
Metformin
Edited by Anca Mihaela Pantea Stoian  

and Manfredi Rizzo

Edited by Anca Mihaela Pantea Stoian  
and Manfredi Rizzo

The book “Metformin” aims to bring to light new concepts and trends related to the 
many metformin therapeutic features. After a history of over 60 years, with moments 

of decline and spectacular returns, metformin can now be regarded as a universal 
panacea, the valences of its therapeutics being increasingly appreciated, both in the 

background treatment of diabetes and pre-diabetes, but also in reproductive pathology, 
cancer, cardiovascular disease, and antiageing. In this respect, the mechanisms of 

action and the pharmacodynamics of metformin seem to be incompletely known, a 
number of current studies have revealed new action valences.

Published in London, UK 

©  2020 IntechOpen 
©  curtoicurto / iStock

ISBN 978-1-83880-427-5

M
etform

in





Metformin
Edited by Anca Mihaela Pantea Stoian  

and Manfredi Rizzo

Published in London, United Kingdom





Supporting open minds since 2005



Metformin
http://dx.doi.org/10.5772/intechopen.77824
Edited by Anca Mihaela Pantea Stoian and Manfredi Rizzo

Contributors
Roxana Adriana Stoica, Simona Diana Stefan, Anca Pantea Stoian, Manfredi Rizzo, Andra-Iulia F. 
Suceveanu, Adrian-Paul Suceveanu, Cristian Serafinceanu, Elham Pourmatroud, Sergiu Ioan Micu, 
Madalina Elena Manea, Claudia Voinea, Laura Mazilu, Doina Catrinoiu, Irinel Parepa, Carmen Romero, 
Maritza P Garrido, Margarita Vega, Andreea Arsene, Adriana Florinela Catoi, Andreea Corina, Dan 
Cristian Vodnar, Felix Voinea, Andreea Gheorghe, Dana Stanculeanu, Malgorzata Tyszka-Czochara, 
Marcin Majka, Yun Yan, Karen Kover, Wayne V. Moore, Mariia Nagalievska, Halyna Hachkova, Nataliia 
Sybirna, Zhijun Luo, Xiaochen Wang, Yile Jiao, Jasna Kusturica, Aida Kulo Ćesić, Maida Rakanović-
Todić, Lejla Burnazović-Ristić, Sanita Maleškić Kapo, Reema Wahdan-Alaswad, Ann D. Thor

© The Editor(s) and the Author(s) 2020
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2020 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 7th floor, 10 Lower Thames Street, London,  
EC3R 6AF, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Metformin
Edited by Anca Mihaela Pantea Stoian and Manfredi Rizzo
p. cm.
Print ISBN 978-1-83880-427-5
Online ISBN 978-1-83880-428-2
eBook (PDF) ISBN 978-1-83880-760-3



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,800+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

123,000+
International authors and editors

135M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

 

CL
AR

IVATE ANALYTICS

IN D E X E D





Meet the editors

Dr Pantea Stoian is a diabetes, nutrition and metabolic diseases 
specialist, a senior specialist in health food hygiene, a resident 
in nephrology, and is competent in medical aesthetics and 
general ultrasonography. She has held an Associate Professor 
in the Diabetes, Nutrition, and Metabolic Diseases Department 
since 2019 at “Carol Davila” University of Medicine, Bucharest, 
Romania. Her field of activity is closely related to the micro- and 

macro-vascular complications in diabetes as well as their new therapies. Its main 
directions of activity are nutritional intervention in chronic pathology, as well as 
cardio-renal-metabolic risk assessment, and diabetes in cancer. In diabetes, she is 
currently engaged in new therapy and technology tools that screen and prevent 
diabetes and educate patients. She is a member of the European Association for the 
Study of Diabetes, Cardiometabolic Academy, Romanian Society of Diabetes, Nu-
trition and Metabolic Diseases, Romanian Diabetes Federation and Association for 
Renal Metabolic and Nutrition Studies. She has authored or co-authored 110 papers 
in national and international peer-reviewed journals. 

Prof. Manfredi Rizzo, MD, PhD. Prof. Rizzo studied medicine 
and received training in Internal Medicine in Italy. He spent 
several years in the United States, working at the University of 
California. There he was able to gain clinical and research expe-
rience on patients with different metabolic disorders, including 
dyslipidemia, diabetes, obesity, and metabolic syndrome. He 
is also the Head of the Cardiometabolic Research Laboratory 

of the Department of Internal Medicine at the University of Palermo. Prof. Rizzo 
maintains a faculty position in the USA, where he is Adjunct Associate Professor 
of Internal Medicine at the School of Medicine, University of South Carolina, with 
a research position in the Division of Endocrinology, Diabetes, and Metabolism. 
Currently, Prof. Rizzo is on sabbatical leave since he joined Novo Nordisk in 2019 as 
a Director of the Clinical, Medical & Regulatory Department, Novo Nordisk Europe 
East and South. Prof. Rizzo sits on the editorial board of 10 international journals. 
The research work of Prof. Rizzo combines translational and primary research, 
with 250+ scientific publications in international journals. Finally, Prof. Rizzo has 
been the Coordinator, Vice-Chairman or Co-Chairman of international expert 
panel documents in the field of dyslipidemia, diabetes, and metabolic syndrome. 
He is currently a National Board Member of the Italian Society of Nutraceuticals 
(SINUT) and Executive Board Member of the Mediterranean Group for the Study 
of Diabetes (MGSD). 



Contents

Preface III

Section 1
Metformin and Diabetes Mellitus 1

Chapter 1 3
Metformin Indications, Dosage, Adverse Reactions,  
and Contraindications
by Roxana Adriana Stoica, Diana Simona Ștefan, Manfredi Rizzo,  
Andra Iulia Suceveanu, Adrian Paul Suceveanu, Cristian Serafinceanu  
and Anca Pantea-Stoian

Chapter 2 21
New Insight into Metformin Mechanism of Action and Clinical  
Application
by Yun Yan, Karen L. Kover and Wayne V. Moore

Chapter 3 45
Metformin and Its Benefits in Improving Gut Microbiota Disturbances  
in Diabetes Patients
by Andra Iulia-Suceveanu, Sergiu Ioan Micu, Claudia Voinea,  
Madalina Elena Manea, Doina Catrinoiu, Laura Mazilu,  
Anca Pantea Stoian, Irinel Parepa, Roxana Adriana Stoica  
and Adrian-Paul Suceveanu

Chapter 4 61
Potential Protective Effects of Metformin on Ocular Complications  
in Patients with Type 2 Diabetes
by Jasna Kusturica, Aida Kulo, Maida Rakanović-Todić,  
Lejla Burnazović-Ristić and Sanita Maleškić

Chapter 5 75
Galega officinalis L. and Immunological Status in Diabetes Mellitus
by Mariia Nagalievska, Halyna Hachkova and Nataliia Sybirna

Section 2
Metformin and Reproductive System 97

Chapter 6 99
Metformin in Health Issues and Reproductive System
by Elham Pourmatroud



XIII

1

3

21

45

61

75

97

99

Contents

Preface 

Section 1
Metformin and Diabetes Mellitus 

Chapter 1 
Metformin Indications, Dosage, Adverse Reactions,  
and Contraindications
by Roxana Adriana Stoica, Diana Simona Ștefan, Manfredi Rizzo,  
Andra Iulia Suceveanu, Adrian Paul Suceveanu, Cristian Serafinceanu 
and Anca Pantea-Stoian

Chapter 2 
New Insight into Metformin Mechanism of Action and Clinical 
Application
by Yun Yan, Karen L. Kover and Wayne V. Moore

Chapter 3 
Metformin and Its Benefits in Improving Gut Microbiota Disturbances 
in Diabetes Patients
by Andra Iulia-Suceveanu, Sergiu Ioan Micu, Claudia Voinea,  
Madalina Elena Manea, Doina Catrinoiu, Laura Mazilu,  
Anca Pantea Stoian, Irinel Parepa, Roxana Adriana Stoica  
and Adrian-Paul Suceveanu

Chapter 4 
Potential Protective Effects of Metformin on Ocular Complications 
in Patients with Type 2 Diabetes
by Jasna Kusturica, Aida Kulo, Maida Rakanović-Todić,  
Lejla Burnazović-Ristić and Sanita Maleškić

Chapter 5 
Galega officinalis L. and Immunological Status in Diabetes Mellitus by 
Mariia Nagalievska, Halyna Hachkova and Nataliia Sybirna

Section 2
Metformin and Reproductive System 

Chapter 6 
Metformin in Health Issues and Reproductive System
by Elham Pourmatroud



XII

Section 3
Metformin and Cancer 111

Chapter 7 113
Metformin and Its Implication in Cancer Therapy
by Laura Mazilu, Dana Stanculeanu, Andreea Gheorghe,  
Adrian-Paul Suceveanu, Irinel Parepa, Felix Voinea, Doina Catrinoiu 
and Andra-Iulia Suceveanu

Chapter 8 127
Preventive and (Neo)Adjuvant Therapeutic Effects of Metformin 
on Cancer
by Yile Jiao, Xiaochen Wang and Zhijun Luo

Chapter 9 149
Metformin in Cervical Cancer: Metabolic Reprogramming
by Malgorzata Tyszka-Czochara and Marcin Majka

Chapter 10 163
Antitumoral Effects of Metformin in Ovarian Cancer
by Maritza P. Garrido, Margarita Vega and Carmen Romero

Chapter 11 181
Metformin Activity against Breast Cancer: Mechanistic Differences 
by Molecular Subtype and Metabolic Conditions
by Reema S. Wahdan-Alaswad and Ann D. Thor

Section 4
Metformin and Ageing 209

Chapter 12 211
Metformin Modulates the Mechanisms of Ageing
by Adriana Florinela Cӑtoi, Andra Diana Andreicuț, Dan Cristian Vodnar, 
Katalin Szabo, Andreea Corina, Andreea Arsene, Simona Diana Stefan,  
Roxana Adriana Stoica and Manfredi Rizzo

Preface

Metformin has been in clinical practice since 1957, having a sinuous route to date. There
have been many books, articles, and studies related to metformin, thus discovering
many therapeutic values. The book brings to light both the standard therapeutic recom-
mendations, namely, the first-intention therapy in patients with type 2 diabetes and
current trends in use. Metformin can now be regarded as a panacea, the valences of its
therapeutics being increasingly appreciated, both in the background treatmen t of dia-
betes, prediabetes, but also in reproductive pathology, cancer, cardiovascular disease,
and antiaging. In this respect, the mechanisms of action and the pharmacodynamics of
metformin seem to be incompletely known; several current studies have revealed new
action valences. The function of these pharmacogenetic mechanisms, as well as the
mode of action of metformin, needs to be known because they also predict the recom-
mendations of future therapeutics.

Its significant role in the treatment of type 2 diabetes is recognized by all international
guidelines in the field, placing it in the first line of treatment along with lifestyle optimi-
zation. New evidence also appears in the use of metformin in patients with type 1 dia-
betes, especially in those who develop insulin resistance. Some chapters explain adverse
effects, indications, and contraindications of metformin and also its implication in gut
microbiota. Immunological status in diabetes and the role of metformin was described
very extensively by Prof. Mariia Nagalievska et al. in their chapter, and Prof. Yun Yan et al.
elaborated several new insights in metformin action.

The international specialty literature brings new evidence in initiating metformin
therapy in prediabetes, but also the prevention of cancer or reproductive system
diseases, and cardiovascular or gastrointestinal disorders. In this way, several chapters
have been dedicated to the reproductive system and to the role of metformin in cancer
therapy, especially in cervical cancer, ovarian cancer, and breast cancer.

An important role of metformin is immune system modulation as well as antiaging 
therapy. A chapter was dedicated to the mechanism of ageing and the part of metformin
in preventing ageing.

I hope this book is a key for every reader to open new insights to metformin.

Anca Mihaela Pantea Stoian
Diabetes, Nutrition and Metabolic Diseases Department, 

Carol Davila University of Medicine, 
Bucharest, Romania

Manfredi Rizzo
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,

University of South Carolina,
Columbia, SC, USA

Department of Health Promotion, Mother and Child Care,
Internal Medicine and Medical Specialties,

University of Palermo,
Italy
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Chapter 1

Metformin Indications, 
Dosage, Adverse Reactions, and 
Contraindications
Roxana Adriana Stoica, Diana Simona Ștefan,  
Manfredi Rizzo, Andra Iulia Suceveanu,  
Adrian Paul Suceveanu, Cristian Serafinceanu 
and Anca Pantea-Stoian

Abstract

Metformin or dimethyl biguanide is the oral antidiabetic drug with the most 
extensive experience of prescribing in the clinical practice of type 2 diabetes 
mellitus. In this chapter, we reviewed the indications, contraindications, and 
adverse drug reactions (ADR) of metformin. The most significant adverse drug 
reactions of metformin are lactic acidosis, allergies, hypoglycemia, vitamin B12 
deficiency, altered taste, and gastrointestinal intolerance. Metformin is contra-
indicated in severe chronic diseases (hepatic, renal, and cardiac failure) or acute 
complications of diabetes (ketoacidosis and hyperosmolar state). Metformin 
is considered by all international guidelines the first-line treatment in type 2 
diabetes mellitus (T2DM) together with medical, nutritional therapy. It is one 
of the most prescribed molecules worldwide. Furthermore, metformin can also 
be prescribed for other diseases like polycystic ovary syndrome or prediabetes 
(impaired glucose tolerance/fasting hyperglycemia). Recent studies have shown 
positive results concerning the use of metformin for cardiovascular or neuro-
protective effects; also, several scientific papers are suggesting an antitumor or 
antiaging effect of metformin. Having such an excellent efficiency in practice, 
thus predicting its sustainability on the pharmaceutical market, research is 
directed toward characterizing metformin action on bacteria genera in the gut. 
Modifying the microbiota composition by pre- and probiotics could improve 
metformin action.

Keywords: metformin, indication, adverse reaction, gastric intolerance, lactic 
acidosis, diabetes

1. Introduction

Metformin or dimethyl biguanide has its origin in traditional herbal medicine 
(Galega officinalis or goat’s rue) that is rich in guanidine. Guanidine was proven to 
have the capacity to lower blood glucose and was used as an antidiabetic treatment 
from the 1920s to 1930s. Its administration was interrupted prematurely due to 
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toxicity. The medicine was valued again between the 1940s and 1950s when Jean 
Sterne observed the low blood glucose values of patients that were treated with 
metformin for influenza. Since then, the drug class of biguanides has received much 
consideration, especially buformin and phenformin in the 1970s and metformin 
after the 1990s [1].

The 60-year history of biguanides’ use is filled with victories and defeats, being 
the oral antidiabetic drug with the most extensive experience of prescribing in the 
clinical practice.

We will review in the following pages the indications, contraindications, and 
adverse drug reactions (ADR) of metformin and the single biguanide approved 
globally for use nowadays.

An ADR according to the World Health Organization is “a response to a drug 
which is noxious and unintended, and which occurs at doses normally used in man 
for the prophylaxis, diagnosis, or therapy of a disease, or the modification of physi-
ological function.” A side effect is “an unintended effect occurring at normal dose 
related to the pharmacological properties” [2].

A contraindication represents “something (such as a symptom or condition) that 
makes a particular treatment or procedure inadvisable” [3].

2. Indications

2.1 Type 2 diabetes mellitus (T2DM)

All international guidelines consider metformin and lifestyle intervention as the 
first-line treatment in adults with T2DM in order to improve glycemic control [4]. 
It can be used either as monotherapy or combination therapy with glucagon-like 
peptide-1 receptor agonist (GLP-1 RA), sodium-glucose co-transporter inhibitor 
(SGLT2i), dipeptidyl peptidase-4 inhibitor (DPP4-I), thiazolidinedione (TZD), 
sulfonylurea (SU), and insulin. Metformin therapy should be continued as long as it 
is well tolerated and not contraindicated. All other agents, including insulin, should 
be added to metformin treatment [4].

2.2 Prediabetes

Metformin can be used in order to prevent or delay the onset of T2DM [5]. 
Although other pharmacological agents have been used in clinical trials (acarbose 
[6–8], orlistat [9], and rosiglitazone [10]), it appears that metformin has the most 
reliable evidence base [11–16]. The vast majority of international guidelines recom-
mend metformin use in prediabetes. It can be used together with a combination of 
a lifestyle intervention for patients with prediabetes: impaired glucose tolerance 
(2-h post-load glucose 140–199 mg/dL), fasting hyperglycemia (100–125 mg/dl), 
or A1C 5.7–6.4% [17–23]. Metformin appears to have a more significant advantage 
when used in patients who are <60 years old and have a BMI >35 kg/m2 or women 
with prior gestational diabetes mellitus [16].

2.3 Type 1 diabetes mellitus (T1DM)

Metformin is sometimes used in T1DM to limit insulin dose requirement [24, 25]. 
The American Diabetes Association states that adding metformin leads to the 
reduction in body weight and can improve lipid levels, but not HbA1c [4, 26]. The 
REMOVAL study suggests that metformin might also reduce atherosclerosis progres-
sion, thus suggesting to improve CVD risk management in type 1 diabetes [27, 28].
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2.4 Gestational diabetes mellitus (GDM)

Lifestyle modification is the first-line therapy for GDM. If glycemic targets are not 
achieved, then insulin treatment is required for lowering blood glucose; metformin 
can also be considered if the patient cannot take or declines insulin [29]. Some con-
trolled randomized trials are proving limited efficacy of metformin during pregnancy 
[30, 31]. Metformin therapy is associated with a lower risk of neonatal hypoglycemia 
and less maternal weight gain than insulin in systematic reviews [32–34]; metformin 
may slightly increase the risk of prematurity, and it crosses the placenta [35]. Thus, 
the ADA considers that metformin should not be used as first-line agents [36].

2.5 Polycystic ovary syndrome (PCOS)

PCOS patients suffer from insulin resistance and hyperinsulinemia [37]. 
Metformin has been used for PCOS treatment [38] for treating the metabolic 
abnormalities of PCOS. A recent meta-analysis [39] demonstrated that metformin 
could decrease testosterone and insulin level in women with PCOS.

2.6 Antitumor or antiaging effect of metformin

Several studies showed an increased life-span when using metformin (4–6% 
in different mouse breeds or a mean life-span increased by 14% and maximum 
life-span increased by 1 month of treatment with metformin is started early in life) 
[40, 41]. In the United Kingdom Prospective Diabetes Study (UKPDS), the use 
of metformin decreased the risk of cardiovascular disease, cancer incidence, and 
overall mortality, compared with other antidiabetic drugs [42].

Epidemiological studies reported a positive result of metformin concerning 
ovarian [43, 44], breast, prostate, or colorectal tumors [45–48] enhancing the 
antitumor effect of metformin. Furthermore, studies are demonstrating a reduced 
incidence of several gastroenterological cancers and a reduction in cancer mortality 
when using metformin [49, 50].

2.7 Cardiovascular or neuroprotective effects

UKPDS was the first study that demonstrated the cardiovascular benefit of 
metformin; the risk of all-cause mortality and acute myocardial infarction was 
significantly reduced in overweight patients with T2DM [42]. The 10-year post-
interventional follow-up of the UKPDS survivor cohort revealed that metformin 
treatment had a long-term benefit on cardiovascular risk [51].

The cardiovascular protective effects of metformin could be explained by the 
reduced level of LDL cholesterol [52], the limitation of weight gain, [53] and the 
improvement of oxidative stress, inflammatory response, and the endothelial cell 
function [54].

It has been reported that patients treated with metformin have lower risk of 
dementia than those with other diabetes medications [55]. Metformin has a better 
protective effect on the domain of verbal learning, working memory, and executive 
function than other diabetic treatments [56].

2.8 Antipsychotic-induced weight gain

Results of meta-analyses of RCTs (primarily in patients with schizophrenia and 
schizoaffective disorder) support the use of metformin for weight loss, preventing 
weight gain associated with second-generation antipsychotics in adult patients [57]. 
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weight gain associated with second-generation antipsychotics in adult patients [57]. 



Metformin

6

Metformin can be recommended as a second-line option after nonpharmacologic strate-
gies for managing weight gain in patients with mood disorders and is recognized as often 
being used as a secondary prevention strategy for antipsychotic-related weight gain [58].

3. Dosage

The dose for glucose-lowering efficacy is usually in the range of 500–2000 mg/
day. There is no standard dosage regimen for the management of hyperglycemia in 
patients with type 2 diabetes. On the other side, clinically significant responses are 
not seen at doses below 1500–2000 mg per day.

The dosage of metformin must be individualized for every patient considering 
effectiveness and tolerance while not exceeding the maximum recommended daily 
doses (2550 mg in adults and 2000 mg in pediatric patients >10 years of age) (Table 1).

Patients that are receiving immediate-release metformin treatment may be switched 
to extended form once daily with the same total daily dose (up to 2000 mg daily).

In the case of renal impairment, the dosage of metformin must be adjusted 
(Table 2).

4. Adverse drug reactions of metformin

4.1 Lactic acidosis (very rare)

Phenformin and buformin were two potent biguanides that were used in the 
1970s for type 2 diabetes treatment. The Swedish Adverse Drug Reaction Committee 

Renal impairment eGFR

<30 30–45 >45

Initiation Contraindicated Not recommended No dose adjustment 
needed

If eGFR falls during 
treatment

Stop Assess the benefit-risk of 
continuing therapy

No dose adjustment 
needed

Table 2. 
Dosage of metformin for renal impairment.

Initial dose Titration dose Maximum dose

Adults Immediate-
release 

metformin

500 mg/daily or 
850 mg/daily

500 mg/weekly or 
850 mg/2 weeks

2550 mg/daily

Extended-release 
metformin

500 mg/daily or 
1000 mg/daily

500 mg/weekly 2000 mg/daily

Geriatric 
use

With caution; to start at the low end of the dosing range,
assess renal function more frequently

Pediatric 
use 
>10 years 
old

Immediate 
release

500 mg/daily 500 mg/weekly 2000 mg/daily

Extended release Not yet established

Table 1. 
Dosage of metformin.
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analyzed the reports from 1965 to 1977 that involved biguanides (0.6% of the total). 
The fact that attracted attention was that in 6% of the cases in which the patient died 
(the majority with lactic acidosis), phenformin was administered [59]. After this 
committee report analysis, the class was used with precaution, and metformin was 
favored over phenformin because there was an early study that showed that type 2 
diabetic patients admitted in the hospital had a higher mean lactate level when they 
were treated with other medicine instead of the first-mentioned earlier [59, 60].

A Cochrane meta-analysis that was published in 2006 that analyzed data from 
206 trials and cohort studies did not find any case of lactic acidosis in metformin-
treated patients or the control group. Also, the lactate level was not significantly 
raised in the metformin group, although there was a small difference between 
patients treated with this biguanide and phenformin [61].

A case-control study with 10.652 Danish type 2 diabetic patients showed that 
the lactic acidosis incidence in patients treated with metformin was 391/100.000 
person-years, but the use of the drug itself did not elevate the risk; associated 
diseases had greater importance [62].

4.2 Allergic reactions (infrequent)

Systemic allergic reactions to metformin are infrequent [63, 64]. It can be used 
in patients with asthma that have hypersensitivity, without increasing the risk of 
related outcomes, meaning hospitalizations, asthma-related emergency room visits, 
or exacerbations [65].

Cutaneous allergic reactions have been described scarcely ever, but clinicians 
should be aware of their existence [66].

4.3 Hypoglycemia (very rare)

In monotherapy as a first-line agent, metformin was proven to be safe and 
beneficial in a recent meta-analysis. The hypoglycemic risk was lower than for 
monotherapy with sulfonylurea [67].

Rare cases in elderly patients, with comorbidities and polypharmacy (angio-
tensin-converting enzyme inhibitors or nonsteroidal anti-inflammatory drugs) or 
combined with malnutrition, have been described [68].

4.4 Vitamin B12 deficiency (rare)

The American Diabetes Association Guidelines recommend that potential 
vitamin B12 deficiency should be taken into consideration and screened in type 
2 diabetes patients long-treated with high-dose metformin (more than 2 g/day) 
[59]. A meta-analysis of 29 studies showed that the metformin-treated group had a 
significantly lower level of this vitamin [69]. The implied mechanisms are:

• The drug acts as a competitor for vitamin B12 absorption.

• It affects the intrinsic factor action.

• It generates bacterial overgrowth because it alters bowel movement [70].

4.5 Altered taste (frequent)

Taste disturbance is an adverse effect that can be caused by the accumulation 
and secretion of metformin in saliva. Lee N et al. demonstrated that the salivary 
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glands express the organic cation transporter-3 (OCT3) in high amounts that is 
responsible for metformin carriage and could be involved in the mechanism of this 
side effect. In animal studies, the OCT3(−/−) mice, the uptake of metformin in the 
saliva was downregulated [71].

4.6 Gastrointestinal intolerance (widespread)

Gastrointestinal side effects include diarrhea, nausea, meteorism, and constipa-
tion and affect approximately 20% of the patients [71, 72].

The hydrochloride salt of metformin is usually administered orally and is 
absorbed mostly by the small intestine. The concentration inside the enterocyte can 
reach up to 300 times the level in the circulation and depends on drug transport by 
organic cation transporter 1 (OCT1) [67]. Also, metformin increases glucose use 
in the anaerobic cycle and lactate production inside the enterocyte. Local higher 
production of lactate could be associated with adverse reactions [73].

Scarpello et al. demonstrated that metformin slows the absorption of bile acids, 
consequently leading to osmotic diarrhea [74]. On the contrary, the serum measures 
of lactate, serotonin, or bile acids were similar in normal and intolerant volunteers 
after a 500-mg dose of metformin, making the authors conclude that the intoler-
ance is probably related to local factors within the lumen or enterocyte [73].

Some authors suggested that a reduced function of OCT1 could have an effect 
on the tolerability of metformin in the digestive system. The population with a 
reduced-function OCT1 alleles also had a higher increase of metformin intoler-
ance. If this population was additionally treated with an OCT1 inhibitor, the risk 
increased even more [75]. Thus, patients that are under treatment with other 
medications that interact with OCT1 could have a higher risk for gastrointestinal 
ADR [75].

There are several formulations like the immediate-release (IR) tablets that result 
in high local concentration, extended-release tablets (XR) that have a prolonged 
discharge of the active molecule due to a dual polymer matrix, and delayed-release 
tablets (DR). The XR and the DR forms help in uniformly spreading out molecules 
along the intestinal membrane and prevent intolerance [75].

4.7 Hypothyroidism (controversial)

Metformin acts by activating adenosine monophosphate-activated protein 
kinase (AMPK), an enzyme that also activates thyroid iodine in vitro models. Thus, 
it was assumed that metformin could alter thyroid function [76]. In healthy volun-
teers, only the level of T3 was decreased by metformin administration, but not the 
iodine uptake, TSH, or fT4 [76].

Following this idea, observational studies proved that metformin treatment 
could reduce thyroid-stimulating hormone (TSH) level, but randomized control 
trials performed afterward failed to certify this hypothesis [77].

5. Contraindications

The indications and efficiency of metformin in type 2 diabetes are clearly stated 
in current guidelines [4] and continue to extend to other branches of medicine. For 
example, the UKPDS study revealed that metformin is associated with a lower risk 
of mortality [37], and some researchers tried to use metformin as an antiaging drug. 
Besides its broad indications, metformin remains contraindicated in many condi-
tions associated with hypoxemia because it can lead to lactic acidosis [78].

9

Metformin Indications, Dosage, Adverse Reactions, and Contraindications
DOI: http://dx.doi.org/10.5772/intechopen.88675

5.1 Ketoacidosis

In type 2 diabetes patients with severe hyperglycemia and ketoacidosis or type 
1 diabetes, insulin treatment should be initiated [4]. When the glycemic values are 
balanced, and if the patient does not have other contraindications, metformin treat-
ment can be started in type 2 diabetes [4].

In type 1 diabetes, metformin is solely administered as an adjuvant because it 
can reduce the insulin requirements [25]. A randomized controlled trial found that 
metformin increases the risk for gastrointestinal adverse events in overweight type 1 
diabetes patients, with no benefit for glycemic control, so a clinician should reach a 
decision depending on patient particularities and response [79].

5.2 Cardiac failure

After the warning regarding lactic acidosis, cardiac failure was put on the list 
with contraindications. Afterward, observational studies [80] and systematic 
reviews [81, 82] showed that metformin could be used in stable heart failure. If 
patients develop congestive heart failure or concomitantly have other contraindica-
tions or acute diseases, metformin should be stopped. The studies realized and 
included in the meta-analysis are very heterogeneous, most of them comparing 
different medications, but with no specifications regarding the mean dose of met-
formin or other classes. Overall, the mortality rate was 22% lower in patients with 
heart failure and type 2 diabetes treated with metformin [82].

5.3 Chronic kidney disease (CKD)

Metformin is restricted in patients with eGFR less than 30 ml/min/1.73 m2 
(stage IV CKD), and dose must be adjusted beginning with an eGFR below 45 ml/
min/1.73 m2 (stage IIIb) [4]. In a cohort study of a national registry, metformin 
was associated with a lower rate of mortality and serious adverse events at an eGFR 
between 45 and 60 ml/min/1.73 m2 and had neutral effects on the same variables at 
eGFR between 30 and 45 ml/min/1.73 m2. Although its effect is less evident in stage 
IV chronic kidney disease, the benefit of biguanide treatment outweighs the ADR 
risk in a 4-year follow-up [82, 83].

5.4 Hepatic failure and cirrhosis

Impaired hepatic function is another warning from the FDA [64]. This term 
includes a broad spectrum of liver pathology, and metformin treatment should be 
tailored. In a retrospective study that included patients with cirrhosis, metformin 
had a protective effect for encephalopathy development [84]. Likewise, in another 
retrospective study, biguanide treatment was continued after cirrhosis diagnosis 
and was associated with improved survival [85]. In patients with cirrhosis second-
ary to hepatitis C virus infection, the risk of hepatocellular carcinoma was reduced 
during a 5-year follow-up [86].

5.5 Respiratory insufficiency

Because the risk of lactic acidosis is higher in patients with altered blood gas 
exchange like in chronic obstructive pulmonary disease (COPD), asthma, restrictive 
pulmonary pathologies, the FDA and EMA recommend precaution [63, 64].  
A randomized clinical trial used metformin in a rapidly escalated dose after a COPD 
exacerbation and showed no amelioration in glycemic profile. This could be since 
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mean in-hospital glycemia was assessed and it usually takes 1–2 weeks for metformin 
to reach its maximum hypoglycemic potential; there were no cases of lactic acidosis, 
and mean serum lactate was similar in the intervention and placebo group [87].

6. Special populations

6.1 Children

Metformin is indicated now in children above 10 years [63, 64], although there 
were studies that included obese participants above 7 years without side effects [88].

6.2 Pregnancy

There are limited data that could not identify a drug-associated risk of miscar-
riage or congenital disabilities. Metformin use was not associated with any of these 
maternal or fetal outcomes in post-marketing studies with small sample size or in 
meta-analyses of the randomized clinical trials that included pregnant women. The 
risk of stillbirth, congenital disabilities, and macrosomia can be increased if the 
patients do not have reasonable control under this oral treatment. Thus, the risk is 
falsely attributed to metformin [89].

6.3 Lactation

Metformin is present in the human milk in insignificant concentration. The 
potential adverse effect on the child or milk production has not been described [89].

6.4 Elderly

There is a study which compared pharmacokinetics and pharmacodynamics 
of metformin in the older population (65–85 years) versus young controls. Results 
showed that the glucose-lowering effect was similar in both groups, although the 
maximum concentration and exposure were two times higher in the advanced age 
population. Usually, it is not recommended in patients above 85 years old because 
they have a reduced eGFR [90].

7. Overdosage

A retrospective cohort study performed in the emergency department analyzed 
56 of self-reported metformin overdose from a total of 2872 cases (1.9%). The 
incidence of hyperlactatemia was 56.4%, and that of metformin-associated lactic 
acidosis (MALA) was 17.9%. When the patient is co-ingested with acetaminophen, 
the risk of MALA was higher. No case resulted in death [91].

Treatment in metformin overdose includes supportive care, gastrointestinal 
decontamination (gastric lavage), alkalinization, and even emergency hemodialysis 
in severe cases [92].

8. Future directions: metformin and metagenome

There were some studies on human microbiota, which suggested that metformin 
induces dysbiosis and promotes nutritional imbalances for specific bacterial types 
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in healthy volunteers [93, 94]. Escherichia sp. has a selective advantage over other 
organisms [95].

Twelve bacterial species that were present at baseline predicted the appear-
ance of gastrointestinal adverse events (self-reported) [94]. Characterizing these 
bacteria genera and modifying the microbiota composition by pre- and probiotics 
could improve metformin action. Also, these bacteria could be set as new targets for 
diabetes treatment.

9. Conclusions

Besides its controversial history, metformin remains the most used medicine in 
type 2 diabetes treatment. Progressive dose increases should be encouraged in order 
to prevent gastrointestinal adverse effects. Lactic acidosis is obsolete if the patient 
does not have other severe comorbidities. The indications of metformin currently 
extend to other areas like oncology, endocrinology, and gastroenterology and 
should offer the scientific world more information about its adverse effects.
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maternal or fetal outcomes in post-marketing studies with small sample size or in 
meta-analyses of the randomized clinical trials that included pregnant women. The 
risk of stillbirth, congenital disabilities, and macrosomia can be increased if the 
patients do not have reasonable control under this oral treatment. Thus, the risk is 
falsely attributed to metformin [89].

6.3 Lactation

Metformin is present in the human milk in insignificant concentration. The 
potential adverse effect on the child or milk production has not been described [89].

6.4 Elderly

There is a study which compared pharmacokinetics and pharmacodynamics 
of metformin in the older population (65–85 years) versus young controls. Results 
showed that the glucose-lowering effect was similar in both groups, although the 
maximum concentration and exposure were two times higher in the advanced age 
population. Usually, it is not recommended in patients above 85 years old because 
they have a reduced eGFR [90].

7. Overdosage

A retrospective cohort study performed in the emergency department analyzed 
56 of self-reported metformin overdose from a total of 2872 cases (1.9%). The 
incidence of hyperlactatemia was 56.4%, and that of metformin-associated lactic 
acidosis (MALA) was 17.9%. When the patient is co-ingested with acetaminophen, 
the risk of MALA was higher. No case resulted in death [91].

Treatment in metformin overdose includes supportive care, gastrointestinal 
decontamination (gastric lavage), alkalinization, and even emergency hemodialysis 
in severe cases [92].

8. Future directions: metformin and metagenome

There were some studies on human microbiota, which suggested that metformin 
induces dysbiosis and promotes nutritional imbalances for specific bacterial types 
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in healthy volunteers [93, 94]. Escherichia sp. has a selective advantage over other 
organisms [95].

Twelve bacterial species that were present at baseline predicted the appear-
ance of gastrointestinal adverse events (self-reported) [94]. Characterizing these 
bacteria genera and modifying the microbiota composition by pre- and probiotics 
could improve metformin action. Also, these bacteria could be set as new targets for 
diabetes treatment.

9. Conclusions

Besides its controversial history, metformin remains the most used medicine in 
type 2 diabetes treatment. Progressive dose increases should be encouraged in order 
to prevent gastrointestinal adverse effects. Lactic acidosis is obsolete if the patient 
does not have other severe comorbidities. The indications of metformin currently 
extend to other areas like oncology, endocrinology, and gastroenterology and 
should offer the scientific world more information about its adverse effects.
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Chapter 2

New Insight into Metformin 
Mechanism of Action and Clinical 
Application
Yun Yan, Karen L. Kover and Wayne V. Moore

Abstract

Metformin is the first-line medication for Type 2 diabetes (T2D) treatment, 
and it is the only US FDA approved oral antidiabetic medication for pediatric 
patients with T2D 10 years and older. Metformin is also used to treat polycystic 
ovary syndrome (PCOS), another condition with underlying insulin resistance. 
The clinical applications of metformin are continuing to expand into other 
fields including cancer, aging, cardiovascular diseases, and neurodegenerative 
diseases. Metformin modulates multiple biological pathways. Its novel proper-
ties and effects continue to evolve; however, its molecular mechanism of action 
remains incompletely understood. In this chapter, we focus on the recent trans-
lational research and clinical data on the molecular action of metformin and the 
evidence linking the effects of metformin on insulin resistance, prediabetes, 
diabetes, aging, cancer, PCOS, cardiovascular diseases, and neurodegenerative 
diseases.

Keywords: metformin, insulin, insulin resistance, diabetes, aging, PCOS, cancer, 
cardiovascular, neurodegenerative

1. Introduction

Synthesis of metformin was reported in 1922 and its effect of lowering 
glucose was reported soon after. Metformin was first reported to be used for 
the treatment of diabetes by French physician Jean Steme in 1957. The effect of 
metformin on improvement of morbidity and mortality in type 2 diabetes (T2D) 
was confirmed in the United Kingdom Prospective Diabetes Study (UKPDS), a 
large clinical trial performed in 1980–1990s [1]. It was approved for T2D treat-
ment in adults by US FDA in 1994 and for pediatric patients 10 years and older 
in 2000. Metformin is prescribed world-wide as the first-line oral drug for adults 
and children with T2D. Its physiological effects related to T2D include increase 
in insulin sensitivity, reduction of gluconeogenesis in the liver, enhanced glucose 
uptake by muscle, and reduced intestinal glucose absorption. Several molecular 
mechanisms of action have been proposed but more remain to be discovered. In 
this chapter, we will review molecular mechanisms of action of metformin and its 
prospect for clinical application.
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2. Mechanisms of action

The potential mechanisms of metformin action involve several pathways. The 
AMPK-pathway plays an important role in metformin actions [2, 3]. Metformin 
inhibits the mitochondrial respiratory chain (complex I), which increases the AMP to 
ATP ratio, leading to the phosphorylation of AMP-activated protein kinase (AMPK) 
at Thr-172. We have demonstrated that metformin treatment increases protein level 
of phosphorylated AMPK in high-glucose-treated endothelial cells [4]. The phosphor-
ylated AMPK subsequently phosphorylates multiple downstream effectors to regulate 
cellular metabolism and energy homeostasis [5]. These downstream effectors include 
thioredoxin interacting protein (TXNIP) and TBC1D1, a RAB-GTPase activating 
protein and a member of the tre-2/BUB2/cdc1 domain family. Phosphorylated TXNIP 
and TBC1D1 increase the plasma membrane localization of glucose transporter 1 
(GLUT1) and GLUT4, respectively [6, 7], and regulate glycogen synthases (GYS1 and 
GYS2) to prevent the storage of glycogen [8]. Some actions of metformin have been 
found to be AMPK-independent [9].

In diabetic mice, metformin has an effect on gut microbiota by inducing a pro-
found shift in the gut microbial community profile, resulting in an increase in the 
Akkermansia spp. population [10] and cAMP-induced agmatine production [11], 
which may decrease absorption of glucose from the gastrointestinal tract and increase 
lipid metabolism respectively. In addition, metformin decreases insulin-induced 
suppression of fatty acid oxidation and lowers lipid content of hepatic cells [12].

3. Insulin resistance

Insulin resistance (IR) is a condition in which the cellular response to insulin is 
decreased resulting in elevated insulin levels (hyperinsulinism). When the beta cells 
are not able to overcome the resistance by producing more insulin, hyperglycemia 
develops. Insulin resistance is more prevalent in certain racial populations suggesting 
a genetic basis for the resistance. The major “environmental” risk factors for insulin 
resistance are obesity and sedentary lifestyle. Exercise and weight loss are established 
approaches to improve insulin sensitivity and decrease insulin resistance [13]. Insulin 
resistance may also be the basis for polycystic ovary syndrome (PCOS) in women. 
Some studies have suggested that metabolic syndrome (insulin resistance, type 2 
diabetes, obesity, hyperlipidemia, and hypertension) and PCOS (insulin resistance, 
hyperandrogenism, amenorrhea, non-obese) are the ends of a spectrum of insulin 
resistance. The loss of microvascular insulin response and reduction of muscle 
glucose uptake are early events in the pathogenesis of insulin resistance [14, 15].

Metformin can increase insulin receptor tyrosine kinase activity, enhance 
glycogen synthesis, and increase the recruitment and activity of GLUT4 glucose 
transporters. In high-fat-diet-fed insulin resistant rats, metformin improved the 
insulin sensitivity of vascular and skeletal muscle and restored glucose uptake in 
insulin resistant skeletal muscle [16]. In adipose tissue, metformin promoted the re-
esterification of free fatty acids and inhibited lipolysis, which indirectly improved 
insulin sensitivity through reduced lipotoxicity [17].

Insulin resistance is a risk factor for the development of T2D [18] and occurs 
earlier than hyperglycemia. Blood-based biomarker that identify insulin resistance 
earlier than current glycemia-based approaches, including fasting glucose and 
HbA1C [19] might identify individual’s at risk for developing diabetes, and provide 
a novel tool to monitor metformin treatment in the high risk population. Several 
blood-based biomarkers of insulin resistance have been identified [19]. Branched-
chain amino acids [20] and asymmetric dimethylarginine (ADMA) [21] show an 
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association with insulin resistance. Metformin decreases the level of circulating 
branched-chain amino acids and reduces insulin resistance in a high-fat diet mouse 
model [22]. Metformin treatment lowers plasma ADMA which is associated with 
improved glycemic control in patients with T2D [23].

Recent studies indicate that phosphatidylinositol-3-kinase/protein kinase 
B protein (PI3K/PKB, also known as Akt) signaling pathway is associated with 
insulin resistance, and plays a critical role in insulin stimulation of glucose trans-
port into cells [24–30]. The key molecules involved in this pathway are PI3K, Akt, 
3-phosphoinositide-dependent protein kinase 1 (PDK1), and phosphoinositide 3.4.5 
trisphosphate (PIP3).

Akt has three isoforms Akt1, Akt2 and Akt3 (also referred to as protein kinase B 
(PKB) α, −β and –γ, respectively). Their domain structures are similar, including a 
pleckstrin homology (PH) kinase domain at the amino-terminal and a hydrophobic 
motif (HM) domain at the carboxyl-terminal [31]. Three isoforms share many sub-
strates, but each isoform also has specific substrate. Akt2 is specific for the insulin 
signaling pathway and plays a critical role in glucose homeostasis. Akt2 deficient 
mice have insulin resistance, hyperglycemia, and loss of pancreatic β cells while 
Akt1 deficient mice do not exhibit diabetes phenotypes [32, 33].

