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Preface to "Modeling, Design and Optimization of
Multiphase Systems in Minerals Processing”

Mineral processing deals with complex particle systems with two-, three- and more phases. The
modeling and understanding of these systems are a challenge for research groups and a need for
the industrial sector. This Special Issue aims to present new advances, methodologies, applications,
and case studies of computer-aided analysis applied to multiphase systems in mineral processing.
This includes aspects such as modeling, design, operation, optimization, uncertainty analysis,
among other topics. We have developed this Special Issue dedicated to the modeling, design, and
optimization of multiphase systems in mineral processing to promote discussion, analysis, and
cooperation between research groups. The Special Issue contains a review article and eleven articles
that cover different methodologies of modeling, design, optimization, and analysis in problems of
adsorption, leaching, flotation, and magnetic separation, among others.

This Special Issue considered different problems in several areas of multiphase systems in
mineral processing. Thus, various strategies and tools were presented to solve or face those problems.
On the whole, I hope that this Special Issue will contribute to a superior understanding of multiphase
phenomena and will promote future research in Modeling, Design, and Optimization of Multiphase
Systems in Minerals Processing.

Authors’ contributions from China, Chile, Canada, Germany, Iran, Mexico, and Spain were
received. I thank all of them for their contributions that helped the achievement of this Special Issue.
Finally, I would like to thank the referees and editorial staff of Minerals for their valuable effort that
contributes to the success of this initiative.

Luis A. Cisternas

Special Issue Editor
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The exploitation of mining resources has been fundamental for the development of humanity since
before industrialization. After hundreds of years of exploitation of mining resources, the demand for
these resources has continued to increase, and without a doubt, will be maintained and increased in the
future to face the great challenges of engineering [1] and society [2]. Not only will traditional materials
be needed but new mining resources, such as those classified as critical materials, will be required as
well [2,3]. A series of challenges will need to be addressed in order to meet those demands, including
low grade ore, more complex minerals, more stringent environmental regulations, to name just a few.
To face these challenges, tools are needed to help understand, improve, and facilitate the development of
more effective solutions. The use of modeling of various types and levels will undoubtedly be required.
The advantages include not only the possibility of cutting the times and costs of experimentation but
also the study of phenomena where experimentation is difficult or impossible to employ. On the other
hand, a common feature in the processing of mining resources is the presence of multiphase systems.
A multiphase system is defined as one in which two or more different phases (i.e., gas, liquid, or solid)
are present, including systems with the same type of phases (e.g., liquid-liquid). As such, a series of
phenomena associated with processes such as flotation, grinding, magnetic separation, and thickening
are related to multiphase systems. With these antecedents, in considering the importance of modeling
activities and multiphase systems, we have developed this Special Issue dedicated to the modeling,
design, and optimization of multiphase systems in mineral processing to promote discussion, analysis,
and cooperation between research groups. The Special Issue contains a review article and eleven
articles that cover different methodologies of modeling, design, optimization, and analysis in problems
of adsorption, leaching, flotation, and magnetic separation, among others.

Multiphase systems are analyzed at different time and size scales in the review article [4] because
the modeling and post-modeling activities depend on those scales (see Figure 1a). For example,
molecular modeling is necessary to understand the phenomena that occur at the atomic or molecular
level, such as the adsorption of chemical agents on the surface of minerals, while computational
fluid dynamics is a suitable tool at the fluid level. The application of molecular modeling is recent
in the area of study and has been used to complement experimental studies. Given that the type of
information that it delivers cannot be determined experimentally, and the software currently available,
numerous new applications are expected. Simulations using computational fluid dynamics codes can
give comprehensive information about fluid flow and mass transfer in mineral processing processes
and devices, and this can increase the understanding of a given process. The capacity and scope
of computational fluid dynamics methodologies have been considerably expanded, and this type
of simulation has been utilized to help in understanding a given process and in conducting new
process developments. The modeling of experimental results using response surface methodology
is also analyzed, given its wide use in mineral processing. Response surface methodology is based
on the result of the design of experiment which intends to explain and represent the variation of
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output variables under conditions that are assumed to reflect the variation. The most commonly used
experimental designs in mineral processing are central composite and Box—Behnken designs. One of
the limitations of the response surface methodology is the use of second-order polynomials, a behavior
rarely observed in multiphasic phenomena. Several applications give reasonable results because the
range of the input variables is small. However, a significant amount of work using this modeling
strategy has unacceptable or questionable adjustment levels. To solve this problem, new modeling
strategies must be proposed, possibly based on artificial intelligence. Precisely, several applications of
artificial intelligence in the design, optimization, and modeling of multiphase systems were analyzed
in the review [4], including artificial neural networks and support vector machines. In fact, there
has been an exponential growth in research associated with artificial intelligence; in 1990, there were
29 publications that included artificial neural networks in their title, while last year this figure was
1430 in Web of Science. Similar behavior was observed in other subjects. Publications that include
support vector machine in the title grew over 2600% from 2000 to 2019. In the coming years, with the
advancement of these techniques and hardware improvements, many more applications are expected.
One of the strategies currently used to understand and model systems is multiscale modeling [5-7].
We have to promote this type of simulation to be able to combine different phenomena that occur at
different scales in multiphase systems. The integration of computational fluid dynamic modeling
and discrete element simulation, which integrates phenomena at the particle and fluid level, has
been an example of an approach that has produced very satisfactory results in terms of its ability to
improve the current understanding of the complexity of mineral processing phenomena. Nevertheless,
greater efforts are needed in the integration of meso-, micro-, and macro-scales modeling in order to
understand and improve multiphase systems, as has been observed in other areas [8]. Uncertainty,
both epistemic and stochastic, is an important issue in mineral processing because several phenomena
are not well known or difficult to measure, and because several variables (e.g., metal price, particle size,
mineral grade) have random variations [9]. Therefore, modeling tools such as uncertainty analysis
and global sensitivity analysis were included in the review. Both tools have been shown to be good
approaches for considering uncertainties [10-12]. These and other topics are included in the review
paper, and readers are recommended to read this review if they are interested in the topic or as an
introduction to reading the other articles that cover specific themes.

Published articles can be analyzed following the same scale logic. Molecular modeling has
allowed for an improved understanding of the mechanisms of interaction between minerals, the
aqueous medium, and flotation reagents [13-15]. For example, studies on the behavior and molecular
mechanism of adsorption of the collector sodium oleate were carried out by density functional
theory and experimental techniques [13]. A similar study, but of the adsorption of flotation collector
N-(carboxymethyl)-N-tetradecylglycine on a fluorapatite surface, was investigated (Figure 1b) [14].
Density functional theory is one of the most used methods in quantum calculations of the electronic
structure of matter. Usually, functional density theory is combined with experimental studies;
for example, molecular modeling helps identify the most stable structure of ionic species and
identify active sites, while experimental techniques such as electrospray ionization-mass spectrometry
and ultraviolet-visible spectroscopy allow the existence of molecules or complexes to be validated
qualitatively and quantitatively [15]. These three manuscripts are good examples of the useful tool
that molecular modeling can be for understanding the performance and development of new reagents.
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Figure 1. Figures from the special issue. (a) Levels of length and time alongside the modeling and
optimization tools [4]; (b) Adsorption configuration of collector N-(carboxymethyl)-N-tetradecylglycine
on fluorapatite. (Ca—green; phosphorus—purple; O—red; H—white; fluorine—light blue; N—dark
blue) [14]; (c) Scheme of the inclined settler [16]; (d) Superstructure for flotation circuit design [17];
(e) Production comparison between strategies that do and do not consider changes in the manner of
operation [18].
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Two manuscripts were published on the numerical simulation of equipment [16,19]. In the first,
different turbulent models were compared using computational fluid dynamics in the simulation of
cyclonic fields, which are important in cyclonic static microbubble flotation columns. The comparison
with experimental values provides important information about which model is most suitable for
modeling the different variables in these systems [19]. The second article shows how simulation
can be used in the development or improvement of new equipment. Two-dimensional numerical
simulations were used to analyze the possibility of improving the separation of particles in inclined
settlers [16]. The inclined settler, whose scheme is shown in Figure 1c, has one of its walls exposed to
heating. Results show that heating one wall has a significant effect on the particle settling velocity and
can help the sedimentation of small particles of the order of 10 um. These effects can be explained
by the change of properties within the settler produced by the temperature profiles. Simulation of
kinetic phenomena in multi-phase reactions are also present in this special issue [20,21], although the
simulation of the phenomena in these papers have followed traditional methodologies using unreacted
shrinking core and progressive conversion models, which have been shown to be unsuitable in several
cases [22]. In this sense, it is necessary to move towards multiscale simulation using mesoscale
simulation techniques to describe, for example, diffusion and reactive molecular dynamics [23] tools
to describe the processes occurring within the interface in order to generate a procedure that can be
used to increase our understanding of the heterogeneous gas—solid, liquid-solid, or other multiphase
reactions in mineral processing. At the plant level, several articles are included. The use of the tabu
search algorithm was applied to determine the optimal flotation circuit within a set of possibilities
represented by a superstructure, as shown in Figure 1d [17]. The tabu search algorithm is a method
of mathematical optimization classified as a metaheuristic algorithm, which in this work showed a
tendency to give better results than the exact methods. The design and optimization at the separation
circuit level is an active area in multiphase separation in mineral processing, and several reviews
are available in the literature [24,25]. As such, it is not surprising that another study analyzes this
same problem [26] but uses analytical methods that significantly simplify the problem, although
that can lead to important errors or omissions [27]. A larger time scale problem was considered in
the manuscript presented by a multidisciplinary research team [18]. The discrete-event simulation
combination with analytical models of leaching processes was used to optimize mineral extraction
processes. The methodology helps the planning process by incorporating different possibilities of
operation according to the mineralogical changes of the feed. Thus, by simulating a discrete sequence
of events over time it is possible to consider the stochastic uncertainties that naturally occur in the
mineral. This simulation at the plant level, together with models at the unit operation level, allows for
the integration of phenomena that occur at the level of weeks with problems at the level of months
or years of operation, giving flexibility to the value chain by adjusting the mineral recovery to the
mineralogical variation. This strategy allows for production to be improved compared to strategies
that do not consider changes in the manner of operation (Figure le).

