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Scope of the Series

Biochemistry, the study of chemical transformations occurring within living organ-
isms, impacts all of life sciences, from molecular crystallography and genetics, to 
ecology, medicine and population biology. Biochemistry studies macromolecules - 
proteins, nucleic acids, carbohydrates and lipids –their building blocks, structures, 
functions and interactions. Much of biochemistry is devoted to enzymes, proteins 
that catalyze chemical reactions, enzyme structures, mechanisms of action and 
their roles within cells. Biochemistry also studies small signaling molecules, co-
enzymes, inhibitors, vitamins and hormones, which play roles in the life process. 
Biochemical experimentation, besides coopting the methods of classical chemistry, 
e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron 
microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic 
tools, e.g., auxotroph mutants and their revertants, fermentation etc. More recently, 
biochemistry embraced the ‘big data’ omics systems.
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Initial biochemical studies have been exclusively analytic: dissecting, purifying and 
examining individual components of a biological system; in exemplary words of 
Efraim Racker, (1913 - 1991) “Don’t waste clean thinking on dirty enzymes.” Today 
however, biochemistry is becoming more agglomerative and comprehensive, setting 
out to integrate and describe fully a particular biological system. The “big data” me-
tabolomics can define the complement of small molecules, e.g., in a soil or biofilm 
sample; proteomics can distinguish all the proteins comprising e.g., serum; metage-
nomics can identify all the genes in a complex environment e.g., bovine rumen. This 
Biochemistry Series will address both the current research on biomolecules, and the 
emerging trends with great promise. 
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Preface

Oxidation-reduction reactions in our body are catalyzed by a class of enzymes
called oxidoreductase. The mechanism is based on the transfer of electrons from
one molecule (the oxidant) to another molecule (the reductant). Oxidoreductases
catalyze reactions similar to the following, A− + B → A + B− where A is the oxidant
and B is the reductant. From a biochemistry point of view, oxidoreductase enzymes
are a group of enzymes that catalyze the transfer of electrons from one molecule, 
the reductant, also called the electron donor, to another, the oxidant, also called the
electron acceptor. Oxidoreductase enzymes utilize NADP+ or NAD+ as cofactors. 
Oxidoreductase enzymes include the following: oxidase, dehydrogenase, peroxi-
dase, hydroxylase, oxygenase, and reductase. Most oxidoreductase enzymes are
dehydrogenases. However, reductases are also common. The accepted nomenclature
for dehydrogenases is “donor dehydrogenase”, where the donor is the oxidized 
substrate.

Oxidases are enzymes involved when molecular oxygen acts as an acceptor of
hydrogen or electrons. Whereas dehydrogenases are enzymes that oxidize a
substrate by transferring hydrogen to an acceptor that is either NAD+/NADP+ or
a Flavin enzyme. While the other oxidoreductases, peroxidases, are localized in
peroxisomes and catalyze the reduction of hydrogen peroxide. Hydroxylases add 
hydroxyl groups to their substrates. Oxygenases incorporate oxygen from molecular
oxygen into organic substrates. Reductases catalyze reductions and in most cases
can act as oxidases.

Oxidation-reduction reactions are essential for the growth and survival of organ-
isms. During the oxidation process of organic molecules, energy is produced. 
Energy-producing reactions can liberate high energy containing compounds as the
synthesis of important energy molecules, such as ATP.

Oxidoreductase enzymes achieve an important role under aerobic and anaerobic
metabolism. They play an important role in glycolysis, the tricarboxylic acid 
cycle, oxidative phosphorylation, and in amino acid metabolism. In glycolysis, 
the glyceraldehydes-3-phosphate dehydrogenase enzyme catalyzes the transfer of
hydrogen to coenzyme NAD, leading to the reduction of NAD+ to NADH. In order
to maintain the redox state of the cell, this NADH is converted to NAD+, which
occurs in the oxidative phosphorylation pathway. The final pathways for complete
oxidation of glucose are achieved via the TCA cycle. More NADH molecules are
generated in the TCA cycle. Except for leucine and lysine, the rest of the amino
acid metabolites enter the TCA cycle as intermediates of the cycle. This allows
for the formation of oxaloacetate from carbon skeletons of the amino acids and 
subsequently into pyruvate.
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Chapter 1

Biological Application and Disease
of Oxidoreductase Enzymes
Mezgebu Legesse Habte and Etsegenet Assefa Beyene

Abstract

In biochemistry, oxidoreductase is a large group of enzymes that are involved in
redox reaction in living organisms and in the laboratory. Oxidoreductase enzymes
catalyze reaction involving oxygen insertion, hydride transfer, proton extraction,
and other essential steps. There are a number of metabolic pathways like glycolysis,
Krebs cycle, electron transport chain and oxidative phosphorylation, drug transfor-
mation and detoxification in liver, photosynthesis in chloroplast of plants, etc. that
require the direct involvements of oxidoreductase enzymes. In addition, degrada-
tion of old and unnecessary endogenous biomolecules is catalyzed by a family of
oxidoreductase enzymes, e.g., xanthine oxidoreductase. Oxidoreductase enzymes
use NAD, FAD, or NADP as a cofactor and their efficiency, specificity, good biode-
gradability, and being studied well make it fit well for industrial applications. In the
near future, oxidoreductase may be utilized as the best biocatalyst in pharmaceuti-
cal, food processing, and other industries. Oxidoreductase play a significant role in
the field of disease diagnosis, prognosis, and treatment. By analyzing the activities
of enzymes and changes of certain substances in the body fluids, the number of
disease conditions can be diagnosed. Disorders resulting from deficiency (quantita-
tive and qualitative) and excess of oxidoreductase, which may contribute to the
metabolic abnormalities and decreased normal performance of life, are becoming
common.

Keywords: biocatalyst, biological application, disease, metabolism, mutation,
oxidoreductase

1. Introduction

Oxidoreductases, which includes oxidase, oxygenase, peroxidase, dehydroge-
nase, and others, are enzymes that catalyze redox reaction in living organisms and
in the laboratory [1]. Interestingly, oxidoreductases catalyze reaction involving
oxygen insertion, hydride transfer, proton extraction, and other essential steps. The
substrate that is oxidized is considered as hydrogen or electron donor, whereas the
substrate that is reduced during reaction as hydrogen/electrons acceptor. Most
commonly, oxidoreductase enzymes use NAD, FAD, or NADP as a cofactor [2].
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Organisms use this group of enzymes for synthesis of biomolecules, degradation
and removal of molecules, metabolism of exogenous molecules like drugs, and so on
[3–5]. Their biochemical property such as efficiency, specificity, good biodegrad-
ability, and being studied well make it fit well for industrial purposes. As a result,
oxidoreductases are being utilized in nutrition, food processing, medicine, and
other chemical synthesis. In the near future, oxidoreductase may be utilized as the
best biocatalyst in pharmaceutical, food processing, and other industries [6, 7].

Enzymes like oxidoreductase play great and significant function in the field of
disease diagnosis, prognosis, and treatment [8]. By analyzing the activities of
enzymes and changes of certain substances in the body fluids, a number of disease
conditions can be diagnosed [9, 10]. The determination of the activity of the oxi-
doreductases is helpful in understanding the metabolic activity of different organs
[8, 11]. For example, the activity of oxidoreductase enzymes in Krebs cycle is
significantly increased during skin infection [12].

There are different disease conditions resulting from deficiency (quantitative
and qualitative) and excess of oxidoreductase, which may contribute to the meta-
bolic abnormalities and decreased normal performance of life [13, 14]. For example,
relative decreases in the activities of NADH dehydrogenase and ubiquinol-
cytochrome c oxidoreductase are highly associated with the developments of
peripheral arterial disease. Another best example is mutation of p450 oxidoreduc-
tase (POR) gene, which leads to insufficiency of P450 enzymes characterized by
defective steroidogenesis. Similarly, deficiency of mitochondrial acetaldehyde
dehydrogenase disturbs normal metabolism of alcohol and leads to accumulation of
acetaldehyde [8, 15, 16]. These conditions in turn affect the normal development
and reproduction.

2. Oxidoreductase in metabolism of foodstuff

Oxidoreductases are a family of enzymes that catalyze redox reactions. Oxido-
reductases catalyze the transfer of electrons from oxidant to reductant [4]. Gener-
ally, oxidoreductases catalyze reactions which are similar to A– + B! A + B– where
A is the oxidant and B is the reductant [17]. Oxidoreductases can be oxidases where
a molecular oxygen acts as an acceptor of hydrogen or electrons and dehydroge-
nases which are enzymes that oxidize a substrate by transferring hydrogen to an
acceptor that is either NAD+/NADP+ or a flavin enzyme. Other classes are oxidore-
ductases enzymes, peroxidases which are localized in peroxisomes and catalyze the
reduction of hydrogen peroxide. Hydroxylases are involved in the addition of
hydroxyl groups to their substrates, and oxygenases are key in the incorporation of
oxygen from molecular oxygen into organic substrates. And reductase enzymes are
involved in the catalysis of reduction reaction [2, 3, 18]. In general, oxidoreductase
enzymes play an important role in both aerobic and anaerobic metabolism. They are
involved in glycolysis, TCA cycle, oxidative phosphorylation, fatty acid, and amino
acid metabolism [5, 19, 20].

3. Oxidoreductase in glycolysis

In glycolysis, the enzyme glyceraldehydes-3-phosphate dehydrogenase catalyzes
the reduction of NAD + to NADH. In order to maintain the redox state of the cell,
this NADH must be re-oxidized to NAD+, which occurs in the oxidative phosphor-
ylation pathway [21].

4

Oxidoreductase

G‐3‐Pþ PiþNADþ !Glyceraldehyde‐3‐phosphate dehydrogenase
1, 3‐BPGþNADHþHþ

(1)

PyruvateþNADHþHþ !lactate dehydrogenase
lactateþNADþ (2)

4. Oxidoreductase in TCA cycle

A high number of NADH molecules are produced in the TCA cycle. The product
of glycolysis, pyruvate, enters the TCA cycle in the form of acetyl-CoA. Except
leucine and lysine, all twenty of the amino acids can be degraded to TCA cycle
intermediates. And most of the fatty acids are oxidized into acetyl coA through beta
oxidation that enter TCA cycle [19, 22].

The precursor for the TCA cycle comes from lipids and carbohydrates, both of
which produce the molecule acetyl-CoA. This acetyl-CoA enters the eight-step
sequence of reactions that comprise the Krebs cycle, all of which occur inside
mitochondria of eukaryotic cells. TCA or Krebs cycle produces NADH and FADH,
and the reactions are catalyzed by classes of oxidoreductase enzymes [23].

PyruvateþNADþ þ CoA �������������!pyruvate dehydrogenase
acetyl‐CoAþNADHþHþ þ CO2

(3)

IsocitrateþNADþ �������������!isocitrate dehydrogenase
alfa‐ketoglutarate þNADHþHþ þ CO2

(4)

α‐ketoglutarate þNADþ þ CoA ����������������!α‐ketoglutarate dehydrogenase
succinyl CoAþNADH
þ CO2

(5)

Succinateþ FADþ �������������!succinate dehydrogenase
fumarateþ FADH2 (6)

5. Oxidoreductase in electron transport chain and oxidative
phosphorylation

Living cells use electron transport chain to transfer electrons stepwise from
substrates (NADH & FADH2) to a molecular oxygen. The proton gradient which is
generated through electron transport chain runs downhill to drive the synthesis of
ATP. Electron transport chain and oxidative phosphorylation take place in the
matrix of mitochondria, and there are oxidoreductase enzymes impregnated in the
inner mitochondrial membrane, which catalyze these reactions and are engaged in
energy production. NADH:quinone oxidoreductase, also called NADH dehydroge-
nase (complex I), is responsible for the transfer of electrons from NADH to qui-
nones, coupled with proton translocation across the membrane. Succinate:quinone
oxidoreductase, or succinate dehydrogenase (complex II), is an enzyme of the
Krebs cycle, which oxidizes succinate and reduces quinones, in the absence of
proton translocation. Quilon:cytochrome c oxidoreductase (complex III), which
transfers electrons from quinols to cytochrome c and cytochrome c:oxygen oxido-
reductase, an aa3-type enzyme (complex IV), which receives these electrons and
transfers it to oxygen are both oxidoreductase enzymes involved in electron trans-
port chain and oxidative phosphorylation [19, 24, 25] (Figure 1).
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reductase, an aa3-type enzyme (complex IV), which receives these electrons and
transfers it to oxygen are both oxidoreductase enzymes involved in electron trans-
port chain and oxidative phosphorylation [19, 24, 25] (Figure 1).
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6. Oxidoreductase in drug metabolism

Liver is the principal organ for drug metabolism. The body uses different strat-
egies to metabolize drugs like oxidation, reduction, hydrolysis, hydration, conjuga-
tion, condensation, or isomerization. The main goal of drug metabolism is to make
the drug more hydrophilic and excrete easily. Enzymes involved in drug metabo-
lism are found in many tissues and organs but are more concentrated in the liver.
Rates of drug metabolism may vary among individuals. Some individuals metabo-
lize a drug so rapidly; in others, metabolism may be so slow and have different
effects. Genetic factors, coexisting disorders (particularly chronic liver disorders
and advanced heart failure), and drug interactions are responsible factors for vari-
ation of rate of drug metabolism among individuals [26].

Generally, drug metabolism can be in three phases. In phase I drug metabolism,
oxidoreductase enzymes such as cytochrome P450 oxidases add polar or reactive
groups into drugs (xenobiotics). In phase I reaction, drugs are introduced into new
or modified functional group through oxidation, reduction, and hydrolysis. In Phase
II reactions, modified compounds are in conjugation with an endogenous substance,
e.g., glucuronic acid, sulfate, and glycine. Phase II reactions are synthetic, and
compounds become more polar and thus, more readily excreted by the kidneys
(in urine) and the liver (in bile) than those formed in nonsynthetic reactions. At the
end, in phase III reaction, the conjugated drugs (xenobiotics) may be further
processed, before being recognized by efflux transporters and pumped out of cells.
The metabolism of drug often converts hydrophobic compounds into hydrophilic
products that are more readily excreted [27].

In normal cases, human body wants to remove or detoxify any compounds that
cannot be metabolized otherwise utilized to serve the needs of the body. This
removal process is carried out mainly by the liver. The liver has classes of oxidore-
ductase enzymes that are extremely effective at detoxification and removal of drugs
from the body [5, 18].

6.1 Metabolism of drugs through cytochrome P450 monooxygenase

Oxidation and metabolism of a high number of drugs and endogenous molecules
are catalyzed by a class of oxidoreductase enzymes called cytochrome P450
monooxygenases. Even though they are distributed throughout the body, cytochrome

Figure 1.
Oxidoreductase enzymes involved in electron transport chain and oxidative phosphorylation [18].
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P450 enzymes are primarily concentrated in liver cells. The CYP2D6 isozymes play a
great role in metabolizing certain opioids, neuroleptics, antidepressants, and cardiac
medications. Currently it is going to be understood that difference in the genes for
CYP450 enzymes play to inter-individual differences in the serum concentrations of
drug metabolites, resulting in interpatient variability in drug efficacy and safety [28].

6.2 Metabolism of drugs with flavin-containing monooxygenase (FMO) system

Flavin-containing monooxygenases (FMOs) (EC 1.14.13.8) are a family of
microsomal NADPH-dependent oxidoreductase, responsible for oxygenation of
nucleophilic nitrogen, sulfur, phosphorus, other drugs, and endogenous molecules.
Different variants of mammalian FMOs play a significant role in the oxygenation of
nucleophilic xenobiotics. FMO utilizes NADPH as a cofactor and contains one FAD
as a prosthetic group. FMOs have a broad substrate specificity and their activity is
maximal at or above pH 8.4. FMO is a highly abundant enzyme in the liver
endoplasmic reticulum and participates in drug metabolism (activation and
detoxification) [29].

Before FMOs bind to a substrate, they activate molecular oxygen. First, flavin
adenine dinucleotide (FAD), the prosthetic group of FMO, is reduced by NADPH to
form FADH, then oxygen is added into the FAD, and hydro-peroxide FADH-4α-
OOH is produced. And then, one oxygen atom is transferred to the substrate [30, 31].

6.3 Metabolism of drugs through alcohol dehydrogenase and aldehyde
dehydrogenase

Alcohol dehydrogenase (ADH) and mitochondrial aldehyde dehydrogenase
(ALDH) are another family of oxidoreductase responsible for metabolizing ethanol.
These enzymes are highly expressed in the liver but at lower levels in many tissues
and play a great role in detoxification and easy removal of alcohols. Liver is the
main organ for ethanol metabolism. Oxidation of ethanol with these enzymes can
become a major energy source especially in the liver, and it can interfere metabo-
lism of other nutrients [32].

The first step in ethanol metabolism is its oxidation to acetaldehyde, and this
reaction is catalyzed by enzymes called alcohol dehydrogenases (ADHs). The sec-
ond reaction in ethanol metabolism is oxidation of acetaldehyde into acetate cata-
lyzed by aldehyde dehydrogenase (ALDH) enzymes. There are different ADH and
ALDH enzymes encoded by different genes occurring in several alleles and enzymes
that have different alcohol metabolizing capacity; thereby, they influence individ-
uals’ alcoholism risk. These are either through rapid oxidation of ethanol to acetal-
dehyde where there is more active ADH or slower oxidation of acetaldehyde into
acetate where there are less active ALDH enzymes. Excess accumulation of acetal-
dehyde is toxic, which results in different adverse reactions and produces nausea,
skin rash, rapid heartbeat, etc. Most commonly, single-nucleotide polymorphisms
(SNPs) are responsible for ADH and ALDH gene variants, and these may occur on
both coding and non-coding regions of the gene [33, 34].

6.4 Metabolism of drugs by monoamine oxidase (MAO)

Monoamine oxidase is a very important oxidoreductase enzyme mainly respon-
sible for degradation of amine neurotransmitters like norepinephrine, epinephrine,
serotonin, and dopamine. Oxidation of different endogenous and exogenous bio-
genic amines may produce other active or inactive metabolites. Monoamine oxidase
(MAO) is found in two isozyme forms: monoamine oxidase A (MAO-A)
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preferentially deaminates serotonin, norepinephrine, epinephrine, and dietary
vasopressors such as tyramine, and MAO-B preferentially deaminates dopamine
and phenethylamine. They are integral flavoproteins components of outer mito-
chondrial membranes in neurons and glia cell. The two isozymes of MAO differ
based on substrate specificity and sensitivity to different inhibitors [35].

Monoamine oxidase enzymes catalyze the primary catabolic pathway for 5-HT
oxidative deamination. Serotonin is converted into 5-hydroxy-indoleacetaldehyde,
and this product is further oxidized by a NAD-dependent aldehyde dehydrogenase
to form 5-hydroxyindoleacetic acid (5-HIAA). Immunohistochemical techniques
and in situ hybridization histochemistry techniques are used to study the neuroan-
atomical localization and biochemical nature of the two forms of MAO [36].

Different antidepressant drugs like phenelzine and tranylcypromine inhibit the
activity of monoamine oxidase. These are a result of MAO metabolizes biogenic
amines such as 5-HT, DA, and NE. In addition, different dopaminergic neurotoxins
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are metabolized by
MAO [37].

6.5 NADPH-cytochrome P450 reductase (CPR) in drug metabolism

Another essential class of oxidoreductase enzyme is NADPH-cytochrome P450
reductase (CPR). It is a membrane-bound protein localized in the ER membrane. PR
involves in the detoxification and activation of a number of xenobiotics. CPR uses
FAD and FMN as cofactors, and it transfers the hydride ion of NADPH to FAD, and
then FAD transfers electrons to FMN and other oxidases. Finally, it reduces the
P450 enzyme heme center to activate molecular oxygen. Thus, electrons transfer
from NADPH to the P450 heme center by CPR, which is central for P450-catalyzed
metabolism. Flow of electron can be expressed as follows:

NADPH! FAD! FMN! P450! O2 (7)

Human cytochrome P450 reductase is encoded by the POR gene. It is a 78-kDa
multi domain diflavin reductase that binds both FMN and FAD and is attached to
the cytoplasmic side of the endoplasmic reticulum via a transmembrane segment at
its N-terminus [5, 15, 38].

7. Industrial application of oxidoreductase enzymes

Several industries such as pharmaceutical, foods, biofuel production, natural gas
conversion, and others have used enzyme catalysis at commercial scale [39]. Classes
of oxidoreductase enzymes are becoming a target by a number of industries. The
family of oxidoreductase like heme-containing peroxidases and peroxygenases,
flavin-containing oxidases and dehydrogenases, and different copper-containing
oxidoreductases is involved in synthesis and degradation of interested products by
the above industries and they are biocatalysts of interest for establishing a bio-based
economy. Oxidoreductase enzymes have the highest potential in the production of
polymer building blocks, sustainable chemicals, and materials from plant biomass
within lignocellulose biorefineries [6, 7, 40].

7.1 Oxidoreductase enzymes in pharmaceutical industries

Enzymes are biological catalysts and have great specificity, efficiency, and
selectivity in the reaction they catalyze [39]. Oxidoreductase enzymes have
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different redox-active centers for doing their functions. These unique features of
oxidoreductase enzymes make it valuable targets of pharmaceutical and chemical
industries. Advancement in recombinant DNA technology, protein engineering,
and bioinformatics is a critical event in the application of enzymes in different
industries. A number of dug synthesis processes require the involvement of oxido-
reductase enzymes [6].

An oxidoreductase is involved in the synthesis of 3,4-dihydroxylphenyl alanine
(DOPA), and 3,4-dihydroxylphenyl alanine is a drug used for treatment of
Parkinson’s disease [41]. Similarly, a class of oxidoreductase called monoamine
oxidase (MAO) catalyzes enantiomeric desymmetrization of bicyclic proline inter-
mediate, which is an important precursor in the synthesis of boceprevir. Boceprevir
is a NS3 protease inhibitor that is used for the treatment of chronic hepatitis C
infections. Using MAO in this reaction reduces time and waste product generation
and is economically cost-competitive and profitable [42]. Its coenzyme specificity
makes oxidoreductase an effective biocatalyst in protein engineering [43]. In vitro
different oxidoreductase enzymes are involved in regeneration of coenzymes,
pyridine nucleotides, NAD(H) and NADP(H). Alcohol dehydrogenase and format
dehydrogenase are frequently used enzymes for recycling of coenzymes, and the
intermediate products are useful in the synthesis of pharmaceutical drugs such as
mevinic acid [44, 45].

7.2 Oxidoreductase enzymes in agricultural sector

Enzymes are biological catalysts and have a number of applications in agricul-
tural fields. Using enzymes has great efficacy and efficiency over chemical catalysts
with respect to their productivity, time, cost, quality, and quantity products. There
are different classes of oxidoreductase enzymes nowadays involved in fertilizer
production, dairy processing, and other food processing in agricultural sector, and
their cost-effectiveness and quality product were confirmed by a number of
researches [3].

Manipulation of gene cod for different oxidoreductase in plants can also change
the characters of plants in a way that it increases productivity and resists adverse
effects of herbicide and environmental changes. For example, modification of DNA
for glyphosate oxidoreductase (GOX) enzyme that catalyzes the oxidative cleavage
of the CdN bond on the carboxyl side of glyphosate, resulting in the formation of
aminomethylphosphonic acid (AMPA) and glyoxylate thereby augmented expres-
sion of GOX plants, results in glyphosate herbicide side effect tolerance [46, 47].
Some families of oxidoreductase like xanthine dehydrogenase in plants are used to
metabolize reactive oxygen species associated with plant-pathogen and protect
plants from stress-induced oxidative damage. Upregulation of xanthine dehydroge-
nase expression in plants is helpful to increase productivity [48, 49].

Classes of oxidoreductase are also involved in dairy processing. Glucose oxidase
produced by fungal species acts as preservatives in dairy products and other foods.
The intermediate and end product of glucose oxidase have antimicrobial effect [50].
Isozyme of xanthine oxidoreductase in bovine milk, which catalyzes reduction of
oxygen to generate reactive metabolite is used as an anti-microbial agent in the
neonatal gastrointestinal tract [51]. Similarly, peroxidases which are a family of
oxidoreductase found in higher plants catalyze the oxidation of many compounds
including phenolics, in the presence of hydrogen peroxide responsible in browning
or darkening of noodles and pasta and associated with a grain quality defect [52].
Protochlorophyllide oxidoreductase (POR), which exists in two isozymes POR A
and POR B, plays a vital role in plant chlorophyll synthesis, and manipulation on
these genes can induce plant development [53]. In general, there are a number of
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oxidoreductase enzymes found in plants, and their normal activity is crucial for
qualitative and quantitative productivity of crops, and these were confirmed by a
number of active researches. Different interventions are also going on at gene level
to control the expression of oxidoreductase enzymes in plant as needed [3].

8. Disease related with oxidoreductase enzyme disorder

Oxidoreductase enzymes are involved in a number of valuable biochemical
reactions in the living organism, and their qualitative and quantitative normality is
essential. For example, one important class of oxidoreductase is xanthine oxidore-
ductase (XOR) that catalyzes oxidative hydroxylation of hypoxanthine to xanthine
then to uric acid and over activity XOR leads to hyperuricemia and concomitant
production of reactive oxygen species. In turn, hyperuricemia is confirmed as an
independent risk factor for a number of clinical conditions such as gout, cardiovas-
cular disease, hypertension, and others. Different urate-lowering drugs or XOR
inhibitors are nowadays implemented to prevent and manage hyperuricemia
disorder [9].

Another important class of oxidoreductase enzyme is cytochrome P450 oxido-
reductase (POR) that is essential for multiple metabolic processes. Cytochrome
P450 enzymes are involved in metabolism of steroid hormones, drugs, and xenobi-
otics. Nowadays, more than 200 different mutations and polymorphisms in POR
gene have been identified and cause a complex set of disorders. Deficiency of
cytochrome P450 oxidoreductase affects normal production of hormone; specifi-
cally, it affects steroid hormones, which are needed for normal development and
reproduction. This is highly linked with the reproductive system, skeletal system,
and other functions. Signs and symptoms can be seen from birth to adult age with
different severities. Individuals with moderate cytochrome P450 oxidoreductase
deficiency may have ambiguous external genitalia and have a high chance of infer-
tility but a normal skeletal structure [5, 16, 18].

Aldehyde dehydrogenase 2 (ALDH2) deficiency known as Asian glow or alcohol
flushing syndrome is a common genetic health problem that interferes with alcohol
metabolism, and ALDH2 is a classical family of oxidoreductase enzymes. It was
confirmed that ALDH2 deficiency results in the accumulation acetaldehyde, which
is a toxic metabolite of alcohol metabolism and responsible for a number of health
challenges like esophageal, head, and neck cancer. A number of researches conclude
that acetaldehyde is a group 1 carcinogenic metabolite [33, 54]. Similarly, mono-
amine oxidase deficiency, which is a family oxidoreductase enzyme, affects the
normal metabolism of serotonin and catecholamines. It is a rare X-linked disorder
characterized by mild intellectual disability, and behavioral challenges appear at
earlier age. Monoamine oxidase-A deficiency that occurs almost exclusively in
males has episodes of skin flushing, excessive sweating, headaches, and diarrhea.
Monoamine oxidase-A deficiency can be diagnosed by finding an elevated urinary
concentration of the monoamine oxidase-A substrates in combination with reduced
amounts of the monoamine oxidase products [36, 55].

Mitochondria generate huge amounts of energy (ATP) to eukaryotic cells
through oxidation of fats and sugars; and fatty acid β-oxidation and oxidative
phosphorylation are two metabolic pathways that are central to this process. Qual-
itative and quantitative normality of oxidoreductase enzymes involved in oxidative
phosphorylation and fatty acid oxidations are essential to get sufficient energy
(ATP) form metabolism. Deficiency of a complex I (NADH-CoQ oxidoreductase) is
common, and a well-characterized mitochondrial problem causes reduced ATP
production [56]. Complex I (NADH-CoQ oxidoreductase) is responsible for
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recycling of NADH to NAD+, and in turn, this is essential to sustain Krebs cycle and
glycolysis. Mutations in both nuclear and mitochondrial DNA for Complex I gene
are responsible for mitochondrial disease. Individuals with mitochondrial diseases
suffer from an energy insufficiency characterized by myopathies, neuropathy,
delayed development, cardiomyopathy, lactic acidosis, and others. Furthermore,
since mitochondria are a hub of metabolism, mitochondrial dysfunctions are highly
associated with metabolic diseases like hypertension, obesity, diabetes, neurode-
generative diseases, and even aging. Deficiency of complex I leads to elevation of
NADH levels in the mitochondria that inhibit pyruvate dehydrogenase and α-
ketoglutarate dehydrogenase. This condition completely inhibits Krebs cycle, and it
is measured by CO2 evolution from [14C] labeled precursors. Similarly, complex II
(succinate:ubiquinone oxidoreductase) deficiency affects both fatty acid oxidation
and electron transport chain, and it induces retinopathies and encephalopathies
[57, 58].

Deficiency of the pyruvate dehydrogenase complex (PDHC), another class of
oxidoreductase enzymes, causes similar clinical and biochemical alteration in
energy production with complex I (NADH-CoQ oxidoreductase) [59]. Both TCA
cycle and respiratory chain can be affected by succinate dehydrogenase deficiency.
Deficiency of oxidoreductase enzymes involved in Krebs cycle affects all carbohy-
drate, protein, fat, and nucleic acid metabolism as it is a common pathway for
metabolism of the above macromolecules [60].

Oxidoreductase enzymes are also involved in bile acid synthesis. Classes of
oxidoreductase enzymes called 3beta-hydroxy-Delta (5)-C (27)-steroid oxidore-
ductase catalyze an early step of bile acids synthesis from cholesterol and are
encoded by HSD3B7 gene on chromosome 16p11.2-12. Mutations of HSD3B7
gene affect bile acids synthesis, cause development of progressive liver disease
characterized by cholestatic jaundice, malabsorption of lipids, and lipid-soluble
vitamins from the gastrointestinal tract, and finally progress to cirrhosis and liver
failure [61].

One important biomolecule that acts as a precursor for other molecules and a
component of cell membrane is cholesterol. Mammalian cells can get cholesterol
from de novo biosynthesis or uptake of exogenously derived cholesterol associated
with plasma low-density lipoprotein (LDL). 3-Hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase, which is a class of oxidoreductase, catalyzes
the rate-limiting steps of de novo cholesterol biosynthetic pathway and target for
manipulation pharmacologically. Under or over activity of HMG-CoA reductase can
disturb cholesterol homeostasis and lead to either hypercholesterolemia or
hypocholesterolemia. And disturbed cholesterol level associated with number seri-
ous clinical problem like atherosclerosis [62, 63].
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confirmed that ALDH2 deficiency results in the accumulation acetaldehyde, which
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common, and a well-characterized mitochondrial problem causes reduced ATP
production [56]. Complex I (NADH-CoQ oxidoreductase) is responsible for
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NADH levels in the mitochondria that inhibit pyruvate dehydrogenase and α-
ketoglutarate dehydrogenase. This condition completely inhibits Krebs cycle, and it
is measured by CO2 evolution from [14C] labeled precursors. Similarly, complex II
(succinate:ubiquinone oxidoreductase) deficiency affects both fatty acid oxidation
and electron transport chain, and it induces retinopathies and encephalopathies
[57, 58].
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oxidoreductase enzymes, causes similar clinical and biochemical alteration in
energy production with complex I (NADH-CoQ oxidoreductase) [59]. Both TCA
cycle and respiratory chain can be affected by succinate dehydrogenase deficiency.
Deficiency of oxidoreductase enzymes involved in Krebs cycle affects all carbohy-
drate, protein, fat, and nucleic acid metabolism as it is a common pathway for
metabolism of the above macromolecules [60].

Oxidoreductase enzymes are also involved in bile acid synthesis. Classes of
oxidoreductase enzymes called 3beta-hydroxy-Delta (5)-C (27)-steroid oxidore-
ductase catalyze an early step of bile acids synthesis from cholesterol and are
encoded by HSD3B7 gene on chromosome 16p11.2-12. Mutations of HSD3B7
gene affect bile acids synthesis, cause development of progressive liver disease
characterized by cholestatic jaundice, malabsorption of lipids, and lipid-soluble
vitamins from the gastrointestinal tract, and finally progress to cirrhosis and liver
failure [61].

One important biomolecule that acts as a precursor for other molecules and a
component of cell membrane is cholesterol. Mammalian cells can get cholesterol
from de novo biosynthesis or uptake of exogenously derived cholesterol associated
with plasma low-density lipoprotein (LDL). 3-Hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase, which is a class of oxidoreductase, catalyzes
the rate-limiting steps of de novo cholesterol biosynthetic pathway and target for
manipulation pharmacologically. Under or over activity of HMG-CoA reductase can
disturb cholesterol homeostasis and lead to either hypercholesterolemia or
hypocholesterolemia. And disturbed cholesterol level associated with number seri-
ous clinical problem like atherosclerosis [62, 63].
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Abstract

Oxidoreductases comprise of a large group of enzymes catalyzing the transfer 
of electrons from an electron donor to an electron acceptor molecule, commonly 
taking nicotinamide adenine dinucleotide phosphate (NADP) or nicotinamide 
adenine dinucleotide (NAD) as cofactors. Research on the potential applications of 
oxidoreductases on the growth of oxidoreductase-based diagnostic tests and better 
biosensors, in the design of inventive systems for crucial coenzymes regeneration, 
and in the creation of oxidoreductase-based approaches for synthesis of polymers 
and oxyfunctionalized organic substrates have made great progress. This chapter 
focuses on biocatalytic applications of oxidoreductases, since many chemical and 
biochemical transformations involve oxidation/reduction processes, developing  
practical applications of oxidoreductases has long been a significant target in 
biotechnology. Oxidoreductases are appropriate catalysts owing to their biodegrad-
ability, specificity and efficiency and may be employed as improved biocatalysts to 
substitute the toxic/expensive chemicals, save on energy/resources consumption, 
generate novel functionalities, or reduce complicated impacts on environment.

Keywords: oxidoreductases, cofactors, biosensors, coenzymes regeneration, 
biocatalytic

1. Introduction

The various chemical transformations catalyzed by enzymes make these 
catalysts a key goal for utilization by the promising biotechnology industries. In 
the recent years, intense research in the field of enzyme technology has provided 
numerous approaches that facilitate the practical application of enzymes. This 
chapter emphasizes the application of oxidoreductases which catalyze the exchange 
of electrons amid the donor and acceptor molecules, in reactions involving electron 
transfer, proton/hydrogen extraction, hydride transfer, oxygen insertion, or other 
imperative steps. Oxidoreductases acquire advantage from the inclusion of different 
cofactors - for instance heme, flavin and metal ions - to catalyze redox reactions [1]. 
Majority of oxidoreductases are nicotinamide cofactor-dependent enzymes which 
have a high preference for nicotinamide adenine dinucleotide phosphate (NADP) 
or nicotinamide adenine dinucleotide (NAD) and they are further classified in six 
major classes which are oxidases, dehydrogenases, hydroxylases, oxygenases, per-
oxidases and reductases [2]. This chapter demonstrates the potential applications of 
oxidoreductases on the growth of oxidoreductase-based diagnostic tests and better 
biosensors, in the design of inventive systems for crucial coenzymes regeneration, 
and in the formation of oxidoreductase-based approaches for synthesis of polymers 
and oxyfunctionalized organic substrates.
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2. Oxidoreductase-based diagnostic tests and as biosensors

The diagnosis and monitoring of a variety of diseases is extremely demanding 
nowadays for routine examination of clinical samples and other associated tests. 
The diagnostic enzymes are used for the detection/diagnosis or prognosis of disease 
conditions due to their substrate specificity and quantitated activity in the presence 
of other proteins, and are preferred in diagnosis, which can be used as a diagnostic 
tool for disease detection [3]. Depending on the verity of the disease, diseased 
state often leads to tissue damage. In such conditions, enzymes specific to diseased 
organs are released into blood circulation with augmented enzyme activity. The 
measurement of corresponding enzyme activities in blood/plasma, or any other 
body fluid, has been exploited in the diagnosis of diseased tissues/organs [3].

Jixu Wang et al. [4] investigated the expression and significance of glucose-
6-phosphate dehydrogenase (G6PD) in human gastric cancer progression and 
prognosis. Apoptosis and necrosis are two major types of cell death in normal and 
disease pathologies. A key signature for necrotic cells is the permeabilization of the 
plasma membrane which can be quantified in tissue culture settings by measuring 
the release of the intracellular enzyme lactate dehydrogenase (LDH). It has been 
described that the measuring LDH release is a useful method for the detection of 
necrosis [5]. Two dehydrogenases, specifically, sorbitol dehydrogenase (SDH) and 
LDH, are used for cancer prognosis [3]. Reports suggested that in prostate cancer 
[6], and precancerous colorectal neoplasms [7], an abnormal serum concentra-
tion of SDH has been observed. Additionally, an enhanced level of SDH can be 
observed in acute liver damage and parenchymal hepaticdiseases [3]. It has been 
reported that LDH, marker of anaerobic metabolism, is associated with highly 
invasive and metastatic breast cancer and suggested that the association of activity 
of LDH in tumor tissue with mammographic characteristics could help in defining 
aggressive breast cancers [8]. The gene expression of LDH is studied in several 
human malignant tumors, collectively among colorectal cancer [9], lung cancer 
[10–12], breast cancer [13], oral cancer [14], prostate cancer [15], germ cell cancer 
[16], and pancreatic cancer [17]. In recent times, the prognostic value of the serum 
LDH level in cancer patients has been considered as a significant area of research. 
Additionally, LDH performs as a prognostic marker in patients with acute leukemia 
[18] and sickle cell disease [19].

A biosensor is an analytical tool that comprises a biological or biologically 
derived sensing matter with close proximity to the physico-chemical transducer [3]. 
The chief function of such a device is to produce a discrete or uninterrupted signal 
that is comparative to the concentration of the analyte [20]. Enzyme-based chemical 
biosensors are based on biological recognition and in order to function, the enzymes 
must be accessible to catalyze a specific biochemical reaction and be stable under 
the normal operating circumstances of the biosensor [21]. Generally the function of 
oxidoreductase biosensors is dependent on charge transport amid the enzyme and 
an electrode surface by means of coenzymes or redox mediators [22].

Over the years, various enzyme-based biosensors have been developed, however 
only a few of them are commercialized. The majority of the published work on enzy-
matic biosensors focuses on targeted blood glucose monitoring based on ampero-
metric techniques [3]. The earliest glucose biosensor based on glucose dehydrogenase 
from Erwinia sp. and carbon paste was generated by Laurinavicius et al. [23] where 
the enzyme was incorporated in a polylysine-albumin gel, and the anchoring material 
was a paste of chemically adapted carbon powder, fumed silica, and binding mate-
rial. A cellulose dehydrogenase based glucose biosensor from a mutant of Corynascus 
thermophilus has been developed, and a glassy carbon electrode (GCE) was acquired 

19

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

by direct electrode position of gold nanoparticles (AuNPs). The biosensor was used 
for the detection of glucose in human saliva samples, with successful results in terms 
of both revival and association with glucose blood levels [24]. This proposes the 
development of noninvasive glucose monitoring devices. The details of different  
oxidoreductase enzymatic biosensors applied for clinical diagnosis are listed in 
Table 1. The first marketable biosensor (glucose biosensor) was commenced in 1975 
which was derived from the electrochemical recognition of hydrogen peroxide, 
and the glucose oxidase was employed for the improvement of the biosensor [3]. 
Subsequently, Clemens et al. [25] established a novel amperometric glucose biosen-
sor in a bedside artificial pancreas, and it was marked underneath the brand name 
“Biostator” by Miles (Elkhart, Indiana).

3. Oxidoreductases in coenzymes regeneration

The most of oxidoreductases for catabolism and anabolism significantly require 
two natural nicotinamide-based coenzymes (NAD and NADP), respectively. The 
most NAD(P)-dependent oxidoreductases choose one coenzyme as an electron 
acceptor or donor to the other depending on their diverse metabolic functions [41]. 
Generally coenzymes are involved in these oxidoreductase-catalyzed reactions to 
transport electron, hydride, hydrogen, oxygen, or other atoms or small molecules 
in diverse enzymatic pathways [42, 43]. The nicotinamide adenine dinucleotide 
(NAD)/nicotinamide adenine dinucleotide phosphate (NADP), ubiquinone (CoQ ), 
and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD) are the 
typical coenzymes. Nicotinamide-based coenzymes for the electron transport and 
storage in the form of hydride groups are the most noteworthy in view of the fact 
that 80% of characterized oxidoreductases necessitate NAD as a coenzyme, and 
10% of them require NADP as a coenzyme [44].

Nicotinamide coenzymes based dehydrogenases are of emergent importance for 
the production of chiral compounds, either by reduction of a prochiral precursor 
or via oxidative resolution of their racemate [45]. Nevertheless, the oxidized and 
reduced nicotinamide cofactors regeneration is an extremely critical step as the 
employ of these cofactors in stoichiometric amounts is too expensive for function. 
There are very few enzymes which are appropriate for the regeneration of oxidized 

Enzymes Analyte Test sample Disease diagnosed References

Glucose 
oxidase

Glucose Blood plasma, 
blood serum, 
urine, and 
saliva

Diabetes, hypoglycemia [26–29]

Oxalate 
oxidase

Oxalate Blood serum 
and urine

Idiopathic urolithiasis and various 
intestinal diseases

[30]

Cholesterol 
oxidase

Cholesterol Blood serum Coronary heart disease, myocardial 
and cerebral infarction (stroke)

[31–34]

Lactate 
oxidase

Lactate Blood plasma, 
blood serum, 
drug and 
biological 
samples

Hyper lactatemia, cardiac arrest, 
resuscitation, sepsis, reduced renal 
excretion, decreased extra hepatic 
metabolism, intestinal infarction 
and lacticacidosis

[35–40]

Table 1. 
Oxidoreductase enzymatic biosensors as diagnostic tools.
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nicotinamide cofactors. Glutamate dehydrogenase can be utilized for the oxidation 
of NADH in addition to NADPH while l-lactate dehydrogenase is able to oxidize 
NADH only [45]. The reduction of NAD+ is carried out by formate and FDH [45]. 
Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are proficient to 
reduce both NAD+ and NADP+ [45]. It has been reported that ADH from horse liver 
reduces NAD+ whereas ADHs from Lactobacillus strains catalyze the reduction of 
NADP+ [45]. These enzymes can be applied by their inclusion in entire cell biotrans-
formations by an NAD(P)+-dependent major reaction to achieve in situ regeneration 
of the consumed cofactor [45]. And for the regeneration of the reduced cofactors 
NADH and NADPH numerous systems for instance engineered formate dehydro-
genase [46, 47], phosphite dehydrogenase [48, 49], glucose dehydrogenase [50, 51] 
plus cosubstrate are well established and extensively used.

Johannes et al. [52] reported the engineering of a highly stable and active mutant 
phosphite dehydrogenase (12x-A176R PTDH) from Pseudomonas stutzeri and 
evaluation of its potential as an effective NADPH regeneration system in an enzyme 
membrane reactor. They have utilized two practically imperative enzymatic reac-
tions including xylose reductase-catalyzed xylitol synthesis and alcohol dehydro-
genase-catalyzed (R)-phenylethanol synthesis as models, and the mutant PTDH 
was compared to the commercially available NADP+-specific Pseudomonas sp. 101 
formate dehydrogenase (mut Pse-FDH) that is extensively employed for NADPH 
regeneration [52]. Soluble water-forming NAD(P)H oxidases comprise a promising 
NAD(P)+ regeneration scheme since they only require oxygen as cosubstrate and 
produce water as only byproduct [53]. In addition, the thermodynamic equilibrium 
of O2 reduction is a significant driving force for mostly energetically unfavorable 
biocatalytic oxidations [53]. Petschacher et al. [53] presented the generation of 
an NAD(P)H oxidase with high activity for both cofactors, NADH and NADPH. 
Applicability for cofactor regeneration is shown for coupling with alcohol dehydro-
genase from Sphyngobium yanoikuyae for 2-heptanone production.

4.  Oxidoreductase-based approaches for synthesis of polymers  
and various organic substrates

Enzyme catalyzed oxidation reactions have achieved growing concern in 
biocatalysis recently, reflected also by numerous outstanding reviews on this 
topic reported in the last years [54–56]. The group of oxidoreductases, to which 
all enzyme catalyzing oxidoreduction reactions, comprises numerous groups of 
biocatalysts such as dehydrogenases, monooxygenases, dioxygenases, oxidases, 
peroxidases, etc. [55]. Moreover, the enzymatic oxidative polymerizations have 
advantages of using nontoxic catalysts and mild reaction conditions, and the 
specific enzyme catalysis affords regio- and chemoselective polymerizations to con-
struct functional materials [57]. It has been reported that peroxidases with the use 
of hydrogen peroxide as oxidant efficiently induce the oxidative coupling of phenols 
to phenolic polymers, the majority of which are scarcely attained by conventional 
chemical catalysts [57]. In addition, it has been published that laccase and peroxi-
dase are helpful for production of cross-linked polymers such as artificial urushi 
and biopolymer hydrogel [57]. Kobayashi [58] established that the enzymatic 
polymerization as to be an efficient method of polymer synthesis. The polymer-
ization uses hydrolases and oxidoreductases as catalysts and this new method of 
polymer synthesis afforded natural polysaccharides like cellulose, amylose, xylan, 
and chitin, and unnatural polysaccharides catalyzed by a glycosidase from well-
designed monomers, varied functionalized polyesters catalyzed by lipase from a 
variety of monomers, and poly-aromatics materials catalyzed by an oxidoreductase 
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and an enzyme model complex from phenols and anilines [58]. Furthermore, vinyl 
polymerization has been initiated by oxidoreductase [58].

Marjanovic et al. [59] reviewed the oxidative oligomerization and polymeriza-
tion of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene 
and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, 
in aqueous, organic, and mixed aqueous organic monophasic or biphasic media. 
Owing to the nontoxicity of oxidoreductases and their elevated catalytic effective-
ness, as well as high selectivity of enzymatic oligomerizations/polymerizations 
under gentle conditions by means of primarily water as a solvent and often resulting 
in minimal byproduct formation enzymatic oligomerizations and polymerizations 
of arylamines are environmentally friendly and considerably contribute to a “green” 
chemistry of conducting and redox-active oligomers and polymers [59].