PIP3 binds to PDK1 and Akt protein and recruits Akt protein to the plasma 
membrane. PDK1 phosphorylates Akt at Thr308/309 of Akt1/Akt2, respectively 
of the kinase domain leading to partial Akt activation. PI3K might directly phos-
phorylate Akt1 at Thr308 [34]. Full Akt activation is associated with a second PI3K 
phosphorylation of Akt at Ser473/474 of Akt1/Akt2, respectively in the carboxyl-
terminal hydrophobic motif [34]. Subsequently, the phosphorylated Akt2 recruits 
insulin-regulated GLUT1 and GLUT4 glucose transporters from the cytoplasm onto 
the cell membrane surface and thereby increases glucose uptake [35].

GLUT1 is an insulin independent transporter whereas GLUT4 is an insulin 
dependent transporter. Insulin increases GLUT4 in the cell membrane and pro-
motes the glucose transport into muscle and fatty cells (Figure 1). Any defect in Akt 
pathway along with the downstream molecules could result in insulin resistance 
[29]. Clinical data indicate that acute myocardial insulin resistance that occurs after 
cardiac surgery with cardiopulmonary bypass is attributed to Akt inactivation. 

Figure 1. 
Insulin binds to insulin receptor and induces its dimerization and auto phosphorylation of tyrosine residues 
in two transmembrane β subunits, which further lead to the phosphorylation of tyrosine residues on the IRS 
protein. These molecules can further activate PI3K, resulting in activation of PDK1/2. AKT is recruited and gets 
phosphorylated by PDK1/2. Once activated, AKT promotes GLUT4 translocation to plasma membrane and 
facilitates glucose into cell. TXNIP inhibits glucose transporter by promoting GLUT4 endocytosis.
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facilitates glucose into cell. TXNIP inhibits glucose transporter by promoting GLUT4 endocytosis.
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Inactivated Akt impairs the membrane transposition of GLUT4, which results in 
insulin resistance accompanied with hyperinsulinemia, hyperglycemia and cardiac 
dysfunction [36]. It has been reported that metformin attenuates insulin resis-
tance by restoring PI3K/Akt/GLUT4 signaling in the hepatocytes of T2D rats [37]. 
Metformin combined with phloretin, a dihydrochalcone found in fruits, promoted 
glucose consumption and suppressed gluconeogenesis in skeletal muscle via PI3K/
Akt/GlUT4 signaling pathway in T2D rat models [38].

TXNIP is being considered as a novel mediator of insulin resistance [39, 40]. 
TXNIP induced by high-glucose concentration is a key intracellular regulator of 
glucose and lipid metabolism [6]. We have demonstrated that metformin improves 
endothelial cell function via down-regulation of high-glucose-induced TXNIP 
transcription [4].

Over expression of TXNIP induces apoptosis of pancreatic β cells and endo-
thelial cells, decreases muscle and adipose insulin sensitivity, promotes GLUT4 
endocytosis and reduces glucose uptake in myocytes and adipocytes [4, 41–43]. 
Reduction of TXNIP expression by RNA interference gene-silencing significantly 
improves insulin induced glucose uptake in cultured human skeletal muscle 
cells [41]. TXNIP knockout mice had improved insulin sensitivity and increased 
glucose uptake in both adipose and skeletal muscle [39]. In PCOS, metformin 
improved insulin resistance in a PCOS rat model via an AMPK alpha-SIRT1 
pathway [44].

4. Prediabetes

New criteria defining prediabetes includes the presence of one or more of the 
following, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and 
HbA1C of 5.7–6.4% [45]. The progression from prediabetes to diabetes is related to 
insulin resistance and β-cell dysfunction. Prediabetes is a serious health condition 
which increases the risk of developing T2D, heart disease and stroke. In the US, 
approximately 84 million American adults (more than 1 out of 3) have prediabetes 
but 90% patients with prediabetes are not aware of their condition [46]. Metformin 
improves insulin sensitivity and provides an attractive pharmacological interven-
tion for prediabetes [47, 48]. Results from several clinical trials in the prediabetes 
population, including children, adolescents and adults, have indicated that 
metformin can delay or halt the progression from prediabetes to diabetes [49–51]. 
Metformin is generally well tolerated and has no significant safety issues with 
long-term use for diabetes prevention [48]. In the long-term “Diabetes Prevention 
Program Outcomes Study (DPPOS)”, either lifestyle intervention or metformin 
significantly reduced diabetes development over 15 years. Lifestyle intervention has 
been shown similar or greater effectiveness than metformin in clinical trials [52] 
and remains the cornerstone of care for patients with prediabetes. However, lifestyle 
interventions are difficult for patients to maintain and often fail to control weight 
over the long term. Metformin therapy was shown to be just as effective as lifestyle 
intervention in individual with prediabetes <60 years of age, BMI ≥ 35 kg/m2, and 
in women with a history of gestational diabetes mellitus [51, 53]. A study showed 
that metformin was underused in patients with prediabetes and only 3.7% of adult 
patients with prediabetes were prescribed metformin [54]. Currently metformin 
is not approved by FDA for prediabetes. Overweight patients with comorbidities 
may be at increased risk of diabetes. New guidelines recommended that metfor-
min therapy for T2D prevention should be considered in those with prediabetes, 
especially those with BMI ≥ 35 kg/m2, those aged <60 years, and women with prior 
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gestational diabetes mellitus [55]. The combinations of metformin with lifestyle or 
other treatments have shown more beneficial effects in diabetes prevention [48, 49].

5. Diabetes

Metformin is approved for use in patients with T2D. It is still under debated 
whether metformin can be an adjunct therapy for T1D though many overweight 
T1D patients have been prescribed metformin due to its beneficial effects on 
improving insulin resistance.

5.1 Adult T2D

Metformin is considered first-line therapy to treat T2D due to its blood glucose-
lowering effects, safety and relatively low cost. Metformin lowers blood glucose 
level by decreasing glucose production in liver, reducing intestinal glucose absorp-
tion, increasing insulin sensitivity and promoting muscle glucose uptake in muscle. 
Metformin treatment can be combined with lifestyle modification and other anti-
diabetic drugs, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like 
peptide-1 (GLP-1) receptor agonists or sodium-glucose cotransporter-2 (SGLT2) 
[56, 57]. Combined therapy is individualized depending on effectiveness, safety, 
tolerability, and the characteristics of each patient [58].

Metformin is safe and tolerable with the exception of the risk of lactic acidosis in 
patients with risk factors for lactic acidosis [59], including impairment of renal, car-
diac, and hepatic function [60–62]. Another concern is metformin-induced vitamin 
B12 deficiency; patients who receive long-term metformin treatment (>6 months) 
at large doses have developed B12 deficiency [63, 64], so that annual screening of 
vitamin B12 level is recommended [65].

5.2 Adult T1D

Insulin resistance in T1D patients may contribute to poor glycemic control and is 
associated with increased insulin dose requirement [66]. Metformin treatment has 
been shown to increase insulin sensitivity, improve glycemic control, and reduce 
cardiovascular risk in patients with T1D [67]. The studies reported that metformin 
used as an adjunct therapy in T1D reduced insulin dose and body weight with no 
improvement in HbA1c and glycemic control [68, 69]. Another short term adjunct 
therapy with metformin demonstrated improved glycemic control, insulin sensitiv-
ity, and quality of life without weight gain, while long-term (2 years) metformin 
treatment was associated with decreased BMI [70]. A 1 year retrospective investiga-
tion reported an association between metformin as adjunct therapy and decreased 
glucose levels, decreased prevalence metabolic syndrome traits, and decreased 
insulin dose [71].

5.3 Pediatric T2D

Metformin was shown to be safe and effective for treatment of pediatric patients 
with T2D age 10 to 16 years old [72]. Treatment Options for Type 2 Diabetes in 
Adolescents and Youth (TODAY) recruited 699 youth and adolescents over a 4-year 
period. In this cohort study, metformin was used alone or in combination with 
life style modification or other antidiabetics drugs [73]. Metformin treatment was 
associated with decreased HbA1c and improved glycemic control in more than 
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Inactivated Akt impairs the membrane transposition of GLUT4, which results in 
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gestational diabetes mellitus [55]. The combinations of metformin with lifestyle or 
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glucose levels, decreased prevalence metabolic syndrome traits, and decreased 
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half of the participants. Metformin plus rosiglitazone was significantly better than 
metformin monotherapy [74].

5.4 Pediatric T1D

Using metformin to improve glycemic control and insulin sensitivity in youth 
and adolescents with T1D has been reported in several clinical trials. Studies that 
report a positive association of metformin have reported: 1. Decreased insulin dose, 
BMI and waist circumference in adolescents with T1D [75]. 2. Lower daily insulin 
dose improved whole-body and peripheral insulin resistance in adolescents with 
T1D who were overweight/obese [76]. 3. Lower insulin dose and improved vascular 
smooth muscle function and HbA1c children with T1D [77]. 4. Decreased cardio-
vascular disease risk factors in youth with T1D [78]. 5. Improvement in HbA1c level 
in adolescents with T1D [79, 80]. In contrast, some trials did not observe improve-
ment in HbA1c [76, 81], or glycemic control. As expected, there was an increased 
gastrointestinal adverse event in overweight adolescents with T1D [81].

6. Aging

Metformin has attracted interest for its potential effects on aging [82]. 
Metformin treatment has a positive association with reduction in the incidence 
of mortality from age-related diseases including diabetes, cancer, cardiovascular 
diseases, and neurodegenerative diseases. Metformin is reported to increase lifespan 
in several animal models. Cohort clinical trials, Metformin in Longevity Study 
(MILES) and Targeting Aging with Metformin (TAME), have been initiated to 
investigate metformin’s anti-aging effects in human.

In several animal models, including nematodes and rodents, metformin has been 
shown to delay aging. Metformin treated female outbred mice (100 mg/kg in drink-
ing water) showed an increased mean lifespan 37.8% [83]. The effects of metformin 
treatment were shown to be age dependent in mice. When treatment was started 
at the early stage of life, middle-age and late stages of life, the mean lifespan was 
increased by 21%, 7% and 13% respectively compared to the controls [84]. In a mouse 
breast cancer model, metformin delayed the onset of mammary adenocarcinoma and 
increased lifespan by a mean of 8% compared to the control group [85]. Metformin 
prolonged the survival time of male mice with Huntington’s disease by 21.1%, but 
had no effects in female [86]. A recent study found that metformin reduced oxidative 
stress and inflammation, extended both lifespan and healthspan by 4–6% in different 
strains of mice, and attenuated the deleterious effects of aging in male mice [87].

Gut microbiota has been shown to affect health status and longevity and play a 
role in resistance to infection, inflammation, autoimmunity, and cancer, and the 
regulation of the brain-gut axis [88, 89]. Metformin acts directly on gut bacteria 
to decrease absorption of glucose, improve lipid metabolism and elevate agmatine 
production to extend host lifespan [10, 90].

The reported effects of metformin on microbiota and animals have promoted 
interest in evaluating its effects on human longevity. In 2014, Metformin in 
Longevity Study (MILES, NCT02432287) clinical trial was initiated to examine 
the effects of metformin treatment on the biology of aging in humans, and to 
determine if treatment with metformin (1700 mg/day) could restore more youthful 
gene expression in elderly people with impaired glucose tolerance. Results from 
MILES showed that 6-weeks of metformin treatment in older adults (~70-year-old 
participants) improved age-associated gene expression, and significantly influ-
enced metabolic and non-metabolic pathways in skeletal muscle and subcutaneous 
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adipose tissue [91]. Currently, MILES has progressed to a phase 4 trial. Targeting 
Aging with Metformin (TAME) is managed by America Federation for Aging 
Research (AFAR) to investigate metformin’s ability to delay the onset of comorbidi-
ties related to aging. The plan is to recruit 3000 older adults (aged 65–79 years old) 
without diabetes who will be randomly assigned to 1500 mg metformin daily or 
placebo for 6 years, with a mean follow-up time of more than 3–5 years (https://
www.afar.org/research/TAME). These ongoing trials are expected to further evalu-
ate and update the roles of metformin in antiaging.

7. PCOS

Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting 
about 5–15% of reproductive age women [92, 93]. PCOS is associated with insulin 
resistance and hyperinsulinemia, even in lean women. The condition puts women 
at risk for infertility, obesity, diabetes, as well as cardiovascular disease [94]. 
Metformin has been used to treat PCOS for 25 years and is currently recommended 
in combination with other therapy.

Clinically, metformin was first reported as a treatment for PCOS in 1994 [95]. A 
6-month trial of metformin or placebo in women with PCOS found that metformin 
improved menstruation and insulin sensitivity, and reduced hyperinsulinemia 
and hyperandrogenemia [96]. In addition, metformin has been found to inhibit 
androgen production by repressing the steroidogenic enzymatic activities of 
17α-hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 
2 (HSD3B2) in the theca cells taken from the ovaries of women with PCOS [97].

Women treated with metformin had increased rates of ovulation and pregnancy 
[93], reduced rates of early pregnancy loss, preterm delivery, preeclampsia, and 
fetal growth restriction [98, 99], and improved live birth rates [93]. There were no 
serious adverse effects in pregnant women with PCOS treated with metformin or 
their offspring [98–100]. These results indicate that the roles of metformin are not 
only in glucose metabolism, but also in regulating ovarian hormonal activities and 
functions in women with PCOS.

There is not enough evidence to recommend metformin as first-line therapy 
for women with PCOS but adding metformin to other PCOS treatment seems an 
optimal option. Gastrointestinal side effects were more common in metformin 
combined with clomiphene citrate than clomiphene citrate alone, but the combined 
therapy may have beneficial effects in the rates of ovulation and pregnancy [93, 101]. 
Combination of metformin with clomiphene citrate can be considered as the first 
line therapy in anovulatory PCOS women without other infertility factors [102]. 
Metformin was less effective than clomiphene citrate in obese women with PCOS [93, 
102]. Combined therapy of metformin and spironolactone showed greater improve-
ment in menstrual cycles and hyperinsulinemia. Adding metformin to ethinyl 
estradiol-cyproterone acetate treatment in non-obese women with PCOS resulted in 
significant decreases in androgen levels and increases sex hormone-binding globulin 
level, which confirmed that metformin also, has some beneficial effects in non-obese 
women with PCOS [103]. In a DHEA-induced PCOS rat animal model, metformin 
treatment restored ovarian angiogenesis and follicular development [104].

8. Cardiovascular diseases

Cardiovascular diseases (CVD) are the leading cause of death and disability in 
the world. Metformin might have sustained beneficial role on reducing CVD risk 
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and mortality [105, 106]. The cardioprotective effects include reduction of weight 
gain and hyperinsulinemia, improvement of endothelial function and fibrinolysis, 
and reduction of low-grade inflammation, oxidative stress, and glycation.

Recent clinical studies have shown that metformin has protective effects 
on vascular endothelial function and angiogenesis in patients with T2D [107]. 
Several clinical trials have reported that metformin treatment reduced CVD risk 
in T2D [1, 108]. Recently the efficacy of metformin in modifying CVD outcomes 
has been challenged [109–111] but updated evidence support that metformin is 
cardiovascular protective [112]. A meta-analysis that included 40 clinical trials 
comprising 1,066,408 patients has shown that metformin reduced cardiovascu-
lar mortality, all-cause mortality and cardiovascular events in coronary artery 
disease [105].

Diabetes increases CVD risk and mortality. More than 75% of male and more 
than 57% female T2D patients died from cardiovascular disease. The mortality of 
CVD with T2D patients is twice those without T2D [113]. Patients with chronic 
cardiovascular disease (CVD) comorbidity are likely to benefit from metformin 
treatment [1, 105, 108]. Metformin is recommended to be used alone or in combina-
tion with other drugs as the first line therapy in T2D patients with high risk of CVD, 
including atherosclerotic cardiovascular disease [114, 115].

Several clinical trials for metformin on participants with or without T1D 
diabetes have been completed [106]. Trials Metformin in Insulin Resistant 
Left Ventricular Dysfunction (TAYSIDE, NCT00473876) and Reducing 
with Metformin Vascular Adverse Lesions of Type 1 Diabetes (REMOVAL, 
NCT01483560) have promising data. TAYSIDE found that metformin had a 
beneficial effect in participants with nondiabetic chronic heart failure and insulin 
resistance, significantly improved the secondary endpoint of the slope of the ratio 
of minute ventilation to carbon dioxide production, fasting insulin resistance and 
weight loss [116]. REMOVAL showed that metformin reduced the prespecified 
tertiary end point of carotid artery intima-media thickness in T1D suggesting a 
cardiovascular protective effect [117]. In an 8-week period of metformin treat-
ment for nondiabetic participants with cardiac syndrome X, metformin improved 
endothelium-dependent microvascular response, maximal ST-segment depres-
sion, Duke score, and chest pain incidence, which suggested that metformin may 
improve vascular function and decrease myocardial ischemia [118]. However, 
several studies reported that metformin was not found to be effective in their 
participants [106].

Investigation of Metformin in Pre-diabetes on Atherosclerotic Cardiovascular 
OuTcomes (VA-IMPACT, NCT02915198) and Glucose Lowering in Non-diabetic 
Hyperglycemia Trial (GLINT, ISRCTN34875079) are current ongoing studies to 
further evaluate the effects of metformin on CVD [119]. The trials will evaluate 
the incidence of cardiovascular death and non-fatal myocardial infarction events. 
Their data will provide more insight on the association of metformin treatment 
on CVD.

The role of metformin in inhibiting mitochondrial enzymes and activating 
AMPK pathway are the most likely cellular mechanisms in cardiovascular protec-
tion. We have demonstrated that AMPK activated by metformin improved cellular 
function, decreased apoptosis, and reduced inflammation in vascular endothelial 
cells [4, 42]. TXNIP is a key regulator of cellular redox state induced by high glucose 
and promotes high-glucose-induced macrovascular endothelial dysfunction. We 
have also reported that metformin down-regulated high-glucose-induced TXNIP 
expression by inactivating ChREBP and Forkhead box O1 (FOXO1) through AMPK 
pathway (Figure 2) [4].
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9. Cancer

Preexisting diabetes is a risk factor for cancers, including liver, pancreas, endome-
trium, colon, breast, and bladder cancers [120]. Epidemiological studies show that the 
incidence of cancer is decreased in patients with T2D treated with metformin [121]. 
Metformin has shown to inhibit cancer cell growth in clinical trials including cancer 
patients without diabetes [122–124]. Based on http://ClinicalTrials.gov in January 
2020, there are more than 300 clinical trials investigating metformin in cancer treat-
ment, more than 100 of them have been completed. The results were published or 
posted on http://ClinicalTrials.gov. These trials included patients with or without dia-
betes with different cancers using metformin treatment or combination of metformin 
with other anticancer drugs. Accumulating evidence from clinical trials and a national 
cohort study suggest that metformin treatment may improve therapeutic response and 
have potential beneficial effects on cancer prevention and therapy [125–127].

The effect of metformin on inhibiting cell proliferation can be classified as 
AMPK independent and AMPK dependent [128]. Metformin inhibits the electron 
transport chain, resulting in an elevated NADH/NAD+ ratio and decrease of ATP 
production in mitochondrial complex I ATP as well as activation of AMPK [129, 
130]. AMPK activated by metformin subsequently regulates cell growth and sur-
vival by targeting metabolic enzymes and transporters [131, 132]. AMPK downreg-
ulates mTOR activity that plays a central role in the regulation of cell proliferation, 
growth, differentiation, migration, and survival [133–135].

Tumor protein 53 (p53) plays a central role in the cellular responses to repair of 
DNA damage, cell survival and apoptosis. p53 mutations occur in almost every type 
of human cancer cells and more than 50% of human cancers have a somatic p53 
mutation [136]. AMPK activation induced phosphorylation at Ser15 of p53, leading 
to cell-cycle arrest [137].

Metformin was reported to inhibit melanoma cell invasion and metastasis via an 
AMPK/p53 dependent manner [138]. In a pre-clinical lymphoma model, metformin 

Figure 2. 
Metformin inhibits the nuclear entry of ChREBP and FOXO1 from cytosol and their binding capacity to the 
TXNIP promoter, thus potently and effectively suppresses TXNIP transcription induced by high glucose at last. 
The inhibitory effect of metformin on nuclear translocation is AMPK-phosphorylation-dependent.
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growth, differentiation, migration, and survival [133–135].

Tumor protein 53 (p53) plays a central role in the cellular responses to repair of 
DNA damage, cell survival and apoptosis. p53 mutations occur in almost every type 
of human cancer cells and more than 50% of human cancers have a somatic p53 
mutation [136]. AMPK activation induced phosphorylation at Ser15 of p53, leading 
to cell-cycle arrest [137].

Metformin was reported to inhibit melanoma cell invasion and metastasis via an 
AMPK/p53 dependent manner [138]. In a pre-clinical lymphoma model, metformin 

Figure 2. 
Metformin inhibits the nuclear entry of ChREBP and FOXO1 from cytosol and their binding capacity to the 
TXNIP promoter, thus potently and effectively suppresses TXNIP transcription induced by high glucose at last. 
The inhibitory effect of metformin on nuclear translocation is AMPK-phosphorylation-dependent.
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treatment resulted in activation of p53, leading to cell apoptosis [139]. In the 
prostate cancer cells, the combination of metformin and 2-deoxyglucose resulted 
in p53-dependent cell apoptosis [140]. Metformin has been found to inhibit human 
cervical cancer cell proliferation and induce apoptosis via modulating p53 and 
cyclin D1 expression [141].

The effect of metformin on anti-cancer also has a p53-independent mechanism. 
Metformin has been shown to induce G2M arrest in p53-deficient colorectal cancer 
cells and tumors. When combined with ionizing radiation metformin therapy 
enhanced antitumor effects in radioresistant p53-deficient colorectal cancer cells 
[142]. Treatment with metformin increased apoptosis in p53-deficient human colon 
cancer cell and reduced tumor growth in xenografts of p53-deficient human colon 
cancer cells [143].

The p53 homologs, P63 and p73 have overlapping function in tumorigenesis and 
development [144]. P63 and P73 mutations are rare in human tumors, but they can 
be overexpressed. P63 plays a critical role in development of squamous epithelium 
and is overexpressed in squamous cell carcinoma [145]. Metformin inhibited p63 pro-
tein expression in squamous carcinoma cell, resulting in decreased cell viability and 
xenographic tumor growth [146]. P73 overexpression induces apoptosis and cell cycle 
arrest of tumor cells [147]. AMPK activated by metformin phosphorylated Ser426 of 
p73 leading to p73 accumulation and cell apoptosis in human colon cancer cells [148].

Metformin may prevent tumorigenesis by inhibiting the insulin like growth 
factor (IGF)-1 signaling pathway and increasing insulin sensitivity. The prolifera-
tion marker Ki-67 was significantly decreased in patients with endometrial cancer 
cell after metformin treatment [149]. Metformin enhances cytotoxic T lymphocyte 
(CTL) antitumor activity via activating AMPK to phosphorylate Ser195 of PDL-1 in 
a murine model of breast cancer which is consistent with the finding that tumor tis-
sues from metformin-treated breast cancer patients exhibited reduced PDL-1 level 
with AMPK activation [150].

These findings suggest that metformin could be a useful adjuvant agent and 
has therapeutic benefits in several tumor types, including colorectal, prostate and 
breast cancers. However, there is limited evidence in other tumor types, and further 
clinical investigations are needed to evaluate metformin effects in cancer therapy.

10. Neurodegenerative diseases

Metformin is described to have a beneficial effect in neurodegenerative diseases 
(ND), including dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s 
disease and mild cognitive impairment [151, 152].

Population-based studies support an association between the elevated risk of 
ND in patients with T2D [153–155]. A large population cohort study used Taiwan’s 
National Health Insurance Database to investigate the relationship between demen-
tia, T2D, and metformin treatment. They found that the prevalence of dementia 
was increased in patients with T2D and that metformin therapy was associated with 
a 24% decrease in the incidence of dementia in patients with T2D. The combination 
treatment of metformin with sulfonylureas was associated with a 35% decrease in 
the risk of dementia in T2D patients over 8 years of observation [156]. In a recent 
study, long-term (>2 years) metformin therapy was associated with lower incidence 
of dementia among elderly adults with T2D. Longer term treatment (>4 years) was 
associated with reduced risk of Alzheimer’s and Parkinson’s diseases, and none with 
mild cognitive impairment [157]. A large T2D population cohort study found that 
sulfonylureas therapy increased the risk of Parkinson’s disease, but adding met-
formin as a co-therapy significantly reduced the risk of Parkinson’s disease in T2D 
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[158]. Long-term (>6 years) metformin treatment significantly reduced the risk of 
cognitive impairment among older adults with T2D [159].

In contrast, other studies have shown that the metformin therapy of T2D is 
associated with: 1. a slightly higher risk of Alzheimer’s disease [160], 2. increased 
risk for cognitive impairment [161], and 3. no beneficial effects on preventing 
development of Alzheimer’s disease after adjusting for underlying risk factors and 
the duration of diabetes since diagnosis [162]. In addition, metformin treatment 
aggravated neurodegenerative process in ApoE knockout mice [163].

The current evidence suggests that the neuroprotective effects of metformin 
occur via activation of AMPK/mTOR pathway and inhibition of tau phosphoryla-
tion [164, 165]. In addition, it is known that metformin enhances angiogenesis 
and neurogenesis, induces autophagy, reduces oxidative stress, and improves 
neurological deficits [166–170].

Despite the different findings from these studies, a recent meta-analysis suggests 
that metformin may prevent development of dementia in patients with diabetes 
indicating that metformin should be continued in patients with T2D patients at risk 
of the dementia or Alzheimer’s disease. Use of metformin to prevent neurodegener-
ative diseases in people without diabetes is not supported by current evidence [152].

11. Conclusions

Metformin is currently approved and widely prescribed for patients with T2D 
and PCOS. The clinical trial data and clinical experience over several decades have 
demonstrated its safety and efficacy. The interest in metformin therapy has dra-
matically increased as the population-based cohort studies indicate that metformin 
can decrease the risk of cancer, cardiovascular and cerebral disease. Current studies 
indicate that metformin has potential for treatment of T1D, cancer, aging, cardio-
vascular and neurodegenerative diseases. Translational and clinical trials need to 
be continued and expanded to determine if there are indications for metformin 
therapy in diseases other than T2D.
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was increased in patients with T2D and that metformin therapy was associated with 
a 24% decrease in the incidence of dementia in patients with T2D. The combination 
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the risk of dementia in T2D patients over 8 years of observation [156]. In a recent 
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ative diseases in people without diabetes is not supported by current evidence [152].
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and PCOS. The clinical trial data and clinical experience over several decades have 
demonstrated its safety and efficacy. The interest in metformin therapy has dra-
matically increased as the population-based cohort studies indicate that metformin 
can decrease the risk of cancer, cardiovascular and cerebral disease. Current studies 
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Abstract

The human gastrointestinal tract presents a vastly population of microorganisms, 
called the microbiota. The presence of these microorganisms offers many benefits to 
the host, through a range of physiological functions. However, there is a potential for 
these mechanisms to be disrupted condition, known as dysbiosis. Recent results are 
showing important associations between diabetes and the gut microbiota and how 
the intestinal flora can influence the prognosis of this illness. Microbial intestinal 
imbalance has been linked to alterations in insulin sensitivity and in glucose metabo-
lism and may play an important role in the development of diabetes. Metformin is one 
of the most important and widely used first-line medications for the management of 
type 2 diabetes (T2D). It is a complex drug with multiple sites of action and multiple 
molecular mechanisms. In recent years, attention has been directed to other modes 
of action, other than the classic ones, with increasing evidence of a major key role of 
the intestine. By analysing the effects of metformin on the homeostasis of the micro-
biota of diabetes patients, our present topic becomes one of the major importance 
in understanding how metformin therapy can improve gut microbiota dysbiosis and 
thus provide a better outcome for this illness.
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1. Introduction

The human gastrointestinal tract hosts a complex population of microorgan-
isms. The function and composition of the gut microbiota vary from an individual 
to another, factors contributing to its differences being various. The mode of 
birth, the type of diet, exercise, body mass index, different diseases and therapies 
are factors that influence the gut microbiota composition and function. Type 2 
diabetes (T2D), a highly prevalent metabolic disease, is lately characterized as 
a disease with significant alteration of the composition and function of the gut 
microbiota. New therapeutic targets are revealed, and researchers are thoroughly 
exploring these possible pathways and hypotheses to understand the pathogeny of 
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the disease better and also to better manage the treatment options. Metformin, one 
of the most widely used first-line medication for the management of type 2 dia-
betes, looks to present other modes of action than the classic ones involving liver 
metabolism. Studies proved that metformin could modulate the gut microbiota 
disturbances encountered in type 2 diabetes, in this way improving the outcome of 
the disease.

1.1 The gut microbiota: definition, development and structure

Among other things, the cohabitation of the man with the environment is at 
the root of the human evolution, an extraordinary example in this sense being the 
relationship between humans and microorganisms.

The digestive tract hosts a complex, vast and dynamic community of microor-
ganisms, called the microbiota. Together they form a mutualist relationship, with 
profound implications for the host both during homeostasis and disease [1].

It is worth mentioning that the gut is not the only place where there is a popula-
tion of microorganisms with which the human organism is in such a connection 
(e.g., the skin also harbouring a plethora of bacteria) [2].

The composition of the microbiota varies from individual to another but also 
from segment to segment of the digestive tract and includes species from all three 
domains of life: bacteria, Archaea and Eukarya. All of the species are classified into 
12 different phyla, of which more than 90% belong to Actinobacteria, Bacteroidetes, 
Firmicutes and Proteobacteria [3].

The process of colonizing the digestive tube with microorganisms is classically 
believed to begin at birth by “seeding” the newborn with microorganisms originat-
ing from the mother’s genital area (vaginal passage, mother’s areola), the skin, and 
the microbiota of the contacts in the surrounding environment, and from then the 
development continues throughout life. In recent years, however, this theory is 
challenged by a series of studies that have shown the presence of microorganisms 
in uterine tissues (e.g., the placenta, suggesting that colonization could be initiated 
before birth, by haematogenous sowing) [4]. At the age of 3–4 years, the core of 
the microbiota is relatively defined, and its structure is similar to that of the adult 
but is continuously subject to change depending on various external and internal 
factors.

Even if the core of the microbiota is established from an early age, several factors 
contribute to carve its form, explaining its variations from an individual to another [5]:

• Type of birth

• Gestational age

• Diet (starting with breast milk that plays an essential role in the development 
of the flora)

• Ageing

• Geographic region and cultural habits

• Physical activity

• Diseases

• Drugs (especially antibiotic therapy)
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As stated before, the composition also depends on the digestive tract region 
(biogeography), this being explained by the physiological properties of the digestive 
segment. For instance, in the small intestine, the pH is lower and the transit time is 
shorter, which is why only rapidly growing bacteria, with the ability to adhere to the 
surface, are thought to survive. On the other hand, the colon shows a favourable envi-
ronment for the development of microorganisms. It is worth mentioning that there 
are differences in the composition between faecal/luminal and mucosal bacteria [6].

In its final form, this whole microsystem consists of over 2000 species, which 
make up altogether more than 100 trillion cells, about 10 times more than the cells 
of the human body, hence the name of “superorganism”.

1.2 Functions

The microbiota exerts a significant influence on the host during homeostasis and 
disease, with profound implications for the proper body’s physiological functions, 
considering the microbiota as a “forgotten organ”.

The leading roles of the gut flora are the following:

• Mechanic barrier—strengthening the gut integrity, shaping and regenerating 
the intestinal epithelium, protecting against pathogens [7]

• Biologic active barrier—consuming the feeding substrates for pathogens [7]

• Key regulators of digestion—involvement in the metabolism of biliary salts, 
short-chain fatty acids (SCFAs), lipids and glucides [8]

• Harvesting energy [9]

• Regulating host immunity [10]

• Synthesis of vitamins—principal reservoir for B complex vitamins [11]

• Synthesis of dopamine, serotonin and other neurotransmitters [12]

1.3 Dysbiosis: definition, causes and consequences

Any perturbation of the healthy gut microbiota that disrupts the mutualist 
relationship between the organism and the associated microbes is called dysbiosis. 
The antagonist term of dysbiosis is eubiosis.

The underlying cause of a gut dysbiosis may be the following [13]:

• Unbalanced diet

• Drug therapy: antibiotics, chemotherapy, antiviral drugs and hormone therapy

• Diseases: cancers, hepatopancreatic diseases and diabetes

• Chronic and acute infections

• Local inflammation

• Presence of intestinal parasites

• Frequent enemas
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The effects of dysbiosis are reflected in the processes of the internal environment, 
contributing to the emergence of numerous pathological conditions such as [14]:

• Autoimmune diseases [15]

• Allergies [16]

• Atherosclerosis [17]

• Obesity

• Diabetes

• Cancers [18]

• Neurological disorders [19]

• Prematurely ageing

2. Dysbiosis: microbiota in type 2 diabetes

The relationship between gut microbiota and diabetes is not fully understood, 
but changes in its composition and function can contribute to the onset and mainte-
nance of insulin resistance, thus influencing the prognosis of this illness. Both T2D 
patients and those that are at high risk of developing this disease seem to have an 
imbalance in the composition and function of the microbiota, just like a “metabolic 
dysbiosis”.

Analysing the literature, the main changes observed in the microbiota composi-
tion of diabetic patients are [20–23]:

• Reduced Gram-positive bacteria such as bacteria from phyla Firmicutes

• Reduced butyrate-producing bacteria, such as Roseburia and Butyrivibrio

• Decrease in bacteria that regulate intestinal permeability, such as Akkermansia 
muciniphila

• Increased Gram-negative bacteria, such as Bacteroides, E. coli and 
Proteobacteria

• Increase in various opportunistic pathogens such as Clostridium symbiosum and 
Eggerthella lenta

The Gram-negative bacteria (E. coli, Bacteroidetes and Proteobacteria) present 
lipopolysaccharides (LPS) at the surface of the membrane. Lipopolysaccharides 
are also known as endotoxins. They are large molecules consisting of a lipid and a 
polysaccharide composed of O-antigen with an outer core and an inner core joined 
by a covalent bond [24]. LPS are found to be elevated in the plasma of diabetic and 
obese patients by crossing an altered intestinal barrier (leaky gut). Accumulating, 
they trigger an inflammatory reaction called endotoxinemia. This systemic inflam-
matory response is associated with dyslipidaemia, increased blood pressure, but 
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also, with insulin resistance and earlier onset of diabetes through a variety of 
mechanisms such as [25]:

• Activation of pro-inflammatory kinases: mitogen-activated protein kinases 
and I kappa B kinase complex

• Increased expression of inflammatory proteins: tumour necrosis factor-α 
(TNFα), monocyte chemotactic protein and interleukin 6

• Impaired insulin signalling at the level of insulin receptor substrate 1

• Inhibition of glucose transport

The passage of LPS through the intestinal mucosa is due to increased intesti-
nal permeability (so-called leaky gut) that can be explained by the diminishing 
of butyrate and mucin-degrading bacteria such as Roseburia, Butyrivibrio and 
Akkermansia muciniphila. Furthermore, this epithelial dysfunction can determine 
an important translocation of intestinal bacteria into the adipose tissue, which 
maintains a low-grade inflammation and insulin resistance, process called “meta-
bolic infection” [26, 27].

2.1 Dysbiosis: microbiota in type 1 diabetes (T1D)

At the moment, the amount of information regarding an alleged link between 
gut microbiota and T1D is modest. Several studies showed similarities between the 
disturbances of the microbiota found in T2D and T1D patients: reduced population of 
Firmicutes and increased the population of Bacteroidetes and increased in intestinal per-
meability. Increased gut permeability might contribute to pancreatic β-cell damage due 
to the increased absorption of exogenous antigens such as Streptomyces toxin—strepto-
zotocin—that has tropism for pancreatic tissue and can cause lesions at its level [28].

2.1.1  Dysbiosis: protective anti-inflammatory- and anti-insulin-resistant 
mechanisms

There are also mechanisms mediated by the gut microbiota such as the produc-
tion of short-chain fatty acids and secondary bile acids (SBA) that counteract those 
pro-inflammatory- and insulin-resistant effects. These mechanisms can be affected 
in the case of dysbiosis.

SCFAs are produced from dietary fibres that are fermented by the intestinal 
bacteria. Acetate, butyrate and propionate are the three most common SCFAs. They 
exert an essential role in the metabolism of carbohydrates, lipids, in maintaining 
the integrity of the intestinal barrier and in modulating inflammatory reactions 
through a variety of functions [29]:

• Maintaining the integrity of the colon epithelium: Butyric acid is the primary 
energy source of the colon’s epithelial cells. It stimulates the proliferation but 
also the differentiation and apoptosis of the colonocyte, thus participating in 
the coordination of its life cycle. It also participates in the regulation of tight 
junction proteins (claudin 1 and zonula occludens).

• Improves carbohydrate metabolism: Propionate lowers the accumulation of 
lipids in the adipose tissue and reduces hepatic lipogenesis thus decreases the 



Metformin

48

The effects of dysbiosis are reflected in the processes of the internal environment, 
contributing to the emergence of numerous pathological conditions such as [14]:

• Autoimmune diseases [15]

• Allergies [16]

• Atherosclerosis [17]

• Obesity

• Diabetes

• Cancers [18]

• Neurological disorders [19]

• Prematurely ageing

2. Dysbiosis: microbiota in type 2 diabetes

The relationship between gut microbiota and diabetes is not fully understood, 
but changes in its composition and function can contribute to the onset and mainte-
nance of insulin resistance, thus influencing the prognosis of this illness. Both T2D 
patients and those that are at high risk of developing this disease seem to have an 
imbalance in the composition and function of the microbiota, just like a “metabolic 
dysbiosis”.

Analysing the literature, the main changes observed in the microbiota composi-
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also, with insulin resistance and earlier onset of diabetes through a variety of 
mechanisms such as [25]:

• Activation of pro-inflammatory kinases: mitogen-activated protein kinases 
and I kappa B kinase complex

• Increased expression of inflammatory proteins: tumour necrosis factor-α 
(TNFα), monocyte chemotactic protein and interleukin 6

• Impaired insulin signalling at the level of insulin receptor substrate 1

• Inhibition of glucose transport

The passage of LPS through the intestinal mucosa is due to increased intesti-
nal permeability (so-called leaky gut) that can be explained by the diminishing 
of butyrate and mucin-degrading bacteria such as Roseburia, Butyrivibrio and 
Akkermansia muciniphila. Furthermore, this epithelial dysfunction can determine 
an important translocation of intestinal bacteria into the adipose tissue, which 
maintains a low-grade inflammation and insulin resistance, process called “meta-
bolic infection” [26, 27].

2.1 Dysbiosis: microbiota in type 1 diabetes (T1D)

At the moment, the amount of information regarding an alleged link between 
gut microbiota and T1D is modest. Several studies showed similarities between the 
disturbances of the microbiota found in T2D and T1D patients: reduced population of 
Firmicutes and increased the population of Bacteroidetes and increased in intestinal per-
meability. Increased gut permeability might contribute to pancreatic β-cell damage due 
to the increased absorption of exogenous antigens such as Streptomyces toxin—strepto-
zotocin—that has tropism for pancreatic tissue and can cause lesions at its level [28].

2.1.1  Dysbiosis: protective anti-inflammatory- and anti-insulin-resistant 
mechanisms

There are also mechanisms mediated by the gut microbiota such as the produc-
tion of short-chain fatty acids and secondary bile acids (SBA) that counteract those 
pro-inflammatory- and insulin-resistant effects. These mechanisms can be affected 
in the case of dysbiosis.

SCFAs are produced from dietary fibres that are fermented by the intestinal 
bacteria. Acetate, butyrate and propionate are the three most common SCFAs. They 
exert an essential role in the metabolism of carbohydrates, lipids, in maintaining 
the integrity of the intestinal barrier and in modulating inflammatory reactions 
through a variety of functions [29]:

• Maintaining the integrity of the colon epithelium: Butyric acid is the primary 
energy source of the colon’s epithelial cells. It stimulates the proliferation but 
also the differentiation and apoptosis of the colonocyte, thus participating in 
the coordination of its life cycle. It also participates in the regulation of tight 
junction proteins (claudin 1 and zonula occludens).

• Improves carbohydrate metabolism: Propionate lowers the accumulation of 
lipids in the adipose tissue and reduces hepatic lipogenesis thus decreases the 
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insulin resistance. Propionate and acetate also stimulate the production of 
glucagon-like peptide-1.

• Anti-inflammatory role: Butyric acid plays an essential role in maintaining 
the integrity of the intestinal mucosa, preventing endotoxemia and metabolic 
infection. Butyric acid also inhibits the nuclear factor kappa-beta from the 
macrophages that cause a suppression of TNF-alpha, IL-6 and myeloperoxi-
dase activity.

At the intestinal level, bacteria metabolize primary bile acids (cholic and cheno-
deoxycholic acids) to secondary bile acids (deoxycholic and lithocholic acids). Bile 
acids are involved in multiple metabolic pathways, research over the last decades, 
demonstrating an essential role against inflammation and insulin resistance. 
Secondary bile acids contribute to a decrease in insulin resistance through:

• Stimulating the production of glucagon-like peptide-1 by binding to 
G-protein-coupled receptor 1 [30]

• Modulating glucose absorption through interaction with farnesoid X receptor 
(FXR)

• Modulating energy expenditure: increase energy expenditure in brown adipose 
tissue by activating enzyme type 2 iodothyronine deiodinase and oxygen 
consumption, thus contributing to the prevention of obesity [31]

• Increasing triglyceride clearance

• Bile acids are the major pathway for catabolism of cholesterol, thus regulating 
the metabolism of lipids

In terms of their anti-inflammatory role, lithocholic acid inhibits the release of 
pro-inflammatory cytokines TNF-alpha, IL1 and IL6 from colon epithelium [32].

3. Metformin and the gut

Metformin presents as a sophisticated drug having multiple sites of action and 
various molecular mechanisms. Lately, attention has been directed to other modes 
of action, different than the classic ones. Its action at the intestinal level was sug-
gested by the results of several studies that showed the following:

• A delayed-release formula is retained almost entirely in the gut, with minimal 
systemic absorption. It is effective at lowering blood glucose as the standard 
immediate-release formulation in individuals with type 2 diabetes [33].

• In diabetic rats, intravenous administration of metformin is less effective than 
intra-duodenal administration for lowering blood glucose levels [34].

• Human genetic studies proved that variants in SLC22A1 gene (the gene 
encoding OCT1), which reduce hepatic uptake of metformin, do not impact 
upon the efficacy of metformin to lower HbA1c in individuals with type 2 
diabetes [35].
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Regarding the effects of metformin on the gut microbiota, studies have shown 
that administration of metformin produced several changes in the composition of 
the intestinal flora such as the following [36]:

• Increase microbes from Verrucomicrobiaceae, Porphyromonadaceae, 
Rikenellaceae, Akkermansia muciniphila, and Prevotellaceae spp. moreover, 
species from Escherichia-Shigella sp.

