
 

WORKING PAPERS SERIES 

WP05-03 

 

 

 

Emergence of large cliques in random 
scale-free networks 

Ginwestra Bianconi and Matteo Marsili CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/47813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a
rX

iv
:c

o
n
d
-m

a
t/

0
5
1
0
3
0
6
v
1
  
[c

o
n
d
-m

a
t.

d
is

-n
n
] 

 1
2
 O

c
t 

2
0
0
5

Emergence of large cliques in random scale-free networks

Ginestra Bianconi1 and Matteo Marsili1
1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy

In a network cliques are fully connected subgraphs that reveal which are the tight communities
present in it. Cliques of size c > 3 are present in random Erdös and Renyi graphs only in the
limit of diverging average connectivity. Starting from the finding that real scale free graphs have
large cliques, we study the clique number in uncorrelated scale-free networks finding both upper
and lower bounds. Interesting we find that in scale-free networks large cliques appear also when
the average degree is finite, i.e. even for networks with power-law degree distribution exponents
γ ∈ (2, 3). Moreover as long as γ < 3 scale-free networks have a maximal clique which diverges with
the system size.

PACS numbers: : 89.75.Hc, 89.75.Da, 89.75.Fb

Scale-free graphs have been recently found to encode
the complex structure of many different systems ranging
from the Internet to the protein interaction networks of
various organisms [1, 2, 3]. This topology is clearly well
distinguished from the Erdös and Renyi (ER) [4] ran-
dom graphs in which every couple of nodes have the same
probability p to be linked. In fact while scale-free graphs
have a power-law degree distribution P (k) ∼ k−γ and a
diverging second moment 〈k2〉 when γ < 3, ER graphs
have a Poisson degree distribution and consequently fi-
nite fluctuations of the nodes degrees. The degree distri-
bution strongly affects the statistical properties of pro-
cesses defined on the graph. For example, percolation
and epidemic spreading which have very different phe-
nomenology when defined on a ER graph or on a scale-
free graphs [5, 6].

The occurrence of a skewed degree distribution has also
striking consequences regarding the frequency of partic-
ular subgraphs present in the network. For example, ER
graphs with finite average connectivity have a finite num-
ber of finite loops [4, 7]. On the contrary scale-free graphs
have a number of finite loops which increases with the
number N of vertices, provided that γ ≤ 3 [8, 9]. The
abundance of some subgraphs of small size – the so-called
motifs – in biological networks has been shown to be re-
lated to important functional properties selected by evo-
lution [10, 11, 12]. Among subgraphs, cliques play an
important role. A clique of size c is a complete subgraph
of c nodes, i.e. a subset of c nodes each of which is linked
to any other. The maximal size cmax of a clique in a
graph is called the clique number. Finding the clique
number of a generic network is an NP-complete prob-
lem [13], even though it is relatively easy to find upper
(c+) and lower (c−) bounds [14]. The clique number also
provides a lower bound for the chromatic number of a
graph, i.e. the minimal number of colors needed to color
the graph [15]. Finally, cliques and overlapping succes-
sion of cliques have been recently used to characterize the
community structure of networks [16, 17].

In ER graphs it is very easy to show that cliques of
size 3 < c % N appear in the graph only when the av-

erage degree diverges as 〈k〉 ∼ N
c−3
c−1 with N [4]. On the

other hand, real scale free networks, such as the Internet
at the autonomous system level, contain cliques of size
much larger than c = 3. For example, Fig. 1 reports
upper and lower bounds c+, c− [14] for the size of the
maximal clique of the Internet and protein interaction
networks of c.elegans and yeast [18]. This shows that
scale-free networks can have large cliques and that the
clique number of the Internet graphs increase with the
network size N .