It has been also established that oxidative enzymes comprise privileged catalysts 
in organic synthesis [60]. Environmentally benign reaction conditions with high 
selectivity are the most fascinating characteristic exhibited by these biocatalysts in 
contrast to classical metal-based reagents. de Gonzalo et al. [60] reviewed the new 
perspectives and concepts derived from oxidative enzymatic processes, involving 
oxidative C-C bond forming reactions, atroposelective oxidations, oxidative dynamic 
processes, interconnected reactions, cyclic deracemizations, oxidative desymmetri-
zations and artificial oxidative enzymes. Oxidoreductases comprise an imperative 
group of biocatalysts as they facilitate not merely the broadly used stereoselective 
reduction of aldehydes and ketones but also the less well exploited oxidation of 
alcohols and amines [53]. In addition, oxidoreductases catalyzed oxidations are 
utilized for production of chiral alcohols and amines by deracemization [54, 60–62]. 
It has been reviewed thoroughly that the oxidoreductases enable chemists to perform 
highly selective and efficient transformations ranging from simple alcohol oxidations 
to stereoselective halogenations of non-activated C-H bonds [63]. Mifsud et al. [64] 
demonstrated for the first time that catalytic water oxidation mediated by robust 
TiO2 semiconductors can be productively coupled to oxidoreductases achieving 
photobiocatalytic redox reactions.

One of the major applications of oxidoreductase is a pharmaceutical synthesis 
of 3,4-dihydroxylphenyl alanine (DOPA), which is employed in the treatment of 
Parkinson’s disease and the industrial process that synthesizes DOPA make use of 
the oxidoreductase polyphenol oxidase [65]. It has been reported that the enanti-
oselective reduction of C-4-substituted 3,5-dixocarboxylates can be carried out by 
using alcohol dehydrogenase from Lactobacillus brevis (LBADH) over-expressed in 
E. coli [66]. Laccase can be employed to synthesize numerous complex medicinal 
agents including triazolo(benzo)cycloalkyl thiadiazines, vinblastine, penicillin X 
dimer, cephalosporin antibiotics, and dimerized vindo-line [67]. In addition laccase 
can be used to synthesize a range of functional organic compounds including poly-
mers with specific mechanical/electrical/optical properties, textile dyes, cosmetic 
pigments, flavor agents, and pesticides [68]. Biocatalysis is facilitating technology 
to organic synthesis chemistry by providing high selectivity of enzymatic reactions 
under mild conditions makes it a very valuable tool for green chemistry.

5. Medical applications

Due to the specificity and bio-based nature, potential applications of oxidore-
ductases in various fields are attracting active research efforts [69]. Several products 
generated by oxidoreductases are finding applications as antimicrobial, detoxifying,  
or active personal-care agents [69]. One potential application is laccase-based in situ 
generation of iodine, a reagent extensively used as disinfectant [67]. It has been 
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to phenolic polymers, the majority of which are scarcely attained by conventional 
chemical catalysts [57]. In addition, it has been published that laccase and peroxi-
dase are helpful for production of cross-linked polymers such as artificial urushi 
and biopolymer hydrogel [57]. Kobayashi [58] established that the enzymatic 
polymerization as to be an efficient method of polymer synthesis. The polymer-
ization uses hydrolases and oxidoreductases as catalysts and this new method of 
polymer synthesis afforded natural polysaccharides like cellulose, amylose, xylan, 
and chitin, and unnatural polysaccharides catalyzed by a glycosidase from well-
designed monomers, varied functionalized polyesters catalyzed by lipase from a 
variety of monomers, and poly-aromatics materials catalyzed by an oxidoreductase 
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under gentle conditions by means of primarily water as a solvent and often resulting 
in minimal byproduct formation enzymatic oligomerizations and polymerizations 
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contrast to classical metal-based reagents. de Gonzalo et al. [60] reviewed the new 
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reduction of aldehydes and ketones but also the less well exploited oxidation of 
alcohols and amines [53]. In addition, oxidoreductases catalyzed oxidations are 
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It has been reviewed thoroughly that the oxidoreductases enable chemists to perform 
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demonstrated for the first time that catalytic water oxidation mediated by robust 
TiO2 semiconductors can be productively coupled to oxidoreductases achieving 
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One of the major applications of oxidoreductase is a pharmaceutical synthesis 
of 3,4-dihydroxylphenyl alanine (DOPA), which is employed in the treatment of 
Parkinson’s disease and the industrial process that synthesizes DOPA make use of 
the oxidoreductase polyphenol oxidase [65]. It has been reported that the enanti-
oselective reduction of C-4-substituted 3,5-dixocarboxylates can be carried out by 
using alcohol dehydrogenase from Lactobacillus brevis (LBADH) over-expressed in 
E. coli [66]. Laccase can be employed to synthesize numerous complex medicinal 
agents including triazolo(benzo)cycloalkyl thiadiazines, vinblastine, penicillin X 
dimer, cephalosporin antibiotics, and dimerized vindo-line [67]. In addition laccase 
can be used to synthesize a range of functional organic compounds including poly-
mers with specific mechanical/electrical/optical properties, textile dyes, cosmetic 
pigments, flavor agents, and pesticides [68]. Biocatalysis is facilitating technology 
to organic synthesis chemistry by providing high selectivity of enzymatic reactions 
under mild conditions makes it a very valuable tool for green chemistry.

5. Medical applications

Due to the specificity and bio-based nature, potential applications of oxidore-
ductases in various fields are attracting active research efforts [69]. Several products 
generated by oxidoreductases are finding applications as antimicrobial, detoxifying,  
or active personal-care agents [69]. One potential application is laccase-based in situ 
generation of iodine, a reagent extensively used as disinfectant [67]. It has been 
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described that laccase-iodide salt binary iodine-generating system (for sterilization) 
can have several advantages over the direct iodine application [69]. Peroxidases 
may replace laccase for the application, even though they would require H2O2 as 
cosubstrate [69]. The ClO¯ and Mn(III) species formed by haloperoxidase and 
Mn-peroxidase are extremely effective oxidants and antimicrobial agents [70]. 
Peroxidase can also be used to cross-link collagen which is beneficial to the healing of 
damaged skin [71]. The physiological activities of lysyl oxidase comprise the extra-
cellular matrix construction which can hasten wound-healing [72, 73]. A glucose 
oxidase, lactoperoxidase, and iodide system has been tested for dental care and the 
oxidase produces H2O2 to feed the peroxidase, so that it can produce iodine that can 
kill plaque-causing bacteria [74]. It has been reported that the haloperoxidase can 
be used to oxidatively modify rubber latex surfaces, making them less allergenic 
[75]. A secreted oxidoreductase may even be developed as a vaccine against secretor 
microbes such as, Aspergillus oryzae catalase A protein has been studied as a potential 
aspergillosis vaccine [69]. It has been reported that low-molecular-mass laccase puri-
fied from the mushroom Tricholoma giganteumis possesses significant HIV-1 reverse 
transcriptase inhibitory activity [76]. As nature’s own catalysts, enzymes acquire very 
diverse specificity, reactivity, and other physicochemical, catalytic, and biological 
properties highly enviable for miscellaneous industrial and medical applications [69].

6. Conclusions

Tremendous progress has been made in the recent years in the field of applica-
tions of oxidoreductases. Oxidoreductases metabolism is a fundamental bio-
process that plays a pivotal role in all species, including humans, plants, animals, 
and microorganisms, as their specific function is to catalyze oxidation and reduc-
tion reactions that occur within the cell. Abnormality in this metabolic system 
leads to a number of metabolic disorders. Thus, owing to the remarkable proper-
ties of oxidoreductases, they can be used for the diagnosis of disorders. They can 
provide insight into the diseased state by diagnosis, prognosis, or by assessment 
of response therapy. It has been established that oxidoreductases as biosensors are 
becoming popular potential tools in biotechnology due to their high specificity. 
With oxidoreductases, the conversion of a variety of aliphatic/aromatic molecules 
can be achieved; inert hydrocarbons can be functionalized (by hydroxylation, 
sulfoxidation, epoxidation, etc.); regio-, enantio- (on racemic substrates); enan-
tiotopo– (on prochiral sub-strates); and chemo-selective reactions can be accom-
plished; important synthons from inexpensive and renewable biomaterials can 
be constructed; and the negative environment impact can be reduced [69]. Since 
numerous chemical and biochemical transformations engage oxidation/reduction 
processes, developing practical biocatalytic applications of oxidoreductases has 
long been an imperative target in biotechnology.

Acknowledgements

The author gratefully acknowledges the Department of Chemistry, Goalpara 
College (Assam), India.

Conflict of interest

The author declares no conflict of interest.

23

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

Author details

Sandhya Rani Gogoi
Department of Chemistry, Goalpara College, Goalpara, Assam, India

*Address all correspondence to: gogoisandhyarani@gmail.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



Oxidoreductase

22

described that laccase-iodide salt binary iodine-generating system (for sterilization) 
can have several advantages over the direct iodine application [69]. Peroxidases 
may replace laccase for the application, even though they would require H2O2 as 
cosubstrate [69]. The ClO¯ and Mn(III) species formed by haloperoxidase and 
Mn-peroxidase are extremely effective oxidants and antimicrobial agents [70]. 
Peroxidase can also be used to cross-link collagen which is beneficial to the healing of 
damaged skin [71]. The physiological activities of lysyl oxidase comprise the extra-
cellular matrix construction which can hasten wound-healing [72, 73]. A glucose 
oxidase, lactoperoxidase, and iodide system has been tested for dental care and the 
oxidase produces H2O2 to feed the peroxidase, so that it can produce iodine that can 
kill plaque-causing bacteria [74]. It has been reported that the haloperoxidase can 
be used to oxidatively modify rubber latex surfaces, making them less allergenic 
[75]. A secreted oxidoreductase may even be developed as a vaccine against secretor 
microbes such as, Aspergillus oryzae catalase A protein has been studied as a potential 
aspergillosis vaccine [69]. It has been reported that low-molecular-mass laccase puri-
fied from the mushroom Tricholoma giganteumis possesses significant HIV-1 reverse 
transcriptase inhibitory activity [76]. As nature’s own catalysts, enzymes acquire very 
diverse specificity, reactivity, and other physicochemical, catalytic, and biological 
properties highly enviable for miscellaneous industrial and medical applications [69].

6. Conclusions

Tremendous progress has been made in the recent years in the field of applica-
tions of oxidoreductases. Oxidoreductases metabolism is a fundamental bio-
process that plays a pivotal role in all species, including humans, plants, animals, 
and microorganisms, as their specific function is to catalyze oxidation and reduc-
tion reactions that occur within the cell. Abnormality in this metabolic system 
leads to a number of metabolic disorders. Thus, owing to the remarkable proper-
ties of oxidoreductases, they can be used for the diagnosis of disorders. They can 
provide insight into the diseased state by diagnosis, prognosis, or by assessment 
of response therapy. It has been established that oxidoreductases as biosensors are 
becoming popular potential tools in biotechnology due to their high specificity. 
With oxidoreductases, the conversion of a variety of aliphatic/aromatic molecules 
can be achieved; inert hydrocarbons can be functionalized (by hydroxylation, 
sulfoxidation, epoxidation, etc.); regio-, enantio- (on racemic substrates); enan-
tiotopo– (on prochiral sub-strates); and chemo-selective reactions can be accom-
plished; important synthons from inexpensive and renewable biomaterials can 
be constructed; and the negative environment impact can be reduced [69]. Since 
numerous chemical and biochemical transformations engage oxidation/reduction 
processes, developing practical biocatalytic applications of oxidoreductases has 
long been an imperative target in biotechnology.

Acknowledgements

The author gratefully acknowledges the Department of Chemistry, Goalpara 
College (Assam), India.

Conflict of interest

The author declares no conflict of interest.

23

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

Author details

Sandhya Rani Gogoi
Department of Chemistry, Goalpara College, Goalpara, Assam, India

*Address all correspondence to: gogoisandhyarani@gmail.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



24

Oxidoreductase

[1] Martinez AT, Ruiz-Dueñas FJ,  
Camarero S, Serrano A, Linde D,  
Lund H, Vind J, Tovborg M, 
Herold-Majumdar OM, Hofrichter 
Mand Liers, C. Mint: Oxidoreductases 
on their way to industrial 
biotransformations. Biotechnology 
advances. 2017;35(6);815-831. 
DOI: https://doi.org/10.1016/j.
biotechadv.2017.06.003

[2] Younus H. Oxidoreductases: 
Overview and Practical Applications. 
Biocatalysis: Springer, Cham; 
2019. 39 p. DOI: https://doi.
org/10.1007/978-3-030-25023-2_3

[3] Singh RS, Singh T, Singh AK. 
Enzymes as Diagnostic Tools. Advances 
in Enzyme Technology: Elsevier; 2019. 
225p. DOI: https://doi.org/10.1016/
B978-0-444-64114-4.00009-1

[4] Wang J, Yuan W, Chen Z, 
Wu S, Chen J, Ge J, Hou F, Chen Z. Mint: 
Overexpression of G6PD is associated 
with poor clinical outcome in gastric 
cancer. Tumor Biology. 2012;33; 
95-101. DOI: https://doi.org/10.1007/
s13277-011-0251-9

[5] Chan FKM, Moriwaki K, 
De-Rosa MJ. Detection of necrosis 
by release of lactate dehydrogenase 
activity. In: Snow A, Lenardo M. 
(Eds.), Immune Homeostasis Methods 
and Protocols. Springer Science 
+Bushiness Media, New York, 2013, 
vol. 979. p. 65-70. DOI: https://doi.
org/10.1007/978-1-62703-290-2_7

[6] Szabo Z, Hamalainen J, 
Loikkanen I, Moilanen AM, Hirvikoski P, 
Vaisanen T, Paavonen TK, Vaarala MH. 
Mint: Sorbitol dehydrogenase expression 
is regulated by androgens in the 
human prostate. Oncology Reports. 
2010;23;1233-1239. DOI: https://doi.
org/10.3892/or_00000755

[7] Uzozie A, Nanni P, Staiano T, 
Grossmann J, Barkow-Oesterreicher S, 

Shay JW, Tiwari A, Buffoli F, Laczko E, 
Marra G. Mint: Sorbitol dehydrogenase 
over expression and other aspects 
of dysregulate dprotein expression 
in human precancerous colorectal 
neoplasms: a quantitative proteomics 
study. Molecular & Cellular Proteomics. 
2014;13;1198-1218. DOI: https://doi.
org/10.1074/mcp.M113.035105

[8] Radenkovic S, Milosevic Z, 
Konjevic G, Karadzic K, Rovcanin B, 
Buta M, Gopcevic K, Jurisic V. Mint: 
Lactate dehydrogenase, catalase 
and superoxide dismutase in tumor 
tissue of breast cancer patients in 
respect to mammographic findings. 
Cell Biochemistry and Biophysics. 
2013;66;287-295. DOI: https://doi.
org/10.1007/s12013-012-9482-7

[9] Koukourakis MI, 
Giatromanolaki A, Sivridis E, 
Gatter KC, Trarbach T, Folprecht G, 
Shi MM, Lebwohl D, Jalava T, Laurent D, 
Meinhardt G. Mint: Prognostic and 
predictive role of lactate dehydrogenase 
5 expression in colorectal cancer 
patients treated with PTK787/ZK 
222584 (vatalanib) antiangiogenic 
therapy. Clinical Cancer Research. 
2011;17;4892-4900. DOI: 10.1158/1078-
0432.CCR-10-2918

[10] Hermes A, Gatzemeier U, 
Waschki B, Reck M. Mint: Lactate 
dehydrogenase as prognostic factor 
in limited and extensive disease stage 
small cell lung cancer - a retrospective 
single institution analysis. Respiratory 
Medicine. 2010;104;1937-1942. 
DOI: https://doi.org/10.1016/j.
rmed.2010.07.013

[11] Hsieh AH, Tahkar H, Koczwara B,  
Kichenadasse G, Beckmann K, 
Karapetis C, Sukumaran S. Mint: Pre-
treatment serum lactate dehydrogenase 
as a biomarker in small cell lung 
cancer. Asia-Pacific Journal of Clinical 
Oncology. 2018;14(2);e64-70. DOI: 
https://doi.org/10.1111/ajco.12674

References

25

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

[12] Zheng X, Wang K, Xu L, Ye P, Cai S, 
Lu H, Bao C, Kong J. Mint: The effect of 
serum lactate dehydrogenase levels on 
lung cancer prognosis: ameta-analysis. 
International Journal of Clinical and 
Experimental Medicine. 2017;10;14179-
14186. DOI: https://www.researchgate.
net/publication/321028729

[13] Brown JE, Cook RJ, Lipton A,  
Coleman RE. Mint: Serum lactate 
dehydrogenase is prognostic for survival 
in patients with bone metastases from 
breast cancer: a retrospective analysis 
in bisphosphonate-treated patients. 
Clinical Cancer Research. 2012;18;6348-
6355. DOI: 10.1158/1078-0432.
CCR-12-1397

[14] Nandita A, Basavaraju SM,  
Pachipulusu B. Mint: Lactate 
dehydrogenase as a tumor marker in oral 
cancer and oral potentially malignant 
disorders: a biochemical study 
International Journal of Preventive & 
Clinical Dental Research. 2017;4;1-5. 
DOI: 10.5005/jp-journals-10052-0108

[15] Halabi S, Small EJ, Kantoff PW,  
Kattan MW, Kaplan EB, Dawson NA,  
Levine EG, Blumenstein BA, 
Vogelzang NJ. Mint: Prognostic model 
for predicting survival in men with 
hormone-refractory metastatic prostate 
cancer. Journal of Clinical Oncology. 
2003;21;1232-1237. DOI: 10.1200/
JCO.2003.06.100

[16] Gerlinger M, Wilson P, Powles T, 
Shamash J. Mint: Elevated LDH predicts 
poor outcome of recurrent germ 
cell tumours treated with dose 
dense chemotherapy. European 
Journal of Cancer. 2010;46;2913-
2918. DOI: https://doi.org/10.1016/j.
ejca.2010.07.004

[17] Rong Y, Wu W, Ni X, Kuang T, 
Jin D, Wang D, Lou W. Mint: Lactate 
dehydrogenase A is over expressed 
in pancreatic cancer and promotes 
the growth of pancreatic cancer cells. 
Tumor Biology. 2013;34;1523-1530. 

DOI: https://doi.org/10.1007/
s13277-013-0679-1

[18] Walaa-Fikry ME. Mint: Lactate 
dehydrogenase (LDH) as prognostic 
marker in acute leukemia “Quantitative 
Method”. Journal of Blood Disorders 
Transfusion. 2017;8;1-9. DOI: 
10.4172/2155-9864.1000375

[19] Kato GJ, Nouraie SM, Gladwin MT. 
Mint: Lactate dehydrogenase and 
hemolysis in sickle cell disease, Blood. 
2013;122;1091-1092. DOI: https://doi.
org/10.1182/blood-2013-05-505016

[20] Turner APF, Karube I, 
Wilson GS. Biosensors: Fundamentals 
and Applications. 1st ed. Oxford 
University Press, Oxford, 1987. DOI: 
https://www.diva-portal.org/smash/get/
diva2:619968/FULLTEXT01.pdf

[21] Rocchitta G, Spanu A, Babudieri S, 
Latte G, Madeddu G, Galleri G, Nuvoli S, 
Bagella P, Demartis MI, Fiore V, Manetti R. 
Mint: Enzyme biosensors for biomedical 
applications: Strategies for safeguarding 
analytical performances in biological 
fluids. Sensors. 2016;16(6);780-801. 
DOI: https://doi.org/10.3390/s16060780

[22] Schmidt HL, Schuhmann W. 
Mint: Reagentless oxidoreductase 
sensors. Biosensors and Bioelectronics, 
1996;11(1-2);127-135. DOI: https://doi.
org/10.1016/0956-5663(96)83720-1

[23] Laurinavicius V, Kurtinaitiene B, 
Liauksminas V, Ramanavicius A, 
Meskys R, Rudomanskis R, Skotheim T, 
Boguslavsky L. Mint: Oxygen insensitive 
glucose biosensor based on PQQ-
dependent glucose dehydrogenase. Anal. 
Lett. 1999;32;299-316. DOI: https://doi.
org/10.1080/00032719908542822

[24] Bollella P, Gorton L, Ludwig R, 
Antiochia R. Mint: A third generation 
glucose biosensor based on cellobiosede- 
hydrogenase immobilized on a glassy 
carbon electrode decorated with 
electrodeposited gold nanoparticles: 



24

Oxidoreductase

[1] Martinez AT, Ruiz-Dueñas FJ,  
Camarero S, Serrano A, Linde D,  
Lund H, Vind J, Tovborg M, 
Herold-Majumdar OM, Hofrichter 
Mand Liers, C. Mint: Oxidoreductases 
on their way to industrial 
biotransformations. Biotechnology 
advances. 2017;35(6);815-831. 
DOI: https://doi.org/10.1016/j.
biotechadv.2017.06.003

[2] Younus H. Oxidoreductases: 
Overview and Practical Applications. 
Biocatalysis: Springer, Cham; 
2019. 39 p. DOI: https://doi.
org/10.1007/978-3-030-25023-2_3

[3] Singh RS, Singh T, Singh AK. 
Enzymes as Diagnostic Tools. Advances 
in Enzyme Technology: Elsevier; 2019. 
225p. DOI: https://doi.org/10.1016/
B978-0-444-64114-4.00009-1

[4] Wang J, Yuan W, Chen Z, 
Wu S, Chen J, Ge J, Hou F, Chen Z. Mint: 
Overexpression of G6PD is associated 
with poor clinical outcome in gastric 
cancer. Tumor Biology. 2012;33; 
95-101. DOI: https://doi.org/10.1007/
s13277-011-0251-9

[5] Chan FKM, Moriwaki K, 
De-Rosa MJ. Detection of necrosis 
by release of lactate dehydrogenase 
activity. In: Snow A, Lenardo M. 
(Eds.), Immune Homeostasis Methods 
and Protocols. Springer Science 
+Bushiness Media, New York, 2013, 
vol. 979. p. 65-70. DOI: https://doi.
org/10.1007/978-1-62703-290-2_7

[6] Szabo Z, Hamalainen J, 
Loikkanen I, Moilanen AM, Hirvikoski P, 
Vaisanen T, Paavonen TK, Vaarala MH. 
Mint: Sorbitol dehydrogenase expression 
is regulated by androgens in the 
human prostate. Oncology Reports. 
2010;23;1233-1239. DOI: https://doi.
org/10.3892/or_00000755

[7] Uzozie A, Nanni P, Staiano T, 
Grossmann J, Barkow-Oesterreicher S, 

Shay JW, Tiwari A, Buffoli F, Laczko E, 
Marra G. Mint: Sorbitol dehydrogenase 
over expression and other aspects 
of dysregulate dprotein expression 
in human precancerous colorectal 
neoplasms: a quantitative proteomics 
study. Molecular & Cellular Proteomics. 
2014;13;1198-1218. DOI: https://doi.
org/10.1074/mcp.M113.035105

[8] Radenkovic S, Milosevic Z, 
Konjevic G, Karadzic K, Rovcanin B, 
Buta M, Gopcevic K, Jurisic V. Mint: 
Lactate dehydrogenase, catalase 
and superoxide dismutase in tumor 
tissue of breast cancer patients in 
respect to mammographic findings. 
Cell Biochemistry and Biophysics. 
2013;66;287-295. DOI: https://doi.
org/10.1007/s12013-012-9482-7

[9] Koukourakis MI, 
Giatromanolaki A, Sivridis E, 
Gatter KC, Trarbach T, Folprecht G, 
Shi MM, Lebwohl D, Jalava T, Laurent D, 
Meinhardt G. Mint: Prognostic and 
predictive role of lactate dehydrogenase 
5 expression in colorectal cancer 
patients treated with PTK787/ZK 
222584 (vatalanib) antiangiogenic 
therapy. Clinical Cancer Research. 
2011;17;4892-4900. DOI: 10.1158/1078-
0432.CCR-10-2918

[10] Hermes A, Gatzemeier U, 
Waschki B, Reck M. Mint: Lactate 
dehydrogenase as prognostic factor 
in limited and extensive disease stage 
small cell lung cancer - a retrospective 
single institution analysis. Respiratory 
Medicine. 2010;104;1937-1942. 
DOI: https://doi.org/10.1016/j.
rmed.2010.07.013

[11] Hsieh AH, Tahkar H, Koczwara B,  
Kichenadasse G, Beckmann K, 
Karapetis C, Sukumaran S. Mint: Pre-
treatment serum lactate dehydrogenase 
as a biomarker in small cell lung 
cancer. Asia-Pacific Journal of Clinical 
Oncology. 2018;14(2);e64-70. DOI: 
https://doi.org/10.1111/ajco.12674

References

25

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

[12] Zheng X, Wang K, Xu L, Ye P, Cai S, 
Lu H, Bao C, Kong J. Mint: The effect of 
serum lactate dehydrogenase levels on 
lung cancer prognosis: ameta-analysis. 
International Journal of Clinical and 
Experimental Medicine. 2017;10;14179-
14186. DOI: https://www.researchgate.
net/publication/321028729

[13] Brown JE, Cook RJ, Lipton A,  
Coleman RE. Mint: Serum lactate 
dehydrogenase is prognostic for survival 
in patients with bone metastases from 
breast cancer: a retrospective analysis 
in bisphosphonate-treated patients. 
Clinical Cancer Research. 2012;18;6348-
6355. DOI: 10.1158/1078-0432.
CCR-12-1397

[14] Nandita A, Basavaraju SM,  
Pachipulusu B. Mint: Lactate 
dehydrogenase as a tumor marker in oral 
cancer and oral potentially malignant 
disorders: a biochemical study 
International Journal of Preventive & 
Clinical Dental Research. 2017;4;1-5. 
DOI: 10.5005/jp-journals-10052-0108

[15] Halabi S, Small EJ, Kantoff PW,  
Kattan MW, Kaplan EB, Dawson NA,  
Levine EG, Blumenstein BA, 
Vogelzang NJ. Mint: Prognostic model 
for predicting survival in men with 
hormone-refractory metastatic prostate 
cancer. Journal of Clinical Oncology. 
2003;21;1232-1237. DOI: 10.1200/
JCO.2003.06.100

[16] Gerlinger M, Wilson P, Powles T, 
Shamash J. Mint: Elevated LDH predicts 
poor outcome of recurrent germ 
cell tumours treated with dose 
dense chemotherapy. European 
Journal of Cancer. 2010;46;2913-
2918. DOI: https://doi.org/10.1016/j.
ejca.2010.07.004

[17] Rong Y, Wu W, Ni X, Kuang T, 
Jin D, Wang D, Lou W. Mint: Lactate 
dehydrogenase A is over expressed 
in pancreatic cancer and promotes 
the growth of pancreatic cancer cells. 
Tumor Biology. 2013;34;1523-1530. 

DOI: https://doi.org/10.1007/
s13277-013-0679-1

[18] Walaa-Fikry ME. Mint: Lactate 
dehydrogenase (LDH) as prognostic 
marker in acute leukemia “Quantitative 
Method”. Journal of Blood Disorders 
Transfusion. 2017;8;1-9. DOI: 
10.4172/2155-9864.1000375

[19] Kato GJ, Nouraie SM, Gladwin MT. 
Mint: Lactate dehydrogenase and 
hemolysis in sickle cell disease, Blood. 
2013;122;1091-1092. DOI: https://doi.
org/10.1182/blood-2013-05-505016

[20] Turner APF, Karube I, 
Wilson GS. Biosensors: Fundamentals 
and Applications. 1st ed. Oxford 
University Press, Oxford, 1987. DOI: 
https://www.diva-portal.org/smash/get/
diva2:619968/FULLTEXT01.pdf

[21] Rocchitta G, Spanu A, Babudieri S, 
Latte G, Madeddu G, Galleri G, Nuvoli S, 
Bagella P, Demartis MI, Fiore V, Manetti R. 
Mint: Enzyme biosensors for biomedical 
applications: Strategies for safeguarding 
analytical performances in biological 
fluids. Sensors. 2016;16(6);780-801. 
DOI: https://doi.org/10.3390/s16060780

[22] Schmidt HL, Schuhmann W. 
Mint: Reagentless oxidoreductase 
sensors. Biosensors and Bioelectronics, 
1996;11(1-2);127-135. DOI: https://doi.
org/10.1016/0956-5663(96)83720-1

[23] Laurinavicius V, Kurtinaitiene B, 
Liauksminas V, Ramanavicius A, 
Meskys R, Rudomanskis R, Skotheim T, 
Boguslavsky L. Mint: Oxygen insensitive 
glucose biosensor based on PQQ-
dependent glucose dehydrogenase. Anal. 
Lett. 1999;32;299-316. DOI: https://doi.
org/10.1080/00032719908542822

[24] Bollella P, Gorton L, Ludwig R, 
Antiochia R. Mint: A third generation 
glucose biosensor based on cellobiosede- 
hydrogenase immobilized on a glassy 
carbon electrode decorated with 
electrodeposited gold nanoparticles: 



Oxidoreductase

26

characterization and application in 
human saliva. Sensors. 2017;17;1912-
1926. DOI: https://doi.org/10.3390/
s17081912

[25] Clemens AH, Chang PH, Myers RW. 
Mint: Development of an automatic 
system of insulin infusion controlled 
by blood sugar, its system for the 
determination of glucose and control 
algorithms. Journees annuelles de 
diabetologie de l’Hotel-Dieu. 1976; 269-
278. DOI: https://pubmed.ncbi.nlm.nih.
gov/1011418/

[26] Yao H, Li N, Xu JZ, Zhu JJ. 
Mint: A glucose biosensor based on 
immobilization of glucose oxidase 
in chitosan network matrix. Chinese 
Journal Chemistry. 2005;23;275-
279. DOI: https://doi.org/10.1002/
cjoc.200590275

[27] Chu X, Wu B, Xiao C, Zhang X, 
Chen J. Mint: A new amperometric 
glucose biosensor based on platinum 
nanoparticles/polymerized ionic liquid-
carbon nanotubes nanocomposites. 
Electrochimica Acta. 2010;55;2848-
2852. DOI: https://doi.org/10.1016/j.
electacta.2009.12.057

[28] Periasamy AP, Chang YJ, Chen SM. 
Mint: Amperometric glucose sensor 
based on glucose oxidase immobilized 
on gelatin-multiwalled carbon nanotube 
modified glassy carbon electrode. 
Bioelectrochemistry. 2011;80;114-
120. DOI: https://doi.org/10.1016/j.
bioelechem.2010.06.009

[29] Qiu C, Wang X, Liu X, Hou S, 
Ma H. Mint: Direct electrochemistry 
of glucoseoxidase immobilized on 
nano structured gold thin films and 
its application to bioelectrochemical 
glucose sensor. Electrochimica Acta. 
2012;67;140-146. DOI: https://doi.
org/10.1016/j.electacta.2012.02.011

[30] Yadav S, Devi R, Kumari S, Yadav S, 
Pundir CS. Mint: An amperometric 
oxalate biosensor based on sorghum 

oxalate oxidase bound carboxylated 
multiwalled carbon nanotubes-
polyaniline composite film. Journal 
of Biotechnology. 2011;151;212-217. 
DOI: https://doi.org/10.1016/j.
jbiotec.2010.12.008

[31] Nandini S, Nalini S, Reddy MM, 
Suresh GS, Melo JS, Niranjana P, 
Sanetuntikul J, Shanmugam S. Mint: 
Synthesis of one-dimensional gold 
nanostructures and the electrochemical 
application of the nanohybrid 
containing functionalized graphene 
oxide for cholesterol biosensing. 
Bioelectrochemistry. 2016;110;79-
90. DOI: https://doi.org/10.1016/j.
bioelechem.2016.03.006

[32] Pakapongpan S, Tuantranont A, 
Sritongkham P. Mint: Cholesterol 
biosensor based on direct electron 
transfer of cholesterol oxidase on 
multi-wall carbon nanotubes. IEEE. 
2011;2011;138-141. DOI: 10.1109/
BMEiCon.2012.6172037

[33] Pundir CS, Narang J, Chauhan N,  
Sharma P, Sharma R. Mint: An 
amperometric cholesterol biosensor 
based on epoxy resin membrane bound 
cholesterol oxidase. Indian Journal of 
Medical Research. 2012;136;633-640. 
DOI: https://pubmed.ncbi.nlm.nih.
gov/23168704/

[34] Sekretaryova AN, Beni V, 
Eriksson M, Karyakin AA, Turner AP, 
Vagin MY. Mint: Cholesterol self-
powered biosensor. Analytical 
Chemistry. 2014;86;9540-9547. DOI: 
https://doi.org/10.1021/ac501699p

[35] Lupu A, Valsesia A, Bretagnol F, 
Colpo P, Rossi F. Mint: Development 
of a potentiometric biosensor based 
on nanostructured surface for lactate 
determination. Sensors Actuators 
B: Chemical. 2007;127;606-612. 
DOI: https://doi.org/10.1016/j.
snb.2007.05.020

[36] Ibupoto ZH, Shah SMUA, Khun K, 
Willander M. Mint: Electrochemical 

27

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

L-lactic acid sensor based on 
immobilized ZnO nanorods with 
lactate oxidase. Sensors. 2012;12;2456-
2466. DOI: https://doi.org/10.3390/
s120302456

[37] Haghighi B, Bozorgzadeh S. Mint: 
Fabrication of a highly sensitive electro 
chemiluminescence lactate biosensor 
using ZnO nanoparticles decorated 
multiwalled carbon nanotubes. Talanta. 
2011;85;2189-2193. DOI: https://doi.
org/10.1016/j.talanta.2011.07.071

[38] Jiang D, Chu Z, Peng J, Jin W. 
Mint: Screen-printed biosensor chips 
with Prussian blue nanocubes for the 
detection of physiological analytes. 
Sensors Actuators B: Chemical. 
2016;228;679-687. DOI: https://doi.
org/10.1016/j.snb.2016.01.076

[39] Romero MR, Garay F, Baruzzi AM. 
Mint: Design and optimization of 
a lactate amperometric biosensor 
based on lactate oxidase cross-linked 
with polymeric matrixes. Sensors 
Actuators B: Chemical. 2008;131;590-
595. DOI: https://doi.org/10.1016/j.
snb.2007.12.044

[40] Briones M, Casero E, Petit- 
Dominguez MD, Ruiz MA, 
Parra-Alfambra AM, Pariente F, 
Lorenzo E, Vazquez L. Mint: Diamond 
nanoparticles based biosensors 
for efficient glucose and lactate 
determination. Biosensors and 
Bioelectronics. 2015;68;521-528. 
DOI: https://doi.org/10.1016/j.
bios.2015.01.044

[41] You C, Huang R, Wei X, Zhu Z, 
Zhang YHP. Mint: Protein engineering 
of oxidoreductases utilizing 
nicotinamide-based coenzymes, with 
applications in synthetic biology. 
Synthetic and Systems Biotechnology, 
2017;2(3);208-218. DOI: https://doi.
org/10.1016/j.synbio.2017.09.002

[42] Schomburg I, Jeske L, Ulbrich M,  
Placzek S, Chang A, Schomburg D.  

Mint: The BRENDA enzyme 
information system–From a database 
to an expert system. Journal of 
Biotechnology. 2017; 261;194-206. 
DOI: https://doi.org/10.1016/j.
jbiotec.2017.04.020

[43] Wichmann R, Vasic-Racki D. 
Cofactor regeneration at the lab scale. In: 
Technology transfer in biotechnology. 
Springer, Berlin, Heidelberg; 2005. p. 
225-260. DOI: https://doi.org/10.1007/
b98911

[44] Wu H, Tian C, Song X, Liu C, 
Yang D, Jiang Z. Mint: Methods for 
the regeneration of nicotinamide 
coenzymes. Green Chemistry. 
2013;15(7);1773-1789. DOI: 10.1039/
C3GC37129H

[45] Weckbecker A, Gröger H,  
Hummel W. Regeneration of 
nicotinamide coenzymes: principles 
and applications for the synthesis 
of chiral compounds. In Biosystems 
Engineering I. Springer, Berlin, 
Heidelberg; 2010. p. 195-242. DOI: 
https://doi.org/10.1007/10_2009_55

[46] Tishkov VI, Popov VO. Mint: 
Protein engineering of formate 
dehydrogenase. Biomolecular 
Engineering. 2006;23;89-110. 
DOI: https://doi.org/10.1016/j.
bioeng.2006.02.003

[47] Hoelsch K, Sührer I, Heusel M, 
Weuster-Botz D. Mint: Engineering of 
formate dehydrogenase: Synergistic 
effect of mutations affecting 
cofactor specificity and chemical 
stability. Applied Microbiology and 
Biotechnology. 2013;97;2473-2481. DOI: 
10.1007/s00253-012-4142-9

[48] Johannes TW, Woodyer RD, 
Zhao H. Mint: Efficient regeneration 
of NADPH using an engineered 
phosphite dehydrogenase. 
Biotechnology and Bioengineering. 
2007;96;18-26. DOI: https://doi.
org/10.1002/bit.21168



Oxidoreductase

26

characterization and application in 
human saliva. Sensors. 2017;17;1912-
1926. DOI: https://doi.org/10.3390/
s17081912

[25] Clemens AH, Chang PH, Myers RW. 
Mint: Development of an automatic 
system of insulin infusion controlled 
by blood sugar, its system for the 
determination of glucose and control 
algorithms. Journees annuelles de 
diabetologie de l’Hotel-Dieu. 1976; 269-
278. DOI: https://pubmed.ncbi.nlm.nih.
gov/1011418/

[26] Yao H, Li N, Xu JZ, Zhu JJ. 
Mint: A glucose biosensor based on 
immobilization of glucose oxidase 
in chitosan network matrix. Chinese 
Journal Chemistry. 2005;23;275-
279. DOI: https://doi.org/10.1002/
cjoc.200590275

[27] Chu X, Wu B, Xiao C, Zhang X, 
Chen J. Mint: A new amperometric 
glucose biosensor based on platinum 
nanoparticles/polymerized ionic liquid-
carbon nanotubes nanocomposites. 
Electrochimica Acta. 2010;55;2848-
2852. DOI: https://doi.org/10.1016/j.
electacta.2009.12.057

[28] Periasamy AP, Chang YJ, Chen SM. 
Mint: Amperometric glucose sensor 
based on glucose oxidase immobilized 
on gelatin-multiwalled carbon nanotube 
modified glassy carbon electrode. 
Bioelectrochemistry. 2011;80;114-
120. DOI: https://doi.org/10.1016/j.
bioelechem.2010.06.009

[29] Qiu C, Wang X, Liu X, Hou S, 
Ma H. Mint: Direct electrochemistry 
of glucoseoxidase immobilized on 
nano structured gold thin films and 
its application to bioelectrochemical 
glucose sensor. Electrochimica Acta. 
2012;67;140-146. DOI: https://doi.
org/10.1016/j.electacta.2012.02.011

[30] Yadav S, Devi R, Kumari S, Yadav S, 
Pundir CS. Mint: An amperometric 
oxalate biosensor based on sorghum 

oxalate oxidase bound carboxylated 
multiwalled carbon nanotubes-
polyaniline composite film. Journal 
of Biotechnology. 2011;151;212-217. 
DOI: https://doi.org/10.1016/j.
jbiotec.2010.12.008

[31] Nandini S, Nalini S, Reddy MM, 
Suresh GS, Melo JS, Niranjana P, 
Sanetuntikul J, Shanmugam S. Mint: 
Synthesis of one-dimensional gold 
nanostructures and the electrochemical 
application of the nanohybrid 
containing functionalized graphene 
oxide for cholesterol biosensing. 
Bioelectrochemistry. 2016;110;79-
90. DOI: https://doi.org/10.1016/j.
bioelechem.2016.03.006

[32] Pakapongpan S, Tuantranont A, 
Sritongkham P. Mint: Cholesterol 
biosensor based on direct electron 
transfer of cholesterol oxidase on 
multi-wall carbon nanotubes. IEEE. 
2011;2011;138-141. DOI: 10.1109/
BMEiCon.2012.6172037

[33] Pundir CS, Narang J, Chauhan N,  
Sharma P, Sharma R. Mint: An 
amperometric cholesterol biosensor 
based on epoxy resin membrane bound 
cholesterol oxidase. Indian Journal of 
Medical Research. 2012;136;633-640. 
DOI: https://pubmed.ncbi.nlm.nih.
gov/23168704/

[34] Sekretaryova AN, Beni V, 
Eriksson M, Karyakin AA, Turner AP, 
Vagin MY. Mint: Cholesterol self-
powered biosensor. Analytical 
Chemistry. 2014;86;9540-9547. DOI: 
https://doi.org/10.1021/ac501699p

[35] Lupu A, Valsesia A, Bretagnol F, 
Colpo P, Rossi F. Mint: Development 
of a potentiometric biosensor based 
on nanostructured surface for lactate 
determination. Sensors Actuators 
B: Chemical. 2007;127;606-612. 
DOI: https://doi.org/10.1016/j.
snb.2007.05.020

[36] Ibupoto ZH, Shah SMUA, Khun K, 
Willander M. Mint: Electrochemical 

27

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

L-lactic acid sensor based on 
immobilized ZnO nanorods with 
lactate oxidase. Sensors. 2012;12;2456-
2466. DOI: https://doi.org/10.3390/
s120302456

[37] Haghighi B, Bozorgzadeh S. Mint: 
Fabrication of a highly sensitive electro 
chemiluminescence lactate biosensor 
using ZnO nanoparticles decorated 
multiwalled carbon nanotubes. Talanta. 
2011;85;2189-2193. DOI: https://doi.
org/10.1016/j.talanta.2011.07.071

[38] Jiang D, Chu Z, Peng J, Jin W. 
Mint: Screen-printed biosensor chips 
with Prussian blue nanocubes for the 
detection of physiological analytes. 
Sensors Actuators B: Chemical. 
2016;228;679-687. DOI: https://doi.
org/10.1016/j.snb.2016.01.076

[39] Romero MR, Garay F, Baruzzi AM. 
Mint: Design and optimization of 
a lactate amperometric biosensor 
based on lactate oxidase cross-linked 
with polymeric matrixes. Sensors 
Actuators B: Chemical. 2008;131;590-
595. DOI: https://doi.org/10.1016/j.
snb.2007.12.044

[40] Briones M, Casero E, Petit- 
Dominguez MD, Ruiz MA, 
Parra-Alfambra AM, Pariente F, 
Lorenzo E, Vazquez L. Mint: Diamond 
nanoparticles based biosensors 
for efficient glucose and lactate 
determination. Biosensors and 
Bioelectronics. 2015;68;521-528. 
DOI: https://doi.org/10.1016/j.
bios.2015.01.044

[41] You C, Huang R, Wei X, Zhu Z, 
Zhang YHP. Mint: Protein engineering 
of oxidoreductases utilizing 
nicotinamide-based coenzymes, with 
applications in synthetic biology. 
Synthetic and Systems Biotechnology, 
2017;2(3);208-218. DOI: https://doi.
org/10.1016/j.synbio.2017.09.002

[42] Schomburg I, Jeske L, Ulbrich M,  
Placzek S, Chang A, Schomburg D.  

Mint: The BRENDA enzyme 
information system–From a database 
to an expert system. Journal of 
Biotechnology. 2017; 261;194-206. 
DOI: https://doi.org/10.1016/j.
jbiotec.2017.04.020

[43] Wichmann R, Vasic-Racki D. 
Cofactor regeneration at the lab scale. In: 
Technology transfer in biotechnology. 
Springer, Berlin, Heidelberg; 2005. p. 
225-260. DOI: https://doi.org/10.1007/
b98911

[44] Wu H, Tian C, Song X, Liu C, 
Yang D, Jiang Z. Mint: Methods for 
the regeneration of nicotinamide 
coenzymes. Green Chemistry. 
2013;15(7);1773-1789. DOI: 10.1039/
C3GC37129H

[45] Weckbecker A, Gröger H,  
Hummel W. Regeneration of 
nicotinamide coenzymes: principles 
and applications for the synthesis 
of chiral compounds. In Biosystems 
Engineering I. Springer, Berlin, 
Heidelberg; 2010. p. 195-242. DOI: 
https://doi.org/10.1007/10_2009_55

[46] Tishkov VI, Popov VO. Mint: 
Protein engineering of formate 
dehydrogenase. Biomolecular 
Engineering. 2006;23;89-110. 
DOI: https://doi.org/10.1016/j.
bioeng.2006.02.003

[47] Hoelsch K, Sührer I, Heusel M, 
Weuster-Botz D. Mint: Engineering of 
formate dehydrogenase: Synergistic 
effect of mutations affecting 
cofactor specificity and chemical 
stability. Applied Microbiology and 
Biotechnology. 2013;97;2473-2481. DOI: 
10.1007/s00253-012-4142-9

[48] Johannes TW, Woodyer RD, 
Zhao H. Mint: Efficient regeneration 
of NADPH using an engineered 
phosphite dehydrogenase. 
Biotechnology and Bioengineering. 
2007;96;18-26. DOI: https://doi.
org/10.1002/bit.21168



Oxidoreductase

28

[49] Woodyer R, Van der Donk WA,  
Zhao H. Mint: Relaxing the 
nicotinamide cofactor specificity of 
phosphite dehydrogenase by rational 
design. Biochemistry. 2003;42;11604-
11614. DOI: https://doi.org/10.1021/
bi035018b

[50] Wong C-H, Drueckhammer DG, 
Sweers HM. Mint: Enzymatic vs. 
fermentative synthesis: Thermostable 
glucose dehydrogenase catalyzed 
regeneration of NAD(P)H for use 
in enzymatic synthesis. Journal of 
the American Chemical Society. 
1985;107;4028-4031. DOI: https://doi.
org/10.1021/ja00299a044

[51] Kaswurm V, Hecke WV, Kulbe KD, 
Ludwig R. Mint: Guidelines for the 
application of NAD(P)H regenerating 
glucose dehydrogenase in synthetic 
processes. Advanced Synthesis and 
Catalysis. 2013;355;1709-1714. DOI: 
https://doi.org/10.1002/adsc.201200959

[52] Johannes TW, Woodyer RD, 
Zhao H. Mint: Efficient regeneration of 
NADPH using an engineered phosphite 
dehydrogenase. Biotechnology and 
Bioengineering. 2007;96(1);18-26. DOI: 
https://doi.org/10.1002/bit.21168

[53] Petschacher B, Staunig N, 
Müller M, Schürmann M, Mink D, De 
Wildeman S, Gruber K, Glieder A. 
Mint: Cofactor specificity engineering 
of Streptococcus mutans NADH 
oxidase 2 for NAD(P)+ regeneration in 
biocatalytic oxidations. Computational 
and Structural Biotechnology Journal. 
2014;9(14);e201402005. DOI: https://
doi.org/10.5936/csbj.201402005

[54] Hollmann F, Arends IW, Buehler K, 
Schallmey A, Bühler B. Mint: Enzyme-
mediated oxidations for the chemist. 
Green Chemistry. 2011;13(2);226-265. 
DOI: 10.1039/C0GC00595A

[55] Monti D, Ottolina G, Carrea G, 
Riva S. Mint: Redox reactions catalyzed 
by isolated enzymes. Chemical reviews, 

2011;111(7);4111-4140. DOI: 10.1021/
cr100334x

[56] Romano D, Villa R, Molinari F. 
Mint: Preparative biotransformations: 
oxidation of alcohols. ChemCatChem. 
2012;4(6);739-749. DOI: https://doi.
org/10.1002/cctc.201200042

[57] Uyama H. Synthesis of 
Poly(aromatic)s I: Oxidoreductase 
as Catalyst. In Enzymatic 
Polymerization towards Green Polymer 
Chemistry. Springer, Singapore. 
2019. p. 267-305. DOI: https://doi.
org/10.1007/978-981-13-3813-7_9

[58] Kobayashi S. Mint: Enzymatic 
polymerization: a new method of 
polymer synthesis. Journal of Polymer 
Science Part A: Polymer Chemistry. 
1999; 37(16);3041-3056. DOI: 
https://doi.org/10.1002/(SICI)1099-
0518(19990815)37:16<3041::AID-
POLA1>3.0.CO;2-V

[59] Ćirić-Marjanović G, Milojević- 
Rakić M, Janošević-Ležaić A, 
Luginbühl S, Walde P. Mint: Enzymatic 
oligomerization and polymerization 
of arylamines: state of the art and 
perspectives. Chemical Papers. 
2017;71(2);199-242. DOI: 10.1007/
s11696-016-0094-3

[60] de Gonzalo G, A Orden, A, 
R Bisogno F. Mint: New trends in 
organic synthesis with oxidative 
enzymes. Current Organic Chemistry. 
2012;16(21);2598-2612. DOI: https://doi.
org/10.2174/138527212804004599

[61] Kroutil W, Mang H, Edegger K, 
Faber K. Mint: Biocatalytic oxidation 
of primary and secondary alcohols. 
Advanced Synthesis & Catalysis. 
2004;346(2-3);125-142. DOI: https://
doi.org/10.1002/adsc.200303177

[62] Turner NJ. Mint: Enantioselective 
oxidation of C–O and C–N bonds 
using oxidases. Chemical Reviews. 