This Special Issue considered different problems in several areas of multiphase systems in mineral
processing. Thus, various strategies and tools were presented to solve or face those problems. On the
whole, I hope that this Special Issue will contribute to a superior understanding of multiphase
phenomena and will promote future research in the modeling, design, and optimization of multiphase
systems in minerals processing.

Authors’ contributions from China, Chile, Canada, Germany, Iran, Mexico, and Spain were
received. I thank all of them for their contributions that helped in the development of this Special Issue.
Finally, I would like to thank the referees and editorial staff of Minerals for their valuable efforts that
contributed to the success of this initiative.
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Science and Technology (Fondecyt 1180826) and MINEDUCUA project (code ANT1856).
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Abstract: Multiphase systems are important in minerals processing, and usually include solid-solid
and solid—fluid systems, such as in wet grinding, flotation, dewatering, and magnetic separation,
among several other unit operations. In this paper, the current trends in the process system engineering
tasks of modeling, design, and optimization in multiphase systems, are analyzed. Different scales
of size and time are included, and therefore, the analysis includes modeling at the molecular level
(molecular dynamic modeling) and unit operation level (e.g., computational fluid dynamic, CFD),
and the application of optimization for the design of a plant. New strategies for the modeling,
design, and optimization of multiphase systems are also included, with a strong focus on the
application of artificial intelligence (AI) and the combination of experimentation and modeling with
response surface methodology (RSM). The integration of different modeling techniques such as CFD
with discrete element simulation (DEM) and response surface methodology (RSM) with artificial
neural networks (ANN) is included. The paper finishes with tools to study the uncertainty, both
epistemic and stochastic, based on uncertainty and global sensitivity analyses, which is present in all
mineral processing operations. It is shown that all of these areas are very active and can help in the
understanding, operation, design, and optimization of mineral processing that involves multiphase
systems. Future needs, such as meso-scale modeling, are highlighted.

Keywords: computational fluid dynamic; molecular dynamics; density functional theory; discrete
element simulation; smoothed particle hydrodynamics; flotation; grinding; response surface
methodology; machine learning; artificial neural networks; support vector machine; hydrocyclone;
global sensitivity analysis; uncertainty analysis

1. Introduction

Multiphase systems are common in mineral processing because most of the process includes
the presence of particles, which are usually multiphase mineral particles, and fluids. Examples
of operations in mineral processing that include solid-liquid phases are wet grinding, filtration,
hydrocyclone, and thickening. An example that includes solid—gas phases is cyclone, examples that
include solid—solid phases are magnetic and electrostatic separations, and an example that includes
solid-liquid-gas phases is flotation. These operations are generally difficult to study because they are
opaque and challenging to measure. Therefore, the modeling of these systems, like other systems, is
important, because it allows us to understand their behavior, which allows us to modify them. For
example, these models are applied to optimize and design unit operations or plants that depend on
multiphase systems. In addition, these models can facilitate the development of new technologies
such as new reagents and unit operations.
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There are a growing number of tools and methods for the modeling, optimization, and design
of these multiphase systems. These increases in the numbers of tools and methods are promoted by
the increase in computing power and new algorithms available in the literature. On the other hand,
reliable models are needed for the development of new reagents, equipment, and processes. Also,
these models are necessary for the optimization of operational conditions. The lack of models increases
the dependency on the experience of experts, and also increases the time and cost of scaling up from
laboratory- to full-scale. Because the behavior of these systems depends on physical and chemical
phenomena that occur at different time and length scales, different tools are available based on these
scales. Small scales, e.g., quantum mechanical length scales of 10713 m with time scales of 1071 s, are
of significant interest in understanding the interaction of minerals with reagents. Large scales, e.g.,
plants length scales of 103 m with time scales of 10° s, are important in terms of plant integration and
environmental impact.

This manuscript reviews the main tools and methods for the modeling, design, and optimization
of multiphase systems in mineral processing. The idea is not to produce an encyclopedic review,
because there are too many tools and methods, but to highlight the most commonly used tools with
greater projection. Figure 1, which is based on the work of Grossmann and Westerberg [1], shows
different levels of length and time alongside the tools and methods that will be reviewed in this
manuscript. First, molecular mechanics and quantum mechanics are analyzed for the purpose of
understanding different mineralogical systems. Computational fluid dynamics (CFD), which consists
of numerically solving equations of multiphase fluid motion, allows for quantitative predictions
and analyses of multiphase fluid flow phenomena. CFD has been applied to mineral processing for
both parametric studies and flow-physics investigations. Process design is analyzed next, showing
the methods available, with most of them used for flotation processes. Artificial intelligence (AI)
is one area with great projection and amount of research, and therefore, is analyzed from the point
of view of multiphase systems in mineral processing. Most of the research on mineral processing
involves experimental studies, and therefore, experimental design with response surface methodology
(RSM) is an important tool to report. Uncertainty, both epistemic and stochastic, must be considered
when multiphase systems are studied. The two most important methods for considering uncertainty,
uncertainty analysis (UA) and global sensitivity analysis (GSA), are analyzed at the end. Finally, some
conclusions and comments are presented to close this report.
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Figure 1. Levels of length and time alongside the modeling and optimization tools analyzed in this
manuscript (CFD—computational fluid dynamics; RSM—response surface methodology; Al—artificial
intelligence; GSA—global sensitivity analysis).
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2. Molecular Dynamic Modeling

The inherent heterogeneous nature and complexity of minerals mineralogy often make the
connection between observation and theory very complicated. Additionally, industrial development
promotes more and more ore deposit investigation and subsequently, transformation through mineral
processing, which adds more phenomena that must be understood. All this complexity from mineralogy
and geochemistry requires molecular modeling tools to understand the fundamental properties and
mechanisms that control the thermodynamics and kinetics of materials. In this sense, molecular
models are often used to supplement experimental observations, providing a powerful complementary
tool to the researcher [2,3]. In 1998, De Villiers [4] from Miltek analyzed the potential of molecular
modeling to improve mineral processes, using the South African industry as an example. He identified
several potential studies including new reagents, the development of new materials, and a theoretical
understanding of surface interactions.

According to the abovementioned reference, this tool can be used to understand all microscopic
effects (atomic level) that occur on mineral surfaces in different field applications. For example,
in the solid—fluid interactions in the flotation process (hydrophobicity and hydrophilicity), and in
thickening (water absorption, hydrate minerals, layered double hydroxides, mineral interlayers, clay
minerals), among other applications. All these applications have made molecular simulation an
accepted approach to solve a number of mineralogical and geochemical problems in multiphase
systems [5].

Molecular modeling tools consist of calculating the total energy of the molecular (isolated cluster)
or periodic system (crystalline or amorphous structure) under investigation. Two fundamental
approaches are typically used: molecular mechanics and quantum mechanics. Figure 2 shows a
diagram of molecular mechanics and quantum mechanics methods. Both methods are related and are
used to examine the structure and energy of a molecule or periodic system [2].

Ab Initio
“ From the beginning ”

MOLECULAR MECHANICS QUANTUM MECHANICS
Newtons’s law Schrédinger equation

MOLECULAR MODEL

CLUSTER PERIODIC
|
! |

( Hartree-Fock method

Energy Minimization
Monte Carlo method (MC)
Molecular Dynamics method (MD)

Density Functional Theory
(DFT)

Physical-chemical properties,
thermodynamics, structure,
Kinetics and others

Figure 2. Diagram of molecular mechanics and quantum mechanics methods.

To better understand this diagram, it is necessary to know some concepts regarding how molecular
modeling works. According to this, firstly, ab initio refers to the quantum approach for obtaining the
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electronic properties of a molecule based on the Schrédinger equation (Hip = E1), which describes the
wave function or state function of a quantum-mechanical system. Secondly, the molecular mechanism
relies on the use of analytical expressions that have been parameterized through either experimental
observation or quantum calculations using an energy forcefield, based on Newtonian physics (F = ma,
classical mechanics) to evaluate the interaction energies for the given structure or configuration. In
contrast, in quantum mechanics, the analog of Newton'’s law is Schrodinger’s equation, which does
not use empirical parameters to evaluate the energy system. In this sense, in a molecular mechanics
simulation, the most important requirement is the forcefield used to describe the potential energy
of the system. It is essential to have an accurate energy forcefield to achieve a successful energy
minimization. The energy of interaction for an assemblage of atoms in either a molecular or crystalline
configuration is described by the interatomic potential, generated by the forcefield. This interatomic
potential—named potential energy—can be obtained as a function of geometric variables, such as
angle, distance, and other geometric measurements [2].