• Decrease of the Lachnospiraceae, Rhodobacteraceae spp., Peptostreptococcaceae 
and Clostridiaceae

Furthermore by comparing the modified microbiome profile by metformin 
treatment, with the microbiome profiles under various disease situations, these 
changes have been negatively correlated with multiple diseases that have an inflam-
matory pathogenic substrate such as colitis, chronic diarrhoea and irritable bowel 
syndrome, suggesting that its anti-inflammatory proprieties can be determined 
through regulation of the microbiota homeostasis.

The main side effects of metformin are gastrointestinal: nausea, vomiting, 
diarrhoea and abdominal pain. These side effects occur most frequently at the 
beginning of treatment, and in most cases, they disappear spontaneously. The cause 
of these side effects is not fully understood and may be due to the growth of oppor-
tunistic pathogenic bacteria from Escherichia to Shigella spp. which are shown to 
increase at the beginning of treatment. If we relate to the increase of these opportu-
nistic pathogens, the further reduction of side effects can be caused by a reduction 
of the substrate to which these microorganisms are dependent (substrates provided 
by polysaccharide-degrading anaerobes) through diet and an increase of anaerobic 
mucus-associated bacteria such as Akkermansia muciniphila [37].

4. Metformin and the microbiota of type 2 diabetes

As stated before, the gut microbiota profile is profoundly modified in T2D 
patients in terms of its structure and composition. Administration of metformin 
results in improved glucose metabolism, but the way this is achieved is not fully 
understood, and its implications upon the intestinal flora are incompletely discov-
ered. Analysing data from the literature, administration of metformin causes the 
composition to change and, therefore, the physiology of the microbiota as well.

5. Metformin and Bacteroides fragilis

Administration of metformin is associated with an essential decrease in 
Bacteroides fragilis [38].

Bacteroides fragilis is an obligately anaerobic, Gram-negative, rod-shaped 
bacteria, whose essential feature in metabolic pathology is the presence of cap-
sular lipopolysaccharides. LPS are found to be elevated in the plasma of diabetic 
and obese patients and are associated with dyslipidaemia and increased blood 
pressure but also with insulin resistance and earlier onset of diabetes through a 
plenty of mechanisms that have been described previously. Colonizing mice with 
Bacteroides fragilis by transferring stool samples enriched with these bacteria 
determines an increase in body weight, impaired glucose tolerance and a decrease 
in insulin sensitivity.
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in insulin sensitivity.
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Mechanisms by which metformin has determined the decrease of this species 
have not been elucidated but have been assumed since Bacteroides fragilis were 
reduced in mice that received stool samples from patients who had been given 
metformin.

Besides reducing Bacteroides fragilis, the bile acid glycoursodeoxycholic 
(GUDCA) is increased through decreasing the bacteria’s bile salt hydrolase activ-
ity. GUDCA is a glycine-conjugated form of the secondary bile acid deoxycholic 
acid, which has been known to have anti-inflammatory proprieties by reducing the 
levels of pro-inflammatory cytokines. Another biological function of GUDCA is to 
antagonize the farnesoid X receptor.

The FXR is predominantly found at the intestinal and hepatic tissue. Bile acids 
are the major ligands (activators) of this receptor. It is mainly involved in the 
metabolism of bile acids but also of carbohydrates and lipids.

The primary functions of FXR activation is the suppression of cholesterol 7 
alpha-hydroxylase (CYP7A1), which reduces the synthesis of bile acids (via the 
feedback mechanism, FXR is activated by bile acids and further determines the 
suppression of this enzyme, thus reducing the synthesis of bile acids). FXR inhibi-
tion produces an increase in bile acids improving metabolic endpoints due to their 
anti-inflammatory and insulin sensitivity effects [39].

6. Metformin and Akkermansia muciniphila

As stated before, the epithelial barrier of T2D patients is affected by an increase 
in its permeability (so-called leaky gut) followed by a migration of different toxins 
such as LPS in the systemic circulation causing inflammatory responses, insulin 
resistance and impaired glucose tolerance. In addition to these changes, a decrease 
in the Akkermansia muciniphila population was observed.

Akkermansia muciniphila is a mucin-degrading bacterium of the phylum 
Verrucomicrobia that resides predominantly in the mucus layer of the colon, 
where it is involved in maintaining intestinal integrity by promoting mucus 
secretion and making the barrier mechanism more stable and therefore 
decreasing its epithelial permeability. Oral supplementation with this bacterial 
population was shown to reduce intestinal permeability and improve glucose 
metabolism [40, 41].

A significant change in the composition of the microbiota under metformin 
treatment regarding intestinal permeability is represented by an increase in the 
population of Akkermansia muciniphila. The mechanism by which this process is 
accomplished is not fully understood, but it seems that these bacteria metabolise 
unabsorbable carbohydrates and mucin in short-chain fatty acids, which in turn 
will be used as fuel for goblet cells. Stimulated goblet cells will further produce 
mucin, in this way leading to the thickening of the mucus layer and thus to a 
decrease in the epithelial permeability. Besides increasing the population of A. 
muciniphila, administration of metformin is associated with an increase in the 
density of mucin-producing goblet cells probably through the indirect mechanism 
stated above [42, 43] Figure 1.

6.1 Metformin and SCAF-producing bacteria

One of the main features of the dysbiosis found in T2D patients is the decrease in 
butyrate-producing bacteria such as Roseburia and Butyrivibrio.

Butyrivibrio is a Gram-negative, anaerobic bacteria belonging to the Clostridia 
class, which was first described in the mid-twentieth century [44].
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Roseburia is a Gram-positive anaerobic bacteria member of the Firmicutes phyla 
named in honour of distinguished microbiologist Theodor Rosebury [45].

As stated above, short-chain fatty acids such as butyrate, propionate, and acetate 
are the product of gut microbiota activity, resulting from the fermentation of the 
carbohydrates that escapes the absorption process, playing an essential role in 
the process of enhancing intestinal integrity, reducing inflammation and improv-
ing the metabolism of glucose and lipids.

Significant increase of butyrate-producing bacteria, especially Butyrivibrio and 
Roseburia, is observed in T2D patients treated with metformin [43].

6.2 Metformin and probiotics

The genus Bifidobacterium is a Gram-positive microorganism, member of the 
Bifidobacteriaceae family, belonging to the great Actinobacteria phylum, one of the 
most abundant species of the gut microbiota.

Lactobacillus is a Gram-positive, facultative anaerobic or microaerophilic, 
rod-shaped, non-spore-forming bacteria that produces lactic acid from converting 
carbohydrates.

Oral supplementation of L. casei and B. bifidum, which are frequently used as a 
probiotic treatment option, alone and in combination, has been shown to improve 
insulin resistance (decreased fasting blood glucose, decrease HbA1C) and lower 
the serum lipid levels by enhancing short-chain fatty acids production, and thus 
improving the outcome of T2D patients [46].

Administration of metformin has been shown to increase the population of 
Bifidobacterium adolescentis, Bifidobacterium bifidum, and also Lactobacillus [47].

Figure 1. 
Akkermansia muciniphila mode of action [42, 43].
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6.3 Metformin and Adlercreutzia

The soybean, a legume species native from East Asia, is widely grown for its 
edible bean, which has numerous uses. It has been assumed that soy foods con-
tribute to reducing the risk of T2D and the progression of this disease in diabetic 
patients although opinions are divided by the results of studies which inform this 
theory or rather confirm it [48].

At the gut level, the main species that metabolizes soybean isoflavonoids to 
equol are the ones from Adlercreutzia. It is worth mentioning that not in all people 
isoflavonoids are metabolized to equol (so-called equol producers). It was specu-
lated that the health benefits of soy-based diets might be higher in equol producers 
than in equol nonproducers [49].

It seems that metformin treatment increases the population of Adlercreutzia in 
diabetic patients and therefore stimulating the production of equol, thus enhancing 
soy-based diet health benefits [50].

6.4 Summary of changes found after and before metformin treatment

These tables help summarise the changes found in the gut microbiota both 
before and after metformin treatment in T2D patients Tables 1 and 2.

Mechanisms before metformin Mechanisms after metformin

Decrease production of SCFAs Increased production of SCFAs

Decrease production of bile acids Increased bile acid production, especially GUDCA
Inhibition of farnesoid X receptor

Epithelial dysfunction and increased intestinal 
permeability

Enhancing the intestinal barrier, decreasing its 
permeability

Increased systemic LPS Decreased in LPS migration, reduced systemic LPS

Endotoxemia and metabolic infection Reduced endotoxemia

Inflammation Decreased inflammation

Insulin resistance Increased insulin sensitivity

Increased production of equol

Table 2. 
Summary of changes in the functions of microbiota before and after metformin treatment.

Structure before metformin treatment Structure after metformin treatment

Reduced Gram-positive bacteria, such as bacteria from phyla 
Firmicutes

Increased Firmicutes

Reduced butyrate-producing bacteria, such as Roseburia and 
Butyrivibrio

Increased Roseburia and Butyrivibrio

Decrease in bacteria that regulate intestinal permeability, such 
as Akkermansia muciniphila

Significant increase of Akkermansia 
muciniphila

Increased Gram-negative bacteria, such as Bacteroides, E. coli 
and Proteobacteria

Significant decrease of Bacteroides fragilis

Increase in various opportunistic pathogens, such as 
Clostridium symbiosum and Eggerthella lenta

Increased probiotic bacteria, such as 
Bifidobacterium and

Increase Adlercreutzia

Table 1. 
Summary of changes in microbiota composition before and after metformin treatment of T2D.
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7. Conclusions

Alterations of the intestinal microbiota are a key element in understanding the 
pathophysiology of diabetes and maybe to explain the variability in terms of its 
therapeutic response and complications occurrence in different patients.

Metformin exerts a significant influence on the bacterial constellation found in 
the gut, bringing a significant contribution to restoring its balance.

With changes in both composition and function, modulation of the intestinal 
flora of patients with type 2 diabetes mellitus, obtained by various methods, can 
bring a better outcome of diabetes patients and can improve the morbidity and 
mortality rates of this widely present metabolic disease.
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Increased production of equol

Table 2. 
Summary of changes in the functions of microbiota before and after metformin treatment.

Structure before metformin treatment Structure after metformin treatment

Reduced Gram-positive bacteria, such as bacteria from phyla 
Firmicutes

Increased Firmicutes

Reduced butyrate-producing bacteria, such as Roseburia and 
Butyrivibrio

Increased Roseburia and Butyrivibrio

Decrease in bacteria that regulate intestinal permeability, such 
as Akkermansia muciniphila

Significant increase of Akkermansia 
muciniphila

Increased Gram-negative bacteria, such as Bacteroides, E. coli 
and Proteobacteria

Significant decrease of Bacteroides fragilis

Increase in various opportunistic pathogens, such as 
Clostridium symbiosum and Eggerthella lenta

Increased probiotic bacteria, such as 
Bifidobacterium and

Increase Adlercreutzia

Table 1. 
Summary of changes in microbiota composition before and after metformin treatment of T2D.
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7. Conclusions

Alterations of the intestinal microbiota are a key element in understanding the 
pathophysiology of diabetes and maybe to explain the variability in terms of its 
therapeutic response and complications occurrence in different patients.

Metformin exerts a significant influence on the bacterial constellation found in 
the gut, bringing a significant contribution to restoring its balance.

With changes in both composition and function, modulation of the intestinal 
flora of patients with type 2 diabetes mellitus, obtained by various methods, can 
bring a better outcome of diabetes patients and can improve the morbidity and 
mortality rates of this widely present metabolic disease.
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Abstract

Diabetes mellitus (DM) as a chronic condition is a growing global problem. Its 
numerous complications, including ocular diseases, affect patients’ quality and 
length of life. Metformin is an effective, safe, and inexpensive first-line pharma-
cotherapy for type 2 diabetes (T2D). The current evidence indicates metformin’s 
multiple sites of action and multiple molecular mechanisms leading to its beneficial 
impact on metabolism, inflammation, oxidative stress, aging, as well as to its cardio-
vascular, neurological, bone, and antiproliferative properties. These impacts are the 
result of its acting on adenosine monophosphate-activated protein kinase (AMPK)-
dependent and AMPK-independent pathways. Limited data suggest the protective 
role of metformin on microvascular ocular complications, including retinopathy, 
glaucoma, and age-related macular degeneration in patients with T2D. However, to 
confirm its mentioned protective and therapeutic effects, more large, randomized, 
double-blind, and placebo-controlled clinical studies are needed.

Keywords: type 2 diabetes, metformin, molecular mechanisms, ocular complications

1. Introduction

Diabetes mellitus (DM) is a chronic systemic disease accompanied by 
impaired metabolism of carbohydrates, proteins, and fats. The American Diabetes 
Association (ADA) [1] distinguishes two basic types of diabetes mellitus, type 
1 (T1D) and type 2 (T2D), while, in addition, gestational diabetes and specific 
forms of the disease are also recognized. The main pathophysiologic events in DM 
are insulin deficiency and insulin resistance. The most significant event is insulin 
resistance that develops in target tissues of action of insulin (muscle, fat tissues, 
and liver). In T1D, autoimmune destruction of β cells of the pancreatic islets 
(Langerhans islets) leads to deficient production and absolute insulin deficiency, 
while in T2D, insulin secretion is considered insufficient to overcome insulin 
resistance in peripheral tissues (relative insulin deficiency).

T1D is commonly diagnosed in childhood and early adolescence, affects men 
and women equally, and shows the highest prevalence in the white race. T2D occurs 
in older life, while an increase in incidence is associated with poorer socioeconomic 
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status, and an increase in risks is associated with lower economic income, education 
levels, and unemployment. Overall, DM prevalence is expected to increase to 10.1% 
in the coming decades [2]. The global trend of the increasing prevalence of both 
types of DM implies a significant influence of environmental factors on the devel-
opment of the disease.

The polygenic inheritance of DM has been suggested, with different gene 
variants that contribute to the overall risk of disease [3, 4]. The risk of develop-
ing the disease in the offspring is higher if one parent has T2D (~40%) and T1D 
(~5%). Gene variants that associate with type 1 and type 2 diseases have a different 
genetic basis. A limited number of specific gene variants characterize a small subset 
of patients with Maturity-onset diabetes of the young, a monogenic disease with 
autosomal dominant transmission [4].

A fundamental pathogenic event in the etiology of T1D is an aberrant immune 
response and production of autoantibodies to β cells. In children and adolescents 
with T1D, the polyendocrine autoimmune syndrome has also been described, 
which involves the expression of autoimmune activity against more than one 
endocrine organ. T1D is associated with the incidence of autoimmune thyroiditis, 
celiac and autoimmune gastric disease, and other rare autoimmune conditions 
[5, 6]. Molecular mimicry and viral infections have been investigated the longest, 
while recently the focus of research is covering deficiencies in immunoregulation 
that have been identified in patients with T1D [4]. The interaction of genetic and 
environmental factors may be important for triggering autoimmune events and the 
onset of T1D [3]. Association was established between the occurrence of T1D and 
the consumption of foods rich in nitrates or nitrites, low serum vitamin D levels, 
or early exposure to enteroviral and other infections. The timing of the introduc-
tion of cereals and gluten into the diet and alterations of the gut microbiome were 
suggested to affect the β-cell autoimmune response with autoantibody production 
[7]. Consistently, a pattern of assimilation of the local incidence rate of T1D has 
been observed in persons who migrated from lower geographical areas to a higher 
incidence area [3].

The increase in T2D prevalence has been particularly linked to obesity, seden-
tary lifestyles, and unhealthy diets. One of the major risk factors for T2D is obesity. 
Insulin resistance is thought to develop with increasing fat deposition in the liver 
and muscle. Visceral obesity contributes to the development of insulin resistance 
and possibly independently contributes to the development of T2D [8]. In prediabe-
tes and early-stage T2D, partial reversibility of insulin secretion disorders has been 
observed after the restriction in the high-calorie intake and weight loss [9].

Three symptoms characterize the early onset of DM, i.e., hyperglycemia, poly-
uria, and increased thirst. The recommended diagnostic criteria and therapeutic 
monitoring of DM are based on impaired fasting glucose levels, impaired glucose 
tolerance test, and measuring glycosylated hemoglobin Type A1C (HbA1C). HbA1C 
is an indicator of long-term glycemic control (over the period of past 2–3 months), 
as it reflects the average level of glucose to which the erythrocytes were exposed 
to. In the treatment of DM, special attention is given to a balanced diet and physi-
cal activity. Administrations of exogenous insulin and insulin analogs are the 
first-line treatments for T1D. Insulin therapy requires an individualized approach 
and involves maintaining blood glucose levels as close as possible to reference 
levels while avoiding hypoglycemia, which is the most significant side effect of 
this treatment. Glycemia regulation in T2D is being attempted by oral antidiabetic 
agents, and if adequate control of the disease cannot be established, insulin therapy 
is initiated. Antidiabetics usually work by increasing the secretion of insulin from 
the pancreatic β cells or by reducing the insulin resistance. Also, drugs have been 
developed both to reduce the postprandial glycemia by slowing and reducing the 
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absorption of food from the gut and to reduce the production and release of glucose 
from the liver.

Complications of the disease significantly influence the quality of life of patients 
with DM. Acute complications of diabetes are metabolic and, in their extreme form, 
include diabetic ketoacidosis and nonketotic hyperosmolar coma. While those acute 
complications can directly endanger the patient’s life, late chronic complications 
are significant due to the impact on the quality of life and morbidity and mortal-
ity associated with the disease itself. Both, acute and chronic complications are in 
inverse onset with the degree of metabolic control of the disease [4]. HbA1C level 
showed association with risks of cardiovascular disease [10] and is considered to be 
associated with microvascular disease [11].

2. Chronic complications of the disease

Chronic DM complications can be a cause of cardiovascular events, renal failure, 
blindness, or lower limb amputation. They are classified as macrovascular and 
microvascular. Coronary disease and myocardial infarction arise as macrovascular 
complications of DM. It is estimated that 80% of patients with T2D develop cardio-
vascular complications [12]. Microvascular complications of DM include diabetic 
retinopathy (DR), nephropathy, and neuropathy. Retinal capillary endothelial 
cells, mesangial cells of the renal glomeruli, glial cells, and Schwann cells of the 
peripheral nerves are particularly exposed as they lack the ability to inhibit glucose 
transport to the cell under hyperglycemia conditions [13].

The impact of glycemic control on the development of microvascular complica-
tions of T2D has been documented in large prospective studies [12, 14–16]. The 
DISCOVER study was conducted in 38 countries and included 16,000 patients with 
T2D, with an average disease duration of 4.1 years [12]. The results of this study 
indicated that the prevalences of microvascular and macrovascular complications 
were 18.8 and 12.7%, respectively. The most common microvascular complica-
tions included peripheral neuropathy (7.7%), chronic kidney disease (5.0%), and 
albuminuria (4.3%). Coronary artery disease (8.2%), heart failure (3.3%), and 
stroke (2.2%) were the most commonly reported macrovascular complications. An 
association was observed for the following factors of risk: age, male gender, diabetes 
duration, and history of hypoglycemia.

In the development of diabetic neuropathy, the changes in cellular metabolism 
that result from hyperglycemia and dyslipidemia are leading to oxidative stress as 
a leading causative factor [17]. Hyperglycemia also exerts a negative effect on the β 
cells themselves, due to the increased formation of reactive oxygen species (ROS). 
β cells have reduced amounts of catalase enzyme and superoxide dismutase that 
metabolize ROS under normal conditions, and an increased amount of ROS acti-
vates proapoptotic nuclear factor kappa B (NF-κB).

Several mechanisms underlie the onset of microvascular complications, and 
their common feature is the formation of excess oxygen radicals that cause DNA 
damage. In hyperglycemia, an accumulation of advanced glycation end (AGE) 
product and increases in the activity of the hexosamine biosynthesis pathway, 
polyol pathway, and protein kinase C (PKC) are described [13, 17, 18]. High 
plasma glucose concentrations cause glycation of amine groups in proteins, and 
consequently, AGE is formed. AGE causes changes in the signaling pathway of 
macrophages or vascular endothelial cells with the release of various cytokines 
and increases the expression of vascular endothelial growth factor (VEGF), which 
causes increased vascular permeability and retinal angiogenesis [19]. Also, AGE-
mediated ROS generation is considered as a pathogenesis factor [17].
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In addition, hyperglycemia increases the activity of the hexosamine pathway, the  
synthesis of diacylglycerol (DAG), and the activity of aldose reductase within the 
polyol pathway. Fructose-6-phosphate synthesis of glucosamine-6-phosphate is  
the first step in the hexosamine biosynthesis pathway. Activation of the hexosamine 
pathway increases the formation of uridine diphosphate N-acetylglucosamine, which 
is a substrate donor and catalyzes the binding of monosaccharide GlcNAc to serine 
and threonine residues of cytosolic and nuclear proteins, including the transcrip-
tion factor NF-κB. DAG activates PKC isoforms, while basal membrane thickening, 
increased permeability, coagulation and contractility abnormalities, increased 
angiogenesis, and cardiomyopathy are all considered to be related to PKC activation. 
Increased activity of the polyol pathway leads to increased sorbitol formation. When 
converting glucose to sorbitol, nicotinamide adenine dinucleotide phosphate is 
consumed, and the production of reduced glutathione as a key antioxidant in the cell 
is reduced. All these cause the cell to be more susceptible to oxidative stress. Finally, 
the interaction of metabolic and vascular disorders leads to impaired cellular func-
tion and, over the long term, can mediate cell damage and apoptosis.

2.1 Ocular complications of DM

Ocular complications of DM include DR, glaucoma, and cataracts.
The most common ocular complication is DR. Its occurrence is associated 

with patient age, duration of DM, and hyperglycemia [20]. The contribution of 
inflammation-mediated pathways and angiogenesis to the progression of DR has 
been documented [21, 22]. One of the first clinical features of DR is proliferation 
of endothelial cells and forming of the microaneurysms in retinal capillaries [23]. 
Capillary damage of ischemia gradually leads to neovascularization. Newly formed 
capillaries are prone to microhemorrhages. The VEGF signaling is considered to 
have a significant role in the regulation of neovascularization in retina and patho-
genesis of DR [23–25]. Recent advances in treatment of DR include developments in 
anti-VEGF therapy, which is associated with significant reductions in vision loss due 
to DR [23].

VEGF levels could be influenced by oxidative stress and formation of ROS, and it 
has been suggested that exposition of retinal cells to H2O2 might be important in stimu-
lation of VEGF-dependent angiogenesis. Imbalance of VEGF isoforms in retinal cells 
has been observed in vivo [24]. Nevertheless, altered expression of VEGF in retinal 
pigment epithelial (RPE) cells of normoglycemic and diabetic mice was not observed, 
whereas expression of antiangiogenic VEGF165b isoform was significantly reduced 
in diabetic retina. Authors suggested that both hyperglycemia and oxidative stress 
contribute to the changes in balance of pro- and antiangiogenic factors in the retina.

Along with DR, ocular complications of DM include glaucoma and cataracts. 
Although age is the most significant risk factor in glaucoma development, DM has 
been confirmed as an etiological factor for neovascular glaucoma, while there are 
controversial opinions regarding open-angle glaucoma (OAG) and angle-closure 
glaucoma (ACG) [26]. The association of T2D and cataract has been demonstrated 
[26, 27], and assumed underlying mechanisms are compiled of increased oxidative 
stress, activation of the polyol pathway leading to an increase in the osmotic stress, 
and glycation of lens proteins [26, 28].

3. Method

We performed a short review to assess and discuss potential protective effects of 
metformin on ocular complications in patients with T2D.
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4. Metformin: protective effects on ocular complications

Apart from glycemic control, metformin has shown to have antiinflammatory, 
antiangiogenic, and calorie restriction-related antiaging activity. Limited data 
suggest the protective role of metformin on microvascular ocular complications in 
patients with T2D. The list of studies regarding the link between metformin and 
ocular involvements in diabetes is presented in Table 1.

4.1 Link between metformin and VEGF-A

Changed levels of not only VEGF-A, one of the most potent members of 
angiogenic factor family, but also of its isoforms such as VEGF120, VEGF164, 
and VEGF188 are results of hyperglycemia and oxidative stress in mice [24, 25]. 
Previous studies have shown that angiogenesis and neovascularization in the eyes 
of diabetic patients, including DR, are result of increased level of VEGFs [29, 30]. 
Metformin was shown to mediate the reduction of the VEGF-A expression and 
angiogenic inhibitors in CD34+ cells under the state of hyperglycemia-hypoxia [31]. 
Other preliminary study reports that compared to significantly increased plasma 
VEGF levels in patients treated with pioglitazone, no change in VEGF levels was 
detected in patients treated with metformin [32]. It is interesting that change of 
VEGF-A during metformin therapy is independent of metformin-associated effects 
regarding BMI, HbA1C levels, and waist circumference of fat percentage. Even 
when the blood glucose and HbA1C levels were not in the recommended range, 
patients treated with metformin had a lower incidence of ocular complications than 
patients in the nonmetformin group [33].

4.2 Protective effect on diabetic retinopathy

The beneficial effects of metformin were detected in patients with DR [25, 33]. 
It was documented that 45.5% of patients from the nonmetformin group developed 
DR compared to 27.3% of patients from the group treated with metformin [34]. 
However, metformin protective effects on DR are not purely clear. Several stud-
ies investigated its effects on vascular endothelium of retina, mainly focusing on 
pathological background and features of angiogenesis and inflammation. There is 
evidence that metformin could potently protect endothelial cells via antiangiogenic, 
antiinflammatory, and antioxidant mechanisms [35, 36].

Han et al. [37] in their in vitro study found that metformin directly inhibits 
angiogenesis of human retinal vascular endothelial cells (hRVECs) and has 
prevented tumor necrosis factor alpha (TNFα)-induced upregulation of multiple 
inflammatory cytokines in hRVECs.

Retinal degenerations are characterized by a progressive loss of photoreceptors 
or their support cells, the retinal pigmented epithelium (RPE). Xu et al. [38] used 
metformin to determine whether stimulation of the adenosine monophosphate-
activated protein kinase (AMPK) pathway protects the photoreceptors and the RPE 
from retinal degeneration (Table 1). Metformin was able to protect the photorecep-
tors from light damage, delay rod, and cone degeneration in the Rd10 model and 
to increase the resistance of the RPE to the injury. Also, authors concluded that 
metformin’s mechanism of protection was associated with increased mitochondrial 
biogenesis and reduced oxidative stress.

The long-term oral metformin was associated with significantly reduced sever-
ity of DR in patients with T2D [39]. It could be explained by metformin-induced 
restoration of energy balance in the retina through activation of AMPK [25]. AMPK 
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3. Method
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4. Metformin: protective effects on ocular complications
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ocular involvements in diabetes is presented in Table 1.
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Authors, 
Year

Study title Study design Study outcome Ref.

Brown EE 
et al., 2019

The Common 
Antidiabetic Drug 
Metformin Reduces 
Odds of Developing 
Age-Related Macular 
Degeneration

Retrospective case-control 
study with medical records 
from patients ˃55 years. 
Three controls were 
matched for every AMD 
case, defined by Int. Class. 
of Diseases, 9th Revision 
code, based on Charlson 
Comorbidity Index.

Patients treated with 
metformin had decreased 
odds of developing AMD 
suggesting its therapeutic 
role in development or 
progression of AMD in 
patients at risk.

[47]

Chen YY 
et al., 2019

Association Between 
Metformin and 
a Lower Risk of 
Age-Related Macular 
Degeneration in 
Patients with Type 2 
Diabetes

Population-based 
retrospective cohort study 
with 68,205 patients with 
T2D.

Metformin use, especially 
in higher doses, 
was associated with 
significantly lower risk of 
development of AMD.

[48]

Li Y et al., 
2018

Association 
of Metformin 
Treatment with 
Reduced Severity 
of Diabetic 
Retinopathy in Type 
2 Diabetic Patients

Retrospective chart review 
study with 335 patients 
with DR and with T2D 
≥15 years. The severity 
of DR was determined by 
Early Treatment Diabetic 
Retinopathy Study scale.

Long-term use of 
metformin was 
independently associated 
with significant lower rate 
of severe nonproliferative 
DR or proliferative DR 
in patients with T2D 
≥15 years.

[41]

Han J et al., 
2018

Metformin 
Suppresses Retinal 
Angiogenesis and 
Inflammation In 
Vitro and In Vivo

Metformin effects and 
mechanism were tested 
in vitro in hRVEC 
culture and in vivo in 
vldlr−/− mice.

Metformin showed 
potent antiangiogenic and 
antiinflammatory effects 
on hRVECs, reduced 
retinal neovascularization 
in vldlr−/− mice, and 
suppressed leukostasis 
in STZ-induced diabetic 
mice, suggesting its 
potential to target key 
pathogenic components 
in DR.

[37]

Xu L et al., 
2018

Stimulation of 
AMPK Prevents 
Degeneration of 
Photoreceptors and 
the Retinal Pigment 
Epithelium

In vivo study with 
metformin tested in three 
different mouse models 
of retinal degeneration: a 
light-induced degenerative 
model, the Pde6brd10 
inherited retinal 
degeneration model, and a 
model of sodium iodate-
induced RPE and retinal 
injury, as well as in AMPK 
retinal knockout mice.

By stimulation of AMPK 
metformin protected 
photoreceptors and the 
RPE in three different 
mouse models of retinal 
degeneration, including 
acute bright light damage, 
Pde6brd10 inherited 
retinitis pigmentosa, and 
sodium iodate-induced 
RPE injury. Local 
expression of AMPK 
catalytic subunit α2 was 
required for those effects.

[38]

Maleskic S 
et al., 2017

Metformin 
Use Associated 
with Protective 
Effects for Ocular 
Complications 
in Patients with 
Type 2 Diabetes – 
Observational Study

Observational study with 
medical records from 234 
patients with T2D (190 
patients using metformin 
and 44 using other oral 
antihyperglycemic agents).

Metformin use was 
associated with fewer 
ocular complications 
with decreased odds of 
both glaucoma and DR 
compared to other oral 
antihyperglycemic agents.

[33]
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activation was suggested to be protective for the tissues that are undergoing meta-
bolic stress. However, the regulation on endothelial inflammatory and angiogenic 
responses by metformin also has been shown through both AMPK-dependent and 
AMPK-independent mechanisms [37, 40].

According to a retrospective study [41], there is a correlation between the long-
term metformin treatment and reduced severity of DR in patients with T2D regard-
less of their HbA1c level, gender, race or treatment with sulfonylurea or insulin.

In summary, metformin might be used for the purpose of reducing DR progres-
sion in patients with long history of T2D.

Authors, 
Year

Study title Study design Study outcome Ref.

Yi QY 
et al., 
2016

Metformin Inhibits 
the Development 
of Diabetic 
Retinopathy 
through Inducing 
Alternative Splicing 
of VEGF-A

Metformin effects on the 
development of DR were 
tested in STZ-induced 
diabetic model in mice.

Metformin inhibited VEGF 
signaling by inducing 
VEGF-A mRNA splicing 
to VEGF120 isoform, 
creating a potential for new 
treatment option for DR.

[25]

Simão 
S et al., 
2016

Oxidative Stress 
Modulates the 
Expression of VEGF 
Isoforms in the 
Diabetic Retina

Retinal tissue and D407 
RPE cells from wild-type 
and Ins2Akita mouse model 
of diabetes were used as 
experimental models.

Both hyperglycemia 
and oxidative stress 
disrupted the equilibrium 
between pro- and 
antiangiogenic factors in 
the retina. Hyperglycemia 
contributed to  
deregulation of the 
expression of VEGF 
proteins and the 
production of ROS in RPE 
cells. Pathological H2O2 
levels downregulated the 
VEGF165b.

[24]

Lin H-C 
et al., 
2015

Association of 
Geroprotective 
Effects of Metformin 
and Risk of Open-
Angle Glaucoma 
in Persons with 
Diabetes Mellitus

Retrospective cohort study 
with patients with T2D 
aged ≥40 years and with no 
preexisting record of OAG.

Metformin use was 
associated with reduction 
in risk of developing 
OAG. Proposed 
mechanisms involved 
improved glycemic 
control or effects 
involving neurogenesis, 
inflammatory systems, or 
longevity pathways.

[43]

Richards 
JE et al., 
2014

Targeting aging: 
Geroprotective 
Medication 
Metformin Reduces 
Risk of Adult-
onset Open-angle 
Glaucoma

Longitudinal data from 
a large database were 
used, and patients with 
diabetes, aged ≥40 with 
no preexisting OAG, were 
monitored for incident 
OAG.

Metformin use was 
associated with reduced 
risk of OAG, on a 
dose-dependent manner. 
Proposed mechanisms 
involved neurogenesis, 
longevity pathways, and/or 
reduced inflammation.

[46]

AMD: Age-Related Macular Degeneration; DR: Diabetic Retinopathy; hRVEC: human retinal vascular endothelial 
cell; vldlr-/-mice: very-low-density lipoprotein receptor knockout mutant mouse; STZ: streptozotocin; AMPK: 
adenosine monophosphate-activated protein kinase; RPE: retinal pigmented epithelium; VEGF-A: vascular 
endothelial cell growth factor A; OAG: Open-Angle Glaucoma; POAG: primary open-angle glaucoma.

Table 1. 
List of studies regarding the link between metformin and ocular involvements in diabetes.
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4.3 Protective effect on glaucoma

Glaucoma is a type of neuropathy, and association with DM was identified – it 
could cause optic neuropathy [42]. The thicker central cornea in patients with DM 
than in healthy subjects could be a cause of higher intraocular pressure in those 
patients [26]. A retrospective cohort study showed that metformin use is associated 
with reduced risk of developing open-angle glaucoma and suggested that metfor-
min could have an impact on glaucoma risk on multiple levels including glycemic 
control and calorie restriction (CR) [43]. As previous studies suggested that age-
related tissue changes significantly contribute to glaucoma development [44], the 
antiaging effect of metformin as a CR mimetic drug could delay the progression of 
tissue damage [45].

Risk reduction of glaucoma was shown to be dose-dependent for metformin and 
independent of glycemic control in the population with DM [46]. In the observa-
tional study, patients treated with metformin had a lower prevalence of glaucoma 
than patients treated with other oral antidiabetic medications, 3.2 vs. 11.4%, 
respectively [33].

4.4 Protective effect on age-related macular degeneration

Recently, the first studies on this topic indicated an association between metfor-
min use and the reduction of age-related macular degeneration (AMD) develop-
ment [47, 48]. Those authors assumed metformin’s protective role in development 
or progression of AMD based on both its antiinflammatory and antioxidative 
properties and on AMD pathogenesis. Namely, besides environmental and genetic 
factors, AMD pathogenesis involves inflammation and oxidative stress, which can 
lead to choroidal neovascularization and geographic atrophy with potential loss of 
vision [47–50].

In study Chen et al., both the incidence of AMD (3.4 vs. 6.6%) and cumulative 
hazard for AMD were significantly lower among metformin users than nonusers. 
Lower hazard ratios for AMD were shown to be associated with higher dose of met-
formin and longer duration of therapy, and they remained even after adjustment for 
the patients’ age, gender, and comorbidities [48].

Similar results were found in the study by Brown et al., where decreased odds 
of developing AMD, except for metformin, were not associated with dipeptidyl 
peptidase 4 inhibitors, selective serotonin reuptake inhibitors, tetracyclic antide-
pressants, and statins [47].

Almost 8.4 million people worldwide are affected by AMD [51]. It is the most 
common cause of vision impairment in the developed countries, and the third one, 
after uncorrected refractive errors and cataract, globally [52–54]. Estimated blind-
ness prevalence related to AMD is 8.7% [55]. However, it is projected that due to the 
extended life expectancy, the number of people with AMD will increase [52–54]. 
Current AMD therapy with anti-VEGF drugs is costly, i.e., the cost of an injection 
of anti-VEGF is up to £800, and usually eight injections per year are recommended 
[51]. Therefore, as metformin is well-known cheap drug, its potentially protec-
tive effect on AMD is promising, especially for countries with limited health care 
resources.

5. Conclusion

Metformin is effective, well-tolerated, and inexpensive first-line pharmaco-
therapy for T2D. Its additional potential protective effects on ocular complications 
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Abstract

Under diabetes mellitus, the administration of Galega officinalis promotes res-
toration of leukocyte precursors’ bone marrow pool and normalizes their prolifera-
tive activity. This plant protects the functional state of leukocytes by modulating 
actin cytoskeleton formation and through quantitative redistribution of leukocyte 
membrane glycoconjugates. Galega officinalis prevents the development of diabetes-
associated oxidative stress which results in antiapoptotic activity. The normalization 
of leukocytes’ proliferative and functional capacity by Galega officinalis, along with 
its antiapoptotic and hypoglycemic effects, can improve the course of the disease 
and may prevent the development of complications of diabetes.
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1. Introduction

Diabetes mellitus belongs to a group of metabolic diseases accompanied by 
chronic inflammation and attenuation of the immune response, which subsequently 
contributes to the development of a number of complications [1]. Cells that are 
most affected by glycemic status and insulin level are leukocytes, which play major 
roles in inflammation and immune responses [2]. Constant high glucose levels result 
in the formation of cytotoxic compounds, leading to lower viability of peripheral 
blood leukocytes. This is mediated by enhanced reactive species production, 
activation of mitogen-activated protein kinase (MAPK) pathway, high levels of pro-
inflammatory and poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP) 
transcription factors, as well as inactivation of pro-survival pathways which alto-
gether leads to increased apoptosis rate. The alterations in these molecular pathways 
are usually associated with increased leukocyte mobilization, which causes changes 
in their morphology and functional state [1, 3].

The multitude of diabetes mellitus complications creates the need for drugs with 
a wide spectrum of action, which would not only provide effective reduction of 
blood glucose but would also exhibit cytoprotective properties. The most commonly 
used anti-diabetes drug globally is metformin. Metformin shows a pleiotropic effect 
mediated by its hypoglycemic function, as well as inhibitory effect on oxidative 
stress and inflammation.

In many cases medicinal plants can be safe and effective alternatives to synthetic 
compounds in disease management, since they possess a unique composition of 
biologically active substances [4].
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Galega officinalis (Galega, goat’s rue, French lilac) is a promising plant that can 
be used for treatment of a wide range of inflammatory diseases, including diabetes 
mellitus. G. officinalis is well-known for its hypoglycemic action, and it has been 
long used as part of a plant mixture for treatment of diabetes mellitus [5]. For a long 
time, the antidiabetic effect of G. officinalis was associated with high content of 
alkaloid galegine, which is one of the main components of this plant’s leaves. In fact, 
metformin, discussed above, is a synthetic form of galegine, which was originally 
used to treat diabetes mellitus type 2 [5]. The toxicity of G. officinalis’ alkaloids 
decreased its attractiveness as a hypoglycemic drug. However, it was found that 
even the non-alkaloid extract has a hypoglycemic effect and is potentially nontoxic 
[6, 7]. Based on such historical use and a large number of recent scientific studies, 
G. officinalis is a source of potent biologically active substances for the prevention 
and treatment of diabetes mellitus [8].

2. Effects of metformin on the immune system

Metformin (N,N-dimethylbiguanide) is an oral antihyperglycemic agent, which 
from a chemical point of view is a synthetic derivative of guanidine. The hypoglyce-
mic effect of this drug is realized through the inhibition of hepatic glucose produc-
tion, reducing intestinal glucose absorption and improving glucose uptake and 
utilization by peripheral tissues. Recent research has shed light on the pleiotropic 
effect of metformin, ranging from hypoglycemic function to cardio- and nephro-
protection, as well as inhibitory effects on oxidative stress and inflammation [9–11].

The scientific data concerning the influence of metformin on the immune sys-
tem is controversial, and its effect strongly depends on the pathology in which it is 
used. For example, metformin enhances antitumor immunity, but in other contexts, 
it can act as an anti-inflammatory or immunosuppressive agent [8]. Metformin can 
suppress senescence- and cancer-related inflammation. The majority of experi-
mental data indicates that metformin modulates leukocytes’ functional activity 
by activating 5′ adenosine monophosphate-activated protein kinase (AMPK). 
Metformin can activate AMPK in multiple cell populations, including macrophages 
and neutrophils [12, 13]. It has also been demonstrated that metformin inhibits 
innate immune response to fungal infection in an AMPK-dependent manner and 
lessens central nervous system inflammation [14].

Considering the significant modulating effect of metformin on the immune 
system, it is unsurprising that it has a strong effect on immunocompetent blood 
cells, which we discuss below.

2.1 Metformin influence on defective hematopoiesis

Studies conducted on Fanconi anemia mice showed the unique property of 
metformin to improve hematopoiesis by restoring hematopoietic stem cell (HSC) 
numbers. It also delays tumor formation, presumably via reduction of DNA damage 
induced by aldehydes [15]. An important part of metformin protective effect may 
be conferred by aldehyde detoxification. Other mechanisms by which metformin 
may act to protect the cell’s DNA are reducing the activity of mitochondrial complex 
1 activity, thus potentially reducing oxidative DNA damage. It is also possible that 
metformin can switch the metabolic balance between oxidative phosphorylation 
and anaerobic glycolysis and downregulate inflammatory pathways which are 
thought to contribute to bone marrow failure [15]. Another study demonstrates 
that metformin treatment significantly inhibited the total-body irradiation-induced 
increase in the levels of DNA double-strand breaks and reactive oxygen species 
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(ROS) by attenuation of NOX4 expression in HSCs. Furthermore, metformin 
modulates the expression of antioxidant enzymes in HSCs [16].

2.2 Influence of metformin on functional state of leukocytes

Many diabetic patients who receive metformin show significantly reduced 
neutrophil-to-lymphocyte ratio [9]. Metformin is able to reduce hyperneutrophilia 
in girls with hyperinsulinemic hyperandrogenism and improves white blood cell 
count in women with polycystic ovary syndrome, two conditions characterized by 
a pronounced systemic inflammatory state [17]. Metformin increased the number 
of CD8-positive tumor-infiltrating lymphocytes. Normalizing effect of metformin 
on the number of immunocompetent cells is associated with its ability to upregulate 
AMPK and as a consequence of altering energy metabolism in the cell [14].

Apart from metformin influence on immunocompetent cell number, this drug 
also can modulate their functional activity. As expected for an AMPK activator, 
metformin enhances cell mobility and phagocytosis, in particular in macrophages 
that show enhanced uptake of bacteria, synthetic beads, or apoptotic cells. The 
effects of AMPK activation may be due to its ability to increase availability of cell 
surface receptors, including αM integrin or Fc receptors or due to mechanisms that 
involve suppression of TLR4-associated signaling pathways. Metformin by activat-
ing AMPK regulates the process of inflammation resolution—efferocytosis and 
enhanced uptake of bacteria by phagocytic cells [12, 13].