29

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

2011;111(7);4073-4087. DOI: https://doi.
org/10.1021/cr200111v

[63] Dong J, Fernández-Fueyo E, 
Hollmann F, Paul CE, Pesic M, 
Schmidt S, Wang Y, Younes S, Zhang W. 
Mint: Biocatalytic oxidation reactions: 
A chemist’s perspective. Angewandte 
Chemie International Edition. 2018; 
57(30);9238-9261. DOI: https://doi.
org/10.1002/anie.201800343

[64] Mifsud M, Gargiulo S, Iborra S, 
Arends IW, Hollmann F, Corma A. 
Mint: Photobiocatalytic chemistry 
of oxidoreductases using water 
as the electron donor. Nature 
Communications. 2014; 5(1);1-6. DOI: 
10.1038/ncomms4145

[65] Paul PEV, Sangeetha V, Deepika RG. 
Emerging trends in the industrial 
production of chemical products 
by microorganisms. In: Recent 
developments in applied microbiology 
and biochemistry. Academic Press. 2019. 
p. 107-125. DOI: https://doi.org/10.1016/
B978-0-12-816328-3.00009-X

[66] Wolberg M, Hummel W, 
Müller M. Mint: Biocatalytic reduction 
of β, δ-diketo esters: A highly 
stereoselective approach to all four 
stereoisomers of a chlorinated β, 
δ-dihydroxy hexanoate. Chemistry–A 
European Journal. 2001;5;7(21);4562-71. 
DOI: https://doi.org/10.1002/1521-
3765(20011105)7:21<4562::AID-
CHEM4562>3.0.CO;2-4

[67] Xu F. in The Encyclopedia 
of Bioprocessing Technology: 
Fermentation, Biocatalysis,and 
Bioseparation, eds. Flickinger MC, and 
Drew SW. 1545-1554 (John Wiley & 
Sons,New York, 1999).

[68] Ose T, Watanabe K, Mie T,  
Honma M, Watanabe H, Yao M, 
Oikawa H, Tanaka I. Mint: Insight into 
a natural Diels–Alder reaction from the 
structure of macrophomate synthase. 
Nature. 2003;422(6928);185-9. DOI: 
10.1038/nature01454

[69] Xu F. Mint: Applications of 
oxidoreductases: recent progress. 
Industrial Biotechnology. 2005; 
1;1(1);38-50. DOI: https://doi.
org/10.1089/ind.2005.1.38

[70] Danielsen S, Christensen BE. PCT 
patent WO2003047351-A(2003).

[71] Miller DR, Tizard IR, 
Keeton JT, Prochaska JF. PCT patent 
WO200135882-A(2001).

[72] Ensley BD, inventor; Matrix Design, 
assignee. Wound healing compositions 
and methods using tropoelastin and 
lysyl oxidase. United States patent 
US 6,808,707. 2004 Oct 26. US patent 
US6808707-B2(2004).

[73] Perrier E, Cenizo V, Bouez C,  
Sommer P, Damour O, Gleyzal C, 
Andre V, Reymermier C, inventors; 
Centre National de la Recherche 
Scientifique CNRS, Coletica, assignee. 
Stimulation of the synthesis of 
the activity of an isoform of lysyl 
oxidase-like LOXL for stimulating 
the formation of elastic fibres. 
United States patent application US 
10/852,065. 2004 Dec 16. US patent 
US2004253220-A1(2004).

[74] Szynol A, De Soet JJ, Sieben-
van Tuyl E, Bos JW, Frenken LG. 
Mint: Bactericidal effects of a fusion 
protein of llama heavy-chain 
antibodies coupled to glucose oxidase 
on oral bacteria. Antimicrobial 
Agents and Chemotherapy. 
2004;;48(9):3390-3395.

[75] Novozymes AS. Danish patent 
DK200100630-A (2001).

[76] Wang HX, Ng TB. Mint: 
Purification of a novel low-molecular-
mass laccase with HIV-1 reverse 
transcriptase inhibitory activity from 
the mushroom Tricholoma giganteum. 
Biochemical and Biophysical Research 
Communications. 2004;315(2);450-4. 
DOI: 10.1016/j.bbrc.2004.01.064



Oxidoreductase

28

[49] Woodyer R, Van der Donk WA,  
Zhao H. Mint: Relaxing the 
nicotinamide cofactor specificity of 
phosphite dehydrogenase by rational 
design. Biochemistry. 2003;42;11604-
11614. DOI: https://doi.org/10.1021/
bi035018b

[50] Wong C-H, Drueckhammer DG, 
Sweers HM. Mint: Enzymatic vs. 
fermentative synthesis: Thermostable 
glucose dehydrogenase catalyzed 
regeneration of NAD(P)H for use 
in enzymatic synthesis. Journal of 
the American Chemical Society. 
1985;107;4028-4031. DOI: https://doi.
org/10.1021/ja00299a044

[51] Kaswurm V, Hecke WV, Kulbe KD, 
Ludwig R. Mint: Guidelines for the 
application of NAD(P)H regenerating 
glucose dehydrogenase in synthetic 
processes. Advanced Synthesis and 
Catalysis. 2013;355;1709-1714. DOI: 
https://doi.org/10.1002/adsc.201200959

[52] Johannes TW, Woodyer RD, 
Zhao H. Mint: Efficient regeneration of 
NADPH using an engineered phosphite 
dehydrogenase. Biotechnology and 
Bioengineering. 2007;96(1);18-26. DOI: 
https://doi.org/10.1002/bit.21168

[53] Petschacher B, Staunig N, 
Müller M, Schürmann M, Mink D, De 
Wildeman S, Gruber K, Glieder A. 
Mint: Cofactor specificity engineering 
of Streptococcus mutans NADH 
oxidase 2 for NAD(P)+ regeneration in 
biocatalytic oxidations. Computational 
and Structural Biotechnology Journal. 
2014;9(14);e201402005. DOI: https://
doi.org/10.5936/csbj.201402005

[54] Hollmann F, Arends IW, Buehler K, 
Schallmey A, Bühler B. Mint: Enzyme-
mediated oxidations for the chemist. 
Green Chemistry. 2011;13(2);226-265. 
DOI: 10.1039/C0GC00595A

[55] Monti D, Ottolina G, Carrea G, 
Riva S. Mint: Redox reactions catalyzed 
by isolated enzymes. Chemical reviews, 

2011;111(7);4111-4140. DOI: 10.1021/
cr100334x

[56] Romano D, Villa R, Molinari F. 
Mint: Preparative biotransformations: 
oxidation of alcohols. ChemCatChem. 
2012;4(6);739-749. DOI: https://doi.
org/10.1002/cctc.201200042

[57] Uyama H. Synthesis of 
Poly(aromatic)s I: Oxidoreductase 
as Catalyst. In Enzymatic 
Polymerization towards Green Polymer 
Chemistry. Springer, Singapore. 
2019. p. 267-305. DOI: https://doi.
org/10.1007/978-981-13-3813-7_9

[58] Kobayashi S. Mint: Enzymatic 
polymerization: a new method of 
polymer synthesis. Journal of Polymer 
Science Part A: Polymer Chemistry. 
1999; 37(16);3041-3056. DOI: 
https://doi.org/10.1002/(SICI)1099-
0518(19990815)37:16<3041::AID-
POLA1>3.0.CO;2-V

[59] Ćirić-Marjanović G, Milojević- 
Rakić M, Janošević-Ležaić A, 
Luginbühl S, Walde P. Mint: Enzymatic 
oligomerization and polymerization 
of arylamines: state of the art and 
perspectives. Chemical Papers. 
2017;71(2);199-242. DOI: 10.1007/
s11696-016-0094-3

[60] de Gonzalo G, A Orden, A, 
R Bisogno F. Mint: New trends in 
organic synthesis with oxidative 
enzymes. Current Organic Chemistry. 
2012;16(21);2598-2612. DOI: https://doi.
org/10.2174/138527212804004599

[61] Kroutil W, Mang H, Edegger K, 
Faber K. Mint: Biocatalytic oxidation 
of primary and secondary alcohols. 
Advanced Synthesis & Catalysis. 
2004;346(2-3);125-142. DOI: https://
doi.org/10.1002/adsc.200303177

[62] Turner NJ. Mint: Enantioselective 
oxidation of C–O and C–N bonds 
using oxidases. Chemical Reviews. 

29

Applications of Oxidoreductases
DOI: http://dx.doi.org/10.5772/intechopen.94409

2011;111(7);4073-4087. DOI: https://doi.
org/10.1021/cr200111v

[63] Dong J, Fernández-Fueyo E, 
Hollmann F, Paul CE, Pesic M, 
Schmidt S, Wang Y, Younes S, Zhang W. 
Mint: Biocatalytic oxidation reactions: 
A chemist’s perspective. Angewandte 
Chemie International Edition. 2018; 
57(30);9238-9261. DOI: https://doi.
org/10.1002/anie.201800343

[64] Mifsud M, Gargiulo S, Iborra S, 
Arends IW, Hollmann F, Corma A. 
Mint: Photobiocatalytic chemistry 
of oxidoreductases using water 
as the electron donor. Nature 
Communications. 2014; 5(1);1-6. DOI: 
10.1038/ncomms4145

[65] Paul PEV, Sangeetha V, Deepika RG. 
Emerging trends in the industrial 
production of chemical products 
by microorganisms. In: Recent 
developments in applied microbiology 
and biochemistry. Academic Press. 2019. 
p. 107-125. DOI: https://doi.org/10.1016/
B978-0-12-816328-3.00009-X

[66] Wolberg M, Hummel W, 
Müller M. Mint: Biocatalytic reduction 
of β, δ-diketo esters: A highly 
stereoselective approach to all four 
stereoisomers of a chlorinated β, 
δ-dihydroxy hexanoate. Chemistry–A 
European Journal. 2001;5;7(21);4562-71. 
DOI: https://doi.org/10.1002/1521-
3765(20011105)7:21<4562::AID-
CHEM4562>3.0.CO;2-4

[67] Xu F. in The Encyclopedia 
of Bioprocessing Technology: 
Fermentation, Biocatalysis,and 
Bioseparation, eds. Flickinger MC, and 
Drew SW. 1545-1554 (John Wiley & 
Sons,New York, 1999).

[68] Ose T, Watanabe K, Mie T,  
Honma M, Watanabe H, Yao M, 
Oikawa H, Tanaka I. Mint: Insight into 
a natural Diels–Alder reaction from the 
structure of macrophomate synthase. 
Nature. 2003;422(6928);185-9. DOI: 
10.1038/nature01454

[69] Xu F. Mint: Applications of 
oxidoreductases: recent progress. 
Industrial Biotechnology. 2005; 
1;1(1);38-50. DOI: https://doi.
org/10.1089/ind.2005.1.38

[70] Danielsen S, Christensen BE. PCT 
patent WO2003047351-A(2003).

[71] Miller DR, Tizard IR, 
Keeton JT, Prochaska JF. PCT patent 
WO200135882-A(2001).

[72] Ensley BD, inventor; Matrix Design, 
assignee. Wound healing compositions 
and methods using tropoelastin and 
lysyl oxidase. United States patent 
US 6,808,707. 2004 Oct 26. US patent 
US6808707-B2(2004).

[73] Perrier E, Cenizo V, Bouez C,  
Sommer P, Damour O, Gleyzal C, 
Andre V, Reymermier C, inventors; 
Centre National de la Recherche 
Scientifique CNRS, Coletica, assignee. 
Stimulation of the synthesis of 
the activity of an isoform of lysyl 
oxidase-like LOXL for stimulating 
the formation of elastic fibres. 
United States patent application US 
10/852,065. 2004 Dec 16. US patent 
US2004253220-A1(2004).

[74] Szynol A, De Soet JJ, Sieben-
van Tuyl E, Bos JW, Frenken LG. 
Mint: Bactericidal effects of a fusion 
protein of llama heavy-chain 
antibodies coupled to glucose oxidase 
on oral bacteria. Antimicrobial 
Agents and Chemotherapy. 
2004;;48(9):3390-3395.

[75] Novozymes AS. Danish patent 
DK200100630-A (2001).

[76] Wang HX, Ng TB. Mint: 
Purification of a novel low-molecular-
mass laccase with HIV-1 reverse 
transcriptase inhibitory activity from 
the mushroom Tricholoma giganteum. 
Biochemical and Biophysical Research 
Communications. 2004;315(2);450-4. 
DOI: 10.1016/j.bbrc.2004.01.064



31

Chapter 3

Role of Subcellular ROS in 
Providing Resilience to Vascular 
Endothelium
Sarah R. Aldosari, Maan A. Awad, Frank W. Sellke  
and Md. Ruhul Abid

Abstract

For decades, elevated levels of reactive oxygen species (ROS) have been associated 
with the pathogenesis of cardiovascular diseases (CVD), including myocardial 
ischemia and infarction (MI). However, several large clinical trials failed to dem-
onstrate beneficial outcomes in response to the global reduction of ROS in patients 
with underlying CVD. Recent studies from our and other labs showed that it is 
rather a critical balance between mitochondrial and cytosolic ROS than total ROS 
levels which determines resilience of coronary endothelial cells (EC). Here, we will 
discuss published and unpublished work that has helped elucidate the molecular 
mechanisms by which subcellular ROS levels, duration and localization modulate 
metabolic pathways, including glycolysis and oxidative phosphorylation, energy 
production and utilization, and dNTP synthesis in EC. These redox-regulated 
processes play critical roles in providing resilience to EC which in turn help protect 
existing coronary vessels and induce coronary angiogenesis to improve post-MI 
recovery of cardiac function.

Keywords: endothelial cell metabolism, angiogenesis, vascular endothelial growth 
factor (VEGF), nitric oxide, reactive oxygen species (ROS), glycolysis, dNTP,  
fatty acid oxidation

1. Introduction

A single layer of endothelial cells (ECs) that covers the vascular lumen and 
plexus exhibits great plasticity to adapt to environmental cues [1, 2]. It is fascinating 
how the vascular system, the largest organ system of the body, connects all organs to 
secure adequate nutrients and blood supply. For that reason, maintaining vascular 
homeostasis is crucial for the health of the cardiovascular system. In a healthy body, 
although the ECs are an intricate, dynamic system, they appear to be in a quiescent 
state [1]. In pathological conditions such as ischemia and infarction, ECs rapidly 
switch phenotype to form new vessels in a process known as sprouting angiogenesis 
[3]. Reactive oxygen species (ROS) are believed to play crucial roles in determining 
the phenotype and fate of EC in both physiological and pathological conditions. 
Recent work has shown that a critical balance between mitochondrial and cyto-
solic ROS levels, but not global ROS levels, modulates endothelial function, EC 
metabolism and angiogenesis, and thus determines resilience of coronary EC [4–8]. 
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In this chapter, we will discuss the molecular mechanisms by which subcellular ROS 
modulate various metabolic pathways, regulate EC function and angiogenesis.

2. Reactive oxygen species in coronary endothelium

Previously, the pathology of cardiovascular diseases (CVD), including myo-
cardial ischemia and infarction (MI), was believed to be associated with increased 
levels of ROS [4–8]. Recent studies show that it is rather a critical balance between 
cytosolic and mitochondrial ROS levels than total ROS levels which determine the 
resilience of coronary ECs in physiological as well as adverse conditions [6, 7, 9, 10].

ROS are produced in higher levels as a response to injuries by the cellular 
enzymes and mitochondria [8, 11]. ROS have been reported to contribute to the 
underlying pathology in almost all organs, and thus the notion that antioxidants 
would ameliorate pathological effects of ROS came into being. However, clinical 
trials failed to show beneficial effects of antioxidants in the treatment of CVD [12]. 
Other studies showed that decreased ROS levels had rather deleterious effects on 
CVD [6, 7]. Also, decreased ROS levels resulted in the inactivation of endothelial 
nitric oxide synthase (eNOS) and reduction in NO (nitric oxide) levels [11, 13]. 
Taken together, global reduction of ROS appeared to reduce endothelial resilience. 
It is crucial to note that ROS have paradoxical effects on ECs, and thus careful study 
of the levels, durations and sources of ROS while studying effects of ROS on EC will 
help advance our understanding of EC resilience during oxidative stress.

2.1 Source of reactive oxygen species in ECs

ROS are produced from different oxidoreductase enzymes and locations includ-
ing NADPH oxidase, mitochondrial, xanthine oxidase, cytochrome P450 monooxy-
genase, and uncoupling of NOS [8, 11, 14]. In the vasculature, ECs rely on glycolytic 
pathways as their source of energy, thus NADPH oxidase enzymes appear to be 
the major source of ROS in both physiological and pathological conditions [14]. 
NADPH enzymes have different isoforms, and the major contributors are NOX1, 
NOX2, NOX4, and NOX5 [15, 16]. Recent studies showed importance of NOX2- and 
NOX4-derived ROS in endothelial survival or dysfunction, depending on their 
subcellular location and duration [8].

2.2 Endothelial NADPH oxidase as a major source of ROS in ECs

NADPH oxidase is an intracellular complex enzyme containing membrane-
bound and cytosolic regulator subunits [14, 17, 18]. This enzyme produces ROS by 
transferring electrons from NAD(P)H to an oxygen molecule and is considered 
the major source of ROS in coronary endothelium. Distinct isoforms of NADPH 
enzymes have been shown to exhibit different physiological and pathological 
responses in vascular homeostasis.

NOX1 enzyme is primarily expressed in the vascular smooth muscle cells 
(VSMC) and it contributes to VSMC proliferation and migration [11, 19–21]. 
In disease conditions, NOX1 contributes to the impairment of endothelium-
dependent vasorelaxation, as well as the augmentation of angiotensin II vasomotor 
response [11, 22, 23]. A study showed that NOX1-deficient mice attenuated the 
levels of ROS, neointimal growth, and migration. These findings suggest that the 
downregulation of NOX1 enzyme can prevent the formation of atherosclerotic 
plaque [15, 24]. Yet, further studies are warranted to explore the exact role of 
NOX1 in endothelial signaling.
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In contrast, NOX2 enzyme has exhibited positive effects on coronary ECs. NOX2 
enzyme stimulates the production of NO by the activation of AMPK-eNOS axis 
through Ca2+−/calmodulin-dependent protein kinase kinase β (CaMKKβ) [6] result-
ing in coronary vasodilation, EC proliferation and migration. Although several 
studies support the beneficial effects of NOX2, they also exert detrimental effects 
on coronary EC depending on the duration of exposure. Short exposure of elevated 
ROS levels was associated with the previously mentioned pathway (i.e. CaMKKβ 
pathway). On the contrary, prolonged exposure of high ROS levels resulted in 
decrease bioavailability of NO, inactivation of mitochondrial antioxidant MnSOD 
[7, 8], and decreased EC proliferation and coronary vasodilatation.

NOX4 enzyme is abundant in human ECs [8] and produces H2O2 molecules 
rather than O2

− [9, 11, 25–28]. NOX4 enzyme stimulates vascular angiogenesis 
through the activation of transforming growth factor β1 (TGF β1), and increases 
hemoglobin content [29]. NOX4-derived ROS cause vasodilation through endothe-
lium hyperpolarization [30–32]. This occurs via the stimulation of endothelium 
Ca2+-activated K+ channel that causes the release of Ca2+ from the endoplasmic 
reticulum [29]. Additionally, NOX4 enzyme activates heme oxygenase-1 (HO-1), 
which confers a vascular protective response via different mechanisms [29]. Thus, 
therapeutic modalities that advocate for antioxidants in CVD needs careful consid-
eration of the source and location of ROS.

Calcium-dependent NADPH oxidase, NOX5, is implicated in angiogenic 
response [33, 34]. It gets its name from its structure because it has an additional 
N-terminal region that binds to calcium [33]. This unique structure allows the 
enzyme activation through increased intracellular calcium. Similar to NOX4, NOX5 
enzyme seems to produce predominantly H2O2 in ECs [24]. H2O2 has been impli-
cated in the development of atherosclerotic plaque plausibly by increasing Ca2+ 
levels to promote eNOS-mediated NO synthesis and increasing nitroxide radicals 
[24]. One mechanism may include increased consumption of NO by ROS. Thus, it 
has been hypothesized that inhibition of NOX5 enzyme may show beneficial results 
by precluding oxidant injury to vascular EC.

NADPH enzyme isoforms have distinct locations and EC phenotypes. They have 
been shown to employ different physiological and pathological responses in vascular 
homeostasis. As discussed above, NOX1, NOX2, NOX4, and NOX5 are found in the 
vascular system and they contribute to endothelial resilience through several mecha-
nisms. The roles of NADPH enzymes in physiological and pathological conditions have 
undergone a considerable evolution in recent years. However, further studies are nec-
essary to deepen our understanding of their roles and contributions to EC resilience.

2.3 Endothelial mitochondrial ROS

Although oxidative phosphorylation in mitochondria play a major role in synthe-
sizing energy in most tissues, EC primarily depends on anaerobic glycolysis for 85% 
of its ATP generation. ECs have fewer mitochondria and consume lower amounts 
of O2 than other cell types, and thus mitochondrial ROS are believed to be a minor 
source of ROS in EC in physiological conditions. However, recent studies demon-
strated that sustained increase in NADPH oxidase-derived cytosolic ROS may affect 
the levels of mitochondrial ROS and thus mitochondrial function in EC [6–8].

3. Metabolic pathways in ECs

EC metabolism plays an important role in facilitating cellular proliferation and 
migration during the process of angiogenesis. Alterations in metabolic pathways 
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are necessary to provide energy supplies in the most efficient way under certain 
circumstances that induces blood vessel sprouting such as hypoxia. In addition, 
these alterations mediate the formation of important molecules that are essential for 
cytoskeletal remodeling during the process. This section highlights some of these 
metabolic pathways and their role in angiogenesis.

3.1 Glycolysis

Glycolysis is a major metabolic pathway that is utilized for energy production 
through the anaerobic oxidation of glucose molecules [35, 36]. It is the major source 
of ATP in ECs. Glycolysis involves consumption of 2 ATP molecules, and the end 
products include 4 ATP, 2 NADH and 2 pyruvate molecules (Figures 1 and 2). 
Subsequently, pyruvate can be shifted to the mitochondria and metabolized into 
acetyl-CoA to be used in the tricarboxylic acid cycle (TCA). The substrates and 
products of this process are as follows:

 
+ ++ + + → + + + +Glucose NAD ADP Pi Pyruvate NADH H ATP H O.22 2 2 2 2 2 2 2

Glycolysis occurs in the cytosol, and the process does not require oxygen 
(anaerobic), therefore it constitutes the primary source of energy in cells that lack 
mitochondria (e.g. red blood cells). In addition, glycolysis is the main source of 
pyruvate, which is converted to acetyl-CoA to be utilized in the TCA cycle in cells 

Figure 1. 
The investment phase of glycolysis and regulation of the rate limiting PFK1 enzyme by fructose-2, 
6-bisphosphate and AMP.
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that use oxidative phosphorylation (aerobic respiration) as a primary source of 
ATP. Also, glycolysis is a more efficient source of energy in periods of hypoxia and 
ischemia when oxygen supply becomes scarce.

3.1.1 Mechanisms of glycolysis

The first step in glycolysis constitutes the investment phase of glycolysis, in 
which 2 ATP molecules are consumed as shown in Figure 1. It involves trapping of 
the glucose molecule inside the cell via phosphorylation into glucose-6-phosphate 
[35, 36]. This reaction is catalyzed by glucokinase in the liver and pancreatic β cells, 
or a hexokinase enzyme in the rest of body cells. It also involves the transfer of a 
phosphate group from an ATP molecule. Next, glucose-6-phosphate is converted 
to fructose-6-phosphate by an isomerase. This is followed by the rate-limiting step 
of glycolysis, which involves the phosphorylation of fructose-6-phosphate into 
fructose-1-6-bisphosphate by phosphofructokinase 1 (PFK1). This step is critical in 
the glycolytic pathway and the PFK1 enzyme is highly regulated by multiple factors 
that determine the direction of the reaction. Fructose-1-6-bisphosphate is subse-
quently converted by an aldolase into dihydroxyacetone phosphate (DHAP) and 
glyceraldehyde-3-phosphate (G3P).

The following reactions constitute what can be referred to as the payoff phase of 
glycolysis. It is also important to remember that at this stage, we have two 3-car-
bon molecules per 1 glucose molecule as shown in Figure 2. G3P is converted to 
1-3-diphosphoglycerate, generating NADH in the process. 1-3-diphosphoglycerate 
then loses a phosphate group to 3-phosphoglycerate via phosphoglycerate kinase, 
which generates an ATP molecule. 3-phosphoglycerate is subsequently converted 

Figure 2. 
The payoff phase of glycolysis.
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in a two-step reaction into phosphoenolpyruvate (PEP). Finally, pyruvate kinase 
converts PEP into pyruvate, generating ATP in the process. Thus, the end product 
of glycolysis includes 4 ATP molecules, but because of the initial consumption of 2 
ATP, the return on investment includes 2 ATP molecules per glucose [35, 36].

3.1.2 Regulation of glycolysis

The availability of glucose regulates the rate of glycolysis and is determined by 
two main mechanisms: glucose uptake from the blood, and breakdown of glycogen 
[35, 37]. In addition, the amount of oxygen can also regulate glycolysis through 
what is called the “Pasteur Effect”, which describes how increased oxygen levels 
inhibit glycolysis, and decreased availability results in acceleration of glycolysis 
[35]. Within the glycolytic pathway, PFK1, which catalyzes the rate limiting step is 
considered the main player in terms of glycolysis regulation, and its activity can be 
affected in a number of ways.

Fructose 2–6 bisphosphate is an allosteric regulator of PFK1, which increases 
the enzyme activity [35, 37]. It is produced by phosphofructokinase 2 (PFK2), 
an enzyme that has both kinase and phosphorylase activity and can transform 
fructose 6 phosphates to fructose 2,6 bisphosphate and vice versa. Insulin dephos-
phorylates PFK2 activating its kinase activity, and increasing fructose 2,6 bispho-
sphate production, which subsequently activates PFK1 (Figure 1). Moreover, 
Glucagon phosphorylates PFK2, activating its phosphatase, which transforms 
fructose 2,6 bisphosphate back to fructose 6 phosphate. This decreases fructose 
2,6 bisphosphate levels and decreases PFK1 activity. Low energy levels within 
the cell which result in increased AMP and low ATP/AMP ratio, induce allosteric 
activation of PFK1.

3.1.3 Glycolysis and EC angiogenesis

The endothelium is one of the most diverse tissues in the human body, which 
displays significant organ-specific heterogeneity. This diversity determines the 
function of the endothelium according to the organ being supplied [38]. Since ECs 
lining blood vessels are responsible for supplying oxygen and nutrient to body tis-
sues, the ability to expand this network of blood vessels via angiogenesis is critical 
for organ growth and function in health and disease [39]. Low oxygen levels serve 
as a primary stimulus for angiogenesis, which in its classic meaning refers to the 
sprouting of branches from the existing vessels.

3.1.3.1 Angiogenesis

ECs are essential for the normal functioning of the vascular system. They drive 
the vascular system expansion during physiologic organ growth to supply suf-
ficient nutrients, as well as under pathologic conditions through a process known 
as angiogenesis (Figure 3). Angiogenesis depends highly on the coordinated 
orchestra of several regulatory steps [1]. Briefly, this process is guided by the 
migratory non-proliferative “tip” cells at the forefront from an existing vessel, 
while the “stalk” cells trail the proliferative and elongation part of the sprout. 
“Tip” and “stalk” cells continuously switch their phenotype between being either 
tip or stalk cells. For example, the “tip” cell becomes a “stalk” cell when it loses its 
migratory behavior, and the “stalk” cell will compete for the position [1]. Several 
studies found that the vascular endothelial growth factor (VEGF) controls the 
“tip” cells induction, filopodia formation, and expression of the Notch ligand 
Delta–like 4 (NLD4) [40, 41]. NLD4, subsequently, suppresses VEGF receptor 2 
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(VEGFR2/kdr/Flk1) and thus modulates the tip cell behavior. While many genetic 
and molecular signaling pathways were recognized to be part of this process, the 
role of ECs metabolism has not been studied and explored until recently.

Switching on the angiogenic machinery of ECs has significant consequences on 
EC metabolism. This is because angiogenic ECs require nutrients and energy not 
only for motility but also for the synthesis of building blocks (proteins, nucleotides, 
and lipids) for cellular proliferation. Hence, during angiogenesis, ECs must increase 
their metabolic activity to generate energy quickly, while at the same time meeting 
the challenge of scarce resources as they proliferate in harsh hypoxic environments. 
Therefore, EC metabolism has to be flexible to support vessel formation under 
different conditions [39, 42].

Upon switching from quiescence state to vessel branching, the rate of gly-
colysis is increased in order to fuel subcellular processes required for migration 
such as cytoskeleton remodeling. Notably, the pro-angiogenic VEGF increases 
expression of the glycolysis activator phosphofructokinase-2/fructose-
2,6-bisphosphatase 3 (PFKFB3) [43]. PFKFB3 generates higher levels of fructose-
2,6-bisphosphate, which activates phosphofructokinase 1, the rate limiting 
enzyme in glycolysis [43, 44]. In fact, studies have shown that genetic and 
pharmacologic inhibition of the phosphofructokinase 2 reduced EC sprouting 
and branching capacity [44, 45]. Another regulator enzyme is the hexokinase-2 
(HK2) which phosphorylate glucose to glucose-6-phosphate [44, 46]. Several 
transcription factors such as KLF2 and forkhead box 1 (FOXO1) were found to 
suppress these key glycolytic enzymes in the quiescent phalanx cells [47, 48]. 
However, the rate of glycolysis increases in the actively sprouting tip and stalk 
cells due to VEGF-mediated activation of PFKFB3 and the decreased levels of 
KLF2 and FOXO1. Interestingly, PFKFB3 and other glycolytic enzymes are highly 
concentrated in filopodia to generate ATP at the so-called ‘ATP hot-spots’. And 
several studies showed that pharmacologic or genetic inhibition PFKFB3 impairs 
new vessel formation [43, 44].

Figure 3. 
Angiogenesis is mainly regulated via VEGF. Tip cells require increasing amounts of ATP necessary for migration 
into hypoxic tissues while proliferating stalk cells generate building blocks (dNTP, protein) to maintain their 
growth and cellular division.
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3.1.3.2 Endothelial cell metabolism

Despite the fact that oxygen is readily available for EC consumption, the glyco-
lytic pathway remains primary source of energy for EC [38, 44, 49]. In fact, 85% 
of EC energy production in the form of ATP is generated through glycolysis, even 
though oxidative phosphorylation (OXPHOS) can generate significantly larger 
amounts of ATP molecules at much faster rate [43, 49, 50]. However, ECs have fewer 
mitochondria and consume lower amounts of O2 than other cell types, especially in 
the presence of abundant supplies of glucose, where only a small fraction of pyru-
vate is shifted to the TCA cycle [39, 43, 50]. Nonetheless, ECs retain their capacity 
for oxidative metabolism when glycolysis is compromised or in conditions of stress. 
Surprisingly, even though the amount of energy generated per glucose molecule 
via oxidative phosphorylation is significantly greater, higher rates of glycolysis can 
provide more ATP in a shorter period of time when glucose supply is unlimited. In 
fact, the rate of glycolysis is high in EC compared to other normal cells, and their 
glucose consumption is comparable with that of some cancer cells [43].

A logical question that can be asked here is, why do ECs depend on glycolysis for 
their energy production when they have direct supply of oxygen from blood? There 
are several explanations for this observation. First, despite the fact that the energy 
yield via glycolysis is significantly low compared to aerobic respiration, glycolysis can 
generate ATP molecules at a much faster rate [39, 49]. This is especially important 
when considering the energy requirements of ECs during angiogenesis. In addition, 
anaerobic glycolysis facilitates ECs sprouting and proliferation in hypoxic tissues and 
makes them resistant to hypoxic insults [39]. Also, it limits ROS generation and pro-
duces larger amounts of lactic acid, which acts as a pro-angiogenic factor [38, 39, 44]. 
Moreover, oxygen can be spared to be utilized by the underlying tissue cells. The 
low oxygen dependence allows sprouting cells to explore and reach distant hypoxic 
tissues [44]. Also, low oxygen consumption by ECs facilitates oxygen delivery to 
vital organs. Furthermore, glycolysis provides essential metabolites that are used in 
multiple cellular pathways such as pentose phosphate pathway (PPP), hexosamine 
biosynthesis pathway (HBP) and 3-phosphoglycerate (G3P) which generate impor-
tant molecules and compounds that are used in different cellular processes [39, 49]. 
Thus, glycolysis provides a metabolic platform that allows ECs to perform diverse 
roles in the growing and resting vasculature with minimal ROS generation.

3.1.3.3 Alternative metabolism of glucose

ECs engage in several other pathways that can potentially affect angiogenesis, 
but their exact roles are understudied. Once phosphorylated by hexokinase (HK), 
glucose-6-phosphate (G6P) can be used to form glycogen, which could serve as an 
endogenous source of glucose when ECs sprout into glucose-deprived milieu. In fact, 
inhibition of glycogen phosphorylase (PYG), was found to impair EC migration [51].

G6P can also enter the pentose phosphate pathway (PPP) to generate NADPH 
[44]. NADPH is essential for restoring the reduced form of glutathione (GSH) from 
its oxidized form (GSSG), which serves as an antioxidant [38, 52]. PPP provides 
two intermediates of glycolysis, fructose-6-phosphate (F6P) and glyceraldehyde-
3-phosphate (G3P). Interestingly, inhibition of G6P dehydrogenase (G6PD) or 
Transketolase (TKT) in the PPP was found to impair EC viability and migration [44].

3.1.3.4 Pathways regulation

ECs react to environmental conditions and energy requirements through several 
mechanisms that involve cellular molecules sensing changes in energy levels. One 

39

Role of Subcellular ROS in Providing Resilience to Vascular Endothelium
DOI: http://dx.doi.org/10.5772/intechopen.93568

of these molecules is the AMP-kinase (AMPK), which gets activated by the rising 
levels of AMP as energy levels dwindle. Activation of AMPK-mediated phosphory-
lation of metabolic targets promotes catabolic pathways and ATP production, 
while inhibiting anabolic pathways that consume ATP [39, 53]. This allows ECs to 
balance their energy level according to environmental changes. For instance, AMPK 
increases energy production via fatty acid oxidation (FAO) in EC mitochondria 
and help maintain ATP levels when glucose supplies are low [39, 54]. In addition, 
AMPK is activated by EC-specific stimuli such as hypoxia and shear stress gener-
ated by blood flow [38]. Interestingly, inhibition of AMPK was found to hinder EC 
 angiogenesis in response to hypoxia [55].

3.2 Oxidative phosphorylation

The mechanism by which ATP is produced in the mitochondria via oxidative 
phosphorylation (OxPhos) was first discovered in the second half of the twen-
tieth century [56, 57]. OxPhos is a process that involves the use of high-energy 
intermediates for energy transduction between the electron transport chain of the 
mitochondria and the chemical synthesis of ATP from ADP and phosphate. OxPhos 
generates 15 times the amount of ATP produced by glycolysis during anaerobic con-
ditions. The reaction involves oxygen consumption, and energy is released from the 
high energy molecules (NADH, FADH2) and stored in the form of an electrochemi-
cal proton gradient across the inner mitochondrial membrane. This energy extrac-
tion occurs in three steps each catalyzed by a specific membrane complex including 
Complex I (NADH dehydrogenase), Complex III (Cytochrome bc1) and Complex 
IV (Cytochrome oxidase/COX). Complex II (Succinate dehydrogenase) converts 
succinate to fumarate, a TCA cycle intermediate, and in the process H+ is produced 
from FADH2, which is then shunted by Complex III across the inner mitochondrial 
membrane. COX is also considered the rate-limiting step of this aerobic respiration. 
Eventually, the electrochemical proton gradient is utilized by Complex V (ATP 
Synthase) to produce ATP, or it can be dissipated in the form of heat by passive 
proton leakage [56, 58, 59].

The electron transport chain is regulated through different mechanisms. 
Allosteric effectors such as ADP and ATP regulate the process by binding to their 
specific binding sites on the different mitochondrial complexes. Regulation of the 
enzyme activity by ATP or ADP binding to the same site on the complex subunit 
depends on the ATP/ADP ratio. For instance, the exchange of bound ADP by ATP 
on COX results in an allosteric ATP synthesis inhibition at an ATP/ADP ratio of 28 
[60]. In addition, phosphorylation and dephosphorylation of the enzyme com-
plexes is considered another mean of regulating the electron transport chain. For 
example, phosphorylation of COX was found to inhibit the enzyme activity [56].

3.3 Fatty acid oxidation contribute to dNTP synthesis

Deoxyribonucleoside Triphosphate (dNTP) is a molecule consisting of a deoxy-
ribose sugar attached to three phosphate groups and one of the nucleotide bases, 
adenine, guanine, cytosine, or thymine as shown in Figure 4 [61]. Apart from DNA 
replication, dNTPs may also function as a source of energy for different cellular 
reactions and signaling pathways [62].

3.3.1 dNTP formation

There are two biosynthetic pathways for nucleotides formation: de novo and 
salvage [62]. The de novo pathways require high energy and the use of raw material 
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while inhibiting anabolic pathways that consume ATP [39, 53]. This allows ECs to 
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ated by blood flow [38]. Interestingly, inhibition of AMPK was found to hinder EC 
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IV (Cytochrome oxidase/COX). Complex II (Succinate dehydrogenase) converts 
succinate to fumarate, a TCA cycle intermediate, and in the process H+ is produced 
from FADH2, which is then shunted by Complex III across the inner mitochondrial 
membrane. COX is also considered the rate-limiting step of this aerobic respiration. 
Eventually, the electrochemical proton gradient is utilized by Complex V (ATP 
Synthase) to produce ATP, or it can be dissipated in the form of heat by passive 
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[60]. In addition, phosphorylation and dephosphorylation of the enzyme com-
plexes is considered another mean of regulating the electron transport chain. For 
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3.3 Fatty acid oxidation contribute to dNTP synthesis

Deoxyribonucleoside Triphosphate (dNTP) is a molecule consisting of a deoxy-
ribose sugar attached to three phosphate groups and one of the nucleotide bases, 
adenine, guanine, cytosine, or thymine as shown in Figure 4 [61]. Apart from DNA 
replication, dNTPs may also function as a source of energy for different cellular 
reactions and signaling pathways [62].

3.3.1 dNTP formation

There are two biosynthetic pathways for nucleotides formation: de novo and 
salvage [62]. The de novo pathways require high energy and the use of raw material 
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like glucose, glutamine, aspartate, and HCO3 to form nucleotides [62, 63]. However, 
salvage pathways exist as an alternative energy-efficient route to form nucleotides [63].

The enzyme ribonucleotide reductase (RR), which is NADPH-dependent, 
is responsible for catalyzing the rate-limiting reaction in which ribonucleotides 
are converted to their respective deoxyribonucleotides [62, 63]. This reaction is 
regulated by the number of RR enzymes and allosteric control mechanism [62, 63]. 
RR consists of two nonidentical subunits, α and β. α subunit has the catalytic site, 
substrate-specificity site, and activity site; whereas the β subunit contains a stable 
tyrosyl free radical [63]. The activity of RR enzymes is tightly controlled by allosteric 
mechanism [63, 64]. The reduction of ribonucleotides requires a specific positive 
effector, however, the product dNTP can also serve as a negative effector on the 
enzyme (Table 1) [61, 63].

dNTPs levels and RR enzyme activity are important to control the fidelity of 
nuclear and mitochondrial DNA replication and repair. It has been reported that 
increased levels of dNTP, in vitro, decreased the length of ‘S phase’ of the cell 
cycle during DNA replication, which implies that under physiological conditions, 
nucleotides are used mainly for DNA synthesis [65, 66]. Interestingly, whereas 
elevated levels of dNTP resulted in delay in the S phase entry through unclear 
mechanisms [67, 68], depletion of dNTP pool also resulted in inhibition of DNA 
replication, and fork stalling [69]. In fact, when the enzyme RR was blocked, 
DNA synthesis was arrested, preserving the dNTP for DNA damage repair under 
suboptimal conditions [69, 70].

3.3.2 Mitochondrial dNTP

Mitochondria are one of the major endomembrane organelles in eukaryotic cells 
[14, 71, 72] owing to their ability to produce ATP through oxidative phosphorylation 
as discussed in Section 3.2. Yet they participate in cellular function and dysfunc-
tion, including calcium regulation, activation of cellular death, ROS formation, and 
cellular building block synthesis [73, 74]. In ECs, the mitochondria compromise 
only 6% of cell volume, implicating that EC rely on anaerobic glycolysis rather than 
mitochondria-derived energy [7, 71]. However, mitochondria act primarily as major 
signaling organelles in the ECs and maintain mitochondrial dNTP pools for proper 
EC functions. Additionally, alternation in the levels of mitochondrial ROS has been 

Figure 4. 
Structure of Deoxyribonucleoside Triphosphate (dNTP).
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shown to be associated with impaired one-carbon metabolism, which is essential for 
purines and pyrimidines nucleotides [75, 76].

In response to mild oxidative stress, the mitochondria attempt to re-establish 
homeostasis by ROS-buffering capacity of mitochondria. For example, the 
activity of adenine nucleotide translocase is impaired under mitochondrial 
oxidation, leading to shortage of adenine diphosphate (ADP) [77]. On the other 
hand, up-regulation of mitochondrial anti-oxidant systems and other molecules 
counteract ROS-induced protein unfolding [78, 79]. If oxidative stress is persis-
tent, mitochondria may translate the adaptive response into activation of cellular 
death [74]. These responses and deregulation of ROS levels contribute to the 
pathogenesis of cardiovascular system, including coronary artery diseases.

3.3.3 Fatty acid oxidation (FAO)

Long chain fatty acids are a major source of energy productions, primarily in 
mitochondria [61, 80, 81]. Fatty acids are broken up into acetyl CoA, NADH and 
FADH2 in the mitochondria [80]. These three products are used by the mitochondrial 
matrix for energy production through TCA and oxidative phosphorylation [80].

3.3.3.1 Fatty acid oxidation as a major energy-producing pathway

Fatty acid oxidation (FAO) is an important catabolic and anabolic process. On 
the outer membrane of mitochondria, FAO transfers the acyl group from CoA 
to carnitine by carnitine palmitoyltransferase I (CPT1). Acyl-carnitine is then 
exchanged across the inner membrane of mitochondria. The acyl group is trans-
ferred back again to CoA by carnitine palmitoyltransferase II (CPT II) as shown in 
Figure 5 [82]. CPT1 is an important enzyme for FAO and is a rate limiting factor 
for FAO in the mitochondria. Malonyl CoA, an intermediate product of fatty acid 
synthesis, is an inhibitor of CPT1.

β-oxidation is a four steps process carried by enzymatic oxidation, hydration, 
and oxidation that act on acyl CoA to yield a shorter acyl CoA and acetyl CoA [83]. 
The four-step process is shown in the schematics of Figure 6.

3.3.3.2 Role of fatty acid oxidation in vessel sprouting

Recent studies have shown the critical role of FAO for vessel sprouting [42, 84]. 
In a study, the levels of FAO and dNTP synthesis were reduced when mitochondrial 
CPT1A was silenced. This resulted in impaired vascular sprouting due to reduction 
ECs proliferation but not migration. Additionally, silencing long-chain acyl-CoA 
dehydrogenase (ACADVL) has yielded similar results, supporting the role of FAO 
in vessel sprouting. Overexpression of CPT1A obtained opposite results, further 
supporting a crucial role of CPT1A in angiogenesis.

Substrate ADP GDP CDP UDP

Positive Effector dGTP dTTP ATP ATP

Negative Effector dATP dATP dATP
dGTP
dTTP

dATP
dGTP
dTTP

Table 1. 
Ribonucleotide reductase enzyme regulators.
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death [74]. These responses and deregulation of ROS levels contribute to the 
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mitochondria [61, 80, 81]. Fatty acids are broken up into acetyl CoA, NADH and 
FADH2 in the mitochondria [80]. These three products are used by the mitochondrial 
matrix for energy production through TCA and oxidative phosphorylation [80].

3.3.3.1 Fatty acid oxidation as a major energy-producing pathway

Fatty acid oxidation (FAO) is an important catabolic and anabolic process. On 
the outer membrane of mitochondria, FAO transfers the acyl group from CoA 
to carnitine by carnitine palmitoyltransferase I (CPT1). Acyl-carnitine is then 
exchanged across the inner membrane of mitochondria. The acyl group is trans-
ferred back again to CoA by carnitine palmitoyltransferase II (CPT II) as shown in 
Figure 5 [82]. CPT1 is an important enzyme for FAO and is a rate limiting factor 
for FAO in the mitochondria. Malonyl CoA, an intermediate product of fatty acid 
synthesis, is an inhibitor of CPT1.

β-oxidation is a four steps process carried by enzymatic oxidation, hydration, 
and oxidation that act on acyl CoA to yield a shorter acyl CoA and acetyl CoA [83]. 
The four-step process is shown in the schematics of Figure 6.

