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Chapter 1

Introduction

The main object of this thesis is to provide a comprehensive numerical tool for

the three-dimensional simulation of sedimentary basins [94]. Sedimentary basins,

in particular salt basins, are the best places to find oil, natural gas and to store dan-

gerous nuclear waste material. The low permeability of salt guarantees low water

leakage which is the main concern for the safety of a nuclear waste storage. For this

reason one of the best places for a nuclear waste depository is a salt mine. These two

applications call for a thorough knowledge of the basin evolution on geological time

scales. Until now sedimentary basin studies have been based mainly on geological

interpretation: experienced specialists estimate the history of a basin on the basis

of common knowledge. More often, they provide a list of possible scenarios. An

appropriate numerical simulator can provide the right tool to choose, among these

scenarios, the correct one or, at least, the most realistic.

A starting point of this work has been a previous activity on two dimensional basin

modeling and simulation discussed in [57, 56]. However the numerical techniques

adopted there were not suited for the more complex 3D situation. In fact a complete

reformulation has been required. The first part of our thesis is devoted to review-

ing the physical models currently available in literature and to providing a common

framework to the theory of the geological evolution of a sedimentary basin. Here

we consider two kinds of physical models, the compaction models and the basin

scale models. The former are physical models that represent the basin as a mechan-

ically interacting two phase mixture: the fluid and the solid part are usually taken

into account. The latter are reduced versions of the compaction models where all

the quantities related to the fluid phase are modeled with some lumped parameter

relations. The compaction models are used to predict overpressure conditions and,

more generally, to simulate pressure and temperature fields inside the basin, see for

instance [7]. Indeed, the safety of an oil drill is highly dependent on precise data

regarding pressure and temperature.

In our work we extend the volume averaging method [12, 102] to a model of two

moving-phases. This approach allows to obtain more information than other com-

paction models. In particular, a procedure to obtain the permeability and the thermal

conductivity tensors from the microscopic structure is outlined. Moreover, the vol-
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2 1 Introduction

ume averaging method provides automatically the compaction model, that is the set

of equations that describe the rate of loss of porosity as the layers are buried. Finally,

we derive a couple of physical models and analyze their relations to the compaction

and basin models found in literature. The compaction models consist of a set of

evolution equations and a coupled Stokes-Darcy system. A preliminary analysis of

the well posedness of this pde has been carried out.

Afterwards, we have considered the numerical discretization of the problem. Since

the underlying problem is very complex, we have divided this step into three parts.

In the first part we tackle the multi-fluid tracking problem. Since the rock rheology

on geological timescales is akin to that of a viscous fluid, we have to solve a strati-

fied fluid problem (see [57, 56]). To be more precise, we deal with a creeping flow

in a Stokes regime. In the second part we combine the tracking algorithm with an

iterative preconditioned Stokes solver [32, 73]. In the third part we add some more

distinctive features such as the fault tracking, the movement of the basin boundary

and other physical features, such as a simplified compaction relation, which makes

our models suitable for geological simulation. Let’s now review in detail these three

parts.

In the firs part (Chapter 4) we illustrate a method to track separated interfaces among

immiscible fluids when a large number of fluids is involved. Our aim is to construct

a robust method, effective even when the interfaces experience a strong deforma-

tion, with good mass conservation properties and that can be used on (2D and 3D)

unstructured meshes. In literature many techniques regarding the two fluid problem

are reported but they often cannot be extended readily to the multi-fluid problem

and they are computationally expensive or they lack conservative properties. A few

works are devoted to the multi-fluid simulation (see, for instance, [109, 110]) how-

ever many of them are specifically designed for the curvature-driven flows and are

not readily applicable to the advection-driven case. While others involve some level

set topological reconstruction steps that are computationally costly.

In this work we present an original coupled volume tracking - level set [65] method

which gives a good compromise between accuracy and computational cost and

has good conservation properties. Moreover, we introduce a flux-limited MUSCL

scheme (see [10, 50]) which is capable to work on unstructured meshes and has a

low numerical diffusion.

In the second part (Chapter 5) the tracking algorithm, combined with a Stokes

solver, provides a solution method for a stratified fluid problem. In factActually,

we use a classical operator splitting approach that divides the computation of pres-

sure and velocity fields from the interface tracking. For three dimensional problems,

the number of degrees of freedom (DOF) required for an accurate discretization of

the Stokes problem is very high and the adoption of iterative schemes is necessary.

In the present application, in addition, the value of the viscosity of the sediments

may vary over a range of about five orders of magnitude (as shown in [56]), and this

leads to a badly conditioned algebraic problem. Thus, we introduce a simple but

effective preconditioner able to reduce sensibly the number of iterations required to

solve the Stokes system in presence of high viscosity jumps. Numerical tests show

that this preconditioner is efficient, although an optimality proof is still missing.
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Moreover, in order to improve the efficiency of the code, we present an enhanced

implementation of the tracking algorithm.

In the third part (Chapter 6) we introduce the implementation of non-Newtonian

rheological relations, the compaction effects, the basement movement and the pres-

ence of faults. Basically, we have included the physical aspects illustrated in [57]

into our three-dimensional framework. At the same time, we have developed some

numerical techniques that overcome the limit of the fully Lagrangian approach used

in [56].

A challenging aspect of this part of the work has been the implementation of the

movement of the basin basement and of the lateral contour. The external bound-

ary is subject to displacements as the surrounding soil moves with the Earth plates.

This effect has a paramount importance in basin evolution as it is one of the driving

forces for fault formation. Since the deformation of the basin boundary is usually

small compared with that of the internal layers, we can decouple the two problems

and use a Lagrangian scheme to reconstruct the boundary movement and an Eulerian

scheme for the internal layers. This mixture between the Lagrangian and the Eule-

rian approaches leads to the so called Arbitrary Lagrangian Eulerian method (ALE),

where the displacement of the grid is prescribed only on the boundary, while for the

internal nodes a suitable movement law is considered, for example, to minimize the

mesh distortion. The definition of the numerical algorithm for the computation of the

internal grid movement is a critical part: we want, at the same time, to adapt the grid

size, where necessary, without loosing its quality. To achieve this goal, we choose

the so called r-adaptivity (see [5]) combined with the ALE scheme. This technique

is a cheaper choice in terms of computational costs than the h-adaptivity, although it

may be less effective. We exploit then the information given by a residual-type error

estimator [97] to construct an error-dependent metric, which drives the ALE scheme

in adapting the grid size according to the minimization of the estimated error.

This work provides a comprehensive multi-physics numerical tool for the basin-

scale simulation. The code has been validated in some realistic cases.

Even if it it is not a specific subject of this thesis we mention the importance of a

parallel implementation for a software of such a complexity. So far only a prelimi-

nary work on the scalability features of the linear system has been carried out. The

work on this field is still ongoing.





Chapter 2

An overview on basin geology

2.1 An insight into sedimentary basins

In this thesis we will focus on the geological evolution of the thin layer of the Earth

crust that composes the sedimentary basins. The Earth interior is made up of dif-

ferent layers. The most interior part is the core, see Figure 2.1(b): it is split into an

inner solid core and an outer liquid part. The mantle forms a buffer zone between

the core and the surface crust which is the outer and solid layer. The crust is less

dense than the mantle and floats over it. The interaction between the mantle and the

crust causes the well known continental plate drift and many geological phenomena

such as the orogenesis and the subsidence. These two aspects are related to the uplift

(a) (b)

Fig. 2.1: (a) A schematic view of a sedimentary basin. (b) The earth interior.

and burial of parts of the Earth crust.

5



6 2 An overview on basin geology

The term sedimentary basin is used to refer to any geographical feature exhibiting

subsidence and consequent infilling by sedimentation. In Figure 2.1(a) we have out-

lined some of its geometrical features. The sedimentary basins lie on the bottom

of depressed areas where the erosion processes deposit various kinds of materials.

Typically the type of sediments deposited varies quite suddenly in a geological time

scale framework. This forms some well defined sedimentary layers and the mixing

between the different materials is very limited. The separating interfaces between

the layers are called the horizons.

The sedimentary basin has, usually, three kinds of boundaries: the basement, the

surface and the lateral contour which conventionally limit the area of interest. The

basement is a solid compacted layer and can be either continental or oceanic (many

sedimentary basins develop under the surface of the oceans). It is the bed over which

the other sediments (the overburden) lie and it has much stronger mechanical char-

acteristics than the overburden. The surface is the place we are more accustomed to

and is the upper part of the basin. The lateral contour is usually an arbitrary bound-

ary which delimits the area of interest and in many cases it has no physical meaning.

The size of typical basins is of the order of 100 by 100 km in the horizontal plane

and 10 km in depth.

2.2 Sedimentary basin geology

The sedimentary basins are stockpiles of gravel, sand, rocks and biological remains

that have been transported by the wind, the rivers and, sometimes, by the sea. A

typical example of a sedimentary basin is an alluvial plain where the erosion of the

surrounding mountain ranges provides much of the deposited sediments. The phys-

ical characteristics of the layers change with the geological eras; every era lasting

tens of millions of years. The deposition of different kinds of sediments causes the

typical stratified configuration that is clearly visible in Figure 2.2.

Sedimentary basins are not static as it would seem at first sight. During the geo-

logical time scales they can experience strong deformations and even topological

changes of the geometry of the layers. One of the main driving forces is the sedi-

mentation that is the continuous deposition of debris. Nevertheless there are many

forces applied from the inside and outside of the basin. The movement of the base-

ment and of the lateral edges has a great impact on the morphology of the basin.

From a tectonic viewpoint the basin is located on the upper part of the crust. The

movements of the crust and the continental drift thus affect the movement of the

boundary of the basin. This evolution of the basin can, in its turn, modify the local

evolution of the crust: in fact the steady deposition of sediments causes the sinking

of the basement by several kilometers in tens of millions of years. This phenomenon

is also known as flexural lithostasis.

Many internal phenomena trigger the evolution of the basin, in particular the buoy-

ancy of the lighter layers on denser ones. For example, the rocksalt is one of the

lightest components, in fact it is one of the primary internal driving forces of the
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Fig. 2.2: A seismic analysis of a sedimentary basin. Seismic data can provide a

detailed description of a basin cross section.

sedimentary basin dynamics. To be more precise at a depth of few hundred meters

the other sediments, having expelled most of their water content, become heavier

than salt. Also other components such as lightweight shale can be affected by buoy-

ancy effects. In other words the sediments and rocks behave, on geological time

scales, as viscous fluids, whose main physical characteristics are outlined in table

(2.1).

The fluid behavior of the rocks can be explained at least by two physical arguments.

Sediment Density (Kg/m3) Viscosity (Pa · s)

Shale 2300 1021

Undercompacted Shale 2200 1020

Sandstone 2400 1021

Limestone 2500 1022

Rocksalt 1800 1019

Rock 2500 1021

Table 2.1: Typical density and viscosity values for some sediments.

The first one deals with the crystalline structure of the rocks and the movement of

voids and imperfections. The rock structure contains many voids in the crystalline

lattice, their position changes on geological time scales and their distribution can be

statistically determined. Without applied loads, the movement of the voids is equally

probable in all the directions. But if a load is applied, their movement becomes more

probable in some specific directions; for more details see [94]. The macroscopic net

effect is a fluid behavior associated to a Newtonian rheology. The second theory is

based on the solubility of rock components in water. It is well known that pressure
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affects the solubility of solids in water, therefore where a load is applied, the sol-

ubility is greater. In the contact regions among grains the rock dissolves, and then

deposits on unstressed areas. Once again this phenomenon is represented macro-

scopically by a shear flow of a Newtonian fluid, see [94]. Nevertheless not all the

effects can be explained by viscous fluid models. Also plasticity plays a key role. In

fact rocks, under lithostatic pressure (i.e. the pressure applied by the overburden),

tend to fracture and to modify their reciprocal position. These effects are usually

modeled with a plastic-type rheological law; see [79]. Also the fault formation can

be regarded as a plastic effect. In the faulted regions the soil is highly damaged and

it cannot sustain the applied stress. All the three aspects just described are active in

a sedimentary basin and none of them alone can fully explain the rheological be-

havior of the sediments. So far, a comprehensive model that links the stress to the

strain and the strain to the velocity is missing, therefore semi-empirical relations are

widely used; see [94], [55], [79], [95].

Let’s now examine another important phenomenon: the compaction. Superficial sed-

iments have up to 50% of void space which is filled by air or by water (sea water

if the basin is in correspondance with the sea bed). As the layers are progressively

buried by the accumulation of sediments, the overburden pressure rises. This trig-

gers the reduction of the pore spaces and the liquid phase is expelled from the porous

media. In fact, below few hundred meters the pore spaces are saturated by water. In

some cases the water can be trapped by impermeable traps, in that case the fluid

pressure rises as part of the overburden is supported by the liquid phase. This case

is also known as overpressure and it has many consequences on the safety of oil-

field exploitation. Luckily, strong overpressures are rare, in most of the cases the

rock supports all the lithostatic weight though maintaining a porosity of 5− 10%.

The chemical reactions are another key element, in fact they modify the compo-

sition of rocks and create mechanical links between grains: cementification is an

example. Chemistry is involved in the diagenesis that is the formation, starting from

separated grains, of a coherent rock layer. The oldest sediment layers are made

of compacted rock with much stronger mechanical characteristics than the shallow

undercompacted sediments. Another important chain of chemical reactions is the

formation of natural oil and gas. The last important feature we may consider is

the temperature distribution inside the basin. The thermal gradient is about thirty

degrees per kilometer, therefore the basement could reach three hundred degrees

Celsius. The main effect is the heat diffusion from the lower layers and from the up-

per mantle, but also the transport of heat carried by the water is an important aspect.

The temperature greatly affects the chemical reactions and the rheology, should the

solid part reach the melting point. Lastly, salt is a good heat conductor and this has

many implications in the oil formation.
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2.3 Motivations for numerical simulations

Sedimentary basins, in particular salt basins, are among the best places to find

petroleum, natural gas and to store nuclear waste material. In fact the low perme-

ability of salt guarantees low water leakages that are the main concern for the safety

of nuclear waste storage. For this reason one of the best places for a nuclear waste

depository is a salt mine. Precise data regarding the basin evolution on geological

timescales are required to solve the problems emphasized by these two applications.

The history of the basin has a deep impact on the characteristics of the oil gener-

ated: in particular the geometrical evolution and the temperature experienced by the

sediments determine localization, quantity and quality of the oil. For example tem-

perature is a key aspect that controls the petroleum - gas ratio; the latter being less

valuable than the former. Another example is the geometry of the cap-Rock (the

sealing layer that triggers the formation of oilfields), which is the sealing layer of

the oilfield. Oil usually floats and collects near the cap-Rock. In other terms, to have

detailed information about an oilfield, we must have information about the past his-

tory of it.

Till now sedimentary basin studies have been based on the geological interpreta-

tion of experienced specialists. Geologists, usually, can outline several evolution

scenarios of the basin. Therefore we must choose among them the ones which are

coherent from a physical viewpoint. Numerical simulation could provide the tool

for choosing the right scenario. Moreover, it can provide quantitative information

(for instance the stress field) which are difficult to estimate by other means.

The great interest in numerical tools is boosted by the technical difficulties to carry

out analogical experiments. Actually it is difficult to scale correctly all the physi-

cal quantities in a relative small model. Sand-box experiments [88] provide useful

information regarding the brittle behavior of grains but can not represent all the vis-

cous creeping mechanisms which require millions of years to produce a measurable

effect. The experiments devoted to investigate the sediment rheology are difficult to

carry out too. As a matter of fact it is necessary, at the same time, to reach extreme

values of pressure and to measure very small displacements.

Also the nuclear industry is interested in structural geology simulations. Here the

main interest is oriented to simulate future evolution of the basins and, in particular,

the stability of a deposit in a time frame comparable to the half life of the isotopes

to be stored.

2.4 Uncertainty

The mechanics of a sedimentary basin is very complex and depends on parameters

which are very difficult, if not impossible, to determine with precision. The main

uncertainty source is the rheology of the sediments, in fact, though the fluid behav-

ior of the rocks is a well known phenomenon, the precise measure of the viscosity

coefficients is a challenging aspect. From many points of view the Geology is sim-



10 2 An overview on basin geology

ilar to Cosmology. In both cases direct measures are not available and there are

only indirect data. For instance we cannot know the past deformation of a sedimen-

tary basin and neither can we observe its evolution on geological time scales. The

only available data is the configuration of present layers obtained with seismic data,

the pore pressure and the temperature in a few points that correspond to the wells.

Some other data can include the presence of fossil materia in some layers. The or-

ganic matter can be dated by measuring the quantity of the radioactive isotopes of

the carbon. This technique gives an insight into the timing of the deposition of the

layers. Finally also the presence of some chemical compounds can give some infor-

mation on the temperature history. Actually some reactions are possible only if the

temperature is higher than a prescribed threshold.

A complete validation of our computational results is beyond the scope of this thesis.

We have concentrated in the development of proper numerical techniques to make

the numerical simulation of a real 3D basin a reality. Therefore we have included

the best and more promising physical models that are used now in literature.

However some preliminar tests have been carried out and are displayed in Chapter

6.



Chapter 3

Mathematical models for basin simulation and

compaction

In this chapter we introduce the numerical modeling of sedimentary basins, in par-

ticular, we discuss the most popular models and their applicability. We introduce the

compaction models and the simpler basin scale models. Regarding the compaction

models we provide a class of numerical algorithms and we discuss their implemen-

tation with a one dimensional model.

In the past years the numerical simulation of the geological evolution of sedimen-

tary basins has gained an increasing relevance in the study of the safety of nuclear

waste disposal, in the exploitation of geothermal energy and in oilfield studies.

In this Chapter we illustrate and analyze mathematical models for the simulation of

the geological evolution of a sedimentary basin. These models include the evolution

of the solid part (treated in [24, 107, 57, 63]) and the simulation of the fluid part

(treated in [28, 84, 100]). However, for the simulations at the basin scale we will see

that a detailed description for the fluid is not necessary and, in many cases, simpli-

fied models can be used.

The simulation of both the solid and fluid part is required, for instance, to have accu-

rate results regarding the heat flow inside the basin and the temperature distribution.

The temperature is a key aspect for petroleum formation since the chemical reac-

tions that transform the biological remains into oil are strongly dependent on tem-

perature. A few papers treat both the structural and fluid evolution of a basin with the

same accuracy. An example is [7, 98, 99, 54] where linear elastic, and elasto-plastic

models for the solid matrix are considered. Many works are devoted mainly to the

fluid evolution: in [27] a viscoelastic matrix is examined though the total pressure

of the mixture is considered lithostatic and the deviatoric components of the stress

tensor of the solid part are neglected. A similar approach is used in [100, 101] and,

through some manipulations, the solid matrix displacement and stress are eliminated

from the model. In [36, 89] a one dimensional case is considered, in this situation

structure of the equations is greatly simplified and, once again, the shear stress of

the solid part is neglected. In [83] a complete three dimensional model for the fluid

part is considered while a vertical balance equation is employed for the solid matrix.

Many other works are mainly devoted to the structural evolution only, see, for in-

stance, [108, 24, 37]. In particular, some works are specifically devoted to the salt

11
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tectonics [55, 79, 107] while some other works simulate the visco-elastic features

of the upper crust [60, 63].

The two phase and one phase models are also known as compaction models and

basin scale models respectively. The former are physical models which describe the

basin as a mechanically interacting two phase mixture: the fluid and the solid part

are usually taken into account. The latter are reduced versions of the compaction

models where the fluid phase is modeled with some algebraic relations. The com-

paction models are used to predict overpressure conditions and, more in general, to

estimate pressure and temperature fields inside the basin; see for instance [16]. The

safety of the oil drill is highly dependent on precise data regarding the presence of

overpressures.

The physical model we illustrate in this Chapter is accurate both for the fluid and

solid phases. This model is not completely new, it resembles very closely those in

[7, 14, 12, 13, 75, 96, 99], yet it differs in many details. In fact, we extend the vol-

ume averaging method of [102] to a two moving-phase model: this approach allows

to extract some more information. To be more precise, we describe a procedure to

obtain the permeability and the thermal conductivity tensors from the microscopic

structure. Moreover the volume averaging method here described provides a com-

paction model directly, which is the set of equations that describes the rate of loss of

porosity as the layers are buried. Finally, we derive a couple of physical models and

we analyze their relations with respect to other compaction and basin models found

in the literature.

3.1 Compaction models

3.1.1 The geometry of the basin

In Figure 3.1 the geometry of a representative basin is depicted. We denote by Ω the

volume of the basin and with ∂Ω its boundary. The latter is divided into three parts:

the basement ΓB, the upper surface ΓS, and the lateral sides ΓL. We consider ns layers

inside Ω , denoted with Ωi. Each Ωi is an open measurable subdomain of Ω such

that Ωi ∩Ω j = 0 if i 6= j and ∪ns

i=1Ω i = Ω . Every sedimentary layer is composed of

a solid part and an interstitial space completely saturated by fluids: in our case we

consider only water as the quantities of other species are often negligible. The solid

part of every Ωi is denoted with Ω s
i and the fluid part with Ω f

i , for simplicity we use

Ω k
i with k ∈ {s, f}. In general, for an arbitrary variable, or constant, a, we use the

notation ak with k ∈ {s, f}. The solid part of Ω is defined as Ω s with Ω
s
= ∪ns

i=1Ω
s

i

and the fluid part as Ω f with Ω
f
= ∪ns

i=1Ω
f

i . Each sedimentary layer is associated

with some constant physical properties such as the reference density ρ s
i and the

apparent viscosity µ s
i . Actually the variation of the physical coefficients inside each

layer can be neglected while they can change of orders of magnitude between the

layers. In the same way we assign a density ρ f and a viscosity µ f to the fluid
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phase, which can be considered constant in the whole domain. Let’s now attend

(a) (b)

Fig. 3.1: a) A typical external shape of the domain Ω . The external boundary is

divided into three parts: the basement ΓB, the upper surface ΓS and the lateral surface

ΓL. b) An open three dimensional view of the sedimentary basin which contains

three horizons and four layers.

to the estimation of the characteristic lengths of the basin: the solid part consists

of grains with dimensions ranging from millimeters to a few meters. Usually the

gravel dimensions are a few centimeters. The characteristic scale of a basin is about

ten kilometers, therefore the characteristic scale of the grains is well separated from

that of the basin and it is possible to extract a volume ω ∈ Ω that is ”infinitesimal”

from a macroscopic viewpoint yet it contains enough grains to get a meaningful

spatial averaging. We can distinguish a solid part ωs and a fluid part ω f inside ω .

We define εk = |ωk|
|ω| as the volume fraction of the k-th species; in particular ε f is

also known as the porosity and often indicated with φ . As a consequence, we get

εs = 1−φ . We can also define the volume fraction of the i-th solid species present

in ωs as λi =
|Ωi∩ωs|
|ωs| . Finally we denote with −→n the outgoing normal of Ω , with

−→n k the outgoing normal of Ω k, with
−→
X the position vector, with x̂i, i = 1,2,3 the

three cartesian basis vectors oriented along the two horizontal axes and the vertical

axis respectively, and with t ∈ [0, tend] the time being [0, tend ] the simulation interval.

We adopt the notation of indexing the components of a generic vector
−→
V as Vi with

i = 1,2,3.

3.1.2 Volume averaging theorems

We start by recalling some fundamental results and definitions of the volume av-

erage theory developed by S. Whitaker in [102]. As customary in this case, for the

derivation of the averaged equation we will neglect the fact that our actual domain is
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bounded, so that we can ignore, at this stage, the presence of the boundary ∂Ω . At

each point
−→
X we indicate with ω(

−→
X ) a measurable averaging volume centered in−→

X such that ω(
−→
X ) = {−→Z :

−→
Z =

−→
X +

−→
Y ,

−→
Y ∈ B}, being B a ball centered in zero

with a radius sufficiently large to be used for averaging out microscale features, yet

small at a large scale. In this context
−→
Y can be considered a microscale coordinate.

Then we define, for an arbitrary variable ak related to the k-th phase (it could be a

scalar, a vector or a tensor), using the notation of [102], the superficial average on

ω(
−→
X ) as

< ak > (
−→
X ) =

1

|ω(
−→
X )|

∫

ω(
−→
X )

ak(
−→
X +

−→
Y )d

−→
Y . (3.1)

where the variable ak is extended outside Ωk by zero. The definition (3.1) indicates

that the average value < ak > is associated with the centroid of ω(
−→
X ). We can also

define the intrinsic average as

[ak](
−→
X ) =

1

|ωk(
−→
X )|

∫

ωk(
−→
X )

ak(
−→
X +

−→
Y )d

−→
Y .

Clearly the domain of < ak > and [ak] is the whole Ω . Since εk = |ωk|
|ω| the superficial

and the intrinsic average are linked by the following relation

< ak >= εk[ak]. (3.2)

We can now introduce the volume averaging theorem for a scalar field ak (these

results can be extended readily to vector and tensor fields):

Proposition 3.1. If ak ∈ L2(Ω)∩H1(Ω k), k = s, f , then the superficial average sat-

isfies the following relation in a distributional sense

<
−→
∇ ak >=

−→
∇ < ak >+

1

|ω |

∮

∂ωk
ak−→n . (3.3)

Proof. Using the distributional definition of the gradient we have

∫

ω

−→
∇ ak ·−→v =−

∫

ω
ak
(−→

∇ ·−→v
)
+

∮

∂ω
ak(−→v ·−→n ) ∀−→v ∈ C∞

0 (Ω). (3.4)

Since ak is null outside ωk we get
∫

ω ak
(−→

∇ ·−→v
)
=
∫

ωk ak
(−→

∇ ·−→v
)

and integrating

by parts the first term of the right hand side of (3.4) we obtain

∫

ω

−→
∇ ak ·−→v =

∫

ωk

−→
∇ ak ·−→v −

∮

γk
ak(−→v ·−→n )+

∮

∂ω
ak(−→v ·−→n ) ∀−→v ∈ C∞

0 (Ω)

where γk is defined in Figure 3.2. Switching the gradient and the integral in the first

term of the right hand side and since −
∮

γk ak(−→v ·−→n )+
∮

∂ω ak(−→v ·−→n ) =
∮

∂ωk ak(−→v ·
−→n ) we have
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∫

ω

−→
∇ ak ·−→v =

−→
∇ ·
∫

ωk
ak−→v +

∮

∂ωk
ak(−→v ·−→n ) ∀−→v ∈ C∞

0 (Ω ). (3.5)

Dividing by |ω | we get the proof.

