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Preface to "Geometry of Submanifolds and
Homogeneous Spaces”

The present Special Issue of Symmetry is devoted to two important areas of global Riemannian
geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces.
Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous
spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein’s Erlangen
Program and S. Lie’s idea to use continuous symmetries in studying differential equations.

In this Special Issue, we provide a collection of papers that not only reflect some of the latest
advancements in both areas, but also highlight relations between them and the use of common

techniques. Applications to other areas of mathematics are also considered.

Andreas Arvanitoyeorgos, George Kaimakamis
Special Issue Editors
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Abstract: In this paper, by using new-concept pointwise bi-slant immersions, we derive a fundamental
inequality theorem for the squared norm of the mean curvature via isometric warped-product pointwise
bi-slant immersions into complex space forms, involving the constant holomorphic sectional curvature
¢, the Laplacian of the well-defined warping function, the squared norm of the warping function,
and pointwise slant functions. Some applications are also given.

Keywords: mean curvature; warped products; compact Riemannian manifolds; pointwise bi-slant
immersions; inequalities

1. Introduction

In the submanifolds theory, creating a relationship between extrinsic and intrinsic invariants
is considered to be one of the most basic problems. Most of these relations play a notable role in
submanifolds geometry. The role of immersibility and non-immersibility in studying the submanifolds
geometry of a Riemannian manifold was affected by the pioneering work of the Nash embedding
theorem [1], where every Riemannian manifold realizes an isometric immersion into a Euclidean
space of sufficiently high codimension. This becomes a very useful object for the submanifolds theory,
and was taken up by several authors (for instance, see [2-15]). Its main purpose was considered to
be how Riemannian manifolds could always be treated as Riemannian submanifolds of Euclidean
spaces. Inspired by this fact, Nolker [16] classified the isometric immersions of a warped product
decomposition of standard spaces. Motivated by these approaches, Chen started one of his programs
of research in order to study the impressibility and non-immersibility of Riemannian warped products
into Riemannian manifolds, especially in Riemannian space forms (see [11,17-19]). Recently, a lot of
solutions have been provided to his problems by many geometers (see [18] and references therein).

The field of study which includes the inequalities for warped products in contact metric manifolds
and the Hermitian manifold is gaining importance. In particular, in [17], Chen observed the strong
isometrically immersed relationship between the warping function f of a warped product M X ¢ M,
and the norm of the mean curvature, which isometrically immersed into a real space form.

Theorem 1. Let M(c) be a m-dimensional real space form and let ¢ : M = M, X ¢ My be an isometric
immersion of an n-dimensional warped product into M(c). Then:

Af _ n? ’
il N }% 1
F 74n2|\ [|*+mc, )
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where n; = dimM;, i = 1,2, and A is the Laplacian operator of My and H is the mean curvature vector of M".
Moreover, the equality holds in (1) if, and only if, ¢ is mixed and totally geodesic and nyHy = nyHp such that
Hj and H are partially mean curvatures of My and My, respectively.

In [2,5,20-31], the authors discuss the study of Einstein, contact metrics, and warped product
manifolds for the above-mentioned problems. Furthermore, in regard to the collections of such
inequalities, we referred to [12] and references therein. The motivation came from the study of Chen
and Uddin [32], which proved the non-triviality of warped-product pointwise bi-slant submanifolds
of a Kaehler manifold with supporting examples. If the sectional curvature is constant with a
Kaehler metric, then it is called complex space forms. In this paper, we consider the warped-product
pointwise bi-slant submanifolds which isometrically immerse into a complex space form, where
we then obtain a relationship between the squared norm of the mean curvature, constant sectional
curvature, the warping function, and pointwise bi-slant functions. We will announce the main result
of this paper in the following.

Theorem 2. Let M?"(c) be the complex space form and let ¢ : M" = My! Xy Mp? — M?"(c) be an
isometric immersion from warped product pointwise bi-slant submanifolds into M2"(c). Then, the following
inequality is satisfied:

A(lnf) < [|VInf|]? + L2|\H|\2+ ME _ 3¢ ([ cos 6y + 1y cos? 2)

< i 4 A\ 1+ 2 ),

where 01 and 6, are pointwise slant functions along My and My, respectively. Furthermore, V and A are the
gradient and the Laplacian operator on MY, respectively, and H is the mean curvature vector of M". The equality
case holds in (2) if and only if ¢ is a mixed totally geodesic isometric immersion and the following satisfies

Hy
Hz n

where Hy and H, are the mean curvature vectors along My and M5?, respectively.

As an application of Theorem 2 in a compact orientated Riemannian manifold with a free boundary
condition, we prove that:

Theorem 3. Let M" = M/" x § M3? be a compact, orientate warped product pointwise bi-slant submanifold
in a complex space form M2"(c) such that MYV is a ny-dimensional and My? is a np-dimensional pointwise
slant submanifold M?" (c). Then, M" is simply a Riemannian product if, and only if:

I1H|? > % (3711 cos? 01 + 31, cos? 0, — n1n2>, 3)

where H is the mean curvature vector of M". Moreover, 61 and 6, are pointwise slant functions.

By using classifications of pointwise bi-slant submanifolds which were defined in [32], we derived
similar inequalities for warped product pointwise pseudo-slant submanifolds [33], warped product
pointwise semi-slant submanifolds [34], and CR-warped product submanifolds [17] in a complex space
form as well.

2. Preliminaries and Notations

An almost complex structure | and a Riemannian metric g, such that | 2= _Jand g(JX,JY) =
g(X,Y), for X,Y € X(M), where I denotes the identity map and X(M) is the space containing vector
fields tangent to M, then (M, ], g) is an almost Hermitian manifold. If the almost complex structure
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satisfied (V;])V = 0, for any U, V € X(M) and V is a Levi-Cevita connection M. In this case, M is
called the Kaehler manifold. A complex space form of constant holomorphic sectional curvature c is
denoted by M?"(c), and its curvature tensor R can be expressed as:

R(U,V,Z,W) = i <g(U,Z)g(V, W) —g(V,Z2)g(U, W) +¢g(U,]Z)g(JV, W)
-8V, ]Z)g(U, JW) +2g(U,IV)g(IZ,W)>, 4)

forevery U,V,Z,W € X(M?"(c)). A Riemannian manifold M" and its submanifold M, the Gauss and
Weingarten formulas are defined by Vy;V = ViV + h(U, V), and V& = —AgU + V&, respectively
for each U,V € X(M) and for the normal vector field & of M, where /1 and A¢ are denoted as the
second fundamental form and shape operator. They are related as g(h(U, V), N) = g(AyU, V). Now,
for any U € X(M) and for the normal vector field & of M, we have:

(i) JU=PU+FU, (i) J¢=1tZ+ fC, ®)

where PU(t¢) and FU(f¢) are tangential to M and normal to M, respectively. Similarly, the equations
of Gauss are given by:

R(U,V,Z,W) =R(U,V,ZW)+g(h(U,W),h(V,Z)) — g(h(U,Z),k(V,W)). (6)

forall U, V,Z, W are tangent M, where R and R are defined as the curvature tensor of M" and M",
respectively.

The mean curvature H of Riemannian submanifold M" is given by
H= ! trace(h)
= .

A submanifold M" of Riemannian manifold M" is said to be totally umbilical and totally geodesic
if h(U,V) = g(U,V)H and h(U,V) = 0, for any U,V € X(M), respectively, where H is the mean
curvature vector of M". Furthermore, if H = 0, them M" is minimal in M™,

A new class called a “pointwise slant submanifold” has been studied in almost Hermitian
manifolds by Chen-Gray [35]. They provided the following definitions of these submanifolds:

Definition 1. [35] A submanifold M" of an almost Hermitian manifold M2?" is a pointwise slant if, for any
non-zero vector X € X(TyM) and each given point x € M", the angle 6(X) between [X and tangent space
TM is free from the choice of the nonzero vector X. In this case, the Wirtinger angle become a real-valued
function and it is non-constant along M", which is defined on T*M such that 6 : T*M — R.

Chen-Gray in [35] derived a characterization for the pointwise slant submanifold, where M" is a
pointwise slant submanifold if, and only if, there exists a constant A € [0, 1] such that P2 = —cos? 01,
where P is a (1,1) tensor field and I is an identity map. For more classifications, we referred to [35].

Following the above concept, a pointwise bi-slant immersion was defined by Chen-Uddin in [18],
where they defined it as follows:

Definition 2. A submanifold M" of an almost Hermitian manifold M?™ is said to be a pointwise bi-slant
submanifold if there exists a pair of orthogonal distributions Dy, and Dy, , such that:

(i) TM" = D91 &) 'D@z,'

(i1) ]D91 1 DGZ and ]DGZ 1 Dgl;
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(iii) Each distribution Dy, is a pointwise slant with a slant function 6; : T"M — R fori=1,2.

Remark 1. A pointwise bi-slant submanifold is a bi-slant submanifold if each slant functions 6; : T*M —
R fori=1,2.are constant along M" (see [13]).

Remark 2. If0; = 75 or 6, = 5, then M" is called a pointwise pseudo-slant submanifold (see [33]).
Remark 3. If6y = 0 or 6 = 0, in this case, M" is a coinciding pointwise semi-slant submanifold (see [14,34]).
Remark 4. If 0, = 7 and 6; = 0, then M" is CR-submanifold of the almost Hermitian manifold.

In this context, we shall define another important Riemannian intrinsic invariant called the scalar
curvature of M, and denoted at T(T,M™), which, at some x in M™, is given:

ULM™) = ) K, )
1<a<p<m
where K,xﬁ = (ea A 6;3) It is clear that the first equality (7) is congruent to the following equation,

which will be frequently used in subsequent proof:

HTM™) = Y K 1<ap<n (8)
1<a<p<m

Similarly, scalar curvature T(Ly) of L-plan is given by:

%(Lx) = Z Kmﬁ/ )

1<a<p<m

An orthonormal basis of the tangent space TyM is {eq, - - - e, } such that e, = (e,,41, - - - en) belong
to the normal space T M. Then, we have:

h;ﬁ = g(h(ea,e/g),e,),

HhHZ Z g eare/j (Cmeﬁ). (10)

a,p=1

Let K,p and K, p be the sectional curvatures of the plane section spanned by ¢, and eg at x in a
submanifold M" and a Riemannian manifold M", respectively. Thus, Kypand K,‘ﬁ are the intrinsic and
extrinsic sectional curvatures of the span {e,, eﬂ} at x. Thus, from the Gauss Equation (6)(i), we have:

m

27(TeM") = Kop = 28(TM™) + Y (hﬁahgﬁf (héﬁ)z)
r=n+1
- aﬂ+ 2 <hmxh aﬁ)2>‘ (11)
r=n+1

The following consequences come from (6) and (11), as:

(TMY) =Y, ) (h,’lh]’] (h;j)2>+%(Tle”l). (12)

r=n+11<i<j<n;
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Similarly, we have:

m
T = 3 (b 00)7) + R 13)
r=n+1n+1<a<b<n

Assume that Mj" and Mj? are two Riemannian manifolds with their Riemannian metrics g and
g2, respectively. Let f be a smooth function defined on M. Then, the warped product manifold
M" = M x f M? is the manifold M;! x M)? furnished by the Riemannian metric g = g1 + f2g>,
which defined in [36]. When considering that the M" = M x ¥ M3? is the warped product manifold,
then for any X € X(M;) and Z € X(M;), we find that:

VX = VxZ = (XInf)Z. (14)

Let {ej, - - - €4} be an orthonormal frame for M"; then, summing up the vector fields such that:

ﬂinﬁk(e,,c/\e,j Zl ﬁ ( Veuea) Inf — ea(eplnf) — (ealnf)2>.
i=1j=1 a=1p=1
From (Equation (3.3) in [11]), the above equation implies that:
Z Z (ex veg) = ma (A ) = [V (n ) ) = 22, (15)

Remark 5. A warped product manifold M" = M X5 M3? is said to be trivial or a simple Riemannian
product manifold if the warping function f is constant.

3. Main Inequality for Warped Product Pointwise Bi-Slant Submanifolds

To obtain similar inequalities like Theorem 1, for warped product pointwise bi-slant submanifolds
of complex space forms, we need to recall the following lemma.

Lemma 1. [10] Let ay,ay, ... ay, a1 be n + 1 be real numbers with

(V@) = (- 1)@+ app)n > 2.

i=1 i=1
Then 2ay.ap > a3 holds if and only if a1 +a; = a3 = - - - = a.

Proof of Theorem 2. If substitute X = Z =¢,and Y =W = ep for1 < a, B < nin (4), and (6), taking
summing up then

n

) ﬁ(ea,eﬁ,ea,eﬁ) = 2 (n(n —-1)+3 i gZ(]ea,eﬁ)) (16)

a,p=1 a,B=1

As M" is a pointwise bi-slant submanifold, we defined an adapted orthonormal frame as
n = 2dy + 2d, follows {61, ey = sectPey,.. /€4, -1,624, = Sec 91P€2d1_1, s 804 41, €442 =
seCcOrPeog i1, - - -, €24, 12dy—1,C2d; 424, = S€CO2Peog 1og, 1} Thus, we defined it such that g(eq, Jez) =
—g(Jer,e2) = g(Jeq, sec 61 Pey), which implies that g(e1, Jex) = — sec6,g(Peq, Pey).
|
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Following ((2.8) in [32]), we get g(e1, Jeo) = cosb1g(e, e2). Therefore, we easily obtained the
following relation:

2(8 Jeg) = coszf?l, foreacha=1,...,2d; -1,
IR 0826y, foreach p=2dy+1,...,2dy +2dy — 1.

Hence, we have:

Q,

n
Y §*(Jew,ep) = (n1cos? 6 + np cos® 6). (17)
B=1

Following from (17), (16), and (6), we find that:
2T :%n(n -1)+ 2 (3111 cos? 8 + 31, cos? 92) + n?||H| > = ||h]|2. (18)
Let us assume that:
4

2
s=2t— Snn—-1) - 2 (3711 cos? 01 + 31, cos? 92> - %HHHZ. (19)
Then, from (19), and (18), we get:
n?||HI? = 2(5 + [|K]|?). (20)
Thus, from an orthogonal frame {ey, €5, - - - €, }, the proceeding equation takes the new form:

(£ ih;m)zz(ﬂ ¥ S 5

r=n+1i=1 r=n+li= r=n+1i<j=1

2m n
+ 2 ) (Map) ) (1)

r=n+1A,B=1

This can be expressed in more detail, such as:

2
(hn+l 2 h71+1 Z h]rll+l> hn+1)2+ Z hn+l + Z hn+1

I=n1+1 I=n1+1
LY o x e
2<B#q<m n+1<l#s<n
n 1o 2m n
+ Y WED+ Y Y (W) (22)
A<B=1 r=n+1A,B=1
Assume that a; = h11 s = YL A sand az = YL, 4 h” . Then, applying Lemma 1
in (22), we derive:
iy 12 13 a1
n n n
7t Z (Wip )"+ 35 Z Z (Wap)* < ) Hg'h
<B=1 r=n+1A,B= 2<B;éq§n1
+ L R (23)
n+1<l#s<n
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with equality holds in (23) if and only if
n n
Yo=Y ug @
A=2 B=n1+1

On the other hand, from (15), we have:

mAf T— Y K(eaneg)— Y, K(gAey). (25)
f 1<A<B<m m+1<l<q<n

Then from (6) and the scalar curvature for the complex space form (11), we get:

A ni(ng—1ec  3nqc 2m
mtf = MU Moo 50 Y (il (Wi)?)
r=n+11<A#B<m
na(ny —1)c  3nyc 2m
_ % _ 42 cos? 0y — Z Z ( ;lh;q —( ;’q)Z). (26)

r=n+1n1+1<l#q<n
Now from (23) and (26), we have:

nzATfSP—

n(n—1)c  mingc  3mc 5 n >
5 7 Tcos 01 — = — —=— cos” 6. (27)

Using (19) in the above equation and relation ATf = A(In f) — ||V In f||?, we derive:

2
1y (A(]nf) - HVlanz) < %HH\F + 2 <n1n2 + 3111 cos? 6; + 313 cos” 92>. (28)

which implies inequality. The equality sign holds in (2) if, and only if, the leaving terms in (23) and (24)
imply that:

2m M 2m ny
Y Y=Y, )Y Maa=0 (29)
r=n+2 B=1 r=n+2 A=n;+1

and nyHy = nyHy, where Hy and Hj are partially mean curvature vectors on M;l ! and M;’z, respectively.
Moreover, also from (23), we find that

hyp =0, foreach 1< A<m
m+1<B<n
n+1<r<2m. (30)

This shows that ¢ is a mixed, totally geodesic immersion. The converse part of (30) is true in
a warped product pointwise bi-slant into the complex space form. Thus, we reached our promised
result.

Consequences of Theorem 2

Inspired by the research in [6,34] and using the Remark 3 in Theorem 2 for pointwise semi-slant
warped product submanifolds, we obtained:
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Corollary 1. Let ¢ : M" = Mj" x f My? — M2 (c) be an isometric immersion from the warped product
pointwise semi-slant submanifold into a complex space form M?" (c), where M is the holomorphic and M5? is
the pointwise slant submanifolds of M?" (c). Then, we have the following inequality:

2 3
A(lnf) < ||VInf|2 + 4”72\|H\|2 + % - 47; (m +n2c0526>, 31)
where n; = dimM;, i = 1,2. Furthermore, V and A are the gradient and the Laplacian operator on M.",
respectively, and H is the mean curvature vector of M". The equality sign holds in (31) if, and only if,
ny1Hy = nyHy, where Hy and Hy are the mean curvature vectors along M;” and M;‘Z, respectively, and ¢ is a
mixed, totally geodesic immersion.

From the motivation studied in [14,34], we present the following consequence of Theorem 2 by
using the Remark 2 for a nontrivial warped product pointwise pseudo-slant submanifold of a complex
space, such that:

Corollary 2. Let ¢ : M" = Mj" x FMR? = M?"(c) be an isometric immersion from a warped product
pointwise pseudo-slant submanifold into a complex space form M?"(c), such that M is a totally real and M5?
is a pointwise slant submanifold of M?" (c). Then, we have the following inequality:

n? nic  3c
A(lnf) < HVlanzﬂLMHHHZJFT*Z

cos? 0, (32)
where n; = dimM;, i = 1,2. Furthermore, V and A are the gradient and the Laplacian operator on M;”,
respectively, and H is the mean curvature vector of M". The equality condition holds in (32) if, and only if,
the following satisfies

H _m

Hy m
: where Hy and Hy are the mean curvature vectors along M and M)?, respectively, and ¢ is a mixed, totally
geodesic isometric immersion.

Corollary 3. Let ¢ : M" = My' x; My? — M?"(c) be an isometric immersion from a warped product
pointwise pseudo-slant submanifold into a complex space form M2™ (c), such that M is a pointwise slant and
M2 is a totally real submanifold of M2 (c). Then, we have the following:

nic  3nqc

2
1 an, 0s- 6, (33)

2
n
A(inf) < [V In fI+ 1 |[H| 2 +
2

where n; = dimM;, i = 1,2. Furthermore, V and A are the gradient and the Laplacian operator on MM,
respectively, and H is the mean curvature vector of M". This equally holds in (33) if, and only if, ¢ is a mixed,
totally geodesic isometric immersion and the following satisfies

Hy  np

Hy m’
, where Hy and Hy are the mean curoature vectors along My" and My?, respectively.

Similarly, using Remark 4 and from [17], we got the following result from Theorem 2:
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Corollary 4. Let ¢ : M" = M/ x f My? — M2 (c) be an isometric immersion from a CR-warped product
into a complex space form M?"(c), such that MY is a holomorphic submanifold and My? is a totally real
submanifold of M?"(c). Then, we get the following:

nic  3nqc

1 dn,’ (34)

2
A(inf) < ||VIn |2+ —||H| +
2
where n; = dimM,;, i = 1,2. Furthermore, V and A are the gradient and the Laplacian operator on M;",
respectively, and H is the mean curvature vector of M". The same holds in (34) if, and only if, ¢ is mixed
and totally geodesic, and nyHy = nyHy, where Hy and Hy are the mean curvature vectors on Mfl and M;’z,
respectively.

In particular, if both pointwise slant functions 61 = 6, = g, then M" is becomes a totally real
warped product submanifold—thus, we obtain:

Corollary 5. Let ¢ : M" = M x s My> — M?"(c) be an isometric immersion from an n-dimensional,
totally real warped product submanifold into a 2m-dimensional complex space form M?"(c), where M and
My? are totally real submanifolds of M?"(c). Then, we have the following:

2, M 2, ¢

Allnf) < [[VInfI[7+ L -[[H|" + ==, (35)
41’12 4

where n; = dimM;, i = 1,2 and A is the Laplacian operator on My. The same holds in (35) if, and only if, ¢ is

mixed and totally geodesic, and the following satisfies
Hy  np
Hy m’
where Hy and Hy are the mean curvature vectors on My and My?, respectively.