3.3.3.2 Role of fatty acid oxidation in vessel sprouting

Recent studies have shown the critical role of FAO for vessel sprouting [42, 84]. 
In a study, the levels of FAO and dNTP synthesis were reduced when mitochondrial 
CPT1A was silenced. This resulted in impaired vascular sprouting due to reduction 
ECs proliferation but not migration. Additionally, silencing long-chain acyl-CoA 
dehydrogenase (ACADVL) has yielded similar results, supporting the role of FAO 
in vessel sprouting. Overexpression of CPT1A obtained opposite results, further 
supporting a crucial role of CPT1A in angiogenesis.
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3.3.3.3 Fatty acid oxidation for de novo synthesis of nucleotides

As noted above, silencing CPT1A in ECs showed impaired de novo synthesis 
of dNTPs. This impaired de novo dNTP synthesis contributed to reduced vessel 

Figure 5. 
Long-chain fatty acid transportation in the mitochondra. Fatty acids are transported through the mitochondrial 
membrane as acyl CoA for subsequent oxidation. Malonyl CoA acts as a key inhibitor molecule for CPT I, and 
thus regulating the rate of fatty acid oxidation (FAO).

Figure 6. 
Fatty acid β-oxidation pathway.

43

Role of Subcellular ROS in Providing Resilience to Vascular Endothelium
DOI: http://dx.doi.org/10.5772/intechopen.93568

sprouting [82]. Nonetheless, the levels of glucose oxidation were increased to com-
pensate for the FAO loss, yet it was not sufficient to help in the proliferative defects 
of ECs with knockdown CPT1A. This reflects the irreplaceable role of FAO for de 
novo dNTP synthesis in ECs [82].

3.3.3.4 Fatty acid β-oxidation in quiescent vs. proliferating endothelial cells

Depending on the cellular status, the FAO are directed either toward DNA syn-
thesis or redox homeostasis. FAO are involved in regenerating NADP+ to NADPH, 
they also upregulate the expression of NADP+ producing genes, which are critical 
for redox homeostasis [43, 82]. Quiescent ECs upregulate FAO, but do not rely on 
them for ATP production or nucleotide synthesis, rather utilize it for redox homeo-
stasis [85]. Unlike quiescent ECs, proliferating ECs utilize FAO for DNA synthesis, 
as previously discussed [82].

CPT1A, the rate limiting enzyme for FAO in mitochondria, has been shown 
to be critical for redox homeostasis in EC. In quiescent ECs, CPT1A inhibition 
caused the levels of ROS to elevate, leading to decreased anti-fibrinolytic gene 
expression, endothelial leakage, and increased leukocytes adhesion and/or 
infiltration [80, 85]. Thus, it is believed that quiescent ECs require more redox 
buffering capacity compared to proliferating ECs due to higher levels of ROS.

Besides the involvement of FAO in redox balance in quiescent ECs, they are also 
involved in other vasculo-protective NADPH-regenerating pathways such as oxida-
tive PPP and nicotine nucleotide transhydrogenase [85].

4. Endothelial metabolism in atherosclerosis

The generation of increased amounts of NO in atherosclerosis is critical for its 
anti-atherogenic effects, including vasodilation, inhibition of platelet aggrega-
tion, smooth muscle proliferation as well as leukocyte migration and oxidative 
stress [38]. Endothelial cells produce NO through enzymatic oxidation of argi-
nine to citrulline via eNOS enzyme. eNOS requires several co-factors including 
NADPH, flavin adenine dineucleotide (FAD), flavin mononeucleotide (FMN), 
Calcium/Calmodulin and tetrahydrobiopterin (BH4). Decreased availability 
of Arginine or deficiency of BH4 results in the paradoxical generation of ROS 
instead of NO by eNOS, a process known as eNOS uncoupling [38, 86]. Arginine 
in particular, has been found to be rate-limiting for NO synthesis in patients with 
atherosclerosis [87]. It was demonstrated that an arginine analog asymmetric 
dimethyl arginine (ADMA), that acts as a competitor for eNOS, impaired NO 
production. ADMA levels are markedly increased in atherosclerosis and therefore 
it is recognized as a major cardiovascular risk factor [88]. Moreover, Dimethyl 
arginine dimethyl aminohydrolase (DDAH), an enzyme that metabolizes ADMA 
into citrulline and dimethylamine is impaired by the oxidative stress in athero-
sclerosis [38]. Interestingly, because of this competition, Arginine supplements 
have been found to be of great benefit in atherosclerotic patients with high 
ADMA levels, by enhancing endothelial-dependent vasodilation and inhibition 
of leukocyte adhesion and migration to the atherosclerotic plaque [89].

Furthermore, endothelial NADPH oxidase is induced by certain athero-
sclerotic plaque components such as the oxidized LDL (oxLDL). The NADPH 
oxidase-derived ROS were found to have detrimental effects in promoting plaque 
progression. These include oxidation of LDLs, inducing vascular smooth muscle 
proliferation and migration and EC apoptosis as well as promoting the expression of 
vascular adhesion adhesion molecules [38].
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stress [38]. Endothelial cells produce NO through enzymatic oxidation of argi-
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5. Conclusions

The endothelium is one of the most diverse tissues in the human body. It main-
tains the integrity of the vascular system and provides nutrition to underlying 
tissues. In addition, EC drives the growth and proliferation of blood vessels under 
physiologic and pathologic conditions. ECs exhibit significant flexibility in response 
to various environmental changes such as hypoxia and ischemia. Careful analysis 
of the process of sprouting angiogenesis explains how ECs function in such an 
orchestrated way to reach their end goal of providing nutrients and oxygen supply 
to the affected tissues. ECs display phenomenal resilience in the process through 
various mechanisms, one of which is their metabolic adaptation and the other is 
critical balance between subcellular levels of ROS (cytosolic versus mitochondrial). 
ECs limit their oxygen consumption in order to preserve it for the tissues that they 
supply to and also to maintain a balanced intracellular redox state. Although ECs 
do not utilize mitochondrial OxPhos for ATP synthesis and thus generate very little 
mitochondrial ROS, NADPH oxidase-derived ROS appear to regulate many critical 
EC functions in health and disease. However, EC has intricated intracellular mecha-
nisms by which subcellular oxidants may communicate at the subcellular levels [7]. 
Unlike most cells in the body (except tumor cells), ECs upregulate and accelerate 
their glycolytic pathways in order to generate energy (ATP production) and certain 
molecules that act as building blocks (dNTPs) and are essential for supporting EC 
proliferation and migration. CPT1A-mediated FAO appears to play a significant role 
in synthesizing dNTPs and NADP+, NADPH in EC mitochondria. Depending on the 
metabolic states of ECs (quiescent versus proliferative), FAO-generated NADPH 
is utilized for quiescent EC’s redox homeostasis or dNTPS for cell proliferation in 
angiogenic endothelium. Further studies aimed at understanding the molecular 
mechanisms by which subcellular ROS modulate EC metabolism in health and 
disease will help develop therapeutics modalities for CVD.
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Chapter 4

The Impact of Oxidoreductases-
Related MicroRNAs in Glucose 
Metabolism of Renal Cell 
Carcinoma and Prostate Cancer
Mariana Gomes Morais, Francisca Guilherme Carvalho Dias, 
João Alexandre Velho Prior, Ana Luísa Pereira Teixeira  
and Rui Manuel de Medeiros Melo Silva

Abstract

The reprogramming of metabolism is one of cancer hallmarks. Glucose’s 
metabolism, as one of the main fuels of cancer cells, has been the focus of several 
research studies in the oncology field. However, because cancer is a heterogeneous 
disease, the disruptions in glucose metabolism are highly variable depending of the 
cancer. In fact, Renal Cell Carcinoma (RCC) and Prostate Cancer (PCa), the most 
lethal and common urological neoplasia, respectively, show different disruptions 
in the main pathways of glucose catabolism: glycolysis, lactate fermentation and 
Krebs Cycle. Oxidoreductases are a class of enzymes that catalyze electrons transfer 
from one molecule to another and are present in these three pathways, posing as 
an opportunity to better understand these catabolic deregulations. Furthermore, 
nowadays it is recognized that their expression is modulated by microRNAs (miR-
NAs), in this book chapter, we selected the known miRNAs that directly target these 
oxidoreductases and analyzed their deregulation in both cancers. The characteriza-
tion of these miRNAs opens a new door that could be applied in patients’ stratifica-
tion and therapy monitorization because of their potential as cancer biomarkers. 
Additionally, their delivery to cancer cells, using glucose capped NPs could help 
establish new therapeutic strategies that would improve RCC and PCa management.

Keywords: oxidoreductases, urological cancers, glucose metabolism, biomarkers, 
therapeutic targets, nanoparticles

1. Introduction

Cancer is one of the current main public health problems in the world, account-
ing for, according to GLOBOCAN, approximately 18.1 million new cases and 9.6 
million deaths, worldwide in 2018 [1]. It arises from genetic and environmental 
interactions that cause the deregulation of signaling pathways involved in funda-
mental cellular processes. Being a heterogeneous disease with multiple etiologies, 
cancer shows different pathological evolutions and treatment approaches [2]. 
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Renal Cell Carcinoma (RCC) and Prostate Cancer (PCa) represent the most lethal 
and common urological cancers, respectively [1].

Kidney cancer represents 403,000 new cases and 175,000 deaths worldwide, 
with RCC accounting for 90% of these cases [1]. Because of kidney’s anatomic 
location, these tumors only become symptomatic in the late stages of the disease. 
Even though about 60% of RCCs are incidentally detected in an early stage because 
of routine imaging, about 30% are still diagnosed at the symptomatic phase, which 
is usually associated with worse prognosis [3]. Additionally, most of the patients 
continue to be diagnosed with locally advanced disease, with about 17% of them 
presenting distant metastasis at the diagnosis [4]. Apart from these, approximately 
40% of patients submitted to surgery with curative intent will also relapse in a 
5-year period [5]. Because of its radio and chemo-resistance, targeted therapies 
are the only agents available to manage metastatic patients, but one fourth of the 
patients never respond to them, and the ones who do, typically develop resistance in 
a median of 5–11 months of treatment [6].

On the other hand, with a world estimate of 1.2 million cases and more than 
350 thousand deaths in 2018, PCa is the second most frequent cancer in men and 
the fifth cause of death [1]. Its treatment depends on the grade, stage and age of the 
patients, being the androgen deprivation therapy (ADT) one of the main therapy 
options because of its high dependence on the androgen pathway [7]. Despite the 
initial high response rates, nearly all men that undergo ADT develop resistance 
within 2 to 3 years, progressing to Castration Resistant PCa (CRPC) [8]. In the 
last few years new drugs came up as alternatives to these patients, but they present 
limited time benefits and patients eventually relapse [9].

The late diagnosis, the lack of accurate prognosis and disease follow up bio-
markers, as well as the resistance to the existing therapies are some of the major 
current challenges in both prostate and renal cell carcinoma [10, 11]. Thus, there 
is an urgent need of more accurate and sensitive biomarkers as well as alternative 
therapeutic approaches in these tumor models.

Almost 10 years ago, in 2011, the reprogramming of energy metabolism was 
considered a hallmark of cancer and in the last few years the scientific community 
has devoted their time to better understand it in order to develop new therapeutic 
approaches and biomarkers [2]. Oxidoreductases (enzymes that catalyze electrons 
transfer from one molecule to another) play an important part in these deregula-
tions since they are present in the different pathways involved in cells metabolism, 
namely in glucose’s metabolism [12].

Glucose, as one of the major “fuels” of any cell, has its metabolism altered in 
most tumor models [13]. However, because cancer is a heterogeneous disease, this 
deregulation depends on the type of cells that the tumor arises from, being RCC 
and PCa a good example of such differences.

2. Glucose metabolism in renal cell carcinoma

RCC is a heterogeneous group of cancers with different genetic and molecular 
alterations, and histological and clinical characteristics [14]. Clear cell RCC 
(ccRCC) accounts for about 80% of RCC cases and the most common genetic 
event involved in its beginning is the copy number deletion, inactivating muta-
tion and/or epigenetic silencing of von Hippel–Lindau (VHL) [3]. Its loss or 
inactivation leads to an increase of Hypoxia Inducible Factor alpha (HIF-α), 
triggering a hypoxic response, even in normoxic conditions, from the cell and 
a consequent induction of its target genes transcription [15]. These genes are 
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involved in several cellular processes including glucose metabolism (GLUT-1 and 
GLUT-4) and pH regulation (CAIX). Thus, ccRCC is from a very early beginning 
in a state of constant pseudo hypoxia [16].

This is the most likely cause of the well-known Warburg Effect which is widely 
documented in ccRCC [17, 18]. The Warburg Effect, or aerobic glycolysis, was firstly 
described in 1920 by Otto Warburg and describes cancer cells’ preference to metabolize 
glucose through glycolysis followed by lactate fermentation instead of oxidative phos-
phorylation, even in the presence of oxygen (Figure 1) [19]. Very common in many 
tumors, there are several possible explanations to why cancer cells undergo these altera-
tions, even though the energy resulting from it is significantly lower when compared 
to oxidative phosphorylation. Using aerobic glycolysis, cancer cells are able to obtain 
ATP in a faster way and this pathway supports better their high biosynthetic needs [18]. 
Moreover, the consequent acidification of the microenvironment due to the lactate 
fermentation is of great advantage to cancer cells since it has been shown to boost their 
invasiveness and metastatic capacity as well as to inhibit immune rejection [20, 21].

In ccRCC, besides VHL loss, HIF- α can also be stabilized by mechanisms like 
RAS activation or accumulation of Krebs cycle substrates [22]. Moreover, this 
effect can also be driven by the interruption of the Krebs Cycle and mutations in 
genes that encode enzymes like Fumarate Hydratase or Succinate Dehydrogenase, 
increased levels of reactive oxygen species and activation of pathways such as 
NRF2/KEAP1 and PI3K/mTOR [18].

In addition to thar, the deregulation of the expression of several enzymes involved 
in the glucose metabolic pathways has already been reported in ccRCC, including 
several oxidoreductases, such as glyceraldehyde-3-phosphate dehydrogenase (G3PD), 
lactate dehydrogenase (LDHA) which belong to the glycolysis pathway; pyruvate 
dehydrogenase (PD) and isocitrate dehydrogenase (IDH) involved in the Krebs Cycle 
and succinate dehydrogenase (SDH) which is part of the oxidative phosphorylation 
pathway [16, 23–26].

Figure 1. 
RCC’s glucose metabolic switch. In RCC cells, pyruvate is transformed in lactate, with the production of ATP 
instead of undergoing Krebs cycle and oxidative phosphorylation (Warburg effect). Created by BioRender.com.
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3. Glucose metabolism in prostate cancer

Due to its organ’s function, prostatic tissue shows a unique metabolic activity 
under normal conditions, which will reflect in the disruptions presented by its 
cancer cells. One of the key functions of the prostate gland is to produce large 
amounts of citrate that is secreted as part of the seminal liquid [27]. Thus, normal 
prostate epithelial cells undergo a very inefficient energy metabolism.

In most organs, glucose is metabolized through glycolysis in pyruvate, which is 
decarboxylated in the mitochondria to generate Acetyl-CoA. This metabolite reacts 
with oxalocetate to generate citrate which is oxidized and undergoes the Krebs 
Cycle where a large amount of NADH is produced (that will be used in oxidative 
phosphorylation to produce ATP), as well as precursors of several amino acids [28]. 
In normal prostate epithelial cells, there is an impairment of the mitochondrial 
aconitase, responsible for citrate oxidization, granting this metabolite accumula-
tion, which is needed in the seminal liquid composition [27]. Aconitase’s inhibition 
is triggered by an accumulation of zinc in these cells due to the overexpression of 
the zinc-regulated transporter/iron-regulated transporter-like protein 1 (ZIP1) 
[29]. Thus, in these cells, citrate is the final product of glucose metabolism and 
oxaloacetic acid (which normally is regenerated in the Krebs cycle) is produced 
through aspartate imported from the plasma through a specific carrier [30]. Because 
of Krebs cycle inhibition, and consequent oxidative phosphorylation impairment, 
these cells show a higher glycolytic rate [28].

Prostate cancer cells, however, have increased energy demands. Franklin and 
Costello have concluded that an early event in PCa carcinogenesis is the completion 
of the Krebs cycle and subsequent ability to produce much more ATP [31]. In fact, 
PCa cells show dramatically reduced levels of zinc, and consequent reactivation 
of m-aconitase and of Krebs cycle [32]. Interestingly, zinc has also been shown to 
induce apoptosis and inhibit invasion and angiogenesis in PCa cells [33, 34].

Nevertheless, it is important to take into consideration that cells need to readjust 
their bioenergetics and metabolism according to their energetic needs, during 
cancer progression. Thus, in its metastatic stage, PCa has been shown to switch to 
Warburg Effect [35]. The exact mechanisms behind this switch are not yet fully 
understood, but the microenvironment in the metastatic sites seems to play a key 

Figure 2. 
PCa’s glucose metabolic switch. Normal prostate epithelial cells have the Krebs cycle interrupted because of 
their need to secrete citrate as part of seminal fluid. In prostate cancer, Krebs cycle is resumed because of the 
increased demand for energy. Warburg effect is only observed in the more advanced stages of the tumor. Created 
by BioRender.com.
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role, whether through the neighboring adipocytes or through the immune system. 
These seem to be able to increase HIF1α’s production inducing aerobic glycolysis 
and blocking oxidative phosphorylation (Figure 2) [36, 37].

Several oxidoreductases involved in the glucose metabolic pathways have 
already been studied in PCa and reported as deregulated, such as glyceraldehyde-
3-phosphate dehydrogenase (G3PD) and lactate dehydrogenase (LDHA) which 
belong to the glycolysis pathway and pyruvate dehydrogenase (PD) and isocitrate 
dehydrogenase (IDH) involved in the Krebs Cycle [38–41].

4. miRNAs as glucose metabolism regulators

The deregulation of the oxidoreductases as well as other enzymes involved in the 
glucose metabolism pathways is necessary for its reprogramming. This deregulation has 
already been connected with microRNAs (miRNAs), both in RCC and in PCa [18, 42].

miRNAs are short non-coding RNAs (~19 to 25 nucleotides) which regulate 
gene expression at a post-transcriptional level. Through binding to the 3′ untrans-
lated region (3’ UTR) of mRNAs, miRNAs induce their degradation or translation 
repression [43]. These molecules are important modulators of cellular behavior 
being involved in different biological processes such as cell development, differ-
entiation, apoptosis, proliferation, and metabolism. This is due to their dynamic 
expression since each miRNA regulates up to 100 different mRNAs and more than 
10,000 mRNAs are regulated by miRNAs [44].

There are different characteristics that make miRNAs good biomarkers’ can-
didates. Firstly, miRNAs have different expression patterns in normal cells when 
compared with tumoral ones, and even among different subtypes or in different 
stages of the disease, which shows their potential as biomarkers’ candidates [45]. 
Secondly, there has been cumulating evidence regarding the fact that miRNAs 
are secreted into several body fluids, such as serum, plasma, saliva or urine [46]. 
Finally, miRNAs circulate in these fluids incorporated into protein complexes or 
extracellular vesicles, which protect them from RNAse degradation and make them 
resistant to extreme conditions like temperature or pH differences [47].

In fact, in previous studies circulating miRNAs profiles have already been 
associated with histology, staging and clinical endpoints, including patients’ 
survival and therapy response both in ccRCC and in PCa [48–50].

Thus, the study of miRNAs whose targets are involved in the glucose metabolism 
in tumor models such as RCC and PCa is highly important, not only because it can 
help to better understand the differences in metabolic deregulations of the different 
tumors, but also because this knowledge can be applied in designing new-targeted 
therapies and biomarkers.

5. Literature review and data collection

This chapter is focused on the three main glycolytic pathways: glycolysis, Krebs 
cycle and Lactate Fermentation. Since oxidoreductases are present in these three 
pathways, we chose this type of enzymes to select miRNAs that directly regulate 
them (Table 1).

Following, we used miRTarBase (version 8.0), the largest known online database 
of validated miRNA:mRNA target interactions, to select the miRNAs that directly 
target these enzymes [51]. Only studies featuring hsa-miRNAs and functional 
miRNA Target Interaction (MTI) evidence were considered. The selected miRNAs 
and the respective validated targets are displayed in Figure 3.
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A systematic search in Pubmed was then conducted regarding the existing 
evidence for each miRNA in both ccRCC and in PCa, in order to get a deeper knowl-
edge of these miRNAs expression in these tumor models. To do so, we combined 
each miRNA with the following keywords: “renal cell carcinoma”, “RCC”, “Kidney 
Cancer”; “Prostate Cancer”. The obtained scientific papers were manually curated 
to determine the association between the miRNA and either RCC or PCa. The cri-
teria of exclusion were the following: 1) scientific papers that do not report results 
from human samples; 2) scientific papers that do not directly correlate the miRNA 
with the disease. From the 56 papers initially found, 23 were excluded. For each 

Glycolysis Lactate fermentation Krebs cycle

GAPDH LDHA PDH

IDH

KGDH

SDH

MDH

Table 1. 
Oxidoreductases in glycolysis, lactate fermentation and Krebs cycle.

Figure 3. 
miRNAs that directly regulate the oxidoreductases involved in the main pathways of glucose catabolism. 
Created by BioRender.com.
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selected paper, we extracted information regarding the deregulation of the miRNA’s 
expression in each tumor model (upregulated ↑/downregulated ↓) and gathered it 
in the following tables, according to the metabolic processes involved.

5.1 Glycolysis

Glycolysis is the pathway responsible for converting glucose in pyruvate and it is 
constituted by a series of enzymatic reactions. Its sixth step is catalyzed by an oxido-
reductase - Glyceraldehyde_3-phosphate_dehydrogenase (GAPDH) – responsible for 
transforming glyceraldehyde 3-phosphate in D-glycerate 1,3-biphosphate. According 
to miRTarBase (version 8.0), GAPDH is directly targeted by miR-29c-3p and miR-
644a [51]. The studies regarding these miRNAs in both RCC and PCa are scarce, and 
miR-644a’s expression is still not described in RCC nor miR-29c-3p’s expression is 
described in PCa (Tables 2 and 3).

In both tumor models, the miRNAs targeting GAPDH are downregulated, which 
may partly explain the upregulation of GADPH already observed in PCa [52, 53]. 
There is, in fact, an increase of glucose consumption in cancer due to the bigger 
energetic needs of tumoral cells. Since glycolysis is the basis of glucose catabolism, 
either by following Krebs Cycle or Lactate Fermentation, the upregulation of 
the expression of this pathway’s enzymes will help ensure cancer cells’ catabolic 
demands.

5.2 Lactate fermentation

Lactate fermentation is the metabolic process in which the pyruvate resulting from 
glycolysis is transformed in lactate with ATP production. This reaction is catalyzed 
by an oxidoreductase – Lactate Dehydrogenase (LDHA), whose mRNA, according 
to miRTarBase (version 8.0), is directly targeted by miR-34a-5p, miR-23a-3p, miR-
24-3p, miR-210-3p, miR-374a-5p and miR-200b-3p [51]. To the best of our knowl-
edge, there are still no studies regarding miR-24-3p and miR-374a-5p’s expression 
in RCC as well as miR-374a-5p’s expression in PCa. The studies regarding the other 
miRNA’s expression in RCC are summarized in Table 4 and the ones regarding 
miRNA’s expression in PCa are summarized in Table 5.

In RCC, the available studies for the selected miRNAs are controversial. This 
may be result of lack of standardized procedures but also of the different types 
of samples analyzed. Moreover, it is interesting to look at the studies of miR-210-
3p’s expression. This miRNA was significantly increased in ccRCC patients at the 
time of surgery, when compared to healthy donors, but significantly decreased in 
follow-up disease-free ccRCC patients of the same cohort [62, 64]. These studies 
show, not only this miRNA potential as follow-up biomarker but are also an example 

Enzyme miRNA Sample type Outcome References

GAPDH miR-29c-3p Tissues and Cell lines ↓ [52]

Table 2. 
Deregulation of the miRNAs that directly target the glycolysis’ oxidoreductases in RCC.

Enzyme miRNA Sample type Outcome References

GAPDH miR-644a Tissues ↓ [53]

Table 3. 
Deregulation of the miRNAs that directly target the glycolysis’ oxidoreductases in PCa.
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of miRNAs dynamic expression. In PCa, one can notice that hormonal resistant 
and metastatic PCa show a decrease in miR-34a-5p and miR-200b-3p, which may 
traduce in an increase of LDHA and the switch to Warburg Effect which is only 
observed in these stages of PCa [68, 79].

5.3 Krebs cycle

Krebs Cycle, also known as the tricarboxylic acid cycle, follows glycolysis in the 
glucose catabolism when oxygen is present. It is preceded by the transformation of 
pyruvate in acetyl-coA, which will enter the cycle – a series of reactions that provide 
precursors of amino acids as well as the reducing agent NADH which will be used in 
the oxidative phosphorylation pathway and lead to ATP production.

Pyruvate oxidation in acetyl-coA is catalyzed by an oxidoreductase – Pyruvate 
dehydrogenase (PDH), whose mRNA is, according to miRTarBase (version 8.0) 
directly targeted by miR-96-3p [51]. However, there are still no studies regarding 
this miRNA in both RCC and in PCa.

In the series of reactions of Krebs Cycle, there are 4 reactions catalyzed by 4 
oxidoreductases – Isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase 
(KDGH), Succinate dehydrogenase (SDH) and Malate dehydrogenase (MDH). 
According to miRTarBase (version 8.0), miRNAs directly targeting KDGH and 
MDH were not yet identified. Moreover, SDH is directly targeted by miR-31-3p, 
which, to the best of our knowledge, has not yet been studied in RCC and in 
PCa [51].

IDH is directly targeted by miR-30c-5p. There are few studies regarding this 
miRNA both in RCC (Table 6) and in PCa (Table 7).

In these studies, the expression of miR-30c-5p in RCC is downregulated 
which would suggest an upregulation of IDH’s mRNA expression. However, this 
protein was shown to be downregulated in this tumor model [85]. In fact, a single 
mRNA can be regulate by several miRNAs, making the miRNA:mRNA expres-
sion not always inversely correlated. Nevertheless, the fact that miR-30-c-5p was 

Enzyme miRNA Sample type Outcome References

LDHA miR-34a-5p Cell lines ↑ [54]

Tissues and cell lines ↑ [55]

Tissues ↓ [56]

miR-23a-3p Cell lines ↓ [57]

Tissues and cell lines ↑ [58]

miR-210-3p Tissues ↑ [59]

Cell lines ↓ [60]

Cell lines ↓ [61]

Tissues and urine ⇅ [62]

Tissues ↑ [63]

Tissues and urine ⇅ [64]

Tissues ↑ [65]

Cell lines and plasma ↑ [66]

miR-200b-3p Cell lines ↓ [67]

Table 4. 
Deregulation of the miRNAs that directly target the lactate Fermentation’s oxidoreductases in RCC.
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downregulated in urinary exosomes shows its potential as a biomarker in a liquid 
biopsy approach [81].

In PCa the results regarding this miRNA are scarce and controversial, showing 
the need of more studies to clarify its expression levels.

6. Discussion

miRNAs potential in the oncology field has been widely recognized and there has 
been an increase of studies regarding their deregulation in cancer in the last few years. 
However, there are many genes whose mRNA have not been identified as direct targets 
of any miRNA. In this book chapter, both KGDH and MDH, key enzymes in the Krebs 
Cycle, have not been directly associated with any miRNAs. Moreover, there are several 
miRNAs that directly target the mRNA of key enzymes of glucose catabolism but 

Enzyme miRNA Sample type Outcome References

LDHA miR-34a-5p Cell lines (resistant vs. hormonal sensitive) ↓ [68]

Urinary exosomes and tissues ↓ [69]

Cell lines ↓ [70]

miR-23a-3p Tissues ↑ [71]

miR-24-3p Urine ↓ [72]

Urine ↓ [73]

Tissues and cell lines ↓ [74]

miR-210-3p Tissues ↑ [75]

Tissues ↑ [76]

miR-200b-3p Tissues ↑ [77]

Cell lines ↓ [78]

Metastatic tissues ↓ [79]

Chemo-resistant cells ↑ [80]

Table 5. 
Deregulation of the miRNAs that directly target the lactate fermentation’s oxidoreductases in PCa.

Enzyme miRNA Sample type Outcome References

IDH miR-30c-5p Urinary exosomes ↓ [81]

Tissues ↓ [82]

Table 6. 
Deregulation of the miRNAs that directly target the Krebs cycle’s oxidoreductases in RCC.

Enzyme miRNA Sample type Outcome References

IDH miR-30c-5p Tissues ↓ [83]

Urine ↑ [73]

Tissues ↑ [84]

Table 7. 
Deregulation of the miRNAs that directly target the Krebs Cycle’s oxidoreductases in PCa.
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Cycle, have not been directly associated with any miRNAs. Moreover, there are several 
miRNAs that directly target the mRNA of key enzymes of glucose catabolism but 

Enzyme miRNA Sample type Outcome References

LDHA miR-34a-5p Cell lines (resistant vs. hormonal sensitive) ↓ [68]

Urinary exosomes and tissues ↓ [69]

Cell lines ↓ [70]

miR-23a-3p Tissues ↑ [71]

miR-24-3p Urine ↓ [72]

Urine ↓ [73]

Tissues and cell lines ↓ [74]

miR-210-3p Tissues ↑ [75]

Tissues ↑ [76]

miR-200b-3p Tissues ↑ [77]

Cell lines ↓ [78]

Metastatic tissues ↓ [79]

Chemo-resistant cells ↑ [80]

Table 5. 
Deregulation of the miRNAs that directly target the lactate fermentation’s oxidoreductases in PCa.

Enzyme miRNA Sample type Outcome References

IDH miR-30c-5p Urinary exosomes ↓ [81]

Tissues ↓ [82]

Table 6. 
Deregulation of the miRNAs that directly target the Krebs cycle’s oxidoreductases in RCC.

Enzyme miRNA Sample type Outcome References

IDH miR-30c-5p Tissues ↓ [83]

Urine ↑ [73]

Tissues ↑ [84]

Table 7. 
Deregulation of the miRNAs that directly target the Krebs Cycle’s oxidoreductases in PCa.
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have not yet been studied in RCC (miR-644a, miR-24-3p, miR-374a-5p, miR-96-3p 
and miR-31-3p) and in PCa (miR-29c-3p, miR-374a-5p, miR96-3p, miR-31-3p). 
Additionally, some miRNAs present controversial results which shall be subject of 
more studies to confirm their deregulation. Nevertheless, two miRNAs have been 
identified as downregulated (miR-29c-3p and miR-200b-2p) in RCC and three 
miRNAs have been identified as downregulated (miR-644a, miR-34a-5p and miR-
24-3p) and two as upregulated (miR-23a-3p and miR-210-3p) in PCa. Their potential 
as biomarkers of both RCC and PCa could be increased if combined as a profile, which 
could pose as an advance to establish a successful liquid biopsy approach.

Because of their influence in their target genes’ expression, the reestablishment 
of miRNAs’ levels may have a great impact in the regulation of glucose metabolism. 
Restoring the levels of the downregulated miRNAs in both RCC and PCa could 
benefit the current cancer therapies and one possible way to do so is through a 
nanomedicine approach. Nanoparticles (NPs) are small organized structures with 
sizes between in size 1 and 100 nm that show very specific chemical and physical 
properties due to their size and composition [86]. Even though the existing research 
is scarce, NPs can improve the specificity of miRNAs delivery to target cells (thus 
reducing side effects) and allow for controlled miRNA release [87]. They also can 
protect them from degradation and prevent their clearance by the reticuloendothe-
lial system. Moreover, they avoid unfavorable immune cell stimulation [87]. NPs 
highly depend on their capping which acts prevents their agglomeration and stops 
uncontrolled growth. The choice of capping will highly influence NPs properties. 
To effectively deliver the miRNAs selected in this chapter, a glucose capping could 
be an interesting choice. As stated above, both in RCC and PCa, tumoral cells show 
an increased glucose consumption when compared with their counterpart normal 
cells. Thus, glucose as NP’s capping could favor the selective delivery of miRNAs and 
would likely not be recognized as antagonist by the immune system.

7. Conclusions

The deregulation of glucose metabolism as a great influence in the pathophysi-
ology of cancer, with the oxidoreductases involved in its pathways posing as both 
an opportunity to better comprehend the disease and finding not only strategies of 
detecting and monitoring it but also new therapeutic strategies. miRNAs could be 
part of these strategies since they influence the expression of these enzymes. Both 
in RCC and PCa, there are studies regarding miRNAs that target these oxidore-
ductases, showing their impact in patients’ prognosis. In the future, more studies 
are needed, regarding the identification of more miRNAs that target for example 
KGDH and MDH and their validation in RCC and PCa. Moreover, exploring the 
potential of glucose capped NPs carrying these miRNAs could help establish new 
therapeutic strategies that would benefit RCC and PCa management.
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Chapter 5

Steroidal 5α-Reductase: A 
Therapeutic Target for Prostate 
Disorders
Neelima Dhingra

Abstract

Steroidal 5α-reductase is a system of NADPH dependent enzyme that catalyzes 
the irreversible conversion of Δ4–3-ketosteroid precursor (testosterone) to its 
corresponding 5α-reduced metabolite (dihydrotestosterone). Initial role of DHT 
was discovered through males pseudohermaphroditism, a genetic disorder with 
complete or partial 5α-reductase deficiency accompanied with features at critical 
juncture of fetal and postnatal development. However, excessive DHT production, 
has brought a revolution in revealing the etiology of complications like prostate 
cancer and benign prostatic hyperplasia. Over the last two decades, converging lines 
of evidences have highlighted the role of 5α-reductase inhibitors in the treatment of 
these androgen dependent disorders. Finasteride and Dutasteride, are the two clini-
cally approved inhibitors available in the market, that helps in reducing the prostate 
volume by blocking the 5a-reductase enzyme.

Keywords: androgen, isozymes, prostate, genetic disorder, benign prostatic 
hyperplasia

1. Introduction

The prostate gland located between the bladder and the rectum is an hetero-
geneous organ, and wraps around the urethra. It is considered to be consisted of 
central, peripheral or transitional zone and composed of three different types of 
cells: glandular epithelial cells, smooth muscle cells and stromal cells (Figure 1). At 
the time of birth, prostate is about the size of a pea and undergoes many changes 
during the course of man’s life. It grows only slightly until puberty, then it begins to 
enlarge rapidly attaining normal adult size and shape [1].

The gland generally remains stable until about the mid 40s, and in most men 
over the age of 60, the prostate begins to enlarge. The dense capsule surround-
ing the enlarging prostate prevents it from further expansion outward, which in 
turn forces the prostate to press against the urethra, and partially block urine flow 
(Figure 2). This apparent increase in number of stromal and epithelial cells results 
in obstruction of the proximal urethera and condition is called as benign prostatic 
hyperplasia (BPH). This obstruction, in turn causes bladder irritation and contrac-
tion, even for small amount of urine. Eventually the bladder weakens and does not 
completely empty through urination [2].
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Clinically BPH is manifested as lower urinary tract symptoms (LUTS) and 
consisting of voiding and storage symptoms such as slow urinary stream, splitting 
or spraying of urinary stream, recurrent urinary stream, straining to void and 
terminal dribbling, hesitancy, urgency, increased frequency, and incontinence. 
Although urge incontinence is an irritative symptom, it may indicate the presence 
of obstruction [3, 4].

BPH is also described as quality of life disorder, as its affects man’s ability to initiate 
or terminate urine flow stream (the symptoms interfere with the normal activities) and 
reduces the feeling of well being. Though the etiology of hyerplastic process of BPH is 
clearly not known, but many partially overlapping and complementary theories have 
been proposed for the overgrowth of smooth muscle tissue and glandular epithelial 
tissue like aging: late activation of cell growth [5], defective cell death and hormonal 
changes. According to the most widely accepted hypothesis i.e. androgen (dihydrotes-
tosterone hypothesis) BPH occurs due to an age related changes in prostate androgen 
metabolism that favors the accumulation of DHT and responsible for cell growth in the 
tissues that lines the prostate gland thus rapid prostate enlargement [6, 7].

Figure 1. 
Location and different sections of prostate gland.

Figure 2. 
Enlarged prostate gland.
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2. Treatment options for BPH

During the last two decades, it has become clear that the management of LUTS 
associated with BPH is much more than just treating symptoms. It is a progres-
sive disease and defined as worsening of symptoms, increase in prostate volume 
(PV), deterioration of urinary flow rate, inability to void i.e. acute urinary reten-
tion (AUR) and the need for surgery either for AUR or deteriorating symptoms 
[8]. Further, AUR with an annual risk of less than 1% is found to be uncommon, 
but requires urgent bladder catheterization. Therefore, diagnosis, monitoring, 
frequency, severity and assessment of the prognosis for disease progression should 
be assessed before management decisions. EAU guidelines have recommended a 
series of evaluation as a routine part of the initial assessment of men with LUTS, 
that includes clinical history, a validated questionnaire to assess symptoms, 
physical examination, creatinine measurement, urinalysis, flow rates, postvoid 
residual (PVR) volume and serum prostate-specific antigen (PSA) measurement 
especially when a diagnosis of prostatic carcinoma is required [9]. A more profound 
knowledge on the pathogenesis, the natural history and risk of the progression, 
has enabled more differentiated therapy of elderly men with lower urinary tract 
symptoms due to benign prostatic hyperplasia as follows (Figure 3) [10, 11].

2.1 Watchful waiting

Watchful waiting is a well known approach to treat BPH where men are asymp-
tomatic or with mild to moderate symptoms without causing no serious health. It 
is generally considered as the first tier in the therapeutic cascade and patients are 

Figure 3. 
Management options.
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monitored by his physician without receiving any active intervention. Untreated BPH 
will progress to AUR and other complications such as renal insufficiency and stones. 
Thus regular check up along with continual education is recommended to avoid 
chances of occurrence of serious complications [12, 13]. Further, optimization can 
be achieved by including certain lifestyle or dietary changes as recommend in EAU 
guidelines, to prevent the deterioration requiring medical or surgical treatment [9].

2.2 Surgical treatment

Surgical interventions are often endorsed for patients with complications of 
LUTS such as AUR, renal insufficiency, bladder calculi or .recurrent urinary tract 
infections, persistent gross hematuria secondary to BPH [14]. Further, other can-
didates for surgery includes the patients refractory to other medical management, 
or men with unacceptable side-effects following drug therapies and requested for 
active treatment [15].

Open prostatectomy, transurethral resection of the prostate (TURP), and 
transurethral incision of the prostate (TUIP) are some of the conventional surgical 
treatment options for symptomatic BPH. The removal of obstructing tissue was first 
achieved by open prostatectomy in early 1900s [16] and considered as gold standard 
for the surgical treatment, but later replaced by TURP. Significant improvement in 
LUTS were observed with TURP, and it takes only 20–30 min, to resect an average 
gland weighing 30 g. Though TURP is considered to be as the hallmark by the urolo-
gist, the one against which other surgical options are compared, but it carry the com-
plications of excessive bleeding and longer hospital stay [16, 17]. TUIP a comparative 
less invasive technique than TURP and with similar improvements in symptoms is 
recommended for prostate gland weighing <25 g of the prostate [18]. An electrosurgi-
cal modification of the TURP and TUIP technique i.e. transurethral vaporization 
(TUVP), is reserved particularly for the patients with a small prostate and bleeding 
disorders. Its long term efficiency has been found to be comparable with that of 
TURP, but number of patients reported for irritative symptoms as side effects [19].

Raising the temperature of the cells through the use of low level radiofrequency 
(microwave) in prostate to 40-45°C (hyperthermia), 46-60°C (thermotherapy) and 
61-75°C (transrectal thermal ablation) are found to be more specific techniques for 
the necrosis of obstructive tissue without affecting normal cells [16]. In comparison to 
high-energy TUMT with increased morbidity, low range TUMT has been found to well 
tolerated in patients with reasonable improvement in flow rate and less effect on sexual 
function [20]. Another simple, safe and relatively inexpensive technique to deliver 
high frequency radiowaves (temperature range 90-100oc) to produce localized necrotic 
lesions in hyperplastic tissue is Transurethral needle ablation (TUNA). Its a method 
of choice over TURP in younger men and with small sized gland, wishing to preserve 
sexual function, as it poses a low or no risk for incontinence and impotence [21, 22].

Laser vaporization or prostectomy, has been found to be another safe, effec-
tive and widely used form of MIT technique with significant improvement in 
urinary flow rates and symptoms. Light at different wavelength is being generated 
using four types of lasers, namely potassium titanyl phosphate (KTP) diode laser; 
neodymium: yttrium-aluminum-garnet (Nd: YAG) laser, and holmium YAG laser 
(Ho:YAG), that cause irreversible cellular damage, followed by their coagulation 
necrosis and ultimately vaporization of tissues. Further, evolution in holium laser 
prostatectomy i.e. Holmium laser enucleation of the prostate (HoLEP) is being used 
for prostate of all sizes at considerable faster rate than TURP and now considered 
to be as new gold standard for the treatment of BPH. HoLEP relieves the pressure 
on the urethra tube by anatomically enucleating the majority of excess benign 
prostate tissue. Short operative time & hospital stay, minimal blood loss and fluid 
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absorption, and bladder neck contractures are some of the advantages of laser 
prostatectomy over the TURP and other conventional techniques [23–25].

2.3 Pharmacological treatment

The clinical manifestations of BPH are primarily precipitated by increased 
resistance to the flow of urine through the bladder neck and/or compressed pros-
tatic urethra. Thereby, the treatment strategies are targeted to decrease the urinary 
resistance by reducing the prostatic volume. A number of strategies are available but 
great strides in the development of alpha-adrenergic blockers and anti-androgen 
(androgen deprivation therapy) have fueled this evolution.

2.3.1 Alpha adrenergic blockers

Alpha adrenergic blockers relaxes the smooth muscle in and around the prostate 
and bladder neck without affecting the detrusor muscle of the bladder wall thus 
relieve the obstruction due to dynamic component of LUTS. The rationale for this 
approach is based on that noradrenaline (NA) acts at alpha-1 adrenergic receptors 
(α1-AR) in the neck and sphincter of the urinary bladder to promote contraction and 
urinary retention. NA also acts at alpha-1 adrenergic receptors to control the smooth 
muscles in the prostate capsule and urethra [26]. Prazosin with a piperazinyl quin-
azoline nucleus, was the first clinically investigated selective α1-adrenergic receptor 
antagonist for BPH with 1000-fold greater affinity than that for α2-receptor. But, 
because of associated important adverse effects like postural hypotension and 
retrograde ejaculation, soon it was withdrawn from market [27]. The next advance-
ment in drug therapy was the advent of selective α1-drugs, Terazosin and Doxazosin, 
structurally close analogs of Prazosin [28].
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Molecular studies have further identified three subtypes α1A, α1B and α1D of the 
α1-AR. The α1A is predominant in prostate, whereas α1B subtype has been found to 
be predominant in blood vessels [29]. Their relative distribution and concentra-
tion in the bladder, prostate, neck, brain and vascular smooth muscle have been 
exploited to develop uroselective α1-adrenergic antagonists with reduced side-
effects. Tamsulosin was launched as the first subtype selective α1-AR antagonist, but 
third uroselective α1-AR antagonist with ten fold more selectivity for α1A-receptor 
subtype compared to α1B-receptor subtype. Whereas, Alfuzosin, with comparable 
clinical efficacy to that of tamsulosin was the fourth uroselective α 1-AR antago-
nist with almost similar affinity for all of the α1 receptor subtypes and [12, 30]. 
Currently, Tamsulosin and Alfuzosin are the most widely prescribed medications as 
selective α 1-AR antagonists for the LUTS associated with BPH.

2.3.2 Androgen deprivation therapy

The biological basis of this therapy lies in the observation that the androgens 
(dihydrotestosterone). plays a crucial role in the development and maturation of 
prostate gland. Furthermore, BPH does not develop in the patient who are castrated 
prior to the puberty [31, 32]. Androgen suppression causes reduction in prostatic 
volume which is believed to decrease the considerable responsible static component 
of bladder outlet obstruction resulting from benign prostatic hyperplasia [33].

Progestational agents like medogesterone, and hydroxyprogesterone acetate, 
acts in reversible manner and are capable of decreasing testosterone level in the 
serum by inhibiting the release of luteinising hormone (LH) [34]. Further, desensi-
tization and down regulation of pituitary gonadotropin releasing hormone (GnRH) 
receptors by agonistic GnRH analogues is well established approach in the clinical 
treatment of BPH [35]. These agents (leuprolide, and Nafarelin acetate) [36], 
results in the blockage of gonadotropin release from the anterior pituitary gland fol-
lowed by the suppression of steroidal sex hormones production. Antiandrogens like 
flutamide, cyproterone acetate, curcumin analogues bicalutamide, 16 substituted/
non-substituted D-homo-pregnane derivatives) compete for androgen recep-
tor with the natural ligand (DHT) binding and are used therapeutically in BPH 
patients [37–41].

Plethora of the evidences has indicated the role of estrogen along with male 
androgens in the aging men with BPH condition. Estradiol is the product of the 
peripheral conversion of testicular and adrenal androgen in man under the influ-
ence of enzyme aromatase. Under the estrogenic effect, stromal and epithelial 
interactions presumably mediate and regulate the proliferative activity of the 
prostate [42]. Testolactone, atermestone, TZA-2237, and abiraterone are some of the 
aromatase inhibitors and found application in non-surgical treatment of BPH by 
blocking this peripheral conversion [43–45].

The importance of androgendeprivation by the use of antiandrogen agents was 
underscored by the fact that these centrally acting drugs decrease the testosterone 
level, and cause complications like erectile dysfunction and loss of libido [45, 46]. 
Therefore, search for the new drugs with more efficacies, selectivity and relative 
broader therapeutic index was being pursued and continued accrual resulted in the 
development of 5α-reductase inhibitors.

3. 5α-reductase inhibitors

5α-reductase (5AR) is a nuclear membrane bound enzyme that converts tes-
ticular endogenous testosterone T to dihydrotestosterone DHT in the presence of 
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cofactor NADPH. Thus 5AR dictates the cellular availability of DHT to prostatic 
epithelial cells and consequently modulate its growth as shown in Figure 4 [47].

Thus, inhibiton of androgen action by 5α-reductase represents a logical treat-
ment of 5α-reductase activity disorder i.e. BPH. 5ARI decreases the dihydrotes-
tosterone concentration by blocking the enzyme and, provide relief from the 
symptoms related to the static mechanical obstruction caused by BPH by shrinking 
the size of prostate [48]. Further, the rationale for use of 5ARI is rooted in the 
observation that these agents are more specific to DHT action without affecting/
lowering T level, thus capable of decreasing long term side effect of castration asso-
ciated with loss of testosterone, without compromising the efficacy of hormonal 
therapy [49, 50].

3.1 Physiology of androgens release

Figure 5 indicating the control of testicular androgen production by hypothala-
mus and the pituitary gland. Neurons in preoptic area of the hypothalamus secrete 
the decapeptide lutenizing hormone releasing hormone (LHTH), in a pulsatile 
fashion, which in turn stimulates the release of lutenizing hormone (LH) from the 
pituitary. After reaches to the testies, LH binds to the high affinity receptor present 
on the surface of leydig cells and stimulate them to produce testosterone. Released 
T travels in the blood either in the free state or after binding with protein [43]. 
Circulating testosterone levels in a negative feed back mechanism regulates the 
secretion of hypothalamus and pituitary.

