymmetric
and decreasing. If we consider 0 < x ≤ y, then from the fact that (y − x)2 ≥ 0 we obtain that

2
x + y

≤ x + y
2xy

.

This inequality implies that
2

x + y

(y − x
xy

)
≤ y2 − x2

2x2y2 .

It follows that
2

x + y

( 1
x
− 1

y

)
≤ 1

2x2 − 1
2y2 .

So ( 1
x+y

2

) ∫ y

x

1
t2 dt ≤

∫ y

x

1
t3 dt,

shows that f and w satisfy (3) on [x, y], where w is not symmetric. Also, we can see that f and w satisfy (2).

2. Main Results

The first result of this section is about some properties of the mapping Lw where the function w is
nonincreasing.

Theorem 4. Let f : I ⊂ R → R be a convex function on the interval I and differentiable on I◦. Consider a, b ∈ I◦

with a < b such that w : [a, b] → R is a nonnegative and differentiable function with w′(x) ≤ 0 for all
a ≤ x ≤ b. Then

(i) The mapping Lw is nonnegative on [a, b], if f (a) ≤ f (t) for all t ∈ [a, b].
(ii) The mapping Lw is convex on [a, b], if f is nondecreasing. Also Lw is monotonically nondecreasing

on [a, b].
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(iii) The following refinement of (2) holds:

∫ b

a
f (x)w(x) ≤∫ b

y
f (x)w(x)dx +

f (a) + f (y)
2

∫ y

a
w(x)dx ≤ (4)

f (a) + f (b)
2

∫ b

a
w(x)dx,

for any y ∈ [a, b] with f (a) ≤ f (y).
(iv) If f is nondecreasing, then the following inequality holds:

t
∫ u

a
f (x)w(x)dx + (1 − t)

∫ v

a
f (x)w(x)dx −

∫ tu+(1−t)v

a
f (x)w(x)dx ≤

t
f (u) + f (a)

2

∫ u

a
w(x)dx + (1 − t)

f (v) + f (u)
2

∫ v

a
w(x)dx (5)

− f (tu + (1 − t)v) + f (a)
2

∫ tu+(1−t)v

a
w(x)dx,

for any u, v ∈ [a, b] and each t ∈ [0, 1].
(v) If f ′ ∈ L([a, b]), then for each t ∈ [a, b] we have

|Lw(t)| ≤
(t − a)2

2

∫ t

a
w(x)| f ′(x)|dx. (6)

Furthermore when | f ′| is convex on [a, b], then:

|Lw(t)| ≤
t − a

2

[
| f ′(a)|

∫ t

a
(t − x)w(x)dx + | f ′(t)|

∫ t

a
(x − a)w(x)dx

]
. (7)

Proof. (i) We need only the inequality

∫ t

a
f (x)w(x)dx ≤ f (a) + f (t)

2

∫ t

a
w(x)dx,

for all t ∈ [a, b]. This happens according to Theorem 3 (1).
(ii) Without loss of generality for a ≤ y < x < b consider the following identity:

Lw(x)− Lw(y) = (8)

f (x) + f (a)
2

∫ x

a
w(s)ds − f (y) + f (a)

2

∫ y

a
w(s)ds −

∫ x

y
f (s)w(s)ds

Dividing with “x − y” and then letting x → y we obtain that

2L
′
+w(y)− f (a)w(y) + f (y)w(y) = f ′+(y)

∫ y

a
w(s)ds. (9)

Also from the convexity of f we have

f ′+(y) ≤
f (x)− f (y)

x − y
,
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which, along with the fact that w is nonincreasing, implies that

f ′+(y)
∫ y

a
w(s)ds ≤ f (x)− f (y)

x − y

∫ y

a
w(s)ds

≤ f (x) + f (a)
x − y

∫ x

a
w(s)ds − f (y) + f (a)

x − y

∫ y

a
w(s)ds (10)

+ [ f (y)− f (a)]w(y)− f (x) + f (y)
x − y

∫ x

y
w(s)ds.

So from (9) and (10) we get

L
′
+w(y) ≤ (11)

f (x) + f (a)
2(x − y)

∫ x

a
w(s)ds − f (y) + f (a)

2(x − y)

∫ y

a
w(s)ds − f (x) + f (y)

2(x − y)

∫ x

y
w(s)ds.

On the other hand from (8) and Theorem 3 (1), we have

Lw(x)− Lw(y)
x − y

≥

f (x) + f (a)
2(x − y)

∫ x

a
w(s)ds − f (y) + f (a)

2(x − y)

∫ y

a
w(s)ds − f (x) + f (y)

2(x − y)

∫ x

y
w(s)ds,

and, along with (11), we obtain that

Lw(x)− Lw(y)
x − y

≥ L
′
+w(y).

This implies the convexity of Lw(t).
For the fact that L is monotonically nondecreasing, from convexity of f on [a, b] we have

f ′+(y) ≥
f (y)− f (a)

y − a
,

for all y ∈ [a, b] and so

Lw(x)− Lw(y)
x − y

≥ L
′
+w(y) =

f ′+(y)
2

∫ y

a
w(s)ds +

f (a)w(y)
2

− f (y)w(y)
2

=
1
2

[
f ′+(y)

∫ y

a
w(s)ds +

(
f (a)− f (y)

)
w(y)

]
≥

1
2

[
f ′+(y)(y − a)−

(
f (y)− f (a)

)]
w(y) ≥ 0,

for any x > y.
(iii) Since Lw is monotonically nondecreasing we have 0 ≤ Lw(y) ≤ Lw(b), for all y ∈ [a, b] and so

f (y) + f (a)
2

∫ y

a
w(x)dx −

∫ y

a
f (x)w(x)dx ≤

f (b) + f (a)
2

∫ b

a
w(x)dx −

∫ b

a
f (x)w(x)dx,

which implies that

∫ b

y
f (x)w(x)dx +

f (a) + f (y)
2

∫ y

a
w(x)dx ≤ f (a) + f (b)

2

∫ b

a
w(x)dx. (12)
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Also, by the use of Theorem 3 (1) we get

∫ b

y
f (x)w(x)dx +

f (a) + f (y)
2

∫ y

a
w(x)dx (13)

≥
∫ b

y
f (x)w(x)dx +

∫ y

a
f (x)w(x)dx =

∫ b

a
f (x)w(x)dx.

Now from (12) and (13), we have the result.
(iv) Since Lw is convex, then from the fact that

Lw(tu + (1 − t)v) ≤ tLw(u) + (1 − t)Lw(v),

for any u, v ∈ [a, b] and each t ∈ [0, 1], we have the result.
(v) The following identity was obtained in [8]:

f (a) + f (t)
2

∫ t

a
w(x)dx −

∫ t

a
f (x)w(x)dx =

(t − a)2

2

∫ 1

0
p(s) f ′

(
sa + (1 − s)t

)
ds, (14)

for any t ∈ [a, b] where

p(s) =
∫ 1

s
w
(
ua + (1 − u)t

)
du +

∫ 0

s
w
(
ua + (1 − u)t

)
du, s ∈ [0, 1].

Since w is nonincreasing, then we obtain

∫ 1

s
w
(
ua + (1 − u)t

)
du ≤ w

(
sa + (1 − s)t

)
(as + (1 − s)t − a) =

w
(
sa + (1 − s)t

)
(1 − s)(t − a),

and ∫ 0

s
w
(
ua + (1 − u)t

)
du ≤ w

(
sa + (1 − s)t

)
(t − sa − (1 − s)t) =

w
(
sa + (1 − s)t

)
s(t − a).

So

|p(s)| ≤ w
(
sa + (1 − s)t

)
(t − a), s ∈ [0, 1]. (15)

Now by the use of (15) in (14) we get

|Lw(t)| ≤
(t − a)3

2

∫ 1

0
w
(
sa + (1 − s)t

)
| f ′(sa + (1 − s)t)|ds, (16)

for any t ∈ [a, b]. Using the change of variable x = sa + (1 − s)t and some calculations imply that

|Lw(t)| ≤
(t − a)2

2

∫ t

a
w(x)| f ′(x)|dx,

for any t ∈ [a, b]. Furthermore if | f ′| is convex on [a, b], then from (16) and by the use of the change of
variable x = sa + (1 − s)t we get

|Lw(t)| ≤
(t − a)3

2

[
| f ′(a)|

∫ t

a

t − x
t − a

w(x)
dx

t − a
+ | f ′(t)|

∫ t

a

x − a
t − a

w(x)
dx

t − a

]
,

which implies that
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|Lw(t)| ≤
(t − a)

2

[
| f ′(a)|

∫ t

a
(t − x)w(x)dx + | f ′(t)|

∫ t

a
(x − a)w(x)dx

]
,

for any t ∈ [a, b].

Remark 1. (i) By the use of Theorem 3 (1), it is not hard to see that if w is nondecreasing on [a, b], then some
properties of Lw and corresponding results obtained in Theorem 4 may change. However the argument of proof
is similar. The details are omitted.

(ii) Theorem 4 gives a generalization of Theorem 1, along with some new results.

The following result is including some properties of the mapping Pw in the case that w is
nondecreasing.

Theorem 5. Let f : I ⊂ R → R be a convex function on the interval I and differentiable on I◦. Consider a, b ∈ I◦

with a < b such that w : [a, b] → R is a nonnegative and continuous function with w′(x) ≥ 0 for all
a ≤ x ≤ b. Then

(i) Pw is nonnegative, if f (a) ≤ f
( a+t

2
)

for any t ∈ [a, b].
(ii) If for any x < y we have f (x) ≤ f ( x+y

2 ), then Pw is nondecreasing on [a, b].
(iii) If f ′ ∈ L([a, b]), then for each t ∈ [a, b] we have

|Pw(t)| ≤ (t − a)
[ ∫ a+t

2

a
w(x)(x − a)| f ′(x)|dx +

∫ t

a+t
2

w(x)(t − x)| f ′(x)|dx
]

. (17)

Furthermore when | f ′| is convex on [a, b], then:

|Pw(t)| ≤
[ ∫ a+t

2

a
w(x)(t − x)(x − a)dx +

∫ t

a+t
2

w(x)(t − x)2dx
]
| f ′(a)|+ (18)[ ∫ a+t

2

a
w(x)(x − a)2dx +

∫ t

a+t
2

w(x)(t − x)(x − a)dx
]
| f ′(t)|.

(iv) The following inequality holds:

Pw(t)− Lw(t) ≤
∫ t

a
f (x)w(x)dx, (19)

provided that f (a) ≤ f
( a+t

2
)

for all t ∈ [a, b].
(v) If for any x < y we have f (x) ≤ f ( x+y

2 ), then the following refinement of (3) holds:

f
( a + b

2

) ∫ b

a
w(x)dx ≤∫ t

a
f (x)w(x)dx + f

( a + b
2

) ∫ b

a
w(x)dx − f

( a + t
2

) ∫ t

a
w(x)dx ≤ (20)∫ b

a
f (x)w(x)dx,

for all t ∈ [a, b].

Proof. (i) It follows from Theorem 3 (2).
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(ii) Suppose that a ≤ x < y < b. So from Theorem 3 (2) and the facts that w is nondecreasing and
f is convex, we get

Pw(y)− Pw(x) =∫ y

a
f (t)w(t)dt − f

( a + y
2

) ∫ y

a
w(t)dt −

∫ x

a
f (t)w(t)dt + f

( a + x
2

) ∫ x

a
w(t)dt =∫ y

x
f (t)w(t)dt + f

( a + x
2

) ∫ x

a
w(t)dt − f

( a + y
2

) ∫ y

a
w(t)dt ≥

f
( x + y

2

) ∫ y

x
w(t)dt + f

( a + x
2

) ∫ x

a
w(t)dt − f

( a + y
2

) ∫ y

a
w(t)dt ≥

f
( x + y

2

)
(y − x)w(x) + f

( a + x
2

)
(x − a)w(a)− f

( a + y
2

)
(y − a)w(y) ≥[

f
( x + y

2

)
(y − x) + f

( a + x
2

)
(x − a)− f

( a + y
2

)
(y − a)

]
w(a) ≥ 0.

This completes the proof.
(iii) The following identity is obtained in [8]:

∫ t

a
f (x)w(x)dx − f

( a + t
2

) ∫ t

a
w(x)dx = (t − a)2

∫ 1

0
k(s) f ′

(
sa + (1 − s)t

)
ds,

for any t ∈ [a, b], where

k(s) =

⎧⎪⎨⎪⎩
∫ s

0
w
(
ua + (1 − u)t

)
du, s ∈ [0, 1

2 );

−
∫ 1

s
w
(
ua + (1 − u)t

)
du, s ∈ [ 1

2 , 1].

By similar method used to prove part (v) of Theorem 4, we can obtain the results. We omitted the
details here.

(iv) By Theorem 3 (1), for any t ∈ (a, b] we have

∫ a+t
2

a
f (x)w(x)dx ≤ f

( a+t
2

)
+ f (a)

2

∫ a+t
2

a
w(x)dx ≤ f

( a+t
2

)
+ f (a)

2

∫ t

a
w(x)dx, (21)

and ∫ t

a+t
2

f (x)w(x)dx ≤ f
( a+t

2
)
+ f (t)

2

∫ t

a+t
2

w(x)dx ≤ f
( a+t

2
)
+ f (t)

2

∫ t

a
w(x)dx. (22)

If we add (21) to (22), we obtain∫ t

a
f (x)w(x)dx ≤

[
f
( a + t

2

)
+

f (a) + f (t)
2

] ∫ t

a
w(x)dx,

which is equivalent with

∫ t

a
f (x)w(x)dx ≤ −Pw(t) + Lw(t) + 2

∫ t

a
f (x)w(x)dx.

This implies the desired result.
(v) The left side of (20) is a consequence of assertion (i) and the following inequality:

∫ t

a
f (x)w(x)dx − f

( a + t
2

) ∫ t

a
w(x)dx ≥ 0,

for all t ∈ [a, b].
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Since Pw is nondecreasing we have Pw(t) ≤ Pw(b) for all t ∈ [a, b], i. e.

∫ t

a
f (x)w(x)dx − f

( a + t
2

) ∫ t

a
w(x)dx ≤∫ b

a
f (x)w(x)dx − f

( a + b
2

) ∫ b

a
w(x)dx.

Then we have the right side of (20).

Remark 2. (i) By the use of Theorem 3 (2) (w is nonincreasing on [a, b]) in the proof of Theorem 5, we can
obtain some different properties for Pw with new corresponding results. The details are omitted.

(ii) Theorem 5 gives a generalization of Theorem 2, along with some new results.

3. Applications

The following means for real numbers a, b ∈ R are well known:

A(a, b) =
a + b

2
arithmetic mean,

Ln(a, b) =
[ bn+1 − an+1

(n + 1)(b − a)

] 1
n

generalized log−mean, n ∈ R, a < b.

The following result holds between the two above special means:

Theorem 6. For any a, b ∈ R with 0 < a < b and n ∈ N we have

An(a, b) ≤ Ln
n(a, b) ≤ A(an, bn). (23)

In this section as applications of our results in previous section, we give some refinements for the
inequalities mentioned in (23).

Consider a, b ∈ (0, ∞) with a < b. Define{
f (x) = xn, x ∈ [a, b] and n ≥ 1;

w(x) = x−s, x ∈ [a, b] and s ∈ [0, 1) ∪ (1, ∞).

From (4) with some calculations we have

bn−s+1 − an−s+1

n − s + 1
≤

bn−s+1 − tn−s+1

n − s + 1
+

an + tn

2

( t1−s − a1−s

1 − s

)
≤

an + bn

2

( b1−s − a1−s

1 − s

)
,

for all t ∈ [a, b], which implies that

(b − a)Ln−s
n−s(a, b) ≤

(b − t)Ln−s
n−s(t, b) + A(an, tn)

( t1−s − a1−s

1 − s

)
≤ (24)

A(an, bn)
( b1−s − a1−s

1 − s

)
.

Inequality (24) gives a refinement for the right part of (23).
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In the case that s = 1 we have

(b − a)Ln−1
n−1(a, b) ≤ (b − t)Ln−1

n−1(t, b) + ln
t
a

A(an, tn) ≤ ln
t
a

A(an, bn).

In the case that s = 0 we get

Ln
n(a, b) ≤

( b − t
b − a

)
Ln

n(t, b) +
( t − a

b − a

)
A(an, tn) ≤ A(an, bn), (25)

for all t ∈ [a, b]. In fact inequality (25) is equivalent with the first inequality obtained in the applications
section of [4].

Now with the same assumption for f and w as was used to obtain (24), by the use of (20) we get:

An(a, b)
( b1−s − a1−s

1 − s

)
≤

An(a, b)
( b1−s − a1−s

1 − s

)
+ (t − a)Ln−s

n−s(t, a)− An(a, t)
( t1−s − a1−s

1 − s

)
≤ (26)

(b − a)Ln−s
n−s(b, a),

for all t ∈ [a, b] and s ∈ [0, 1) ∪ (1, ∞). Inequality (26) gives a refinement for the left part of (23). Also if
we consider s = 1, then we obtain

ln
b
a

An(a, b) ≤ ln
b
a

An(a, b) + (t − a)Ln−1
n−1(t, a)− ln

t
a

An(a, t) ≤ (b − a)Ln−1
n−1(b, a),

for all t ∈ [a, b]. In a more special case, if we set s = 0, then we get:

An(a, b) ≤ An(a, b) +
( t − a

b − a

)[
Ln

n(t, a)− An(a, t)
]
≤ Ln

n(b, a),

for all t ∈ [a, b].
Finally we encourage interested readers to use inequalities (4)–(7) and inequalities (17)–(20),

for appropriate functions f and w to obtain some new special means types and numerical inequalities.
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2012, 57, 377–386.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

136



mathematics

Article

Generalized Steffensen’s Inequality by
Fink’s Identity

Asfand Fahad 1, Saad Ihsan Butt 2,* and Josip Pečarić 3
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Abstract: By using Fink’s Identity, Green functions, and Montgomery identities we prove some
identities related to Steffensen’s inequality. Under the assumptions of n-convexity and n-concavity,
we give new generalizations of Steffensen’s inequality and its reverse. Generalizations of some
inequalities (and their reverse), which are related to Hardy-type inequality. New bounds of Grüss and
Ostrowski-type inequalities have been proved. Moreover, we formulate generalized Steffensen’s-type
linear functionals and prove their monotonicity for the generalized class of (n + 1)-convex functions
at a point. At the end, we present some applications of our study to the theory of exponentially
convex functions.

Keywords: Steffensen’s inequality; higher order convexity; Green functions; Montgomery identity;
Fink’s identity

1. Introduction

Integral inequalities such as Hardy’s inequality, Steffensen’s inequality, and Ostrowski’s inequality
are topics of interest of many Mathematicians since their pronouncement. Several generalizations
of these inequalities have been proved for different classes of functions, such as convex functions,
n-convex functions, and other types of functions, for example see [1–4]. Moreover, integral inequalities
have been proved for different integrals, such as Jensen-steffensen inequality for diamond integral
and bounds of related identities have been obtained in [5]. Other than that, Hardy’s inequality for
fractional integral on general domains have been proved in [6].

Steffensen’s inequality was proved in [7]: if ψ, f : [c, d] → R, with ψ be a decreasing function and
function f having range in [0, 1], then

∫ d

c
ψ(z) f (z) dt ≤

∫ c+θ

c
ψ(z) dz, where θ =

∫ d

c
f (z) dz. (1)

A massive literature dealing with several variants and improvements of Steffensen’s inequality
can be seen in [8,9] and references therein. A well known generalization of Steffensen’s inequality
has been presented in [4]. Several results of [4] have been recently generalized by using non-bounded
Montgomery’s identity in [10]. To proceed further, we recall a nice generalization of Steffensen’s
inequality proved by Pečarić, see [11].

Theorem 1. Let ψ : J → R be a increasing function (J is an interval in R such that c, d, f (c), f (d) ∈ J) and
f : [c, d] → R be increasing and differentiable function.

Mathematics 2019, 7, 329; doi:10.3390/math7040329 www.mdpi.com/journal/mathematics137



Mathematics 2019, 7, 329

(i) If f (t) ≤ t, then ∫ f (d)

f (c)
ψ(z) dz ≤

∫ d

c
ψ(z) f ′(z) dz. (2)

(ii) If f (t) ≥ t, then (2) holds in reverse direction.