Therefore, it is possible to describe the potential energy for a complex multibody system by the
summation of all energy interactions in the system. The energy components are the following: the
coulombic energy (electrostatic energy) and the Van der Waals energy (short-range energy associated
with atomic interactions), which represent the non-bonded energy components, and the bond stretching
(bond energy associated with length changes), angle bending, and torsion, which represent the bonded
energy components [6]. From all of these energy components, the total potential energy of a system
can be calculated. These types of energies will not be explained in detail because this work provides a
general overview of molecular modeling.

Thirdly, energy minimization is another concept that must be understood. This concept also
refers to the geometry optimization for obtaining a stable configuration for a molecule or periodic
system. This energy involves the repeated measurement of the potential energy on the surface until
the minimum potential energy is obtained, which corresponds to the configuration where the forces
between atoms are equal to zero. Finally, there are two molecular mechanism approaches—the Monte
Carlo (MC) method and the molecular dynamics (MD) simulation—to analyze all the energies and
chemical systems on mineral surfaces. The MC method is a stochastic analysis that consists of random
sampling of the potential energy surface to obtain a selection of possible equilibrium configurations.
The MD simulation is a deterministic molecular modeling tool that involves the calculations of forces
based on Newtonian physics used to make a mathematical prediction to evaluate the time evolution of a
system on the time scale of pico- and nano-seconds [2,5]. Examples of molecular modeling applications
using MD and MC will be presented later, where a detailed discussion will be presented on the use of
these techniques for various minerals and mineral surfaces.

The quantum mechanism is a method that evaluates the electronic structure and energy of
molecular systems using the Schrodinger equation, which is based on the quantized nature of electronic
configurations in atoms and molecules. This technique permits the obtainment of a detailed description
of reaction mechanisms, properties of molecular and crystalline structures, electrostatic potentials,
thermodynamics properties, and other phenomena that occur in a multiphasic system. The application
of this method in the mineralogical and geochemical field is the most challenging task for today’s
computational modeling.

Quantum chemistry methods can be divided into different classes, where the most used are
the Hartree-Fock method and density functional theory (DFT). The Hartree-Fock method uses
an antisymmetric determinant of one-electron orbitals to define the total wavefunction. A trial
wavefunction is iteratively improved until self-consistency is attained. On the other hand, DTF is a
method in which the total energy is expressed as a function of the electron density, and in which all
correlation contributions are based on the Schrodinger equation for an electron gas.

Finally, a variety of molecular modeling methods have been implemented by a fair number
of research works to study all the interactions between reagents and mineral surfaces, such as
adsorption/desorption of reagents on mineral surfaces (collectors, depressors, frothers) in the flotation
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process, the interaction of water and solute species with mineral surfaces and their behavior in mineral
interlayers, and the impact of clay minerals on the dewatering of coal slurry. Next, we focus on an
overview of the use of molecular modeling and simulation in the last three years to address specific
applications associated with mineralogical and geochemical problems [2,3,5]. Molecular modeling
examples are shown following the study of solid-liquid interactions to obtain a good structural model
for the material.

2.1. Collector/Depressor Adsorption on Different Mineral Surfaces in the Flotation Process

Leal Filho et al. [7] used MD to demonstrate the ability of two polysaccharides to promote
the selective depression of calcite from apatite. They made a good selection of the interaction to
represent the chemical and physico-chemical processes during the depression of calcite. The mineral
surface of calcite and hydroxyapatite were modeled together with the corn starch and ethyl-cellulose.
Firstly, measurements of the unit cell parameters were realized to study the crystal structure of calcite
and hydroxy-apatite by X-ray diffraction. Later, the crystallographic orientations of particles of
hydroxyapatite and particles of calcite were characterized by optical microscopy and scanning electron
microscopy, respectively. The planes predominant for calcite were (101), (401), and (021), and for
hydroxy-apatite it was (001). It was observed that calcium species were common active sites at the
calcite/water and hydroxy-apatite/water interface, and those sites interacted with starch molecules
via the hydroxyl groups existing along with the polymer structure. However, depending on partition
planes (hkl), it was demonstrated that the major steric compatibility was in the calcite/starch system.
The total fitting number Ft (parameter to define steric compatibility between reagents and mineral
orientation) for calcite was: plane (101) Ft = 51.5, plane (401) Ft = 20.1, and plane (021) Ft = 30.3,
and for hydroxy-apatite it was: plane (001) Ft = 8.5. Therefore, from these results, it was concluded
that the larger the Ft, the greater the expected steric compatibility between reagent structure and
crystallographic orientation [7]. Then, these results were compared with micro-flotation experiments
of calcite and hydroxy-apatite with sodium oleate in the presence of starch, and it was proven, by
calculating recoveries, that the Ft was calculated accurately because the recovery was less with the
increase in starch concentration on the calcite surface. Finally, molecular modeling provides appropriate
theoretical representations to understand the depressing ability of starch and ethyl cellulose on the
mineral surface.

Similar studies using MD simulation were developed by Zhang et al. [8]. The adsorption of
collectors on a coal surface was studied. The findings showed that the collector oil absorbed on the coal
surface decreases the number of hydrogen bonds between the modified coal surface and contacting
water molecules. This can be attributed to the improvement of coal surface hydrophobicity. The
hydrophobicity occurs due to the interaction force weakening between water molecules and the coal
surface [8]. The same methodology was used by Zhang et al. [9], but this time studying the adsorption
behavior of methyl laurate and dodecane on the coal surface. It was determined that methyl laurate is
a more successful collector to improve the hydrophobicity of the modified coal surface because the
water molecule mobility in methyl laurate was greater than in dodecane. Finally, Nan et al. [10], using
the DFT calculation, studied a flotation collector, N-(carboxymethyl)-N-tetradecylglycine (NCNT),
in order to understand the adsorption ability of the collector on a fluorapatite (001) surface. They
confirmed that the NCNT collector could be used in the fluorapatite flotation process.

2.2. Interaction of Clay Minerals, Water, and Interlayer Structures

Clay minerals such as kaolinite, montmorillonite, smectites, and others are very common in
soils, sediments, and sedimentary rocks. In this sense, their properties and behavior have received
considerable industrial importance. The interaction of clay minerals with water promotes the water
adsorption in the interlayer structure on the clay surface, which generates complex systems. In
this sense, avoiding water absorption becomes a difficult task. Hence, computational studies of
clay minerals are required to understand the swelling, interlayer structure, and dynamics of water
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distribution on a clay surface. Today, several studies have been developed to obtain significant
dynamical information about these systems. In this section, we show some of the most recent works in
this area.

Maetal. [11] studied the impact of clay minerals (kaolinite and montmorillonite) on the dewatering
of coal slurry using a molecular-simulation study, followed by an experimental section to corroborate
data accuracy. The molecular simulation results show different adsorptions of water on the side
surfaces of kaolinite and montmorillonite. Water molecules could scarcely diffuse into kaolinite from
the edge but could easily propagate into the montmorillonite layers from the edge surface because of
the existence of a hydrated cation in montmorillonite and a weak interlayer connection. This means
that a small amount of montmorillonite caused a major decrease in the filtration velocity and a huge
rise in the moisture of the filter cake. Therefore, the efficiency of the dewatering process has a strong
dependency on the interaction between kaolinite/montmorillonite and water. Figure 3 shows an
equilibrium snapshot from an MD simulation of water adsorption on the side surfaces of kaolinite
and montmorillonite. Another study of water absorption on a mineral surface was conducted by
Wang et al. [12]. They evaluated the water adsorption on the -dicalcium silicate (cement) surface
from DFT simulations. This work studied how to improve the hydration rate on the cement surface.
Then, they studied the adsorption mechanics of the water/cement system. The cement hydration is a
crucial step that controls the final properties of cement materials. However, the industrial production
of cement produces a large amount of CO, emissions and energy consumption. For this reason,
understanding cement hydration mechanisms was the main motivation of this study to provide an
academic basis for the design of new environmentally friendly cement. Finally, Kubicki et al. [13]
studied the vibrational spectra on clays by DFT approaches. Herein, they presented an overview of
quantum mechanical calculations to predict vibrational frequencies of molecules and materials such as
clays and silicates. For creating a realistic model, the vibrational frequencies were calculated by two
analytical methods, Raman and infrared intensities.
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Figure 3. Example of an equilibrium snapshot from a molecular dynamics (MD) simulation of water
adsorption on the side surfaces of (a) kaolinite and (b) montmorillonite at 298 K and 1 bar [11].
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The analytical methods combined with computational molecular-scale modeling studies reviewed
in this paper illustrate how these methods can provide otherwise unobtainable structural, dynamical,
and energetic information about mineral-fluid systems. Using modern supercomputers, molecular
modeling can readily model geo-chemically relevant systems containing up to millions of atoms for
times up to milliseconds. Thus, these methods can provide dynamic information at frequencies of the
order of and greater than the gigahertz range. This approach will continue to play an important role
in understanding different mineralogical systems. Future applications in wet grinding can help to
better understand and improve this operation as, currently, it is used in nanoscale grinding [14,15].
The development of experimental methods from computational modeling can be an appropriate route
for future research in this field.