Major androgen in the adult male is Testosterone (T) and 98% of all T in the 
prostate is of testicular origin, whereas only 5–10% being produced by adrenal 
gland [51]. The unbound T diffuses into the prostate cell (target organ), where most 
of it gets converted to dihydrotestosterone (DHT) by the membrane bound NADPH 
dependent enzyme 5α-reductase. Within prostate, DHT binds to cytosol androgen 
receptor protein (AR) followed by entry of DHT-AR complex into the nucleus, 
where it stimulates the RNA synthesis after interacting with DNA binding sites 
(Figure 6) [52].

T and DHT differ in their physiological action and T also binds to androgen 
receptor but with lesser affinity to that of DHT [53]. According to Burckovsky and 
Wilson postulation T acts as a prohormone and DHT is found to be the main active 
hormone in androgen sensitive tissue [47]. With in embryo, T is responsible for 
the transformation of Wollffian ducts in epididymis, seminal vesicle & differential 
ducts & and responsible for production of DHT after activating the expression 
of 5AR. On the other hand, DHT in embryo is found to be crucial for the sexual 
differentiation of male foetus organ, formation of external genitilia, like urethera 
and prostate. After puberty, it’s the T that determines the modification of external 

Figure 4. 
5α-reductase enzymatic action.
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the size of prostate [48]. Further, the rationale for use of 5ARI is rooted in the 
observation that these agents are more specific to DHT action without affecting/
lowering T level, thus capable of decreasing long term side effect of castration asso-
ciated with loss of testosterone, without compromising the efficacy of hormonal 
therapy [49, 50].

3.1 Physiology of androgens release

Figure 5 indicating the control of testicular androgen production by hypothala-
mus and the pituitary gland. Neurons in preoptic area of the hypothalamus secrete 
the decapeptide lutenizing hormone releasing hormone (LHTH), in a pulsatile 
fashion, which in turn stimulates the release of lutenizing hormone (LH) from the 
pituitary. After reaches to the testies, LH binds to the high affinity receptor present 
on the surface of leydig cells and stimulate them to produce testosterone. Released 
T travels in the blood either in the free state or after binding with protein [43]. 
Circulating testosterone levels in a negative feed back mechanism regulates the 
secretion of hypothalamus and pituitary.

Major androgen in the adult male is Testosterone (T) and 98% of all T in the 
prostate is of testicular origin, whereas only 5–10% being produced by adrenal 
gland [51]. The unbound T diffuses into the prostate cell (target organ), where most 
of it gets converted to dihydrotestosterone (DHT) by the membrane bound NADPH 
dependent enzyme 5α-reductase. Within prostate, DHT binds to cytosol androgen 
receptor protein (AR) followed by entry of DHT-AR complex into the nucleus, 
where it stimulates the RNA synthesis after interacting with DNA binding sites 
(Figure 6) [52].

T and DHT differ in their physiological action and T also binds to androgen 
receptor but with lesser affinity to that of DHT [53]. According to Burckovsky and 
Wilson postulation T acts as a prohormone and DHT is found to be the main active 
hormone in androgen sensitive tissue [47]. With in embryo, T is responsible for 
the transformation of Wollffian ducts in epididymis, seminal vesicle & differential 
ducts & and responsible for production of DHT after activating the expression 
of 5AR. On the other hand, DHT in embryo is found to be crucial for the sexual 
differentiation of male foetus organ, formation of external genitilia, like urethera 
and prostate. After puberty, it’s the T that determines the modification of external 
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genitilia, deeping of voice, increase of muscle mass, spermatogenesis, and male 
sexual behavior. In contrary to that DHT formation in male puberty is related with 
the increase of facial & body hair,r and the enlargement of prostate [32, 37, 54, 55].

Further crucial role of DHT was discovered through male pseudohermaphrodit-
ism, a genetic disorder with complete or partial 5α-reductase deficiency. Decreased 
5AR activity not only resulted in low level of DHT [56, 57], but also accompanied 
by several distinguished features at the critical juncture of foetal and postnatal 
development [58]. Male with such condition showed ambiguous external genitilia 

Figure 5. 
Physiology of androgen release.

Figure 6. 
Interaction of androgen within prostate cell.
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at-birth [59], often raised as girls, little facial hairs as adults, no temporal reced-
ing hairline, small prostate no acne and normal libido. Whereas, female with 5AR 
deficiency did not show any clinical symptoms.

Excessive production of DHT is associated with development of several endo-
crine diseases such as acne, alopecia in men, male pattern baldness, hirusitism in 
women, prostatic carcinoma and benign prostatic hyperplasia [7]. In BPH, concen-
tration of DHT is found to 2.5 fold higher than in normal prostate.

3.2 Isozyme of 5α-reductase

The family of 5AR is composed of three known isoenzymes with the types I and 
II being the most known. Steroidal 5α-reductase is a system of NADPH dependent 
enzymes that catalyzes the irreversible conversion of 4-en-3-oxo-steroid to the corre-
sponding 5α-H-3-oxo-steroid [60–62]. Based on the anatomical location, biochemical 
properties, and tissue expression pattern three different isozymes of 5AR have been 
isolated, expressed and characterized (Table 1). The type 2 isozyme is predominantly 
present in the prostate, seminal vesicle, epididymis, genital skin, and liver. It has 
been found to be essential for differentiation of male external genitilia during foetal 
life, and its deficiency leads to the condition known as male pseudohermaphrodit-
isms [63, 64]. Whereas, type 1 is not the major species expressed in the prostate and 
exhibit only micromolar affinities for steroidal natural substrate (T) [65, 66].

Both the isoforms have optimal activity at different pH range as type 1 is active 
at alkaline pH of 8.5, while type 2 is active at pH 4.7–5.5. Studies have shown that the 
activity of type I enzyme is several times higher in PC than in BPH. Whereas the 5AR 
type II (5AR-2) isoenzyme with higher affinity for T at the optimum pH 5.5 predomi-
nates in the prostate and other genital tissues and plays a major role in BPH [67, 68]. 

5AR-1 5AR-2 5AR-3

Gene SRD5A1 SRD5A2 SRD5A3

Location 5p15 2p23 4q12

Length (b) 36,173 56,385 25,458

Protein size 259 254 319

Transmembrane helices 5 4 6

Protein weight (Da) 29,459 28,393 36,521

Optimal pH 6–8.5 5–5.5 6.9

Affinity for testosterone Km = 1.7 μM Km = 0.2 μM —

In vitro inhibition Ki ≥ 300 nM Ki = 3–5 nM —

Localization (in tissues) Sebaceous glands of 
skin, sweat glands, 
dermal papilla cells, 

fibroblasts from all areas

Prostate, genital skin, 
epididymis, seminal 

vesicles

Hormone refractory 
prostate cancer 
cells, pancreas, 

brain, skin, adipose 
tissue

Selectivity to the 
inhibitors

Inhibitors with 
4-methyl-4-aza 

functionality are very 
potent

4-aza, 6-aza 
and charged 

3-substitutents 
derivatives are highly 

selective.

—

Table 1. 
5AR isozymes and their characteristic features.
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life, and its deficiency leads to the condition known as male pseudohermaphrodit-
isms [63, 64]. Whereas, type 1 is not the major species expressed in the prostate and 
exhibit only micromolar affinities for steroidal natural substrate (T) [65, 66].
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at alkaline pH of 8.5, while type 2 is active at pH 4.7–5.5. Studies have shown that the 
activity of type I enzyme is several times higher in PC than in BPH. Whereas the 5AR 
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A new isoenzyme of 5AR, type III (5AR-3) have been identified recentlyin castration 
resistant prostate cancer (CRPC) cells as well as in other tissues such as pancreas, 
brain, skin and adipose tissues [69, 70]. The length, location and other characteristics 
of these isoenzymes have been presented in Table 1 [71].

3.3 Mechanism of 5α-reductase action

The detailed chemical and kinetic mechanisms of conversion of T into DHT by 
5AR have been investigated as follows:

3.3.1 Chemical mechanism

Figure 7 is indicating the proposed mechanism of T reduction to DHT under the 
influence of 5α-reductase. It is based on the known regio and stereoselectivity of 
the reduction that involves the formation of binary complex between the enzyme 
and NADPH, followed by formation of ternary complex with the substrate [72, 73]. 
Binary complex formation follows the activation of the enone system by based on 
its strong interaction with commonly present electrophilic residue (E+) (proton, 
+ve charged group, proton donor) in the active site. Enone activation gives the 
delocalized carbocation which is being reduced selectively at C-5, on the α-face, by 
a direct hydride transfer from NADPH and lead to the formation of the enolate of 
DHT [74]. Generated intermediate duly coordinated with NADP+ on the α- face, is 
further attacked by a proton on the β-face at C-4 and results into the formation of 

Figure 7. 
Chemical mechanism of action of 5α-reductase.

81

Steroidal 5α-Reductase: A Therapeutic Target for Prostate Disorders
DOI: http://dx.doi.org/10.5772/intechopen.95809

ternary complex E-NADP+–DHT. Towards the end of reaction, release of DHT gives 
the binary NADP+-enzyme complex, followed by the release of NADP+ leaving the 
enzyme free for further catalytic reactions.

3.3.2 Kinetic mechanism

The kinetic mechanism was studied for the natural substrate T using rat and 
human prostatic 5α-reductase and both the models showed similar kinetic mecha-
nism as shown in Figure 8. 1,4-reduction of the substrate (T) depends on the initial 
velocity data from progesterone and 5α-reductase, wherein NADP+ is found to be 
competitive versus NADPH but non-competitive versus progesterone. Further 
catalysis occurs with the initial release of DHT followed by NADP+.

3.4 Classification of 5α-reductase inhibitors

The control of the physiological action of major androgen DHT, without sig-
nificant change in the overall profile of other hormones especially (T), through the 
inhibition of specific enzyme 5AR involved in its synthesis and metabolism, plays 
an important role in the design of ARIs, mimicking the electronic and steric proper-
ties of the enolate [75].

The identification of different isozymes of 5AR, their specific role in physi-
ological and pathological developments of BPH has opened the door for more 
specific and selective inhibitors of this enzyme [76]. Broadly 5α-reductase inhibitors 
have been divided into following major groups a) Transition state analogues b) 
Mechanism based inhibitors c) Structure based.

3.4.1 Transition state analogues

Based on chemical mechanism of 5AR, two possible transition states  
(Figure 9) have been postulated substrate like and product like. [77, 78]. The 
‘substrate like’ transition state is the one in which the C-5 has not yet changed it 
sp2-hybridization and the structure of C-3, C-4, and C-5 are similar to those of 
intermediate carbonation. On other hand in ‘product like’ TS C-5 has assumed 
its final sp3 hybridization and structure of C-3, C-4 and C-5 are similar to those 
of enol form of DHT.

Transition state analogue states that the binding to the enzyme and thus its inhi-
bition could be greater for molecules being mimic of the transition of the enzymatic 
process [77].

3.4.2 Mechanism based analogues

According to the kinetic mechanism of T reduction to DHT, three different types 
(Type A, B and C) of inhibitors have been identified [79, 80]:

a. Type A: Inhibitors compete with substrate testosterone and cofactor NADPH 
i.e. bisubstrate.

Figure 8. 
Kinetic mechanism.
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enzyme free for further catalytic reactions.
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‘substrate like’ transition state is the one in which the C-5 has not yet changed it 
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b. Type B: These are the compounds that got the potential to bind reversibly 
to NADPH-enzyme complex and competitive with natural substrate T thus 
competitive inhibitors.

c. Type C: Such inhibitors fit the enzyme- NADP complex and are uncompetitive 
versus the substrates.

Number of steroidal and non-steroidal analogs ranging from classical, revers-
ible and irreversible inhibitors, and transition state analogues to mechanism-based 
analogues have been synthesized and evaluated during last two decades as shown in 
Figure 10.

Biological basis for the steroidal inhibitors lies in the observation that enzyme 
could be best inhibited by the compounds having structural similarities to natural 
substrate i.e. T. One of the earlier report in 1970 by Voigt and Hsia, indicate the 
ability of 23 steroidal hormones to inhibit 5AR in human skin thus the efficacy 
of steroidal derivatives in BPH [81]. Progesterone, a competitive substrate of T, 
restrained transformation by upto 93.3% and was converted to 5-pregnane-3, 
20-dione. Great affinity of progesterone for 5AR was further indicated by its high 
value of inhibitory constant (Ki = 700 nm). Other potent inhibitors were deoxycor-
tisone, deoxycortisone acetate and dehydroepiandrosterone [82]. In 1973, synthesis 
and evaluation of series of 5ARI, indicated the key structural requirements for the 
5ARI activity i.e. presence of 4-en-3-one function and 17β-side chain having one or 
more oxygen functionalities. Molecules possessing these features act as competi-
tive inhibitors of 5AR, therefore, all of them could be regarded as a substrate of 
the enzyme 4-en-3-one steroids [83]. The clinically approved first inhibitor was 

Figure 9. 
Transition states of the enzyme (5AR).
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prepared by modification of the structure of naturally existing substrates. This 
modification included the substitution of various hetero atom such as nitrogen, by 
forming the azasteroids by replacing carbon atom of the ring with nitrogen in the 
steroidal moieties.

Finasteride.
Chemically Finasteride (MK-906) is 17β-(N-tert-butyl-carbamoyl)-4-aza-5α-

androst-1-en-3-one. It was synthesized in 1984, and got clinical approval in 1992 
in the United States as the first 5α-reductase inhibitor for the treatment of BPH 
[84]. It is a competitive inhibitor of 5α-reductase type 2 with 10-fold high affinity 
than type 1 and forms a stable complex with enzyme. Clinical doses of 5 mg/day 
has been found to decrease the prostatic DHT level by 70 to 90%, in human beings, 
thus decreases prostate volume or size followed by improvement in urinary flow 
rate [85, 86]. It has neither any other hormone (androgenic, antiandrogenic) related 
properties, nor it interferes with the binding of T or DHT to the androgen receptor 
[87]. Though significant improvement in term of increased flow rates and decreased 
prostate-specific antigen level has been observed in finasteride-treated group. But, 
its long term usage results in common side effects like decreased libido, ejaculatory 
dysfunction, or impotence, while rashes and breast enlargement have also been 
observed in some of the patients.
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Dutasteride.
Chemically dutasteride is 17β-N-{2, 5-bis (trifluoromethyl) phenyl)} -3- oxo- 4- 

aza- 5α- androst - 1- ene - 17-carboxamide and belongs 4-aza-steroids [86] It was 
approved in 2002 by the US FDA for the symptomatic treatment of BPH. Unlike 
finasteride, dutasteride is a nonselective competitive inhibitor of both isozymes. 
5α-reductase type 1 and type 2.

At clinical dose of 0.5 mg/day, it decreases DHT levels >90%, by forming a stable 
complex with a slow rate of dissociation constant. Dutasteride has been found to 
improve urinary flow rate, decrease the risk of AUR and need for surgery by reduc-
ing the size of enlarged prostate [88–90]. Dutasteride is found to be 60 times more 
active than finasteride and efficacy has been improved in terms of symptom score, 
maximal urinary flow rate, and quality of life [86].

These two drugs have been found to display competitive blocking effect in 
short-term kinetic, whereas long-term reaction analysis revealed their irreversible 
inhibitory effect by forming a stable complex of enzyme-bound intermediates [91]. 
The binding affinity between 5α-R isoenzyme and 4-azasteroids can be described in 
the two step mechanism:

  E + I     
 K  i  
   ⇌    EI     K  3     ⟶    EI*  

Where Ki is the inhibition constant for the first step equilibrium and K3 is the 
rate constant for the time-dependent second step [92]. Mechanistically, finas-
teride has been proven to be 5α-R2 inhibitor by acting on alternative substrate 
for 5α-R2 which is initially bound to highly stable complex of enzyme-bound 
NADP-dihydrofinasteride. The resulting adduct is finally processed to form 
dihydrofinasteride [93]. The bisubstrate complex of NADP-dihydrofinasteride is a 
potent inhibitor with dissociation constant ki1x 10−31 M that makes it as one of the 
extremely potent known non-covalently bound complexes.180,183 Finasteride is also 

K3 (s−1) K1 (IC50, nM) K3/K1 (M−1 s−1)

5α-R 1

Finasteride inhibition 1.4 × 10−3 360 4 × 103

Dutasteride inhibition 1.1× 10−3 6 1.8 × 105

5α-R 2

Finasteride inhibition 2.2 × 10−2 69 3.2 × 105

Dutasteride inhibition 4.9 × 10−3 7 6.8 × 105

Table 2. 
Inhibition of 5α-R isozymes by clinically approved drugs.
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known for its inhibitory effect on 5α-R1. However, the resultant dihydrofinasteride 
complex has comparatively lower rate constant (Table 2).

4. Combination therapy

The scientific rationale for combining 5ARIs and α1-AR antagonists is based on 
their different and complementary modes of action, that help in managing static 
and dynamic component responsible for of an enlarged prostate gland and symp-
toms of LUTS. The rationale for this combination was further recommended on 
account of rapid relief of symptoms by the α1-AR antagonists, without targeting the 
underlying disease process along with mid or more sustained relief of symptoms 
by the 5ARIs [94]. The efficacy and safety of the treatment with different combina-
tions versus treatment with either agent alone has been investigated by different 
groups in large mulitcentral trials [95, 96].

Veterans Affairs Cooperative Study and Prospective European Doxazosin group 
evaluated the combination of finasteride with terazosin & doxazosin, respectively 
for one year. Significant improvement in the symptom score and flow rate was 
observed with α1-AR antagonists alone or combination therapy as compared to 
placebo or finasteride alone, but there was no significant difference observed for 
combination therapy over α1-AR antagonists alone. Short term successful trials were 
followed by studying the combination of finasteride and doxazosin for a period 
of 4.5 years as Medical therapy for Prostate Symptoms. Finasteride alone and this 
particular combination reduced the risk of AUR and need for BPH-related surgery 
versus placebo, whereas none of these outcomes were reduced significantly in 
patients consuming doxazosin alone.

Outcomes of another long term study examining the role of combination of 
dutasteride and tamsulosin (CombAT) over the α1-AR antagonists (tamsulosin) 
alone would be a major step in assessing the combination therapy and treatment 
decision [97]. Though present observations demonstrated a higher incidence of 
impotence with combination therapy compared with 5ARIS, in addition to higher 
incidence of α1-AR antagonists-mediated dizziness, hypotension [93]. Cost-
effectiveness studies by Nickel suggest that the combination therapy is more suit-
able for men at high risk for BPH progression, patients with high symptom score, 
large prostate volume and low qmax value.
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Abstract

Monoamine oxidase-A (MAO-A), a pro-oxidative enzyme catalyzes the  
oxidative deamination of endogenous and exogenous monoamines/neurotransmitters 
like dopamine, serotonin, norepinephrine or tyramine and converting them into their 
corresponding aldehydes and reactive oxygen species (ROS). Hyperactivity of MAO-A 
has been shown to be involved in depression, neuro-degeneration including Parkinson’s 
and Alzheimer’s diseases, neuropsychiatric disorders and cardiovascular diseases. 
Our recent results however demonstrated the involvement of MAO-A in promoting 
aggressiveness of lung carcinoma. We found both constitutive and inducible expres-
sion of MAO-A in non-small cell lung cancer cells H1299 and in A549 lung epithelial 
carcinoma cells. By using knockout (by CRISPR-Cas9 gene editing technology) or 
knockdown (using MAO-A specific esiRNA) MAO-A cells we demonstrated the role of 
MAO-A in promoting lung cancer aggressiveness and epithelial to mesenchymal tran-
sition (EMT). From our observations, we can conclude that MAO-A may be considered 
as a potential therapeutic target for the intervention and treatment of lung carcinoma.

Keywords: monoamine oxidase-A (MAO-A), non-small cell lung carcinoma, 
15-lipoxygenase, metastasis, epithelial to mesenchymal transition (EMT)

1. Introduction

Monoamine oxidase A (MAO-A) is a mitochondrial outer membrane-bound 
enzyme that catalyzes oxidative deamination of biogenic amines and subsequently 
generates reactive oxygen species (ROS) in the form of hydrogen peroxide (H2O2) as 
a catalytic by product. It is widely present in almost all mammalian cell types except 
in erythrocytes [1, 2].

It is well documented that abnormalities of MAO-A levels and activity can lead 
to neuropsychiatric disorders as it plays a vital role in the regulation of neurotrans-
mitters. Moreover, MAO-A hyperactivity has been shown to be associated with 
depression and previous reports implicate MAO-A inhibitors as effective therapeu-
tics against clinical depression and anxiety [3, 4]. Involvement of MAO-A has also 
been shown in neurodegenerative diseases including Parkinson’s and Alzheimer’s 
disease by inducing oxidative stress-mediated apoptosis [5, 6]. MAO-A deficiency 
and abnormal activity has also been associated with impulsive aggressive behavior 
[7], neuropsychiatric disorders [1], pancreatic beta cell function [8] and glucose 
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metabolism [9]. In addition to neurodegenerative disorders and neuroinflamma-
tory diseases, mounting evidences have been suggested about the contribution of 
MAO-A in cardiovascular diseases like myocardial injury [10], heart failure [11], 
cardiac cell apoptosis [12] etc.

Previously it has been shown that MAO-A has a major contribution in the 
resolution of inflammation and thus been reported as a signature marker of alter-
natively activated monocytes/macrophages [13]. Reactive oxygen species (ROS) can 
predispose cancer cells to DNA damage and cause tumor initiation and progression 
[14]. This suggests that MAO-A might have a significant role in cancer. Rybaczyk 
et al. [15] carried out a study where they have analyzed a subset of cancer datasets 
concentrating on genes involved in the serotonergic pathway. Genechip datasets 
consisting of cancerous tissue from human, mouse, rat, or zebrafish were obtained 
from the GEO database [16, 17]. Initially, obvious changes that were common in 
various types of cancers were identified by comparing gene expression between 
cancerous tissues and normal tissues for each type of cancer. This study strongly 
demonstrated that MAO-A suppression could be linked to increased risk of cancer 
and MAO-A expression was decreased in 95.4% of human cancer patients and 
94.2% of animal cancer cases compared to the non-cancerous controls [15].

In contrast, high Gleason grade or poorly differentiated prostate cancer 
exhibited increased MAO-A expression [18], and the increased level of MAO-A 
promoted prostate cancer metastasis [19, 20]. Furthermore, it was also reported 
that the overexpressed MAO-A in prostate cancer cells was the main causative agent 
for the reduced expression of E-cadherin and increased expression of vimentin 
and Twist at both mRNA and protein levels in prostate cancer [19]. These studies 
suggested a likely role of MAO-A for the progression of prostate cancer by mediat-
ing EMT. However, contradicting results were reported in case of HCC [21] and 
cholangiocarcinoma [22]. Therefore, it can be hypothesize from these reports that 
MAO-A functions across different cancer cells in a context specific manner and so, 
it is essential to further uncover the function of MAO-A in other cancers. All these 
reports indicate towards the emerging role of MAO-A in tumor growth, migration 
and metastasis. However, none of these studies revealed the role of MAO-A in lung 
cancer growth, migration and metastasis and its mechanistic regulation.

MAO-A can be present constitutively in many different types of cancer cells 
(like in H1299 lung cancer, HCT116 colorectal cancer or in LNCap prostate cancer 
cells), or it can be induced by Th2 cytokines IL-13/IL-4 in A549 lung epithelial 
carcinoma cell line or monocytic U937 cell line. In a very recent study by our group 
we showed that IL-13 mediated induction of MAO-A in human bronchial epithelial 
cell NHBE as well as in human lung carcinoma cell line A549. We also explored 
the mechanisms involved in the regulation of the expression/activity and func-
tion of MAO-A during IL-13-induction and presented evidence that Stat6, 15-LO 
and PPARγ are the critical regulators that are involved in regulating MAO-A gene 
expression and activity of A549 cells which further demonstrated the concerted 
mechanistic effects of these genes during IL-13-activation. Altogether, the IL-13/
STAT6, STAT3, STAT1/15-LO/PPARγ signaling axis for regulating MAO-A gene 
expression and function add novel insights into the resolution of inflammation and 
in the progression of lung cancer [23]. In addition to that, our recent unpublished 
observation revealed that MAO-A plays an important role in regulating cancer cell 
aggressiveness and EMT transition. Moreover, a very recent report from Huang 
et al. has provided evidence that MAO-A plays a key role in EMT and HIF-1α protein 
accumulation induced by HPV-16 E7 in NSCLC cells, suggesting that MAO-A may 
be a potential therapeutic target for HPV-related NSCLC [24]. So, based on these 
recent findings, we have focused on the potential contribution of MAO-A in lung 
cancer aggressiveness and metastasis and EMT transition. Previous literature and 
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our observations thus indicated that MAO-A could serve as a potential therapeutic 
target of lung cancer intervention and treatment.

In this chapter, we precisely highlighted the contribution of MAO-A in lung 
cancer aggressiveness and EMT and thus finally to the prognosis of the lung 
cancer patients primarily based on the observations obtained from our recent 
publication and ongoing research work and background studies. We also tried to 
explore the fact that MAO-A being a well-known contributor in neurological and 
neuropsychiatric disorders, how it could also be a tempting target of lung cancer 
treatment.

2.  MAO-A is co-induced with 15-LO in human lung cancer cells during 
IL-13 activation

15-lipoxygenase (15-LO) is a lipid peroxidating enzyme which is substantially 
induced in human peripheral blood monocytes after IL-4/IL-13 activation. This 
enzyme oxidizes polyunsaturated fatty acids like linoleic and arachidonic acids to 
their corresponding hydroperoxides like 13-S-HPODE and 15-S-HPETE [23, 24], 
which have been implicated as inflammatory mediators in cell development and in 
the pathogenesis of various diseases [25–29].

In a very recent study, our group demonstrated that MAO-A is co-induced with 
15-LO in monocytes/macrophages, normal human bronchial epithelial (NHBE) 
cells and in A549 lung epithelial carcinoma cell line in response to IL-13 treatment 
[23]. Moreover, concordant 15-LO and MAO-A induction following IL-13 stimula-
tion was also investigated in other lung epithelial cancer cells like in H1299 NSCLC. 
In H1299 cells, 15- LO expression level was very low and was not induced by IL-13. 
In contrast, MAO-A was constitutively present in H1299 cells but was not further 
induced upon IL-13 stimulation. These results thus demonstrate that in H1299 
NSCLC, MAO-A is already overexpressed and no further IL-13-dependent induction 
occurs in these cells.

3. Transcriptional regulation of MAO-A and 15-LO upon IL-13 induction

In previous reports, it was demonstrated that Stats (Stat1, Stat3 and Stat6) 
are required for controlling IL-13- mediated 15-LO and MAO-A gene expression 
[30, 31]. Along with the same line, our recent research article further confirmed 
the direct binding of Stat transcription factors (Stat1, Stat3 and Stat6) to their 
cognate DNA binding sites present in the 15- LO promoter after IL-13 stimulation 
in primary monocytes [23]. On the other hand, predicted transcription factor 
binding sites of MAO-A promoter does not show any Stat consensus sequence in 
its promoter but reveals presence of a bunch of different other transcription factor 
binding sites like Sp1, GATA, TBP and GRE [32]. To justify and validate the predic-
tion of different transcription factor binding sites located in the MAO-A promoter, 
we pursued experiment and presented evidence that in response to IL-13 stimula-
tion, Sp1 transcription factor directly binds to the cognate DNA binding sites in 
the MAO-A promoter after IL-13 stimulation in primary monocytes [23]. After 
establishing the role of Sp1 trascription factor in regulation of MAO-A activity, now 
we are trying to explore the role of other transcription factors like GATA, TBP, GRE 
in the regulation of MAO-A.

It was previously demonstrated by our group that as Egr-1 and CREB binding 
sites are present in 15-LO promoter, in case of primary human monocytes, Egr-1 
and CREB explicitly bind to their cognate sequences upon IL- 13 induction [33]. 
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In addition to that, our data also affirmed that there are two distinct diverged 
imitate signaling pathways downstream of the IL-13 receptor that regulate 15-LO 
gene expression in primary monocytes [33]. Our study revealed that other than the 
conventional IL-4Rα-Jak2-Stat3-dependent pathway [34], there exists a IL-13Rα1-
Tyk2-mediated pathway which is vital for IL-13-induced Egr-1 and CREB activation 
via MEK-ERK1/2. So, transcription factors Egr-1 and CREB plays a very crucial 
role in IL-13-induced 15-LO gene expression in primary human monocytes [33]. 
Based on these previous reports, and as 15-LO and MAO-A genes are co-induced 
upon exposure to IL-13 during alternative activation of monocytes, we further 
asked a question that whether Egr-1 and CREB transcription factors have any role 
in regulating IL-13- stimulated MAO-A gene expression in primary monocytes. Our 
experimental data strongly supported the regulatory role of transcription factors 
Egr-1 and CREB in mediating IL-13-stimulated MAO-A gene expression in primary 
monocytes probably by inducing 15-LO expression.

Therefore, collectively, the results presented previously by our group and in our 
recent study strongly suggest that Stats (Stat1, Stat3 and Stat6) as well as Egr-1 and 
CREB transcription factors are critical regulators of MAO-A activity in alternatively 
activated monocytes by IL-13.

Considering the fact that both 15-LO and MAO-A are co-induced upon IL-13 
stimulation in primary human monocytes/macrophages and in A549 cells, and 
since activity of both of them are regulated by the transcriptional activation 
of several Stats (Stat1, Stat3 and Stat6), Egr-1 and CREB in monocyte/macro-
phage and in A549 cells, we further intended to explore whether one of them is 
the upstream regulator of another. As expected, experimental results the fact 
that IL-13- induced gene expression in lung carcinoma cell line A549 15-LO 
 dependent [23].

4. IL-13-induced MAO-A contributes in lung cancer cell aggressiveness

It was previously reported that increased expression of MAO-A is associated 
with high grade aggressive prostate cancer [18, 35]. The ability of MAO-A to induce 
EMT in prostate cancer cells results in increased migratory, proliferative, invasive 
and metastatic potential through an elevation of ROS [19]. MAO-A-generated 
ROS modulates HIF1α (a master regulator of hypoxia) activity by suppressing 
PHD (oxygen dependent prolyl hydroxylases) activity. It was further verified that 
MAO-A enzymatic activity rather than the protein expression which is responsible 
for enhanced level of migration, invasion and proliferation of prostate cancer cells 
by the induction of EMT. These results thus suggest that MAO-A expression in high-
grade tumors might have a likely role in maintaining a dedifferentiated phenotype 
and promoting aggressive behavior. Based on these previous reports, our group 
also investigated the contribution of MAO-A in enhancing the aggressiveness of 
different type of cancer cells like H1299 lung cancer cells and in HCT116 colorectal 
cancer cells where MAO-A is constitutively expressed and is responsible for pro-
moting migration and invasion of these cancer cells (unpublished observations by 
our group). Based on our current observations, we also hypothesized that inducible 
MAO-A expression in A549 cells by IL-13/IL-4 might be involved in ling cancer 
progression and metastasis.

15-LO products HPODE/HPETE are well known PPARγ ligands and in our 
recent study, we have confirmed that IL-13 expression of MAO-A in lung epithelial 
carcinoma cell line A549 is dependent upon PPARγ [23]. Moreover, in our recent 
study, we have further confirmed that IL-13 stimulated A549 cell migration is 
mediated by MAO-A and requires both 15-LO and PPARγ activity. In vitro transwell 
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migration assay using the MAO-A activity inhibitor Moclobemide along with the 
15-LO inhibitor PD146176 and PPARγ antagonist GW9662 confirmed the above 
observation. In presence of Moclobemide, IL-13-induced A549 cell migration was 
reduced substantially whereas Moclobemide alone in absence of IL-13 showed no 
change compared to the unstimulated control, thereby suggesting a plausible role 
of MAO-A in A549 tumor cell migration in vitro. Similarly, significant reduction 
of migration was also observed in IL-13-activated A549 cells after treatment with 

Figure 1. 
Proposed mechanism of how IL-13 induced MAO-A cancer cell aggressiveness in lung cancer.  
IL-13-mediated activation of MAO-A expression/activity in A549 lung epithelial carcinoma cells is activated by 
IL-13/ (STAT6, STAT3, STAT1)/15-LO/PPARγ signaling axis and expression/activity of this induced MAO-A 
mediates ROS generation which is believed to have significant role on A549 cell migration, invasion and 
proliferation which are all associated with the aggressiveness of this particular cancer cell. Moreover, treatment 
of A549 cells with MAO-A specific inhibitors like moclobemide or clorgyline or esiRNA- mediated knockdown of 
MAO-A gene in A549 cells showed significant downregulation in the migration, invasion and proliferation of lung 
cancer cells. This finding marked MAO-A as a promising therapeutic target for aggressive lung cancer treatment. 
IL-13: Interleukin 13, MAO-A: Monoamine oxidase A, STAT6: Signal transducer and activator of transcription 6, 
15-LO: 15 lipoxygenase, PPARγ: Peroxisome proliferator-activated receptor gamma.
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the 15-LO activity inhibitor PD146176 and PPARγ antagonist GW9662 in a dose-
dependent manner compared to IL-13-stimulated positive control [23]. Moreover, 
we further confirmed the role of MAO-A in lung cancer cell migration and invasion 
in either MAO-A knockdown cells (using MAO-A esiRNA specific gene silenc-
ing) or MAO-A knockout cells (by using CRISPR-Cas9 gene editing technology) 
[Unpublished observations by our group].

Recently it was reported that the Th2 cytokine IL-13 contributes crucially 
in promoting EMT and enhancing aggressiveness (migration and invasion) in 
colorectal cancer (CRC) cells (HT29 and SW480 cells by triggering IL-13/IL-13Rα1/
STAT6/ZEB1 signaling axis) [36]. Recent findings from our group further suggest 
that IL-13/IL-13Rα1/Stat6 signaling axis is involved in regulating the expression/
activity of MAO-A in A549 lung epithelial carcinoma cells via a 15-lipoxygenase 
(15-LO)-dependent process involving PPARγ [23] which may be the main reason of 
promoting migratory, invasive and metastatic potential of the cancer cells (unpub-
lished observations). But these results further need to be validated in in-vivo model 
or by using high grade lung cancer patient tissue samples to conclusively comment 
on the role of MAO-A on cancer progression and metastasis. The mechanism by 
which MAO-A lung cancer cell aggressiveness is described under a schematic 
 representation in Figure 1.

5.  MAO-A plays an important role in epithelial to mesenchymal 
transition (EMT) in lung carcinoma

EMT is a vital and commutative process, during which epithelial cells transit 
from polarized, cobble stone like cells to migratory, spindle-shaped mesenchymal 
cells. Apart from the morphological changes, changes at the molecular level by losing 
expression of various epithelial markers such as E-cadherin, ZO-1 and occludin, and 
acquiring expression of mesenchymal markers including N-cadherin, vimentin, and 
fibronectin are also very common in the cells experiencing EMT [37, 38].

Various studies have suggested a robust correlation between different EMT 
markers like E-cadherin, hypoxia inducible factor 1α (HIF-1α), twist, snail and 
poor prognosis in lung cancer [39]. Specially, in case of NSCLC, expression of 
Twist, Slug, and Foxc2 was identified as important marker of recurrence-free and 
overall survival in stage I NSCLC [40]. High expression pattern of various EMT 
related markers have been identified in advanced primary lung cancer specimens, 
particularly in squamous cell carcinoma [41]. Reduced EMT markers expression 
were observed in case of brain metastasis to primary NSCLC, supporting the notion 
that disseminated tumor cells undergo EMT at the site of metastasis [42, 43]. It was 
also suggested that enhanced expression of Forkhead box M1 (FOXM1), a member 
of the Fox family of factors, may have prognostic value for patients with NSCLC, 
and FOXM1 was shown to promote metastasis by inducing EMT through activation 
of the AKT/p70S6K signaling axis [44].

Plethora of earlier reports suggested that MAO-A-mediated generation of 
excessive intracellular level of hydrogen peroxide, a major ROS species can induce 
epithelial to mesenchymal transition (EMT) in cancer cells. An extensive study by 
Wu et al. in 2014 [19] elaborately described how MAO-A affects prostate cancer 
cell (PCa) growth and metastasis and demonstrated for the first time, that MAO-A 
induces EMT and augments hypoxic responses to increase the migratory, invasive, 
and metastatic potential of PCa cells.

In a recent study, Liu et al. [45] determined the expression of MAO-A and dif-
ferent EMT markers in 45 pairs of NSCLC and matched non-tumor adjacent lung 
tissues to further explore the connection between MAO-A expression and the EMT 
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or the development of clinicopathological characteristics. From the results it was 
observed that both the protein and mRNA expression levels of MAO-A in NSCLC 
tissues were higher than those observed in the matched non-tumor adjacent lung 
tissues. Furthermore, in correlation with the previous notion, the enhanced expres-
sion of MAO-A in NSCLC tissues was positively associated with N-cadherin, Slug, 
and Twist, but negatively with E-cadherin expression. Furthermore, the elevated 
MAO-A expression in NSCLC tissues was also related with late stage NSCLC 
(Z = -2.596, P = 0.029) and lymph node metastases (Z = -2.378, P = 0.020). These 
findings indicated that MAO-A may have a role in inducing NSCLC progression by 
mediating EMT.

Next, considering the fact that high expression of monoamine oxidase A (MAO-A) 
in non-small cell lung cancer (NSCLC) is related to epithelial-mesenchymal transition 
(EMT) and the development of clinicopathological features of NSCLC, very recently, 
Yang et al. [46] tried to evaluate the role of a previously synthesized MAO-A inhibitor 
(G11) on inhibiting paclitaxel resistant NSCLC metastasis and growth. Experimental 
results showed that G11 significantly abrogated the viability of paclitaxel (PTX)-
resistant NSCLC cell lines (A549/PTX and H460/PTX). G11 also abrogated the 
expression of MAO-A in A549/PTX and H460/PTX cells, which displayed relatively 
high MAO-A expression levels. Moreover, G11 was found to impede A549/PTX and 
H460/PTX cell migration and invasion. Furthermore, the in-vivo study also suggested 
that the co-administration of G11 and paclitaxel significantly suppressed tumor 
metastasis in H460/PTX lung metastasis models.

Considering these reports, we checked the expression of different EMT related 
markers like E-cadherin, N-cadherin, twist, snail, vimentin, etc. in MAO-A esiRNA 
treated A-549 cells as well as MAO-A knockout A549 cell line (by using CRISPR-
Cas9 gene editing technology). As expected, these data confirmed regulatory role 
of MAO-A in EMT in lung carcinoma [Our unpublished observations]. Now to 
further validate the role of MAO-A in EMT and cancer metastasis, we are trying 
to explore the status of MAO-A, 15-LO and different EMT markers in lung cancer 
patient samples.

So, collectively, mounting evidences from different research reports and our 
recent observation strongly recommend further investigations for MAO-A as a 
tempting therapeutic target for lung cancer treatment.

6. Discussion

Monoamine oxidase A, an enzyme responsible for the oxidative deamination of 
biogenic amines, is well-known to be closely associated with impulsive aggressive 
behavior, anxiety, depression, and is considered as an indicator of psychological 
status [47, 48]. Recently, several studies have been focusing on the relationship 
between MAO-A expression and cancers [18–20, 49]. Initially, increased MAO-A 
expression was reported in high-grade aggressive prostate cancer, it was also dem-
onstrated that increased expression of MAO-A was capable of mediating prostate 
tumorigenesis and metastasis [18–20]. Recently, MAO-A was reported as a novel 
decision maker in apoptosis and autophagy processes occurring within hormone 
refractory neuroendocrine prostate cancer cells [29]. Moreover, clorgyline, a known 
MAO-A inhibitor, was found to display anti-oncogenic and pro-differentiation 
effects on high-grade prostate cancer cells [50]. In contrary, MAO-A inhibitor-
near-infrared dye conjugate was reported to reduce prostate tumor growth [51]. 
These findings suggest a likely role of MAO-A in mediating prostate cancer progres-
sion. However, in contrast to the previous reports of prostate cancer cells, Li et al. 
demonstrated that MAO-A expression was appreciably downregulated in clinical 



Oxidoreductase

98

the 15-LO activity inhibitor PD146176 and PPARγ antagonist GW9662 in a dose-
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demonstrated that MAO-A expression was appreciably downregulated in clinical 
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HCC tissue samples [18], and MAO-A subdued HCC metastasis by hindering the 
adrenergic system and its transactivation of EGFR signaling [21]. Huang et al. 
also found that MAO-A expression was impeded by coordinated epigenetic and 
IL-6-driven events in human cholangiocarcinoma [22], and that overexpression of 
MAO-A suppressed cholangiocarcinoma growth and invasion [22].

So, from the above discussion it is clear that MAO-A level is regulated in dif-
ferent cancer cell lines in context specific manner. Moreover, MAO-A expression 
in high grade tumors may play a crucial role in promoting aggressive behavior of 
cancer cells. MAO-A degrades monoamine neurotransmitters by oxidative deami-
nation and produces ROS. Increased level of ROS generation can be an important 
inducer of tumorigenesis, progression and metastasis in high grade cancers. Hence 
enhanced level of MAO-A expression and aggressive behavior of cancer cells may be 
correlated in advanced grade of cancer. From the studies on different type of cancer, 
it is quite evident that MAO-A may serve as a diagnostic biomarker and can also be 
applied as a therapeutic target in the treatment of cancer.

Furthermore, in case of NSCLC, as we have discussed earlier, research article 
by Liu et al. [45] supported our findings that MAO-A expression was significantly 
increased in NSCLC tissues, which was positively associated with EMT, late stages 
and lymph node metastases of the cancer, thus supporting the notion that MAO-A 
may play a role in NSCLC progression by regulating the EMT process.

In addition to that, along with the same line, Yang et al. [46] very recently 
established the role of MAO-A in lung cancer cell metastasis and EMT transition. 
So, these findings strongly recommend MAO-A as a promising therapeutic target of 
lung cancer treatment.

In our recent report, our result has demonstrated that IL-13- induced A549 cell 
migration was significantly downregulated in presence of moclobemide, a indicat-
ing a role of moclobemide in regulating lung cancer cell aggressiveness [23]. Wang 
et al. [52] that targeting MAO-A with FDA approved antidepressants could be a 
promising treatment option for the prostate cancer. It was reported by them that 
the antiandrogen enzalutamide (Enz) has improved survival in castration resistant 
prostate cancer (CRPC) patients. However, most patients eventually develop Enz 
resistance inducing by the androgen receptor (AR) splicing variant 7 (ARv7). 
Experimental results demonstrated that elevated expression of monoamine oxi-
dase-A (MAO-A) is correlated with positive ARv7 detection in CRPC patients upon 
Enz treatment. Targeting MAO-A with phenelzine or clorgyline, the FDA-approved 
drugs for antidepression, resensitize the Enz resistant (EnzR) cells to Enz treatment 
and further subdudes EnzR cell growth in-vitro and in-vivo.

Moreover, Lee et al. [53] in 2013 have demonstrated that in case of LnCaP-LN3 
prostate cancer cells MAO-A inhibitor pargyline significantly induced cell cycle 
arrest at the G1 phase compared to the control cells. In addition, pargyline induced 
an increase in the cell death rate by promoting apoptosis. Clinical depression is a 
very common feature in prostate cancer and mounting evidences have suggested 
that MAO-A levels are frequently elevated in different cancer types and MAO-A 
inhibitors (which are basically antidepressants) can serve as repurposing drugs for 
the treatment of cancer. Zarmouh et al. have identified a novel flavonoid MAO-A 
inhibitor which shows antiproliferative effect on prostate cancer cells [54].

Our recent research and different other research articles, it is well established that 
selective inhibitors of MAO-A like moclobemide, clorgyline, pargyline or a novel 
synthetic flavonoid can efficiently reduce cancer cell aggressiveness by either inhibiting 
cancer cell migration, proliferation or promoting apoptosis. So, selective inhibitors of 
MAO-A could also be used as a promising therapeutic agents for lung cancer treatment.

Moreover, in our unpublished observation, esiRNA specific knockdown of 
MAO-A in lung cancer cell A549 have shown significant downregulation of cancer cell 
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migration, invasion and EMT transition. So, siRNA-mediated gene silencing approach 
for MAO-A could also be used as a potential therapeutic approach in lung cancer 
treatment.

7. Conclusion

In cancer cells, migration and invasion are the basic steps that control metastasis 
which is a principle cause of cancer-related death. Recent reports demonstrate that 
MAO-A is involved in promoting prostate cancer progression by inducing epithelial 
to mesenchymal transition (EMT) which ultimately causes set up of ROS, thus 
increasing the ability of migration and invasion of these cells. MAO-A enzymatic 
activity is shown to be the main causative agent for MAO-A-driven ROS generation 
in cancer cells which acts as the critical regulator of MAO-A-mediated functions like 
migration, invasion and proliferation.

Evidences from different reports and our own findings suggest that elevated 
levels of MAO-A is a key feature of advanced stage of lung carcinoma and plays 
a crucial role in lung cancer cell aggressiveness through induction of epithelial to 
mesenchimal transition. Thus it is really novel to report that an oxidative enzyme 
which is preliminarily found to be involved in depression and antisocial behavior 
now can be considered as a biomarker for lung cancer therapy.

Altogether, our results strongly support that MAO-A can be used as a potential 
therapeutic target of lung cancer treatment for the better prognosis of the disease.
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applied as a therapeutic target in the treatment of cancer.

Furthermore, in case of NSCLC, as we have discussed earlier, research article 
by Liu et al. [45] supported our findings that MAO-A expression was significantly 
increased in NSCLC tissues, which was positively associated with EMT, late stages 
and lymph node metastases of the cancer, thus supporting the notion that MAO-A 
may play a role in NSCLC progression by regulating the EMT process.

In addition to that, along with the same line, Yang et al. [46] very recently 
established the role of MAO-A in lung cancer cell metastasis and EMT transition. 
So, these findings strongly recommend MAO-A as a promising therapeutic target of 
lung cancer treatment.

In our recent report, our result has demonstrated that IL-13- induced A549 cell 
migration was significantly downregulated in presence of moclobemide, a indicat-
ing a role of moclobemide in regulating lung cancer cell aggressiveness [23]. Wang 
et al. [52] that targeting MAO-A with FDA approved antidepressants could be a 
promising treatment option for the prostate cancer. It was reported by them that 
the antiandrogen enzalutamide (Enz) has improved survival in castration resistant 
prostate cancer (CRPC) patients. However, most patients eventually develop Enz 
resistance inducing by the androgen receptor (AR) splicing variant 7 (ARv7). 
Experimental results demonstrated that elevated expression of monoamine oxi-
dase-A (MAO-A) is correlated with positive ARv7 detection in CRPC patients upon 
Enz treatment. Targeting MAO-A with phenelzine or clorgyline, the FDA-approved 
drugs for antidepression, resensitize the Enz resistant (EnzR) cells to Enz treatment 
and further subdudes EnzR cell growth in-vitro and in-vivo.