Fig. 3.2: An example of the averaging volume. Four grains are depicted and the

boundary ∂ω of a circular averaging volume (dash-dot line) is outlined. The portion

of the boundary of the grains inside the averaging volume (dashed line) is denoted

by ∂ωk. Finally γk is the portion of ∂ω inside the grains (double dash dot line).

Proposition 3.1 has an important consequence:

Proposition 3.2. The following relation holds

1

|ω |

∮

∂ωk

−→n =−−→
∇ εk.

Proof. Substituting ak = 1 in (3.4) we get

∫

ω

−→
∇ ak ·−→v =−

∫

ω

−→
∇ ·−→v +

∮

∂ω
(−→v ·−→n ) = 0 ∀−→v ∈ C∞

0 (Ω ).

Combining with (3.5) we obtain
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0 =
−→
∇ ·
∫

ωk

−→v +

∮

∂ωk
(−→v ·−→n ) ∀−→v ∈ C∞

0 (Ω ) (3.6)

If we choose −→v = 1 then

0 =−→v ·
(−→

∇

∫

ωk
1+

∮

∂ωk

−→n
)

Dividing by |ω | and using the definition of εk we have

0 =−→v ·
(−→

∇

(
εk 1

|ω |

∫

ω
1

)
+

1

|ω |

∮

∂ωk

−→n
)

∀−→v

Since 1
|ω|
∫

ω 1 = 1 we get the proof.

Using Proposition 3.2, if the macroscopic and microscopic length-scales are well

separated, as [ak] can be considered a constant in ω , we can make the following

approximation (see [102])

1

|ω |

∮

∂ωk
[ak]−→n =−[ak]

−→
∇ εk. (3.7)

Finally, we define the variations with respect to the intrinsic average as

δak = ak − [ak]. (3.8)

3.1.3 Momentum equation average

Here we assume a creeping flow for both the fluid and the rock matrix and com-

pletely disregard the inertial terms. This assumption is reasonable given the time

scales of the the basin evolution, see [56]. The momentum balance equations ex-

pressed in a Eulerian framework at a microscale level are





−→
∇ ·−→u f = 0 in Ω f

−→
∇ ·−→u s = 0 in Ω s

−→
∇ · ¯̄σ f −−→

∇ P f +ρ f−→g = 0 in Ω f

−→
∇ · ¯̄σ s −−→

∇ Ps +ρ s−→g = 0 in Ω s

−→u f ·−→n f +−→u s ·−→n s = 0 on ∂Ω f ∩∂Ω s

( ¯̄σ f −P f ¯̄I) ·−→n f +( ¯̄σ s −Ps ¯̄I) ·−→n s = 0 on ∂Ω f ∩∂Ω s,

(3.9)

where −→u f ,−→u s are the velocity fields, ¯̄σ f , ¯̄σ s are the deviatoric parts of the stress

tensors and P f ,Ps are the fluid and solid pressure, respectively (in particular P f is

also called the pore pressure). The gravity acceleration is −→g , ¯̄I is the identity tensor

and the density of the solid is defined by
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ρ s =
ns

∑
i=1

λiρ
s
i . (3.10)

Here we have not considered the boundary conditions. In fact they have no influence

on the derivation of the averaged model and we will introduce them later. To deduce

an averaged model for equations (3.9), we apply the superficial averaging operator

to the first and the second equation and using equation (3.3) we get

−→
∇ ·<−→u k >+

1

|ω |

∮

∂ωk

−→u k ·−→n k = 0. (3.11)

Using (3.2) and (3.8), we obtain

−→
∇ · (εk[−→u k])+

1

|ω |

∮

∂ωk
([−→u k]+ δ−→u k) ·−→n k = 0.

Lastly, by combining it with (3.7) and (3.11) we get

−→
∇ · [−→u k]+

1

|ωk|

∮

∂ωk
δ−→u k ·−→n k = 0. (3.12)

We can operate similarly using the third and fourth equations of (3.9). Here we have

the superficial average

−→
∇ · (< ¯̄σ k >−< Pk > ¯̄I)+

1

|ωk|

∮

∂ωk
( ¯̄σ k −Pk ¯̄I) ·−→n k + εkρk−→g = 0 (3.13)

and the corresponding intrinsic average

−→
∇ · ([ ¯̄σ k]− [Pk] ¯̄I)+

1

|ω |

∮

∂ωk
(δ ¯̄σ k − δPk ¯̄I) ·−→n k +ρk−→g = 0. (3.14)

We replace equation (3.13) with k = s with the sum of (3.13) with k = s, f

−→
∇ · (< ¯̄σ s >+< ¯̄σ f >)+

−→
∇ (< Ps >+< P f >)+ρT−→g = 0, (3.15)

where ρT = φρ f + (1 − φ)ρ s. Equation (3.15) contrary to (3.13) does not con-

tain any interface term and then it does not need a closure. Besides, the orders

of magnitude in Table 3.1 suggest that the fluid stress tensor is negligible, indeed
¯̄σ f =O( 1

t
µ f )≃ 10−16 while ¯̄σ s =O( 1

t
µ s)≃ 107. Using equations (3.11) and (3.15)

we obtain the following macroscopic model





−→
∇ ·<−→u s >= Φ
−→
∇ ·<−→u f >=−Φ
−→
∇ ·< ¯̄σ s >−−→

∇ < PT >+ρT−→g = 0

−−→
∇ [P f ]+ρ f−→g + 1

|ω f |
∮

∂ω f (δ ¯̄σ f − δP f ¯̄I) ·−→n f = 0,

(3.16)
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Variable Symbol Magnitude

time t 1013s

space
−→
X 103m

density ρk 103kg/m3

fluid viscosity µ f 10−3Pa · s
solid viscosity µ s 1020Pa · s

pressure Pk 107Pa

temperature T k 102K

thermal conductivity Hk 1W/(Km)
thermal capacity ck 103J/(KgK)

Table 3.1: Orders of magnitude of the main physical variables and constants.

where < PT >=< Ps >+< P f > is the total pressure and

Φ =− 1

|ω |

∮

∂ωs

−→u s ·−→n s =
1

|ω |

∮

∂ω f

−→u f ·−→n f ,

which, from now on, will be called the compaction function, as it provides the rate

of decrease of porosity. We introduce, now, the fluid rheology that will be used for

the model closure. We consider a Newtonian law,

¯̄σ f = µ f
(−→

∇−→u f +(
−→
∇−→u f )T

)
. (3.17)

Whose corresponding averaged equations are

< ¯̄σ f >= µ f
(−→

∇ <−→u f >+(
−→
∇ <−→u f >)T

)
+

µ f

|ω |

∮

∂ω f

−→u f−→n f +(−→u f−→n f )T

and

[ ¯̄σ f ] = µ f
(−→

∇ [−→u f ]+ (
−→
∇ [−→u f ])T

)
+

µ f

|ω f |

∮

∂ω f
δ−→u f−→n f +(δ−→u f−→n f )T . (3.18)

respectively.

To obtain a closed form for (3.16) it is necessary to derive a differential problem

for δ−→u k, δ pk and δ ¯̄σ k. Subtracting (3.14) to the third and the fourth equation

of (3.9), subtracting (3.18) to (3.17) and breaking up the interface conditions of

(3.9) into their mean components and variations we get the following problem for

δ−→u f ,δ−→u s,δP f ,δPs,δ ¯̄σ f ,δ ¯̄σ s:
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−→
∇ ·δ−→u f = 1

|ω f |
∮

∂ω f δ−→u f ·−→n f in Ω f

−→
∇ ·δ−→u s = 1

|ωs|
∮

∂ωs δ−→u s ·−→n s in Ω s

−→
∇ · (δ ¯̄σ f − δP f ¯̄I) = 1

|ω f |
∮

∂ω f (δ ¯̄σ f − δP f ¯̄I) ·−→n f in Ω f

−→
∇ · (δ ¯̄σ s − δPs ¯̄I) = 1

|ωs|
∮

∂ωs(δ ¯̄σ s − δPs ¯̄I) ·−→n s in Ω s

δ ¯̄σ f = µ f (
−→
∇ δ−→u f +(

−→
∇ δ−→u f )T )− µ f 1

|ω f |
∮

∂ω f δ−→u f−→n f +(δ−→u f−→n f )T in Ω f

δ−→u f − δ−→u s =−[−→u r] on ∂Ω f ∩∂Ω s

(δ ¯̄σ f − δP f ¯̄I) ·−→n f +(δ ¯̄σ s − δPs ¯̄I) ·−→n s =

−([ ¯̄σ f ]− [P f ] ¯̄I) ·−→n f +([ ¯̄σ s]− [Ps] ¯̄I) ·−→n s on ∂Ω f ∩∂Ω s

[
δ−→u f − δ−→u s

]
= 0 in Ω ,

(3.19)

where [−→u r] = [−→u f ]− [−→u s] is the relative speed. The last equation of (3.19) state

that the averaged variations are null. It has been introduced by Whitaker in [102] to

obtain the hydraulic permeability tensor ¯̄K. From this system it is possible to extract

a closure for the fluid balance equation.

In the literature many closure models have already been proposed for system (3.21),

such as the closure model of [102], so we postulate that

δ−→u f =−δ−→u s =
1

2
¯̄B · [−→u r], δP f = µ f−→b · [−→u r], (3.20)

where ¯̄B : Ω →R3 ×R3 and
−→
b : Ω →R3. Moreover problem (3.19) is solved in the

unit cell ω using periodic boundary conditions:





−→
∇ ·δ−→u f = 1

|ω f |
∮

∂ω f δ−→u f ·−→n f in ω f

−→
∇ ·δ−→u s = 1

|ωs|
∮

∂ωs δ−→u s ·−→n s in ωs

−→
∇ · (δ ¯̄σ f − δP f ¯̄I) = 1

|ω f |
∮

∂ω f (δ ¯̄σ f − δP f ¯̄I) ·−→n f in ω f

−→
∇ · (δ ¯̄σ s − δPs ¯̄I) = 1

|ωs|
∮

∂ωs(δ ¯̄σ s − δPs ¯̄I) ·−→n s in ωs

δ ¯̄σ f = µ f (
−→
∇ δ−→u f +(

−→
∇ δ−→u f )T )− µ f 1

|ω f |
∮

∂ω f δ−→u f−→n f +(δ−→u f−→n f )T in ω f

δ−→u f − δ−→u s =−[−→u r] on ∂ω f ∩∂ωs

(δ ¯̄σ f − δP f ¯̄I) ·−→n f +(δ ¯̄σ s − δPs ¯̄I) ·−→n s =

−([ ¯̄σ f ]− [P f ] ¯̄I) ·−→n f +([ ¯̄σ s]− [Ps] ¯̄I) ·−→n s on ∂ω f ∩∂ωs

δ−→u k(
−→
X +Cix̂i) = δ−→u k(

−→
X ) on ∂ω with i = 1,2,3;k ∈ {s, f}

δPk(
−→
X +Cix̂i) = δPk(

−→
X ) on ∂ω with i = 1,2,3;k ∈ {s, f}[

δ−→u f − δ−→u s
]
= 0 in ω ,

(3.21)

where Ci with i = 1,2,3 is the periodicity length in the three directions.

Inserting equations (3.20) in the first boundary condition of (3.21) we get

¯̄B =− ¯̄I on ∂ω f ∩∂ωs. (3.22)
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Subtracting the first two equations in (3.19) and inserting (3.20) we obtain

(
−→
∇ · ¯̄B) · [−→u r] =

(
1

2|ω f |

∮

∂ω f

¯̄B ·−→n f +
1

2|ωs|

∮

∂ωs

¯̄B ·−→n s

)
· [−→u r]. (3.23)

Using equation (3.22), and exploiting the fact that we are using a spatially periodic

model (see [102]), we obtain

(
1

2|ω f |

∮

∂ω f

¯̄B ·−→n f +
1

2|ωs|

∮

∂ωs

¯̄B ·−→n s

)
· [−→u r] =

−
(

1

2|ω f |

∮

∂ω f

−→n f +
1

2|ωs|

∮

∂ωs

−→n s

)
· [−→u r] = 0. (3.24)

Hence, equation (3.24) reduces to:

−→
∇ · ¯̄B = 0. (3.25)

From the fifth equation of (3.19) we get

δ ¯̄σ f = µ f (
−→
∇ ¯̄B+(

−→
∇ ¯̄B)T ) · [−→u r]− µ f 1

2|ω f |

∮

∂ω f
( ¯̄B ·−→n )[−→u r]+

(
( ¯̄B ·−→n )[−→u r]

)T

.

The last term is null by virtue of (3.22). Combining the latter and equation (3.20)

with the third of (3.19) we obtain

−→
∇ ·
(

µ f (
−→
∇ ¯̄B+(

−→
∇ ¯̄B)T )− µ f−→b

)
· [−→u r] =−φ µ f ¯̄K−1 · [−→u r], (3.26)

where ¯̄K is the permeability tensor that has been defined by the following equation

−φ µ f ¯̄K−1 · [−→u r] =
1

|ω f |

∮

ω f
(δ ¯̄σ f −P f ¯̄I) ·−→n f . (3.27)

Equation (3.26), by virtue of (3.25) (and since µ f is constant), can be expressed as

∇2 ¯̄B−−→
∇
−→
b +φ ¯̄K−1 = 0. (3.28)

Using (3.28), (3.25) and (3.22) we get the following system for ¯̄B and
−→
b





−→
∇ 2 ¯̄B−−→

∇
−→
b +φ ¯̄K−1 = 0 in ω f

−→
∇ · ¯̄B = 0 in ω f

¯̄B =− ¯̄I on ∂ωs ∩∂ω f

−→
b (

−→
X +Cix̂i) =

−→
b (

−→
X ) on ∂ω with i = 1,2,3

¯̄B(
−→
X +Cix̂i) = ¯̄B(

−→
X ) on ∂ω with i = 1,2,3[

¯̄B
]
= 0 in ω f .

(3.29)
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which is the same model derived in [102] for a still porous media. Using the follow-

ing change of variables

−→
d =

−→
b · ¯̄K

φ
, ¯̄D =

( ¯̄B+ ¯̄I) · ¯̄K

φ
,

we get the following system





−→
∇ 2 ¯̄D−−→

∇
−→
d = ¯̄I in ω f

−→
∇ · ¯̄D = 0 in ω f

¯̄D = 0 on ∂ωs ∩∂ω f

−→
d (

−→
X +Cix̂i) =

−→
d (

−→
X ) on ∂ω with i = 1,2,3

¯̄D(
−→
X +Cix̂i) = ¯̄D(

−→
X ) on ∂ω with i = 1,2,3.

(3.30)

And the permeability tensor can be computed as

¯̄K = φ
[

¯̄D
]
. (3.31)

The first four equations of system (3.30) form a tensorial Stokes problem for the

unknowns ¯̄D,
−→
d . For its solution see [33, 73]. Once solved, it is possible to derive

the permeability tensor, using equation (3.31). We are now ready to formulate the

closure of equations (3.16). Let’s substitute equation (3.27) in the fourth of (3.16),

we obtain 



−→
∇ ·<−→u s >= Φ in Ω
−→
∇ ·<−→u f >=−Φ in Ω
−→
∇ ·< ¯̄σ s >−−→

∇ < PT >+ρT−→g = 0 in Ω
¯̄K

µ f

(
−−→

∇ [P f ]+ρ f−→g
)
= φ [−→u r] in Ω .

(3.32)

It has to be complemented by a suitable set of boundary conditions and by an explicit

definition of Φ which is going to be discussed later. In other terms, this system of

equations states the incompressibility of the two phases and the conservation of the

momentum from a macroscopic viewpoint.

3.1.4 Mass equation averaging

In this subsection we derive the mass conservation equations and also an evolution

equation for the porosity. Let’s start with the derivation of the mass conservation

equation of the solid part. Clearly, in the solid part of Ω , we have

∂

∂ t
(ρ s

i )+
−→
∇ · (ρ s

i
−→u s) = 0.
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Using the superficial average operator we get

∂

∂ t
< ρ s

i >+
−→
∇ ·< ρ s

i
−→u s >+

1

|ω |

∮

∂ωs
ρ s

i
−→u s ·−→n s = 0.

Since there is no mass flow across ∂ωs the last term in the former equation is null.

Moreover we have < ρ s
i >= (1−φ)[ρ s

i ] = (1−φ)ρ s
i and < ρ s

i
−→u s >= ρ s

i <
−→u s >=

ρ s
i (1−φ)[−→u s], therefore we obtain

∂

∂ t
((1−φ)ρ s

i )+
−→
∇ · ((1−φ)ρ s

i [
−→u s]) = 0. (3.33)

In the same way we can obtain the mass conservation equation of the fluid part

∂

∂ t

(
φρ f

)
+
−→
∇ ·
(
φρ f [−→u f ]

)
= 0.

Dividing by ρ f we can get a porosity evolution equation

∂φ

∂ t
+
−→
∇ ·
(
φ [−→u f ]

)
= 0. (3.34)

3.1.5 Averaged energy balance

As we will see later on, in the rest of this work we neglect the thermal effects,

however, for completeness, in this section we briefly show the main passages for the

derivation of the macroscopic thermal equation.

We start from the equation of the energy balance at the microscale





∂
∂ t
(ρkckT k)+

−→
∇ · (ρkckT k−→u k) =

−→
∇ · (−→u k · ( ¯̄σ k −Pk ¯̄I))−−→

∇ ·−→w k +ρk−→g ·−→u k in Ω k,k = {s, f}
−→w k =−Hk

−→
∇ T k in Ω k,k = {s, f}

T s = T f on ∂Ω s ∪∂Ω f

−→w s =−→w f on ∂Ω s ∪∂Ω f

(3.35)

where T k and −→w k are, respectively, the temperature and the heat flux of the k-th

phase. While c f and H f are respectively the specific heat and the thermal conduc-

tivity of fluid, cs and Hs are the equivalent values for the solid part. The latter ones

can be computed as a volumetric average of the values of each solid species thanks

to

cs =
2

∑
i=1

λic
s
i , Hs =

2

∑
i=1

λiH
s
i ,
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where cs
i and Hs

i are the thermal capacity and conductivity of the i-th solid species.

Moreover equation (3.35) can be complemented by:

{−→u s ·−→n s +−→u f ·−→n f = 0 on ∂Ω s ∪∂Ω f

( ¯̄σ f −P f ¯̄I) ·−→n f +( ¯̄σ s −Ps ¯̄I) ·−→n s = 0 on ∂Ω s ∪∂Ω f

Using the same volume averaging techniques described in the previous sections we

get the following macroscopic model:

∂

∂ t

(

∑
k∈{s, f}

εkρkck[T ]

)
+
−→
∇ ·
(

∑
k∈{s, f}

εkρkck[T ][−→u k]

)
=−−→

∇ ·
(

HE f f

−→
∇ [T ]

)
.

(3.36)

where [T ] is the mean macroscopic temperature and

HE f f = ∑
k∈{s, f}

(
εkHk +Hk

∮

∂ωk

−→a k−→n k

)

where −→a k =−→a k
0+

¯̄Ak
0 ·−→c . The function−→a k

0 can be determined solving the following

problem on a periodic unit cell





Hk
−→
∇ 2−→a k

0 = 0 in ωk,k = {s, f}
−→a f

0 =−→a s
0 on ∂ω f ∩∂ωs

H f (
−→
∇−→a f

0 ·−→n f )+Hs(
−→
∇−→a s

0 ·−→n s) =

−(H f−→n f +Hs−→n s) on ∂ω f ∩∂ωs

−→a k
0(
−→
X +Ci

−→x i) =
−→a k

0(
−→
X ) on ∂ω with i = 1,2,3.

And the tensor ¯̄Ak
0 solving





Hk
−→
∇ 2 ¯̄Ak

0 =
1
εk

¯̄I in ωk,k = {s, f}
¯̄A

f
0 = ¯̄As

0 on ∂ω f ∩∂ωs

H f (
−→
∇ ¯̄A

f
0 ·−→n f )+Hs(

−→
∇ ¯̄As

0 ·−→n s) = 0 on ∂ω f ∩∂ωs

¯̄Ak
0(
−→
X +Ci

−→x i) =
¯̄Ak

0(
−→
X ) on ∂ω with i = 1,2,3.

3.1.6 Constitutive equations

In this section we provide the constitutive relations that complement the balance

equations. In particular we describe a rheological law for the solid part that links the

stress to the deformation velocity. Regarding the rheological relation, in this chapter,

we consider only a Newtonian law for the structure. Some more realistic rheologies
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will be considered in the forthcoming chapters. The Newtonian relation is:

< ¯̄σ s >= µ s(
−→
∇ <−→u s >+(

−→
∇ <−→u s >)T ),

where µ s is the apparent viscosity of the solid phase. It is possible to compute it as

a volume average of µ s
i that are the species viscosities. Therefore the definition of

µ s is

µ s =
ns

∑
i=1

λiµ
s
i . (3.37)

We point out that the absence of a satisfactory microscopic interaction model for the

grains affects the possibility to obtain a macroscopical rheology model by homoge-

nization. Therefore some heuristic models are used.

Let’s now pass to the definition of the compaction function Φ . There are two ways

to define it:

1. we can relate it directly to the other simulation variables by empirical relations;

2. otherwise, we can define a relation between the porosity φ and the other simula-

tion variables. The function Φ is then automatically derived as we will see later

on.

The first approach is adopted typically when dealing with a viscous compaction

model, see, for example, [27, 36, 98, 99]. One of the mostly used, semi-empirical,

relations is

Φ(φ , [Pe]) =−φ −φ0

η
[Pe], (3.38)

where φ0 is a minimum value for the porosity, [Pe] is the so called effective pressure

and η is a parameter which has the same dimensions of the viscosity and describes

the resistance of the porous matrix to compaction. It is usually taken as the mean of

the coefficients ηi of every single layer, i.e

η =
ns

∑
i=1

λiηi.

The coefficients ηi can be found in the literature [98]. Equation (3.38) represents

a simple viscous compaction process and is only an example of the constitutive

relations that can be considered. There are many definitions of the effective pressure,

see [36, 98], among which we mention





[Pe] =< PT >−[P f ]

[Pe] =< PT >−(1−β )
[
P f
]

[Pe] =< PT >−φ
[
P f
]
,

(3.39)

where β is a positive parameter to be calibrated by experiments. In the case we base

a constitutive relation directly on Φ it is possible to obtain the porosity φ using

equation (3.34).

Otherwise, in the second approach (used, for instance, with elastic compaction
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laws), we define the dependence of the porosity starting from other variables, such

as the effective pressure. Then, using the volume averaging theory, it is possible to

derive a relation that links the porosity to the compaction function. In fact, from its

definition and from (3.20) we have

Φ =− 1

|ω |

∮

∂ωs
([−→u s]+ δ−→u s) ·−→n s =− 1

|ω |

∮

∂ωs

(
[−→u s]− 1

2
¯̄B · [−→u r]

)
·−→n s.

Using equation (3.22) and (3.7) we get

Φ =− 1

2|ω |

∮

∂ωs
([−→u f ]− [−→u s]) ·−→n s =

1

2

−→
∇ (1−φ) · [−→u r] =−1

2

−→
∇ φ · [−→u r]. (3.40)

The compaction function is then obtained if we define a constitutive relation for the

porosity. This latter can depend on depth or on the effective pressure; one of the

mostly used relations is the Athy compaction law [6]

φ = αeγ[Pe], (3.41)

where α and γ are suitable coefficients to be calibrated. There are many other φ -

stress relations that may be found in the literature, see [84].

3.1.7 The complete macroscopic models

In this section we rearrange the averaged balance equations, derived in the previous

paragraphs, to get a complete and easy-to-discretize model. After formulating the

complete model, we discuss some simplified versions used for basin modeling.

Let’s start with the mass conservation equation for the solid phase. Since the sedi-

mentary layers are treated as immiscible fluids, the λi functions coincide, at a macro-

scopic level, with the characteristic functions of the subdomains Ωi namely

{
λi(t,

−→
X ) = 1 if

−→
X ∈ Ωi(t)

λi(t,
−→
X ) = 0 otherwise .

Therefore equation (3.10) can also be written as

ρ s = λiρ̂
s
i .

Combining this one with (3.33) we get

ρ̂ s
i

∂

∂ t
((1−φ)λi)+ ρ̂ s

i

−→
∇ · (λi(1−φ)[−→u s]) = 0, i = 1, . . . ,ns. (3.42)

Dividing by ρ̂ s
i and summing all the components we obtain
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∂ (1−φ)

∂ t
+
−→
∇ · ((1−φ)[−→u s]) = 0. (3.43)

This latter equation is equivalent to (3.34), although [−→u s] is usually smaller than

[−→u f ]. Therefore the numerical solution of (3.43), using explicit time advancing fi-

nite volume schemes, allows for longer time steps to satisfy the CFL condition.

Subtracting (3.43) from (3.42) we get

∂λi

∂ t
+[−→u s] ·−→∇ λi = 0. (3.44)

This latter relation is a volume transport equation that can be solved using, for in-

stance, the finite volume methods [50] or the discontinuous Galerkin methods [25].

Combining equation (3.43) with (3.34) we obtain

−−→
∇ · ((1−φ)[−→u s]) =

−→
∇ ·
(
φ [−→u f ]

)
,

which may be written as −→
∇ · [−→q ] =−−→

∇ · [−→u s], (3.45)

where [−→q ] = φ [−→u r]. We are now able to write two complete averaged models:

1. the first model employs a Φ-stress constitutive equation, like (3.38);

2. the second one employs a porosity-stress constitutive equation, like (3.41).

Using equations (3.32), (3.43), (3.44), (3.36) and (3.45) we obtain for t > 0 and in

Ω





∂ (1−φ)

∂ t
+
−→
∇ · ((1−φ)[−→u s]) = 0

∂λi

∂ t
+[−→u s] ·−→∇ λi = 0

−→
∇ ·<−→u s >= Φ([Pe])
−→
∇ ·< ¯̄σ s >−−→

∇ < PT >+ρT−→g = 0
−→
∇ · [−→q ] =−−→

∇ · [−→u s]
¯̄K(φ)

µ f

(
−−→

∇ [P f ]+ρ f−→g
)
= [−→q ]

∂
∂ t

((
∑k∈{s, f} εkρkck

)
[T ]
)
+
−→
∇ ·
((

∑k∈{s, f} εkρkck[−→u k]
)
[T ]
)
=
−→
∇ ·
(

HE f f

−→
∇ [T ]

)
,

(3.46)

where < ¯̄σ s > is, in general, a function of < −→u s > and [T ]. While, in the second

case, we get for t > 0 and in Ω
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φ = φ([Pe])
∂λi

∂ t
+[−→u s] ·−→∇ λi = 0

−→
∇ ·<−→u s >=− 1

2

−→
∇ φ · [−→u r]

−→
∇ ·< ¯̄σ s >−−→

∇ < PT >+ρT−→g = 0
−→
∇ · [−→q ] =−−→

∇ · [−→u s]
¯̄K(φ)

µ f

(
−−→

∇ [P f ]+ρ f−→g
)
= [−→q ]

∂
∂ t

((
∑k∈{s, f} εkρkck

)
[T ]
)
+
−→
∇ ·
((

∑k∈{s, f} εkρkck[−→u k]
)
[T ]
)
=
−→
∇ ·
(

HE f f

−→
∇ [T ]

)
.