Proof of Theorem 3. In this direction, we consider the warped product pointwise bi-slant submanifolds
as a compact oriented Riemannian manifold without boundary. If the inequality (2) holds:

2
Alnf) — IVInfI2 < Z[|H|2 + -5 ( n1mp — 311 cos? 65 — 3np cos26, |. (36)
4ny 4n;

Since M" is a compact oriented Riemannian submanifold without boundary, then we have
following formula with respect to the volume element:

/Mn AfdV = 0. 37)

From the hypothesis of the theorem, M" is a compact warped product submanifold; then from (37),
we derive:

L 2 2p. _ L < n4+1\2 </ >
/M (4112 <3n1 cos” 01 + 3ny cos” 0 n1n2> iy & (h™)=)dV < M(”Vlan Ydv. (38)

i=1

Now, we assume that M" is a Riemannian product, and the warping function f must be constant
on M". Then, from (38), we get the inequality (3).
O
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Conversely, let the inequality (3) hold; then from (38), we derive:

o< [ (IVInfIP) <o.

The above condition implies that ||V In f||?> = 0, where this means that f is a constant function
on M". Hence, M" is simply a Riemannian product of M and M,?, respectively. Thus, the theorem is

proved. We give some other important corollaries as consequences of Theorem 2, as follows:

Corollary 6. Let M" = M;! X g M2 be a warped product pointwise bi-slant submanifold of a complex space
form M2™(c) with warping function f, such that ny = dimM; and ny = dimM,. If ¢ is an isometrically
minimal immersion from warped product M" into M?" (c), then we obtain:

A(lnf) < ||VIn f|* + 4672 <n1n2 — 37 cos? 61 — 31, cos® 92) . (39)

Corollary 7. Let M" = M;! x f M2 be a warped product pointwise bi-slant submanifold of a complex space
form M (c) with warping function f, such that ny = dimMy and ny = dimMyg. Then, there is no existing
minimal isometric immersion ¢ from warped product M" into M>"(c) with:

Allnf) > ||VInf|2 + i (711712 — 311y cos? 8 — 3y cos? 92>. (40)
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Abstract: In this paper the notion of *-Weyl curvature tensor on real hypersurfaces in non-flat
complex space forms is introduced. It is related to the *-Ricci tensor of a real hypersurface. The aim
of this paper is to provide two classification theorems concerning real hypersurfaces in non-flat
complex space forms in terms of *-Weyl curvature tensor. More precisely, Hopf hypersurfaces of
dimension greater or equal to three in non-flat complex space forms with vanishing *-Weyl curvature
tensor are classified. Next, all three dimensional real hypersurfaces in non-flat complex space
forms, whose *-Weyl curvature tensor vanishes identically are classified. The used methods are based
on tools from differential geometry and solving systems of differential equations.

Keywords: real hypersurfaces; non-flat complex space forms; *-Ricci tensor; *-Weyl curvature tensor

1. Introduction

A Kahler manifold N is a complex manifold of complex dimension 7 and real dimension 2n,
which is equipped with

e a complex structure | defined ] : TN — N, where TN is the tangent space of N, satisfying
relations J2 = —Id and V] = 0, i.e., ] is parallel with respect to the Levi-Civita connection V of N

e and a Riemanian metric G that is compatible with |, i.e.,, G(JX, JY) = G(X,Y) for all tangent X,
Y on N.

The pair (], G) is called Kahler structure. A Kahler manifold of constant holomorphic sectional
curvature c is called complex space form. Complete and simply connected complex space forms
depending on the value of holomorphic sectional curvature c are analytically isometric to complex
projective space CP" if ¢ > 0, to complex hyperbolic space CH" if ¢ < 0 or to complex Euclidean space
C" if ¢ = 0. This paper focuses on complex space forms with ¢ # 0 denoted by M, (c) and called
non-flat complex space forms. Furthermore, ¢ = 4 in the case of CP" and ¢ = —4 in the case of CH".

A submanifold M in a non-flat complex space form M, (c) of real codimension equal to 1 is called
real hypersurface. Let N be a locally defined unit normal vector on M. The Kahler structure (], G)
of the ambient space M, (c) induces on M an almost contact metric structure (¢, ¢, 1, 8) defined in the
following way

e (= —]N is the structure vector field,

e ¢ isaskew-symmetric tensor field of type (1,1) called structure tensor field and defined to be the
tangential component of X = ¢X + 1(X)N, for all tangent vectors X to M,

e 1y isal-form and is given by the relation 7(X) = g(X, ¢) for all tangent vectors X to M,

e  gisthe induced Riemannian metric on M.

Symmetry 2019, 11, 559; doi:10.3390/sym11040559 12 www.mdpi.com/journal /symmetry
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A Dbig class of real hypersurfaces in My, (c) are Hopf hypersurfaces, which are real hypersurfaces
whose structure vector field ¢ is an eigenvector of the shape operator A of M, i.e.,

AL = ag, )

where & = g(A¢, ¢) and is called Hopf principal curvature.
Takagi classified homogeneous real hypersurfaces in complex projective space CP",n > 2.
The real hypersurfaces are divided into six types:

e type (A) which are either geodesic hyperspheres of radius r, 0 < r < 7, or tubes of radius r,
with 0 < r < J over totally geodesic CPk1<k<n-2

e type (B) which are tubes of radius r, 0 < r < %, over the complex quadric Q" !,

e type (C) which are tubes over the Serge embedding of CP! x CP", with 2m +1 =nandn > 5,

e type (D) which are tubes over the Pliicker embedding of the Grassmann manifold G5 and n =9,

e type (E) which are tubes over the canonical embedding of the Hermitian symmetric space
50(10)/U(5) and n = 15, where SO(n) is a subgroup of O(n) of dimension 1, which consists of
all the orthogonal matrices with determinant equal 1. (see [1-3]).

The above real hypersurfaces are Hopf ones with constant principal curvatures (see [4]).

In the case of the ambient space being the complex hyperbolic CH", Montiel in [5] studied
real hypersurfaces with two constant principal curvatures. Additionally, he proved that such real
hypersurfaces are Hopf ones. Berndt in [6] classified Hopf hypersurfaces with constant principal
curvatures in CH",n > 2. The following list includes the Hopf hypersurfaces with constant
principal curvatures.

e type (A) which are either horospheres, or geodesic hyperspheres, or tubes over totally geodesic
complex hyperbolic hyperplane, or tubes over totally geodesic CH¥, 1 < k <n —2,
e type (B) which are tubes over totally geodesic real hyperbolic space RH? (type (B)).

All of them are homogeneous ones, but in contrast to the case of complex projective space, it is
proved that there are also non-Hopf hypersurfaces in CH" which are homogeneous.

Let M be a Riemannian manifold of dimension m and g its Riemannian metric. Then the Weyl
curvature tensor W(X,Y)Z of M is given by

WX, Y)Z = R(X,Y)Z+ ﬁ[g(SX,Z)Y — g(SY, Z)X + g(X, 2)SY — g(Y, Z)SX]
Y _
1) (m—2) g(X,Z)Y —g(Y,Z)X], forall X,Y,Z tangent to M,

with R being the Riemannian curvature tensor, S being the Ricci tensor and p being the scalar curvature
of M. If m = 3 then W(X,Y)Z = 0 and if m > 4 then M is locally conformal flat if and only if
W(X,Y)Z = 0. The condition of locally conformal flat holds for three dimensional Riemannian
manifolds if and only if the Cotton tensor of M, which is given by

CX,Y) = (VxS)Y — (VyS)X — [(Vxp)Y = (VXp)Y],

1
2(m—2)

vanishes identically.
The Weyl curvature tensor of real hypersurfaces M in M,,(c) satisfies the relation

W(X,Y)Z = R(X,Y)Z+ 21117_3[g(SX, 7)Y — g(SY, Z)X + g(X, Z)SY — g(Y, Z)SX]

- m[g(& Z)Y —g(Y,2)X],

13
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for all X,Y, Z tangent to M, where R is the Riemannian curvature tensor, S is the Ricci tensor, p is
the scalar curvature of M and g is the induced Riemannian metric on M. In [7] the non-existence
of real hypersurfaces in M,,(c) with harmonic Weyl curvature tensor, i.e., W = 0 with § denoting
the codifferential of the exterior differential d is proved. Moreover, in [8] the classification of real
hypersurfaces in CP" with ¢-parallel Weyl curvature tensor, i.e., VW = 0 is provided. Finally, in [9]
real hypersurfaces in CH", n > 3 satisfying the previous geometric condition are classified.

In 1959 Tachibana defined *-Ricci tensor S* on almost Hermitian manifold. In [10] Hamada gave
the definition of *-Ricci tensor S* on real hypersurfaces in My (c) in the following way

g(S*XY) = %tmce(Z — R(X, ¢Y)¢Z),

for all X,Y tangent to M and trace is the sum of elements of the main diagonal of the matrix,
which corresponds to the above endomorphism. He also presented *- Einstein, i.e., g(S*X,Y) =
Ag(X,Y), where A is a constant multiple of g¢(X,Y) and provided classification of *-Einstein
hypersurfaces. Ivey and Ryan in [11] extended the Hamada’s work and studied the equivalence
of *- Einstein condition with other geometric conditions such as the pseudo-Einstein and the
pseudo-Ryan condition.

Motivated by the revious results and work we define *-Weyl curvature tensor of real hypersurfaces
in the following way

1

WX YV)Z = RXY)Z+ 2 —[8(5"X, 2)Y —g(S™Y, 2)X +g(X, 2)S"Y — g(Y,2)S"X]

[g(X,Z2)Y —g(Y, 2)X], @

*

p
2(n—1)(2n—3)

for all X,Y, Z tangent to M and S* is the *-Ricci tensor and p* is the *-scalar curvature corresponding
to S* of M.

First it is examined if there are real hypersurfaces of dimension equal to or greater than three with
vanishing *-Weyl curvature tensor. The following Theorem is proved

Theorem 1. Let M be a Hopf hypersurface in M, (c), n > 2, with vanishing *-Weyl curvature tensor. Then M
is an open subset of a real hypersurface of type (A) or of a Hopf hypersurface with A = 0.

Next it is examined if there are three-dimensional real hypersurface in M;(c) with vanishing
*-Weyl curvature tensor and the following Theorem is obtained

Theorem 2. Every real hypersurface M in My(c) with vanishing *-Weyl curvature tensor is a Hopf
hypersurface. Furthermore, M is an open subset of a real hypersurface of type (A) or of a Hopf hypersurface with
A =0.

The paper has the following outline: In Section 2 relations and Theorems concerning real
hypersurfaces in non-flat complex space forms are provided. In Section 3 Theorems 1 and 2 are
proved. Section 4 concerns discussion on the new tensor and ideas of further research and Section 5
includes the conclusions of the paper.

2. Preliminaries

The manifolds, vector fields, etc., are considered of class C*. We consider M to be a connected
real hypersurface without boundary in M, (c) equipped with a Kahler structure (J, G) and V is the

14
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Levi-Civita connection of M,(c) and N a locally unit normal vector field on M. Then the shape
operator A of M with respect to N is given by
VxN = —AX.
and the Levi-Civita connection V of the induced metric g on M satisfies
VxY = VxY +g(AX,Y)N.

As mentioned in the Introduction, on M an almost contact metric structure (¢, ¢, 7, g) is defined
and the following relations are satisfied (see [12])

PX = =X +5(X)g, () =1, 3(PX,¢Y) = g(X,Y) = n(X)y(¥) (3)
for all tangent vectors X, Y to M. Relation (3) implies
$5 =0, n(X)=g(X,g).
Due to the fact that the complex structure ] is parallel, i.e., V] = 0 we have
(Vx9)Y = 1(Y)AX — g(AX,Y)§ and Vx = pAX @

for all X, Y tangent to M. Moreover, the ambient space is of holomorphic sectional curvature c and this
results in the Gauss and Codazzi equations becoming respectively

R(X,Y)Z = g[g(Y,2)X — g(X, 2)Y +g(¢Y, Z)pX — g(¢pX, Z)¢pY 5)
—2¢(¢pX,Y)pZ] + g(AY, Z)AX — g(AX, Z)AY,
and

(VxA)Y = (VyA)X = Z[1(X)9Y = n(Y)pX — 25(¢X, Y)2], ®

for all tangent vectors X, Y, Z to M, where R is the Riemannian curvature tensor of M.
Let P be a point of M, then the tangent space TpM is decomposed into

TpM = span{¢} & D,
where D = kery = {X € TpM :n(X) = 0} and is called (maximal) holomorphic distribution (if n > 3).
The following Theorem concerns the shape operator of M and is proved by Maeda [13] in the case

of CP",n > 2, and by Ki and Suh [14] in the case of CH",n > 2 (also Corollary 2.3 in [15]).

Theorem 3. Let M be a Hopf hypersurface in M, (c), n > 2. Then

(i) wis constant.
(ii)  If W is a vector field which belongs to D such that AW = AW, then

o Ax ¢
(A= DAGW) = (5 + )W), )

(iii)  If the vector field W satisfies AW = AW and A(¢W) = v(¢pW) then

Av:%(A+v)+2 @®)
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We consider M a three dimensional real hypersurface in M>(c) and P a point of M such that
in the neighborhood of P relation AZ # ag holds. Let U be a unit vector lying in the span{A¢, ¢}
satisfying relation g(U, ¢) = 0. Then, we can consider the standard non-Hopf local orthonormal frame
{U, ¢U, &} in the neighborhood of P (see [16] p. 445). Therefore, the shape operator A is given by

Al =al+pU, AU =yU+6(pU) + B¢ and A(pU) = U + u(pU). ©)
The following Lemma holds for three dimensional non-Hopf real hypersurfaces in M;(c)
Lemma 1. Let M be a non-Hopf real hypersurface in My (c). The following relations hold on M

Vue = —sU+7(9U),  Veul = —pl+8(pU), Vel = p(ol),
Vul =1 (9U) +68,  Veul = ko(@U) + &, Vel = x3(gU),
VulpU) = =xil =748, Vou(U) = =l =08, Ve(9U) = —rsl — 63,

where w, B, 7y, 9, 1, k1, k2, k3 are smooth functions on M and p # 0.

Lemma 1 is proved in page 92 [17].
The Codazzi Equation (6) for X € {U,¢U} and Y = ¢ owing to Lemma 1 results in the
following relations

& = ay+pry +52+yx3+£—7y—7x3—ﬁ2 (10)
(p)a = ap+ Prs—3pp 11)
(gU)B = wy+pr1 +20%+ 2 —29u+ap (12)

and for X = Uand Y = ¢U

Us— (¢pU)y = iy — iy — By — 20K — 2B (13)

In the case of three dimensional Hopf hypersurfaces we consider a point P of M and we define in
the neighborhood of P a local orthonormal frame as follows: since M is a Hopf hypersurface the shape
operator A restricted to the holomorphic distribution ID has distinct eigenvalues. Thus, we choose
a vector W as one of the eigenvectors fields. Moreover, due to the fact that M is three dimensional,
the shape operator satisfies the following relations:

AZ =af, AW =AW and A(¢pW) = v(pW), (14)

and Thereom 3 holds.

Finally, the following Theorem concerns the classification of real hypersurfaces in My (c), n > 2,
whose shape operator A satisfies a commuting condition. It is proved by Okumura in the case of CP"
(see [18]) and by Montiel and Romero in the case of CH" (see [19]).

Theorem 4. Let M be a real hypersurface of My(c), n > 2. Then A¢p = ¢ A, if and only if M is an open subset
of a homogeneous real hypersurface of type (A).

We mention that type (A;) hypersurfaces do not occur in the case of three dimensional real
hypersurface in M (c).
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3. Proof of Theorems 1 and 2

The *-Ricci tensor of a real hypersurface M in a non-flat complex space form is given by
* oo
S*X = ~[F9*X + pA($(AX))], (15)

for all X tangent to M.
Let M be a Hopf hypersurface in M, (c), n > 2, with vanishing *-Weyl curvature tensor, i.e.,

W*(X,Y)Z = 0. (16)

Since M is a Hopf hypersurface ¢ is an eigenvector of the shape operator relation (1) holds and
relation (15) for X = ¢ yields S*¢ = 0. Next, we consider W a unit vector field which belongs to the
(maximal) holomorphic distribution such that relation AW = AW holds at some point P € M and
relation (7) is satisfied. We have two cases:

Case I: «? + ¢ # 0.

In this case A # § so relation (7) implies AW = v¢W and relation (8) holds.
Relation (16) for Z = ¢ taking into account (2) implies

ROSY)E + 5 Lo [9(STX,)Y - g(57, )X +7(X)S7Y — 7(Y)5"X]

*

*Mm[’?(x)y*’?(y))q =0, 17)

for all X, Y tangent to M.
The inner product of relation (17) for X = W and Y = ¢ with W because of (3), (5), (15), S*¢ =0,
AW = AW and A(¢W) = v(¢W) yields

*

(§+M)—#(ﬂ+)\v)+ p

2n—-3'2 m—1)n—=3) (18)

Furthermore, the inner product of relation (17) for X = ¢W and Y = ¢ with ¢W due
to (3), (5) and (15), S*¢ = 0, AW = AW and A(¢W) = v(¢W) implies

%

[ 173 I ) (19)

c 1
G =5, 2(n—1)(2n —3)

Combination of relations (18) and (19) results in
a(A—v)=0.
So, either « = 0 and M is an open subset of a Hopf hypersurface with AG = 0 or A = v which implies
that Ap = ¢ A and because of Theorem 4 M is an open subset of a real hypersurface of type (A).
CaseII: a% + ¢ = 0.

This case occurs only when the ambient space is the complex hyperbolic space CH". Thus,
a* —4 = 0 and this results in « = 2. We consider W a unit vector field, which belongs to the (maximal)
holomorphi distribution such that relation AW = AW holds at some point P € M. Therefore, relation (7)
due to w = 2 and ¢ = —4 implies

2

A=1A@@W) = (A =1)(eW).

17



Symmetry 2019, 11, 559

First we suppose that A # 1. Then the above relation implies A(¢pW) = ¢W. So, the inner product
of relation (17) for X = W and Y = ¢ with W because of (3), (5) and (15) for X = ¢ which implies
S§*¢ =0, AW = AW and A(¢W) = ¢W results in

(2A71)72n173()\72n)+2(;171§m=0. (20)

Moreover, the inner product of relation (17) for X = ¢W and Y = ¢ with ¢W due to (3), (5), (15),
§*¢ =0, AW = AW and A(¢W) = ¢W implies
S S S 1)
2n—3 2n—1)(2n—3)
Combination of relations (20) and (21) yields A = 1, which is a contradiction.
Therefore, we have A = 1 for any vector field W € D and M is an open subset of a horosphere,
which is a real hypersurface of type (A) and this completes the proof of Theorem 1.

Remark 1. Examples of Hopf hypersurfaces with « = 0 are the following:

e A geodesic hypersphere of radius r = 5 in CP" has a = 0.

e [n[20,21] there are examples of Hopf hypersurfaces with A = 0, which do not have constant principal
curvatures, i.e., the eigenvalues of the shape operator corresponding to the (maximal) holomorphic
distribution are not constant.

Next we examine non-Hopf three-dimensional real hypersurfaces M in M;(c) whose *-Weyl
tensor vanishes identically, i.e., relation (16) holds. We consider N the open subset of M such that

N={P € M:B #0, inaneighborhood of P},

and {U, ¢U, &} be the local orthonormal frame in the neighborhood of a point P defined as in Section 2.
Relation (2) for Z = ¢ and due to n = 2 implies

R(X,YV)E+8(SX, Q)Y —g(SY, X +(X)SY =y (V)s'X = S0y —y(v)x), @)
for all X, Y tangent to M. The inner product of relation (22) for X = U and Y = ¢ with ¢U and U
taking into account relations (9), (5) and (15) yields respectively
a6 =0 and a7+52+%:%+ﬁ2+w. (23)
Moreover, the inner product of relation (22) for X = ¢U and Y = ¢ with ¢U because of
relations (9), (5) and (15) and the second of (23) results in

ap = oy — /32. (24)

Suppose that § # 0 then the first of (23) gives & = 0. Substitution of the latter in (24) results in
B = 0, which is a contradiction. Thus, relation § = 0 holds.

Relation (22) for X = U and Y = ¢U because of (5) implies # = 0. So, relation (24) results in
B? = avy. Differentiating the latter with respect to U taking into account relations (10)—(13) results in
c=0.

So N is empty and the following Proposition has been proved.

Proposition 1. Every real hypersurface in My (c) whose *-Weyl curvature tensor vanishes identically is a
Hopf hypersurface.
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The above proposition with Theorem 1 for the case of n = 2 completes the proof of Theorem 2.