Moreover, Lee et al. [53] in 2013 have demonstrated that in case of LnCaP-LN3 
prostate cancer cells MAO-A inhibitor pargyline significantly induced cell cycle 
arrest at the G1 phase compared to the control cells. In addition, pargyline induced 
an increase in the cell death rate by promoting apoptosis. Clinical depression is a 
very common feature in prostate cancer and mounting evidences have suggested 
that MAO-A levels are frequently elevated in different cancer types and MAO-A 
inhibitors (which are basically antidepressants) can serve as repurposing drugs for 
the treatment of cancer. Zarmouh et al. have identified a novel flavonoid MAO-A 
inhibitor which shows antiproliferative effect on prostate cancer cells [54].

Our recent research and different other research articles, it is well established that 
selective inhibitors of MAO-A like moclobemide, clorgyline, pargyline or a novel 
synthetic flavonoid can efficiently reduce cancer cell aggressiveness by either inhibiting 
cancer cell migration, proliferation or promoting apoptosis. So, selective inhibitors of 
MAO-A could also be used as a promising therapeutic agents for lung cancer treatment.

Moreover, in our unpublished observation, esiRNA specific knockdown of 
MAO-A in lung cancer cell A549 have shown significant downregulation of cancer cell 
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migration, invasion and EMT transition. So, siRNA-mediated gene silencing approach 
for MAO-A could also be used as a potential therapeutic approach in lung cancer 
treatment.

7. Conclusion

In cancer cells, migration and invasion are the basic steps that control metastasis 
which is a principle cause of cancer-related death. Recent reports demonstrate that 
MAO-A is involved in promoting prostate cancer progression by inducing epithelial 
to mesenchymal transition (EMT) which ultimately causes set up of ROS, thus 
increasing the ability of migration and invasion of these cells. MAO-A enzymatic 
activity is shown to be the main causative agent for MAO-A-driven ROS generation 
in cancer cells which acts as the critical regulator of MAO-A-mediated functions like 
migration, invasion and proliferation.

Evidences from different reports and our own findings suggest that elevated 
levels of MAO-A is a key feature of advanced stage of lung carcinoma and plays 
a crucial role in lung cancer cell aggressiveness through induction of epithelial to 
mesenchimal transition. Thus it is really novel to report that an oxidative enzyme 
which is preliminarily found to be involved in depression and antisocial behavior 
now can be considered as a biomarker for lung cancer therapy.

Altogether, our results strongly support that MAO-A can be used as a potential 
therapeutic target of lung cancer treatment for the better prognosis of the disease.
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Chapter 7

Bulk and Nanocatalysts 
Applications in Advanced 
Oxidation Processes
Luma Majeed Ahmed

Abstract

Advanced oxidation processes (AOPs) are considered to be vital methods 
for treating the contaminations produced mainly by the human activations. In 
present-day, UV light or solar light, bulk and nano- photocatalysts are often used to 
enhance this technology by creating the highly reactive species such as the hydroxyl 
radicals. Extreme hydroxyl radical is considered as a key to start the photoreaction. 
Photoreaction is widely used in treatment of Lab and industrial contaminations, 
preparation of compounds and produced the renewable energy, so it’s classified as 
green technique. In order to improve the efficiency of this reaction with fabrication 
the surface of the used photocatalyst such as metal doped, sensitized and produced 
a composite as bulk catalyst or nano catalyst.

Keywords: nanocatalysts, bulk catalyst, advanced oxidation processes,  
wastewater treatment, photocatalysis, Fenton reaction, photo-Fenton

1. Introduction

In this section, the advanced Oxidation Processes concepts will be related to use 
of the bulk and the nano- catalysts as vital materials for easily generating a highly 
oxidizing species and reactive oxygen species (ROSs) such as in aqueous or alco-
holic solution [1]. ROSs are contains three primary kinds: superoxide anion (O2

•−), 
hydrogen peroxide (H2O2) and the hydroxyl radical (HO•) [2], which produced 
from reaction of adsorbed oxygen molecule on catalyst’s surface with one electron 
in conductive band under illumination by light as UV, or visible or solar light, this 
mechanism is useful to reduce the recombination process and increased the life time 
of hole in valance band [3, 4]. As explained in Figure 1.

The ROSs are having the electron configurations as tabled in Table 1 [5–8].

2. Advance oxidation process applications

In the last few years, several researches have predominated in many universi-
ties and research centers on the scientific ventures to mainly treat the contamina-
tions that produced by textile factories [9–11], reduced the degradation of food’s 
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dye [12], decolorization of colored organometallic complexes [13], degradation 
of toxic cyclic compounds [14] and produced a hydrogen from alcohol as renew-
able energy [15]. The effective materials for all above mention research are 
generated the hydroxyl radical in aqueous solution with maximum oxidation 
power equals to 2.8 V [1]. Based on to the AOPs, the common sources for creation 

Figure 1. 
Essential mechanism for generating the ROSs under illumination of photo-catalyst particles [1].

Table 1. 
Electronic configurations and chemical formulas for the ROSs types.
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of.OH in AOPs are illustrated in Figure 2, which regards as power to star the dark 
or photo reactions [1, 16–19].

Fortunately, the benefits of AOPs are more than those of drawbacks. The 
benefits of AOPs are summarized up as [1, 20] follows to:

1. Create a large number of free radicals species.

2. Have the appropriate potential to depress the hazardous organic pollutants by 
complete their mineralization and producing CO2 and H2O.

3. Reduce the time of dark or photoreaction.

4. Have low economic cost.

Whereas, the drawbacks of AOPs [1, 21] are quenching the reaction rate with 
increasing the scavenger contains (mostly peroxide ion) and may be generated the 
undesirable hazardous products that prevented the complete of mineralization 
process, hence, the altered of pH or using further cost steps may be essentially to 
treat their problems.

3. Bulk and nano-catalysts

In general, the catalysts may be metal or alloy or semiconductor. Semiconductor 
is wide used as catalyst and can be element or compound as amorphous or crystal-
line or rock salt crystal. Because of semiconductors have intermediate properties 
between metal and insulator, which has given them rescannable electronic and 
structural properties, hence, semiconductor is classified as a better-known kinds, as 
mentioned in Figure 3 [22–24].

The usages of the bulk and nano catalysts are increment with increasing the 
development of life activations. The catalysts were known for the long time to 
increase the rate of reaction with decreasing the time of reaction and the activa-
tion energy in dark reaction or photoreaction. In order to use the catalyst in 

Figure 2. 
Schematic diagram of common sources of.OH in advanced oxidation processes.
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photoreaction as photo catalyst, must have a band gap with raged about 1.1 eV to 
5.0 eV [1, 24]. Referring to Figure 4, several band gap energy positions of some 
common photo catalysts can be displayed [1, 25–27].

The mainly problem in bulk and nano catalyst is recombination process, 
which results in diminishing the efficiency of used photocatalyst by returning the 
photoelectron from conductive band to valance band and reacting with photohole 
immediately. The recombination includes four kinds can be followed in Table 2 
and Figure 5 [1, 28–30].

In order to improve the activity of photocatalysts must depress the recombi-
nation with modify their surfaces with three main methods: surface sensitiza-
tion, metalized photocatalyst surface and coupled for two or more photocatalysts 
as Composite. The details of these modification methods are mention in Table 3 
and Figure 6 [40].

Figure 4. 
Band gap energy positions of different photo-semiconductor at pH = 1.

Figure 3. 
Better-known kinds of semiconductors.

111

Bulk and Nanocatalysts Applications in Advanced Oxidation Processes
DOI: http://dx.doi.org/10.5772/intechopen.94234

Kinds Other name Info Type of 
photocatalyst

Direct 
recombination

Band-to- band 
recombination

In this kind, the transition occurrs 
as a radiative transition in direct 
band gap semiconductor. It is created 
when the Free photo electron in CB 
drops directly into free photo hole 
(an unoccupied state) in the VB and 
associated together. Note Figure 5(A).

ZnO have a direct 
band gap.

Volume 
recombination

Centers 
recombination 
or Trap-assisted 
recombination

This case obtains, when defect of 
semiconductor by impurities that given 
a new levels (as traps of photoelectron 
and photohole). It leads to liberate 
heat as phonon in indirect band gap 
semiconductor. Note Figure 5(B).

Pure TiO2 and 
defect of TiO2 by 
metal, which had 
given an indirect 
band gap.

Surface 
recombination

Recombination 
of an exciton

This case occurs at low temperature, 
when the traps at or near the surface or 
interface of the semiconductor, capture 
the photo electron- hole as exciton. 
That attitude to dangling bonds caused 
by the sudden discontinuation of the 
semi-conductor crystal with energy 
just below the band gap value. Note 
Figure 5(C).

It happed in solar 
cells and light 
emitting diode 
(LED) containing 
shallow levels.

Auger 
recombination

— This recombination involves three 
carriers: Free photo electron, free photo 
whole recombine, and the emitting 
the energy as heat or as a photon 
(non-radiative process). The transition 
of energy deals with as intra-band 
transitions, which resulting when 
either electron elevates in higher levels 
of conduction band or hole deeper 
push into the valence band. Note 
Figure 5(D).

This case can be 
obtained wit short 
lifetime when 
heavy doping 
defects (like Ag) 
in direct-gap 
semiconductors 
under present 
sunlight.

Table 2. 
The most common recombination types concepts.

Figure 5. 
The schematic diagram of the most common recombination kinds.
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Table 3. 
The description of the methods for modifying photocatalysts [31–39].
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Figure 6. 
Schematic diagram for modification of photocatalyst surface [40].

Application field Type of used AOPs Efficiency References

Textile dye
Reactive red 2 dye

O2/UV-A(250 W)/ZnO/
H2O2

89.8% (Photodecolorization)
(5 mmole/L) of H2O2

(T = 25°C), (pH = 10)

[41]

Textile dye
direct orange dye

O2/UV-A(250 W)/ZnO 92.7%
(Photodecolorization)
(T = 35°C), (pH = 6.68)

[42]

Textile dye
reactive yellow 14 
dye

O2/UV-A(250 W)/ZnO 91.41%
(Photodecolorization)
(T = 38°C), (pH = 6.75)

[43]

Industrial dye
Chlorazol black 
BH dye

O2/UV-A/ZnO 99.07%
(Photodecolorization)
(T = 15°C), (pH = 7.63)

[44]

Industrial dye
Acid Red 87(Eosin 
(Eosin Yellow) dye

O2/UV-A(125 W)/ZnO

O2/UV-A(250 W)/ZnO

O2/Solar/ZnO

74.4.5%
(Photodecolorization)
(T = 38°C), (pH = 8.6)
98.5%
(Photodecolorization)
(T = 38°C), (pH = 8.6)
96.5%
(Photodecolorization)
(T = 42°C), (pH = 8.6)

[32]

Textile dye
Dispersive yellow 
42 dye

O2/UV-A(125 W)/ZnO

O2/UV-A(125 W)/ZnO/Fe2+

O2/UV-A(125 W)/ZnO/
Fe2++1% H2O2

94.40%
(Photodecolorization)
(T = 20°C), (pH = 7.7)
60.86% (Photodecolorization)
(T = 20°C), (pH = 7.7)
16.44% (Photodecolorization)
(5 x 10−4 mole/L) of Fe2+

(T = 20°C), (pH = 7.7)

[10]
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Application field Type of used AOPs Efficiency References

Drug dye
Cobalamine(Vit 
B12)

O2/UV-A(250 W)/ZnO

O2/UV-A(250 W)/ZnO/ 
K2S2O8

O2/UV-A(250 W)/ZnO/ 
0.025% H2O2

O2/UV-A(250 W)/ZnO/ 
K2S2O8 + 0.025% H2O2

79.33%
(Photodecolorization)
(T = 30°C), (pH = 6.5)
88.75%
(Photodecolorization)
(1 x 10−4 mole/L) of K2S2O8

(T = 30°C), (pH = 6.5)
90.80%
(Photodecolorization)
(T = 30°C), (pH = 6.5)
95.85%
(Photodecolorization)
(1 x 10−4 mole/L) of K2S2O8

(T = 30°C), (pH = 6.5)

[19]

Food dye
Carmoisine (E122) 
dye

O2/UV-A(250 W)/ZnO

O2/UV-A(250 W)/ZnO/ 
0.1% H2O2

O2/UV-A(250 W)/ZnO/ Fe2+

73.11%
(Photodecolorization)
(T = 18°C), (pH = 7.55)
62.58%
(Photodecolorization)
(T = 18°C), (pH = 7.55)
36.99%
(Photodecolorization)
(1 x 10−5 mole/L) of Fe2+

(T = 18°C), (pH = 7.55)

[12]

Lab materials
Co(II) Complex of 
Schiff Base

O2/UV-A(250 W)/ZnO 99.11%
(Photodecolorization)
(T = 38°C), (pH = 7.55)

[13]

Industrial dye
Methyl green dye

O2/UV-A(400 W)/ ZnO 
NPS

O2/UV-A(400 W)/Ag(2%) 
ZnO NPs

37%
(Photodecolorization)
(T = 25°C), (pH = 5.4)
87.37%
(Photodecolorization)
(T = 25°C), (pH = 5.4)

[35]

Liberated of 
hydrogen from 
Methanol as 
renewable energy

Ar/UV-B(1000 W)/ (0.5 Pt) 
TiO2 NPS

Ar/UV-B(1000 W)/ (0.5 
Au) TiO2 NPS

8.8%
(Photo hydrogen production)
(T = 25°C), (pH = 7.3)
4.5%
(Photo hydrogen production)
(T = 25°C), (pH = 7.3)

[14]

Industrial dye
Light Green SF
Yellowish (Acid 
Green 5) Dye

O2/UV-A(400 W)/ TiO2

O2/UV-A(400 W)/ TiO2 
NPS

90.2%
(Photodecolorization)
(T = 20°C), (pH = 7.3)
88.1%
(Photodecolorization)
(T = 20°C), (pH = 7.3)

[45]
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Application field Type of used AOPs Efficiency References

Industrial dye
Safranine O Dye

O2/UV-A(125 W)/ TiO2 NPS

O2/UV-A(125 W)/ TiO2 
NPS/ Fe2+

O2/UV-A(125 W)/ TiO2 
NPS/ Fe2+

O2/UV-A(125 W)/ TiO2 
NPS/ 0.1% H2O2

O2/UV-A(125 W)/ TiO2 
NPS/ 0.1% H2O2+ Fe2+

90.2%
(Photodecolorization)
(T = 30°C), (pH = 6)

85.92%
(Photodecolorization)
(1 x 10−4 mole/L) of Fe2+

(T = 30°C), (pH = 6)
92.73%
(Photodecolorization)
(T = 30°C), (pH = 6)
98.83%
(Photodecolorization)
(1 x 10−4 mole/L) of Fe2+

(T = 30°C), (pH = 6)

[34]

Industrial dye
Acid Red 87 (Eosin 
Yellow) dye

O2/UV-A(250 W)/ TiO2 NPS

O2/UV-A(250 W)/ TiO2 
NPS+ H2O2

O2/UV-A(250 W)/ WO3 
NPS

O2/UV-A(250 W)/ WO3 
NPS+ H2O2

O2/UV-A(250 W)/ (0.5) 
WO3-TiO2 nanocomposite

O2/UV-A(250 W)/ (0.5) 
WO3-TiO2 nanocomposite+ 
H2O2

63.58%
(Photodecolorization)
(T = 25°C), (pH = 6.09)
50.44%
(Photodecolorization)
(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)
27.84%
(Photodecolorization)
(T = 25°C), (pH = 6.09)
21.54%
(Photodecolorization)
(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)
25.11%
(Photodecolorization)
(T = 25°C), (pH = 6.09)
73.88%
(Photodecolorization)
(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)

[16]

Industrial dye
Methyl green dye

O2/UV-A(250 W)/ZrO2

O2/UV-A(250 W)/
ZrO2 + Fe2+

O2/UV-A(250 W)/
ZrO2 + 1.5% H2O2

O2/UV-A(250 W)/
ZrO2 + K2S2O8

92.31%
(Photodecolorization)
(T = 30°C), (pH = 5.4)
39.93%
(Photodecolorization)
(1 x 10−4 mmole/L) of Fe2+

(T = 30°C), (pH = 5.4)
98.78%
(Photodecolorization)
(T = 30°C), (pH = 5.4)
74.62%
(Photodecolorization)
(1 x 10−4 mmole/L) of K2S2O8

(T = 30°C), (pH = 5.4)

[46]

Lab materials
Fe(II)-(4,5-
DIAZAFLUOREN-9-
ONE 11) COMPLEX

O2/UV-A(400 W)/ Mn3O4

O2/UV-A(400 W)/ 
(1)Mn3O4- (4) ZrO2 
nanocomposite

22.64%
(Photodecolorization)
(T = 15°C), (pH = 4)
40%
(Photodecolorization)
(T = 17°C), (pH = 4)

[47]
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Application field Type of used AOPs Efficiency References

Drug dye
Cobalamine(Vit 
B12)

O2/UV-A(250 W)/ZnO

O2/UV-A(250 W)/ZnO/ 
K2S2O8

O2/UV-A(250 W)/ZnO/ 
0.025% H2O2

O2/UV-A(250 W)/ZnO/ 
K2S2O8 + 0.025% H2O2

79.33%
(Photodecolorization)
(T = 30°C), (pH = 6.5)
88.75%
(Photodecolorization)
(1 x 10−4 mole/L) of K2S2O8

(T = 30°C), (pH = 6.5)
90.80%
(Photodecolorization)
(T = 30°C), (pH = 6.5)
95.85%
(Photodecolorization)
(1 x 10−4 mole/L) of K2S2O8

(T = 30°C), (pH = 6.5)

[19]

Food dye
Carmoisine (E122) 
dye

O2/UV-A(250 W)/ZnO

O2/UV-A(250 W)/ZnO/ 
0.1% H2O2

O2/UV-A(250 W)/ZnO/ Fe2+

73.11%
(Photodecolorization)
(T = 18°C), (pH = 7.55)
62.58%
(Photodecolorization)
(T = 18°C), (pH = 7.55)
36.99%
(Photodecolorization)
(1 x 10−5 mole/L) of Fe2+

(T = 18°C), (pH = 7.55)

[12]

Lab materials
Co(II) Complex of 
Schiff Base

O2/UV-A(250 W)/ZnO 99.11%
(Photodecolorization)
(T = 38°C), (pH = 7.55)

[13]

Industrial dye
Methyl green dye

O2/UV-A(400 W)/ ZnO 
NPS

O2/UV-A(400 W)/Ag(2%) 
ZnO NPs

37%
(Photodecolorization)
(T = 25°C), (pH = 5.4)
87.37%
(Photodecolorization)
(T = 25°C), (pH = 5.4)

[35]

Liberated of 
hydrogen from 
Methanol as 
renewable energy

Ar/UV-B(1000 W)/ (0.5 Pt) 
TiO2 NPS

Ar/UV-B(1000 W)/ (0.5 
Au) TiO2 NPS

8.8%
(Photo hydrogen production)
(T = 25°C), (pH = 7.3)
4.5%
(Photo hydrogen production)
(T = 25°C), (pH = 7.3)

[14]

Industrial dye
Light Green SF
Yellowish (Acid 
Green 5) Dye

O2/UV-A(400 W)/ TiO2

O2/UV-A(400 W)/ TiO2 
NPS

90.2%
(Photodecolorization)
(T = 20°C), (pH = 7.3)
88.1%
(Photodecolorization)
(T = 20°C), (pH = 7.3)

[45]
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Application field Type of used AOPs Efficiency References

Industrial dye
Safranine O Dye

O2/UV-A(125 W)/ TiO2 NPS

O2/UV-A(125 W)/ TiO2 
NPS/ Fe2+

O2/UV-A(125 W)/ TiO2 
NPS/ Fe2+

O2/UV-A(125 W)/ TiO2 
NPS/ 0.1% H2O2

O2/UV-A(125 W)/ TiO2 
NPS/ 0.1% H2O2+ Fe2+

90.2%
(Photodecolorization)
(T = 30°C), (pH = 6)

85.92%
(Photodecolorization)
(1 x 10−4 mole/L) of Fe2+

(T = 30°C), (pH = 6)
92.73%
(Photodecolorization)
(T = 30°C), (pH = 6)
98.83%
(Photodecolorization)
(1 x 10−4 mole/L) of Fe2+

(T = 30°C), (pH = 6)

[34]

Industrial dye
Acid Red 87 (Eosin 
Yellow) dye

O2/UV-A(250 W)/ TiO2 NPS

O2/UV-A(250 W)/ TiO2 
NPS+ H2O2

O2/UV-A(250 W)/ WO3 
NPS

O2/UV-A(250 W)/ WO3 
NPS+ H2O2

O2/UV-A(250 W)/ (0.5) 
WO3-TiO2 nanocomposite

O2/UV-A(250 W)/ (0.5) 
WO3-TiO2 nanocomposite+ 
H2O2

63.58%
(Photodecolorization)
(T = 25°C), (pH = 6.09)
50.44%
(Photodecolorization)
(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)
27.84%
(Photodecolorization)
(T = 25°C), (pH = 6.09)
21.54%
(Photodecolorization)
(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)
25.11%
(Photodecolorization)
(T = 25°C), (pH = 6.09)
73.88%
(Photodecolorization)
(1 x 10−2 mmole/L) of H2O2

(T = 25°C), (pH = 6.09)

[16]

Industrial dye
Methyl green dye

O2/UV-A(250 W)/ZrO2

O2/UV-A(250 W)/
ZrO2 + Fe2+

O2/UV-A(250 W)/
ZrO2 + 1.5% H2O2

O2/UV-A(250 W)/
ZrO2 + K2S2O8

92.31%
(Photodecolorization)
(T = 30°C), (pH = 5.4)
39.93%
(Photodecolorization)
(1 x 10−4 mmole/L) of Fe2+

(T = 30°C), (pH = 5.4)
98.78%
(Photodecolorization)
(T = 30°C), (pH = 5.4)
74.62%
(Photodecolorization)
(1 x 10−4 mmole/L) of K2S2O8

(T = 30°C), (pH = 5.4)

[46]

Lab materials
Fe(II)-(4,5-
DIAZAFLUOREN-9-
ONE 11) COMPLEX

O2/UV-A(400 W)/ Mn3O4

O2/UV-A(400 W)/ 
(1)Mn3O4- (4) ZrO2 
nanocomposite

22.64%
(Photodecolorization)
(T = 15°C), (pH = 4)
40%
(Photodecolorization)
(T = 17°C), (pH = 4)

[47]
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4. Used of bulk or nano catalyst in AOPs

There are many common application of AOPs in environment fields by using 
the white photocatalyst or its modified such as ZnO, TiO2 ZrO2, ZnS, WO3, CdS and 
Mn3O4. The efficiencies with used these photocatalysts are altered with using AOPs 
methods. The efficiency of the photoreaction depends mostly on the concentration 
of colored material, initial pH which affected on the surface of photocatalyst and 
the temperature. As shown in Table 4.

5. Conclusions

This chapter focuses on the source of hydroxyl radical which produces via the 
advance oxidation process. Indeed, this process interests in the forming the different 
species, which in the final step generates a hydroxyl radical. The photocatalyst enhances 
the generating of hydroxyl radicals (2.8 V) in aqueous solution under Uv- light or vis-
ible or solar. The photoexitation of photocatalyst leads to jump of electon to conductive 
band then return to valance band and liberates a hot this process called recombination. 
It is depressed the efficiency of photoreaction. However, some procedures used to 
modify the photocatalyst surface.
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Application field Type of used AOPs Efficiency References

Textile dye
Reactive blue 5 dye

O2/UV-A(400 W)/ ZnS NPs

O2/UV-A(400 W)/ Cr-ZnS 
NPs

59%
(Photodecolorization)
(T = 15°C), (pH = 6.3)
94%
(Photodecolorization)
(T = 17°C), (pH = 4.1)

[36]

Industrial dye
Congo red dye

O2/UV-A(400 W)/ ZnS NPs

O2/UV-A(400 W)/ CdS-ZnS 
nanocomposite

95%
(Photodecolorization)
(T = 30°C), (pH = 7.5)
98%
(Photodecolorization)
(T = 30°C), (pH = 7.5)

[39]

Table 4. 
Some applications of bulk and nano photocatalydts in AOPs, with environment chemistry and green chemistry.
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Chapter 8

Oxidoreductases: Significance for 
Humans and Microorganism
Hussein Mahdi Kareem

Abstract

Oxidoreductases consist of a large class of enzymes catalyzing the transfer of 
electrons from an electron donor (reductant) to an electron acceptor (oxidant) 
molecule. Since so many chemical and biochemical transformations comprise 
oxidation/reduction processes, it has long been an important goal in biotechnol-
ogy to develop practical biocatalytic applications of oxidoreductases. During the 
past few years, significant breakthrough has been made in the development of 
oxidoreductase-based diagnostic tests and improved biosensors, and the design of 
innovative systems for the regeneration of essential coenzymes. Research on the 
construction of bioreactors for pollutants biodegradation and biomass processing, 
and the development of oxidoreductase-based approaches for synthesis of polymers 
and functionalized organic substrates have made great progress. Proper names of 
oxidoreductases are in a form of “donor:acceptor oxidoreductase”; while in most 
cases “donor dehydrogenase” is much more common. Common names also some-
times appeared as “acceptor reductase”, such as NAD+ reductase. “Donor oxidase” is a 
special case when O2 serves as the acceptor. In biochemical reactions, the redox reac-
tions are sometimes more difficult to observe, such as this reaction from glycolysis: 
Pi + glyceraldehyde-3-phosphate + NAD+ → NADH + H+ + 1,3-bisphosphoglycerate, 
where NAD+ is the oxidant (electron acceptor), and glyceraldehyde-3-phosphate 
functions as reductant (electron donor).

Keywords: oxidoreductases, important of enzyme, application medical of this 
enzyme

1. Introduction

1.1 Enzymes

Are biotic chemical agents that rise the amount of biochemical reaction by 
depressing of activate energy. The particles convoluted in the enzyme intermedi-
ated responses is identified as substrate and the outcome of the reactions or pro-
duce are termed products. In general, the chemical structure of greatest for more 
enzymes is protein and hardly ever of other type e.g., Ribonucleic acid (RNA). 
The enzyme is too special on the way to their substrates of whom they re-join and 
thereby the reaction will also be so specific. At times the enzymes requests the 
turnout of a un protein part called coenzyme, if was a vitamin derivative Organic 
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complex or cofactor, if was a metal- ion for obtain the reactions. And for this, 
entire enzymes might be named a holoenzyme, the portion of protein by means of 
apoenzyme and the nonprotein basic a prosthetical collection.

2. Enzymes oxido-reductases

Oxido-reductases are a great collection of enzyme is existing of differential 
area in natural lifecycle such as microorganisms, plant and animals. The enzymes 
commission EC numbers taxonomy of enzymes. They are categorized by way of 
EC 1. It is include approximately one third of the enzyme actions that are recorded 
in BR aunschweig Enzyme List (Selles vidal et al, 2018). This enzyme stimulate 
(give-and-take) of electron among the (donor and acceptor) molecule, reaction 
comprising electrons transferal, protons, Hydrogen extractive, Hydride transfer, 
Oxygen insert, also extra significant stages [1, 2]. Generally, two in half reaction 
such as some oxidative and one reduction occurring and at smallest two substrate 
such as one reduces and one oxidize is activate and convert [3]. Oxidoreductases 
comprise of a great categorize of enzyme catalyze the transmission of electron 
from an electrons donor (reduction) to an electron acceptor (oxidation) molecules, 
general take NADP nicotinamide- adenine- dinucleotide phosphate or NAD 
nicotinamide –adenine- dinucleotide as cofactor (Figure 1) [4]. Then so various 
biochemical conversions include oxidant –reluctant methods, it has more been a 
significant aim in biotechnological to progress applied bio- catalytic uses of oxido-
reductases. Through the past little years, significantly discovery has been through 
in the improvement of oxido-reductase-based diagnosis checks than developed 
bio-sensors and the plan of new system into the renewal of necessary co-enzymes. 
Study on the structure of bioreactor for contaminants biodegrade and Biomass 
treating, and the improvement of oxido-reductase-Based styles into production of 
polymer and functional Organic substrate have prepared grates progresses. Correct 
name of oxido-reductases is of donor-acceptor oxido-reductase. However in greatest 
case donor- dehydrogenase is much more public. Public name also at times appeared 
as (acceptors –reductase) for example NAD + reductase (donor –oxidative) is a 
specific example when O2 render as acceptors. He catalyzed reaction are like to the 
reaction in Figure 1- A the reduction and B is oxidative. In active bio-chemical reac-
tion, the reduction reaction are at times extra difficult to detect, example reactions 
glycolysis (Pi + glycer aldehyde−3−phosphate + NAD → NADH + H + 1,3-Bisphospho 
glycerate. NAD+ is the oxidant (electron - acceptor), and glyceraldehyde-3-phos-
phate function as reduction t (electrons -donors).

3. Classification of oxido-reductases

Oxidoreductases may be categorized accord to the arrangement or structure 
of three dimensions building, that is extremely instructive aimed at the identify 
of structure functions correlation, enzymes development, function genomic, and 

Figure 1. 
Oxidation-reduction.
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silicon new enzyme detection, for use, Oxido-reductases also may be categorized 
accord to their name stimulation and or co-enzyme-dependence.

Hydroxylases, oxygenases, peroxidases and reductases (Figure 2) [4, 5]. The 
molecule Oxygen actions as receptor of Hydrogen or electron. Their enzymes called 
oxidases is convoluted. But this enzyme was dehydrogenase, the outcome of which 
is confirmed by a hydrogen transmission of an accepter r molecule that contains 
either/or nicotinamide adenines-adenine-dinucleotide phosphate NAD+/NADP+ or 
a flavic co-enzyme [6].

Peroxydases catalyze the reduction of the addition of hydroxyl to substrates. 
Oxygenases integrate oxygen into the organic substrates of molecular oxygen.

Reductases stimulate reduce reaction, and in more cases they action similar 
oxidases. Oxidoreductases accomplish essential role in together Aerobic metabolism 
and Anaerobic mechanism. They have an extensive variety of substrates, together 
Organic (alcohol, amine and ketone) and inorganics (some anions like sulfite and 
some types metal like (Mercury). This enzymes has many reductive -active centers 
for performance many physiologically functions [7]. This centers safe via the poly 
peptide backbone of Oxido-reductases as they are very variable in environment. 
Polypeptides basis are of the enzymes as well supports in Selectivity, reactivity, 
redox potential, Stability and inhibit resistance. This Public reductive centers 
comprise amino acid excesses such as (tyrosine-cysteine), metals ions or complex 
Examples of these are the co-enzymes (c., mo, fe-s), pterion, and pyro-loquinolin 
(Pquq), for example (cu, mo, fe, fe-s group), and flavin mononucleotide (FMN) 
(Figure 2).

Figure 2. 
Classification of oxidoreductases.
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4. Applications of oxidoreductases

Since several chemical and biochemical conversions include methods for 
oxidation reduction, it was attractive, albeit somewhat elusive, to develop devel-
oped bio-catalytic uses of oxidation enzymes since the early years of biomedical 
technologies [8]. Application envision for these enzymes have involved a sym-
metric oxy functionalization of steroid and other pharmaceutical, production and 
alteration of polymer, oxidation degrade of contaminants, oxy functionalization 
of hydrocarbons, and the structure of biosensors for a diversity of analytical and 
clinical application. Oxidoreductase created catalysis turns well by way of the 
improvement in greatly effective, maintainable, and medium-friendly industry 
then they are recyclable, exact in natural surroundings, and energy save. This 
enzymatic system can include diverse co-factors like Simetric steroid and other 
pharmaceutical oxygen functions, polymer synthesis and modification, oxidative 
degradation of pollutants, hydrocarbon Oxyfunction, and a biosensor structure 
were included in the application of those enzymes for a range of analytical and 
clinical applications [9].

4.1 Carbohydrates application

Particle carbohydrates can be employed as a renewable resources and cheap 
rare material, forerunner, building block, or addition for numerous industrial 
produces. Once, beneficial Organic acid like lactic acid takes been produce from 
sugar by complete cellular fermentation methods [10]. By the Oxidoreductases 
uses enzymes, Particle sugar use in everyday our life like particles (glucose, 
sucrose) can be altered into new beneficial products. Also Particle D-glucose 
was modified by enzyme glucose Oxidase to Type-glucosone [11]. The cheese 
processing industry has produced lactose by way of by-products, which has been 
renewed to lactobionic acid by enzyme lactose oxidase) [12]. Also the lactobi-
onic acid is employed as a worthy diet addition, chelators, acid, and a polymers 
forerunner [13].

4.2 Conversion of biomass

Conservative dealignment of the pulp is based on a single chlorine or chemi-
cal oxidant based on oxygen. While very active, these agents can cause serious 
problems in the disposal of products or damage to cellulose fiber. Enzymatic 
delignifying devices are appealing alternatives [14]. Laccase- peroxidase- and other 
oxidoreductases share in the natural delignification by lignolytic white-rot fungi. 
Numerous laccases have been shown capable of degrading together natural and 
artificial lignin (Balakshin et al, 2001). They oxidation by direct the phenolic ele-
ments of lignin’s in the existence of a correct reduction reactions pander, indirect, 
the hetero geneous Phenolic and non-phenolic chiefly methoxy benzene compo-
nent. The product, radical can be made in lignin’s, which could leads to aliphatic or 
aromatic C–C connection split and de polymerization. Enzymes Lignins peroxidase 
is also a strong DE lignifying factor. Its high valent Oxo - Ferryl types can extract 
electron or proton from the non-phenolic part of structure lignins, therefore 
producing radical that split the Heterogeneous polymers. Similar enzymes lignin 
peroxidase, enzymes Mn peroxidase is also working by White Rot Fungus to 
destroy Lignins. Enzymes Mn peroxidase is of specific importance, for the reason 
that its oxidation agent. Enzyme Mn peroxidase [III] may stabilize by lesser chela-
tor such as oxalate C2O4 (2−) and diffusion on the places in lignins normal impos-
sible in enzyme [15].
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4.3 Technologies for textiles

Potential for the use of oxidoreductase in textile manufacture consists of cotton 
fiber bleaching, dyeing and waste management. The enzyme whitening process of 
cotton is explained in a recent study [16]. Significant result of lacquer application 
to the bleaching of the cotton I observed in the peroxide mix. Potential benefits 
are chemical, energy and saving water Laccase-catalyzing textile dye bleaching is 
advantageous for the finish of the cotton fabric [17].

4.4 Technologies for food

The essential components of several diets and beverages include many oxido-
reductase substrates, including carbohydrates, unsaturated fatties, phenolics, and 
thiol. The alteration of oxidoreductase may lead to new functionality, quality devel-
opment, or cost reduction [18]. Often O2, because of excessive oxidative, is useful in 
the consistency or storage of food drinks. Oxidase can be used as O2-scavengers for 
enhanced food packaging [19]. The promotion of glucose oxidase for bread Makin 
uses. Addition the enzymes to dough can leads to several chemical physical varia-
tions comprising cross-link of protein albumin protein, globulin, and to reduced 
amount, glutenins [20]. Therefore the paste demonstrations improved viscoelastic-
ity - rheological properties, and the baked baking has better fragment, greater 
volume, or extra features. The influence is like cause by molecule H2O2 made by the 
enzymes. But, the actions of this enzymes is not higher to that induce oxidation 
additive like Bromic acid anion, BrO−3 and azodicarbonamide. For bread making 
applications, glucose oxidase has been commercialized. Addition of the enzyme 
to dough can lead to various physicochemical changes including cross-linking of 
wheat albumin, globulin, and to some extent, glutenin chemical [21]. So, they are 
essential to detect or improve other enzyme Carbohydrate oxidases for this enforce-
ment. The lipoxy genase enzymes are a favorable nominee for the sowbread applica-
tion [22]. The effect of paste strengthening and bread whitening can be achieved 
with enzymes by modification and emulsifying properties of endogenous fatty 
acid saturation lipids and the formation of oxide peroxide. But adding enzymes to a 
certain food may cause the endogenous antioxidant to lack or deplete.

4.5 Bioconversion, biocontrol, and environmental use

Bioconversion of extensively use insecticides, herbicide and many agro chemicals 
is a significant importance in technological advance the social order, and peroxidase 
enzyme have great potential for like applications. Mention researcher [23] the ability 
of Phanerochaetaceae Onygenaceae, Basidiomycota genus Trametes, Tinea versicolor, 
Coriolopsis gallica and family of fungi Pleurotaceae grow in a nitrogen- contain 
amount lower of mineral culture media which degradation PCBs was compare, then 
separate amount of PCBs extracted from these fungal culture media for period four 
weeks were 25, 50, 41, and O %, respective. Enzymes examines established that 
both in elevation and comparatively firm activities of all enzymes following: Mn 
dependent peroxidase, Mn independent peroxidase, lignin peroxidase and lactase 
described efficacious degradation. In linked works, lactase from Pityriasis versicolor 
was presented to be qualified for in vitro oxidative of poly cyclic arene hydrocarbons 
with construction of the congruous Quinone as oxidative produces [24] Amazingly, 
adding of the pander l-hydroxybenzotriazole for enzyme response solution helped 
the reactions to such an extent that polycyclic aromatic hydrocarbon (PAH), 
Fluorenes, solid polycyclic aromatic hydrocarbon, Benzopyrene C20H12, and perilene 
were almost complete remove from the solution.
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4. Applications of oxidoreductases
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4.6 Medicine and other synthetic enforcement

The enzyme oxidoreductases are essential in medical combination. For example 
enzyme Laccases can be employed to produce a great amount of compound medical 
mediators, like Triazolobenzodiazepine, Cycloalkyl Thiadiazoles, (Cephalosporin 
β-lactam antibiotics), vincaleukoblastine, Penicillin X methyl ester [25, 26]. 
The enzymes benzenediol: oxygen oxidoreductases; EC 1.10.3.2 may be applica-
tion to produce numerous practical Organic combinations include polymer of 
similar electric optical mechanical characteristics, flavor agent, texture dyes, 
structure cosmetic pigment, and pesticide [27]. By use of Oxidoreductases can 
leads for improvement of modern industry artificial techniques. Such as Baeyer-
Villiger mono oxygenase can stimulate beneficial expansions of ring reactions by 
transformation a cyclic ketone to the congruent lactone [28]. Macrophomic acid 
production enzymes can stimulate Diels alder reactions [29]. At times after the 
Oxido-reductases performances on its substrates, it can induce a second response 
with parts of the substrates that lead to modern types of bio catalysis [30]. The 
use enzyme oxido-reductases we can stimulate reaction that are not simply favor-
able Such as chloroperoxidase and Cytochrome P450 enzyme can functionalizing 
indeclinable hydro carbons by hydroxylation [31]. Enzyme enone reductase can 
Hydrogenation unsaturated bond to change component ketone to hydrocarbons 
[32]. Old yellow enzyme gained from type of fungi that called Yeast that contain 
FMN enzyme, can stimulate the reduction by NADPH of the Olefinic (>C¼C<) 
not carbonyl >C¼O the site of 2-Cyclohexen- [33]. Application oxidoreductases 
can leads to different industry produce methods. Such as Baeyer-Villiger mono 
oxygenase can stimulate A valuable ring-expanding reaction by altering a cyclic 
ketone to a corresponding lactone [28]. Sulfoxidation of alkyl aryl sulfides, nitroso-
and-hydroxylamino-compounds N-oxidation, or styrene epoxidation can be done 
by horseradish peroxidase. Enone reductase can hydrogenate unsaturated bonds to 
convert ketones to hydrocarbons [32].

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Neurodegeneration: Diagnosis, 
Prevention, and Therapy
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Abstract

Neurodegenerative disorders (NDDs) are a broad range of pathological 
conditions which target the neurons, creating problems in movements and mental 
functions. The NDDs have drawn a lot of attention among the diseases because 
of its complexity in causes and symptoms, lack of proper effective treatment(s), 
no report of irreversibility, and poor impact on social and financial aspects. 
Individual’s vulnerability towards the stress-related biochemical alterations 
including increase in oxidase enzymes’ activities and generation of free radicals, 
abnormal protein dynamics, mitochondrial dysfunctions, and neuroinflammation 
often lead to degeneration of neuronal cells. Some advanced techniques are now 
able to detect the development and progression of different NDDs’ complications. 
The current focus of research on NDDs is to establish convenient therapeutic 
strategies by targeting different aspects including upliftment of cellular defense 
mechanisms, especially oxidoreductases as a protective tool. This chapter focused 
on those updated information on the development, diagnosis, prevention, and 
therapeutic strategies of NDDs.

Keywords: neurodegenerative disorders, proteinopathies, oxidoreductase, 
neuroimaging, brain mapping, neurotrophic factors, neuroinflammations,  
epigenetic modulations

1. Introduction

Neurodegeneration refers to a progressive structural and functional loss of 
neurons causing heterogeneous clinical and pathological expressions followed by 
deterioration of functional anatomy [1]. This progressive neuronal cell death often 
leads to various neurodegenerative disorders (NDDs) such as Parkinson’s disease 
(PD), Huntington’s disease (HD), Alzheimer’s disease (AD), amyotrophic lateral 
sclerosis (ALS), brain trauma (BT), prion disease (PrD), progressive supranuclear 
palsy (PSP), and spinocerebellar ataxias (SCA), etc., which can be differentiated 
based on their different pathological mechanistic pathways. It includes associated 
neuropathology, disease based anatomical vulnerability, and aggregation of some 
major selective proteins during disease conditions [2]. In the last few decades, 
several approaches have been taken to understand the mechanisms of neuronal cell 
death [3]. The oxidative and nitrosative stress due to the overproduction of reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) with the deterioration 
of cellular antioxidant defense systems are found to be the major reasons behind 
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Chapter 9

Neurodegeneration: Diagnosis, 
Prevention, and Therapy
Mrinal K. Poddar, Apala Chakraborty  
and Soumyabrata Banerjee

Abstract

Neurodegenerative disorders (NDDs) are a broad range of pathological 
conditions which target the neurons, creating problems in movements and mental 
functions. The NDDs have drawn a lot of attention among the diseases because 
of its complexity in causes and symptoms, lack of proper effective treatment(s), 
no report of irreversibility, and poor impact on social and financial aspects. 
Individual’s vulnerability towards the stress-related biochemical alterations 
including increase in oxidase enzymes’ activities and generation of free radicals, 
abnormal protein dynamics, mitochondrial dysfunctions, and neuroinflammation 
often lead to degeneration of neuronal cells. Some advanced techniques are now 
able to detect the development and progression of different NDDs’ complications. 
The current focus of research on NDDs is to establish convenient therapeutic 
strategies by targeting different aspects including upliftment of cellular defense 
mechanisms, especially oxidoreductases as a protective tool. This chapter focused 
on those updated information on the development, diagnosis, prevention, and 
therapeutic strategies of NDDs.

Keywords: neurodegenerative disorders, proteinopathies, oxidoreductase, 
neuroimaging, brain mapping, neurotrophic factors, neuroinflammations,  
epigenetic modulations

1. Introduction

Neurodegeneration refers to a progressive structural and functional loss of 
neurons causing heterogeneous clinical and pathological expressions followed by 
deterioration of functional anatomy [1]. This progressive neuronal cell death often 
leads to various neurodegenerative disorders (NDDs) such as Parkinson’s disease 
(PD), Huntington’s disease (HD), Alzheimer’s disease (AD), amyotrophic lateral 
sclerosis (ALS), brain trauma (BT), prion disease (PrD), progressive supranuclear 
palsy (PSP), and spinocerebellar ataxias (SCA), etc., which can be differentiated 
based on their different pathological mechanistic pathways. It includes associated 
neuropathology, disease based anatomical vulnerability, and aggregation of some 
major selective proteins during disease conditions [2]. In the last few decades, 
several approaches have been taken to understand the mechanisms of neuronal cell 
death [3]. The oxidative and nitrosative stress due to the overproduction of reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) with the deterioration 
of cellular antioxidant defense systems are found to be the major reasons behind 
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this neuronal cell damage which might further lead to NDDs [4]. In this context, 
it is obvious to mention that the oxidoreductase enzymes which are responsible to 
increase the oxidant level in the cellular microenvironment are one of the major 
culprits of these sophisticated diseases [4–6]. These pathways and mechanisms of 
these biochemical processes leading towards the cell deaths are found to be dif-
ferent for various neurodegenerative diseases as observed by their symptoms and 
exacerbations [4–6]. The common neuropathological hallmarks of such diseases are 
(a) stress-induced generation of free radicals (b) abnormal protein dynamics, their 
degradation, and aggregation (c) mitochondrial dysfunctions and (d) neuroinflam-
mation [2] (Figure 1). Advanced immunohistochemical and biochemical methods 
are now able to identify the specific protein abnormalities, related to each of the 
classes of NDDs [7]. These proteins mostly follow the brain region-specific sequen-
tial distribution patterns, suggesting a cell-to-cell propagation [7, 8]. Recently, it is 
also found that some of the neurodegeneration associated proteins can be detected 
in peripheral organs and may also present concomitantly in the brain and peripheral 
tissues [9]. These identified molecular pathological backgrounds of the disease-
associated proteins along with the inconsistent clinical symptoms of NDDs create a 
necessity of proper neuropathological examinations like developments of biomark-
ers, clinical and neuroimaging studies which finally lead to the accurate diagnosis 
[9]. The treatment of these neurodegenerative diseases are mostly symptomatic 
such as dopaminergic treatment for PD and movement disorders, anti-inflamma-
tory and analgesic for neuronal infections and pain, cholinesterase for cognitive 
disorders, antipsychotic for dementia, etc. though, further progress in therapeutic 
management is needed to treat many other progressive and serious symptoms of 
the diseases [10–12]. Integrative treatments along with medicinal therapies are 
also in the frontline of research to improve the endogenous antioxidant systems 
targeting the oxidoreductase enzymes and thereby the activity of daily life of the 
neurodegenerative patients. These integrated treatments act by protecting against 
oxidative and nitrosative stress related neuropsychiatric disorders, sensory and 
other symptoms of non-motor fluctuations, fatigue, etc. [11]. In this chapter, the 

Figure 1. 
Schematic presentation of possible steps for the action of different factors involve in the development of 
neurodegeneration.
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diagnostic classification of NDDs, their preventive strategy, and treatment with a 
special emphasis on the oxidoreductase enzymes are summarized to understand the 
current progress in the field of NDDs.