Remark 1. We can consider f to be absolute continuous instead of differentiable function and the suppositions
of Theorem 1 can also be weakened. In fact for an increasing function ψ, the function Ψ(x) =

∫ x
c ψ(z) dz is

well defined and satisfies Ψ′ = ψ at all except the set of points with measure zero. One can substitute x = f (z)
in (2) (see [12] (Corollary 20.5)), provided that f is absolutely continuous increasing function, therefore

Ψ( f (d))− Ψ( f (c)) =

f (d)∫
f (c)

ψ(x) dx =

d∫
c

ψ( f (z)) f ′(z) dz ≤
d∫

c

ψ(z) f ′(z) dz, (3)

where the last inequality holds when f (z) ≤ z. In [1], substitutions presented conclude that (3) yields (2) and
generalization of a result proved by Rabier in [4], which gives (1).

Recently, Fahad et al. introduced new generalization [1] of (1) by extending the results of [4,11].
By using Hermite interpolation, several inequalities related to the results of [1,4,11] have also been
proved in [13]. We consider the important conclusions given in [1].

Corollary 1. Suppose ψ : J → R, f : [c, d] → R two differentiable functions with f non-decreasing as well,
where J is an interval containing [c, d], f (c) and f (d). If ψ is convex, then:

(i) If f satisfies condition (i) given in Theorem 1, then

ψ( f (d)) ≤ ψ( f (c)) +
d∫

c

ψ′(z) f ′(z) dz. (4)

(ii) (4) holds in reverse direction, if f satisfies condition (ii) given in Theorem 1.

Corollary 1 gives (3) and therefore leads to (1), (2) and generalization of Rabier’s result in [4].
Next we narrate some further important results of [1].

Corollary 2. Consider ψ : [0, d] → R be differentiable convex function with ψ(0) = 0 and f : [0, d] →
[0,+∞) be another function.

(i) If
t∫

0
f (z) dz ≤ t for every t ∈ [0, b], then

ψ

⎛⎝ d∫
0

f (z) dz

⎞⎠ ≤
d∫

0

ψ′(z) f (z) dz. (5)

(ii) (5) holds reversely if t ≤
t∫

0
f (z) dz for every t ∈ [0, d].

Corollary 3. Consider ψ and f as defined in Corollary 2 and let λ : [0, d] → [0,+∞) and denote

Λ(z) =
d∫
z

λ(t) dt.

138



Mathematics 2019, 7, 329

(i) If
t∫

0
f (z) dz ≤ t for every t ∈ [0, d], then

d∫
0

λ(t)ψ

⎛⎝ t∫
0

f (z) dz

⎞⎠ dt ≤
d∫

0

Λ(z)ψ′(z) f (z) dz. (6)

(ii) (6) holds reversely if t ≤
t∫

0
f (z) dz for every t ∈ [0, d].

Following two lemmas will be useful in our construction as well, see [14,15].

Lemma 1. For a function ψ ∈ C2([c, d]), we have:

ψ(ξ) =
d − ξ

d − c
ψ(c) +

ξ − c
d − c

ψ(d) +
∫ d

c
G∗,1(ξ, u)ψ′′(u) du, (7)

ψ(ξ) = ψ(c) + (ξ − c)ψ′(d) +
∫ d

c
G∗,2(ξ, u)ψ′′(u) du, (8)

ψ(ξ) = ψ(d) + (d − ξ)ψ′(c) +
∫ d

c
G∗,3(ξ, u)ψ′′(u) du, (9)

ψ(ξ) = ψ(d)− (d − c)ψ′(d) + (ξ − c)ψ′(c) +
∫ d

c
G∗,4(ξ, u)ψ′′(u) du, (10)

ψ(ξ) = ψ(c) + (d − c)ψ′(c)− (d − ξ)ψ′(d) +
∫ d

c
G∗,5(ξ, u)ψ′′(u) du, (11)

where

G∗,1(ξ, u) =

{
(ξ−d)(u−c)

d−c , if c ≤ u ≤ ξ,
(u−d)(ξ−c)

d−c , if ξ < u ≤ d.
(12)

G∗,2(ξ, u) =

{
c − u, if c ≤ u ≤ ξ,
c − ξ, if ξ < u ≤ d.

(13)

G∗,3(ξ, u) =

{
ξ − d, if c ≤ u ≤ ξ,
u − d, if ξ < u ≤ d.

(14)

G∗,4(ξ, u) =

{
ξ − c, if c ≤ u ≤ ξ,
u − c, if ξ < u ≤ d.

(15)

and

G∗,5(ξ, u) =

{
d − u, if c ≤ u ≤ ξ,
d − ξ, if ξ < u ≤ d.

(16)

Lemma 2. Let ψ ∈ C1[c, d], then

ψ(ξ) =
1

d − c

∫ d

c
ψ(u) du +

∫ d

c
p1(ξ, u)ψ′(u) du, (17)

ψ(ξ) = ψ(d) +
∫ d

c
p2(ξ, u)ψ′(u) du (18)

and

ψ(ξ) = ψ(c) +
∫ d

c
p3(ξ, u)ψ′(u) du, (19)
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where

p1(ξ, u) =

{
u−c
d−c , if c ≤ u ≤ ξ,
u−d
d−c , if ξ < u ≤ d.

(20)

p2(ξ, u) =

{
0, if c ≤ u ≤ ξ,
−1, if ξ < u ≤ d.

(21)

p3(ξ, u) =

{
1, if c ≤ u ≤ ξ,
0, if ξ < u ≤ d.

(22)

Clearly,

pi(ξ, u) =
∂G∗,i(ξ, u)

∂ξ
f or all i = 1, 2, 3,

p2(ξ, u) =
∂G∗,5(ξ, u)

∂ξ
and p3(ξ, u) =

∂G∗,4(ξ, u)
∂ξ

. (23)

Throughout the calculations in the main results, we will use pi(ξ, u) corresponding to ∂G∗,i(ξ,u)
∂ξ for

i = 1, 2, 3, and for ∂G∗,4(ξ,u)
∂ξ , ∂G∗,5(ξ,u)

∂ξ we use p3(ξ, s) and p2(ξ, s), respectively.
We also require the classical Fink’s identity given in [16]:

Lemma 3. Let c, d ∈ R and ψ : [c, d] → R, n ≥ 1 and ψ(n−1) is absolutely continuous on [c, d].

ψ(u) =
n

d − c

∫ d

c
ψ(s)ds −

n−1

∑
w=1

(
n − w

(d − c)w!

)(
ψ(w−1)(c)(u − c)w − ψ(w−1)(d)(u − d)w

)

+
1

(n − 1)!(d − c)

d∫
c

(u − t)n−1W [c,d](t, u)ψ(n)(t)dt, (24)

where W [c,d](t, u) is given by:

W [c,d](t, u) =

{
t − c, if c ≤ t ≤ u ≤ d,
t − d, if c ≤ u < t ≤ d.

(25)

Divided differences are fairly ascribed to Newton, and the term “divided difference” was used by
Augustus de Morgan in 1842. Divided differences are found to be very helpful when we are dealing
with functions having different degrees of smoothness. The following definition of divided difference
is given in [8] (p. 14).

Definition 1. The nth-order divided difference of a function ψ : [c, d] → R at mutually distinct points
z0, ..., zn ∈ [c, d] is defined recursively by

[zi; ψ] = ψ (zi) , i = 0, . . . , n,

[z0, . . . , zn; ψ] =
[z1, . . . , zn; ψ]− [z0, . . . , zn−1; ψ]

zn − z0
. (26)

It is easy to see that (26) is equivalent to

[z0, . . . , zn; ψ] =
n

∑
i=0

ψ (zi)

q′ (zi)
, where q (z) =

n

∏
j=0

(
z − zj

)
.
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The following definition of a real valued convex function is characterized by nth-order divided
difference (see [8] (p. 15)).

Definition 2. A function ψ : [c, d] → R is said to be n-convex (n ≥ 0) if and only if for all choices of (n + 1)
distinct points z0, . . . , zn ∈ [c, d], [z0, . . . , zn; ψ] ≥ 0 holds.

If this inequality is reversed, then ψ is said to be n-concave. If the inequality is strict, then ψ is said to be a
strictly n-convex (n-concave) function.

Remark 2. Note that 0-convex functions are non-negative functions, 1-convex functions are increasing
functions, and 2-convex functions are simply the convex functions.

The following theorem gives an important criteria to examine the n-convexity of a function ψ

(see [8] (p. 16)).

Theorem 2. If ψ(n) exists, then ψ is n-convex if and only if ψ(n) ≥ 0.

In this article, we use Fink’s identity, Montgomery identities, and Green functions to prove some
identities related to Steffensen’s inequality. By using these identities we obtain a generalization of (4).
In addition, we construct new identities which enable us to prove generalizations of inequalities (5) and
(6) as one can obtain Classical Hardy-type inequalities from them, see [1]. We use Čebyšev functional to
construct new bounds of Grüss and Ostrowski-type inequalities. Finally, we give several applications
of our work.

2. Main Results

For our convenience, we use the following notations and assumptions:

S1(ψ, f , c, d) = ψ( f (c)) +
d∫

c

ψ′(z) f ′(z) dz − ψ( f (d)).

S2(ψ, f , d) =
d∫

0

ψ′(z) f (z) dz − ψ

⎛⎝ d∫
0

f (z) dz

⎞⎠ .

S3(ψ, f , w, d) =
d∫

0

Λ(z)ψ′(z) f (z) dz −
d∫

0

λ(t)ψ

⎛⎝ t∫
0

f (z) dz

⎞⎠ dt.

(A1) For n ∈ N, n ≥ 3, let ψ : [c, d] → R be n times differentiable function with ψ(n−1) absolutely
continuous on [c, d].

(A2) For n ∈ N, n ≥ 3, let ψ : [0, d] → R be n times differentiable function with ψ(0) = 0 and ψ(n−1)

absolutely continuous on [0, d].

The first part of this section is the generalization of (4). For this, we start with the following
theorem:

Theorem 3. Consider (A1) with f be as in Corollary 1 (i) then:
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(a) For j = 1, 2, 4, 5, we have:

S1(ψ, f , c, d) = (n−2)(ψ′(d)−ψ′(c))
d−c

d∫
c
S1(G∗,j(., u), f , c, d)du + ∑n−3

w=1

(
n−w−2
(d−c)w!

)
×(

ψ(w+1)(d)
d∫
c
S1(G∗,j(., u), f , c, d)(u − d)wdu − ψ(w+1)(c)

d∫
c
S1(G∗,j(., u), f , c, d)(u − c)wdu

)

+ 1
(n−3)!(d−c)

d∫
c

ψ(n)(t)

(
d∫
c
S1(G∗,j(., u), f , c, d)(u − t)n−3W [c,d](t, u)du

)
dt.

(27)

(b) If ψ′(c) = 0, then

S1(ψ, f , c, d) = (n−2)(ψ′(d)−ψ′(c))
d−c

d∫
c
S1(G∗,3(., u), f , c, d)du + ∑n−3

w=1

(
n−w−2
(d−c)w!

)
×(

ψ(w+1)(d)
d∫
c
S1(G∗,3(., u), f , c, d)(u − d)wdu − ψ(w+1)(c)

d∫
c
S1(G∗,3(., u), f , c, d)(u − c)wdu

)

+ 1
(n−3)!(d−c)

d∫
c

f (n)(t)

(
d∫
c
S1(G∗,3(., u), f , c, d)(u − t)n−3W [c,d](t, u)du

)
dt.

Proof. (a) We first prove by fixing j = 1 , other cases for j = 2, 4, 5 can be treated analogously.
Utilizing (7) and (17) for ψ and ψ′ respectively, we get

S1(ψ, f , c, d) = ψ( f (c))− ψ( f (d)) +
d∫
c

ψ′(t) f ′(t) dt = d− f (c)
d−c ψ(c) + f (c)−c

d−c ψ(d)+

d∫
c

G∗,1( f (c), u)ψ′′(u) du − d− f (d)
d−c ψ(c)− f (d)−c

d−c ψ(d)−
d∫
c

G∗,1( f (d), u)ψ′′(u) du

+
d∫
c

[
ψ(d)−ψ(c)

d−c +
d∫
c

p1(t, u)ψ′′(u) du

]
f ′(t) dt.

Simplifying and employing Fubini’s theorem, we get

S1(ψ, f , c, d) = f (d)− f (c)
d−c ψ(c)− f (d)− f (c)

d−c ψ(d)

+
d∫
c
[G∗,1( f (c), u)− G∗,1( f (d), u)]ψ′′(u) du

+ψ(d)−ψ(c)
d−c ( f (d)− f (c)) +

d∫
c

d∫
c

p1(t, u) f ′(t)ψ′′(u) dt du

=
d∫
c

S1(G∗,1(., u), f , c, d)ψ′′(u) du.

Now by replacing n with n − 2 in (24) for ψ′′, we have:

S1(ψ, f , c, d) =
d∫
c
S1(G∗,1(., u), f , c, d)

(
(n−2)(ψ′(d)−ψ′(c))

d−c + ∑n−3
w=1

(
n−w−2
(d−c)w!

)
×(

ψ(w+1)(d)(u − d)w − ψ(w+1)(c)(u − c)w
)
+ 1

(n−3)!(d−c)

d∫
c
(u − t)n−3W [c,d](t, u)ψ(n)(t)dt

)
du.

Rest follows from simplification and Fubini’s theorem.
(b) Using assumption ψ′(c) = 0 and employing a similar method as in (a).

From the next two theorems we get a generalization of Steffensen’s inequality and its reverse by
generalizing (4) and its reverse.
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Theorem 4. Consider (A1) with f be as in Corollary 1 (i) and let

(u − t)n−3W [c,d](t, u) ≥ 0. (28)

(a) If ψ is n-convex, then for each j ∈ {1, 2, 3, 4, 5} ( where ψ′(0) = 0 for j = 3), we have:

S1(ψ, f , c, d) ≥
(n−2)(ψ′(d)−ψ′(c))

d−c

d∫
c
S1(G∗,1(., u), f , c, d)du + ∑n−3

w=1

(
n−w−2
(d−c)w!

)
×(

ψ(w+1)(d)
d∫
c
S1(G∗,1(., u), f , c, d)(u − d)wdu − ψ(w+1)(c)

d∫
c
S1(G∗,1(., u), f , c, d)(u − c)wdu

)
.

(29)

(b) If −ψ is n-convex, then for each j, (29) holds in the reverse direction.

Proof. For each j, the function G∗,j(., u) is convex and differentiable. Since f is non-decreasing with
f (z) ≤ z, therefore Corollary 1 (i) gives S1(G∗,1(., u), f , c, d) ≥ 0. On the other hand, if ψ is n-convex
(−ψ is n-convex), then ψ(n)(z) ≥ (≤)0. Therefore, given assumption together with n-convexity of ψ

(−ψ) implies
d∫
c

ψ(n)(t)

(
d∫
c
S1(G∗,j(., u), f , c, d)(u − t)n−3W [c,d](t, u)du

)
dt ≥ (≤)0. The rest follows

from (27).

Theorem 5. Consider (A1) for even n and f as in Corollary 1 (i). Then

(a) If ψ is n-convex, then (29) holds.
(b) If −ψ is n-convex, then the reverse of (29) holds.
(c) Let (29) (reverse of (29)) holds and

n−3

∑
w=0

(
n − w − 2
(d − c)w!

)(
ψ(w+1)(d)(u − d)wdu − ψ(w+1)(c)(u − c)wdu

)
≥ (≤)0. (30)

Then S1(ψ, f , c, d) ≥ (≤) 0.

Proof.

(a), (b) We define

H(u, t) = (u − t)n−3W [c,d](t, u) =

{
(u − t)n−3(t − c), if c ≤ t ≤ u ≤ d,
(u − t)n−3(t − d), if c ≤ u < t ≤ d.

Clearly H(u, t) ≥ 0 for even n. Consequently, we get (28), n-convexity of ψ (−ψ), and Theorem 4 (a)
(Theorem 4 (b)) yields (29) (and its reverse).

(c) By definition of G∗,j(., u) and assumption on f , Corollary 1 (i) gives S1(G∗,j(., u), f , c, d) ≥ 0.
Therefore, by using (30) and S1(G∗,j(., u), f , c, d) ≥ 0 in (29) (and its reverse), we get S1(ψ, f , c, d) ≥ (≤)

(≤)0, which completes the proof.

Now, we prove the following theorem which enables us to prove a generalization of (5).

Theorem 6. Consider (A2) and let f be as in Corollary 2 (i) then:
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(a)

S2(ψ, f , d) = (n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S2(G∗,j(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S2(G∗,j(., u), f , d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S2(G∗,j(., u), f , d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S2(G∗,j(., u), f , d)(u − t)n−3W [0,d](t, u)du

)
dt

for j = 1, 2.
(b) If ψ′(0) = 0, then

S2(ψ, f , d) + ψ(d) = (n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S2(G∗,3(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0
S2(G∗,3(., u), f , d)(u − d)wdu − f (w+1)(0)

d∫
0
S2(G∗,3(., u), f , d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S2(G∗,3(., u), f , d)(u − t)n−3W [0,d](t, u)du

)
dt.

(c)

S2(ψ, f , d) + ψ(d)− dψ′(d) =

(n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S2(G∗,4(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0
S2(G∗,4(., u), f , d)(u − d)wdu − f (w+1)(0)

d∫
0
S2(G∗,4(., u), f , d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S2(G∗,4(., u), f , d)(u − t)n−3W [0,d](t, u)du

)
dt.

(d) If ψ′(0) = 0, then

S2(ψ, f , d)− dψ′(d) = (n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S2(G∗,5(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0
S2(G∗,5(., u), f , d)(u − d)wdu − f (w+1)(0)

d∫
0
S2(G∗,5(., u), f , d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S2(G∗,5(., u), f , d)(u − t)n−3W [0,d](t, u)du

)
dt.

Proof. We give proof of our results by fixing j = 1, and other cases can be proved in the similar way.
By using (7) and (17) for ψ and ψ′ respectively and applying assumption ψ(0) = 0, we get

S2(ψ, f , d) =
d∫

0
ψ′(t) f (t) dt − ψ

(
d∫

0
f (t) dt

)
=

d∫
0

1
d ψ(d) f (t) dt +

d∫
0

[
d∫

0

∂G∗,1(t,u)
∂t ψ′′(u) du

]
f (t) dt −

d∫
0

f (t) dt

d ψ(d)

−
d∫

0
G∗,1

(
d∫

0
f (t) dt, u

)
ψ′′(u) du

=
d∫

0
S2(G∗,1(., u), f , d)ψ′′(u) du.
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Now replacing n with n − 2 in (24) for ψ′′ and simplifying we get the required identities.

Our next result gives a generalization of (5).

Theorem 7. Consider (A2), f as in Corollary 2 (i) and let

(u − t)n−3W [0,d](t, u) ≥ 0, (31)

then the following hold:

(a) If ψ is n-convex, then
(i)

S2(ψ, f , d) ≥ (n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S2(G∗,j(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0
S2(G∗,j(., u), f , d)(u − d)wdu − f (w+1)(0)

d∫
0
S2(G∗,j(., u), f , d)uwdu

) (32)

for j = 1, 2.
(ii) If ψ′(0) = 0, then

S2(ψ, f , d) + ψ(d) ≥ (n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S2(G∗,3(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0
S2(G∗,3(., u), f , d)(u − d)wdu − f (w+1)(0)

d∫
0
S2(G∗,3(., u), f , d)uwdu

)
.

(33)

(iii)

S2(ψ, f , d) + ψ(d)− dψ′(d) ≥
(n−2)(ψ′(d)−ψ′(0))

d

d∫
0
S2(G∗,4(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0
S2(G∗,4(., u), f , d)(u − d)wdu − f (w+1)(0)

d∫
0
S2(G∗,4(., u), f , d)uwdu

)
.

(34)

(iv) If ψ′(0) = 0, then

S2(ψ, f , d)− dψ′(d) ≥
(n−2)(ψ′(d)−ψ′(0))

d

d∫
0
S2(G∗,5(., u), f , d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0
S2(G∗,5(., u), f , d)(u − d)wdu − f (w+1)(0)

d∫
0
S2(G∗,5(., u), f , d)uwdu

)
.