Additionally, in patients with prediabetes, metformin treatment reduces the 
concentration of neutrophil extracellular trap (NET) components independently 
from glycemic control [14].

The normalization of phagocytosis processes and NETosis under metformin 
administration could suggest an effect of this drug on neutrophil activation. 
Indeed, metformin attenuates neutrophil activation via inhibition of mitochondrial 
respiratory complex I, potentially through intracellular H2O2-mediated inhibition of 
IκB-α degradation and thus prevention of NF-κB activation [18].

Immune system modulation by metformin can be realized not only by its 
direct influence on the immunocompetent cells but also by its ability to regulate 
chemokine level. Metformin causes a decrease in inflammatory markers in plasma, 
including soluble intercellular adhesion molecule, vascular cell adhesion mol-
ecule-1, macrophage migration inhibitory factor, C-reactive protein, IL-6, and IL-8. 
The anti-inflammatory action of metformin is realized by suppressing Akt, Erk1/2, 
and NF-B translocation. Such changes lead to blocking of pro-inflammatory signal 
transduction via the phosphoinositide 3 kinase pathway [19].

Immunosuppressive effect of metformin can be mediated by its ability to 
inhibit the expression of pro-inflammatory mediators (IFN-, TNF-, IL-1, IL-6, 
IL-17, iNOS, MMP9, and RANTES) and infiltration of immune cells, which was 
blocked by reducing the expression of CAMs (ICAM, VCAM, and E-selectin) on 
vascular cells [20, 21].

2.3 Effects of metformin on oxidative stress

Oxidative stress is the leading cause of microvascular and cardiovascular 
diabetes complications [22]. Disruption of glucose metabolism causes mitochon-
drial superoxide overproduction in cells. An increased amount of superoxide leads 
to overactivity of polyol and hexosamine pathways, increased formation of AGEs 
(advanced glycation end products) and its receptors, and activation of protein 
kinase C isoforms. Altogether, this leads to the development of complications of 
diabetes. Simultaneously endothelial nitric oxide synthase is inactivated. Changes 
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in the activity of these signaling pathways result in increased intracellular ROS and 
activation of pro-inflammatory pathways [22].

Considering such intimate link between diabetes and oxidative stress, anti-
diabetes treatments should not only reduce blood sugar but should also possess 
strong antioxidant properties. Metformin satisfies both criteria; as in addition to a 
hypoglycemic effect, it improves the immunological parameters of patients, pre-
sumably through its antioxidant properties [23]. In aortic endothelial cells, metfor-
min has been shown to inhibit high glucose-dependent ROS overproduction, which 
was mediated by a reduction in NADPH oxidase activity and an inhibition of the 
respiratory chain complex 1. Another possible mechanism of metformin antioxidant 
properties is its ability to activate AMPK with the ensuing induction of manganese 
superoxide dismutase and expression of the antioxidant thioredoxin and endothelial 
NO synthase (eNOS). Additionally, metformin is able to reduce AGEs synthesis 
and the expression of their specific cell receptor called RAGE in endothelial cells 
[16, 23]. In addition to the abovementioned indirect mechanisms of modulation of 
superoxide anion intracellular production, it was found that metformin can directly 
scavenge ROS, in particular •OH but not O2

• [16].
While leukocytes actively participate in ROS generation, they are highly sensi-

tive to ROS-mediated oxidative damage. Metformin was demonstrated to have a 
protective effect against oxidative stress in immunocompetent cells [24].

Furthermore, metformin modulates the function of fMLP-activated polymorpho-
nuclear neutrophils that quench the products of oxidative burst. Researchers hypoth-
esized that metformin may recognize specific cell membrane sites, thereby inducing 
intracellular signal transduction resulting in changes in NADPH oxidase activity or in 
other sources of intracellular ROS [25]. Furthermore, metformin-induced decrease in 
ROS levels led to a partial inhibition of lipid peroxidation in lymphocytes [26].

2.4 A protective role of metformin against apoptosis

Most chronic diseases, including diabetes mellitus, are accompanied by oxida-
tive stress, which may result in apoptosis of different types of cells [27]. Metformin 
has been shown to have protective role on apoptosis. The inhibition of apoptosis 
by metformin has been described in many cell types and under various conditions. 
There may be several mechanisms of apoptosis prevention. Firstly, metformin pos-
sesses good radical scavenging activity. Secondly, metformin can regulate caspase 
levels and induce xenobiotic phase II enzymes [28].

A number of authors have concluded that metformin exerts a neuroprotective 
effect by decreasing mitochondria-dependent apoptosis. This is achieved through 
the inhibition of permeability transition pore opening, blocking the release of cyto-
chrome c and preventing subsequent cell death [29]. A protective role of metformin 
against programmed cell death is likely mediated by maintaining mitochondria 
integrity and reducing Ca2+. This drug also lowers the expression of caspase-3, 
cytochrome c, and cleaved caspase-9 and reduces fragmentation of PARP-1 while 
increasing the expression of Bcl-2 [29]. A similar protective effect of metformin has 
been described for primary rat hepatocytes. Metformin may protect against apop-
tosis by induction of menadione-induced heme oxygenase-1 and bcl-xl expression 
and the reduction of c-Jun N-terminal kinase activation [30, 31].

Given the ability of metformin to inhibit apoptosis of different cells in a variety 
of pathologies, it is possible to assume that it has a similar effect on immunocom-
petent blood cells. Indeed, it was shown that metformin markedly decreased the 
percentage of apoptotic cells in bone marrow cells of rats [32]. It also reduces the 
activation of macrophages and inhibits the expression of COX-2 and caspase-3, 
thereby attenuating inflammatory responses and apoptosis [33].
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Treatment with metformin reduces the amount of oxidant-induced DNA dam-
age in lymphocytes. It was shown that pharmacological concentration (50 μM) of 
metformin could protect against prooxidant stimulus-induced DNA damage at early 
but not late stages. Thus, metformin likely exerts an antiapoptotic effect by reduc-
ing caspase-3 and caspase-8 activities [28].

3.  Effects of Galega officinalis L. on immunocompetent cells under 
diabetes mellitus

Galega officinalis (goat’s rue) is a toxic leguminous plant originated in the Eastern 
Mediterranean and Black Sea regions but now has been spread in southeastern parts 
of Europe and the Middle East. In the medieval period, this plant was traditionally 
used for the treatment of diabetes [5, 34]. G. officinalis contains a large number of 
secondary metabolites with pronounced biological properties, among which are 
alkaloids, saponins, flavonoids, tannins, fatty acids, and phytoestrogens [35].

3.1  Component composition and hypoglycemic effect of non-alkaloid 
extract of Galega officinalis

The non-alkaloid extract of G. officinalis can be obtained by a two-step extrac-
tion [6, 7]. In the first stage, the biologically active substances are obtained by plant 
material infusion in 96 % ethanol. After alcohol evaporation, equal volumes of 
water and chloroform are added to the residue. The obtained chloroform fraction 
should be evaporated to obtain the solid residue, which is then dissolved in water 
to form an emulsion. The latter is not stable and eventually forms a precipitate. The 
stability of emulsions is very important; their stratification affects the accuracy of 
active substance content measurement. To solve this problem, the biocomplex PS 
(surface-active products of Pseudomonas sp. PS-17 biosynthesis) can be used [7]. 
Using gas chromatography/mass spectrometry method, it was established that the 
biocomplex PS consists of methyl ester of decenoic acid and dodecenoic acid. These 
surfactants were added to the initial mixture obtained by the addition of water 
to non-alkaloid fraction of G. officinalis. Such extraction and stabilization yield a 
stable water emulsion without toxic alkaloids [6, 36].

Crucially, such non-alkaloid fraction of G. officinalis extract exhibited a hypo-
glycemic effect in streptozotocin-induced diabetes mellitus if administered for 
14 days at 600 mg/kg per day. Notably, blood glucose concentration decreased to 
physiological values [6, 7].

Blood glucose measurement evaluates current glucose concentration, which 
may depend on many factors (the intake and composition of food, physical activ-
ity and their intensity, the emotional state of the patient, and even the time of the 
day) [37]. Thus, blood glucose concentration may not reflect the actual degree of 
diabetes compensation, potentially resulting in medication under- or overdos-
ing. Therefore, today, the key indicator for treatment quality and risk of diabetes 
complications is the level of glycosylated hemoglobin (HbA1c) [37]. Notably, the 
non-alkaloid fraction of Galega officinalis extract normalizes HbA1c content under 
diabetes [6].

Sugar-reducing effect of non-alkaloid extract may be due to its complex com-
position [6, 36, 38]. Gas chromatography/mass spectrometry detected phytol as 
a component of non-alkaloid fraction of Galega officinalis extract. Phytol might 
contribute to the extract’s sugar-lowering effect, as it is known to lower insulin 
resistance and sensitivity of muscles to insulin and to reduce gluconeogenesis [39]. 
It has been shown that phytol can increase the expression of GLUT2 and glucokinase 
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genes through activation of RXR (retinoid X receptor) [39], which are otherwise 
downregulated under diabetes mellitus. Palmitic acid esters in the extract could 
also cause a dose-dependent decrease in blood plasma glucose in animals with 
experimental diabetes mellitus [40]. Furthermore, non-alkaloid fraction of Galega 
officinalis extract contains high levels of phytosterols (campesterol and stigmas-
terol) that, in addition to the ability to inhibit cholesterol adsorption, can reduce the 
level of glycosylated hemoglobin [41, 42].

Another notable biologically active substance from Galega officinalis is α-amyrin. 
It has a hypoglycemic action and can influence endocannabinoid system. Some 
ligands for cannabinoid CB1 receptors can directly bind and allosterically regulate 
Kir6.2/SUR1 K (ATP) channels, thereby controlling glucose-stimulated insulin 
release. In addition, α- and β-amyrin, due to their anti-inflammatory and antioxi-
dant properties, have a positive effect on the state of animals with streptozotocin 
diabetes [43].

It has been shown that quinazoline derivatives are capable to lower blood glucose 
level and body weight in obese animals [44]. Notably, the non-alkaloid fraction 
of Galega officinalis contains such substances (2-methyl-1,2,3a,4,5-hexahydro-
pyrrolo[1,2-a]quinazoline). These derivatives can increase the activity of AMPK, 
which results in increased glucose adsorption by muscle cells. It has been found 
that AMPK, in addition to regulating insulin release by pancreatic cells, inhibits the 
activity of acetyl-CoA-carboxylase and hydroxymethylglutaryl-CoA-reductase in 
fat cells, thereby inhibiting the biosynthesis of fatty acids and cholesterol [45].

High content of alpha-linolenic acid in Galega extract is also noteworthy. 
Omega-3 polyunsaturated fatty acids increase cell membrane fluidity, as well as 
the number of insulin receptors, the affinity of insulin to these receptors, and the 
number of type 4 glucose transporters; they also regulate the balance between pro- 
and antioxidants [46].

Based on the above statement, the sugar-lowering effect of the non-alkaloid 
fraction of Galega officinalis extract is likely due to the presence of phytol, ethyl 
ester of palmitic acid, phytosterols (campesterol and stigmasterol), and quinazoline 
derivatives, acting separately or synergistically [6].

3.2 Regulation of bone marrow cells proliferation by Galega officinalis

Many of diabetes complications are induced by the intensification of chronic 
inflammation and attenuation of the immune response. Leukocytes play major 
roles in inflammation and immune responses. Diabetes mellitus is accompanied by 
infectious and inflammatory processes, of which the most frequent are bacterial 
infections, which are accompanied by relapses and are difficult to treat. Changes 
in the proliferative activity and ratio of leukocytes and changes in their functional 
properties and activation of free radical oxidation are among probable causes of 
the propensity of patients with diabetes mellitus to infectious processes and their 
compromised immunological status [2].

Therefore, the measurement of the hypoglycemic effect is insufficient when 
testing the effectiveness of new antidiabetic agents. It is also necessary to evaluate 
the effect of potential hypoglycemic drugs on cells that are susceptible to metabolic 
changes in diabetes mellitus. Cells whose function is very significantly affected in 
the course of diabetes mellitus are white blood cells. High levels of glucose in the 
bloodstream cause inflammation, which primarily affects blood cells, in particular, 
leukocytes [47, 48].

In addition to a broad spectrum of substances with a hypoglycemic effect, the 
non-alkaloid fraction of Galega officinalis extract contains compounds with poten-
tial immunomodulatory effect. Galega officinalis normalizes differential count of 
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leukocytes in conditions of diabetes mellitus. In particular, it leads to an increase in 
the number of segmented and band neutrophils while overall lowering the number 
of lymphocytes to almost control values [49]. This indicates a normalization of the 
cell-mediated immune response, as one of the most important factors determining 
the activity of the immune system of an organism [49]. The normalization of the 
content of immunocompetent cells in blood after treatment of diabetic rats with 
Galega extract may be due to the influence of its biologically active substances on 
the proliferation of these cells.

The non-alkaloid fraction of Galega officinalis extract, as a source of biologically 
active substances with wide range of actions, significantly affects the proliferative 
activity of bone marrow cells in conditions of diabetes. In particular, in rats with 
streptozotocin-induced diabetes mellitus, the administration of Galega officinalis 
extract caused a significant decrease in leukocyte proliferation, which is otherwise 
very high under diabetes. However, a more detailed analysis showed that despite the 
overall growth of leukocyte proliferation under diabetes mellitus, the abundance 
of not all leukocyte types increases in the bone marrow [38]. In particular, under 
diabetes a reduction in the number of myeloblasts was shown, with the follow-
ing decrease of juvenile and staff neutrophils. By contrast, lymphoblast numbers 
increased. Interestingly, the number of lymphocytes in the bone marrow does not 
undergo significant changes, potentially because immature lymphocytes leave the 
bone marrow towards the bloodstream. Since the non-alkaloid fraction of Galega 
officinalis extract can regulate the proliferative activity of leukocyte precursors, it 
is able to influence on the content of different types of leukocytes. Galega officinalis 
extract administration causes a decline in lymphoblasts and segmented granulo-
cytes number, as well as an increase in numbers of lymphocytes and juvenile and 
staff granulocytes in the bone marrow of animals with diabetes mellitus. It has been 
proposed that this effect is due to the extract’s ability to regulate the tumor necrosis 
factor α (TNF-α) content, the amount of which significantly increases in diabetes 
mellitus [38].

Furthermore, the revealed influence of Galega officinalis extract on the pro-
liferative activity of leukocytes may relate to the presence of inositol [50], fatty 
acids [51, 52], especially α-linolenic acid [53–55], flavonoids [56–59], phytol [60], 
squalene [61], campesterol, and stigmasterol [62] as well as α-amyrin [38, 63].

3.3  Influence of Galega officinalis on functional state of leukocytes and their 
antioxidant-prooxidant balance

In diabetes, abnormal immune response manifests itself not only in the imbal-
ance in the process of leukocytes proliferation but also in the disruption of these 
cells’ functional activity. The main effectors of the inflammatory process are 
phagocytes [64]. The effectiveness of phagocytic response is largely determined by 
the nature and intensity of its initial stage—chemotaxis. However, because of its 
complexity, chemotaxis is one of the most vulnerable forms of neutrophil reactivity 
[65]. Therefore, the impairment of the functional capacity of phagocytes and other 
immunocytes is associated with the pathology of movement of these cells. The main 
mechanism that allows cell motility is actin polymerization, as it underlies in the 
formation of stress fibrils, lamellipodia, and filopodia [66].

In animals with diabetes, the non-alkaloid fraction of Galega officinalis extract 
causes a decrease in filamentous actin (F-actin) content; this can testify about the 
reduction in the formation of short pseudopodia on the leukocytes surface. These 
data indicate that the use of this extract reduces the change in the structural and 
functional properties of leukocytes, as well as decrease of leukocyte pre-activated 
state [67]. It is possible that the extract-induced decrease in actin polymerization 
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of not all leukocyte types increases in the bone marrow [38]. In particular, under 
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cytes number, as well as an increase in numbers of lymphocytes and juvenile and 
staff granulocytes in the bone marrow of animals with diabetes mellitus. It has been 
proposed that this effect is due to the extract’s ability to regulate the tumor necrosis 
factor α (TNF-α) content, the amount of which significantly increases in diabetes 
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In diabetes, abnormal immune response manifests itself not only in the imbal-
ance in the process of leukocytes proliferation but also in the disruption of these 
cells’ functional activity. The main effectors of the inflammatory process are 
phagocytes [64]. The effectiveness of phagocytic response is largely determined by 
the nature and intensity of its initial stage—chemotaxis. However, because of its 
complexity, chemotaxis is one of the most vulnerable forms of neutrophil reactivity 
[65]. Therefore, the impairment of the functional capacity of phagocytes and other 
immunocytes is associated with the pathology of movement of these cells. The main 
mechanism that allows cell motility is actin polymerization, as it underlies in the 
formation of stress fibrils, lamellipodia, and filopodia [66].

In animals with diabetes, the non-alkaloid fraction of Galega officinalis extract 
causes a decrease in filamentous actin (F-actin) content; this can testify about the 
reduction in the formation of short pseudopodia on the leukocytes surface. These 
data indicate that the use of this extract reduces the change in the structural and 
functional properties of leukocytes, as well as decrease of leukocyte pre-activated 
state [67]. It is possible that the extract-induced decrease in actin polymerization 
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might regulate integrin-dependent interaction with vascular endothelium neces-
sary for leukocytes penetration through the blood vessel wall during inflammatory 
processes [68].

F-actin is represented by two pools: (1) long microfilaments (the constitutive 
fraction of cytoskeleton) located near the cell membrane and reaching towards the 
center of the cell and (2) short microfilaments located in the submembrane cortical 
network. Short filaments form a very dynamic fraction, since they are the first ones 
to initiate polymerization of actin membrane filaments at the time of leukocytes 
activation [69]. Along with F-actin high content in blood leukocytes in diabetes mel-
litus condition, the process of its polymerization is intensified with the formation of 
fraction of short actin filaments. The source of monomers for this polymerization is, 
to a large extent, products of cytoskeleton filaments depolymerization and, to a lesser 
extent, the cellular pool of monomeric actin. The increase in actin polymerization 
may be due to an increase in the phosphatidylinositol amount observed in diabetes 
mellitus [70]. These cellular messengers may act as inhibitors of phosphorylation of 
actin regulatory proteins that affect the redistribution of actin filaments and reduce 
the content of cytoskeleton actin filaments and proportionally increase the level of 
actin in the short filaments and monomers fractions [71].

The administration of the non-alkaloid fraction of Galega officinalis extract in 
leukocytes of animals with diabetes causes a pronounced depolymerization of short 
actin filaments. It is accompanied by the formation of actin monomers and their 
polymerization to a fraction of cytoskeleton filaments. Galega-induced changes in 
actin cytoskeleton organization of leukocytes under prolonged hyperglycemia are 
probably due to a decrease in the pre-activated state of leukocytes. This effect is 
mainly achieved by a decrease in the intensity of activation and translocation of the 
phosphatidylinositol-3′-kinase regulatory subunit in the cytoskeleton sites [68, 72]. 
Reduced amount of phosphatidylinositol-3′-kinase reaction products (phosphati-
dylinositol-3,4-diphosphate and phosphatidylinositol-1,3,4-triphosphate) in the cell 
results in association of the CAP protein with actin filaments, resulting in inhibition 
of actin polymerization [71].

As mentioned above, diabetes mellitus type 1 is characterized by pre-activated 
state of leukocytes. This state is associated with the structural and functional 
rearrangement of the receptor apparatus of these cells. Often, such alterations are 
realized through changes in the structure of surface glycoproteins that contain sialic 
acid [73]. In diabetes, N-acetyl-β,D-glucosamine residues are exposed to a greater 
degree compared to healthy subjects, while the exposure of sialic acids linked 
by α2→3 and α2→6-glycoside bonds to subterminal residues (β, D-galactose, or 
N-acetylgalactosamine) decreases. Quantitative redistribution of glycoconjugates 
in leukocyte membranes leads to the modification of signaling networks involved 
in intercellular interactions, as well as, to the disruption of the aggregation and 
adhesiveness of these cells [67]. Activation of membrane-bound neuraminidases 
in diabetes mellitus leads to a decrease in the total level of sialic acids on the cell 
membrane. Desialylation is accompanied by increased content of subterminal 
monosaccharide—β, D-galactose. Galactose-containing glycoproteins regulate 
leukocyte migration during the inflammatory process, accompanied by a dynamic 
rearrangement of actin cytoskeleton [74].

The non-alkaloid fraction of Galega officinalis extract normalizes the content 
and structures of the glycoproteins’ carbohydrate determinants that form leuko-
cytes’ glycocalyx.

Reduction in N-acetyl-β,D-glucosamine residue content upon Galega officinalis 
administration is important to restore normal leukocyte function. Normalized 
content of such receptors indicates completion of leukocytes pre-activation. It is 
known that N-acetyl-β,D-glucosamine-containing glycoproteins include a receptor 
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for N-formyl-methionyl-leucyl-phenylalanine, which stimulates a respiratory burst 
in neutrophil granulocytes by activating NADPH oxidase [75]. Also, N-acetyl-
β,D-glucosamine-containing glycoconjugates are involved in the adhesion of 
leukocytes to the endothelium during inflammation (through cell surface receptor 
macrophage-1 antigen or complement receptor 3, which mediates the interaction 
of neutrophil granulocytes with intercellular adhesion molecule-1) [75]. Thus, the 
normalization of the receptor content, which has N-acetyl-β,D-glucosamine in its 
structure, improves the cell’s response to extracellular stimuli with a corresponding 
restoration of the functional state of leukocytes.

Under streptozotocin-induced diabetes, the administration of the non-alkaloid 
fraction of Galega officinalis extract increases the content of α(2→3)-bond sialic 
acids to physiological levels. It is possible that this effect is due to the influence of 
the extract’s biologically active substances on the activity of enzymes involved in 
the cleavage or transfer of sialic acid residues (neuraminidase and trans-sialidase) 
[67, 76]. Glycoproteins that contain sialic acids are structural components of the 
leukocyte co-receptor complex CD3, which is present in all mature T-lymphocytes 
and is involved in their activation. It can be assumed that the use of Galega officina-
lis may lead to the restoration of the structure of carbohydrate determinants of the 
glycoprotein subunit CD3-γ or CD3-ε in the CD3 co-receptor. This in turn inhibits 
the attenuation of T cells maturation and, as a consequence, prevents the develop-
ment of the immune deficiency [77–79].

Consequently, receptor apparatus restoration by Galega officinalis extract deter-
mines the normalization of the cells’ response to extracellular signals, which ultimately 
leads to the reorganization of actin cytoskeleton elements. However, the leukocyte 
migration, and therefore the state of actin cytoskeleton, depends on the presence of 
adhesion molecules on leukocyte surface and on the presence of chemokines. One of 
these chemokines is TNF-α, a pleiotropic pro-inflammatory cytokine. Through the 
activation of various signaling cascades, it regulates cell proliferation, differentia-
tion, migration, and apoptosis [80, 81]. An increase in cytokine concentrations under 
diabetes [38, 67] stimulates leukocyte actin polymerization. TNF-α induces a brief 
increase in polymerized actin content by activating the Rho/ROCK (Rho-related 
protein kinase) signaling pathway in neutrophils. The activation of the Rho/ROCK sig-
naling pathway leads to the reorganization of the neutrophil cytoskeleton inducing the 
formation of stress fibers [82–84]. Galega extract decreases TNF-α content to physi-
ological levels. This effect is believed to be related to the presence of anti-inflammatory 
compounds, including flavonoids, methyl ester of linolenic acid, and α-amyrin [67].

Thus, the non-alkaloid fraction of Galega officinalis extract reduces leukocyte 
pre-activation by acting both on cellular receptor apparatus and on chemokine 
content in the medium. Reducing diabetes-induced leukocytes pre-activated 
state by Galega extract can significantly improve these cells’ functional state. One 
of the most important functional properties of neutrophils is their bactericidal 
action. It has been discovered that Galega officinalis greatly improved the microbe 
killing properties of cells. In particular, the non-alkaloid fraction of Galega offi-
cinalis extract causes a decrease in neutrophils myeloperoxidase content, whereas 
in conditions of diabetes, the content of this enzyme increases [38, 85]. Inhibition 
of myeloperoxidase production by neutrophils can play an important role in 
the prevention of vascular damage mediated by leukocytes. It is known that the 
excessive amount of myeloperoxidase can cause damage of the blood vessel walls 
by producing strong oxidants (HOCl and HOBr) or by nitration of the tyrosine 
residues in proteins. Altogether this can eventually result in cardiovascular  
diseases [86, 87]. It has been proposed that such inhibiting effect of Galega offici-
nalis extract may be due to the synergistic action of phytol, flavonoids, squalene, 
phytosterols, and amyrin [38].
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Along with the decrease in the content of myeloperoxidase, the non-alkaloid 
fraction of the Galega officinalis extract also reduces the content of cationic proteins 
[38] that mediate the killing of a variety of microorganisms through ion pore for-
mation in their membranes [88]. The latter effect is associated with the presence of 
flavonoids in the extract [38], because these compounds are able to inhibit cationic 
protein secretion [89].

Thus, the use of alkaloid-free Galega officinalis extract for the treatment of dia-
betes leads to the restoration of functional properties of leukocytes, as indicated by 
the reconstitution of glycoconjugate receptors on leukocyte membranes, normaliza-
tion of the ratio of polymerized and unpolymerized actin, as well as restoration of 
bactericidal properties of these cells.

Diabetes is accompanied by neutrophil malfunction caused, to a large extent, 
by the development of oxidative-nitrative stress [90]. Oxidative stress leads to the 
activation of immunocompetent blood cells and their aggregation and adhesion. 
Further, an increase in the synthesis of arachidonic acid and its metabolites, cyto-
kines, oxygen radicals, and secretion of lysosomal enzymes take place in activated 
leukocytes. Altogether, it ultimately leads to the development of atherosclerosis [91].

Due to the presence of a large number of biologically active substances with a 
potential antioxidant effect in the non-alkaloid fraction of Galega officinalis extract, 
it is possible to use this extract as a potential source of antioxidants. Indeed, under 
diabetes mellitus, the non-alkaloid fraction of Galega officinalis extract causes a 
significant reduction in ROS content in leukocytes, which is otherwise elevated in 
the pathology [92]. Reduction of ROS generation by leukocytes may be due to the 
influence of Galega extract on the activity of the three main enzymatic systems 
responsible for generation ROS: membrane-bound NADPH oxidase, peroxidase—
myeloperoxidase in neutrophils and eosinophil peroxidase in eosinophils, as well 
as NO synthase. Indeed, a decrease in the content of myeloperoxidase in polymor-
phonuclear leukocytes [38] and reduction of the total activity of NO synthase was 
confirmed [93]. In addition to decreasing the activity of ROS synthesis enzymatic 
systems, the non-alkaloid extract of Galega officinalis significantly reduces the 
processes of protein and lipid oxidative modification. This effect is due to a decrease 
in total ROS content and NO stable metabolites (nitrite and nitrate anions), with 
the corresponding termination of biosubstrate oxidation by free radicals. Reduction 
of oxidative modified proteins and lipids stops the chain reaction of oxidative-nitric 
stress in conditions of diabetes and confirms the antioxidant effect of the Galega 
officinalis extract [38, 93].

The negative action of ROS in the body is counterbalanced by an antioxidant 
system, whose functioning is aimed at neutralizing free radicals, as well as repairing 
damages caused by them [94]. However, in conditions of oxidative-nitrative stress, 
which is largely activated during diabetes, antioxidant system of blood cells cannot 
fully implement its protective and adaptive mechanisms. The abnormal function-
ing of the immune system is evident from a decrease in the superoxide dismutase, 
catalase, and glutathione peroxidase activity in leukocytes. Under diabetes, the 
non-alkaloid fraction of Galega officinalis extract has a protective effect on the 
key components of the antioxidant defense system, causing a significant increase 
in superoxide dismutase and catalase activities [92]. Restoration of antioxidant 
defense enzymes activity by biologically active substances may be caused by inhibi-
tion of the glycosylation of these enzymes, mediated by the hypoglycemic effect 
of the extract. The increased activity of the antioxidant enzymes is in line with the 
observed suppression of the formation of oxygen and nitrogen reactive forms, as 
well as protein and lipid oxidation [38, 93].

The protective effect of the non-alkaloid fraction of Galega officinalis extract 
on blood cells can be explained by its ability to regulate the prooxidant-antioxidant 
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balance by means of scavenging free radicals and preventing the inhibition of key 
components of enzymatic antioxidant system. The main active ingredients of the 
extract that exhibit antioxidant properties are phytol, showing its properties due 
to its hydroxyl group [95] and, flavonoids, serving as a traps for electrons and free 
radicals and thus suppressing the chain reactions of free radical biosubstrate oxida-
tion [38, 89, 93]. Also, α-amyrin [43] and α-linoleic acid [46] possess pronounced 
antioxidant activities.

3.4  Galega officinalis prevents leukocytes apoptosis induced by diabetes 
mellitus

The development of diabetes mellitus is accompanied by a significant intensifi-
cation of oxidative-nitrative stress, resulting in the formation of substances with a 
strong proapoptotic effect. Especially sensitive to such substances are blood cells, 
including leukocytes. The response of immune cells to antigenic stimuli, as well as 
the nature, dynamics, and duration of the immune response and immunological 
tolerance formation are partially regulated through programmed cell death [96]. 
The non-alkaloid fraction of Galega officinalis extract causes inhibition of DNA 
fragmentation, which is a biochemical marker of apoptosis [97].

Other studies have shown that the use of the non-alkaloid fraction of Galega 
officinalis extract in animals with diabetes leads to a reduction of lymphocytes with 
features of apoptosis, in particular to reduction of phosphatidylserine (PS) residue 
translocation from the inner to the outer side of the membrane [38]. Changes in the 
intensity of lymphocyte apoptosis may be due to the effect of extract on the content 
of TNF-α. It is known that TNF-α reacts with the so-called death receptors and 
activates procaspases that trigger the apoptotic cascade [98]. Thus, a decrease in 
TNF-α content might suggest that one of the mechanisms by which Galega officina-
lis inhibits apoptosis in immunocompetent cells is by suppressing the extrinsic, or 
death receptor, apoptosis pathway [38].

Another evidence for the activation of the extrinsic apoptosis pathway under 
diabetes is exposure on leukocytes’ immature membrane epitopes with modified 
sialic acid content. It takes place in response to the loss of surface membrane during 
cytoplasmic membrane blebbing [99]. The administration of Galega officinalis 
extract to diabetic animals causes an increase in the content of sialic acid residues 
linked by α(2→3) and α(2→6) glycosidic bonds with the subterminal surface 
glycoconjugate residues of rat leukocytes [75].

On the other hand, it has been found that Galega officinalis is able to regulate 
the processes of the intrinsic (mitochondrial) pathway of apoptosis. In particular, 
it reduces the levels of the apoptosis regulatory proteins p53 and Bcl-2 [75, 97]. It 
is known that cell damage results in p53 translocation from the cytoplasm into the 
mitochondria [100]. In the mitochondria this protein undergoes rapid enzymatic 
de-ubiquitination that yields an active form which interacts with BH4 domain of 
antiapoptotic proteins Bcl-XL and Bcl-2 [100]. Binding to antiapoptotic proteins 
induces the release and activation of proapoptotic proteins Bax and Bid. Such 
interactions lead to the release of cytochrome c and induction of apoptosis [101, 
102]. At the same time, Galega officinalis in leukocytes regulates the content of 
Bcl-2, a protein that inhibits both p53-dependent and p53-independent pathways 
of apoptosis. Reduction of this protein content promotes the formation of ion 
channels in mitochondria membrane, thus stabilizing the mitochondrial cyto-
chrome c oxidase and regulating the activation of proteins that are involved in 
apoptosis [75, 97].

Another significant confirmation of Galega officinalis antiapoptotic action is the 
reduction of the content of PARylated proteins in leukocytes under diabetes [75]. 
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This indicates a decrease in DNA damage with the corresponding inhibition of DNA 
repair complex (base excision repair in response to single-stranded DNA breaks and 
nucleotide excision repair), which includes poly (ADP-ribose) polymerase enzyme 
[103]. Thus, Galega-induced decrease in protein PARylation could stem from inhibi-
tion of poly (ADP-ribose) polymerase activity, which can be assumed to prevent 
ribosylation of a number of proteins, including glyceraldehyde-3-phosphate 
dehydrogenase. In the presence of excess glucose, this results in inactivation of the 
polyol and hexosamine pathways, thereby preventing the accumulation of products 
and precursors of nonenzymatic glycosylation and activation of protein kinase 
C. As the final result, this leads to the inhibition of oxidative-nitric stress manifesta-
tions and prevents the occurrence of chronic diabetic lesions [75].

The established antiapoptotic effect of Galega officinalis extract is mediated by 
sugar-reducing, antioxidant, and anti-inflammatory properties of its components. 
In particular, the composition of the extract revealed a number of compounds that 
have potentially hypoglycemic (phytol, ethyl ester of palmitic acid, campesterol, 
stigmasterol, and quinazoline derivatives), antioxidant (phytol, flavonoids, vitamin 
E), and anti-inflammatory (flavonoids, methyl ester of linolenic acid, α-amyrin) 
effects [38].

4. Conclusions

Metformin has become widely used in the treatment of diabetes mellitus type 
2 over the last period of time. This is due to the fact that metformin, along with its 
hypoglycemic effect, has the potential to modulate the functioning of immuno-
competent blood cells. Metformin transiently inhibits NADH:ubiquinone oxidore-
ductase of the mitochondrial electron transport chain. This inhibition leads to the 
activation of the energy sensor 5′-AMP-activated protein kinase. The activation of 
this enzyme results in a whole range of metabolic changes in the immunocompetent 
cells. Metformin is able to regulate the processes of bone marrow cell proliferation, 
affect the functional activity, and regulate the apoptosis processes of immunocom-
petent cells.

To date, practically all mechanisms of therapeutic influence of metformin are 
well described. Instead, the plant from which this biguanide was first obtained 
somewhat become underestimated. Under diabetes mellitus type 1, the non-alka-
loid fraction of Galega officinalis possesses pronounced hypoglycemic effect. The 
non-alkaloid fraction of Galega officinalis normalizes the leukocyte proliferation 
processes by restoring the neutrophils bone marrow pool and reducing the lympho-
blasts number. This extract affects the functional state of immunocompetent cells in 
blood, leading to quantitative redistribution and structural alterations of carbohy-
drate determinants in leukocyte membranes, reorganization of actin cytoskeleton, 
as well as affecting the bactericidal function of neutrophils. Furthermore, non-
alkaloid fraction of Galega officinalis predetermines the suppression of leukocyte to 
genetically programmed death. The multifactorial effect of Galega officinalis extract 
under diabetes may be, on the one hand, due to its potent hypoglycemic effect, and, 
on the other hand, due to its ability to regulate the prooxidant-antioxidant balance 
by scavenging free radicals and preventing the inhibition of key enzymatic compo-
nents of the antioxidant defense system.
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Chapter 6

Metformin in Health Issues and 
Reproductive System
Elham Pourmatroud

Abstract

Metformin is one of oldest drug in reproductive medicine era; but most of times 
it is equal to polycystic ovary (PCO) syndrome especially obese patients. If it is 
still valuable or not, could have another health benefit or new fertility roles, and 
could be effective as well in male reproductive system will be discussed. According 
to increased rate of metabolic disorders and cardiovascular problems and cancers, 
there are several investigations on this old used drug. Those studies had been 
magnified its role as “the aspirin of current century,” which might have a promising 
role in longevity of the life. So, the chapter will be interesting.

Keywords: metformin, reproductive, health, fertility, metabolic

1. Introduction

Metformin is a component of many herbal therapeutic substances, which has 
been known since 1500 BCE in Egyptian medicine [1]. In Europe, a herbal remedy 
was used for ameliorating polyuria and polydipsia; from the Middle Ages, its name 
was Galega officinalis (or the French lilac) [2]. However, just in the early 1900s, the 
effective element “guanidine” was extracted [3].

Everybody knows that the incidence and prevalence of diabetes mellitus (DM) 
is increasing constantly. Diabetes is one of the most common noncommunicable 
diseases and is considered as one of the top five universal causes of precocious death 
in both developed and non-developed countries. So the immense numbers of stud-
ies about metformin, which is the most prevalent and popular remedy for it, could 
be predictable. As a result, it is no wonder that there is a scanty paper about other 
worthful aspects of metformin.

Metformin has been called “the aspirin of the twenty-first century [4].” This 
old-fashioned drug was famous only as antidiabetic drug until recent years. 
So, what makes this drug so hear saying and impressive for life longevity [5], 
prevention from cancers [6] and useful in patients with chronic kidney disease, 
congestive heart failure or chronic liver disease [7]. At the present time, evidence 
suggests that metformin’s wide-spectrum advantages are mediated by at least two 
relevant pathways: first, by inhibition of intracellular metabolic activity of mito-
chondria and second, the cellular nutrition-sensing system mediated by mTOR 
[4]. (“The mammalian target of rapamycin” is one kind of the kinase family that 
mediates metabolism and cell growth as a reaction to growth factors, nutrients, 
and stress [8].)
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In this chapter we are going to talk about three different fields of metformin 
action in detail.

2. Health issues

In accordance with aging, there are some significant changes in the body and 
elevation in prevalence of some specific disease and abnormality [9].

• Endocrine system: type 2 diabetes, thyroid disease, osteoporosis, and ortho-
static hypotension

• Cardiovascular: hearth failure, hypertension, and CVD

• Neurological: delirium, cognitive impairment, and dementia

• Optical: macular degeneration, cataract, and presbyopia

• Muscular: impaired mobility, muscular strength, and sarcopenia

• Auditory: presbycusis and conductive hearing loss

• Skeletal: osteoporosis, kyphosis, and scoliosis

• Gastrointestinal: dysphagia, constipation, and malabsorption

• Renal: chronic kidney disease

• Immune: increased risk of infections

• Dermal: dryness and lower elasticity and pressure ulcer

The life span has been regulated by pharmacologic, genetic, and dietary inter-
ferences in several sample systems. The most considerable mechanism in aging 
phenomenon is DNA damage; the endogenous, potent factors are reactive oxygen 
species (ROS), alkylation, and hydrolysis [10]. Thus, most studies in this subject are 
focusing on it.

Through the metformin role in aging, it leads to decreased insulin levels, inhi-
bition of mTOR, decreased IGF-1 signaling, endogenous production of reactive 
oxygen species, inhibition of mitochondrial complex 1, activation of AMP-activated 
protein kinase (AMPK), and reduction in DNA damage.

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) is a pro-
tein complex that governs transcription of DNA. Metformin inhibits NF-kB, a key 
point in inflammatory process [11]. Also, by lowering the reactive oxygen species 
and improving the endothelial function [12], reduction in coronary heart diseases 
and cerebrovascular accidents after metformin administration could be expected. 
With those mechanisms, the effectiveness in blood hemostasis is considerable; 
reduction in systemic production of the tissue type plasminogen activator, Von 
Willibrand factor, and plasminogen activator inhibitor [13], furthermore modula-
tion the fibrin threads formation in both diabetic and non-diabetic patients [14].

According to one recent meta-analysis, metformin is operative in reducing 
body weight of simple obesity (in nondiabetic, non-polycystic ovary syndrome 
(PCOS) patients), by reducing the absorption of glucose in the intestine, decreasing 
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production of glucose in the liver, and ameliorating insulin sensitivity via increasing 
muscle glucose uptake and use [15].

The role of metformin in the nervous system is proposed excitingly. Alzheimer 
is a disease with an advanced insulin resistance of the brain cell which leads to 
formation of the amyloid cells [16]. Undesirable oxidative damages and inactiva-
tion of AMPK pathway [17] and making delay in mitochondria programmed cell 
death could be mediated by metformin [18]. Besides Alzheimer, other neurological 
diseases like Parkinson and amyotrophic lateral sclerosis have the same mechanism.

As a result of conversion in the insulin resistance, depletion in intestinal absorp-
tion of carbohydrate and leptin secretion, and enhancing effects of glucagon-like 
peptide-1 on fat cells, metformin could be applied for weight reduction [19].

Additionally, prescription of metformin with antiretroviral agents (especially 
in HIV treatment) has been showed a reduction in their side effects like the risk of 
insulin insensitivity, weight obtain, dyslipidemia, and hyperglycemia [20].

In cancerous issue, there are several studies that depict the effectiveness of 
metformin.

One meta-analysis has concluded that metformin plays a role in the decline of 
liver cancer risk in type 2 diabetes patients [21]. The anti-tumorigenic sequel of 
metformin in pancreatic cancer [22], colorectal cancer [23], prostate cancer [24], 
and lung cancer [25] and its role in lowering the risk of cancer-related mortality 
have been proposed. From another aspect, in colorectal cancers’ cell, metformin 
inhibits an essential energy source: adenosine A1 receptor (ADORA1) [26].

As we mentioned before, lowering the insulin levels by metformin ends in 
reduction in the levels of P13K pathway. (The PI3K/AKT/mTOR pathway is an 
intracellular signaling pathway with significant regulating function in all of the 
cellular stages: quiescence, proliferation, cancer, and longevity.) Moreover metfor-
min by forcing effect on AMPK lowers the ATP ratio in cells causing switch-off of 
cell growth and proliferation in breast cell [27]. In breast cancer, metformin has an 
inhibitory effect at early stages of cell differentiation [28]; indeed, the antineoplas-
tic effects need higher-dose consumption and more clinical evidences [29]. With 
those outstanding impressive mechanisms of metformin, a smaller size and slower 
progression of thyroid cancer [30] and advantageous effect on endometrium cancer 
including progesterone-resistant cancer cells [31] have been pointed.

Metformin could have an adjuvant task in treating cervical cancer, particularly 
in types with liver kinase B1 (LKB1) positive (a gen with tumor suppression effi-
cacy) [32]. Eventually, there is an update study about metformin’s anti-metastatic 
effects on aggressive malignancies like melanomas [33].

From another aspect, metformin decreases the frequency of preeclampsia, by 
reduction in the production of anti-angiogenic factors (soluble vascular endothelial 
growth factor receptor-1 and soluble endoglin) and the modification in endothelial 
dysfunction [34].

It must be highlighted that all of mentioned witnesses are extra glycemic effects 
of metformin in health jeopardies in nondiabetic patients.