2. Role of oxidative stress in neurodegenerations

While aging is the key contributor to most of the NDDs, oxidative stress is 
the main factor for functional impairment during aging due to the oxidation of 
lipids, deoxyribonucleic acid (DNA), and proteins in presence of reactive oxygen 
or nitrogen species (ROS or RNS). Thus, it is not unreasonable to assume that 
enhancement in level(s) of ROS and/or RNS increase(s) the senescence of cells by 
secreting pro-inflammatory factors and enzymes followed by cellular degradation 
[13] (Figure 1). S-Nitrosylation reaction plays a crucial role in nitric oxide (NO) 
bioactivity and is shown to have neuroprotective as well as a neurotoxic role based 
on the targeted protein [14]. An increase in level of nitrosative stress may affect 
mitochondrial respiration by inhibiting its complexes I and IV and disrupts the 
mitochondrial dynamics followed by synaptic injury and neuronal damage [15]. 
Thus, it may be corroborated that this RNS mediated protein modification is asso-
ciated with AD pathology, as AD can be characterized by increasing mitochondrial 
dysfunction [16, 17]. On the other hand, an increase in the level of amyloid-beta 
(Aβ) and aging aggravate the senescent phenotype and endothelial cell dysfunction 
and can be characterized by oxidative stress [13]. It is well proved that reduction in 
oxidative stress can reduce the cognitive impairment and inflammatory processes 
as oxidative stress enhances the loss of homeostasis [6]. Increased level of oxida-
tive stress also enhances the production of the inflammatory cytokine and finally 
both affect the cognitive performance in aged individuals [4]. In this context, it is 
obvious to mention that the involvement of oxidoreductases in oxidative stress is a 
well-accepted logic-based fact in NDDs [18, 19].

2.1 Role of oxidoreductase in NDDs

Oxidoreductases are the enzymes that catalyze the oxidation–reduction reac-
tions by transferring electrons from oxidant to reductant. It can be classified as 
oxidases, dehydrogenases, peroxidases, hydroxylases, oxygenases, and reductases. 
It has been found that increased levels of oxidative stress biomarker glutathione 
peroxidase (GSH-Px) and reduction in its (GSH-Px) activity are associated with 
an increase in inflammatory cytokines and both of them has a correlation with the 
cognitive impairment of elderly individuals [4]. Increased expression of nuclear 
factor erythroid2-related factor 2 (Nrf2) and reduced level of superoxide dis-
mutase 1 mRNA are associated with cognitive impairments [20]. Nrf2 is the main 
controller of oxidative response and toxic insults to cells and modulate the expres-
sion of the inflammatory, metabolism-related gene [21]. Signaling pathways such 
as glycogen synthase kinase 3 (GSK-3), nuclear factor kappa light chain enhancer 
of activated B cells (NF-κB), NOTCH, and adenosine monophosphate kinase (AMP 
kinase) and Kelch ECH associating protein 1 (Keap1) regulates the Nrf2 activ-
ity [6, 22]. It has been observed that Nrf2 deficiency along with amyloidopathy 
and tauopathy induce neuroinflammation and oxidative stress providing a direct 
connection between neurodegeneration and oxidoreductase system [23]. Harada 
et al. [18] have shown a positive association of the NQO2 (dihydronicotonamide 
riboside (NRH): quinone oxidoreductase 2, or QR2) and PD as the deletion of 
29-bp nucleotides in the promoter region of the NQO2 gene associates with the 
development of PD. In presence of catechol quinones, the over-expression of 
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it is obvious to mention that the oxidoreductase enzymes which are responsible to 
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also found that some of the neurodegeneration associated proteins can be detected 
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associated proteins along with the inconsistent clinical symptoms of NDDs create a 
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ers, clinical and neuroimaging studies which finally lead to the accurate diagnosis 
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such as dopaminergic treatment for PD and movement disorders, anti-inflamma-
tory and analgesic for neuronal infections and pain, cholinesterase for cognitive 
disorders, antipsychotic for dementia, etc. though, further progress in therapeutic 
management is needed to treat many other progressive and serious symptoms of 
the diseases [10–12]. Integrative treatments along with medicinal therapies are 
also in the frontline of research to improve the endogenous antioxidant systems 
targeting the oxidoreductase enzymes and thereby the activity of daily life of the 
neurodegenerative patients. These integrated treatments act by protecting against 
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diagnostic classification of NDDs, their preventive strategy, and treatment with a 
special emphasis on the oxidoreductase enzymes are summarized to understand the 
current progress in the field of NDDs.

2. Role of oxidative stress in neurodegenerations

While aging is the key contributor to most of the NDDs, oxidative stress is 
the main factor for functional impairment during aging due to the oxidation of 
lipids, deoxyribonucleic acid (DNA), and proteins in presence of reactive oxygen 
or nitrogen species (ROS or RNS). Thus, it is not unreasonable to assume that 
enhancement in level(s) of ROS and/or RNS increase(s) the senescence of cells by 
secreting pro-inflammatory factors and enzymes followed by cellular degradation 
[13] (Figure 1). S-Nitrosylation reaction plays a crucial role in nitric oxide (NO) 
bioactivity and is shown to have neuroprotective as well as a neurotoxic role based 
on the targeted protein [14]. An increase in level of nitrosative stress may affect 
mitochondrial respiration by inhibiting its complexes I and IV and disrupts the 
mitochondrial dynamics followed by synaptic injury and neuronal damage [15]. 
Thus, it may be corroborated that this RNS mediated protein modification is asso-
ciated with AD pathology, as AD can be characterized by increasing mitochondrial 
dysfunction [16, 17]. On the other hand, an increase in the level of amyloid-beta 
(Aβ) and aging aggravate the senescent phenotype and endothelial cell dysfunction 
and can be characterized by oxidative stress [13]. It is well proved that reduction in 
oxidative stress can reduce the cognitive impairment and inflammatory processes 
as oxidative stress enhances the loss of homeostasis [6]. Increased level of oxida-
tive stress also enhances the production of the inflammatory cytokine and finally 
both affect the cognitive performance in aged individuals [4]. In this context, it is 
obvious to mention that the involvement of oxidoreductases in oxidative stress is a 
well-accepted logic-based fact in NDDs [18, 19].

2.1 Role of oxidoreductase in NDDs

Oxidoreductases are the enzymes that catalyze the oxidation–reduction reac-
tions by transferring electrons from oxidant to reductant. It can be classified as 
oxidases, dehydrogenases, peroxidases, hydroxylases, oxygenases, and reductases. 
It has been found that increased levels of oxidative stress biomarker glutathione 
peroxidase (GSH-Px) and reduction in its (GSH-Px) activity are associated with 
an increase in inflammatory cytokines and both of them has a correlation with the 
cognitive impairment of elderly individuals [4]. Increased expression of nuclear 
factor erythroid2-related factor 2 (Nrf2) and reduced level of superoxide dis-
mutase 1 mRNA are associated with cognitive impairments [20]. Nrf2 is the main 
controller of oxidative response and toxic insults to cells and modulate the expres-
sion of the inflammatory, metabolism-related gene [21]. Signaling pathways such 
as glycogen synthase kinase 3 (GSK-3), nuclear factor kappa light chain enhancer 
of activated B cells (NF-κB), NOTCH, and adenosine monophosphate kinase (AMP 
kinase) and Kelch ECH associating protein 1 (Keap1) regulates the Nrf2 activ-
ity [6, 22]. It has been observed that Nrf2 deficiency along with amyloidopathy 
and tauopathy induce neuroinflammation and oxidative stress providing a direct 
connection between neurodegeneration and oxidoreductase system [23]. Harada 
et al. [18] have shown a positive association of the NQO2 (dihydronicotonamide 
riboside (NRH): quinone oxidoreductase 2, or QR2) and PD as the deletion of 
29-bp nucleotides in the promoter region of the NQO2 gene associates with the 
development of PD. In presence of catechol quinones, the over-expression of 
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NQO2 in brain cells leads to the production of ROS (via the rapid conversion of 
superoxide radicals into hydrogen peroxide and then into highly reactive hydroxyl 
radicals)-induced neuronal cell death or neurodegeneration [5]. The other isoform 
of NAD(P)H:quinone acceptor oxidoreductase (NQO), the NQO1, or NADH qui-
none oxidoreductase of mitochondria carries the most common Leber’s hereditary 
optic neuropathy (LHON) mutants [24]. The protein disulfide isomerase (PDI) 
enzyme is another potent oxidoreductase resides in the endoplasmic reticulum, has 
the ability to catalyze the oxidative folding reactions requires for the maturation 
of disulfide-bond-containing proteins. It is found to regulate the molecular traf-
ficking along the secretory pathway to prevent the protein misfolding which can 
mitigate the proteinopathy-induced neurodegenerative diseases (e.g., AD, PD). 
Monoamine oxidase (MAO) is another oxidoreductase which is predominantly 
found in the brain regional and platelet mitochondrial outer membrane catalyzes 
the amine (-NH2) compound (monoamine neurotransmitters e.g., serotonin 
(5-HT), dopamine) and formaldehyde and hydrogen peroxide (H2O2) as byprod-
ucts. During aging the MAO-A activity has been found to be increased in cerebral 
cortex, hippocampus, hypothalamus, and pons-medulla [25, 26] whereas, decrease 
in blood platelets [27]. Very limited information are available there about the aldo-
keto oxidoreductase (aldehyde dehydrogenase or ALDH, aldose reductase, alde-
hyde reductase, alcohol dehydrogenase) which can detoxify the reactive aldehyde 
and ketone bodies in the brain bearing a protective role from the development of 
aging-induced neurodegenerative diseases, especially AD. The oxidative damage to 
the polyunsaturated fatty acids (PUFA) generates the 4-hydroxy-trans-2- nonenal 
(HNE) and its related carbonyl, which creates immunoreactivity. Their elevated 
levels are found in the brain as well as in cerebrospinal fluid (CSF) of AD, PD, 
and ALS patients [28]. It (reactive aldehydes) inhibits mitochondrial functions, 
disrupts cytoskeleton, inhibits glutamate transporters, and also modifies tubulin 
structure [29, 30]. The aldo-keto oxidoreductases have the ability to detoxify these 
reactive aldehydes in brain by converting those into corresponding acid or alcohol 
[31, 32]. The ALDH has been found in the cerebral cortex, hippocampus, basal 
ganglia, and midbrain, and aldose reductase in the pyramidal cells of cerebral 
cortex and hippocampal CA1 region, while all of these oxidoreductases are pres-
ent in cerebellum [19] providing and strengthening the evidence of the fact that 
cerebellum is less vulnerable in the proteinopathy related NDDs. The xanthine 
oxidoreductase which converts hypoxanthine to xanthine and thereby to uric 
acid-producing H2O2 as a byproduct can generate superoxide via NADH oxidase 
activity and similar to ALDH, manganese superoxide dismutase (Mn-SOD) and 
heme-oxygenase-1 (HO-1) are promptly expressed in reactive astrocytes and 
found to be present in healthy pyramidal neurons [33, 34].

3. Types of neurodegeneration

NDDs often overlap with each other based on pathology and symptoms espe-
cially in multisystem atrophy where several areas get affected at a time making it 
difficult to analyze clinically [35]. Based on the predominant pathological features 
and topography of the central nervous system (CNS) during the diseased condition, 
NDDs have been classified into three major aspects:

3.1 Anatomical classification

The anatomical positions (such as cerebral cortex, basal ganglia, brainstem, cer-
ebellum, spinal cord) in relation to the disease condition (Table 1) can be used as 

135

Neurodegeneration: Diagnosis, Prevention, and Therapy
DOI: http://dx.doi.org/10.5772/intechopen.94950

D
is

ea
se

M
ai

n 
an

at
om

ic
 

vu
ln

er
ab

ili
ty

Sy
m

pt
om

s
M

ai
n 

ne
ur

op
at

ho
lo

gy
Pr

ot
ei

n 
ag

gr
eg

at
e(

s)
D

ia
gn

os
tic

 
ap

pr
oa

ch
es

T
he

ra
pe

ut
ic

 st
ra

te
gi

es
Re

fe
re

nc
es

A
lz

he
im

er
’s 

di
se

as
e

Ba
sa

l f
or

eb
ra

in
,

Fr
on

ta
l a

nd
 

Te
m

po
ra

l l
ob

es
,

Li
m

bi
c s

tr
uc

tu
re

s,
Lo

cu
s c

oe
ru

le
us

 an
d

O
lfa

ct
or

y 
bu

lb

Co
gn

iti
ve

an
d 

fu
nc

tio
na

l 
im

pa
irm

en
t,

D
em

en
tia

 li
ke

 m
em

or
y

lo
ss

, P
ro

bl
em

s w
ith

 
ab

st
ra

ct
 th

in
ki

ng
, 

Pl
an

ni
ng

, F
le

xi
bi

lit
y,

M
ot

or
 ta

sk
s, 

N
eu

ro
ps

yc
hi

at
ric

 
m

an
ife

st
at

io
ns

 an
d

La
ng

ua
ge

 p
ro

bl
em

N
eu

ro
fib

ril
la

ry
 

ta
ng

le
s (

N
FT

s)
, 

N
eu

ro
pi

l t
hr

ea
ds

, 
N

eu
rit

ic
 an

d 
am

yl
oi

d
pl

aq
ue

s a
nd

 
A

m
yl

oi
d 

an
gi

op
at

hy

A
β

3R
+ 

4R
 ta

u
A

na
to

m
ic

al
 

di
st

rib
ut

io
n 

of
 

(a
) n

eu
ro

na
l t

au
 

pa
th

ol
og

y,
 (b

)
ex

tr
ac

el
lu

la
r A

β 
de

po
sit

s a
nd

 (c
) C

A
A

iA
β5

 (C
ha

pe
ro

n)
 fo

r 
in

hi
bi

tin
g 

pr
ot

ei
n 

ag
gr

eg
at

es
,

D
on

ep
ez

il 
an

d 
Ri

va
st

ig
m

in
e 

dr
ug

 th
er

ap
y,

A
PP

 re
gu

la
tio

n 
by

 
la

tr
ep

ird
in

e a
nd

tr
ea

tm
en

t w
ith

 
ch

ol
in

es
te

ra
se

 in
hi

bi
to

rs
 an

d
H

DA
Ci

Fi
nk

el
,  

20
04

 [3
6]

;
D

es
ai

 an
d 

G
ro

ss
be

rg
; 

20
05

 [1
0]

;
O

ku
n 

et
 al

., 
20

04
 [3

7]

Pa
rk

in
so

n’s
 

di
se

as
e

Su
bs

ta
nt

ia
 n

ig
ra

 
pa

rs
 co

m
pa

ct
a,

 
Tr

an
s-

en
to

rh
in

al
 

re
gi

on
, M

ot
or

 a
nd

 
Se

ns
or

y 
co

rt
ex

, 
Pr

ef
ro

nt
al

 co
rt

ex
, 

D
or

sa
l m

ot
or

 n
uc

le
i 

of
 th

e m
ed

ul
la

 
ob

lo
ng

at
a,

 R
ap

he
 

nu
cl

eu
s a

nd
 L

oc
us

 
co

er
ul

eu
s o

f t
he

 
br

ai
ns

te
m

M
ot

or
 sy

m
pt

om
s: 

Tr
em

or
 

(r
es

tin
g)

, M
us

cl
e r

ig
id

ity
, 

Po
st

ur
al

 in
st

ab
ili

ty
, 

Co
or

di
na

tio
n 

pr
ob

le
m

, 
Sl

ow
 m

ov
em

en
ts

, 
Br

ad
yk

in
es

ia
 an

d 
Lo

ss
 

of
 p

hy
sic

al
 m

ov
em

en
t, 

N
on

 m
ot

or
 sy

m
pt

om
s: 

H
ig

h-
le

ve
l c

og
ni

tiv
e 

dy
sf

un
ct

io
n,

 P
sy

ch
ia

tr
ic

 
an

d 
em

ot
io

na
l c

ha
ng

es
, 

D
ep

re
ss

io
n,

 D
iff

ic
ul

ty
 in

 
sw

al
lo

w
in

g 
an

d 
sp

ea
ki

ng
, 

Se
ns

or
y 

sy
m

pt
om

s a
nd

 
Co

ns
tip

at
io

n 
an

d/
or

 
U

rin
ar

y 
pr

ob
le

m
s

N
eu

ro
na

l 
de

ge
ne

ra
tio

n 
of

 
do

pa
m

in
er

gi
c 

ne
ur

on
s

α-
sy

nu
cl

ei
n

Es
tim

at
io

n 
of

 th
e 

ac
tiv

ity
 o

f t
er

m
in

al
 

do
pa

 d
ec

ar
bo

xy
la

se
 

(D
D

C
),

 E
va

lu
at

io
n 

of
 th

e a
va

ila
bi

lit
y 

of
 p

re
sy

na
pt

ic
 

do
pa

m
in

e t
ra

ns
po

rt
er

s 
(D

AT
) a

nd
 V

es
ic

ul
ar

 
m

on
oa

m
in

e 
tr

an
sp

or
te

r 2
 

(V
M

AT
2)

 d
en

sit
y 

m
ea

su
re

m
en

ts
 in

 
do

pa
m

in
e t

er
m

in
al

s.

Co
m

bi
na

tio
n 

of
 L

ev
od

op
a 

an
d 

C
ar

bi
do

pa
, I

nd
uc

er
s 

of
 H

sp
10

4 
ch

ap
er

on
es

, 
Ta

rg
et

in
g 

of
 α

- s
yn

uc
le

in
 

m
isf

ol
di

ng
 w

ith
 H

sp
 70

, 
Tr

ea
tm

en
ts

 w
ith

 an
ti-

in
fla

m
m

at
or

y 
dr

ug
s a

ga
in

st
 

M
et

hy
l-4

-p
he

ny
lp

yr
id

in
iu

m
 

in
du

ce
d 

au
to

ph
ag

y 
an

d 
K

no
ck

do
w

n 
of

 S
ir

t2
 b

y 
siR

N
A

Br
oo

ks
,  

20
05

 [3
8]

;
D

ja
ld

et
ti 

et
 al

., 
20

06
 

[3
9]

;
Q

ui
nn

,  
19

95
 [4

0]
.



Oxidoreductase

134

NQO2 in brain cells leads to the production of ROS (via the rapid conversion of 
superoxide radicals into hydrogen peroxide and then into highly reactive hydroxyl 
radicals)-induced neuronal cell death or neurodegeneration [5]. The other isoform 
of NAD(P)H:quinone acceptor oxidoreductase (NQO), the NQO1, or NADH qui-
none oxidoreductase of mitochondria carries the most common Leber’s hereditary 
optic neuropathy (LHON) mutants [24]. The protein disulfide isomerase (PDI) 
enzyme is another potent oxidoreductase resides in the endoplasmic reticulum, has 
the ability to catalyze the oxidative folding reactions requires for the maturation 
of disulfide-bond-containing proteins. It is found to regulate the molecular traf-
ficking along the secretory pathway to prevent the protein misfolding which can 
mitigate the proteinopathy-induced neurodegenerative diseases (e.g., AD, PD). 
Monoamine oxidase (MAO) is another oxidoreductase which is predominantly 
found in the brain regional and platelet mitochondrial outer membrane catalyzes 
the amine (-NH2) compound (monoamine neurotransmitters e.g., serotonin 
(5-HT), dopamine) and formaldehyde and hydrogen peroxide (H2O2) as byprod-
ucts. During aging the MAO-A activity has been found to be increased in cerebral 
cortex, hippocampus, hypothalamus, and pons-medulla [25, 26] whereas, decrease 
in blood platelets [27]. Very limited information are available there about the aldo-
keto oxidoreductase (aldehyde dehydrogenase or ALDH, aldose reductase, alde-
hyde reductase, alcohol dehydrogenase) which can detoxify the reactive aldehyde 
and ketone bodies in the brain bearing a protective role from the development of 
aging-induced neurodegenerative diseases, especially AD. The oxidative damage to 
the polyunsaturated fatty acids (PUFA) generates the 4-hydroxy-trans-2- nonenal 
(HNE) and its related carbonyl, which creates immunoreactivity. Their elevated 
levels are found in the brain as well as in cerebrospinal fluid (CSF) of AD, PD, 
and ALS patients [28]. It (reactive aldehydes) inhibits mitochondrial functions, 
disrupts cytoskeleton, inhibits glutamate transporters, and also modifies tubulin 
structure [29, 30]. The aldo-keto oxidoreductases have the ability to detoxify these 
reactive aldehydes in brain by converting those into corresponding acid or alcohol 
[31, 32]. The ALDH has been found in the cerebral cortex, hippocampus, basal 
ganglia, and midbrain, and aldose reductase in the pyramidal cells of cerebral 
cortex and hippocampal CA1 region, while all of these oxidoreductases are pres-
ent in cerebellum [19] providing and strengthening the evidence of the fact that 
cerebellum is less vulnerable in the proteinopathy related NDDs. The xanthine 
oxidoreductase which converts hypoxanthine to xanthine and thereby to uric 
acid-producing H2O2 as a byproduct can generate superoxide via NADH oxidase 
activity and similar to ALDH, manganese superoxide dismutase (Mn-SOD) and 
heme-oxygenase-1 (HO-1) are promptly expressed in reactive astrocytes and 
found to be present in healthy pyramidal neurons [33, 34].

3. Types of neurodegeneration

NDDs often overlap with each other based on pathology and symptoms espe-
cially in multisystem atrophy where several areas get affected at a time making it 
difficult to analyze clinically [35]. Based on the predominant pathological features 
and topography of the central nervous system (CNS) during the diseased condition, 
NDDs have been classified into three major aspects:

3.1 Anatomical classification

The anatomical positions (such as cerebral cortex, basal ganglia, brainstem, cer-
ebellum, spinal cord) in relation to the disease condition (Table 1) can be used as 
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a component to identify the disease and also for its classification [7]. For example, 
dementia is a pathological condition due to neurodegeneration in the cerebral cortex 
as observed in AD patients. Similarly abnormal motor functions as observed in PD 
are associated with degenerations involving basal ganglia including nucleus puta-
men, globus pallidus, substantia nigra, subthalamic nucleus, red nucleus, and some 
thalamic and brainstem nuclei, etc. (Table 1) [7].

3.2 Based on conformational and biochemical modifications of proteins

Some proteins and their cellular aggregation as identified, are associated with 
NDDs and found to undergo conformational and biochemical modifications 
during disease pathology [7]. Proteins such as microtubule-associated protein Tau 
encoded by MAPT on 17q21 chromosome, Aβ transcript encoded by AβPP gene on 
chromosome 21q21.3, α- Synuclein encoded by a gene (SNCA) on chromosome 4, 
prion protein (PrP), encoded by a gene (PRNP) on chromosome 20, Transactive 
response (TAR) DNA-binding protein 43 (TDP-43) encoded by the TARDBP 
gene on chromosome 1, etc. are few of the examples. Some hereditary associated 
proteins encoded by genes that are associated with neurological trinucleotide 
repeat disorders like ataxins, huntingtin, atrophin-1 are also found as a biomarker 
of disease identification [44]. Protein deposition pattern in CNS during NDDs are 
classified into several proteinopathies such as cerebral amyloidoses, tauopathies, 
α-synucleinopathies, prion diseases, trinucleotide repeat diseases, TDP-43 pro-
teinopathies, FUS/FET proteinopathies, neuroserpinopathy, etc. [7, 44–47]. Only 
a few numbers of modifications are so far included in the classification and patho-
logical subtyping of the NDDs, e.g. Aβ modification is not included in the classifica-
tion of AD but the biochemical steps of Aβ aggregation and a different variant of Aβ 
aggregates have implemented to interpret the early and late phases of AD pathology 
[48]. Similarly, recent neuropathological studies have revealed that the biochemical 
classification of tauopathies by analyzing the insoluble and trypsin-resistant tau 
with varying C-terminal fragments [49]. Tauopathies can be further distinguished 
by the presence of different ratios of the repeat (R)- and 4R-tau and two or three 
major phospho-tau bands (60, 64, and 68 kDa) [50]. Other major protein modifica-
tions are shown in Table 2.

3.3 Cellular pathology

Neurodegenerative diseases can be characterized by the presence of misfolded 
proteins within or outside of the neurons [51]. Cellular pathology is also an impor-
tant aspect to distinguish the location of protein deposition at the subcellular level 
such as nuclear, neuritic (axons or dendrites), cytoplasmic, mitochondria, myelin, 
lysosomes or in astrocytes, etc. [7]. Charcot–Marie–Tooth neuropathy type 1B 
(CMT-1B), a hereditary motor and sensory neuropathy, is one such example as it 
can be identified by the accumulation of misfolded myelin protein zero (mpz) in 
the endoplasmic reticulum [51]. In superoxide dismutase 1 (SOD1) associated ALS, 
misfolded SOD1 mutant is found in the cytosol [51]. An aggregate of huntingtin 
with an expandable polyQ track in the cytosolic and nuclear space of the neuronal 
cells is a characteristic of HD [52]. α-synuclein, a soluble protein marker of PD is 
available predominantly in the presynaptic zone of neuronal cells. The complex 
mechanism of AD consists of binding of Aβ oligomers with several receptors intra-
cellularly. Accumulation of Aβ in the lysosomal compartment followed by a change 
in its membrane permeability is also identified in AD pathological. Aβ-induced 
mitochondrial dysfunction by the deregulation of enzymatic activities of the 
electron transport chain is also identified in AD pathology [52].
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Proteinopathies Proteins Biochemical characteristics References

Amyloidoses Amyloid-beta 
(Aβ)

• Produced by proteases mediated the 
sequential cleavage

• Most abundant component of Aβ 
deposit is Aβ 1–40/1–42 peptides along 
with other available species such as 
(Aβ 1–37/38/39)

• Aβ deposits have resistance against 
proteinase K

Thal et al.,  
2015 [48]

Prion protein 
(PrP)

• Disease-associated PrPSc is detergent-
insoluble and resistance to protease 
K treatment but not the physiological 
cellular form of PrP (PrPC)

• PrP can be differentiated based 
on electrophoretic mobility and 
N-terminal sequence of the core frag-
ments, and the most common PrPres 
species is PrP27–30.

• Other fragments forms are PrP 
11, PrP7–8, PrP14, PrP-CTF12/13, 
PrP16–17, and PrP17.5–18

Kovacs and 
Budka,  
2009 [8];
Duyckaerts  
et al., 2009 [45]

Tauopathies Tau • Most common modification is 
hyperphosphorylation

• Ratio between 3R- and 4R-tau, and 
two or three major phospho-tau bands 
(60, 64, and 68 kDa) in Western blot 
of sarkosyl-insoluble fractions are 
the major factors for distinguishing 
tauopathies.

• Distinct feature of taupathies are 
N- and C-terminal truncation, glyca-
tion, nitration of tyrosine residues, 
glycosylation, transglutamination, 
deamidation; acetylation; oligomer; 
the banding patterns of C-terminal 
fragments of tau and the trypsin-
resistant band patterns etc.

Lee et al.,  
2001 [50];
Taniguchi-
Watanabe  
et al., 2015 [49]

Synucleinopathies α-Synuclein • Modification occur: phosphorylation 
at serine 87 and 129 and at tyrosine 
125 residue

• Various conformation and oligomeric 
states of synuclein are in dynamic 
equilibrium state.

• Resistance against protease K

Dehay et al., 
2015 [46]

TDP-43 
Proteinopathies

Transactive 
response 
(TAR) 
DNA-binding 
protein 43 
(TDP-43)

• Modification: phosphorylation on 
serine 379 (S379), S403, S404, S409, 
S410 residues

• Ubiquitinylation and abnormal cleav-
age; oligomer; C-terminal fragments 
detected in disease

Kovacs,  
2019 [47]

Aβ 1–40/1–42/1–37/38/39 are different amyloids oligomers consisting different numbers of residue-long proteolytic 
fragments; PrP27–30,PrP 11, PrP7–8, PrP14, PrP-CTF12/13, PrP16–17, and PrP17.5–18 are different fragments 
of prion protein consisting of different size (Kda) of fragments; Prp-CFT: C-terminal fragments of PrP; PrPSc: 
abnormal or scrapie isoform of PrP; 3R- and 4R- Tau: 3 or 4C-terminal microtubule binding repeats in Tau protein.

Table 2. 
Biochemical characteristics of some major proteins related to neurodegenerative proteinopathies.
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4. Diagnosis of NDDs

The NDDs can be largely differentiated by the anatomical regions showing 
neuronal dysfunction, biochemical and conformational changes in protein markers 
and neuronal cell pathologies including the deposition of protein(s), and altera-
tion in genetics and epigenetics [53]. Structural neuroimaging techniques such 
as computed tomography (CT), magnetic resonance imaging (MRI) are used for 
diagnosis but due to very low specificity, they have been replaced by new neuroim-
aging techniques such as positron emission tomography (PET) and single-photon 
emission computed tomography (SPECT) [54]. The functional magnetic resonance 
imaging (fMRI), another new generation diagnostic approach, identify the correla-
tion of different physiological functions during NDDs rather than direct imagining 
of neuronal activities [55]. The focus of the new diagnostic researches is to establish 
easily detectable biomarkers from blood or saliva to distinguish the different forms 
of neuronal disorders [56]. It has been observed by using fluorodeoxyglucose-PET 
that the earliest sign of AD is metabolic decline. Detection and identification of 
small molecule metabolites in the biological samples are called metabolomics, 
which is another newest cutting edge approach for the diagnosis of neurodegenara-
tion associated metabolic disorders [57]. Genetic markers associated with familiar 
neurodegenerative diseases are already identified for a different type of disorders 
such as for diagnosis of AD amyloid precursor protein, presenilin gene mutations 
and apolipoprotein E (APOE) polymorphism are some of the known genetic mark-
ers whereas for PD, α-synuclein protein or PrP gene mutation for the familiar type 
of prion diseases, etc. have been identified, although their sensitivity and specificity 
are still questionable [58].

4.1  Application of neuro-imaging in the diagnosis of major diseases due to 
neurodegenerations

The most frequent CNS diseases are diagnosed by using the following functional 
neuroimaging techniques:

4.1.1 Parkinson’s disease (PD)

PD is known to be progressive as well as a degenerative disorder associated 
with a loss of dopamine-producing neurons of the substantia nigra and other brain 
regions [38]. Pathophysiology, progression, and complications of this disease are 
well understood and identified by neuroimaging techniques. Neuroimaging deals 
with the detection of the changes in brain structure as well as its region(s) on the 
basis of changes in brain glucose, oxygen and dopamine metabolism, and receptor 
binding of dopamine [38]. The functional markers such as (a) the activity of dopa 
decarboxylase (DDC) terminal, (b) presynaptic dopamine transporters (DAT) 
availability, and (c) vesicle monoamine transporter density in dopamine terminals 
(VMAT2) are implemented for neuroimaging (in both PET/SPECT) [38]. DDC 
works as a catalyst for L-Dopa decarboxylation to Dopamine. Using 6-[18F]-L-dopa 
PET the activity of DDC can be measured by measuring neuronal loss. 18F-Dopa 
transfer into 18F-dopamine by amino acid decarboxylase and trapped in synaptic 
vesicles, whose uptake depends on the presence or loss of nigrostriatal postsynaptic 
dopamine cell [39, 59]. Similarly, DAT, which helps to clears dopamine after its 
release in the synaptic cleft, can be used for PD diagnosis. D2–dopamine recep-
tor binding tracers 11C-raclopride-PET and 123I-iodobenzamide (IBZM)-SPECT 
have been used for the assessment of D2 receptor density and gives good results 
to evaluate PD patients [38, 39, 59]. VMAT2 is an integral membrane protein 
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which especially transports dopamine like monoamines into synaptic vesicles. 
11C-dihydro-tetrabenazine-PET can be used for its test [38]. In PD loss of 5-HT 
concentration is observed by 11C-WAY100635-PET and the measurement of 
5-HT1A receptor by evaluating the functional integrity of serotonergic neurons 
[59]. fMRI analysis of PD patients has shown the distinct variation in covariance 
patterns of the region-based resting-state activity in functional brain regional 
networks in comparison to the normal brain. The detrimental effect of dopamine 
replacement on non-motor brain functions due to the alteration of the physiologi-
cal pattern of dopamine signaling can also be proved by fMRI studies [60]. This 
suggests functional changes between the three different brain-related disorders. PD 
can be characterized by the activation of the neuroimmune system in microglia fol-
lowed by a loss of neurons in substantia nigra [61]. 11C-PK11195 is known to enable 
the detection of increased signals in substantia nigra which reflect local degenera-
tion as a consequence of PD [38]. In addition, the significant reduction in metabo-
lomes like catecholamines [homovanillic acid (HVA), dihydroxyphenylacetic acid 
(DOPAC), L-dopa, etc.) has also been observed during PD [62]. NMR metabolomics 
based study has helped to differentiate PD from non-PD patients by detecting the 
presence of metabolomes (like creatinine, glucose, lactate, 3-hydroxyisobutyric 
acid and 3-hydroxyisovaleric acid etc.) in CSF [62]. The presence of kynurenine in 
the blood of PD is proved to be potential biomarker candidates [62].

4.1.2 Alzheimer’s disease (AD)

Structural neuroimaging with CT and volumetric MRI has an application on 
AD related cerebral atrophy and measurement of cerebral blood flow or regional 
glucose and oxygen metabolism [63]. MRI helps to measure the memory form-
ing zone of CNS i.e. hippocampus and cortex-structures in the temporal lobe and 
further helps to differentiate between AD and other dementia [64, 65]. By using 
magnetic resonance spectroscopy (MRS) the information about concentrations of 
tissue substrate or metabolite during AD and MCI (mild cognitive impairment) 
can be identified by using N-acetyl aspartate as a marker [64, 66]. Quantification 
of amyloid deposition by tracing the amounts of radioligands in vivo is also pos-
sible by PET and SPECT. PET usually detect the metabolic uptake of fluorine 18 
[18F]-labeled 2 fluorodeoxyglucose (2-deoxy-2-[18F]- fluoro-D-glucose- FDG) and 
blood flow in patients with dementia [64, 67]. The fMRI techniques in AD diagnosis 
is implemented in cerebral blood flow (CBF) and cerebral vasomotor regulation 
(CVR) mapping. This limitation in CVR has been observed in the APOEε4 gene 
carrying early-onset AD patients with vascular dysfunction, which occur due to the 
astrocytic end-feet swelling, degeneration of pericyte, hypertrophy of basement-
membrane as well as due to the abnormalities in the endothelial-cell metabolic. 
Non-invasive fMRI is a major tool for the diagnosis of AD by identifying such 
changes in CVR mapping [55]. In the AD brain, the most characteristic feature and 
useful biomarker are amyloid plaques consisting of Aβ protein, dystrophic neuritis, 
inflammatory factors, and cellular material inside and outside of the neurons [68]. 
Tau tangles are also associated with AD and composed of paired helical filaments 
(PHF) derived from abnormally hyperphosphorylated microtubule-associated 
protein tau [69]. Radiotracers such as [18F]-BAY94–9172, an Aβ ligand, have been 
used with PET to differentiate between AD and frontotemporal dementia patients 
[66, 70]. PET studies with the application of [11C] PIB, a derivative of thioflavin-T 
amyloid dye that binds to Aβ plaques but not tangles, show more retention in the 
cortical zone of frontotemporal dementic brain when compared to AD brain [64, 
65]. 18F-DDNP – PET scanning helps to compare AD, MCI, and controls having 
intact cognitive functions [71, 72]. The plasma metabolomics biomarkers including 
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4. Diagnosis of NDDs

The NDDs can be largely differentiated by the anatomical regions showing 
neuronal dysfunction, biochemical and conformational changes in protein markers 
and neuronal cell pathologies including the deposition of protein(s), and altera-
tion in genetics and epigenetics [53]. Structural neuroimaging techniques such 
as computed tomography (CT), magnetic resonance imaging (MRI) are used for 
diagnosis but due to very low specificity, they have been replaced by new neuroim-
aging techniques such as positron emission tomography (PET) and single-photon 
emission computed tomography (SPECT) [54]. The functional magnetic resonance 
imaging (fMRI), another new generation diagnostic approach, identify the correla-
tion of different physiological functions during NDDs rather than direct imagining 
of neuronal activities [55]. The focus of the new diagnostic researches is to establish 
easily detectable biomarkers from blood or saliva to distinguish the different forms 
of neuronal disorders [56]. It has been observed by using fluorodeoxyglucose-PET 
that the earliest sign of AD is metabolic decline. Detection and identification of 
small molecule metabolites in the biological samples are called metabolomics, 
which is another newest cutting edge approach for the diagnosis of neurodegenara-
tion associated metabolic disorders [57]. Genetic markers associated with familiar 
neurodegenerative diseases are already identified for a different type of disorders 
such as for diagnosis of AD amyloid precursor protein, presenilin gene mutations 
and apolipoprotein E (APOE) polymorphism are some of the known genetic mark-
ers whereas for PD, α-synuclein protein or PrP gene mutation for the familiar type 
of prion diseases, etc. have been identified, although their sensitivity and specificity 
are still questionable [58].

4.1  Application of neuro-imaging in the diagnosis of major diseases due to 
neurodegenerations

The most frequent CNS diseases are diagnosed by using the following functional 
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4.1.1 Parkinson’s disease (PD)

PD is known to be progressive as well as a degenerative disorder associated 
with a loss of dopamine-producing neurons of the substantia nigra and other brain 
regions [38]. Pathophysiology, progression, and complications of this disease are 
well understood and identified by neuroimaging techniques. Neuroimaging deals 
with the detection of the changes in brain structure as well as its region(s) on the 
basis of changes in brain glucose, oxygen and dopamine metabolism, and receptor 
binding of dopamine [38]. The functional markers such as (a) the activity of dopa 
decarboxylase (DDC) terminal, (b) presynaptic dopamine transporters (DAT) 
availability, and (c) vesicle monoamine transporter density in dopamine terminals 
(VMAT2) are implemented for neuroimaging (in both PET/SPECT) [38]. DDC 
works as a catalyst for L-Dopa decarboxylation to Dopamine. Using 6-[18F]-L-dopa 
PET the activity of DDC can be measured by measuring neuronal loss. 18F-Dopa 
transfer into 18F-dopamine by amino acid decarboxylase and trapped in synaptic 
vesicles, whose uptake depends on the presence or loss of nigrostriatal postsynaptic 
dopamine cell [39, 59]. Similarly, DAT, which helps to clears dopamine after its 
release in the synaptic cleft, can be used for PD diagnosis. D2–dopamine recep-
tor binding tracers 11C-raclopride-PET and 123I-iodobenzamide (IBZM)-SPECT 
have been used for the assessment of D2 receptor density and gives good results 
to evaluate PD patients [38, 39, 59]. VMAT2 is an integral membrane protein 

141

Neurodegeneration: Diagnosis, Prevention, and Therapy
DOI: http://dx.doi.org/10.5772/intechopen.94950

which especially transports dopamine like monoamines into synaptic vesicles. 
11C-dihydro-tetrabenazine-PET can be used for its test [38]. In PD loss of 5-HT 
concentration is observed by 11C-WAY100635-PET and the measurement of 
5-HT1A receptor by evaluating the functional integrity of serotonergic neurons 
[59]. fMRI analysis of PD patients has shown the distinct variation in covariance 
patterns of the region-based resting-state activity in functional brain regional 
networks in comparison to the normal brain. The detrimental effect of dopamine 
replacement on non-motor brain functions due to the alteration of the physiologi-
cal pattern of dopamine signaling can also be proved by fMRI studies [60]. This 
suggests functional changes between the three different brain-related disorders. PD 
can be characterized by the activation of the neuroimmune system in microglia fol-
lowed by a loss of neurons in substantia nigra [61]. 11C-PK11195 is known to enable 
the detection of increased signals in substantia nigra which reflect local degenera-
tion as a consequence of PD [38]. In addition, the significant reduction in metabo-
lomes like catecholamines [homovanillic acid (HVA), dihydroxyphenylacetic acid 
(DOPAC), L-dopa, etc.) has also been observed during PD [62]. NMR metabolomics 
based study has helped to differentiate PD from non-PD patients by detecting the 
presence of metabolomes (like creatinine, glucose, lactate, 3-hydroxyisobutyric 
acid and 3-hydroxyisovaleric acid etc.) in CSF [62]. The presence of kynurenine in 
the blood of PD is proved to be potential biomarker candidates [62].

4.1.2 Alzheimer’s disease (AD)

Structural neuroimaging with CT and volumetric MRI has an application on 
AD related cerebral atrophy and measurement of cerebral blood flow or regional 
glucose and oxygen metabolism [63]. MRI helps to measure the memory form-
ing zone of CNS i.e. hippocampus and cortex-structures in the temporal lobe and 
further helps to differentiate between AD and other dementia [64, 65]. By using 
magnetic resonance spectroscopy (MRS) the information about concentrations of 
tissue substrate or metabolite during AD and MCI (mild cognitive impairment) 
can be identified by using N-acetyl aspartate as a marker [64, 66]. Quantification 
of amyloid deposition by tracing the amounts of radioligands in vivo is also pos-
sible by PET and SPECT. PET usually detect the metabolic uptake of fluorine 18 
[18F]-labeled 2 fluorodeoxyglucose (2-deoxy-2-[18F]- fluoro-D-glucose- FDG) and 
blood flow in patients with dementia [64, 67]. The fMRI techniques in AD diagnosis 
is implemented in cerebral blood flow (CBF) and cerebral vasomotor regulation 
(CVR) mapping. This limitation in CVR has been observed in the APOEε4 gene 
carrying early-onset AD patients with vascular dysfunction, which occur due to the 
astrocytic end-feet swelling, degeneration of pericyte, hypertrophy of basement-
membrane as well as due to the abnormalities in the endothelial-cell metabolic. 
Non-invasive fMRI is a major tool for the diagnosis of AD by identifying such 
changes in CVR mapping [55]. In the AD brain, the most characteristic feature and 
useful biomarker are amyloid plaques consisting of Aβ protein, dystrophic neuritis, 
inflammatory factors, and cellular material inside and outside of the neurons [68]. 
Tau tangles are also associated with AD and composed of paired helical filaments 
(PHF) derived from abnormally hyperphosphorylated microtubule-associated 
protein tau [69]. Radiotracers such as [18F]-BAY94–9172, an Aβ ligand, have been 
used with PET to differentiate between AD and frontotemporal dementia patients 
[66, 70]. PET studies with the application of [11C] PIB, a derivative of thioflavin-T 
amyloid dye that binds to Aβ plaques but not tangles, show more retention in the 
cortical zone of frontotemporal dementic brain when compared to AD brain [64, 
65]. 18F-DDNP – PET scanning helps to compare AD, MCI, and controls having 
intact cognitive functions [71, 72]. The plasma metabolomics biomarkers including 
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glycerophosphatidylcholines, asparagine, acylcarnitines, and asymmetric dimethy-
larginine (ADMA) are identified as a predictive marker of plasma which can predict 
the risk of conversion from cognitively normal individuals to AD [57]. Reduction in 
N-acetyl aspartate in the brain can be correlated with neuronal and mitochondrial 
dysfunction during AD. Acylcarnitine, sphingomyelins, glycerophospholipids 
found to be increased significantly in the CSF of AD patients in comparison to 
normal patients [57].

4.1.3 Huntington’s disease (HD)

HD is a dominantly inherited, autosomal, NDD characterized by motor, cogni-
tive, and emotional abnormalities [42]. In the early course of HD, no structural 
changes of the brain can be observed by CT and MRI while only in later stage 
atrophy has been observed in the caudate and frontal cortex [73]. PET study 
can provide information by diagnosing HD as early as 9 to 11 years before the 
first symptoms appear [74]. PET with 2-deoxy-2-[fluorine-18]fluoro-D-glucose 
(18F-FDG-PET) is also used to detect the reduced striatal glucose metabolism in 
early HD which further causes bradykinesia, dementia, and putamen hypome-
tabolism connects with chorea and eye-movement abnormalities [42, 75]. HD 
has also been found to be associated with structural loss of dopamine (D1, D2) 
receptor-expressing medium spiny neurons from the striatum. The damage can 
be estimated by using radiolabelled dopamine antagonists [11C] raclopride and by 
observing the binding potential (BP) of dopamine receptors which help to assess 
the neuronal damage [42]. Further, PET study using [11C] diprenorphine as a tracer 
has shown a mild loss of opioid receptors in the striatum in HD patients [42]. The 
accumulation of active microglia due to neuronal loss can be seen with the help of 
11C-(R)-PK11195 as a tracer in the striatum, globus pallidus, and frontal cortex in 
HD patients [76]. fMRI has applied to diagnosed HD by various cognitive paradigm 
including maze learning, serial reaction time, working memory etc. fMRI blood-
oxygen-level-dependent (BOLD) signal response is also applied for correlation 
between different regions in HD patients [74]. HD is associated with metabolic and 
energy pathways alterations. After studying various metabolomics Mastrokolias 
et al. [77] have found that the deregulation of phosphatidylcholine metabolism is a 
prominent plasma biomarker of HD.

4.1.4 Amyotrophic lateral sclerosis (ALS)

ALS is a motor neuron disease (MND) associated with progressive deteriora-
tion of the corticospinal tract, brainstem, and anterior horn cells of the spinal 
cord [78]. Cortical atrophy is observed in late ALS which can be assessed by 
structural MRI of ALS patients’ CT studies. The increased population of microglia 
during ALS can be observed by radiolabelled PET ligand [11C] (R)- PK11195 
which selectively binds with the peripheral benzodiazepine binding site (PBBS) 
of microglia [79]. ALS can be also diagnosed by the measurement of postsyn-
aptic dopamine D2 receptor binding abilities. 123I-benzamide (123I-IBZM), a 
specific binding substance with D2 receptors shows less receptor binding during 
ALS when investigated using SPECT [80, 81]. PET studies show a decrease in 
11C-flumazenil (a radiolabelled antagonist of benzodiazepine receptor) bind-
ing in the primary sensory, premotor, prefrontal, thalamic, and parietal regions 
during ALS [78, 82]. Both 123I-N-isopropyl-p-iodoamphetamine (123I-IMP) 
and 99mTc-hexamethyl propylene amine oxime ([99mTc] –D, L- HMPAO) are 
markers which have been used to determine reduced fronto-temporal blood flow 
as well as glucose metabolism by SPECT studies [41].
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4.1.5 Multiple sclerosis (MS)

MS is characterized by demyelination of neurons in the CNS, with the formation 
of plaques or lesions [43]. MRI studies show these lesions are dynamic in different 
stages of the disease. Neuronal loss and brain atrophy are not visible in the early 
stage of MS by MRI scans [83]. Decreased regional and global CBF and cerebral 
metabolic rate of glucose (CMRglc) can be observed by PET imaging using 18FDG 
as a detection agent. Although the differentiation between acute and chronic MS is 
tough for the SPECT study with the help of Tc-99 m-MIBI as a radiopharmaceutical, 
which in fact shows multiple accumulation points in acute MS but not in chronic 
MS [84]. Binding potential of microglial peripheral benzodiazepine binding sites 
(PBBS) towards [11C] (R)-PK11195 can be applied as a determinant factor of MS, 
like other neurodegenerative diseases [83, 85]. Application of fMRI in MS has 
been recently applied to assess MS-associated modification of cervical cord in the 
patient. This study also helps to identify the brain regions involved in the tactile and 
proprioceptive stimulation during AD pathology [86]. Mangalam et al. [87] have 
performed a study to find out the MS-based untargeted metabolic alterations in bile 
acid biosynthesis as well as the metabolism of histidine, taurine, tryptophan linoleic 
acid, and d-arginine.