Is the presence of such large cliques a peculiar prop-
erty of how these networks are wired or is this a typical
property of networks with such a broad distribution of
degrees? This letter addresses this question and shows
that scale free random networks do indeed contain cliques
of size much larger than c = 3. We shall do this by com-
puting the first two moments of the number Nc of cliques
of size c in a network of N nodes. These provide upper
and lower bounds for the probability P (Nc > 0) of find-
ing cliques of size c in a network through the inequalities
[4]

〈Nc〉2

〈N 2
c 〉

≤ P (Nc > 0) ≤ 〈Nc〉. (1)

Here and in the following the notation 〈. . .〉 will be used
for statistical averages. Eq. (1) in turn provide upper
and lower bounds for the clique number c ≤ cmax ≤ c:
Indeed if 〈Nc〉 → 0 for c > c as N → ∞, we can conclude
that no clique of size larger than c can be found. Likewise
if for c = c the ratio 〈Nc〉2/〈N 2

c 〉 stays finite, then cliques
of size c ≤ c can be found in the network with at least a
finite probability. The results indicate that the finding in
Fig. 1 are expected, given the scale free nature of these
graphs. Our predictions are summarized in Table I. We
find that the ER result cmax = 3 extends to random scale
free networks with γ > 3 whereas for γ < 3 the clique
number cmax diverges with the network size N in a way
which is extremely sensitive of the degree distribution of
mostly connected nodes, i.e. to the precise definition of
the cutoff.

The results of Table I are derived for the hidden vari-
able ensemble proposed in Ref. [19, 20], where the link
probability p between two nodes is replaced by a func-
tion r(qi, qj) which depends on the fitness qi and qj of
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FIG. 1: The lower bound c− (filled symbols) and the up-
per bound c+ (empty symbols) of the clique number of the
Internet graphs(circles) and the protein interaction networks
of e.coli and yeast (triangles) [18] are shown as a function
of the network size N . The lines (null hypothesis on Inter-
net data) and the triangles pointing down (null hypothesis
on protein interaction networks) indicates the upper bound
(dashed line and empty symbols) and the lower bound (solid
line and filled symbols) computed from Eq. (9) for random
graphs constructed with the same properties of the considered
real graphs.

the end nodes i and j. Apart from its close relation with
the ER ensemble, this choice is also convenient because
it allows for a simple generalization of the results to net-
works with a correlated degree distribution [23]. Quite
similar results can be derived for the Molloy-Reed en-
semble [21] with the same approach (provided a cutoff is
chosen appropriately to avoid double links among mostly
connected nodes) . Other ensembles, such as that of Ref.
[22] instead implicitly introduce a degree correlations for
highly connected nodes and therefore require a different
approach [23]. Given the extreme sensitivity of the clique
number on details of the cutoff of the degree distribution,
we also expect quite different results.

Hidden variable network ensemble As in Ref. [19] we
generate a realization of a scale-free networks by the fol-
lowing procedure: i) assign to each node i of the graph
a hidden continuous variable qi distributed according a
ρ(q) distribution. Then ii) each pair of nodes with hid-
den variables q, q′ are linked with probability r(q, q′). For
random scale-free networks with uncorrelated degree dis-
tribution, we take ρ(q) = ρ0q−γ for q ∈ [m, Q] and

r(q, q′) =
qq′

〈q〉N
. (2)

The average degree 〈k〉 = 〈q〉 is equal to the average
fitness, and it diverges as N → ∞ for γ < 2. Likewise,
the degree ki of node i follows a Poisson distribution
with average qi. Notice that a cutoff is needed in ρ(q) to
keep the linking probability r(q, q′) smaller than one. In

ε = 0 ε "= 0
γ > 3 cmax = 3

2 < γ < 3 c ≤ cmax ≤ c̄ c ≤ cmax ≤ c̄

c̄ $
√

bN
3−γ

4 c̄ $ 3−γ
2

log(N)
| log(1−ε)|

c $ αc̄2/3 c = (1 − α)c̄

1 < γ ≤ 2 c ≤ cmax ≤ c̄ c ≤ cmax ≤ c̄

c̄ $
√

b′N
1
2γ c̄ $ 1

γ
log(N)

| log(1−ε)|

c $ αc̄2/3 c = (1 − α)c̄

TABLE I: Scaling of the theoretically estimated upper and
lower bound of the clique number of random scale-free net-
works with different exponents γ of the degree distribution.
The precise definitions of c̄ and c together with the expression
for the constants b, b′ are given in the text.

particular, we will take require

Q = (1 − ε)
√

〈q〉N (3)

so that r(Q, Q) = 1 − ε. For γ > 3, values of qi ≈ Q will
never occur, as the maximal qi ≈ N1/(γ−1) % Q. We
shall see that this is immaterial for the clique number,
however. Instead, for γ < 2, 〈q〉 diverges with the cutoff,
and hence Q ∼ N1/γ .