(35)

(b) Inequalities (32)–(35) are reversed provided that −ψ is n-convex.

Proof. The proof is similar to that of Theorem 4 except using Theorem 6 and Corollary 2 (i).

Theorem 8. Consider (A2) for even n and f be as in Corollary 2 (i). Then

(a) If ψ is n-convex, then (32)–(35) hold.
(b) If −ψ is n-convex, then the reverse of (32)–(35) holds.
(c) If any of (32)–(35) (reverse of (32)–(35)) hold and

n−3

∑
w=0

(
n − w − 2

dw!

)(
ψ(w+1)(d)(u − d)wdu − ψ(w+1)(0)uwdu

)
≥ (≤)0. (36)
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Then S2(ψ, f , d) ≥ (≤) 0.

Proof. The proof is similar to that of Theorem 5 except using Theorem 7 and Corollary 2 (i).

Next we give some generalized identities considering (6).

Theorem 9. Consider (A2) and let f , λ and Λ be as in Corollary 3 (i) then:

(a) For j = 1, 2, we have

S3(ψ, f , λ, d) = (n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,j(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,j(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,j(., u), f , λ, d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S3(G∗,j(., u), f , λ, d)(u − t)n−3W [0,d](t, u)du

)
dt.

(b) If ψ′(0) = 0, then

S3(ψ, f , λ, d) + ψ(d)
d∫

0
λ(x) dx =

(n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,3(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,3(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,3(., u), f , λ, d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S3(G∗,3(., u), f , λ, d)(u − t)n−3W [0,d](t, u)du

)
dt.

(c)

S3(ψ, f , λ, d) + (ψ(d)− dψ′(d))
d∫

0
λ(x) dx =

(n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,4(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,4(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,4(., u), f , λ, d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S3(G∗,4(., u), f , λ, d)(u − t)n−3W [0,d](t, u)du

)
dt.

(d) If ψ′(0) = 0, then

S3(ψ, f , λ, d)− dψ′(d)
d∫

0
λ(x) dx =

(n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,5(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,5(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,5(., u), f , λ, d)uwdu

)

+ 1
d(n−3)!

d∫
0

ψ(n)(t)
( d∫

0
S3(G∗,5(., u), f , λ, d)(u − t)n−3W [0,d](t, u)du

)
dt.
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Proof. We give a proof of our results by fixing j = 1, and other cases can be proved in a similar way.
By using (7) and (17) for ψ and ψ′ respectively and applying assumption ψ(0) = 0, we get:

S3(ψ, f , λ, d) =
d∫

0
Λ(t)ψ′(t) f (t) dt −

d∫
0

λ(x)ψ

(
x∫

0
f (t) dt

)
dx =

d∫
0

Λ(t) f (t)

[
1
d ψ(d) +

d∫
0

∂G∗,1(t,u)
∂t ψ′′(u) du

]
dt −

d∫
0

λ(x)

[
1
d ψ(d)

x∫
0

f (t) dt

+
d∫

0
G∗,1

(
x∫

0
f (t) dt, u

)
ψ′′(u) du

]
dx = 1

d ψ(d)

[
d∫

0
Λ(t) f (t) dt −

d∫
0

λ(x)
x∫

0
f (t) dt dx

]

+
d∫

0
Λ(t) f (t)

d∫
0

∂G∗,1(t,u)
∂t ψ′′(u) du dt −

d∫
0

λ(x)
d∫

0
G∗,1

(
x∫

0
f (t) dt, u

)
ψ′′(u) du dx.

Since
d∫

0
λ(x)

x∫
0

f (t) dt dx =
d∫

0
f (t)

(
d∫
t

λ(x) dx

)
dt =

d∫
0

Λ(t) f (t)dt, therefore

S3(ψ, f , λ, d)

=

d∫
0

⎡⎣ d∫
0

Λ(t) f (t)
∂G∗,1(t, u)

∂t
dt −

d∫
0

λ(x)G∗,1

⎛⎝ x∫
0

f (t) dt, u

⎞⎠ dx

⎤⎦ ψ′′(u) du

=

d∫
0

S3(G∗,1(., u), f , λ, d)ψ′′(u) du.

The rest follows from (24).

Next, we present a generalization of (6).

Theorem 10. Consider (A2) and let f , λ, Λ be as in Corollary 3 (i) and (31) holds, then:

(a) If ψ is n-convex, then

(i) For j = 1, 2, we have

S3(ψ, f , λ, d) ≥ (n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,j(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,j(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,j(., u), f , λ, d)uwdu

)
.

(37)

(ii) If ψ′(0) = 0, then

S3(ψ, f , λ, d) + ψ(d)
d∫

0
λ(x) dx ≥

(n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,3(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,3(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,3(., u), f , λ, d)uwdu

)
.

(38)
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(iii)

S3(ψ, f , λ, d) + (ψ(d)− dψ′(d))
d∫

0
λ(x) dx ≥

(n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,4(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,4(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,4(., u), f , λ, d)uwdu

)
.

(39)

(iv) If ψ′(0) = 0, then

S3(ψ, f , λ, d)− dψ′(d)
d∫

0
λ(x) dx ≥

(n−2)(ψ′(d)−ψ′(0))
d

d∫
0
S3(G∗,5(., u), f , λ, d)du + ∑n−3

w=1
( n−w−2

dw!

)
×

(
ψ(w+1)(d)

d∫
0

S3(G∗,5(., u), f , λ, d)(u − d)wdu − ψ(w+1)(0)
d∫

0
S3(G∗,5(., u), f , λ, d)uwdu

)
.

(40)

(b) Inequalities (37)–(40) are reversed provided that −ψ is n-convex.

Proof. The proof is similar to that of Theorem 4 except using Theorem 9 and Corollary 3 (i).

Theorem 11. Consider (A2) for even n and let f , λ, and Λ be as in Corollary 3 (i). Then

(a) If ψ is n-convex, then (37)–(40) hold.
(b) If −ψ is n-convex, then the reverses of (37)–(40) hold.
(c) If any of (37)–(40) (reverse of (37)–(40)) hold and (36) is valid. Then S3(ψ, f , λ, d) ≥ (≤) 0.

Proof. The proof is similar to that of Theorem 5 except using Theorem 10 and Corollary 3 (i).

3. New Upper Bounds Via Čebyšev Functional

Consider the Čebyšev functional for two Lebesgue integrable functions F1,F2 : [c, d] → R
given as:

T(F1,F2) =
1

d − c

d∫
c

F1(ξ)F2(ξ)dξ − 1
d − c

d∫
c

F1(ξ)dξ.
1

d − c

d∫
c

F2(ξ)dξ.

Cerone and Dragomir in [17] proposed new bounds utilizing Čebyšev functional given as:

Theorem 12. For F1 ∈ L[c, d] and F2 : [c, d] → R be an absolutely continuous function along with
(. − c)(d − .)[F′

2]
2 ∈ L[c, d]. The following inequality holds

|T(F1,F2)| ≤
1√
2

[
T(F1,F1)

(d − c)

] 1
2
( d∫

c

(ξ − c)(d − ξ)[F′
2(ξ)]

2dξ

) 1
2

. (41)

Theorem 13. For F1 : [c, d] → R be an absolutely continuous with F′
1 ∈ L∞[c, d] and F2 : [c, d] → R is an

increasing function. The following inequality holds

|T(F1,F2)| ≤
||F′

1||∞
2(d − c)

d∫
c

(ξ − c)(d − ξ)dF2(ξ). (42)

The constants 1√
2

and 1
2 are the optimal constants.
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Now we utilize the above theorems to construct new upper bounds for our obtained generalized
identities. For our convenience we denote

Oj(t) =
d∫

c

S1(G∗,j(., u), f , c, d)(u − t)n−3W [c,d](t, u)du, t ∈ [c, d], (43)

for {j = 1, . . . , 5}. Consider the Čebyšev functional Tj(Oj,Oj) {j = 1, . . . , 5} given as:

Tj(Oj,Oj) =
1

d − c

d∫
c

Oj
2(ξ)dξ −

(
1

d − c

d∫
c

Oj(ξ)dξ

)2

. (44)

Grüss type inequalities associated with Theorems 12 and 13 can be given as:

Theorem 14. Under the assumptions of Theorem 3, let ψ : [c, d] → R be absolutely continuous along with
(. − c)(d − .)[ψ(n+1)]2 ∈ L[c, d] and Oj {j = 1, 2, 3, 4, 5} be defined as in (43). Then

S1(ψ, f , c, d)− ∑n−3
w=0

(
n−w−2
(d−c)w!

)
×(

ψ(w+1)(d)
d∫
c
S1(G∗,1(., u), f , c, d)(u − d)wdu − ψ(w+1)(c)

d∫
c
S1(G∗,1(., u), f , c, d)(u − c)wdu

)

−ψ(n−1)(d)−ψ(n−1)(c)
(d−c)2(n−3)!

d∫
c
Oj(t)dt = Rem(c, d,Oj, ψ(n))

(45)

where

|Rem(c, d,Oj, ψ(n))| ≤ 1√
2 (n − 3)!

[Tj(Oj,Oj)

(d − c)

] 1
2
∣∣∣∣ d∫

c

(t − c)(d − t)[ψ(n+1)(t)]2dt
∣∣∣∣

1
2

.

Proof. Fix {j = 1, . . . , 5}. Using Čebyšev functional for F1 = Oj, F2 = ψ(n) and by comparing (45)
with (27), we have

Rem(c, d,Oj, ψ(n)) =
1

(n − 3)!
Tj(Oj, ψ(n)).

Employing Theorem 12 for the new functions, we get the required bound.

Theorem 15. Under the assumptions of Theorem 3, let ψ : [c, d] → R be absolutely continuous along with
ψ(n+1) ≥ 0 and Oj {j = 1, 2, 3, 4, 5} be defined as in (44). Then Rem(c, d,Oj, ψ(n)) in (45) satisfies a bound

|Rem(c, d,Oj, ψ(n))| ≤ ||Oj
′||∞

(n − 3)!

[
ψ(n−1)(d) + ψ(n−1)(c)

2
− ψ(n−2)(d)− ψ(n−2)(c)

d − c

]
. (46)

Proof. In the proof of Theorem 14, we have established that

Rem(c, d,Oj, ψ(n)) =
1

(n − 3)!
Tj(Oj, ψ(n)).

Now applying Theorem 13 for F1 = Oj, F2 = ψ(n), we have

|Rem(c, d,Oj, ψ(n))| = 1
(n − 3)!

|Tj(Oj, ψ(n))|

≤ ||Oj
′||∞

2(d − c) (n − 3)!

d∫
c

(t − c)(d − t)ψ(n+1)(t)dt
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Now since

d∫
c
(t − c)(d − t)ψ(n+1)(t)dt =

d∫
c
[2t − (c + d)]ψ(n)(t)dt

= (d − c)
[
ψ(n−1)(d) + ψ(n−1)(c)

]
− 2

(
ψ(n−2)(d)− f (n−2)(c)

)
therefore the required bound in (46) follows.

Ostrowski-type inequalities associated with generalized Steffensen’s inequality can be given as:

Theorem 16. Under the assumptions of Theorem 3, let |ψ(n)|s : [c, d] → R be a R-integrable function and
consider (s, s′) pair of conjugate exponents from [1, ∞] such that 1

s +
1
s′ = 1. Then, we have

∣∣∣∣∣∣ S1(ψ, f , c, d)− ∑n−3
w=0

(
n−w−2
(d−c)w!

)
×(

ψ(w+1) (d)
d∫
c
S1(G∗,1(., u), f , c, d)(u − d)wdu − ψ(w+1) (c)

d∫
c
S1(G∗,1(., u), f , c, d)(u − c)w du

)
∣∣∣∣∣∣

≤ ||ψ(n)||s
(n − 3)!(d − c)

( d∫
c

∣∣∣∣ d∫
c

S1(G∗,j(., u), f , c, d)(u − t)n−3W [c,d](t, u)du
∣∣∣∣s′dt

)1/s′

. (47)

The constant on the R.H.S. of (47) is sharp for 1 < s ≤ ∞ and the best possible for s = 1.

Proof. Fix {j = 1, . . . , 5}. Let us denote by

Ij =
1

(n − 3)!(d − c)

( d∫
c

S1(G∗,j(., u), f , c, d)(u − t)n−3W [c,d](t, u)du
)

, t ∈ [c, d].

Using identity (27), we find∣∣∣∣∣∣ S1(ψ, f , c, d)− ∑n−3
w=0

(
n−w−2
(d−c)w!

)
×(

ψ(w+1) (d)
d∫
c
S1(G∗,1(., u), f , c, d)(u − d)wdu − ψ(w+1) (c)

d∫
c
S1(G∗,1(., u), f , c, d)(u − c)w du

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
d∫

c

Ij(t)ψ(n)(t)dt

∣∣∣∣∣∣ . (48)

Applying Hölder’s inequality for integrals on the R. H. S. of (48), we obtain

∣∣∣∣ d∫
c

Ij(t)ψ(n)(t)dt
∣∣∣∣ ≤

⎛⎝ d∫
c

∣∣∣ψ(n) (t)
∣∣∣s dt

⎞⎠
1
s
⎛⎝ d∫

c

|Ij (t)|s
′
dt

⎞⎠
1
s′

,

which combined together with (48) gives (47).

For sharpness of the constant
( d∫

c

∣∣Ij(t)∣∣s′dt
)1/s′

let us define the function ψ for which the equality

in (47) holds.
For 1 < s ≤ ∞ let ψ be such that

ψ(n)(t) = sgnIj(t)|Ij(t)|
1

s−1

and for s = ∞ let ψ(n)(t) = sgnIj(t).

150



Mathematics 2019, 7, 329

For s = 1, we shall show that

∣∣∣∣ d∫
c

Ij(t)ψ(n)(t)dt
∣∣∣∣ ≤ max

t∈[c,d]
|Ij(t)|

( d∫
c

ψ(n)(t)dt
)

(49)

is the best possible inequality. Suppose that |Ij(t)| attains its maximum at t0 ∈ [c, d]. To start with first
we assume that Ij(t0) > 0. For Θ small enough we define ψΘ(t) by

ψΘ(t) =

⎧⎪⎪⎨⎪⎪⎩
0 , c ≤ t ≤ t0 ,

1
Θn! (t − t0)

n , to ≤ t ≤ t0 + Θ ,
1
n! (t − t0)

n−1 , t0 + Θ ≤ t ≤ d .

Then for Θ small enough∣∣∣∣ ∫ d

c
Ij(t)ψ(n)(t)dt

∣∣∣∣ = ∣∣∣∣ ∫ t0+Θ

t0

Ij(t)
1
Θ

dt
∣∣∣∣ = 1

Θ

∫ t0+Θ

t0

Ij(t)dt.

Now from inequality (49), we have

1
Θ

∫ t0+Θ

t0

Ij(t)dt ≤ Ij(t0)
∫ t0+Θ

t0

1
Θ

dt = Ij(t0).

Since

lim
Θ→0

1
Θ

∫ t0+Θ

t0

Ij(t)dt = Ij(t0),

the statement follows. In the case when Ij(t0) < 0, we define fΘ(t) by

ψΘ(t) =

⎧⎪⎪⎨⎪⎪⎩
1
n! (t − t0 − Θ)n−1 , c ≤ t ≤ t0 ,
−1
Θn! (t − t0 − Θ)n , to ≤ t ≤ t0 + Θ ,

0 , t0 + Θ ≤ t ≤ d,

then the rest of the proof is the same as above.

Remark 3. Similar bounds of Grüss and Ostrowski-type inequalities can be obtained by using Theorems 6
and 9.

4. Monotonic Steffensen’s-Type Functionals

The notion of (n + 1)-convex function at a point was introduced in [18]. In the current section,
we define some linear functionals from the differences of the generalized Steffensen’s-type inequalities.
By proving monotonicity of these functionals, we obtain new inequalities which contribute to the
theory of more generalized class of functions, i.e., (n + 1)-convex functions at a point. Below is the
definition of (n + 1)-convex function at point, see [18].

Definition 3. Let I ⊆ R be an interval, ξ ∈ I0 and n ∈ N. A function f : I → R is said to be (n + 1)-convex
at point ξ if there exists a constant Kξ such that the function

F(x) = f (x)− Kξ
xn

n!

is n-concave on I ∩ (−∞, ξ] and n-convex on I ∩ [ξ, ∞).
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Pečarić et al. in [18] studied necessary and sufficient conditions on two linear functionals Ω :
C([δ1, ξ]) → R and Γ : C([ξ, δ2] → R so that the inequality Ω( f ) ≤ Γ( f ) holds for every function f
that is (n + 1)-convex at point ξ. In this section, we define some linear functionals and obtained certain
inequalities associated with these linear functionals. Let n ∈ N be even, ψ : [c, d] → R be n times
differentiable function with ψ(n−1) absolutely continuous on [c, d]. Let c1, c2 ∈ [c, d] and ξ ∈ (c, d),
where c1 < ξ < c2. Let f1 : [c1, ξ] → R and f2 : [ξ, c2] → R be increasing with fi(t) ≤ t for i = 1, 2. For
j = 1, 2, . . . , 5, we construct:

Ω1,j(ψ) = S1(ψ, f1, c1, ξ)− ∑n−3
w=0

(
n−w−2
(ξ−c1)w!

)
×(

ψ(w+1)(ξ)
ξ∫

c1

S1(G∗,1(., u), f1, c1, ξ)(u − ξ)wdu − ψ(w+1)(c1)
ξ∫

c1

S1(G∗,1(., u), f1, c1, ξ)(u − c1)
wdu

)
(50)

and

Γ1,j(ψ) = S1(ψ, f2, ξ, c2)− ∑n−3
w=0

(
n−w−2
(c2−ξ)w!

)
×(

ψ(w+1)(c2)
c2∫
ξ

S1(G∗,1(., u), f2, ξ, c2)(u − c2)
wdu − ψ(w+1)(ξ)

c2∫
ξ

S1(G∗,1(., u), f2, ξ, c2)(u − ξ)wdu

)
.

(51)

Theorem 5 (a) enables Γ1,j(ψ) ≥ 0 for j = 1, 2, . . . , 5 (and ψ′(0) = 0 for j = 3), provided that ψ is
n-convex. Furthermore, Theorem 5 (b) enables Ω1,j(ψ) ≤ 0 for j = 1, 2, . . . , 5 (and f ′(0) = 0 for j = 3),
provided that −ψ is n-convex.

Theorem 17. Let ψ, f1, f2 be as defined above and ψ : [c, d] → R be (n + 1)-convex at a point ξ for even
n > 3. If Ω1,j(Pn) = Γ1,j(Pn), for all j = 1, 2, . . . , 5 and ψ′(0) = 0 for j = 3, where Pn(u) = un then:

Ω1,j(ψ) ≤ Γ1,j(ψ),

for j = 1, 2, . . . , 5.

Proof. Since ψ is (n + 1)-convex, it follows from Definition 3 that there exist Kξ such that Ψ(u) =

ψ(u)− Kξ un

n! is n-concave on [c1, ξ] and n-convex on [ξ, c2]. Therefore, for each j = 1, 2, . . . , 5, we have

Ω1,j(ψ)−
Kξ

n!
Ω1,j(Pn) = Ω1,j(Ψ) ≤ 0 ≤ Γ1,j(Ψ) = Γ1,j(ψ)−

Kξ

n!
Γ1,j(Pn).

Since Ω1,j(Pn) = Γ1,j(Pn), therefore Ω1,j(ψ) ≤ Γ1,j(ψ), which completes the proof.

Remark 4. We may proceed further by defining linear functionals with the inequalities proved in Theorems 8
and 11. Moreover, by proving monotonicity of new functionals we extend the inequalities in Theorems 8 and 11.

5. Application to Exponentially Convex Functions

We start this section by an important Remark given as:

Remark 5. By the virtue of Theorem 4 (a), for j = 1, 2, . . . , 5, we define the positive linear functionals with
respect to n-convex function ψ as follows

Δ1,j(ψ) := S1(ψ, f , c, d)− ∑n−3
w=0

(
n−w−2
(d−c)w!

