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ABSTRACT

A rapidly growing world population and an increasing density of
settlements demand ever-larger and more complex buildings from
today’s engineers. These requirements can often be met due to a
continuous development of new building fabrics and construction
processes. In comparison to this technological progress, the devel-
opment of novel equipment for emergency evacuation of buildings
has been quite stagnant in recent years. Current evacuation sup-
port facilities are mainly limited to stationary exit signage and
emergency maps displaying recommended escape routes. Such
emergency maps can be easily overlooked and are often perceived
as confusing and unclear, especially when someone is in panic. How-
ever, the main problem with contemporary building evacuation
support equipment is its inability to adapt recommended escape
routes to the ever changing environment during the evacuation
process. Neither fire outbreaks, smoke formation, blocked passages
due to debris of collapsed masonry can be considered, nor can the
current distribution of people inside the building be taken into
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Abstract

account when planning potential escape routes. Nevertheless, these
factors strongly affect potential congestion emergence and, hence,
the evacuation time.

The increasing propagation of mobile devices designed for wireless
communication, such as smart phones, tablet PCs, or general
devices for personal digital assistance, opens up an opportunity to
improve the support of evacuees during an emergency evacuation
of a building. In emergency cases, the mobile device can alert its
user via ringing or vibrating and display an individual escape route
on its screen. By pointing out respective directions, the device
can navigate its user to a safe exit. The advantage compared to
traditional escape route signage lies in the possibility to update the
recommended escape route according to new information about the
current evacuation situation. Such information can be gathered
by the device via wireless communication between devices and
the environment. In this thesis, the Organic Building Evacuation
Support System, or OBESS, is introduced. OBESS is a concept
for an adaptive building evacuation system based on the paradigm
of controlled self-organization from the research area of Organic
Computing. To achieve this characteristic system behavior, an
exemplary implementation of the Observer/Controller Architecture
is presented. The Observer/Controller Architecture is a generic
system architecture developed in the context of Organic Computing,
designed specifically for the purpose of realizing controlled self-
organization. The support system consists in part of mobile devices,
which have the ability to establish an ad hoc network via local
communication with each other. This way, local communication
provides a mean for the dissemination of information about the
current evacuation situation in the network. This information can
then be used to find the optimal escape route for the user of each
device. In OBESS, all computations are meant to be performed
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in a decentralized way, directly on the mobile devices in order to
avoid having a single point of failure in the system. This approach
increases the robustness of the evacuation system, which is a crucial
characteristic, especially for emergency applications.

There are two algorithmic challenges that have to be mastered in
order to realize such a decentralized evacuation support system
based on mobile devices. Firstly, the devices have to compute
escape routes based on uncertain and incomplete information re-
garding the evacuation situation. Amongst other reasons, this is
partly due to the fact that communication over an ad hoc network
is generally delayed and that the network can get disconnected
from time to time since participating devices move through the
building. So far, the task of decentralized escape route planning
based on uncertain information has received little attention from
researchers. Since it is a key prerequisite for a robust evacuation
support system based on mobile devices, a large part of this thesis
is dedicated to developing solutions for this problem. The second
crucial requirement for the realization of the building evacuation
support system proposed is the ability to determine the locations of
mobile devices in the building. Since signals of the most commonly
used localization technique, the Global Positioning System (GPS),
are usually not available indoors, this task alone can be a challenge.
For static sensor networks, which have similar characteristics to
mobile ad hoc networks, many localization techniques which are
independent from GPS-signals have been proposed over time. Since
an important difference between sensor and ad hoc networks is
the mobility of the devices in the network, this thesis investigates
the effect this mobility has on various distance estimation tech-
niques, which ultimately form the basis for localization algorithms
in OBESS. It is shown that mobility of devices has a significant
impact on the accuracy of computed locations and, therefore, has
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to be dealt with explicitly. For this, several solutions are suggested
and evaluated in this thesis. In addition, this thesis presents an
optimization approach to improve the localization infrastructure
for mobile devices in specific buildings and discusses the potential
of the Observer/Controller Architecture for improving the accuracy
of indoor localization.
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CHAPTER 1

INTRODUCTION

A continuously increasing global population and settlement density
combined with huge progress in the building and construction
industry led to the emergence of ever-larger and more complex
buildings. Recently, the world’s tallest construction, the Burj al
Khalifa in Dubai, was brought to completion in October 2009.
This imposing structure consists of 900 apartments, which are
distributed over about 190 floors. Although probably being the
most prominent example of today’s engineering skills, there are
many more to name. The Ghery Buildings in Diisseldorf, Germany,
clearly illustrate the ability and willingness to construct buildings
which diverge from simple geometric forms. Another illustrative
example of complex architectural design is the Habitat 67, a model
community and housing complex in Montreal, Canada, where
houses are assembled in an irregular structure. In contrast to
such developments, most buildings’ precautions for emergency
evacuation are comparatively underdeveloped. Hence, they fail to
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profit from technological progress, which has found its way into
most other areas of everyday life. The fact that an infrastructure
whose main purpose it is to save human life does not keep up with
technological achievements is surprising, at best, if not worrying.
Therefore, it is an urgent matter to investigate how new scientific
insights and findings, for example in the area of computer science,
can be exploited in order to improve emergency management in
modern buildings.

1.1 Motivation and Problem Statement

Today’s approach to prevent disasters and support a well-ordered
evacuation of buildings is to install safety devices, such as sprinkler
systems, fire or smoke alarms, fire extinguishers, exit signs, and
emergency maps. In general, such emergency maps display the
current floor, recommendations for escape routes, and the locations
of first-aid kits or fire extinguishers. Apart from that, there are
usually stationary signs installed throughout the building, which
are meant to direct people to nearby exits or safe areas. Figure
1.1 displays some examples of such signage. A major drawback of
such kind of emergency facilities is the fact that they are usually
developed when the building is constructed and are permanent
without provision for frequent changes. The route guidance which
is provided by exit signs and emergency maps is designed based on
expectations regarding the evacuation process, which are obtained
from statistical data and expert knowledge. However, the resulting
escape routes can be suboptimal in case the situation in the building
differs from the expected scenario, for example in terms of the
number of evacuees or their distribution across the rooms, et
cetera. Furthermore, the escape routes are not necessarily optimal
for people with special needs due to disabilities or other handicaps.
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Fahy and Proulx [62] published reports from survivors of the attacks
of September 11th, 2001, which indicate that the main obstacles
during their escape were congestions in bottleneck-areas and closed
or blocked passages due to smoke formation or damaged building
fabrics. Conventional evacuation signs are unable to adapt to
the specific evacuation situation in the building, to changes in the
environment during an emergency situation, or to personal needs of
specific evacuees. Another serious problem is that navigation signs
are stationary and sometimes easily overlooked in panic situations
(cf. Morishita and Shiraishi [165]). Smoke formation and lack
of illumination can further aggravate this situation. Even people
who are familiar with the building’s layout can have difficulties to
find their way to the exit under such circumstances (cf. Fahy and
Proulx [62]). Furthermore, conventional emergency maps are often
hard to apprehend, especially when in panic. Since they are fixed
to the wall, they cannot be rotated, which is common practice for
some people in order to orient themselves on a map.

For all these reasons, today’s evacuation support equipment in
buildings should be reconsidered and replaced with more innovative
solutions, which can overcome the identified deficiencies. A modern
evacuation system should have digital illuminated screens, which
show navigation instructions towards safe areas or exits of the
building. Ideally, some of these screens are portable devices, which
can be carried by evacuees. This way, frequent searches for new
signs during the evacuation process can be avoided. Evacuation
devices should provide the possibility to assess the current evacua-
tion situation, detect changes in the environment, and adapt the
navigation instructions accordingly. Furthermore, it is desirable
to integrate personal information about the devices’ users in the
process of finding suitable escape routes.
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Figure 1.1: Standard navigation signs for building evacuation.

1.2 Objectives and Approach

The widespread distribution of mobile devices, such as smart phones
or tablet PCs, provides a chance to achieve a changeover in evacua-
tion support for buildings. These devices are portable and equipped
with digital illuminated screens, which can display a building’s lay-
out and navigation instructions to guide their users. Mobile devices
typically possess means for wireless communication via short-range
communication modules, which could provide information about
the current situation in the building. Moreover, the devices are
able to form a so-called Mobile Ad Hoc Network (MANET), or ad
hoc network for short, i.e., a network which consists of dynamically
built-up connections between devices which are located within
sufficiently close proximity. Each device in such a network forwards
messages that it receives to all other devices in its communication
range. This allows for dissemination of information in the network,
which increases the knowledge each device can obtain about the
environment. In addition, mobile devices possess computing capaci-
ties, which are needed in order to determine navigation instructions
and to dynamically adapt them according to newly available in-
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formation. There is no need for a central computing unit in the
building, which makes the evacuation support system scalable and
robust against a single point of failure. The fact that each evacuee
can have his own mobile evacuation device provides the potential
to personalize evacuation route planning. Individual preferences
and needs, such as for disabled or elderly people, can be taken into
account.

However, the scalability and robustness a system gains from de-
centralized computation and information acquisition via local com-
munication have their price. The lack of global knowledge poses
a special challenge for evacuation route planning. Firstly, the
available information basis can be incomplete in case the ad hoc
network is disconnected, or if there are no devices located in a
certain area of the building which can report about its state. Sec-
ondly, messages received from nearby devices can be obsolete or
outdated because of the delays which arise during the forwarding
process. Furthermore, information exchanged between the devices
could, from the outset, be incorrect either as a result of error-prone
computations or when human users report false information to
their devices, be it accidentally or even on purpose. Although
these are considerable shortcomings, the above described advan-
tages justify a thorough investigation of the potential that mobile
devices hold for the improvement of evacuation support in future
buildings. Since the task of evacuation route planning on mobile
devices differs from standard path-finding problems which require
global and certain knowledge, the first objective of this thesis is:

1. Proposing and evaluating methods to determine optimal evac-
uation routes on mobile devices which regard user preferences,
take into account uncertain information gathered via local
communication, and are adaptable to detected changes in
the environment.
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In order to be able to navigate their users, the devices have to be
able to determine their current locations in the building. Since
there is usually no GPS-signal available indoors, the localization
alone becomes an ambitious task. To tackle this problem, the
devices’ ability to organize into ad hoc networks and exchange
messages with other devices in this network comes in handy. While
localization of mobile devices in an ad hoc network has not yet
received much attention, there are a vast number of localization
techniques proposed for a Static Sensor Network (SSN) in the
literature. SSNs have similar characteristics to MANETSs but differ
in the fact that the devices are stationary. Mobility of the devices,
however, can fundamentally affect the applicability of localization
algorithms designed for SSNs to MANETS, which leads to the
second objective of this thesis:

2. Investigating the applicability of localization algorithms de-
signed for SSNs to MANETSs and developing reasonable ad-
justments.

Due to the mobility of the devices, their surroundings change
constantly. This is why the evacuation route planning, as well
as the localization process, have to be able to adapt to new and
unforeseen situations. Such a requirement calls for self-organization
amongst the involved devices. Self-organization enables a system
to autonomously operate in unpredictable and interchanging envi-
ronments. If predicting all potential system states at design time
poses a problem, it is advisable to embrace self-organization as a
design principle. At the same time, self-organization always bears
the risk of undesired system behavior emerging from local interac-
tions between the system’s components due to the lack of global
coordination and supervision. This can be disastrous, especially
when it happens in a life-threatening situation, such as a building
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evacuation. As a consequence, it is desirable to allow for a certain
amount of control in an otherwise autonomous evacuation support
system. Organic Computing (cf. Miiller-Schloer and Schmeck
[169], Miller-Schloer et al. [170], Schmeck [213], VDE/ITG/GI
[235]) deals with the design of self-organized technical systems in
order to make them flexible in their reaction to changes in the en-
vironment or the system’s objectives. At the same time the system
remains trustworthy and robust with respect to failures and distur-
bances. The Observer/Controller Architecture (O/C Architecture)
(cf. Branke et al. [23], Miiller-Schloer [168], Richter [193], Richter
et al. [195]) is a generic design framework developed to build such
organic systems in a way that they exhibit the previously described
life-like characteristics. Pursuing the goal of a controllable and self-
organizing Organic Building Evacuation Support System (OBESS),
the third objective of this thesis is:

3. Developing a concept for a controllable, self-organizing evacu-
ation support system by applying the generic O/C Architecture
to the mobile evacuation devices in the system.

The aforementioned objectives lead directly to the major contribu-
tions this thesis provides for the research areas of evacuation route
planning, localization in MANETS, and Organic Computing.

1.3 Major Contributions

The first major contribution relates to the research area of evacua-
tion management. A concept for an evacuation support system in
buildings is presented, which consists of a MANET, an SSN, and
a Central Control Unit (CCU). The presented system emphasizes
decentralized computations and local communications between its
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components, which makes it scalable and robust against a single
point of failure. In addition, two algorithms for decentralized evac-
uation route planning on mobile devices are presented, which are
designed to integrate uncertain information about other evacuees’
locations in the building. This information is gathered via local
communication and subsequent dissemination over ad hoc network
connections to other mobile devices in the building. It is shown
that the evacuation process can be accelerated compared to a situ-
ation without communication between the devices, even though
the information can be incomplete, outdated, and error-prone due
to the characteristics of the scenario. Both algorithms are designed
in a way that they can adapt to changes in their environment
and one method regards user preferences in the optimization of
escape routes. Since the strongly expanded use of mobile devices
is a rather recent phenomenon, the idea to use mobile devices to
support the evacuation of a building has not yet been subject to
extensive investigations. The proposed methods for distributed
and adaptive escape route planning on mobile devices advance the
research in this area.

The second set of contributions relates to the task of localization,
more precisely, to determine the locations of mobile devices in
an ad hoc network without the use of GPS-receivers. While this
challenge has received much attention for static devices in SSNs,
mobility is rarely addressed. The usual proposition to account for
mobility is to constantly repeat the respective algorithm in order
to find the devices’ new locations when they moved. However,
an extensive study about the impact of mobility on localization
algorithms presented in this thesis shows that simple repetition
leads to an unpredictably high inaccuracy in the resulting loca-
tions. Experiments reveal details about the effects various mobility
models have on the quality of localization results and identify main
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influencing factors of these models, such as speed or direction of
movement. A modification of a distance estimation algorithm is
suggested, which is shown to reduce the error produced by mobility
of the devices. Additionally, two indicators are proposed which can
characterize the mobility of devices in a network based on locally
available information. As a consequence, localization results could
be corrected in order to account for the distortion brought by the
specific mobility pattern. Moreover, a distributed, nature-inspired
procedure to synchronize devices in a MANET is successfully tested
and, based on it, a method is developed for distance estimation,
which is shown to improve the mobility induced localization error.
Furthermore, a novel distance estimation approach is introduced
and experiments are presented to demonstrate that by applying
this algorithm the accuracy of localization can be improved for var-
ious network topologies and especially for MANETSs. The quality
of the results produced by localization algorithms mostly depends
on the placement of specific devices in the network which possess
knowledge of their own positions. This thesis contributes an
Evolutionary Algorithm (EA), which can be used to optimize the
locations of such devices. Valuable insights about an optimal device
placement for localization during a building evacuation process are
obtained by an experimental study. These findings contribute to
both, the research field of evacuation planning and localization for
MANETS.

Moreover, a contribution is made, which relates to evacuation man-
agement, localization, and Organic Computing as well. Organic
Computing is concerned with the design of self-organizing technical
systems in order to make them adaptable and trustworthy at the
same time. A generic O/C Architecture was developed for such
systems, which provides for online and offline learning mechanisms,
i.e., learning at runtime and in a simulation, in order to achieve



Chapter 1 Introduction

these goals. In this thesis, a conceptual system architecture is
proposed, which applies the generic O/C Architecture from Or-
ganic Computing to the mobile devices in the building evacuation
support system. It is shown how the generic architecture can be
implemented for evacuation route planning and localization. It is
further introduced how offline learning can be used to evaluate the
quality of an evacuation instruction with respect to the current
evacuation situation in the building before it is suggested to the
user. Apart from that, the O/C Architecture offers a chance to im-
prove localization. The study of localization algorithms presented
in this thesis reveals that various localization techniques can deliver
high quality results under different environmental circumstances.
When determining to use a specific localization algorithm at design
time, there can be circumstances under which another localization
algorithm could deliver better results. Here, a concept is proposed
which uses online and offline learning mechanisms provided by the
generic O/C Architecture in order to switch between various local-
ization algorithms at run time. Learning mechanisms are applied
to improve this decision process over time. This is a novel approach
to the task of localization, which opens up a new perspective for
research in this area.

1.4 Structure

This thesis is structured as follows. Chapter 2 describes the re-
search context of this thesis. A short introduction of MANETS is
given and the main research topics regarding these networks are
discussed. Subsequently, the research area of Organic Computing
and the related O/C Architecture is described. In addition, an
overview of the concepts of swarm intelligence and nature-inspired
computing is given and their role in organic systems is discussed.

10
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The chapter proceeds with a description of current research in the
area of evacuation management, including evacuation modeling and
optimization approaches, as well as an overview of state-of-the-art
concepts for evacuation management systems with mobile devices.
Subsequently, the task of localization is introduced and various
approaches to the problem are described with focus on localization
of devices in MANETs and SSNs. Chapter 2 concludes with an
overview of state-of-the-art localization systems.

A concept for OBESS is presented in Chapter 3 and the main
elements of this system, as well as their functionalities, are de-
scribed. An examplary application of the generic O/C Architecture
to mobile evacuation devices follows and the potentials this archi-
tecture provides for the improvement of evacuation planning and
localization are discussed.

In Chapter 4, two distributed evacuation planning algorithms are
developed, which can be employed by mobile devices to navigate
users to an exit while taking into account information about other
evacuees derived from local communication. Simulative experi-
ments show that this information can be used to improve the overall
evacuation time compared to route planning without communi-
cation, even though the devices have only uncertain information
about their environment.

Chapter 5 investigates various methods to locate mobile devices
in ad hoc networks without the use of GPS-receives. A standard
localization algorithm, which has been proposed for static net-
works, is stressed under various mobility models and important
influencing factors of the mobility pattern on the localization ac-
curacy are identified. Additionally, various methods to improve
the localization results for MANET' are presented and discussed.
The approaches are investigated thoroughly, compared, and evalu-
ated in simulative experiments. Concluding this chapter, an EA

11
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is proposed, which optimizes the placement of specific devices in
order to improve localization accuracy. This approach is tested in a
simulative evacuation scenario and provides valuable insights into
the characteristics of an optimal placement and into the factors
which influence such an optimal solution.

Chapter 6 summarizes the research presented in this thesis and
subjects it to a critical evaluation which leads to the prospects for
future research in order to advance the vision of OBESS.

12



CHAPTER 2

RESEARCH CONTEXT AND
STATE-OF-THE-ART

In this chapter, the research context of the work presented in this
thesis is outlined and fundamental principles are explained. Firstly,
a short introduction to MANETS is given. The chapter proceeds
with a description of the concept of Organic Computing and its
generic O/C Architecture, which forms the basis for the software
architecture of the mobile devices in OBESS. Subsequently, the
state-of-the-art in evacuation management research is described in
detail. The chapter concludes with an introduction to the task of
localization and state-of-the-art localization methods are described.

2.1 Mobile Ad Hoc Networks

MANETS are networks which consist of a number of mobile devices
with the ability to communicate with other nearby devices using

13
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a short-range wireless communication module, like infrared, Blue-
tooth [20], or ZigBee [257] technology. Also, the devices forward
messages that they receive to all other devices in their neighbor-
hood. Hence, the devices are able to spontaneously form networks
which make long-distance communication possible (cf. Ghosekar
et al. [75]). In contrast to SSNs, the devices in a MANET are mo-
bile and not necessarily equipped with sensors. Ad hoc networks
have been subject to research since the late 1960s (cf. Abramson
[1]) and have been widely studied in the literature since. There
is a working group founded by the Internet Engineering Task
Force (IETF) [107] to investigate MANET related issues. Apart
from being mobile, the devices in MANETS are usually assumed to
have limited resources in terms of memory, processing capabilities,
and power supply.

In the work of Nan and Li [172], an overview of the main research
areas for SSNs is given. According to these authors, the main
research areas are resource management, optimization of the de-
vices’ lifetimes and their localization in the network, routing of
information in the network, and optimizing the coverage of the
network. It should be noted that the scientific questions in the
area of SSNs can mostly be transferred directly to MANETS due to
the similarity of SSNs and MANETSs. Throughout this thesis, the
localization task is the main focus, however lifetime optimization
and optimal coverage is also touched upon.

When talking about routing in ad hoc networks, there is a vari-
ety of protocols proposed, which can mostly be categorized into
distance vector routing or link state routing protocols (cf. Ballew
[14], Tanenbaum [228]). While in distance vector routing each
device communicates all distance information it possesses to its
neighbors, in link state routing only distance information about
the links to direct neighbors is communicated to the whole net-
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work. Many implementations of these protocol types are suggested
and each protocol has its advantages and disadvantages, such as
varying packet sizes or the number of messages needed to establish
and maintain routing information. For the research presented in
this thesis, however, there is no need for direct communication
between specific devices because broadcasts are used to distribute
information over the whole network. Thus, routing is paid little
attention to. The communication model assumed for the network
throughout this thesis is similar to the Gossip Protocol (cf. Haas
et al. [81]). The Gossip Protocol is an alternative routing method
to Flooding, which is the most basic way to disseminate messages
in networks where each device simply forwards all information
available to all neighbors. The idea of the Gossip Protocol, also
called Epidemic Routing, is that each device only forwards the
most recent information it receives and, thus, the communication
overhead is reduced.

Another great advantage of decentralized ad hoc networks is that
the information exchange can still function even if certain devices
are broken. In contrast to networks which depend on a central unit
for message routing, which is often the case in wireless local area
networks, communication in ad hoc networks remains intact in case
of individual failures of devices. This lack of a single point of failure
makes the network’s communication robust, even in regions where
there is no existing communication infrastructure or where the
available infrastructure is damaged. This characteristic makes the
operation of such networks attractive in many application scenarios,
such as geographic monitoring, target tracking, or evacuation
management.
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2.2 Organic Computing

Another research area touched upon in this thesis is Organic Com-
puting. The Organic Computing initiative started with a position
paper from the German Informatics Society (GI)! and the Infor-
mation Technology Society (ITG)? in 2002 and was established as
priority program 1183 by the German Research Foundation (DFG)3
in 2004 [214]. The fundamental observation that led to the Organic
Computing initiative was that future computing systems become
smaller in size and at the same time increase in performance and
quantity. Due to this development, computing systems become
ubiquitous. Sometimes, they form possibly unlimited dynamic net-
works via local communication, hence, building complex, variable,
and unpredictable structures. Such computing systems will likely
be part of everyday life enhancing the functionality of our houses
(cf. Allerding et al. [6], Bing et al. [19]), offices (cf. Davidsson and
Boman [49]), cars (cf. Corona and De Schutter [45], Srovnal et al.
[222]), manufacturing industry (cf. Liana et al. [135]), health-care
facilities (cf. de Ruyter and Pelgrim [51], Soar et al. [220]), et
cetera. Because of the dynamics of the environment such systems
are deployed in, they are required to be flexible and adaptive to
unforeseen situations. Since all potential states of the environ-
ment or the system itself cannot be accounted for at the time of
design, some degree of self-organization is necessary to cope with
the dynamics, complexity, and unpredictability of such computing
systems. While there are different definitions for self-organizing
systems, “..in the most general way the essence of self-organization
is that system structure appears without explicit pressure or in-

LGesellschaft fiir Informatik e.V.
2Informationstechnische Gesellschaft
3Deutsche Forschungsgemeinschaft
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volvement from outside the system” Schmeck [212]. When external
involvement is excluded, the desired behavior has to be established
exclusively by interactions between the system’s components. A
system which adapts itself to a changing environment possesses
almost life-like properties, such as self-protection or self-healing.
This is the reason for the choice of name.