Average number of cliques. A clique of size c is a set
of c distinct nodes C = {i1, . . . , ic}, each one connected
with all the others. For each choice of the nodes, the
probability that they are connected in a clique is

∏

i#=j∈C

r(qi, qj) =
∏

i∈C

(

qi
√

〈q〉N

)c−1

(4)

where we used Eq. (2). Fixing a small fitness interval
∆q, let n(q) be the number of nodes i ∈ C with fitness
qi ∈ (q, q + ∆q). The number of ways in which we can
pick c nodes in the network with n(q) nodes with fitness
q can be expressed by combinatorial factors. Hence, with
the shorthand Q = q/

√

〈q〉N ,

〈Nc〉 =
′

∑

{n(q)}

∏

q

(

N(q)
n(q)

)

Q(c−1)n(q) (5)

where the sum is extended to all the sequences {n(q)}
satisfying

∑

q n(q) = c. Introducing such constraint by a
delta function, we can perform the resulting integral by
saddle point method, i.e.

〈Nc〉 =

∫ π

−π

dω

2π
eNf(iω) +

eNf(y∗)

√

2πN |f ′′(y∗)|
(6)

where f(y) = c
N y +

〈

log
[

1 + Qc−1e−y
]〉

, and we have
taken the limit ∆q → 0. In Eq. (6) y∗ is fixed by the
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saddle point condition

c

N
=

〈

Qc−1e−y∗

1 + Qc−1e−y∗

〉

. (7)

We present here an asymptotic estimate of 〈Nc〉. Slightly
more refined arguments, which do not add much to the
understanding given here, can be used to derive an upper
bound [23]. In the limit N → ∞, the left hand side of
Eq. (7) is small, hence to a good approximation c ≈
N〈Qc−1〉e−y∗

[25]. Inserting this in Eq. (6) we find

〈Nc〉 ≈

(

Ne〈Qc−1〉

c

)c √

2π

c
. (8)

Therefore, in order to have 〈Nc〉 → 0 it is sufficient to
take c > c̄, where c̄ is the solution of

Ne〈Qc−1〉 = c. (9)

We consider now separately the case of scale-free net-
works with different exponents γ of the degree distribu-
tion.

• Networks with γ > 3
Eq. (9) has no solution for c > γ. Indeed
N〈Qc−1〉 ∼ N (3−γ)/2 → 0 in this range. For c < γ,
the integral in 〈Qc−1〉 is no longer dominated by
the upper cutoff, and it is hence finite. Therefore
N〈Qc−1〉 ∼ N (3−c)/2 which implies that c̄ = 3. It
is easy to see that this conclusion holds also if we

take the natural cutoff Q = aN
1

γ−1 .

• Network with 2 < γ < 3
Using Eq. (3), Eq. (9) becomes

c̄(c̄ − γ)

(1 − ε)c̄−γ
+ bN (3−γ)/2 (10)

for b = (γ − 1)m(γ−1)e〈q〉(1−γ)/2. The solution de-
pends crucially on whether ε = 0 or not. In the
former case c̄ ∼ N (3−γ)/4 increases as a power law
of the system size, whereas for ε > 0 it increases
only as log N/ log(1 − ε), as detailed in Table I.

• Network with 1 < γ < 2
Taking into account the divergence of 〈q〉 and Q ∼
N1/γ , Eq. (9) becomes

c̄(c̄ − γ)

(1 − ε)c̄−γ
+ b′N1/γ (11)

with b′ = {(γ − 1)[m(2 − γ)](γ−1)}1/γ . Again,
for ε = 0 and ε > 0 we find different results, c̄ ∼
N1/(2γ) and c̄ ∼ log N/ log(1 − ε) respectively (see
Table I).

Second moment of the average number of cliques.
When computing the average number of some particu-
lar subgraphs in a random network ensemble the result
might be dominated be extremely rare graphs with an
anomalously large number of such subgraphs. In this
cases, the average number of a subgraph does not pro-
vide a reliable indication of its value. In order to have
more insight on the characteristics of typical networks we
use the classical relation Eq. (1) of probability theory [4]
which provides a lower bound for the probability that a
typical graph contains at least one clique of size c. This
requires us to compute the second moment 〈N 2

c 〉 of the
number of cliques of size c in the random graph ensem-
ble. In order to do this calculation we are going to count
the average number of pairs of cliques of size c present
in the graph with an overlap of o = 0, . . . , c nodes. We
use the notation {n(q)} to indicate the number of the
nodes with fitness q belonging to the first clique, {no(q)}
to indicate the number of nodes belonging to the overlap
and {n′(q)} to indicate the number of nodes belonging
to the second clique but not to the overlap. We con-
sider only sequences {n(q)}, {n′(q)}, {no(q)} which sat-
isfy