)
×(

ψ(w+1)(d)
d∫
c
S1(G∗,1(., u), f , c, d)(u − d)wdu − ψ(w+1)(c)

d∫
c
S1(G∗,1(., u), f , c, d)(u − c)wdu

)
≥ 0.

(52)

Next we construct the non trivial examples of exponentially convex functions (see [19]) from
positive linear functionals Δ1,j(ψ) for (j = 1, 2, . . . , 5).
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For this consider the family of real valued functions on [0, ∞) given as

ψs(u) =

⎧⎪⎪⎨⎪⎪⎩
us

s(s−1)···(s−n+1) , s /∈ {0, 1, . . . , n − 1};
ut ln u

(−1)n−1−tt!(n−1−t)! , s = t ∈ {0, 1, . . . , n − 1}. (53)

It is interesting to note that this is a family of n-convex functions as

dn

dun ψs(u) = us−n ≥ 0.

Since s �→ us−n = e(s−n) ln u is exponentially convex function, therefore the mapping s �→ Δ1,j(ψs)

is exponential convex and as a special case, it is also log-convex mapping. The log-convexity of this
mapping enables us to construct the known Lyapunov inequality given as(

Δ1,j(ψs)
)t−r ≤

(
Δ1,j(ψr)

)t−s (Δ1,j(ψt)
)s−r (54)

for r, s, t ∈ R such that r < s < t where j = 1, 2, . . . , 5.

Remark 6. We have not given the proof of the above mentioned results (see [19] for details). The Lyapunov
inequality empowered us to refine lower (upper) bound for action of the functional on the class of functions given
in (53) because if exponentially convex mapping attains zero value at some point it is zero everywhere (see [19]).

One can also consider some other classes of n-convex functions given in the paper [19,20] and can get
similar estimations. A similar technique can also be employed by considering the results of Theorems 7 and 10.

6. Conclusions and Outlooks

In this article, we extended the pool of inequalities by proving generalizations of well-known
Steffensen’s inequalities and their reverses. The inequalities proved in the main results provide
generalizations of the results from [1,4,7,11]. Moreover, Hardy’s inequality is also one of the
well-known inequalities. In this article, we also proved generalizations of inequalities, from [1], which
are closely related to Hardy’s inequality. We also developed new bounds of Grüss and Ostrowski-type
inequalities. Further, the contribution of these inequalities to the theory of (n + 1)-convex functions
has been presented by defining functionals from new inequalities and describing their properties.
Lastly, new inequalities related to exponentially convex functions and log-convex functions, such as
the Lyapunov inequality, have been developed. In the future, it can be investigated whether we can
use other interpolations, such as Hermite interpolation, to prove new generalizations of Steffensen’s
inequality and related results.
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1. Introduction

If 0 <
∑∞

m=1 a2
m < ∞ and 0 <

∑∞
n=1 b2

n < ∞, then we have the following discrete Hilbert’s inequality
with the best possible constant factor π (cf., [1], Theorem 315):

∞∑
m=1

∞∑
n=1

ambn

m + n
< π(

∞∑
m=1

a2
m

∞∑
n=1

b2
n)

1/2

(1)

Correspondingly, if 0 <
∫ ∞

0 f 2(x)dx < ∞ and 0 <
∫ ∞

0 g2(y)dy < ∞, we still have the following
Hilbert’s integral inequality (cf., [1], Theorem 316):

∫ ∞
0

∫ ∞
0

f (x)g(y)
x + y

dxdy < π(
∫ ∞

0
f 2(x)dx

∫ ∞
0

g2(y)dy)1/2 (2)

where the constant factor π is the best possible.
As is known to us, Inequalities (1) and (2) and their extensions with conjugate exponents as well

as independent parameters play an important role in analysis and their applications (cf., [2–13]).
Concerning with Inequalities (1) and (2), we have the following half-discrete Hilbert-type inequality

(cf., [1], Theorem 351):
If K(x)(x > 0) is a decreasing function and p > 1, 1

p + 1
q = 1, 0 < φ(s) =

∫ ∞
0 K(x)xs−1dx < ∞,

f (x) ≥ 0, 0 <
∫ ∞

0 f p(x)dx < ∞, then

∞∑
n=1

np−2(

∫ ∞
0

K(nx) f (x)dx)
p

< φp(
1
q
)

∫ ∞
0

f p(x)dx. (3)

In recent years, some new extensions of the Inequality (3) were provided in [14–19].
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In 2006, with the help of the Euler-Maclaurin summation formula, Krnic et al. [20] gave an
extension of (1) with the kernel 1

(m+n)λ
(0 < λ ≤ 14). In 2019, Adiyasuren et al. [21] considered an

extension of (1) with p, q > 1( 1
p + 1

q = 1) involving the partial sums. In 2016–2017, by using the weight
functions, Hong [22,23] considered some equivalent statements of the extensions of (1) and (2) with
several parameters. Some related works can be found in [24–26].

In this paper, following the way of [20,22], by using the weight functions, the idea of introduced
parameters, and the Euler-Maclaurin summation formula, a reverse half-discrete Hardy-Hilbert’s
inequality with the homogeneous kernel 1

(x+n)λ
(0 < λ ≤ 5) and the reverse equivalent forms are

established. The equivalent statements of the best possible constant factor related to several parameters
are presented. As applications, two corollaries related to the case of the non-homogeneous kernel and
some particular cases are obtained.

2. Some Lemmas

In what follows, we assume that

0 < p < 1(q < 0),
1
p
+

1
q
= 1,λ ∈ (0, 5], σ ∈ (0, 2] ∩ (0,λ),μ ∈ (0,λ),

f (x) ≥ 0 (x ∈ R+ = (0,∞)), an ≥ 0 (n ∈ N = {1, 2, · · · }) satisfying

0 <
∫ ∞

0
xp[1−( λ−σp +

μ
q )]−1 f p(x)dx < ∞ and 0 <

∞∑
n=1

nq[1−( σp + λ−μq )]−1aq
n < ∞.

Lemma 1. Define a weight function by

�(σ, x) := xλ−σ
∞∑

n=1

nσ−1

(x + n)λ
(x ∈ R+). (4)

Then, we have
B(σ,λ− σ)(1− ρσ(x)) < �(σ, x) < B(σ,λ− σ)(x ∈ R+), (5)

where, ρσ(x) := (1+θx)
−λ

σB(σ,λ−σ)
1

xσ = O( 1
xσ ) ∈ (0, 1)(θx ∈ (0, 1

x ); x > 0). B(u, v) :=
∫ ∞

0
tu−1

(1+t)u+v dt (u, v > 0) is
the beta function.

Proof. For fixed x > 0, we set function gx(t) := tσ−1

(x+t)λ
(t > 0). Using the Euler-Maclaurin summation

formula (cf., [20]), for ρ(t) := t− [t] − 1
2 , we have

∞∑
n=1

gx(n) =
∫ ∞

1 gx(t)dt + 1
2 gx(1) +

∫ ∞
1 ρ(t)g′x(t)dt =

∫ ∞
0 gx(t)dt− h(x),

h(x) :=
∫ 1

0 gx(t)dt− 1
2 gx(1) −

∫ ∞
1 ρ(t)g′x(t)dt.

Thus, we obtain − 1
2 gx(1) = −1

2(x+1)λ
,

∫ 1
0 gx(t)dt =

∫ 1
0

tσ−1

(x+t)λ
dt = 1

σ

∫ 1
0

dtσ

(x+t)λ
= 1
σ

tσ

(x+t)λ
|10 + λ

σ

∫ 1
0

tσdt
(x+t)λ+1

= 1
σ

1
(x+1)λ

+ λ
σ(σ+1)

∫ 1
0

dtσ+1

(x+t)λ+1

> 1
σ

1
(x+1)λ

+ λ
σ(σ+1) [

tσ+1

(x+t)λ+1 ]
1

0
+

λ(λ+1)
σ(σ+1)(x+1)λ+2

∫ 1
0 tσ+1dt

= 1
σ

1
(x+1)λ

+ λ
σ(σ+1)

1
(x+1)λ+1 +

λ(λ+1)
σ(σ+1)(σ+2)

1
(x+1)λ+2 ,
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−g′x(t) = − (σ−1)tσ−2

(x+t)λ
+ λtσ−1

(x+t)λ+1 =
(1−σ)tσ−2

(x+t)λ
+ λtσ−2

(x+t)λ
− λxtσ−2

(x+t)λ+1

=
(λ+1−σ)tσ−2

(x+t)λ
− λxtσ−2

(x+t)λ+1 .

For 0 < σ ≤ 2, σ < λ ≤ 5, we find

(−1)i di

dti [
tσ−2

(x + t)λ
] > 0, (−1)i di

dti [
tσ−2

(x + t)λ+1
] > 0(t > 0; i = 0, 1, 2, 3),

and then by using the Euler-Maclaurin summation formula (cf., [20]), we find

(λ+ 1− σ)
∫ ∞

1
ρ(t)

tσ−2

(x + t)λ
dt > − λ+ 1− σ

12(x + 1)λ
,

−xλ
∫ ∞

1 ρ(t)
tσ−2

(x+t)λ+1 dt > xλ
12(x+1)λ+1 − xλ

720 [
tσ−2

(x+t)λ+1 ]
′′

t=1
>

(x+1)λ−λ
12(x+1)λ+1 − (x+1)λ

720 [
(λ+1)(λ+2)
(x+1)λ+3 +

2(λ+1)(2−σ)
(x+1)λ+2 +

(2−σ)(3−σ)
(x+1)λ+1 ]

= λ
12(x+1)λ

− λ
12(x+1)λ+1 − λ

720 [
(λ+1)(λ+2)
(x+1)λ+2 +

2(λ+1)(2−σ)
(x+1)λ+1 +

(2−σ)(3−σ)
(x+1)λ

].

Hence, we have

h(x) >
h1

(x + 1)λ
+

λh2

(x + 1)λ+1
+
λ(λ+ 1)h3

(x + 1)λ+2
,

where, h1 := 1
σ − 1

2 − 1−σ
12 − λ(2−σ)(3−σ)720 , h2 := 1

σ(σ+1) − 1
12 − (λ+1)(2−σ)

720 , and

h3 :=
1

σ(σ+ 1)(σ+ 2)
− λ+ 2

720
.

For λ ∈ (0, 5], λ720 <
1
24 , σ ∈ (0, 2], it follows that

h1 >
1
σ
− 1

2
− 1− σ

12
− (2− σ)(3− σ)

24
=

24− 20σ+ 7σ2 − σ3

24σ
> 0.

In fact, setting g(σ) := 24− 20σ+ 7σ2 − σ3 (σ ∈ (0, 2]), we obtain

g′(σ) = −20 + 14σ2 − 3σ2 = −3(σ− 7
3
)

2
− 11

3
< 0,

and then we obtain h1 >
g(σ)
24σ ≥ g(2)

24σ = 4
24σ > 0 (σ ∈ (0, 2]).

We observe that h2 >
1
6 − 1

12 − 12
360 = 1

20 > 0, and h3 ≥ 1
24 − 7

720 = 23
720 > 0. Hence, we deduce that

h(x) > 0, and thus we have

�(σ, x) = xλ−σ
∞∑

n=1
gx(n) <xλ−σ

∫ ∞
0 gx(t)dt

= xλ−σ
∫ ∞

0
tσ−1dt
(x+t)λ

=
∫ ∞

0
uσ−1du
(1+u)λ

= B(σ,λ− σ).

On the other-hand, we also have

∞∑
n=1

gx(n) =
∫ ∞

1 gx(t)dt + 1
2 gx(1) +

∫ ∞
1 ρ(t)g′x(t)dt

=
∫ ∞

1 gx(t)dt + H(x),
H(x) := 1

2 gx(1) +
∫ ∞

1 ρ(t)g′x(t)dt.
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We obtain 1
2 gx(1) = 1

2(x+1)λ
and

g′x(t) =
−(λ+ 1− σ)tσ−2

(x + t)λ
+
λxtσ−2

(x + t)λ+1
.

For σ ∈ (0, 2] ∩ (0,λ), 0 < λ ≤ 5, by the Euler-Maclaurin summation formula, we obtain

− (λ+ 1− σ)
∫ ∞

1
ρ(t)

tσ−2

(x + t)λ
dt > 0,

xλ
∫ ∞

1 ρ(t)
tσ−2

(x+t)λ+1 dt

> − xλ
12(x+1)λ+1 = − (x+1)λ−λ

12(x+1)λ+1 = −λ
12(x+1)λ

+ λ
12(x+1)λ+1 >

−λ
12(x+1)λ

.

Hence, we have

H(x) >
1

2(x + 1)λ
− λ

12(x + 1)λ
=

6− λ
12(x + 1)λ

> 0,

and then
�(σ, x) = xλ−σ

∞∑
n=1

gx(n) > xλ−σ
∫ ∞

1 gx(t)dt

= xλ−σ
∫ ∞

0 gx(t)dt− xλ−σ
∫ 1

0 gx(t)dt

= B(σ,λ− σ)[1− 1
B(σ,λ−σ)

∫ 1
x

0
uσ−1

(1+u)λ
du] > 0.

By the integral mid-value theorem, we find

∫ 1
x

0

uσ−1

(1 + u)λ
du =

1

(1 + θx)
λ

∫ 1
x

0
uσ−1du =

1

σ(1 + θx)
λ

1
xσ

(θx ∈ (0,
1
x
)).

This proves Inequality (5). �

Lemma 2. The following reverse inequality is valid:

I =
∫ ∞

0

∞∑
n=1

f (x)an

(x+n)λ
dx > B

1
p (σ,λ− σ)B 1

q (μ,λ− μ)

× {∫ ∞0 (1− ρσ(x))xp[1−( λ−σp +
μ
q )]−1 f p(x)dx}

1
p { ∞∑

n=1
nq[1−( σp + λ−μq )]−1aq

n}
1
q
.

(6)

Proof. For n ∈ N, setting x = nu, we obtain the following weight function:

ω(μ, n) := nλ−μ
∫ ∞

0

xμ−1dx

(x + n)λ
=

∫ ∞
0

uμ−1du

(u + 1)λ
= B(μ,λ− μ). (7)

For 0 < p < 1, q < 0, by the reverse Hölder’s inequality (cf., [27]) and the Lebesgue term by term
integration theorem (cf., [28]), we obtain

∫ ∞
0

∞∑
n=1

f (x)an

(x+n)λ
dx =

∫ ∞
0

∞∑
n=1

1
(x+n)λ

[ n(σ−1)/p

x(μ−1)/q f (x)][ x(μ−1)/q

n(σ−1)/p an]dx

≥ {∫ ∞0 [
∞∑

n=1

1
(x+n)λ

nσ−1

x(μ−1)(p−1) ] f p(x)dx} 1
p { ∞∑

n=1
[
∫ ∞

0
1

(x+n)λ
xμ−1

n(σ−1)(q−1) dx]aq
n}

1
q

= {∫ ∞0 �(σ, x)xp[1−( λ−σp +
μ
q )]−1 f p(x)dx}

1
p { ∞∑

n=1
ω(μ, n)nq[1−( σp + λ−μq )]−1aq

n}
1
q
.
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Then by (5) and (7), we obtain Inequality (6). �

Remark 1. For μ+ σ = λ, we find

�(σ, x) = xμ
∞∑

n=1

nσ−1

(x + n)λ
(x ∈ R+),

0 <
∫ ∞

0
xp(1−μ)−1 f p(x)dx < ∞ and 0 <

∞∑
n=1

nq(1−σ)−1aq
n < ∞,

and then we reduce (6) as follows:

∫ ∞
0

∞∑
n=1

f (x)an

(x + n)λ
dx > B(μ, σ)[

∫ ∞
0

(1− ρσ(x))xp(1−μ)−1 f p(x)dx]
1
p
[
∞∑

n=1

nq(1−σ)−1aq
n]

1
q

. (8)

Lemma 3. The constant factor B(μ, σ) in (8) is the best possible.

Proof. For 0 < ε < pμ, we set

f̃ (x) := { 0, 0 < x < 1,
xμ−

ε
p−1, x ≥ 1

, ãn := nσ−
ε
q−1

(n ∈ N).

If there exists a positive constant M(M ≥ B(μ, σ)) such that (8) is valid when replacing B(μ, σ) by M,
then by a substitution of f (x) = f̃ (x), an = ãn, we get

Ĩ :=
∫ ∞

0

∞∑
n=1

f̃ (x)̃an

(x + n)λ
dx >M

× [
∫ ∞

0
(1− ρσ(x))xp(1−μ)−1 f̃ p(x)dx]

1
p
[
∞∑

n=1

nq(1−σ)−1ãq
n]

1
q

= M(
∫ ∞

1 (1−O( 1
xσ ))x

−ε−1dx)
1
p (
∞∑

n=1
n−ε−1)

1
q

≥M(
∫ ∞

1 x−ε−1dx− ∫ ∞1 O( 1
xσ+ε+1 )dx)

1
p (
∫ ∞

1 x−ε−1dx)
1
q

= M
ε (1− εO(1))

1
p .

For μ− εp > 0(0 < p < 1), by (7), we obtain

Ĩ =
∞∑

n=1
n−ε−1[n(σ+ εp )

∫ ∞
1

x(μ−
ε
p )−1

(x+n)λ
dx] ≤ ∞∑

n=1
n−ε−1[n(σ+ εp )

∫ ∞
0

x(μ−
ε
p )−1

(x+n)λ
dx]

=
∞∑

n=1
n−ε−1ω(μ− εp , n) = B(μ− εp , σ+ ε

p )(1 +
∞∑

n=2
n−ε−1)

≤ B(μ− εp , σ+ ε
p )(1 +

∫ ∞
1 x−ε−1dx) = ε+1

ε B(μ− εp , σ+ ε
p ).

Then we have
(ε+ 1)B(μ− ε

p
, σ+

ε
p
) ≥ ε̃I ≥M(1− εO(1))

1
p .

For ε→ 0+ , in view of the continuity of the beta function, it follows that B(μ, σ) ≥ M. Therefore,
M = B(μ, σ) is the best possible constant factor of (8). Lemma 3 is proved. �
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Remark 2. Setting μ̂ := λ−σ
p +

μ
q , σ̂ := σ

p +
λ−μ

q , we have

μ̂+ σ̂ =
λ− σ

p
+
μ

q
+
σ
p
+
λ− μ

q
=
λ
p
+
λ
q
= λ,

and for λ− μ− σ ∈ (−pμ, p(λ− μ)), we find

μ̂ >
(1−p)μ

p +
μ
q = 0, μ̂ < μ+p(λ−μ)

p +
μ
q = λ,

0 < σ̂ = λ− μ̂ < λ, B(μ̂, σ̂) ∈ R+.

We can reduce (6) to the following

∫ ∞
0

∞∑
n=1

f (x)an

(x+n)λ
dx > B

1
p (σ,λ− σ)B 1

q (μ,λ− μ)

× [∫ ∞0 (1− ρσ(x))xp(1−μ̂)−1 f p(x)dx]
1
p [
∞∑

n=1
nq(1−σ̂)−1aq

n]

1
q
.

(9)

Lemma 4. If λ − μ − σ ∈ (−pμ, p(λ − μ)), the constant factor B
1
p (σ,λ − σ)B 1

q (μ,λ − μ) in (9) is the best
possible, then we have μ+ σ = λ.

Proof. If the constant factor B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) in (9) is the best possible, then by (8), the unique
best possible constant factor must be B(μ̂, σ̂)(∈ R+), namely,

B(μ̂, σ̂) =B
1
p (σ,λ− σ)B 1

q (μ,λ− μ).

By the reverse Hölder’s inequality (cf., [27]), we find

B(μ̂, σ̂) =
∫ ∞

0
tμ̂−1

(1+t)λ
dt =

∫ ∞
0

t
λ−σ

p +
μ
q −1

(1+t)λ
dt =

∫ ∞
0

1
(1+t)λ

(t
λ−σ−1

p )(t
μ−1

q )dt

≥ [
∫ ∞

0
1

(1+t)λ
tλ−σ−1dt]

1
p [
∫ ∞

0
1

(1+t)λ
tμ−1dt]

1
q

= B
1
p (σ,λ− σ)B 1

q (μ,λ− μ).
(10)

We observe that (10) keeps the form of equality if and only if there exist constants A, B such that they
are not all zero and

Atλ−σ−1 = Btμ−1 a.e. in R+.