When a system acts completely self-organized, the question arises
whether it is possible to trust such a system and how it can be
guaranteed that no unexpected and possibly harmful system be-
havior arises. Organic Computing addresses the tradeoff between
the desire to have an adaptive, flexible, and self-organized system
which is also trustworthy and robust. While an organic system (in
the sense of following Organic Computing principles) is encouraged
to solve tasks in a self-organized way using feedback loops and
learning, the possibility for a user to intervene in the case of an
undesired emergent behavior is given to ensure correct system
behavior. Another requirement of future computing systems iden-
tified and addressed by Organic Computing is the need to design
computing systems according to human needs. This postulation
refers to the need for user-friendly interfaces. Because of the com-
plexity such systems exhibit, it is hard for a user to tell the system
exactly what it has to do. A much more convenient and realistic
way for users to communicate with such a system is by formulating
objectives or goals instead of precise instructions.

So far, Organic Computing is used for the design of various system
types, for example the control of traffic (cf. Fekete et al. [65]),
self-organization of traffic lights (cf. Prothmann et al. [185]), design
of a robot control architecture (cf. Brockmann et al. [25]), artificial
vision (cf. Walther and Wiirtz [241]), energy management in smart
homes (cf. Allerding et al. [6]), and many more (cf. Miiller-Schloer
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et al. [170]). The application to a building evacuation scenario,
however, is novel.

2.2.1 Organic Observer/Controller Architecture

One outcome of the Organic Computing initiative is a generic
O/C Architecture. It allows for controlled self-organization in dis-
tributed technical systems (cf. Branke et al. [23], Miiller-Schloer
[168], Richter et al. [195]). The architecture provides means for ob-
serving, analyzing, and characterizing the current state of a System
under Observation and Control (SuOC), as well as the ability to
predict its future behavior. This information is subsequently inter-
preted by the controller in order to direct the system into a desired
system state and prevent unwanted emergent behavior (cf. Mnif
et al. [163], Ribock et al. [192], Richter and Mnif [194]). While this
all happens without external control, the possibility for a human
user to control the system still is provided. User input can be made
in terms of objectives and goals. Apart from the O/C Architecture,
similar concepts are presented in other scientific disciplines like
mechanical engineering (cf. Hestermeyer et al. [93]) or autonomic
computing (cf. Kephart and Chess [121]). However, these archi-
tectures do not cover all aspects of an organic system. The main,
but not only, difference is that the generic O/C Architecture em-
phasizes the role of an external entity to specify system-objectives.
In the next section, the generic O/C Architecture is described, as
it serves as a basis for OBESS. For a detailed introduction and
distinction between the generic O/C Architecture and similar con-
cepts, it is referred to the respective literature by Miiller-Schloer
[168], Richter et al. [195], and Branke et al. [23].

The generic O/C Architecture consists of four elements, which in-
teract with each other: The SuOC, the observer, the controller,
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and a higher level entity specifying the system-objectives, which are
usually provided by a human user but, in theory, could also be pro-
vided by another computing system. Further on, this higher level
entity is referred to as “user”. Figure 2.1 shows the basic elements
of the architecture and their relationships. These components and
their interactions are explained in detail in the following.

observer

Figure 2.1: The main elements in the generic O/C Architecture
and their interactions.

System under Observation and Control

The SuOC can be a set of interacting entities, as illustrated in
Figure 2.1, or a single device. The behavior of this system is
subject to the influence of the controller and is desired to satisfy
the objectives given by the user. Still, it does not depend on the
existence of neither the observer, nor the controller, nor the user.
The system gets input from its environment, i.e., parameters which
can influence the behavior of the SuOC but are uncontrollable
by the system. Furthermore, there is output from the SuOC,
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i.e., changes to those parameters in the environment that are
visible to external entities outside the SuOC. In addition to input
and output, the SuOC has internal parameters, i.e., parameters
changeable by the system in order to influence its own behavior.
These parameters are only accessible from the outside if specified
explicitly as configuration parameters of the SuOC. An example of
such a system could be those components of a car which are meant
to collaboratively ensure a certain driving speed. The desired
driving speed would be the objective given by the user. Input
parameters could be outside temperature, the incline of the road,
et cetera, and the output parameter is the driving speed. Internal
parameters can, for example, be a certain motor configuration,
which is regulated by the software of the car, but cannot be set
explicitly by the user.

Observer

The system is observed, analyzed, and its current state is charac-
terized by the observer. Furthermore, the observer is responsible
for predicting the most likely future state of the system. Figure
2.2 shows the components of the observer and their interdepen-
dencies in the generic O/C Architecture. The observation model
is selected by the controller and it determines how the other com-
ponents in the observer work depending on the current objectives.
It can, for example, decide which parameters of the SuOC should
be monitored or what their sampling rate is. The monitor collects
the specified parameter values from the SuOC according to the
defined sampling rate and stores these values in log files. The pre-
processor takes this data and prepares it for the data analyzer and
the predictor module, for example by filtering or aggregation. The
preparations needed are also specified by the observation model. In
the data analyzer, meaningful attributes that are able to character-
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ize the current system state, e.g., stochastic values are calculated
from the pre-processed data. The observation model determines
which values are computed. The predictor has some prediction
methods at its disposal and selects a suitable one according to the
observation model. With the selected prediction model and data
from the pre-processor it forecasts the future system state. This is
an important step because it increases the chance for the controller
to prevent undesired system behavior before it actually arises. The
output from pre-processor, data analyzer, and predictor is collected
in the aggregator-module and forwarded to the controller.
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Figure 2.2: The observer of the generic O/C Architecture and its
components.
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Controller

The main purpose of the controller in the O/C Architecture is to
select control actions, i.e., actions that influence the environment of
the SuOC, the communication between its elements, or the behavior
of the elements directly. Figure 2.3 shows the components of the
controller and their relations. The selection of an appropriate action
for a certain situation is done in the action selector. The mapping
from system state to appropriate action is subject to a learning
process (cf. Fredivianus et al. [70], Richter [193], Richter and Mnif
[194] for detailed descriptions). This process can be distinguished
into online and offline learning. Both learning mechanisms take
place in different parts of the controller. During online learning,
actions are executed which influence the SuOC. The quality of
these actions is deduced from the system’s response. For this,
the controller keeps track of the previously applied actions and
the subsequent system states in two history-stacks, namely action
history and situation history. From this information, the impact
of an action is evaluated with respect to the given objectives
and a so-called fitness value is assigned to the situation-action
pair. The result of the evaluation is reported to the adaptation
module, which alters the fitness for the corresponding mapping in
the action selector, giving this mapping a higher or lower chance,
respectively, to be selected again for execution. Simultaneously
to this online learning process, the O/C Architecture provides the
possibility for offline learning. The offline learning is realized in a
simulative model of the SuOC. The adaptation module creates new
mapping rules, for example by applying mutation and reproduction
mechanisms of EAs (cf. Weicker [246] for details), which can be
evaluated in the simulative environment using standard fitness
evaluation and selection mechanisms from EAs. Thus, only rules
that perform well in the simulation are committed to the action
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selector and available for online learning. Although simulations are
never exact reproductions of the real environment and, therefore,
cannot guarantee the impact an action has, the offline learning still
provides certain quality assurance.

user
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Figure 2.3: The controller of the generic O/C Architecture and its
components.

2.2.2 Structure of Organic Systems

The generic O/C Architecture in the previously presented form
consists of a central observer and controller which regulate a dis-
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tributed system, but there are other structures as well. For example,
a completely distributed O/C Architecture, where every element of
a distributed system is an SuOC and has its own observer and con-
troller. Also, a multi-level O/C Architecture is conceivable, where
the distributed O/C Architecture has an additional central top-
level observer and controller layer. Figure 2.4 shows these system
structures. For the organic evacuation support system, each mobile
evacuation device is designed according to the O/C Architecture.
In addition, the system could benefit from a centralized O/C unit,
such that the overall system architecture resembles the hierarchical
system architecture illustrated in Figure 2.4(c). It is important to
note that the mobile devices in a hierarchical system are perfectly
functioning, even if the superordinate O/C Architecture breaks
down. This is important in the context of emergency situations,
in which a single point of failure is to be avoided. However, an
additional central unit allows for users to communicate with the
distributed system via a unique interface, which significantly facili-
tates the control of such a distributed system.

2.2.3 Swarm Intelligence and Nature Inspired
Computing

Although the notion organic in Organic Computing does not imply
the use of nature-inspired algorithms, these methods often fit well
into the concept of Organic Computing. Nature-inspired methods
transfer observed behavior in natural social systems, e.g., swarms of
insects, into principles for the design of artificial technical systems.
Creatures, especially when living in swarms, tend to self-organize
in order to solve complex tasks. Prominent examples of swarms
in nature who serve as algorithmic models are ant colonies (cf.
Dorigo [56], Dorigo et al. [57]), bee swarms (cf. Karaboga and
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Akay [116]), or fish schools (Neshat et al. [175]). The main char-
acteristic of swarm intelligence is that a global behavior of the
entire system arises as an emergent effect from simple local inter-
actions between its components. This emergent global behavior,
however, is unknown to the single entities (cf. Eberhart et al. [58]).
Emergence denotes the phenomenon where local interactions lead
to new global properties or structures which only arise from the
interactions between its parts and would not appear with only few
or a single individual. In the words of Aristotle: “The whole is more
than the sum of its parts!”. For OBESS, many nature-inspired
algorithms have been investigated and proposed since they are
very suitable for such distributed, decentralized systems. Also, due
to the local communication between the devices, concepts from
swarm intelligence can be transferred to mobile evacuation devices.

2.3 Evacuation Management

When it comes to evacuation management, there are generally
two distinct topics which are addressed by researchers. One re-
search subject is evacuation modeling, which has the objective to
describe an evacuation process. The other research area concerns
the optimization of an evacuation process by systematic interven-
tion. In the following, these two aspects of evacuation research are
described in detail.

2.3.1 Modeling

Figure 2.5 displays an overview of the research in evacuation model-
ing. According to Hamacher and Tjandra [82] and Schadschneider
et al. [210], evacuation models can be distinguished into microscopic
and macroscopic models. The objective of microscopic models is to
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describe an evacuation process as realistically as possible. Hence,
the focus lies on modeling the heterogeneous character of individu-
als and their interactions. Microscopic models often form the basis
for evacuation simulations. Their main purpose is the assessment
of evacuation processes in order to either identify potential weak
points or to evaluate improvement measures. Macroscopic models,
on the other hand, provide the basis for optimization of route
choices for evacuees. These models capture the evacuation situa-
tion from a global perspective and describe aggregated evacuation
flows rather than interactions between individual evacuees or their
characteristics.

Evacuation
Modeling
e eniinnn B
Microscopic Macroscopic
Models Models
oo
‘ Discrete Continuous — Graph Model
Cellular . .
L H Fluid-dynamics | || Time Expanded
Automaton Graph Model
—  Lattice-gas = Social Force

Figure 2.5: Overview of current research in the area of evacuation
modeling.
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Microscopic Models

Recorded data or systematic studies about the behavior of people
in emergency situations are rare (cf. Brown [26], Yang et al. [252]).
Therefore, microscopic evacuation modeling is not straightforward
and receives much attention from the research community. Mi-
croscopic models describe the behavior of a number of, possibly
different, evacuees and their interactions during an emergency situ-
ation. In such models, each evacuee is treated as a single agent with
special characteristics, e.g., speed, risk aversion, size, et cetera.
Microscopic models often serve as a basis for investigating the
behavior of people with different characteristics during evacuation
in a certain environment.

There are various microscopic models, which can be characterized
into discrete and continuous models. Examples of discrete models
are models which are based on cellular automaton theory (cf.
Burstedde et al. [32], Gipps and Marksj6 [76], Minoru Fukui [160],
Schadschneider [209]) or lattice-gas models (cf. Guo and Huang
[79], Song et al. [221]). The evacuation environment is divided into
a grid or hexagonal patches and time is modeled in discrete steps, in
which the evacuees move from one patch to another according to the
rules defined by the model. Continuous models comprise models,
such as the social force model (cf. Helbing and Molnar [89], Helbing
et al. [90]), in which the movements are determined by forces that
act on the evacuees, or dynamic fluid models or gas-kinetic models
(cf. Helbing [88], Henderson [91, 92]), where movements follow the
physical principle which describes the dispersion of fluids or gas.
Additionally, there are so-called agent models (cf. Epstein et al.
[59], Xiong et al. [251]), which allow for a distinct modeling of
evacuees, such that two different evacuees can behave differently in
the same situation (cf. Dawei et al. [50], Lo et al. [141]). Moreover,
there are models of evacuee behavior based on game theory (cf.
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Daweti et al. [50], Lo et al. [141]) or models inspired by nature, such
as the model based on particle swarm optimization from Izquierdo
et al. [109]. For an overview refer to Schadschneider et al. [210] and
Zheng et al. [256]. Microscopic models usually form the basis for
the simulation of an emergency situation, which can then be used
to evaluate the evacuation process and improvement strategies.
Many evacuation simulations have been developed over time. For
an overview it is referred to the website of the evacuation modelling
community [164].

Macroscopic Models

A macroscopic evacuation model is a graph representation G =
(N, E) of the evacuation environment (cf. Chalmet et al. [36]).
The nodes n € N represent regions of the modeled environment
in which people can be located (e.g., rooms, squares in a city, et
cetera) and have certain capacities in terms of available space. An
edge e € FE between two nodes in the graph represents a path
between the two regions described by these nodes. The edges are
weighted with traveling costs, such as the distance between the
connected nodes or similar properties which are decisive for route
choices. The main purpose of macroscopic models is to find optimal
paths for evacuees towards the building’s exits. An example of
a building layout and its corresponding macroscopic evacuation
graph model is shown in Figure 2.6.

Some optimization approaches use a time-expansion of such a
macroscopic graph as a basis. A time-expansion of a graph intro-
duces multiple copies of each original node from the evacuation
graph model. Each expanded node represents the state of the
original node at a specific time step. Edges in the time-expanded
graph connect nodes which can be reached in one time step, which
implies that the travel time for each edge in the time-expanded
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graph has the value 1. Capacities are adopted from the original
graph. Figure 2.7 displays the time-expansion for the macroscopic
evacuation graph model shown in Figure 2.6. For better readability,
node capacities, initial allocations, and the travel time for edges
are removed from the graph.

{3,5}
Room 1
[1,2] {3,204 10, o0}
—  — [1,2]
Room 3 [1,2] °
Room 2 [1,2] [2,3]
4.8 [travel time, capacity]
_ 4,8} {initial allocation, capacity}
EXIT
(a) Building layout (b) Evacuation graph

Figure 2.6: Example of a building layout (a), a corresponding
macroscopic evacuation graph model (b).

2.3.2 Optimization

Evacuation optimization refers to approaches which are meant to
improve the evacuation process. Usually, evacuation optimization
has the objective to accelerate evacuation, but there are other
objectives which can be considered, for example reducing the
number of injuries. In general, optimization can happen in two
ways, either indirectly by influencing the evacuation environment
or directly by improving the route choice of evacuees. Figure 2.8
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{3,5}

[travel time, capacity]
{initial allocation, capacity}

{4,8}

(a) Evacuation graph (b) Time-expanded graph

Figure 2.7: Time-expansion of a macroscopic evacuation graph
model.

displays an overview of the research in evacuation optimization
presented hereafter.

The optimization of environmental factors ranges from finding an
optimal room structure (cf. Kellenberger and Miiller [120], Swenne
and Back [225]) to defining the optimal number of doors, the
optimal placement of doors, or their optimal width (cf. Alizadeh [5],
Muhdi et al. [167], Varas et al. [234]). Furthermore, the deliberate
placement of barriers, such as pillars, is subject to investigation
in order to improve the evacuation flow (cf. Frank and Dorso [69],
Johansson and Helbing [113]). Indirect optimization is generally
evaluated via evacuation simulations based on microscopic models.
Apart from environmental factors, the optimization of route choices
is a well-studied topic. Route optimization is usually performed on
the basis of a macroscopic graph representation of the environment.
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Figure 2.8: Overview of current research in the area of evacuation
optimization.
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Such a graph model can be used to perform either flow optimization
or path planning. Flow optimization calculates optimal evacuation
routes for sets of evacuees located at the same node in the graph.
Such sets of evacuees are denoted as flows and the corresponding
optimization problem reflects a network flow optimization prob-
lem. If the optimization objective is to maximize the number of
evacuated individuals in a certain time period, the corresponding
network flow problem is called Mazimum Dynamic Flow (MDF)
problem (cf. Ford and Fulkerson [68]). Maximizing the number
of evacuated individuals in each time step is denoted as Universal
Mazimum Flow (UMF) problem (cf. Gale [71], Jarvis and Ratliff
[111]). An optimal solution for a UMF problem corresponds to an
optimal solution for an MDF problem, not only for the time period
considered, but also for any smaller time horizon (cf. Jarvis and
Ratliff [111]). Minimizing the time needed for a certain number of
evacuees to reach the exit is referred to as the Quickest Flow (QF)
problem (cf. Burkard et al. [31]). Since capacities of edges in
the evacuation graph change during the evacuation process, these
constraints are not properly reflected by a static network model as
depicted in Figure 2.6. Therefore, flow optimization is generally
based on a time-expansion of the evacuation graph model (cf. Sec-
tion 2.3.1). It should be noted, though, that time-expanded graphs
have several drawbacks. The most obvious one is that they can
get very large with increasing number of time steps. Even more
problematic is that the total time of evacuation has to be estimated
beforehand in order to know how many expansions are needed. In
the work of Lu et al. [143], a heuristic approach to solve the QF
problem is presented, which does not require a time-expansion of
the evacuation graph model. Instead, capacity reservations are
modeled as a time series for each node in the graph. A routing
protocol is adapted to schedule evacuees on paths towards the exit.
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The scheduling is performed sequentially starting with evacuees
closest to the building’s exit. The occupied capacities are stored in
the time series and considered when the next flow is scheduled until
all evacuees left the building. The sequential scheduling reduces the
necessary computations while still providing evacuation planning
of similar quality as the solutions based on time-expanded graphs
(cf. Sangho et al. [204]).

In contrast to flow optimization, path planning searches for an
optimal route choice for a single evacuee instead of optimizing
the flow in a network. Since only one evacuee is regarded in path
planning, capacities can be neglected in the evacuation graph model
and the optimization can be performed on a graph without time-
expansion. Similar to flow optimization, path planning can have
various objectives. If travel distance on the route is to be minimized,
the problem is called a shortest path problem. If the optimization
objective is to minimize travel time, the problem is called the
quickest path problem. Path planning can be generalized into a
minimum cost path problem, where costs represent any desired
optimization objective. In case multiple objectives are considered
at the same time, edge costs can be a weighted sum of multiple
cost-components each representing one objective.

When global information about the costs of all edges in the graph
is available, path planning can be solved deterministically using
the algorithm described by Dijkstra [53] or the A* algorithm of
Hart et al. [84]. Dijkstra algorithm computes the lowest cost path
between all nodes in a graph and a target node, whereas the A*
algorithm concentrates the search on finding the best path starting
at a specific node in the graph, which reduces the computational
costs. The problem can also be solved by heuristic approaches.
One of the most prominent heuristic method is the Ant Colony
Optimization (ACO) from Dorigo et al. [57], a nature-inspired
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method based on the behavior of ants. Another heuristic approach
to solve this problem is to use an EA, which are derived from
the concept of natural evolution (cf. Weicker [246] for details).
For path planning in an evacuation scenario, two approaches to
find the lowest cost path according to multiple objectives are
introduced and examined by Cheng [39] and Zong et al. [258].
The edge costs contain risk and travel time and ACO is used to
find the optimal path through the building. A similar scenario is
subject to investigation in Garrett et al. [72] and Saadatseresht
et al. [202], where an EA is applied to solve the path finding
problem for multiple evacuation objectives. It should be noted
that the quickest path problem is also known and addressed in
the evacuation modeling domain. Here, it is solved to model
pedestrians which take quicker paths in order to avoid crowded
areas which results in a more realistic walking behavior (cf. for
example Kretz [126]).

In case of variable edge costs over time, a naive approach would
be to compute the new shortest path from scratch whenever costs
have changed. The D* algorithm by Jarvis and Ratliff [111] avoids
recomputation from scratch and reuses information from previous
computations, which reduces the necessary computations signifi-
cantly compared to total replanning from the beginning. The D*
algorithm is an incremental and heuristic search approach that
performs local consistency checks before edge costs are newly com-
puted. The process starts at the edge with detected change in costs
and continues from there until there are only unaffected nodes left
or the starting node of the search is reached. This limits necessary
computations to nodes which are affected by the changed edge
costs. This algorithm was further developed to result in D* Lite
by Konig and Likhachev [125]. D* Lite is a less complex version of
the D* algorithm in terms of its structure. In addition, the number
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of computations which are required to find the new best path are
shown to be equal or less compared to the D* algorithm.

There are scenarios where path planning is performed in a dis-
tributed system. In such cases, each system component has only
a limited view on the graph, for example local information about
some edge costs. The complete optimal path is then built incremen-
tally on a next-hop basis by assembling locally optimal subparts.
An application of distributed path planning based on local infor-
mation to avoid traffic jams is presented by Prothmann et al. [186].
Here, traffic lights are equipped with means to observe the traffic
flow at intersections. This information is exchanged with other
nearby traffic lights and, similar to the distance vector or the link
state routing protocol (cf. Tanenbaum [228]), the accumulated
information is used to send waiting cars to the allegedly next best
intersection with respect to the cars’ destinations. A similar ap-
proach is presented by Filippoupolitis et al. [66] for evacuation
navigation. Here, sensors observe danger indicators, such as smoke
or heat, forward this message to stationary decision nodes, which
exchange and collect information and decide based on these local
observations to which neighboring decision node passing evacuees
are sent. These methods rely on a fixed infrastructure which con-
stantly observes a locally limited, but fixed part of the building.
From these observations, information about arising congestions or
risk values can be derived easily.

When mobile devices have to be used for observation, however, the
observable area changes over time and the estimation of waiting
times, as well as the prediction of emerging congestions, is not
straightforward anymore. In the work of Wagoum et al. [237], a
method is presented, which is similar to distributed path planning
with mobile observers. It introduces a microscopic evacuation
model that integrates local path planning with the aim of modeling
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a more realistic pedestrian walking behavior. A pedestrian which is
slowed down by congestion on its current path is modeled to observe
other pedestrians which are located in the same room and aim for a
different exit. The pedestrian changes his route in case the evacuees
which he observes progress faster and he starts following them.
The presented method to model pedestrian behavior during an
evacuation has similarities to route choice optimization approaches.
However, this work belongs to the domain of evacuation modeling,
since the goal is to achieve a more realistic walking behavior of
evacuees, not to find the optimal paths. Hence, the chosen escape
routes in this model can differ strongly from paths which result from
route choice optimization approaches. The problem of distributed
path planning on the basis of information collected by mobile
observers is, among others, object of this thesis.

2.3.3 Evacuation Systems Using Mobile Devices

There are several projects investigating the usage of mobile devices
in outdoor evacuation scenarios. For example, the project “REPKA:
Regional Evacuation: Planning, Control, and Adaptation” of the

German Federal Ministry for Education and Research (BMBF)* [2].
In REPKA, mobile devices are used to build a network and guide
users to safe areas. Similar projects about the coordination of rescue
forces or evacuees with the help of mobile devices are described in
publications from Jang et al. [110], Lien et al. [138], Schau et al.
[211], and Rodriguez et al. [199]. However, little has been done, so
far, to investigate the potential of mobile devices for supporting
building evacuation. An obvious reason for this is the challenge to
localize devices indoors without being able to rely on GPS, which

*Bundesministerium fiir Bildung und Forschung
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is the preferred localization technique for outdoor deployment of
mobile devices in emergency management.