3. Computational Fluid Dynamics (CFD) in Multiphase Systems

Traditional modeling in mineral processing is strongly based on empirical or semi-empirical
models [16-20]. Typically, these models work well under the condition of the experimental data used in
the fitting stage but are not reliable for new operational conditions. For new operational conditions or
new equipment, new equations or parameters must be determined based on additional experimental
data. Several papers have been published that review modeling in multiphase systems including the
flotation process [21], either for classical mathematical models [22] or a soft computers approach [23],
ball mill [24], and hydrocyclone [25]. Some of the papers are more specific, such as the review of the
modeling of bubble-particle detachment [26] or entrainment [27] and water recovery [28] in flotation.
These days, engineers are increasingly using CFD to analyze flow and performance in the design of
new equipment and processes [29]. The secret behind the success of CFD is its ability to simulate
flows, similar to those observed in practical conditions—in terms of tackling real, three-dimensional,
irregular flow geometries and phenomena involving complex physics [30]. This is made possible by
resorting to a numerical solution of the equations’ governing fluid flow rather than seeking an analytical
solution. Usually, the equations describing the flow of fluids consist of mathematical statements of
conservation of such fundamental quantities as mass, momentum, and energy during fluid flow and
allied phenomena. The variables in these equations are three velocity components, pressure, and
temperature of the fluid. In a typical case, each of these varies with location and time within the
flow domain. Their variation is governed and determined by the conservation equations, which take
the form of non-linear partial differential equations. CFD deals with the numerical solution of these
equations [30]. For this, a region of space is discretized by creating what is known as a spatial mesh,
dividing a region of space into small volumes of control. Then, the discretized conservation equations
are solved iteratively in each of them until the residue is sufficiently small. Therefore, a CFD solution
requires a large number of arithmetic computations on real numbers; hence, its rise coincided with
the advent of computers and the rapid expansion of computer power that ensued in the subsequent
decades. In fact, in several cases, even with simplified equations, only approximate results can be
obtained. Figure 4 shows examples of CFD modeling.

Multiphase flows are usually modeled using the Euler-Lagrange (E-L) model, the Euler—Euler
(E-E) model, and the mixture model. In E-L modeling, the fluid phase is modeled as a continuum,
while for the dispersed phase, a large number of individual particles are modeled. The dispersed
phase can exchange momentum, mass, and energy with the fluid phase. Since the particle or droplet
trajectories are computed for each particle or for a bundle of particles that are assumed to follow the
same trajectory, the approach is limited to systems with a low volume fraction of the dispersed phase.
Typical applications are dissolved air flotation and air classification. In E-E models, the different phases
are all treated as continuous phases, and momentum and continuity equations are solved for each
phase. The E-E method can become computationally expensive as the number of equations increases
with the number of phases present in the system. The E-E model can handle very complex flows
but does not always give the best results since empirical information is needed for the momentum
equations. Typical applications are flotation cells and magnetic separators. Another E-E model is the
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volume-of-fluid (VOF) model, whereby the interface between the different phases is tracked. This
model is suitable for hydrocyclone separators. Since the interface between the fluids must be resolved,
it is not applicable to a system with many small drops or bubbles. The mixture phase model shortens
the E-E method, considering a single momentum equation for all the phases, assuming that they are
components of a mixture. In this model, the viscosity is estimated for the mixture. The velocities of the
different phases are subsequently calculated from buoyancy, drag, and other forces, giving the relative
velocities in comparison with the mean velocity of the mixture [29]. Typical applications are bubble
columns, fine particle suspensions, and stirred-tank reactors.
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Figure 4. Examples of computational fluid dynamics (CFD) multiphase modeling in mineral processing.
(a) CFD-predicted net attachment rates after flotation time in the stirred cell [31]; (b) Bubble volume
fraction (unit in vol %) distribution in a pipe for a backfill material [32]; (c) Predicted contours of (c1)
pressure and (c2) tangential velocities in Renner’s cyclone [33].

Several factors affect the selection of the most appropriate multiphase model, and the physics
of the system must be analyzed and understood. For example, it must be considered whether the
phases are separated or dispersed and if the particles follow the continuous phase, among several
other factors.

Examples of applications of CFD in mineral processing are given below. CFD was used to
improve the understanding of the influence of the geometric design of the classifier on the cut size
and the resulting particle size distribution in a centrifugal air classification [34]. The E-L approach
was used to investigate how the internal airflow in the second stage of the air classifier affects the
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classification efficiency. The simulation results show that the classification results are affected by
the airflow velocity, particle shape, particle size, the geometry of the air classifier, and turbulence
in the airflow. The performance of a wet, high-intensity, magnetic separator was analyzed using
CFD [35]. The behavior of these systems relies on the interaction between magnetic, hydrodynamic,
gravitational, and interparticle forces. These forces are controlled by the process as well as design
parameters. A three-dimensional E-E approach was developed to predict the flow profile as well
as the concentration profile of solid particles between two parallel plates. Three phases, i.e., one
liquid and two solid phases, were considered. Simulation results agree with the results observed
experimentally. Another application of CFD is the study of flow behavior in a hydrocyclone, which is a
highly swirling and turbulent multiphase structure. Narasimha et al. [33] developed a multiphase CFD
model to understand the particle size segregation inside a six inches hydrocyclone. The predictions
were validated against experimental data, and were shown to be in good agreement. An application,
outside of separators, is the study of the complex flow behavior in the pulp lifter of autogenous
and semi-autogenous grinding mills as it controls the throughput, performance, and efficiency of
mills. CFD modeling—the VOF approach—was used to study the efficient and effective removal of
pulp/slurry from the mill by a pulp lifter design [36]. Comparison with experimental data shows that
CFD can be a useful tool to understand and improve complex flow behavior. In the same direction, a
CFD model, a mixture phases model, was developed to study a three-dimensional backfill pipeline
transport of three-phase foam slurry backfill (TFSB) [32]. The simulation results indicate that TFSB can
maintain a steady state during pipeline transport, experience a markedly reduced pipeline transport
resistance, and exhibit better liquidity than conventional cement slurry. Last but not least, the flotation
process is one of the most studied systems using CFD, and a comprehensive review of the published
literature regarding the CFD modeling of the flotation process was presented [37]. The advances made
in the modeling and simulations of the equipment were critically analyzed, and specific emphasis
was given to the bubble—particle interactions and the effect of turbulence on these interactions. The
simulation of flow behavior of flotation cells has been studied using multiphase E-E [38,39], mixture
phase [40], and E-L [41,42] approaches. Mostly, the finite volume approach has been utilized in the
reported studies, wherein local values of the flow properties are calculated by solving the governing
continuity and momentum equation for each phase [37].

The combination of macroscale CFD simulation with microscale simulation can be a powerful
tool in predicting complex phenomena in multiphase systems [43]. Liu and Schwarz [44,45] proposed
an integrated CFD-based scheme for the prediction of bubble—particle collision efficiency in turbulent
flow from a multiscale modeling perspective. The proposed model can account for changes at the
macroscale in the flotation cell geometry and structure, inlet and exit configurations, impeller structure
and tip speed, air nozzle structure and airflow rate, and at the microscale in turbulence and collision
mechanisms. Similarly, CFD modeling can be combined with discrete element simulation (DEM) to
understand the behavior of individual particles. For example, Lichter et al. [46] combined CFD with
DEM to analyze the effect of cell size and inflow rate on the retention time distribution in flotation cells.
Jiet al. [47] developed two numerical models to model the multiphase flow in hydrocyclones: one is a
combined approach of the VOF model and DEM with the concept of the coarse-grained (CG) particle,
which can be applicable to a relatively dilute flow, and the other is a combined approach of the mixture
model and DEM model with the CG concept, which can be quantitatively applicable to both dilute
and dense flows. Finally, Chu et al. [48] studied the coal-medium flow in a dense medium cyclone
using DEM to model the motion of coal particles, while the flow of the medium was modeled using
the VOF model.

Modeling of wet grinding, including autogenous grinding, semi-autogenous grinding, ball
or stirred mills, has been developed using DEM because it is an adequate method to represent
the movement and collision of particles. Essentially, the Newton’s equation of motion is solved
together with a collision/contact law to resolve inter-particle forces. Its application has included the
design, optimization, and operation of grinding devices. A complete review on DEM application to
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comminution, including autogenous/semi-autogenous grinding and mills, is available [49]. However,
DEM is computationally intensive, which limits the number of particles that can be considered.
Therefore, for a large number of small particles, the method may not be appropriate. In addition, the
aqueous phase, which is added to improve the solid transportation and suppress the dust, must be
considered in the simulation to obtain a realistic or complete description of the behavior of a wet
grinding device. The usual approach to predict the transportation of solid particles interacting with the
slurry flow is a coupled DEM and smoothed particle hydrodynamics (SPH) method [50]. SPH is a type
of particle-based method, known as mesh-free methods, that employ a set of finite numbers of discrete
particles to represent the state and evolution of a flow system [51]. This coupled DEM-SPH method
has been successfully applied to autogenous grinding [52,53]. Figure 5 shows on example of how DEM
and SPH are coupled in this type of simulation. DEM-CFD (e.g., the k—e-turbulence model) methods
have also been applied to wet grinding, such as stirred media and planetary ball mills [54]. Similar to
DEM-SPH methods, here, CFD takes the fluid flow into account and DEM is used for modeling of the
grinding media.
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Figure 5. Example of the physical interactions, the model components, and the data flows in discrete
element simulation-smoothed particle hydrodynamics (DEM-SPH) modeling of wet grinding [53].