Suppose that A � 0. We find that tλ−μ−σ = B
A a.e. in R+, and thus we conclude that λ− μ− σ = 0, i.e.,

μ+ σ = λ. Lemma 4 is proved. �

3. Main Results

Theorem 1. Inequality (6) is equivalent to the following inequalities:

J1 := { ∞∑
n=1

np( σp +
λ−μ

q )−1
[
∫ ∞

0
f (x)

(x+n)λ
dx]

p}
1
p

> B
1
p (σ,λ− σ)B 1

q (μ,λ− μ){∫ ∞0 (1− ρσ(x))xp[1−( λ−σp +
μ
q )]−1 f p(x)dx}

1
p
,

(11)
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J2 := {∫ ∞0 xq( λ−σp +
μ
q )−1

(1−ρσ(x))q−1 [
∞∑

n=1

an

(x+n)λ
]
q

dx} 1
q

> B
1
p (σ,λ− σ)B 1

q (μ,λ− μ){ ∞∑
n=1

nq[1−( σp + λ−μq )]−1aq
n}

1
q
.

(12)

If the constant factor B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) in (6) is the best possible, then so is the constant factor in (11)
and (12).

In particular, for μ+ σ = λ in (6), (11) and (12), we have Inequality (8) and the following equivalent
versions of reverse inequalities with the best possible constant factor B(μ, σ):

{
∞∑

n=1

npσ−1[

∫ ∞
0

f (x)

(x + n)λ
dx]

p

}
1
p

> B(μ, σ)[
∫ ∞

0
(1− ρσ(x))xp(1−μ)−1 f p(x)dx]

1
p
, (13)

{
∫ ∞

0

xqμ−1

(1− ρσ(x))q−1
[
∞∑

n=1

an

(x + n)λ
]

q

dx} 1
q> B(μ, σ)[

∞∑
n=1

nq(1−σ)−1aq
n]

1
q

. (14)

Proof. Suppose that (11) is valid. By the Lebesgue term by term integration theorem and the reverse
Hölder’s inequality (cf., [27,28]), we have

I =
∞∑

n=1

∫ ∞
0

f (x)an

(x+n)λ
dx =

∞∑
n=1

[n
−1
p +( σp +

λ−μ
q )
∫ ∞

0
f (x)

(x+n)λ
dx][n

1
p−( σp + λ−μq )an]

≥ J1{
∞∑

n=1
nq[1−( σp + λ−μq )]−1aq

n}
1
q
.

(15)

Then by (11), we have Inequality (6). On the other-hand, assuming that Inequality (6) is valid, we set

an := np( σp +
λ−μ

q )−1
[

∫ ∞
0

f (x)

(x + n)λ
dx]

p−1

, n ∈ N.

If J1 = ∞, then Inequality (11) is naturally valid; if J1 = 0, so it is impossible to make Inequality (11)
valid, namely J1 > 0. Suppose that 0 < J1 < ∞. By (6), we have

∞∑
n=1

nq[1−( σp + λ−μq )]−1aq
n = Jp

1 = I> B
1
p (σ,λ− σ)B 1

q (μ,λ− μ)

× {∫ ∞0 (1− ρσ(x))xp[1−( λ−σp +
μ
q )]−1 f p(x)dx}

1
p { ∞∑

n=1
nq[1−( σp + λ−μq )]−1aq

n}
1
q
,

{ ∞∑
n=1

nq[1−( σp + λ−μq )]−1aq
n}

1
p
= J1> B

1
p (σ,λ− σ)B 1

q (μ,λ− μ)

× {∫ ∞0 (1− ρσ(x))xp[1−( λ−σp +
μ
q )]−1 f p(x)dx}

1
p
,

namely, Inequality (11) follows, which is equivalent to Inequality (6).
Suppose that Inequality (12) is valid. By the reverse Hölder’s inequality, we have

I =
∫ ∞

0 [(1− ρσ(x))
1
p x

1
q−( λ−σp +

μ
q ) f (x)][ x

−1
q +( λ−σp +

μ
q )

(1−ρσ(x))1/p

∞∑
n=1

an

(x+n)λ
]dx

≥ {∫ ∞0 (1− ρσ(x))xp{1−( λ−σp +
μ
q )]−1 f p(x)dx} 1

p J2.
(16)
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Then by (12), we obtain Inequality (6). On the other-hand, assuming that Inequality (6) is valid, we set

f (x) := xq( λ−σp +
μ
q )−1

[
∞∑

n=1

an

(x + n)λ
]

q−1

, x ∈ R+

If J2 = ∞, then Inequality (12) is naturally valid; if J2 = 0, then it is impossible to make Inequality (12)
valid, namely J2 > 0. Suppose that 0 < J2 < ∞. By (6), we have

∫ ∞
0 (1− ρσ(x))xp[1−( λ−σp +

μ
q )]−1 f p(x)dx = Jq

2 = I > B
1
p (σ,λ− σ)B 1

q (μ,λ− μ)
×{∫ ∞0 (1− ρσ(x))xp[1−( λ−σp +

μ
q )]−1 f p(x)dx}

1
p { ∞∑

n=1
nq[1−( σp + λ−μq )]−1aq

n}
1
q
,

{∫ ∞0 (1− ρσ(x))xp[1−( λ−σp +
μ
q )]−1 f p(x)dx}

1
q
= J2> B

1
p (σ,λ− σ)B 1

q (μ,λ− μ)
×{ ∞∑

n=1
nq[1−( σp + λ−μq )]−1aq

n}
1
q
,

namely, Inequality (12) follows, which is equivalent to Inequality (6).
Hence, Inequalities (6), (11) and (12) are equivalent.

If the constant factor B
1
p (σ,λ − σ)B 1

q (μ,λ − μ) in (6) is the best possible, then so is the constant
factor in (11) and (12). Otherwise, by (15) (or (16)), we would reach a contradiction that the constant
factor in (6) is not the best possible. This completes the proof of Theorem 1. �

Theorem 2. The following statements (i), (ii), (iii) and (iv) are equivalent.

(i) B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is independent of p, q;

(ii) B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is expressible as a single integral;

(iii) B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is the best possible of (6);
(iv) If λ− μ− σ ∈ (−pμ, p(λ− μ)), then μ+ σ = λ.

Proof. (i)⇒ (ii). In view of B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is independent of p, q, we find

B
1
p (σ,λ− σ)B 1

q (μ,λ− μ)
= lim

p→ 1−,
q→ −∞

B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) = B(σ,λ− σ),

which is a single integral
∫ ∞

0
tσ−1

(1+t)λ
dt.

(ii)⇒ (iv). Suppose that B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is expressible as a single integral
∫ ∞

0
t
λ−σ

p +
μ
q −1

(1+t)λ
dt.

Then (10) keeps the form of equality. By the proof of Lemma 4, for λ− μ− σ ∈ (−pμ, p(λ− μ)), we have
μ+ σ = λ.

(iv)⇒ (i). If μ+ σ = λ, then

B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) = B(μ, σ),

which is independent of p, q.
Hence, (i)⇔ (ii)⇔ (iv).

(vi)⇒ (iii). By Lemma 3, for μ+ σ = λ, B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is the best possible of (6).
(iii)⇒ (iv). By Lemma 4, we have μ+ σ = λ.
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Therefore, we show that (iv )⇔ (iii), and then the statements (i), (ii), (iii) and (iv) are equivalent.
The proof Theorem 2 is complete. �

4. Two Corollaries and Some Particular Inequalities

Replacing x by 1
x , and then setting F(x) = xλ−2 f ( 1

x ) in Theorems 1 and 2, we find

ρσ(x−1) =
(1 + θx−1)

−λ

σB(σ,λ− σ) xσ = O(xσ) ∈ (0, 1)(θx−1 ∈ (0, x); x > 0),

and obtain the following corollaries:

Corollary 1. If F(x), an ≥ 0 such that

0 <
∫ ∞

0
xp[1−( σp + λ−μq )]−1Fp(x)dx < ∞ and 0 <

∞∑
n=1

nq[1−( σp + λ−μq )]−1aq
n < ∞,

then the following inequalities are equivalent:

∫ ∞
0

∞∑
n=1

F(x)an

(1+xn)λ
dx > B

1
p (σ,λ− σ)B 1

q (μ,λ− μ)

× {∫ ∞0 (1− ρσ(x−1))xp[1−( σp + λ−μq )]−1Fp(x)dx}
1
p { ∞∑

n=1
nq[1−( σp + λ−μq )]−1aq

n}
1
q
,

(17)

{ ∞∑
n=1

np( σp +
λ−μ

q )−1
[
∫ ∞

0
F(x)

(1+xn)λ
dx]

p}
1
p

> B
1
p (σ,λ− σ)B 1

q (μ,λ− μ){∫ ∞0 (1− ρσ(x−1))xp[1−( σp + λ−μq )]−1Fp(x)dx}
1
p
,

(18)

{∫ ∞0 xq( σp +
λ−μ

q )−1

(1−ρσ(x−1))
q−1 [

∞∑
n=1

an

(1+xn)λ
]

q

dx} 1
q

> B
1
p (σ,λ− σ)B 1

q (μ,λ− μ){ ∞∑
n=1

nq[1−( σp + λ−μq )]−1aq
n}

1
q
.

(19)

If the constant factor B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) in (17) is the best possible, then so is the constant factor
in (18) and (19).

In particular, for μ = λ− σ in (17), (18) and (19), we have the following equivalent inequalities with the
best possible constant factor B(λ− σ, σ):

∫ ∞
0

∞∑
n=1

F(x)an

(1+xn)λ
dx > B(λ− σ, σ)

× [∫ ∞0 (1− ρσ(x−1))xp(1−σ)−1Fp(x)dx]
1
p [
∞∑

n=1
nq(1−σ)−1aq

n]

1
q
,

(20)

{ ∞∑
n=1

npσ−1[
∫ ∞

0
F(x)

(1+xn)λ
dx]

p}
1
p

> B(λ− σ, σ)[∫ ∞0 (1− ρσ(x−1))xp(1−σ)−1Fp(x)dx]
1
p ,

(21)

{∫ ∞0 xqσ−1

(1−ρ(x−1))
q−1 [

∞∑
n=1

an

(1+xn)λ
]
q
dx} 1

q> B(λ− σ, σ)[ ∞∑
n=1

nq(1−σ)−1aq
n]

1
q
. (22)

Corollary 2. The following statements (i), (ii), (iii) and (iv) are equivalent:
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(i) B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is independent of p, q;

(ii) B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is expressible as a single integral;

(iii) B
1
p (σ,λ− σ)B 1

q (μ,λ− μ) is the best possible of (17);
(iv) If λ− μ− σ ∈ (−qσ, q(λ− σ)), then we have μ = λ− σ.
Remark 3. (i) For σ = 2 < λ(≤ 5),μ = λ− 2 in (8), (13) and (14), since

B(λ− 2, 2) =
Γ(λ− 2)Γ(2)

Γ(λ)
=

Γ(λ− 2)
(λ− 1)(λ− 2)Γ(λ− 2)

=
1

(λ− 1)(λ− 2)
,

ρ2(x) =
(λ− 1)(λ− 2)

2(1 + θx)
λ

1
x2 = O(

1
x2 ) ∈ (0, 1)(θx ∈ (0,

1
x
); x > 0),

we have the following equivalent versions of reverse inequalities with the best possible constant factor 1
(λ−1)(λ−2) :

∫ ∞
0

∞∑
n=1

f (x)an

(x + n)λ
dx >

1
(λ− 1)(λ− 2)

[

∫ ∞
0

(1− ρ2(x))xp(3−λ)−1 f p(x)dx]
1
p
(
∞∑

n=1

n−q−1aq
n)

1
q

, (23)

{
∞∑

n=1

n2p−1[

∫ ∞
0

f (x)

(x + n)λ
dx]

p

}
1
p

>
1

(λ− 1)(λ− 2)
[

∫ ∞
0

(1− ρ2(x))xp(3−λ)−1 f p(x)dx]
1
p
, (24)

{
∫ ∞

0

xq(λ−2)−1

(1− ρ2(x))
q−1

[
∞∑

n=1

an

(x + n)λ
]

q

dx} 1
q>

1
(λ− 1)(λ− 2)

(
∞∑

n=1

n−q−1aq
n)

1
q

. (25)

(ii) For σ = 2 < λ(≤ 5),μ = λ− 2 in (20), (21) and (22), we have

ρ2(x−1) =
(λ− 1)(λ− 2)

2(1 + θx−1)
λ

x2 = O(x2) ∈ (0, 1)(θx−1 ∈ (0, x); x > 0),

and the following equivalent versions of reverse inequalities with the best possible constant factor 1
(λ−1)(λ−2) :

∫ ∞
0

∞∑
n=1

F(x)an

(1 + xn)λ
dx >

1
(λ− 1)(λ− 2)

(

∫ ∞
0

(1− ρ2(x−1))x−p−1Fp(x)dx)
1
p
(
∞∑

n=1

n−q−1aq
n)

1
q

, (26)

{
∞∑

n=1

n2p−1[

∫ ∞
0

F(x)

(1 + xn)λ
dx]

p

}
1
p

>
1

(λ− 1)(λ− 2)
(

∫ ∞
0

(1− ρ2(x−1))x−p−1Fp(x)dx)
1
p
, (27)

{
∫ ∞

0

x2q−1

(1− ρ2(x−1))
q−1

[
∞∑

n=1

an

(1 + xn)λ
]

q

dx} 1
q (28)

5. Conclusions

Let us give a brief summary of this paper, by the way of [20,22] and the use of the weight functions,
the idea of introducing parameters and the Euler-Maclaurin summation formula, a reverse half-discrete
Hardy-Hilbert’s inequality and the reverse equivalent forms are given in Lemma 2 and Theorem 1.
The equivalent statements of the best possible constant factor related to some parameters are proved in
Theorem 2. As applications, two corollaries about the reverse cases of the non-homogeneous kernel
and some particular cases are considered in Corollaries 1, 2 and Remark 3. The above-mentioned
lemmas and theorems reveal some essential characters of this type of Hardy-Hilbert inequality.
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Abstract: We establish one-sided weighted endpoint estimates for the �-variation (� > 2)
operators of one-sided singular integrals under certain priori assumption by applying one-sided
Calderón–Zygmund argument. Using one-sided sharp maximal estimates, we further prove that
the �-variation operators of related commutators are bounded on one-sided weighted Lebesgue and
Morrey spaces. In addition, we also show that these operators are bounded from one-sided weighted
Morrey spaces to one-sided weighted Campanato spaces. As applications, we obtain some results
for the λ-jump operators and the numbers of up-crossings. Our main results represent one-sided
extensions of many previously known ones.
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1. Introduction

Given a family of bounded operators T = {Tε}ε>0 acting between spaces of functions, one of the
most significative problems in harmonic analysis is the existence of limits limε→0+Tε f and limε→∞Tε f ,
when f belongs to a certain space of functions. The question that arises naturally is how to measure
the speed of convergence of the above limits. A classic method is to investigate square functions of
the type (∑∞

i=1 |Tεi f − Tεi+1 f |2)1/2. Along this line, there is a more general way to study the following
oscillation operator

O(T ) f (x) =
( ∞

∑
i=1

sup
ti+1≤εi+1<εi≤ti

|Tεi+1 f (x)− Tεi f (x)|2
)1/2

,

with {ti} being a fixed sequence decreasing to zero. However, beyond that, another typical method is
to consider the �-variation operator defined by

V�(T ) f (x) = sup
{εi}↘0

( ∞

∑
i=1

|Tεi f (x)− Tεi+1 f (x)|�
)1/�

,

where � > 2 and the supremum runs over all sequences {εi} of positive numbers decreasing to zero.

Mathematics 2019, 7, 876; doi:10.3390/math7100876 www.mdpi.com/journal/mathematics167
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The investigation on variation inequalities is an active research topic in probability, ergodic theory
and harmonic analysis. The first variation inequality was proved by Lépingle [15] for martingales
(also see [25] for a simple proof). Bourgain [2] proved the similar variation estimates for the ergodic
averages of a dynamic system later. Bourgain’s work has inspired a number of authors to investigate
oscillation and variation inequalities for several families of operators from ergodic theory (see [12,13,24]
for examples) and harmonic analysis (cf. [3,4,6,11,14]). Recently, the variation inequalities and their
weighed case for singular integrals and related operators have also been studied by many authors.
The first work in this direction is due to Campbell et al. [3] who proved that O(H) and V�(H) with
� > 2 are of type (p, p) for 1 < p < ∞ and of weak type (1, 1), where H = {Hε}ε>0 is the family of
the truncated Hilbert transforms, i.e., Hε f (x) =

´
|x−y|>ε

f (y)
x−y dy. Subsequently, the aforementioned

authors [4] also studied the variation operators related to the classical Riesz transform in Rd for d ≥ 2.
In 2004, Gillespie and Torrea [9] established the Lp(R, w(x)dx) bounds for O(H) and V�(H) with � > 2,
1 < p < ∞ and w ∈ Ap (the Muckenhoupt weights class) (also see [10,14] for the related investigations).
Later on, Crescimbeni et al. [5] proved that O(H) and V�(H) with ρ > 2 map L1(R, w(x)dx) into
L1,∞(R, w(x)dx) for w ∈ A1. In particular, Ma et al. [21,22] presented the weighted oscillation and
variation inequalities for differential operators and Calderón–Zygmund singular integrals. Recently,
Liu and Wu [19] established the weighted oscillation and variational inequalities for the commutator
of one-dimensional Calderón–Zygmund singular integrals.

The primary purpose of this paper is to study weighted boundedness of oscillation and variational
operators for one-sided singular integrals and their commutators. We say a function K belongs to
one-sided Calderón–Zygmund kernel OCZK(B1, B2, B3) if K ∈ L1

loc(R\{0}) satisfies the following
conditions: there exist constants B1, B2, B3 > 0 such that∣∣∣ ˆ

{ε<|x|<N}
K(x)dx

∣∣∣ ≤ B1 for all ε and all N with 0 < ε < N,

and furthermore limε→0+
´

ε<|x|<N K(x)dx exists,

|K(x)| ≤ B2|x|−1 for all x �= 0,

|K(x − y)− K(x)| ≤ B3|y||x|−2 for all x and y with |x| > 2|y|.

An example of a one-sided Calderón–Zygmund kernel is K(x) =
sin(log x)

x log x χ(0,∞); see [1].

We mention here that the kernel of one-sided truncated Hilbert Transform, K0(x) = 1
x χ(0,∞), is not

a OCZK for there does not exist a B1 > 0 such that the first condition above holds.
Let K ∈ OCZK(B1, B2, B3) with support in (−∞, 0) and b ∈ BMO(R). For m ∈ N, we consider

the one-sided operator

T+,m
b f (x) = lim

ε→0+
T+,b,m

ε f (x) = p.v.
ˆ ∞

x
(b(x)− b(y))mK(x − y) f (y)dy,

where

T+,b,m
ε f (x) :=

ˆ ∞

x+ε
(b(x)− b(y))mK(x − y) f (y)dy. (1)

For m ≥ 1, the operator T+,m
b is the m-th order commutator of one-sided singular integral.

When m = 0, we denote by T+,b,0
ε = T+

ε , and then the operator T+,m
b reduces to the one-sided

Calderón–Zygmund singular integral operator T+, which is defined by

T+ f (x) = lim
ε→0+

T+
ε f (x) = p.v.

ˆ ∞

x
K(x − y) f (y)dy. (2)
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In 1997, Aimar et al. [1] observed that the operator T+ maps Lp(R, w(x)dx) into Lp(R, w(x)dx)
for 1 < p < ∞ and w ∈ A+

p , and maps L1(R, w(x)dx) into L1,∞(R, w(x)dx) for w ∈ A+
1 . Subsequently,

Lorente and Riveros [20] proved that there exist constants C > 0 such that

‖T+,m
b f ‖Lp(R,w(x)dx) ≤ C‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx)

for w ∈ A+
p and 1 < p < ∞, and

w({x : |T+,m
b f (x)| > λ}) ≤ Cφm(‖b‖m

BMO(R))

ˆ
R

| f (x)|
λ

(
1 + log+

( | f (x)|
λ

))m
w(x)dx

for w ∈ A+
1 and λ > 0, where φm(t) = t(1 + log+ t)m and z+ = max{z, 0}. Other interesting related

results for the one-sided operators we may refer to [7,8,16–18], among others.
At first, we shall establish the one-sided weighted endpoint and strong estimates for the

�-variation (� > 2) operators of one-sided singular integral and its commutator. Let us recall the
one-sided weighted BMO spaces.