∑

q n(q) = c,
∑

q no(q) = o and
∑

q n′(q) = c − o.
With these conditions, following the same steps as for
〈Nc〉 we get

〈N 2
c 〉 =

c
∑

o=0

∫

dy

∫

dyo

∫

dy′eN〈f(y,y′,yo,Q)〉 (12)

where

f(y, y′, yo,Q) = 1
N [yc + y′(c − o) + yoo] +

+ log
[

1 +
(

e−y′

+ e−y
)

Qc−1 + e−(y+yo)Q2c−o−1
]

.(13)

The evaluation of this integral by saddle point is
straightforward. The key idea is that, in order to have
〈N 2

c 〉 of the same order as 〈Nc〉2 one needs to require
that the sum is dominated by configurations with non-
overlapping cliques (o ∼ 0). Using the estimate of 〈Nc〉
derived above and the definition of c̄, for γ < 3 we arrive
at

P (Nĉ > 0) ≥
〈Nc〉

2

〈N 2
c 〉

≥
[

1 + c(c−γ)(1−ε)(c̄−c)e
c̄(c̄−γ)

]−c
. (14)

The lower bound for the clique number will depend on
ε and c̄.

In the case ε = 0 lets define the clique size c satisfying

c(c − γ)e

c̄(c̄ − γ)
=

1

c
(15)

i.e. c ∼ c̄2/3. From Eq. (14) and the definition of c it
follows that as N, c̄ → ∞ the probability to have at least
a clique of size c = c is finite, i.e.

P (Nc > 0) ≥
1

e
. (16)
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Instead in the case ε > 0 for any α > 0 the r.h.s. of Eq.
(14) is very close to 1 for and clique sizes c = (1 − α)c̄
and c̄ - 1/(αε),i.e.

P (Nc > 0) → 1. (17)

This implies that for ε > 0 the lower bound is very close
to the upper bound c = (1−α)c̄ for very large networks.

Conclusions In conclusion we have calculated upper
and lower bounds for the maximal clique size cmax in un-
correlated scale-free network, showing that cmax diverges
with the network size N as long as γ < 3. In particu-
lar large cliques are present in scale-free networks with
γ ∈ (2, 3) and finite average degree. It is suggestive to
put the emergence of large cliques for γ < 3 in relation
with the persistence up to zero temperature of long range
order in spin models defined on these graphs [24]. These
results were derived within the hidden variable ensemble
[19, 20], but the same method can be extended to other
ensembles [21, 22] including those with a correlated de-
grees.

In Fig. 1 we compare the upper and lower bounds
derived here for random scale-free graphs with the esti-
mated clique number of real networks. These networks
have many nodes with degree larger than that of the
structural cutoff. Networks with such highly connected

nodes cannot be considered as uncorrelated. The best
approximation, within the class of uncorrelated networks
discussed here, is provided by those with maximal cutoff
(ε = 0). The bounds of Fig. 1 have been derived from
Eq. (9) and (15), assuming a random network with i)
an exponent γ as measured from real data ii) the same
number of nodes and links (i.e. the same average degree)
and iii) a structural cutoff given by Eq. (3) with ε = 0.
Also notice that ε = 0 yields the least stringent bounds.

Fig. 1 shows that generally the largest clique size
cmax of real networks falls well within our bounds. Of
course, accounting for the presence of correlations in the
degree of highly connected nodes in these networks may
provide more precise estimates. We saw that our esti-
mates are very sensitive to the tails of the degree dis-
tribution and we expect it to depend also strongly on
the nature of degree correlations. Preliminary results,
extending the present calculation to correlated networks
[22] where r(q, q′) = 1 − e−αqq′

with the natural cutoff
Q + N1/(γ−1), indicates that the clique number can take
values a factor two bigger than in real data [23]. These
preliminary results underline the importance of extend-
ing this approach to correlated networks.

G. B. was partially supported by EVERGROW and by
EU grant HPRN-CT-2002-00319, STIPCO.
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