3. Fertility issues

Metformin as a hydrophilic biguanide is present in many tissues like the hypo-
thalamus, pituitary, and gonads moreover than famous places (liver, pancreas, and 
adipose tissues). It could be accumulating in specific tissues more than plasma level 
by particular transportation system, in which one of those places is the reproductive 
system [35]. Metformin activates the cytoplasmic protein kinase, which is a well-
known enzyme: AMPK.
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AMPK is a sensitive and important sensor of cellular energy homeostasis.
Hypothalamic neurons secrete gonadotropin-releasing hormone (GnRH) that 

stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) 
production from the pituitary gland. GnRH function in the brain has an AMPK-
dependent pathway. Metformin as an AMPK activator decreases the amplitude of 
FSH and LH secretion.

3.1 Male reproductive system

Spermatogenesis is under noticeable hormonal regulation, especially by pitu-
itary hormones (FSH and LH). LH stimulates the Leydig cells (LCs) to secrete 
testosterone and dihydrotestosterone, although FSH arouses Sertoli cells (SCs) 
of seminiferous tubules to maintain the cycle of spermatogenesis and inhibin 
secretion. Respectively, testosterone and inhibin secretion from the testis cause a 
negative feedback with inhibitory effects on FSH and LH. This regular system is 
necessary for normal spermatogenesis [36].

During spermatogenesis, the evolution process of germ cells into mature and 
motile spermatozoa needs specific nutrient sources which are obtained mainly from 
sugars (particularly glucose and fructose) and other metabolites such as lactate and 
citrate. Those metabolites are the most principal fuels for ATP production in germ 
cells and spermatozoa [37].

Moreover, production of lactate by glycolytic pathway in the SCs [38] and 
secretion into intratubular fluid is a necessary step for germ cell spermatogenesis. 
This is another energy-making way, important for motility enhancement. This 
process is controlled directly by glucose metabolism [39]. After primary spermato-
zoa production, they will store in the epididymis. Here final maturation occurs by 
advancement in motility function and fertilization capacity. All of those processes 
demand high energy and depend on glucose transporter (GLUT) proteins for 
carrying glucose through sperm’s lipidic membrane inside the sperm cell [40]. In 
effect, regular and correct male fertility through this long journey is closely related 
to glucose metabolism.

Metformin’s effect on human male reproductive function still is obscure. 
Extensively, current data are extracted from normal animal model studies, particu-
larly rodents and diabetic men.

In healthy male animals, exposure to metformin displays adverse reproductive 
outcomes like:

1. Decrease in testosterone production [41].

2. Reduction in seminiferous tubules diameter and testis size.

3. Reduction in Sertoli cell numbers [42].

4. Decrease in sperm quality parameters [43].

In diabetic men, according to hyperglycemic state and excessive ROS produc-
tion, metformin improves antioxidant environment of the testis and enhances 
steroidogenesis. This favorable amelioration in the testis leads to increase in con-
centration of motile sperm and normal morphological sperm [44]. Furthermore, 
metformin increases endothelial nitric oxide synthase phosphorylation [45] and 
the contractility in the corpora cavernosa [46], so sexual disorders like retrograde 
ejaculation or erectile dysfunction could be mended.
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Recently, evidences of metformin efficacy in nondiabetic men are increasing. 
As remarked above, lactate synthesis by SCs is a crucial step in testicular metabolic 
cycle, which produces more desirable energy substrate for springing up germ cells 
and has a prominent anti-apoptotic effect [47]. Also, some studies showed that 
metformin plays a role as a suppressor of complex I of the mitochondrial electron 
transport chain that directly decreases oxidative metabolism and accordingly 
increases anaerobic respiration and lactate secretion [48].

Surprisingly, adding metformin in cryopreservation media during sperm 
freezing practice (for fertility preservation) reduces sperm permanent damage and 
improves the rate of success in fertilization process and decreases the number of 
abnormal zygotes after in vitro fertilization [49].

3.2 Female reproductive system

As it is well-known, metformin has a crucial role in PCOS pathogenesis amelio-
ration and not surprising the large number of studies about its efficacy and wide-
spread utilization. But, when we are looking for its usage in non-PCOS infertile or 
subfertile woman, unexpectedly, there is scanty study about it.

Insulin resistance could have significant negative role in various conditions such 
as stress [50], aging [51], obesity [52], depression [53], and inactive lifestyle [54]. 
Infertile women often have one of those conditions. Moreover, ovarian dysfunction 
induces “stress response mechanism” owing to abnormal cortisol secretion and 
increased level of catecholamines [55]. Besides that, by enhancing in insulin-like 
growth factor-binding protein-1 and glycodelin level, uterine vascularity and blood 
flow could be increased [56].

Those beneficial effects had been demonstrated in a study on about 200 patients 
(non-PCOS) with repeated IVF failure. In this study in a period of 8–12 weeks, 
low-dose (500 mg/day) metformin administration before IVF cycle significantly 
increases the pregnancy rate by improving in oocyte quality and endometrium, 
receptivity [57].

In another bovine study, it was shown that IGF-1 has a dual positive role in 
follicle regulation which increases FSH effectiveness as an autocrine regulator of 
granulosa cell growth that could illustrate metformin worth in infertility treatment 
procedures [58]. Moreover, in vitro experiment studies show that metformin could 
decrease the progesterone [59] and estradiol [60] secretion from granulosa cells and 
androstenedione [61] from theca cells.

4. Conclusion

As we reviewed in this chapter, metformin did not equal to NIDDM and PCOS, 
anymore. In all of the mentioned fields, researches are increasing more and more.
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FSH and LH secretion.

3.1 Male reproductive system

Spermatogenesis is under noticeable hormonal regulation, especially by pitu-
itary hormones (FSH and LH). LH stimulates the Leydig cells (LCs) to secrete 
testosterone and dihydrotestosterone, although FSH arouses Sertoli cells (SCs) 
of seminiferous tubules to maintain the cycle of spermatogenesis and inhibin 
secretion. Respectively, testosterone and inhibin secretion from the testis cause a 
negative feedback with inhibitory effects on FSH and LH. This regular system is 
necessary for normal spermatogenesis [36].

During spermatogenesis, the evolution process of germ cells into mature and 
motile spermatozoa needs specific nutrient sources which are obtained mainly from 
sugars (particularly glucose and fructose) and other metabolites such as lactate and 
citrate. Those metabolites are the most principal fuels for ATP production in germ 
cells and spermatozoa [37].

Moreover, production of lactate by glycolytic pathway in the SCs [38] and 
secretion into intratubular fluid is a necessary step for germ cell spermatogenesis. 
This is another energy-making way, important for motility enhancement. This 
process is controlled directly by glucose metabolism [39]. After primary spermato-
zoa production, they will store in the epididymis. Here final maturation occurs by 
advancement in motility function and fertilization capacity. All of those processes 
demand high energy and depend on glucose transporter (GLUT) proteins for 
carrying glucose through sperm’s lipidic membrane inside the sperm cell [40]. In 
effect, regular and correct male fertility through this long journey is closely related 
to glucose metabolism.

Metformin’s effect on human male reproductive function still is obscure. 
Extensively, current data are extracted from normal animal model studies, particu-
larly rodents and diabetic men.

In healthy male animals, exposure to metformin displays adverse reproductive 
outcomes like:

1. Decrease in testosterone production [41].

2. Reduction in seminiferous tubules diameter and testis size.

3. Reduction in Sertoli cell numbers [42].

4. Decrease in sperm quality parameters [43].

In diabetic men, according to hyperglycemic state and excessive ROS produc-
tion, metformin improves antioxidant environment of the testis and enhances 
steroidogenesis. This favorable amelioration in the testis leads to increase in con-
centration of motile sperm and normal morphological sperm [44]. Furthermore, 
metformin increases endothelial nitric oxide synthase phosphorylation [45] and 
the contractility in the corpora cavernosa [46], so sexual disorders like retrograde 
ejaculation or erectile dysfunction could be mended.
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Recently, evidences of metformin efficacy in nondiabetic men are increasing. 
As remarked above, lactate synthesis by SCs is a crucial step in testicular metabolic 
cycle, which produces more desirable energy substrate for springing up germ cells 
and has a prominent anti-apoptotic effect [47]. Also, some studies showed that 
metformin plays a role as a suppressor of complex I of the mitochondrial electron 
transport chain that directly decreases oxidative metabolism and accordingly 
increases anaerobic respiration and lactate secretion [48].

Surprisingly, adding metformin in cryopreservation media during sperm 
freezing practice (for fertility preservation) reduces sperm permanent damage and 
improves the rate of success in fertilization process and decreases the number of 
abnormal zygotes after in vitro fertilization [49].

3.2 Female reproductive system

As it is well-known, metformin has a crucial role in PCOS pathogenesis amelio-
ration and not surprising the large number of studies about its efficacy and wide-
spread utilization. But, when we are looking for its usage in non-PCOS infertile or 
subfertile woman, unexpectedly, there is scanty study about it.

Insulin resistance could have significant negative role in various conditions such 
as stress [50], aging [51], obesity [52], depression [53], and inactive lifestyle [54]. 
Infertile women often have one of those conditions. Moreover, ovarian dysfunction 
induces “stress response mechanism” owing to abnormal cortisol secretion and 
increased level of catecholamines [55]. Besides that, by enhancing in insulin-like 
growth factor-binding protein-1 and glycodelin level, uterine vascularity and blood 
flow could be increased [56].

Those beneficial effects had been demonstrated in a study on about 200 patients 
(non-PCOS) with repeated IVF failure. In this study in a period of 8–12 weeks, 
low-dose (500 mg/day) metformin administration before IVF cycle significantly 
increases the pregnancy rate by improving in oocyte quality and endometrium, 
receptivity [57].

In another bovine study, it was shown that IGF-1 has a dual positive role in 
follicle regulation which increases FSH effectiveness as an autocrine regulator of 
granulosa cell growth that could illustrate metformin worth in infertility treatment 
procedures [58]. Moreover, in vitro experiment studies show that metformin could 
decrease the progesterone [59] and estradiol [60] secretion from granulosa cells and 
androstenedione [61] from theca cells.

4. Conclusion

As we reviewed in this chapter, metformin did not equal to NIDDM and PCOS, 
anymore. In all of the mentioned fields, researches are increasing more and more.
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Chapter 7

Metformin and Its Implication in 
Cancer Therapy
Laura Mazilu, Dana Stanculeanu, Andreea Gheorghe, 
Adrian-Paul Suceveanu, Irinel Parepa, Felix Voinea, 
Doina Catrinoiu and Andra-Iulia Suceveanu

Abstract

Metformin has been used for almost half a century as the first line of treatment 
for type 2 diabetes. Mechanisms of action are still incompletely known, recent 
studies have shown that metformin exerts its effects through several mechanisms, 
including the stimulation of AMP-activated protein kinase, decreasing production 
of cyclic AMP, inhibition of mitochondrial complex I of the electron transport 
chain, targeting glycerophosphate dehydrogenase and altering gut microbiota. In 
recent years, studies have shown that patients with type 2 diabetes mellitus have a 
lower risk of developing cancer, and patients with cancer and type 2 diabetes have 
a lower mortality. Experimental studies have demonstrated that metformin has 
anti-tumor activity by inhibiting mTORC1 signaling pathway and mitochondrial 
complex, inhibiting tumor growth and proliferation, and inducing cellular apopto-
sis. There are multiple studies showing that combination of metformin with differ-
ent types of anti-cancer therapies may reduce toxicities and tumor resistance. This 
chapter is focused on the progress made in understanding the anti-tumor effect of 
metformin and its association with cancer therapy.

Keywords: metformin, cancer, chemotherapy, targeted therapy

1. Introduction

Guanidine derivatives, metformin, buformin and phenoformin, were discovered 
in the 1920s, extracted from the isoamylene plant [1]. Metformin it is a biguanide 
extracted from herb Galega officinalis, and it was first proposed by Emile Werner 
and James Bell in 1922, when they found that metformin is reducing the amount 
of glucose in rabbits and does not affect heart and blood pressure [2, 3]. Due to the 
increased risk of lactic acidosis and of cardiac death, buformin and phenoformin 
were withdrawn from the market in 1970 [4]. Due to the good safety profile of 
metformin, the use of this drug was extended beyond type 2 diabetes to ovarian 
polycystic disease, gestational diabetes, diabetic nephropathy and cardiovascular 
complications associated with type 2 diabetes [5].

The association between cancer and diabetes was first proven in 1930 by Marble 
[6]. Over the past 20 years, numerous studies have shown that diabetic patients 
have a higher incidence of cancers, increased mortality [7, 8], and the fact that 
patients with diabetes and cancer are less sensitive to chemotherapy [9–11].
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Regarding the anti-tumor effect of metformin, numerous studies have shown 
that metformin-treated diabetes patients have a low incidence of cancers and low 
mortality compared with patients treated with other types of anti-diabetics such as 
sulfonylureas or insulin [9, 12, 13].

In vivo and in vitro studies have demonstrated that metformin has an anti-
tumoral effect both directly and indirectly, which translates into inhibition of 
tumor cell proliferation, induction of apoptosis, and cell cycle arrest [14–16].

Taking all these into consideration, metformin appears to be useful as an adju-
vant to cancer treatment.

2. Anti-tumor mechanism of action of metformin

Metformin’s mechanisms of action and its anti-tumor effects are multiple and have 
been described over the years in numerous studies, both in vivo and in vitro, but they 
are not yet completely understood. The main mechanisms of actions are activation of 
liver kinase B1 (LKB1) and AMP-activated kinase (AMPK), and inhibition of mam-
malian target of rapamycin (mTOR). Other mechanisms described in literature are 
inhibition of protein synthesis, activation of apoptosis by p21 and p53, inhibition of 
unfolded protein response (UPR), activation of immune system, prevention of angio-
genesis, reduction of blood insulin levels and reduction of hyperlipidemia [17, 18].

Metformin is entering the cells with the help of organic cation transporter 1 and 
3, and as a result is blocking the complex I of electron transfer chain (ETC) and 
an enzyme named mitochondrial glycerophosphate 3 dehydrogenase (mGDP). 
Introduction of Metformin into the cell results in reduced activity of adenosine 
triphosphate (ATP) and reduced oxygen consumption, which further increase the 
levels of adenosine monophosphate within the cells and activate AMPK, and in the 
end this will put the cells under stressful conditions [19, 20].

Metformin inhibits mTOR pathway by activating LKB1 and AMPK, resulting in 
reduction of protein synthesis and inhibition of angiogenesis. AKPK inhibits mTOR 
pathway by activation of tuberculous sclerosis complex (TSC2) and by direct phos-
phorylation of co-signaling molecules that will attached to mTOR molecules [21, 
22]. Metformin is also inhibiting mTOR by reducing phosphorylation of ribosomal 
protein S6 kinase (S6Ks) [23].

Ataxia teleangectasia mutated (ATM) and LKB1 are proteins with an important 
role in cell cycle. Both ATM and LKB1 are tumor suppressors. The response of ATM 
to metformin is phosphorylation of LKB and in the end the activation of AMPK [24].

Inhibition of unfolded protein response (UPR) is another mechanism by which 
metformin exerts its anti-tumor effect. UPR activity is vital for cell survival of 
under stress conditions. Metformin inhibits the activity of UPR and determine cells 
to undergo apoptosis [25].

Insulin and insulin growth-like factor (IGF) promote mitosis and cell growth 
and inhibit apoptosis. All this processes are very important in carcinogenesis and 
the relation between hyperinsulinemia, insulin resistance and cancer promotion are 
well known [26]. Metformin inactivates I/IGF pathway by reducing blood insulin 
levels and by inhibiting glucose absorption by intestinal cells [27, 28].

3. Metformin: epidemiologic evidence of its anti-tumor effect

Metformin was approved by Food and Drug Administration (FDA) in 1957 for 
type 2 diabetes and became the first line treatment due to its superior safety profile 
and hypoglycemic and cardiovascular protective effect [29].
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The effect of metformin on cancer risk reduction was first observed in a study 
published in 2005 by Evans et al., which included 11,776 patients with type 2 dia-
betes; this observation was reiterated in another trial in 2009, involving more than 
4,000 patients with diabetes treated with metformin, the risk of developing cancer 
being 7.3% for patients receiving metformin vs. 11.6% in the control group [30, 31].

In 2009, a study conducted at the MD Anderson Cancer Center by Li et al., 
showed that metformin use is associated with a low risk of pancreatic cancer in 
patients with type 2 diabetes [32].

A very large retrospective study that evaluated more than 62.000 patients with 
diabetes showed that metformin treatment reduces the risk of cancer compared 
to other antidiabetic therapies (insulin, sulfonylureas), and also showed that the 
combination of metformin with insulin or sulfonylureas reduces the risk of cancer 
associated with these therapies. This study showed that the risk of developing 
colorectal and pancreatic cancer is higher in patients with diabetes treated with 
insulin, compared to patients treated with metformin, and that metformin does not 
reduce the risk of breast or prostate cancer [33].

In terms of mortality, in 2006 a study conducted by Bowker el al, retrospectively 
reported that mortality is higher in patients with type 2 diabetes using insulin and 
sulfonylurea, comparing with those using metformin [34].

In 2010, a prospective study, ZODIAC-16, evaluating the influence of metformin 
on cancer mortality in 1353 patients with type 2 diabetes showed that metformin-
treated patients had a lower mortality rate (with a median of 9.6 years) compared to 
the control group [35].

3.1 Metformin in hepatocellular carcinoma and pancreatic cancer

Hepatocellular carcinoma is one of the leading causes of death in cancer patients. 
Well known risk factors implicated in etiology of hepatocellular carcinoma are 
chronic hepatitis B and C and hepatic cirrhosis. In the last years, due to the rising 
incidence of obesity and diabetes worldwide, non-alcoholic steatosis, non-alcoholic 
fatty liver disease and type 2 diabetes are newly described risk factors.

Donadon has focused his studies on patients with hepatocarcinoma and has 
shown that metformin significantly reduces the risk of hepatocarcinoma in dia-
betic patients, compared to patients treated with sulfonylureas or insulin, and also 
reduces the risk of hepatocarcinoma in patients with diabetes and chronic liver 
disease [36–39].

There are several meta-analyses supporting this data, for example a 31% inci-
dence reduction of pancreatic and hepatocellular carcinoma for patients using 
metformin was reported by a meta-analyses of 11 trials [40]. Another meta-analysis 
evaluating 37 trials of patients with colorectal, pancreatic, breast and hepatic can-
cer, reported a reduced incidence of cancer in patients using metformin, comparing 
with non-users [41].

One meta-analysis stated that metformin does not significantly reduce the risk 
of hepatocellular carcinoma. This meta-analysis excluded all the studies with time-
related biases [42, 43].

3.2 Metformin in colorectal cancer

Colorectal cancer is increasing in incidence and mortality worldwide, especially 
in countries with low and middle income, but also in high developed countries 
mainly due to life style.

The first data that reported the relationship between metformin and colorectal 
cancer risk emerged in 2004 and since then numerous studies have evaluated this 
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The first data that reported the relationship between metformin and colorectal 
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association and had different outcomes, reporting a decrease risk, an increased risk 
or no association [43, 44].

The first clinical trial that examine the chemopreventive effect of low-dose 
metformin on metachronous colorectal adenoma/polyp formation, was conducted 
in 2016, and the observation was that Metformin suppress the formation of meta-
chronous colorectal adenoma/polyp [45].

Another study investigating the use of Metformin as chemopreventive therapy 
was performed in 2018 on a small number of patients without diabetes, and showed 
that metformin is reducing the risk of developing polyps. The adverse events were 
mild and with no differences between groups [46].

3.3 Metformin in breast cancer

A meta-analysis that included 11 clinical trials of patients with breast cancer, 
reported a 65% improvement in overall survival for patients with breast cancer and 
diabetes that are treated with metformin [47].

There are also studies suggesting that the use of metformin is changing the type 
of cancers diagnosed in patients with diabetes. For example, a study conducted by 
Berstein reported that in patients using metformin, breast cancer is much more 
frequent, especially the progesterone receptor positive-type [46], and another 
study reported that triple negative-type is less common [47]. Other data sug-
gests that response rate is higher in diabetic patients with breast cancer receiving 
neo-adjuvant chemotherapy and metformin, comparing with those not receiving 
metformin [48].

3.4 Metformin in renal cancer

Kidney cancers incidence is increasing mainly due to the increasing rates of 
hypertension and due to the improvement of imaging techniques, because kidney 
cancers are most often asymptomatic. Renal cell carcinoma is the most common 
type of kidney cancer.

There are several studies reporting that patients with renal cancer and diabetes 
have a poor prognosis, and that diabetes has a negative impact on survival of these 
patients [49]. Also some articles suggest that type 2 diabetes may be an independent 
risk factor for renal cancers [50].

A meta-analysis performed in 2017 which included 8 publications on kidney 
cancer showed that metformin could improve the survival of renal cancer patients, 
especially for patients with localized renal cell carcinoma, and concluded that further 
investigation is needed regarding the effect of metformin on patients with localized 
and metastatic renal carcinoma in order to exclude disease heterogeneity [51].

3.5 Metformin in lung cancer

Lung cancer is the leading cause of death all over the world in both sexes and 
despite the recent advances in therapy, the prognosis of these patients is still no 
satisfactory.

Regarding lung cancer, Mazzone et al. and Tan et al. reported that in patients 
receiving metformin the incidence of adenocarcinomas is higher comparing with 
other histopathological types, and that patients receiving metformin had a better 
response to chemotherapy [52, 53].

A meta-analysis conducted in 2017 reported that metformin demonstrates a sig-
nificant improvement of overall survival and progression free survival of patients 
with lung cancer [54].
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Although, numerous trials reported a reduction in cancer incidence in patients 
receiving metformin, there are recent studies on diabetic patients with breast, 
endometrial, prostate and renal cancer receiving metformin that suggests no 
association between the use of metformin and cancer incidence [55].

For prostate cancer, studies and meta-analysis showed that diabetes may reduce 
the risk of prostate cancer [56], but also showed that patients with diabetes and 
prostate cancer have higher rates of mortality and relapse after prostatectomy [57, 58]. 
All these results are in conflict with other studies that reported that metformin may 
reduce the risk for prostate cancer and may improve survival [59, 60].

4. Metformin: combination with antineoplastic drugs

Taking in consideration all the information available stating that metformin has 
a positive effect on cancer incidence and mortality, over the years numerous trial 
have evaluated or are underway to evaluate the combination of metformin with 
different antineoplastic drugs in breast, endometrial, prostate, lung, pancreatic and 
colorectal cancers.

4.1 Metformin: combination with chemotherapy

There are numerous chemotherapeutic drugs evaluated in combination with 
metformin. For example doxorubicin, cyclophosphamide, docetaxel, trastuzumab, 
exemestane, letrozole, carboplatin, 5-flurouracyl.

Combination of 5-fluorouracyl and metformin showed a modest activity in 
patients with colorectal cancer [61], but when used as chemopreventive treatment 
in monotherapy, metformin showed a reduced incidence of colorectal metachro-
nous adenoma or polyp [45].

Metformin in combination with medroxyprogesterone acetate in endometrial 
cancer and atypical endometrial hyperplasia, showed a complete response rate of 
14% in endometrial cancer and 81% in atypical endometrial hyperplasia and a good 
clinical profile with no severe adverse events [62].

For patients with diabetes and breast cancer receiving neo-adjuvant chemo-
therapy and metformin, Jiralerspong et al. reported a superior rate of complete 
pathological response [63].

In patients with prostate cancer the combination of bicalutamide and metformin 
may reduce cancer cells growth rate; in androgen receptor positive cells (AR) the 
reduction of cell growth appear to be mediated by anti-proliferative effect, and in 
androgen receptor negative cells by pro-apoptotic effect [64].

4.2 Metformin: combination with targeted therapies

Targeted therapies are used with success in the treatment of many cancer types, 
but usually the disease becomes unresponsive to treatment and shows acquired 
resistance, and this is a challenge for clinicians. Preclinical and clinical data showed 
that the combination of metformin with targeted therapies have good results. 
Targeted therapies comprise mostly of kinase inhibitors. At present more than 35 
different types of kinase inhibitors are approved by FDA [65].

First targeted therapy approved by the FDA, was Gefitinib, a molecule targeting 
epidermal growth factor receptor (EGFR) in 2003 for the treatment of patients 
with locally advanced and metastatic non-small cell lung cancer (NSCLC) after 
failure of platinum and docetaxel chemotherapy [66]. A high percent of patients 
receiving gefitinib have high response rate, but despite this, patients rapidly develop 
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resistance. Mechanisms involved in resistance to Gefitinib are activation of mTOR 
pathway and upregulation of insulin-like growth factor-1 receptor (IGF-1R), and 
taking into consideration the effect of metformin on mTOR pathway inhibition and 
IGF-1R pathway suppression, multiple studies started to evaluate this relationship. 
The result were that the addition to metformin to Gefitinib reduce proliferation and 
can revert resistance to gefitinib [67, 68]. Combination of metformin and Gefitinib 
also improve prognosis of patients with NSCLC, by increasing survival and by 
delaying resistance to targeted therapy [69]. At this moment, a phase II multicenter 
double blind trial evaluating gefitinib in combination with metformin as first-line 
treatment for patients with locally advanced NSCLC, is ongoing [70].

Sorafenib was approved in 2007 for treatment of advanced hepatocellular carci-
noma, but showed low response rate and serious adverse events [71]. Combination 
of Sorafenib and other drugs was necessary in order to improve treatment efficacy. 
So far, data showed that metformin has the capability to increase sorafenib efficacy 
by reducing lung metastasis in patients with hepatocellular carcinoma. The mecha-
nism of action of this combination is targeting the mTOR pathway [72].

Trastuzumab was approved in 1998 for the treatment of HER2-positive breast 
cancer. Combination of Trastuzumab and metformin in clinical trials conducted 
over the years, showed that metformin suppresses the proliferation of trastuzumab-
resistant breast cancer cells and also have a cardio-protective effect, against cardiac 
events related to trastuzumab [73, 74].

Bevacizumab, inhibits VEGF-A, the result being inhibition of angiogenesis 
and regression of tumor vascularization, thereby inhibiting cancer growth. It was 
approved in 2004 in combination with chemotherapy for metastatic colorectal 
cancer and now it is used in the treatment of numerous cancer types-metastatic 
breast cancer, renal cell carcinoma, advanced epithelial ovarian cancer, non-squa-
mous NSCLC [75]. Combination of metformin with bevacizumab was found to be 
effective in the treatment of ovarian cancer and metastatic non-squamous NSCLC 
in combination with chemotherapy [76, 77].

4.3 Metformin: combination with radiotherapy

Metformin in combination with radiotherapy may increase cancer response to 
treatment. As already mentioned, one of the mechanism of action of metformin is 
affecting complex I in the electron transfer chain, reducing the oxygen consump-
tion and increasing the reactive oxygen species (ROS) within the cells, resulting in 
DNA damage [78]. Another proposed mechanism is activation of p53 by activating 
AMPK, and as a result cell cycle arrest. Both, metformin and radiotherapy can acti-
vate p53 and stop cell proliferation [79]. There are several articles and case reports, 
showing a better response for patients receiving radiotherapy and metformin, 
comparing with those without metformin in: esophageal cancer, rectal cancer and 
head and neck carcinomas [80].

5. Conclusions

Many studies reported a reduced incidence of cancer in patients receiving 
metformin in standard dose, but also these trials have limitations: most of the trials 
were retrospective, others included both patients with invasive and non-invasive 
neoplasms, others trials did not exclude patients exposed to other antidiabetic treat-
ments, all these findings being responsible for potential biases.

In general, chemopreventive agents are used as long term therapies. Metformin 
meets all necessary criteria as a long term chemopreventive agent, because it is safe, 
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has a well-known mechanism of action, it is well tolerated with few adverse effects 
and it is cost effective.

Based on the available information, we can conclude that metformin is reducing 
cancer incidence and mortality, is increasing tumor response when used in com-
bination with different types of cancer therapies, either chemotherapy, targeted 
therapies or radiotherapy, is improving the outcome of cancer patients, and can be 
used in cancer prevention.

Clinical trials which evaluated the effect of metformin in combination with 
different types of antineoplastic treatment included only patients with diabetes, 
therefore clinical trials evaluating the effect of metformin in non-diabetic popula-
tion are needed in order to explore the benefit of metformin and also to evaluate 
the adverse events of combinations compared with monotherapy in this particular 
population.
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Chapter 8

Preventive and (Neo)Adjuvant
Therapeutic Effects of Metformin
on Cancer
Yile Jiao, Xiaochen Wang and Zhijun Luo

Abstract

Metformin, the first-line antidiabetic drug, has become an attractive candidate
in cancer therapy since retrospective clinical investigations reported that patients
with type 2 diabetes receiving metformin had lower incidence of cancer than those
with other glucose lowering drugs. In line with this, preclinical studies have dem-
onstrated that the antitumor activity of metformin could proceed through several
mechanisms. Thus far, metformin has been used in cancer prevention with reduced
risk as consequence and treatment of various cancers as an adjuvant or neoadjuvant
drug. Thus, existing data support the beneficial effects of metformin on many
types of cancers such as reducing metastasis and mortality and improving patho-
logical responses and survival rates. However, some reports do not support this
and even show adverse effects. The discrepancy may be attributed to expression
levels of its transporters or genetic background. Hence, this chapter briefly
reviews information on the mechanism of metformin action and summarizes
both completed and ongoing clinical trials in an attempt to evaluate the value
of metformin in prevention and treatment of various cancer types.

Keywords: metformin, AMPK, mTORC1, diabetes, lipogenesis, cancer
prevention and therapy, clinical trials

1. Introduction

Metformin is derived from Galega officinalis, a natural herbal medicine. The herb
was first used to relieve polyuria, a symptom of diabetes in ancient Egypt and
medieval Europe [1]. Metformin is a widely used frontline drug for type 2 diabetes
mellitus (T2DM). The major function of metformin is to decrease hepatic gluco-
neogenesis and enhance insulin sensitivity by increasing glucose uptake in muscle
and adipose [2]. In addition to antidiabetes, metformin has proved to be beneficial
to metabolic syndrome and nonalcoholic fatty liver disease [3, 4]. Cancer is charac-
teristic of a metabolic disorder, inasmuch as metabolism is reprogrammed by
switching oxidative phosphorylation into aerobic glycolysis, and thus, many of key
molecules in these two routes are altered in their expression or posttranslational
modification [5]. The incidence of cancer is higher in patients with T2DM than
those without diabetes, indicating that diabetes is a risk factor of cancer [6]. Since
Evan et al. reported in 2005 lower cancer incidence in patients with T2DM taking
metformin than those with other antidiabetic drugs, great efforts have been made to
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elucidate the antitumor activity of metformin [7]. A considerable number of pre-
clinical and clinical investigations support the beneficial effects of metformin on
both prevention and treatment of various cancers. At the same time, some of
mechanisms underlying metformin action on cancer cells have been unraveled,
although much of them is still incomplete. Thus far, more than 300 clinical trials
using metformin as a single or adjuvant agent in combination with other chemo-
therapies have been initiated in the treatment of various types of cancer in the
world (www.clinicaltrials.gov).

2. Targets of metformin

Many functions of metformin are mediated by adenosine monophosphate-
activated protein kinase (AMPK). Metformin at high doses leads to elevation of
AMP, which binds to and allosterically activates AMPK, while at low doses, it
engages lysosomes in the absence of AMP [8, 9]. The upstream kinases that phos-
phorylate AMPK α subunits at Thr172 include liver kinase B1 (LKB1), calmodulin-
dependent kinase beta, and TGF-β-activated protein kinase [10–12].

AMPK plays important roles in regulating lipid and protein metabolisms by
phosphorylating a series of target proteins. Thus, LKB1-AMPK pathway is critically
important for metabolic adaption under stress condition, which aims to protect cells
in the beginning [13]. However, persistent activation of AMPK by metformin can
also cause cytostatic and even cytotoxic effects. Mounting evidence shows that
metabolic syndrome and diabetes increase the risk of cancer, and correction of
metabolic abnormalities alleviates cancer burdens and improves survival [14–16].
Drugs that target AMPK or downstream molecules are research focus nowadays for
cancer prevention and treatment. Some of pathways downstream of AMPK essen-
tial for tumorigenesis and cancer progression are depicted in Figure 1.

PI3K-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) path-
way is well received as the target of AMPK. Mammalian target of rapamycin com-
plex 1 (mTORC1) consists of mTOR, regulatory-associated protein of mTOR
(Raptor), mammalian lethal with SEC13 protein 8, proline-rich AKT substrate
40 kDa, and DEP domain-containing mTOR-interacting protein [17]. Tuberous
sclerosis complex 2 (TSC2) is a GTPase-activating protein that forms a complex
with TSC1 to stimulate GTPase activity of Ras homolog enriched in brain (Rheb)
and thus inhibits mammalian target of rapamycin complex 1 (mTORC1) activation.
TSC2 is subjected to inhibition by AKT and activation by AMPK via phosphoryla-
tion at different sites. In addition, AMPK phosphorylates and inhibits Raptor, a
scaffold of mTORC1. A plethora of cellular events, such as protein translation,
lipogenesis, cell cycle progression, and autophagy, are regulated by the activated
mTOR pathway, which are counteracted by AMPK [18]. Thus, control of mTORC1
activity is crucial for prevention and treatment of cancer.

Cancer cells always require large amount of building blocks for dividing pro-
genitor cells. Thus, synthesis of fatty acid and cholesterol is very active [19].
Acutely, AMPK inhibits acetyl CoA carboxylase (ACC) and HMG-CoA reductase
(HMGCR), which are rate-limiting enzymes for de novo synthesis of fatty acid and
cholesterol, respectively [20]. In addition, AMPK activates malonyl-CoA decarbox-
ylase (MAD) that converts malonyl-CoA to acetyl CoA. As cytosolic malonyl-CoA
decreases, fatty acid synthesis is attenuated [17, 21]. AMPK also influences de novo
synthesis of glycerolipid by inhibiting the rate-limiting enzyme glycerol phosphate
acyltransferase (PAT) [17, 22]. Chronically, AMPK phosphorylates sterol regulatory
element-binding protein-1c (SREBP-1c) and its related protein carbohydrate-
response-element-binding protein (ChREBP), restricting the nuclear localization of
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these transcription factors, so as to inhibit transcription of target genes for lipogen-
esis, including those encoding ACC and fatty acid synthase (FASN) [23].

3. Clinical investigations

Decreases from 20 to 94% in cancer risk among patients with T2DM after the
use of metformin have been reported since 2005 [24]. A large population study
conducted by Taiwan National Health Insurance Data Survey evaluated 16,602
individuals treated with metformin or other antidiabetic drug between 2000 and
2007 and concluded a 88% reduction in the risk of various cancer types after
metformin treatment [25, 26]. In line with this, numerous investigations provided
supporting data that metformin reduced incidence of various cancers. For example,
DeCenci et al. have found a 30% decrease in cancer incidence in patients with
T2DM treated with metformin compared to those with other drugs [27, 28]. Currie
et al. conducted a large cohort study with around 60,000 patients from the UK
database and revealed that metformin alone decreased the incidence of colorectal
and pancreatic cancer compared with insulin and sulfonylureas monotherapy after
the adjustment of confound bias, but this was not seen in breast cancer (BC) and
prostate cancer [29]. It is noteworthy that metformin plus insulin could alleviate the
progression of cancer [hazard ratio (HR) = 0.54, 95% confidence interval (CI) 0.43–
0.66] [29]. With respect to mortality, ZODIAC trial with a 10-year follow up has
indicated a lower death rate of cancer among metformin users with T2DM [30].
According to Noto et al. meta-analysis, diabetic patients taking metformin showed
significant reduction of incidence of multiple types of cancer [risk ratio (RR) = 0.67,
0.53–0.85], including colorectal cancer (CRC) (RR = 0.68, 0.53–0.88) and cancer

Figure 1.
AMPK activation and its biological functions. AMPK is activated by increased AMP:ATP ratio induced by
metabolic stress and metformin. In addition, metformin can activate AMPK through lysosomal pathway, where
v-ATPase-regulator-AXIN/LKB1-AMPK complex is formed. After activation, AMPK acts on multiple
molecules/pathways, including inhibition of mTORC1, lipogenesis and IGF-1 expression, and activation of p53
and FOXO3a [17, 22, 87–89]. As such, AMPK regulates cell proliferation, autophagy, and apoptosis of
cancer cells.
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mortality (RR = 0.66, 95% CI = 0.49–0.88) [31]. A study of Bowker et al. reported
that metformin decreased cancer mortality in T2DM, as compared with insulin and/
or sulfonylurea groups [32]. After 1-year observation, the cancer death rate of
metformin, insulin, and sulfonylurea users is 3.5, 8.8, and 4.9 per 1000 patients,
respectively.

Regarding tumor types, dosage of metformin, study setting, and period of
intervention associated with the treatment outcomes, examples are listed in
Table 1.

Cancer type Intervention Outcome

Breast cancer

Bodmer et al.
[39]

Metformin or other
antidiabetic drugs

Diabetic patients treated with metformin ≧ 5 years had
a lower incidence of cancer, compared with nonusers
or short-term (<5 years treatment) metformin users

Jiralerspong
et al. [45]

Metformin + chemotherapy The pCR rate in 68 diabetic patients treated with
metformin, 87 diabetic patients without metformin,
and 2374 nondiabetic patients was 24, 8, and 16%
(P = 0.02)

Niraula et al.
[46]

Metformin Reduction of cancer cell proliferation (Ki67) by 3%
(P = 0.016) and increases in apoptosis by 0.49%
(P = 0.004) was compared between pre- and post-
surgery, despite minor change of fasting insulin level

Hou et al. [51] Metformin + chemotherapy 1013 BC patients with diabetes and 4621 BC patients
without diabetes were analyzed. Nondiabetic group
had higher 5-year survival rate than diabetic group (82
vs. 79%, P < 0.001). In diabetic subgroup, metformin-
treated group had significant higher 5-year survival
rates than nonmetformin-treated group (88 vs. 73%,
P< 0.001)

El-Haggar
et al. [42]

Metformin + chemotherapy
or +hormone therapy,
tamoxifen

Non-diabetic women with newly diagnosed BC (68/
129) were prescribed with metformin (860 mg b.i.d.)
along with chemotherapy or hormone therapy
compared to nonmetformin-treated control arm over 6
or 12 months. A 3.27-fold decrease (P = 0.023, 95% CI
1.17–9.06) at the time of developing metastasis and an
increase in average DFS by 2.137 (P = 0.044) in the
metformin-treated group. Also, the levels of IGF-1, the
ratio of IGF-1 to IGFBP-3, insulin, fasting blood
glucose, HOMA-IR index notably decease, while
IGFBP-3 levels significantly increase after using of
metformin

He et al. [53] Metformin or other
antidiabetic drugs

A cohort study evaluated a total of 1983 women with
stage ≧ 2 Her2 positive BC. Among 154/1983 diabetic
patients who had already responded to previous
chemotherapy. Metformin users had prolonged OS
(HR = 0.52, 95% CI 0.28–0.97, P = 0.041) and reduced
cancer-specific mortality of BC (HR = 0.47, 95% CI
0.24–0.90, P = 0.023), compared with nonusers

Colon cancer

Coyle et al.
[33]

Metformin Significant benefit of RFS (n = 623 patients in two
studies), OS (n = 1936 patients in five studies), and
CSS (n = 535 patients in two studies) was observed in
metformin-treated patients from 3094 patients with
early stage CRC in nine studies, compared with that in
nonmetformin using group

130

Metformin

Cancer type Intervention Outcome

Rokkas and
Portincasa
[55]

Metformin A significant decrease in the risk of developing colon
neoplasia [RRs (95% CI) = 0.75 (0.65–0.87), Z =�3.95,
P < 0.001], including the reduction of colon cancer
[0.79 (0.69–0.91), Z = �3.34, P < 0.001] and colon
polyps [0.58 (0.42–0.80), Z = �3.30, P < 0.001]
among patients with T2DB after metformin treatment

Garrett et al.
[58]

Metformin or other
antidiabetic drugs

After adjustment of cofound variates, a 30% increase
in OS was demonstrated among 424/4758 patients who
were diagnosed of T2DM and CRC and administrated
to metformin as compared with that in other
antidiabetics users

Higurashi
et al. [59]

Metformin A total of 151 nondiabetic patients with CRC after
polypectomy was randomized to metformin-treated
arm (250 mg daily over 1 year) or placebo control arm
with 1-year endoscopy reports. The incidence of total
polyps and adenomas decreased in metformin-treated
group by 18.5% [RR = 0.67, 95% CI (0.47–0.97),
P = 0.034] and 21% [RR = 0.60, 95% CI (0.39–0.92),
P = 0.16], compared with that in control group

Endometrial cancer

Sivalingam
et al. [60]

Metformin A total of 40 women with atypical endometrial
hyperplasia (AEH) or EC was assigned to receive
metformin 850 mg b.i.d. over average 20 day, or no
treatment before hysterectomy. Ki67 was reduced by
17.2% (95% CI 27.4–7.0, P < 0.002) in metformin-
treated group

Schuler et al.
[61]

Metformin 20 nondiabetic women with EC and obesity
(BMI ≥ 30) were administrated with metformin
850 mg daily for 1–4 weeks before surgery. The levels
of Ki67 and p-S6 were reduced between pretreatment
and postsurgery by 11.75% (P = 0.008) and 51.2%
(P = 0.0002), respectively. Besides, the levels of p-
AMPK (P = 0.00001), p-Akt (P = 0.0002), p-4EBP1
(P = 0.001), and ER (P = 0.0002) also decreased after
surgery

Mitsuhashi
et al. [63]

Metformin + MPA 17 AEH and 19 noninvasive EC patients received
metformin (escalating from 750 to 2250 mg daily)
after complete response treated by MPA and other
drugs. Relapse rate among patients was 10%, and
estimated 3-year RFS rate was 89%

Nevadunsky
et al. [66]

Adjuvant metformin Metformin significantly improved OS (HR = 0.54, 95%
CI 0.30–0.97, P < 0.04) in diabetic patients with
nonendometrioid EC when compared with that in
nonusers with EC

Acute lymphoblastic leukemia

Ramos-
Peñafiel et al.
[67]

Metformin + prednisone A total of 102 nondiabetic patients with ALL was
enrolled, 26 received metformin (850 mg t.i.d.) for
6 days during preinduction stage, and 76 were treated
with traditional chemotherapy without metformin.
The use of metformin prevented therapy failure and
early relapse (P = 0.025) in patients bearing relative to
high levels of ABCB1

Esophageal Cancer

Skinner et al.
[68]

Neoadjunvant
metformin + CRT

Metformin users along with CRT resulted in higher
pCR (34.5%) than nonmetformin cohort (4.8%,
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IGFBP-3 levels significantly increase after using of
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A cohort study evaluated a total of 1983 women with
stage ≧ 2 Her2 positive BC. Among 154/1983 diabetic
patients who had already responded to previous
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(HR = 0.52, 95% CI 0.28–0.97, P = 0.041) and reduced
cancer-specific mortality of BC (HR = 0.47, 95% CI
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Metformin Significant benefit of RFS (n = 623 patients in two
studies), OS (n = 1936 patients in five studies), and
CSS (n = 535 patients in two studies) was observed in
metformin-treated patients from 3094 patients with
early stage CRC in nine studies, compared with that in
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polyps [0.58 (0.42–0.80), Z = �3.30, P < 0.001]
among patients with T2DB after metformin treatment
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After adjustment of cofound variates, a 30% increase
in OS was demonstrated among 424/4758 patients who
were diagnosed of T2DM and CRC and administrated
to metformin as compared with that in other
antidiabetics users
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Metformin A total of 151 nondiabetic patients with CRC after
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with 1-year endoscopy reports. The incidence of total
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Metformin A total of 40 women with atypical endometrial
hyperplasia (AEH) or EC was assigned to receive
metformin 850 mg b.i.d. over average 20 day, or no
treatment before hysterectomy. Ki67 was reduced by
17.2% (95% CI 27.4–7.0, P < 0.002) in metformin-
treated group

Schuler et al.
[61]

Metformin 20 nondiabetic women with EC and obesity
(BMI ≥ 30) were administrated with metformin
850 mg daily for 1–4 weeks before surgery. The levels
of Ki67 and p-S6 were reduced between pretreatment
and postsurgery by 11.75% (P = 0.008) and 51.2%
(P = 0.0002), respectively. Besides, the levels of p-
AMPK (P = 0.00001), p-Akt (P = 0.0002), p-4EBP1
(P = 0.001), and ER (P = 0.0002) also decreased after
surgery

Mitsuhashi
et al. [63]

Metformin + MPA 17 AEH and 19 noninvasive EC patients received
metformin (escalating from 750 to 2250 mg daily)
after complete response treated by MPA and other
drugs. Relapse rate among patients was 10%, and
estimated 3-year RFS rate was 89%

Nevadunsky
et al. [66]

Adjuvant metformin Metformin significantly improved OS (HR = 0.54, 95%
CI 0.30–0.97, P < 0.04) in diabetic patients with
nonendometrioid EC when compared with that in
nonusers with EC

Acute lymphoblastic leukemia

Ramos-
Peñafiel et al.
[67]

Metformin + prednisone A total of 102 nondiabetic patients with ALL was
enrolled, 26 received metformin (850 mg t.i.d.) for
6 days during preinduction stage, and 76 were treated
with traditional chemotherapy without metformin.
The use of metformin prevented therapy failure and
early relapse (P = 0.025) in patients bearing relative to
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3.1 The role of metformin in radiotherapy and chemotherapy

Metformin has been reported to be a useful adjuvant drug to radiotherapy or
chemotherapy for different cancers, especially prostate and colon cancers [33]. The
effects of metformin on overall survival (OS), relapse-free survival (RFS), and
cancer-specific survival (CSS) after concurrent chemotherapy and/or radiotherapy
vary on cancer types.