(3.47)

Both systems have to be supplemented by appropriate boundary conditions. We can

outline a common structure in problems (3.46) and (3.47): actually they both rep-

resent a set of evolution equations. In the first case the unknowns are the porosity,

the mass and the energy, while, in the second case, only the last two are present.

The third and fourth equation of (3.46) and (3.47) form a Stokes problem, while

the fifth and the sixth equation, (since the velocity [−→u s] is known by the solution of

the Stokes problem), form a Darcy problem. Systems (3.46), (3.47) are similar to

models already found in the literature but many details are different. First of all we

have stressed in the fourth equation of (3.46) and of (3.47) the presence of the di-

vergence of the superficial volume average of the stress < ¯̄σ s >. The macroscopical

rheological relations usually link the intrinsic mean value of the stress [ ¯̄σ s] with the

deformation tensor or the deformation velocity tensor. The difference between the

two averages is not always considered, although there are works like [12, 13, 75]

where the difference is fully taken into account. The second feature of our formu-

lation is the introduction of the compaction function Φ and its dependence on the

relative velocity [−→u r]. In many works the compaction function is computed in terms

of the material derivative of the effective pressure, see for instance [56]. Here, on

the contrary, we have exploited the volume averaging technique to get the func-

tional form of the compaction function. We have also extended the theory of [102]

to a moving matrix case, and we have provided a procedure for the computation of

the hydraulic permeability and of the effective thermal coefficient.

3.1.8 Approximated models

The compaction models we have derived are similar to the models used, for instance,

in [107, 56, 57] and with other compaction models such as [7]. However, the models

are still complex and they can be simplified further by adopting some additional

hypothesis which are reasonable for an analysis at the scale of a sedimentary basin.

The first hypothesis we introduce is that the rheology is temperature independent,

therefore we can discard the temperature equations in (3.46) and (3.47). Indeed, the

bottom of a sedimentary basin usually lies at a depth of less than ten kilometers

where the mean temperature is approximately of three hundred degrees Celsius. In
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many cases the variation of the temperature does not alter the rheological properties

significantly. Then, we introduce another hypothesis: we neglect the effects of the

gradient of the porosity on the rheology and on the compaction rate. This hypothesis

is reasonable except in the thin interface regions where the porosity rapidly changes.

These effects are usually neglected in basin scale simulations.

Moreover we consider the porosity being prescribed by an experimental law, for

instance the Athy law (3.41). For the time being, we neglect only the effects of the

gradient of the porosity and consider

−→
∇ ·<−→u s >= (1−φ)

(−→
∇ · [−→u s]

)
− [−→u s] ·

(−→
∇ φ
)
= Φ.

From this equation we can derive an approximated form for the divergence of the

velocity field of the solid phase, namely

−→
∇ · [−→u s] =

Φ

1−φ
. (3.48)

We can perform the same approximation on the rheology, considering a Newtonian

law (but the procedure could be straightforwardly extended to the pseudo-plastic

relations, see [57]), to get

< ¯̄σ s >= µ s
(−→

∇ <−→u s >+(
−→
∇ <−→u s >)T

)
=(1−φ)µ s

(−→
∇ [−→u s]+ (

−→
∇ [−→u s])

T
)
−

µ s
(
[−→u s]

−→
∇ φ +([−→u s]

−→
∇ φ)T

)
.

Once again, neglecting the effects of the gradient of the porosity field, we obtain

< ¯̄σ s >= (1−φ)µ s
(−→

∇ [−→u s]+ (
−→
∇ [−→u s])T

)
. (3.49)

Inserting (3.48) and (3.49) in (3.46) and (3.47) we get two possible simplified mod-

els 



∂ (1−φ)

∂ t
+
−→
∇ · ((1−φ)[−→u s]) = 0

∂λi

∂ t
+[−→u s] ·−→∇ λi = 0

−→
∇ · [−→u s] = Φ([Pe])

1−φ−→
∇ ·< ¯̄σ s >−−→

∇ < PT >+ρT−→g = 0
−→
∇ · [−→q ] =−Φ([Pe])

1−φ
¯̄K(φ)
µ f

(
−−→

∇ [P f ]+ρ f−→g
)
= [−→q ]

(3.50)

and
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φ = φ([Pe])
∂λi

∂ t
+[−→u s] ·−→∇ λi = 0

−→
∇ · [−→u s] =− 1

2

−→
∇ φ ·[−→u r]

1−φ−→
∇ ·< ¯̄σ s >−−→

∇ < PT >+ρT−→g = 0
−→
∇ · [−→q ] = 1

2

−→
∇ φ ·[−→u r ]

1−φ
¯̄K(φ)

µ f

(
−−→

∇ [P f ]+ρ f−→g
)
= [−→q ].

(3.51)

Systems (3.50) and (3.51) closely resemble some compaction models present in

the literature, such as [96] and [7], where an elastic and a viscoelastic medium are

treated. With respect to those works, we have used a different volume averaging

technique that makes possible to model the compaction function directly. Moreover

in our systems (3.50) and (3.51) a variable number of sedimentary layers is consid-

ered. As we have already stressed, systems (3.50) and (3.51) belong to the class of

compaction models. To derive a basin-scale model we eliminate the fifth and sixth

equations in (3.51), obtaining the reduced system





φ = φ([Pe])
∂λi

∂ t
+[−→u s] ·−→∇ λi = 0

−→
∇ · [−→u s] = Φ([Pe])

1−φ−→
∇ ·< ¯̄σ s >−−→

∇ < PT >+ρT−→g = 0.

(3.52)

The latter system is the classical model widely used in geological applications

[107, 56, 60, 108]. In this model the liquid phase is not simulated, therefore the

compaction effects are imposed a priori using experimentally derived compaction

curves. In particular, the effective pressure is assumed to be the lithostatic one and

Φ must be estimated using only the overburden pressure; for more details see, for

example, [56].

The basin scale models can be used in all the cases in which the relative velocity

and the pore pressure have weak variations. In that case the compaction function can

be estimated precisely without we need to use the fluid velocity and pressure, thus

allowing a decoupling between the evolution of the solid matrix and the evolution

of the fluids.

3.2 Numerical solution for compaction models

3.2.1 Time discretization algorithm for (3.50)

In this section we introduce a class of numerical schemes for the solution of problem

(3.50) based on a temporal splitting technique combined with a fixed point iteration.
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We introduce a partition of the temporal interval [0, t f in], [0, t1, . . . , tn, . . . , t f in] with

∆ tn = tn+1 − tn. For simplicity we define, for a general variable ak(t,
−→
X ) relative to

the phase k,

ak,n(
−→
X ) = ak(tn,

−→
X ).

with t ∈ [0, t f in],
−→
X ∈ Ω . We define the following algorithm:

1. given φn and λ n
i , we compute the density and the viscosity of the solid part ρ s,n,

µ s,n using (3.10) and (3.37);

2. we set [−→u s,(0)] = [−→u s,n−1], compute Φ(0) = Φ(φn, [Pe,(0)]) and [Pe,(0)], which is

a function of < PT,n−1 >, [P f ,n−1], using (3.39);

3. we iterate on m:

a. we solve the Stokes problem

{−→
∇ ·< ¯̄σ s,(m+1) >−−→

∇ < PT,(m+1) >+ρT,n−→g = 0
−→
∇ · [−→u s,(m+1)] = Φ(φn, [Pe,(m)]),

(3.53)

where < ¯̄σ s,(m+1) > is a function of [−→u s,(m+1)];
b. we solve the Darcy problem

{
[−→q (m+1)] =− ¯̄K

µ f

(−→
∇ [P f ,(m+1)]+ρ f ,n−→g

)

−→
∇ · [−→q (m+1)] =−Φ(φn, [Pe,(m)]);

c. we update the effective pressure [Pe,(m+1)] using one of (3.39), and the com-

paction function Φ(φn, [Pe,(m+1)]);

4. if ‖[Pe,(m+1)]− [Pe,(m)]‖L2(Ω), is smaller than a prescribed tolerance, we stop and

set, for all variables ak, ak,n = ak,(m+1);

5. we solve the following evolution equations from tn to tn+1 obtaining λ n+1
i and

φn+1 



∂λi

∂ t
+[−→u s] ·−→∇ λi = 0

∂ (1−φ)

∂ t
+
−→
∇ · ((1−φ)[−→u s]) = 0.

3.2.2 Time discretization algorithm for (3.51)

We modify slightly the previous algorithm in order to adapt it to (3.51):

1. given φn and λ n
i we compute the density and the viscosity of the solid part ρ s,n,

µ s,n;

2. we set [−→u s,(0)] = [−→u s,n−1], [−→u r,(0)] = [−→q ]n−1

φ n−1 , φ (0) = φ([Pe,0]) and compute

[Pe,(0)] using < PT,n−1 >, [P f ,n−1];
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3. then we iterate on m:

a. we solve the Stokes problem





−→
∇ ·< ¯̄σ s,(m+1) >−−→

∇ < PT,(m+1) >+ρT,n−→g = 0
−→
∇ · [−→u s,(m+1)] =− 1

2

−→
∇ φ (m)

(1−φ (m))
· [−→u r,(m)],

where < ¯̄σ s,(m+1) > is a function of [−→u s,(m+1)].
b. we solve the Darcy problem




[−→q (m+1)] =− ¯̄K

µ f

(−→
∇ [P f ,(m+1)]+ρ f ,n−→g

)

−→
∇ · [−→q (m+1)] = 1

2

−→
∇ φ (m)

(1−φ (m))
· [−→u r,(m)];

c. we update the effective pressure [Pe,(m+1)] (using one of the (3.39)), the poros-

ity φ (m+1) = φ([Pe,(m+1)]) and the relative speed [−→u r,(m+1)] = [−→q ](m+1)

φ (m+1) ;

4. if ‖[Pe,(m+1)]− [Pe,(m)]‖L2(Ω) is smaller than a prescribed tolerance, we stop and

set, for the variable ak, ak,n = ak,(m+1);

5. we solve the following evolution equation from tn to tn+1 and we get λ n+1
i

∂λi

∂ t
+[−→u s] ·−→∇ λi = 0.

3.2.3 Algorithm analysis

In the former section we have outlined that the compaction problem requires the

solution of a Stokes and a Darcy problem. In this section we will study the condi-

tions under which these two problems are well posed. For a Newtonian rheology the

necessary existence conditions on the data for the Stokes problem are

µ s > 0, µ s,ρT ∈ L∞, (3.54)

see [73], [33]. The well posedness conditions for the Darcy problem are

¯̄K,µ f > 0, ¯̄K,µ f ,ρ f ∈ L∞. (3.55)

Conditions (3.54) and (3.55) are satisfied if the porosity is strictly positive φ > 0.

If we use a φ -stress relation it is sufficient to make sure that the dependence of the

porosity on pressure implies the positivity of φ . If a compaction law involving the

compaction function Φ is used, it is necessary to verify, case by case, the positivity

of the porosity. If relation (3.38) is used it is possible to guarantee the following:
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Proposition 3.3. The relation (3.38), if φ0 > 0, and [Pe] is bounded (i.e. ∃Mp > 0

finite such that [Pe]< Mp), implies the strict positivity of φ .

Proof. The boundness of [Pe] is physically reasonable but, till now, we can not prove

it mathematically.

Equation (3.43) can also be written as

Dφ

Dt
= (1−φ)

−→
∇ · [−→u s]

and combining it with (3.48) we get

Dφ

Dt
= Φ. (3.56)

being D
Dt

= ∂
∂ t
+ [−→u s] ·−→∇ . Then using a standard characteristic equation argument

(see [50]) if [−→u s] is Lipschitz continuous uniformly on t there is a variable change

(t,
−→
X )→ (t,

−→
P ) such that

{
d
dt

−→
P (t,

−→
X ) = [−→u s](t,

−→
X )

−→
P (0,

−→
X ) =

−→
X .

Then, the problem (3.56) in the (t,
−→
P ) coordinates reads

{
dφ
dt

= Φ

φ(0, ·) = φ0

where φ0 is the initial condition for the porosity. Clearly we have φ ≥ φ where φ
satisfies 




dφ

dt
=−φ −φ0

η
Mp

φ(0, ·) = φ(0, ·)
.

The analytical solution of this problem is φ(t,
−→
P ) = φ0 + (φ(0,

−→
P )− φ0)e

−Mp
η t

,

therefore

φ(t,
−→
P )≥ φ0 +(φ(0,

−→
P )−φ0)e

−Mp
η t ≥ φ0 > 0 ∀t > 0

And we get the thesis.
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3.3 Numerical solution for a one-dimensional case

3.3.1 The one-dimensional case and numerical techniques

We solve problem (3.50) using the compaction function (3.38) neglecting the ther-

mal effects. We consider only vertical compaction, consequently, the corresponding

one-dimensional model to be solved is





∂ (1−φ)

∂ t
+

∂

∂x
((1−φ)[us]) = 0

∂λi

∂ t
+[us]

∂λi

∂x
= 0

∂ [us]

∂x
=−φ −φ0

η
[Pe]

∂

∂x

(
2µ s ∂ [us]

∂x

)
− ∂ < PT >

∂x
+ρT g = 0

∂ [q]

∂x
=

φ −φ0

η
[Pe]

K
µ f

(
− ∂ [P f ]

∂x
+ρ f g

)
= [q]

[us(·,0)] = 0, [q(·,0)] = 0

< PT > (·,L) = 0, [P f ](·,L) = 0

φ(0,X) = φ (X), λi(0,X) = λ i(X),

(3.57)

in (0,1)× (0, t f in]. Here φ and λ i are suitable initial values and L is the surface of

the basin, which is determined by the following Cauchy problem

{
dL
dt

= [us]

L(0) = L0

where L0 is the initial thickness of the basin. In this one-dimensional case it is not

necessary to use a finite element method in order to solve the Stokes and Darcy

problems associated with (3.57). Indeed, problem (3.53) is equivalent to





∂ [us,(m+1)]

∂x
=−φn −φ0

η
[Pe,(m)]

∂

∂x

(
2µ s ∂ [us,(m+1)]

∂x

)
− ∂ < PT,(m+1) >

∂x
+ρT,ng = 0

[
us,(m+1)

]
(·,0) = 0, < PT,(m+1) > (·,L) = 0.

(3.58)

The first equation of (3.58), combined with the last one, forms a Cauchy problem.

Once determined [us,(m+1)], we can compute the pressure from the second equation

of (3.58). A similar procedure leads to the solution of the Darcy problem
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∂ [q]

∂x
=

φ −φ0

η
[Pe]

K

µ f

(
−∂ [P f ]

∂x
+ρ f g

)
= [q]

[q(·,0)] = 0, [P f ](·,L) = 0

(3.59)

The first equation of (3.59) complemented by [q](·,0) = 0 forms a Cauchy problem

for [q], then [P f ] can be computed by the second equation of (3.59) with the final

condition [P f ](·,L) = 0.

To sum up, the solution of (3.57) can be obtained with an ordinary differential equa-

tion (ODE) integrator and a Godunov finite volume solver applied to the first two

evolution equations of (3.57). In our case we have used an explicit Euler scheme as

the one dimensional case is not computationally demanding.

3.3.2 Numerical results

We have considered two significant numerical tests. In the first one, we consider a

compaction test case with a low variation in the physical coefficients while, in the

second one, we consider a case where a high variation in the coefficients leads to the

formation of extreme overpressure conditions. We consider three sedimentary layers

(see Figure 3.3), the deepest one is located between the basement and 450m, the

second one between 450m and 1Km and the third one between and 1Km and 2Km:

the total depth of the basin is 2Km. The physical characteristics of the materials for

Fig. 3.3: An outline of the basin stratification.

the first test case are
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Species 1 2 3

Viscosity (1020Pa · s) 3 1 3

Density (103Kg/m3) 1 1 3

η (1020Pa · s) 100 30 100

The remaining physical data are φ0 = 0.01, ρ f = 103 kg/m3, µ f = 10−5Pa · s and in

this case we have considered an empirical relation for the permeability tensor [28]

¯̄K = ¯̄IK0

(
φ

φ0

)m

,

where K0 and m are experimental coefficients. We show in Figure 3.4 and in Figure

Fig. 3.4: Basin evolution at 0.49 million years with a moderate variation of the co-

efficients. In the upper-left corner the functions λi, that are the volumetric fractions

of the sediments, are displayed. In the upper right corner the solid velocity and the

relative flux are displayed. In the lower-left corner the total and pore pressures are

displayed. Lastly in the lower right corner the porosity is displayed.

3.5 the evolution of the basin at 0.49 and 94.7 million years respectively. Since

there are no strong variations in the coefficients, the evolution of the basin is quite

smooth, the central layer compacts first, as expected, but the compaction rate is not

very high. Therefore the fluid in the deepest layer has plenty of time to escape and

no overpressure is formed. In fact we can see in Figures 3.4 and 3.5 that the fluid

pressure maintains a nearly hydrostatic behavior.

In the second test case we consider the same geometry of the first one, while we

change the strength of the middle layer:
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Fig. 3.5: Basin evolution at 94.7 million years with a moderate variation of the

coefficients.

Species 1 2 3

Viscosity (1020Pa · s) 3 1 3

Density (103Kg/m3) 1 1 3

η (1020Pa · s) 100 1 100

In other terms, the central layer is very weak and compacts quickly. An over-

compacted layer behaves as an impermeable zone and the liquids below it are

trapped. In these conditions the pore pressure of the deepest layer reaches high

values. In Figure 3.6 the basin evolution at 0.27 million years is depicted. In that

Fig. 3.6: Basin evolution at 0.27 million years with high variation of the coefficients.
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period the central region collapses and reaches the minimum porosity. The water is

retained only in the lowest part of the basin. Then its lowest part is compacted, as

Fig. 3.7: Basin evolution at 4.2 million years with high variation of the coefficients.

we can see in Figure 3.7. Water tries to escape from the deepest layer but the middle,

over-compacted, layer prevents this event and the pore pressure rises. The pressure

[P f ] deviates from the hydrostatic behavior and reaches 2.8 ·107Pa. At 86.8 million

Fig. 3.8: Basin evolution at 86.8 million years with high variation of the coefficients.

years, as shown in Figure 3.8, the compaction of the deepest layer terminates and

only the shallowest region remains un-compacted. it is worth noting that the basin



38 3 Mathematical models for basin simulation and compaction

thickness is reduced from 2Km to 1.3Km. In this last test case we have shown that

our algorithm remains stable even under extreme conditions.
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3.4 Nomenclature

Index Meaning Interval

k Phase - 1 (fluid), 2(solid) [1,2]
i Layer [1,ns]
n Time step -

(m) Iteration -

Table 3.2: Table of the indexes.

Symbol Meaning

Ω The sedimentary basin volume - The numerical domain

Ω k The k-th phase volume

Ω s
i The i-th solid layer volume

ω Averaging volume

ωk The k-th phase part of the averaging volume−→
X Position vector

L Macroscopical (Basin) scale

l Microscopical (Grain) scale
−→n The normal ω / Ω k

−→n k The normal to ωk / Ω k

∂ The boundary

Table 3.3: Table of the geometry symbols.
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Symbol Meaning

µk The viscosity of the k-th phase

µ s
i The viscosity of the i-th sediment layer

η The bulk viscosity

ηi The bulk viscosity of the i-th sediment layer

ρk The density of the k-th phase

ρT The total density

Pk The pressure of the k-th phase

PT The total pressure

Pe The effective pressure
¯̄σ k The viscous stress of the k-th phase

T The temperature

ck The thermal capacity of the k-th phase

cs
i The thermal capacity of the i-th layer

Hk The thermal conductivity of the k-th phase

cs
i The thermal conductivity of the i-th layer

−→u k The velocity of the k-th phase
¯̄K The permeability tensor

Table 3.4: Table of the physical variables.

Symbol Meaning

εk The volume fraction of the k-th phase

φ The porosity

λi The volume fraction of the i-th layer or the characteristic function of Ωi

ak A generic k-th phase variable

< ak > The superficial average

[ak] The intrinsic average

δ ak The variation with respect to the intrinsic average

ns The number of the layers

t The time

Φ The compaction function

Table 3.5: Table of the other variables.



Chapter 4

Multi-fluid tracking

In the former chapter we have derived some physical models for the compaction

and the basin-scale dynamics. This chapter is entirely devoted to the numerical so-

lution of problem (3.44) in three dimensions. To this aim it is necessary to tackle

the problem of tracing the geometrical evolution of a large number of sedimentary

layers. We disregard the other equations in (3.46) and we focus just on problem

(3.44). We assume that the velocity field [−→u s] is known. For the sake of simplicity

we drop the index s and the brackets [·] as, from now on, we neglect the evolution of

the fluid part and we consider only macroscale quantities. We illustrate a method to

track separating interfaces among immiscible fluids when a large number of fluids

is involved. Our aim is to construct an efficient and robust method, effective even

when the interfaces experience a strong deformation, with good mass conservation

properties, that can be used on (2D and 3D) unstructured meshes.

4.1 A brief review of the literature

Many techniques regarding the two fluid problem are reported in the literature but

they cannot often be extended readily to the multi-fluid problem and, moreover, do

not match our requirements. Tracking methods can be roughly subdivided into two

categories: Lagrangian and Eulerian methods. The former track the interfaces ex-

plicitly, while the latter reconstruct them with a post-processing procedure.

Among the many Lagrangian tracking algorithms (see, for instance, [59, 93, 72]),

some move all the nodes of the volume mesh. Some others, on the contrary, track

just the interface points and reconstruct the mesh in the interior at every time step, or

whenever necessary. The Lagrangian approach presents some difficulties, particu-

larly in three-dimensional computations, such as the treatment of possible, physical

or numerically induced, topological changes. Furthermore, sophisticated adaption

algorithms should be used to maintain a sufficient mesh quality. If a topological

change occurs, complex topology correction algorithms are needed (see, for in-

stance, the one in [64]), and it is almost impossible to prove the algorithm robustness

41
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with respect to all topological changes that may happen in complex and realistic 3D

situations. Some works, for example [91, 82], have been proposed to tackle the topo-

logical change problem. These approaches require a fixed background grid for the

solution of a geometry regularization equation. Though interesting, they can be ap-

plied only to two fluid simulations and are not mass-preserving.

Though the Lagrangian methods have an explicit and immediate representation of

the interfaces (see [59, 72, 39, 93]) they are not conservative. There are works, like

[62], which present procedures to enforce mass conservation, but fail to be robust

for topological changes.

The complexity of Lagrangian methods triggered the development of the Eulerian

implicit tracking methods: an overview can be found in [48] and [21]. We remind

the most effective methods, namely the volume of fluid (VOF) and the level-set

(LS). Other mixed Eulerian-Lagrangian methods exist, such as the ALE methods

[29] or the particle methods [65], but they do not have the characteristics we are

looking for (conservativeness, robustness with respect to topological changes). The

LS [30, 86, 65, 81] is a robust method and it is easy to code. But in many cases it

does not fit the multi fluid framework and, in general, it does not conserve the mass.

A few works are devoted to the multi-fluid simulation (see, for instance, [109, 110])

however, the first is specifically designed for curvature-driven flows while the other

entails a nested LS structure and is not mass conservative.

Many works are devoted to fix the LS non conservativeness like [90] and [69], yet

all of them consider only the case of two fluids. The mass conservation issue can be

partially solved by refining the grid adaptively, as pointed out in [1] and [2].

VOF methods are mass conservative by construction and relatively robust although

they are usually designed to track only two fluids and moreover they have, in gen-

eral, an irregular reconstruction of interfaces. The principal difficulty is again the

check of the reconstruction of the interfaces when more than two fluids are involved.

Interface reconstruction using the VOF methods is a major topic and many works

such as [9, 8] are devoted to it. However the multi-fluid case is not usually treated

and many VOF algorithms require a structured mesh.

One of the most applicable methods for multi-fluid simulations is the partial vol-

ume tracking method (VT) (see [48] for a brief description) which consists in dis-

cretizing, with high order schemes, the volume transport equation. As stated in [21],

this approach has a moderate success, since the discontinuous initial solutions are

quickly diffused even if high resolution methods are used.

4.2 The proposed method

We consider a domain Ω ⊂ Rd , with d = 1,2,3, with a regular boundary ∂Ω ; this

domain is filled with ns immiscible fluid species, such that every subdomain Ωi ⊂Ω ,

corresponding to a species, does not overlap with the others, i.e., Ωi ∩Ω j = 0 if

i 6= j and Ω =
⋃ns

i=0 Ω i. The subdomains Ωi depend on time, i.e., Ωi = Ωi(t), since

they are advected by a time dependent velocity field −→u (t,
−→
X ),

−→
X ∈ Ω and t ≥ 0,
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whose trace on ∂Ω has zero normal component, i.e., −→u · −→n = 0 on ∂Ω , being
−→n the boundary normal versor. In other terms, for the sake of simplicity, we have

neglected the boundary conditions without loosing generality. We also assume that
−→u is sufficiently regular, in particular we assume at each time t −→u (t,

−→
X ) ∈ H1(Ω).

We define λ 0
i ∈ L2(Ω) as the characteristic function of subdomain Ωi at initial time,

i.e., λ 0
i (
−→
X ) = χΩi(0) where

χΩi(t)(
−→
X ) =

{
1, if

−→
X ∈ Ωi(t)

0, if
−→
X /∈ Ωi(t)

for i = 0, . . . ,ns. Therefore the following relation holds: ∑
ns
i=1 λ 0

i = 1 almost every-

where in Ω . The VT equation for a given vector field −→u is

{
∂λi

∂ t
+
−→
∇ · (λi

−→u )−λi(
−→
∇ ·−→u ) = 0 t > 0, i = 1, . . . ,ns

λi = λ 0
i ; t = 0,

(4.1)

where λi(t, ·) ∈ L2
Ω is a weak solution of (4.1). This equation is equivalent to the

Fig. 4.1: Domain Ω and its subdomains Ωi.

transport equation
∂λi

∂ t
+−→u ·−→∇ λi = 0 (4.2)

Equation (4.1) has been considered instead of (4.2) because, as we will see, its

corresponding discrete form has better properties.