Nevertheless, first ideas about the application of mobile devices to
support people during an emergency situation in a building are
presented by Szwedko et al. [227] and Filippoupolitis et al. [66]. In
the work from Szwedko et al. [227], reducing waiting times that
occur due to overcrowding is addressed. The authors propose an
evacuation system, where users carry mobile devices and scan QR-
Codes or RFID chips in order to send their current location to a
central server. This server runs a so-called Scavy algorithm, which
computes the next destination for the mobile device’s user, thereby,
trying to achieve a load balancing in the building. Although this
system is shown to prevent overcrowding at specific destinations
in the building, it has several drawbacks. Firstly, it takes time
to read a QR-Code or scan an RFID chip, which is hindering to
people leaving the building as quickly as possible in case of an
emergency. Additionally, it requires physical proximity between the
user’s device and the QR-Code or scanner, which is hardly possible
for several users at the same time and, additionally, bares the
risk of overlooking the respective terminals or codes. In addition,
the algorithm used for load balancing is executed on a central
computing system which collects all information in order to get a
global view. This server poses a potential single point of failure
which can be disastrous in case it breaks down during an emergency.
In terms of its structure, the evacuation system proposed by Filip-
poupolitis et al. [66] is similar to OBESS presented in this thesis.
It consists of an SSN and a dynamic network of mobile devices
which are carried by people and guide their users to nearby exits.
The static sensors collect information about risk values in the envi-
ronment, such as smoke or heat. The sensors are connected to each
other and exchange the measured risk values with their communi-
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cation neighbors. When evacuees pass by such a sensor, they are
sent to the next sensor which is closest to the building’s exit and re-
ports the lowest risk value. In contrast to OBESS, the system lacks
the possibility to incorporate user input such as preferences for
path planning. Secondly, there is no localization method provided
that supports navigation. Thirdly, the evacuation planning does
not take into account the current distribution of evacuees in the
building or potential congestions resulting from this distribution.
Using GPS-less localization in MANETS for building evacuation,
is suggested in Inoue et al. [106]. The research presented, however,
remains on a conceptual level. In contrast to OBESS, the proposed
system architecture is not designed for controlled self-organization
and it does not account for user preferences or input. Furthermore,
incorporating information about other evacuees’ positions in the
evacuation planning is not considered in this research.

2.4 Localization

The art of localization and navigation is an inevitable prerequisite
for seafaring and, thus, dates back a long time. Since the ancient
days when people have used the positions of stars in the sky for
localization and navigation purposes, a lot of research has been
conducted in this field and many different navigation systems have
been proposed since (cf. Fallah et al. [63], Hightower and Borriello
[94]). Localization denotes the process of determining the location
of a certain subject. When talking about a location, physical and
symbolic locations as well as absolute and relative locations can be
distinguished (cf. Hightower and Borriello [94]). While a physical
location is described by precise coordinates, e.g., longitude and
latitude, a symbolic location is more an abstract place, such as “in

MY« W

Germany”, “at the University”, “next to a street lamp”, or the like.

39



Chapter 2 Research Context and State-of-the-Art

Kroller et al. [127], for example, propose to determine symbolic
locations in an SSN using cluster algorithms. A localization system
can be used to provide both kinds of information, nevertheless, it
is usually built to determine a physical location, which can then be
mapped into a symbolic location using additional knowledge, for
example a map of the environment. It holds for any type of location
that the notion of location always needs a frame of reference to
be meaningful. In other words, “all positions are relative. |[...]
assigning a set of coordinates to an object is meaningless without
knowledge of the coordinate system with which those coordinates
are associated” Savarese et al. [205]. These considerations lead
to the difference between absolute and relative locations. While
absolute locations share a common reference grid, relative locations
do not. The relative location of an object makes a statement
about the object’s location with respect to a certain reference
point. Knowing the relative location of an object with respect
to a reference point, however, does not provide any information
about the same object’s relative location with respect to a different
reference point. While any absolute location can be transferred
to a relative one, as soon as the absolute location of the reference
point is given, it does not work the other way around. Figure 2.9
illustrates the difference between absolute and relative locations.
On the left-hand side, the absolute locations of five different devices
are depicted, on the right hand side, a sample result of relative
localization is shown. While the devices still have the same distance
and orientation with respect to each other, the computed locations
are different from their actual positions, namely mirror-inverted and
rotated compared to the absolute locations. Prominent examples of
common reference grids are geographic coordinate systems, which
humans have globally agreed upon in order to exchange location
information. Location information which refers to such a common
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reference grid is, for example described in terms of longitude and
latitude. Because of the common understanding about the reference
frame, everybody can point to exactly the same place on earth,
when given such a coordinate. For a localization system to be
as flexible as possible, absolute physical locations are the desired

output. These can be mapped to symbolic or relative locations if
needed.

absolute locations relative locations
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Figure 2.9: Comparison of exemplary results after applying
absolute and relative localization methods in ad hoc
networks. By using relative localization, the
relationships between the devices stay intact, but the
locations can be mirror-inverted or rotated when
compared to the absolute locations.

The ability to determine the locations of devices plays an important
role in SSNs. Examples are the localization of event reporting in
a monitoring SSN (cf. Szewczyk et al. [226], Werner-Allen et al.
[248]), location dependent routing (cf. Liao et al. [136], Maihofer
[145]) or the assistance of group querying (cf. Gehrke and Madden
[73]) in order to save energy, security enhancements to prevent
wormhole attacks (cf. Hu et al. [98], Karlof and Wagner [117]),
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and many more. Therefore, many localization methods for SSNs
are proposed in the literature. SSNs differ from MANETS in the
fact that the devices are stationary. However, most algorithms
developed for SSNs are transferable to MANETSs by constantly
repeating the localization process in order to account for the devices’
new locations. The simple application of algorithms which are
developed for SSNs to MANETS is a viable approach. Neglecting
the mobility aspect of the network, though, can have a major
negative impact on localization results as demonstrated by a study
presented in this thesis (cf. Section 5.1). Despite this drawback,
this aspect has received surprisingly little attention by the research
community up to this point.

Localization
Algorithms
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Figure 2.10: Classification of localization algorithms.
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2.4.1 Algorithms

Localization algorithms can be classified according to the scheme
shown in Figure 2.10. On the highest level, methods can be
divided into centralized and decentralized approaches, depending
on whether the location calculations are carried out on a central
computing unit or in a decentralized way directly on the devices
to be located. It should be noted, though, that decentralized
algorithms can also be executed in a centralized way by sending
all necessary information from the devices which are object of
localization to a central server where all locations are computed.
In this case, the disadvantages of centralized algorithms apply
as well. Centralized algorithms, on the other hand, cannot be
executed in a decentralized way because they require input data
from numerous devices in order to compute their locations.

Centralized Algorithms

Two well-studied centralized algorithmic concepts for localization
are Semi-definite Programming (SDP) presented by Doherty et al.
[55] and Multidimensional Scaling Map (MDS-Map) from Shang
et al. [215]. In SDP, geometric constraints, such as distances or
angles between devices, are estimated by the devices in the network
and sent to a central server. On the central server, the constraints
are collected and represented as linear matrix inequalities, which
are then solved in order to find locations for the devices in a
way that the constraints are fulfilled. In MDS-Map, a technique
from mathematical psychology is used (cf. Bachrach and Taylor
[12]). The algorithm constructs relative positions based on distance
estimates and applies concepts of linear algebra to calculate the
coordinates. The main advantage of centralized algorithms is that
information from all devices in the network can be used to compute
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locations which often results in a higher precision compared to
approaches which use only local information. On the other hand,
a major drawback is that they primarily stress devices close to
the central station during information collection because these
devices have to forward information from all other devices in the
network (cf. Bachrach and Taylor [12]). Moreover, when central
computation is used, the computation is usually a time consuming
process because a lot of information has to be forwarded through
the network, processed on the central server, and possibly be sent
back to the devices in case they require the location information.
This can pose problems, especially if the devices to be located are
mobile, since the devices may have already changed their locations
by the time the computation is completed. Apart from that, there
is a lot of communication involved in the process since all devices
have to exchange information with the central computing unit.
These factors make centralized algorithms hardly scalable and
unsuitable for dynamic networks.

Scene analysis, also called odometry, is a localization approach
which requires the device which is object of localization to be
able to perform odometry readings. Odometry readings are, for
example, observations of the environment which can be used to draw
conclusions about the current location. Such information can be
obtained via sensors attached to the device, such as infrared sensors
to measure the distance to nearby walls or barriers, photosensors,
which measure the incidence of light, or even cameras, which record
visual data from the device’s surroundings. A set of odometry
readings at a specific location is called fingerprint. This fingerprint
is subsequently matched with entries in a database. This database
consists of locations and corresponding fingerprint entries, which
are measured preliminary for different locations in the application
area of the system. A high storage capacity is required for the
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database and sufficient computing power has to be available to
perform the pattern matching process, especially when cameras
are used for the odometry readings (cf. Hightower and Borriello
[94]). Hence, the database is usually located on a central server and
queried via wireless communication. In theory, it is conceivable to
have a copy of the database locally stored on the device which is
object of localization. If this is possible, the approach belongs to
decentralized localization methods. However, this is usually not
feasible due to the restrictions of the devices to be located. Scene
analysis requires a high configuration effort when collecting the
database entries. Furthermore, the sensor data has to be different
for any of the considered locations in order to distinguish them.
This usually requires more than one type of sensor reading. For
these reasons, this localization approach is rarely applied to SSNs
in which the devices usually have only one sensor at their disposal
and are limited in computing power, memory space, and power
supply. Examples of localization using a scene analysis approach
are described in Rajaméki et al. [188], Retscher [191], and Bahl
and Padmanabhan [13].

Decentralized Algorithms

There are two types of decentralized localization algorithms de-
pending on whether or not they rely on the existence of beacons.
Beacon-based algorithms are required, whenever resulting coor-
dinates have to relate to a common reference frame, i.e., when
absolute locations are desired. In contrast, beacon-free or non-
beacon-based algorithms can only perform relative localization,
which can result in locations being rotated or mirror-inverted with
respect to the actual coordinate system.
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Beacon-free Algorithms There are two different approaches for
beacon-free localization algorithms which compute physical, rel-
ative coordinates. The first concept is called relaxation-based
localization which uses a coarse algorithm to roughly determine
the devices’ locations and then iteratively adjusts each device’s
position in order to minimize some local error metric (cf. Bachrach
and Taylor [12]). An example of such an algorithm is the spring
model presented by Priyantha et al. [184]. The second procedure
is called coordinate system stitching. For this bottom-up approach,
the network is divided into small overlapping subregions. In each
subregion, a local map is created and then adjacent sub-regions
merge their local maps iteratively until a single global map is
formed. Examples of such algorithms can be found in Ji and Zha
[112] and Meertens and Fitzpatrick [149]. Relative localization
has the advantage that there is no need for specially equipped de-
vices, i.e., beacons. In OBESS, however, the resulting coordinates
should not be rotated or mirrored with respect to the building map.
Still, such algorithms can be applied for refinement of coordinates
produced by an absolute localization process.

Beacon-based Algorithms Beacons are devices which are equipped
with similar or equal hardware as the devices to be located but
possess knowledge of their exact positions a priori and can, there-
fore, support the computation of coordinates for all other devices
in the network. A beacon can have a priori knowledge of its own
location either due to manual configuration, because it possesses a
working GPS-receiver, or because it has already computed its own
location. In the latter case, the device is usually not denoted as a
beacon, but can be used as such in any beacon-based algorithm.
For precise calculation of two-dimensional absolute coordinates, the
appropriate localization algorithm and at least three beacons are
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needed, which are placed in a non-colinear way. For three dimen-
sions, four beacons are needed respectively. In a fully connected
network and in the absence of any distance measurement errors,
these three or four reference points yield a perfect solution and no
improvement is observed from having additional reference points
(cf. Savarese et al. [205]). However, localization hardware produces
noisy measurements due to occlusion, collisions, and multipath
effects (cf. Bachrach and Taylor [12]) and as a result, beacon-based
localization normally uses several beacons to improve localization
results. It is usually aimed at minimizing the number of beacons
in a system because these devices can be expensive either due
to their additional equipment with GPS-receivers, or in terms of
preparation effort, when they have to be configured with their
exact location information. With beacons available, there are three
categories of localization algorithms which can be applied: proxim-
ity, angulation, and distance-based localization. These methods
differ in the required hardware, number of beacons, accuracy of
the derived results, and input parameters used for localization.
One group of localization approaches are algorithms which require
knowledge about the proximity of beacons to the device which is
to be located. Proximity knowledge means that a device is able
to sort nearby beacons according to their distance from itself. In
contrast to distance-based localization methods, the exact value of
the distance, however, is not required. A method which is often
used to decide about the proximity of beacons is to compare the
quality of the communication signal received from different beacons
(cf. Bulusu et al. [29]).

The most straightforward proximity based localization approach
is the so-called cellular proximity method, which requires a vast
number of beacons to achieve high accuracy results. In this method,
beacons send a signal and their location information to nearby
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devices. The device receives these messages and determines its own
location to be at the same location like the beacon which is closest
to the device. The accuracy of the location system increases with
the number of beacons in the system. A cellular proximity based
localization system is, for example, proposed by Want et al. [244].
The diffusion method, sometimes also referred to as centroid local-
ization, requires fewer beacons, but still comparatively more than
angulation or distance-based localization techniques. With this
method, a device derives its location at the center of the locations
of a fixed number of beacons, which are closest to the device. In
Figure 2.11, the localization of a device (grey dot) using diffusion
and four beacons (black dots) is demonstrated. The center of the
four beacons lies at the intersection of the dashed lines which is
where the diffusion algorithm estimates the device’s position. Ex-
emplary implementations for the diffusion approach can be found
in Almuzaini and Gulliver [7] and Kaseva et al. [118]. Meertens
and Fitzpatrick [149] refine this concept further by determining a
device’s location not only in the center of their nearest beacons, but
in the center of all neighboring devices after they have determined
their locations. The appealing advantage of this algorithm is its
simplicity since there is no estimate for the distance or angle infor-
mation needed. Nevertheless, it is not always guaranteed that there
are enough beacons to achieve the desired accuracy in localization.
A more sophisticated proximity-based approach called Approxi-
mated Point-in-Triangle Test (APIT) is proposed by He et al. [86].
In APIT, each device divides its environment into different trian-
gles, which are determined by all possible combinations of three
nearby beacon locations. Subsequently, the device uses a point-in-
triangle test to determine whether it is located outside or inside
of each defined triangle. The latter triangles are then aggregated
and the device’s location is computed as the center of gravity of
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Figure 2.11: Location derived using the diffusion approach. The
black dots represent beacons while the gray dot
marks the location determined via diffusion at the
center of the beacons.

the combined triangles. The basic idea of the point-in-triangle
test is the following consideration. If there is a location next to
the current location of a device which is further or closer to all
beacons which define the triangle, the location of the device lies
outside this triangle, otherwise it is inside. Since the devices are
not assumed to be able to move in any direction in order to check
whether this changes their proximity to the beacons, the authors
propose to check whether the locations of the device’s communi-
cation neighbors fulfill this condition. Figure 2.12 illustrates the
localization process using APIT.

Angulation, as the name suggests, uses knowledge about the angles
between the device to be located and the beacons. Examples of
angulation can be found in Nasipuri and Li [173] and Zhang et al.
[255]. To compute the angle between a device and a reference
beacon, directed antennas or microphones are used which can dis-
tinguish the direction of an incoming signal. In addition, it is
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Figure 2.12: Example of localization using the APIT method. The
black dots symbolize beacons and the gray dot
represents the determined location. The triangles
defined by the beacons’ locations are indicated by
dashed lines. In this example, the location lies inside
all possible triangles, indicated by gray shaded areas,
and is therefore determined to be at the center of
gravity of the tetragon resulting from aggregation of
all triangles.
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possible to derive the Angle of Arrival (AoA) from optical commu-
nication (cf. Bachrach and Taylor [12]). The angles are estimated
using the time difference between the signals’ arrivals at individual
microphones, or other receivers. The accuracy lies within a few de-
grees (cf. Priyantha et al. [183]). Since this method needs complex
installation and bulky hardware, the procedure is not commonly
applied to SSNs. Also, the need for spatial separation between
speakers is difficult with decreasing sensor size (cf. Bachrach and
Taylor [12]). In the work of Coore [44], an algorithm to compute
relative angles between network devices and a beacon without the
use of hardware is proposed. The computed angles are relative, i.e.,
they start at an arbitrary device with an angle value of zero and
estimate consistent angles from this point on. Niculescu and Nath
[178] suggest using AoA information in combination with distance
information to enhance localization results. From at least two
known angles, the unknown location of a device can be computed.
Figure 2.13 displays how angles between four beacons (black dots)
and the device to be located (gray dot) are used to determine the
unknown location of that fifth device.

While angulation is based on estimated angles, distance-based
localization methods require an estimate for the distances between
beacons and devices in the network. There are two algorithms
which use distance estimates to derive location information: the
bounding box approach and lateration. The bounding box method
is, for example, published by Savvides et al. [206] and Bachrach
and Taylor [12]. It assumes the position of a device to be in the
center of the overlap of square boxes which are drawn around the
beacons. The inradii of the square boxes correspond to the distance
estimates between the device and the respective beacons. Figure
2.14 illustrates how the location is determined with the bounding
box method as described. Although the bounding box procedure
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Figure 2.13: Example of localization using angulation. The black
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dots symbolize beacons, while the gray dot represents
the unknown location. For each beacon the angle
between the x-axis and the unknown location is
determined. The unknown location is then assumed
to be at the intersection of the lines radiating from
each beacon at the predetermined angle.
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has the advantage to be computationally relatively simple, the
derived locations can be calculated more precisely using lateration,
which requires the same kind of information as the bounding box
procedure and is, therefore, used more often.
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Figure 2.14: With the bounding box method, the position
estimate (gray dot) is at the center of the bounding
boxes with inradii equal to the respective distance
estimates between the device and the beacons (black
dots).

Lateration is the most well-known localization technique (cf. Nag-
pal et al. [171] and Bachrach and Taylor [12]). Although it is often
referred to as triangulation, the notion of triangulation actually in-
cludes angulation and lateration (cf. Bachrach and Taylor [12]). In
contrast to angulation, lateration is based on determining distances
to beacons instead of angles. Using lateration, the position of a
device is assumed to be in the overlap of circles around beacons
with radii equal to the estimated distances between the device and
the respective beacons (cf. Figure 2.15).

In the work of Nagpal et al. [171], an iterative version of the
lateration algorithm is proposed. The method iteratively improves
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Figure 2.15: With lateration, the unknown position (gray dot) lies
within the overlap of circles around the beacons
(black dots) with radii equal to the respective
distance estimates.

an initial location estimate, for example random coordinates, by
stepwise minimizing the error between the estimated distances to
all beacons and the distances of the coordinates in the current
iteration.

In addition to the previously presented methods for localization,
several hybrid approaches have been suggested over time, for ex-
ample in Chintalapudi et al. [40], Sun et al. [223], and Eren [60].
They usually combine some of the localization methods mentioned
previously in order to benefit from their various advantages and to
compensate for their drawbacks.

2.4.2 Distance Estimation

As mentioned in the preceding section, the determination of dis-
tances between devices and beacons is a crucial element of distance-
based localization algorithms. However, since the devices to be
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located usually have no means to explicitly measure distances,
numerous methods for distance estimation have been proposed
over time to overcome this problem. Figure 2.16 gives an overview
of these techniques, which can generally be categorized into range-
based and range-free methods. Range-based methods rely on the
analysis of physically transmitted signals. In contrast, range-free
methods abstract from the signal and derive information about the
distances of devices from the content of messages which devices
exchange in a network. The following two sections describe these
two kinds of distance estimation methods in detail.

Range-based Distance Estimation

The most common approach to distance estimation is to analyze the
strength of a transmitted radio frequency signal. This method is
commonly referred to as Radio Signal Strength Indication (RSSI)
(cf. Kai and Chun [114], Patwari and Hero [180]). The signal
strength p(d) decreases with increasing distance d. Hence, the
strength of a communication signal on receipt provides information
about the distance between sender and receiver. Equation 2.1
shows the underlying theoretical model:

p(d) = p(do) — 10 a log (CZ) +X (2.1)

do denotes a reference distance, « represents the path-loss exponent,
X ~ N (p, o) denotes a normally distributed random variable with
mean (p) zero and variance o, which describes the shadowing effect.
Although widely studied in the literature, there are some drawbacks
to this approach. RSSI ranging measurements contain noise in the
order of several meters (cf. Bahl and Padmanabhan [13]) and radio
propagation tends to be highly affected by barriers such as walls or
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Figure 2.16: Classification of distance estimation techniques.
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furniture since they tend to reflect or absorb signals (cf. Bachrach
and Taylor [12]).

Another prominent method for distance estimation is called Time
of Arrival (ToA), also often referred to as Time of Flight (ToF')
(cf. Girod and Estrin [77], Meghani et al. [150]). In ToA, the
time for a physical signal to be transmitted from one device to
another is measured. ToA can be performed in a one-way or
two-way version. In the two-way version, a transceiver sends a
signal to the receiver which, in turn, sends an answer. The sender
measures the time t between sending and receiving the signal and,
together with the velocity v of the signal and the expected delay
treply Which occurs between receiving a signal and answering, the
distance estimate d between the two devices can be computed
using Equation 2.2. For the one-way version, the system clocks
of the transmitting and receiving device have to be synchronized.
This is usually done using radio and ultrasonic signals. The radio
signal has almost zero propagation speed indoors when compared
to the ultrasonic signal and is used for synchronization purpose (cf.
Meghani et al. [150]). Every device is equipped with a speaker and a
microphone. The transmitter (beacon) first sends a radio message,
waits for a fixed time period, and then sends a chirp sequence
over its speaker. The receiver gets the radio signal, turns on its
microphone and hears the chirp sequence. It notes the time ¢ of
the transmission of the ultrasonic signal and uses this information
together with the transmission speed v of the audio signal to
calculate its physical distance from the transmitter using Equation
2.3. While ToA is impressively accurate for some scenarios, it has
the major drawback to require line-of-sight conditions and extensive
hardware. In addition, the speed of sound in the air varies with
air temperature and humidity (cf. Bachrach and Taylor [12]).
Furthermore, relatively fast processing capabilities are required in
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order to be able to resolve small time differences. Kwon et al. [131]
show that the precision can be improved by checking for reflexivity
and the triangle inequality.

- 1
dToA =v- (2t - treply) (2'2)

droa=v-t (2.3)

A similar distance estimation technique is called Time Difference
of Arrival (TDoA) (cf. Gustafsson and Gunnarsson [80], Mao et al.
[146], Meghani et al. [150]). The device to be located sends signals
to the beacons in the network and these beacons each measure the
ToA of their signal. From each set of differences between ToAs
and the known distance between the respective beacons, unique
hyperbolic curves around the respective beacons are defined. The
intersections of these curves determine the unknown location of
the device (cf. Bucher and Misra [27]).

All range-based distance estimation methods have in common
that they require special hardware in order to be able to analyze
physical signals. Since such hardware can be large and expensive,
range-based distance estimation is unsuitable for some applica-
tions. However, range-free distance estimation methods are able
to overcome this drawback.

Range-free Distance Estimation

Estimating distances in a network without having to rely on the
interpretation of the physical signal is called range-free distance
estimation. Instead, range-free distance estimation is based on mes-
sages which are exchanged between the devices in a network. There
are two types of range-free distance estimation algorithms, hop
count based and connectivity-based distance estimation algorithms.
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The hop count based algorithm is the more established approach of
the two. A hop count denotes the minimum number of relay devices
a device needs to be able to communicate with a beacon. The
Gradient Algorithm (GA), proposed by Nagpal et al. [171], is an
algorithm for networks used to determine each device’s hop count
with respect to a beacon. It is the basis for all distance estimation
algorithms based on hop counts. With GA, each beacon initiates a
so-called gradient wave by sending a message including an integer
value of 0 to its neighbors. Each neighboring device takes the
minimum value it receives, increments it by 1, and propagates it to
its neighbors. This process is repeated in fixed intervals, such that
the value can be updated regularly, especially, in dynamic networks.
Figure 2.17 illustrates the concept of hop counts. Devices which
are able to communicate with each other are connected by straight
lines. The beacon, displayed as a black dot on the left side, initiates
the process by communicating a value of zero to its neighbors. All
devices in the network take the minimum value they receive and
add one to compute their own hop count, which is represented
by the number inside the respective dots. Figure 2.18 shows an
example of the result achieved by the GA when applied to an
ad hoc network. All devices with the same hop count value are
colorized in the same shade of Grey. All devices with the same hop
counts are located in symmetrical rings around the beacon and
each ring has approximately the width of the communication range
r (cf. Nagpal et al. [171]). Therefore, the most basic idea for hop
count based distance estimation is to use r as an approximation for
the length of each hop and r times the hop count as an estimate for
the distance between a device and beacons. However, this estimate
is only valid for perfectly dense networks, which rarely occur in
reality.
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Figure 2.17: Hop count determination with GA initiated by the
beacon (black dot) which sends a value of zero to its
neighbors (connected by dotted lines), which
compute their hop count as minimum value received
plus one (numbers inside the dots).