Definition 1. (One-sided weighted BMO spaces.) For a weight w, the one-sided weighted BMO spaces
BMO+(R, w(x)dx) is defined by

BMO+(R, w(x)dx) := { f ∈ L1
loc(R, dx) : ‖ f ‖BMO+(R,w(x)dx) := ‖M+,� f ‖L∞(R,w(x)dx) < ∞}.

Here, M+,� is one-sided sharp maximal operator defined by

M+,� f (x) = sup
h>0

1
h

ˆ x+h

x

(
f (y)− 1

h

ˆ x+2h

x+h
f (z)dz

)+
dy.

Remark 1. When w(x) ≡ 1, the space BMO+(R, w(x)dx) reduces to the one-sided BMO space BMO+(R),
which was introduced by Martín-Reyes and de la Torre [23]. It was proved in [23] that

M+,� f (x) ≤ sup
h>0

inf
a∈R

(1
h

ˆ x+h

x
( f (y)− a)+dy +

1
h

ˆ x+2h

x+h
(a − f (y))+dy

)
≤ ‖ f ‖BMO(R) (3)

for any x ∈ R. This yields that BMO(R) ⊂ BMO+(R).

We now list our first main result as follows:

Theorem 1. Let m ∈ N, � > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with supported in (−∞, 0).
Let T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in Equation (1) and (2), respectively. Assume that
‖V�(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

(i) for any w ∈ A+
1 and f ∈ L1(R, w(x)dx), it holds that

‖V�(T ) f ‖L1,∞(R,w(x)dx) ≤ C‖ f ‖L1(R,w(x)dx);

(ii) for any 1 < p < ∞, w ∈ A+
p and f ∈ Lp(R, w(x)dx), it holds that

‖V�(T m
b ) f ‖Lp(R,w(x)dx) ≤ C‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx);

(iii) for a weight w satisfying w−1 ∈ A−
1 and f ∈ L∞(R, w(x)dx), it holds that

‖V�(T ) f ‖BMO+(R,w(x)dx) ≤ C‖ f ‖L∞(R,w(x)dx).
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In addition, we also investigate the boundedness behavior of the ρ-variation operators of
one-sided singular integral and its commutator on one-sided weighted Morrey spaces and Companato
spaces. In order to study the boundedness of one-sided singular integral operator on weighted Morrey
spaces and Campanato spaces, Shi and Fu [27] introduced the one-sided weighted Morrey spaces and
one-sided weighted Campanato spaces, which are defined as follows:

Definition 2. (One-sided weighted Morrey spaces and Campanato spaces.) Let 1 ≤ p < ∞, −1/p ≤
β < 0 and w be a weight on R.

(i) One-sided weighted Morrey spaces Lp,β,+(w) are defined by

Lp,β,+(w) := { f ∈ Lp
loc(R, dx) : ‖ f ‖Lp,β,+(w) < +∞},

where

‖ f ‖Lp,β,+(w) := sup
x0∈R

sup
h>0

1
hβ

( 1
w((x0 − h, x0))

ˆ x0+h

x0

| f (x)|pdx
)1/p

.

(ii) One-sided weighted Campanato spaces Lp,β,+(w) are given by

Lp,β,+(w) := { f ∈ Lp
loc(R, dx) : ‖ f ‖Lp,β,+(w) < +∞},

where

‖ f ‖Lp,β,+(w) := sup
x0∈R

sup
h>0

1
hβ

( 1
w((x0 − h, x0))

ˆ x0+h

x0

| f (x)− f(x0,x0+h)|pdx
)1/p

.

Remark 2. It is well known that the following are valid:

‖ f ‖Lp,β,+(w) ∼ sup
x0∈R

sup
h>0

inf
a∈R

1
hβ

( 1
w((x0 − h, x0))

ˆ x0+h

x0

| f (x)− a|pdx
)1/p

; (4)

Lp,β,+(w) � Lp,β,+(w).

The rest of the main results can be listed as follows.

Theorem 2. Let m ∈ N, � > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0).
Let T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in Equation (1) and (2), respectively. Assume that
‖V�(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

(i) for any 1 < p < 1/(β + 1), −1/p ≤ β < 0, w ∈ A+
p and f ∈ Lp,β,+(w),

‖V�(T m
b ) f ‖Lp,β,+(w) � ‖b‖m

BMO(R)‖ f ‖Lp,β,+(w);

(ii) for any 1 < p < ∞, −1/p ≤ β < 0, w ∈ A+
p and f ∈ Lp,β,+(w),

‖V�(T ) f ‖Lp,β,+(w) � ‖ f ‖Lp,β,+(w).

Remark 3. We remark that we deal only with � > 2 for the variation operators in our main theorems, since
it was pointed out in [2] that the variation is often not bounded in the case � ≤ 2. In addition, it is unknown
what are the endpoint estimates of the variation operators for the commutators of one-sided singular integrals
and whether the above operators are bounded from one-sided weighted Morrey spaces to one-sided weighted
Campanato spaces, which are interesting.
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This paper is organized as follows. In Section 2, we shall present some basic definitions and
necessary lemmas. In Section 3, we give the proofs of Theorems 1 and 2. As applications, we present
the corresponding estimates for the λ-jump operators and the number of up-crossing for these operators
in Section 4. Finally, some further comments will be given in Section 5. We would like to remark that
our works and ideas are taken from [9,19]. It should also be pointed out that all results in this paper
are valid for oscillation operator with similar arguments.

Throughout this paper, for any p ∈ (1, ∞), we denote by p′ the dual exponent to p, i.e., 1/p +

1/p′ = 1. The letter C will represent a positive constant that may vary at each occurrence but is
independent of the essential variables. For a weight w, an interval I and a function f : R → R,
we denote by w(I) =

´
I w(x)dx and f I =

1
|I|
´

I f (x)dx. We also use the convention ∑i∈∅ ai = 0.

2. Preliminaries

We start with the definitions of one-sided Hardy–Littlewood maximal functions

M+ f (x) = sup
h>0

1
h

ˆ x+h

x
| f (y)|dy and M− f (x) = sup

h>0

1
h

ˆ x

x−h
| f (y)|dy.

For r > 0, we set M+
r f (x) := (M+| f |r(x))1/r.

By a weight, we mean a nonnegative measurable function.

Definition 3. [26] Let 1 < p < ∞. A weight w belongs
to the class A+

p (resp., A−
p ), if [w]A+

p
< ∞ (resp., [w]A−

p
< ∞), where

[w]A+
p

:= sup
a<b<c

1
(c − a)p

( ˆ b

a
w(x)dx

)( ˆ c

b
w(x)1−p′dx

)p−1
,

[w]A−
p

:= sup
a<b<c

1
(c − a)p

( ˆ c

b
w(x)dx

)( ˆ b

a
w(x)1−p′dx

)p−1
.

A weight w belongs to the class A+
1 (resp., A−

1 ), if [w]A+
1
< ∞ (resp., [w]A−

1
< ∞), where

[w]A+
1

:= sup
x∈R

w(x)−1M−w(x) and [w]A−
1

:= sup
x∈R

w(x)−1M+w(x).

Since the A+
p and A−

p classes are increasing with respect to p, the A+
∞ (resp., A−

∞) class of weights is
defined in a natural way by A+

∞ =
⋃

1<p<∞ A+
p (resp., A−

∞ =
⋃

1<p<∞ A−
p ) with

[w]A+
∞

:= inf
1<p<∞

inf
w∈A+

p

[w]A+
p

, [w]A−
∞

:= inf
1<p<∞

inf
w∈A−

p

[w]A−
p

.

It is easy to see that Ap � A+
p , Ap � A−

p and Ap = A+
p
⋂

A−
p . Take ex for example, ex /∈ A1,

but ex ∈ A+
1 . Here, Ap denotes the usual Muckenhoupt weight.

It was shown in [26] that, for any 1 < p < ∞, M+ : Lp(R, w(x)dx) → Lp(R, w(x)dx) is bounded
if and only if w ∈ A+

p ; moreover, M+ : L1(R, w(x)dx) → L1,∞(R, w(x)dx) is bounded if and only if
w ∈ A+

1 . The same results hold for M− if w ∈ A+
p replaced by w ∈ A−

p for 1 ≤ p < ∞.
The following lemma will play key roles in our main proofs.

Lemma 1.

(i) Let 1 ≤ p ≤ ∞ and w ∈ A+
p . Then, for all x0 ∈ R and h > 0,

w(x0 − h, x0 + h) ≤ (1 + 2p[w]A+
p
)w(x0, x0 + h). (5)
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(ii) Let 1 ≤ p ≤ ∞ and w ∈ A+
p . Then, for all x0 ∈ R, h > 0 and λ ≥ 1,

w(x0 − λh, x0) ≤ λp(2p[w]A+
p
+ (2p[w]A+

p
)2)w(x0, x0 + h). (6)

Proof. Fix h > 0 and x0 ∈ R and we set I = (x0 − h, x0 + h). Given two functions f , g defined on R,
by Hölder’s inequality, we get( 1

|I|

ˆ
I
| f (x)g(x)|dx

)p

≤ 1
|I|p

( ˆ
I
| f (x)|pw(x)dx

)( ˆ
I
|g(x)|p′w(x)1−p′dx

)p/p′

≤
( 1
|I|

ˆ
I−

w(x)dx
)( 1

|I|

ˆ
I
|g(x)|p′w(x)1−p′dx

)p−1( 1
w(I−)

ˆ
I
| f (x)|pw(x)dx

)
.

(7)

Applying Equation (7) to the functions f = χI+ and g = χI+ , we get

w(I−) ≤ 2p[w]A+
p

w(I+). (8)

Then, (5) follows easily from (8).
On the other hand, we get from (7) that( 1

|λI|

ˆ
λI
| f (x)g(x)|dx

)p

≤
( 1
|λI|

ˆ
(λI)−

w(x)dx
)( 1

|λI|

ˆ
λI
|g(x)|p′w(x)1−p′dx

)p−1

×
( 1

w((λI)−)

ˆ
λI
| f (x)|pw(x)dx

)
.

(9)

Applying (9) to the functions f = χI and g = χ(λI)+ , we have

w((λI)−) ≤ (2λ)p[w]A+
p

w(I), (10)

which together with (5) yields (6).

By Lemma 2.1 in [26] and the similar argument as in classical Calderón–Zygmund decomposition
for the usual Hardy–Littlewood maximal function, one can get the following Calderón–Zygmund
decomposition for M+, which will be crucial for the proof of Lemma 3.

Lemma 2. Let f ∈ L1(R, dx) and α > 0. Let Ω = {x : M+ f (x) > α}. Then, Ω can be decomposed into
finitely many disjoint intervals of integers: Ω =

⋃
i Ii with the following properties:

(i) f = g + ϕ, where g = f χR\Ω and g = f Ii on Ii for each i;
(ii) ϕ = ∑i ϕi, where ϕi = ( f − f Ii )χIi ;
(iii) ‖g‖L∞(R,dx) ≤ 2α and ‖g‖L1(R,dx) ≤ ‖ f ‖L1(R,dx);
(iv) for each i,

´
Ii

ϕi(y)dy = 0 and 1
|Ii |
´

Ii
|ϕi(y)|dy ≤ 4α;

(v) ∑i |Ii| ≤ α−1‖ f ‖L1(R,dx).

3. Proofs of Main Results

Following [9], let Θ = {β : β = {εi}, εi ∈ R, εi ↘ 0} and F� be the mixed norm Banach space of
two variables function h defined on N× Θ such that

‖h‖F� ≡ sup
β

(
∑

i
|h(i, β)|�

)1/�
< ∞.
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Given a family of operators T = {Tt}t>0 defined on Lp(R, dx), we consider the F�-valued operator
V(T ) : f −→ V(T ) f on Lp(R, dx) given by

V(T ) f (x) :=
{

T[εi+1,εi ]
f (x)

}
β={εi}∈Θ

,

where the expression {T[εi+1,εi ]
f (x)}β={εi}∈Θ is an abbreviation for the element of F� given by

(i, β) = (i, {εi}) −→ T[εi+1,εi ]
f (x) := Tεi+1 f (x)− Tεi f (x).

Observe that
V�(T ) f (x) = ‖V(T ) f (x)‖F� , ∀x ∈ R. (11)

In order to prove Theorem 1, we shall establish the following key result.

Lemma 3. Let � > 2 and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0). Let T = {T+
ε }ε>0 be given as in

Equation (2). Assume that ‖V�(T )‖Lq(R,w(x)dx)→Lq(R,w(x)dx) < ∞ for some q ∈ (1, ∞) and w ∈ A+
q . Then,

‖V�(T ) f ‖L1,∞(R,w(x)dx) ≤ C‖ f ‖L1(R,w(x)dx), ∀ f ∈ L1(R, w(x)dx) and w ∈ A+
1 .

Proof. We shall adopt the classical Calderón–Zygmund argument to prove Lemma 3.
Let Ω = {x : M+ f (x) > 1}. Invoking Lemma 2, we can decompose Ω as Ω =

⋃
j Ij and decompose

f as f = g + ϕ, where all Ij are disjoint intervals, g = f χR\Ω + ∑j f Ij χIj , ϕ = ∑j ϕj, ϕj = ( f − f Ij)χIj ,

‖g‖L∞(R,dx) ≤ 2, ‖g‖L1(R,dx) ≤ ‖ f ‖L1(R,dx), and for each j,
´

Ij
ϕj(y)dy = 0 and 1

|Ij |
´

Ij
|ϕj(y)|dy ≤ 4.

It suffices to show that
w({x : V�(T ) f (x) > 1}) ≤ C‖ f ‖L1(R,w(x)dx). (12)

It is clear that

w({x : V�(T ) f (x) > 1}) ≤ w({x : V�(T )g(x) > 1/2}) + w({x : V�(T )ϕ(x) > 1/2}). (13)

By our assumption,

w({x : V�(T )g(x) > 1/2}) ≤ 2q
ˆ
R
|V�(T )g(x)|qw(x)dx

≤ C
ˆ
R
|g(x)|qw(x)dx ≤ C‖ f ‖L1(R,w(x)dx).

(14)

We set Ij = (cj, cj + |Ij|) and Ω∗ =
⋃

j(cj − 2|Ij|, cj + 2|Ij|), then

w({x : V�(T )ϕ(x) > 1/2}) ≤ w(Ω∗) + w({x ∈ R \ Ω∗ : V�(T )ϕ(x) > 1/2}). (15)

Using Lemma 1 (i) and the L1(R, w(x)dx) → L1,∞(R, w(x)dx) bounds for M+, one has

w(Ω∗) ≤ C ∑
j

w(Ij) = Cw(Ω) ≤ C‖ f ‖L1(R,w(x)dx). (16)

We now turn to prove

w({x ∈ R \ Ω∗ : V�(T )ϕ(x) > 1/2}) ≤ C‖ f ‖L1(R,w(x)dx). (17)

For every x ∈ R \ Ω∗, we can choose a decreasing sequence {εi} (that depends on x) such that

V�(T )ϕ(x) ≤ 2
(

∑
i
|T+

[εi+1,εi ]
ϕ(x)|�

)1/�
.
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For each i and x ∈ R \ Ω∗, we set Bi(x) = (x + εi+1, x + εi] and

Ni,1 = {j : Ij ⊂ Bi(x)} and Ni,2 = {j : Ij ∩ Bi(x) �= ∅, Ij � Bi(x)}.

We notice that the cardinal of the Ni,2 is at most two. Thus, it holds that

V�(T )ϕ(x) ≤ 2
(

∑
i

∣∣∣ ∑
j∈Ni,1

T+
[εi+1,εi ]

ϕj(x)
∣∣∣�)1/�

+ 2
(

∑
i

∣∣∣ ∑
j∈Ni,2

T+
[εi+1,εi ]

ϕj(x)
∣∣∣�)1/�

≤ 2 ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)|+ 4
(

∑
i

∑
j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|�
)1/�

.

It follows that

w({x ∈ R \ Ω∗ : V�(T )ϕ(x) > 1/2})

≤ w
({

x ∈ R \ Ω∗ : ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)| > 1
8

})
+ w

({
x ∈ R \ Ω∗ :

(
∑

i
∑

j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|�
)1/�

>
1
16

})
.

(18)

Fix x ∈ R \Ω∗. Note that |x − cj| ≥ 2|Ij| > 2|y− cj| for any y ∈ Ij. Then, |K(x − y)−K(x − cj)| ≤
B3|x − cj|−2|y − cj|. This together with the properties of ϕj yield that

|T+
[εi+1,εi ]

ϕj(x)| =
∣∣∣ ˆ

R
(K(x − y)− K(x − cj))ϕj(y)dy

∣∣∣ ≤ 2B3|Ij||x − cj|−2
ˆ

Ij

| f (y)|dy.

Observing that T+
[εi+1,εi ]

ϕj(x) = 0 if x > cj + |Ij|, we thus have

w
({

x ∈ R \ Ω∗ : ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)| > 1
8

})
≤ 8
ˆ
R\Ω∗ ∑

i
∑

j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)|w(x)dx

≤ 16B3 ∑
j
|Ij|
ˆ
(−∞,cj−2|Ij |]

w(x)
|x − cj|2

dx
ˆ

Ij

| f (y)|dy.

(19)

Fix y ∈ Ij. One can easily check that cj − x ≥ 2(y − x)/3 for any x ≤ cj − 2|Ij|. Then,

ˆ
(−∞,cj−2|Ij |]

w(x)
|x − cj|δ

dx ≤
∞

∑
k=1

ˆ
[cj−2k+1|Ij |,cj−2k |Ij |]

w(x)
|x − cj|δ

dx

≤
∞

∑
k=1

(2k|Ij|)−δ2k+3|Ij|
1

2k+3|Ij|

ˆ y

y−2k+3|Ij |
w(x)dx

≤ C(δ)|Ij|1−δ M−w(y)

(20)

for any δ > 1. By (19) and (20) (with δ = 2) and w ∈ A+
1 , we have

w
({

x ∈ R \ Ω∗ : ∑
i

∑
j∈Ni,1

|T+
[εi+1,εi ]

ϕj(x)| > 1
8

})
≤ C ∑

j

ˆ
Ij

| f (y)|M−w(y)dy ≤ C([w]A+
1
)‖ f ‖L1(R,w(x)dx).

(21)
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Fix x ∈ R \ Ω∗. Note that T+
[εi+1,εi ]

ϕj(x) = 0 when x > cj + |Ij|. Moreover, y − x ≥ cj − x ≥ 0 for
any y ∈ Ij. Then,

|T+
[εi+1,εi ]

ϕj(x)| ≤ B2

ˆ
Bi(x)

|ϕj(y)|
|x − y| dy ≤ B2|x − cj|−1χ(−∞,cj−2|Ij |](x)

ˆ
Bi(x)

|ϕj(y)|dy.

Combining this with (20) (with δ = �) implies that

w
({

x ∈ R \ Ω∗ :
(

∑
i

∑
j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|�
)1/�

>
1
16

})
≤ 16�

ˆ
R\Ω∗ ∑

i
∑

j∈Ni,2

|T+
[εi+1,εi ]

ϕj(x)|�w(x)dx

≤ C(�)
ˆ
R\Ω∗ ∑

j

(
∑

i
|T+

[εi+1,εi ]
ϕj(x)|

)�
w(x)dx

≤ C(�)∑
j

ˆ
(−∞,cj−2|Ij |]

|x − cj|−�
(

∑
i

ˆ
Bi(x)

|ϕj(y)|dy
)�

w(x)dx

≤ C(�)∑
j

ˆ
(−∞,cj−2|Ij |]

w(x)
|x − cj|�

( ˆ
R
|ϕj(y)|dy

)�
dx

≤ C(�)∑
j
|Ij|�−1

ˆ
Ij

ˆ
(−∞,cj−2|Ij |]

w(x)
|x − cj|�

dx| f (y)|dy

≤ C(�)∑
j

ˆ
Ij

| f (y)|M−(w)(y)dy

≤ C(�, [w]A+
1
)‖ f ‖L1(R,w(x)dx),

which together with (21) and (18) yields (17). Then, (12) follows from (13)–(17). This proves
Lemma 3.