Since the beginning of numerical modeling in mineral processing, in the past two decades,
significant advances have been made to simulate multiphase flow behavior. However, it is still far
from complete due to the multiscale nature of the problem, which requires integration of the complex
interplay between the molecular level and system hydrodynamics. One of the important challenges is
the development of methodologies and theories for an adequate representation of the meso-scales.
The meso-scales are important in linking micro and macro behaviors and in showing the complexity
and diversity of phenomena that occur [55]. The meso-scales can be decisive in the modeling and
understanding of multiphase systems where the behavior of the system is strongly influenced by the
phenomena at that level [56]. For example, Figure 6 shows the relationship between macro and micro
scales with the meso-scale of bubble behavior in flotation.
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c Liquid

Figure 6. Relationship between scales in bubble behavior in flotation (a) macro-scale: cell level,
(b) meso-scale: bubble coalescence and breakup studies, and (c) micro/nano-scale: molecular
interactions [57].

4. Design and Optimization

The development of systematic methods for process design in multiphase mineral processing has
been active, but to our knowledge, has still not been applied in the industry. The development of these
methods has been motived by the search to increase productivity, reduce costs, reduce the adverse
environmental impact of waste, and to develop simpler, more economical processes [58]. In general,
there are three methods for process design: heuristic-based methods, hybrid methods, and rigorous
methods. The heuristic-based method uses rules-of-thumb to help identify process alternatives. Hybrid
methods combine first principles with the insight of the designer to obtain a feasible process design.
Rigorous methods use a mathematical model to represent a set of alternatives and an optimization
algorithm to search for optimal solutions. As they move from heuristic to rigorous methods, the
mathematical complexity of the problem increases, the probability of getting better designs increases,
the importance of the designer’s experience decreases, and the design process goes from being closer
to art to being closer to a science.

Most of the work published in the literature is related to the design of flotation circuits. Few
works have been published based on heuristic design methods [59,60]. Chan and Price [60] presented
a method to design a process for non-sharp separations based on heuristics. The process design is
built up unit by unit, stopping when further addition does not increase the profit. The method was
applied to flotation circuits. Because heuristic design methods do not guarantee the finding of optimal
solutions, this approach to solve the design problem has lost interest from the scientific community.

The most important hybrid method for designing mineral processing facilities is linear circuit
analysis (LCA). This technique provides fundamental insights into how unit operations interact and
respond when arranged in multistage processing circuits [61]. The method, proposed by Meloy [62] and
then developed by Meloy, Williams, and Fuerstanou over several years [63—66], consists of representing
the separation yield of a process unit by a transfer function, and then expressing recoveries of the
concentrate and tailing as a function of this transfer function. This mass balance approach is extended
to the circuit by expressing the global recovery of the circuit as a function of the transfer function of
each process unit. Figure 7 shows an example of LCA formulation.
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LCA has successfully been utilized to improve the operating performance of industrial processing
circuits including magnetic separators [67] and spirals separators [68,69]. More recently, advanced
versions of this tool have also been developed to include techno-economic objective functions [70] and
circuit uncertainty analysis [71]—a complete review, written by Noble et al. [61], is available. Despite
its applications, LCA has several disadvantages, mainly caused by the common practice of assuming
that all transfer functions are equal. This simplification does not allow researchers to examine the
whole behavior of a concentration circuit because it reduces a multidimensional function of the transfer
functions of all the units to one dimension [72]. For example, differences of up to 10% have been
observed in the overall circuit recovery for two- and three-stage circuits in the case of identical and
non-identical stage recovery [73].
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Figure 7. Linear circuit analysis (LCA) formulation example, including uncertainty analysis:
(a) individual unit, (b) two-stage circuit [71].

Rigorous methods are based on optimization procedures. The methodologies consist of developing
a superstructure that represents a set of alternatives in which to search for the optimal solution. A
mathematical model based on mass balance and kinetics expressions of each operation unit is developed
to represent the superstructure, and then, using an objective function, it is solved to obtain the optimal
solution. The mathematical model results in a mixed-integer nonlinear programming model (MINLP),
which is difficult to solve due to the nonconvex nature. Most of the methodologies proposed are for
flotation circuit design, but one methodology has been proposed for a dewatering system [74]. Several
reviews on flotation circuit design are available [75-79], and therefore, a brief description is given here.
Table 1 shows a list of methodologies that use optimization for the design of flotation circuits. It can be
observed that most of the works use few components and/or few process units because the problem is
difficult to solve. Also, some simplification of the problem has been applied so that the model is linear
programming (LP), nonlinear programming (NLP), or mixed-integer linear programming (MILP).
Only in the last few years can it be observed that methodologies are applied to real size plants with at
least six species and five process units. The application to real size plants has been possible due to
the advances in computer power, optimization algorithm improvements, and the fact that the stage
recovery (unit transfer function) uncertainty has a low effect on the optimal circuit structure [80]. By
now, this type of methodology can generate a set of optimal alternatives that can be subject to further
study by the designer. Also, the case studies analyzed generated new knowledge that could be difficult
to obtain from plant experience.

The design of concentration circuits using rigorous methods requires further development to
incorporate regrinding and equipment selection, which can affect the circuit performance. A few
works have considered regrinding in the design of flotation circuits [81-83]; however, they have
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used simplified models or the grinding stage was not considered in the decision problem. Therefore,
strategies to incorporate grinding in the design of these systems must be considered. A major challenge
is the modification of the way the design process occurs in the organizations, which is based on
designer experience. Consequently, the usefulness of this type of methodology must be highlighted
and adapted in the innovation of the mining sector. For example, breakthrough circuit design may
not be the best option because of high capex and small research and development activities in the
mining industry. Then, in-process changes of the circuit design, where one or two units or structures
are changed, may be a better option.

Table 1. Flotation circuit design methodologies (adapted from Reference [84]) (LP linear programming;
NLP nonlinear programming; MILP, mixed-integer linear programming; MINLP, mixed-integer
nonlinear programming).

Model Cell or Entrainment Froth Algorithm Maximum Maximum
Reference T Bank Model Recovery Used Number Number of
ype Model ode Model se of Species  Cell or Bank
Mehrotra a_nd NLP Bank o o Mathematl'cal 3 4
Kapur [85] programming
Reuter et al. Lp Bank no no Mathematl'cal 3 4
[86] programmlng
Reuter and .
Van Deventer LP Bank no no MathemahAcal 3 5
programming
[87]
Schena et al. MINLP Bank no no Mathemat{cal 2 4
[88] programming
Schena et al. MINLP Bank no no Mathemah‘cal 2 6
[83] programming
Guria et al. Genetic
[89] NLP Cell no no Algorithm 3 4
Guria et al. Genetic
[90] NLP Cell no no Algorithm 2 2
Cisternas et al. MINLP Bank no o Mathematl'cal 3 4
[81] programming
Méndez et al. MINLP Bank no no Mathematl.cal 3 3
[82] programming
Ghobadi et al. Genetic
[91] MINLP Bank yes no Algorithm 3 2
Maldonado NLP Bank no no Mathemah‘cal 2 6
etal. [92] programming
Genetic
Hu et al. [93] MINLP Cell yes yes Algorithm 2 8
Clsterngs etal. MINLP Bank o o Mathemat{cal 3 5
[94] programming
Pirouzan et al. Genetic
[95] NLP Bank no no Algorithm 2 4
Calisaya et al. MILP Mathematical
[96] MINLP Bank no no programming 5 7
Acosta-Flores MILP Bank no s Mathematical 15 3
etal. [84] MINLP Cell Y programming 8
Luc?gyﬂet al. MINLP Bank no no Tabu-search 7 5

5. Artificial Intelligence (AI) Applied to Multiphase Systems

The term Al appeared in 1955 [98]. Alis a branch of computer science dedicated to the development
of computer algorithms to accomplish tasks traditionally associated with human intelligence. In recent
years, the interest from the mining industry in utilizing Al techniques in areas such as geology and
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minerals processing has increased. This trend is repeated in the ambit of scientific research [23,99-101].
Among these techniques, soft computing is highlighted, which has been used in the modeling, design,
and optimization of mining processes.

Soft computing is defined as the group of methodologies and tools that can assist in the design,
development, and operation of intelligent systems that are capable of adaptation, learning, and
operating autonomously in an environment of uncertainty and imprecision [102]. Soft computing can
be divided into two groups: probability reasoning, and functional approximation and randomized
search. The first group, in turn, can be divided into probabilistic models and fuzzy logic. The second
group, in turn, can be divided into evolutionary computing (EC), swarm optimization (SO), and
machine learning [103-105]. The developed tools in each group mentioned earlier are shown in Figure 8.
Note that ML includes a broad set of methods used to extract useful models from empirical data.
Machine learning tools are focused on endowing programs with the ability to “learn” and adapt [106].
These tools need training algorithms to learn, some of which are shown in Figure 8 (SO and EC). These
algorithms, as seen later, can be used for optimizing and designing metallurgical processes [93,97].