Figure 2.18 displays the perfect gradient rings, i.e., the rings cen-
tered at the beacon with radii of multiples of r, drawn as black
circular rings. It is easy to see that the gradient rings which result
from GA differ from these perfect gradient rings. Kleinrock and
Silvester [122] show that the expected length of a hop in uniformly
random distributed networks is given as a function of the local
neighborhood density, i.e., the number of communication partners.
A similar, but somewhat simpler principle is used by Wong et al.
[249] for networks with varying density. Here, density dependent
reduction rates are chosen manually depending on the local density
and applied to the naive estimate r before multiplying it with the
hop count. A different method to estimate the length of a hop
is provided by an approach called DV-HOP (cf. Huang and Sel-
vakennedy [102], Niculescu and Nath [177]). DV-Hop uses the fact
that Fuclidean distances between beacons are known because their
location information is available. By comparison of the Euclidean
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Figure 2.18: A network situation after application of GA. Devices
with the same hop counts are displayed in the same
shade of Grey. Black rings are centered at the beacon
and have radii of multiples of r, with r being the
communication range of the devices.
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distances with the respective hop counts between beacons, the
average length of a hop is calculated as a fraction of Euclidean
distance and hop count. Apart from improving the hop length
estimate, various methods are developed to determine the position
of a device within its own gradient ring. For example, in the work
of Nagpal et al. [171], an average of all hop counts in a device’s
neighborhood is calculated before multiplying it by the hop length
estimate, following the principle that devices which are closer to
the inner border of their gradient ring have a higher number of
neighbors with lower hop counts. Conversely, a node which is
closer to the outer border of its gradient ring has a higher number
of neighbors with higher hop counts. Liu et al. [140] refine this
approximation further by using the exact proportions of neighbors
with lower, equal, or higher hop counts in order to improve the
estimate and Wang et al. [242] propose to refine distance estimates
through weighted interpolation.

The second type of range-free distance estimation algorithms is
called connectivity-based distance estimation. It relies on the num-
ber of shared communication partners between two devices with
respect to the total number of communication partners. The idea
behind this concept is that devices which are close to each other
share more communication neighbors than distant devices (cf. Fig-
ure 2.19). This approach was first presented by Fekete et al. [64]
and Buschmann et al. [33]. Later on, it was refined by Aslam et al.
[10], Villafuerte et al. [236] and Huang et al. [99]. While Fekete
et al. [64] and Buschmann et al. [33] use only the number of shared
neighbors for distance estimation, Aslam et al. [10], Villafuerte
et al. [236], and Huang et al. [99] expand the concept by using the
ratio of shared to total communication partners. The mapping
between this ratio and the distance estimate is generally designed
as a lookup table derived through an a priori empirical study. How-
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ever, Huang et al. [99] apply a first order Taylor series expansion to
approximate the mapping function. The method is tested on real
hardware and is shown to deliver more precise estimates compared
to an RSSI-based distance estimation approach.

Figure 2.19: Two devices and their communication ranges. The
distance between the devices and the number of
shared communication partners (gray dots with black
border-line) is correlated.

2.4.3 Mobility

As mentioned before, there is little research about the effects mo-
bility has on the accuracy of localization algorithms. A common
argument for why mobility is not considered explicitly is that the
execution of the respective localization algorithm can be repeated
constantly in order to update location information. However, local-
ization requires input data, such as distances or angle information,
usually derived by various estimation techniques, which are prone
to error under mobile conditions. This is, for example, shown by
Bergamo and Mazzini [17], where the accuracy of distance esti-
mation based on radio signal strength is investigated in dynamic
networks. Experiments reveal that Rayleigh fading due to the
motions of the sensors can introduce significant errors to the esti-
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mates. Similar to these findings, mobility can be expected to have
an impact on range-free distance estimation. Range-free distance
estimates are derived from a device’s communication neighborhood
which is affected by the mobility of devices in the network. Poten-
tial influences on range-free distance estimation are not primarily
hardware related and have to be examined individually. This is,
for example, done by Lim and Rao [139], who identify the mobility
of some devices in the network to have a positive impact on the
accuracy of hop count based localization. However, the underlying
assumption of the performed experiments is that the mobile devices
know when they are moved and, if so, immediately update their
hop count values and distance estimates. This leads to a general
improvement of distance estimation within the network as it re-
sembles a scenario in which new devices are placed in the network
at all locations, where the devices move to. Therefore, the network
density is virtually increased. Liu et al. [140] show that mobility af-
fects the probabilistic density of devices in a communication range
which can influence the computed hop count values. The authors
provide a method to account for mobility when calculating distance
estimates based on hop counts. It has to be noted, though, that for
the proposed compensation of mobility-induced density distortions,
knowledge about the underlying mobility model is required. The
question how the devices can attain knowledge about their own
mobility pattern stays unanswered though. At least for devices
which are either carried or moved by external forces and do not
move actively, the answer to this question is not straightforward.
One solution to this problem is proposed by Kumar and Das [130].
The authors derive the movement pattern from a sequence of previ-
ously computed locations. However, the assumption that mobility
in a network follows a certain pattern is not always valid.
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In contrast to localization techniques, dead-reckoning methods,
or deduced reckoning, are specific methods to locate, or better,
track the positions of mobile objects over time. Originally, dead-
reckoning was used by seafarers in the fifteenth century before
more accurate celestial navigation techniques were developed. A
ship’s current location was determine using its previous location
and an estimate for the direction and distance it has sailed since
(cf. Kumar and Das [130]). The estimate of an object’s current
location using dead-reckoning is based on previously determined
locations, a model which describes the object’s dynamics, and
frequent corrections by odometry readings, for example the ob-
ject’s speed and direction. For odometry readings, sensors such as
accelometers, magnetometers, compasses, and gyroscopes are used.
Kalman Filters (cf. Bartlett [15]) or Particle Filters (cf. Ristic et al.
[197]), which take into account that sensor values are usually prone
to error, can be used to compute the location estimate. Examples
of localization systems that use dead-reckoning can be found in
Fischer et al. [67], Hollerer et al. [96], Koide and Kato [123], and
Retscher [191]. If the mobile device is carried by a human user,
information about the user’s specific walking behavior, such as
his average speed, can be used instead of odometry readings in
order to direct the search towards the most likely locations (cf.
Wu et al. [250]). Hu and Evans [97] use the location of newly de-
tected beacons, which come into range when the device moves, as
odometry readings to derive location estimates. A major drawback
of dead-reckoning systems is the necessity for odometry readings
and the required model of the object’s dynamics. Moreover, dead-
reckoning is subject to cumulative errors up to the point where it
receives new extrinsic location information, hence this approach
is best used in combination with other localization techniques for
error correction. A great advantage is the possibility to extrapolate
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locations in case there is not enough information available to apply
a localization algorithm, for example due to a temporary absence of
beacons or due to the failure of distance estimation. Additionally,
dead-reckoning allows for the prediction of likely future locations of
mobile devices, which can come in handy for several applications.
Apart from research which deals with the mobility of the devices to
be located, some researchers attend to the potential improvement of
localization by employing mobile beacons (cf. Li et al. [133], Wang
et al. [243], You et al. [253], Zhang and Yu [254].

2.4.4 Indoor Localization Systems

In the literature, numerous localization systems specifically devel-
oped for indoor applications can be found. This section aims at
providing an overview of the proposed solutions. Apart from the
localization method applied, localization systems can be distin-
guished with regard to various criteria (cf. Hightower and Borriello
[94]). One criterion is the wireless data transmission technique in
the system, which is usually infrared, radio frequency, or ultra-
sound. Data transmission by means of radio frequency signals can
further be classified according to the implemented communication
protocols, such as Bluetooth [20], Zigbee [257], or the IEEE 802.11
standards, which are commonly used in Wireless Local Area Net-
work (WLAN) technology [104]. There are localization systems
where the devices to be located perform the necessary computa-
tions locally and systems in which the localization is undertaken
by an external, mostly centralized computing unit. The latter
approach is associated with all disadvantages that characterize
centralized localization algorithms (cf. Section 2.4). In addition,
these systems bear the risk of privacy infringement since the loca-
tion information is computed on an extrinsic server. Localization
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systems, in general, can further differ with regard to their costs and
installation expenditure, the accuracy and precision of obtained
locations, or the kind of locations they deliver, i.e. physical versus
symbolic, absolute or relative locations. There are also some in-
door localization systems which use entirely different localization
methods than those presented in Section 2.4.1. Two examples of
alternative localization systems are the Smart Floor introduced
by Orr and Abowd [179] and the MotionStar concept presented
by Raab et al. [187]. SmartFloor is a localization system for build-
ings which derives the locations of people from embedded pressure
sensors in the floor. In MotionStar, devices which generate axial
DC magnetic-field pulses are installed at fixed locations in the
building. Magnetic sensors in the devices to be located are used
to determine the orientation of the magnetic field and derive their
locations from this information. Table 2.1 gives an overview of
various indoor localization systems. Except for the SpotOn local-
ization system, none of the proposed indoor navigation solutions
listed in Table 2.1 specifically exploits ad hoc network connections
between the devices to be located. This is probably due to the fact
that localization systems are desired to work even if there is only a
single device to be located in the building. In localization systems
based on ad hoc networks, the quality of the locations correlates
positively with the number of devices in the building. However, in
an evacuation scenario, a small number of devices imply a reduced
danger of congestions during the evacuation process. Hence, the
importance of the drawback that there are few devices available
for localization is dampened because the reduction in evacuation
time which can be achieved by the navigation system is negligible.
Nevertheless, localization systems based on ad hoc networks can
significantly reduce the requirements of the localization infrastruc-
ture, which in turn reduces hardware costs, as well as installation
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and maintenance expenditure. High costs and effort have, so far,
been a major hindrance in the prevalence of indoor localization
systems, a trend which could be overcome by the use of ad hoc
network based localization systems. Since dynamic evacuation
support systems should be available in as many buildings as possi-
ble, enhancing localization support by exploiting ad hoc network
connections could advance this vision and bring it closer to reality.
For this reason, this thesis concentrates on the investigation of ad
hoc network based localization methods for mobile devices.

68



2.4 Localization

Table 2.1: Overview of indoor localization systems, their applied

localization algorithms, and the wireless
communication technique in use.

Localization

Commun-
ication

System

Scene analysis

Computer vi-
sion

Wearable computers [78]

Indoor navigation for the
blind [103]

NAVIO [191]

Easy Living [128]

IEEE 802.11 LaureaPOP [188]
NAVIO [191]
RADAR [13]
Lateration RFID tags Virtual leading blocks [8]
Infrared Navigation aid system [16]
Ultrasound Cricket [182]
Drishti [189]
UHF Navitime [9]
IEEE 802.11 Semantic navigation sys-
tem [232]
RADAR [13]
3G NAVIO [191]
Magnetic pulse | MotionStar [187]
Proximity RFID tags RadioVirgilio/ SesamoNet

[48]

RG-I [129]

Wearable way-finding com-
puter [201]
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Blind navigation system
54]

Space-identifying  infras-
tructure [18]

SpotOn [95]

Infrared Active Badge [244]
Ultrasound ActiveBats [85]

Cricket [182]
Bluetooth Smart navigation environ-

ment [101]

Barcode scan-
ning

E-scavenger hunt game
[227]

Context-aware wayfinding
[37]

Metronaut [218]

Dead-
reckoning

RFID tags Human navigation system
[123]

3G NAVIO [191]

Ultrasound Ultrasound Indoor Naviga-

tion [67]
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CHAPTER 3

L ORGANIC BUILDING EVACUATION

Organic Computing deals with the design of complex, self-organizing
technical systems in order to make them flexible and trustworthy
at the same time. According to the definition provided by Muehl
et al. [166], a system is self-organizing when it is self-managing,
structure-adaptive, and employing decentralized control. A system
is denoted as being self-managing if it can adapt to changes in its
environment without outside control. Structure-adaptive means
that the system has to maintain a certain kind of structure which
can be spatial, temporal, or of other kind. The O/C Architecture
developed in Organic Computing supports self-organization by
feedback and learning mechanisms as explained in Section 2.2.1.
In contrast to the previously given definition of self-organization,
the O/C Architecture explicitly allows for external control in order
to make the system trustworthy and robust against failure. Es-
pecially for such a dynamic environment as a building evacuation
scenario, adaptability plays an important role since it is impos-
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sible to consider all potentially arising situations at design time
of an evacuation system. However, it is even more important to
make such an evacuation system controllable, since relying com-
pletely on a technical system in case of a life-threatening situation
is undesirable for most humans. In the following, a concept for
OBESS is introduced, which is designed according to the paradigm
of controlled self-organization from Organic Computing. The main
system components and their respective functionalities are de-
scribed. Furthermore, it is noted how the O/C Architecture can
be used in OBESS in order to achieve the desired system behavior.

3.1 Concept of an Organic Building Evacuation
Support System

OBESS consists of three main components, which are displayed in
Figure 3.1. There is a CCU, i.e., a central server for each building,
which is used to configure the sensors in the SSN. The SSN is
the second component of OBESS and consists of numerous sensors
distributed throughout the building. These sensors are able to
communicate with each other and the CCU. The third system
component is a MANET, established by wireless communication
between mobile devices carried by potential evacuees. Mobile
devices in the MANET can communicate with sensors of the SSN
and vice versa. The functionalities of all three system components
are explained in detail in the following.

3.1.1 Central Control Unit

One important aspect of OBESS is its decentralized structure. As
emphasized before, the lack of a single point of failure is crucial,
especially in emergency systems. Nevertheless, there is a CCU in
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Figure 3.1: Structure of OBESS, its main elements (CCU, SSN,
and MANET), and the communication links between
the components.

OBESS and it is important to note that this control unit does not
play any part in the evacuation planning process and is, therefore,
not fatal for the evacuation support service in case of failure. The
main task of the CCU is to configure the static sensors. For exam-
ple, providing the building layout and corresponding information
or assigning the respective location information to each sensor in
the building, such that they can be used as beacons for localization
of the mobile devices. In order to accomplish this task, the CCU
offers an interface for the user, which can be used to configure and
control OBESS. Apart from that, the CCU collects information
from the mobile devices using the sensors in the SSN in order to
optimize and adjust OBESS to the building’s specifics over time.
Such information could be the average number of mobile devices
in the building at specific times and days, the most frequented
rooms and paths, or others. The CCU can learn building-specific
characteristics and adapt the evacuation system over time in or-
der to improve its effectiveness. For this, the two-level learning
mechanism of the generic O/C Architecture can be used which is
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described in Section 2.2.1. An example for such a building-specific
optimization of OBESS is described in Section 5.4, where the place-
ment of the sensors is improved in order to achieve better results
during the localization process of the mobile devices.

3.1.2 Static Sensor Network

The most obvious task of the SSN is to monitor indicators for
dangerous situations, such as heat, smoke, or similar properties,
perceivable by technical sensors. In case any of the measured
values exceeds a certain threshold, an alarm can be triggered or
a human user, who is responsible for the alarm, can be notified.
The SSN, therefore, serves as a monitoring and alarm system, sim-
ilar to the ones that can be found in certain buildings today. In
Section 4.2, an algorithm is presented which relies partly on such
sensor information. The sensors in the SSN are assumed to have
knowledge of their exact locations in the building due to an a priori
configuration via the CCU interface. Hence, the static sensors
serve as beacons to support the localization of the mobile devices
in the building as detailed in Section 2.4. In addition, sensors can
provide useful information as a download to the mobile devices,
for example a layout of the building and its representation as an
evacuation graph model (cf. Section 2.3.1). Normally, sensors in
the network communicate wirelessly with each other. Nevertheless,
it is conceivable that the SSN is set up as a so-called small world
network. Small world networks are characterized by having mainly
local communication links between nearby devices but occasionally
feature certain devices which are connected over longer distances by
wire. It is shown that, in small world networks, a small number of
wired long distance connections can speed up the spread of informa-
tion significantly (cf. Watts and Strogatz [245]). As a consequence,
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providing some wired connections between the sensors can enhance
the information exchange between distant mobile and static sensor
devices. Another task for the SSN is to collect information from
the mobile devices which can be used to evaluate the current status
of the evacuation system in this specific building. Such information
could be available input data for localization or trajectories of the
devices’ movements through the building. Sensors in OBESS are
not required to have an extensive computing capacity, and there
is no need to implement a complex O/C Architecture on these
devices.

3.1.3 Mobile Ad Hoc Network

The devices in the MANET are assumed to run software enabling
their usage for building evacuation. Whenever such a device enters
a building which is equipped with OBESS hardware, it receives a
message from a nearby sensor, including all necessary information
about the current building. In particular a possibility for down-
loading the building’s layout and the respective evacuation graph
model is provided. In case of an emergency situation, the sensors
inform all nearby mobile devices about this situation. The device
then calls the attention of its user by ringing and vibrating. On the
display of the device, the building’s layout and the current location
of the user are shown and the device indicates navigation instruc-
tions to an exit door, for example by pointing out the direction on
the screen or via voice instructions.

The mobile devices in OBESS are each assumed to belong to a
specific person who carries the device. This provides the oppor-
tunity to collect information about the human user’s preferences
and characteristics. These preferences or characteristics can be
used to personalize the evacuation support service offered by the
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device. For example, the device can collect information about the
age of its user or whether he has any handicaps in order to adjust
the navigation instructions accordingly. Also, rescue forces can
be informed about certain health conditions to improve the help
they can provide. Whether such personal information is manually
entered by the user himself or is even learned by the mobile device
from observing its user’s behavior, i.e., visited websites, social
networks, et cetera, is open for discussion and future research. Of
course, an important aspect in this context is the protection of the
user’s privacy.

The main focus of this thesis lies on the mobile devices in OBESS.
In order to design the software for these devices, two main algo-
rithmic challenges have to be mastered. Firstly, the device has to
be able to compute an evacuation path from its current position to
an exit of the building, thereby integrating knowledge about the
current evacuation situation. Two algorithms which can generate
navigation instructions are presented in Chapter 4. The second
challenge is that the devices have to be capable of determining their
locations inside the building. Chapter 5 addresses exemplary ways
to master this task. An implementation of the O/C Architecture
for the mobile evacuation devices in OBESS is described in the
following.

3.2 Observer/Controller Architecture for
Mobile Devices

As described in Section 2.2.1, the O/C Architecture is a design
framework for organic technical systems, i.e., systems which are self-
organizing and exhibit life-like properties, such as being adaptable
to unforeseen changes, while at the same time being trustworthy,
robust, and controllable by human users. Hereafter, an exemplary
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implementation of this generic architecture for mobile devices used
in OBESS is presented.

In OBESS, each mobile device and the CCU is designed according
to the O/C Architecture. However, the resulting system structure
is not hierarchical because there are no means for the CCU to
control the mobile devices in the system. Hence, the structure is
rather a decentralized one as depicted in Figure 2.4(b). The SuOC
of the mobile devices is different from the standard structure in the
way that the devices cannot only observe themselves, but also all
devices located in their communication ranges. Nevertheless, only
the devices’ own actions are controllable. Figure 3.2 illustrates this
structure.

The software of a mobile device in OBESS has three modes of
operation. Firstly, it can simply display the layout of the building
on its screen without providing any further functionality. Secondly,
it can run in localization-mode, in which the software determines
the device’s location within the building and shows it on its screen.
Thirdly, the device can switch to evacuation-mode, in which it
additionally computes navigation instructions in order to support
the evacuation of its user from the building. Since all devices have
limited resources and constrained energy supply, it is reasonable to
turn-off the evacuation functionalities if they are not needed. To
do so, the O/C Architecture provides the concept of observation
models which determine what kind of data is currently being
monitored and processed. The controller can switch between these
observation models depending on the current requirements. For
example, if the device is notified of an emergency situation either
by the sensors in its environment or directly by its user, evacuation-
mode can be switched-on; otherwise it is turned off and only
localization or simply the building’s layout is available to the user.
Both kinds of operation modes can have numerous different sub-
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Figure 3.2: Structure of the O/C Architecture for mobile devices
in OBESS.
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level observation models, one for each evacuation or localization
algorithm which is available to the mobile device. The main
purpose of the O/C Architecture is to observe and characterize
the device’s environment and switch between different algorithms
for evacuation planning and localization in order to select the
most suitable one for the current situation of the mobile device.
Furthermore, changes in the environment are meant to be detected
which trigger an update of the evacuation route. In the following,
the O/C Architecture is described for both, the evacuation-mode,
as well as the localization-mode. It should be noted that the
evacuation-mode requires location information, which is why the
evacuation-mode constitutes an enhancement of the localization-
mode observation model.

3.2.1 Observer

The observer’s task is to provide for a characterization of the cur-
rent system situation as well as a prediction of probable future
system states to the controller. These characterizations are used
as a basis for making decisions in the controller, i.e. selecting
the most suitable localization and evacuation algorithm. Figure
2.2 illustrates the observer part of the generic O/C Architecture.
The monitor unit is responsible for observing all data specified
by the observation model. In case of the evacuation-mode, all
necessary input data to perform evacuation planning has to be
monitored and the same holds for localization. For evacuation
planning, the locations of other evacuees in the building could
be of interest, as well as sensor data about dangerous areas. As
mentioned before, there is one observation model for each available
evacuation or localization algorithm. Hence, depending on the
selected algorithm, different input data is monitored. For example,
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when beacon-based localization is applied (cf. Section 2.4.1), any
beacon location communicated by a nearby device is monitored.
In case of distance-based localization, hop count information from
surrounding devices could be monitored, or other data depending
on the selected distance estimation technique (cf. Section 2.4.2). In
addition, information about the current environment of the device
is observed, such as indicators about the network topology, for
example how many beacons are within reach. This environmen-
tal information can be used in the controller to decide about a
necessary change of the selected algorithm. Section 3.2.2 explains
this in detail. The pre-processor computes derivative data for the
algorithms by processing or filtering the monitored data. For ex-
ample, if the device receives multiple messages with contradictory
content, the pre-processor decides which message contains the most
up-to-date information by comparing age-values of the messages
received. Another example would be to find the minimum hop
count value from a set of hop count messages received by neighbors
or to evaluate a potential evacuation route by summarizing sensor
information from rooms along this path. In the data-analyzer,
meaningful attributes which are able to characterize the current
system state are derived from the pre-processed data. Examples
for such attributes are the average speed with which nearby devices
are moved and their direction of movement. These parameters
could be used to characterize the mobility in the network. For
evacuation planning, the average concentration of evacuees in the
building is an example for a computed value which characterizes
the evacuation situation. The prediction module of the generic
O/C Architecture is meant to forecast the most likely future sys-
tem state. For evacuation planning, it is conceivable to assess the
emergence of congestions, for example from an increasing concen-
tration of devices in parts of the building. In case of an active
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localization-mode, this is the place where dead-reckoning methods,
as described in Section 2.4.3, could be used in order to predict the
next location of a device. The observer’s aggregator module passes
all this information to the controller.

3.2.2 Controller

The controller’s main function in the O/C Architecture is to choose
an appropriate action, given a certain situation assessment and a
prediction of a future system state by the observer. In the presented
implementation of the O/C Architecture for mobile evacuation de-
vices in OBESS, choosing an appropriate action is equivalent to
selecting a suitable evacuation planning and localization algorithm.
For evacuation planning, there are two evacuation planning ap-
proaches proposed in this thesis which differ in the information
required and deliver evacuation routes of different quality. Depend-
ing on the device’s state-of-charge, it might be advisable to choose
an evacuation planning algorithm which requires fewer messages to
be exchanged, even though the computed navigation instructions
are suboptimal. Furthermore, replanning of an evacuation instruc-
tion can become necessary when there is new information about
the situation in the building available to a device. In Section 2.4,
the broad variety of localization methods for ad hoc networks is
demonstrated. The sheer quantity of different approaches to the
problem suggests that there is more than one optimal method to
find the location of devices in a network. In fact, each algorithm
has its own advantages and disadvantages and it is not always easy
to choose which localization algorithm is preferable for a given situ-
ation. Fortunately, the organic O/C Architecture offers a solution
to select between multiple evacuation and localization algorithms at
runtime, respecting the current network situation and the device’s
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system conditions. Figure 2.3 illustrates the controller part of the
generic O/C Architecture, its elements, and their interactions.