Problem (4.1) has some properties we wish to recall.

Proposition 4.1. If the initial condition satisfies ∑
ns
i=1 λ 0

i = 1 almost everywhere in

Ω then ∑
ns

i=1 λi = 1 almost everywhere in Ω for ∀t > 0.

Proof. We can proceed formally by summing up the i-th equations in (4.1), obtain-

ing

∂

∂ t

(
ns

∑
i=1

λi

)
+
−→
∇ ·
(
−→u

ns

∑
i=1

λi

)
− (

−→
∇ ·−→u )

ns

∑
i=1

λi = 0. (4.3)
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By inspection it can be verified that ∑
ns
i=1 λi = 1,∀t ≥ 0 is a solution of (4.3) and it

satisfies the initial condition. From the linearity of the differential problem it follows

that the solution is also unique.

Proposition 4.2. If the initial condition satisfies 0 ≤ λ 0
i ≤ 1 almost everywhere in

Ω and the velocity field −→u (t,
−→
X ) is Lipschitz continuous uniformly on t for

−→
X ∈ Ω

then 0 ≤ λi ≤ 1,∀t > 0 almost everywhere in Ω .

Proof. We use a standard characteristic theory argument. Let (t,
−→
P (t)) be a time-

dependent variable change (t,
−→
X )→ (t,

−→
P ) defined implicitly by the following time-

backward ODE problem





d
−→
P

ds
=−−→u (s,

−→
P (s)) on (t,0]

−→
P (t) =

−→
X .

(4.4)

The Cauchy problem (4.4), thanks to the hypotheses on the velocity field, has a

unique solution. Equation (4.2) written in the (t,
−→
P ) coordinates reads

∂λi

∂ t
+

d
−→
P

dt
·−→∇ λi +

−→u ·−→∇ λi = 0, (4.5)

where, for the sake of simplicity, we have used
−→
∇ to denote the gradient with re-

spect to
−→
P . Substituting the first of (4.4) into (4.5) we get d

dt
λi(t,

−→
P (t)) = 0 al-

most everywhere in Ω therefore for almost all
−→
X there exists a

−→
P (0) such that

λi(t,
−→
X ) = λi(t,

−→
P (0)) and the thesis follows.

Let’s now consider the definition of a level set description of the same subdomains.

We define φi : R+ ×Ω → R, with φi(t, ·) ∈ C0(Ω ) ∀t > 0, i = 1, . . . ,ns, some

level set functions such that Ωi(t) = {−→X ∈ Ω : φi(t,
−→
X ) > 1

2
} and consequently

∂Ωi(t) = {−→X ∈ Ω : φi(t,
−→
X ) = 1

2
}. This particular value of the set will be useful

when we find an analogy between the discrete forms of LS and the VT equations.

We can write the following evolution equation for each φi

{
∂φi

∂ t
+
−→
∇ · (φi

−→u )−φi(
−→
∇ ·−→u ) = 0; t > 0

φi = φ0
i ; t = 0,

(4.6)

by which, at all times, λi = H
(
φi − 1

2

)
, where

H(ρ) =

{
1 if ρ > 0

0 otherwise

is the Heaviside function, and φ0
i is the initial condition. In other words, at the

continuous level, equations (4.1) and (4.6) are two equivalent ways to describe the

interface motion. However, in the discrete setting we will use two different spaces
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for the discrete λi and φi, leading to our numerical scheme.

We now introduce the discrete form of the equations: let T∆ a conforming (struc-

tured or unstructured) grid on Ω made of either simplex or quad elements. The

grid T∆ has ne elements indicated by er,r = 1, . . .ne and np nodes denoted by
−→x k,k = 1, . . . ,np. Let ∆ be the maximum diameter of the elements. Consider the

dual mesh made of nc = np cells τk,k = 1, . . . ,nc, centered on the nodes −→x k, and

built by connecting the barycenters of the elements to the barycenters of the faces,

see Figure 4.2. Let ICk = {k j, j = 1, . . . , |ICk |}, be the set of the indexes of the cells

surrounding cell τk, and let {τk j
}, j = 1, . . . , |ICk |, be the set of cells surrounding τk.

The common surface between τk and τk j
is indicated by l

j
k . We also indicate by ι the

index such that, given the indexes k and j, ι : lι
k j
= l

j
k . In other words every interface

between the cells τk and τk j
can be identified by two indices j and ι respectively,

depending whether it is a face of τk or τk j
: see Figure 4.2.

For the sake of clarity, we will adopt in this chapter the following convention:

the index i will always refer to the fluid species, k to the cell related quantities,

j to the interface related values, r to the elements, and n to the time steps. Let

(a) (b)

Fig. 4.2: An example of unstructured (a), and structured (b), two dimensional

meshes with the dual meshes (dotted). The j− th neighboring cell of τk is τk j
, the

common interface between τk and τk j
is called l

j

k . There exists a ι such that the ι-th

interface of τk j
is equal to l

j

k .

us introduce the semi-discrete counterparts of λi and φi denoted by λi,∆ (t) ∈ V0,

φi,∆ (t) ∈ V1, respectively, where V0 = {λ ∈ L2(Ω) : λ |τk
∈ P0(τk),k = 1, . . . ,nc},

V1 = {φ ∈C0(Ω) : φ |er ∈Q1(er),r = 0, . . . ,nc} in the case of a rectangular grid and

V1 = {φ ∈ C0(Ω) : φ |er ∈ P1(er),r = 0, . . . ,nc} on a simplicial mesh. Here Ps(Ω)
denotes the space of polynomials of order at most s on Ω , and Qs(Ω) is the space of

the tensor product of polynomials of order at most one. We consider the canonical

basis {ϑ 0
k } for V0 and {ϑ 1

k } for V1, therefore



46 4 Multi-fluid tracking

λi,∆ (t,
−→
X ) =

np

∑
k=1

λi,k(t)ϑ
0
k (
−→
X ), φi,∆ (t,

−→
X ) =

nc

∑
k=0

φi,k(t)ϑ
1
k (
−→
X ), (4.7)

where λi,k is the mean volume fraction of the species i in the cell τk (we will denote,

from now on, λi,k as the composition) and φi,k are the values of the discrete level set

function at node −→x k.

We introduce a rather simple coupling between LS and VT equations, by choosing

the level set function as the piecewise linear interpolation from the dual mesh to

the original one, i.e. φi,∆ = I1
∆ λi,∆ where I1

∆ : V0 → V1 is the linear interpolation

operator on the T∆ grid. In other terms we set

φi,k = λi,k k = 1, . . . ,np, i = 1, . . . ,ns. (4.8)

The evolution of the interfaces is carried out by advancing the λi,∆ by a discrete

version of (4.1), using the information carried by φi,∆ to build the numerical fluxes.

Finally we reconstruct the level set as a postprocessing. This choice implies an error

concerning the representation of the initial conditions as, in general, λi,∆ 6=H(φi,∆ −
1
2
). This difference can be bounded as we state in the following:

Proposition 4.3. Let us assume that λ ∈ V0 and has the image in the set {1,0}.

And, moreover, let us consider φ = I1
∆ λ . Then

∫

Ω

(
λ −H

(
φ − 1

2

))
= O(∆).

Proof. Let Sb = {k ∈ [1,nc] :
∫

τk
(λ −H(φ − 1

2
)) 6= 0}. Since this set is also the set of

the cells that are crossed by the boundary of Ωi its cardinality is O(∆ 1−d). Moreover∫
τk
(λ −H(φ − 1

2
)) =O(∆ d) ∀k ∈ Sb, therefore

∫
Ω (λ −H(φ − 1

2
)) =O(∆ 1−d)O(∆ d)

and we obtain the thesis.

We use a finite volume method together with an explicit Euler scheme to advance

λi,∆

λ n+1
i,k =

(
1+Dn

∆ ,k

)
λ n

i,k −
|ICk |

∑
j=1

F
n, j
i,k , (4.9)

where λ n
i,k = λi,k(t

n) and t0, t1, . . . , tn, tn+1 is a sequence of time steps with tn+1 =

tn +∆ tn. The quantity Dn
∆ ,k = ∑

|IC
k
|

j=1 νn, j
k is the dimensionless discrete divergence

factor of element τk (i.e. Dn
∆ ,k is the discrete approximation of ∆ tn

|τk|
∮

∂τk

−→u ·−→n ) and

ν
n, j
k =

∆ tn

|τk|

∫

l
j
k

−→u ·−→n

is a dimensionless quantity which can be considered as the interface Courant num-

ber. Finally
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F
n, j
i,k = νn, j

k Φ(λ̂ n, j
i,k , λ̂ n,ι

i,k j
) (4.10)

are the interface fluxes, where Φ(λ̂ n, j
i,k , λ̂ n,ι

i,k j
) is the upwind function

Φ(λ̂
n, j
i,k , λ̂ n,ι

i,k j
) =

{
λ̂ n, j

i,k if νn, j
k ≥ 0

λ̂ n,ι
i,k j

if νn, j
k < 0,

(4.11)

where λ̂ n, j
i,k , λ̂ n,ι

i,k j
are suitable approximations of the composition λ n

i,∆ at the faces at

l
j
k and lι

k j
respectively: see Figure 4.3

The stability of method (4.9) entails the following time step restriction,

∆ tn ≤ |τk|
|ICk |

1

|∫
l

j
k

−→u ·−→n | k = 1, . . . ,nc, j = 1, . . . , |ICk |, (4.12)

that is

|νn, j
k | ≤ 1

|ICk |
k = 1, . . . ,nc, j = 1, . . . , |ICk |. (4.13)

To define λ̂ n, j
i,k we have used the following relation

(a) (b)

Fig. 4.3: An example of the boundary compositions λ̂ n, j
i,k and λ̂ n,ι

i,k j
on an unstructured

(a), and structured (b) grid. The first is an approximation of the composition from

inside τk while the other is an approximation from the neighboring cell τk j
.

λ̂
n, j
i,k = λ n

i,k + δλ
n, j
i,k , (4.14)

where the variables δλ n, j
i,k are defined as the solution of the following constrained

minimization problem to be solved for all k = 1, . . . ,nc and for all j ∈ Jk where

Jk =
{

j ∈ 1, . . . |ICj | : ν
n, j
k ≥ 0

}
is the set of the indices of the outflow faces l

j

k of the

k-th cell
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min
δλ

n, j
i,k

1
2 ∑

ns

i=1(λ
n
i,k −φ

n, j
i,k + δλ

n, j
i,k )

2

∑
ns
i=1 δλ n, j

i,k = 0;

δλ n, j
i,k,min ≤ δλ n, j

i,k ≤ δλ n, j
i,k,max;

(4.15)

where φn, j
i,k = 1

|l j
k
|
∫

l
j
k

φi,∆ (t
n,
−→
X ) and





δλ
n, j
i,k,min =−λ n

i,k

δλ n, j
i,k,max = min

(
(1+Dn

∆ ,k)−ν
n, j
k

|Jk|
ν

n, j
k

|Jk|
λ n

i,k,1−λ n
i,k

)
.

(4.16)

We need also to build an algorithm to reinizialize the LS function. As we have

dropped the usual definition of the distance function we need to define a proper

algorithm for the reconstruction of the LS:

Algorithm 1 If there is an index i such that:

λ n
i,k

>
1

2
and λ n

i,k j
>

1

2
∀k j ∈ ICk , (4.17)

then we set λ n
i,k

= 1 and λ n
i,k = 0 with i = 1, . . . ,ns, i 6= i. Otherwise we maintain the

nodal value λ n
i,k. Then the level set function is updated using (4.8).

This algorithm doesn’t modify the LS function in all the elements where φn
i,∆

equals 1
2
: in other words, the interface position is not modified by this algorithm.

Actually, if equation (4.17) is satisfied, from (4.8) we get τk ∈ Ωi and therefore

we may set λ n
i,k

= 1. Since the evolution of the interfaces is independent of the set

function (see [65], [81]) this algorithm doesn’t introduce any error from the LS point

of view. The Algorithm 1 does not guarantee the mass conservation in the sense that

∑
nc

k=1 λ n
i,k is not conserved. However we will see in the following Chapter that the

mass discrepancy introduced by the reconstruction algorithm is small.

Having concluded the definition of our method we devote the next section to its

analysis.

4.3 Analysis of the method

Proposition 4.4. If 0 ≤ λ n
i,∆ ≤ 1 and if νn, j

k ≥ 0 (i.e. we are considering an outflow

sub-cell) then problem (4.15) has a unique solution.

Proof. First of all we will show that the feasible region for the δλ n, j
i,k defined by

the constrains in problem (4.15) is a convex nonempty subset of Rns . Since the first

of (4.15) is a convex minimization problem we can conclude (see [66]) that the

problem has a unique solution.



4.3 Analysis of the method 49

As we have stated previously, the feasible region is nonempty, in fact, we can bound

all the terms in (4.16):

δλ
n, j
i,k,min =−λ n

i,k ≤ 0. (4.18)

Moreover

1−λ n
i,k ≥ 0. (4.19)

Finally, since

Dn
∆ ,k =

|IC
k
|

∑
j=1

νn, j
k ≥ ∑

j/∈Jk

νn, j
k ,

using (4.13) we get

Dn
∆ ,k ≥− ∑

j/∈Jk

1

|ICk |
≥ −|ICk |− |Jk|

|ICk |
.

We bound the second term in the second equation of (4.16)

(1+Dn
∆ ,k)−νn, j

k |Jk|
ν

n, j
k |Jk|

λ n
i,k ≥

1− |IC
k
|−|Jk|
|IC

k
| −νn, j

k |Jk|

ν
n, j
k |Jk|

λ n
i,k =

|Jk|−ν
n, j
k |Jk||ICk |

νn, j
k |Jk||ICk |

λ n
i,k =

1−ν
n, j
k |ICk |

νn, j
k |ICk |

λ n
i,k.

Then from (4.13) we obtain

(1+Dn
∆ ,k)−νn, j

k |Jk|
ν

n, j
k |Jk|

λ n
i,k ≥ 0. (4.20)

Combining (4.19) and (4.20) we have δλ
n, j
i,k,max ≥ 0 and combining with (4.18) we

get that the feasible set is not empty.

Let’s now prove the convexity of the feasible region. Consider two vectors δi,ζi with

i = 1, . . . ,ns belonging to the feasible region. Let αδi +(1−α)ζi with α ∈ [0,1] be

a convex combination of the vectors. We have to show that the linear combination

belongs to the feasible region. We have





∑
ns
i=1(αδi +(1−α)ζi) = α ∑

ns
i=1 δi +(1−α)∑

ns
i=1 ζi = 0

(αδi +(1−α)ζi)≤ αδλ
n, j
i,k,max +(1−α)δλ

n, j
i,k,max = δλ

n, j
i,k,max

(αδi +(1−α)ζi)≥ αδλ n, j
i,k,min +(1−α)δλ n, j

i,k,min = δλ n, j
i,k,min.

This completes the proof.

Proposition 4.5. The method defined by (4.14), (4.15) (4.16) is positive, i.e. λ n
i,k ≥

0 ∀n i = 1, . . . ,ns k = 1, . . . ,nc.

Proof. Let’s proceed by induction, we suppose λ n
i,k ≥ 0. Then using (4.9) we get
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λ n+1
i,k =

(
1+Dn

∆ ,k

)
λ n

i,k −
|IC

k
|

∑
j=1

F
n, j
i,k ≥

(
1+Dn

∆ ,k

)
λ n

i,k − ∑
j∈Jk

F
n, j
i,k ,

and combining with equations (4.10) and (4.14) we obtain

λ n+1
i,k ≥

(
1+Dn

∆ ,k

)
λ n

i,k − ∑
j∈Jk

νn, j
k

(
λ n

i,k + δλ n, j
i,k

)
=

(
1+Dn

∆ ,k

)
λ n

i,k −λ n
i,k ∑

j∈Jk

ν
n, j
k − ∑

j∈Jk

ν
n, j
k δλ

n, j
i,k .

Finally using (4.16) we have

λ n+1
i,k ≥

(
1+Dn

∆ ,k

)
λ n

i,k −λ n
i,k ∑

j∈Jk

νn, j
k − ∑

j∈Jk

(1+Dn
∆ ,k)−ν

n, j
k |Jk|

|Jk|
λ n

i,k =

(
1+Dn

∆ ,k

)
λ n

i,k −λ n
i,k ∑

j∈Jk

νn, j
k − (1+Dn

∆ ,k)λ
n
i,k +λ n

i,k ∑
j∈Jk

νn, j
k = 0,

And, since λ 0
i,∆ ≥ 0 the proof follows.

Proposition 4.6. The sum of partial volumes on every cell at every time step equals

one
ns

∑
i=1

λ n
i,k = 1 ∀n, k = 1, . . . ,nc. (4.21)

Analogously the sum of the level set functions is everywhere equal to one

ns

∑
i=1

φn
i,∆ = 1 ∀n.

Proof. Let’s use the induction principle. At n = 0, this condition is satisfied and we

assume that the condition is satisfied at time tn. We have

ns

∑
i=1

λ n+1
i,k =

ns

∑
i=1


(1+Dn

∆ ,k

)
λ n

i,k −
|ICk |

∑
j=1

F
n, j
i,k


=

(
1+Dn

∆ ,k

)
−

ns

∑
i=1

|IC
k
|

∑
j=1

ν
n, j
k Φ(λ̂

n, j
i,k , λ̂ n,ι

i,k j
). (4.22)

From the second equation of (4.9) and from the inductive hypothesis we have

ns

∑
i=1

λ̂
n, j
i,k =

ns

∑
i=1

λ n
i,k + δλ n

i,k = 1,

and therefore
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ns

∑
i=1

Φ(λ̂ n, j
i,k , λ̂ n,ι

i,k j
) = 1. (4.23)

Then plugging (4.23) into (4.22) we get

ns

∑
i=1

λ n+1
i,k =

(
1+Dn

∆ ,k

)
−

|IC
k
|

∑
j=1

ν
n, j
k ,

Recalling that Dn
∆ ,k = ∑

|IC
k
|

j=1 νn, j
k we obtain the first part of the thesis.

Finally, since φn
i,∆ = ∑

nc

k=1 λ n
i,kϑ 1

k we get

ns

∑
i=1

φn
i,∆ =

ns

∑
i=1

nc

∑
k=1

λ n
i,kϑ 1

k =
nc

∑
k=1

ϑ 1
k = 1.

We can also show a consistency result of the interface fluxes. Let ψ : λ n
i,k,λ

n
i,k j

, j =

1, . . . , |ICk | → λ̂
n, j
i,k be the map from the composition of the k-th cell λ n

i,k and from the

compositions of its neighboring cells λ n
i,k j

, j = 1, . . . , |ICk | to the j-th interface com-

postion of the k-th cell i.e

λ̂ n, j
i,k = ψ

(
λ n

i,k,λ
n
i,k1

, . . . ,λ n
i,k|IC

k
|

)

Then we can show that:

Proposition 4.7. If λ n
i,k j

= λ n
i,k j = 1, . . . , |ICk | then

λ n
i,k = ψ(λ n

i,k,λ
n
i,k1

, . . . ,λ n
i,k|IC

k
|
)

Proof. In this particular case we have φn, j
i,k = λ n

i,k j = 1, . . . , |ICk | and the optimal

solution of (4.9) is δλ n, j
i,k = 0. Actually this solution minimizes the objective func-

tion and clearly satisfies the equality constraint: in fact from Proposition 4.4 we also

know that δλ
n, j
i,k = 0 is always in the feasible set.

Then from (4.10), (4.11) we get that the numerical flux is consistent too.

Finally we can also prove the following statement:

Proposition 4.8. Every discrete subdomain does not overlap with the others, i.e

Ω̃i,∆ (t)∩ Ω̃ j,∆ (t) = /0 ∀i = 1, . . . ,ns, ∀ j = 1, . . . ,ns, j 6= i ∀t > 0

and given a subregion Ω̃ containing only two species identified by the indices i1, i2,

we have

Ω̃ i1,∆ ∪ Ω̃ i2,∆ = Ω̃ .
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Proof. If
−→
X ∈ Ωi,∆ (t) then φi,∆ (t,

−→
X )> 1

2
, from proposition (4.6) we get

ns

∑
j=1, j 6=i

φi,∆ (t,
−→
X )<

1

2

and since the level set functions are the piecewise linear interpolation of a positive

function (i.e. the volume fractions λi,∆ ) we get φ j,∆ (t,
−→
X )< 1

2
∀ j 6= i namely

−→
X /∈

Ω j,∆ (t) ∀ j 6= i. In the special case in which in a subregion Ω̃ there are only two

species we get from the general case that there are no overlaps between the two

subdomains Ω̃i1,∆ , Ω̃i2,∆ ; we have only to prove that

−→
X ∈ Ω̃i1,∆ or

−→
X ∈ Ω̃i2,∆ or

−→
X ∈ Ω̃ i1,∆ ∩ Ω̃ i2,∆ ∀−→X ∈ Ω̃ .

We consider the three cases,

1. φi1,∆ (t,
−→
X )> 1

2
, then

−→
X ∈ Ω̃i1,∆ ;

2. φi1,∆ (t,
−→
X )< 1

2
, so

−→
X ∈ Ω̃i2,∆ , in fact: φi2,∆ (t,

−→
X ) = 1−φi1,∆ (t,

−→
X );

3. φi1,∆ (t,
−→
X ) = 1

2
, consequently, the point

−→
X ∈ Ω̃ i1,∆ ∩ Ω̃ i2,∆ .

Therefore, we obtain the thesis.

4.4 Convergence analysis of the one dimensional case

In one dimension a more detailed analysis is possible. Let T∆ be a uniformly ∆x-

spaced 1D mesh (see Figure 4.4) with elements e0, . . ., er−1, er, er+1, . . ., ene and let

consider its dual mesh endowed with an ordered sequence of cells τ0, . . ., τk−1, τk,

τk+1, . . ., τnc . For the sake of simplicity let u be a constant, positive velocity field (i.e.

we are treating a null divergence case), and let νn = ∆ tn

∆x
u be the Courant number.

Notice that, in this case, all the Courant numbers are equivalent to νn. Besides,

every cell is associated to a mean composition λ n
i,0, . . ., λ n

i,k−1, λ n
i,k, λ n

i,k+1, . . ., λ n
i,nc

and has two boundary sub-cell compostions λ̂ n, j
i,k with j = 1,2. Using a more explicit

Fig. 4.4: The one dimensional mesh. In the first part are depicted the mesh and the

elements er while in the second part the dual mesh is shown along with its cells τk.
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notation, for the 1D case we can define the upwind subcell compositions as λ̂ n,+
i,k and

the downwind subcell as λ̂ n,−
i,k . Method (4.9) takes the form

{
λ n+1

i,k = λ n
i,k −ν(λ̂ n,+

i,k − λ̂ n,+
i,k−1)

λ̂ n,+
i,k = λ n

i,k + δλ n,+
i,k .

(4.24)

While the minimization problem (4.15) becomes





min
δλ

n,+
i,k

1
2 ∑

ns
i=1

(
1
2

(
λ n

i,k −λ n
i,k+1

)
+ δλ n,+

i,k

)2

∑
ns
i=1 δλ n,+

i,k = 0

δλ n,+
i,k,min ≤ δλ n,+

i,k ≤ δλ n,+
i,k,max,

(4.25)

where 



δλ n,+
i,k,min =−λ n

i,k

δλ n,+
i,k,max = min

(
(1+Dn

∆ ,k)−ν|Jk|
ν|Jk| λ n

i,k,1−λ n
i,k

)
.

(4.26)

In the one dimensional case it is possible, using the modified equation technique, to

carry out a convergence analysis. Let Ui(t,
−→
X ) be the modified solution such that:

λ n
i,k =Ui(t

n,−→x k) ∀n, i = 1, . . . ,ns, k = 1, . . . ,nc.

Moreover we suppose that Ui ∈ C2(R+×Ω) then





λ n
i,k+1 =Ui(t

n,xk)+
∂
∂x

Ui(t
n,xk)∆x+O(∆x2)

λ n
i,k−1 =Ui(t

n,xk)− ∂
∂x

Ui(t
n,xk)∆x+O(∆x2)

λ n+1
i,k =Ui(t

n,xk)+
∂
∂ t

Ui(t
n,xk)∆ t +O(∆ t2).

(4.27)

For simplicity we also denote:

Un
i,k =Ui(t

n,−→x k),
∂Un

i,k

∂x
=

∂

∂x
Ui(t

n,−→x k),

∂ 2Un
i,k

∂x2
=

∂ 2

∂x2
Ui(t

n,−→x k),
∂Un

i,k

∂ t
=

∂

∂ t
Ui(t

n,−→x k).

Let’s now attend to the convergence analysis:

Proposition 4.9. The method defined by (4.25) is second order accurate in space

and first order accurate in time.

Proof. We first show that

δλ n,+
i,k =

1

2

∂Un
i,k

∂x
∆x (4.28)

is the optimal solution of problem (4.25) for ∆x → 0. Substituting (4.27) in the first

of (4.25) we get
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1

2

ns

∑
i=1

(
1

2
Un

i,k −
1

2
Un

i,k −
1

2

∂Un
i,k

∂x
∆x+O(∆x2)+

1

2

∂Un
i,k

∂x
∆x

)
= nsO(∆x2).

Therefore the functional is minimized for ∆x → 0. It is also possible to prove that

(4.28) satisfies the constraints of (4.25), in fact, plugging (4.28) in the second equa-

tion of (4.25) we get
ns

∑
i=1

δλ n
i,k =

ns

∑
i=1

1

2

∂Un
i,k

∂x
∆x. (4.29)

Then, summing up the components of the Taylor expansionUn
i,k+1 =Un

i,k+
∂
∂x

Un
i,k∆x+

O(∆x2) and thanks to (4.21) we get

ns

∑
i=1

∂

∂x
Un

i,k∆x = O(∆x2). (4.30)

Plugging (4.30) into (4.29) we obtain that (4.28) satisfies the first constraint of

(4.25). Then substituting the Taylor expansions (4.27) into (4.26) we get





δλ n,+
i,k,min =−Un

i,k

δλ n,+
i,k,max = min

(
(1+Dn

∆ ,k)−νn|Jk|
νn|Jk| Un

i,k,1−Un
i,k

)
.