4. Discussion

In literature it is known that there are no Einstein real hypersurfaces in non-flat complex space
forms, i.e., real hypersurfaces whose Ricci tensor satisfies relation S = ag, where « is constant (see [15]).
Therefore, new notions such as 1-Einstein, i.e., the Ricci tensor satisfies relation S = « + 1 ® ¢ or *-Ricci
Einstein, i.e., the *-Ricci tensor satisfies S* = p*g, with p* being constant, are introduced and the real
hypersurfaces are studied with respect to the previous relations (see [10,11,15]). Thus, the next step is
to introduce new tensors on real hypersurfaces in non-flat complex space forms related to the *-Ricci
tensor, since there are results concerning notions and tensors related to the Ricci tensor. In this paper,
we introduced the *-Weyl curvature tensor and studied real hypersurfaces in non-flat complex space
forms in terms of it. Further work can be done in this direction. So, at this point some ideas for further
research are mentioned:

1. itis worthwhile to study if there are non-Hopf real hypersurfaces of dimension greater than three
in non-flat complex space forms with vanishing *-Weyl curvature tensor,

2. the *-Weyl curvature tensor could also be defined on real hypersurfaces in other symmetric
Hermitian space forms such as the complex two-plane Grassmannians or the complex hyperbolic
two-plane Grassmannians and it could be examined if there are real hypersurfaces with vanishing
*-Weyl curvature tensor.

Opverall, real hypersurfaces in non-flat complex space forms can be potentially applied to finding
solutions of nonlinear dynamical differential equations. Ideas for research in this direction can be
derived methods based on Lie algebra. For a first idea in this direction one could have a look in works
(1) A Lie algebra approach to susceptible-infected-susceptible epidemics (see [22]), (2) Lie algebraic
discussion for affinity based information diffusion in social networks (see [23]).

5. Conclusions

In this section we conclude the work which is presented in this paper.

e  We introduced a new type of tensor on real hypersurfaces in non-flat complex space forms by
defining the *-Weyl curvature tensor on them. The new tensor is related to the *-Ricci tensor of a
real hypersurface.

e  We initiated the study of real hypersurfaces in non-flat complex space forms in terms of this
new tensor. The first geometric condition is that of the vanishing *-Weyl curvature tensor.
The motivation for choosing this geometric condition is the existing results for Riemannian
manifolds in terms of the Weyl curvature tensor. Thus, we proved two classifications Theorems.
The first Theorem concerns Hopf hypersurfaces in non-flat complex space forms of dimension
greater or equal to three with vanishing *-Weyl curvature tensor. The second Theorem
provides a complete classification for three dimensional real hypersurfaces with vanishing *-Weyl
curvature tensor.
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Abstract: In this article, we define Lorentzian cross product in a three-dimensional almost contact
Lorentzian manifold. Using a Lorentzian cross product, we prove that the ratio of x and T — 1 is constant
along a Frenet slant curve in a Sasakian Lorentzian three-manifold. Moreover, we prove that -y is a slant
curve if and only if M is Sasakian for a contact magnetic curve - in contact Lorentzian three-manifold M.
As an example, we find contact magnetic curves in Lorentzian Heisenberg three-space.
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1. Introduction

As a generalization of Legendre curve, we defined the notion of slant curves in [1,2]. A curve in
a contact three-manifold is said to be slant if its tangent vector field has constant angle with the Reeb vector
field. For a contact Riemannian manifold, we proved that a slant curve in a Sasakian three-manifold is
that its ratio of x and T — 1 is constant. Baikoussis and Blair proved that, on a three-dimensional Sasakian
manifold, the torsion of the Legendre curve is +1 ([3]).

A magnetic curve represents a trajectory of a charged particle moving on the manifold under the action
of a magnetic field in [4]. A magnetic field on a semi-Riemannian manifold (M, g) is a closed two-form F.
The Lorentz force of the magnetic field F is a (1,1)-type tensor field ® given by

g(®(X),Y)=F(X,Y), VXY eT(TM). 1)
The magnetic trajectories of F are curves 7y on M that satisfy the Lorentz equation
V' = o), @

where V is the Levi-Civita connection of ¢. The Lorentz equation generalizes the equation satisfied by the
geodesics of M, namely V.9 = 0. Since the Lorentz force ® is skew-symmetric, we have

d
180 ) =2g(@(7), ") =0,

that is, magnetic curve have constant speed | 7/ |= vyp. When the magnetic curve 7(t) is arc-length
parameterized, it is called a normal magnetic curve. Cabreizo et al. studied a contact magnetic field in
three-dimensional Sasakian manifold ([5]).

In this article, we define the magnetic curve -y with contact magnetic field Fz; of the length g in
three-dimensional Sasakian Lorentzian manifold M. We call it the contact magnetic curve or trajectories of g

Symmetry 2019, 11, 784; doi:10.3390/sym11060784 www.mdpi.com/journal/symmetry
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In Section 3, we define a Lorentzian cross product in a three-dimensional almost contact Lorentzian
manifold. Using the Lorentzian cross product, we prove that the ratio of x and T — 1 is constant along a
Frenet slant curve in a Sasakian Lorentzian three-manifold.

In Section 4, we prove that 1 is a slant curve if and only if M is Sasakian for a contact magnetic curve
7 in contact Lorentzian three-manifolds M. For example, we find contact magnetic curves in Lorentzian
Heisenberg three-space.

2. Preliminaries

Contact Lorentzian Manifold

Let M be a (21 + 1)-dimensional differentiable manifold. M has an almost contact structure (¢, , 17)
if it admits a tensor field ¢ of (1,1), a vector field ¢ and a 1-form 7 satisfying

@ =-I+7®¢ (@) =1 €)

Suppose M has an almost contact structure (¢,&,7). Then, ¢ = 0 and 570 ¢ = 0. Moreover,
the endomorphism ¢ has rank 27.

If a (2n + 1)-dimensional smooth manifold M with almost contact structure (¢,¢,7) admits
a compatible Lorentzian metric such that

8(9X, 9Y) = g(X,Y) +n(X)y(Y), @)
then we say M has an almost contact Lorentzian structure (7, , ¢, g). Setting Y = ¢, we have
1(X) = =8(X,§). ®)
Next, if the compatible Lorentzian metric ¢ satisfies
d(X,Y) = g(X, ¢Y), (©)

then 7 is a contact form on M, ¢ is the associated Reeb vector field, g is an associated metric and
(M, ¢,¢,1,8) is called a contact Lorentzian manifold.

For a contact Lorentzian manifold M, one may define naturally an almost complex structure | on
M x Rby

d d
X, f=)=(¢X— X) =
JXf) = (@X = fen(X) 5,
where X is a vector field tangent to M, t is the coordinate of R and f is a function on M x R. When the
almost complex structure | is integrable, the contact Lorentzian manifold M is said to be normal or Sasakian.
A contact Lorentzian manifold M is normal if and only if M satisfies
g, 9] +2dy © ¢ =0,
where (¢, ¢] is the Nijenhuis torsion of ¢.
Proposition 1 ([6,7]). An almost contact Lorentzian manifold (M?"*1,5,&, ¢, g) is Sasakian if and only if

(Vx@)Y =g(X,Y)E+7(Y)X. @)

Using the similar arguments and computations in [8], we obtain
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Proposition 2 ([6,7]). Let (M?"+1,1,&, ¢, ¢) be a contact Lorentzian manifold. Then,
Vx¢ = X — phX. ()
If ¢ is a killing vector field with respect to the Lorentzian metric g. Then, we have

Vx& = ¢X. )
3. Slant Curves in Contact Lorentzian Three-Manifolds

Lety : I — M? be a unit speed curve in Lorentzian three-manifolds M3 such that 4/ satisfies
g(7',7') = &1 = £1. The constant ¢; is called the causal character of «y. A unit speed curve v is said to be a
spacelike or timelike if its causal character is 1 or —1, respectively.

A unit speed curve 7 is said to be a Frenet curve if g(”,7") # 0. A Frenet curve y admits an
orthonormal frame field {E; = , E, E3 } along . The constants ¢, and €3 are defined by

S(EyE)=¢, i=2,3

and called second causal character and third causal character of <y, respectively. Thus, e1e; = —e3 is satisfied.
Then, the Frenet—Serret equations are the following ([9,10]):

VsE = e2kEp,
VfYEQ = —ElKEl — €3TE3, (10)
ViEs = eTE,

where k = |V;7] is the geodesic curvature of iy and 7 its geodesic torsion. The vector fields Eq, E; and E3 are
called tangent vector field, principal normal vector field, and binormal vector field of 1, respectively.

A Frenet curve v is a geodesic if and only if k = 0. A Frenet curve o with constant geodesic curvature
and zero geodesic torsion is called a pseudo-circle. A pseudo-helix is a Frenet curve o whose geodesic
curvature and torsion are constant.

3.1. Lorentzian Cross Product

C. Camci ([11]) defined a cross product in three-dimensional almost contact Riemannian manifolds
(M, 7,& ¢,3) as following:

XNY = =g(X, 9Y)¢ = n(Y)9X +1(X)pY. (11)
If we define the cross product A as Equation (11) in three-dimensional almost contact Lorentzian

manifold (M, 7,¢, ¢,g), then
g(XAY,X) = 27(X)g(X, pY) #0.

In fact, we see already the cross product for a Lorentzian three-manifold as following:
Proposition 3. Let {Ej, Ey, Es} be an orthonomal frame field in a Lorentzian three-manifold. Then,
EyALEy =e3E3, ErALEz=e1E1, EsApLEy =&k (12)

Now, in three-dimensional almost contact Lorentzian manifold M3, we define Lorentzian cross
product as the following:
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Definition 1. Let (M3, ¢, 1,8) be a three-dimensional almost contact Lorentzian manifold. We define
a Lorentzian cross product A, by

XALY =g(X,9Y)§ —n1(Y)eX +1(X) @Y, (13)

where X,Y € TM.
The Lorentzian cross product Ay has the following properties:

Proposition 4. Let (M3, ¢,,1,8) be a three-dimensional almost contact Lorentzian manifold. Then, for all
X,Y,Z € TM the Lorentzian cross product has the following properties:

(1) The Lorentzian cross product is bilinear and anti-symmetric.
(2) X ALY is perpendicular both of X and Y.

(3) XALeY =—g(X,Y)E—n(X)Y.

4) X =CNAL X.

(5) Define a mixed product by det(X,Y,Z) = g(X ALY, Z) Then,

det(X,Y,Z) = —g(X, oY) (Z) — g(Y, 9Z)n(X) — g(Z, 9X)1(Y)

and det(X,Y,Z) = det(Y,Z,X) = det(Z,X,Y).
(6) g(X,Y)Z+g(Y,9Z)X+g(Z, 9X)Y = —(X,Y,Z)¢.

Proof. (We can prove by a similar way as in [11])
(1) and (2) are trivial.
(3) using Equations (3), (5) and (13),

X ALY §(X, =Y +n(Y)E)E + n(X) (=Y +5(Y)?)
—8(X,Y)Z —n(X)Y.

(4) by Equation (13),
SALX =85 9X)8 = n(X)9d +1(5)X = ¢X.
(5) from Equations (5) and (13),

g(XALY,Z) 8(g(X, V)T —n(Y)9X +1(X)9Y, Z)

—8(X, 9Y)n(Z) — g(Y, 9Z)(X) — g(Z, pX)y(Y).

(6) is easily obtained by (5). O
From Equations (7) and (9), we have:
Proposition 5. Let (M3, ¢, &, 1, ) be a three-dimensional Sasakian Lorentzian manifold. Then, we have
Vz(XALY) = (VzX) ALY + X AL (VZY), (14)

forall X,Y,Z € TM.
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Proof. From Equation (13), we get

Vz(XALY) = Vz(=g(X, ¢Y)¢ +n(Y)eX —n(X)eY)
= 8(VzX, oY)l +g(X, (Vzo)Y)E +8(X, 9VZY)E + (X, 9Y) V2
—1(VzY)pX +g(Y,VzE) X +3(Y)(Vzo)X +1(Y)pVzX
+7(VzX)pY — (X, Vz8) oY —n(X)(Vze)Y —n(X) 9V Y
= (VzX)ALY+XAL(VZY)+P(X,Y,Z),

where

P(X,Y,Z) = g(X,(Vze)Y)§+8(X,9Y)V2E+8(Y,VzE)eX —n(Y)(Vze)X
—8(X,Vz3)eY +n(X)(Vze)Y.

Since M is a three-dimensional Sasakian Lorentzian manifold, it satisfies Equations (7) and (9).
Hence, we have

P(X,Y,2) = (X, 9Y)9Z +3(Y,92)pX +8(Z, ¢X)gY.
Using Equation (6) of Proposition 4, we obtain P(X, Y, Z) = 0 and Equation (14). O

3.2. Frenet Slant Curves

In this subsection, we study a Frenet slant curve in contact Lorentzian three-manifolds.

A curve in a contact Lorentzian three-manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field (i.e., 7(7') = —g(/, {) is a constant).

Since the Reeb vector field ¢ is denoted by

3
&=Y e85 E)Ei =Y en(E)E;,
i=1 '
using Equation (4) of Proposition 4 and Proposition 3, we have:

Proposition 6. Let (M3, ¢, &, 1, ) be a three-dimensional almost contact Lorentzian manifold. Then, for a Frenet
curve vy in M8, we have

@E1 = eaea(17(E2)Es — 17(E3) E2),
@E2 = eze1 (17(Es)Ex — 17(E1)Es),
¢E3 = e1€2(17(E1) E2 — 17(E2) E1).

By using Proposition 6, we find that differentiating #(E;) (for i = 1,2,3) along a Frenet curve 7y

1(E1)" = e (Ez) + g(E1, phEr),
1(E2)" = —e1xn(E1) —e3(t — 1)y (Es) 4 §(Ea, phEr),
1(E3)" = ex(t —1)51(E2) + g(E3, phEy).
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Now, we assume that M? is a Sasakian Lorentzian manifold; then,

1(E1)" = exx(Ep), (15)
1(E2) = —e1xy(Er) — e3(t — 1)y(Es), (16)
1(E3)" = ea(T = 1)n(Ea). (17)

From Equation (15), if y is a geodesic curve, that is ¥ = 0, in a Sasakian Lorentzian three-manifold
M3, then 7 is naturally a slant curve. Now, let us consider a non-geodesic curve <; then, we have:

Proposition 7. A non-geodesic Frenet curve -y in a Sasakian Lorentzian three-manifold M3 is slant curve if and
only if §(Ep) = 0.

From Equations (15) and (17) and Proposition 7, we get that 77(E; ) and #(E3) are constants. Hence,
using Equation (16), we obtain:

Theorem 1. The ratio of x and T — 1 is a constant along a non-geodesic Frenet slant curve in a Sasakian Lorentzian
three-manifold M>.

Next, let us consider a Legendre curve < as a spacelike curve with spacelike normal vector.
For a Legendre curve 7y, 7(7') = 1(E1) = 0, 7(Ez) = 0 and 57(E3) is a constant. Hence, using Equation (16),
we have:

Corollary 1. Let M be a three-dimensional Sasakian Lorentzian manifold (M3,1,&, ¢, ). Then, the torsion of
a Legendre curve is 1.

From this, we see that the ratio of x and 7 — 1 is a constant along non-geodesic Frenet slant curve
containing Legendre curve.

3.3. Null Slant Curves

In this section, let us consider a null curve -y that has a null tangent vector field g(7/,7") = 0 and 7y is
not a geodesic (i.e., §(V,17', V,17') # 0). We take a parameterization of -y such that ¢(V.9/, V,9') = 1.
Then, Duggal, K.L. and Jin, D.H ([12]) proved that there exists only one Cartan frame {T, N, W} and the
function T along 7y whose Cartan equations are

VT =N, ViW=1N, VyN=-1T-W,

where 1
T=9, N=VrT, 7=3g(ViN,ViN), W=-ViN-1T. (18)

Hence,
g(T,W)=¢g(N,N)=1, ¢(T,T)=g(T,N)=g(W,W)=g(W,N)=0.

For a null Legendre curve 7, we easily prove that 7 is geodesic. Hence, we suppose that 7 is
non-geodesic; then, we have:
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Theorem 2. Let -y be a non-geodesic null slant curve in a Sasakian Lorentzian three-manifold. We assume that
x = 1, then we have
IR

Y == (19)

_ 1 _ 1 _
N7i5¢7' TﬁZaz:Fl' W72a2 a

where a = (') is non-zero constant.

Proof. Let ¢T = IT + mN + nW for some I, m,n. We find I = g(¢T,T) = 0, then ¢T = mN + nW. From
this, we get
(oT, @T) =m* =a® and 0= g(¢T,&) = n(at +m).
Hence, m = taandn = 0orm = —art.

1 1 : : : 1
Ifn =0, then N = ;9T = £7¢T. Using the Cartan equation, we find that T = 5; +1 and

W=y -1z
Next, if n # 0 and m = —at then since 7 is a slant curve, differentiating g(¢T, N) = m = +a, we
have n = g(¢T, W) = 0, which gives a contradiction. [J

From the second equation of Equation (19), we have:

Remark 1. Let vy be a non-geodesic null slant curve in a Sasakian Lorentzian three-manifold. We assume that x = 1
then T is constant such that T = 217 F1.

4. Contact Magnetic Curves

In a three-dimensional Sasakian Lorentzian manifold M3, the Reeb vector field ¢ is Killing.
By Equation (6), the 2-form @ is dy, thatis di(X,Y) = g(X, ¢Y), forall X,Y € I'(TM).
Lety : I — M be a smooth curve on a contact Lorentzian manifold (M, ¢, &, 7, g). Then, we define a
magnetic field on M by
F,:,q(X, Y) = —qdy(X,Y),

where X,Y € X(M) and q is a non-zero constant. We call Fg ; the contact magnetic field with strength q.

Using Equations (1), (4) and (6) we get ®(X) = g¢X. Hence, from Equation (2) the Lorentz equation
is

Vo =q9v. (20)

This is the generalized equation of geodesics under arc length parameterization, that is V7' = 0.
For g = 0, we find that the contact magnetic field vanishes identically and the magnetic curves are
geodesics of M. The solutions of Equation (20) are called contact magnetic curve or trajectories of Fg ;.

By using Equations (8) and (20), differentiating g(&, ') along a contact magnetic curve v in contact
Lorentzian three-manifold

d
8@ = 8(Vy&n) +8(5 Vyr)
g(ey — ohy', o) +8(&, a97")
= —glphy', 7).

Hence, we have:

Theorem 3. Let vy be a contact magnetic curve in a contact Lorentzian three-manifold M. <y is a slant curve if and
only if M is Sasakian.
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Next, we find the curvature x and torsion T along non-geodesic Frenet contact magnetic curves 7.
We suppose that 77(E;) = a, for a constant a. Then, using Equations (4), (10) and (20), we get

e = g(¢7, 97') = ¢ (e1 + ).
Hence, we find that  has a constant curvature
kK =|q |/ eaer +a2), (21)
and, from Equations (10), (20) and (21), the binormal vector field

(562

q / /
Ey, = — =——=97/, 22
2= oY SCETMA (22)
whered =q/|q |
Using Proposition 3 and Equation (22), the binormal Ej3 is computed as
e3Es = E1NALE
(582
/ !
= YA (——x97)
( ea(e1 +a2) ?
Jden /
= ——=— (el +ay’).
ea(er +a?) ( )
Differentiating binormal vector field E3, we have
Jeae3 /
VyE3 = —————=V./(e1{+ay')
! ea(er+a?) 7 (
dez¢3 /
= ———==(e1+qa)py. (23)
82(81+u2)( 19
On the other hand, by Equation (10), we have
597’
\Y /E3 = SzTEz =T (24)
7 Vea(er +a2)
From Equations (23) and (24), since e1epe3 = —1, we obtain
T=1+¢1qa. (25)
Moreover, if y is a non-geodesic curve, then
-1 dera

K Ve (el +a2)
Therefore, we obtain:
Theorem 4. Let y be a non-geodesic Frenet curve in a Sasakian Lorentzian three-manifold M. If vy is a contact

magnetic curve, then it is slant pseudo-helix with curvature x =| q | \/e2(e1 + a2) and torsion T = 1+ e1qa.
Moreover, the ratio of x and T — 1 is a constant.
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Since a Legendre curve is a spacelike curve with spacelike normal vector field and (') = a = 0, we
assume that vy is a Legendre curve and we have:

Corollary 2. Let y be a non-geodesic Legendre curve in a Sasakian Lorentzian three-manifold M. If <y is a contact
magnetic curve, then it is Legendre pseudo-helix with curvature k = |q| and torsion T = 1.

Now, from the geodesic curvature in Equation (21),if &1 = 1, then5(9/) =aand 1 <1+ a2, and we
have ¢, = 1. Moreover, using €3 = —¢1 - €2, we obtain 3 = —1. Next, if e = —1, then (/) = a = cosh ay.
Since 7 is a geodesic for a = coshay = 1, we assume that 7 is non-geodesic, and we get a?> > 1. Hence,
—1+4% > 0and we get ¢o = e3 = 1. Therefore, we obtain:

Theorem 5. Let 7y be a non-geodesic Frenet curve in a Sasakian Lorentzian three-manifold M. If vy is a contact
magnetic curve. then vy is one of the following:

(i) aspacelike curve with spacelike normal vector field; or

(ii)  a timelike curve.