Soft Computing
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Figure 8. Methodologies and tools considered in soft computing.

Modeling can be divided into data-driven, fault detection and/or diagnosis, and machine vision.
The first considers building models for complementing or replacing physically-based models. The
second involves a statistical model based on data that are considered representative of the normal
operating condition (NOC) of the process. Any observations that exceed a certain limit in this NOC
model are considered as faults [107]. The third considers a type of data-driven modeling that uses
images or video, rather than process measurements.

Data-based modeling uses information extracted from experimental, simulated, or industrial data.
At an industrial scale, these methods are applied as soft sensors for the prediction of measurements
that are difficult to measure. Some applications of these methods include the modeling of metallurgical
responses or subprocesses involved in integral processes: grinding [108-114], thickening [115],
flotation [116-121], and hydrocyclones [122], among other processes. For example, Estrada-Ruiz and
Pérez-Garibay [118] used multilayer perceptron, which is a type of neural network, for estimating
the mean bubble diameter and bubble size distribution on the mineralized froth surface. Meanwhile,
Jahedsaravani et al. [120] used multilayer perceptron for predicting the copper recovery, copper
concentrate grade, mass recovery of the concentrate, and water recovery in the concentrate obtained
through batch flotation. Saravani et al. [121] developed a fuzzy model for estimating the performance
of an industrial flotation column. Nufiez et al. [114] developed a fuzzy model for predicting the future
weight of a semi-autogenous grinding (SAG) mill. Artificial neural networks (ANNSs), support vector
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machine (SVM), and fuzzy models substantially reduce the computational cost involved in simulation,
and uncertainty and sensitivity analyses [123].

Fault detection is commonly carried out using principal component analysis (PCA) or its
extensions/modifications [107], and it has been used in flotation systems [124,125] and milling
circuits [126,127]. Fault diagnosis, i.e., the identification of variables associated with faulty conditions,
is usually achieved via the use of approaches based on PCA. Some applications of these methods
include flotation [128-130] and grinding [126,127]. For example, Wakefield et al. [127] simulated a
milling circuit for investigating faults related to particle size estimates and mill liners. They applied
statistical tools (PCA) for detecting faults, in conjunction with process topology data-driven techniques
(Granger causality) for root cause analysis. These authors reported that the statistical monitoring
method took slightly longer to detect the mill liner fault, due to the incipient nature of the fault.
However, this method is significantly faster than what has been achieved by monitoring only the
economic performance of the circuit. The fault diagnosis identified the mill power as the root cause of
the fault.

Machine vision is the study of techniques for extracting meaningful information from
high-dimensional images, and it has been used almost exclusively in flotation [131-133]. Developed
models were used for classifying flotation froth images, and commonly, these were based on SVM,
ANN s, and decision trees [23]. For example, Zhu and Yu [132] proposed an ANN model based on
features extracted from digital froth images at a hematite flotation plant. This model was used to help
identify flotation conditions and to adjust the reagent’s quantity. Zhao et al. [134] estimated the bubble
size distribution using image processing techniques based on decision trees.

Many of the developed models were used to optimize the process, for example, Curilem et al. [113]
used ANNs and SVM models for online optimization of the energy consumption in SAG. Zhu and
Yu [132] used the developed model for optimizing the reagent’s dosage. Saravani et al. [121] used a
fuzzy model for optimizing and stabilizing the industrial flotation column. Note that ANN and SVM,
among other tools included in machine learning, require training algorithms, which can be divided
into exact and approximate algorithms. This last group considers genetic algorithms, particles swarm
optimization, and differential evolution, among others, including their hybridizations. According to
the related literature, these algorithms have been used for tuning the parameters of the ANN, SVM, and
fuzzy models [135], and for minimizing/maximizing the objective function in optimization problems
and process design.

Process optimization via approximate algorithms has been reported by several authors, for
example, Tandon et al. [136] developed an ANN for predicting cutting forces in a milling process,
which, in turn, was used to optimize both feed and speed through particle swarm optimization.
Massinaei et al. [137] used ANN and gravitational search algorithms to model and optimize the
metallurgical performance of a flotation column. Shunmugam et al. [138] used genetic algorithms to
optimize the minimum production cost in a face milling operation. Here, the trend is using hybrid
algorithms to explore the search space efficiently and find a global optimal solution [101,139,140].

Process design via approximate algorithms has been performed almost exclusively in froth flotation,
specifically in flotation circuit design. The latter considers three ingredients: first, a superstructure for
representing the alternatives for design, second, a mathematical model for modeling the alternatives for
design, included goals, constraints, and objective function, and third, an optimization algorithm [76].
Lucay et al. [97] considered a stage superstructure composed of five stages of flotation, which
were modeled using a bank model. Here, the single-objective function was of the economic type,
and the Tabu-Search algorithm was used for solving the design problem. Hu et al. [93] used a
superstructure of eight cells, which were modeled using a cell model. They used a single-objective
function of the economic type and genetic algorithm for solving the problem. Ghobahi et al. [91] used
genetic algorithms, a superstructure of stages, and single-objective functions of the technical type.
Pirouzan et al. [95] also applied genetic algorithms but considered a multi-objective function of the
technical type. Due to the multi-objective nature of the problem, the authors used the Pareto method
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to obtain a set of solutions. The superstructure used involved three and four flotation stages, out of
all possible combinations, which were modeled using a bank model. These authors applied their
methodology to improve the design of a flotation circuit processing coal. Figure 9a shows the initial
flotation circuit design, and Figure 9b shows the new design of the flotation circuit. They reported
that the new design provided a recovery of ash that was 6.7% higher than that of the initial design. In
addition, to consider designs of four stages would increase the recovery by 3.8%, and the ash grade
would be 11.2%, which is within the acceptable quality level. Here, the common factor is the use of
objective functions of the economic type because objective technical functions are difficult to define,
including approaches using the Pareto method to address multi-objective problems [76].
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Figure 9. Comparison of flotation circuit design: (a) design and ash contents of the initial circuit,
(b) design and ash contents of the new circuit, adapted from Pirouzan et al. [95].

Obtaining data can be very expensive, so one challenge in data-based modeling is developing
methodologies that allow for the attainment of robust models using a small amount of data. In addition,
at an industrial scale, the data frequently exhibit as being high-dimensional, non-normally distributed,
and nonstationary, with nonlinear relationships, including noise and outliers, which makes it even
more difficult to develop a model capturing the true relationships between the input variables. These
comments are also valid for fault detection and diagnosis and for machine vision.

6. Response Surface Methodology (RSM)

RSM is used for modeling and optimization processes. RSM involves the following three
steps [141]: first, a design of experiments (DoE) for driving the experiments, second, the response
surface is modeled based on empirical models, and third, the optimization of the responses is
carried out using the empirical model. According to Garud et al. [142], DoE can be divided into
broad families, i.e., classical and modern design of experiments. The first is based on laboratory
experiments. This includes approaches such as full- and half-factorial design, central composite
design, Plackett-Burman design, and Box-Behnken design, among others [143]. The second is based
on computer simulations. This includes approaches such as full-factorial design [144], fractional
factorial design, central composite design [145], Latin hypercube sampling [146], and symmetric Latin
hypercube sampling [147], among others.

One advantage of the classical RSM is that it needs a smaller number of experiments, which means
it is cheaper and requires less time. These characteristics explain the large number of applications,
including flotation [148,149], grinding [150-152], and thickening [153], among other processes.

The related literature shows that classical RSM is commonly applied using a second-order
polynomial as a prediction model [143]. For example, optimal conditions of rotation speed, solid
concentration, and grinding time were obtained for wet grinding in a ball mill using central composite
design with a second-order polynomial [152]. In fact, an excellent determination coefficient (R? =
0.9989) was obtained, which indicates a good agreement with experimental values. Similar good
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results were observed using a Box-Bhenken design in copper sulphide ore grinding in a ball mill [150].
However, several processes do not follow a second-order polynomial behavior and, consequently, a
poor adjustment of the model is obtained (see Figure 10). The immediate consequence is incorrect
optimization. The related literature proposes different approaches in the modeling of surface response
instead of polynomial models. For example, regression of Gaussian processes has been proposed, since
these models can model complex functions [141,154]. Also, the use of SVM regression as a prediction
model has been proposed [155]. However, the most popular alternative has been ANNs [156].
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Figure 10. (a) Quartz recovery using a second-order polynomial as a prediction model (R? = 0.931),
(b) quartz recovery using an artificial neural network as a prediction model (R? = 0.982) [156].

On the other hand, according to Garud et al. [142], the chemical and process system engineering
community has exclusively employed modern DoE techniques in the context of surrogate approximation
and surrogate-assisted optimization. Modern RSM is also called response surface surrogate (RSS).
Surrogate modeling techniques are grouped by some authors into two broad families, which are
statistical or empirical data-driven models that emulate the high-fidelity model response, and
lower-fidelity physically-based surrogates, which are simplified models of the original system [123].