Cancer type Intervention Outcome

P = 0.01) and nondiabetic patients (19.6%, P = 0.05).
Higher pCR rate was found to be associated with
higher metformin dose (≥1500 mg/d). Post-CRT
maximum SUV decreased significantly in patients
taking metformin (P = 0.05)

Lee et al. [25] Adjuvant metformin Reduction of total CID and incidence of some
gastroenterological cancers including CRC, HCC, and
so on, among which the CID of esophageal cancer
decreased in diabetic groups taking adjuvant
metformin in comparison to non-DM groups.
Metformin dosage giving rise to a significant decrease
in cancer incidence was ≤500 mg/day

Leamm et al.
[69]

Metformin + neoadjuvant
chemo(radio)therapy

No statistically significant difference between
metformin users and nonmetformin users for median
overall survival (43.6 vs. 42.8 months, P = 0.66) or for
median DFS (31.1 vs.47.0 months, P = 0.68)

Prostate cancer

Wright et al.
[70]

Metformin A reduced risk of prostate cancer was showed among
white men at age of 35–74 after the use of metformin,
as reported by a case-control study

Rothermundt
et al. [74]

Metformin A total of 44 men with castration-resistant prostate
cancer was assigned to receive metformin 500 mg b.i.
d. until progression. After initial metformin treatment,
changes in IGF and IGBP3 and improvement of insulin
sensitivity from baseline were observed but without
correlation with progression. At week 4, only four
patients did not have progression (95% CI, 3–22).
Average PFS was 2.8 months (95% CI, 2.8–3.2) and
PSA double time declined in 23 patients but not
significant

Joshua et al.
[75]

Metformin Metformin 500 mg t.i.d. was prescribed to 24 men
with operable prostate cancer before prostatectomy. In
a per patient and per tumor analyses, Ki67 was
reduced by 29.5% (P = 0.0064) and 28.6%
(P = 0.0042) in comparison with the initial biopsy and
postprostatectomy sections

Rieken et al.
[77]

Metformin Metformin users with prostate cancer exhibited a
minor improvement of RFS after prostatectomy

Spratt et al.
[78]

Metformin A retrospective study examined 2901 noninvasive
prostate cancer patients through radiation therapy. In
157 patients treated with metformin, PSA-RFS and
DMFS were improved and the castration-resistant
prostate cancer progression was alleviated

Table 1.
Examples of clinical investigations of metformin used as a neoadjuvant and adjuvant agent in cancer therapy.
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Metformin

A previous study has shown that metformin increases radiosensitivity of luminal
BC by influencing expression of thioredoxin and intracellular redox homeostasis
[34]. A high level of AMPKα expression correlates with the increased radiosensitiv-
ity and better prognosis. A systemic review and meta-analysis conducted in 2018
summarized the impact of metformin on the efficacy of radiotherapy in 17 studies,
including prostate cancer, head and neck cancer, rectal cancer, lung cancer, esoph-
ageal cancer, and liver cancer [35]. The study compared diabetic patients with
metformin (D + M) and diabetic or nondiabetic cohort without metformin (D � M
or N � M) after radiotherapy. An improved pathologic complete response (pCR),
2y-OS, and 5y-OS vary in different cancer types when analyzing D + M and D � M
groups, supporting that metformin is beneficial to OS of diabetic patients while
distant metastasis-free survival (DMFS) and 5-year OS were not significantly dif-
ferent between D + M and N � M groups. With respect to the possible mechanisms
by which metformin enhances radiosensitivity, studies have indicated that p53 and
AMPKα are involved [36, 37]. Despite the increased sensitivity to radiotherapy and
chemotherapy, cumulative side effects and toxicity concur with the use of metfor-
min. For example, a study has shown that combination of metformin with radio-
chemotherapy can lead to less tolerance to cisplatin and radiotherapy and
exacerbate gastrointestinal adverse effects such as grade ≥ 3 nausea/vomiting [38].

3.2 Breast cancer

Several lines of clinical investigations have been conducted to assess the benefi-
cial effects of metformin on BC [39–52]. Two retrospective studies revealed that
long-term use of metformin (>5 years) reduced the risk of BC in T2DM women as
compared with other antidiabetic drugs [39, 40]. However, Currie et al. reported
that metformin use did not affect risk of breast and prostate cancer, but the reduced
risk was found in colon and pancreas cancer [29].

He et al. have shown improvement of disease-free survival (DFS), DMFS, and
OS in diabetic women who well-responded to previous hormone therapy and then
received metformin treatment. The results demonstrated that metformin synergizes
with hormone therapy [53, 54].

Metformin was used as neoadjuvant chemotherapy of BC to improve patholog-
ical conditions prior to surgery [45–48]. The increased pCR in 2529 women with BC
has been demonstrated in metformin-treated diabetic patients, compared to
nonmetformin-treated patients with or without diabetes [45]. Another study by
Niraula et al. evaluated the effect of metformin on serum biomarkers in nondiabetic
BC patients before surgery [46]. The patients were treated with metformin for 2
weeks, and serum biomarkers were assessed. A notably reduction of Ki67 and
elevation of apoptosis were observed in invasive tumor after the use of metformin.
The significant decrease of homeostatic model assessment of insulin resistance (-
HOMA-IR) was also observed, while insulin and leptin displayed a modest change.
However, a study showed that metformin increased phospho-AMPK (p-AMPK)
and decreased p-Akt and Ki67 without induction of apoptosis, suggesting a cyto-
static effect [47].

The long-term use of metformin has been shown to reduce risk of distant
metastasis and mortality of BC patients with type 2 diabetes [49–51]. Furthermore,
metformin use as adjuvant therapy can also improve outcomes of BC in nondiabetic
patients [41, 42, 52]. For example, a single-arm phase II trial enrolled nondiabetic
women with M0 stage BC. After receiving metformin of 500 mg t.i.d. for 6 months,
the result showed that fasting insulin level and HOMA-IR were significantly
reduced. Total cholesterol, low density lipoprotein, and leptin also similarly
declined [52]. Another study focused on the optimal dose of metformin that
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3.1 The role of metformin in radiotherapy and chemotherapy

Metformin has been reported to be a useful adjuvant drug to radiotherapy or
chemotherapy for different cancers, especially prostate and colon cancers [33]. The
effects of metformin on overall survival (OS), relapse-free survival (RFS), and
cancer-specific survival (CSS) after concurrent chemotherapy and/or radiotherapy
vary on cancer types.

Cancer type Intervention Outcome

P = 0.01) and nondiabetic patients (19.6%, P = 0.05).
Higher pCR rate was found to be associated with
higher metformin dose (≥1500 mg/d). Post-CRT
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[69]
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No statistically significant difference between
metformin users and nonmetformin users for median
overall survival (43.6 vs. 42.8 months, P = 0.66) or for
median DFS (31.1 vs.47.0 months, P = 0.68)

Prostate cancer

Wright et al.
[70]

Metformin A reduced risk of prostate cancer was showed among
white men at age of 35–74 after the use of metformin,
as reported by a case-control study

Rothermundt
et al. [74]

Metformin A total of 44 men with castration-resistant prostate
cancer was assigned to receive metformin 500 mg b.i.
d. until progression. After initial metformin treatment,
changes in IGF and IGBP3 and improvement of insulin
sensitivity from baseline were observed but without
correlation with progression. At week 4, only four
patients did not have progression (95% CI, 3–22).
Average PFS was 2.8 months (95% CI, 2.8–3.2) and
PSA double time declined in 23 patients but not
significant

Joshua et al.
[75]

Metformin Metformin 500 mg t.i.d. was prescribed to 24 men
with operable prostate cancer before prostatectomy. In
a per patient and per tumor analyses, Ki67 was
reduced by 29.5% (P = 0.0064) and 28.6%
(P = 0.0042) in comparison with the initial biopsy and
postprostatectomy sections

Rieken et al.
[77]

Metformin Metformin users with prostate cancer exhibited a
minor improvement of RFS after prostatectomy

Spratt et al.
[78]

Metformin A retrospective study examined 2901 noninvasive
prostate cancer patients through radiation therapy. In
157 patients treated with metformin, PSA-RFS and
DMFS were improved and the castration-resistant
prostate cancer progression was alleviated

Table 1.
Examples of clinical investigations of metformin used as a neoadjuvant and adjuvant agent in cancer therapy.
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A previous study has shown that metformin increases radiosensitivity of luminal
BC by influencing expression of thioredoxin and intracellular redox homeostasis
[34]. A high level of AMPKα expression correlates with the increased radiosensitiv-
ity and better prognosis. A systemic review and meta-analysis conducted in 2018
summarized the impact of metformin on the efficacy of radiotherapy in 17 studies,
including prostate cancer, head and neck cancer, rectal cancer, lung cancer, esoph-
ageal cancer, and liver cancer [35]. The study compared diabetic patients with
metformin (D + M) and diabetic or nondiabetic cohort without metformin (D � M
or N � M) after radiotherapy. An improved pathologic complete response (pCR),
2y-OS, and 5y-OS vary in different cancer types when analyzing D + M and D � M
groups, supporting that metformin is beneficial to OS of diabetic patients while
distant metastasis-free survival (DMFS) and 5-year OS were not significantly dif-
ferent between D + M and N � M groups. With respect to the possible mechanisms
by which metformin enhances radiosensitivity, studies have indicated that p53 and
AMPKα are involved [36, 37]. Despite the increased sensitivity to radiotherapy and
chemotherapy, cumulative side effects and toxicity concur with the use of metfor-
min. For example, a study has shown that combination of metformin with radio-
chemotherapy can lead to less tolerance to cisplatin and radiotherapy and
exacerbate gastrointestinal adverse effects such as grade ≥ 3 nausea/vomiting [38].

3.2 Breast cancer

Several lines of clinical investigations have been conducted to assess the benefi-
cial effects of metformin on BC [39–52]. Two retrospective studies revealed that
long-term use of metformin (>5 years) reduced the risk of BC in T2DM women as
compared with other antidiabetic drugs [39, 40]. However, Currie et al. reported
that metformin use did not affect risk of breast and prostate cancer, but the reduced
risk was found in colon and pancreas cancer [29].

He et al. have shown improvement of disease-free survival (DFS), DMFS, and
OS in diabetic women who well-responded to previous hormone therapy and then
received metformin treatment. The results demonstrated that metformin synergizes
with hormone therapy [53, 54].

Metformin was used as neoadjuvant chemotherapy of BC to improve patholog-
ical conditions prior to surgery [45–48]. The increased pCR in 2529 women with BC
has been demonstrated in metformin-treated diabetic patients, compared to
nonmetformin-treated patients with or without diabetes [45]. Another study by
Niraula et al. evaluated the effect of metformin on serum biomarkers in nondiabetic
BC patients before surgery [46]. The patients were treated with metformin for 2
weeks, and serum biomarkers were assessed. A notably reduction of Ki67 and
elevation of apoptosis were observed in invasive tumor after the use of metformin.
The significant decrease of homeostatic model assessment of insulin resistance (-
HOMA-IR) was also observed, while insulin and leptin displayed a modest change.
However, a study showed that metformin increased phospho-AMPK (p-AMPK)
and decreased p-Akt and Ki67 without induction of apoptosis, suggesting a cyto-
static effect [47].

The long-term use of metformin has been shown to reduce risk of distant
metastasis and mortality of BC patients with type 2 diabetes [49–51]. Furthermore,
metformin use as adjuvant therapy can also improve outcomes of BC in nondiabetic
patients [41, 42, 52]. For example, a single-arm phase II trial enrolled nondiabetic
women with M0 stage BC. After receiving metformin of 500 mg t.i.d. for 6 months,
the result showed that fasting insulin level and HOMA-IR were significantly
reduced. Total cholesterol, low density lipoprotein, and leptin also similarly
declined [52]. Another study focused on the optimal dose of metformin that
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achieves favorable effects on BC by comparing dose between 1500 and 1000 mg
daily [41]. For postmenopausal women with basal testosterone levels≧0.28 ng/mL,
it seemed that metformin of 1500 mg/d was better than 1000 mg/d in reduction of
insulin and testosterone levels, which were associated with cancer incidence and
prognosis. Combination of metformin with other chemotherapy usually generates
better outcomes in nondiabetic BC patients with the higher HOMA-IR (>2.8), and
HOMA-IR can be improved by metformin [42–44, 48].

In summary, studies showing beneficial effects of metformin are more than
those without effects. Metformin as an adjuvant agent can suppress BC at various
doses ranging from 500 to 1500 mg. The outcomes mainly include reduced risk of
BC, decreases in cancer-promoting markers and metastatic events, increases in
apoptotic markers, and improvement of progression-free survival (PFS) and OS.

3.3 Colon cancer

The role of metformin in preventing colon cancer has been documented in the
following studies conducted in both diabetic and nondiabetic patients. A meta-
analysis was carried out in 709,980 individuals with T2DM from 17 studies showing
a significant decrease in the risk of colon neoplasia among metformin-treated
patients compared to those without metformin, with respective reduction for either
cancer or polys [55]. A randomized study enrolled a total of 26 nondiabetic individ-
uals with aberrant crypt foci (ACF) (biomarker of CRC development) and assigned
them to either receive metformin 250 mg daily for 1 month or control group [56].
Significant decreases in the average number of ACF by a 3.67-fold (P = 0.007) and
in proliferating cell nuclear antigen index were discovered in metformin arm. This
indicates that metformin prevents CRC by attenuating cell proliferation and ACF
development.

Metformin has been used as an adjuvant agent in the treatment of CRC. First,
a single-arm study has demonstrated a median PFS of 1.8 months and an OS of
7.9 months in metastatic CRC with combination of metformin (850 mg b.i.d.) and
5-fluorouracil treatment. Surprisingly, the improvement in median survival was
more obvious in obese patients [57]. Second, Coyle et al. have evaluated 3092
patients with early stage of CRC [33]. It was found that the use of metformin
significantly improved RFS (HR = 0.63, 95% CI 0.47–0.85), OS (0.69, 95% CI 0.58–
0.83), and CSS (0.58, 95% CI 0.39–0.86) in patients with T2DM, compared with
other antidiabetic drugs. Likewise, progression of CRC is also inhibited by metfor-
min. A similar study showed prolonged OS in patients with T2DM with CRC
receiving metformin, as compared with nonmetformin users (79.6 vs. 56.9 months,
P = 0.048) [58]. The last randomized trial used metformin (250 mg daily) for a year
in nondiabetic patients with high-risk adenoma recurrence and no colorectal polyps
after polypectomy [59]. The results showed that polyps and adenomas are notice-
ably fewer in the metformin arm than in the control arm. The study also showed
that average HOMA-IR status was significantly reduced in nonrecurrent patients by
metformin, while the value remained stable in recurrent patients, indicating that
insulin resistance is associated with chemoprevention outcome.

3.4 Endometrial cancer

Clinical investigations support that metformin could serve as a potential drug
for protection against endometrial cancer (EC) [60–65]. Several studies have
evaluated the effects of short-term use of metformin as a neoadjuvant therapy
between initial recruitment and hysterectomy surgery in nondiabetic women with
EC [60–62]. The first nonrandomized trial has examined the change of Ki67 and

134

Metformin

shown a remarkable reduction after metformin use at 850 mg b.i.d. for average
20 days [60]. A significant reduction in phospho-4E-binding protein 1 (p-4EFBP1)
downstream of mTOR was also observed by immunohistochemistry, while indirect
serum markers of insulin resistance (fasting glucose, insulin, and HOMA-IR) and
leptin only showed a decrease trend but not significant after adjusting difference.
Another preoperative clinical trial was done in nondiabetic women with body mass
index (BMI) ≧ 30 [61]. After taking metformin 850 mg daily for 1–4 weeks prior to
surgery, Ki67, p-AMPK, p-Akt, phospho-S6 Ribosomal Protein (p-S6), and p-4EBP
were significantly lower in resected specimens than in pretreatment. The reduction
of p-AMPK is inconsistent with purported positive effect of metformin. This study
also showed a decrease in estrogen receptor (ER) but not progesterone receptor.

According to a study evaluating the effect of metformin on EC of diabetic
patients (n = 114) as compared with diabetic (n = 136) and nondiabetic (n = 735)
patients without metformin from 1999 to 2009, metformin-treated group exhibits
prolonged OS than nonusers before and after the adjustment of confound bias [66].
A phase II study has examined the effects of long-term metformin (2250 mg daily
until recurrence) on RFS after a complete response to medroxyprogesterone acetate
(MPA) in 17 individuals with atypical endometrial hyperplasia and 19 with EC [63].
The 3-year estimated RFS was 89%, and the 3-year recurrence rate showed a 4.7-
fold decrease in this study compared with a previous study [64]. In contrast to
short-term treatment, the other randomized factorial study does not have a signif-
icant change in PFS/OS after metformin treatment (1700 mg/d for 16 weeks and
1-year follow up) [65].

3.5 Acute lymphoid leukemia

A single study randomized to assign 102 patients with nondiabetic acute
lymphoid leukemia (ALL) into a group of 26 with metformin at 850 mg t.i.d. for
10 days and the rest to the group without metformin before remission therapy [67].
Metformin displayed a beneficial effect on OS in the patients with high levels of
ABCB1 expression, the gene encoding multidrug resistant protein-1. The failure rate
of therapy was significantly reduced and early relapse after remission prevented
by metformin, as compared with nonusers.

3.6 Oesophagal cancer

Oesophagal cancer is deadly cancer with poor prognosis, and patients usually
do survive or die no longer than 30 months after chemoradiation and surgery [68].
A prospective cohort study by Taiwan National Health Insurance revealed a positive
effect of metformin as an adjunct to standard chemotherapies on the cancer inci-
dence density (CID) of gastroenterological cancers [25]. In this study, a decrease in
total CID including esophageal cancer was found in diabetic groups taking adjuvant
metformin in comparison to nondiabetic groups. Another study reported that met-
formin enhanced the efficacy of radiochemotherapy in patients with T2DM
resulting in superior pCR and low postconcurrent chemoradiation (CRT) maximum
SUV compared to patients with T2DM without metformin and non-DM patients
[68]. Additionally, higher pCR rate was correlated with higher metformin dose
(≥1500 mg/d). However, a report in 2015 demonstrated inconsistent results, in
which no difference in pCR was found between metformin users and
nonmetformin users [69]. Furthermore, it was shown that together with
neoadjunvant chemoradiation, metformin did not improve the median OS or
median DFS in diabetic patients with esophageal cancer.
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achieves favorable effects on BC by comparing dose between 1500 and 1000 mg
daily [41]. For postmenopausal women with basal testosterone levels≧0.28 ng/mL,
it seemed that metformin of 1500 mg/d was better than 1000 mg/d in reduction of
insulin and testosterone levels, which were associated with cancer incidence and
prognosis. Combination of metformin with other chemotherapy usually generates
better outcomes in nondiabetic BC patients with the higher HOMA-IR (>2.8), and
HOMA-IR can be improved by metformin [42–44, 48].

In summary, studies showing beneficial effects of metformin are more than
those without effects. Metformin as an adjuvant agent can suppress BC at various
doses ranging from 500 to 1500 mg. The outcomes mainly include reduced risk of
BC, decreases in cancer-promoting markers and metastatic events, increases in
apoptotic markers, and improvement of progression-free survival (PFS) and OS.

3.3 Colon cancer

The role of metformin in preventing colon cancer has been documented in the
following studies conducted in both diabetic and nondiabetic patients. A meta-
analysis was carried out in 709,980 individuals with T2DM from 17 studies showing
a significant decrease in the risk of colon neoplasia among metformin-treated
patients compared to those without metformin, with respective reduction for either
cancer or polys [55]. A randomized study enrolled a total of 26 nondiabetic individ-
uals with aberrant crypt foci (ACF) (biomarker of CRC development) and assigned
them to either receive metformin 250 mg daily for 1 month or control group [56].
Significant decreases in the average number of ACF by a 3.67-fold (P = 0.007) and
in proliferating cell nuclear antigen index were discovered in metformin arm. This
indicates that metformin prevents CRC by attenuating cell proliferation and ACF
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Metformin has been used as an adjuvant agent in the treatment of CRC. First,
a single-arm study has demonstrated a median PFS of 1.8 months and an OS of
7.9 months in metastatic CRC with combination of metformin (850 mg b.i.d.) and
5-fluorouracil treatment. Surprisingly, the improvement in median survival was
more obvious in obese patients [57]. Second, Coyle et al. have evaluated 3092
patients with early stage of CRC [33]. It was found that the use of metformin
significantly improved RFS (HR = 0.63, 95% CI 0.47–0.85), OS (0.69, 95% CI 0.58–
0.83), and CSS (0.58, 95% CI 0.39–0.86) in patients with T2DM, compared with
other antidiabetic drugs. Likewise, progression of CRC is also inhibited by metfor-
min. A similar study showed prolonged OS in patients with T2DM with CRC
receiving metformin, as compared with nonmetformin users (79.6 vs. 56.9 months,
P = 0.048) [58]. The last randomized trial used metformin (250 mg daily) for a year
in nondiabetic patients with high-risk adenoma recurrence and no colorectal polyps
after polypectomy [59]. The results showed that polyps and adenomas are notice-
ably fewer in the metformin arm than in the control arm. The study also showed
that average HOMA-IR status was significantly reduced in nonrecurrent patients by
metformin, while the value remained stable in recurrent patients, indicating that
insulin resistance is associated with chemoprevention outcome.

3.4 Endometrial cancer

Clinical investigations support that metformin could serve as a potential drug
for protection against endometrial cancer (EC) [60–65]. Several studies have
evaluated the effects of short-term use of metformin as a neoadjuvant therapy
between initial recruitment and hysterectomy surgery in nondiabetic women with
EC [60–62]. The first nonrandomized trial has examined the change of Ki67 and
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shown a remarkable reduction after metformin use at 850 mg b.i.d. for average
20 days [60]. A significant reduction in phospho-4E-binding protein 1 (p-4EFBP1)
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index (BMI) ≧ 30 [61]. After taking metformin 850 mg daily for 1–4 weeks prior to
surgery, Ki67, p-AMPK, p-Akt, phospho-S6 Ribosomal Protein (p-S6), and p-4EBP
were significantly lower in resected specimens than in pretreatment. The reduction
of p-AMPK is inconsistent with purported positive effect of metformin. This study
also showed a decrease in estrogen receptor (ER) but not progesterone receptor.

According to a study evaluating the effect of metformin on EC of diabetic
patients (n = 114) as compared with diabetic (n = 136) and nondiabetic (n = 735)
patients without metformin from 1999 to 2009, metformin-treated group exhibits
prolonged OS than nonusers before and after the adjustment of confound bias [66].
A phase II study has examined the effects of long-term metformin (2250 mg daily
until recurrence) on RFS after a complete response to medroxyprogesterone acetate
(MPA) in 17 individuals with atypical endometrial hyperplasia and 19 with EC [63].
The 3-year estimated RFS was 89%, and the 3-year recurrence rate showed a 4.7-
fold decrease in this study compared with a previous study [64]. In contrast to
short-term treatment, the other randomized factorial study does not have a signif-
icant change in PFS/OS after metformin treatment (1700 mg/d for 16 weeks and
1-year follow up) [65].

3.5 Acute lymphoid leukemia

A single study randomized to assign 102 patients with nondiabetic acute
lymphoid leukemia (ALL) into a group of 26 with metformin at 850 mg t.i.d. for
10 days and the rest to the group without metformin before remission therapy [67].
Metformin displayed a beneficial effect on OS in the patients with high levels of
ABCB1 expression, the gene encoding multidrug resistant protein-1. The failure rate
of therapy was significantly reduced and early relapse after remission prevented
by metformin, as compared with nonusers.

3.6 Oesophagal cancer

Oesophagal cancer is deadly cancer with poor prognosis, and patients usually
do survive or die no longer than 30 months after chemoradiation and surgery [68].
A prospective cohort study by Taiwan National Health Insurance revealed a positive
effect of metformin as an adjunct to standard chemotherapies on the cancer inci-
dence density (CID) of gastroenterological cancers [25]. In this study, a decrease in
total CID including esophageal cancer was found in diabetic groups taking adjuvant
metformin in comparison to nondiabetic groups. Another study reported that met-
formin enhanced the efficacy of radiochemotherapy in patients with T2DM
resulting in superior pCR and low postconcurrent chemoradiation (CRT) maximum
SUV compared to patients with T2DM without metformin and non-DM patients
[68]. Additionally, higher pCR rate was correlated with higher metformin dose
(≥1500 mg/d). However, a report in 2015 demonstrated inconsistent results, in
which no difference in pCR was found between metformin users and
nonmetformin users [69]. Furthermore, it was shown that together with
neoadjunvant chemoradiation, metformin did not improve the median OS or
median DFS in diabetic patients with esophageal cancer.
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3.7 Prostate cancer

The effect of metformin on prostate cancer is ambiguous. Studies of Wright and
Stanford have provided a 44% decrease in the risk of prostate cancer among Cau-
casian men with diabetes [70]. However, investigations by others could not obtain
the same conclusion on the incidence of prostate cancer in diabetic patients treated
with metformin, but the mortality might be reduced [71–73]. A single-arm clinical
trial has revealed a decrease in insulin-like growth factor-1 (IGF-1) and an increase
in insulin-like growth factor-binding protein-3 (IGFBP-3), alongside lowering
prostate-specific antigen (PSA), after giving metformin 500 mg b.i.d. over 12 weeks
to patients with castration-resistant prostate cancer [74]. In a single-arm study on
men with biopsy-proven localized prostate cancer, 22 patients were selected to
receive metformin at 500 mg/d or b.i.d., followed by t.i.d. for 28–84 days preceding
their prostatectomy. The results revealed that Ki67 index was reduced by compar-
ing the initial biopsy with postprostatectomy sections [75]. However, the changes
were not recapitulated by another study, although metformin in the prostate tissue
was detected after a median of 34 days prior to prostatectomy [76]. In a retrospec-
tive study, metformin-treated diabetic individuals gained the improvement of RFS
among 6863 patients after radical prostatectomy [77]. Study of Spratt et al. also
demonstrated the significantly elevated PSA-RFS, DFS, and lower cancer mortality
in localized prostate cancer with metformin treatment compared with that of
nonusers [78].

4. Ongoing clinical trials

Previous studies of metformin use as neoadjuvant or adjuvant therapy for vari-
ous types of cancer provide strong rationale of clinical trials in more vigorous
settings. Thus far, more than 300 clinical trials have initiated in the world despite
some are somehow either terminated or withdrawn. Table 2 lists some of them. For
example, NCT02065687 is a randomized, metformin-placebo, phase II/III study
that enrolls a total of 540 participants and examines the effect of adjuvant metfor-
min together with paclitaxel and carboplatin in treatment of stages III–IV or recur-
rent EC. Patients receive metformin twice a day in a 5-year follow up until disease
progression or undesirable adverse effects appear. According to this trial, prolonged
PFS and OS will be observed after the use of metformin together with other che-
motherapeutic drugs. One of the ongoing phase II trials carrying out in 151
premenopausal BC patients with BMI ≧ 25 kg/m2 evaluates treatment effect with
850 mg metformin b.i.d. vs. placebo for a year, by examining the primary outcome
changes of breast density at time points of 6 and 12 months. This study spanning
from March 7, 2014 to June 30, 2020 also identifies biomarkers associated with
metabolic effects of metformin and attempts to find prediction factors of BC risk
(NCT02028221). Also, a trial (NCT02614339) is undergoing to follow-up 3-year
DFS and 5-year OS in nondiabetic patients with stage II high-risk/III CRC treated
with metformin (1000 mg/day) for 48 months. This study has enrolled 593 partic-
ipants and is still recruiting and expected to complete in July 2021.

The trial of double-blinded 2� 2 factorial (aspirin�metformin) design registers
160 patients with stages I–III colon cancer who undertake a completed polypectomy
within recent 24 months (NCT03047837). After randomized allocation, patients
will receive metformin at 850 mg b.i.d. or aspirin at 100 mg daily or two drugs
together vs. placebo over 1 year. Immunohistochemistry for NF-κB, glucose metab-
olism, pS6K, and other biomarker will be compared pre- and postintervention
(ClinicalTrials.gov Identifier: NCT03047837).
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NCT number Status Participants Period Intervention Cancer
type

NCT02581137
https://Clinica
lTrials.gov/
show/
NCT02581137

Active (a) 26, (b)18 years
and older (adult,
older adult),
(c) all sex

June 10,
2016 to not
indicated

Drug: metformin
hydrochloride

Oral cancer

NCT02028221
https://Clinica
lTrials.gov/
show/
NCT02028221

Active (a) 151, (b)
21 years to 54 years
(adult), (c) female

March 7,
2014 to
June 30,
2020

Drug: metformin &
placebo

BC

NCT02431676
https://Clinica
lTrials.gov/
show/
NCT02431676

Active (a) 100, (b)
50 years to 65 years
(adult, older
adult), (c) female

May 1, 2013
to
September
1, 2022

Drug: metformin &
placebo

EC

NCT01697566
https://Clinica
lTrials.gov/
show/
NCT01697566

Active (a) 100, (b)
50 years to 65 years
(adult, older
adult), (c) female

May 1, 2013
to
September
1, 2022

Drug: metformin &
placebo

EC

NCT01797523
https://Clinica
lTrials.gov/
show/
NCT01797523

Active (a) 62, (b) 18 years
and older (adult,
older adult),
(c) all sex

May 1, 2013
to October
1, 2020

Drug: metformin,
letrozole, & everolimus

EC

NCT02065687
https://Clinica
lTrials.gov/
show/
NCT02065687

Active (a) 540, (b)
18 years to older
(adult, older
adult), (c) female

Match 17,
2014 to

Drug: carboplatin,
metformin
hydrochloride,
paclitaxel, & placebo

EC

NCT03047837
https://Clinica
lTrials.gov/sh
ow/
NCT03047837

Recruiting (a) 160, (b)
18 years to 80 years
(adult, older
adult), (c) all sex

March 15,
2017 to
March 15,
2020

Drug: aspirin
(ASA) + metformin
(MET)|Drug: ASA|Drug:
MET|Drug: placebos

Tertiary
prevention
in colon
cancer

NCT01905046
https://Clinica
lTrials.gov/
show/
NCT01905046

Recruiting (a) 128, (b)
25 years to 55 years
(adult), (c) female

August
2013 to

Drug: metformin
hydrochloride &
placebo

BC

NCT02614339
https://Clinica
lTrials.gov/
show/
NCT02614339

Recruiting (a) 593, (b)
20 years to 80 years
(adult, older
adult), (c) all sex

December
2015 to July
2021

Drug: metformin &
placebo

CRC

NCT03378297
https://Clinica
lTrials.gov/
show/
NCT03378297

Recruiting (a) 143, (b)
18 years and older
(adult, older
adult), (c) female

May 4,
2018 to
June 1,
2020

Drug: metformin &
acetylsalicylic acid &
drug: olaparib & drug:
letrozole

Ovarian
cancer

NCT03685409
https://Clinica
lTrials.gov/
show/
NCT03685409

Recruiting (a) 62, (b)20 years
to 70 years (adult,
older adult),
(c) all sex

October 1,
2018 to
September
30, 2020

Drug: metformin
hydrochloride &
placebo

Oral cancer
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3.7 Prostate cancer

The effect of metformin on prostate cancer is ambiguous. Studies of Wright and
Stanford have provided a 44% decrease in the risk of prostate cancer among Cau-
casian men with diabetes [70]. However, investigations by others could not obtain
the same conclusion on the incidence of prostate cancer in diabetic patients treated
with metformin, but the mortality might be reduced [71–73]. A single-arm clinical
trial has revealed a decrease in insulin-like growth factor-1 (IGF-1) and an increase
in insulin-like growth factor-binding protein-3 (IGFBP-3), alongside lowering
prostate-specific antigen (PSA), after giving metformin 500 mg b.i.d. over 12 weeks
to patients with castration-resistant prostate cancer [74]. In a single-arm study on
men with biopsy-proven localized prostate cancer, 22 patients were selected to
receive metformin at 500 mg/d or b.i.d., followed by t.i.d. for 28–84 days preceding
their prostatectomy. The results revealed that Ki67 index was reduced by compar-
ing the initial biopsy with postprostatectomy sections [75]. However, the changes
were not recapitulated by another study, although metformin in the prostate tissue
was detected after a median of 34 days prior to prostatectomy [76]. In a retrospec-
tive study, metformin-treated diabetic individuals gained the improvement of RFS
among 6863 patients after radical prostatectomy [77]. Study of Spratt et al. also
demonstrated the significantly elevated PSA-RFS, DFS, and lower cancer mortality
in localized prostate cancer with metformin treatment compared with that of
nonusers [78].

4. Ongoing clinical trials

Previous studies of metformin use as neoadjuvant or adjuvant therapy for vari-
ous types of cancer provide strong rationale of clinical trials in more vigorous
settings. Thus far, more than 300 clinical trials have initiated in the world despite
some are somehow either terminated or withdrawn. Table 2 lists some of them. For
example, NCT02065687 is a randomized, metformin-placebo, phase II/III study
that enrolls a total of 540 participants and examines the effect of adjuvant metfor-
min together with paclitaxel and carboplatin in treatment of stages III–IV or recur-
rent EC. Patients receive metformin twice a day in a 5-year follow up until disease
progression or undesirable adverse effects appear. According to this trial, prolonged
PFS and OS will be observed after the use of metformin together with other che-
motherapeutic drugs. One of the ongoing phase II trials carrying out in 151
premenopausal BC patients with BMI ≧ 25 kg/m2 evaluates treatment effect with
850 mg metformin b.i.d. vs. placebo for a year, by examining the primary outcome
changes of breast density at time points of 6 and 12 months. This study spanning
from March 7, 2014 to June 30, 2020 also identifies biomarkers associated with
metabolic effects of metformin and attempts to find prediction factors of BC risk
(NCT02028221). Also, a trial (NCT02614339) is undergoing to follow-up 3-year
DFS and 5-year OS in nondiabetic patients with stage II high-risk/III CRC treated
with metformin (1000 mg/day) for 48 months. This study has enrolled 593 partic-
ipants and is still recruiting and expected to complete in July 2021.

The trial of double-blinded 2� 2 factorial (aspirin�metformin) design registers
160 patients with stages I–III colon cancer who undertake a completed polypectomy
within recent 24 months (NCT03047837). After randomized allocation, patients
will receive metformin at 850 mg b.i.d. or aspirin at 100 mg daily or two drugs
together vs. placebo over 1 year. Immunohistochemistry for NF-κB, glucose metab-
olism, pS6K, and other biomarker will be compared pre- and postintervention
(ClinicalTrials.gov Identifier: NCT03047837).
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type
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March 7,
2014 to
June 30,
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NCT02431676

Active (a) 100, (b)
50 years to 65 years
(adult, older
adult), (c) female

May 1, 2013
to
September
1, 2022
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placebo

EC

NCT01697566
https://Clinica
lTrials.gov/
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NCT01697566

Active (a) 100, (b)
50 years to 65 years
(adult, older
adult), (c) female

May 1, 2013
to
September
1, 2022

Drug: metformin &
placebo

EC

NCT01797523
https://Clinica
lTrials.gov/
show/
NCT01797523

Active (a) 62, (b) 18 years
and older (adult,
older adult),
(c) all sex

May 1, 2013
to October
1, 2020

Drug: metformin,
letrozole, & everolimus

EC

NCT02065687
https://Clinica
lTrials.gov/
show/
NCT02065687

Active (a) 540, (b)
18 years to older
(adult, older
adult), (c) female

Match 17,
2014 to

Drug: carboplatin,
metformin
hydrochloride,
paclitaxel, & placebo

EC

NCT03047837
https://Clinica
lTrials.gov/sh
ow/
NCT03047837

Recruiting (a) 160, (b)
18 years to 80 years
(adult, older
adult), (c) all sex

March 15,
2017 to
March 15,
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Drug: aspirin
(ASA) + metformin
(MET)|Drug: ASA|Drug:
MET|Drug: placebos

Tertiary
prevention
in colon
cancer

NCT01905046
https://Clinica
lTrials.gov/
show/
NCT01905046

Recruiting (a) 128, (b)
25 years to 55 years
(adult), (c) female

August
2013 to

Drug: metformin
hydrochloride &
placebo

BC

NCT02614339
https://Clinica
lTrials.gov/
show/
NCT02614339

Recruiting (a) 593, (b)
20 years to 80 years
(adult, older
adult), (c) all sex
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2015 to July
2021

Drug: metformin &
placebo

CRC

NCT03378297
https://Clinica
lTrials.gov/
show/
NCT03378297

Recruiting (a) 143, (b)
18 years and older
(adult, older
adult), (c) female

May 4,
2018 to
June 1,
2020

Drug: metformin &
acetylsalicylic acid &
drug: olaparib & drug:
letrozole

Ovarian
cancer

NCT03685409
https://Clinica
lTrials.gov/
show/
NCT03685409

Recruiting (a) 62, (b)20 years
to 70 years (adult,
older adult),
(c) all sex

October 1,
2018 to
September
30, 2020

Drug: metformin
hydrochloride &
placebo

Oral cancer
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5. Cautions to be considered

5.1 Cancer type-specific effects

Whether a cancer type is sensitive to metformin depends on expression level of
OCT1 in the cell membrane. Thus far, majority of previous studies have demon-
strated that metformin exerts beneficial effects on different types of cancer, while
some do not respond. On contrary, in some cases, for example, in glioma and
leukemia cancer cells, metformin reduces cisplatin-induced apoptosis, suggesting
that metformin exerts a protective effect on cytotoxic agents in some cells [79].
Hence, before going to clinical trials, preclinical tests should be undertaken to
ascertain if metformin enhances the inhibitory effect of other drugs. This is feasible
when PDX animal models or organoid culture techniques are available.

5.2 Genetic background of cancer

Responses of cancer cells with and without LKB1 to metformin are different.
Metformin exerts cytostatic effect on cancer cells with wild-type LKB1, while it
causes cytotoxicity in cells lacking LKB1. If metformin is used together with most of
chemotherapeutic drugs that are cytotoxic in cancer containing wild-type LKB1, the
cooperative effects might not be achieved. The reason is that more rapidly dividing
cells are more sensitive to cytotoxic drugs, while cytostatic drugs slow down speed
of cell growth, which might compromise the efficacy of cytotoxic chemotherapy. In
this scenario, it might be a good idea to take metformin and cytotoxic drug alter-
nately. For example, patients take a couple of cycles of cytotoxic chemotherapy and
then have rest for period of time during which metformin is alternately used. The
purpose is to restrain cancer in dormancy and allow the patients to restore healthy
condition. In addition, Birsoy et al. have delineated that the most metformin-
sensitive cells contain mutations of genes responsible for upregulation of mito-
chondrial oxidative phosphorylation, for example, complex I components, or glu-
cose utilization [80]. Thus, these genes may serve as biomarkers for metformin use.
Altogether, these studies point to importance of personalized medicine to deter-
mine the efficacy of metformin in cancer therapy.

5.3 Sensitivity of cancer stem cells

Cancer stem cells (CSCs) are refractory to chemotherapy, leading to the relapse
of cancer. These cells metastasize to distant organs after flowing in circulation,
resulting in poor prognosis. Thus, CSCs have become an important target for anti-
cancer therapies. Hirsch et al. have reported that the CSCs derived from BC are
preferentially sensitive to metformin that is used from 10 to 100 times less dosage

NCT number Status Participants Period Intervention Cancer
type

NCT01864096
https://Clinica
lTrials.gov/
show/
NCT01864096

Recruiting (a) 408, (b)
18 years to 79 years
(adult, older
adult), (c) male

October 1,
2013 to
August 1,
2024

Drug: metformin &
placebo

Prostate
cancer

Table 2.
Summary of ongoing clinical trials approved by FDA.
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than nonstem cancer cells [81]. This finding suggests that metformin could effec-
tively prevent metastasis. It is especially meaningful in the case of surgically
resected cancer when local metastasis in lymph nodes is cytologically tested nega-
tive, but a few CSCs may escape to circulation. At this time, metformin can be used
as preventive measure.