4.2  Anatomical identifications of neuronal losses in relation to clinical 
symptoms

Identification of anatomical positions is needed for understanding the early 
symptoms. For example, brain regions such as the entorhinal cortex, neocortex, hip-
pocampus, limbic system are responsible for symptoms like cognitive decline, demen-
tia, and other high-order brain functions alterations whereas basal ganglia, thalamus, 
brain stem, and motor cortical areas are mostly responsible for disturbance in body 
movements. Combinations of these types of symptoms are mostly observed during the 
progression of diseases following region-specific neurodegenerations [7]. One of the 
conventional approaches to understand neuroanatomy is brain mapping which helps 
to localize the disease-related changes [88, 89]. Characterization of brain regional 
anatomical changes in diseased conditions is a fascinating and advanced approach of 
current neuroscience research [90]. Earlier the identification of neurofibrillary tangles 
in the cortex and the hippocampus due to Alzheimer’s were studied by region-of-
interest technique (ROI). These techniques (ROI) can be implemented to compute the 
overall volume for a particular brain structure, based on the manual or automatic posi-
tioning of the sections’ MRI serially for a subject by using already existing anatomical 
protocols [91]. Though the prior knowledge of anatomical structures makes ROI-based 
analysis a strong and useful approach, the lack of detailing in the investigation of the 
underlying complex structure makes this method less advantageous for diagnosis 
[92]. Like in AD patient ROI technique is capable of establishing the hippocampus 
and entorhinal cortex as most prominent imaging biomarkers but this technique is 
not useful to investigate the underlying complex structure of the hippocampus for 
further diagnosis [91–93]. Another newer image analysis technique is Voxel-based 
morphometry (VBM) able to identify cortical and subcortical degeneration simultane-
ously, providing significant insight changes in gray matter in AD and MCI [94]. VBM 
can be implemented to classify MRI maps into individual maps of gray matter, white 
matter, and CSF tissue classes followed by creating an alignment of gray matter maps 
and then smoothened it with the help of filters. The corresponding cognitive score has 
been statistically assessed using multiple regression analysis. The general linear model 
used to fit with gray matter density at each image location or voxel related to diagnosis, 
cognitive scores, etc. [95, 96]. Several brain regional gray matter atrophy such as 
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glycerophosphatidylcholines, asparagine, acylcarnitines, and asymmetric dimethy-
larginine (ADMA) are identified as a predictive marker of plasma which can predict 
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changes of the brain can be observed by CT and MRI while only in later stage 
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(18F-FDG-PET) is also used to detect the reduced striatal glucose metabolism in 
early HD which further causes bradykinesia, dementia, and putamen hypome-
tabolism connects with chorea and eye-movement abnormalities [42, 75]. HD 
has also been found to be associated with structural loss of dopamine (D1, D2) 
receptor-expressing medium spiny neurons from the striatum. The damage can 
be estimated by using radiolabelled dopamine antagonists [11C] raclopride and by 
observing the binding potential (BP) of dopamine receptors which help to assess 
the neuronal damage [42]. Further, PET study using [11C] diprenorphine as a tracer 
has shown a mild loss of opioid receptors in the striatum in HD patients [42]. The 
accumulation of active microglia due to neuronal loss can be seen with the help of 
11C-(R)-PK11195 as a tracer in the striatum, globus pallidus, and frontal cortex in 
HD patients [76]. fMRI has applied to diagnosed HD by various cognitive paradigm 
including maze learning, serial reaction time, working memory etc. fMRI blood-
oxygen-level-dependent (BOLD) signal response is also applied for correlation 
between different regions in HD patients [74]. HD is associated with metabolic and 
energy pathways alterations. After studying various metabolomics Mastrokolias 
et al. [77] have found that the deregulation of phosphatidylcholine metabolism is a 
prominent plasma biomarker of HD.

4.1.4 Amyotrophic lateral sclerosis (ALS)

ALS is a motor neuron disease (MND) associated with progressive deteriora-
tion of the corticospinal tract, brainstem, and anterior horn cells of the spinal 
cord [78]. Cortical atrophy is observed in late ALS which can be assessed by 
structural MRI of ALS patients’ CT studies. The increased population of microglia 
during ALS can be observed by radiolabelled PET ligand [11C] (R)- PK11195 
which selectively binds with the peripheral benzodiazepine binding site (PBBS) 
of microglia [79]. ALS can be also diagnosed by the measurement of postsyn-
aptic dopamine D2 receptor binding abilities. 123I-benzamide (123I-IBZM), a 
specific binding substance with D2 receptors shows less receptor binding during 
ALS when investigated using SPECT [80, 81]. PET studies show a decrease in 
11C-flumazenil (a radiolabelled antagonist of benzodiazepine receptor) bind-
ing in the primary sensory, premotor, prefrontal, thalamic, and parietal regions 
during ALS [78, 82]. Both 123I-N-isopropyl-p-iodoamphetamine (123I-IMP) 
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as a detection agent. Although the differentiation between acute and chronic MS is 
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which in fact shows multiple accumulation points in acute MS but not in chronic 
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(PBBS) towards [11C] (R)-PK11195 can be applied as a determinant factor of MS, 
like other neurodegenerative diseases [83, 85]. Application of fMRI in MS has 
been recently applied to assess MS-associated modification of cervical cord in the 
patient. This study also helps to identify the brain regions involved in the tactile and 
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to localize the disease-related changes [88, 89]. Characterization of brain regional 
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tioning of the sections’ MRI serially for a subject by using already existing anatomical 
protocols [91]. Though the prior knowledge of anatomical structures makes ROI-based 
analysis a strong and useful approach, the lack of detailing in the investigation of the 
underlying complex structure makes this method less advantageous for diagnosis 
[92]. Like in AD patient ROI technique is capable of establishing the hippocampus 
and entorhinal cortex as most prominent imaging biomarkers but this technique is 
not useful to investigate the underlying complex structure of the hippocampus for 
further diagnosis [91–93]. Another newer image analysis technique is Voxel-based 
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temporal, posterior cingulated, precorneal cortex in AD and normal aged persons has 
been documented by using VBM studies [97]. The application of VBM has also been 
observed to investigate the effect of aging and gender on spatial profiling in normal 
subjects [96] as well as in the frontotemporal zone of PD, and Lewy body dementia, 
and also in herpes simplex encephalitis [98–100].

The limitation of VBM is inherently low spatial resolution due to spatial smooth-
ening to achieve inter-individual cortical variability [101]. VBM study is also not 
optimal for analysis of gray matter atrophy as highly convoluted features that 
appeared for the Gyral and sulcal region cannot be readily distinguished leading to 
a lack of detecting and localizing the subtle cortical differences [89].

4.3 Brain mapping: a diagnostic tool for neurodegenerative diseases

Brain mapping techniques rely on a mathematical computation of anatomy 
where brain surface and its volumes are represented as 3D complex geometrical 
patterns mesh models, averaged, combined across subjects and can be statistically 
defined [89]. The technique implies transformable and deformable templates which 
can be transformed into brain shape for studies by constraining surface landmarks 
(e.g., sulci) or alignment of surface-specific geometrical patterns (e.g., gyri) and 
helps to co-localized cortical and subcortical regions along with cortical thickness, 
gray matter density, functional activations, etc. by improving the identification 
of cortical and subcortical changes associated to the diseases [102]. Localization 
of changes by cross-sectional and longitudinal imaging is done by tensor-based 
morphometry (TBM), a newer approach to map the changes in the brain over time. 
This method has been found to be sensitive, with high throughput, and attractive 
for gauging brain changes in larger study populations. In cross-sectional studies, 
where many individual images are matched to a common brain template to compare 
the systematic volume and shape between control and diseased individuals, TMB 
has been found to be effective and helps to clinically correlate the different disease 
conditions like Fragile X syndrome 56 and Williams syndrome, etc. [103]. TBM can 
detect and visualize subcortical nuclear as well as structural gray and white matter 
by using newer statistical methods [103].

4.3.1 Application of brain mapping in AD

Radial atrophy mapping of the hippocampus has been first applied by 
Thompson et al. [104] for the diagnosis of AD and has shown distinct differences 
between normal elderly and AD patients. Later on, Frisoni et al. [105] have dem-
onstrated that the CA1 area and parts of the subiculum using the same technique 
and showed AD cases have 15–20% atrophy in relation to the normal controls. 
Apostolova et al. [88] have shown that patients with MCI have more severe involve-
ment of CA1 and subiculum atrophy which are likely to convert into AD at a later 
age. Apolipoprotein E4 (APOE ε4) a prominent genetic risk factor for sporadic 
AD carriers, has a higher hippocampal atrophy rate than non-carriers as observed 
by longitudinal MRI study. Further, Bookheimer et al. [106] by cortical thickness 
study have shown that cognitively normal APOE ε4 carriers have a significantly 
thinner entorhinal cortex and focal hippocampal atrophy in comparison to normal 
non-carriers. Thompson et al. [104] have also reported based on the comparison of 
baseline grey matter density map a significant atrophy in lateral, temporal, parietal, 
and parieto-occipital cortices in AD patients. Brain mapping by computational 
anatomy techniques has significantly improved sensitivity for the detection of dif-
ferences in the disease-induced groups. The study between amnestic MCI and mild 
AD subjects has shown a highly significant greater cortical atrophy in AD patient 
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despite a small cognitive difference between these two groups [88]. It has also 
been observed that in sporadic early-onset of AD (EOAD; <65 years of age) and 
late-onset of AD (LOAD; >65 years of age), subjects can also be differentiated by 
severity and localization of cortical atrophy. While EOAD shows widespread atro-
phic changes, LOAD subjects show lower rate and more focal pattern of entorhinal, 
para-hippocampal, inferior temporal, posterior cingulate/precuneal, and lateral 
temporal changes, suggesting younger AD subjects have displayed higher cognitive 
reserve and tolerance to pathological burden as cortical neurodegeneration cor-
relates with cognitive declines [105].

4.3.2 Application of brain mapping in dementia

Dementia with Lewy bodies (DLB) is associated with some of the features 
such as cognitive decline, early-onset hallucinations and delusions, Parkinsonism, 
and a fluctuating course. Pathologically hallmarks for DLB are synuclein-rich 
intracellular deposits known as Lewy bodies is often observed as a hallmark of 
DLB in patients as well as in few cases of AD. It has been observed that a distinct 
cortical atrophy pattern i.e. hippocampal and inferior temporal preservation along 
with midbrain atrophy occurs in DLB but not in AD when studied by VBM [100]. 
Ballmeier et al. [107] have mentioned that the preservation of the temporal and 
orbitofrontal cortices in demented subjects is also a distinct feature of DLB.

5. Preventive measures for neurodegenerative diseases

The estimated number of total dementia cases globally is around 50 million 
among which 60% of the cases are from low or middle-income countries and 
also 10 million new cases are reported globally every year as per the recent report 
of WHO. Hence, the demands of health care and social services are huge and 
need constant surveillance to decrease the rate of incidence of this type of life-
threatening diseases as well as its associated expenses. It has been observed that 
up to 10 years before the diagnosis of dementia, cognitive impairment is likely 
to appear in individuals and it declines sharply in the final stage of 3 years [108]. 
Individuals with deficits in vitamin B12, folate, and thyroid-stimulating hormones 
(TSH) are found to involve with poorer cognitive performances [109]. Elevated 
levels of serum-homocysteine and cardiovascular diseases are also responsible for 
cognitive impairments [110]. Depressed mood, hip fracture, polypharmacy, his-
tory of psychoses are the reasons behind cognitive impairment without dementia 
(CIND) in older age and the low education, depression, APOE ε4 allele, medicated 
hypertension, midlife elevated serum cholesterol, and high diastolic pressure, as 
well as diabetes and anticholinergic medication, are responsible factors for mild 
cognitive impairment (MCI) [111, 112]. The strongest risk factor of dementia and 
AD is age and lifetime cumulative multiple risk factors like genetic susceptibility, 
environmental exposure, and biological factors etc. are also needed to be consid-
ered for identification of preventive measures [113, 114]. For example, genetic and 
environmental factors are responsible for Familial AD as reported by many and 
found to be happening in 58% of AD cases [114, 115]. The involvement of APOE 
ε4 allele as a genetic factor as well as some other genes in AD is well established 
and, APOE polymorphism can partially explain the familial aggregation of AD in 
15–20% of AD cases which generally affect 75 years or older patients [116, 117]. 
Vascular risk factors and AD or dementia are also found to be associated and 
the control of amendable vascular disease-associated risk factors has found to 
offer preventive measures for AD [118]. Such as controlling high blood pressure, 
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temporal, posterior cingulated, precorneal cortex in AD and normal aged persons has 
been documented by using VBM studies [97]. The application of VBM has also been 
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4.3 Brain mapping: a diagnostic tool for neurodegenerative diseases
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despite a small cognitive difference between these two groups [88]. It has also 
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among which 60% of the cases are from low or middle-income countries and 
also 10 million new cases are reported globally every year as per the recent report 
of WHO. Hence, the demands of health care and social services are huge and 
need constant surveillance to decrease the rate of incidence of this type of life-
threatening diseases as well as its associated expenses. It has been observed that 
up to 10 years before the diagnosis of dementia, cognitive impairment is likely 
to appear in individuals and it declines sharply in the final stage of 3 years [108]. 
Individuals with deficits in vitamin B12, folate, and thyroid-stimulating hormones 
(TSH) are found to involve with poorer cognitive performances [109]. Elevated 
levels of serum-homocysteine and cardiovascular diseases are also responsible for 
cognitive impairments [110]. Depressed mood, hip fracture, polypharmacy, his-
tory of psychoses are the reasons behind cognitive impairment without dementia 
(CIND) in older age and the low education, depression, APOE ε4 allele, medicated 
hypertension, midlife elevated serum cholesterol, and high diastolic pressure, as 
well as diabetes and anticholinergic medication, are responsible factors for mild 
cognitive impairment (MCI) [111, 112]. The strongest risk factor of dementia and 
AD is age and lifetime cumulative multiple risk factors like genetic susceptibility, 
environmental exposure, and biological factors etc. are also needed to be consid-
ered for identification of preventive measures [113, 114]. For example, genetic and 
environmental factors are responsible for Familial AD as reported by many and 
found to be happening in 58% of AD cases [114, 115]. The involvement of APOE 
ε4 allele as a genetic factor as well as some other genes in AD is well established 
and, APOE polymorphism can partially explain the familial aggregation of AD in 
15–20% of AD cases which generally affect 75 years or older patients [116, 117]. 
Vascular risk factors and AD or dementia are also found to be associated and 
the control of amendable vascular disease-associated risk factors has found to 
offer preventive measures for AD [118]. Such as controlling high blood pressure, 
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diabetics, and mid-life obesity are important interventions and found to show a 
better score in cognitive tests and reduce the risk of dementia and AD in very old 
individuals [118]. One more important aspect is psychosocial factors and it has 
been reported that attending higher education in early-life, work complexity in 
adult life, intellectually stimulating activities are also found to help in delaying 
the onset of dementia [119]. Physical activities have a beneficial effect on mental 
health [120]. It has been reported by Alzheimer’s associations [120] that mentally, 
physically and socially active lives have the potential to postpone the onset of 
clinical dementia by 5 years and substantially decrease the number of dementia 
cases in the community.

5.1  Role of diets and micronutrients in the prevention of neurodegenerative 
diseases

Dietary components are found to be effective in the prevention of neurodegen-
erative diseases [121]. It has been observed that docosahexaenoic acid (DHA), an 
n-3 polyunsaturated fatty acid, enriched diet such as fish (fatty or blue species), 
shellfish, and algae [122] plays a relevant role in the preservation of histopathology 
of the neuronal tissue and helps in memory and learning maintenance [123]. Apart 
from that, polyphenols, curcumin like food components have neuroprotective 
properties [124, 125]. Polyphenols are a natural antioxidant and show activities 
on chelation, scavenging free radicals, survival gene activations, cell signaling 
pathways, and also regulating mitochondrial function by the ubiquitin-proteasome 
system [124]. On the other hand, curcumin is an anti-amyloid drug and responsible 
for reducing oxidation of protein and also reduce pro-inflammatory cytokines 
interleukin-1beta in AD-induced transgenic mice brains [125]. Deficiency of 
vitamin B, C, and E are associated with AD development [126]. Some mixed results 
in this regard have been observed in several clinical studies [127, 128]. As reported, 
a lower level of dietary and supplemented folic acid is associated with AD pathol-
ogy and lack of folic acid due to malabsorption and malnutrition can increase the 
chance of AD by two folds in the elderly [127, 129]. Some studies have found no 
significant role of Vitamin B9, B12, C, E in AD pathology, whereas the other study 
gives evidence that Vitamin C and E have a neuroprotective effect on AD [128]. It 
has also been studied that while sufficient intake of vitamin E, omega-3 fatty acid 
and omega-6 fatty acid, vitamins A, C, and whole grains increase neuronal activa-
tion, food component like saturated fatty acids, cholesterol and sodium signifi-
cantly lower the neuronal activation and gray matter volume [130]. One more 
significant effect of diet on neuronal health is observed when a calorie-restricted 
diet is consumed by aged individuals [131]. It has observed that calorie restriction 
augments brain-derived neurotrophic factor (BDNF), induces sirtuins a silent 
information regulator proteins responsible for the regulation of life span, repair, 
and protection of DNA, etc. [132]. While some dietary components’ actually have 
the preventive function on neurodegeneration on the other hand some obesity-
induced dietary components act oppositely and increase the risk of AD, PD, and 
neuroinflammatory disease [133].

5.2 Physical exercise for prevention of neurodegenerative diseases

Physical exercise for short term or long term has been found to be beneficial on 
neurodegenerations and cerebrovascular diseases as observed in both animal and 
human model [134]. Physical exercise and the expression of different neurotrophic 
factors [like BDNF, insulin like growth factor-1 (IGF-1), vascular endothelial 
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growth factor (VEGF)] are found to be associated, and hence promote neural 
plasticity and neurogenesis in the hippocampus [135]. It has also been observed 
that upregulation of BDNF in circulation as well as in the brain can be induced by 
exercise which can be corroborated with an increase in cognitive function [135]. 
Due to exercise metabolite-like ketone bodies accumulates in the hippocampal 
region of the brain which alters BDNF promoter and promotes BDNF expression 
[136]. BDNF expression is regulated by various genetic factors and pathways like 
Val66Met mutation [137], PGC-1α/FNDC5 pathway [138], APOEε4 allele carriers 
[139] and methyl CpG binding protein 2, etc. [140]. Reports are also available on 
the effect of exercise-induced increase level of VEGF in relation to the reduction 
in ischemic injury and improvement in cognitive performance. This may be due 
to an increase in progenitor cell proliferation and all the cell differentiation in 
ischemic penumbra [141]. Some data has depicted that exercise-induced muscular 
VEGF increases the level of VEGF in the hippocampus. However, this VEGF helps 
in neurogenesis and angiogenesis in the ischemic brain followed by improved 
cognitive activity [142]. The muscle-derived IGF-1 has been found to increase 
IGF-1 permeability via BBB by increasing the IGF-1 receptor expression in BBB 
followed by IGF-1 concentration in the hippocampus possibly by regulating IGF 
binding proteins (IGF-BPs) [143]. Alteration of cytokine production by exercise 
can also restore the IGF-1 level followed by a reduction in neurodegeneration [143]. 
Physical exercise, as reported, when used as an adjuvant therapy of psychotropic 
drugs gives better anti-depressant and anti-anxiety outcome and also effectively 
reduces dementia [144]. Production of several myokines in muscles (like PGC-1α, 
Irisin and Cathepsin B, etc.) is promoted by exercise. Myokines that are beneficial 
for the brain (fibroblast growth factor 21 (FGF-21) and SPARC etc.) also generate 
after exercise. Serotonin (5-HT) concentration generally increases after exercise 
in serum, whole blood, and also in urine [145]. This peripheral 5HT level is found 
to be correlated with an increased level of 5-HT in the brain [146]. Exercise is also 
associated with a decrease in AD specific deposition of Aβ and tau pathology in 
the brain [147]. High-intensity exercise provides an improvement in PD associated 
impaired motor functions [148]. Exercise can also reduce the loss of dopaminergic 
neurons and fibers and decrease α-synuclein in the nigrostriatal region as observed 
in animals [149].

6. Therapeutic strategies

Conventional therapies such as cholinesterase inhibitors for AD or Levo-dopa 
for PD provide symptomatic relief but not on effective disease progression. 
Advancement in the knowledge of the neuro-molecular mechanism of NDDs has 
helped to develop new drugs to counteract pathological aggregation of the protein 
[150]. The prevention of abnormal protein aggregation or targeting of misfolded 
proteins for their degradation by new therapeutic agents is a potential field of 
recent researches [151]. Reports are also available on the inhibition of fibril forma-
tion by several compounds like antibodies, molecular chaperones, nanoparticles 
of polyphenols, metal chelators, and tetracyclines nanoparticles by inhibiting the 
aggregating pathways of different amyloidogenic proteins, such as Aβ, α-synuclein, 
PrP protein, etc. [152]. But the most challenging part of therapeutic strategies are 
(a) prevention of the formation of oligomers or converting aggregation process into 
alternative non-toxic pathways (b) transporting the therapeutic agents through the 
blood–brain-barrier (BBB) and (c) delivery of nanoparticulate drugs to the targeted 
neuron to reduce dose-dependent toxicities and side effects.
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Dietary components are found to be effective in the prevention of neurodegen-
erative diseases [121]. It has been observed that docosahexaenoic acid (DHA), an 
n-3 polyunsaturated fatty acid, enriched diet such as fish (fatty or blue species), 
shellfish, and algae [122] plays a relevant role in the preservation of histopathology 
of the neuronal tissue and helps in memory and learning maintenance [123]. Apart 
from that, polyphenols, curcumin like food components have neuroprotective 
properties [124, 125]. Polyphenols are a natural antioxidant and show activities 
on chelation, scavenging free radicals, survival gene activations, cell signaling 
pathways, and also regulating mitochondrial function by the ubiquitin-proteasome 
system [124]. On the other hand, curcumin is an anti-amyloid drug and responsible 
for reducing oxidation of protein and also reduce pro-inflammatory cytokines 
interleukin-1beta in AD-induced transgenic mice brains [125]. Deficiency of 
vitamin B, C, and E are associated with AD development [126]. Some mixed results 
in this regard have been observed in several clinical studies [127, 128]. As reported, 
a lower level of dietary and supplemented folic acid is associated with AD pathol-
ogy and lack of folic acid due to malabsorption and malnutrition can increase the 
chance of AD by two folds in the elderly [127, 129]. Some studies have found no 
significant role of Vitamin B9, B12, C, E in AD pathology, whereas the other study 
gives evidence that Vitamin C and E have a neuroprotective effect on AD [128]. It 
has also been studied that while sufficient intake of vitamin E, omega-3 fatty acid 
and omega-6 fatty acid, vitamins A, C, and whole grains increase neuronal activa-
tion, food component like saturated fatty acids, cholesterol and sodium signifi-
cantly lower the neuronal activation and gray matter volume [130]. One more 
significant effect of diet on neuronal health is observed when a calorie-restricted 
diet is consumed by aged individuals [131]. It has observed that calorie restriction 
augments brain-derived neurotrophic factor (BDNF), induces sirtuins a silent 
information regulator proteins responsible for the regulation of life span, repair, 
and protection of DNA, etc. [132]. While some dietary components’ actually have 
the preventive function on neurodegeneration on the other hand some obesity-
induced dietary components act oppositely and increase the risk of AD, PD, and 
neuroinflammatory disease [133].

5.2 Physical exercise for prevention of neurodegenerative diseases

Physical exercise for short term or long term has been found to be beneficial on 
neurodegenerations and cerebrovascular diseases as observed in both animal and 
human model [134]. Physical exercise and the expression of different neurotrophic 
factors [like BDNF, insulin like growth factor-1 (IGF-1), vascular endothelial 
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growth factor (VEGF)] are found to be associated, and hence promote neural 
plasticity and neurogenesis in the hippocampus [135]. It has also been observed 
that upregulation of BDNF in circulation as well as in the brain can be induced by 
exercise which can be corroborated with an increase in cognitive function [135]. 
Due to exercise metabolite-like ketone bodies accumulates in the hippocampal 
region of the brain which alters BDNF promoter and promotes BDNF expression 
[136]. BDNF expression is regulated by various genetic factors and pathways like 
Val66Met mutation [137], PGC-1α/FNDC5 pathway [138], APOEε4 allele carriers 
[139] and methyl CpG binding protein 2, etc. [140]. Reports are also available on 
the effect of exercise-induced increase level of VEGF in relation to the reduction 
in ischemic injury and improvement in cognitive performance. This may be due 
to an increase in progenitor cell proliferation and all the cell differentiation in 
ischemic penumbra [141]. Some data has depicted that exercise-induced muscular 
VEGF increases the level of VEGF in the hippocampus. However, this VEGF helps 
in neurogenesis and angiogenesis in the ischemic brain followed by improved 
cognitive activity [142]. The muscle-derived IGF-1 has been found to increase 
IGF-1 permeability via BBB by increasing the IGF-1 receptor expression in BBB 
followed by IGF-1 concentration in the hippocampus possibly by regulating IGF 
binding proteins (IGF-BPs) [143]. Alteration of cytokine production by exercise 
can also restore the IGF-1 level followed by a reduction in neurodegeneration [143]. 
Physical exercise, as reported, when used as an adjuvant therapy of psychotropic 
drugs gives better anti-depressant and anti-anxiety outcome and also effectively 
reduces dementia [144]. Production of several myokines in muscles (like PGC-1α, 
Irisin and Cathepsin B, etc.) is promoted by exercise. Myokines that are beneficial 
for the brain (fibroblast growth factor 21 (FGF-21) and SPARC etc.) also generate 
after exercise. Serotonin (5-HT) concentration generally increases after exercise 
in serum, whole blood, and also in urine [145]. This peripheral 5HT level is found 
to be correlated with an increased level of 5-HT in the brain [146]. Exercise is also 
associated with a decrease in AD specific deposition of Aβ and tau pathology in 
the brain [147]. High-intensity exercise provides an improvement in PD associated 
impaired motor functions [148]. Exercise can also reduce the loss of dopaminergic 
neurons and fibers and decrease α-synuclein in the nigrostriatal region as observed 
in animals [149].

6. Therapeutic strategies

Conventional therapies such as cholinesterase inhibitors for AD or Levo-dopa 
for PD provide symptomatic relief but not on effective disease progression. 
Advancement in the knowledge of the neuro-molecular mechanism of NDDs has 
helped to develop new drugs to counteract pathological aggregation of the protein 
[150]. The prevention of abnormal protein aggregation or targeting of misfolded 
proteins for their degradation by new therapeutic agents is a potential field of 
recent researches [151]. Reports are also available on the inhibition of fibril forma-
tion by several compounds like antibodies, molecular chaperones, nanoparticles 
of polyphenols, metal chelators, and tetracyclines nanoparticles by inhibiting the 
aggregating pathways of different amyloidogenic proteins, such as Aβ, α-synuclein, 
PrP protein, etc. [152]. But the most challenging part of therapeutic strategies are 
(a) prevention of the formation of oligomers or converting aggregation process into 
alternative non-toxic pathways (b) transporting the therapeutic agents through the 
blood–brain-barrier (BBB) and (c) delivery of nanoparticulate drugs to the targeted 
neuron to reduce dose-dependent toxicities and side effects.



Oxidoreductase

148

6.1 Available treatment paradigm

Among the few food and drug administration (FDA) approved drug regimen 
Donepezil and Rivastigmine like acetylcholine esterase inhibitors are used as pallia-
tive treatment which help to reduce the progression of AD but not for the long-term 
[36, 153]. A combination of levodopa and carbidopa has been successfully delivered 
via the BBB to treat PD patients. The drugs act by converting into dopamine after 
decarboxylation in the substantia nigra of the PD patient and increase the level of 
dopamine in that zone for the first few years of treatment after consecutive con-
sumption [40]. Dopamine agonists such as Pergolide, Bromocriptine Parlodel also 
have therapeutic efficacy but show cardiovascular and endocrinological problems 
[154]. In HD, reserpine, or dopamine receptor blockers (i.e. phenothiazines) are 
used to impair dopamine transport and to reduce overactivity in dopaminergic 
nigrostriatal pathways [155]. In MS, the preventive measures taken to combat the 
relapse are prednisone to reduce inflammation, beta-interferon, Ocrelizumab, 
glatiramer acetate, alemtuzumab, mitoxantrone for immunomodulation, and 
Ocrelizumab for reducing the primary progression [156].

6.2 Future strategies

Effective treatment of NDDs needs identification and mitigation of risks, 
complete cure, or at least a long term relief from the symptoms that need to be 
achieved despite all the advancement of genetic, biomolecular, and pharmaceuti-
cal sciences. Some of the strategies are designed or may execute in lower animals 
but clinical trials and human applications are yet to be achieved. Some novel 
therapeutic strategies are summarized below.

6.2.1 Inhibition of disease-associated protein deposition

Protein misfolding are occurred due to gene mutations, oxidative stress, aging, 
altered cellular temperature, pH, etc. [157]. The misfolded proteins are often par-
tially unfolded by molecular chaperones and then go through a self-rearrangement 
to form oligomeric aggregates that are finally converted into amyloid fibrils [158]. 
Accumulations of such protein aggregates are often found to be in relation to 
amyloidosis of the CNS as well as symptoms of neurodegeneration [159]. Synthetic 
chaperons or short peptides with a recognition motif of misfolded proteins have 
therapeutic potential to disaggregate this protein aggregation during amyloidosis. 
Heat shock protein 104 (Hsp104) one of the major molecular chaperones, has been 
found to be efficacious to disaggregate proteins aggregates in yeast cells [160]. 
Hsp104 has shown to eliminate various amyloid conformations and reduce deposits 
of pre-amyloid oligomers by binding with the protein fibril and blocking the aggre-
gation process [160]. One variant of Hsp104 has properties to dissolve α- synuclein 
aggregates in the PD model. Hsp70 and its related compound also have neuropro-
tective roles as found by in-vitro and in-vivo studies (Figure 2) [160]. Hsp70 is also 
responsible for restoring Tau homeostatic [161]. In-vitro and in-vivo studies have 
revealed that Hsp70 and related compounds help to clear Aβ depositions and restore 
Tau homeostasis [160, 161]. The proposed therapeutic strategies are tabulated 
in Figure 2. HD is associated with polyQ induced misfolding of mHTT mutant 
Huntington which can be the target and inhibit by Hsp70 [162]. Curcumin or epi-
gallocatechin gallate have Hsp70 simulating properties resulting in a reduced level 
of neuronal death followed by improved cognitive and motor deficits [163]. On the 
other hand, α-synuclein misfolded protein aggregation is associated with PD, and 
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Hsp70 can bind with α-synuclein and halt the further misfolding of α- synuclein 
followed by refolding [164]. In this context, it may be mentioned that specific Hsp 
and related chaperones significantly contribute to targeting protein aggregates 
(mHTT, α-synuclein, etc.) specific to NDDs, and the development of these Hsp 
stimulant can be beneficial for future therapies [165].

6.2.2 Neuroimmunomodulatory therapies

Neuronal death and neurodegeneration are in connection with the vicious cycle of 
inflammation especially when inflammatory mediators stay in the tissue for a longer 
period. AD, PD, and HD cases express higher plasma and CSF concentrations of proin-
flammatory cytokines, such as IL-6, TNF-α, IL-1β, IL-2, IL-6, and cyclooxygenase-1/2, 
etc. [166] whereas, anti-inflammatory cytokines and growth factors (IL-10, TGF-β, 
CD206, etc.) producing microglia becomes lower in number in such patients [167]. The 
monocytes isolated from the carriers of the HD gene, express the mutant Huntingtin 
protein and show hyperactivity to lipopolysaccharide stimulations [168]. Thus, it 
may be concluded that the hyperactive immune system is an important feature of HD 
pathogenesis and its associated immunomodulators can be used for potential HD treat-
ment. The presence of CD8+ and CD4+ peripheral lymphocytes in substantia nigra 
has been found in post mortem brains of PD patients [169]. Anti-inflammatory drugs 
such as minocycline, resveratrol, tanshinone, and silymarin have therapeutic promises 
against PD by blocking the activation of NADPH oxidase and microglial activation and 
pro-inflammatory cytokine release [12, 157]. Apart from that, it has also been investi-
gated that the monoclonal antibodies against the α-synuclein not only reduced protein 
propagation and amyloid formation [170] but also ameliorated dopaminergic neuronal 
cell loss and improved PD-like pathologies, followed by improving motor deficits in 
PD induced mouse [170].

Figure 2. 
Different strategies for inducing Hsp 70 as molecular chaperone in AD brain.
Molecular chaperones of heat shock protein 70 have neuroprotective properties such as, maintenance of the tau 
homeostasis, and decrease in the reactive oxygen species (ROS) generation and amyloid-beta (Aβ) depositions 
which are related to both AD pathology and cognitive impairments. There are other cytosolic isoforms of Hsp 
70 i.e. Hsc 70 and Hsp 72 whose downregulation and upregulation respectively also show similar effect on the 
above mentioned parameters. Neuroprotective effect of Hsp 70 can be achieved by (a) targeting Hsp 70 ATPase 
using its inhibitor, YM08, (b) Hsp 70 inducers ( for example, galandamycin, geranylgeranylacetone, and 
celastrol) or (c) intranasal delivery of Hsp 70. ↓ and ↑ indicate increase and decrease respectively.
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cal sciences. Some of the strategies are designed or may execute in lower animals 
but clinical trials and human applications are yet to be achieved. Some novel 
therapeutic strategies are summarized below.

6.2.1 Inhibition of disease-associated protein deposition
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Hsp70 can bind with α-synuclein and halt the further misfolding of α- synuclein 
followed by refolding [164]. In this context, it may be mentioned that specific Hsp 
and related chaperones significantly contribute to targeting protein aggregates 
(mHTT, α-synuclein, etc.) specific to NDDs, and the development of these Hsp 
stimulant can be beneficial for future therapies [165].

6.2.2 Neuroimmunomodulatory therapies

Neuronal death and neurodegeneration are in connection with the vicious cycle of 
inflammation especially when inflammatory mediators stay in the tissue for a longer 
period. AD, PD, and HD cases express higher plasma and CSF concentrations of proin-
flammatory cytokines, such as IL-6, TNF-α, IL-1β, IL-2, IL-6, and cyclooxygenase-1/2, 
etc. [166] whereas, anti-inflammatory cytokines and growth factors (IL-10, TGF-β, 
CD206, etc.) producing microglia becomes lower in number in such patients [167]. The 
monocytes isolated from the carriers of the HD gene, express the mutant Huntingtin 
protein and show hyperactivity to lipopolysaccharide stimulations [168]. Thus, it 
may be concluded that the hyperactive immune system is an important feature of HD 
pathogenesis and its associated immunomodulators can be used for potential HD treat-
ment. The presence of CD8+ and CD4+ peripheral lymphocytes in substantia nigra 
has been found in post mortem brains of PD patients [169]. Anti-inflammatory drugs 
such as minocycline, resveratrol, tanshinone, and silymarin have therapeutic promises 
against PD by blocking the activation of NADPH oxidase and microglial activation and 
pro-inflammatory cytokine release [12, 157]. Apart from that, it has also been investi-
gated that the monoclonal antibodies against the α-synuclein not only reduced protein 
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cell loss and improved PD-like pathologies, followed by improving motor deficits in 
PD induced mouse [170].

Figure 2. 
Different strategies for inducing Hsp 70 as molecular chaperone in AD brain.
Molecular chaperones of heat shock protein 70 have neuroprotective properties such as, maintenance of the tau 
homeostasis, and decrease in the reactive oxygen species (ROS) generation and amyloid-beta (Aβ) depositions 
which are related to both AD pathology and cognitive impairments. There are other cytosolic isoforms of Hsp 
70 i.e. Hsc 70 and Hsp 72 whose downregulation and upregulation respectively also show similar effect on the 
above mentioned parameters. Neuroprotective effect of Hsp 70 can be achieved by (a) targeting Hsp 70 ATPase 
using its inhibitor, YM08, (b) Hsp 70 inducers ( for example, galandamycin, geranylgeranylacetone, and 
celastrol) or (c) intranasal delivery of Hsp 70. ↓ and ↑ indicate increase and decrease respectively.
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6.2.3 Autophagy

Neuronal cells are subjected to autophagy but they have a very strong lysosomal 
system which is effective for the removal of protein aggregates and dysfunctional 
mitochondria as well as the rapid removal of the autophagosomes [171]. The 
autophagy regulating gene mutation often leads to NDDs like AD, ALS, and PD as a 
consequence of large gathering of the debris of dysfunctional organelles and undi-
luted waste proteins [172]. The factors responsible for the suppression of autophagy 
followed by suppressing neuronal functions and plasticity are stress signals, 
hypoxia, mechanical damages, decreased level of amino acids, etc. [173]. Mutation 
of autophagy-related genes has shown neurodegeneration in lower animals like mice 
and flies [174, 175]. A promising therapeutic strategy is a drug-induced autophagy 
in neurogenerative patients for the removal of abnormal proteins as observed in 
animal models. One of the recent examples of such drug-induced autophagy is 
methyl-4-phenylpyridinium (MPP+) which induces apoptosis in dopaminergic 
neurons by disrupting the complex I of the electron transport chain of mito-
chondria of mouse Parkinson’s Models [176]. Similarly, the antihistaminic drug, 
Latrepirdine shows a regulation of APP in the AD mice model [177]. Drugs like cal-
cium channel blockers and USFDA approved rapamycin show potential to stimulate 
the autophagic process followed by the clearance of mutant huntingtin protein in 
lower animals [178]. Rapamycin is also able to reduce Aβ-induced cognitive deficits 
of AD by activation of the AMPK-mTOR signaling pathway in aged as well as Type 
2 Diabetes Mellitus-induced AD cases [179]. mTOR signaling has the ability to form 
autophagic vacuoles, mitigating tau and Aβ deposition and controlling the apoptotic 
pathways. Metformin has been found to involve in autophagy by AMPK-dependent 
mechanism of HD as well as dephosphorylates neurofibrillary tangles of tau in AD 
and is established as a potential therapeutic agent for NDDs [177].

6.2.4 Neurotrophic factors and possible strategies for neurogenesis

Dysregulation of the neurotrophic factors which are the molecular aids of 
neuronal functions such as differentiation, growth, etc., is associated with NDDs 
[180]. The affected region of the brain starts losing neurons and glia in absence of 
functional regulation of these molecules [181]. Some Factors such as nerve growth 
factors (NGF), BDNF have the ability to bind with tyrosine receptor kinases, inhibit 
apoptotic signals, and promotes cell survival by promoting tissue growth by cell 
proliferation [182] and also their absence play a prominent role in neurodegenera-
tive diseases [183]. A decreased level of NGF in AD patients induces cellular death 
followed by loss of neuronal functions whereas a decrease of BDNF in substantia 
nigra does the similar in PD patients due to degeneration of synaptic connections 
[184]. An increase in the level of these neurotrophic factors in the degenerated 
brain regions could be a possible therapeutic strategy although their larger size 
and polar nature make them unsuitable for transport through BBB and difficult to 
target [185] although gene delivery injection and neurotrophin mimetics are already 
under investigations [183]. Another important marker of NDDs is the deficiency 
of neurosteroids during AD [37], PD [37], HD [186], and MS [187] which can be 
defended by hormonal replacement therapy and found to be beneficial in AD, PD, 
HD, and MS patients [188].

6.2.5 Insulin associated neurodegeneration

Insulin signaling in CNS is responsible for differentiation, proliferation, neurite 
growth, and shows neuroprotective as well as anti-apoptotic activity [189]. The 
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structural and functional integrity of synapses, neurons, and neuronal circuits 
followed by memory and learning are depend partially on Insulin and affected by 
diabetes mellitus and metabolic syndromes [189]. Insulin resistance in the brain is 
also associated with an increased level of phospho-Tau and Aβ42 [189]. Evidence 
is there of decrease in levels of insulin in the brain and CSF during AD with an 
increase in Aβ42 and advanced glycation [189]. Insulin administration enhances 
Aβ42 clearance and improves working memory and cognition [189]. Insulin 
receptor-associated genes IRS-1 pSer616 and IRS-1 pSer636/639 have been identi-
fied in relation to Aβ oligomer levels and function as a biomarker for AD [190]. 
Antidiabetic drug Metformin is reported to inhibit cognitive decline which may 
have some connection with the insulin signaling pathway in CNS although needs 
further investigation [191].

6.2.6 Cholinergic system in AD

The connection between the cholinergic system and AD has been hypothesized 
as presynaptic cholinergic markers are found to be depleted in the cerebral cortex 
during AD pathology [192], nucleus basalis of Meynert (nbM) in the basal fore-
brain undergoes severe degeneration in AD [193], and memory gets weaken by the 
cholinergic antagonist while agonists have the opposite effect [194]. Cholinesterase 
inhibitors such as donepezil, rivastigmine, and galantamine have been found to 
improve significantly the cognitive activity related to AD [195].

6.2.7 Targeting oxidoreductases

A very limited information are available about targeting oxidoreductases to 
inhibit the proteinopathies and consequent neurodegeneration. Among the free 
radical generator, the NOX bears a significant role in oxidative stress-induced neu-
rodegeneration. The pharmacological NOX inhibitors have been found to improve 
different NDDs and it is well-reviewed by Barua et al. [196]. The PDI, as discussed 
before is associated with different proteinopathies (like AD and PD) and its attenu-
ation could be a promising approach to counteract the proteinopathy-induced 
neurodegeneration. Polyphenols curcumin, from a turmeric (Curcuma longa) spice 
and masoprocol (from Larrea tridentata), have found to restore the ROS-induced 
chaperone damage, protein misfolding, and thereby neurodegenerative disease, 
sustaining traffic along the ER’s secretory pathway by preserving functional 
integrity of PDI [197].Nrf-2 also an important transcription factor, associated with 
the oxidoreductase system is also a crucial target to deal with. Naringin (4′,5,7-tri-
hydroxy flavonone 7-rhamnoglucoside), the flavonone found in grapefruit and 
related citrus species has been found to upregulate the Nrf-2 and its consequent 
cytoprotective genes to act as a neuroprotective molecule [198]. Carnosine, an 
endogenous dipeptide biomolecule has been recently found to be a potent inhibitor 
of aging-induced increase in brain regional monoamine oxidase-A activity [26] and 
it can also reduce and restore the aging-induced deposition of amyloid-beta plaque 
quantitatively as well as qualitatively [199, 200]. Interestingly, the inhalation of 
patchouli oil (extracted from the leaf of Pogostemon cablin) has also the ability to 
modulate the blood platelet MAO-A activity and thereby in mood behavior [201].

6.2.8 Epigenetic modulations

Epigenetic markers such as histone deacetylases have been proved to be involved 
with AD. Treatment with HDACi (histone deacetylase inhibitors) such as sodium 
butyrate, phenylbutyrate, suberoylanilide hydroxamic acid, resveratrol induces 
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phosphorylation of tau protein, reduces the amyloidogenic processing of APP 
followed by restoration of learning and memory deficits in AD patients [202]. PD 
is also associated with epigenetic modulation. Where sporadic PD patients are 
linked with α-synuclein hypomethylation in dopaminergic neurons, the familial 
PD patients show a decrease in histone acetylation followed by an increase in 
α-synuclein levels [203]. α-synuclein-mediated neurotoxicity has been found to 
reduce by the treatment with Sirt2 siRNA [204]. A decrease in PD symptoms with 
the administration of dopamine may also be correlated with the deacetylation of 
histone H4 lysine 5 (H4K5), histone H4 lysine 12 (H4K12), and histone H4 lysine 16 
(H4K16) [205].

7. Conclusion

The NDDs are progressive neuronal cell deaths due to environmental, biochem-
ical, genetic and epigenetic factors. Generation of free radicals due to the oxido-
reductase activity and deterioration of antioxidant system are found to trigger the 
aggregation of misfolded proteins in CNS causes mitochondrial dysfunctions and 
neuro-inflammations which finally leads to NDDs (Figure 3) [2]. Based on the 
predominant pathological features, NDDs can be classified in three different way, 
i.e. (a) anatomical, (b) the proteins undergoing conformational and biochemical 
modifications and (c) cellular pathology. Protein deposition pattern in CNS during 
NDDs are classified into several proteinopathies such as (a) cerebral amyloidoses, 
(b) tauopathies, (c) α-synucleinopathies, (d) prion diseases, (e) trinucleotide 
repeat diseases, (f) TDP-43 proteinopathies, (g) FUS/FET proteinopathies, (h) 
neuroserpinopathy, etc. depending upon the major protein aggregates [8, 44–46]. 
The diagnosis of neurodegenerative diseases is mostly associated with quanti-
fication of their specific receptor binding, changes in cellular metabolism or in 
anatomical structure. The neuroimaging techniques such as PET, SPECT, fMRI 

Figure 3. 
Schematic representation of overall causes, diagnosis, prevention and therapy of NDDs. 
The preventive measures are able to prevent the early causes of NDDs, while the diagnosis and therapy at later 
stage target and try to control the diseased condition due to NDDs. ROS: Reactive oxygen species; RNS: Reactive 
nitrogen species; PET: Positron emission tomography; SPECT: Single photon emission computed tomography; 
ROI: Region of interest; VBM: Voxel-based morphometry. + and - indicate activation and inhibition 
respectively.
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etc. have been extensively used to diagnosed receptor activities and metabolic 
faith of damaged neuronal cells during diseased condition by using radio labeled 
tracers. Applications of metabolomics is another newer approach for the diagnosis 
and prognosis of NDDs. On the other hand, the characterization of brain regional 
anatomical changes in diseased conditions can be performed by brain mapping 
techniques. These advancements of technologies made the diagnosis of neurode-
generation much easier and an early diagnosis is also possible to some extent for 
most of the major NDDs. Although complete cure from NDDs/neurodegenerative 
disease(s) is not yet achieved but therapies that can prevent the early occurrence 
of NDDs are investigated. Individuals’ deficits of vitamin B12, folate, and thyroid-
stimulating hormones (TSH), cardio vascular and metabolic disorders, genetic and 
environmental factors are few of the reason behind NDDs and can be prevented 
by taking proper measure from the early life. Physical exercise, calorie restriction 
and few dietary components like DHA, polyphenols have neuroprotective effect 
and found to be beneficial for NDDs. Apart from prevention, there are limited 
medicated therapies are available in the market for the treatment of NDDs. But 
many strategies like inhibition of disease-associated protein deposition, immuno- 
modulatory therapy, treatment with neurotrophic factor, epigenetic regulation, 
targeting oxidoreductases, and insulin therapy are under investigations and clinical 
trials. The current advancement in biochemical, pathological and pharmaceuti-
cal researches may ensure a better future of global neuronal health but it needs 
adaptation of a healthier lifestyle from the early day of life to avoid the occurrence 
of such NDDs.
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