Data-driven surrogates involve empirical approximations of the complex model output calibrated
in a set of inputs and outputs of the complex model. Some approximate techniques proposed
in the related literature are: polynomial, kriging (Gaussian process), k nearest neighbors, proper
orthogonal decomposition, radial basis functions, support vector machines, multivariate adaptive
regression splines, high-dimensional model representation, treed Gaussian processes, Gaussian
emulator, smoothing splines analysis of variance (ANOVA) models, polynomial chaos expansions,
genetic programming, Bayesian networks, and ANNs [123,157].

This approach has been applied in flotation [158], thickening [159,160], and comminution [161],
among others. Usually, these works are based on CFD models, which consider several complex
phenomena involved in the studied process. However, these models are computationally expensive
to evaluate. This limits their application in continuous process modeling for dynamic simulation,
optimization algorithms, and control purposes. Surrogate model techniques can help to overcome
this disadvantage. For example, Rabhi et al. [158] developed surrogate models via a hierarchical
polynomial using a dataset obtained through simulations of a CFD model of froth flotation. The
surrogate model was used for estimating the bubble—particle collision probability (see Figure 11a).
These authors reported that the surrogate models developed were highly accurate with a negligible
CPU (central processing unit) time. This accuracy increases with an increasing number of interpolation
points (see Figure 11b). Stephens et al. [159] developed surrogate models of a CDF model of flocculant
adsorption in an industrial thickener because the latter is impractical for performing sensitivity analysis
(SA). These authors used radial basis functions, ANNSs, and least squares-support vector machines as
surrogate models, and they reported that the radial angle between the flocculant sparge and feed pipe,
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and the distance from the feed well to the flocculant sparge, are the most important parameters in

flocculant loss (output variable).
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Figure 11. (a) Bubble—particle collision probability, P., versus bubble diameter, (b) prediction absolute
error versus number of interpolation points [158].

7. Uncertainty and Sensitivity Analyses

UA corresponds to determining the uncertainty in the output variables as a result of the uncertainty
in the input variables. For performing UA, the related literature proposed several theories, such as
fuzzy theory and probability theory, among other theories [162]. Meanwhile, SA can be defined as
the study of how the uncertainty in the output of a model can be apportioned to different sources of
uncertainty in the model input. There are two types of SA: local sensitivity analysis (LSA) and GSA.
The second is the most robust because it considers the full range of uncertainty of the input variables.

According to Saltelli et al. [163], SA is an ingredient of modeling. These authors suggested that SA
could considerably assist in the use of models, by providing objective criteria of judgment for different
phases of the model-building process: model identification and discrimination, model calibration, and
model corroboration. In line with this, Lane and Ryan [164] indicate that a well-developed model
should include model verification, validation, and uncertainty quantification. Model verification is
used for ensuring that the model is behaving properly, for example, the model can be compared with
other models or with known analytical solutions. Model validation involves the comparison with
experimental data. Uncertainty quantification (UQ) studies the effect of uncertainties on the model. UQ
can be performed using uncertainty and sensitivity analyses. These provide a general overview of the
effect of uncertainties. Typically, model verification, calibration, and corroboration are not applied in
mineral processing, but they must be considered in future model development. The interested readers
can see the model developed by Mellado et al. [165] for heap leaching, which has been validated,
verified, and corroborated [166-168].

UA and GSA have also been used to identify the operational conditions of a mill system under
uncertainty. Lucay et al. [162] applied UA for studying the effect of the distribution and magnitude
of the uncertainties of input variables in the responses of the grinding process (see Figure 12a).
GSA was utilized to identify influential input variables. Then, the regionalization of the influential
input variables was applied to identify the operational regions (see Figure 12b). In other words, the
control of the uncertainty of the significant input variables allows for the control of uncertainty in
the mill system. GSA has also been applied in the design or optimization of flotation circuits under
uncertainty [169-172]. Sepulveda et al. [169] proposed a methodology for the conceptual design of
flotation circuits. The methodology involved three decision levels: level I—the definition of the analysis
of the problem, level II—the synthesis and screening of alternatives, and level Ill—the final design.
This last level considers the identification of gaps and opportunities for improvement, among other
aspects. Identification was performed using LSA and GSA. Figure 13a shows the flotation circuits
designed using this methodology, and Figure 13b shows how the uncertainty on the recovery of each
species in the flotation stages affects their global recovery. These authors reported that if the target
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is increasing the recovery of chalcopyrite, it is recommended that modifications should be made in
cleaner 3 (see Figure 13b) because changes at this stage have a significant effect on the global recovery
of chalcopyrite and little effect on the global recovery of other species (higher Sobol index values).

~ - ~ - g
© - © - © il
o o ©
1 i i
S o g o g o
o~ o~ o~ - o~ -
o - o - o
| S E— ] LN B B S E— | | B S E—
26 28 30 32 26 27 28 29 30 31 27 28 29 30
Ecs case 2 Ecs base case Ecs case 1
(@

L
m
"
=
©
=
ors & s &
w - 7 o w 7 oum
7 om 7 n
b 7 an 7 on
A an A om
| 4 om 3 S on
b | / oe / Pl
Y Voss -
.05 0.06 0.07 0.08 0.09 010 0.1 012 013 0.05 0.06 0.07 0.08 0.09 010 0.1 0.12 013
Jb Jb

Figure 12. (a) The comminution-specific energy histogram of a SAG (semi-autogenous grinding) mill
under three uncertainty magnitudes. (b) The regionalization of fresh ore flux fed (F), percentage of mill
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Figure 13. (a) Designed circuit using the methodology. (b) Sobol total index for each stage and for
chalcopyrite (Cp), chalcopyrite-pyrite (CpPy), pyrite—arsenopyrite, and silica (Sc) [169].
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Here, the trend is using methods of GSA based on the decomposition of variance due to
its versatility [173]. However, this last approach is computationally expensive. This drawback
has been overcome in other engineering areas via the development of metamodels or surrogate
models [123,157,174], such as ANNs. This approach has not been applied to multiphase mineral
processing systems; however, we estimate that this will change due to metamodels that are not only
more efficient for performing GSA and UA, but also for carrying complementary analyses, such as
data classification.

8. Discussion and Conclusions

Experimentally based research is time demanding and costly, but necessary in multiphase mineral
processing systems. These systems include operations and phenomena such as flotation, hydroclyclone,
grinding, and magnetic separation. The need for models for these systems is not only necessary to
reduce the cost and time associated with research activities but also, because if we do not have a
model, we do not understand the system, and if we do not understand the system, we cannot modify
it to obtain the desired conditions. The models and tools available to study multiphase systems in
mineral processing depend on the length and time scales of the phenomenon that needs to be analyzed.
Important advances have been developed in different tools, such as MD at the molecular level, CFD at
the fluid level, and mathematical programming at the plant level. RSM can be applied to all levels to
model experimental data and numerical experiments. UA and GSA are the most powerful tools to
analyze uncertainty. Al can have applications at all levels and, in the future, new applications and
developments are expected.

MD has recently emerged in the study of multiphase systems in mineral processing. New studies
and applications will undoubtedly show the benefits of understanding phenomena at the molecular
level in these systems. There are other challenges that have not been analyzed in detail in the literature,
such as integration in multiscale modeling, design, and optimization. Some advances have been
observed, for example, the integration of CFD modeling with DEM to integrate particle and fluid
phenomena. However, new research on meso-scale modeling integrated with micro- and macro-scale
modeling is essential to better describe and optimize multiphase systems. Also, some tools have
been combined to increase the capabilities of these methods, for example, ANNs have been combined
with RSM to be able to model complex behavior. Examples in design are the integration of process
design with control design and molecular modeling with process design. The simultaneous design of
process/control or process/molecular can, as a result, produce a better overall design. For example,
explicit process control structures can be included in the process design problem, which allows for
consideration of the operability in early stages of the design process [175]. A good understanding
of molecular phenomena can aid the consideration of the properties in process design, for example,
deciding the best location for stream recycling not only based on mineral concentrations, but also
considering the final result in properties (such as pH, chemical potential, dissolved oxygen). A
technique for property integration based on property clustering can be used for this purpose [176-178].
To achieve these objectives, more research and development efforts in this area are necessary.

Despite the advantages of the use of optimal design tools to identify better process structures, they
have not been used in practice in mineral processing, at least to the authors” knowledge. Therefore,
the usefulness of this type of methodology must be highlighted and adapted in the innovation of
the mining sector. In-process changes of the circuit design, where one or two units or structures are
changed, can be explored for this purpose.
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Abstract: A scientific and rigorous study on the adsorption behavior and molecular mechanism of
collector sodium oleate (NaOL) on a Ca®*-activated hydroxylated a-quartz surface was performed
through experiments and density functional theory (DFT) simulations. The rarely reported hydroxylation
behaviors of water molecules on the a-quartz (101) surface were first innovatively and systematically
studied by DFT calculations. Both experimental and computational results consistently demonstrated that
the adsorbed calcium species onto the hydroxylated structure can significantly enhance the adsorption
of oleate ions, resulting in a higher quartz recovery. The calculated adsorption energies confirmed that
the adsorbed hydrated Ca?* in the form of Ca(H,0)3(OH)* can greatly promote the adsorption of OL™
on hydroxylated quartz (101). In addition, Mulliken population analysis together with electron density
difference analysis intuitively illustrated the process of electron transfer and the Ca-bridge phenomenon
between the hydroxylated surface and OL™ ions. This work may offer new insights into the interaction
mechanisms existing among oxidized minerals, aqueous medium, and flotation reagents.