Previous studies have demonstrated that metformin selectively targets CSCs via
regulation of different pathways in various cancer types including breast, pancre-
atic, prostate, and colon cancer [82, 83]. For example, Zhu et al. have shown that
metformin inhibits CD61high/CD49fhigh subpopulation, markers of tumor initiating
cells, by inactivating epidermal growth factor receptor/ErbB2 signaling. Similarly,
CD133+, aldehyde dehydrogenases 1+, and other molecules are inhibited in pancre-
atic and colon cancer through inhibition of the Akt/mTOR pathway [84, 85]. How-
ever, a recent study using head and neck squamous cell carcinoma has shown that
metformin protects CSCs against the cisplatin-induced cell death when combining
these two, which discord with previous studies [86]. Thus, it should be cautious
to ascertain if metformin exerts inhibitory or protective effects on specifically
originated CSCs.

6. Conclusion

Metformin is a cheap and nontoxic first-line antidiabetic medicine. It is an
attractive drug that is being repurposed for multiple usages in treatment of other
diseases in addition to diabetes. Metformin implements its function through AMPK-
dependent and independent mechanisms. Preclinical and retrospective clinical
investigations have inspired clinical trials of metformin use in various cancer ther-
apies. It is a promising drug in neoadjuvant and adjuvant therapies. We hope these
trials will come to end with positive or negative results in the next few years. In
considering genetic heterogeneity of cancer, responses of different cancer types and
subpopulations in the same cancer might be different. Therefore, we still have long
way to go and loads of questions to be addressed.
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5. Cautions to be considered

5.1 Cancer type-specific effects

Whether a cancer type is sensitive to metformin depends on expression level of
OCT1 in the cell membrane. Thus far, majority of previous studies have demon-
strated that metformin exerts beneficial effects on different types of cancer, while
some do not respond. On contrary, in some cases, for example, in glioma and
leukemia cancer cells, metformin reduces cisplatin-induced apoptosis, suggesting
that metformin exerts a protective effect on cytotoxic agents in some cells [79].
Hence, before going to clinical trials, preclinical tests should be undertaken to
ascertain if metformin enhances the inhibitory effect of other drugs. This is feasible
when PDX animal models or organoid culture techniques are available.

5.2 Genetic background of cancer

Responses of cancer cells with and without LKB1 to metformin are different.
Metformin exerts cytostatic effect on cancer cells with wild-type LKB1, while it
causes cytotoxicity in cells lacking LKB1. If metformin is used together with most of
chemotherapeutic drugs that are cytotoxic in cancer containing wild-type LKB1, the
cooperative effects might not be achieved. The reason is that more rapidly dividing
cells are more sensitive to cytotoxic drugs, while cytostatic drugs slow down speed
of cell growth, which might compromise the efficacy of cytotoxic chemotherapy. In
this scenario, it might be a good idea to take metformin and cytotoxic drug alter-
nately. For example, patients take a couple of cycles of cytotoxic chemotherapy and
then have rest for period of time during which metformin is alternately used. The
purpose is to restrain cancer in dormancy and allow the patients to restore healthy
condition. In addition, Birsoy et al. have delineated that the most metformin-
sensitive cells contain mutations of genes responsible for upregulation of mito-
chondrial oxidative phosphorylation, for example, complex I components, or glu-
cose utilization [80]. Thus, these genes may serve as biomarkers for metformin use.
Altogether, these studies point to importance of personalized medicine to deter-
mine the efficacy of metformin in cancer therapy.

5.3 Sensitivity of cancer stem cells

Cancer stem cells (CSCs) are refractory to chemotherapy, leading to the relapse
of cancer. These cells metastasize to distant organs after flowing in circulation,
resulting in poor prognosis. Thus, CSCs have become an important target for anti-
cancer therapies. Hirsch et al. have reported that the CSCs derived from BC are
preferentially sensitive to metformin that is used from 10 to 100 times less dosage

NCT number Status Participants Period Intervention Cancer
type

NCT01864096
https://Clinica
lTrials.gov/
show/
NCT01864096

Recruiting (a) 408, (b)
18 years to 79 years
(adult, older
adult), (c) male

October 1,
2013 to
August 1,
2024

Drug: metformin &
placebo

Prostate
cancer

Table 2.
Summary of ongoing clinical trials approved by FDA.

138

Metformin

than nonstem cancer cells [81]. This finding suggests that metformin could effec-
tively prevent metastasis. It is especially meaningful in the case of surgically
resected cancer when local metastasis in lymph nodes is cytologically tested nega-
tive, but a few CSCs may escape to circulation. At this time, metformin can be used
as preventive measure.

Previous studies have demonstrated that metformin selectively targets CSCs via
regulation of different pathways in various cancer types including breast, pancre-
atic, prostate, and colon cancer [82, 83]. For example, Zhu et al. have shown that
metformin inhibits CD61high/CD49fhigh subpopulation, markers of tumor initiating
cells, by inactivating epidermal growth factor receptor/ErbB2 signaling. Similarly,
CD133+, aldehyde dehydrogenases 1+, and other molecules are inhibited in pancre-
atic and colon cancer through inhibition of the Akt/mTOR pathway [84, 85]. How-
ever, a recent study using head and neck squamous cell carcinoma has shown that
metformin protects CSCs against the cisplatin-induced cell death when combining
these two, which discord with previous studies [86]. Thus, it should be cautious
to ascertain if metformin exerts inhibitory or protective effects on specifically
originated CSCs.

6. Conclusion

Metformin is a cheap and nontoxic first-line antidiabetic medicine. It is an
attractive drug that is being repurposed for multiple usages in treatment of other
diseases in addition to diabetes. Metformin implements its function through AMPK-
dependent and independent mechanisms. Preclinical and retrospective clinical
investigations have inspired clinical trials of metformin use in various cancer ther-
apies. It is a promising drug in neoadjuvant and adjuvant therapies. We hope these
trials will come to end with positive or negative results in the next few years. In
considering genetic heterogeneity of cancer, responses of different cancer types and
subpopulations in the same cancer might be different. Therefore, we still have long
way to go and loads of questions to be addressed.
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Chapter 9

Metformin in Cervical Cancer: 
Metabolic Reprogramming
Malgorzata Tyszka-Czochara and Marcin Majka

Abstract

The reprogrammed metabolism plays a crucial role in intensively proliferating 
tumor cells to meet high energetic demands and adapt to metastasis and invasion. 
Metformin may counteract flexible metabolic phenotype of cervical cancer cells by 
restraining aerobic glycolysis (Warburg effect) and promoting mitochondrial-based 
metabolism. Metformin inhibits master oncogene c-Myc as well as hypoxia-induc-
ible factor 1 (HIF-1α) and suppresses its downstream glycolytic regulatory enzymes 
and glucose transporters. Metformin targets bioenergetics of cervical cancer cells 
with aggressive phenotype and regulates the expression of enzymes controlling 
tricarboxylic acid cycle (TCA cycle) supplementation with substrates, glucose, 
and glutamine. The exposition of cervical tumor cells to Metformin alleviates their 
migratory capacity, restrains epithelial-to-mesenchymal transition (EMT) program 
implementation, and elucidates oxidative stress, which results in massive cell death 
due to apoptosis. The metabolic alterations caused by Metformin are specific to 
cancer cells. In summary, Metformin exerts antitumor effect in cervical cancer cells 
by regulating specific molecular targets in reprogrammed metabolism. Metformin 
selectively modulates metabolic pathways and thus may be potentially used in new 
precisely targeted therapeutic strategies for cervical cancer.

Keywords: Metformin, cancer, metabolism, metabolic reprogramming,  
Warburg effect, mitochondria, apoptosis, oncogenes, reactive oxygen species, 
epithelial-mesenchymal transition, targeted anticancer therapy

1. Introduction

The malignant transformation results in a specific rearrangement of meta-
bolic processes called metabolic reprogramming of tumor cell. The altered 
metabolism causes a selective advantage to a transformed cell by facilitating its 
survival in a harsh environment and promoting the spread of tumor cells within 
the body.

Malignant cells very effectively adapt to high proliferation rate, metastasis, and 
invasion. Several molecular mechanisms were pointed out to drive such metabolic 
adaptation of cancer cells. The critical aspects of metabolic reprogramming in 
tumor cells substantially contribute to the Warburg effect [1], an increased catabo-
lism of glucose to lactate in the presence of oxygen [2]. The altered metabolism 
of tumors results in elevated biosynthesis of macromolecules such as proteins, 
carbohydrates, and lipids and, in consequence, supports high proliferation rate of 
malignant cells [3].
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In particular, the regulation of mitochondrial processes in cancer cells dif-
fers from normal counterparts, and it may be specific to the stage of tumor [4]. 
Therefore, cancer cells are sensitive to drugs that disrupt energy homeostasis, such 
as Metformin (1,1-dimethylbiguanide, Met) [5].

A generic drug, Metformin, has been widely used for treatment of diabetes 
mellitus in humans. However, it exerts pleiotropic effect in human organism. 
In particular, a great interest has been paid to Met, since retrospective analyses 
demonstrated that it significantly decreased the relative risk of cancer incidence in 
diabetic patients when compared with patients treated with other drugs. Clinical 
trials confirmed the epidemiological observations that Met exerted anticancer 
effects in humans [6]. It has been established that Met inhibits proliferation of 
various neoplastic cell lines in vitro, including breast, prostatic, colon, gastric, and 
cervical cancers [7, 8]. Currently, there is an intense ongoing research focused on 
molecular mechanisms behind these effects, since the implications of Met action in 
tumor cell are not completely understood [9].

To date, several molecular mechanisms were reported to play critical role in 
anticancer activity of Met. In particular, it was established that Met may affect 
energy metabolism of cancer cells by inhibition of complex I of mitochondrial 
electron transport chain (ETC) in mitochondria, which results in adenosine-5′-
triphosphate (ATP) depletion and remodeling of the network of biosynthetic 
processes within the cell [9]. Met may act as an anticancer drug through the 
activation of the main energy regulator within the cell, adenosine 5′-monophos-
phate (AMP)-activated protein kinase (AMPK) [7], and inhibition of mechanistic 
target of rapamycin complex-1 (mTORC1) [10] in tumor cells. Some of the 
pharmacological effects of Met seem to be independent of its action on glycemia 
homeostasis. Several reports demonstrated that treatment of tumor cells with Met 
results in cell cycle perturbations and apoptosis [11, 12]. The intracellular targets 
affected by Met were comprehensively reviewed by Ikhlas and Ahmad [9] and 
Pierotti et al. [13].

Along with the advent of human papillomavirus (HPV) vaccines, the primary 
prevention of cervical cancer has become more successful, but cervical malig-
nancy still remains the significant cause of cancer mortality in women worldwide. 
Currently, chemotherapy using cytostatic drugs (mainly cisplatin, cis-dichloro-
diammineplatinum (II)) is still the primal regimen, despite low specificity and 
substantial toxicity in patients [14].

Aerobic glycolysis has been recognized as the most common metabolic feature 
of malignant cells. The alterations in metabolism of cancer cells combined with 
the overexpression of oncogenes (c-Myc) and transcription factors (hypoxia-
inducible factor 1a, HIF 1a) confer a great advantage to malignant cells to avoid 
apoptosis induced by reactive oxygen species (ROS). In this study we focused 
on the effects of Met on metabolism of metastatic cervical tumor cells. Based 
on recent data, we reported that Met inhibited glycolytic phenotype of aggres-
sive cervical cancer cells by regulation of expression of oncogenes and their 
downstream proteins, which led to cellular death. Furthermore, Met regulated 
mitochondrial metabolism, especially via supplementation of tricarboxylic acid 
cycle (TCA cycle, Krebs cycle) with pyruvate and glutamine. Met, by targeting 
epithelial and mesenchymal markers of tumor cells, alleviated invasive properties 
of cervical cancer cells.

This review summarizes recent findings on Met and cervical cancer underscor-
ing new implications of this drug in regulation of peculiar metabolism of tumor 
cells. We discuss new perspectives about targeting specific alterations in cervical 
tumor metabolic pathways using Met.
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2.  Metformin regulates metabolism of metastatic cervical cancer  
cells in vitro study

A growing evidence suggests that the screening for molecular targets for anti-
cancer therapeutic treatments should take into account the existing differences 
in tumor cell phenotypes. Therefore, the metabolic effects exerted by Met were 
studied using SiHa cells (American Type Culture Collection, ATCC designation 
HTB-35) originating from aggressive cervical tumor, which acquired malignant 
characteristics [15]. The regulation of apoptosis pathways in HTB-35 (SiHa) cells 
highly reflects the specificity of cervical tumor in vivo [16]. HTB-35 cells, even 
unstimulated with cytokines, have mesenchymal-like characteristics, especially 
high vimentin expression, along with enhancement of cell scattering and ability to 
move [17]. Another cell line, C-4I cells (ATCC, designation CRL1594) with epithe-
lial phenotype, was derived from primary in situ tumor [18]. HTB-34 cells (ATCC 
designation MS751) were isolated from metastatic site in lymph node [19]. HTB-35, 
C-4I and HTB-34 are human squamous cell cervical carcinoma lines and it is worth 
noting that squamous cell cancer is the most common cervical cancer and accounts 
for almost 80% of cervical carcinomas in patients [14]. HeLa human cervical cancer 
cells (ATCC designation CCL 2), which have been extensively used in mechanistic 
studies, expressed epithelial traits and were derived from adenocarcinoma [8].

2.1  Metformin hampers the expression of oncogenes controlling glycolytic 
phenotype of cervical cancer cells under hypoxic and normoxic conditions 
and promotes apoptosis

The reliance on glucose supply is linked to the aggressiveness of malignant cells. 
Such reprogrammed metabolism makes migrating cancer cells more robust and 
independent of environmental conditions. The dysregulation of glucose metabolism 
is caused by alterations in functioning of several oncogenes. Malignant cells may 
gain metabolic plasticity by upregulation of only few oncogenes, such as c-Myc, p53, 
phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) 
[20]. Additionally, the activation of transcription factors, such as HIF-1α, makes 
malignant cells more resistant to hypoxia (decreased oxygen level in microenviron-
ment), which is one of the main factors affecting tumor growth [20]. The activation 
of HIF-1α is one of the crucial processes that promote glycolysis to generate ATP 
along with the decrease of mitochondrial pathways’ activity in aggressive tumors. 
What is more, the migrating tumor cells may avoid oxidative stress by relying on 
glucose catabolism. As a result, tumor cells have higher chance to survive detach-
ment from extracellular matrix (ECM), whereas normal cells undergo programmed 
death due to anoikis in the absence of attachment to ECM [21]. Following detach-
ment from primary tumor bed and transportation to plasma and lymph, malignant 
cells may spread within the body and form secondary tumors. Therefore, the 
reprogrammed metabolism plays a crucial role in facilitating tumor metastasis.

We found that Met may regulate glycolysis in aggressive cervical cancer cells. 
The glycolytic phenotype of tumor cells is triggered mainly by a master regulator 
HIF-1α and its downstream proteins. Our study showed that Met alleviated the 
hypoxia-induced activation of HIF-1α, which was followed by decreased expression 
of HIF-1α downstream protein effectors in HTB-35 cells, as demonstrated in [22]. In 
particular, Met downregulated GLUT transporters (solute carrier family 2 member 
receptors, SLC2A), specifically GLUT1 and GLUT3. Additionally, Met inhibited the 
regulatory enzymes of the glycolytic pathway, hexokinase 2 (HK2), bifunctional 
enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), 
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pyruvate kinase (PKM), and lactate dehydrogenase (LDH) (Figure 1). Met exerted 
greater effect on regulatory proteins in HTB-35 cells exposed to decreased oxygen 
level in the air than normal conditions.

Recent studies have reported that overexpression of c-Myc oncogene plays a sig-
nificant role in the formation of cervical cancer. The enhanced expression of c-Myc 
is also of particular relevance to promoting invasive phenotype of cancer cells. 
What is more, the upregulated c-Myc may collaborate with HIF to effectively induce 
glucose and glutamine consumption in tumor cells. As a result, mitochondrial 
oxidative phosphorylation decreases. In particular, the upregulated c-Myc enhances 
glutamine catabolism in tumor cells, since the oncogene controls glutaminase (GLS) 
expression [23]. As measured using qPCR analysis, Met decreased c-MYC transcript 
level in HTB-35 cells [22], which was in compliance with inhibition of GLS protein 
expression [11]. The treatment of cervical tumor cells with Met decreased mRNA 
level for another c-Myc downstream protein, CCND1 (cyclin D1), which regulates 
cell cycle progression [22]. Zhang et al. [24] reported that Met caused a substan-
tial decrease of cyclin D1 expression in bladder cancer cells. The overexpression 
of oncogene cyclin D1 is positively correlated with chemotherapeutic resistance 
and apoptosis avoidance in squamous cell cancers [23]. The inhibition of CCND1 
expression in aggressive cervical tumor cells resulted in enhanced apoptosis [22].

Met triggered another pro-apoptotic mechanism in cervical carcinoma cells 
via regulation of Bcl-2 (B-cell lymphoma 2) protein family members’ expression 
[22]. Bcl-2 proteins are key players in the regulation of mitochondrial-dependent 
programmed cell death. The activation of BAX protein leads to disruption of 
mitochondrial membrane potential and apoptosis, whereas Bcl-2 acts as an apop-
totic suppressor. The counterbalancing pro- and anti-apoptotic effectors of Bcl-2 
protein family play a crucial role in the regulation of the mitochondrial apoptotic 
cascade within the cell and constitute another important apoptotic checkpoint [25]. 
However, the disturbance of BAX/Bcl-2 pathway may result in the resistance to 
apoptosis by inducing compensatory mechanisms, thereby influencing the efficacy 
of some therapeutic regimens [26]. The exposition of cervical tumor cells to Met 

Figure 1. 
Metformin inhibits glycolytic phenotype of cervical carcinoma cells (↑—activation, Ⱶ—inhibition) [11, 12, 21, 22].
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significantly upregulated BAX transcript. It was found that the expression of BAX 
under hypoxic conditions was greater than in normoxia [22]. Additionally, Met 
downregulated transcript for BCL-2 in HTB-35 cells in both, normoxic and hypoxic 
conditions.

The study using cervical cancer cells with metastatic phenotype cells showed 
that the downregulation of oncogenes/downstream regulatory proteins, together 
with the upregulation of pro-apoptotic BAX/Bcl-2, elucidated mitochondrial-
dependent apoptosis in tumor cells. The obtained data suggest that Met was highly 
effective in facilitating cell death in cervical tumor cells [22], since it exerted its 
effect targeting independent events controlling mitochondrial apoptosis including 
the induction of ROS [11], the regulation of Bcl-2 protein family expression, and 
downregulation of cyclin D1. It should be emphasized that Met induced cell death 
solely in tumor cells, without causing detrimental effects to normal cells [11].

2.2  Metformin regulates TCA cycle supplementation in cervical cancer cells via 
pyruvate dehydrogenase (PDH) complex and generates oxidative stress in 
mitochondria

The reprogrammed metabolism of tumor cells not only meets high energetic 
demands but also provides intermediates for intensive proliferation. Therefore, gly-
colysis and mitochondrial oxidative phosphorylation may operate simultaneously 
in cancer cells. Many tumors may even switch between these pathways accordingly 
to the current requirements. Recent studies showed that most cancer cells have 
metabolically efficient mitochondria to provide intermediates for biosynthesis, 
generate reductive power (nicotinamide adenine dinucleotide phosphate, NADPH), 
and restore cofactor pool (e.g., nicotinamide adenine dinucleotide, NADH). In 
highly proliferating cancer cells, mitochondrial TCA cycle is active enough to 
sustain the biochemical reactions. Currently, the precise regulation of anabolic 
pathways and keeping their activities at adequate level is thought to play a key role 
in determination of “flexible” metabolic phenotype of cancer cells that enables their 
rapid division. Moreover, oxidative phosphorylation (OXPHOS) may represent a 
significant contribution to energy generation within malignant cell. On the other 
hand, inevitable products of OXPHOS are ROS and oxidative stress due to ROS 
overproduction may kill tumor cells [27].

It was demonstrated that the process of detachment of migrating squamous 
cancer cells from extracellular matrix (ECM) results in reprogramed metabolism 
toward glycolysis, particularly by PDH complex inhibition and following suppres-
sion of glucose respiration in mitochondria. Such metabolic phenotype of tumor 
cell enables efficient production of energy without excessive ROS generation. On 
the other hand, the stimulation of PDH activity may lead to increased anoikis 
sensitivity and attenuation of metastatic potential of cancer cells [28].

We found that Met may precisely regulate PDH metabolic checkpoint in cervical 
tumor cells (Figure 2). Met had great potency to activate oxidative decarboxylation 
of pyruvate to acetyl-CoA in HTB-35 cells expressing invasive phenotype, and it 
occurred via activation of PDH complex [11]. PDH complex plays a determinant 
role in the overall glucose disposal within the cell, since it funnels mitochondrial 
TCA cycle instead of lactate formation in cytosol. PDH activity is precisely 
regulated via covalent modification by the action of specific enzyme pyruvate 
dehydrogenase kinase (PDK). Several PDK activators were found to expand potent 
antitumor effect, also in cervical tumor HeLa cells [29]. We showed in aggressive 
cervical cancer HTB-35 cells that Met suppressed both PDK activity and the expres-
sion of gene encoding tumor-specific isoenzyme PDK1 [22]. This finding may 
have practical implications, since the screening strategy for PDK inhibitors should 
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protein family play a crucial role in the regulation of the mitochondrial apoptotic 
cascade within the cell and constitute another important apoptotic checkpoint [25]. 
However, the disturbance of BAX/Bcl-2 pathway may result in the resistance to 
apoptosis by inducing compensatory mechanisms, thereby influencing the efficacy 
of some therapeutic regimens [26]. The exposition of cervical tumor cells to Met 
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effective in facilitating cell death in cervical tumor cells [22], since it exerted its 
effect targeting independent events controlling mitochondrial apoptosis including 
the induction of ROS [11], the regulation of Bcl-2 protein family expression, and 
downregulation of cyclin D1. It should be emphasized that Met induced cell death 
solely in tumor cells, without causing detrimental effects to normal cells [11].

2.2  Metformin regulates TCA cycle supplementation in cervical cancer cells via 
pyruvate dehydrogenase (PDH) complex and generates oxidative stress in 
mitochondria

The reprogrammed metabolism of tumor cells not only meets high energetic 
demands but also provides intermediates for intensive proliferation. Therefore, gly-
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in cancer cells. Many tumors may even switch between these pathways accordingly 
to the current requirements. Recent studies showed that most cancer cells have 
metabolically efficient mitochondria to provide intermediates for biosynthesis, 
generate reductive power (nicotinamide adenine dinucleotide phosphate, NADPH), 
and restore cofactor pool (e.g., nicotinamide adenine dinucleotide, NADH). In 
highly proliferating cancer cells, mitochondrial TCA cycle is active enough to 
sustain the biochemical reactions. Currently, the precise regulation of anabolic 
pathways and keeping their activities at adequate level is thought to play a key role 
in determination of “flexible” metabolic phenotype of cancer cells that enables their 
rapid division. Moreover, oxidative phosphorylation (OXPHOS) may represent a 
significant contribution to energy generation within malignant cell. On the other 
hand, inevitable products of OXPHOS are ROS and oxidative stress due to ROS 
overproduction may kill tumor cells [27].

It was demonstrated that the process of detachment of migrating squamous 
cancer cells from extracellular matrix (ECM) results in reprogramed metabolism 
toward glycolysis, particularly by PDH complex inhibition and following suppres-
sion of glucose respiration in mitochondria. Such metabolic phenotype of tumor 
cell enables efficient production of energy without excessive ROS generation. On 
the other hand, the stimulation of PDH activity may lead to increased anoikis 
sensitivity and attenuation of metastatic potential of cancer cells [28].

We found that Met may precisely regulate PDH metabolic checkpoint in cervical 
tumor cells (Figure 2). Met had great potency to activate oxidative decarboxylation 
of pyruvate to acetyl-CoA in HTB-35 cells expressing invasive phenotype, and it 
occurred via activation of PDH complex [11]. PDH complex plays a determinant 
role in the overall glucose disposal within the cell, since it funnels mitochondrial 
TCA cycle instead of lactate formation in cytosol. PDH activity is precisely 
regulated via covalent modification by the action of specific enzyme pyruvate 
dehydrogenase kinase (PDK). Several PDK activators were found to expand potent 
antitumor effect, also in cervical tumor HeLa cells [29]. We showed in aggressive 
cervical cancer HTB-35 cells that Met suppressed both PDK activity and the expres-
sion of gene encoding tumor-specific isoenzyme PDK1 [22]. This finding may 
have practical implications, since the screening strategy for PDK inhibitors should 
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recognize the specificity among the PDK isoenzymes in order to avoid side effects 
in vivo [30]. Under hypoxic conditions inside tumors, the activation of HIF-1α 
decreases mitochondrial metabolism, which prevents the cell from oxidative stress 
and helps cancer cells avoid apoptosis [20, 23]. Our study showed that in aggressive 
cervical cancer cells Met counteracted these metabolic alterations by inhibiting 
PDK1, which is at the same time HIF-1α prime downstream effector. Furthermore, 
Met downregulated PDK1 gene expression also in normoxia [22].

In tumor cells that have functional mitochondria, the generation of oxidative 
stress may become an important therapeutic target [27, 30]. The imbalance of 
metabolic regulation and the resulting overproduction of ROS in mitochondrial 
ETC cause oxidative stress, which, at some point, becomes toxic to cancer cells, 
and that escalation of ROS elicits apoptosis-inducing factors and triggers death 
program through multiple mechanisms. In compliance, it has been newly reported 
that Met significantly increased ROS level, altered apoptosis-associated signaling, 
and induced cell death in human gastric adenocarcinoma cells [31] and human 
cervical cancer HeLa cells [32]. We found that in HTB-35 cervical cancer cells, Met 
caused excessive generation of mitochondrial ROS and elicited apoptosis [11, 22]. 
As shown in [22], the effect of Met was specific to tumor cells, and the formation of 
mitochondrial ROS was not affected in normal cells exposed to Met.

Met concomitantly targeted cytosolic glycolysis and mitochondrial pathways in 
HTB-35 cells, which increased apoptosis and suppressed survival of cervical tumor 
cells under normoxic and hypoxic conditions [22].

2.3  Met restrains glutamine entry into TCA cycle and inhibits cervical tumor 
cell proliferation

Glutamine may provide precursors to feed TCA cycle under limited flux of 
pyruvate from cytosolic glycolysis within tumor cells. The facilitated use of gluta-
mine is a significant metabolic adaptation of cancer cell, besides enhanced glucose 
catabolism, and it provides intermediates sufficient for intensive biosynthesis and 

Figure 2. 
Metformin regulates mitochondrial metabolism of cervical carcinoma cells (↑—activation, Ⱶ—inhibition) 
[11, 13, 22, 27, 30].
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energy production [20]. Glutaminase (GLS) is a key regulator of glutamine entry to 
TCA [33], and the inhibition of the enzyme may suppress tumor cell growth [25].

As shown in [11], the exposition of cervical cancer cells with invasive pheno-
type to Met downregulated the expression of GLS, thereby protecting mitochon-
drial anabolism from additional carbon supply for synthesis of macromolecules. 
Additionally, the effect of Met on GLS expression was specific toward cervical 
cancer cells, and in normal cells drug did not change the expression of the 
enzyme [11].

Glutamine entry to tumor cell not only improves carbon supply for macromol-
ecules buildup, but it also replenishes the pool of cellular NADPH, since the conver-
sion of malate to pyruvate catalyzed by malic enzyme 1 (ME1) is accompanied by 
the reduction of NADP+ (Figure 2). NADPH is used for biosynthesis, but it also 
plays a significant role in the antioxidant protection of tumor cell by reducing 
glutathione molecule. Met downregulated expression of ME1 and alleviated genera-
tion of NADPH in cells, which, in conditions of limited supplementation of HTB-35 
cells with glucose (suppressed expression of GLUTs), resulted in hampering of 
biosynthesis and alleviation of ROS detoxification [11, 22].

Furthermore, Met treatment caused acute drop in ATP concentration in 
HTB-35 cells. This is in compliance with data obtained by Parker et al. [34] who 
demonstrated that non-small cell lung cancer (NSCLC) cells may be uniquely 
sensitized to metabolic stresses by the action of other biguanide, phenformin 
(1-(diaminomethylidene)-2-(2-phenylethyl)guanidine). The inhibition of ATP 
generation may block biosynthesis in cervical tumor cells which results in restrain-
ing of cell proliferation.

2.4  Alterations of fatty acid (FA) de novo synthesis in cervical tumor cells upon 
exposition to Metformin affect cell proliferation

The facilitated fatty acid (FA) de novo synthesis together with upregulated 
glycolysis was recognized as one of the prime metabolic alterations in such tumor 
cells [35]. The enhanced FA biosynthesis meets high demands of rapidly proliferat-
ing malignant cells (generating components for cell membranes and signaling 
molecules). We found that Met decreased unsaturated lipid content in aggressive 
cervical cancer cells (Figure 2). The mechanism of Met action included downregu-
lation of regulatory enzyme elongase 6 (ELOVL6), which catalyzes elongation of 
fatty acid molecule. Met also suppressed stearoyl-CoA desaturase (SCD1), which 
controls desaturation of FA. It was shown by Fritz et al. [36] that pharmacologic 
inhibition of SCD1 activity impaired unsaturated FA synthesis, which resulted 
in decreased proliferation of both androgen-sensitive and androgen-resistant 
prostate cancer cells. The treatment of cervical cancer cell lines [22, 37] with Met 
decreased cervical tumor cell proliferation, but Met did not affect the growth of 
normal cells [11].

2.5  Metformin inhibits epithelial-to-mesenchymal transition (EMT) process 
and migration properties of cervical cancer cells

Emerging data indicate that the enhanced activity of enzymes regulating lipid de 
novo synthesis may contribute to activation of EMT process in tumor cells [36]. The 
activation of EMT program in epithelial cancer cells facilitates tumor progression, 
invasion, and metastasis. It has been shown in independent studies that Met inhibits 
EMT in various cancer cell lines [8, 37]. Recently, it has been reported that Met 
reversed EMT phenotype induced with transforming growth factor beta 1 (TGF-β1) 
in breast, lung, and cervical cancer cells by targeting the mechanisms regulating the 
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energy production [20]. Glutaminase (GLS) is a key regulator of glutamine entry to 
TCA [33], and the inhibition of the enzyme may suppress tumor cell growth [25].

As shown in [11], the exposition of cervical cancer cells with invasive pheno-
type to Met downregulated the expression of GLS, thereby protecting mitochon-
drial anabolism from additional carbon supply for synthesis of macromolecules. 
Additionally, the effect of Met on GLS expression was specific toward cervical 
cancer cells, and in normal cells drug did not change the expression of the 
enzyme [11].

Glutamine entry to tumor cell not only improves carbon supply for macromol-
ecules buildup, but it also replenishes the pool of cellular NADPH, since the conver-
sion of malate to pyruvate catalyzed by malic enzyme 1 (ME1) is accompanied by 
the reduction of NADP+ (Figure 2). NADPH is used for biosynthesis, but it also 
plays a significant role in the antioxidant protection of tumor cell by reducing 
glutathione molecule. Met downregulated expression of ME1 and alleviated genera-
tion of NADPH in cells, which, in conditions of limited supplementation of HTB-35 
cells with glucose (suppressed expression of GLUTs), resulted in hampering of 
biosynthesis and alleviation of ROS detoxification [11, 22].

Furthermore, Met treatment caused acute drop in ATP concentration in 
HTB-35 cells. This is in compliance with data obtained by Parker et al. [34] who 
demonstrated that non-small cell lung cancer (NSCLC) cells may be uniquely 
sensitized to metabolic stresses by the action of other biguanide, phenformin 
(1-(diaminomethylidene)-2-(2-phenylethyl)guanidine). The inhibition of ATP 
generation may block biosynthesis in cervical tumor cells which results in restrain-
ing of cell proliferation.

2.4  Alterations of fatty acid (FA) de novo synthesis in cervical tumor cells upon 
exposition to Metformin affect cell proliferation

The facilitated fatty acid (FA) de novo synthesis together with upregulated 
glycolysis was recognized as one of the prime metabolic alterations in such tumor 
cells [35]. The enhanced FA biosynthesis meets high demands of rapidly proliferat-
ing malignant cells (generating components for cell membranes and signaling 
molecules). We found that Met decreased unsaturated lipid content in aggressive 
cervical cancer cells (Figure 2). The mechanism of Met action included downregu-
lation of regulatory enzyme elongase 6 (ELOVL6), which catalyzes elongation of 
fatty acid molecule. Met also suppressed stearoyl-CoA desaturase (SCD1), which 
controls desaturation of FA. It was shown by Fritz et al. [36] that pharmacologic 
inhibition of SCD1 activity impaired unsaturated FA synthesis, which resulted 
in decreased proliferation of both androgen-sensitive and androgen-resistant 
prostate cancer cells. The treatment of cervical cancer cell lines [22, 37] with Met 
decreased cervical tumor cell proliferation, but Met did not affect the growth of 
normal cells [11].

2.5  Metformin inhibits epithelial-to-mesenchymal transition (EMT) process 
and migration properties of cervical cancer cells

Emerging data indicate that the enhanced activity of enzymes regulating lipid de 
novo synthesis may contribute to activation of EMT process in tumor cells [36]. The 
activation of EMT program in epithelial cancer cells facilitates tumor progression, 
invasion, and metastasis. It has been shown in independent studies that Met inhibits 
EMT in various cancer cell lines [8, 37]. Recently, it has been reported that Met 
reversed EMT phenotype induced with transforming growth factor beta 1 (TGF-β1) 
in breast, lung, and cervical cancer cells by targeting the mechanisms regulating the 
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expression of E-cadherin. The exposition of tumor cells to Met resulted in suppres-
sion of their metastatic properties [8, 38].

In our study, EMT process was induced upon 48 h incubation of cervical cancer 
cells with 10 ng/mL of cytokine TGF-β1, as described in detail in [17]. HTB-35 cells, 
even unstimulated, expressed mesenchymal-like characteristics, and the incubation 
with TGF-β further enforced expression of mesenchymal marker, vimentin, along 
with enhancement of cell scattering and ability to move [17]. The study showed 
that Met was an effective suppressor of mesenchymal phenotype and, in particular, 
downregulated vimentin in HTB-35 cells (Figure 3). Recently, it was reported by 
Laskov et al. [39] that Met downregulated the expression of vimentin in endome-
trial cancers in vitro and in vivo in diabetic patients. The incubation of cervical 
cancer cell lines with Met reduced cells’ ability to move, as shown using functional 
scratch test in C4-I and HTB-35 cells stimulated with TGF-β1 [17]. Mechanistic 
study revealed that Met inhibited the expression of transcription factors Snail-1, 
ZEB-1, and Twist-1. These mesenchymal markers facilitate EMT progress in cervi-
cal cancer cells.

Cheng and Hao [8] proposed another mechanism of Met action in cervical 
carcinoma cells via inhibition of mTOR/p70s6k signaling pathway and downregula-
tion of glycolytic regulatory protein pyruvate kinase, isozyme M2 (PKM2), in HeLa 
cell line.

In order to clarify the molecular action of Met in cervical tumor cells with 
aggressive characteristics, the effect of the drug was tested in the hypoxic condi-
tions. In cervical cancers, hypoxia and concomitant enhanced lactate formation 
result in acidification of microenvironment, which may promote the ability of 
metastatic cells to rapidly spread in tissue [41]. In such conditions, the activation of 
HIF1α induces its downstream protein carbonic anhydrase IX (CAIX). By regula-
tion of tumor milieu pH, CAIX acts as a survival factor protecting malignant cells 

Figure 3. 
Metformin inhibits TGF-β1-induced EMT phenotype of cervical carcinoma cells (↑—activation,  
Ⱶ—inhibition) [8, 17, 40].
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against enhanced acidification of microenvironment. As a result, lactate damages 
adjacent normal cells and does not harm tumor cells [42]. Due to its relevant role in 
cell invasion, CAIX was proposed as a potential therapeutic target, also in cervi-
cal cancers [41, 42]. We showed that the exposition of HTB-35 cells to Met under 
hypoxia suppressed HIF-1α, which resulted in decreased transcription of CAIX 
gene, thereby alleviating invasive properties of cervical malignant cells [17].

3. In vivo findings related to the effect of Metformin

Recently, numerous beneficial activities of Met were reported. Met was shown to 
improve cardiovascular outcomes in humans [43], and the ability of Met to extend 
life-span in mammals has attracted great attention [44]. Emerging data indicate 
that Met may be applied as adjuvant in therapies aiming at combating diseases with 
high mortality rate, also in cervical cancer [45]. The clinical benefits of the use of 
Met in gynecologic oncology in humans were reviewed by Irie et al. [46] and Imai 
et al. [47]. Met also reduced the incidence of endometrial tumors and improved 
survival of patients with diagnosed local or advanced endometrial cancer [48]. 
Several clinical trials showed the potential of Met to elicit apoptosis in the uterus 
and prostate cancers in humans [49].

The potential pathological effects of Met have been well studied in long 
term in human population. One of the most undesirable effects in the context 
of peculiar metabolic alterations of cancer cell is the enhanced generation 
of lactic acid caused by biguanides. In fact, the application of phenformin 
(1-(diaminomethylidene)-2-(2-phenylethyl)guanidine) was associated with a 
much higher risk of lactic acidosis in patients, than Metformin. Therefore, the 
former drug was withdrawn from clinical use. Currently, the contraindication 
for the use of Met in patients is renal failure, since this group has greater risk of 
lactic acidosis. However, the concerns over lactic acidosis were shown to be largely 
unfounded, unless kidney disease was advanced. Yet, based on the recent data, 
Met can be safely used in patients with mild renal dysfunction, provided that 
patients are monitored appropriately [43, 50].

4. Conclusions

The exposition of aggressive cervical cancer cells to Met restrained the function 
of HIF-1α master regulator and downregulated HIF-1α downstream glycolytic 
genes. Met also downregulated glycolytic phenotype of HTB-35 cells through inhi-
bition of oncogene c-MYC expression, which resulted in impairment of metabolic 
plasticity of cervical tumor cells, especially via downregulation of GLS.

Met precisely regulated PDH and GLS metabolic checkpoints in cervical tumor 
cells. In particular, in tumor cells Met targeted supplementation of mitochondrial 
pathways in pyruvate by downregulation of PDK1 gene expression and decreasing 
PDK activity. As a result, Met effectively enhanced TCA cycle flux in normoxic and 
hypoxic conditions. The downregulation of GLS and ME1 resulted in decreased 
regeneration of NADPH, the factor essential both for biosynthesis and cell protec-
tion against oxidative stress. The metabolic alterations of mitochondrial pathways 
caused by Met caused excessive generation of ROS which led to apoptosis. In 
cervical cancer cells, Met additionally induced apoptosis via upregulation of pro-
apoptotic BAX protein expression and by downregulation of cyclin D1, oncogene 
c-MYC downstream protein. Met exerted its pro-apoptotic effect both in normal 
and decreased oxygen availability. This aspect of Met action may be important 
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against enhanced acidification of microenvironment. As a result, lactate damages 
adjacent normal cells and does not harm tumor cells [42]. Due to its relevant role in 
cell invasion, CAIX was proposed as a potential therapeutic target, also in cervi-
cal cancers [41, 42]. We showed that the exposition of HTB-35 cells to Met under 
hypoxia suppressed HIF-1α, which resulted in decreased transcription of CAIX 
gene, thereby alleviating invasive properties of cervical malignant cells [17].

3. In vivo findings related to the effect of Metformin

Recently, numerous beneficial activities of Met were reported. Met was shown to 
improve cardiovascular outcomes in humans [43], and the ability of Met to extend 
life-span in mammals has attracted great attention [44]. Emerging data indicate 
that Met may be applied as adjuvant in therapies aiming at combating diseases with 
high mortality rate, also in cervical cancer [45]. The clinical benefits of the use of 
Met in gynecologic oncology in humans were reviewed by Irie et al. [46] and Imai 
et al. [47]. Met also reduced the incidence of endometrial tumors and improved 
survival of patients with diagnosed local or advanced endometrial cancer [48]. 
Several clinical trials showed the potential of Met to elicit apoptosis in the uterus 
and prostate cancers in humans [49].

The potential pathological effects of Met have been well studied in long 
term in human population. One of the most undesirable effects in the context 
of peculiar metabolic alterations of cancer cell is the enhanced generation 
of lactic acid caused by biguanides. In fact, the application of phenformin 
(1-(diaminomethylidene)-2-(2-phenylethyl)guanidine) was associated with a 
much higher risk of lactic acidosis in patients, than Metformin. Therefore, the 
former drug was withdrawn from clinical use. Currently, the contraindication 
for the use of Met in patients is renal failure, since this group has greater risk of 
lactic acidosis. However, the concerns over lactic acidosis were shown to be largely 
unfounded, unless kidney disease was advanced. Yet, based on the recent data, 
Met can be safely used in patients with mild renal dysfunction, provided that 
patients are monitored appropriately [43, 50].

4. Conclusions

The exposition of aggressive cervical cancer cells to Met restrained the function 
of HIF-1α master regulator and downregulated HIF-1α downstream glycolytic 
genes. Met also downregulated glycolytic phenotype of HTB-35 cells through inhi-
bition of oncogene c-MYC expression, which resulted in impairment of metabolic 
plasticity of cervical tumor cells, especially via downregulation of GLS.

Met precisely regulated PDH and GLS metabolic checkpoints in cervical tumor 
cells. In particular, in tumor cells Met targeted supplementation of mitochondrial 
pathways in pyruvate by downregulation of PDK1 gene expression and decreasing 
PDK activity. As a result, Met effectively enhanced TCA cycle flux in normoxic and 
hypoxic conditions. The downregulation of GLS and ME1 resulted in decreased 
regeneration of NADPH, the factor essential both for biosynthesis and cell protec-
tion against oxidative stress. The metabolic alterations of mitochondrial pathways 
caused by Met caused excessive generation of ROS which led to apoptosis. In 
cervical cancer cells, Met additionally induced apoptosis via upregulation of pro-
apoptotic BAX protein expression and by downregulation of cyclin D1, oncogene 
c-MYC downstream protein. Met exerted its pro-apoptotic effect both in normal 
and decreased oxygen availability. This aspect of Met action may be important 
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when designing anticancer therapies targeting cells in hypoxic milieu inside solid 
tumors.