Moreover, we have:

Corollary 3. Let -y be a non-geodesic Frenet curve in a Sasakian Lorentzian three-manifold M. If <y is a contact
magnetic curve, then there does not exist a spacelike curve with timelike normal vector field.

In a similar with a Frenet curve, we study null contact magnetic curves in a Sasakian Lorentzian
three-manifold M. Hence, we find that there exist a null contact magnetic curve with ¢ = #a and same the
result with Theorem 2.

Example

The Heisenberg group Hj is a Lie group which is diffeomorphic to R® and the group operation is
defined by

(v, y,2)«(x,7,2) = (x+Xy+7yz+z+ xz—y - xzy)
The mapping
1 a b 1 x z+%
Hy — 01 ¢ a,bceR 3 :(x,y,z)—~ | 0 1 v
0 0 1 00 1

is an isomorphism between Hj and a subgroup of GL(3,R).
Now, we take the contact form
7 =dz + (ydx — xdy).

Then, the characteristic vector field of 17 is ¢ = %.
Now, we equip the Lorentzian metric as following:

g =dx? +dy? — (dz + (ydx — xdy))*.
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We take a left-invariant Lorentzian orthonormal frame field (eq, ez, e3) on (Hs, g):

R IO B T
Tox Ve 2T dy Yo T 8

€1
and the commutative relations are derived as follows:
le1, e2] = 2e3, [e2,e3] = [e3,e1] = 0.
Then, the endomorphism field ¢ is defined by
pe1 = ey, ey = —eq, pez = 0.

The Levi-Civita connection V of (Hj, g) is described as

Veer = Ve,er = Veez3 =0, Veep =e3 =—Vyey, (26)

Vg2€3 = =€ = Vgsez, V@el =e = Vg163.

The contact form 7 satisfies d(X,Y) = ¢(X, ¢Y). Moreover, the structure (1, ¢, ¢, g) is Sasakian.
The Riemannian curvature tensor R of (Hj, g) is given by

R(ey,e2)er = 3e2,  R(ey,e2)er = —3ey,
R(ep, e3)er = —e3, R(ey, e3)e3 = —e,
R(es,e1)e3 = ey, R(es, e1)e1 =e3,

and the other components are zero.
The sectional curvature is given by [6]

K(C/ei) = 7R(§/ei/‘:/ei) =-1, for i=1,2,

and
K(e1,e2) = R(ey, e, e1,62) = 3.

Thus, we see that the Lorentzian Heisenberg space (Hj, g) is the Lorentzian Sasakian space forms
with constant holomorphic sectional curvature y = 3.

Let 7 be a Frenet slant curve in Lorentzian Heisenberg space (Hj, g) parameterized by arc-length.
Then, the tangent vector field has the form

T = 9" = /e, + a2 cos Bey + /&1 + a? sin Pes + aes, (27)

where a = constant, p = B(s). Using Equation (26), we get
V.7 = \Ver +a2(B +2a)(—sin ey + cos fey). (28)
Since 1 is a non-geodesic, we may assume that x = \/m (B’ +2a) > 0 without loss of generality.

Then, the normal vector field
N = —sin ey + cos Bes.
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The binormal vector field 3B = T AL N = —acos ey — asin fe; — /€1 + a2e3. From Theorem 5, we
see that ¢y = 1, thus we have e3 = —e1. Hence,

B = &1 (acos Bey + asin e, + /€1 + aZes).
Using the Frenet-Serret Equation (10), we have

Lemma 1. Let vy be a Frenet slant curve in Lorentzian Heisenberg space (Hs, ) parameterized by arc-length. Then,
7y admits an orthonormal frame field {T, N, B} along vy and

k= +/e1 +a2(B +2a), (29)

T=1+¢a(p +2a).

Next, if  is a null slant curve in the Lorentzian Heisenberg space (Hj3, g), then the tangent vector
field has the form
T =+ = acos Be; + asin fe; + ae;, (30)

where a = constant, p = B(s). Using Equation (26), we get
Vv = a(B +2a)(—sin ey + cos pey). (31)
Since v is non-geodesic, using Equation (18) we have | a(f’ +2a) |= 1 and
N = —sin ey + cos Be;.
Differentiating N, we get
VN = —(B' +a)cos pe; — (B' + a) sin fey + ae.
From Equation (18), T = 3g(V./N, V.,N) = (p')2 + ap’. Since W = —V.,N — 7T, we have

W= {—%(/S')2 + (% —a)B +1}T — (B’ +2a)¢ = Zl—a(cosﬁel + sin Bey — e3).

Therefore, we have

Lemma 2. Let 7y be a non-geodesic null slant curve in the Lorentzian Heisenberg space (Hs, g). We assume that
k =| a(p’ + 2a) |= 1. Then, its torsion is constant such that T = # Fl

Let y(s) = (x(s),y(s),z(s)) be a curve in Lorentzian Heisenberg space (Hj, g). Then, the tangent
vector field ' of 7 is

ds’ ds’ ds

(_(dxdy de\ _dxd dyd  dzd
T dsox  dsdy  dsoz

Using the relations:

0
5o =ertyes,

i—e — xe i—e
Py ay*Z 3 5, T e
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if y is a slant curve in (Hj3, g), then from Equation (27) the system of differential equations for v is given by

Z—Z(s) = ey +acosp(s), (32)

Z—Z(s) = Ve +a?sinf(s), (33)
dz

£(s) = a+ e +a(x(s)sinB(s) — y(s) cos B(s)).

Now, we construct a magnetic curve v (containing Frenet and null curve) in the Lorentzian Heisenberg
space (Hj, g). From Equations (20) and (28), we have:

Proposition 8. Let y : I — (Hj, g) be a magnetic curve parameterized by arc-length in the Lorentzian Heisenberg
space (Hi, g). Then,
p'=q—2a, fora=n(y).
Namely, B’ is a constant, e.g., A, hence B(s) = As+b, b € R. If yisanull curve, then g = :I:%. Finally,

from Equations (32) and (33), we have the following result:

Theorem 6. Let v : I — (Hjs,g) be a non-geodesic curve parameterized by arc-length s in the Lorentzian
Heisenberg group (Hs, §). If 7y is a contact magnetic curve, then the parametric equations of -y are given by

x(s) = % \/e1 +aZsin(As +b) + x,
y(s) = — % \/e1 + a2 cos(As + b) + v,
z(s) = {a+ #}s — 7”}:“2 {x0cos(As +b) + yosin(As + b) } + z,

where b, xo, Yo, zo are constants. If 1 = 0 then vy is a null curve.

In particular, for a Frenet Legendre curve vy, we get p’ = g = A.
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Abstract: The existence of a homogeneous geodesic in homogeneous Finsler manifolds was positively
answered in previous papers. However, the result is not optimal. In the present paper, this result is
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geodesics were constructed, which shows that the present result is the best possible.
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1. Introduction

Homogeneous spaces are a natural generalization of symmetric spaces and they keep many of
their nice properties. One of them is the existence of a transitive group of transformations, which are
sometimes called symmetries. The importance of geodesic curves is well known in mathematics and
also in physics and homogeneous geodesics are, moreover, orbits of these symmetries. In physics,
they are related with relative equilibria. In Riemannian geometry, homogeneous geodesics were
studied by many authors and many results were obtained, see the recent survey paper [1] by the author.
In recent years, homogeneous geodesics attained interest in Finsler geometry. In the present paper,
we shall focus on the existence of homogeneous geodesics in homogeneous Finsler manifolds and on
an interesting phenomenon related with nonreversibility of general Finsler metrics and consequent
nonreversibility of homogeneous geodesics.

The existence of at least one homogeneous geodesic in arbitrary homogeneous Riemannian
manifold was proved by O. Kowalski and J. Szenthe in [2]. In the papers [3,4], it was proved that
this result is optimal, namely, examples of homogeneous Riemannian metrics on solvable Lie groups
were constructed which admit just one homogeneous geodesic through any point. Generalization
of this existence result to pseudo-Riemannian geometry was proved by the author using a different
approach in the broader context of homogeneous affine manifolds in [5]. This affine approach was used
by the author also in [6] to prove that an even-dimensional Lorentzian manifold admits a light-like
homogeneous geodesic.

Generalization of this existence result to Finsler geometry was proved in the series of papers [7] by
Z.Yan and S. Deng for Randers metrics, [8] by the author for odd-dimensional Finsler metrics, [9] by
the author for Berwald or reversible Finsler metrics, [10] by Z. Yan and L. Huang in general. In this
last paper, an original approach by O. Kowalski and J. Szenthe is modified and a purely Finslerian
construction is used. However, due to the nonreversibility of general Finsler metrics, it was conjectured
by the author in [11] that the result and its proofs in the nonreversible situation are not optimal.
In comparison with Riemannian geometry, the situation is rather delicate. In the context of Finsler
geometry, the trajectory of the unique homogeneous geodesic in a Riemannian manifold should be
regarded as two geodesics—they have the same trajectory, their initial vectors are X and —X and they
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have opposite parametrizations. For a general homogeneous Finsler manifold, the initial vectors of the
two homogeneous geodesics may be non-opposite. In the paper [11], examples of invariant Randers
metrics which admit just two homogeneous geodesics were constructed. The initial vectors of these
geodesics are X + Y and —X + Y, for certain vectors X, Y € T, M.

In the present paper, the mentioned proofs are revised and refined. The complete and selfcontained
proof of the existence of two homogeneous geodesics through an arbitrary point in arbitrary
homogeneous Finsler manifold is given. Some constructions from [2,10,12] are used.

2. Basic Settings

A Minkowski norm on the vector space V is a nonnegative function F : V — R which is smooth
on V\ {0}, positively homogeneous (F(Ay) = AF(y) for any A > 0) and whose Hessian g;; = (%Fz)y,y]
is positively definite on V'\ {0}. Variables (i) are the components of a vector y € V with respect to
abasis B of V and putting y' to a subscript refers to the partial derivative. The pair (V, F) is called a
Minkowski space. The tensor g, whose components are g;;(y) is the fundamental tensor. We recall the
well known formulas

1dF?(y +su
gy(yu) = E%L:o' Yy,uev,
slvy) = Fy), VeV M

A Finsler metric on a differentiable manifold M is a function F on TM which is differentiable on
TM \ {0} and such that its restriction to any tangent space TxM is a Minkowski norm. The pair (M, F)
is called a Finsler manifold. On a Finsler manifold, functions g;; depend differentiably on x € M and
ono #y e TyM.

Let M be a Finsler manifold (M, F). If some connected Lie group G acts transitively on M by
isometries, then M is called a homogeneous manifold. We remark that a homogeneous manifold
(M, F) may admit more presentations as a homogeneous space in the form G/ H, corresponding to
various transitive isometry groups.

Homogeneous manifold M can be identified with the homogeneous space G/H. Here H is
the isotropy group of the origin p € M. A homogeneous Finsler space (G/H,F) is a reductive
homogeneous space in the following sense: Denote by g and § the Lie algebras of the groups G and
H, respectively, and consider the representation Ad: H x g — g of H on g. There exists a reductive
decomposition g = m + h where m C g is a vector subspace with the property Ad(H)(m) C m. For a
fixed reductive decomposition g = m + b it is natural to identify m C g = T,.G with the tangent
space T, M via the projection 7: G — G/H = M. Using this identification, from the Minkovski
norm and its fundamental tensor on T, M, we obtain the Ad(H )-invariant Minkowski norm and the
Ad(H)-invariant fundamental tensor on m.

We further recall the slit tangent bundle T M)y, which is defined as TMy = TM \ {0}. Using the
restriction of the projection 71: TM — M to TM), we construct the pullback vector bundle 77*TM over
TMj. The Chern connection is the unique linear connection on 77*TM which is torsion free and almost
g-compatible. See some monograph, for example [13] by D. Bao, S.-S. Chern and Z. Shen or [14] by
S. Deng for details. Using the Chern connection, the derivative along a curve 7y (t) can be defined.
A regular differentiable curve 7y with tangent vector field T is a geodesic if it holds DT(TTT)) = 0.
In particular, for a geodesic of constant speed it holds D7T = 0.

A geodesic y(s) through the point p is homogeneous if it is an orbit of a one-parameter group of
isometries. Explicitly, if there exists a nonzero vector X € g such that y(t) = exp(tX)(p) forall t € R.
Such a vector X is called a geodesic vector. Geodesic vectors are characterized by the geodesic lemma,
proved in Riemannian geometry by O. Kowalski and L. Vanhecke in [15] and generalized to Finsler
geometry by D. Latifi in [16].
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Lemma 1 ([16]). Let (G/H, F) be a homogeneous Finsler space with a reductive decomposition g = m + .
A nonzero vector y € g is geodesic if and only if it holds

SymWm, [y, ulm) = 0 Vuem,
where the subscript m indicates the projection of a vector from g to m.

3. The Main Result

Theorem 1. Let (M, F) be a homogeneous Finsler manifold. There exist at least two homogeneous geodesics
through arbitrary point p € M.

Proof. Let G be a transitive isometry group of M and let H be the isotropy group of a fixed point
p € M. We express M as the homogeneous space M = G/H. Let K be the Killing form on G and
let Rad(K) be the null space of K. We choose m = §* with respect to K. The decomposition in
Ad(H)-invariant and the Finsler metric induces the invariant Minkowski norm and its fundamental
tensor on m. We shall denote these again by F and g. The Killing form K is negatively semidefinite on
g and negatively definite on b, because H is compact. Hence, Rad(K) C m. We shall distinguish the
two cases:

(Case 1) Rad(K) = m: we chose a hyperplane W C m such that [m,m] C W. We used the
construction and notation from [12] to show that there exist two vectors 11,1, € m such that

gn;(nj,w) = 0 Yw e W, i=1,2.

Consider an arbitrary fixed vector v ¢ W. The function ¢(w) := F(v — w) defined on W attains
its minimum m at a unique point wy € W. We put

U —wWo
.

ny =

It can be proved that the definition of the vector 11 does not depend on the choice of the vector v
on the same side of the hyperplane W. If we start with a vector v on the other side of the hyperplane
W, the same construction leads to the vector 1, on the other side of the hyperplane W and it is in
general not opposite to 711, unless F is reversible. We shall now write n for any of the two vectors 1y, 1.
For an arbitrary fixed vector w € W, the equality

1 1
F2(n+tw) = WFZ(U —wo + tmw) = W:j)z(wo — tmw),

shows that the function F?(n + tw) attains its minimum at + = 0 and hence, using Formula (1), it holds

1d

0=

F(n+tw)|,_,=gu(n,w), VYweW,
which is the desired property. In particular, it is satisfied for any w € [m,m] C W. We obtain
immediately, using Lemma 1, that 17 and 7, are geodesic vectors.

(Case 2) Rad(K) ¢ m: we started with the construction and notation as in [10], up to a sign.

=

We shall investigate the function
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which is nonnegative on m \ {0}. This function is homogeneous and it is reasonable to restrict the
definition domain to the indicatrix

Ir={zemF(z) =1}.

The function f(z) attains its maximum A; at y; € Ip. To find the second vector is more
delicate. Since the group H is compact and Rad(K) is an Ad(H)-invariant subspace, there exists
an Ad(H)-invariant K-orthogonal complement W of Rad(K) in m. Each vector z € m can be uniquely
decomposed as z = z1 + 2z, where z; € Rad(K) and z; € W. Denote k = dim(Rad(K)) and let

Dy = {z; € Rad(K),F(z1) < 1}
be the open unit disc in Rad(K). For each fixed z; € Dy, consider the set
S;, ={z € W,F(z1 +22) =1},

which has the topology of a sphere. From now on, if not stated otherwise, z; + z; means z; € Dy,
2y € Sz, and 21 + 23 € Ir. Because —K > 0 on W, the function f(zq + zp) is positive for any z; € Dy
and lim,, ,5p, f(z1 +22) = 0. For fixed z; and with definition domain S, f(z; + z2) attains its
minimum &(z;) > 0 at some Z,(z1) € S;,. For each z; € Dy, we choose one such z, and consider the
mapping ¢: Dy — If, 21 + z1 + Z;. The function f(¢(z1)) = €(z1) is smooth on Dy and it attains
its maximum A; at Z;. Here Z; can be chosen and the map ¢ can be defined in a way that there is a
neighbourhood U C Dj, of Z; such that the mapping (p|u is smooth. We put y, = ¢(z;) € Ir.
It remains to show that y; and y, are geodesic vectors. As to 1, the function

f(z) = K(z,2) + MF*(2)

attains its minimum 0 at y;. For any fixed w € m, the function f(t) = f(y; + tw) attains its minimum
0at f = 0 and hence f/(0) = 0. Using Formula (1), it follows that

Ky w) = M-gyyyw), Vwem
and the formula
-1 -1
& v 2lm) = Ky [y 2lm) = Kyl z) =0, Vzem
shows that 1 is a geodesic vector. As to i, we have to modify this approach. The function

f(z) =K(z,z) + A2 F2(2)

attains value 0 at y,. For fixed u € W, the function f(t) = f(y2 + tu) attains its maximum 0 at t = 0
and hence f'(0) = 0. It follows that

—K(yp,u) = Ay Sy (y2,u), YueW. )
Now, let v € Rad(K) be arbitrary fixed vector. Recall that y, = z; + z,. Consider the line z; + tv
in Rad(K), the curve c(t) = ¢(z; + tv) in Ir and denote by 7 the tangent vector to c(t) at t = 0.

The function f(t) = f(c(t)) attains its minimum 0 at t = 0 and hence f/(0) = 0. It follows that

—K(y2,7) = Az2-gy,(y2,9). ®)
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Consider a basis {u;} of W, a basis {v;} of Rad(K) and construct vectors 7; as above. It is easy to

see that {u;,3;} is a basis of m and hence Formulas (2) and (3) for each vector 3; imply

—K(y2,w) = Az-gy,(y2,w), Yw € m.

We finish the proof with the formula

-1 -1
gyz(yzr [y2,2lm) = }TZK(VL [y2,2Im) = /TZK([VZ/VZLZ) =0, Vz €m,

which shows that y» is a geodesic vector. [
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Abstract: This paper adapts the multivariate optimal control theory to a Riemannian setting. In this
sense, a coherent correspondence between the key elements of a standard optimal control problem
and several basic geometric ingredients is created, with the purpose of generating a geometric version
of Pontryagin’s maximum principle. More precisely, the local coordinates on a Riemannian manifold
play the role of evolution variables (“multitime”), the Riemannian structure, and the corresponding
Levi—Civita linear connection become state variables, while the control variables are represented by
some objects with the properties of the Riemann curvature tensor field. Moreover, the constraints are
provided by the second order partial differential equations describing the dynamics of the Riemannian
structure. The shift from formal analysis to optimal Riemannian control takes deeply into account the
symmetries (or anti-symmetries) these geometric elements or equations rely on. In addition, various
submanifold integral cost functionals are considered as controlled payoffs.

Keywords: maximum principle; optimal control; Einstein manifold; evolution dynamics; cost functional;
submanifold integral
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1. Introduction

For many centuries, researchers were preoccupied with finding the perfect description for
geometric objects (curves, surfaces, and others) with some optimizing features. Therefore, important
problems were phrased and solved. Among these, let us recall:

- The Plateau problem concerning the existence of minimal surfaces with isoperimetric constraints;

- The minimal submanifolds as solutions for the volume optimizing problem;

- The harmonic maps resulting from optimizing the energy functional;

- Dirichlet’s principle, which identifies the minimizers of the Dirichlet’s energy with the solutions
of a Poisson equation subject to boundary constraints;

- Fermats’s principle which states that the path followed by some ray of light is the one taking the
least time;

- Hilbert’s isoperimetric problem, stating that the Einstein manifolds are minimizers for the total
scalar curvature, with isoperimetric constraints;

- Dieudonne-Rashevsky type problems referring to optimization of multiple integral cost
functionals with first order partial differential equations constraints, with applicability in elasticity
(the torsion of a prismatic bar), population dynamics (age structure related models), image processing,
and others.

Many of these important problems were solved using calculus of variations. Nevertheless, in the
last few decades, the optimal control theory has benefited from a consistent development, providing
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an improvement of the variational techniques and, ultimately, replacing them. Moreover, an important
step forward related to optimal control was made by increasing the dimension of the time variable.

Motivated by this mathematical trend, we appreciate as necessary any consistent approach on
optimal control theory in geometric framework as it should be suitable for reanalyzing the classical
examples, like those presented above, as well as for defining and solving relevant new problems. It is
the basic objective of this paper to give answers to the following questions: Is it possible to provide
an unitary approach on optimal control which could lead to general tools or formulas for solving
all the mentioned problems and possibly others? What are the convenient ways to phrase optimal
control problems in the Riemannian context (more precisely, what type of cost functional could be
considered)? Which geometric elements will play the key roles of (multi)time, state, and control
variables? Which geometric elements interfere in the constraints? What is the geometric significance of
the co-state variables?