Applying similar arguments used in deriving Lemma 3, we can get the following:

Corollary 1. Let K ∈ OCZK(B1, B2, B3) with support in (−∞, 0). Let � > 2 and T = {T+
ε }ε>0 be given as

in Equation (2). Assume that ‖V�(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

‖V�(T ) f ‖L1,∞(R,dx) ≤ C‖ f ‖L1(R,dx), ∀ f ∈ L1(R, dx).

The following lemma will play a pivotal role in the proof of Theorem 1.

Lemma 4. Let m ∈ N, � > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0). Let
T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in Equations (1) and (2), respectively. Assume that
‖V�(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then, for any r > 1 and x ∈ R, it holds that

M+,�(V�

(
T m

b ) f )(x) ≤ C
( m−1

∑
i=0

‖b‖m−i
BMO(R)M+

r (V�

(
T i

b
)

f )(x) + ‖b‖m
BMO(R)M+

r f (x)
)

. (22)

Proof. We only prove (22) for the case 1 < r < min{q, 2}, since M+
r1

f ≤ M+
r2

f for any r2 ≥ r1. Invoking
Corollary 1, we see that V�(T ) is of weak type (1, 1). By the Marcinkiewicz interpolation theorem
and our assumption, we have that V�(T ) is bounded on Lp(R, dx) for any 1 < p < q. Fix x0 ∈ R
and h > 0. We decompose f as f = f1 + f2 + f3, where f1 = f χ[x0,x0+2h] and f2 = f χ(x0+2h,∞).
Let I = [x0 − 2h, x0 + 2h]. In view of (3), to prove (22), we only prove
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1
h

ˆ x0+h

x0

|V�(T m
b ) f (y)− V�(T m

b )((b − bI)
m f2)(x0)|dy

≤ C
( m−1

∑
i=0

‖b‖m−i
BMO(R)M+

r (V�

(
T i

b
)

f )(x) + ‖b‖m
BMO(R)M+

r f (x)
)

,

(23)

where C > 0 is independent of x0, h. Using the arguments similar to those used in deriving the
inequality (11) in [20], we get

T+,b,m
ε f (y) = T+

ε ((b − bI)
m f )(y) +

m−1

∑
k=0

Ck,m(b(y)− bI)
m−kT+,b,k

ε f (y), ∀y ∈ R. (24)

Note that T+,b,k
ε f3(y) = 0 for any ε > 0, 0 ≤ k ≤ m − 1 and y ≥ x0. (24) leads to

V(T m
b ) f (y) = V(T )((b − bI)

m f1)(y) + V(T )((b − bI)
m f2)(y)

+
m−1

∑
k=0

Ck,m(b(y)− bI)
m−kV(T k

b ) f (y), ∀y ≥ x0.
(25)

We notice from (11) that

1
h

ˆ x0+h

x0

|V�(T m
b ) f (y)− V�(T m

b )((b − bI)
m f2)(x0)|dy

=
1
h

ˆ x0+h

x0

|‖V(T m
b ) f (y)‖F� − ‖V(T m

b )((b − bI)
m f2)(x0)‖F� |dy

≤ 1
h

ˆ x0+h

x0

‖V(T m
b ) f (y)− V(T m

b )((b − bI)
m f2)(x0)‖F� dy.

This together with (25) and (11) yield that

1
h

ˆ x0+h

x0

|V�(T m
b ) f (y)− V�(T m

b )((b − bI)
m f2)(x0)|dy

≤ 1
h

ˆ x0+h

x0

V�(T )((b − bI)
m f1)(y)dy

+
m−1

∑
k=0

Ck,m
1
h

ˆ x0+h

x0

|b(y)− bI |m−kV�(T k
b ) f (y)dy

+
1
h

ˆ x0+h

x0

‖V(T )((b − bI)
m f2)(y)− V(T )((b − bI)

m f2)(x0)‖F� dy

=: I1 + I2 + I3.

(26)

Observe that, for any δ > 1 and k ∈ N,

1
|2k I|

ˆ
2k I

|b(z)− bI |δdz ≤ 2δ−1
( 1
|2k I|

ˆ
2k I

|b(z)− b2k I |δdz + |bI − b2k I |δ
)

≤ C(δ)(k + 1)δ‖b‖δ
BMO(R).

(27)
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We set ρ =
√

r. By Hölder’s inequality, the Lρ boundedness for V�(T ) and (27), we have

I1 ≤
(1

h

ˆ x0+h

x0

|V�(T )((b − bI)
m f1)(y)|ρdy

)1/ρ

≤ C(ρ)
(1

h

ˆ x0+2h

x0

|(b(y)− bI)
m f (y)|ρdy

)1/ρ

≤ C(ρ)
(1

h

ˆ x0+2h

x0

| f (y)|rdy
)1/r( 1

|I|

ˆ
I
|b(y)− bI |mρρ′dy

)1/ρρ′

≤ C(m, r)‖b‖m
BMO(R)M+

r f (x0)

(28)

and

I2 ≤
m−1

∑
k=0

Ck,m

(1
h

ˆ x0+h

x0

|V�(T k
b ) f (y)|rdy

)1/r( 1
|I|

ˆ
|I|
|(b(y)− bI)

(m−k)r′dy
)1/r′

≤ C(m, r)
m−1

∑
k=0

Ck,m‖b‖m−k
BMO(R)M+

r (V�(T k
b ) f )(x0).

(29)

For I3, let y ∈ [x0, x0 + h] and β = {εi} ∈ Θ, since

T+
[εi+1,εi ]

((b − bI)
m f2)(y)− T+

[εi+1,εi ]
((b − bI)

m f2)(x0)

=

ˆ
R
[K(y − z)χ(y+εi+1,y+εi ]

(z)− K(x0 − z)χ(x0+εi+1,x0+εi ]
(z)](b(z)− bI)

m f2(z)dz

=

ˆ
R
(K(y − z)− K(x0 − z))χ(y+εi+1,y+εi ]

(z)(b(z)− bI)
m f2(z)dz

+

ˆ
R
[K(x0 − z)(χ(y+εi+1,y+εi ]

(z)− χ(x0+εi+1,x0+εi ]
(z))(b(z)− bI)

m f2(z)dz.

It follows that

‖V(T )((b − bI)
m f2)(y)− V(T )((b − bI)

m f2)(x0)‖F�

≤
∥∥∥{ ˆ

R
(K(y − z)− K(x0 − z))χ(y+εi+1,y+εi ]

(z)(b(z)− bI)
m f2(z)dz

}
i∈N,β={εi}∈Θ

∥∥∥
F�

+
∥∥∥{ ˆ

R
K(x0 − z)(χ(y+εi+1,y+εi ]

(z)− χ(x0+εi+1,x0+εi ]
(z))

×(b(z)− bI)
m f2(z)dz

}
i∈N,β={εi}∈Θ

∥∥∥
F�

=: I11 + I12.

(30)

Since |x0 − z| > 2h ≥ 2|x0 − y| for z > x0 + 2h, then |K(y − z)− K(x0 − z)| ≤ B3|x0 − y||x0 −
z|−2 ≤ B3h|x0 − z|−2 for any z > x0 + 2h. Note that

‖{χ(y+εi+1,y+εi ]
(z)}i∈N,β={εi}∈Θ‖F� ≤ 1, ∀y ∈ R.
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By Minkowski’s inequality, Hölder’s inequality and (27) with δ = mr′, we obtain

I11 ≤
ˆ
R
|K(y − z)− K(x0 − z)|‖{χ(y+εi+1,y+εi ]

(z)}i∈N,β={εi}∈Θ‖F�

×|(b(z)− bI)
m f2(z)|dz

≤ B3h
ˆ ∞

x0+2h

|(b(z)− bI)
m f (z)|

(z − x0)2 dz

≤ B3h
∞

∑
k=1

ˆ x0+2k+1h

x0+2kh

|(b(z)− bI)
m f (z)|

(2kh)2 dz

≤ 4B3

∞

∑
k=1

2−k
( 1

2k+1h

ˆ x0+2k+1h

x0

| f (z)|rdz
)1/r( 1

|2k I|

ˆ
2k I

|b(z)− bI |mr′dz
)1/r′

≤ 4B3

∞

∑
k=1

(k + 1)m

2k ‖b‖m
BMO(R)M+

r f (x0) ≤ C(m, r, B3)‖b‖m
BMO(R)M+

r f (x0).

(31)

It remains to estimate I12. Fix {εi} ∈ Θ. Let N1 = {i ∈ Z : εi − εi+1 ≥ y − x0} and N2 = {i ∈ Z :
εi − εi+1 < y − x0}. We can write

∑
i∈Z

∣∣∣ ˆ
R

K(x0 − z)(χ(y+εi+1,y+εi ]
(z)− χ(x0+εi+1,x0+εi ]

(z))(b(z)− bI)
m f2(z)dz

∣∣∣ρ
≤ ∑

i∈N1

∣∣∣ ˆ
R

K(x0 − z)(χ(y+εi+1,y+εi ]
(z)− χ(x0+εi+1,x0+εi ]

(z))(b(z)− bI)
m f2(z)dz

∣∣∣ρ
+ ∑

i∈N2

∣∣∣ ˆ
R

K(x0 − z)(χ(y+εi+1,y+εi ]
(z)− χ(x0+εi+1,x0+εi ]

(z))(b(z)− bI)
m f2(z)dz

∣∣∣ρ
=: J11 + J12.

(32)

By Hölder’s inequality, we obtain

J11 ≤ Bρ
2 ∑

i∈N1

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| (χ(x0+εi+1,y+εi+1]
(z) + χ(x0+εi ,y+εi ]

(z))dz
∣∣∣ρ

≤ (4B2)
ρ ∑

i∈N1

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| χ(x0+εi ,y+εi ]
(z)dz

∣∣∣ρ
≤ (4B2)

ρhρ−1 ∑
i∈N1

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ χ(y+εi+1,y+εi ]
(z)dz

≤ (4B2)
ρhρ−1

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz.

(33)

J12 ≤ Bρ
2 ∑

i∈N2

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| (χ(y+εi+1,y+εi ]
(z) + χ(x0+εi+1,x0+εi ]

(z))dz
∣∣∣ρ

≤ (2B2)
ρ ∑

i∈N2

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| (χ(y+εi+1,y+εi ]
(z)dz

∣∣∣ρ
+(2B2)

ρ ∑
i∈N2

∣∣∣ ˆ
R

|(b(z)− bI)
m f2(z)|

|x0 − z| χ(x0+εi+1,x0+εi ]
(z)dz

∣∣∣ρ
≤ hρ−1(2B2)

ρ ∑
i∈N2

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ χ(y+εi+1,y+εi ]
(z)dz

+hρ−1(2B2)
ρ ∑

i∈N2

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ χ(x0+εi+1,x0+εi ]
(z)dz

≤ 2(2B2)
ρhρ−1

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz.

(34)

It follows from (32)–(34) that

I12 ≤ C(B2, r)h1−1/ρ
( ˆ

R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz
)1/ρ

. (35)
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By Hölder’s inequality and (27) (with δ = mρρ′), we have

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz

=
∞

∑
k=1

ˆ x0+2k+1h

x0+2kh

|(b(z)− bI)
m f (z)|ρ

|x0 − z|ρ dz

≤
∞

∑
k=1

(2kh)−ρ
ˆ x0+2k+1h

x0+2kh
|(b(z)− bI)

m f (z)|ρdz

≤ 4h1−ρ
∞

∑
k=1

2−k(ρ−1)
( 1

2k+1h

ˆ x0+2k+1h

x0

| f (z)|rdz
)1/ρ

×
( 1
|2k I|

ˆ
2k I

|b(z)− bI |mρρ′dz
)1/ρ′

≤ 4h1−ρ‖b‖mρ

BMO(R)

∞

∑
k=1

(k + 1)mρ

2k(ρ−1)
(M+

r f (x0))
ρ.

This yields directly

ˆ
R

|(b(z)− bI)
m f2(z)|ρ

|x0 − z|ρ dz ≤ C(m, r)h1−ρ‖b‖mρ

BMO(R)(M+
r f (x0))

ρ. (36)

Combining (36) with (35) yields (37) together with (30) and (31) implies

I12 ≤ C(m, r, B2)‖b‖m
BMO(R)M+

r f (x0), (37)

I3 ≤ C(m, r, B2, B3)‖b‖m
BMO(R)M+

r f (x0). (38)

Combining (38) with (26), (28) and (29) yields (23). This completes the proof.

We now turn to prove our main results.

Proof of Theorem 1. We first prove (i). For any w ∈ A+
p with 1 < p < ∞, there exists r ∈ (1, p) such

that w ∈ A+
p/r. Then, we have

‖M+
r f ‖Lp(R,w(x)dx) ≤ ‖M+| f |r‖1/r

Lp/r(R,w(x)dx)
≤ Cp,r‖ f ‖Lp(R,w(x)dx). (39)

On the other hand, it was proved in [23] that

‖M+ f ‖Lp(R,w(x)dx) ≤ C‖M+,� f ‖Lp(R,w(x)dx) (40)

for 1 < p < ∞ and w ∈ A+
∞. We get from (22), (39) and (40) and that

‖V�(T ) f ‖Lp(R,w(x)dx) ≤ ‖M+(V�(T ) f )‖Lp(R,w(x)dx)
≤ C‖M+,�(V�(T ) f ))‖Lp(R,w(x)dx)
≤ C‖M+

r f ‖Lp(R,w(x)dx) ≤ C‖ f ‖Lp(R,w(x)dx).

This together with Lemma 3 yields Theorem 1 (i).
Applying Lemma 4 and the arguments similar to those used in deriving Theorem 1.3 in [19],

we can get Theorem 1 (ii). The details are omitted.
We now prove (iii). For w−1 ∈ A−

1 , there exists r > 1 such that w−r ∈ A−
1 . Thus, for any x ∈ R,

M+
r f (x)w(x) = w(x)

(
sup
h>0

1
h

ˆ x+h

x
(| f (y)|w(y))rw−r(y)dy

)1/r

≤ ‖ f ‖L∞(R,w(x)dx)w(x)(M+(w−r)(x))1/r ≤ ‖w−r‖A−
1
‖ f ‖L∞(R,w(x)dx),
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which together with (23) yield that

‖V�(T ) f ‖BMO+(R,w(x)dx) = ‖M+,�(V�(T ) f ))‖L∞(R,w(x)dx)

≤ C‖M+
r f ‖L∞(R,w(x)dx) ≤ C‖ f ‖L∞(R,w(x)dx)

for any 1 < r < ∞. This proves Theorem 1.

Proof of Theorem 2. We first prove (i). Fix x0 ∈ R and h > 0. It suffices to show that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V�(T m
b ) f (x)|pdx

)1/p
≤ C‖b‖m

BMO(R)h
β‖ f ‖Lp,β,+(w), (41)

where C > 0 is independent of x0, h. Let f1 = f χ[x0,x0+2h), f2 = f χ[x0+2h,∞) and f3 = f − f1 − f2.

Let I = [x0 − 2h, x0 + 2h]. Note that T+,b,m
ε f3(x) = 0 for any ε > 0 and x ≥ x0. It follows that

V�(T m
b ) f3(x) = 0 for all x ≥ x0. Thus, we can write

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V�(T m
b ) f (x)|pdx

)1/p

≤
( 1

w(x0 − h, x0)

ˆ x0+h

x0

|V�(T m
b ) f1(x)|pdx

)1/p

+
( 1

w(x0 − h, x0)

ˆ x0+h

x0

|V�(T m
b ) f2(x)|pdx

)1/p
=: S1 + S2.

(42)

Invoking Lemma 1 (i) and Theorem 1 (ii), there exists C > 0 independent of x0, h, such that

S1 ≤ C‖b‖m
BMO(R)

( 1
w(x0 − h, x0)

ˆ x0+2h

x0

| f (x)|pdx
)1/p

≤ C‖b‖m
BMO(R)

(w(x0 − 2h, x0)

w(x0 − h, x0)

1
w(x0 − 2h, x0)

ˆ x0+2h

x0

| f (x)|pdx
)1/p

≤ C‖b‖m
BMO(R)h

β‖ f ‖Lp,β,+(w).

(43)

Applying Lemma 1 (ii), there exists C > 0 independent of x0, h such that

( 1
w(x0 − h, x0)

ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p

≤
(w(x0 − h − 2k+2h, x0 − h)

w(x0 − h, x0)

1
w(x0 − h − 2k+2h, x0 − h)

ˆ x0−h+2k+2h

x0−h
| f (z)|pdz

)1/p

≤ C2(k+2)(1+β)hβ‖ f ‖Lp,β,+(w).

(44)

One can easily check that |x − z| > |z − x0|/2 for x ∈ [x0, x0 + h] and z ∈ [x0 + 2h, ∞). Fix x ∈
[x0, x0 + h]. Then, by (11) and Minkowski’s inequality, we have

V�(T m
b ) f2(x) = ‖V(T m

b ) f2(x)‖F�

≤
∥∥∥{ ˆ

εi+1<z−x≤εi

K(x − z)(b(x)− b(z))m f2(z)dz
}

i∈N,β={εi}∈Θ

∥∥∥
F�

≤
ˆ
R
|K(x − z)(b(x)− b(z))m f2(z)|

∥∥∥{χεi+1<z−x≤εi

}
i∈N,β={εi}∈Θ

∥∥∥
F�

dz

≤ C
ˆ
R

| f2(z)(b(x)− b(z))m|
|z − x0|

dz,

(45)
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where C > 0 is independent of x0, h. It is clear that

ˆ
R

| f2(z)(b(x)− b(z))m|
|z − x0|

dz =
∞

∑
k=1

ˆ x0+2k+1h

x0+2kh

| f (z)(b(x)− b(z))m|
|z − x0|

dz.

Fix k ≥ 1. By Hölder’s inequality, we obtain

ˆ x0+2k+1h

x0+2kh

| f (z)(b(x)− b(z))m|
|z − x0|

dz

≤ 2m(2kh)−1
( ˆ x0+2k+1h

x0+2kh
| f (z)||b(x)− b2k I |mdz +

ˆ x0+2k+1h

x0+2kh
| f (z)||b(z)− b2k I |mdz

)
≤ 2m(2kh)−1/p|b(x)− b2k I |m

( ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p

+2m(2kh)−1
( ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p( ˆ x0+2k+1h

x0+2kh
|b(z)− b2k I |mp′dz

)1/p′
.

This together with (27) and (44) yields that

ˆ x0+2k+1h

x0+2kh

| f (z)(b(x)− b(z))m|
|z − x0|

dz

≤ C2k(1+β)hβ‖ f ‖Lp,β,+(w)(2
kh)−1/pw((x0 − h, x0))

1/p(|b(x)− b2k I |m + ‖b‖m
BMO(R)).

(46)

Here, C > 0 is independent of x0, h. By (45) and (46) and Hölder’s inequality, we have

S2 ≤ Chβ‖ f ‖Lp,β,+(w)

∞

∑
k=1

2k(1+β)(2kh)−1/p

×
( ˆ x0+h

x0

|(|b(x)− b2k I |m + ‖b‖m
BMO(R))|pdx

)1/p

≤ Chβ‖ f ‖Lp,β,+(w)

∞

∑
k=1

2k(1+β)(2kh)−1/p

×
( ˆ x0+h

x0

(2m|b(x)− bI |m + 2m|bI − b2k I |m + ‖b‖m
BMO(R))

pdx
)1/p

≤ C‖b‖m
BMO(R)h

β‖ f ‖Lp,β,+(w)

∞

∑
k=1

(k + 1)m

2(1/p−1−β)k

≤ C‖b‖m
BMO(R)h

β‖ f ‖Lp,β,+(w).

(47)

Here, C > 0 is independent of x0, h. In the last inequality of (47), we have used the condition
1/p > 1 + β. (47) together with (42) and (43) yield (41).