If ∆x is small enough, the conditions above are equivalent to

−
Un

i,k

∆x
≤ 1

2

∂Un
i,k

∂x
≤ min

(
(1+Dn

∆ ,k)−νn|Jk|
νn|Jk|

Un
i,k

∆x
,

1−Un
i,k

∆x

)
.

Consequently it follows that, for ∆x → 0, (4.28) is consistent with the second con-

straint of (4.25).

We can now estimate the convergence order of our method. Substituting (4.27) and

(4.28) in the second of (4.24) we obtain

{
λ̂ n,+

i,k =Un
i,k +

1
2

∂Un
i,k

∂x
∆x

λ̂ n,+
i,k−1 =Un

i,k−1 +
1
2

∂
∂x

Un
i,k−1∆x

and combining them with the first of (4.24) we get

∆ tn
∂Un

i,k

∂ t
+O((∆ tn)2) =−∆ tn

∆x
u
(
Un

i,k −Un
i,k−1+

1

2

∂

∂x
Un

i,k∆x− 1

2

∂

∂x
Un

i,k−1∆x

)
. (4.31)

From (4.27) we obtain



4.6 Results 55





Un
i,k −Un

i,k−1 =− ∂Un
i,k

∂x
∆x+ 1

2

∂ 2Un
i,k

∂x
∆x2 +O(∆x3)

1
2

(
∂Un

i,k

∂x
− ∂Un

i,k−1

∂x

)
∆x =− 1

2

∂Un
i,k

∂x2 ∆x2 +O(∆x3)
(4.32)

Plugging (4.32) into (4.31) and dividing by ∆ tn, we obtain

∂Un
i,k

∂ t
+ u

∂Un
i,k

∂x
= O(∆ tn)+O(∆x2) ∀n, i = 1, . . . ,ns, k = 1, . . . ,nc

and the proof follows.

4.5 Numerical results

4.6 Results

In this section we introduce some numerical experiments which aim to illustrate

the quality of the numerical scheme proposed here. The first one is the conver-

gence result in one dimension. In this case, in order to accomodate the boundary

conditions, we have introduced a slight modification into the algorithm. In the de-

scription of this method we have, so far, neglected the boundary conditions since

we wanted to focus on the properties of the method which are not dependent on

them. We consider a test case with a constant transport speed i.e. v = 1 and the do-

main Ω is the interval [0,1]. The initial conditions are λ 0
1,k = 1,λ 0

2,k = 0 ∀k, while

λ b
1 (t) = 0,λ b

2 (t) = 1 ∀t ∈ [0,T ] are the boundary conditions on the left (inflow)

side. The problem
∂λi

∂ t
+ u

∂λi

∂x
= 0

has the following analytical solution:

λ1(t,x) = H(x− ut), λ2(t,x) = 1−H(x− ut).

Furthermore it is possible to compute the L1 error on (0,T )× (0,1) defined as:

EL1 =
ns

∑
i=1

∫ T

0

∫ b

a
|λi(t,x)−λi,∆ (t,x)|

In Figure 4.5 we show the L1 error of the proposed method compared with a high

resolution Discontinuous Galerkin (DG) method with a MinMod Limiter, see [25]

and with the Godunov (G) method. Our method compares favorably with the DG

method though the regularity of the solution limits the convergence rate. In fact, in

this case, both our method and the DG one are only first order accurate.

Let’s now consider some classical examples in two dimensions; in Figure 4.6a we

outline some results obtained with a rotational field,
−→
V (

−→
X ) = [−X2 − 1,X1 − 1]
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Fig. 4.5: One dimensional convergence of the proposed method (Trac) compared

with a Discontinuous Galerkin (DG) method and with the Godunov (G) one.

where X1,X2 are the cartesian components of
−→
X . A square is filled with a fluid

tagged as A, the remaining space is filled with a fluid tagged as B; the square

lower left corner coordinates are [0.8,0.2] and the upper right corner coordinates

are [1.2,0.6]. If we compare with the comprehensive benchmark analysis performed

(a)
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1.4

1.6

1.8

2

(b)

Fig. 4.6: Tracking of a square with (a) 10000 degrees of freedom and c f l = 1
10

and

(b) 40000 degrees of freedom and c f l = 1
10

.

in [30] we see that our results are intermediate nevertheless our method has the pos-

sibility to track a large number of fluids as we show in Figure 4.7. Here we consider

the same case but with three fluids: the first, tagged as A, fills the inner square, the

outer is filled with fluid B and the remaining space in the domain is filled with fluid
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C, see Figure 4.7a. The inner square lower left corner and upper right coordinates

are: [0.9,0.3], [1.1,0.5] respectively while the outer square corners coordinates are

[0.8,0.2], [1.2,0.6]. As we can see from Figure 4.7 the tracking performances are

independent on the number of the species being tracked.

In Figure 4.8 we track three non-nested fluids showing the coherence between the

(a)
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1.8
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(b)

Fig. 4.7: Tracking of two nested squares with (a) 10000 degrees of freedom and

c f l = 1
10

and (b) 40000 degrees of freedom and c f l = 1
10

. In this case three species

are involved: the inner square is filled with the species A, the outer with species B

and the rest of the domain with species C.

three tracked interfaces; the small rectangle filled with fluid C has the following cor-

ner coordinates: [0.75,1], [1.25,1.45]. The fluid B fills a more complex region, that

is the complementary part of the rectangle C in a rectangle with corner coordinates

[0.5,0.45], [1.5,1.45] respectively. The remaining part of the computational domain

is filled with the fluid A. In Figure 4.9 the mass ratio between the volume occupied

by the subdomains A and B and the total volume is shown. As we see, the volume is

almost perfectly conserved.

In the next chapter we will present some three dimensional applications of our track-

ing method.
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Fig. 4.8: Multi-fluid tracking using 10000 degrees of freedom and c f l = 1
5
.

(a),(b),(c) are the computed interfaces after half a turn and (d),(e),(f) are the ini-

tial configurations.

Fig. 4.9: The conservation of the mass fraction of species A (dashed line) and B

(dash-dot line) plotted against the time steps.
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4.7 Nomenclature

Index Meaning Interval

i Layer index [1,ns]
k Cell index [1,nc]
j Face index [1, ICk ]
r Element index [1,ne]
n Time step -

Table 4.1: Table of the indexes.

Symbol Meaning

Ω The computational domain

∂ Ω The boundary of the computational domain

Ωi The i-th layer volume−→
X The position vector−→n The normal to ∂ Ω

Ω̃i,δ The discrete i-th layer volume

Table 4.2: Table of the geometric quantities

Symbol Meaning

T∆ The mesh

∆ The mesh characteristic length

ne Number of elements

np Number of points

nc Number of cells

τk The k-th cell

τ j
k The j-th neighboring cell of the k-th cell

er The r-th element

l
j
k The l-th interface of the k-th cell

ICk the set of indices of the neighboring cell of the k-th cell
−→x k the k-th node of the mesh

Table 4.3: Table of the mesh quantities
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Symbol Meaning

λi The characteristic function of Ωi

φi The level set function of Ωi

λ 0
i The characteristic function of Ωi at t = 0

λi,∆ The discrete counterpart of λi

φi,∆ The discrete counterpart of φi

λ̂ n, j
i,k Interface compositions

∆φ n, j
i,k The j-th interface, k-th cell variation of the level set

γn, j
i,k The j-th interface, k-th cell Courant number

γ
n, j,max

i,k The j-th interface, k-th cell Courant number upper bound

Table 4.4: Table of the variables

Symbol Meaning

{ϑ 0
k } The space of the piece-wise constant functions on the cells

{ϑ 1
k } The space of the piece-wise linear functions on the elements

t The time

tn The time at time-step n

∆tn The time step

Φ The upwind function

Jk The set of the outflow interfaces of the k-th cell

Dn
∆ ,k The sum of the courant numbers of the k-th cell

Ui The modified solution

χΩi
The characteristic function of Ωi

H The Heaviside function

Table 4.5: Table of the other symbols



Chapter 5

Numerical models for basic basin simulations

In this Chapter we introduce the numerical solution for the mathematical model

(3.51). The use of this simplified model is justified by the fact that, in many cases,

the fluid pressure behaves as a hydrostatic one. Moreover if the rheology is not

highly dependent on the temperature, the thermal effects can be decoupled from the

computation of the basin evolution. In other terms, the temperature field can be com-

puted a posteriori once the geometrical evolution of the basin is known. Moreover

we consider some simplified boundary conditions and we postpone to the Chapter 6

the handling of more complex ones.

In this Chapter we describe the main features of a mathematical model able to sim-

ulate the evolution of salt sedimentary basins and its efficient implementation. In

particular, we put together the models developed in the first chapter with the layer

tracking techniques described in the second chapter. Combining these techniques

with a Stokes solver we provide a numerical tool for the simulation of the gravita-

tional Rayleigh-Taylor instability associated with salt diapirism. We postpone to the

Chapter 6 the handling of more complex issues such as faults, non-Newtonian rhe-

ologies and sedimentation processes. As we have outlined in Chapter 3, the adopted

model is composed of a series of layers, modeled as incompressible and immisci-

ble fluids in Stokes regime. This choice, that is justified by the timescales of the

phenomena which are comparable to the geological ages (as shown for example

in [24, 94]), allows geologists to study the Rayleigh–Taylor instabilities associated

with salt diapirism (as described in [55, 56, 79, 104, 107, 108]). To solve this kind

of problems we choose a classical approach that divides the computation of pressure

and velocity fields from interface tracking.

Moreover, to improve the efficiency of the code, we introduce an enhanced imple-

mentation of the tracking algorithm presented in Chapter 4 and a preconditioned

iterative scheme for the Stokes solver. During the past few years, the finite element

method has played an important role in the solution of the mass and force balance

equations (as shown in [55, 57, 56, 60, 68, 79]), as it permits to solve the fluid dy-

namic problem in complex geometrical cases with high accuracy. For realistic three

dimensional problems, the number of degrees of freedom (DOF) required for an

accurate discretization is so high that the adoption of iterative schemes to solve the

61
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linear system is necessary.

In this case the value of the viscosity of the sediments, modeled as fluids, varies

over a range of about five orders of magnitude (as shown in [56, 79]), and this leads

to a badly conditioned algebraic problem. Without a proper preconditioning, such a

complex problem would require too many iterations to reach a reasonable tolerance.

Here we propose a proper preconditioning technique in order to minimize the com-

putational burden. As regards the tracking phase we exploit the scheme illustrated

in Chapter 4.

5.1 Physical and mathematical models

Let’s now recall briefly the geometric model of the sedimentary basin (Figure 5.1).

The domain Ω ∈R3 is divided into ns subdomains Ωi (without overlapping regions),

which represent different layers characterized by a specific value of density ρi and

of dynamic viscosity µi. The external boundary Γ of the domain Ω is divided into

three parts: the basement ΓB and the free surface ΓS, where we have imposed the

velocity field with a Dirichlet condition, and the lateral contour ΓL, that we suppose

vertical for simplicity and where we have imposed a vertical no-stress condition.

More general boundary conditions will be introduced in the following Chapter. In

addition, the horizons between the subdomains are defined as Γi, j = Ωi ∩Ω j and we

define −→n as the outward normal of domain Ω . Finally x̂i, i = 1,2,3 are the three unit

(a) (b)

Fig. 5.1: a) External shape of the domain Ω . The external boundary Γ is divided into

three parts: the basement ΓB, the free surface ΓS and the lateral contour ΓL. b) An

open three dimensional view of the sedimentary basin which contains three horizons

and four layers.

vectors, t ∈ (0,T ] is the time coordinate, and
−→
X ∈ Ω , indicates a spatial point in the

domain. The mathematical model (3.51) that describes the geological evolution of

the basin, modeled as a stratified fluid, in which the layers are immiscible and have
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constant properties reads





−→
∇ · ¯̄σ(µ)−−→

∇ P+ρ−→g = 0 inΩ × [0,T ]
−→
∇ ·−→u = 0 inΩ × [0,T ]

∂ρ

∂ t
+−→u ·−→∇ ρ = 0

∂ µ

∂ t
+−→u ·−→∇ µ = 0 inΩ × (0,T ]

ρ = ρ0, µ = µ0 inΩ ×{0}
−→u = u onΓB ∪ΓS × [0,T ]

u1 = u1, u2 = u2, ( ¯̄σ ·−→n ) · x̂3 = 0, onΓL × [0,T ],

(5.1)

where the unknowns are the velocity and the pressure fields, −→u and P, respectively

and −→g is the gravitational acceleration. Moreover u is the velocity imposed on ΓB

and ΓS, while on ΓL only the x̂3-orthogonal components are fixed through u1 and u2.

The functions µ0 and ρ0 are the initial conditions for the viscosity and the density

fields respectively. As we have already seen in chapter 4, through the functions λi,

it is possible to write the density and the dynamic viscosity fields as:

ρ =
ns

∑
i=1

λiρi, µ =
ns

∑
i=1

λiµi. (5.2)

Setting λ 0
i (
−→
X ) = λ (0,

−→
X ) we have

ρ0 =
ns

∑
i=1

λ 0
i ρi, µ0 =

ns

∑
i=1

λ 0
i µi.

We also assume, for now, a Newtonian law: ¯̄σ = µ(
−→
∇−→u +(

−→
∇−→u )T ). This relation

may seem not very representative of the rheological complexity of the sediments,

however it is accepted in literature as a sound base model to study Rayleigh–Taylor

instabilities associated with diapirism ([56, 106, 107]). Some more realistic rheo-

logical relations will be considered in the following Chapter.

5.2 Time discretization

To solve equation (5.1) we must perform a numerical approximation of the prob-

lem. First of all we introduce the following time discretization in the interval [0,T ]:

[0, t1, t2, . . . ,T ] with ∆ tn = tn+1 − tn. Then, for a generical variable a(t,
−→
X ), we also

set an(
−→
X )= a(tn,

−→
X ). In order to solve the numerical problem we have implemented

the splitting algorithm presented in [56], which reads

1 step: knowing ρn and µn, solve the following Stokes problem for −→u n and Pn
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−→
∇ · ¯̄σn −−→

∇ Pn +ρn−→g = 0 inΩ
−→
∇ ·−→u n = 0 inΩ
−→u n = u onΓB ∪ΓS

un
1 = u1 un

2 = u2, ( ¯̄σn ·−→n ) · ẑ = 0 onΓL.

(5.3)

2 step: having computed −→u n and Pn, the quantities ρn+1 and µn+1 can be com-

puted solving the following hyperbolic equations:

∂ρ

∂ t
+−→u n ·−→∇ ρ = 0,

∂ µ

∂ t
+−→u n ·−→∇ µ = 0, (5.4)

in (tn, tn+1]×Ω .

The first step of the algorithm is a classic Stokes problem that can be solved effi-

ciently with a finite element method. The second step is equivalent ( see (3.44) ) to

a set of transport equations for λi i.e.:

{
∂λi

∂ t
+−→u n ·−→∇ λi = 0 in Ω × (tn, tn+1]

λi(t
n,
−→
X ) = λ n(

−→
X ) in Ω

After providing the basic description of the splitting algorithm, in the next two sec-

tions we will analyze one by one both the steps of this scheme.

5.3 Velocity field solver

In this section we discuss the difficulties related to the solution of the Stokes prob-

lem. Its finite element formulation is equivalent to an algebraic system of equations

and for realistic 3D simulations we have a large system, typically sparse. The strong

variability of the viscosity coefficient affects the conditioning of the finite element

matrix and imposes the use of a preconditioned iterative method.

We first define the discrete problem where we have adopted a conformal finite ele-

ment scheme based on the mini-elements [73]. Then we describe a proper precon-

ditioning technique.

Let T G
∆ be a simplicial grid that approximates Ω , let be nG

e the number of elements

eG
r with r = 1, . . . ,nG

e and let nG
p be the number of nodes −→x G

k , with k = 1, . . . ,nG
p . We

define ∆ the maximum diameter of the elements and T M
∆ the mini-elements grid

which has nM
e = 4nG

e elements eM
r , obtained by adding nG

e barycentric nodes
−→
X b

(see Figure 5.2) and nM
p = nG

p + nG
e nodes −→x M

k . We define −→u n
∆ ∈ VM

1 and Pn
∆ ∈ VG

1

as the approximations of −→u n and Pn where:




VM

1 =
{−→ϕ ∆ ∈C0(Ω) :

−→ϕ ∆ |eM
r
∈ P1 ∀r = 1, . . . ,nM

e

}

VG
1 =

{−→ϕ ∆ ∈ C0(Ω) :
−→ϕ ∆ |eG

r
∈ P1 ∀r = 1, . . . ,nG

e

}
.

(5.5)
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Fig. 5.2: A sketch of the T M
∆ grid obtained by the refinement of the T G

∆ grid. An

element eG
r is depicted with a solid line while the four elements eM

r are depicted with

a dashed line. The latter are obtained by adding a barycentric node inside the grid

element and connecting it to the vertices of eG
r .

VM
1 and VG

1 are intended as subspaces of the couple H1
0 and L2

0, in which the contin-

uous solution of the Stokes problem is searched. We introduce the weak formulation

of problem (5.3):

find −→u n
∆ ∈ H1

0 (Ω), Pn
∆ ∈ L2

0(Ω) such that

{
a(−→u n

∆ ,
−→v ∆ )+ b(Pn

∆ ,
−→v ∆ ) = F(−→v ∆ ) ∀−→v ∆ ∈ VM

1

b(q∆ ,
−→u n

∆ ) = 0 ∀q∆ ∈VG
1 ,

(5.6)

where

a(−→u n
∆ ,
−→v ∆ ) =−

∫
µ(

−→
∇−→u n

∆ +(
−→
∇−→u n

∆ )
T ) : (

−→
∇−→v ∆ )

b(Pn
∆ ,
−→v ∆ ) =

∫ −→
P n

∆ (
−→
∇ ·−→v ∆ )

F(−→v ∆ ) =−
∫

ρ∆ (
−→g ·−→v ∆ ).

and equation (5.6) is the discretization of the Stokes problem using the mini-

elements. Let µ > 0, µ ∈ L∞, consequently the bilinear form a(·, ·) is coercive and

the bilinear form b(·, ·) satisfies the inf-sup condition

inf
q∈L2

0(Ω),q 6=0
sup

−→v ∈H1
0 (Ω),−→v 6=0

b(q,−→v )

|−→v |H1(Ω)‖q‖L2(Ω)

≥ β , (5.7)

for a β > 0. Furthermore, the finite element couple we have chosen satisfies the

discrete inf-sup condition (see [32])
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min
q∆∈VG

1 ,q∆ 6=0
max−→v ∆∈VM

1 ,−→v ∆ 6=0

b(q∆ ,
−→v ∆ )

|−→v ∆ |H1(Ω)‖q∆‖L2(Ω)

≥ β∆ , (5.8)

for a β∆ > 0. Finally, assuming ρ ∈ L∞, the functional F(·) is continuous. Thus,

problem (5.6) has a unique solution (see [73]). Let {ϕM
k } ∈ VM

1 and {ϕG
k } ∈ VG

1

be the Lagrangian basis defined, respectively, on the grids T M
∆ and T G

∆ , then the

discrete solution can be expanded as

−→u n
∆ =

nM
p

∑
k=1

−→u n
kϕM

k , Pn
∆ =

nG
p

∑
k=1

Pn
k ϕG

k . (5.9)

Substituting these formulae in (5.6) we get the following algebraic problem:

[
A BT

B 0

][
V

P

]
=

[
Fv

0

]
, (5.10)

where:

Ai j = a(ϕM
i ,ϕM

j ), Bi j = b(ϕG
i ,ϕ

M
j ), Fv,i = F(ϕM

i ),

A is a positive definite matrix and V, P are the vectors of the degrees of freedom.

We solve this algebraic system by an algebraic fractional step scheme. First we

compute P by solving the pressure Schur complement

(BA−1BT )P = BA−1Fv.

This problem is solved using a nested cycle iterative system to avoid an explicit

inversion of matrix A. Let’s now analyze the conditioning of A and of the Schur

complement BA−1BT . To this aim it is useful to recall some standard results. Let
−→v ∆ ∈ VM

1 , q∆ ∈ VG
1 and let D−→u =

−→
∇−→u ∆ +(

−→
∇−→u ∆ )

T . The Korn inequality (see

[31]) gives:

‖−→∇−→u ∆‖L2(Ω) ≤C1‖D−→u ∆‖L2(Ω). (5.11)

Moreover we have

‖D−→u ∆‖L2(Ω) ≤C2‖
−→
∇−→u ∆‖L2(Ω) (5.12)

and (see [32])

‖−→∇ ·−→u ∆‖L2(Ω) ≤C3‖
−→
∇−→u ∆‖L2(Ω). (5.13)

The inverse inequality (see [33]) leads to

‖−→∇−→u ∆‖L2(Ω) ≤
C4

∆
‖−→u ∆‖L2(Ω) (5.14)

and finally using the Poincar inequality we get (see [33])

‖−→u ∆‖L2(Ω) ≤Cp‖
−→
∇−→u ∆‖L2(Ω) (5.15)

Let’s now estimate the conditioning number of the Schur complement:
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Proposition 5.1. The conditioning number of the Schur complement K (BA−1BT )
does not depend on ∆ , more explicitly:

K (BA−1BT )≤ sup(µ)

inf(µ)

C6

C5

(
C1C2

2C3

β 2
∆

)2

.

Proof. Combining the discrete inf-sup condition (5.8) and equation (5.12) we get

min
q∆∈VG

1

max−→v ∆∈VM
1

|(q∆ ,
−→
∇ ·−→u ∆ )|

‖D−→u ∆‖L2(Ω)‖q∆‖L2(Ω)

≥ β∆

C2

(5.16)

Furthermore

‖D−→u ∆‖L2(Ω) = ‖ 1√
µ

√
µD−→u ∆‖L2(Ω) ≥

1

max(
√

µ)
‖√µD−→u ∆‖L2(Ω). (5.17)

Plugging equation (5.17) into (5.16) we get

min
q∆∈VG

1

max−→v ∆∈VM
1

|(q∆ ,
−→
∇ ·−→u ∆ )|

‖√µD−→u ∆‖L2(Ω)‖q∆‖L2(Ω)

≥ 1

sup(
√

µ)

β∆

C2

. (5.18)

Using the expansions (5.9) we have that

(q∆ ,
−→
∇ ·−→u ∆ ) = PT BV, ‖q∆‖L2(Ω) =

√
PT QP,

‖√µD−→u ∆‖L2(Ω) =
√

VT AV,

where Q is the mass matrix of the pressure field. Plugging this into (5.18) we get

min
P 6=1

max
V6=0

|(PT BV)|√
VT AV

√
PT QP

≥ 1

sup(
√

µ)

β∆

C2

. (5.19)

Since the maximum is attained for W = A1/2V (see [32]) we obtain

1

sup(
√

µ)

β∆

C2
≤ min

P 6=1
min

P
max

W

|PT BA−1/2W|√
WT W

√
PT QP

. (5.20)

This equation implies W = A−1/2BT P and plugged into (5.20) yields

1

max(
√

µ)

β∆

C2

≤
√
|PT BA−1BT P|√

PT QP
. (5.21)

This completes the lower bound estimate. As regards the upper bound, combining

(5.13), (5.11) with the Cauchy-Schwartz inequality, we have that ∀−→u ∆ ∈VM
1 , ∀P∆ ∈
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VG
1

|(q∆ ,
−→
∇ ·−→u ∆ )| ≤ ‖q∆‖L2(Ω)‖

−→
∇ ·−→u ∆‖L2(Ω)

≤C1C3‖q∆‖L2(Ω)‖D−→u ∆‖L2(Ω)

≤ C1C3

inf(
√

µ)
‖q∆‖L2(Ω)‖

√
µD−→u ∆‖L2(Ω),

or the equivalent form

|(q∆ ,
−→
∇ ·−→u ∆ )|

‖q∆‖L2(Ω)‖
√

µD−→u ∆‖L2(Ω)

≤ C1C3

min(
√

µ)
.

Applying the same argument used for the lower bound we get

√
|PT BA−1BT P|√

PT QP
≤ C1C3

min(
√

µ)
. (5.22)

Then, combining the lower bound (5.21) and the upper bound (5.22) we obtain

1

max(µ)

β 2
∆

C2
2

≤ |PT BA−1BT P|
PT QP

≤ C2
1C2

3

min(µ)
,

that, multiplied by PT QP

PT P
leads to

1

max(µ)

β 2
∆

C2
2

PT QP

PT P
≤ |PT BA−1BT P|

PT P
≤ C2

1C2
3

min(µ)

PT QP

PT P
. (5.23)

Since (see [32]) we have

C5∆ 2 ≤ PT QP

PT P
≤C6∆ 2,

we obtain
C5

max(µ)

β 2
∆

C2
2

∆ 2 ≤ |PT BA−1BT P|
PT P

≤ C2
1C2

3C6

min(µ)
∆ 2.

And we get the proof. �

We now perform the analysis of the A matrix. Since (see [32])

∆ 2C7 ≤
VT QV V

VT V
≤C8∆ 2, (5.24)

we have:

Proposition 5.2. The conditioning number of A is bounded by:
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Fig. 5.3: On the left we show the number of iterations of the external cycle for

different viscosity jumps g = max(µ)/min(µ): the dependence on g or on ∆ is not

so strong. On the right we show the inner cycle iterations: there is an acceptable rise

in the number of iterations.

K (A)≤ max(µ)

inf(µ)

1

∆ 2

C8

C7

(C2C5C1Cp)
2 .