The main results of our study are Theorem 1 and Corollaries 14, containing a formal approach
on the Pontryagin’s maximum principle (see [1-4]), for multivariate optimal control problems with
various types of submanifolds integral type payoffs. Later, in Corollaries 5-9, they are rephrased for a
new class of geometric optimal control problems, continuing the ideas from the paper [5]. Not least,
Example 2 reconsiders Hilbert’s isoperimetric problem in this newly provided setting, while Example 3
provides an additional argument for the utility of this geometric approach. We point out the idea that
our Riemannian optimal control is completely distinct from the geometric optimal control described
in [6-8], where the role of the evolution variable was the classical one (time variable), while the state
and control variables were assumed to be lying on differentiable manifolds.

Our source of inspiration and the research tools cover the following topics:

- Classical optimal control, meaning the original optimal control theory involving a unique time
variable, a cost functional including, in general, a running payoff and a terminal payoff, as well as a
set of dynamic constraints expressed by ordinary differential equations as well as static constraints
expressed generally by inequalities ([9-12]);

- Various statements of the Pontryagin’s maximum principle, via a properly defined
Hamiltonian ([1-4,13]);

- Multivariate optimal control, initially considered in connection with Dieudonne-Rashevsky
problems which involve payoff functionals expressed via multiple integrals and dynamic constraints
expressed by first order partial differential equations (see [14-19]);

- Differential geometry under its general aspects, but, more importantly, Riemannian geometry;
the most important elements we borrow from Riemannian geometry are the Riemannian metric, the
Levi-Civita linear connection, the curvature tensor field, and the equations describing the way they
connect (see [20,21]).

A first attempt in the direction of Riemannian optimal control was related to solving two flow-type
optimal control problems in the Riemannian setting: The total divergence of a fixed vector field and the
total Laplacian (the gradient flux) of a fixed differentiable function. Both times, the cost functional was
a multiple-type integral functional (Riemannian extension of Dieudonne-Rashevsky type problems).
This paper extends all these ideas by varying the considered type of cost functionals and by considering
second order geometric dynamics.

Reaching the above ideas, as well as the ideas developed throughout this paper, was possible
after a consistent analysis of multivariate optimal control problems, from different points of views and
more extensively than the preliminary approach initiated by Cesari [14] for Dieudonne-Rashevsky
problems. For instance, the multivariate optimal control achieved new dimensions by considering
other types of cost functionals (stochastic integrals [22], curvilinear-type integrals [23], or mixt payoffs
containing both multiple or curvilinear integrals [24]), as well as various types of evolution dynamics
(second order partial differential equations, nonholonomic constraints [25]), or different working
techniques (multivariate dynamic programming [26], multivariate needle-shaped variations [24,27]).
The applicative features of the multivariate Pontryagin’s maximum principle were emphasized in [5],
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where the minimal submanifolds, the harmonic maps, or the Plateau problem were approached under
this new light. In addition, multivariate controllability- and observability-related features were studied
in [28], while [29] provides a comparison analysis of various types of cost functionals.

In optimal control issues, the variables involved play distinct roles. In this case, the states represent
entities with geometric features (Riemannian metric, linear connection, etc.), and the local coordinates
of the manifold are variables of evolution. Usually, an object having the properties of the curvature
tensor field plays the role of the control element.

The rest of the paper is organized as follows. Section 2 contains a formal overview regarding
the multivariate optimal control theory, introducing the specific terminology and establishes the
methodology. Section 3 is a review of geometric elements. Section 4 contains the main results derived
from applying the technical results from Section 2 to the geometric framework provided in Section 3.
Section 5 contains the conclusions and policy implications.

2. Optimal Control Formalism

2.1. Single-Time Case

We start our approach with recalling the standard statement of an optimal control problem, in its
most simple form, by namely using a one-dimensional evolution variable. The purpose of this is just to
fix the specific terminology and techniques. Later, these elements will be adapted to multi-dimensional
evolution variables and ultimately, to geometric objects, by properly identifying the role of each
of them.

Formally, an optimal control problem refers to finding:

T

C(H_l)aé](C(')) = /t0 X0(x,5(x), c(t))dx + x(T,s(T))

subject to:

s) € S;
$ = X(x,s(x),c(x)), x€[0,T].
The nature or the meaning of the elements involved in the expressions above are as follows:

e  The real number T is called the final time or horizon; t) is called initial time. Usually, x € [, T]
represents the time variable, but this comes just from the fact that the optimal control problems
which originated this theory used to have temporal evolutions. We prefer to instead call them
evolution variables since this terminology is more compatible with the idea of increasing the
dimension (we have even avoided to denote it with f);

e U C RFis called the set of control variables. A function c : [0, T] — U is called the control strategy.
Sometimes there are additional requirements concerning the control strategies (for instance, the
local integrability condition or static constraints) resulting the set of admissible strategies C;

e 5 C R™is called the set of state variables. For a given control strategy c(-) and a given initial state
so € S, the solution of the evolution equation s(-) = s(-, s, ¢(-)) is called the state trajectory;

e X%:[0,T] x S x C — Ris called instantaneous performance index. Moreover, x : [0, T] x S — R
is called the payoff from the final state;

e The functional | on the set of admissible control strategies is called the cost functional or
payoff functional.

2.2. Multivariate Case

This section is dedicated to featuring the general aspects of the multivariate optimal control (in a
Euclidean setting). The basic ingredients are N C R" with global coordinates (x!, ..., x"), S C R" with
global coordinates (s!,...,s™), and U C RF having global coordinates (c, ..., c¥). Let us denote by D a
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bounded Lipschitz domain of a p-dimensional submanifold of N, with a (p — 1)-dimensional oriented
boundary dD. In particular, when p = n we denote by () a bounded Lipschitz domain in N, when
p = n — 1 we denote by X a bounded oriented hyper-surface while, we use C to denote a differentiable
curve in N with given endpoints x; and x;.

Let X = (X#) : N x S x C — R™ be a C! tensor field. For a given control function ¢ : N — U,
we define the following completely integrable evolution system:

Js*

BTc’(t) = X{(x,s(x),c(x)), x €N. 1)

The multivariate evolution system in Equation (1) is used as constraint when we want to optimize
various integral-type cost functionals.

Problem 1. p-Dimensional integral cost functional.

This section reflects the most general expression of multivariate optimal control problems, by
considering p-dimensional domains in N and cost functionals defined as integrals on these domains.
Denote:
7. _ {(ihigein-0) |1 <ih <z < . <ipg<n}, c=1n-1, p<n-—1;
7 2, p=n.

We define the cost functional:

Iple(+)] = /D Y. Xl(x,s(x),c(x))dx1+/aD Y x'(x,5(x))dx;,

I€Z, I€Z, 4

where, if I = (iyip...iy—p), then dx; is the p-form resulted from the multiple interior product of the
n-form dx with the vector fields aiH, ey Oy
The corresponding control Hamiltonian (n — p)-form has the components

H'(x,5,p,¢) = X! (x,5,¢) + pEXE(x,s,¢), VI € Tp.

In order to keep the expressions as simple as possible, let us introduce the following notations:
Given a multi-index I = (iyip...in—p) € Ip,let oy = 9, A dj, A ... A 9;,_,, let G denote the induced inner
product on the exterior algebra of vector fields, Ny A ... A Ny, be the cross (wedge) product of the
normal distribution on submanifold D, while {11,72, ..., 14— p+1} denotes a normal distribution on 9D.

Theorem 1. (Multivariate maximum principle for p-dimensional integral cost functional) Suppose
c* () is optimal for (m(a)x Ip, Equation (1) ) and s*(-) is the corresponding optimal n-sheet. Then there exists
(-

a costate mapping (p*) = (pi): D — R™"", pil = prT(I), VT(I) a transposition of the multi-index
I € T, such that the following equations are satisfied:

e  State equations:

95 oH!
oxi  opli

(x,8% p*,c*), VI € T, Vi=1,n, Yo =1,m, Vx € D;

o Adjoint equations:

ap*ls [ * * * q
¢ ({ B;S + 95% (x,s8%,p*,c*) 81,N1/\.../\Ny,,p> =0, Va=1,m, Vx € D;
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o Optimality conditions

oH!
6 (5

o The boundary conditions

s*,p*,c*)0, Ny Ao A Ny,,p) =0, Va=1,k VYxeD.

<{pa 9 }81,171/\ A p+1>=0, VYa € 1,m, Vx € oD.

Proof. If c*(-) is an optimal control, consider a variation c¢(-) = ¢*(-) + €v(+), € € (—€g, €p). This
ds¥

generates a variational state s¢(+), with de = 1" and a cost function:

e=0
Je = Jplee(-) / Y X(x,5e, ce dx1+/ X' (x,5¢)dx;
€7, Drez, 4
[Hl X,Se, P, Ce) pi *(x, S, Ce) dx1+/ )(I(x,se)dxl
DleI IeI 1
B
A {HI X, Se, P, Ce) pffaxi} +/ XL (x, 5¢)dx;
I€T, IeI
a Is qu
HI (x, 8¢, p,ce) (p“ 6) dx;y +/ (x,5¢)dxg
D IeI 0x D [T,
p—1
{H (x,8¢,p, ce) + s se} dx; + / [ plsf 4+ x (x,se)] dxj.
/D ez, €T, 1

Since c* is a optimal solution, it follows that € = 0 is a critical point for € — J. That is:

oH! o, o oH! . .,
0_/1)2 |:<asa (xs'p’ )+ >T +ac” (xrs 24 )U:|dX[

I€T,

+/a Z {7;9 +3i(x s )} T™dx.

JOD 1e7, 4

Choosing the costate tensor p* as solution for the adjoint partial differential equations system:

py  oH' 5 B B
G xS + s (x,5%,p,c) LN1 A ANy—p ) =0, VYa=1,m, Vx € D

with a boundary condition:

) 1
G ({pa - %} o, 1 Ao A qn,pﬂ) =0,Vx € 9D,

we find:

1
/ ) aHﬂ (x,s*, p*, c*)0"dx; = 0, Vo°,
Jp =, adc

leading to the optimality conditions:

I
G <%I; (x,s%,p%,c¢*)or, Ny Ao A Nn—p) =0, Va=1k VxeD.
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Remark 1. A better way to phrase the optimality conditions is given by the inequality

/D {Hl(x,s*,p*,c*) — HI(x,s*,p*,c)} dx; >0, Ve(+) € C.

A proof leading to this condition is based on needle-shaped control variations and, beside the fact that
provides a more general formula, it also allows control variables to reach boundary values (for more details about
this technique, please see see [5,24]). Moreover, this expression is preferable when the Hamiltonians are linear
with respect to the control variables, i.e., H' (x,s,p,c) = c!(x,s,p) - c + ¥ (x,s, p). If such is the case, two
approaches are possible. If o(x,s(x), p(x)) = 0 almost everywhere on D, the problem is control-free and the
optimal solutions are of a singular-type. Otherwise, the optimal control is a bang-bang, meaning that it switches
abruptly between boundary values.

Problem 2. Multiple integral cost functional.

This is a particular case of the general one analyzed above, since () C N can be considered as a
domain of maximal dimension p = n. The general expression for a multiple integral cost functional is:

JaleO)] = [ X(xs(x),c(x)dx+ [ 3l xs(x) dn
and the corresponding Hamiltonian function (0-form) is:
H(x,s,p,c) = X(x,s,¢) + ps XE(x,s,¢).
Then, Theorem 1 reads as in the following Corollary.

Corollary 1. (Multitime maximum principle for multiple integral cost functional) Suppose ¢*(+) is
an optimal solution of the control problem <m<a)x Ja, Equation (1)> and t*(-) is the corresponding optimal
o(-

state. Then there exists a costate tensor p* = (pit) : Q — R™ to satisfy:

e  State equations

*0
Basxf = 35 (x,8%,p",c*), VxeQ, Ya=1,m, Vi = ;
o

o Adjoint equations

opy’ _ _9H . . . .

e 85“( ,s5,pt,c"), Vx e Q, Va=1,m;
e  Optimality conditions

gi(xs ,p,c") =0, VxeQ, Va=1k

e Boundary conditions

{p;l + (x,s*)} 9 € TQ), Vx €9Q, Ya =1,m

ox!

Problem 3. Hyper-surface integral cost functional.

When considering o domain X of dimension p = n — 1 it results in the following cost functional:

Isle(+) / X' (x,5(x dxl—i—/ Y X7 (x,s(x x))dxij,

1<1<]<n
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where dx; =i, dxand dx;; =i 5 dx;.
oxl ax
Similar to previous paragraphs, the multitime maximum principle involves some appropriate

Hamiltonian vector field with components:

H'(x,s,p,¢) = X (x,5,¢) + pEX¥(x,5,¢),
and Theorem 1 conducts to the next statement.
Corollary 2. (Multitime maximum principle for hyper-surface integral cost functional) Suppose
c*(+) is optimal for (ng(a)x Js., Equation (1) | and s*(-) is the corresponding optimal n-sheet. Then there
exists a co-state mapping (p*) = (p;ﬁ'j) % — R, pil = fpzﬁ to satisfy:

e  State equations

*0 1
857 = %(x,s*,p*,c*), Vi=1n, Va=1,m, Vx € &;
o
o Adjoint equations
a;‘s + e (x,s%, p*,c*) 3 c Ty, Va=1,m, Vx €%;
e  Optimality conditions
oH' . . .0 —
3 (x,s%, p*,c )W eTX, YVa=1,k, Vx €%,
e Boundary condition
i oxl ] ]
_#ij “y| 9 A 9 _
G (1<,‘<Z];<n { P+ e (x,5%) o "\ o /\172) 0, Vx € 9%,

where G denotes the induced inner product on the exterior algebra of vector fields and 171 A 175 is the cross
product of the normal distribution {11,172} on oX.

Problem 4. Curvilinear integral cost functional.

When the selected domain is a curve C, the corresponding dimension is p = 1. The expression of
the curvilinear integral cost functional is:

Jele()] = /C Xi(x,5(x), c(x)) da’ + x(xp, s(xp)) = x(xi,5(x7)),

where x; and xy are the endpoints of C.
The corresponding Hamiltonian is an 1-form with components:

Hi(x,s,p,¢) = Xi(x,5,¢) + pa Xj (x,5,0)
leading to the following statement for the maximum principle.

Corollary 3. (Multitime maximum principle for curvilinear integral cost functional) Suppose c¢*(+)
is an optimal solution of the control problem m(a)x Je, Equation (1) | and s*(-) is the corresponding optimal
o(-

state. Then there exists a costate mapping p* = (pi) : C — R™ to satisfy:
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e  State equations

*
aasxl = g—;{:(x,s*,p*,c*), VxeC, Va=1,m, VI =1,n;

e Adjoint equations

sis [ 0Pa +3H1

(x,s%,p%,c*) 9 ETIC, VxeC, Ya=1m;

ox!  os* oxs
e  Optimality conditions
0H )
Is ! * % % 1 _ .
) S (x,8%, p*,c )—axS €cT-C,VxeC, Va=1,k;

e Terminal conditions p
* X *
palxp) = o2 (xp 8% (xp));
Pa(xi) = 5% (xis” (x), Vo€ Tm.

Problem 5. Evolution equations with symmetries.

The previous sections phrased optimal control conditions for the evolution system in Equation (1)
and for different types of integral costs. The section instead aims to describe the optimal control
behavior, when dealing with an evolution system supporting some sort of symmetries. Assume that
the dimension of the considered domain D is p > 2. We define:

1. A symmetric-type evolution system:

as? asf‘ — Xa’ th 2
ﬁ(x) +ﬁ(x) = Xjj(x,s(x), c(x)) + Xji(x,5(x), c(x)). 2

2. Anntisymmetric-type evolution system:

as;‘ as;_x « «
ﬁ(x) - @(x) = Xjj(x,5(x), c(x)) — Xji(x,5(x), c(x)). (3)

The multivariate maximum principles (necessary conditions) corresponding to the optimal control

problems (m(a)x Jp, Equation (2)> and m(a)x Jp, Equation (3)> connects the existence of an optimal
o (-

control ¢* to co-state mappings p* = (p:) 11, ,, With some symmetry particularities:

1) in the case of symmetric-type evolution system, p! = —p™(D for each transposition of the
P y YpP y p P P
multi-index I € Ip,z, except the transposition 1y of the last two elements of the multi-index, for which

I _— ().
p=pr"7

in the case of antisymmetric-type evolution system, p' = — or each transposition of the

p2) in th f antisymmetri lution system, p! pD £ h transposition of th
multi-index I € Z, 5, with no exceptions.

These costate mappings allow the definition of the Hamiltonian (n — p)-form of components:
H’(x,s, p,c) = Xl(x,s,c) + péinf;(x,s,c), VI € Z,.

Using their symmetries, similar arguments as in the proof of Theorem 1 lead to the outcome
stated below.

Corollary 4. (multitime maximum principle for symmetric/antisymmetric evolution equations)

Suppose ¢*(-) is optimal for <m<a>x Jp, Equation (2)> or (m(a)x Jp, Equation (3)) and that t*(-) is the
c(- c(-
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corresponding optimal n-sheet. Then there exists a co-state mapping p* with properties (p1) and (pz),
respectively, to satisfy:

e  State equations:

* 0
9s j ds i

oxt o

I I
ahll,, + —aHI,, (x,s%,p%,c*),
ap;’ ap,x]'

Vxe D, VIe€TI, Vij=1n, Va =1,m;

o Adjoint equations:

ap*lsi oH!
¢ q a;s + 358 (x,S*,p*,c*)} 91, Nq /\.../\N,,_p) =0,

VxeQ, Yi=1,n, Va =1, m;

e Optimality conditions:

1
G (?f:a (x,8%, p*, ¢*)dxg, Ny A e A N,rl’> =0, VxeD, Va=1k

e Boundary conditions:

I
G <{p;” — %(x,s*)} oL 1 Ao A 1174,’,“) =0, Vxe€eodD, Va=1,m, VI =1,n.
1

3. Basics on Riemannian Geometry

Let (M, g) be a Riemannian manifold and (x7, .., x"") be local coordinates on M. A basic result
in Riemannian geometry ([20,21]) states the existence of the Levi—Civita connection, i.e., the unique
torsion-free (VxY — VyX = [X, Y]) and metric compatible (Vg = 0) linear connection V associated
to g.

In coordinates, the Levi-Civita connection can be described using the Christoffel symbols
I = <I“f]) . The torsion free condition is then equivalent to the symmetry property I“i.‘]. = Fj.‘i, while the
compatibility with the metric is given by the following partial differential equations:

0gij .
S (1) = (@) [T TH() + TR ijk=1,m, 4
or, equivalent,
agz] ps i J i ;o
P (x) = —g"(x) [5prsk(x) + Jprsk(x)] , i k=1,..,n, (5)

where ¢! = (g'/) is the dual metric tensor field, i.e., gisgsj = 5;, Vi,j=1,..,n.
Moreover, a second order covariant differentiation of the Riemannian structure g generates the
Riemann curvature (1, 3)-tensor field:

R(X,Y)Z =VxVyZ—-VyVxZ— V[X/y]Z,

which, in terms of local coordinates R = (Rﬁjk), is defined by:

ary;  arl
I ki ki o sl |
ki = g axfl + T4l — Tl .k 1 =1,...,m,

or, equivalent:
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1 I
ark,j B arki
ox'  ox/

Lowering the index via the metric g, allows the introduction of the Riemann curvature (0, 4)-type
tensor field Rijk = gis R?kl' having the symmetry properties:

= Ry = T}Th +TTY, ikl =1,..,n. 6)

Rijii = Ruiij; Rijt = —Rji @)
and satisfying the Bianchi identities:
Rij + Rigij + Rigjk = 0; Rijkrr + Rijir g + Rijrks = 0, ®)
where a comma denotes the covariant derivative. We introduce the set of curvature like tensor fields:
cTY = {Tiju | with theproperties from relations (7), (8)}.

In the following, we shall switch the order of the geometric ingredients. Given a (0,4)-tensor
field R = (R; jkl) inC 7;0, we ask ourselves whether there exist a linear connection I and a Riemannian
structure ¢ on M satisfying Equations (4) and (6), respectively Equations (5) and (6). More precisely,
adding initial conditions:

8ij(x0) = 1, Tfi(x0) = 75 (x0),
we consider the relations in Equations (4) and (6) and Equations (5) and (6) as controlled evolution laws
and we shall call them second order metric compatibility evolution system.

Hereafter, the metric tensor ¢ = (g;;) and the linear connection ' = (l"f‘]) will denote symmetric
state objects, the local coordinates x = (x1, ..., x"*) will play the role of the evolution variables, and the
tensor field R = (R;jy) will denote a control object with symmetries.