Next, we prove (ii). Let f1 = f χ[x0,x0+2h), f2 = f χ[x0+2h,∞) and f3 = f − f1 − f2. Let I =

[x0 − 2h, x0 + 2h]. By (4), we want to show that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V�(T ) f (x)− V�(T ) f2(x0)|pdx
)1/p

≤ Chβ‖ f ‖Lp,β,+(w), (48)

where C > 0 independent of x0, h. Using (11) and Minkowski’s inequality, one has

|V�(T ) f (x)− V�(T ) f2(x0)|
= |‖V(T ) f (x)‖F� − ‖V(T ) f2(x0)‖F� |
≤ ‖V(T ) f (x)− V(T ) f2(x0)‖F� ≤ |V�(T ) f1(x)|+ ‖V(T ) f2(x)− V(T ) f2(x0)‖F� .
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This together with Minkowski’s inequality again yield that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V�(T ) f (x)− V�(T ) f2(x0)|pdx
)1/p

≤
( 1

w(x0 − h, x0)

ˆ x0+h

x0

|V�(T ) f1(x)|pdx
)1/p

+
( 1

w(x0 − h, x0)

ˆ x0+h

x0

‖V(T ) f2(x)− V(T ) f2(x0)‖p
F�

dx
)1/p

.

(49)

We get from (43) (with m = 0) that

( 1
w(x0 − h, x0)

ˆ x0+h

x0

|V�(T ) f1(x)|pdx
)1/p

≤ Chβ‖ f ‖Lp,β,+(w), (50)

where C > 0 is independent of x0, h. Fix x ∈ [x0, x0 + h]. (30), (31) and (35) (with m = 0) imply that

‖V(T ) f2(x)− V(T ) f2(x0)‖F�

≤ B3h
ˆ
R

| f2(z)|
|z − x0|2

dz + C(B2, p)h1−1/p
( ˆ

R

| f2(z)|p
|x0 − z|p dz

)1/p
.

It follows that( 1
w(x0 − h, x0)

ˆ x0+h

x0

‖V(T ) f2(x)− V(T ) f2(x0)‖p
F�

dx
)1/p

≤ h1+1/p

w(x0 − h, x0)1/p

ˆ ∞

x0+2h

| f (z)|
(z − x0)2 dz + h

( 1
w(x0 − h, x0)

ˆ
R

| f2(z)|p
|x0 − z|p dz

)1/p

=: V1 + V2.

(51)

By (44) and Hölder’s inequality, there exists C > 0 independent of x0, h, such that

V1 ≤ h1+1/p

w(x0 − h, x0)1/p

∞

∑
k=1

(2kh)−2
ˆ x0+2k+1h

x0+2kh
| f (z)|dz

≤
∞

∑
k=1

2k(−2+1/p′)
( 1

w(x0 − h, x0)

ˆ x0+2k+1h

x0+2kh
| f (z)|pdz

)1/p

≤ C
∞

∑
k=1

2k(−2+1/p′)2k(1+β)hβ‖ f ‖Lp,β,+(w)

≤ C
∞

∑
k=1

2k(β−1/p)hβ‖ f ‖Lp,β,+(w) ≤ Chβ‖ f ‖Lp,β,+(w).

(52)

V2 ≤
( ∞

∑
k=1

2−kp 1
w(x0 − h, x0)

ˆ x0+2k+1h

x0+2kh

| f (z)|p
(z − x0)p dz

)1/p

≤ C
( ∞

∑
k=1

2−kp2k(1+β)phβp‖ f ‖p
Lp,β,+(w)

)1/p

≤ C
( ∞

∑
k=1

2kβp
)1/p

hβ‖ f ‖Lp,β,+(w) ≤ Chβ‖ f ‖Lp,β,+(w).

(53)

(53) together with (49)–(52) yields (48). This finishes the proof of Theorem 2.

4. λ-Jump Operators and the Number of Up-Crossing

This section is devoted to study the λ-jump operators and the number of up-crossing associated
with the operators sequence {T+,b,m

ε }ε>0, which give certain quantitative information on the
convergence of the above families of operators.
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Definition 4. Given a family of bounded operators T = {Tε}ε>0 acting between spaces of functions,
the λ-jump operator associated with T applied to a function f at a point x is defined by

Λλ(T ) f (x) := sup{n : there exist s1 < t1 ≤ s2 < t2 < · · · ≤ sn < tn

such that |Tsi f (x)− Tti f (x)| > λ}.

For 0 < α < γ, the number of up-crossing associated with T applied to a function f at a point x is
defined by

Nα,γ(T ) f (x) := sup{n : there exist s1 < t1 < s2 < t2 < ... < sn < tn

such that Tsi f (x) < α, Tti f (x) > γ}.

It was shown in [11] that, if the λ-jump operators is finite a.e. for each choice of λ > 0, then we
must have a.e. convergence of our family of operators. Moreover,

λ(Λλ(T ) f (x))1/� ≤ V�(T ) f (x) and Nα,λ(T ) f (x) ≤ Λλ−α(T ) f (x), ∀λ > α > 0. (54)

By Theorem 1 (ii) and Theorem 2 and (54), we can get the following result.

Theorem 3. Let m ∈ N, � > 2, b ∈ BMO(R) and K ∈ OCZK(B1, B2, B3) with support in (−∞, 0).
Let T m

b = {T+,b,m
ε }ε>0 and T = {T+

ε }ε>0 be given as in (1.1) and (1.2), respectively. Let λ > α > 0.
Assume that ‖V�(T )‖Lq(R,dx)→Lq(R,dx) < ∞ for some q ∈ (1, ∞). Then,

(i) for any 1 < p < ∞, w ∈ A+
p and f ∈ Lp(R, w(x)dx),

‖(Λλ(T m
b ) f )1/�‖Lp(R,w(x)dx) ≤

C(p, �)

λ
‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx);

‖(Nα,λ(T m
b ) f )1/�‖Lp(R,w(x)dx) ≤

C(p, �)

λ − α
‖b‖m

BMO(R)‖ f ‖Lp(R,w(x)dx);

(ii) for any 1 < p < 1/(β + 1), −1/p ≤ β < 0, w ∈ A+
p and f ∈ Lp,β,+(w),

‖(Λλ(T m
b ) f )1/�‖Lp,β,+(w) ≤

C(p, �)

λ
‖b‖m

BMO(R)‖ f ‖Lp,β,+(w);

‖(Nα,λ(T m
b ) f )1/�‖Lp,β,+(w) ≤

C(p, �)

λ − α
‖b‖m

BMO(R)‖ f ‖Lp,β,+(w).

5. Conclusions and Further Comments

It should be pointed out that our main results represent one-sided extensions of the main results
in [19,28]. Combining with the two-sided case, the one-sided case is often more complex. Our main
results not only enrich the variation inequalities for singular integrals and related commutators, but
also explore some one-sided techniques to serve our aim (for example, see Lemma 1). In fact, it is
unknown whether the variation operators for one-sided singular integrals are bounded on Lp(R),
which will be our forthcoming objective of research. On the other hand, some new one-sided methods
and techniques can be explored to apply other one-sided operators.
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1. Introduction

In recent years, an increasing amount of attention has been paid to the study of power-exponential
inequalities [1–10]. A review of some problems and historical landmarks are given in [2,11].
In particular, in order to contextualize, we recall that the basic problem of comparing ab and ba

for all positive real numbers a and b was presented in [12–14]. Increasing in algebraic difficulty, the
comparison of aa + bb and ab + ba was studied independently by Laub–Ilani and Zeikii–Cirtoaje–Berndt,
see [15–18], respectively. The result is the fact that the inequality

aa + bb ≥ ab + ba, a, b ∈ [0, ∞[ (1)

holds. An extension of (1) was proposed, analyzed and proved by Matejíčka, Cîrtoaje and
Coronel-Huancas in [2,17,19] obtaining the inequality

ara + brb ≥ arb + bra, a, b ∈ [0, ∞[, r ∈ [0, e[. (2)

More recently, other extensions and generalizations of (1) were introduced, proved and
conjectured by Özban in [11], where, in particular, the author proved the following inequalities:

(sin x)sin x + (sin y)sin y > (sin x)sin y + (sin y)sin x, 0 < x < y < π/2,

(cos x)cos x + (cos y)cos y > (cos x)cos y + (cos y)cos x, 0 < x < y < π/2,

(cos x)sin x + (cos y)sin y < (cos x)sin y + (cos y)sin x, 0 < x < y ≤ 1,

(cos x)x + (cos y)y < (cos x)y + (cos y)x, 0 < x < y ≤ π/2, (3)

(sin x)x + (sin y)y > (sin x)y + (sin y)x, 0 < x < y ≤ π/2,

xcos x + ycos y < xcos y + ycos x, 0 < x < y, 1 ≤ y ≤ π/2,

xsin x + ysin y > xsin y + ysin x, 0 < x < y ≤ π/2.

In order to extend or generalize (2) and (3), it seems natural to ask some questions: What happens
with the inequality (2) when r ∈ R− [0, e[? and what happens with the inequalities in (3) if we include
a negative power r? We note that the powers in question exist, since the basis of powers in (2) and (3)
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are positive. Indeed, in this article, we study (2) for r ∈]− ∞, 0[ and establish reverse inequalities for
some cases. Moreover, we study the generalization of the inequalities in (3) with negative power r.

The main results of the paper are the following theorems:

Theorem 1. Let the function ϕα : R → R be defined by ϕα(m) = mαm for each α > 1 and consider the
following sets:

Aold =
{
(a, b, r) ∈ R3 : a ≥ 0, b ≥ 0, r ∈ [0, e[

}
,

Ad
new =

{
(a, b, r) ∈ R3 : a > 1, b > 1, r < 0, ϕb(rb) > ϕb(ra)

}
⋃{

(a, b, r) ∈ R3 : a > 1, b > 1, r < 0, ϕb(rb) < ϕb(ra), arb < γ
}

, (4)

Ar
new =

{
(a, b, r) ∈ R3 : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, r < 0

}
⋃{

(a, b, r) ∈ R3 : a > 1, b > 1, r < 0, ϕb(rb) < ϕb(ra), arb > γ
}

,

where γ ∈]0, 1[ is such that γ �= brb and (γ)a/b − γ − bra + brb = 0. Then, the following inequalities

ara + brb ≥ arb + bra, (a, b, r) ∈ Aold ∪ Ad
new, (5)

ara + brb ≤ arb + bra, (a, b, r) ∈ Ar
new (6)

are satisfied.

Remark 1. The inclusion of the notation γ is related with the fact that the argumentation of the proof is based
on the properties of function f (t) = (t)s − t − γs + γ with t = arb s = a/b and γ = brb. In particular, we
observe that, if 0 < t < γ < 1, there are two solutions of f (t) = 0 on the interval ]0, 1[; one solution is clearly
γ and the other solution is difficult to get explicitly and is denoted by γ.

Theorem 2. If x, y ∈ (0, π/2) and r < 0, then

(sin x)r sin x + (sin y)r sin y ≤ (sin x)r sin y + (sin y)r sin x, (7)

(cos x)r cos x + (cos y)r cos y ≤ (cos x)r cos y + (cos y)r cos x, (8)

(cos x)r sin x + (cos y)r sin y ≥ (cos x)r sin y + (cos y)r sin x. (9)

Theorem 3. If x, y ∈ (0, π/2) and r < 0, then

(cos x)rx + (cos y)ry ≥ (cos x)ry + (cos y)rx, (10)

(sin x)rx + (sin y)ry ≤ (sin x)ry + (sin y)rx. (11)

Theorem 4. If x, y ∈ (0, π/2), min{x, y} ∈ (0, 1] and r < 0, then

xr cos x + yr cos y ≥ xr cos y + yr cos x, (12)

xr sin x + yr sin y ≤ xr sin y + yr sin x. (13)

The rest of the paper is dedicated to the proof of Theorems 1–4.
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2. Proofs of Main Results

2.1. Proof of Theorem 1

For completeness and self-contained structure of the proof, we recall the notation and a result
given in [1]. Indeed, let us consider s ∈ R+ and we define the functions f and g from R+ to R by
the relations

f (t) = ts − t − γs + γ,

g(t) =

⎧⎪⎨⎪⎩
e− ln(t)/(t−1), for t �∈ {0, 1},
e−1, for t = 1,
0, for t = 0.

Then, the following properties are satisfied: f (γ) = 0 and f (0) = f (1) = −γs + γ; if s > 1 (resp.
s < 1), f is strictly increasing (resp. decreasing) on ]g(s), ∞[ and strictly decreasing (resp. increasing) on
]0, g(s)[; and g is continuous on R+ ∪ {0}, strictly increasing on R+, y = 1 is a horizontal asymptote of
y = g(t), and the range of g is [0, 1]. Moreover, if we consider the function ξ : R+ → R ξ(m) = −ms +m
and ϕα defined in the enunciate of the theorem, we observe that the following following assertions are
satisfied: ξ(0) = ξ(1) = 0; if s > 1 (resp. s < 1) w has a maximum at g(s) (resp. minimum at g(s));
ϕα(0) = 0; ϕα has a minimum at m∗ = −1/ ln(α); ϕα has a inflection point at m∗∗ = −2/ ln(α); y = 0
is a left horizontal asymptote of ϕα and the range of g is [ϕα(m∗), ∞[ with ϕα(m∗) < 0.

Let us consider t = arb, γ = brb, and s = a/b and we observe that

f (t) = (arb)a/b − arb − (brb)a/b + brb = ara − arb − bra + brb. (14)

Then, the proofs of (5) and (6) are reduced to analyze the sign of f (t) for t ∈ [0, γ]. Indeed, without
loss of generality and by the symmetric form of the inequalities in (5) and (6), we assume that 0 ≤ b < a
(i.e., s = a/b > 1) and consider three cases:

(i) Let a, b such that 1 > a > b ≥ 0. Then, for r < 0, we note that 1 < ar < br or equivalently we have
that 1 < t < γ. Moreover, observing that s > 1 and g(s) < 1, by the strictly increasing behavior of
f on [g(s), ∞), we deduce that f (g(s)) < f (1) < f (t) < f (γ) = 0. Thus, from (14) and f (t) < 0,
we follow that the inequality ara + brb < arb + bra is satisfied.

(ii) Let a, b such that a > 1 > b ≥ 0. In this case, we have that ar < 1 < br or equivalently
t < 1 < γ. We note that s > 1 implies the strictly decreasing behavior of f on [0, g(s)] and the
strictly increasing behavior of f on [g(s), ∞[. Moreover, observing that g(s) ∈ [0, 1], we deduce
that f (t) < f (1) = −γs + γ := ξ(γ) for any t < 1 < γ. Now, by the fact that ξ is decreasing on
[g(s), ∞[, we have that ξ(γ) < ξ(1) = 0 for any γ > 1. Thus, f (t) < ξ(γ) < 0 for t < 1 < γ and,
from (14), the inequality ara + brb < arb + bra is satisfied.

(iii) Let a, b such that a > b > 1. Similarly to cases (i) and (ii), we have that s > 1 and 0 < ar < 1 < br <

1 or equivalently 0 < t < γ < 1. Here, we distinguish two subcases: γ ≤ g(s) and g(s) < γ < 1.
First, if γ ≤ g(s), we have that f is strictly decreasing on [0, γ] and consequently f (t) ≥ f (γ) = 0
for t ∈ [0, γ]. Second, if g(s) < γ < 1, by the fact that f (0) = ξ(γ) > 0 = f (γ) > f (g(s)), we
have that there exists γ ∈ [0, g(s)[ such that f (γ) = 0. Then, f (t) ≥ f (γ) = 0 for t ∈ [0, γ]

and f (t) ≤ f (γ) = f (γ) = 0 for t ∈ [γ, γ]. Thus, from both subcases, we conclude that the
inequality ara + brb < arb + bra is satisfied for t ∈ [γ, γ] with γ ∈]g(s), 1[ and the inequality
ara + brb > arb + bra is satisfied for t ∈ [0, γ] with γ ∈]g(s), 1[ or for t ∈ [0, γ] with γ ∈]0, g(s)].

On the other hand, by the definition of γ, s, g and ϕb, we observe that γ < g(s) (resp. γ > g(s)) is
equivalent to ϕb(rb) > ϕb(ra) (resp. ϕb(rb) < ϕb(ra)). Moreover, the relation t > γ (resp. t < γ)
is equivalent to arb > γ (resp. arb < γ). Thus, the subcases can be characterized in terms of the
function ϕb and arb > γ or arb < γ.
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Hence, translating (i), (ii) and (iii) to the corresponding notation in (4) and observing that the set
Aold is the set for the inequality in (2), we conclude the proof the theorem.

2.2. Proof of Theorem 2

Since sin t, cos t > 0 for t ∈ (0, π/2), Theorem 1 immediately implies inequalities (7) and (8).
To prove (9), we define

f (t) = (cos t)r sin t + (cos y)r sin y − (cos t)r sin y − (cos y)r sin t

for y is fixed and arbitrarily selected such that y ∈ (0, π/2) and 0 < t ≤ y. We note that f (y) = 0, then
the result follows if f is decreasing. Indeed, to see this, we write

f ′(t) = r
[

g(t) cos t +
sin t
cos t

h(t)
]

,

where

g(t) = (cos t)r sin t ln(cos t)− (cos y)r sin t ln(cos y),

h(t) = (cos t)r sin y sin y − (cos t)r sin t sin t.

Now, since r < 0, it is enough to show that g(t), h(t) > 0. For g, we have that

g(t) = −
∫ y

t

d
ds

(cos s)r sin t ln(cos s)

=
∫ y

t
((cos s)r sin t−1 sin s)(1 + r sin t ln(cos s)) ds > 0

and, similarly for h, we deduce that

h(t) =
∫ y

t

d
ds

(cos t)r sin s sin s

=
∫ y

t
((cos t)r sin s cos s)(1 + r sin s ln(cos t)) ds > 0.

2.3. Proof of Theorem 3

Set 0 < t ≤ y < π/2 and r < 0 arbitrarily. Along the proofs, we will use that sin s, cos s > 0 for
s ∈ (0, π/2).

In order to prove (10), let us consider f1(t) = (cos t)rt +(cos y)ry − (cos t)ry − (cos y)rt. Observing
that f1(y) = 0, it is enough to show that f1 is decreasing. Indeed, the decreasing behavior of f1 follows
immediately since

f ′1(t) = r
[

g1(t) +
sin t
cos t

h1(t)
]

,

where

g1(t) = (cos t)rt ln(cos t)− (cos y)rt ln(cos y) = −
∫ y

t

d
ds

(cos s)rt ln(cos s)

=
∫ y

t
((cos s)rt−1 sin s)(1 + rt ln(cos s)) ds > 0
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and

h1(t) = y(cos t)ry − t(cos t)rt =
∫ y

t

d
ds

s(cos t)rs

=
∫ y

t
(cos t)rs(1 + rs ln(cos t)) ds > 0.

We prove (11) by analogous arguments to the proof of (10). Indeed, let us introduce the notation
f2(t) = (sin t)ry + (sin y)rt − (sin t)rt − (sin y)ry. We observe that

f ′2(t) = r
[

g2(t) +
cos t
sin t

h2(t)
]
< 0,

since

g2(t) = (sin y)rt ln(sin y)− (sin t)rt ln(sin t) =
∫ y

t

d
ds

(sin s)rt ln(sin s)

=
∫ y

t
((sin s)rt−1 cos s)(1 + rt ln(sin s)) ds > 0

and

h2(t) = y(sin t)ry − t(sin t)rt =
∫ y

t

d
ds

s(sin t)rs

=
∫ y

t
(sin t)rs(1 + rs ln(sin t)) ds > 0.

Thus, (11) is a consequence of the decreasing behavior of f2 and the fact that f2(y) = 0.

2.4. Proof of Theorem 4

We set 0 < x ≤ y < π/2 with x ≤ 1 and r < 0 arbitrarily selected. Then, by the fact that
cos x ≥ cos y > 0, we deduce the following estimate:

xr cos x − xr cos y = xr cos y(xr(cos x−cos y) − 1)

≥ yr cos y(yr(cos x−cos y) − 1) = yr cos x − yr cos y,

which implies (12). Similarly, using the fact that sin y ≥ sin x > 0 implies that

xr sin y − xr sin x = xr sin x(xr(sin y−sin x) − 1)

≥ yr sin x(yr(sin y−sin x) − 1) = yr sin y − yr sin x,

and we get the proof of (13).
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5. Matejíčka, L. On the Cîrtoaje’s conjecture. J. Inequal. Appl. 2016, 159, 152. [CrossRef]
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