Proof. Using equations (5.12) and (5.14) we have

‖√µD−→u ∆‖L2(Ω) ≤ max(
√

µ)‖D−→u ∆‖L2(Ω)

≤C2 max(
√

µ)‖−→∇−→u ∆‖L2(Ω) ≤
C2C4

∆
max(

√
µ)‖−→u ∆‖L2(Ω). (5.25)

Using (5.11) and (5.15) we can also estimate a lower bound for the symmetric gra-

dient

‖√µD−→u ∆‖L2(Ω) ≥ min(
√

µ)‖D−→u ∆‖L2(Ω)

≥ min(
√

µ)

C1
‖−→∇−→u ∆‖L2(Ω) ≥

min(
√

µ)

C1Cp
‖−→u ∆‖L2(Ω). (5.26)

Combining (5.25) and (5.26) we get

min(µ)

C2
1C2

p

≤
‖√µD−→u ∆‖2

L2(Ω)

‖−→u ∆‖2
L2(Ω)

≤ C2
2C2

4

∆ 2
max(µ),

and from (5.9) we obtain

min(µ)

C2
1C2

p

≤ (VT AV)

(VT QV V)
≤ C2

2C2
4

∆ 2
max(µ),

where QV is the mass matrix of the velocity discrete field. Multiplying this by
VT QV V

VT V
we get
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VT QV V

VT V

min(µ)

C2
1C2

p

≤ (VT AV)

(VT V)
≤ C2

2C2
4

∆ 2
max(µ)

VT QV V

VT V
. (5.27)

Then from (5.27) and (5.24) we obtain:

C7
min(µ)

C2
1C2

p

∆ 2 ≤ (VT AV)

(VT V)
≤ (C2

2C2
4C8)max(µ),

and we get the proof. �

These results show that the conditioning number of the two linear systems we wish

to solve is high. In particular, in the inner cycle, where A is used, the matrix con-

ditioning is affected by both the grid spacing and the viscosity jumps across the

interfaces. However, in this case, we can use several standard techniques such as,

for instance, the incomplete LU factorizations. The outer cycle, characterized by the

Schur complement, has a relatively better conditioning number but it is still depen-

dent on the jumps of the viscosity coefficient. Moreover we can not use standard

Fig. 5.4: The spectra of the Shur complement (in the upper part) with 4634 dofs for

different viscosity jumps g. In the lower part we show the preconditioned spectra.

preconditioning techniques since they require an explicit assembling of the Schur

complement and this is not affordable from a computational point of view. There-

fore we look for a spectral equivalent to the Schur complement, and, to this end, we

use a scaled mass matrix:

Mi j =

∫

Ω

1

µ
ϕG

i ϕG
j . (5.28)

We are able only to give a rough explanation about the reasons that make this pre-

conditioning matrix suitable to our purpose since a complete analysis on the spec-

tral equivalence of the Schur complement with the matrix (5.28) is still missing.

The Schur complement is the product of the matrix B, that represents the diver-

gence operator, the matrix A−1, that is the discrete representation of the inverse of
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Fig. 5.5: The spectra of the Shur complement (in the upper part) with 4634 dofs for

different viscosity jumps g. In the lower part we show the preconditioned spectra

using non-scaled mass matrix.

the Laplace operator, and the matrix BT , that represents the gradient. Since the ap-

plication of the gradient to the divergence yields the Laplace operator, the Schur

complement resembles the identity operator. In our case the matrix A−1 represents
1
µ (∇

2)−1, therefore we expect that the Schur complement is spectrally similar to the

mass matrix, apart from the 1
µ factor. The numerical results in Figure 5.3 show that

the preconditioner is effective and has a better behavior when the grid spacing is re-

duced. In Figure 5.4 the spectra of the Shur complement and of the preconditioned

Shur complement are shown. We can see that the preconditioning matrix affects

positively the ratio between the maximum and minimum eigenvalue. However there

is still a dependence on the viscosity jump g. A theoretical result regarding the pre-

conditioner performances is still missing and the research in this field is ongoing.

However, as we can see in Figure 5.5, the use of a classical (not-scaled) mass matrix

lead to worst results.

The linear system related to the A matrix is solved with a preconditioned Krylov

method. We use an incomplete LU factorization that has good performances even

when the viscosity has a strong variability. However the incomplete factorization

techniques are not optimal and some parameters such as the drop-off tolerance have

to be adjusted case by case.

5.4 Tracking

In this section we study an efficient implementation of a numerical solver for prob-

lem (4.15) and we also give an estimate of its computational cost. In particular we
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use a gradient method slightly adapted in order to solve this particular problem. We

pass to the solver the following inputs for every outflow boundary of every cell:

• the cell composition, λi;

• the vector φi representing the mean value of the level set function on each outflow

sub-cell τ j
k ;

• D∆ , the divergence factor;

• ν , the Courant interface number;

• |J|, the number of the outflow interfaces.

Here we have dropped the indices k, j as we illustrate the algorithm applied to a

generical cell and interface. We use the following scheme:

Algorithm 2 We compute the following quantities

{
δλi,max = min

(
(1+D∆ )−ν|J|

ν|J| λi,1−λi

)

δλi,min =−λi.
(5.29)

and we set δλ
(0)
i = 0, i = 1, . . . ,ns. Then for m = 0,1, . . . we compute





N
(m)
i =





0 if δλ
(m)
i = δλi,min and (λi −φi + δλ

(m)
i )> 0

0 if δλ
(m)
i = δλi,max and (λi −φi + δλ

(m)
i )< 0

1 otherwise ,

G̃
(m)
i = (φi −λi − δλ

(m)
i )N

(m)
i ,

G
(m)
i = G̃

(m)
i − ∑

ns
j=1 G̃

(m)
j N

(m)
j

∑
ns
j=1(N

(m)
j )2

N
(m)
i ,

α =





min

(
1,

δλi,max−δλ
(m)
i

G
(m)
i

)
if G

(m)
i ≥ 0

min

(
1,

δλi,min−δλ
(m)
i

G
(m)
i

)
if G

(m)
i < 0,

δλ
(m+1)
i = αG

(m)
i + δλ

(m)
i .

(5.30)

If G
(m)
i = 0, i = 1, . . . ,ns we stop the iterations.

We give a brief overview of the Algorithm above: N
(m)
i is zero if the corresponding

component is constrained. We define F
(m)
S = {i ∈ Rns : N

(m)
i = 1} as the set of the

active components and, in the same way, we define NF
(m)
S = {i ∈ Rns : N

(m)
i =

0} the set of the constrained components. The G̃
(m)
i vector is the gradient of the

objective function multiplied by N
(m)
i , therefore G̃

(m)
i has no components relative to

the constrained set NFS. In order to have a descent direction with a zero mean value,

the vector G
(m)
i is computed using a Grahm Schmidt method. In other terms G

(m)
i

satisfies
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ns

∑
i=1

G
(m)
i = 0. (5.31)

This procedure is important in order to satisfy the first constraint of (4.15). We point

out that if G̃
(m)
i has already a zero mean value then G

(m)
i = G̃

(m)
i . Finally the α

coefficient is chosen to satisfy

δλi,min ≤ αG
(m)
i + δλ

(m)
i ≤ δλi,max. (5.32)

We can show that this algorithm has some interesting properties:

Proposition 5.3. If δλi,min ≤ φi −λi ≤ δλi,max then Algorithm 2 terminates in two

steps.

Proof. Since φi−λi is in the feasible region and δλ
(0)
i = 0 i = 1, . . . ,ns, from (5.32)

we have {
if δλi,min = 0 then φi −λi ≥ 0

if δλi,max = 0 then φi −λi ≤ 0,

and we can see from (5.30) that N
(m)
i = 1, i = 1, . . . ,ns. Therefore since,

ns

∑
i=1

G̃
(m)
i N

(m)
i =

ns

∑
i=1

G̃
(m)
i =

ns

∑
i=1

(φi −λi) = 0,

we have

G
(m)
i = G̃

(m)
i = φi −λi.

Finally, since φi −λi is in the feasible region and δλ
(0)
i = 0, we get

δλ m+1
i = αG

(m)
i + δλ

(m)
i = φi −λi

At the iteration m = 1 we have G̃
(m)
i = G

(m)
i = 0, i = 1, . . . ,ns and we stop.

We can also prove a more general stopping estimate:

Proposition 5.4. Algorithm 2 terminates in less than ns −|NF
(0)
S |+ 1 steps .

Proof. First we show that if i ∈ NF
(m)
S then i ∈ NF

(m+1)
S . Actually from (5.30) we

have

N
(m)
i = 0, G̃

(m)
i = 0, G

(m)
i = 0, δλ

(m+1)
i = δλ

(m)
i , ∀i ∈ NF

(m)
S .

At every iteration step the Algorithm 2 can add a constrained component to NF
(m)
S

or not. A maximum of ns −|NF
(0)
S | constraints can be added. If all the components

are constrained then, for an m ≤ ns−|NF
(0)
S |+1, we have G̃

(m)
i = G

(m)
i = 0 and the

iterations stop.
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Otherwise, if no constraint is added we can show that the iterations stop in the next

step. In fact if at m+ 1 no constraint is added then α = 1 and we have

δλ
(m+1)
i = G

(m)
i + δλ

(m)
i , and N

(m+1)
i = N

(m)
i , i = 1, . . . ,ns,

Moreover

G̃
(m+1)
i = (φi −λi−G

(m)
i − δλ

(m)
i )N

(m)
i ,

since from (5.30) (λi −φi + δλ
(m)
i )N

(m)
i = G̃

(m)
i we get

G̃
(m+1)
i =−G

(m)
i Ni + G̃

(m)
i ,

and since G
(m)
i Ni = G

(m)
i we obtain

G̃
(m+1)
i =−G

(m)
i + G̃

(m)
i . (5.33)

Finally plugging (5.33) into the definition of G
(m+1)
i we get

G
(m+1)
i = G̃

(m)
i −

∑
ns

j=1 G̃
(m)
j N

(m)
j

∑
ns

j=1(N
(m)
j )2

N
(m)
i −G

(m)
i +

∑
ns

j=1 G
(m)
j N

(m)
j

∑
ns

j=1(N
(m)
j )2

N
(m)
i . (5.34)

Since G
(m)
j has a zero mean value, last term in (5.34) is null. Moreover since

G̃
(m)
i −

∑
ns
j=1 G̃

(m)
j N

(m)
j

∑
ns
j=1(N

(m)
j )2

N
(m)
i = G

(m)
i ,

we have

G
(m+1)
i = 0. (5.35)

And the Algorithm terminates.

We can also prove that Algorithm 2 finds the minimum solution of (4.15):

Proposition 5.5. Algorithm 2 finds the optimal solution of (4.15)

Proof. First we show that the iterations δλ
(m)
i are always contained in the feasible

region. The inequality constraints of (4.15) are enforced choosing a proper α as

stated in (5.32).

Now we show that the equality constraint is satisfied by our algorithm. We use an

induction argument and we suppose ∑
ns
i=1 δλ

(m)
i = 0 then

ns

∑
i=1

δλ
(m+1)
i =

ns

∑
i=1

αG
(m)
i .

Therefore
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ns

∑
i=1

αG
(m)
i = α




ns

∑
i=1

G̃
(m)
i −

∑
ns
j=1 G̃

(m)
j N

(m)
j

∑
ns
j=1(N

(m)
j )2

ns

∑
i=1

Ni


 .

Since the Ni components can only be either 1 or 0 we get

ns

∑
i=1

αG
(m)
i = α

(
ns

∑
i=1

G̃
(m)
i −

nc

∑
i=1

G̃
(m)
i N

(m)
i

)
.

Since G̃
(m)
i is non-zero only if N

(m)
i 6= 0 we get ∑

ns
i=1 αG

(m)
i = 0 and, since ∑

ns
i=1 δλ

(0)
i =

0, we can conclude the first part of the proof.

Finally we have to show that Algorithm 2 finds the minimum solution. We show that

the Algorithm finds a local minimum then from the convexity and differentiability

of the objective function and of the constraints it follows that minimum solution is

also the global one.

Let’s now show that if G
(m)
i = 0, i = 1, . . . ,ns then there is no improving direction

allowed. The allowed improving direction is G̃
(m)
i but since G

(m)
i = 0, i = 1, . . . ,ns

we have that G̃
(m)
i is orthogonal to the equality constraint of (4.15). Therefore there

are no improving directions allowed.

Let’s now give some more detailed estimates of the computational cost. First of all

we show that in many cells the composition has not to be updated. Let us introduce

the following condition

λ n
i,k = λ n

i,k j
∀ j = 1, . . . , |IS

k |. (5.36)

At the beginning of a numerical run most cells satisfy this condition as they are far

away from the interfaces. Their number tends to decrease during the simulation run

while it rapidly increases when the LS function is reinitialized, as we can see in

Figure 5.6. Every cell that satisfies (5.36) has a trivial solution λ n+1
i,k = λ n

i,k, there-

fore we have only to update the composition of cells that don’t not satisfy (5.36). In

Figure 5.6 we show some results about the computational cost reduction in a typical

geological simulation with four sedimentary layers, that we will discuss in details

in Section 5.6. Moreover the great majority (more than 98% in the test case of Fig-

ure 5.6) of the cells have less than two species and a more refined upper bound

for the iterations of Algorithm 2 can be computed. In fact in those cells we have

δλi,min = δλi,max = 0 ∀i ∈ Rns : λi = 0 therefore |NF
(0)
S | = ns − 2 and, thanks to

Proposition 5.4, the maximum number of iterations is equal to 3.

To conclude, in Figure 5.6 we can show good conservation properties even during

the reconstruction of φn
i,∆ at time steps 50 and 100. The mass is not conserved ex-

actly because the velocity field is only weakly divergence free. The reconstruction

algorithm is applied when the ratio between the cells that have only one species and

the total number of the cells becames lower than an assigned threshold.
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Fig. 5.6: In Figure (a) we show the percentage of the cells, elements, and interfaces

inside the active band. The active band is composed by the cells that do not satisfy

(5.36). In this case we have used a coarse grid therefore a lot of cells lie near an

interface. However we can still achieve an average 20% reduction of the compu-

tational cost. In Figure (b) we show the percentage volume of the four species. At

steps 50 and 100 a set reconstruction algorithm is applied.

5.5 Algorithm workflow

In this section we briefly describe the workflow of the algorithm we have developed.

The first step is to define the physical properties of the sedimentary layers and their

initial positions. These data are translated in the volume fractions λ n
i,k, with n = 0.

The code advances in time using the following scheme:

λ n+1
i,∆

// λ n
i,∆

//

��

RECON // ρn
∆ ,µ

n
∆

��
RECON

OO

TRACK

��

−→
V n

∆
oo STOKESoo

TEST

N

DD
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

Y

OO

λ n+1
i,∆

oo

First of all the quantity λ n
i,∆ is copied and the RECON Algorithm 1, is applied. This

algorithm reduces the diffusion layer to the size of a cell. This procedure is important

in order to limit the effects of numerical diffusion. From the cell partial volumes,

the density and viscosity fields are created and the Stokes solver STOKES computes

the velocity and pressure fields. The velocity field is used to track the compositions

and find λ n+1
i,k using the algorithm TRACK. The latter algorithm consists in several

steps:

1. construction of the cell-to-be-updated database;
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2. computation of the time step so that (4.12) is satisfied. Then the number of the

intermediate steps necessary to evolve the compositions from tn to tn+1 is com-

puted;

3. finally the interface fluxes are computed and the cell partial volumes updated.

The diffusion of the λ n+1
i,k is evaluated in TEST and the number of the cells that do

not satisfy (5.36) is computed. If there are too many diffused cells the algorithm 1

is applied to λ n+1
i,∆ .

5.6 Numerical results

The test case we analyze in this chapter was already presented in Figure 5.1, and

represents a sedimentary basin divided into four layers by three horizons. The basin

dimensions are 10.3×15.6×5.8 km, and the evolution time is equal to 34.35 Mya.

Density and viscosity have been taken equal to 2.2 ·103 kg/m3 and 0.1 ·1020 Pas re-

spectively for the salt layer and equal to 2.0–2.6 ·103 kg/m3 and 1020–1021 Pas for

the overbearing layers. These are reasonable values, physically speaking. Among

the several simulation runs, the one we present here has about 900k unknowns,

and requires approximately 4.2Gb of RAM. The computations have been run on an

AMD Opteron 8212 Dual-Core 2GHz processor.

Only a few examples of three-dimensional cases on sedimentary basins are found in

the literature, for example in [46], or Zadeh [107]. The main reason of such a lack

of references resides in the dramatic rise of the computational cost that the switch to

3D requires. Yet a three-dimensional model is necessary to capture the basin dynam-

ics completely. Anyway, as for the 2D case, the domain boundaries may introduce

some undesired effects, worsening the quality of the results.

The simulation runs reported in this work not only represent an enrichment of the

set of the three-dimensional cases, but also are provided with specific features that

lead to significant results both from the physical and mathematical point of view.

First of all, the implementation of a numerical code for three-dimensional multiflow

simulations represents an innovation in the stratified fluid dynamics field, as, with

respect to the above mentioned two-layer 2D simulations, it can handle a model

with an arbitrary number of layers. In addition, the model geometry is composed of

interface surfaces representing realistic sedimentary basins, and, as a consequence,

the perturbations causing the Rayleigh–Taylor instabilities are not imposed a priori

on a plane surface, but originate from the physical shape of the horizons (see Figure

5.7).

The ease of handling complicated geometries is enhanced by the use of unstruc-

tured meshes as discretizing tools. Figure 5.8 shows subsequent steps of the basin

evolution, that lead to the shaping of some salt diapirs.

Secondly, the interface surfaces have been drawn with an innovative tracking al-

gorithm, that is able to reconstruct the horizon positions efficiently, both from the

geometric and the computational point of view. In particular, as these figures show,

it is able to handle and represent topological changes, and so to simulate correctly
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(a) (b)

Fig. 5.7: A couple of lateral views of the basin used in the simulations. Salt is in

white while heavier sediments are in yellow and green. In Figure (b) is visible the

bump between the white and the yellow layers which leads to the diapir growth as a

consequence of the Rayleigh–Taylor instability.

and in a fully automatic way phenomena of key importance in the sedimentary basin

evolution, such as salt diapir detachments (see Figure 5.8(e)) and possible horizon

intersections (see Figure 5.9(b)–5.9(d)). In the following figures we illustrate the

evolution of the surface between the salt and the overburden layers, that finally ends

by forming a diapir.

The code also computes other quantities of physical interest, as velocity, pressure

and strain fields. As an example, in Figure 5.11 and 5.12 we show the distribution

of vertical velocity and streamlines on a sectioning plane. In the first one we can

recognize three different phases in the basin evolution: the most part of the diapir

growth happens in the first 11 Mya, followed by a settlement phase lasting 24 Mya,

after that, the evolution is almost stationary. In the second figure we can appreciate

the streamlines representing the flow motion leading to the main diapir formation,

at a time step of major basin activity.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.8: Progressive evolution of salt diapirs: in about 34 Mya the growth of the

three diapirs is almost complete.



80 5 Numerical models for basic basin simulations

(a) (b)

(c) (d)

(e) (f)

Fig. 5.9: Progressive evolution of lower sediment: salt rise perforates this sediment

in three regions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.10: Two isosurfaces showing the distribution of the vertical stress component

σzz. (Red: 2.0 MPa, Blue: −2.0 Mpa)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.11: A series of slabs of vertical velocity Vz, at z = 2.18 km from the bottom

of the basin: the most part of the development of the diapirs happens in the first 11

Mya, while in the last 24 Mya the flows become gradually stationary. (Red: 1.64

km/Mya, Cyan: 0.0 km/Mya, Blue: −0.82 km/Mya)
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(a) (b)

(c) (d)

Fig. 5.12: A series of slabs of vertical velocity Vz and stream-lines at t = 2.69 Mya:

two main vortices are visible near the biggest diapir. (Red: 1.64 km/Mya, Cyan: 0.0
km/Mya, Blue: −0.82 km/Mya)
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5.7 Nomenclature

Index Meaning Interval

i Layer index [1,ns]
k Cell index [1,nc]
j Face index [1, ICk ]
r Element index [1,ne]
n Time step -

Table 5.1: Table of the indexes.

Symbol Meaning

Ω The computational domain

∂ Ω The boundary of the computational domain

Ωi The i-th layer volume−→
X The position vector−→n The normal to ∂ Ω
x̂i The three unit vectors

Γ The boundary of the computational domain

ΓB,ΓL,ΓS The three portions of Γ

Table 5.2: Table of the geometric quantities

Symbol Meaning

T G
∆ The grid

∆ The mesh characteristic length

nG
e Number of elements of the grid

nG
p Number of points of the grid

nG
c Number of cells of the grid

eG
r The r-th element of the grid

−→x G
k the k-th node of the grid

T M
∆ The mini-grid

nM
e Number of elements of the mini-grid

nM
p Number of points of the mini-grid

nM
c Number of cells of the mini-grid

eM
r The r-th element of the mini-grid

−→x M
k the k-th node of the mini-grid

Table 5.3: Table of the mesh quantities
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Symbol Meaning

λi The characteristic function of Ωi
¯̄σ The stress tensor

P The pressure

ρ The density

ρi The density of the i-th layer−→g The gravity

µ The viscosity

µi The viscosity of the i-th layer

Table 5.4: Table of the variables

Symbol Meaning

t The time

tn The time at time-step n

∆tn The time step

T The total simulation time

Table 5.5: Table of the other symbols





Chapter 6

Numerical Models for advanced basin

simulations

In this Chapter we include the physical aspects analyzed in [57], extended to a three-

dimensional realistic framework.

First of all we introduce the non-Newtonian rheology. A complete and exhaustive

theoretical analysis of the sediment rheology is still missing. Experiments have

shown different behaviors of the sediments such as elastic, elasto-plastic, visco-

plastic and visco-elastic ones. Semi-empirical relations are widely adopted, since the

theory can explain only a few mechanisms (an example is the viscous-fluid rheology

of a crystalline structure, see [94]). In [68] a tensor splitting technique is exploited

to adapt the simulation to almost every type of isotropic rheology. We concentrate

on visco-plastic rheology, as it accounts for the two main deformation mechanisms

on geological timescales and we completely neglect the elastic behavior, as it is

often related to shorter-period phenomena such as earthquakes. This approach has

already been considered in [57] but, in this work, we consider a wider choice of

pseudo-plastic rheologies: the Carreau, Cross, Powell and Yeleswarapu relations.

All these models can be handled numerically either with a temporal linearization

or with a fixed point iteration technique, being the former a cheaper choice and the

latter a more accurate one.

Let’s now consider the porosity and compaction modeling. In various works, the

compaction is modeled in a simplified way, for example, as a vertical reduction of

the volume occupied by the sediments [24], or even neglected (see [107, 68] and

[108]). In [56] a new splitting algorithm is introduced: the divergence of the solid

flow field is computed according to some experimental compaction curves. Then,

under the hypothesis of vertical compaction, the problem is reduced to a linear sta-

tionary hyperbolic equation. Here, we do not make any assumption about the di-

rection of the compaction, but we address directly the modeling of the compaction

function, i.e., the function that measures the rate of decrease of the solid volume

and we solve a Stokes problem with a non null divergence. We stress that, if the

fluid part is not simulated, as we have done in Chapter 3, it is mandatory to use the

empirically-derived compaction curves.

Fault modeling is seldom included in geological basin simulations and, until now,

only a few works consider this topic (see [55, 57, 68] and [79]). Fault location and

87
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time of appearance are hardly predictable from the mechanical point of view, but

fortunately seismic and well data are able to provide sufficiently accurate informa-

tion as their age and location. Hence, we assume to know the location and the time

of appearence of the faults and hence we concentrate on the modeling of their ef-

fects. In other words our rheology model is not able to predict the formation of the

fault but since we we now where and when they are formed, we are able to simulate

accurately their effects.

Faults are fracture zones where the damaged rock creates sliding planes. A possi-

ble way to model them in a fluid framework is to reduce the fluid viscosity in the

damaged area. For an active fault, the viscosity in a thin region around its sliding

plane is reduced by several orders of magnitude (see [57]). This approach has two

primary numerical problems: the identification of the elements in the grid where the

viscosity has to be reduced and the grid local refinement necessary to make the el-

ement size match the fault thickness (which is of the order of tens of meters, while

a typical mesh element is about hundreds of meters). To face these problems, we

have implemented an implicit tracking algorithm and a local recursive bisection al-

gorithm. For a review of the mesh refinement techniques in three-dimensions see

[11, 52, 53, 70] and [111].

Let’s now consider another important aspect, namely, the movement of the basin

basement, of the free surface and of the lateral contour. The external boundary is

subject to displacements as the surrounding soil moves with Earth plates. This effect

has a key importance in basin evolution as it is one of the driving forces for fault for-

mation and movement. Not all the numerical schemes developed till now allow the

extension or contraction of the basement, for example in [107] the basin is modeled

as a fixed box. This geometrical constraint is not acceptable for many applications

and several works, such as [57, 56, 68], have a more general geometrical treatment.

All of them use a Lagrangian approach combined with frequent remeshing, as it

handles naturally the movement of the boundary. However, the application of clas-

sical Lagrangian methods to a real three-dimensional case is expensive. Some new

types of Lagrangian method, such as the Particle Finite Element methods (PFEM),

have been introduced in mechanical engineering [64] and applied to computational

geology [60, 63]. In these works, the Particle In a Cell technique is used. All these

Lagrangian methods require a frequent mesh regeneration, making the cost of the

algorithm critically dependent on the efficiency of the mesher. To overcome this

aspect we have chosen, on the contrary, a method similar to the one described in

[29]. The reason for this choice resides in the fact that, since the deformation of the

basin boundary is usually small compared with that of the internal layers, we can

decouple the two problems and use a Lagrangian scheme to reconstruct only the

boundary movement and the scheme described in Chapter 4 for the internal layers.

The fusion of the two approaches gives rise to the so called Arbitrary Lagrangian

Eulerian method (ALE), where the displacement of the grid is only prescribed on

the boundary, while, for the internal nodes, a suitable movement law is considered,

for example to minimize the mesh distortion. The ALE method has found several

applications, see for instance [3, 5, 4, 34, 35, 43, 45, 49, 58, 61, 67], and [85]. The

definition of the numerical algorithm for the computation of the internal grid move-
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ment is the most critical part: we want, at the same time, to adapt the grid size,

where necessary, without loosing the grid quality. To achieve this goal, we choose

the so called r-adaptivity (see [5]) combined with the ALE scheme. This technique,

which may also be regarded as a mesh fine-tuning technique, is a cheaper choice

in terms of computational cost than the h-adaptivity, although less effective. Being

the computational cost an important issue for our simulation, the r-adaptivity has

been considered a reasonable choice. We exploit then, the information given by a

residual-type error estimator to construct an error-dependent metric, which drives

the ALE scheme in adapting the grid size, according to the minimization of the es-

timated upper bound error.