The partial differential equations system provided by Equations (4) and (6) has solutions if and
only if the complete integrability conditions:

2 {gns [oT5 - ol ] } = 52 {gps [oFT3 + 00Ty}

_ 0 1 1 1 9 1 1 1
0= 5w (R — Tl + T5l) + 55 (Rkjp -l + ri/rsﬂ>
) I 1 I
tag (Rkpi = Talsp + T3,
are satisfied. Explicitly, this means Riji = —Rjiy and Ryjxr,r + Rijirk + Rijky = 0. These relations

are among the properties of R = (R;jx) since we have assumed R = (R,‘jkl) to be described by the
conditions in Equations (7) and (8).

4. Riemannian Optimal Control

In order to motivate our further approach, we provide the following example from [5], which
proves that some problems turn out to be very interesting optimal control issues, by properly stating
them and by properly assigning roles for the involved variables.

Example 1. If D is a compact set of R™ = (t1,..., "), with a piecewise smooth (m — 1)-dimensional boundary
oD, then its volume can be expressed as follows:

1
VD) = [dt= | sNPac,
(D) Jb m Jap op g
where N denotes the exterior unit normal vector field on the boundary. On the other hand, by taking a

parametrization of 9D, having the parameters’ domain U C R~ = {1, ..., 11,1}, the area of the boundary
surface is:
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A@D) = [ do= [ \fouN NP,

where N stands for the exterior normal vector field, hence do = ||N'||dy.

Let us show that of all solids having a given surface area, the sphere being the one that has the greatest
volume. To prove this statement, we take the normal vector field N as a control and we formulate the multivariate
optimal control problem with (static) isoperimetric constraint:

max /aD Supt* NPy subject to /u \/SupN*NPBdy = const..

The corresponding Hamiltonian is:

H(t,p,N) = 5a,5ta/\/ﬁ +p 5a/3N“/\/5, p = const.

and the optimality conditions lead to:

oH
O—Wft—pNonaD,

which, knowing that ||N|| = 1, describes the boundary of D as being the solution for ||t||> = p®. Hence D is
precisely the ball of radius p.

If (M, ) is a n-dimensional Riemannian manifold, let x = (x!, ..., x"") denote the local coordinates

relative to a fixed local map (V, h). We use the same notations as in the formal case: () is a bounded
Lipschitz domain of M, with oriented boundary d€), ¥ is a bounded oriented hyper-surface, while C
denotes a differentiable curve on M with given endpoints x; and xy.

We shall further consider several types of cost functionals.

I. Curvature related functionals

1. Multiple integral-type functional:
JalR()] = [ X(x,g(x),T(0), RGe)dx+ [ 3 (v, 8(x), T,

where dx = dx! A ... A dx" denotes the canonical differential n-form on M and dx; = i 5 dx, ix
T

denoting the interior product of a differential form with respect to a vector field X.
2. Hyper-surface integral-type functional:

= [ X g, D00 R+ [ (g, D),

1<1</<n

where dx;; =i o dx;.
o
3. Path independent curvilinear integral-type cost:

R(')]:/C Xi(x,8(x), T (x), R(x))dx + x (x5, g (x5), T (x5)) = x(x1, g (x:), T (x7))-

II. Connection related functionals

4. L Multiple integral-type functional:

Jalt()] = [ X (o0, TeNdx+ [ x(xgx))dx.
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5. Hyper-surface integral-type functional:

() = [ X (og,Tedn+ [ % x(xg()dx.

1<i<j<n

6.  Path independent curvilinear integral-type cost:
Ol X, 806), T () +x(x7,gep)) = x(xis8(x0)-

Definition 1. The problem of maximizing (minimizing) one of the cost functionals (Jo) — (Jc), subject to one
of the metric evolution systems given by Equations (4) and (6) or Equations (5) and (6) is called the Riemannian
optimal control problem.

All the outcomes resulted in connection with the functionals above are in fact the expressions
from Corollaries 1-3, for the particular choice of the state variables s = (g,I') and control variables
¢ = R (or s = g and ¢ = T if the curvature tensor is not involved at all). Since the main ingredients
of this Riemannian optimal control problem (the state variables, the control variables, and evolution
constraints) have some sort of symmetries, we shall derive adapted multitime maximum principles,
based on co-state variables with symmetries as in Corollary 4. In the following, we list these outcomes,
together with the Hamiltonians they rely on.

4.1. Riemannian Control with Multiple Integral Cost Functional

Problem 6. Optimize Jo[R(-)] subject to Equations (5) and (6).

For that, let us consider Lagrange multipliers of type pifj = p;.‘i and
ql; i = fq]; /" and the control Hamiltonian:

k 1
H(x,g,T,R,pq) = X(x,g,T,R) — glsl"]kp1]+qu< hii — r,’j/r;,,),

Corollary 5. Suppose the tensor field R*(-) is an optimal solution for m<a;< Ja[R(+)], constraint by the evolution
R(-

laws in Equations (5) and (6) and that g*(-) and IT*(-) are the corresponding optimal Riemannian structure and
the optimal linear connection, respectively. Then there exist the dual objects p* = (p;‘jk = p;‘ik ) and
q satisfying:

« ¢ xkif *kji)

(957 = —as
o The state equations:
ag*l  9H  oH
kT o9k T gk
E)xq i 9pj;
oy ory,  9H  oH

oxi  oxl quf i aqﬁﬁ';

e The adjoint equations:

<9p:}k+(aH+ aH> o

oxk ag' ~ agl
aglM age oH oH) _ .
oxk oxk ors, =~ ors )
] Jt
o The optimality conditions:
oH oH 0:
IR} BR,SW !
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o The boundary conditions:

)
*k X X
Pij lag = L)g’l + Bg]’} "
ki ki ax an
[q:l ]+q:] l}an - {Br? + 61“5 ’
ij 20

Remark 2. If (¢*,T'*, R*) is an optimal solution with corresponding dual objects (p*,q*) and

Hy' = Hi(g', TR p,q) = X(g', T RS — g T3l + g2k S

is an autonomous anti-trace Hamiltonian, then the following conservation law is satisfied

D,va =0, Vj=1,n.

Example 2. (Hilbert's isoperimetric problem) Consider the functional I[R(-)] = p(CY), where p(Q)) = / pdv

denotes the total scalar curvature. Therefore, we try to minimize I[R(-)] = [ &" Rk V8 dx, subject to the
controlled evolution system defined by Equations (5) and (6) and to the isoperimetric constmznt vol(Q)) = C.
We start by introducing a Lagrangian functional:

JalR()] = p(e) = Avol(Q) = [ [g7RY;\E — 1] d.

We may identify X(x,g,T,R) = ’]Rf‘k] V8 —Ay/gand x k(x,g,T) = 0. The corresponding Hamiltonian
density is

kij (1 ]
H(x,g,F,R,p, ) IJRick]\f A\[ glsr]kp1]+ql 1]< Rkl] ri]rm)'

Denoting (leij(g, L,pq) = 1 ( kij +8951/3 - gki‘si\/g) and

(g, T,pq) =—A/g— g”l“]kpl] q ]Fijl"él, we may rewrite the autonomous Hamiltonian

kij
H(g,T,R,p,q) = 0" (&, T, p,q)Riy; + 9(g, T, p.4),

which is linear with respect to the control variables. For bang-bang optimal control, we impose ||R(-)|| < M,
where the norm is the Riemannian one. To judge in the sense of singular optimal control, we need o(x) =0, x €
Oy C Q. Therefore, the optimal solutions may exhibit both bang-bang and singular sub-sheets as described in
Remark 1.

Let us search for singular solutions (see [9]), that is (i) o(x) = 0 and (ii) the conservation law for the
autonomous anti-trace Hamiltonian is satisfied.

The first condition, combined with the antisymmetry property of q, provides:

kij i of i i
9" = [s] - g6]] v&.

In addition to this, the singular solution also satisfies the adjoint partial differential equations system:

apz] s k
ok = plsr]k + p]srik + [72Rikj + (P - )\)g‘/] \/§
and: - »
aqz j aq] i
oxk T 9xk T Pskg " ps” + r’k‘h }:I‘I]kSl + r]k‘ﬁ " ‘7;:]'
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Replacing q in the latter leads to pikgSi + pékgsf = 0, with the solution
pf-‘j =0.

—A
Finally, by substituting p in the first adjoint set of equations, we obtain R?kj = ‘DTgij, that is the

. . L . A
Einstein Equation in vacuum Ric;j = 80
n—
Moreover, the anti-trace autonomous Hamiltonian is:
*S i
oIS ]

*i _ i skiZ " ks _ xks
Hj - (P )‘)5]+g 9x/ 8 ox/ \/gTk

and the conservation law D;H =0 is satisfied by the Einstein structure, therefore, the Einstein manifolds are
singular critical points for the total scalar curvature functional with isoperimetric constraints.

Problem 7. Optimize [ [T'(-)] subject to Equation (5).

The corresponding Hamiltonian has a simplified expression:

H(x,g,T,p,q) = X(x,8,T) — ", pl;

and the multitime maximum principle is described by the following Corollary.

Corollary 6. Suppose the linear connection IT*(-) is an optimal solution for <m(a)x Ja(T(+), Equation (5)) and
T(-

xk _

that g*(+) is the corresponding optimal Riemannian structure. Then there exist a dual object p* = (Pij = Pfik)

satisfying:

o The state equations: B
o' _ oH  oH_
dxk Bpi.‘j apj.g.

o  The adjoint equations:

i reH  9H
— + — | =0;
oxk a9l oglt
o The optimality conditions:
oH o _
ors,  ory,

axk | ox

k X', 9x

pij lao = { i } .
dagh gl |,

’

e The boundary conditions:

Example 3. Consider the least squares Lagrangian-type cost functional:
L T
Jir] = E/Qg i,

which measures the mean square deviation tensor T — T, where T is a linear connection and T® = 0 is the
Euclidean linear connection. The corresponding Hamiltonian density is:

18

1 o o
H= Eg’fl"’-‘l"]b-kfg’sl"ikpfj
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and, according to Corollary 6, we have:
o The optimality conditions: g"sr{;k + gjsl"’ —g" pék g p;k = 0, leading to the general solution

pl] = Fk 75—3—, or, invariant p =T — T,

where T = (75‘]) is a (1,2) symmetric tensor field, satisfying the anti-symmetry condition g ')/b T gfsfyék =0;
e The boundary conditions P;-(]-‘ag = 0, which, by substituting p, lead to

7ilao = Tijlac;

o The adjoint equations:

k
Py _ Tk ps + T
oxk is ]k + p]k + ]9pzk’
ark. o x
rewritten, after substitutin U ’Y” =T1kre ke or —1 —Tkps = (Div T);j, or,
8 p: oxk oxk is* jk Vis jk ’Y/s lk/ dx ok ist jk — ijr

even better

dln
RiC,‘j + Va,‘ ( ax\]/§> = (DiV T),]

In particular, by taking -y = 0, it follows that manifolds satisfying
Ric = -VdIn,/g

are critical points for the functional
][r 2 / gl]rls ]k

4.2. Riemannian Control with Hypersurface Integral-Type Cost Functional
Problem 8. Optimize J5,[R(-)] subject to Equations (5) and (6).

Let us consider Lagrange multipliers of type pl] = p]l = pl] and qlk = —qikﬁ = _qlsd i , and
the control Hamiltonian vector field:

1 I ikij (1
H'(x,g,T, p) = X' (x,8,T, R) — T, pl¥ + g7 ( R;,,*Ffjfiz)

Corollary 7. Suppose the tensor field R*(-) is an optimal solution for (rl?(a;( J=[R(1)], Equations(5)and(6)>

and that g*(-) and T*(-) are the corresponding optimal Riemannian structure and the optimal linear connection,

= «lk sk _ «kl ( wlkij _ 7q:lk]'1‘ _

respectively. Then there exist the dual objects p* piit = pji —Pjj ) and q* = (g5

q:kl ) satisfying:
o The state equations:
og*l  oH'  oH!
K gk gk’
axs opij I
oy ory, _ o' aH

ox oxl aqékij_aqékji;

vi=1,n,
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o The adjoint equations:

ap;fjlk

oxk

oH!
o'l

el

The optimality conditions:

oH!
aglt

0
2 ene

«likj «ljki " /
o\ (o o\ 0
oxk oxk arf.]. oI ]5.1- ox!

oH'  9H' | 0
- — € T X;
OR};  ORy; | 9x! *
e The boundary conditions:
) Ik 9 Ik
«lk [ 9X X _
G ( pij (agif ag Ik, m A2 | =0,
Tk Ik
#likj | ljki ax ax
Gl |lgs " +1 - =5 | [ QA =0,
( {< ) (arff I ﬂ

where G denotes the induced inner product on the exterior algebra of vector fields and 171 A 15 is the cross

product of the normal distribution {11,172} on 9X.
Problem 9. Optimize 5 [I'(-)] subject to Equation (5).

The corresponding Hamiltonian is:

H'(x,8,T,p) = X'(x,8,T) — g°T, plk

and the multivariate maximum principle is described in the following statement.

Corollary 8. Suppose the linear connection T*(-) is a

and that g*(-) is the corresponding optimal Riemannian structure. Then there exist a dual object p* = (p

*lk — _

Pji p;‘jkl) satisfying:

e  State equations:

o _ ot
oxk apg.‘

g

oH!

Adjoint equations:
ap;_«]]k

oxk

|

oH!
agli

|

Optimality conditions:

Boundary conditions:
9 XZ k
agli

*lk
pij” —

(-

N oH!
P~
o, ark

n optimal solution for (r?(a)x J=[T(+)], Equation (5))

wlk
ijo

oH!

+ (no sum onl);

ji

oH!
agﬁ

]

F e T, %,

)

9 e TL,;

ox!

ﬂ Ak, 11 A '72) =0.

|

aXZk
aglt
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4.3. Riemannian Control with Curvilinear Integral Cost Functional

The natural expression for dual mapping necessary to phrase the optimality conditions requires
curvature free Hamiltonians, therefore, if the cost functional is of a curvilinear type we can only
analyze optimal control problems depending on connection. More precisely, we analyze the problem
of optimizing J¢[I'(+)] subject to Equation (5). The corresponding Hamiltonian 1-form is:

H(x,8,T,p) = Xi(x,8T) — §°T, pij
and the corresponding multivariate maximum principle is described by the following statement.

Corollary 9. Suppose the linear connection T*(-) is an optimal control solution for

(m(a)x JelT(+)], Equation (5)> and that ¢*(-) is the corresponding optimal Riemannian structure. Then there
(-

exist a dual tensor field p* = (pj; = p};) to satisfy:

o The state equuations: )
ag*l] o E)Hl E)Hl .
ox! aPz] ap]1 !

e theadjoint equations

op;; oH, OH 9
Is yo_ ! ! o 1.
g {axl (agif agﬁ> o © G

o The optimality conditions:

5 € TG

ls{aHl aHz] 0
arfj ar]ki

e The terminal conditions:

wy | 9X 09X ,
pij(x) - |:ag,] + agﬂ] (X), Vx € {xzrxf}'

5. Conclusions

The idea of finding optimal Riemannian structures for geometric meaningful integrals has
classical roots. Nevertheless, the well-known Riemannian optimization approaches refer only to
particular problems (like Hilbert’s problem, or Plateau’s problem) and the results are generally obtained
via calculus of variations. This paper adapted multivariate optimal control techniques to general
Riemannian optimization problems in order to derive a Hamiltonian approach. The cost functionals
considered here were multiple, curvilinear, or hypersurface-type integrals. Descriptions for necessary
optimality conditions were given. Furthermore, Hilbert’s classical isoperimetric problem was solved
in a Hamiltonian manner, together with another fresh example.
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Abstract: In this article, we give ten examples of 2-connected seven dimensional Sasaki-Einstein
manifolds for which the third homology group is completely determined. Using the Boyer-Galicki
construction of links over particular Kahler-Einstein orbifolds, we apply a valid case of Orlik’s
conjecture to the links so that one is able to explicitly determine the entire third integral homology
group. We give ten such new examples, all of which have the third Betti number satisfy 10 <
bs(Lf) < 20.

Keywords: Sasaki-Einstein; Kahler 2; orbifolds; links

1. Introduction

A rich source of constructing Sasaki-Einstein (SE) metrics of positive Ricci curvature pioneered
by Boyer and Galicki in Reference [1] is via links of isolated hypersurface singularities defined by
weighted homogenous polynomials. These smooth manifolds have been used to show the existence of
SE metrics on many types of manifolds such as exotic spheres [2], rational homology spheres ([3,4])
and connected sums of S2 x S° [1] (see Reference [5] for more comprehensive survey.) SE manifolds
are also extremely important in relation to the AdS/CFT Correspondence which is a conjecture that,
in certain environments, relates Sasaki-Einstein geometries to particular superconformal theories.
(See for example, Reference [6] for recent progress in the relationship between SE geomtries and
the AdS/CFT conjecture.) In general it is very difficult to determine the diffeomorphism or even
homeomorphism type of a given link so determining any such geometric or topological data about the
link is always helpful. Along these lines, for a given link of dimension 2n — 1, Milnor and Orlik [7]
determined a formula for the n — 1 Betti number of the link and later on Orlik conjectured a formula
[8] (or see section two) for the torsion in n — 1 integral homology group. This conjecture due to Orlik
regarding the torsion in integral homology of links is known to hold in certain cases. Both of these
formulas have been instrumental in extracting some topological data on certain SE manifolds arising as
links. For example, based on work of Cheltsov [9], Boyer gave fourteen examples [10] of SE 7-manifolds
arising from links of isolated hypersurface singularities for which the third integral homology group is
completely determined. He used Brieskorn-Pham polynomials and Orlik polynomials (see Section 1),
both of which are cases in which the aforementioned conjecture holds. Inspired by these examples,
the main motivation for this article is to find other examples of SE 7-manifolds arising as links generated
by Brieskorn-Pham polynomials or Orlik polynomials so that one can explicitly calculate the third
integral homology group.

In general, there are obstructions to finding SE metrics (e.g., Bishop obstruction and Lichnerowicz
obstruction [11]) so it is worth finding as many examples as possible of manifolds which due admit SE
metrics. Indeed, the main result of the paper is a list of ten examples (see Section 2) of SE links defined
by Orlik polynomials. Because of this, we are then able to calculate the torsion in the third integral
homology group explicitly. In Section 2, we review the necessary background and in Section 3 we give
the table of ten examples together with the third Betti number and explicit forms of Hs.

Symmetry 2019, 11, 947; doi:10.3390/sym11070947 58 www.mdpi.com/journal /symmetry
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2. Background

Define the weighted C* action on C"*1 by
(20, s zn) —> (A%02, ..., A2,)

where w; are the weights which are positive integers and A € C*. We use the standard notation
w = (wp, ..., wy) to denote a weight vector. In addition, we assume

ged(wy, ..., wy) = 1.
Definition 1. A polynomial f € Clzo, ..., 2] is weighted homogenous if it satisfies
F(A®0zg, .., A2,y = A f (20, ..., 23)
forany A € C* and the positive integer d is the degree of f.

The link Ly of anisolated hypersurface singularity defined by a weighted homogenous polynomial
f with isolated singularity only at the origin is given by

_ 2n+1
Lff(:fﬂsn

where Cy is the weighted affine cone defined by f = 0in C"+1. By Milnor [12], L ris a smooth n —2
connected manifold of dimension 21 — 1.
Recall a Fano orbifold Z is an orbifold for which the orbifold anticanonical bundle is ample.

Theorem 1 ([1]). The link Ly as defined above admits as Sasaki-Einstein structure if and only if the Fano
orbifold Z¢ admits a Kihler-Einstein orbifold metric of scalar curvature 4n(n + 1)

Note that one simply needs to rescale a Kahler-Einstein metric of positive scalar curvature to get
the desired scalar curvature in the statement of the theorem. We can think of the weighted hypersurface
Zj as the quotient space of the link L by the locally free circle action where this circle action comes
from the weighted Sasakian structure on the link L;. In fact this whole process is summarized in the
commutative diagram [1]

Lf 52n+1

ool

Zy —— P(w)

where S2'*1 denotes the unit sphere with a weighted Sasakian structure, IP(w) is weighted projective
space coming from the quotient of S3'+1 by a weighted circle action generated from the weighted
Sasakian structure. The top horizontal arrow is a Sasakian embedding and the bottom arrow is Kéhler
embedding. Moreover the vertical arrows are orbifold Riemannian submersions.