Keywords: quartz; DFT calculation; hydroxylation; adsorption; flotation

1. Introduction

Quartz is one of the main gangue minerals in iron ores [1], and it is also the common gangue
mineral for most metal oxidized ores, non-metal oxidized ores, sulfide ores, silicate minerals, phosphate
minerals [2,3]. There are many varieties of quartz in nature, such as x-quartz, 3-quartz, coesite, and
stishovite, among which x-quartz is the most widely distributed, and is the main rock-forming minerals
of magmatic, sedimentary, and metamorphic rocks [4]. In addition, as an important industrial raw
material, quartz has been widely used in electronic devices, optical instruments, glass raw materials,
abrasive materials, refractories, and other aspects [5-8]. Therefore, the separation of quartz from other
minerals makes great sense for mineral processing and relevant industries.

Flotation, one of the most efficient mineral processing methods which selectively concentrates
target minerals based on their physicochemical properties and differences resulting from the intrinsic
properties of ores and modification of flotation reagents, has been widely employed in the separation
of iron ores [9-11]. It is generally acknowledged that cationic/anionic reverse flotation is one of the
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most efficient technologies for the removal of quartz and enrichment of iron-containing minerals from
iron ores [12]. The collectors of quartz reverse flotation could be classified into cationic collectors
and anion collectors, among which cationic collectors are sensitive to slime and cause large foam
viscosity while anion collectors have good selectivity and adaptability to ores [13]. Therefore, anion
collectors (e.g., sodium oleate) are usually used in practical production to reduce SiO; content to
obtain high-grade iron concentrate [14]. However, low recovery of quartz is gained only when sodium
oleate is used. In most cases, before the addition of sodium oleate, metal ion activators should be
previously added to the pulp and adsorbed onto the quartz’s surface as active sites. Actually, the
activation mechanisms of metal ions on mineral surfaces have been research hotspots in the field of
flotation [15,16]. Divalent ions, such as Cu?*, Pb?*, CaZ*, etc., are widely used to activate specific
mineral surfaces [15,17-19]. Calcium ion possesses more widespread applications for separating quartz
from other valuable minerals compared with most other metallic ions [17,20]. The activation of calcium
ion on quartz has been previously studied by other scholars through various characterization methods
and theory calculations, but no consistent conclusion has been reached. For instance, Shi et al. [21]
considered that Ca(OH), precipitation was the main activation component of quartz; Guo et al. [2]
concluded that the activation of calcium ions on quartz was due to the preferential chemical adsorption
of Ca?* on oxygen sites of quartz surface; and Gong et al. [22] believed that the adsorption of sodium
oleate on the quartz surface was mainly attributed to the activation of Ca(OH)*.

In recent years, with the rapid developments of theoretical and computational chemistry, more
effective methods can be adopted to visually investigate the interaction mechanisms between reagents and
minerals at a microscopic level. Density functional theory (DFT) calculation is a kind of simulation method
whose application in mineral processing is relatively mature [12,23] and it has great potential to provide
novel and microcosmic insights into the flotation process [24,25] which cannot be obtained in conventional
experimental studies. For example, Zhu et al. [12] intensively studied the interaction mechanism between
collector a-Bromolauric acid and Ca2*-activated quartz (101) surface, and concluded that the essence of
activation and flotation of quartz was that Ca(OH)* ions served as a bridge between the collector and
the mineral surface. Rath et al. [26] found that magnetite could form the most stable surface complexes
with oleate through comparing the interaction of oleate with hematite, magnetite, and goethite based on
DFT calculation. Zhao et al. [27] investigated the adsorption behaviors of Ca(OH)™ on pyrite, marcasite,
and pyrrhotite surfaces, and discussed in depth the corresponding bonding mechanism and electron
transfer using DFT simulation. Long et al. [28] confirmed by researching the effects of the three typical
thiol collectors on galena and sphalerite in the presence of water on the basis of the first principles, that
there existed distinct differences in the electron distribution, the atoms” activity on the mineral’s surface,
and the interactions between the collectors and the minerals. It is worth mentioning that metal ions in
aqueous systems will experience complex behaviors to generate hydrated metal ions cluster [18,29-31],
which has profound impacts on the interactions between collectors and the mineral surface. Wang et al. [32]
conducted an in-depth simulations study on the activation mechanism of calcium ions on quartz and found
that the major activation component of calcium ions adsorbed on the surface of quartz was (Ca(Hy0)4)**
which transformed into (Ca(H,O)3(OH))* after the adsorption process. Hu et al. [15], by studying the
activation mechanism of calcium ion on a sericite surface, concluded that adsorption onto a sericite (001)
surface of hydrated calcium ions in the form of (Ca(H,O);(OH))" was the most favorable. According to
the latest and thorough studies mentioned above regarding the activation mechanism of calcium ions,
it is believed that the Ca(H,O)3(OH)* cluster acts as the main active components in alkaline solution.
Moreover, water molecules play an indispensable role in the flotation process [28,33] and quartz possesses
strong hydrophilicity [34,35]. De Leeuw’s first principles calculations show that the existence of hydration
behavior has a very important influence on mineral surface structures and reactivities, and a solvent effect
must be considered in the DFT simulations of the mineral flotation process in order to accurately predict the
affinity between flotation reagents and mineral surface [36]. Pradip et al. [37] believe that flotation reagents
and mineral surfaces need to match each other in spatial structure and properties to display productive
effects. Therefore, only when the hydroxylation behaviors of water molecules on quartz surfaces are firstly
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fully considered in DFT calculations can the adsorption and flotation mechanisms of flotation reagents
onto quartz surfaces be reasonably and accurately investigated.

Unfortunately, although many in-depth studies on the activation or flotation of quartz have been
carried out through experiments and theoretical simulations, there are two serious shortcomings as
follows [12,14,22,32]: There is a lack of rigorous and systematic studies on the hydroxylation behaviors
of quartz in aqueous solution, as well as a lack of further investigations on the microscopic mechanisms
between flotation agents and pre-hydroxylated quartz. Therefore, the main objective of this study was
to firstly systematically study the rarely reported strong hydroxylation behaviors of water molecules
on quartz surfaces and further to rigorously research the adsorption and flotation mechanisms of
flotation reagents onto hydroxylated quartz structures. The adopted experimental characterization
methods included X-ray diffraction (XRD) spectrums, micro-flotation tests, zeta potential tests and
Fourier transform infrared (FTIR) spectrums. In addition, the interaction mechanism at micro aspects
were further investigated by first principles DFT calculations. This work may provide novel insights
into the interaction mechanisms existing among aqueous medium, x-quartz surfaces, calcium ions,
and anionic collectors.

2. Experimental and Computational Details

2.1. Materials and Reagents

The high-purity massive quartz crystal sample was smashed into small pieces with a maximum
particle size of 30 mm by a hammer and sent to the JC6 jaw crusher for crushing to prepare smaller
particles with a size below 2 mm. The crushed minerals were ground with a porcelain mortar and then
sieved, among which a partial fraction (—38 pm) was further ground using an agate mortar to obtain a
particle size less than 5 um for various analyses and the sample within the range of 38-74 um was used
for micro-flotation tests [38]. The X-ray diffraction (XRD) spectrum of the sample is shown in Figure 1.
The chemical element analysis results indicated that the content of SiO; in the quartz samples was as
high as 97.63%, and the sample contained very small amounts of impurities (0.035% Ca and 0.025%
Fe), which was pure enough for the following tests. In the experiments, chemical pure sodium oleate
(NaOL), analytical pure calcium chloride (CaCly), sodium hydroxide (NaOH), hydrochloric acid (HCI),
potassium nitrate (KNOs), and deionized water were used.
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Figure 1. The XRD spectrum of the used quartz pure mineral sample.

2.2. Methodology

2.2.1. Micro-Flotation

All flotation tests were carried out using an XFG flotation machine with a 40 mL cell operated at
1650 rpm. In three parallel tests, 35 mL deionized water and 2 g pure mineral sample were mixed and
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stirred [15]. Firstly, pH regulators were added to adjust the flotation pulp to the specified pH value in the
subsequent 2 min. Secondly, the pulp was conditioned with CaCl, for 3 min. Finally, a certain amount of
NaOL was added into the cell with a 3 min conditioning time. The scraping operation lasted for 4 min
and the concentrate was scraped out in the form of mineralized froth every 5 s. It should be mentioned
that the addition of flotation agents would make the pH of the slurry fluctuate, so the pH regulators were
discontinuously added to keep the pH of the slurry stable until 1 min before scraping. The products were
filtrated, dried, and weighed, and the recovery was calculated based on the solid weight distribution
among the two products [38]. The specific process of flotation tests is presented in Figure 2.

Quartz

pH regulators 2 min

CaCl2 3 min

NaOL 3 min

Flotation time 4 min

v v
Concentrate Tailing

Figure 2. The flowsheet and conditions of the micro-flotation tests.
2.2.2. Zeta Potential Measurements

Zeta potentials were measured by Malvern ZETASIZER Nano-Z instrument at 25 °C.
The suspension with a mass concentration of 1% (40 mg -5 um quartz: 40 mL aqueous solution)
containing 1 X 