The controller takes actions in order to achieve desired and prevent
unwanted system behavior. Undesired evacuation behavior occurs
when an evacuation instruction is not optimal anymore with respect
to current objectives. One reason for this can be a deviation of
the user from the suggested evacuation path or because a newly
available situation characteristic implies that another escape route
is superior in terms of current optimization objectives. In case of
localization, an undesired system behavior appears when locations
which are computed by a chosen localization algorithm deviate too
much from real locations of the device and when there is another
localization algorithm which is expected to deliver more accurate
results. The available control actions are to change the applied
evacuation or localization algorithm and to trigger replanning of
evacuation instructions. In the O/C Architecture, there are two
types of control mechanisms. An intrinsic control, where the con-
troller chooses an action depending on the situation characteristics
and prediction of the future system state which it receives from the
observer. These characteristics are matched in the action selection
module and the situation-action mapping which has the highest
reward is chosen as described in Section 2.2.1. Alternatively, it
is also conceivable that a control action is triggered by the user
of the O/C system. In the generic O/C Architecture, the user is
intended to control the system by setting and adapting the system’s
objectives and goals. The most obvious change in system objectives
is a switch between the modes of operation, such as turning the
evacuation procedure on or off. Another conceivable change of
system objectives is to set other optimization objectives for the es-
cape route planning in the evacuation-mode. It could be desired to
search for an escape route with minimum risk exposure instead of
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travel time. However, in the O/C Architecture for mobile devices
in OBESS, a direct interaction between user and mobile device is
also allowed. For example, the user can correct computed locations
by tapping on the screen of the device or by choosing a different
evacuation route than the suggested one simply by walking in an-
other direction. In addition, it is conceivable that the user selects
a compulsory localization algorithm, which has to be used by the
system, or inserts a priori available information about the building
in order to facilitate the controller’s selection of an appropriate algo-
rithm. The O/C Architecture is, furthermore, particularly suited
for respecting user preferences and characteristics during operation.
The user can provide personal information which influences the
objectives for evacuation planning in the evacuation-mode. Such
information could be the need for accessible paths or the avoidance
of stairs in case the user is handicapped or of high age.

In the generic O/C Architecture the situation to action mapping
is intended to be learned using the two-level learning infrastructure
provided. While the first-level learning, also called online learning,
is a feedback mechanism, which evaluates results achieved by
control actions at runtime, the second-level learning, or offline
learning, is based on a simulation, in which potential control actions
are tested before they are made available to the system. While the
first-level learning is often based on a Learning Classifier System
(LCS), as described by Richter [193], the second-level learning can
be implemented as an EA (cf. Section 2.2.1). For online learning,
the LCS assigns a reward to each mapping. From different matching
situations, it applies the action with the highest reward value.
After applying an action, the system receives positive or negative
feedback, evaluates the applied mapping accordingly, and updates
its reward. In OBESS, receiving feedback for evacuation planning
or localization is not straightforward since the mobile devices have

83



Chapter 3 Organic Building Evacuation

no possibility to know whether they computed the right locations
or whether the determined evacuation route is optimal. However,
active interventions of the user can be interpreted as a negative
feedback and, hence, used to evaluate the quality of the current
localization and evacuation algorithms. Additionally, feedback can
be derived from situation parameters provided by the observer. If
a change in the environmental situation is detected, for example a
recomputation of the evacuation instruction can be triggered, which
integrates this newly available information. A sample situation
for changing the applied evacuation planning algorithm is when
the observed state-of-charge of the device’s battery falls below a
certain threshold and an evacuation algorithm which requires fewer
messages to be exchanged is chosen in order to save energy. One
way of evaluating a localization algorithm is to perform consistency
checks. Usually, two consecutively computed locations should not
lie far apart from each other. If this is the case, the currently
selected localization algorithm does not deliver high quality results
in the current network situation and the corresponding fitness value
is decreased. Moreover, the computed locations of the device’s
neighbors should lie within its communication range, and so forth.
Feedback for an evacuation route is obtained whenever the device
receives new information about the current situation in the building.
The device could receive information that there are more evacuees
located in rooms along the currently chosen route than expected, in
which case a replanning of the evacuation instruction is triggered.
Apart from the online learning described above, the O/C Architec-
ture provides for offline learning. For this, the situation parameters
from the observer can be used to configure a simulation, which
reflects the actual network situation and evacuation and localization
algorithms can be tested offline in this simulation before they are
made available for usage during runtime. This mechanism reduces

84



3.3 Summary

the probability of choosing unsuitable actions, i.e., inappropriate
localization algorithms, for a given network environment. It is
also conceivable to use the generic O/C Architecture’s capability
for offline learning in order to improve evacuation planning. The
simulation environment can be based on any of the evacuation
models presented in Section 2.3.1 and it is initialized by choosing
parameter values that reflect the situation currently observed in
the building. With this simulation, the consequences of following a
specific evacuation instruction derived by an evacuation planning
algorithm can be assessed and evaluated. Evacuation instructions
which lead to a slow evacuation time in the simulation can be
substituted by instructions which result in quicker evacuations.
This procedure ensures that evacuation instructions are thoroughly
evaluated before they are shown to the user.

3.3 Summary

In this chapter, a concept for a building evacuation support system
using mobile devices is introduced. This concept is based on the
principles of Organic Computing and called OBESS. OBESS con-
sists of mobile devices carried by potential evacuees, who organize
in a MANET, a stationary SSN installed in the building, and a
CCU mainly used for configuration purpose. The sensors are meant
to be able to observe danger indicators in the building and support
the localization of the mobile devices as beacons. The mobile de-
vices guide their users to safe exits by performing localization and
subsequent evacuation planning. This chapter proceeds with pre-
senting an exemplary application of the generic O/C Architecture
to mobile evacuation devices. The O/C Architecture supports an
adaptive behavior of the mobile devices to changes in their en-
vironment by a two-level learning mechanism. Such a behavior
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is crucial in an evacuation scenario, which is unpredictable and
dynamic. At the same time, the system becomes trustworthy,
robust, and controllable by human users via intrinsic and direct
control mechanisms. This is an important characteristic in order to
make a technical system trustworthy, which humans are supposed
to depend on in life-threatening situations. Apart from that, this
generic architecture provides for several further advantages, such
as the possibility to select the data that is currently monitored
and to easily integrate user preferences into evacuation planning.
The main objective of the O/C Architecture for mobile evacuation
devices is to select an appropriate localization and evacuation plan-
ning algorithm from a set of available methods or to trigger a new
evacuation path planning. The selected actions are chosen in the
controller depending on the currently observed situation in the
building and a prediction of its likely future state. To do so, a two-
level learning structure is used which consists of an online learning
mechanism based on feedback from the user and the device’s en-
vironment and a simulation-based offline learning approach. It is
discussed what kind of feedback can be used for online learning and
how this information is used to choose an appropriate localization
and evacuation planning algorithm at runtime. Offline learning
offers the possibility for simulative testing of localization algorithms
in realistic network scenarios as well as the evaluation of a specific
evacuation instruction before admitting it to productive utiliza-
tion. The main advantage compared to standard simulative based
approaches, is that the simulation can be parameterized according
to the currently observed situation inside the building instead of
being based on expected values derived from past experiences.
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CHAPTER 4

LSWARM EVACUATION PLANNING WITH
MOBILE DEVICES

If a building has to be evacuated, the evacuees, ideally, leave the
place in the shortest time possible. According to Daniels et al.
[46], the time evacuees need to escape is composed of the time
until the emergency is detected and the alarm is triggered and the
time for evacuees to react and leave the building. Apart from the
reaction time of the evacuee, all other components can be subject
to optimization in an evacuation support system. Nevertheless, in
the following, only the time for leaving the building is considered.
This time can be influenced directly by the quality of navigation
suggestions provided by mobile devices. The time which an evacuee
needs to find his way out of a building depends on several factors.
The knowledge about a building’s layout and the right choice of
directions towards an exit have the highest impact. In today’s
buildings, the layout is usually provided by stationary emergency
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evacuation maps. Apart from that, standard evacuation signs as
well as markings on the evacuation map point out the shortest
path from a certain location to a nearby exit. Although knowing
the shortest path is helpful, the shortest path does not always
correspond to the quickest path leading outside the building. The
main reason for this is that congestions often arise when a huge
crowd tries to leave the building on the shortest path. Other causes
can be fire or gas which block passages that are part of a shortest
path. As a consequence, evacuation planning should concentrate on
finding the quickest rather than the shortest path leading outside
a building. Currently, evacuation research tackles this problem
by performing simulations and, subsequently, trying to avoid con-
gestions by either making modifications to the building or to the
recommended exit routes (cf. Section 2.3.2). This procedure, how-
ever, does not guarantee good results for situations which differ
strongly from the simulations, for example, if there are far more or
less evacuees inside the building compared to the scenario it has
been optimized for. This is the point at which OBESS begins to
develop its full potential. Due to the ability of the mobile devices
to communicate over ad hoc network connections, the opportunity
arises to gain insights into the current situation inside the building
at the time of evacuation. Using communication, knowledge about
the number of evacuees inside the building, potential congestions,
or other useful information can be distributed over the ad hoc
network. This allows for the devices to get a view of the evacua-
tion situation, which extends beyond their own limited range of
communication. This knowledge can, subsequently, be integrated
into evacuation path planning, enabling not only the optimization
of the distance but also of the time it takes to reach an exit. Of
course, questions arise whether the information gathered via local
communication in a MANET has enough quality to really improve
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evacuation planning since it is potentially incomplete, delayed,
or error-prone and how evacuation planning can be performed in
a decentralized way without central coordination. This chapter
addresses these questions and proposes two algorithms, which are
evaluated in a simulative evacuation scenario. In order to be able to
realize a decentralized evacuation system like OBESS, the mobile
devices have to be enabled to compute reasonable evacuation routes
towards a building’s exit without central control. Furthermore,
it is desirable to integrate available knowledge about the current
situation from localization communication into this process.

Definition 4.1 (Swarm Evacuation Planning). Swarm Evacua-
tion Planning (SEP) denotes the process of finding an optimal
evacuation route for users of mobile devices without the help of a
central computing unit by integrating information about the current
evacuation situation gathered via local communication.

SEP receives its name due to its similarity to the concept of Swarm
Intelligence (cf. Section 2.2.3). In Swarm Intelligence, a global
behavior, which is not achievable by an individual alone, arises as
an emergent effect from the interactions between the individuals
in the swarm. The same holds for SEP. Only a swarm of mobile
devices is able to collect enough information about the global
evacuation situation to be able to assess congestion potentials and
guide evacuees on optimal routes.

For computation of the optimal route, information about the global
situation is collected via local communication. The result of SEP
is an evacuation route for the individual user of each device such
that the overall evacuation time is minimized. Another conceivable
objective is to optimize each individual’s evacuation time. This
could possibly lead to a higher acceptance of the evacuation de-
vice but certainly could also increase the overall evacuation time.
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OBESS, so far, optimizes the overall evacuation time because this
objective is more reasonable from a social perspective. Neverthe-
less, changing this objective to a more egoistic one could certainly
be up for discussion.

A great advantage of such a decentralized evacuation system is
that the information exchange works, even in case of failure of
certain devices. Such a network is robust and lacks a single point
of failure, which makes its deployment attractive, especially for
emergency situations. To avoid that each user fully depends on his
mobile device, the system can easily be complemented by installing
some static digital devices inside the building, which can serve as
a fallback in case a user does not have a portable device or if it is
broken or run out of battery. The approaches proposed hereafter
and the corresponding experimental results have been published
partially by Merkel et al. [155, 158].

4.1 Macroscopic Swarm Evacuation Planning

As introduced in Section 2.3.2, macroscopic evacuation models are
the common basis for evacuation planning. Macroscopic models
regard groups of homogeneous evacuees, i.e., evacuees who are
equal in terms of speed, size, and behavior. Such a graph model
is usually assumed to be constructed manually by experts and
can be provided to the devices beforehand. The environment is
modeled as a graph G = (N, E) with nodes, n € N, representing
rooms or corridors of the building, and edges, e € F, representing
doors or similar connections between the areas represented by
nodes. Nodes are typically modeled to have a capacity and a
number of initially allocated evacuees, which corresponds to the
number of evacuees currently located in that room. An edge has
two weights, ¢ and [, with ¢ referring to the number of evacuees
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who can travel simultaneously on this edge and [ representing the
length of the edge. The edge length can, for example, be measured
as the average time needed for one evacuee to traverse it or as the
distance between the centers of the connected rooms. Figure 2.6
shows an example of a building and its corresponding macroscopic
graph model G.

The goal of traditional macroscopic evacuation planning is to de-
termine how many evacuees (flow size) have to be sent on which
path in order to optimize the given objective. This objective can
be to minimize the overall travel time, maximize the flow size in a
certain time period, and so forth (cf. Section 2.3.2 for a detailed
description). The problem with such macroscopic evacuation plan-
ning is that it only computes how many evacuees located in a room
have to use a certain path towards the exit. There are no means
to decide which evacuee is sent on which path. Since the different
paths have different evacuation times, the allocation of evacuees to
paths is a challenge in SEP. In addition, macroscopic evacuation
planning algorithms require global information about the number of
evacuees and their locations in the building, which is not provided
in a scenario without a global observer. Nevertheless, for a first
attempt to develop an SEP algorithm it seems reasonable to take
a traditional evacuation planning approach as a role model. Thus,
a macroscopic evacuation planning approach serves as a basis for
the following capacity constrained SEP algorithm. The algorithm
is modified in order to work in a distributed and decentralized way,
i.e., to be executable on each device in the network, and to deliver
an optimal evacuation route for each evacuee.
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4.1.1 Capacity Constrained Swarm Evacuation Planning

The evacuation scenario considered consists of m mobile devices,
which have the evacuation graph model G of the building at their
disposal. For simplicity, each device has perfect information about
its own position in the building. In order to compute an optimal
evacuation route for each individual, the mobile device uses the

Capacity Constrained Swarm Evacuation Planner (CC-SEP), which
is shown coarsely in Algorithm 4.1. Firstly, the device collects
information about the position of other evacuees in the network via
local communication. This information is then used to compute a
global evacuation plan with an appropriate macroscopic evacuation
algorithm. As a final step, one of the evacuation instructions from
the evacuation plan is selected. This instruction can be used by the
device to guide its user, for example by displaying the respective
directions on its screen. In the following, the realization of each
step in this algorithm is described in detail.

Algorithm 4.1 Capacity Constrained Swarm Evacuation Planner

Require: Evacuation graph G = (N, E)

Ensure: Evacuation instruction

G = InformationCollection (G)

: Evacuation plan I = FvacuationPlanning (G)

. Evacuation instruction i = InstructionSelection (I)
return ¢

W

Information Collection

In order to compute the global evacuation plan, initial allocations
of evacuees in the evacuation graph have to be known, i.e., how
many evacuees are currently located at each node. This knowledge
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is gathered via local communication. Since the optimization is
done on the abstract graph level, the exact position of each evacuee
is negligible and only the number of evacuees located at a certain
node is required. To obtain the initial allocation, each evacuee’s
device periodically sends a message containing its identification
number (D), the information about the node n where the device
is currently located at, and two lists, which are referred to as
local-count and global-count. The global-count list maintains the
number of devices located at each node in the evacuation graph,
which is the required information for the evacuation planning
process. In order to compile this data, an auxiliary list called
local-count is used. It contains I Ds from all known devices which
are located at the same node as the device to which this list
belongs. Each entry in these lists has an age-value assigned to
it and all age-values are increased by 1 before a device sends a
message. Due to asynchronous message forwarding in the network,
it can happen that a message which contains more up-to-date
information is transmitted subsequently to a message with outdated
information. The age-value ensures that each device knows which
message contains the most recent information. The lower an age-
value is, the more recent the respective information. Each device
generates an entry for its own node in the global-count list by
counting the IDs in its local-count list. The exact procedure
is described in the following. The local-count always contains
the device’s ID with an age-value of 0 assigned to it. When
a device communicates with another nearby device at the same
node, it adds the ID of its communication partner to the local-
count list and assigns an age-value of 0 to this information as
well. In addition, it compares the entries from its own local-count
list with the ones in the local-count list of its communication
partner. It adds all IDs which are unknown to its local-count
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list and assigns the same age-values which the entries have in the
communication partner’s list. If two different messages contain
the same I D, the device takes the one with the more recent age-
value. As a next step, the device counts all entries in its local-count
list and adds an entry to its global-count list which contains the
node information n, the number of entries a (n) and an assigned
age-value of 0. Further, the device compares the entries in the
global-count list of its communication partners with its own and
adds the missing entries with the age-values they have in the
communication partner’s list. If the device receives a message with
an entry in the global-count list that is already stored in its own
global-count list, it overwrites the information only in case the
age-value of the received information is lower. If the age-value of
an entry in the local-count or global-count list exceeds a predefined
threshold ¢4z, the entry is removed from the list. This expiration
date is necessary because it is impossible to determine whether
an evacuee has already left a room or not. An increase in the
age-value for a certain entry in the local-count list between two
updates can have two reasons. Either, the evacuee is not in the
room anymore and, therefore, there is no device which resets this
age-value, or the device receiving the information is moving away
from the source of information. In this case, the number of devices
it takes to forward the message increases and, as a consequence,
the age-value is higher when the information arrives at the device.
The right choice of the expiration date is crucial. If the value is
too small, it can happen that the information is not passed on to
all devices before it is recognized as obsolete. If an expiration date
is set too high, information about other evacuees’ whereabouts are
assumed to be up-to-date, although the devices may have already
been moved somewhere else. In order to determine an appropriate
value for the expiration date, the characteristics of the building’s
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layout should be taken into account. Using knowledge about the
building’s layout and the communication range r of the devices,
the expiration date for information on the local-count list is set as

SpEz (n)
r

MaTneN

where n € N represents each room in the building, i.e. node in the
macroscopic graph, and SpEx (n) refers to the spatial expansion
of that room. In case of rectangular rooms this can, for example,
be the diagonal of the room. For values in the global-count list,
the expiration date is computed based on the spatial expansion
of the whole building. In case of a building with multiple floors,
the expansion of one floor would be the best reference value to
compute the expiration date.

By using the algorithm described above, the devices are able
to collect information about the number of evacuees in different
rooms (nodes) and, with time, build a local view of the evacuation
situation. This view can then be used in a macroscopic evacuation
planning approach, in the same manner as if the device had global
information. As soon as the initial allocation of evacuees is known,
the evacuation planning can be initiated. There are two conceivable
implementations for the evacuation planning. It is either performed
only once by using all the information collected up to this point,
for example right after the alarm is triggered, or the evacuation
planning is constantly repeated, hence, adapting to new information
which becomes available during the evacuation process. Both
versions are tested in simulative experiments.

Evacuation Planning

In order to compute the global evacuation plan, any macroscopic
evacuation planning algorithm can be used. As detailed in Section
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2.3.2, most of these algorithms require a time-expansion of the
evacuation graph, making evacuation planning a time and space
consuming task. Lu et al. [143] introduce a heuristic algorithm
called Capacity Constrained Routing Planner (CCRP), which does
not rely on a time-expansion of the evacuation graph and provides
solutions of similar quality (cf. Sangho et al. [204]). However,
the algorithm can also be replaced by other macroscopic planning
methods, for example, the multi-objective optimization approach
proposed by Cheng [39], Zong et al. [258], or evacuation planning
based on EA as described in Garrett et al. [72] and Saadatseresht
et al. [202].

CCRP returns an evacuation plan I which consists of a set of
evacuation instructions ¢. Each instruction contains a path p in
the evacuation graph, i.e., a sequence of nodes, a flow size f, i.e.,
the number of evacuees who are sent on this path, and a sequence
of starting times ¢. The starting times denote at which time the
corresponding node on path p is entered by evacuees who follow
this evacuation instruction. The basic idea of CCRP is to model
the used capacities of each node and each edge as a time series.
This time series can then be used to derive waiting times at certain
nodes and edges in order to find an optimal path with respect to
traveling time, while taking into account all previously scheduled
evacuees and the capacity constraints of the graph. The algorithm
used for optimization is taken from network routing theory and
assumes a homogeneous speed of the evacuees involved. CCRP
is an iterative method, which computes evacuation paths for all
evacuees located at one node before processing the next node. The
priority with which the nodes are processed decreases with their
increasing distance to an exit. In other words, firstly, all evacuees
located on the node which is closest to an exit are scheduled for
evacuation, after which the next node is processed and so forth. For
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each node, path p is determined as the path closest to an exit with
minimum travel time. The travel time includes the time needed
to cover the distance as well as the waiting times for released
capacities which are occupied by previously scheduled evacuees.
After the quickest path is found, the number of evacuees f which
can be sent simultaneously on this path is computed. In the next
step, the time series for all nodes on this path are updated and
respective capacities are reserved for the evacuees at times ¢ when
they pass the respective node or edge. The reserved capacities
are then taken into account in the next iteration when waiting
times are computed. The set of p, f, and ¢ form one evacuation
instruction ¢ and are added to the global evacuation plan I. The
evacuation planning terminates when all evacuees are scheduled.
Algorithm 4.2 describes the operating principle of CCRP (a fully
detailed description can be found in Lu et al. [143]). As explained
before, nodes n € N have an initial allocation a (n) and a maximum
capacity ¢ (n). The capacity of an edge e = (n;, n;) is denoted by
c(e). Each edge in an evacuation graph represents the connection
between the center of two rooms. An edge, therefore, has a length
[ (e) which is comprised of the two parts Is(e) and le(e), with
ls (e) representing the travel distance inside the starting room and
le (e) the travel distance which corresponds to the target node of
the edge. It holds that Is(e) + le(e) = [(e). This is important
for computing the reserved capacities in each room at the time
evacuees are assumed to enter them. The evacuation graph G
contains a set of exit nodes D C N, which represent the exits of
the building. In order to find evacuation instructions with CCRP,
an additional super source node suSo and an additional super sink
node suS7 are added to the evacuation graph, both with infinite
capacities. The super source node su.So is connected via edges with
infinite capacities and zero lengths to all nodes in the graph, except
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Table 4.1: Evacuation instructions obtained by applying CCRP to
the example graph in Figure 2.6.