Thus, a mechanism for constructing 2-connected Sasaki-Einstein 7-manifolds boils down to
finding orbifold Fano Kéhler-Einstein hypersurfaces in weighted projective 4-space P(w). Johnson
and Kollar in Reference [13] construct 4442 Fano orbifolds and of this list, 1936 of these are known to
admit orbifold Kahler-Einstein metrics. Therefore, by the above construction we state a theorem of
Boyer, Galicki and Nakamaye:

Theorem 2 ([3]). There exists 1936 2-connected Sasaki-Einstein 7-manifolds realized as links of isolated
hypersurface singularities defined by weighted homogenous polynomials.
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In Reference [3], the authors were able to determine many from the list of 1936 which yield rational
homology 7-spheres and they also determined the order of H3(Ls,Z). In this paper, we identify
ten links of isolated hypersurface singularities which can be given by so called Orlik polynomials,
thus allowing us to calculate the third integral homology group explicitly. First, we need to define
some quantities [7]:

d w;

"= ged(d,w;)’ %= ged(d, w;)

Let Ly denote a link of an isolated hypersurface singularity defined by a weighted homogenous
polynomial. The formula for the Betti number b, 1(Ly) is given by:

Ujpyee Uj

s

buo1(Ly) = Y (—1)"1s :
" 1( f) Z( ) Ui1...vislcm(ui],...,uis)
Here the sum is over all possible 2"+! subsets {iy, ..., is} of {0,...n}.

For the torsion data, Orlik conjectured [8] that for a given link L of dimension 21 — 1 one has
anl(Lf/Z)tor :Zdl ®Zd2@"'@zd, (1)

We should now review how the d; data are given, using the presentation given in Reference [5].
Given an index set {iy, iy, ...., is }, define I to be the set of all of the 2° subsets and let us designate | to
be all of the proper subsets. For each possible subset, we must define (inductively) a pair of numbers

the set of 2° positive integers, beginning with ¢ = gcd(uo, ..., uy) :

_ged(ug, - By, g, )

1reensds .
H Citrfit
T

Ci

Now, to get the k's:

Wjy - Wy

k: - _ X - . -1 s—t
i1,0is — En—s+1Kiy,..is = €n—s+1 ZI:( ) )y thlcm(ujw e u]_,)

where

0, ifn—s+1liseven
€n_s4+1 =
e 1, ifn—s+1isodd.

Then for each 1 < j <r = [max{k;, ;}|we put

Though the full conjecture is still open 45 years later, it is known to hold in certain cases. If the
link is given by either of the polynomials below

22z, 20+ zoZ ez 2 )

then the conjecture holds [8,14]. The first type of polynomial is called Brieskorn-Pham and the second
one is called Orlik. We will discuss these a bit more in the next section.

The formulas for the Betti numbers and torsion would indeed be quite tedious to compute by
hand, especially when the degree and the weights are large. Fortunately, Evan Thomas developed
a program written in C which computes the Betti numbers and the numbers d;, which generates the
torsion in Hy,_1(Ly, Z). Hence if the link is generated by a Brieskorn-Pham polynomial or an Orlik
polynomial, then one explicitly knows the torsion in H,,_1. This program was also used extensively in
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References [5,10,15]. I would like to thank Evan Thomas for giving me permission to use the program
and to make it available. See the Appendix A.

3. Examples

The paper of Johnson and Kolldr [13] lists (see appendix for link to list) Kédhler-Einstein and Tiger
of Fano orbifolds in weighted projective space P(w) gives the weight vector w = (wy, w1, w2, w3, wy)
with wy < wy < wy < w3 < wy (Which can always be done after an affine change of coordinates) and
it indicates if the weighted hypersurface admits an orbifold Kahler-Einstein structure. The degree d is
givenby d = (wo + - - - +wy4) — 1. It is easy to identify whether or not Kihler-Einstein orbifolds on the
list come from Brieskorn-Pham polynomials since for a given weight vector w on the list, the exponents
of the Brieskorn-Pham polynomial would have to be a; = d/w; for i = 0, ..., 4 and therefore one can do
a computer search to see if one gets integer results for the exponents. But are there any coming from
Orlik polynomials? To get some Orlik examples, one must search among the weighted hypersurfaces
in the list of 1936 Kéhler-Einstein orbifolds and see if the given weights can be represented by Orlik
polynomials. This is more difficult than in the Brieskorn-Pham case since the constraints, given in
3.1, are more complicated. The search was done within the range 9 < wy < 11 where there are 436
Fano orbifolds. Of this lot, 149 Fano orbifolds are known to admit an orbifold Fano Kihler-Einstein
structure. Therefore, for a given weight vector w = (wo, w1, W, W3, w4) one needs to see if there exists
exponents g;, in the Orlik polynomials satisfying

d = agwy = wo + wia1 = Wy + Wady = Wy + W3az = W3 + Wydy. 3)

The ten examples were found by hand, checking many different weights against the given
conditions. Once they were found, the computer program developed by Evan Thomas was
implemented to determine the Betti number and the torsion data. We now give the table of ten
examples. We list the weights, the quasihomogenous polynomial generating the link, the degree and
finally the third homology group. It is not claimed that this list is exhaustive. There may very well be
more examples using these methods.

(75,10,163,331,247) | z}l+20zP+2123+2923+2525 | 825 | 200 Zss® (Zs)*
(62,124,155,9,85) 204202342123+ 2923 42323 | 434 | 712 @ L (7,)?
(9,174,467,277,649) | zP+z0z]+z123+29234+2325 | 1575 | 712 & Zsps2(Z3)?
(87,348,145,11,193) | zg+z9z3+2123+20230 42375 | 783 72 @ Ty @ 7s
(100,350,9,113,229) | z8+z9z3+2123 +2025+2525 | 800 7% & Zygg
(9,291,488,181,787) | 20 +20z8+2123+292}+252% | 1755 | 2" @ Zsgs @ Zs
(10,164,333,71,253) | z83+z023+2125+2025+2375 | 830 7 @ Zogg
(10,540,275,163,103) | 2} +zoz2+2123+2p23+232) | 1090 | Z'° & Zy1g B 7y
(32,144,11,103,31) | z}0+z0z3+212)0+2p23+237] | 320 738 @ Zq0
(45,36,27,11,107) Z3+207)+21 25+ 2223042325 | 225 70 ©7s

4. Conclusions

Because Sasaki-Einstein manifolds of positive Ricci curvature play such an important role in the
AdS/CFT conjecture in string theory, it is of utmost importance to have as many examples as possible
of Sasaki-Einstein manifolds especially in dimensions five and seven. In this paper, ten new examples
of seven dimensional 2-connected Sasaki-Einstein manifolds were constructed by constructing links
using Orlik polynomials over particular Kahler-Einstein Fano orbifolds. The third homology group
was explicitly calculated using a conjectural formula which is known to be true for Orlik polynomials.
It is likely there are more examples using this approach but is difficult to detect them without a more
systematic approach.

Funding: Part of this article was prepared with the support of the James Michener Fellowship of
Swarthmore College.
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Appendix A

(a) The Johnson-Kollar list of hypersurfaces in weighted projective 4-space P(w) admitting
Kéhler-Einstein orbifold metrics is available at https:/ /web.math.princeton.edu/~jmjohnso/delpezzo/
KEandTiger.txt. It lists the weights followed by data on wether or not it is known if the hypersurface
admits a Kahler-Einstein orbifold metric.

(b) The code developed by Evan Thomas to compute the homology of links is available at https:
/ /blogs.swarthmore.edu/gomez/wp-content/uploads/2016/07/evans.c.
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Abstract: Let G/ H be a homogeneous space of a compact simple classical Lie group G. Assume that
the maximal torus T of H is conjugate to a torus T whose Lie algebra tg is the kernel of the maximal
root 3 of the root system of the complexified Lie algebra g°. We prove that such homogeneous
space is formal. As an application, we give a short direct proof of the formality property of compact
homogeneous 3-Sasakian spaces of classical type. This is a complement to the work of Ferndndez,
Mufioz, and Sanchez which contains a full analysis of the formality property of SO(3)-bundles over
the Wolf spaces and the proof of the formality property of homogeneous 3-Sasakian manifolds as
a corollary.

Keywords: formality; 3-Sasakian manifold; homogeneous space

1. Introduction

Formality is an important homotopic property of topological spaces. It is often related to
the existence of particular geometric structures on manifolds. For example, Kaehler manifolds
are formal [1], and the same holds for compact Riemannian symmetric spaces [2,3]. In general,
Sasakian manifolds do not possess this property. However, their higher order Massey products
vanish [4], and this can be regarded as a “formality-like” property as well. An interesting issue is
the formality of homogeneous spaces of compact Lie groups. For example, Amann [5] found several
characterizations of non-formality of homogeneous spaces. Some homogeneous spaces determined by
characters of maximal tori are not formal [6,7]. On the other hand, compact homogeneous spaces of
positive Euler characteristics are known to be formal [3,7] and the same holds for G/ H generated by a
finite order automorphism of G [8]. It should be noted that there is a general method of studying the
formality property of homogeneous spaces in terms of the Lie group-theoretic data [3,7]. However,
such methods may work for a given pair (G, H) together with the known embedding of H into G.
Hence, it is still interesting to find geometrically important classes of homogeneous spaces satisfying
formality or non-formality property. In this article, we prove the following result.

Theorem 1. Let G/ H be a homogeneous space of a compact simple classical Lie group G. Assume that the
maximal torus Ty of H is conjugate (in G) to the torus Tg whose Lie algebra is the kernel Ker B of the maximal
root B of the root system A(g®). Then G/ H is formal.

This class of homogeneous spaces has geometric significance. To show this we present the
following geometric application. In [9] the formality property of SO(3)-bundles over the Wolf spaces
was analyzed. Consequently, one obtains the formality property of any compact homogeneous
3-Sasakian manifold. In this note we show that if one restricts himself to this class of Riemannian
manifolds, then the proof can be obtained entirely in terms of the data of the 3-Sasakian homogeneous
space G/ H (at least for classical Lie groups G). Thus, we give a direct proof the following result [9].

Theorem 2. Let G be a classical compact simple Lie group. Then, any 3-Sasakian homogeneous space G/ H
is formal.

Symmetry 2019, 11, 1011; doi:10.3390/sym11081011 63 www.mdpi.com/journal /symmetry
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Although [9] contains much stronger and more general result, the direct proof still may be of
independent interest. This is motivated by the fact that homogeneous 3-Sasakian manifolds G/H
admit a description in terms of the root systems of the complexified Lie algebra g¢, and in some cases,
the formality property can be expressed via the same data [7] (see also [5,6]). It seems to make a
remark that Theorem 1 probably holds for all simple Lie groups. However, the method of proof uses
the generators of the ring of invariants of the Weyl group, which becomes computationally difficult
(compare, for example the expressions of such polynomials for the exceptional Lie groups [10]).

2. Preliminaries

2.1. Presentation and Notation

We approach the problem of formality from the point of view of the classical cohomology theory
of homogeneous spaces of compact Lie groups [7,11]. We use the basic notions and facts from the
theory of Lie groups and Lie algebras without explanations. Instead, we refer to [12]. We denote Lie
groups by capital letters G, H, ..., and their Lie algebras by the corresponding Gothic letters g, b, . . ..
Let G be a compact semisimple Lie group. The real cohomology algebra H*(G) is isomorphic to the
exterior algebra over the space of primitive elements Pg = (i1, ..., Yn):

H*(G) =2 APs=A(y1,---,Yn), ¥i € Pg,i=1,...,n =rank G.

The degrees of y; are equal to 2p; — 1, where p; are the exponents of g. We denote by S¢ the
ring of G-invariant polynomials on the Lie algebra g. Let T be a maximal torus of G. Consider the
Weyl group Wg = Ng(T)/T. It acts on t and on the polynomial algebra R[t] of all polynomials over
t. The subring Sy, of Wg-invariants in R[] is generated by # = rank G polynomials Fi, ..., F, of
degrees 2p;. The following isomorphism is well known [7,11]:

Sc = Sw, 2 R[J"e 2 R[F, ..., F,].

We will use a map 1 : A P — S called the transgression map [7,11]. The transgression ¢ maps
yi,i=1,...,n onto some free generators of Sy,. We follow [9] in the presentation of Sasakian and
3-Sasakian manifolds. One can also consult [13].

2.2. Formality

Here we recall some definitions and facts from the theory of minimal models and formality [14].
We consider differential graded commutative algebras, or DGAs, over the field R of real numbers.
The degree of an element a of a DGA is denoted by |a|.

Definition 1. A DGA (A, d) is minimal if:

1. A s the free algebra \ V over a graded vector space V. = @; V', and
2. there is a family of generators {ar}cy indexed by some well-ordered set I, such that |a,| < l|a| if
u < Tand each dar is expressed in terms of preceding ay,, p < 7. Thus, dar does not have a linear part.

An important example of DGA is the de Rham algebra (Q*(M), d) of a differentiable manifold
M, where d is the exterior differential. This DGA will be used in this article.

Given a differential graded commutative algebra (A, d), we denote its cohomology by H*(A).
The cohomology of a differential graded algebra H*(.A) is also a DGA with the multiplication inherited
from that on A and with zero differential. The DGA (A, d) is connected if H'(A) = R, and A is
1-connected if, in addition, H'(A) = 0. Morphisms between DGAs are required to preserve the degree
and to commute with the differential.
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Definition 2. A free graded differential algebra (\V, d) is called a minimal model of the differential graded
commutative algebra (A, d) if (\'V, d) is minimal and there exists a morphism of differential graded algebras

p: (AV, d) — (A d)
inducing an isomorphism p*: H*(\' V) — H*(.A) of cohomologies.

Definition 3. Two DGAs (A, d ) and (B,dg) are quasi-isomorphic, if there is a sequence of DGA algebras
(Aj, d;) and a sequence of morphisms between (A;,d;) and (Aji1,diq1) with (Ay,dy) = (A, da) and
(Ay,dy) = (B,dp) such that these morphisms induce isomorphisms of the corresponding cohomology algebras
(the morphisms may be directed arbitrarily).

It is known [14] that any connected differential graded algebra (A, d) has a minimal model which
is unique up to isomorphism.

Definition 4. A minimal model of a connected differentiable manifold M is a minimal model (\'V, d) for the
de Rham complex (Q* (M), d) of differential forms on M.

If M is a simply connected manifold, then the dual (77;(M) ® R)* of the vector space 7;(M) @ R
is isomorphic to V? for any i. This duality shows the relation between minimal models and homotopy
groups. The same result is valid when i > 1, the fundamental group 7r; (M) is nilpotent and its action
on 77;(M) is nilpotent for all j > 1.

Definition 5. A minimal algebra (\'V, d) is called formal if there exists a morphism of differential algebras
p: (AV,d) — (H*(A\V),0) inducing the identity map on cohomology.

A smooth manifold M is called formal if its minimal model is formal. Examples of formal
manifolds are ubiquitous: spheres, projective spaces, compact Lie groups, some homogeneous spaces,
flag manifolds, and all compact Kaehler manifolds [1,3,5,8,14].

It is important to note that quasi-isomorphic minimal algebras have isomorphic minimal models.
Therefore, to study formality of manifolds, one can use other “algebraic models”. This means that one
may take any DGAs (A, d4) which are quasi-isomorphic to the de Rham algebra. This will be used in
our analysis of formality of homogeneous spaces.

2.3. Quaternionic-Kaehler and 3-Sasakian Manifolds

A Riemannian 4n-dimensional manifold (X, 1) is called quaternionic-Kaehler, if the holonomy
group Hol(X, 1) is contained in Sp(n)Sp(1).

An odd dimensional Riemannian manifold (M, g) is Sasakian if its cone (M x R, ¢° = t?g + dt?)
is Kaehler. This means that there is a compatible integrable almost complex structure | so that
(M x R*,¢% ) is a Kaehler manifold. In this case, the vector field ¢ = ]% is a Killing vector field
of unit length. The 1-form 7 defined by 1(X) = g(&, X) for any vector field X on M is a contact
form, whose Reeb vector field is ¢. Let V denote the Levi-Civita connection of g. The (1,1)-tensor
¢(X) = Vx¢ satisfies the identities

¢* = —id+n® & g(¢(X),¢(Y)) = g(X,Y) — n(X)n(Y),

dn(X,Y) = 28(¢(X),Y),

for any vector fields X, Y.
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A Riemannian manifold (M, g) of dimension 41 + 3 is called 3-Sasakian, if the cone (M x R*, %)
admits three compatible integrable almost complex structures [y, [, J3 such that

Jil2=—Lh =15

and such that (M x R", ¢, J1, |, J3) is a hyperkaehler manifold. Thus, (M, ¢) admits three Sasakian
structures with Reeb vector fields 1, {2, {3 of the contact forms 71, 772, 173, and three tensors ¢y, 2, ¢3.
The following relations are satisfied:

1i(&) = 8(8i, &) = 0ij, ¢i(&;) = —¢;(&i) = &k,
nio¢; = —ijo i = 1
Piodj =@ =—¢johi+11i @& = P,

Ci ¢j] = 28,

for any cyclic permutation of (i, j, k) of (1,2,3).

Let (M, g) be a Riemannian manifold carrying a 3-Sasakian structure. Denote by Aut(M, g)
the subgroup of the isometry group Iso(M,g) consisting of all isometries preserving the
3-Sasakian structure

(8 8siMsspsrs =1,2,3).

By definition, a 3-Sasakian manifold (M, g) is called homogeneous, if Aut(M, g) acts transitively
on M.

By definition, a Wolf space is a homogeneous quaternionic-Kaehler manifold of positive scalar
curvature. The classification of the Wolf spaces is known [15,16] and can be reproduced as follows:

HP" = Sp(n+1)/(Sp(n) x Sp(1)), Gra(C**?), Gra(R"),
GI = G,/SO(4), FI = F;/Sp(3) - Sp(1), EII = E¢/SU(6) - Sp(1),
EVI = E;/Spin(12) - Spin(1), EIX = Eg/E7 - Sp(1).

Here Gry(R"*) denotes the Grassmannian of oriented real 4-planes. It follows that the
classification of homogeneous 3-Sasakian manifolds is given by the following result (see [9], Section 2).

Theorem 3. Let (M, g) be a 3-Sasakian homogeneous space. Then M is the total space of the fiber bundle
F—-M-—=W

over a Wolf space W. The fiber F is Sp(1) for M = S*'*3 and it equals SO(3) in all other cases. Moreover,
M is the one of the following homogeneous spaces:

Sp(n+1)/5p(n) 2§+, Sp(n+1)/ (Sp(n) x Z),
SU(n+2)/S(U(n) x U(1)),SO(m +4)/SO(m) x Sp(1),

Gz/Sp(l),F4/Sp(3), E6/SU(6),E7/SPin(12), Eg/E7,

where k > 0,n > 1,m > 3. For the first two cases Sp(0) means the trivial group.
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3. Proof of Theorem 1

3.1. A Theorem on Formality of Homogeneous Spaces

Theorem 4 ([5]). Let G/H be a homogeneous space of a compact semisimple Lie group G and let Ty be a
maximal torus in H. Then G/ H is formal if and only G/ Ty is formal.

3.2. Cartan Algebras

The material of this subsection is presented following [7]. It is well known that a homogeneous
space G/ H of a compact semisimple Lie group G has an algebraic model (which is called the Cartan
algebra) of the form

(C(g,b),d) = (Su ® APG,d)

where
d(g®1)=0,Vq € Sy
d(1®p) =j"(tc(p)), Vp € APg.

Here 1¢ : AP — Sg is the transgression, j* : Sg — Sy is a restriction map, and Sg, Sy are the
algebras of invariant polynomials on g and b, respectively. In particular, if H = T for some torus in G,
then j* is a restriction of any invariant polynomial in S onto the Lie algebra t. Please note that T need
not be maximal.

More generally, consider the DGA algebra of the form

(C,d) = (R[x1, ..., xm] @AWY, -+, Yn), d)

with the differential d vanishing on x;,i =1, ..., m and

d(yj) = F/'(xlr R

We assume that y; have some odd degrees 2/; — 1. Let H*(C) be the cohomology algebra of (C, d).
We will also use the notation
H*(C) =H(F, ..., Fy)

to stress the role of the ideal I = (Fy, ..., F,) (in the polynomial ring R[xy, ..., x]).

Recall the following definition. Let A be any commutative ring. A sequence ay, ..., ax of elements
in A is called regular, if a; is not a zero divisorin A/ (ay, ..., a;_1).

The following characterization of formality of a general Cartan algebra (C, d) is well known [7].

Theorem 5. A general Cartan algebra (C,d) is formal if and only if the ideal (Fy, ..., Fy,) has the following
property: the minimal system of generators is regular. The number of such generators cannot exceed m.

Finally, recall the following isomorphism
Sc = Sy, = R[{]",

where Sy, denotes the ring of polynomials on t which are invariant with respect to the action of the
Weyl group W of G. Also, there is a commutative diagram

Sqg — SWG

i Y

SH — SWH

67



Symmetry 2019, 11, 1011

which shows that the Cartan algebra (C(g, h) is isomorphic to the general Cartan algebra of the form
(C,d) =Rtu]™ @ Ay, -, yn)

d(yx) = j*(F),k=1,...,n,F € R["e.

Here Fy are free generators of the ring of invariants R[t]"Y¢ determined by the transgression.

Please note that in the sequel we will use the particular choices of free invariant generators of
polynomial algebras R[t]"¢ for each simple compact Lie group. These can be found in many sources,
we use [7], Example 1 on page 186.