Three descriptions of the internal grid movement have been introduced so far. The

first two require the solution of a Laplace-type problem and the solution of a net of

connected springs respectively, while the third one models the grid as a continuum

elastic body. The first approach is used in [5, 4, 58]. Its merits are the low compu-

tational cost and the compatibility with a metric-type adaptivity. On the other hand,

it could fail if high curvatures are present on the domain boundary; in particular,

non convex regions could induce mesh tangles, that’s why sometimes this method

is combined with a smoothing technique (see [34]). The second method, widely

adopted in aeroelastic analysis, is the spring method (see [17, 18]). The mesh is

considered as a net of nodes linked by springs, whose topology varies among the

methods. One of its most appreciated qualities is the robustness, as the mesh tan-

glement is (in the most advanced variants) always prevented. However, it is very

expensive and several simplified versions have been developed, in which, for ex-

ample, the nodes are moved one by one. This latter approach is very effective in

aeroelastic simulations, where the boundary movement is usually concentrated in

a small region at the center of the computational domain (which could represent

an airfoil, an aircraft, etc), but it is less effective in geological simulations where

the boundary movement is more distributed. The last method is based on an elastic

model (see [45]). It is more robust than the Laplace-type approach, although more

expensive from the computational point of view. Therefore, we choose to implement

a linearized version, as a compromise between robustness and computational effi-

ciency. In particular we derive the elastic equation from an optimization problem,

so that the r-metric adaptivity can be directly embedded in the model.

6.1 Physical and mathematical models

6.1.1 Nomenclature

Let’s recall the geometric model of the sedimentary basin (Figure 6.1). The domain

Ω ∈R3 is divided into ns subdomains Ωi (without overlapping regions), which rep-

resent different sedimentary layers characterized by different physical properties.
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The external boundary Γ of the domain Ω is divided into three parts: the basement

ΓB, where we apply a Dirichlet condition for the velocity field, the top of the basin

ΓS, with a free surface condition, and the lateral contour ΓL, that we suppose vertical

for simplicity and where we impose a Dirichlet condition on the horizontal plane

and a slip condition in the vertical direction. With respect to the previous chapters

we have introduced the free surface condition for ΓS. To complete our overview let

(a) (b)

Fig. 6.1: a) External shape of the domain Ω . The external boundary Γ is divided

into three parts: the basement ΓB, the free surface ΓS and the lateral contour ΓL. b)

An open three-dimensional view of a sedimentary basin containing three horizons

and four layers.

us recall some nomenclature:
−→
X = (x1,x2,x3) ∈ Ω indicates a point in the spatial

domain of coordinates xi, with i = 1,2,3, (x̂1, x̂2, x̂3) are the unit vectors of the coor-

dinate system, −→n is the domain outward normal and t ∈ (0,T ] is the time coordinate.

For a generic vector −→u , we denote its components with (u1,u2,u3).

6.1.2 Rheological models

We introduce the pseudo-plastic relations we have implemented. All of them are

generalized Newtonian laws with a stress dependent viscosity. In this way, the struc-

ture of the equations is maintained. For each layer, we have considered five different

rheological laws for the apparent viscosity µi for each component
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µi =





µ∞
i = µ0

i Newton

µ∞
i +

µ0
i − µ∞

i

(1+ ξiγ)(2−r)/r
Carreau, [79]

µ∞
i +

µ0
i − µ∞

i

1+(ξiγ)r
Cross, [80]

µ∞
i +(µ0

i − µ∞
i )

sinh−1(ξiγ)

ξiγ
Powell, [80]

µ∞
i +(µ0

i − µ∞
i )

1+ ln(1+ ξiγ)

1+ ξiγ
Yeleswarapu, [80],

(6.1)

where µ0
i is the reference unstressed viscosity, µ∞

i the asymptotic viscosity for γ →
∞, γ is the squared Frobenius norm of the symmetric gradient

−→
∇−→u +(

−→
∇−→u )T , r

is a positive coefficient, also known as the power law coefficient, ξi is a parameter

and −→u is the macroscopical velocity of the rock. We can now define an averaged

viscosity by introducing the characteristic functions of the layers λi as

µ = ψ
ns

∑
i=1

λiµi, (6.2)

where the viscosity abatement function ψ(t,
−→
X ) takes into account the possibile

presence of faults (a complete description of the fault model is provided in Section

6.4). The stress tensor is given by

¯̄σ = µ
(−→

∇−→u +(
−→
∇−→u )T

)
,

where µ is now a function of the shear stress.

6.1.3 Modeling the compaction

We now detail the compaction model we have implemented for our simulations.

In Chapter 3 we have discussed some compaction models that require the solution

of the Darcy flow in the basin. Instead of these more demanding models, we have

choosen a simple scheme, similar to the one in [57]. Namely, we model the porosity

decrease in the deep layers imposing a non-solenoidal velocity of the sediments, in

other terms −→
∇ ·−→u = Φ,

where Φ is the compaction function.

We here find a relation for Φ , without using the variables related to the fluid part,

since they have been neglected. Let S(x1,x2) be the relative height of the free sur-

face, that is the distance along the x̂3 direction of the free surface from a reference

plane. We can define the depth ζ as ζ = x3 − S (see Figure 6.2). Now the objective

is to model Φ using only a φ -depth relation. Let’s consider, in particular, the Athy
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Fig. 6.2: An outline of the sedimentary basin with a reference frame having axes

(x̂1, x̂2, x̂3). The surface position is indicated with S(x1,x2), the depth with ζ .

compaction law for the porosity φ

φ = exp(Bζ )

(
ns

∑
i=1

λiφ
0
i

)
, (6.3)

where φ0
i is the reference porosity of the layers and B is an empirical constant. We

wish to determine Φ through (6.3). From [79] we get

−→
∇ ·−→u =

1

1−φ

Dφ

Dt
, (6.4)

where D/Dt = ∂/∂ t +−→u ·−→∇ is the material derivative. Plugging equation (6.3) into

(6.4) it becomes

−→
∇ ·−→u =

1

1−φ

Dφ

Dζ

Dζ

Dt
= B

φ

1−φ

(
Dx3

Dt
− DS

Dt

)
.

Since Dx3/Dt = u3 and
−→
∇ S is usually small (but this contribution could be included

if necessary), the above equation can be approximated as

−→
∇ ·−→u = B

φ

1−φ

(
u3 −

∂S

∂ t

)
.

From this relation we find that the compaction is the sum of two contributions: the

first one, B (φ/(1−φ))u3, refers to the relative position of the layers and the latter,

−Bφ/(1−φ)∂S/∂ t, is related to the burial of the entire basin. In particular ∂S/∂ t

is known as the sedimentation speed and is provided by the geologists on the basis

of some hypotheses on the history of the basin.
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6.1.4 The model

Now we can summarize and present the complete model in the advective ALE form,

including all the new features we have introduced so far





−→
∇ · ¯̄σ(µ ,−→u )−−→

∇ P+ρ−→g = 0on Ω × [0,T ]
−→
∇ ·−→u = Φ(φ(ζ ))on Ω × [0,T ]
∂λi

∂ t
+(−→u −−→u g) ·

−→
∇ λi = 0 on Ω × (0,T ]

∂ψ

∂ t
+(−→u −−→u g) ·

−→
∇ ψ = 0 on Ω × (0,T ]

¯̄σ = µ(−→u ,ψ ,ξi)(
−→
∇−→u +(

−→
∇−→u )T ) on Ω × (0,T ]

λi = λ i, ψ = ψ on Ω ×{0}
−→u = u on ΓB

( ¯̄σ −P ¯̄I) · n̂ = 0 on ΓS

u1 = u1, u2 = u2, (( ¯̄σ −P ¯̄I) · n̂) · x̂3 = 0 on ΓL,

(6.5)

where P is the total pressure of the solid-fluid mixture, ψ and λ i are a suitable set of

initial conditions, u is a boundary velocity field, and −→u g is the grid velocity linked

to the ALE treatment of the boundary movement. Moreover the density is given by

ρ = φρ f +(1−φ)

(
ns

∑
i=1

λiρi

)
, (6.6)

where ρ f is the fluid density and ρi is the reference density of each sedimentary

layer. The system above consists in two evolution equations: the fault tracking func-

tion equation and the partial volume equation. For the latter we use the method

developed in Chapter 4, while for the fault tracking one we employ a modified level

set method, to be discussed in detail in Section 6.4. The remaining equations form a

Stokes problem with non solenoidal velocity, which is solved numerically with the

techniques illustrated in Chapter 5.

6.2 Numerical discretization

In this section we recall briefly the spatial discretization of the model. First of all,

we split the time interval [0,T ] into [0, t1, . . . , tn, tn+1, . . . ,T ] where tn+1 = tn +∆ tn

and ∆ tn is the n-th time step. Then, we indicate, for the generic variable a(t,
−→
X ),

an(
−→
X ) = a(tn,

−→
X ).

In order to describe the spatial discretization scheme, we introduce the geometric

approximation of the domain Ω . Let T G
∆ be a simplicial tetrahedral grid containing

nG
e elements eG

r (with r = 1, . . . ,nG
e ) and nG

p nodes −→x G
k (with k = 1, . . . ,nG

p ), where
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the subscript ∆ stands for the maximum diameter of the grid elements. From T G
∆ we

build the mini-grid T M
∆ by adding nG

e barycentric nodes; hence T M
∆ has nM

p = nG
p +

nG
e nodes −→x M

k and nM
e = 4nG

e elements eM
r . Moreover, with a uniform refinement

of T G
∆ carried out for NR-times, we create a conformal grid T S

∆ , which has nS
e =

8NRnG
e elements eS

r and nS
p nodes −→x S

k . In the following we will refer to T G
∆ as the

grid, to T M
∆ as the mini-grid, and to T S

∆ as the sub-grid. Let FG
r, j, FM

r, j and F S
r, j

with j = 1, . . . ,4 be the set of the four faces surrounding the r-th tetrahedron of the

grid, mini-grid and sub-grid respectively. The element sharing the face F S
r, j with the

element eS
r will be denoted with eS

r j
. We also define the map [r, j] → j[r, j], (where

the subscript [r, j] is appended in order to stress the dependence of j on the couple

r, j ) such that, given the indices r and j, j[r, j] : F S
r j , j[r, j]

= F S
r, j (see Figure 6.3). In

other words, every interface between the elements eS
r and eS

r j
is identified by two

different local indexes j: once the local index j in eS
r is identified, the other one, in

the element eS
r j

is denoted by j[r, j]. Finally let us recall the discrete variables and

Fig. 6.3: The element eS
r and its j-th neighbor eS

r j
. The j-th face of the element eS

r is

F S
r, j and corresponds to the j[r, j]-th face of eS

r j
, that is F S

r, j = F S
r j , j[r, j]

.

introduce the related discrete spaces:
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−→u n
∆ ∈V

M

1 : V
M

1 =
{−→ϕ ∆ ∈ (C0(Ω))3 :

−→ϕ ∆ |eM
r
∈ (P1)3, ∀r = 1, . . . ,nM

e

}

Pn
∆ ∈ VG

1 : VG
1 =

{
ϕ∆ ∈ C0(Ω) : ϕ∆ |eG

r
∈ P1, ∀r = 1, . . . ,nG

e

}

¯̄σn
∆ ∈W

M

0 : W
M

0 =
{

¯̄ϕ∆ ∈ (L2(Ω))3×3 : ¯̄ϕ∆ |eM
r
∈ (P0)3×3, ∀r = 1, . . . ,nM

e

}

−→u n
g,∆ ∈ V

G

1 : V
G

1 =
{−→ϕ ∆ ∈ (C0(Ω))3 :

−→ϕ ∆ |eG
r
∈ (P1)3, ∀r = 1, . . . ,nG

e

}

ρn
∆ , µn

∆ , φn
∆ ∈WG

0 : WG
0 =

{
ϕ∆ ∈ L2(Ω) : ϕ∆ |eG

r
∈ P0, ∀r = 1, . . . ,nG

e

}

ψn
∆ ∈WS

0 : WS
0 =

{
ϕ∆ ∈ L2(Ω) : ϕ∆ |eS

r
∈ P0, ∀r = 1, . . . ,nS

e

}

λ n
i,∆ ∈VS

0 : VS
0 = {ϕ∆ ∈ L2(Ω) : ϕ∆ |τS

k
∈ P0, ∀k = 1, . . . ,nS

p},

where the notation follows these conventions: V and W denote a finite element

space with, respectively, node-related and cell-related degrees of freedom (DOF),

the suffixes G,M,S refer to the grid discrete space, while the indices 0 and 1 indicate

the degree of the basis.

6.3 Adaptive grid movement

6.3.1 Grid movement equations

To move the mesh, according to a displacement of the lateral boundary, we define an

artificial elasticity problem and use a solution dependent metric. More precisely, let

Ω n be the domain at time tn and we let
−→
Y n ∈ Ω n be the position vector in the current

reference system. We want to build a smooth displacement field
−→
S n : Ω n → Ω n+1

such that 



−→
S n =−→u n

∆ ∆ tn on ΓB

Sn
1 = un

∆ ,1∆ tn, Sn
2 = un

∆ ,2∆ tn on ΓL−→
S n ·−→n = (−→u n

∆ ·−→n )∆ tn on ΓS

To implement our mesh movement-adaption scheme, we adopt the ideas of [41],

[42], in other terms, we seek a best fit solution in H1(Ω) to the alignment and to the

equal distribution condition

(
−→
∇
−→
X )T · ¯̄M · (−→∇−→

X ) = ¯̄I

(
1

|Ω |

∫

Ω

√
det( ¯̄M)

)2/3

(6.7)

with ∫

Ω

√
det( ¯̄M) = |Ω |, (6.8)
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where ¯̄M is a positive definite second order tensor which will be linked to the adap-

tion process and
−→
X in the position with respect to the initial configuration Y at t = 0.

A best fit solution of the alignment condition is given by the minimization of

min−→
X ∈H1(Ω)

1

2
‖(−→∇−→

X )T · ¯̄M · (−→∇−→
X )− ¯̄I‖2

D , (6.9)

where ‖ ¯̄
C ‖2

D
=
∫

Ωn
¯̄

C · ¯̄
D · ¯̄

C , ¯̄
D is a tensor with components Di jhk = ELδi jδhk +

2KLδikδ jh, and δi j, EL, KL are respectively the Kronecker delta, and the fictitious

shear and bulk elastic moduli. According to [5] and [45] we choose EL|er = KL|er =
1/|eG

r |. The optimality conditions of (6.9) can be transformed into a non linear par-

tial differential equation. Since the displacement between two time steps is kept

small, we consider a linearized form of the PDE. Moreover to simplify its deriva-

tion, we neglect, for now, the boundary conditions as they will be introduced later

on.

The linearized form of (6.9) with respect to the coordinate system Y n is

min−→
S n∈H1(Ωn)

1

2

∫

Ωn

¯̄ε n · ¯̄
D · ¯̄ε n +

∫

Ωn

¯̄σn
0 : ¯̄ε n, (6.10)

where ¯̄σn
0 is the pre-stress at time tn. At n = 0, ¯̄σn

0 = 0 and we see shortly how to

update it. Finally

¯̄ε n =
1

2

(
(
−→
∇
−→
X n)T · ¯̄Mn ·−→∇−→

X n − ¯̄I
)

(6.11)

is the strain tensor. Plugging −→
X n =

−→
Y n +

−→
S n (6.12)

into (6.11) we get

¯̄ε n =
1

2

(
(
−→
∇
−→
S n)T · ¯̄Mn · (−→∇−→

S n)
)

︸ ︷︷ ︸
¯̄ε n
2

+
1

2

(
(
−→
∇
−→
S n)T · ¯̄Mn + ¯̄Mn · (−→∇−→

S n)
)

︸ ︷︷ ︸
¯̄ε n
1

+
1

2

(
¯̄Mn − ¯̄I

)

︸ ︷︷ ︸
¯̄ε n
0

.

By differentiating equation (6.10) with respect to the displacement we obtain

∫

Ωn
( ¯̄w1 + ¯̄w2) · ¯̄

D · ( ¯̄ε n
0 + ¯̄ε n

1 + ¯̄ε n
2 )+

∫

Ωn

¯̄σ n
0 : ( ¯̄w1 + ¯̄w2) = 0 ∀−→v ∈ H1(Ω),

where

¯̄w1 =
1

2

(
(
−→
∇−→v )T · ¯̄Mn + ¯̄Mn · (−→∇−→v )

)

¯̄w2 =
1

2

(
(
−→
∇
−→
S n)T · ¯̄Mn · (−→∇−→v )+ (

−→
∇−→v )T · ¯̄Mn · (−→∇−→

S n)
)

and −→v ∈ H1(Ω) is a test function. Considering only the linear parts, we get
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∫

Ωn

¯̄w1 · ¯̄
D · ¯̄ε n

1 +

∫

Ωn
( ¯̄σ n

0 + ¯̄
D · ¯̄ε n

0 ) : ( ¯̄w1 + ¯̄w2) = 0 ∀−→v ∈ H1(Ω).

For simplicity, we set ¯̄Σ n
0 = ¯̄σ n

0 + ¯̄
D · ¯̄ε n

0 . Integrating by parts, we obtain the follow-

ing balance equation for the displacements

−−→
∇ ·
[
EL(

−→
∇
−→
S n : ¯̄Mn) ¯̄I +KL

(
(
−→
∇
−→
S n)T · ¯̄Mn + ¯̄Mn · (−→∇−→

S n)
)
+

¯̄Σ n
0 · (−→∇−→

S n + ¯̄I) · ¯̄Mn
]
= 0 (6.13)

which is complemented by the following set of boundary conditions





−→
S n =−→u n

∆ ∆ tn on ΓB

Sn
1 = un

∆ ,1∆ tn, Sn
2 = un

∆ ,2∆ tn,( ¯̄Σn
0 ·−→n ) · x̂3 = 0 on ΓL−→

S n ·−→n = (−→u n
∆ ·−→n )∆ tn, ( ¯̄Σn

0 ·−→n ) ·−→n = 0 on ΓS.

This is a linear elastic-type equation with a pre-stress term that comes out from

the previous deformation of the grid. We seek a solution using the finite element

method, therefore we introduce now the discrete weak formulation

aALE(
−→
S∆

n,−→v ∆ ) = FALE(
−→v ∆ ) ∀−→v ∆ ∈V

G

1 , (6.14)

where
−→
S∆

n ∈ V
G

1 is the discrete counterpart of
−→
S n and





aALE(
−→
S∆

n,−→v ∆ ) =
∫

Ωn

[
EL(

−→
∇
−→
S n : ¯̄Mn) ¯̄I+

KL

(
(
−→
∇
−→
S n)T · ¯̄Mn + ¯̄Mn · (−→∇−→

S n)
)
+ ¯̄Σ n

0 ·−→∇−→
S n · ¯̄Mn

]
:
−→
∇−→v ∆

FALE(
−→v ∆ ) =−

∫
Ωn

¯̄Σ n
0 · ¯̄Mn.

If KL,EL > 0, problem (6.14) is coercive. Moreover if ¯̄Σ n
0 ,

¯̄Mn,KL,EL ∈ L∞(Ω), then

the bilinear form aALE(·, ·) and the linear functional FALE(·) are bounded and prob-

lem (6.14) has a unique solution (see [33] and [73]).

It can also be proved that the discrete problem is equivalent to a linear system with

nG
e unknowns and it is worth noting that this is a largely smaller size with respect

to that of the Stokes problem, whose number of unknowns is equal to 3nG
e + 4nG

p .

Therefore, the computational cost of this part of the algorithm is small (as it will be

shown in Section 6.5). The pre-stress term is updated as follows

¯̄σ n+1
0 = (

−→
∇
−→
S n)−T · ¯̄Σ n

0 · (−→∇−→
S n)−1.

Once the displacement field is computed, the grid speed is calculated as

−→u n
g,∆ =

−→
S n

∆

∆ tn
.
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Remark 6.1. The computation of ∆ tn requires three steps: firstly, from the velocity
−→u n, a maximum ∆ tn

ALE is estimated such that the movement of the boundary ele-

ments does not exceed a certain threshold; secondly a maximum ∆ tn
C

is estimated

such that the movement of the horizons is less than a prescribed length. Finally, the

time step of the n-iteration is computed as

∆ tn = min(∆ tn
ALE,∆ tn

C ). (6.15)

�

6.3.2 Error estimation

In this section, we introduce the criterion for the mesh adaptation which is an a pos-

teriori error estimator for the linearized Stokes problem. This problem has already

been addressed in [97], considering a Newtonian law and fixed coefficients, but we

need to modify slightly that derivation to suit the non-Newtonian relations which

we linearize with respect to the previous time step. The discrete form of the Stokes

problem is

{
a(−→u n

∆ ,
−→v ∆ )+ b(Pn

∆ ,
−→v ∆ ) = F(−→v ∆ ) ∀−→v ∆ ∈ VM

1

b(q∆ ,
−→u n

∆ ) = G(q∆ ), ∀q∆ ∈ VG
1 ,

(6.16)

with 



a(−→u n
∆ ,
−→v ∆ ) =

∫
Ω µn

∆ (
−→
∇−→u n

∆ +(
−→
∇−→u n

∆ )
T ) : (

−→
∇−→v ∆ )

b(Pn
∆ ,
−→v ∆ ) =−∫Ω Pn

∆ (
−→
∇ ·−→v ∆ )

F(−→v ∆ ) =
∫

Ω ρ∆ (
−→g ·−→v ∆ )

G(q∆ ) =
∫

Ω Φ(φ∆ )q∆

where µn
∆ = µn

∆ (
−→u n−1,ψn−1,ξi) is computed with the velocity field of the previous

time step.

The error estimator derivation follows the technique illustrated in [97]. Here, for

the sake of simplicity, we drop the suffix n. Starting from (6.16) and introducing
−→v ∈ H1 and q ∈ L2 we get

ae(U∆ −U,V)=−
∫

Ω
ρ∆

−→g ·(−→v −−→v ∆ )+

∫

Ω
Φ(q−q∆ )+

∫

Ω

¯̄σ∆ :
−→
∇ (−→v −−→v ∆ )+

−
∫

Ω
P∆

−→
∇ · (−→v −−→v ∆ )−

∫

Ω
(q− q∆)

−→
∇ ·−→u ∆ ,

where

ae(U∆ −U,V) =−
∫

Ω
( ¯̄σ − ¯̄σ∆ ) : (

−→
∇−→v )+

∫

Ω
(P−P∆)(

−→
∇ ·−→v )+

∫
q
−→
∇ ·(−→u −−→u ∆ )



6.3 Adaptive grid movement 99

and

V =

{−→v
q

}
, U =

{−→u
P

}
, U∆ =

{−→u ∆

P∆

}
.

Finally,

¯̄σ = µn(−→u n−1,ψn−1,ξi)(
−→
∇−→u +(

−→
∇−→u )T ), ¯̄σ∆ = µn

∆ (
−→u n−1

∆ ,ψn−1
∆ ,ξi)(

−→
∇−→u ∆ +(

−→
∇−→u ∆ )

T ).

Resolving the contributions of each element and integrating by parts, we achieve

this result

ae(U∆ −U,V) =
nG

e

∑
r=1


−

∫

eG
r

ρ∆
−→g · (−→v −−→v ∆ )+

∫

eG
r

Φ(q− q∆)

−
∫

eG
r

(
−→
∇ · ¯̄σ∆ ) · (−→v −−→v ∆ )+

∫

eG
r

−→
∇ P∆ · (−→v −−→v ∆ )

+

∮

∂eG
r

( ¯̄σ∆ · n̂) · (−→v −−→v ∆ )−
∮

∂eG
r

P∆ (
−→v −−→v ∆ ) · n̂−

∫

eG
r

(q− q∆)
−→
∇ ·−→u ∆


.

Rearranging the boundary element terms and exploiting the Cauchy-Schwartz in-

equality we get

ae(U∆ −U,V)≤
nG

e

∑
r=1

(
‖−→∇ P∆ −−→

∇ · ¯̄σ∆ −ρ−→g ‖L2(eG
r )
‖−→v −−→v ∆‖L2(eG

r )
+

+
4

∑
j=1

1

2
‖J( ¯̄σ∆ −P∆

¯̄I) · n̂r, jK‖L2(FG
r, j)

‖−→v −−→v ∆‖L2(FG
r, j)

+

+‖Φ −−→
∇ ·−→u ∆‖L2(eG

r )
‖q− q∆‖L2(eG

r )

)
,

where J·K is the jump of a variable on the face FG
r, j and n̂r, j is the outward normal of

the j-th face of the r-th element. We choose −→v ∆ = C∆
−→v and q∆ = C∆ q, where the

Clement interpolation operator C∆ satisfies the following properties (see [33]) :

‖C∆
−→v ‖L2(Ω) ≤C‖−→v ‖L2(Ω) ∀∆ ,∀−→v ∈ L2(Ω),

‖−→v −C∆
−→v ‖L2(eG

r )
≤C∆‖−→v ‖H1(ẽG

r )
∀∆ ,∀−→v ∈ H1(Ω),

‖−→v −C∆
−→v ‖L2(FG

r, j)
≤C∆ 1/2‖−→v ‖H1(ẽG

r )
∀∆ ,∀−→v ∈ H1(Ω),

where ẽG
r is the patch of the elements surrounding eG

r and C is a generic constant

(in the following, we will always use C to indicate any constant). These inequalities

lead to
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ae(U∆ −U,V)≤C

nG
e

∑
k=1

(
∆Rr‖−→v ‖H1(ẽG

r )
+Dr‖q‖L2(eG

r )
+∆ 1/2Jr‖−→v ‖H1(ẽG

r )

)
,

(6.17)

with 



Rr = ‖−→∇ P∆ −−→
∇ · ¯̄σ∆ −ρ∆

−→g ‖L2(eG
r )

Dr = ‖Φ −−→
∇ ·−→u ∆‖L2(eG

r )

Jr =
1

2
∑4

j=1 ‖[( ¯̄σ∆ −P∆
¯̄I) · n̂r, j]‖L2(FG

r, j)
.

(6.18)

The Cauchy-Schwartz inequality applied to (6.17) yields

ae(U∆ −U,V)≤C




√√√√ nG
e

∑
r=1

(∆Rr +∆ 1/2Jr)2

√√√√ nG
e

∑
r=1

‖−→v ‖2
H1(ẽG

r )
+

√√√√ nG
e

∑
r=1

D2
r

√√√√ nG
e

∑
r=1

‖q‖2
L2(eG

r )


 .

Combining this result with the following relations

{
(∆Rr +∆ 1/2Jr)

2 ≤ 2(∆ 2R2
r +∆J2

r )

∑
nG

e
r=1 ‖−→v ‖2

H1(ẽG
r )

≤C‖−→v ‖2
H1(Ω)

,

we get

ae(U∆ −U,V)≤C







√√√√ nG
e

∑
r=1

∆ 2R2
r +∆ J2

r


‖−→v ‖H1(Ω)+




√√√√ nG
e

∑
r=1

D2
r


‖q‖L2(Ω)




≤C

√√√√ nG
e

∑
r=1

(∆ 2R2
r +∆J2

r +D2
r )
(
‖−→v ‖H1(Ω)+ ‖q‖L2(Ω)

)
.