Instruction

Index | Flow Size | Path and Timing
1 f=2 p=<ns,ng >
t=<0,1>

2 f=1 p=<nsng >
t=<1,2>

3 f=1 p = <ni,ns,ng >
t=<0,1,2 >

4 f=3 p=<ng,ng>
t=<0,2>

5 f=2 p=<ni,ngng >
t=<1,2,3>

6 f=1 p=<ng,ng >
t=<1,3>

for the super sink node. Similarly, all exit nodes are connected
to the super sink node via edges with infinite capacities and zero
lengths. This is an auxiliary construction, which ensures that there
is only one source and only one sink node in the graph and, hence,
simplifies the wayfinding procedure. Table 4.1 shows an example of
a list of evacuation instructions produced by the CCRP given the
example graph shown in Figure 2.6 as input. It should be noted
that the evacuation instructions returned by CCRP are sorted in
ascending order with respect to their evacuation time and that
it is possible to have more than one evacuation instruction for a
specific starting node n.
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Algorithm 4.2 Capacity Constrained Routing Planner [143]

Require: Evacuation graph G = (N, E)
Ensure: Evacuation plan I (set of evacuation instructions )
// Initialize capacity time series for all nodes and edges:
1: Vn € N: freeCap (n,*) < c¢(n),
freeCap (n,0) < c(n) —a(n)
2: Ve € E: freeCap (e,*) + c(e)
3: while 3n : freeCap(n,0) < c¢(n) do
4: prev (n) < null, minT (n) < oo
5: Vn € N, minT (suSo) + 0, Q + {suSo}
// Find next best path:

6: while Q # () do

7: Node u < min,ecg (minT (n))

8: for Node v € neighbors (u) do

9: if (u # suSo) Vv (freeCap (v,0) < ¢(v)) then
10: arrT < minT (u), waitT < 0

11: Edge e < (u,v)

12: nCap < freeCap (v, arrT + waitT + s (e))
13: eCap < freeCap (e,arrT)

14: while eCap =0V nCap =0 do

15: waitT < waitl + 1

16: eCap < freeCap (e, arrT + waitT)

17: nCap < freeCap (v, arrT + waitT + ls (e))
18: end while

19: if (arrT + waitT + 1 (e)) < minT (v) then
20: minT (v) < arrT + waitT + 1 (e)
21: prev (v) < u
22: end if
23: end if
24: end for
25: end while
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26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

// Create path p time schedule t and flow size f:

Node n < prev (suSi)

while n # suSo do
p.add (n), t.add (minT (n) — 1 (e))
Edge e < (prev(n),n)
f < min(f, freeCap (e,minT (n) —1(e)))
n < prev (n)

end while

reverse (p), reverse (t)

Source node s < p.getFirstNode ()

f <+ min(f,c(s)— freeCap (s,0))

// Allocate capacities on path:

freeCap (s,0) < freeCap (s,0) + f

Node n + prev (suSi)

while prev (n) # suSo do
Edge e < (prev (n),n)
schedT < minT (n) — I (e)
waitT < minT (n) — minT (prev (n)) — I (e)
freeCap (e, schedT') < freeCap (e, schedT) — f
startT = minT (n)
endT = minT (prev (n)) + waitT + ls (e)
for startT > time > endT do

freeCap (n,time) < freeCap (n,time) — f
end for
m = prev(n)
startT = minT (m)+waitT +1s (e), endT = minT (m)
for startT > time > endT do
freeCap(m,time) < freeCap(m,time) — f

end for
n < prev(n)

end while
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55: Evacuation instruction i < (p,t, f)
56: Add instruction ¢ to plan I

57: end while

58: return Evacuation plan I

Instruction Selection

The third step in CC-SEP is to select an appropriate evacuation
instruction for the device’s user from the global evacuation plan I.
Valid candidates are all instructions with a path p that starts at the
node where the device is located. The objective of the instruction
selection is for the number of devices which select a specific instruc-
tion to approximately correspond to the instruction’s associated
flow size f. This is necessary in order get a close match between the
real waiting times which occur during evacuation and the waiting
times used for evacuation planning. To meet this challenge, each
evacuee’s device sorts the I Ds in its local-count list in an ascending
order and maps the instructions returned by CCRP successively
to the IDs in the list. Thereby, the flow-size of each instruction
determines how many successive IDs are mapped to that specific
instruction before advancing to the next one in the evacuation
plan. The mapping process can be stopped as soon as the device’s
own ID is mapped to an evacuation instruction which the device
then uses to guide its user. In CC-SEP each device has its own
local view of the evacuation situation, as a result, the computed
evacuation plan I can also differ from one device to another. Nev-
ertheless, it is safe to assume that devices which are located in the
same room have a very similar information base and, thus, their
evacuation plans are similar as well. Although sorting according to
device identification numbers seems to be a very naive approach to
assign evacuation instructions, there is a high chance for the selec-
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tion process to result in a distribution of evacuation instructions
amongst the devices which is proportional to the flow-sizes of the
respective instructions without explicit coordination between the
devices. Nonetheless, this selection process is a naive procedure,
which is prone to manipulation. Because the instructions in the
evacuation plan are in increasing order of evacuation time, there
is a high incentive for the mobile device user to manipulate the
device’s 1D in order to receive a faster evacuation path. For a
first assessment on how distributed and decentralized evacuation
planning in a MANET can be performed, however, this approach
is sufficient.

4.1.2 Evaluation

For the experimental evaluations presented in this thesis, a Java-
based simulation called Swarm Simulation is developed, which
incorporates both, an evacuation simulation and a mobile ad hoc
network simulation. The evacuation simulation is based on a simple
time-discrete evacuation model similar to the two-dimensional cel-
lular automaton described in Burstedde et al. [32]. For the mobile
ad hoc network communication, the communication neighborhood
of a device corresponds to its physical neighborhood on the plane
within a fixed Euclidean distance r. This model corresponds to the
so-called unit disc model which is described by Clark et al. [43].
Agents in the simulation are equivalent to evacuees and the mobile
devices they carry around. The simulation runs in cycles and in
each cycle, all agents are executed once sequentially in a specified
order, which is also called scheduling. For the evaluations in this
thesis, a random scheduling is selected. One execution denotes the
process of first updating the list of neighbor’s a device currently
has, i.e. can communicate with. As a next step, the behavior of
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the agent is executed; this can, for example, be the computation
of an evacuation instruction or the current location of the device.
For such computations, the device can access any information
from its neighbors as it is available at that point of time. After
the behavior is finished, the configured movement of the agent is
executed. Table 4.2 shows the main configuration parameters of
the simulation. In addition to these parameters, there are several
more configuration options depending on the selected behavior or
movement. The simulation is built in a modular way, such that
it can be easily extended to define new behaviors, movements,
environments, agents, or scheduling-schemes.

For evacuation, a layout of the building is read from an XML-file,
which is required to follow a specified standard. The building’s
layout has to be in form of a grid with variable dimensions and each
patch in this grid can be marked to be accessible to the evacuees
or to be part of a wall or barrier. Additionally, each patch of the
discretized layout is assigned to a node in the macroscopic evacua-
tion graph, which is also specified in the XML input file. Edges
between nodes in the macroscopic evacuation graph are required
to be specified manually in the input file. The capacity of a node
¢ (n) is computed as the number of patches in a room. The length
of an edge I (e) is calculated as the Manhattan distance between
the two patches at the center of each room. The edge capacity
¢ (e) corresponds to the width of the connecting door, measured
in the number of patches. If there is no passage, i.e. sequence of
accessible patches, between two nodes which are connected via an
edge in the graph, the simulation responds with an error. The
same holds for an initial distribution of agents in rooms where
there is not enough space.
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Table 4.2: Main configuration parameters for the Swarm

Simulation.
’ Parameter ‘ Description
Behavior Software program run on the mobile devices.
PopSize Number of agents in the simulation.
SignalRange Communication range as percentage of the side-
length of the square environment.
SimCycles Number of simulation cycles run before the
simulation is terminated.
Torus Whether the environment is a torus world.
Numlnit Number of beacons in the environment.
Positioning Initial distribution of agents in the environ-
ment.
Seed Random seed used in this simulation run.
Scheduling Order in which the agents are executed.
Environment Design of the simultion environment.
Colliding Whether agents are colliding with each other.
Movement The type of mobility model executed.
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Experiment Settings

In order to evaluate the results achieved with CC-SEP, a simple
evacuation scenario is simulated and the impact of several parame-
ters, such as the number of evacuees or their distribution inside
the building are investigated. The objective of this experiment is
to examine the effectiveness of the proposed CC-SEP approach
and to investigate whether evacuation planning can be improved
by integrating information about other evacuees in the building,
even though this information is potentially faulty, delayed, and
incomplete. For this, the overall evacuation time is compared with
the time needed in an uncoordinated panic-like situation and a sit-
uation in which all evacuees escape using the shortest path leading
outside the building. Although one of the main motivations for
OBESS is the construction of increasingly complex buildings, the
investigated scenarios in this study are comparatively simple. It
should be noted, though, that any building layout can be divided
into small two-dimensional sections, which, for example, represent
one floor. Therefore, the insights gained in this study can be
directly transferred to more complex scenarios. Due to the general
absence of central control, all algorithms presented in this thesis,
including the CC-SEP, scale well to complex scenarios.

For the experimental study, an evacuation scenario is simulated in
a simple building, which is shown in Figure 4.3. The environment
is a square field, which is divided into 25 times 25 patches. One
agent can occupy exactly one patch. Patches which are occupied by
an agent or which are a-priori marked to be part of a wall or barrier
are not accessible for the agents during the evacuation simulation.
The simulation terminates when all agents have reached the exit.
The devices start computing their evacuation instructions after a
warm up time of 30 cycles, in which they are allowed to gather
information through communication. When an evacuation instruc-
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tion is available, the agent consequently follows this instruction
by walking on the shortest path between its current patch and
the closest patch belonging to the next room of the instruction.
The shortest path in Manhattan distance metric between these
patches is computed with the A* Algorithm presented in Hart et al.
[83]. Agents are only allowed to move to an accessible adjacent
patch in their von-Neumann neighborhood (cf. Figure 4.1(a)), i.e.
all adjacent patches without diagonal patches. This restriction
ensures a constant traveling speed of the agent because the Eu-
clidean distance traveled in each movement is constant. However,
if there is no free patch in the von-Neumann neighborhood but
in the Moore-neighborhood (cf. Figure 4.1(b)), i.e. all adjacent
patches including the diagonal patches, and this patch is closer in
Euclidean distance to the target patch than the patch where the
agent is currently located, the individual moves in two time steps
to this closer patch in the Moore neighborhood. This has the effect
that agents cluster in front of doors in an arc-like shape instead of
lining-up in front of it.

(a) Von-Neumann neigh- (b) Moore neighborhood
borhood

Figure 4.1: Different neighborhood models for movements in the
evacuation simulation.
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Two scenarios with different initial distribution of evacuees across
two rooms are considered. In Scenario A agents are initially located
at nodes 1 and 3 in the sample building shown in Figure 4.3. In
Scenario B, evacuees are initially located in rooms 1 and 2. Simula-
tions are run with 50 and 100 evacuees. In order to test the impact
of evacuees’ distributions in the building, different experiments are
performed in which the percentage of agents located in room 1 is
decreased from 100% to 0% and the remaining evacuees start in
the second room of the considered scneario, respectively. Node 6
indicates the exit of the building and the communication range is
set to 5%, 10%, and 15%. It is defined as a fraction of the side
length of the square plane. With a communication range of 5% the
agent’s own patch and its von-Neumann-neighborhood is covered.
Setting r to 10% and 15% increases the communication range by
one patch each. Figure 4.2 illustrates the examined communication
ranges. The communication range r is assumed to be equal for
all devices. The influence of walls on the communication range is
neglected in the simulation. Panic behavior is simulated by letting
agents randomly select their next room, omitting doors which they
have already passed through unless there is no other option. All
experiments are repeated 40 times with different initial random
agent placement according to the constraints and the results are
averaged.

Scenario A

The first scenario serves as a basis for investigating the effectiveness
of CC-SEP. The main focus lies on whether local communication
can deliver enough information in order to improve the overall
evacuation time when compared to a shortest path approach or
panic behavior. In addition, the effects of different communication
ranges, the total number of evacuees, and their distribution across
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Figure 4.3: Building plan and corresponding macroscopic
representation used in the experimental study.
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the building are examined. In Scenario A, agents are distributed
equally across the two rooms which belong to node 1 and 3 of the
macroscopic graph. This way, each agent has two possibilities to
reach the building’s exit, with the shortest path being: node 1,
node 3, node 5, and node 6. The alternative route is node 1, node
2, node 4, node 5, and node 6, or node 3, node 4, node 5, and node
6 respectively. In this experiment setting, CC-SEP is expected to
deliver good results because the agents can switch to a slightly
longer but less crowded evacuation route.

Figure 4.4(a) shows the average total time for evacuation in Scenario
A using 50 agents and varying the occupation of the two rooms.
For a communication range of 5%, the overall evacuation time is
only slightly improved by CC-SEP compared to the shortest path
behavior. This can be explained by the restrictive communication
abilities and, as a consequence, the lack of information which can
be used for CC-SEP. Due to the lack of information, most evacuees
assume room 1 and 3 to be empty and, thus, choose the shortest
path towards the exit. By increasing the communication range,
however, the total time for evacuation decreases and CC-SEP starts
to deliver significantly better results because evacuees now switch
to the longer but less crowded paths. By setting the communication
range to 15% the total time for evacuation can be reduced by up
to 30% if all agents are located in either room 1 or 2, which are
the scenarios with highest congestion potential. However, the
reduction in evacuation time when increasing the communication
range from 10% to 15% is not significant anymore, which implies
that a communication range of 10% is already sufficient to gather
most information about the evacuation situation. In this scenario,
the panic behavior exhibits the worst evacuation time.

Figure 4.4(b) displays the results for 100 agents. From this experi-
ment, it can be observed that the shortest path behavior produces
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Figure 4.4: Comparison of the total time for evacuation with only

50 (a) and 100 agents (b) in Scenario A applying
CC-SEP, shortest path, and panic behavior.
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similar overall evacuation times when compared to the panic-like
behavior. In the case of agents being quite equally distributed
across both rooms at the beginning of the evacuation, a panic-like
behavior can yield even lower total evacuation times. The reason
for this effect is that with 100 agents in the building, the congestion
on the shortest path has become so large that randomly searching
for an exit results in a faster evacuation process when compared to
enduring the waiting time in the congestion. With CC-SEP and a
communication range of 15% the evacuation process is up to 40%
faster than in the shortest path and the panic-like behavior, which
is a higher improvement when compared to the same scenario with
50 agents inside the building. Here, the difference between shortest
and quickest path, which is emphasized at the beginning of this
section, becomes clearly apparent. So far, it can be concluded that
providing information about the shortest path to the exit is better
for most investigated situations when compared to evacuees blindly
searching for their way out. Nevertheless, leading all evacuees on
the shortest path can lead to congestions, which can result in an
evacuation performance which is even worse than the one in a
panic situation. It is shown that CC-SEP, on the other hand, is
able to collect and use information about other evacuees’ locations
in the building and, thus, reduce the overall evacuation time, even
though this information has to be collected over uncertain links of
an ad hoc network. Similar to the scenario with 50 agents, the dif-
ference between evacuation times produced by CC-SEP with 10%
communication range and a 15% range is not significant, however,
the results for a 5% communication range are noticeably different.
With 5% and a high concentration of agents in one of the two
initial rooms, the performance of CC-SEP is similar to the results
with 10% and 15%, but the more equally the agents are distributed,
the worse the results get. When agents are distributed across both
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rooms, 50 agents are located in each room. Hence, the scenario is
similar to the first experiment where all agents are concentrated in
room number 1, except for the fact that now additional 50 agents
are located in room 3. Due to the small communication range, the
devices, again, assume that the shortest path is occupied by only
a few other evacuees and choose this path for evacuation. The
overall evacuation time is now even higher than for the scenario
with 50 agents because of the additional 50 evacuees in room 3,
who are the reason for the increase in the time it takes for evacuees
in room 1 to reach the exit on the shortest path.

Scenario B

In Scenario B, the path options for some evacuees are reduced.
When following the shortest path, agents in room 1 leave the
building over node 1, node 3, node 5, and node 6, while agents
on node 2 pass by node 4, node 5, and node 6. Agents from the
room corresponding to node 2 have only one path leading to the
exit, while agents in room 1 can still select between two choices.
As a consequence, it depends on the amount of agents in room 2
whether or not it is advisable for agents of room 1 to switch to
the route with a longer distance to the exit. With this scenario, it
is examined whether CC-SEP is capable of recognizing the right
choice for agents in room 1.

In Figure 4.5(a), the results for 50 agents are displayed, which
basically confirm the observations from Scenario A. The shortest
path behavior causes a slightly higher evacuation time compared to
CC-SEP with a communication range of 5%. When using a wider
communication range of 10% or 15%, the evacuation time is further
reduced by up to 30%. When more than half of all evacuees are
initially located in room 2, CC-SEP does not yield any additional
performance improvement when compared to the shortest path.
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The reason for this is that due to the accumulation of agents in
room 2, the escape route node 2, node 4, node 5, and node 6 does
not present an attractive path choice for agents in room 1. The
shortest path route node 3, node 5, and node 6 is more attractive
for agents in room 1. Since the design of the evacuation graph does
not provide any other choice of route for evacuees in room 2 than
the path over node 4, node 5, and node 6, CC-SEP does not bring
any additional benefit compared to the shortest path behavior in
case of such a distribution. This example shows how important
the choice of the macroscopic building model is for the evacuation
performance with CC-SEP.

In Figure 4.5(b), the experimental results with 100 evacuees are
depicted. When 100 evacuees are distributed equally across the two
starting rooms, CC-SEP becomes slightly worse than the shortest
path behavior for a 5% communication range. To understand
the reason for this effect, it has to be noted that any deviation
from the shortest path increases the evacuation time in a scenario
with precisely as many evacuees in room 1 and room 2. This is
because any evacuee which deviates from the respective shortest
path would block evacuees on the alternative path due to the
symmetrical layout of the graph. With a 5% communication range,
the chance for evacuees in room 1 to receive no information about
evacuees in room 2 is higher when compared to a situation with a
10% or 15% communication range. Hence, evacuees are more likely
to choose route node 2, node 4, node 5, and node 6 than with a
larger communication range. In contrast to Scenario A, where the
panic behavior received better results compared to the shortest
path behavior, this is not the case in Scenario B. The reason for
this is that in Scenario A, the shortest path always contains node
3 where the agents meet, while in Scenario B this happens the
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earliest in the room associated to node 5, where the capacity is
higher.

Initialization Time and Repetition

So far, CC-SEP is computed after an initialization time of 30 cycles,
in which the agents are allowed to collect information. Although
this is a sound presupposition, there could be scenarios in which
such a time is not given, thus, it is interesting to investigate the
influence of initialization time on the algorithm’s performance.
All following experiments are carried out with 100 agents and a
communication range of 15%. The results for panic-like behavior
are omitted since it has been shown that, on average, they are
significantly worse than evacuation times achieved with CC-SEP
or the shortest path following behavior. Figures 4.6(a) and 4.6(b)
display the results with and without initialization time. If CC-SEP
starts immediately, it means that information can only be gained
from devices which are one hop away before the computation of
evacuation instructions begins. The results confirm the intuitive
expectation that providing for a time period to initialize and, thus,
collect information, improves the overall evacuation time. Of course,
this is not the case if there is no possibility to choose between
paths, such as in Scenario B when most agents start at node 2. In
addition, when agents are concentrated in one room, initialization
time does not improve the evacuation time significantly because
most information can be exchanged in few rounds.

When aiming at building an adaptive evacuation system, one has
to allow for the computation of new evacuation instructions in
order to include recent information. Such adaptive route planning
is achievable when CC-SEP is computed repeatedly. Figures 4.7(a)
and 4.7(b) show the results for experiments where CC-SEP starts
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Figure 4.6: Results for evacuation time with (I) and without (nI)
initialization time of 30 cycles.
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without initialization time and is repeated in every simulation cycle,
while taking the most current information into account.
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Figure 4.7: Results for evacuation time with (R) and without (nR)

repetition of computing evacuation instructions when
allowing for an initialization time (I).
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Figures 4.8(a) and 4.8(b) illustrate the experimental results when
CC-SEP is repeatedly executed after an initialization time of 30
cycles. It can be observed that, when there is little time to collect
information before the instruction is computed, repetitions can
help to reduce the evacuation time in certain cases. However, when
many agents are located at node 1, repeating CC-SEP prolongs the
evacuation process, especially, when time for information collection
is given to the agents before the evacuation starts. There are two
reasons why repeated execution of CC-SEP can worsen the results.
Firstly, agents often change between evacuation instructions and
lose time in doing so. The second reason lies within the design of the
information exchange procedure. In CC-SEP, only the number of
evacuees in each room of the building is exchanged over the network
and not the IDs of the respective evacuees. Hence, information
about other rooms in the building is only available in an aggregated
and anonymized manner. Because of this design decision, it can
occur that evacuees which change rooms are counted multiple times
in different rooms before the age-value of the obsolete information
expires and the number of known evacuees in the respective previous
rooms is reduced. Although this is an undesired effect, repetition
of evacuation planning is necessary for an evacuation management
system to be adaptive. Consequently, it is a positive observation
that the evacuation time is still well below the evacuation time
needed when all agents take the shortest path.

Approaches for Reducing Frequent Decision Switching

While the problem of obsolete information is hard to deal with, a
high frequency of target changes caused by repeated execution of
CC-SEP can be counteracted. To do so, two variations of CC-SEP
are being tested subsequently. Agents are, now, only allowed to
recompute instructions after a certain patience period after a target
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change or if they are more than a maximum distance away from
their current target. The patience period prevents agents from
changing targets too frequently and the maximum distance avoids
target changes shortly before the current target is reached. The
results for a set-up in which 100 agents start in the room belonging
to node 1 are depicted in Figure 4.9(a) and 4.9(b). As previously
defined, distances are denoted as a fraction of the side length of
the square test environment. The patience period does not have a
significant impact on the overall evacuation time, which indicates
that frequently switching targets is not the main problem when
executing CC-SEP repeatedly. Nevertheless, it might be helpful to
introduce a certain patience period before rule changing is allowed
not only to reduce total evacuation time, but also to avoid creating
mistrust and frustration with the system amongst the users due to
a high frequency of decision changes. It is shown that prohibiting
changes in evacuation instructions for agents which are close to
their next target leads to an improvement of evacuation time if the
maximum distance is sufficiently large. However, if the maximum
distance is chosen too large, this can lead to a situation where
agents do not change instructions anymore. As a consequence,
the adaptability of the system is lost. It can be concluded from
these results that the slight performance decrease when computing
CC-SEP repeatedly is likely to be caused by the design of the
information exchange as aggregated, anonymized numbers.

To conclude the experimental study, the robustness of CC-SEP is
tested. For this, 100 agents are located in room 1 and the amount
of rule following agents is reduced gradually. Evacuees who do
not follow the instructions provided by CC-SEP are assumed to
be taking the shortest path to the exit instead. In addition to
this robustness test, the evacuation behavior with CC-SEP is
investigated in a more complex environment. Figure 4.10 depicts
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Figure 4.9: Total evacuation time when repeating CC-SEP after a
certain patience period after changing targets (a) and
when limiting repetitions to agents which are a
maximum distance away from their target (b).
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the more complex and realistic Scenario C, in which 100 evacuees
are distributed according to a uniform random distribution across
all rooms of the building. Node 16 represents the exit of the
building.

Robustness

Figure 4.11(a) shows the results of the robustness test in the simple
scenario. Without repeating the computation of evacuation instruc-
tions, evacuation time increases linearly with a decreasing number
of rule-following agents until it is reduced to the performance of
the shortest path behavior. For repeated computations, the evac-
uation time even decreases slightly with a higher percentage of
non-followers and there is a tolerance for up to only 40% of rule-
following agents before the overall evacuation time is worse than
the scenario in which all agents follow the instructions provided by
CC-SEP. Unfortunately, a similar behavior cannot be observed in
Scenario C, which indicates that this result is most likely due to the
concentration of agents in one room or due to the construction of
the macroscopic evacuation graph. However, the important result
is that in both scenarios evacuation time does not increase over
proportionally when the number of rule-followers is reduced by less
than 30%. This shows that CC-SEP is quite robust even when
some evacuees deviate from the evacuation instructions. Further-
more, these results suggest that the deterioration of performance
due to a repeated execution of CC-SEP is limited to few specific
cases. With a uniformly random initial evacuee distribution and
the more realistic Scenario C, the deterioration of performance
when CC-SEP is executed repeatedly is negligible compared to the
previous test set-up.
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Figure 4.10: Building plan of Scenario C and the corresponding
macroscopic graph representation.
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4.1.3 Conclusion

In this section, an SEP algorithm based on capacity constrained
routing is presented, which can be used to estimate the quickest
evacuation path based on uncertain information. Information
about the distribution of evacuees in the building is gained via
local communication by using ad hoc network connections between
mobile devices. A modification of the CCRP algorithm published
by Lu et al. [142, 143] is introduced, which estimates waiting times
on each path using a time series model in order to evaluate the
different path options for each evacuee. The main challenge for
any SEP algorithm is the lack of certain global knowledge. Hence,
experiments are performed in order to determine whether CC-SEP
is able to improve the total evacuation time when compared to
simply offering the shortest path as a navigation instruction to each
evacuee. In experiments, varying communication ranges (5%, 10%
and 15%), different numbers of evacuees in the building (50, 100),
as well as variations in their initial distribution over the rooms of
the building are investigated. Additionally, two different building
layouts are considered. The first layout is specifically designed to
cause congestions and the second layout is a more realistic and
complex building layout with a large number of different rooms
and valid paths towards the exit. The performance of CC-SEP is
compared to a shortest path following behavior of evacuees and a
panic model, in which evacuees are assumed to have no knowledge
about the building’s layout. Furthermore, different variations of
CC-SEP are subject to examination, such as the introduction of
an initialization time where mobile devices are allowed to collect
information, an iterative repetition of evacuation planning, as well
as a patience period and a maximum target distance which have to
be fulfilled in order to allow for changes in evacuation instructions.
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Finally, the robustness of CC-SEP against rule deviating evacuees
is considered.