3.3. Formality of G/ Tg

Proposition 1. Let G/ Tg be a homogeneous space of a compact classical Lie group G and a torus Ty whose Lie
algebra is the kernel of the maximal root. Then G/ Tg is formal.

Proof. The proof is based on the checking of the conditions of Theorem 5 for G/Tj in each case
Ay, By, Cy, Dy, separately (although the calculations are very similar). Also, due to the final remark in
the previous section, we can consider the algebraic model of G/ T/g in the form

(R[tﬁ] @ A(yl/ .. '/yn)/d)

with
d(yi) = Flg,i=1,...,n

In the proof we use the description of the maximal roots of the root systems of classical type [15].

Case 1 (Cy). In this case, in the coordinates x, ..., x; in t, the maximal root B has the form = 2x;.
Thus, tg is determined by the equation x; = 0, and the restrictions of F; on tz have the form
Fil; = Fi(0,x2, ..., xu). Please note that the ring of invariants R[t] W6 may have different sets of
generators, and in general we cannot take them arbitrarily, because they are determined by the
transgression. However, by Theorem 5, the formality property is determined not by the particular polynomials,
but by the whole ideal (F;, ..., F,). It follows that one can work with any set of generators. In case of Cy,
we can take
F(x1, ..., xp) = x%i 4. +x%i,i =1,...,n

The restrictions onto tg have the form
Fi(O,xz, .. ‘,x,,),

this sequence is obviously regular fori = 1, ...,n — 1. Since the number of variables is also n — 1,
the result follows.

Case 2 (B;;). Here B = x;1 + x2. We make the same argument to the previous case. Again, one may
choose the invariant generators in the form F; = Y} _; x¥,i = 1, ..., n. This time the restrictions will
take the form

Filiy = Fi(—X2,X2,X3.0,Xp) = 205 + 5 + - +x;,.

Again, this sequence is obviously regular fori =1, ..., n — 1 and the result follows from Theorem 5.

Case 3 (D). In this case, again, B = x; + xp. However, the invariant generators are different. One of
the possible choices is

n
2 -
Fi(x1, ..., xn) = Zxkz,l =1,....n—1,F =x1- - x;.
k=1
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Thus,
Fj‘fﬁ =F(—x2,x2, ..., xy),i < n,Fn|tﬂ = x%x3 Ce X

Since F;(—x2,x2, ..., xy) fori <n obviously constitute a regular sequence, and the number of variables
is n — 1, necessarily Fn|tﬂ e (R \tﬁ, oo, Fiq ‘{ﬁ). The formality property follows.

Case 4 (A;;). Here the standard coordinates in t satisfy the equality
x4+ x40 =0

In these coordinates f = x1 — x;41. One can choose the generating invariant polynomials in the form
n+l
F(xt, ..., xpp1) =Y x,i=2,...,n+1
k=1

The restrictions have the form
E(x1, ..., xp,x1),i=2,...,n+1.

These polynomials form a regular sequence for i = 2, ..., n, as required. The proof is complete.
O

3.4. Completion of Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 4 and Proposition 1.
4. Application: Formality of 3-Sasakian Homogeneous Manifolds of Classical Type

4.1. Quaternionic-Kaehler Symmetric Spaces (Wolf Spaces)

In this subsection we present a version of Theorem 3 in terms of the root systems
(see Theorems 6 and 7). Let g be a compact simple Lie algebra and t be its maximal abelian subalgebra.
Consider the complexifications g¢ and °. Thus, t° is a Cartan subalgebra of g°. Let A = A(g¢, t°) denote
the root system determined by t°. Choose the maximal root 8 € A with respect to some fixed ordering
of A. As usual, g, denotes the root space of &« € A. Define

h={Het|p(H) =0+ ),  gN(ga+0-a) @
a>0,(w,)=0
Put
a1 =gN ({Hp} + 95 +9-5), ]
and
t= [1 +ag. (3)

Theorem 6 (Wolf, [16]). If G/K is a quaternionic-Kaehler symmetric space, then K = Ly - Ay, where the Lie
algebras |y and ay are determined by Equations (1)-(3).

Theorem 7 ([9], Section 2). Let G/K = G/Lj - Ay be the quaternionic symmetric space. Then the
homogeneous space G/ Ly is 3-Sasakian. All compact homogeneous Sasakian manifolds are obtained in this way.

Remark 1. Theorem 7 follows from the description of 3-Sasakian manifolds in [9] together with
Theorem 6.
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4.2. Proof of Theorem 2

By Theorem 7, any compact homogeneous 3-Sasakian manifold G/ H has the form G/L; with L;
given by Theorem 6. One can easily notice that the maximal torus T7, in Ly has the Lie algebra of the
form tg = ker g for the maximal root B. By Theorem 1 the formality property of G/L; follows.

5. Conclusions

We have proved that if G is a classical compact Lie group, then the quotient of G by a torus
determined by a maximal root, is formal. This result may have important applications in geometry of
homogeneous spaces. As an example of such application we present a direct short proof of a result
of Fernandez, Mufioz and Sanchez about the formality property of some homogeneous 3-Sasakian
manifolds.
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Abstract: The aim of this paper is to show the existence and attainability of Karush—-Kuhn-Tucker
optimality conditions for weakly efficient Pareto points for vector equilibrium problems with the
addition of constraints in the novel context of Hadamard manifolds, as opposed to the classical
examples of Banach, normed or Hausdorff spaces. More specifically, classical necessary and sufficient
conditions for weakly efficient Pareto points to the constrained vector optimization problem are
presented. The results described in this article generalize results obtained by Gong (2008) and Wei
and Gong (2010) and Feng and Qiu (2014) from Hausdorff topological vector spaces, real normed
spaces, and real Banach spaces to Hadamard manifolds, respectively. This is done using a notion of
Riemannian symmetric spaces of a noncompact type as special Hadarmard manifolds.

Keywords: vector equilibrium problem; generalized convexity; hadamard manifolds; weakly efficient
pareto points

1. Introduction

The pursuit of equilibrium is a ubiquitous horizon in practically all areas of human activity.
For example, in economics, the dynamics of offer and demand are typically described as equilibrium
problems. In the same way, physical or social phenomena such as the distribution of particles in
a container, traffic flow or telecommunication networks can be accurately conceptualized in terms
of equilibrium.

However, it was not until Fan [1] that equilibrium theory was applied in the context of Euclidean
spaces. Mathematically, the simplest definition of a equilibrium problem consists in finding x € S
such that

F(x,y) >0,Vyes

where S C RR? is a nonempty closed set and F : R? x RF — R is an equilibrium bifunction, i.e.,
F(x,x) =0forallx € S.
Some of the main mathematical problems that can be phrased as equilibrium problems are:

e The weak minimum point of a multiobjective function f = (fi,..., fy) over a closed set S C R? is
any ¥ € S such that for any y € S, Ji such that f;(y) — f;(¥) > 0. Finding a weak minimum point
can be reduced to solving an equilibrium problem by virtue of setting

Flxy) = max [fi(y) ~ fi(x)]

=1,...,
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e  The Stampacchia variational inequality problem demands finding ¥ € S such that
<G(x),y—x>>0,Vyes
where G : R? — RP and S C R? is a closed set. This problem is also an equilibrium problem where
F(x,y) =< G(x),y —x > .

e  Nash equilibrium problems in a non-cooperative game with p players where each player 7 has a set
of possible strategies K; C R"™ aim to minimize a loss function f; : K — R with K = K; x ... x Kp.
Thus, a Nash equilibrium point is any ¥ € K such that no player can reduce its loss by unilaterally
changing their strategy, i.e., any ¥ € K such that

fi(x) < fi(x(yi))

holds for any y; € K; forany i = 1,..., p, with ¥(y;)) denoting the vector obtained from & by
replacing %; with y;. Therefore, this problem amounts to solving an equilibrium problem with

P
F(x,y) = ;Ui(x(]/i)) — fi(x)].

Despite their apparent diversity, all the above-mentioned problems can be framed as particular
cases of the vector equilibrium problem and thus can all be encompassed in a single mathematical
picture. Due to the power of this formulation, it is of great interest to obtain and study the
Karush-Kuhn-Tucker (KKT) optimality conditions for the solution of such, more general problems.

Thanks to their capacity to provide such a fundamental insight, vector equilibrium problems
are an active branch of non-linear analysis with plenty of publications being made up to this date.
For example, in 2003, authors such as Iusem and Sosa [2] studied the relation between equilibrium
problems and some auxiliary convex problems. In addition, over the past century, the field of physics
departed from euclidean geometry as a space in which to allocate its theories, opting instead for
more complex spaces also known as manifolds. A historical landmark that illustrates this example is
Einstein’s theory of gravity that revolves around the concept of space-time curvature on a Riemannian
manifold. Other less known but equally fundamental applications in the fields of physics involve the
appearance of symplectic manifolds in the treatment of Hamiltonian vector fields or Noether’s theorem.

Smooth Riemannian manifolds are spaces that contain curvature, as opposed to Euclidean spaces
which are flat everywhere. This can be mathematically expressed as ax +by ¢ M, Vx,y € M, a,b € R,
where M is a Riemannian manifold. Nonetheless, Riemannian geometry constitutes a generalization of
the Euclidean case. This can be easily understood by introducing the notion of tangent planes. For any
point of a smooth curved space, say a 2-Sphere, it is always possible to define a flat tangent plane
to that point; i.e., a Euclidean space. We can think of this in the same way we think of the Earth to
be flat at local scales while overall being spherical. Indeed, all curved manifolds locally resemble
Euclidean space, which is a vital property for our understanding of them. However, cartography
can empirically tell us that flat projections of curved surfaces onto planes fails to faithfully represent
the real dimensions of the objects that live on the original curved surface especially at large scales
where the locality condition starts weakening. Thus, metricity is no longer trivial and measurements
of distances need to account for such curvature.

At this point, we can already see how Euclidean spaces are simply Riemannian manifolds for
which the tangent plane to any of its points is identical to the plane itself. Thus, in Euclidean spaces,
vectors living of the surface are equivalent to vectors living on its tangent space. It is this key feature of
Euclidean geometry that allows for the simple definition of distance as the dot product. Thus, given a
vector u, if allocated in an Euclidean space, its length is given by |u|> =< u,u >. On the other
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hand, in non-flat spaces it is necessary to account for the distortion of the distances when projected
to the tangent space. Riemannian manifolds are those equipped with a so called “metric tensor”;
commonly denoted k;;, that allows us to adequately define distances; i.e., |u|? = ki/-ui ul. (see Section 2
for more details).

This new definition of length has direct short comings in minimization and equilibrium.
The Euclidean line element, the shortest connection between two points on a flat surface, is replaced on
manifolds by a geodesic equation which plays the role of straight lines in non-flat spaces. This can be
seen from the fact that geodesic curves are solutions to the Euler-Lagrange equations which minimize
the functional of the Lagrangian given by the metric of such space, £ = kijdxidxj , and as such describe
the trajectories that minimize the action necessary to move from A to B. For example, the orbits of
planets obey geodesics despite clearly not being straight in a Euclidean sense.

A Hadamard manifold is a simply connected complete Riemannian manifold of non-positive
sectional curvature. The motivation of the study of Hadamard spaces is that they share some properties
with Euclidean spaces. One of them is the separation theorem (see Ferreira and Oliveira [3]).

In addition, for any two points in M, there exists a minimal geodesic joining these two points.
In a Hadamard manifold, the geodesic between any two points is unique and the exponential map at
each point of M is a global diffeomorphism. Moreover, the exp map is defined on the whole tangent
space ([4]).

However, the minimization of functions on a Hadamard manifold is locally equivalent to the
smoothly constrained optimization problem on a Euclidean space, due to the fact that every C*
Hadamard manifold can be isometrically embedded in an Euclidean space by virtue of John Nash'’s
embedding theorem. This is consistent with the intuition we previously laid out.

The study of optimization problems on Hadamard manifolds is a powerful tool. This is due to
the fact that, generally, solving nonconvex constrained problems in R" with the Euclidean metric can
be also framed as solving the unconstrained convex minimization problem in the Hadamard manifold
feasible set with the affine metric (see [5]). In Colao et al. [5] the existence of solutions for equilibrium
problems under some suitable conditions on Hadamard manifolds and their applications to Nash
equilibrium for non-cooperative games was studied. In the same way, in Németh [6] the existence and
uniqueness results for variational inequality problems on Hadamard manifolds were obtained.

Moreover, many optimization problems cannot be solved in linear spaces, for example,
controlled thermonuclear fusion research (see [7]), signal processing, numerical analysis and computer
vision (see [8,9]) require Hadamard manifold structures for their modeling. Also, geometrical structures
hidden in data sets of machine learning problems are studied in terms of manifolds. In the field of
medicine, Hadamard manifolds have been used in the analysis of magnetic resonances to quantify the
growth of tumors and consequently deduce their state of progression, as shown by Fletcher et al. [10].
The geometry necessary to understand and perform these techniques is best understood through
the use of manifolds and symmetric structures. For example, the set of symmetric positive definite
matrices used in magnetic resonance imaging to study Alzheimer’s disease [11] is one case in which
this translation to manifolds is necessary. In addition, other problems in computer vision, signal
processing or learning algorithms employ geodesic curves when addressing optimization problems.
Finally, in economics, the search of Nash-Stampacchia equilibria points using Hadamard manifolds
has been used by Kristaly [12].

It is known that a convex environment has good properties for the search of optimal points.
In Ferreira [13], the author gives necessary and sufficient conditions for convex functions on Hadamard
manifolds. A significant generalization of the convex functions are the invex functions, introduced
by Hanson [14], where the x-y vector is replaced by any function #(x,y). The main result of
invex functions states that a scalar function is invex if and only if every critical point is a global
minimum solution. This property is essential to obtain optimal points through algorithms, due to
the coincidence of critical points and solutions being always assured. In Barani and Pouryayeli [15]
and Hosseini and Pouryayevali [16], the relation between invexity and monotonicity using the mean

ijr
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value theorem is studied. Ruiz-Garzén et al. [17] showed that invexity can be characterized in the
context of Riemannian manifolds for both scalar and vector cases, in a similar way to Euclidean spaces.
Recently, in Ahmad et al. [18] the authors introduced the log-preinvex and log-invex functions on
Riemannian manifolds and the mean value theorem on Cartan-Hadamard manifolds.

In the same way, several authors have studied vector equilibrium problems. Ansari and
Flores-Bazdn [19] were capable of providing a theorem of existence of solutions to vector
quasi-equilibrium problems. Furthermore, a characterization for a weakly efficient Pareto point for the
vector equilibrium problems with constraints under convexity conditions on real Hausdorff topological
vector spaces were presented by Gong [20]. In the following years, scalarization results for the solutions
to the vector equilibrium problems were also given by Gong [21]. Later, optimality conditions for
weakly efficient Pareto points to vector equilibrium problems with constraints in real normed spaces
were investigated by Wei and Gong [22]. Also, sufficient conditions of weakly efficient Pareto points
on real Banach spaces for vector equilibrium and vector optimization problems with constraints under
generalized invexity were obtained by Feng and Qiu [23].

Motivated by Gong’s works mentioned above, our objective will focus on extending the KKT
necessary and sufficient conditions for constrained vector equilibrium problems obtained in topological
or normed spaces to other environments like the Hadamard manifolds, not present in the literature up
to date of publication. Hence, we propose a generalization that extends the linear space definition to
Hadamard manifolds, by virtue of substituting line segments by geodesic arcs. We will see that the
KKT classic conditions for constrained vector optimization are a particular case of the ones obtained
for constrained vector equilibrium problem.

The organization of the paper is as follows: In Section 2, we discuss notation, differentials and
invex function concepts on Hadamard manifolds. Section 3 is devoted to proving the main results
obtained in this paper, and studying the necessary and sufficient optimality conditions for weakly
efficient points of the constrained vector equilibrium problem. Section 4 dwells on how the previous
results can be reduced to classical KKT conditions for constrained vector optimization problems,
first obtained by William Karush [24] and rediscovered by Harold Kuhn and Albert Tucker [25].
Finally, an example is presented as well as the final conclusions.

2. Preliminaries

Let M be a C**-manifold modeled on a Hilbert space H endowed with a Riemannian metric gy on
a tangent space Ty M. We denote by T, M the tangent space of M at x, by TM = ¢y TxM the tangent
bundle of M, by TM an open neighborhood of the submanifold M of TM. The corresponding norm is
denoted by |.||x and the length of a piecewise C! curve a : [a,b] — M is defined by

b
L) = [ 180t
We define d as the distance which induces the original topology on M such that
d(x,y) = inf{L(a)| ais a piecewise C' curve joining x and y Vx,yy € M}.

If d is the distance induced by the Riemannian metric k;; then any Riemannian manifold (M, k;;) can
be converted into a metric space (M, d). The derivatives of the curves at a point x on the manifold lies
in a vector space T, M. Whatever path « joining x and y in M such that L(a) = d(x,y) is a geodesic.
Letexp : TM — M be the Riemannian exponential map defined as exp, (V) = ay (1) for every
V € TM, where ay is the geodesic starting at x with velocity V (i.e., #(0) = x, 2/(0) = V).
Assume now that 77 isa map 77 : M x M — TM defined on the product manifold such that

n(x,y) € TyM, Vx,y € M.
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Definition 1. [26] A subset Sy of M is considered totally convex if Sy contains every geodesic ., of M whose
endpoints x and y belong to Sy.

On a Hadamard manifold M, we can define the function ;7 as 77(x, y) = a%,(0) forall x,y € M.
This function plays the same role of x — y € R". Here ay y is the unique minimal geodesic joining y to
x as follows

Qyy = expy()xexpy’lx) VA € [0,1].

Example 1. Let M = R, = {y € R:y > 0} endowed with the Riemannian metric defined by g(y) = y—2
be a Hadamard manifold. Hyperbolic spaces and geodesic spaces, more precisely, a Busemann non-positive
curvature (NPC) space are examples of Hadarmard manifolds.

We will need an adequate concept of the differential:

Definition 2. [27] A mapping f; : M — R is said to be a differential map along the geodesic w.,, at y € M if
and only if the limit

1oy filexpy(An(x,y))) — fiy)
S = Aol
exists.
The gradient of a real-valued C* function f = (fi,...fp) : St € M — R" on M in x, denoted by
gradfx = (f{(x), f3(x), ..., fr(x)), is the unique vector in Ty M such that dfx(X) = (gradf, X) for all X in
Ty M is the differential of f at X of X.

Remark 1. The differential of f at X of X is similar to the definition of directional derivative in the
Euclidean space.

Let S C M be a nonempty open totally convex subset and let F : Sy x S — R?, ¢ : 51 — RP
be mappings.

Definition 3. We define the constraint set S = {x € Sy : g(x) € —R", } and consider the vector equilibrium
problem with constraints (VEPC): find x € S such that

F(x,y) & —R.\ {0}, ¥y €S
where R is the non-negative orthant of RP.
We recall the classical concept:

Definition 4. A vector x € S satisfying F(x,y) ¢ —intRY, Wy € S is called a weakly efficient Pareto point
to the VEPC.

Notation 1. We denote as Hy(y) = F(x,y), Yy € Sy, given x € S, where H : S — RP is a mapping.

Inspired by the concept of convexity on a linear space, the notion of invexity function concept on
Hadamard manifolds has become a successful tool in vector optimization. This generalized definition
was notably provided by Hanson in [14].

Definition 5. Let Sy be a nonempty open totally convex subset of a Hadamard manifold M. A differentiable
h i Sy — RP function is said to be a RY -invex at ¥ € Sy respect tony : M x M — TM if there exist
n(x, %) € TeM such that

h(x) — h(%) — dhze(y(x, %)) € RE.
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Using the previously stated definitions, we can obtain the sufficient conditions for optimality by
virtue of the assumption of invexity of the functions of the problem.
3. Main Results

Next, we will obtain a characterization for the weakly efficient points of VEPC through the

application of necessary and sufficient optimality conditions. We start with the necessary conditions:

Theorem 1. [Necessary KKT-conditions] Let Sy be a nonempty open totally convex subset of a Hadamard
manifold M and let F : S; xS — RF, ¢: 51 — RP, 5 : M x M — TM be mappings. Let F(X,%) =
Hg(x) = 0. Assume that H and g are differentiable at X € S. Furthermore, assume that there exists x; € Sq
such that g(%) + dgz(17(x1, %)) € —int R If ¥ is a weakly efficient Pareto point to the VEPC, then there
exists v € RE\ {0}, u € RY, such that

vdHz(n(x, %)) + udgz(n(x,x)) >0, Vx € §1 1)
ug(x) =0. @)
Proof. Let there be X € S as a weakly efficient Pareto point to the VEPC. We denote by
W = {(y,z) € R” xR : thereexists x €S;, suchthat y—dHz(y(x,%)) € intR:,

z— [g(%) +dgs(y(x,7))] € int RY }.

It may be noted that W is a nonempty open totally convex set. This proof can be divided int