Let’s now introduce the direct product space V (Ω) = H1(Ω)× L2(Ω) equipped

with the norm ‖V‖V (Ω) = ‖−→v ‖H1(Ω) + ‖q‖L2(Ω). From the inf-sup condition (see

[73, 33, 38]) we obtain

‖U∆ −U‖V (Ω) ≤ sup
V∈V (Ω)

ae(U −U∆ ,V )

‖V‖V (Ω)
≤C




nG
e

∑
r=1

(∆ 2R2
r +∆J2

r +D2
r )




1/2

,

and therefore

‖−→u −−→u ∆‖H1(Ω)+ ‖P−P∆‖L2(Ω) ≤C

√√√√ nG
e

∑
r=1

E 2
r , (6.19)
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with E 2
r =∆ 2R2

r +∆J2
r +D2

r . In conclusion, expression (6.19) represents the residual

error estimator E n
r (
−→u n

∆ ,P
n
∆ ,µ

n
∆ ,ρ

n
∆ ,φ

n
∆ ) that, from the physical data and the solution

at time step n, can provide a local error upper bound.

6.3.3 Metric definition

A good metric definition is expected to preserve the mesh quality and, at the same

time, relocate the nodes to get a more accurate solution. Our goal is to construct

the metric tensor ¯̄M relying upon the error estimate Er. We choose an isotropic

metric ¯̄M = ¯̄Iη . By doing so, the problem comes down to finding a suitable field η .

Then, we define an auxiliary variable βr = η3/2 that represents the local volumetric

deformation induced by the metric ¯̄M. βr is defined as the solution of the following

minimization problem





min
βr∈RnG

e

1

2
(βr − β̂r)

2 +
δ

2
(βr − β̃r)

2

nG
e

∑
r=1

βr|eG,n−1
r |= |Ω |,

(6.20)

where δ is an appropriate weight factor (that will be defined later) and

β̃r = K̃Rr, β̂r =

√
KE

Er

, (6.21)

being Rr the ratio between the volume of the element eG
r at time t0 and at time tn−1.

Finally

K̃ =
|Ω |

∑
nG

e
r=1 Rr

,
√

KE =
|Ω |

∑
nG

e
r=1 1/Er

. (6.22)

As we will see shortly, the solution of (6.20) represents a compromise between the

aim to distribute the error equally along the cells and the necessity to maintain the

overall mesh quality, by means of the weight δ . The constraint in (6.20) is equivalent

to the one in (6.7).

The term (βr − β̂r)
2/2 in problem (6.20) triggers the equidistribution of the error.

Indeed, considering (6.19), we would like that the contribution to the error of each

element in the grid at time tn be the same, that is

(
Er

|eG,n
r |

|eG,n−1
r |

)2

= (Erβr)
2 = KE r = 1, . . . ,nG

e ,

where we have supposed that, for small grid deformations, the ratio |Er|/|eG,n−1
r | is

almost independent of the grid geometry.

The term δ (βr − β̃r)
2/2 in problem (6.20) ensures that the grid does not experi-
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ence an excessive deformation, and in particular, we would like to impose that the

elements deform with the same volume variation, i.e.

βr = K̃Rr r = 1, . . . ,nG
e .

The constraint in (6.20) imposes that the metric ¯̄M does not change the overall vol-

ume of the domain Ω .

The solution of (6.20) is





βr =
δ β̃r + β̂r

1+ δ
−Λ

|eG
r |

1+ δ

Λ =
∑

nG
e

r=1

(
δ β̃r + β̂r

)
−|Ω |(1+ δ )

∑
nG

e
r=1 |eG

r |2
,

(6.23)

where Λ is the Lagrange multiplier of the constraint in (6.20).

We can also show that Λ = 0, in fact, using (6.22) and (6.21) we get

Λ =
δ K̃ ∑

nG
e

r=1 Rr +
√

KE ∑
nG

e
r=1

1
Er
−|Ω |(1+ δ )

∑
nG

e
r=1 |eG

r |2
=

δ |Ω |+ |Ω |− |Ω |(1+ δ )

∑
nG

e
r=1 |eG

r |2
= 0

(6.24)

As regards the weight δ we choose

δ > max

(
β̂max −U

U − β̃max

,
L − β̂min

β̃min −L
,0

)
, (6.25)

where β̂max, β̃max are the maximum values of β̂r, β̃r and β̂min, β̃min are the minimum

values of β̂r, β̃r and U , L are the upper and lower bound we want to impose to βr.

Indeed we have:

Proposition 6.1. If U > β̃max, L < β̃min, then (6.23) and (6.25) imply L ≤ βr ≤
U .

Proof. βr is an increasing function of β̂r and β̃r, as

∂βr

∂ β̂r

=
1

1+ δ
> 0,

∂βr

∂ β̃r

=
δ

1+ δ
> 0.

Therefore, from (6.23) it follows that βr < (β̂max + δ β̃max)/(1+ δ ). Since (6.25)

implies (β̂max +δ β̃max)(1+δ )> U , we get the first part of the bound. With similar

arguments the other bound holds.
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6.4 The handling of faults

6.4.1 A finite volume scheme

The time of appearance of a fault is given yet, faults must be tracked while the basin

moves and they evolve during the movement. Faults are described by a small area

with a decreased viscosity.

The tracking method relies on the knowledge of the elements whose viscosity is re-

duced, or, in other terms, of the grid elements the fault region ΩF goes through.

Since we do not aim at representing the fault surface precisely, we consider a

piecewise-constant indicator function, defined on the elements of the sub-grid, i.e.

the uniformly refined grid. This choice goes towards the increase of the accuracy

of the discrete solution. Indeed, three-dimensional grids usually have many more

elements than nodes, therefore the use of element-related unknowns guarantees a

lot of degrees of freedom in the fault region. We now define the fault function as

{
λ F > 1/2 in ΩF ,

λ F ≤ 1/2 in Ω\ΩF .
(6.26)

Moreover, we define the viscosity abatement function ψ , already introduced in (6.2),

as

ψ =

{
A in ΩF ,
1 in Ω\ΩF ,

where 0 < A < 1 is the viscosity abatement factor. The evolution of the fault func-

tion is determined by the following transport equation in an ALE form

∂λ F

∂ t
+(−→u −−→u g,∆ ) ·

−→
∇ λ F = 0. (6.27)

The discrete counterpart of λ F (t, ·) is λ F
∆ (t, ·) ∈WS

0 and is piecewise constant on

the elements. Its degrees of freedom at time tn are indicated by λ F ,n
r . We solve

(6.27) with the coupled LS–VT method developed in Chapter 4, i.e.

λ F ,n+1
r =

(
1+

4

∑
j=1

νn
r, j

)
λ F ,n

r −
4

∑
j=1

Fn
r, j,

where

νn
r, j =

∆ tF ,n

|eS
r |

∫

F S
r, j

(−→u (tn, ·)−−→u g,∆ (t
n, ·)
)
· n̂

are the interface Courant numbers, and ∆ tF ,n is the time step satisfying the follow-

ing condition

νn
r, j <

1

4
∀r = 1, . . . ,nS

e , ∀ j = 1, . . . ,4.
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Usually ∆ tn, the time stepping required for the stability of the main scheme, is

bigger then ∆ tF ,n, therefore ∆ tF ,n is chosen as a submultiple of ∆ tn and sub-time

stepping is performed. Finally, Fn
r, j are the numerical fluxes

Fn
r, j =

{
νn

r, jλ
F ,n
r, j if νn

r, j ≥ 0

νn
r, jλ

F ,n

r, j[r, j]
otherwise,

where

λ F ,n
r, j = λ F ,n

r + δλ F ,n
r, j . (6.28)

The limiter γn
r, j of the LS–VT scheme(defined in (6.28)) is computed, for j =

1, . . . ,4, in the following way

δλ F ,n
r, j =





min

(
∆λ F ,n

r, j ,
1+∑4

j=1 νn
r, j −νn

r, j

νn
r, j|Jk|

λ F ,n
r ,1−λ F ,n

r, j

)
if ∆λ F ,n

r, j > 0,

min

(
∆λ F ,n

r, j ,
1+∑4

j=1 νn
r, j −νn

r, j

νn
r, j|Jk|

(λ F ,n
r − 1),−λ F ,n

r, j

)
if ∆λ F ,n

r, j < 0,

1 if ∆λ F ,n
r, j = 0,

where

∆λ F ,n
r, j =

1

2
(λ F ,n

r j
−λ F ,n

r )

Jk is the set of indexes of the outflow faces of the r-cell, i.e. J = { j ∈ 1, . . . ,4 :

νn
r, j > 0}. It is worth noting that the LS–VT coupled scheme is positive, i.e., 0 ≤

λ F
∆ (t, ·) ≤ 1 for all t > 0. The next step is to develop a proper set reconstruction

technique, since the definition of the level set function here is different from the

standard distance function (see [65, 81]). Moreover, in contrast with what we have

done in Chapter 4, here we have used a discontinuous LS function.

6.4.2 Set reconstruction (continuous part)

The set reconstruction problem can be seen as follows: given λ F
∆ and ΩF =

H(λ F
∆ − 1

2
), where H is the Heaviside function

H(x) =

{
1 if x > 0

0 if x ≤ 0,

find a new fault region function that has better properties, i.e., that is less diffused.

In this section we construct, in the continuous framework a method, given λ F and

ΩF , to find a function θ such that H(θ ) =ΩF . This is a tautology in the continuous

framework, however, in the discrete one H(θ ) can be used as the reconstruction of

the fault function.
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Let’s now introduce the method in its continuous form. We define a coefficient α(t)
as

α(t) =
|ΩF (t)|

∫
Ω

(
λ F (t, ·)− 1

2

)
H(λ F (t, ·)− 1/2)

. (6.29)

The fault region can be found as H(θ ), where θ satisfies





J = min
θ∈L2(Ω)

1

2

∫

Ω
(θ −λ F )2

∫

Ω
θ =

|ΩF |
α

θ ≥ 0.

(6.30)

And we will see in a while that H(θ ) = H(λ F − 1
2
).

Proposition 6.2. The solution of problem (6.30) is

θ =

(
λ F − 1

2

)
H(λ F − 1/2). (6.31)

Proof. We show that every perturbation of the solution (6.31) yields an increase of

the functional J. Let’s consider a small perturbation of the solution that satisfies the

constraints θ = θ +εθ̃ , where ε is a parameter that tends to zero. θ̃ is a perturbation

function that satisfies the constraints in (6.30), therefore

θ̃ (
−→
X )≥





0if
−→
X /∈ ΩF

−θ (
−→
X )

ε
if

−→
X ∈ ΩF

,

∫

ΩF

θ̃ +

∫

Ω/ΩF

θ̃ = 0. (6.32)

Let’s evaluate the functional J in θ + εθ̃ :

J(θ + εθ̃ ) =
1

2

∫

Ω
(θ −λ F )2 + ε

∫

Ω
θ̃(θ −λ F )+O(ε2) =

= J(θ )+ ε
∫

ΩF

θ̃ (θ −λ F )+ ε
∫

Ω/ΩF

θ̃ (θ −λ F )+O(ε2).

From (6.31) we get

J(θ + εθ̃) = J(θ)− 1

2
ε

∫

ΩF

θ̃ − ε

∫

Ω/ΩF

θ̃λ F +O(ε2),

that, combined with the last equation of (6.32), leads to

J(θ + εθ̃) = J(θ )+ ε
∫

Ω/ΩF

θ̃

(
1

2
−λ F

)
+O(ε2).
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The first order variation is positive as λ F < 1/2 and θ̃ > 0 outside ΩF , therefore

θ is a minimum for J.

Moreover, if we neglect the compaction effects acting on the fault dislocation vol-

ume, we can prove that α does not depend upon time.

Proposition 6.3. If the velocity field is divergence free, α is time independent.

Proof. Let us compute α such that (6.29) is satisfied at t = 0. We show that if−→
∇ ·−→u = 0 the temporal variation of both the numerator and denominator in (6.29)

are null. Indeed, for the numerator we have:

d

dt
|ΩF |= d

dt

∫

Ω
H(λ F − 1/2) =

d

dt

∫

ΩF
1 =

∫

ΩF

−→
∇ ·−→u = 0,

and for the denominator

d

dt

∫

Ω

(
λ F − 1

2

)
H(λ F −1/2)=

∫

ΩF

∂λ F

∂ t
+−→u ·−→∇ λ F +

(
λ F − 1

2

)−→
∇ ·−→u = 0.

Therefore we get the proof.

6.4.3 Set reconstruction (discrete part)

We approximate now θ with Θ∆ ∈WS
0, a piecewise constant function defined on the

elements of the sub-grid. The discrete counterpart of problem (6.30) has the form

min
Θ∆∈WS

0

1

2

∫

Ω

(
Θ∆ −λ F

)2

+η

(∫

Ω
Θ∆ − |ΩF |

α

)
−
∫

Ω
MΘ∆ −

∫

Ω
N

(
1

2
−Θ∆

)
,

(6.33)

where η ∈R, M : Ω → R and N : Ω →R are the three Lagrange multipliers that

force respectively the first and the second constraint in (6.30), and Θ∆ ≤ 1/2. The

latter condition is not present in the continuous form, but comes from (6.31) that

imposes θ < 1/2. The equivalent optimality conditions for (6.33) are





Θr = λ F
r +(Mr −Nr −η) ,

η =
1

|Ω |




nS
e

∑
r=1

λ F
r |eS

r |+
nS

e

∑
r=1

|eS
r |(Mr −Nr)−

|ΩF |
α


 ,

where Mr,Nr,Θr ∈WS
0. This system is solvable with the Uzawa method (see [23]

and [51]), as follows
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Θ m+1
r = 2λ F ,m

r + 2(M m
r −N m

r )−ηm

ηm =
2

|Ω |




nS
e

∑
r=1

λ F
r |eS

r |+
nS

e

∑
r=1

|eS
r |(M m

r −N
m

r )− |ΩF |
α




M m
r = max(0,M m−1

r −ρΘ m
r )

N m
r = max

(
0,N m−1

r −ρ
(
Θ m

r − 1
2

))
,

where ρ is the acceleration factor. At the end of the iterative cycle, the function λ F
∆

is reconstructed by setting λ F
∆ = H(Θ∆ ).

6.4.4 The reconstruction algorithm applied to a simple case

In this subsection we report a numerical result regarding a simple one-dimensional

case. We consider the function λ (x) = x that can represent a highly diffused step

function. As we are interested in the advection of characteristic functions, we have

to deal with its reconstruction. Usually the sharp profile of a step function is diffused

by the finite volume scheme and gets much smoother. Clearly, in this case, our

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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X

 λ
F
 (

X
)

 

 

reconstructed

original

Fig. 6.4: The reinitialization algorithm applied once (dashed line) and twice (solid

line) to a highly diffused function.

minimization problem (6.30) has an analytical solution that is:

λ (x) =

{
0 for x ∈ [0,0.5],

1 for x ∈ (0.5,1].
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In Figure 6.4 a comparison between the original function before and after the reini-

tialization is shown. The algorithm provides a good reconstruction and a conserva-

tive behavior as the mass is conserved up to the 1%

6.4.5 Local grid refinement

In this section we recall the local mesh refinement algorithm applied near the fault

region. Actually, we have implemented a general algorithm that is capable to re-

fine an arbitrary number of elements, referred as marked elements. In our case, the

marked elements correspond to those lying in the fault region but, in general, we

will be able to adapt the grid wherever it may be necessary, for example, across

the interfaces. We have considered two local refinement algorithms: the Red-Green

and the bisection. The former exploits a uniform type refinement on the elements

and manages the hanging nodes with dedicated regularization methods; the latter

(a) (b) (c)

Fig. 6.5: The bisection of four tetrahedrons. a) Four tetrahedrons; b) The refinement

edge (in red); c) Eight tetrahedrons, with the new vertex (in red).

automatically generates a coherent grid, but only some variants that belong to this

class of methods, guarantee a good mesh quality. A brief review of the latter tech-

niques can be found in [11, 52, 53, 70] and [111]. We have implemented a recursive

longest-edge refinement which splits the longest edge of the marked elements and

assures a good mesh quality. In fact, to guarantee a coherent mesh, also the tetra-

hedra adjacent to the marked elements are bisected. The algorithm inputs are the

maximum edge length hmax, the maximum number of iterations Nmax and the list

lT of the indexes of the elements to be refined. Then we proceed according to the

following algorithm:

Algorithm 3 Mesh refinement

1. find the longest edge of eG
r , with r ∈ lT . For simplicity, we label it with the letter

G ;

2. if G is shorter than hmax terminate, otherwise iterate Nmax-times the following

steps:
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• find the longest edge belonging to the elements connected to G ;

• if this edge is G go to the next step, otherwise label the new edge as the new

G ;

3. refine the elements connected with G .

This algorithm terminates in a finite number of steps and produces a good mesh

quality although, for the 3D case, there are no theoretical statements that back this

heuristical result. At the end of the refinement phase, the physical data are trans-

ferred from the unrefined to the refined grid and, as new boundary elements may

be created, some more boundary data are generated. Finally, the mini-grid and the

sub-grid are built from the refined grid.

6.5 Algorithm workflow

We outline the structure of the program for the solution of (6.5).

Algorithm 4 At the generic time step n, we know the following variables of the

problem:

{−→u n−1
∆ ,Pn−1

∆ ,−→u n−1
g,∆ ,λ n

i,∆ ,λ
F ,n
∆ ,ρn−1

∆ ,µn−1
∆ ,φn−1,E n−1

∆ ∆ tn−1
}
.

Starting from this situation, we use the following numerical scheme to solve problem

(6.5):

1. from λ n
i and relation (6.3) compute φn;

2. from λ n
i , φn and relation (6.6) compute ρn;

3. from λ n
i , ψn, −→u n−1 and relations (6.1) and (6.2) compute µn;

4. solve the Stokes problem for −→u n and Pn:

{−→
∇ · (µn(

−→
∇−→u n +(

−→
∇−→u n)T ))−−→

∇ Pn +ρn−→g = 0,−→
∇ ·−→u n = Φ(φn),

5. from relation (6.15) compute the time step ∆ tn;

6. from ∆ tn and the adaptive grid movement algorithm (see Section 6.3) the grid

velocity −→u n
g is evaluated;

7. from the coupled LS–VT method and from the modified level set method (de-

scribed in Section 6.4), compute λ n+1
i and ψn+1 by solving the following evolu-

tion equations in (tn, tn+1]:





∂λi

∂ t
+(−→u n −−→u n

g) ·
−→
∇ λi = 0 for i = 1, . . . ,ns,

∂ψ

∂ t
+(−→u n −−→u n

g) ·
−→
∇ ψ = 0;
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8. with the grid velocity −→u n
g and ∆ tn, the grid is moved to a new configuration.

At the end of the time step, we get the update variable vector of the problem:

{−→u n
∆ ,P

n
∆ ,
−→u n

g,∆ ,λ
n+1
i,∆ ,λ F ,n+1

∆ ,ρn
∆ ,µ

n
∆ ,φ

n,E n
∆ ,∆ tn

}
.

Regarding the implementation of Algorithm 4, note that operations at steps (1), (2),

and (3) require the computation of the layer reference density and viscosity. This

operation requires the construction of a mean composition on every element eG
r of

the grid which is accomplished thanks to an interpolation of the node-based com-

position from the sub-grid to the elements of the grid, operation that is quite easy to

perform since the sub-grid is nested in the grid. The element-based composition is

filtered by the algorithm RECON (see Chapter 5), and saved apart from the original

composition.

6.6 Numerical results

In this test we want to illustrate the capabilities of our simulation code. For the time

being we only assure that the numerical techniques we have chosen work properly.

A complete physical validation test is beyond the scope of this work. Indeed it is a

lengthy process since there are few experimental data and most of them are affected

by a high degree of uncertainty.

The first test we have considered is the cinematical evolution of a faulted basin.

Here we would like to see whether the numerical scheme is able to cope with the

mesh distortion introduced by a fault. A two-dimensional example of a fault test

case can be found in [57]. In order to maximize the distortion effects we have have

set, for all the three layers in Figure 6.6, µ0
i = µ∞

i = 1022Pa · s. In other terms we

have considered a consolidated rock behavior. This is quite unrealistic, usually the

surface sediments are less compacted and weaker. However the main objectobjective

of this test is to demonstrate the code robustness even in these extreme conditions.

We also set the sediment density to 3000kg/m3 and a Newtonian rheological law is

considered.

In Figure 6.6 we can see the sediment evolution: the fault behaves as a sliding plane

triggering the subduction of the right part of the basin. In this test case only three

surface remeshing steps are needed and the mesh quality is kept high. Our result can

be compared with the observed qualitative behavior of the faults in the extensional

sedimentary basins (see Figure 6.7). As we can see, the qualitative behavior of the

interaction between the sediment layers and the fault evolution are captured.

The second test case is focused on the ability of the code to simulate the evolution

of a sedimentary basin when some sedimentation events occur. We have considered

the following set of physical characteristics:
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.6: The evolution of a faulted region with three layers.

Sediment ρ 103kg/m3 µi 1020Pas φ0

Salt 2.14 1 0.05

Eocene 2.5 100 0.6

Oligocene 2.5 100 0.78

Early-Miocene 2.55 100 0.78

Mid-Miocene 2.6 100 0.78

Late-Miocene 2.6 100 0.78
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Fig. 6.7: The effects of a fault system in an extensional sedimentary basin.

At the first time step (55.8Ma - ago) only three layers are present, the others are

deposited according the following time-schedule:

Sediment Time

Early-Miocene 23 Ma

Mid-Miocene 16.1 Ma

Late-Miocene 11.6 Ma

In Figure 6.8 we can see the whole evolution of the salt diapir, the subsequent depo-

sition of the sedimentary layers and the horizons which are the separating interfaces

between the layers. Also compaction effects are taken into account. We can see in

Figure 6.9 the evolution of the porosity and its effects on the density field in Figure

6.10. The last test case we have considered is a sedimentary basin with two faults

and a salt layer. This test case is important in order to prove the ability of the code

to track the faults when they are strongly deformed by a rapidly rising salt diapir.

Here we have considered the following layer characteristics:

Sediment ρ 103kg/m3 µi 1020Pas φ0

Salt 2.14 1 0.05

Eocene 2.5 100 0.6

Oligocene 2.5 100 0.78

In Figure 6.11 we have outlined the evolution of the sedimentary basin at 55.8,

51.64, 45.2, 40.81, 38.25, 35.23, 32.23 and 29.67 millions years ago. The blue

layer is the salt layer while the green layer is the Eocene layer and the red color

is associated to the Oligocene layer. The horizons are depicted in yellow and the

damaged fault-areas are the black-shaded regions. As we can see the fault regions

are transported by the velocity field and are deformed by the rising diapir.
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(a) (b)

(c) (d)

Fig. 6.8: The evolution of a salt diapir.

(a) (b)

(c) (d)

Fig. 6.9: The porosity field.
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(a) (b)

(c) (d)

Fig. 6.10: The density field 103kg/m3.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.11: The evolution of two faults and three layers.





Chapter 7

Conclusions

In this thesis we have developed all the numerical building blocks to simulate a

three dimensional sedimentary basin. Some physical models have been outlined and

a simplified model has been selected which consider only the evolution of the solid

sediments. By now this seems a good compromise between the computational bur-

den and the accuracy. However, as soon as high performance computers and parallel

codes are available, we think that also the fluid evolution will be taken into account.

In the third Chapter a new coupled LS-VT method is introduced. This method is

computationally efficient and very robust. Moreover it seems promising for many

other applications involving the conservative tracking of multi-fluid flows. From the

theoretical point of view we are still seeking some global consistency results along

with the total variation boundness properties and a convergence result on arbitrary

meshes.

In Chapter 5 we have introduced the Stokes problem and we have examined its

conditioning properties. There we have shown good computational results but we

cannot prove theoretically the spectral equivalence between the Schur complement

and the preconditioning matrix. Moreover the preconditioner of the stiffness matrix

could be optimized. By now a ILU type of preconditioner is used but its perfor-

mances are shown to be dependent on the viscosity jumps. The domain decomposi-

tion technique has been used for the construction of many optimal preconditioners

with respect to the variations in the coefficients. The additive Schwartz method has

been successfully applied to cases where the coefficients have small variations ex-

cept, in some small isolated regions, see [78]. On the contrary, the substructuring

schemes are very effective in all the cases in which the coefficient is almost piece-

wise constant. The regions where a coefficient is constant are also called subdomains

in the domain decomposition theory. If we can construct a mesh such that all its el-

ements belong to only one subdomain, then the substructuring methods are optimal

with respect to the coefficient jumps, see [92]. As long as a non-Newtonian rela-

tion is used, the viscosity is not constant inside the subdomains and can be highly

variable. Even though a Newtonian law is employed, in our case, the subdomains

are represented by some level set functions and their boundaries, usually, cross the

elements of the grid. In other terms, by now, no optimal technique seems to apply

117
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to our case.

In Chapter 6 some other important features are introduced such as: the compaction,

the movement of the domain boundaries, the fault tracking, the non-Newtonian rhe-

ologies.

The compaction effects are both treated in Chapter 4 and 6, in the latter one some

simplified forms are use as we have neglected the evolution of the fluid part. How-

ever when proper parallel and efficient codes are developed, the models of Chapter

4 will be used.

The ALE scheme for the grid movement has been proven to be robust and efficient

in fact a few remeshing are needed during long period simulations. In particular the

scheme is very sensitive with respect to the initial quality of the mesh. If the initial

mesh is bad, we have to limit the r-adaption or even to disable it. The initial mesh

quality should be addressed, in the future, using dedicated mesh regularization al-

gorithms.

The fault tracking technique seems also interesting in all the applications where we

are not interested in a precise reconstruction of the domain boundaries and, there-

fore, a discontinuous level set function can be used. Future developments can in-

clude a more deep theoretical analysis of this scheme.

Last, but not least, the rheological properties of the materials pose the main diffi-

culties to this geological time scale simulations. The confidence in the simulations

is highly dependent on the behavior of the materials. Moreover, a more involving

test phase should be carried out to figure out whether the computed evolution of the

basin are coherent with the experimental data collected on the ground.
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