The results confirm that knowledge collected via ad hoc network
connections significantly improves evacuation time in almost all
scenarios considered by up to 40% when compared to the shortest
path behavior, even though the local view on the real evacuation
situation is mostly incomplete and sometimes even incorrect. When
comparing the results with the panic-like behavior of evacuees,
the improvement is even higher. Increasing the communication
range from 5% to 10% provides significantly more information
for CC-SEP and, hence, improves the evacuation time, while an
increase from 10% to 15%, yields only slightly better results. The
positive effect of CC-SEP on the evacuation time is stronger when
there are more evacuees in the building, when they are concentrated
in few rooms, and when there are multiple alternative paths towards
the exit. This is due to an increased congestion potential, which
CC-SEP successfully avoids. Evaluation of Scenario B reveals that
the right choice of a macroscopic evacuation model is crucial for
good performance of CC-SEP and that it is important to provide
many alternative paths in order to exploit the full potential of
CC-SEP. Especially the direction of edges in the graph is to be
selected carefully. In this context, it can be useful to provide for
the possibility to change directions of edges in the graph model
dynamically depending on the expected distribution of evacuees
across the building. In the work of Sangho et al. [204], an approach
for reconfiguring macroscopic graph edges is presented, which could
be applied to this problem. The O/C Architecture of the building’s
CCU (cf. Section 3.1.1) could be used to realize such a dynamic
adaptation of the macroscopic graph model.

Providing for some initialization time in order to collect information
is shown to improve the results of CC-SEP. When repeating
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evacuation planning in each cycle, however, evacuation time slightly
increases. The reason for this is identified to be, most likely, the fact
that information is disseminated over the network in an aggregated
form, i.e. the number of devices in a room is communicated instead
of their individual locations and, hence, outdated information is
used in the evacuation planning process. However, the performance
still exceeds the shortest path behavior in a vast majority of the
considered scenarios. It is further shown to yield even better
results compared to the scenario without repetition when there is
no initialization time given to the evacuees. While introduction
of a patience period does not lead to significant improvements,
limiting the allowed route changes to situations in which evacuees
are a certain distance away from their current target is shown to
overcome slightly deteriorated results with planning repetitions.
Furthermore, performance reductions resulting from a repeated
execution of the evacuation planning are negligible in the more
realistic scenario. Finally, CC-SEP is shown to be robust against up
to 30% of rule deviators and the induced performance decrease does
not increase overproportionally with the number of rule deviating
evacuees. A possibility to further improve results of CC-SEP could
be to distinguish between having no information about a path and
having the information that the path is empty. The latter case
could be deduced from knowing that there are many evacuees close
to the respective path which do not report about anybody using
it. Additionally, introducing a reliability measurement based on
message delays, which are encoded in the age-value, could lead to
potential improvements of CC-SEP.

127



Chapter 4 Swarm Evacuation Planning with Mobile Devices

4.2 Dynamic Multi-objective Swarm
Evacuation Planning

Distributed and decentralized evacuation planning on mobile de-
vices with CC-SEP, presented in the previous section, is shown to
work effectively in speeding-up the evacuation process compared
to a situation in which the devices do not use a MANET for ex-
changing information. However, taking a macroscopic evacuation
graph model as a basis for optimization and using the presented
information model has several constraints:

1. Locations of evacuees are abstracted to be at the center of
the corresponding room.

2. Edges in the macroscopic graph model are unidirectional,
excluding feasible evacuation routes from planning.

3. Evacuees are assumed to be homogeneous and individual
characteristics of the evacuees are not considered.

4. Waiting time on a path is assumed to be increasing linearly
with an increasing amount of evacuees using the path.

5. The communication model in CC-SEP does not keep track
of the locations of specific evacuees, but rather operates on
aggregated and anonymized data.

These restrictions can lead to amendable path planning due to
the high level of abstraction and loss of information. Due to
the abstract nature of the macroscopic graph model, for example,
different locations of evacuees within a single room are neglected
by evacuation planning. Furthermore, unidirectional edges in the
graph can lead to path planning which ignores potential escape
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routes even if they are short and empty. Additionally, homogeneous
evacuees, as well as linearity of waiting times in congestions are
far from reality (cf. Helbing et al. [90]). Another problem with
CC-SEP lies within its communication model. The reduction of the
exchanged information to the number of evacuees per room instead
of their exact locations has the advantage that messages are kept
short. However, the drawback of this feature is that the locations
of single evacuees are untraceable. This can lead to multiple
counting of the same evacuee in different rooms and can distort the
information input for evacuation planning. This has shown to have
a slightly negative effect when CC-SEP is executed repeatedly.
This is not desirable since evacuation planning is supposed to
be adaptive to new situations, such as blocked passages or the
emergence of congestions for which repeated computations of paths
are essential. For these reasons, it is worth looking into alternative
possibilities to perform SEP on mobile devices.

Inspiration for an alternative approach to the evacuation plan-
ning presented in the previous section can be found in the area of
robotics, where path planning, or motion planning as it is often
referred to, is a well-studied task (cf. for example Choset [41] or
LaValle [132]). Motion planning is often performed on the basis
of a grid-like, discretized map of the environment, which is made
available to the robot. The patches of this grid correspond to the
size of the robot and represent nodes in a graph and neighboring
patches are connected via edges. The resulting graph model is
more detailed when compared to the macroscopic graph evacua-
tion model used in CC-SEP. In addition, locations and distances
are represented more realistically. This graph model is used for
motion planning by applying a shortest path algorithm. In the
work of Konig and Likhachev [125], for example, an algorithm for
robot motion planning is presented, which can be used to compute
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lowest cost paths based on such a discretized map. This approach
is especially interesting for evacuation path planning, since it is
specifically designed for dynamic environments, where changes in
traveling costs become available to the robot while it moves towards
its target. Evacuation planning on the basis of information from
communication in an ad hoc network has similar characteristics.
The mobile devices constantly receive new information during the
evacuation process. This newly available knowledge should, ideally,
be integrated in the path planning process in order to adjust the
evacuation instructions if reasonable. Only under these circum-
stances can the evacuation planning be adaptable to changes in the
environment, such as blocked passages or emerging congestions.

Apart from the constraints mentioned previously, another limita-
tion of CC-SEP has to be addressed. Since the path planning is
based on the CCRP algorithm (cf. Lu et al. [143]), it only optimizes
for evacuation time and is inflexible to integrate other objectives.
While the circumvention of potential congestions is an obvious goal
when choosing an evacuation route, there are other criteria that
should be considered. For example, the avoidance of risky areas
can be crucial for the safety of evacuees. Moreover, the personal
preference for such evaluation criteria can be different for each evac-
uee. For example, people with physical disabilities would probably
prefer to take a shorter path or may be willing to take a longer
path if it is better accessible. Evacuation planning should, ideally,
be capable of respecting individual characteristics and preferences,
as well as multiple objectives. The Dynamic Multi-objective Swarm
Evacuation Planner (DMO-SEP) introduced hereafter overcomes
some of the aforementioned limitations of CC-SEP and respects
user preferences during path planning. It is designed to optimize
for multiple criteria simultaneously when searching for an optimal
escape route for a specific evacuee. DMO-SEP is based on the pre-
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viously described dynamic robot motion planning algorithm, called
D* Lite, which is introduced by Ko6nig and Likhachev [125]. The
algorithm is described briefly in the next section, before DMO-SEP
is presented in detail and tested in an experimental study.

4.2.1 D¥* Lite

D* Lite is based on a graph representation G = (N, E) of the
environment which differs from the macroscopic evacuation graph
model. The environment is divided into square patches in a grid-like
fashion, such that each patch corresponds to the expansion of an
average person, and each patch represents a node n € N of graph
G. Neighboring patches in the von-Neumann neighborhood (cf.
Figure 4.1(a)) are connected via edges E : (N x N) in the graph
representation and each edge has traveling costs ¢ (n, m) assigned
to it, representing the costs for traveling from patch n € N to
m € N. D* Lite computes the path with minimal total costs from
a specific starting patch ns € N to a target patch n; € N. The
starting patch corresponds to the current location of the robot.
The algorithm starts at the target patch and from there looks for
surrounding patches with minimal traveling costs to the target
patch similar to the well-known Dijkstra algorithm. The search is
directed towards the starting patch by means of a heuristic value
h (n), which denotes the Euclidean distance between each patch n
and the robot’s current position. Patches with a lower value for
h (n) are preferred in the search for the lowest cost path, which
can reduce computational costs due to a faster termination of the
search. This approach was first proposed by Hart et al. [84] in
form of the A* algorithm designed for static path finding.

Let Adj (n) return all adjacent nodes of a node n € N with re-
spect to its von-Neumann neighborhood and d(n) denote the
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minimal traveling costs from n to ng, d(n) is an auxiliary vari-
able. In D* Lite, patches which have to be processed in order
to find the lowest cost path are added to a sorted set U. All
nodes in this set are sorted in ascending order with respect to

keyy (n) = min (d (n) ,J(n)) +h (n) and, subsequently, keys (n) =

min (d (n) ,J(n)). Let first (U) denote the first element in the

set U, i.e., the element with the smallest key value. The complete
procedure of D* Lite is described in Algorithm 4.3.

If a change in traveling costs is detected for an edge e (n,m), for
example because one of the corresponding patches is blocked, the
update procedure is called for nodes n and m and for all nodes which
are subsequently added to U, recursively, until U is empty or the
starting patch is updated and consistent. Consistent means that the
values for d (n) and d (n) are equal. The consistency check in line 5
of the update procedure limits the propagation of cost changes to
affected nodes and reduces the computational costs of the algorithm
when compared to replanning from scratch. Figure 4.12 illustrates
the update process with a simple example. The top row displays
the discretized environment consisting of 9 patches; the start patch
of the robot is marked with a circle and the target with a cross.
The bottom row shows the corresponding graph representations
using nodes (dots) and connecting edges. The traveling costs are
assumed to be 1 for all edges in the graph and the numbers in the
nodes denote the minimum travel costs d (n) from that node to
the target node. In the second state of the environment, the center
patch is discovered to be blocked, therefore, the connected nodes
are updated according to the procedure described in Algorithm
4.3. The gray nodes are found to be consistent, i.e., their distance
costs are not affected by the change, whereas the shaded, red node
is inconsistent and requires an update. Since the red node is the

132



4.2 Dynamic Multi-objective Swarm Evacuation Planning

Algorithm 4.3 D* Lite

Require: graph G = (N, E), start node ng, target node n;, heuris-
tic h (n) Vn € N, costs c(e) Ve € E
1: d(n) < oo0,Vn € N
2: d(n) + 00,¥n € N, d(ny) + 0

3: U.add (ny)

4: procedure COMPUTEPATH
5 while (key (first (U)) < key (ns)) V (d (ny) # d (ny)) do
6: Define u <+ first (U)
7: if d (u) > d(u) then
8: d (u) < d (u)

9: update (u)

10: end if

11: for p € Adj (u) do
12: update (p)

13: end for

14: end while
15: end procedure

16: procedure UPDATE(n)
17: if n # n; then

18 d(n) & mingseagn (c(n5) +d(5))
19: U.add (n)

20: if d(n) = d(n) then

21: U.remove (n)

22: end if

23: end if

24: end procedure
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starting node and it is consistent after the update, the process
terminates and the new cost minimal path is found by following
the nodes which have the lowest costs assigned. In this example,
there are two valid lowest cost paths, of which one is selected at
random and depicted. From this example, the advantage of D*
Lite becomes apparent. In contrast to updating all nodes in the
graph after a change in the environment is detected, only the nodes
which are affected require an update.

O—ix¢ on @

> changed updated, consistent
O updated, inconsistent

Figure 4.12: Update process of D* Lite when a patch is discovered
to be blocked.

4.2.2 Dynamic Multi-objective Swarm Evacuation
Planning

For DMO-SEP, each device is assumed to possess knowledge of its
current location and of the building’s layout, e.g., by downloading it
upon entering the building. Similar to CC-SEP, DMO-SEP relies
on an exchange of information between mobile devices via ad hoc
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network links and performs decentralized path computations on
each device. It, therefore, belongs to the family of SEP algorithms
as defined in Section 4.1. The information from local communi-
cation is used to assign costs to the edges of the graph model
before applying the dynamic path planning algorithm D* Lite (cf.
Section 4.2.1) to find an optimal path towards the exit. Since
route planning with D* Lite is solely based on costs instead of an
estimation of traveling and waiting times, the approach is flexible
to incorporate multiple objectives. This can be achieved by using
a complex cost function which consists of multiple components
o € O, such as risk, distance, or waiting time, each representing a
different optimization objective. These components are weighted
and summarized in order to derive the total traveling costs for
evacuee a, which can then be used for D* Lite:

c¢e) = (wg-c5(e) (4.1)
<10

with weights w? € [0,1] and Y pw? = 1. The weights can be
defined according to the characteristics and preferences of each
evacuee. After the costs for all edges in the discretized layout have
been computed, D* Lite finds the minimum cost path, which is a
sequence of patches < ng,...,n; >. From this path, a sequence of
rooms is generated, by analogy with the evacuation instructions in
CC-SEP, and a navigation path can be displayed to the user on the
screen of the mobile device. The transformation from patches to a
room-based path is not necessary, but it ensures that the displayed
path is easily conceived by the user in contrast to a path which
assembles a winding sequence of patches.
To illustrate and test the functionality of DMO-SEP, three opti-
mization criteria are considered. Since a straightforward objective
for evacuation planning is to reduce the traveling distance, the dis-
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tance traveled constitutes one of the cost components. These costs
Cdistance (€) arise for each edge e € E in the graph model G and
represent the distance between the patches which are connected
by the respective edge. They can be made available to the mobile
devices along with the download of the building’s layout. Although
they are initially equal for all devices, it is conceivable that an
evacuee detects a blocked passage during his escape, reports this to
his mobile evacuation device, and this information is then spread
to other mobile devices using the ad hoc network communication.
In such a case it is possible that, due to the delays and poten-
tial network link breakages, distance costs for the patches in the
graph model diverge between mobile devices. Apart from travel-
ing distance, two other objectives are considered when choosing
evacuation routes, the minimization of risk and the minimization
of waiting time on the paths. Since jamming queues in front of
narrow passages or doors are the main reason for waiting time, the
minimization of waiting time is considered equivalent to congestion
avoidance.

Risk Minimization

In order to be able to avoid risky paths, the devices need to know
which areas are dangerous. It is reasonable to assume that there are
sensors installed inside the building which can measure potential
danger indicators, such as gas or heat, and forward this information
to mobile devices nearby. Such a scenario is, for example, examined
by Filippoupolitis et al. [66]. For simplicity reasons, it is assumed
that the sensors communicate a certain risk level risk (R) € [0, 1]
for room R instead of empirical measurement data which would
require a certain degree of interpretation. The corresponding costs
are assigned to all edges e (n,m),n € R connecting nodes in the
respective room:
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crisk (e (n,m)) =risk (R):n € R (4.2)

By assigning a risk value to each patch in a room, it becomes
comparatively more expensive to cross a larger room with the same
risk level. The information about the risk level of a room is shared
with other devices using ad hoc network connections. To do so,
each message contains an age-value which is set to zero at the
moment at which a risk level is reported from a sensor to a mobile
device. Then, the age-value is increased according to the system
clock of the mobile devices. When the information is forwarded
to other mobile devices, the age-value is included in the message.
Whenever a device receives contradictory information about the
risk level of a room from two different sources, it can identify and
adopt the most recent information.

Congestion Avoidance

Congestion avoidance is a well-known task in the research area of
traffic optimization. However, there is a major difference between
traffic and evacuation scenarios. While traffic jams are usually
rather well-organized situations, in which cars are lined up behind
red traffic lights or other barriers, evacuation is often accompanied
by panic. In panic situations, however, the time needed for evacuees
to traverse a narrow passage is not easy to estimate. Firstly, it does
not increase linearly with the number of waiting evacuees or the size
of the door, but is rather dependent on many other factors which
affect the forces that act on the evacuees and, hence, determine the
time needed for a congestion to dissolve (cf. Helbing et al. [90]).
This kind of situation is further aggravated when information about
the locations of all evacuees is uncertain. Similar to CC-SEP, the
mobile devices in DMO-SEP are assumed to communicate their
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own location to other nearby devices and spread such information
in the ad hoc network. However, the main difference is that
now all known locations of other devices are reported as opposed
to solely reporting the total number of observed devices in each
room. Analogously to the exchange of risk messages, each message
concerning location information has an age-value assigned to it,
which is zero if the device’s own location is being reported and
which is increased in accordance with the device’s system clock
in any other case. Due to the delays and link breakages, which
are likely to occur in the communication network, the knowledge
about other evacuees’ positions is uncertain. As a consequence,
predicting waiting times on this basis is prone to error. Fortunately,
it is sufficient for evacuation planning to be able to compare two
routes with respect to their potential for congestion emergence,
which is why a precise prediction of waiting times for each path is
not necessarily required. In order to measure a route’s potential for
congestion emergence, two indicators are proposed. These can be
computed from the locations of evacuees in the building, and are
intuitively suitable to evaluate congestion potentials on evacuation
paths. Both indicators are introduced hereafter and tested for their
effectiveness in a subsequent experimental evaluation.

Load The first congestion indicator is based on the idea that
jamming queues are more likely to occur when a large number of
evacuees are located in a relatively small room. The potential for
such a situation to occur is measured by a parameter called load,
which is constituted of the number of devices d € D in relation to
the size of the room R in which their location is determined. The
associated costs for each edge e (n,m) between nodes n and m in
room R are computed as:
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 {deD:n(d eR}
Cload (6’ (TL, m)) - |{7’L c R}‘ (43)

with n (d) denoting the node on which device d is located. One
could argue that using the number of devices in relation to the
size of the room’s doors as an indicator would be more effective,
but a room can have multiple doors and yet usually only one of
them determines the room’s flow rate. Since it is hard to tell which
doors will be used by how many evacuees, load as defined above
seems the more general indicator for congestions.

Entropy Congestions are so-called emergent phenomena, i.e., for-
mations of order from disorder based on self-organization. Emer-
gence can be measured by applying the concept of entropy, a metric
to measure the amount of order in a system, as suggested by Mnif
and Miiller-Schloer [162]. A system with high order corresponds to
a low entropy value and vice versa. When congestions arise in an
evacuation situation, it is usually because evacuees jam up in front
of doors or narrow exits. As a consequence, the distribution of the
locations of mobile devices in the affected room is concentrated in
front of the cause for congestion. Entropy can be used to describe
this degree of concentration as explained in the following. Patches
in a room can be organized in rows and columns reflecting their
horizontal and vertical order respectively. Let a room R contain
x X y patches, i.e., x columns and y rows. Let further num (i),
num (j) denote the number of devices d € D located on column
i or row j respectively. The entropy of a room R is computed as
shown in Equation 4.4 and 4.5, with z (n), y (n) denoting the row
and column of a patch n, respectively. The value p (n) denotes the
relative frequency of evacuees on patch n of room R.
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e(R)=—>_ p(n) ldp(n) (4.4)

neR

_ num (z (n)) +num (y (n))
p(n) = ST E?:l num (i) + num (j)

(4.5)

Figure 4.13 shows an example of the calculation of a room’s entropy.
The locations of devices are marked with four rings inside the
respective patches. Firstly, the devices in each row and column are
counted. Then, the sum of the corresponding values is assigned to
each patch. In the second step, the relative frequencies p (n) are
computed for each patch and the entropy value e (R) of room R
is derived. The entropy value can vary significantly for different
room sizes. To make rooms comparable, the entropy is normalized
as follows. The maximum entropy emqz (R) = ld (x - y) for a room
R is reached when each patch is occupied by one evacuee since
the size of each patch corresponds to the expansion of an average
person (cf. Section 4.2.1). The minimum entropy value e, (R) =
ld(z+y)— %er is achieved when only one single evacuee is located
somewhere in the room. Since entropy decreases with increasing
concentration of devices, the entropy based cost component for

edge e (n,m) with n € R is computed as:

e (R) — €min (R)
Cmax (R) — Emin (R)

Centropy (6 (n7m)) =1- ( ) ,NMER (46)
4.2.3 Evaluation

In order to assess whether DMO-SEP can accelerate the evacuation
process, a simulative experimental study is performed. By analogy
with the evaluation of CC-SEP, agents correspond to evacuees
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(a) Counting devices. (b) Computing entropy.

Figure 4.13: Example of computing the entropy of a room with
sixteen patches and four evacuees (patches with
rings).
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and their mobile devices. The first aim is to verify whether the
reduced abstraction of the underlying evacuation model helps to
improve evacuation time compared to the macroscopic graph based
CC-SEP. Furthermore, the proposed risk avoidance mechanism is
to be tested and it is subject to investigation whether the presented
congestion indicators are suited to compare routes with respect to
their congestion potential and, hence, to avoid jamming queues
and to facilitate a faster evacuation of the building. The simula-
tion environment used in the experimental study is the same as
described in Section 4.1.2. The investigated building layout is the
same as Scenario C used for evaluation of CC-SEP, which is the
more complex building layout shown in Figure 4.10. The rooms
with number 4, 6, and 10 connect the other rooms behind to the
room with number 12, which leads directly to the building’s exit.
Hence, agents initially located in rooms behind these potential
bottlenecks are likely to get caught up in congestions. Due to this
characteristic and because there are various valid escape routes,
this layout is suitable to test the effectiveness of the congestion
indicators. Unless stated otherwise, all experiments are performed
with 60 agents and are repeated 40 times, randomly varying the
initial distribution of agents in the building. The initial locations
are chosen randomly according to a uniform distribution. The
communication range is set to r = 15%, which covers the agent’s
current patch plus three patches in horizontal and vertical direction
respectively (cf. Figure 4.2). Walls or barriers do not interfere
with the communication range. For evaluation, total and average
evacuation time is measured as well as the average time spent in
risky areas or without movement. The latter is denoted as waiting
time. Naturally, a significant difference between total and average
evacuation time is to be expected in most scenarios because total
evacuation time reflects the maximum time any agent needs to
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leave the building. Hence, one outliner can significantly influence
this result.

Evaluation of Reduced Abstraction

Firstly, the performance of DMO-SEP is compared to CC-SEP in
a sample scenario where agents are distributed over the building
according to a uniform random distribution. In this scenario, con-
gestions are expected to be minimal, since there are only few agents
located initially in each room. Hence, the impact of the reduced
abstractions in DMO-SEP compared to CC-SEP becomes clearly
visible. Figure 4.14 displays the results. It becomes apparent that
the differences between DMO-SEP and CC-SEP are only marginal
when there is no congestion avoidance necessary. Nevertheless,
a slight improvement in the total evacuation time by one round
on average is achieved by DMO-SEP when compared to CC-SEP.
Since congestions are unlikely in the considered scenario, the reason
for this can be found in the reduced abstraction of the evacuation
graph model. While the macroscopic graph measures all distances
from the center of the rooms, DMO-SEP takes into account the
agents’ actual locations. In addition, DMO-SEP allows for bidirec-
tional edges which increases the number of available evacuation
routes for planning. The results of this first experiment indicate
that DMO-SEP computes slightly faster evacuation instructions for
situations in which congestions are unlikely due to several reduced
abstractions in the planning process. Subsequently, the integration
of different objectives in DMO-SEP is investigated, starting with
risk avoidance.
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Figure 4.14: Comparison of the two proposed SEP approaches
without congestion indicators.

Evaluation of Risk Minimization

The next experiment is performed in order to evaluate the impact
of risk avoidance on the total evacuation time and the average
evacuation time per agent, as well as on the time agents spend
waiting in congestions or are exposed to risk. To accomplish this,
two classes of evacuees are defined, one class consisting of risk
aversive agents, and another class which consists of agents who
prefer short ways even if they lead through risky areas. In this
experiment, rooms 4 and 10 are assumed to have a risk level of
1 and agents which enter these rooms are informed about their
current risk exposure. Risk aversive agents optimize path costs
with weights wy;sp = 0.9, Waistance = 0.1 and less careful agents
assign weights wyjs = 0.8 and wy;stance = 0.2 to the respective
costs. Figure 4.15 shows a sample situation which occurred during
an experiment run. Here, the different reactions to the detection
of higher risk levels for both agent classes can be observed. A risk
aversive agent, depicted as a blue square, chooses a path with a
longer traveling distance in order to avoid the risky area in room 4.
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Agents with a higher tolerance for risk, on the other hand, refrain
from taking a detour and pass through rooms with higher risk
levels. This exemplary situation also demonstrates how ad hoc
network communication is employed in order to reduce the time
needed for evacuation. The risk aversive device does not enter room
4 in order to realize that it is an area of high risk, but, instead, is
informed about it by other agents via communication over the ad
hoc network. Therefore, the agent starts walking directly on the
alternative path instead of wasting time checking the condition of
room 4 by himself.

Figure 4.15: Risk avoidance for two different agent classes. More
risk aversive agents are depicted in black, rooms 4
and 10 represent areas of high risk.

In Figure 4.16, findings about the impact of risk avoidance on
evacuation time are presented. In this experiment, there are only
risk-aversive agents in the environment. The numerical results of
the experiment described previously reveal a quite intuitive effect.
The reduced average time an agent spends in risky areas comes at
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the cost of an increased evacuation time. Additionally, the average
waiting time per agent is increased because more evacuees take the
less risky routes and, thereby, the congestion potential is increased
on these paths.
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Figure 4.16: Experimental evaluation of risk avoidance.

Evaluation of Congestion Avoidance

The third experiment aims at testing the effectiveness of the pro-
posed congestion indicators. Figure 4.17 displays a sample situation
in which 40 agents are initially located in rooms number 3 and
4. This setting provokes congestions in both rooms when mini-
mizing traveling distance is the only optimization objective. The
integration of load, as well as entropy based costs, is expected to
dissolve these jamming queues. Scenario (a) shows the situation
in which only traveling distance is being optimized, while scenario
(b) optimizes distance and load costs and scenario (c¢) distance
and entropy costs. The weights for scenarios (b) and (c) are cho-
Sen as Wipad = Wentropy = 0.8 and wWg;stance = 0.2. The depicted
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experimental results confirm the initial expectations. For both
congestion indicators, the jamming queues in rooms 3 and 4 are
reduced. The snapshots also show the different effect both con-
gestion indicators have on the evacuation situation. When agents
optimize entropy-based costs, they spread over various alternative
paths, which reduces the concentration of agents in the building
significantly. This effect is much less pronounced when load costs
are being optimized. Figure 4.18 quantifies the evaluation of the
three depicted scenarios which, generally confirms the previous
observations. The integration of entropy and load costs reduces the
overall evacuation time by 23% for the scenario with entropy costs
and 19% for additional load costs respectively, when compared to
evacuation planning where minimizing traveling distance is the
only objective. A comparison with CC-SEP yields an even higher
reduction in total evacuation time of 32% considering DMO-SEP
with load costs and 26% when compared to DMO-SEP including
entropy costs. This is a significant improvement when compared
to the first experiment in which agents were distributed randomly
over the building. This is due to the higher congestion potential.
Furthermore, the average evacuation time per evacuee and the
average waiting time, i.e., cycles without movements per agent, are
reduced significantly with DMO-SEP when compared to CC-SEP.
Achieving lower waiting times is an important criterion for the
evaluation of an evacuation navigation support system. It seems
natural that people in a panic situation are less patient and, if they
are expected to wait often, are more likely to lose their trust in
the navigation support system. CC-SEP navigation instructions
obviously expect evacuees to wait more often at jammed doors
compared to DMO-SEP. Even when the total evacuation time is
similar for both approaches, it is more likely that evacuees follow
navigation instructions which keep them moving during a panic
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situation in contrast to a system which expects them to wait either
too frequently or for extended periods of time. It can be concluded
that DMO-SEP is superior to CC-SEP in all considered criteria.
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Figure 4.17: Evacuation situation after 24 cycles when optimizing
for distance costs only (a), distance and load costs
(b), and distance and entropy costs (c).

4.2.4 Conclusion

In this section, DMO-SEP is presented. DMO-SEP is an alter-
native SEP approach for mobile devices which overcomes some
of the drawbacks of CC-SEP. DMO-SEP is based on a less ab-
stract environment model and collects precise location information
from other mobile devices over the ad hoc network. Furthermore,
DMO-SEP computes optimal evacuation paths with respect to
several objectives at the same time and can take into account
individual preferences and characteristics of the mobile device’s
user. The application of an incremental, heuristic search algorithm
to find optimal paths allows for dynamic replanning of navigation
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Figure 4.18: Experimental evaluation of congestion avoidance
with DMO-SEP and comparison to the performance
of CC-SEP.

instructions and reduces the necessary computations compared to
a search from scratch. This is especially useful for SEP, where
knowledge collected by devices via local communication changes
constantly over time. Fast replanning and integration of newly
available information makes the evacuation planning approach
adaptable to detected changes in the environment, such as the
emergence of congestions. DMO-SEP is able to evaluate paths
with respect to multiple objectives by assigning a weighted sum of
cost components to a path, such that each cost component reflects
one optimization objective. Four cost components are proposed
and evaluated in experiments. Two of these components are meant
to capture the congestion potential on a path. One congestion
indicator is based on the load of a path, i.e. the number of evac-
uees in relation to the size of the rooms on a path, the other is an
entropy-based indicator, which assesses the concentration of evac-
uees within rooms along the considered path. Additionally, travel
distance and danger indicators are proposed as cost components
for optimization.
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Experiments are performed in order to evaluate DMO-SEP. For
this, a realistic scenario with various rooms in the building is taken
as a basis, which is also used in the CC-SEP experiments. The
performance of DMO-SEP is assessed by regarding the resulting
total evacuation time, the average evacuation time per evacuee, the
average time an evacuee spends in risky areas, and the average wait-
ing time of each evacuee, i.e. the time it spends without moving.
Firstly, DMO-SEP and CC-SEP are compared in a scenario with
low congestion potential. It is shown that DMO-SEP produces
better results in terms of total and average evacuation time, as
well as waiting time than CC-SEP in this scenario, which is most
likely due to the reduced abstractions in the evacuation model used
as a basis for evacuation planning. The evaluation of DMO-SEP
proceeds with testing the risk minimization objective and the in-
tegration of different preferences of evacuees. To do so, a sample
scenario is analyzed in which two classes of evacuees are simulated,
each of which representing different risk preferences. One class of
agents is risk-aversive, the other is risk-friendly. The evacuation
instructions produced by DMO-SEP are shown to respect these
preferences and it is observable that evacuees are informed early
about risky paths, such that they do not have to go near danger-
ous areas before they switch to alternative routes. Additionally,
experiments with only risk-aversive agents reveal that risk-aversion
comes at the cost of evacuation time, which is intuitively under-
standable. Furthermore, the impact of both congestion indicators
is examined and it is shown that they reduce the overall evacuation
time effectively, even in an uncertain and incomplete information
situation. In a specific scenario, which provokes congestions, the
total evacuation time is reduced with DMO-SEP and load-based
congestion avoidance by up to 32% and with entropy-based con-
gestion avoidance by only slightly less when compared to CC-SEP.
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Furthermore, DMO-SEP is shown to improve average evacuation
time and waiting timer per agent significantly when compared to
CC-SEP. It can be concluded from the presented evaluation that
DMO-SEP is superior to CC-SEP in terms of evacuation as well as
waiting time and that DMO-SEP is, therefore, the better choice for
evacuation planning than CC-SEP when the number of exchanged
messages is not important. One remaining open question in context
of DMO-SEP is the determination of optimal weights for the cost
components. However, the O/C Architecture offers a solution to
this problem. The online and offline learning mechanisms could
be applied in order to learn the best weights for each optimization
criteria depending on the current evacuation scenario in a building.

4.3 Summary

This chapter defines the process of SEP, which describes distributed
and decentralized evacuation planning based on information which
is collected via local communication in order to improve evacuation
performance. The approach has its name from the characteristic
that local communication and decision making is used to improve
overall evacuation time for a swarm of mobile devices within a
building. The main challenge for SEP is an uncertain information
situation for each device, which arises from delays and link break-
ages in ad hoc network communication. This makes it hard to
estimate waiting times on specific escape routes. Two specific SEP
algorithms are introduced. The first approach is called CC-SEP
and optimizes only total evacuation time. To achieve this goal,
a routing algorithm is adapted, which uses capacity reserving
strategies in order to find time-optimal routes for all evacuees in
a building. Routing is based on an abstract graph model of the
building, which is created from locally available information about
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other evacuees’ locations. A suitable route for each specific mobile
device is selected from the optimization result. An experimental
study reveals that CC-SEP is able to improve total evacuation
time significantly when compared to a situation where evacuees
follow the shortest path towards the exit. Furthermore, results
are shown to be robust even when some evacuees deviate from
the evacuation routes suggested by CC-SEP. Slight drawbacks are
identified when evacuation planning is executed repeatedly in order
to adapt to new evacuation situations. However, the performance
is still significantly better when compared to a simple shortest path
following behavior and several methods are proposed and evalu-
ated which can help to reduce this limitation. The second SEP
approach, called DMO-SEP results in even faster evacuation times.
The reason for this is partly due to a more detailed environmental
model taken as a basis for path planning and an improved commu-
nication model. Apart from its improved performance, DMO-SEP
has the advantage that it is based on a path planning approach
instead of flow optimization in order to find escape routes. As
a consequence, multiple objectives can be regarded for optimiza-
tion and can be weighted according to evacuee-specific preferences.
Apart from minimizing traveling distances, two other objectives are
investigated, namely risk minimization and congestion avoidance.
In order to avoid congestions, indicators based on the distribution
of evacuees in the building are proposed, which evaluate routes
according to their congestion potential instead of estimating wait-
ing times, as it is done in CC-SEP. These congestion indicators
improve the results of DMO-SEP even further and are shown to
accelerate the evacuation of buildings by up to 32% when compared
to CC-SEP in a scenario with high likelihood for congestions. This
makes DMO-SEP more suitable for the computation of evacuation
instructions. However, CC-SEP requires fewer configurations from
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the device’s user since preferences do not have to be specified. This
simplicity can be an advantage, for example, if the user is not
willing to provide detailed information to the evacuation system.
Moreover, exchanging the location information of each evacuee in
the building increases the communication overhead when compared
to exchanging only the observed number of evacuees in each room,
as it is proposed for CC-SEP. Hence, CC-SEP could be the first
choice for evacuation planning in case reducing energy consumption
is an objective.
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CHAPTER b

LLOCALIZATION IN MOBILE AD HOC
NETWORKS

In OBESS, mobile devices in combination with a permanently
installed SSN are intended to be used as navigation support for
building evacuation. While the devices in the static network are
assumed to possess knowledge of their positions in the building due
to a priori configuration, the mobile devices have to be located first
in order to be able to find suitable navigation instructions leading
evacuees from their current positions to an exit. Since GPS is not
available indoors, it cannot be used to localize mobile devices in
OBESS. Furthermore, a single point of failure is to be avoided in
the localization process in order to make it more robust against
failure. As a consequence, decentralized computation methods for
the mobile devices’ locations are required. Because the static sen-
sors are assumed to know their locations, beacon-based localization
algorithms, which derive unknown locations of devices from several
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known locations, are applicable. Section 2.4.1 gives an overview of
beacon-based localization algorithms which can be used for this
purpose. Beacon-based algorithms allow for the computation of
absolute locations with respect to a common reference grid, which
corresponds to the building’s layout in the scenario considered here.
From the presented beacon-based localization algorithms, methods
which require information about the angle between mobile and
static devices are not suitable for usage in OBESS. As detailed
before, the estimation of angles requires complex preparation and
bulky hardware, which portable devices are usually not equipped
with. This leaves the proximity and distance-based algorithms.
While proximity-based algorithms are less complex in terms of
computational effort, high quality localization results require nu-
merous beacons in the network. Because the installation of sensors
is costly, one objective in OBESS is to minimize the number of
beacons in order to make its installation more attractive for build-
ing owners. Therefore, distance-based localization algorithms are
generally the better choice. Nevertheless, proximity-based localiza-
tion algorithms are a good fallback for the devices in case there are
not enough beacon nodes for distance-based localization in certain
areas of a building. Furthermore, proximity-based localization ap-
proaches are rather simple and, therefore, do not require complex
computations to be performed on the devices. Hence, they could
be the better choice when quality of localization results has to be
traded for reducing energy consumption in case the mobile device
runs out of battery. Although localization algorithms are studied
widely in the literature, the impact of mobility has not yet been
emphasized. As explained in Section 2.4.3, the focus of current
research about the effects of mobility on localization either lies on
examining the impairment of the physical signal or the mobility is
assumed to be actively controllable by the device itself. In contrast
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to this assumption, mobile devices in OBESS are portable and
do not autonomously move like robots, i.e. their mobility has a
passive character.

Definition 5.1 (Passive mobility). Passive mobility describes a
state in which devices are carried by people, animals, or nature
and in which the carrier, not the device, decides where and when
to move.

Distance-based algorithms use distance estimates between beacons
and the devices to be located. These estimates can be derived
by range-based or range-free distance estimation techniques (cf.
Section 2.4.2). While range-based distance estimation requires
specific hardware to analyze the physical communication signal,
range-free methods use messages which are exchanged between
the devices in a network. Since avoiding additional hardware
for the mobile devices in OBESS is to be desired for making the
devices more lightweight and less costly, range-free methods are
the obvious choice for distance estimation in OBESS. Most range-
free distance estimation techniques require a somewhat dense and
uniform distribution of communication neighbors over a device’s
communication range. Since mobility of the devices influences
the composition and structure of the network topology, it can
be expected to have a significant impact on localization results.
So far, there is little known about the influence of mobility on
the results of range-free distance-based localization algorithms,
hence, this investigation is subject to Sections 5.1, 5.2, and 5.3 of
this chapter. In Section 5.1 localization algorithms based on hop
counts are investigated while various mobility models are applied
to the devices. The potential of synchronization for improving
distance estimation based on hop counts in dynamic networks
is examined in Section 5.2. Section 5.3 presents an alternative
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approach to distance estimation based on hop counts, which delivers
promising results, especially in dynamic networks. As stated before,
minimizing the number of beacons is an objective that has to be
considered in OBESS as they are costly and need to be installed,
configured, and maintained. On the other hand, the number and
positions of beacons influence the quality of localization results.
To address this trade-off, a method which optimizes the placement
of beacons for localization of mobile devices, specifically during
building evacuation, is presented in Section 5.4 of this chapter.
Section 5.5 summarizes the findings of this chapter. Parts of the
research presented hereafter are also published by Merkel et al.
[152, 153, 154, 156, 157, 159].

5.1 Effects of Mobility on Hop Count Based
Distance Estimation

A well-studied approach to estimate distances in ad hoc networks
is based on so-called hop counts. A hop count denotes the mini-
mum number of relay devices which two devices need to exchange
messages with each other (cf. Ghosekar et al. [75]). Although this
metric is mainly used in the context of routing (cf. Boukerche
et al. [22], Chatterjee and Das [38], Chou et al. [42]), it can also
be used to estimate distances. These distance estimates then form
the basis for localization. In Section 2.4, some methods which
transform hop counts into distance information are presented. This
section, however, focuses on investigating the impact of mobility
on hop counts and, consequently, on the quality of derived distance
estimates. When investigating the influence of mobility, it is in-
tuitively comprehensible that the characteristics of mobility play
an important role. For example, distances between the devices do
not change if all devices are moved with the same speed and in the
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same direction, whereas random mobility has a great impact on the
distances. Furthermore, the number of moving devices, their speed,
and direction of movement are important variables when it comes
to examining the impact of mobility. As a consequence, a large
spectrum of mobility models is examined in order to derive general
statements about the influence of mobility on distance estimation
based on hop counts.

5.1.1 Mobility Models

The mobility pattern in a dynamic network highly depends on its
application and the environment it is deployed in. Therefore, in
order to be able to make general statements about the impact of
mobility on hop count based distance estimation, a variation of
mobility models is analyzed. In the work of Camp et al. [34], some
models for describing different kinds of mobility in networks are
suggested and their impact on network connectivity and routing
is investigated. These patterns are used hereafter as a basis for
studying the effect of mobility on distance estimation based on hop
counts. In addition, new mobility models, which are not considered
by Camp et al. [34], are introduced.

Individual Mobility Models

Individual mobility models describe movements where the next
position of a device is determined independently from any other
device in the network. The Random Walk (RW) mobility model is
one of the most widely studied mobility patterns in the literature,
e.g., by Zonoozi and Dassanayake [259]. In RW, a random direction
and speed are selected from predefined ranges and the device moves
accordingly until a fixed distance is traveled or a specific time has
passed. Chaos Move (CM) denotes an RW mobility model where a
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new speed and direction are selected at each step, i.e., the mobile
device is kept in a small area around its starting position. The

Random Direction Walk (RD) model defines a random target at the
border of the environment and a speed value within a certain range
and the device is moved accordingly until the target is reached.
Once the device is there, it pauses for some time before a new
target is selected. When using this model, there is a high likelihood
that devices spend most of their time somewhere in the middle of
the environment. Bounded Random Walk (BR) is similar to CM,
but speed and direction are not varied completely at random but
within a small range around the preceding values. Similar to this,
the Gauss Markov Move (GM) selects the next direction and speed
according to the following equations:

st=a-s—1+ (1 —a) ps+1/(1—a?)-sg (5.1)

di=a-di1+ 1 —a) pg++/(1—a?) dg (5.2)

with s; and d; denoting the new values for speed and direction
respectively, a being a random parameter (0 < o < 1) and s, and
dgr being chosen from a Gaussian random distribution with zero
mean and a standard deviation of one. p; and pg are constants.
In Probabilistic Random Walk (PR), the movement is defined by
a finite state machine with fixed probabilities for state transits.
The allowed states are backward, forward or stop, and turn left or
right. The probabilities are chosen in a way that they emphasize
continuous moves in the same direction (cf. Camp et al. [34]).
Figure 5.1 shows trajectories of all individual mobility models
considered above.

160



5.1 Effects of Mobility on Hop Count Based Distance Estimation

Figure 5.1: Trajectories. From top left to bottom right: CM, RD,
BR, RW, GM, PR.

Coupled Mobility Models

Coupled mobility models are characterized by mutual influences
between the mobile devices. The Column Mobility (ColM) model
simulates children walking in a line behind their parents. Here,
all devices move randomly (according to CM) except for some
groups consisting of a leader and followers. All followers move
approximately in a row behind the leading device. Furthermore,
the Nomadic Move (NomM) model is defined in which all devices
move according to CM except for some leaders that collect followers.
Whenever a non-leader device comes within communication range of
a leader, it starts following the leader while moving randomly within
its communication range. When a leader has more than a maximum
number of followers, a random follower leaves the group. In the

Reference Point Mobility (RefM) model, each device is assumed to
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have a virtual reference point around which it moves randomly while
never exceeding a maximum distance. The reference points are
assembled in a grid and move according to CM, but share the same
speed and direction as if they were connected to each other. The
Stream Mobility (StrM) model simulates devices which are moved
by regular forces such as wind or water. Each device remembers the
direction of nearby devices and chooses its own moving direction
within a certain range around the angle of the most recently moved
neighbor, which is why the devices exhibit a stream-like movement.
This mobility model was developed specifically for this study and
does not belong to the models published by Camp et al. [34].

Beacon Mobility Models

Since the results of distance estimation based on hop counts depend
on the position of the beacons in the network (cf. Bachrach and
Taylor [12], Nagpal et al. [171]), beacon mobility models are defined
additionally. Beacon mobility models define moves with a certain
angle and speed around a beacon. Beacon mobility models can be
further distinguished depending on whether individual or coupled
movements are regarded. With individual beacon mobility models,
a device moves with a predefined speed in the direction of o with
respect to a beacon (cf. Figure 5.2(a)).

The coupled beacon mobility model is similar, except for the
fact that the device is moved together with a fixed number of its
neighbors in a specified direction with respect to the beacon (cf.
Figure 5.2(b)). The same angle « is defined for all devices belonging
to the coupled group. An angle of @ = 0° indicates a movement
leading away from the beacon, o = 180° directs the mobile devices
towards the beacon. A movement at an angle of & = 90° means that
the devices move along circular rings around the beacon. Figure 5.3
illustrates sample trajectories of the individual beacon mobility
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‘ Beacon ‘ Beacon

Figure 5.2: Illustration of the individual (a) and coupled (b)
beacon mobility model.

model and Figure 5.4 of the coupled beacon mobility model for
various directions of movements. From these trajectories, it can be
observed that the density of devices in the environment is more
regular for individual mobility than for the coupled mobility models.
Table 5.1 summarizes the mobility models described before.
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Table 5.1: Overview of mobility models investigated in this

experimental study.

] Type

‘ Model

|

Short description

Individual

RwW

Movement according to randomly
chosen direction and speed until a
fixed distance or time is traveled.

CM

Similar to RW, but direction and
speed are changed in each step.

RD

Devices move towards randomly
chosen target point at the envi-
ronment’s border.

BR

Similar to CM but speed and di-
rections are varied within a range
around preceding values.

GM

Speed and direction are selected
according to Equations 5.1 and
5.2.

PR

Next movements are defined by
a finite state machine with fixed
probabilities for state transits.

Beacon Mo-
bility

Movements with fixed speed and
direction with respect to a bea-
con.
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Coupled ColM Groups of followers which move
approximately in a line behind a
leading device.

NomM Groups of followers which move
according to CM but stay within
a leading device’s communication
range.

RefM Devices move around fixed refer-
ence points which are assembled
like a grid and additionally moved
according to CM.

StrM Directions of movements are cho-
sen randomly within a range
around the last observed direc-
tions of the most recently moved

neighbor.
Beacon Mo- | Leading devices and all devices in
bility their communication ranges move

with the same fixed speed and di-
rection with respect to a beacon.

5.1.2 Hop Count Error Model

Hop counts relative to a beacon can be assigned to all devices
in the network using the GA presented by Nagpal et al. [171].
As detailed in Section 2.4.2, there are various methods to derive
distance estimates from hop counts. The basic idea is to multiply
the hop count value by the communication range r in order to
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Figure 5.3: Trajectories of devices moved according to the
individual beacon mobility model at an angle of
a = 0°, 45°, 90°, 135°, 180° with respect to the
beacon (left to right).
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Figure 5.4: Trajectories of devices moved according to the coupled
beacon mobility model at an angle of o = 0°, 45°, 90°,
135°, 180° with respect to the beacon (left to right).
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get an estimate for the distance. However, because networks are
usually not perfectly dense, this method generally overestimates
the distances. As a consequence, refinements are proposed which
adjust the estimates to the network density using statistical tech-
niques. Such algorithms include the idea of applying a reduction
rate depending on the local network density (cf. Kleinrock and
Silvester [122], Wong et al. [249]), integrating information about
the hop count distribution in the neighborhood (cf. Liu et al.
[140], Nagpal et al. [171]), or computing the average hop length
using knowledge about the distances between beacons (cf. Huang
and Selvakennedy [102], Niculescu and Nath [176, 177], Savvides
et al. [208]). It is notable that the distance estimation error is
minimal for all estimation techniques in case the network is per-
fectly dense. This consideration offers the possibility of evaluating
the impact of mobility on hop count based distance estimation
independently from the specific estimation method. To achieve
such an independent evaluation, the hop count of a device in the
actual network is compared to the hop count a device at the same
location would have if the network was perfectly dense. In order to
do so, the concept of ideal hop counts is introduced, which denotes
the hop count each device would have in a perfectly dense network.

Definition 5.2 (Ideal Hop Count Value). Let hid®d (n) denote the
ideal hop count value of a device n with respect to a beacon b. The
ideal hop count corresponds to the smallest integer value which,
multiplied by the communication range r, is not smaller than the
distance between device n and beacon b. The ideal hop count is
computed as shown in Equation 5.3, with d (n,b) representing the
FEuclidean distance between device n and beacon b.
d(n,b)

pjtee () s= S22 (53)
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Considering a perfectly dense and evenly distributed ad hoc net-
work, each device n € N, with N being the set of all devices in the
network, would be assigned a hop count value by the GA which
corresponds to its ideal hop count. An area A in which hideal (n)
has the same value for all n € A represents one of the perfect gra-
dient rings shown in Figure 2.17. Such a ring is called a gradient
ring g;, with i being the common value for hi%? (n) for all devices
n € N which are located in g;. The value ¢ also corresponds to the
ordinal number of the gradient ring when counting begins at the
beacon. As explained, the deviation between the hop count values
assigned to devices by the GA and the ideal hop count values is
directly related to the quality of any hop count based distance
estimation algorithm. Therefore, the hop count error is defined as
follows.

Definition 5.3 (Hop Count Error). The hop count error Ey (n) of
a device n is defined as the difference between the hop count value
which a GA assigns to the device hy (