It is also important to highlight another cellular mechanism of Met action, 
namely, the suppression of EMT process in cervical tumor cells. EMT seems impli-
cated into invasiveness and metastasis of cancer, and Met was able to inhibit EMT 
pathways. In cervical tumor cells stimulated with TGF-β1 as well as in unstimulated 
ones, Met decreased the expression of the main mesenchymal marker vimentin and 
reduced motility of cells. In addition, Met downregulated adaptive enzyme CAIX in 
tumor cells under hypoxia. CAIX promoted migration of malignant cells and acted 
as an important survival factor, and thus it has recently been proposed as therapeu-
tic target in cervical cancers. Met might be considered as a potential factor targeting 
CAIX to hamper cervical tumor invasiveness.

These findings provide a new insight into regulation of glycolysis and mito-
chondrial pathways in cervical tumor cells using nontoxic and well-studied drug, 
Metformin, indicating the future prospect about utilization of this molecule in 
clinical oncological routine. The identification and targeting of specific alterations 
in tumor metabolic pathways may constitute a sole basis to design new precise 
therapeutic strategies in cervical malignancy. To date, very few innovative therapies 
against cervical malignancy are being tested in clinical trials; thus more specific and 
effective intervention is highly required.
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Abstract

In the last years, the antidiabetic drug metformin has received considerable 
attention in pursuing new drugs for anticancer treatments. Several reports have 
shown that metformin would have antitumor effects, not only attributable to its 
systemic effects but also due to direct effects on tumor cells. It has been proposed 
that metformin could be a suitable alternative for the treatment of gynecological 
cancers, such as ovarian cancer. This disease is characterized by high cell prolifera-
tion and angiogenesis potential, because ovarian cancer cells overexpress most 
oncogenic molecules including growth factors. The aim of the present chapter is to 
discuss the molecular mechanism by which metformin would affect tumor cells, 
with focus on epithelial ovarian cancer.

Keywords: metformin, ovarian cancer, cell proliferation, angiogenesis, growth 
factors, AMPK

1. Introduction

Metformin or 1,1-dimethylbiguanide is a derivate of isoamylene guanidine, a 
substance found in the plant Galega officinalis [1]. This drug is widely used in meta-
bolic disorders as type 2 diabetes mellitus, metabolic syndrome, and gestational 
diabetes [2, 3]. Besides, metformin is used as a treatment for polycystic ovarian 
syndrome [4], which is characterized by the dysfunction of reproductive tissues 
such as the ovary and endometrium. In this context, metformin improves ovarian 
follicle dynamics and frequency of ovulation [5, 6], and it increases the expression 
of endometrial GLUT4 (insulin-regulated glucose transporter), which may improve 
endometrial physiology in these patients [7].

In the last decades, metformin has been studied in the context of cancer, 
especially after an initial report by Evans et al., performed with a Scottish data-
base, who found that metformin intake reduces the risk of cancer in type 2 diabetic 
patients [8].

Type 2 diabetes and obesity affect a significant percentage of the world 
population [9, 10] whose food habits and lifestyle have been changing in the last 
decades. Both obesity and type 2 diabetes are pathologies associated with increased 
incidence and poor prognosis of ovarian cancer by several authors [11–13]. These 
observations could be explained because obesity and type 2 diabetes are charac-
terized by molecular changes that could encourage tumoral transformation and 
progression, such as hyperinsulinemia, hyperglycemia, dyslipidemia, increased 
insulin-like growth factors (IGF), adipose tissue factors, and inflammatory 
components [14–19].
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By its chemical nature, metformin gets into the cell through organic cation 
transporters (OCTs) and multidrug and toxin extrusion transporters [20]. Because 
metformin cannot be metabolized, almost its entirety is excreted by the kidneys; the 
plasmatic levels of this drug do not reflect its intracellular concentration, mainly by 
its high apparent volume of distribution and prolonged half-life [21, 22]. Therefore, 
metformin is accumulated in tissues, and its plasmatic concentration is probably 
lower than of organs that express OCT transporters. This observation supports 
most in vitro studies that use high concentrations of metformin to study its antitu-
moral properties. Importantly, these transporters are present in the ovary [23, 24], 
so ovarian cancer cells could be a target for metformin action.

2. Indirect antitumoral effects of metformin in cancer

It is discussed that metformin could display direct and indirect antitumoral 
effects. The systemic effects of this drug include the decrease of blood glucose and 
insulin levels by action in its classical target organs: liver, muscle, and fat tissues. 
In humans, metformin decreases the hepatic gluconeogenesis and the release of 
glucose from hepatic reserves, which produces an increase in the peripheral uptake 
of glucose and its metabolism, decreasing patients’ hyperglycemia and hyper-
insulinemia [1, 2, 25]. These conditions (hyperglycemia and hyperinsulinemia) 
favor tumoral growth and are associated with cancer incidence, by two possible 
mechanisms: (1) high availability of glucose for cancer cells and (2) high levels of 
insulin, which could act in insulin-like growth factor (IGF) receptors [14–16]. IGF/
IGF receptors display an important role in the ovary, because 100% of the ovarian 
carcinomas express IGF receptors [26].

In fat tissue, metformin decreases the activity of lipogenic enzymes such as 
HMG-CoA reductase, acetyl-CoA carboxylase (ACC), and fatty acid synthase, 
decreasing the endogen production of cholesterol and the fatty acid synthesis [1, 27, 
28]. This produces a decrease in the plasma levels of lipids in patients using metfor-
min [29–32], which in addition to metformin-hypoglycemic properties, decreases 
the readiness of energy substrates of tumoral cells.

All these metformin-mediated changes impair survival and mitogenic signaling 
and decrease nutrient availability for ovarian cancer cells.

3. Effects of metformin in ovarian cancer

3.1 Direct effects of metformin in ovarian cancer cells: role of AMPK

Several studies have shown that metformin displays direct antitumoral effects. 
Most of these studies have been performed in ovarian cancer cell lines, where 
metformin impairs cell proliferation, migration, and angiogenesis potential and 
enhances the chemotherapy sensibility [33–36].

The direct antitumoral effects of metformin are commanded by metabolic 
changes in cancer cells. Because metformin is a drug with pleiotropic effects, several 
molecular targets at different levels of the tumoral cell have been described. One of 
the most studied targets for metformin is the adenosine monophosphate-activated 
protein kinase (AMPK), a key sensor of the energetic status of the cell [37], and it 
was described that metformin treatment can activate AMPK in in vitro and in vivo 
experiments of ovarian cancer models [33, 38]. The activation of AMPK occurs by 
increasing the AMP/ATP ratio [39] which exposes the activation loop of AMPK to 
be phosphorylated in the residue threonine 172 by serine/threonine kinases such as 
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liver kinase B1 (LKB1) [40]. Activated AMPK phosphorylates several proteins; the 
phosphorylation can either activate or repress protein function at the cellular level 
[41, 42]. Despite that an important part of the studies indicates that the antitumoral 
effect of metformin could be AMPK-dependent; in the absence of AMPK, metfor-
min preserves most of its antitumoral effects [43], indicating that the mechanism of 
this drug is more complex.

3.2 Antiproliferative mechanism of metformin in ovarian cancer cells

One of the characteristic hallmarks of cancer cells is an increased cell prolif-
eration. To do so, ovarian cancer cells overexpress several growth factors and its 
receptors, which produce an enhanced cell signaling related with survival and 
proliferation in these cells [44–46].

In ovarian cancer, growth factors can activate protein kinase B (AKT) and the 
extracellular signal-regulated kinase (ERK) signaling pathways, among others 
[47–49]. These signaling pathways are associated with an increase of cell prolifera-
tion in most kinds of cancer cells [50, 51]. Some studies have shown that metformin 
treatment decreases IGF-1 and insulin levels, in a mice model with ovarian cancer 
[51], and also metformin treatment blocks the pro-tumoral effects of the nerve 
growth factor (NGF) in epithelial ovarian cancer cells [35] or the insulin/IGF-I 
signaling in uterine serous carcinoma [52].

The activation by growth factors of AKT and ERK signaling in ovarian 
cancer cells induces the activation of mechanistic target of rapamycin complex 
1 (mTORC1), which controls protein translation and cell growth [53–55]. It is 
described that metformin-activated AMPK inhibits mTORC1 signaling in ovar-
ian cancer cells [56, 57], which could impair its cell potential to proliferate and 
fend it in unfavorable conditions. Additionally, one key point in the antitumoral 
effect of metformin is that AMPK decreases the signaling pathways mediated by 
AKT and ERK in several types of cells, including cancer cells [38, 57, 58]. These 
signaling pathways are associated with the increase of most oncoproteins, for 
example, the transcription factor c-MYC and the inhibitory apoptotic protein 
survivin (BIRC5) [59–62]. c-MYC is a proto-oncogene that controls several 
genes related with cell growth and cell proliferation, and some reports show that 
metformin decreases c-MYC protein levels in ovarian cancer cell lines [63, 64]. In 
addition, metformin decreases the mRNA levels of survivin in metastatic ovarian 
cancer cells [65].

According to current evidences, c-MYC controls the transcription and cell 
cycle inhibitors [66]. In agreement with the metformin-depending decrease of 
c-MYC in ovarian cancer cells, metformin induces the degradation of cyclin D1 
[33, 38], a protein required for progression from G1 to S phase of the cell cycle, 
and increases p21 expression (a negative regulator of cell cycle) [67]. These 
results are consistent with experiments performed in primary ovarian cancer cell 
cultures and ovarian cancer cell lines, which show that metformin induces cell 
cycle arrest in the G0/G1 phase and decreases the percentage of cells in S phase 
of the cellular cycle [35, 68, 69]. These findings highly suggest that metformin 
decreases the progression of the cell cycle in ovarian cancer cells.

Even more, several authors have shown that metformin can elicit cytostatic or 
cytotoxic effects in ovarian cancer cells. A key point for a better understanding of 
these differences is that metformin inhibits tumor cell proliferation in the presence 
of glucose (with a cytostatic effect) but induces apoptosis in low-glucose condi-
tions [70]. For example, ovarian cancer cells are more sensitive to metformin at 
concentrations of 2.5 millimolar than in 25 millimolar of glucose (found in culture 
conditions). This is a consequence of reactive oxygen species accumulation, which 
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increase cell apoptosis and endoplasmic reticulum stress and decrease of c-MYC 
protein levels [63, 70].

3.3 Effect of metformin in lipid metabolism of ovarian cancer cells

For cell proliferation, the cancer cell has high requirements of substrates for 
synthesis of structural components and signaling. One target of AMPK is the sterol 
regulatory element-binding protein 1 (SREBP1), a lipogenic transcription factor 
[71], which increases cellular biosynthesis of fatty acids and cholesterol by tran-
scription of the enzymes ACC, HMG-CoA reductase, and fatty acid synthase [72], 
not only in fat tissue but also in ovarian cancer cells [73]. Because ACC is involved 
in the taxol-mediated cytotoxic effect of ovarian cancer cells [74], besides the fact 
that the inhibition of ACC suppresses ovarian cancer cell growth in vivo and in vitro 
[75], it is possible to conclude that ACC inhibition could contribute to an important 
part of the antitumoral effects of metformin.

3.4 Anti-angiogenic activity of metformin in ovarian cancer

Angiogenesis, defined as the generation of new blood vessels from preexisting 
ones [76], is an essential process to supply oxygen and nutrients to normal and 
tumoral ovarian cells. Unfortunately, this process is exacerbated in ovarian cancer 
cells, which overexpress some growth factors, such as vascular endothelial growth 
factor (VEGF) or NGF [77, 78] which promotes angiogenesis.

The relevance of metformin in the vascular context is recognized; however, 
its action depends on the cell type, metabolic status, and nutrient availability. For 
example, some pro-angiogenic properties have been attributed to metformin under 
hypoxia and hyperglycemia, similar characteristics to myocardial infarction in 
diabetic patients. In this context, metformin enhances endothelial cell survival, 
migration, and apoptosis inhibition [79, 80]; this strongly suggests that the use of 
metformin could be beneficial in the context of cardiovascular diseases in diabetic 
patients. On the other hand, metformin could have an opposite effect in endothelial 
cells under hypoglycemic conditions (as tumor endothelial cells), where metformin 
produces an inhibition of its cell proliferation and angiogenesis potential, as will be 
discussed later.

In the ovary, the correct formation and regression of blood vessels during 
each ovarian cycle is indispensable for proper follicular development, ovulation, 
and corpus luteum formation, so that angiogenesis displays a key role in ovarian 
homeostasis and pathogenesis [81]. In patients with polycystic ovary syndrome, an 
increased expression of VEGF is described, and it is hypothesized that part of the 
beneficial metformin-associated effects will be mediated by a decrease or nor-
malization of its VEGF levels. For example, it is described that in a rat model with 
dehydroepiandrosterone-induced polycystic ovaries, metformin administration 
restores the ovarian-increased levels of VEGF and angiopoietin 1, both angiogenic 
factors [82]. In addition, women with polycystic ovarian syndrome who take 
metformin have decreased their levels of plasmatic endothelin 1 and plasminogen 
activator inhibitor-1 [83, 84], molecules that also promote angiogenesis.

The angioprotection is an antitumoral mechanism that has been explored in 
ovarian cancer. Considering that the most studied angiogenic factor is VEGF, a 
monoclonal antibody against VEGF called bevacizumab has been developed and 
was approved for the use in advanced stages of ovarian cancer [85, 86]. In ovarian 
cancer models, the main knowledge of anti-angiogenic characteristics of metformin 
comes from VEGF modulation. Several in vitro models have shown that metformin 
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decreases both VEGF mRNA and protein levels in ovarian cancer cell lines and then, 
its angiogenic potential [33, 64]. In a mice model with ovarian cancer, metformin 
decreases VEGF levels in plasma and ascitic fluid, with a consistent decrease of the 
ovarian tumor growth [51]. Interestingly, metformin reduces the vascular density 
(showed by CD31 staining) of ovarian cancer xenografts in mice, and metformin-/
cisplatin-treated mice have significantly less vascular density than either metformin 
or cisplatin alone [33]. Because cisplatin/carboplatin and paclitaxel are drugs used 
in the first-line chemotherapy in ovarian cancer [87, 88], these results suggest that 
metformin could potentiate the anti-angiogenic effects of chemotherapy during 
ovarian cancer treatment.

On the other hand, metformin treatment (in millimolar concentrations) dis-
plays direct effects in the endothelial cells, by reducing cell proliferation in human 
umbilical vein endothelial cells (HUVEC) and endothelial progenitor cells [89, 90]. 
Similar results were replicated by our group where metformin decreases cell pro-
liferation of the endothelial cell line EA.hy926, in a dose-dependent manner [35], 
as well as, the endothelial cell differentiation (Figure 1). These results suggest that 
metformin affects in a direct manner the angiogenesis potential of endothelial cells.

3.5 Posttranscriptional regulation by metformin in ovarian cancer cells

In the ovarian cell, posttranscriptional regulations control gene expression at 
RNA level [91]. The micro-RNAs (miRs) are short non-codificant RNAs that regu-
late the expression of approximately 60% of protein-coding genes of the human 
genome [92]. miRs bind to a messenger RNA target, producing its degradation or 
translational repression depending of complementary degree [93]. The machinery 
for expression, processing, and exportation of miRs depends on several proteins as 
RNAse III DICER and exportins [93]. It is described that DICER downregulation 
is an oncogenic event that enhances epithelial-mesenchymal transition (EMT) and 
metastatic dissemination in cancer cells [94]. An important antecedent is that met-
formin elicits anticancer effects through the sequential modulation of DICER and 
c-MYC in breast cancer cells, increasing oncosuppressor miRs [95]. These mecha-
nisms have not been investigated in ovarian cancer cells; nevertheless, preliminary 
results from our group show that metformin increases the oncosuppressor miRs 
23-b and miR-145 in the epithelial ovarian cells [96].

As already mentioned in point 3.3, the activation of AMPK by metformin 
produces an inhibitory phosphorylation of acetyl-CoA carboxylase, an enzyme 
that regulates lipid metabolism. Importantly, intermediaries of lipid metabolism 
participate in cell signaling and chromatin structure, modulating processes as cell 
histone acetylation that depends on cytosolic acetyl-CoA [97]. The decrease of the 

Figure 1. 
Effect of metformin on the differentiation of endothelial cells. Metformin reduces the multicellular junctions 
and polygonal structures of endothelial cells EA.hy926 in a matrigel assay (4 h). Upper insert: positive control 
(NGF 100 ng/ml). Magnification bar: 50 μm.
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increase cell apoptosis and endoplasmic reticulum stress and decrease of c-MYC 
protein levels [63, 70].
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results from our group show that metformin increases the oncosuppressor miRs 
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that regulates lipid metabolism. Importantly, intermediaries of lipid metabolism 
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Figure 1. 
Effect of metformin on the differentiation of endothelial cells. Metformin reduces the multicellular junctions 
and polygonal structures of endothelial cells EA.hy926 in a matrigel assay (4 h). Upper insert: positive control 
(NGF 100 ng/ml). Magnification bar: 50 μm.
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conversion of acetyl-CoA to malonyl-CoA leads to an increase in the acetylation 
of histones in the chromatin and altered gene expression in ovarian cancer cells 
[67]. Because acetylation of nucleosomal histones is linked to nuclear processes as 
transcription, replication, and repair among other functions [98], it is possible that 
several antitumoral effects of metformin could be regulated by protein acetylation 
and transcriptional regulation of several oncosuppressor proteins.

The summary of the main studied antitumoral effects of metformin is shown in 
Figure 2.

3.6 Studies of metformin in diabetic patients with ovarian cancer

A recent meta-analysis shows that among available studies of relationship 
between metformin intake with ovarian cancer incidence and prognosis in dia-
betic patients, the majority of the studies indicate a negative correlation between 
the use of metformin and the incidence of ovarian cancer, as well as, a positive 
correlation with better prognosis [99]. The same study shows that metformin 
treatment in diabetic patients has a reduction of 24% risk of ovarian cancer 
occurrence and also a 42% of reduction in mortality [99]. The main studies that 
showed metformin benefits in the context of ovarian cancer diabetic patients are 
summarized in Table 1.

Figure 2. 
Main antitumoral mechanism of metformin in ovarian cancer cells. Metformin enters the cell through organic 
cationic transporters (OCT) and produces the activation of liver kinase B1 (LKB1) and an increase of AMP/
ATP ratio, which results in the activation of AMPK. This kinase has several targets as sterol regulatory 
element-binding protein 1 (SREBP) and acetyl-CoA carboxylase (ACC); the mechanistic target of rapamycin 
complex 1 (mTORC1) and AKT/ERK signaling; key proteins in the fatty acid synthesis and cell growth, 
survival, proliferation, and migration; and the processes of epithelial-mesenchymal transition (EMT). On 
the other hand, metformin can block the growth factor (GF) signaling dependent or independent of AMPK 
activation. Also metformin decreases the angiogenic potential of ovarian cancer cells, impairs the expression of 
vascular endothelial growth factor (VEGF), or acts directly on the endothelial cells.
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Although several observational studies show positive effects of metformin in 
diabetic patients, it has not yet been elucidated if metformin could be beneficial in 
nondiabetic patients. In addition, ovarian cancer has a low incidence, and the num-
ber of participants in some of the available studies is low; therefore, the evidence 
should be interpreted with caution.

Because of the increased interest in the possible use of metformin in 
nondiabetic patients, there are currently six clinical trials inscribed in NIH 
ClinicalTrials.gov database to study metformin intake in association with car-
boplatin and paclitaxel (first-line chemotherapy) in nondiabetic woman with 
ovarian cancer (NCT02312661, NCT02437812, NCT03378297, NCT02122185, 
NCT01579812, and NCT02201381) from phase 0 to phase III of the study. The 
results of one of these trials show that metformin was well tolerated and the 
outcome results were favorable, because tumors from metformin-treated women 
have a threefold decrease in specific subpopulations of ovarian cancer stem cells 
with an increased sensitivity to cisplatin in vitro [100], supporting the use of 
metformin in the following phases of the study.

Research Study and population Main finding

Wang 
et al. [12]

Retrospective cohort study 
N = 568, China

• Metformin group of OvCa patients had longer 
median PFS* than non-metformin, nondiabetic, 
and metformin-discontinued groups

• Similar PFS* in dose (500 or 1000 mg of 
metformin)

• Metformin treatment must be continuous to obtain 
beneficial effects

Bar et al. 
[114]

Retrospective cohort study 
N = 143, Israel

• Metformin was associated with a reduced risk of 
recurrence of OvCa (lower PFS*), and this associa-
tion was stronger in diabetic patients

Tseng 
et al. 
[115]

Retrospective cohort study 
N = 479,475, China

• 601 metformin ever-users and 2600 never-users 
developed OvCa (incidence of 49.4 and 146.4 per 
100,000 person-years)

• Metformin use was associated with a decreased risk 
of OvCa

Kumar 
et al. 
[116]

Case-control study 72 cases 
(OvCa, metformin users), 142 
controls (OvCa, non-metformin) 
USA

• Metformin was associated with a better survival in 
OvCa patients

• 5-year DSS** was higher in metformin group

• Metformin was an independent predictor of 
survival

Romero 
et al. 
[102]

Retrospective cohort study 
N = 341, USA

• Metformin group had a longer PFS* and overall sur-
vival of OvCa compared to nonusers or nondiabetic 
patients

• Metformin group decreased hazard for disease 
recurrence

Bodmer 
et al. 
[117]

Case-control study 1611 cases 
(OvCa) and 9170 controls (non-
OvCa), UK

Metformin use was associated with a decreased of risk 
of OvCa

*PFS: progression-free survival (length of time during and after the treatment of OvCa that a patient lives with the 
disease but it does not get worse).
**DSS: disease-specific survival (percentage of people in a study or treatment group who have not died from OvCa in 
a defined period of time).

Table 1. 
Summary of studies that evaluated incidence and prognosis of ovarian cancer (OvCa) patients using and not 
using metformin.
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3.7 Role of metformin in metastasis and chemoresistance

Besides the abovementioned benefits, metformin treatment has a relevant role 
in the metastasis and chemoresistance prevention of several ovarian cancer models. 
For example, in vitro experiments have shown that metformin decreases the adhe-
sion capacity, invasion, and migration of ovarian cancer cell lines [101]. In rodents, 
metformin treatment inhibits the growth of metastatic nodules in the lung product 
of ovarian cancer [33], and importantly, the use of metformin in diabetic women 
decreases the probability of disease recurrence [102].

The cancer stem cells, recently called “tumor-initiating cells,” are a tumoral cell 
subpopulation with critical role in therapy resistance and metastasis [103–105]. 
There are several markers to identify them, as lactate dehydrogenase (LDH), 
aldehyde dehydrogenase (ALDH), or cell-surface antigens as CD44, CD133, or 
CD117 [106–108]. Metformin treatment decreases the abundance of ovarian cancer 
LDH+ and decreases its ability to form tumor spheres, an attachment-independent 
growth characteristic of these kinds of cells [109]. At the same time, a low dose 
of metformin (micromolar concentration) decreases the abundance of CD44+/
CD117+ ovarian cancer cells selectively, whereas CD133+ or ALDH+ cell subpopu-
lation were more sensitive to millimolar concentration of this drug [109, 110].

Another key point is that metformin decreases the expression of classical mark-
ers related with EMT. This process is necessary to confer an increased migratory 
capacity to tumor cells, participating in the intra-/extravasation and hence, in the 
tumor cell dissemination. In CD44+/CD117+ ovarian cancer cells, metformin treat-
ment decreases snail2, twist, and vimentin protein levels (these are mesenchymal 
markers), increasing E-cadherin protein levels (a known epithelial marker) [110]. 
These observations are related with a study performed in diabetic patients with 
endometrial cancer, where in the biopsies of these patients using metformin were 
found increased levels of E-cadherin [111]. These findings suggest that metformin 
decreases the process of EMT in ovarian cancer cells, affecting preferentially 
tumor-initiating cells, which constitutes a relevant advantage, because this type of 
cells is not affected by traditional chemotherapy.

One important aspect in ovarian cancer treatment is the high percentage of 
chemoresistance developed by patients. In this context, metformin stands as a 
promising drug, since several studies showed that it could increase the susceptibil-
ity of ovarian cancer cells to chemotherapy and revert its acquired chemoresistance 
[34, 112, 113]. One recent study performed in ovarian cancer cell lines treated for 
6 months with cisplatin and paclitaxel (for the acquirement of chemoresistance 
phenotype) shows that metformin treatment increases drug sensitivity and reduces 
migratory abilities of these ovarian cancer cells. In addition, the same study shows 
that metformin decrease the ovarian cancer stem cell population and the expression 
of specific biomarkers of pluripotent genes [112].

3.8 Main conclusions

Metformin is an antidiabetic drug that displays antitumoral effects in several 
in vivo and in vitro models of cancer, including ovarian cancer. The mechanism of 
its antitumoral effects could be either dependent or independent of AMPK, a key 
sensor of the cell energetic status. Metformin has several cell targets which include 
transcription factors and cell cycle regulators; wherewith it impairs cell prolifera-
tion by the arrest of the cell cycle. In addition, metformin modulates enzymes 
of metabolic pathways and lipid metabolism, as well as epigenetic and posttran-
scriptional regulation of the ovarian cancer cells, which can explain its pleiotropic 
actions. Another important point is that metformin regulates angiogenesis in 
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the ovarian cancer cells, mainly decreasing VEGF expression, which impairs the 
angiogenic potential of these cells. On the other hand, metformin acts directly in 
endothelial cells, decreasing its proliferation, migration and differentiation, which 
complement its anti-angiogenic effect.

An important niche for metformin treatment could be its selective effect in ovarian 
cancer cells with stem cell phenotype, which are responsible for ovarian cancer dis-
semination and chemotherapy resistance. Several studies show that metformin reduces 
ovarian cancer stem cells abundance and that it could have a chemosensitivity role when 
used in combination with first-line chemotherapy agents. This opens the possibility to 
the potential use of metformin as a coadjuvant agent in ovarian cancer treatment.

Finally, there are several observational studies in diabetic women with ovarian 
cancer which show that metformin is associated with less ovarian cancer incidence and 
better prognosis. However, it is important to consider that the number of participants 
using metformin in some of these studies is low and that several in vitro experiments 
have shown that metformin action depends on the metabolic context and nutrient and 
oxygen availability of ovarian cancer cells. For these reasons, the use of metformin in 
nondiabetic women with ovarian cancer should be considered with caution.

Currently, there are several clinical trials performed in women with ovarian 
cancer. These trials are studying the effect of metformin treatment together with 
standard chemotherapy in the ovarian cancer prognosis and clinic-pathological 
markers, which could be helpful to elucidate whether this drug could be considered 
as a coadjuvant alternative in the treatment of ovarian cancer.
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Chapter 11

Metformin Activity against Breast 
Cancer: Mechanistic Differences 
by Molecular Subtype and 
Metabolic Conditions
Reema S. Wahdan-Alaswad and Ann D. Thor

Abstract

Obesity and type 2 diabetes increase the risk of and reduce survival in breast 
cancer (BC) patients. Metformin is the only anti-diabetic drug that alters this 
risk, with a reduction in BC incidence and improved outcomes. Metformin has 
AMP-kinase (AMPK) dependent and independent mechanisms of action, most 
notably affecting the liver and skeletal muscle. We and others have shown that 
metformin also downregulates protein and lipid synthesis; deactivates various 
receptor tyrosine kinases; alters cell cycle transcription/translation; modulates 
mitochondrial respiration and miRNA activation; targets key metabolic molecules; 
induces stem cell death and may induce apoptosis or autophagy in BC cells. Many of 
these anti-cancer effects are molecular subtype-specific. Metformin is most potent 
against triple negative (basal), followed by luminal BCs. The efficacy of metformin, 
as well as dose needed for the activity, is also modulated by the extracellular glucose 
concentration, cellular expression of the glucose transporter protein 1 (GLUT1), 
and the organic cation transporter protein 1 (OCT1, which transports metformin 
into cells). This chapter summarizes the diverse clinical and preclinical data related 
to the anti-cancer effects of metformin, focused against breast cancer.

Keywords: metformin, breast cancer, TGF-β, STAT3, and PI3K/AKT/mTOR, FASN, 
MiR-193b, cancer stem cells, EGFR, cholesterol, glucose

1. Introduction

Metabolic dysregulation of carbohydrate and lipid metabolism is frequent in 
cancer cells, facilitating growth and survival through adaptive mechanisms. Otto 
Warburg was the first to recognize that cancer cells favor glycolysis as compared 
to oxidative phosphorylation for the generation of energy (ATP) [1]. While the 
former is less efficient in terms of energy production per molecule of glucose, it 
also generates precursor molecules (amino acids, fatty acids, etc.) for replication 
and facilitates survival under oxidative stress [2]. This is in contrast to normal cells, 
which typically use oxidative metabolism to derive more energy (ATP) per molecule 
of glucose [3, 4]. Nearly a century later, we now recognize that cancer cells may 
utilize either aerobic or anaerobic respiration. The majority of cancer cells also have 
alterations of mitochondrial respiration, further providing a selective advantage to 
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Abstract

Obesity and type 2 diabetes increase the risk of and reduce survival in breast 
cancer (BC) patients. Metformin is the only anti-diabetic drug that alters this 
risk, with a reduction in BC incidence and improved outcomes. Metformin has 
AMP-kinase (AMPK) dependent and independent mechanisms of action, most 
notably affecting the liver and skeletal muscle. We and others have shown that 
metformin also downregulates protein and lipid synthesis; deactivates various 
receptor tyrosine kinases; alters cell cycle transcription/translation; modulates 
mitochondrial respiration and miRNA activation; targets key metabolic molecules; 
induces stem cell death and may induce apoptosis or autophagy in BC cells. Many of 
these anti-cancer effects are molecular subtype-specific. Metformin is most potent 
against triple negative (basal), followed by luminal BCs. The efficacy of metformin, 
as well as dose needed for the activity, is also modulated by the extracellular glucose 
concentration, cellular expression of the glucose transporter protein 1 (GLUT1), 
and the organic cation transporter protein 1 (OCT1, which transports metformin 
into cells). This chapter summarizes the diverse clinical and preclinical data related 
to the anti-cancer effects of metformin, focused against breast cancer.

Keywords: metformin, breast cancer, TGF-β, STAT3, and PI3K/AKT/mTOR, FASN, 
MiR-193b, cancer stem cells, EGFR, cholesterol, glucose

1. Introduction

Metabolic dysregulation of carbohydrate and lipid metabolism is frequent in 
cancer cells, facilitating growth and survival through adaptive mechanisms. Otto 
Warburg was the first to recognize that cancer cells favor glycolysis as compared 
to oxidative phosphorylation for the generation of energy (ATP) [1]. While the 
former is less efficient in terms of energy production per molecule of glucose, it 
also generates precursor molecules (amino acids, fatty acids, etc.) for replication 
and facilitates survival under oxidative stress [2]. This is in contrast to normal cells, 
which typically use oxidative metabolism to derive more energy (ATP) per molecule 
of glucose [3, 4]. Nearly a century later, we now recognize that cancer cells may 
utilize either aerobic or anaerobic respiration. The majority of cancer cells also have 
alterations of mitochondrial respiration, further providing a selective advantage to 
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facilitate cancer growth and survival [5]. More specifically, it may increase intracel-
lular reactive oxygen species by disruption of the mitochondrial electron transport 
chain to reduce the mitochondrial membrane potential in BC or act directly to 
inhibit the mitochondrial respiratory-chain complex 1 (MRCC1) [6–8].

Chronic energy excess and physical inactivity lead to systemic alterations of 
carbohydrate and fatty acid metabolism characterized by systemic hypergly-
cemia, hyperinsulinemia with insulin resistance followed by hypoinsulinemia, 
an increase in inflammatory cytokines and adipokines, alterations of steroid 
and growth hormones, and downregulation of immune surveillance and tissue 
oxygenation [3, 9, 10]. These changes are frequent but variable in patients with 
obesity and type 2 diabetes and can be modified by drugs, exercise, body weight, 
socioeconomic factors, access to healthcare, genetic risk, and other factors. 
Patients with these disorders are at an increased risk of cardiovascular disease, 
cancer, and other diseases associated with significant morbidity and mortality.  
In the U.S., there are ~13.8 million type 2 diabetics, 5 million undiagnosed diabet-
ics, and 41 million persons with prediabetes/metabolic syndrome [11–13]. Obesity 
is a frequent comorbidity, often proceeding diabetes by years or decades.

Energy-sensing systems are integral to maintaining homeostasis in normal and 
transformed cells. Energy deprivation is frequent in cancer cells due to an inad-
equate vascular supply to meet the needs of increased cell replication.  
In energy-stressed cells, AMPK is allosterically modified by binding to AMP and 
ADP, rendering them targetable by AMPK kinases. AMPK activation induces 
signaling, upregulates energy production, and inhibits energy programming for 
cell growth and motility. In cancerous cells, this shift often fails to occur even with 
stress. As a result, cancer cells typically prioritize replication and motility to favor 
cancer growth and metastasis. Drugs that activate AMPK, most notably metformin, 
reengage the AMPK failsafe to inhibit proliferation and motility. Thus, metformin 
provides a unique and generally less-toxic approach to combat the emergence 
or growth of cancers through inhibition of cell replication. This is particularly 
important for patients with obesity and type 2 diabetes, who lack homeostasis and 
experience wide swings in systemic glucose, insulin, and other energy precursors 
and growth factors that contribute to systemic energy stress.

2. Metabolic dysregulation, breast cancer, and metformin

Abundant epidemiologic and clinical data have shown that obesity and type 2 
diabetes increase the risk and severity of cardiovascular disease and human cancer. 
Each of these chronic metabolic disorders as a single variable significantly increases 
the risk of breast cancer (BC) [10, 14]. In combination, the risk is increased by 
20–50%, depending on the severity of disease and other variables. It is highest in 
women with abdominal (central) obesity in the postmenopausal setting, in women 
of all ethnic backgrounds [15–17]. Obesity also promotes BC in premenopausal 
women of color, especially African Americans and Latinos [18–23]. In patients with 
obesity and diabetes, BC also presents at a higher disease stage and is more resistant 
to treatment, resulting in a shorter disease-free interval and a significantly higher 
mortality rate [24, 25].

Steroid receptor-positive BC (luminal A) and basal (triple negative) BC cells are 
the most responsive to extracellular glucose at or above 7 mM of glucose to promote 
cell replication, tumor growth, and motility. In contrast, steroid receptor-positive 
BC cells that also express high HER2 (luminal B) and steroid receptor-negative, 
HER2 positive (the HER2 subtype) are less responsive to hyperglycemia, even at 
levels associated with untreated type 2 diabetes (10 mM glucose or higher) [26]. 
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Glucose directly promotes signaling in epithelial cells or can act indirectly by 
interacting with molecular signaling proteins, such as the insulin-like growth factor 
(IGF-1), sex hormones, and adipokines [3, 27, 28]. Insulin and insulin-like growth 
factors are frequently increased in newly diagnosed BC patients [28–31]. These 
potent growth factors promote BC growth and are associated with a worse progno-
sis, both in overweight and ‘normal’ weight women [24, 29, 32–34]. Epidemiological 
and clinical data show that obesity and type 2 diabetes are particularly associated 
with luminal A (estrogen and progesterone responsive) as well as triple negative 
BCs [19, 21, 27, 35, 36].

Metformin (N′, N′-dimethylbiguanide) is the most frequently used drug to treat 
patients with metabolic syndrome (prediabetes) and type 2 diabetes worldwide. 
It has been used successfully for over six decades and has a very favorable benefit-
risk profile [37]. Metformin is stable at room temperature with a long shelf life, is 
inexpensive and orally administered, and has low rates of significant toxicity or 
drug-drug interaction. Metformin is best known for its effects on liver and skeletal 
muscle cells, where it downregulates insulin resistance, lowers serum insulin, 
stimulates insulin receptor tyrosine kinase activity, inhibits hepatic glucose output 
(thus lowering A1C), increases glucose uptake by skeletal muscle cells, and can alter 
fatty acid metabolism.

Epidemiologic data show a significant lowering of cancer risk in patients with 
metabolic dysregulation (obesity, diabetes, or metabolic syndrome) who take 
metformin [29, 34, 38, 39]. Metformin use by BC patients has also been associated 
with improved treatment response and survival. In one meta-analytic study of BC 
patients with diabetes, metformin use was associated with a 65% improvement in 
BC-specific survival as compared to nonusers [40]. The anticancer properties of 
metformin are in contrast to other antidiabetic agents, including sulfonylureas and 
insulin, which promote cancer growth [9].

It is also taken for its ‘antiaging’ properties in individuals without obesity or 
metabolic dysregulation, particularly outside of the US [10, 41, 42].

Numerous clinical trials are currently underway in BC patients to evaluate the 
benefit of metformin combined with or following the administration of other 
therapeutic agents [29, 32, 33, 43–46]. Studies designed to test the benefit of 
metformin in patients in only specific molecular subtypes of BC have not been per-
formed, although some have looked at molecular cohort interactions as a secondary 
goal [30, 47–51]. There are limited data on the use of metformin in metabolically 
‘normal’ BC patients. However, our preclinical data suggest that metformin is most 
active in all molecular subtypes with physiological levels of extracellular glucose 
[26]. This evidence provides a rationale for testing metformin in otherwise healthy 
BC patients.

3. AMPK-dependent mechanisms of metformin action in BC

Cellular uptake of metformin requires expression and functionality of the organic 
cation transporter 1 (OCT1) protein, which in some individuals or BCs may be 
altered (more or less effective in transporting metformin into the cell) by polymor-
phism or genetic error [52]. Polymorphisms have also been associated with a decrease 
in metformin efficacy in diabetic patients [53–55]. In BC cells, we have demonstrated 
that OCT1 expression is associated with the anticancer activity in vivo [44]. Once 
inside the cell, metformin may directly interact with the metabolic sensor AMPK to 
induce activation, restoring homeostasis and blocking cellular replication and motil-
ity under low energy (stress) conditions. The AMPK ‘switch’ is also influenced by the 
intracellular AMP:ATP ratio, which in turn is influenced by fatty acid oxidation and 



Metformin

182

facilitate cancer growth and survival [5]. More specifically, it may increase intracel-
lular reactive oxygen species by disruption of the mitochondrial electron transport 
chain to reduce the mitochondrial membrane potential in BC or act directly to 
inhibit the mitochondrial respiratory-chain complex 1 (MRCC1) [6–8].

Chronic energy excess and physical inactivity lead to systemic alterations of 
carbohydrate and fatty acid metabolism characterized by systemic hypergly-
cemia, hyperinsulinemia with insulin resistance followed by hypoinsulinemia, 
an increase in inflammatory cytokines and adipokines, alterations of steroid 
and growth hormones, and downregulation of immune surveillance and tissue 
oxygenation [3, 9, 10]. These changes are frequent but variable in patients with 
obesity and type 2 diabetes and can be modified by drugs, exercise, body weight, 
socioeconomic factors, access to healthcare, genetic risk, and other factors. 
Patients with these disorders are at an increased risk of cardiovascular disease, 
cancer, and other diseases associated with significant morbidity and mortality.  
In the U.S., there are ~13.8 million type 2 diabetics, 5 million undiagnosed diabet-
ics, and 41 million persons with prediabetes/metabolic syndrome [11–13]. Obesity 
is a frequent comorbidity, often proceeding diabetes by years or decades.

Energy-sensing systems are integral to maintaining homeostasis in normal and 
transformed cells. Energy deprivation is frequent in cancer cells due to an inad-
equate vascular supply to meet the needs of increased cell replication.  
In energy-stressed cells, AMPK is allosterically modified by binding to AMP and 
ADP, rendering them targetable by AMPK kinases. AMPK activation induces 
signaling, upregulates energy production, and inhibits energy programming for 
cell growth and motility. In cancerous cells, this shift often fails to occur even with 
stress. As a result, cancer cells typically prioritize replication and motility to favor 
cancer growth and metastasis. Drugs that activate AMPK, most notably metformin, 
reengage the AMPK failsafe to inhibit proliferation and motility. Thus, metformin 
provides a unique and generally less-toxic approach to combat the emergence 
or growth of cancers through inhibition of cell replication. This is particularly 
important for patients with obesity and type 2 diabetes, who lack homeostasis and 
experience wide swings in systemic glucose, insulin, and other energy precursors 
and growth factors that contribute to systemic energy stress.

2. Metabolic dysregulation, breast cancer, and metformin

Abundant epidemiologic and clinical data have shown that obesity and type 2 
diabetes increase the risk and severity of cardiovascular disease and human cancer. 
Each of these chronic metabolic disorders as a single variable significantly increases 
the risk of breast cancer (BC) [10, 14]. In combination, the risk is increased by 
20–50%, depending on the severity of disease and other variables. It is highest in 
women with abdominal (central) obesity in the postmenopausal setting, in women 
of all ethnic backgrounds [15–17]. Obesity also promotes BC in premenopausal 
women of color, especially African Americans and Latinos [18–23]. In patients with 
obesity and diabetes, BC also presents at a higher disease stage and is more resistant 
to treatment, resulting in a shorter disease-free interval and a significantly higher 
mortality rate [24, 25].

Steroid receptor-positive BC (luminal A) and basal (triple negative) BC cells are 
the most responsive to extracellular glucose at or above 7 mM of glucose to promote 
cell replication, tumor growth, and motility. In contrast, steroid receptor-positive 
BC cells that also express high HER2 (luminal B) and steroid receptor-negative, 
HER2 positive (the HER2 subtype) are less responsive to hyperglycemia, even at 
levels associated with untreated type 2 diabetes (10 mM glucose or higher) [26]. 

183

Metformin Activity against Breast Cancer: Mechanistic Differences by Molecular Subtype…
DOI: http://dx.doi.org/10.5772/intechopen.91183

Glucose directly promotes signaling in epithelial cells or can act indirectly by 
interacting with molecular signaling proteins, such as the insulin-like growth factor 
(IGF-1), sex hormones, and adipokines [3, 27, 28]. Insulin and insulin-like growth 
factors are frequently increased in newly diagnosed BC patients [28–31]. These 
potent growth factors promote BC growth and are associated with a worse progno-
sis, both in overweight and ‘normal’ weight women [24, 29, 32–34]. Epidemiological 
and clinical data show that obesity and type 2 diabetes are particularly associated 
with luminal A (estrogen and progesterone responsive) as well as triple negative 
BCs [19, 21, 27, 35, 36].

Metformin (N′, N′-dimethylbiguanide) is the most frequently used drug to treat 
patients with metabolic syndrome (prediabetes) and type 2 diabetes worldwide. 
It has been used successfully for over six decades and has a very favorable benefit-
risk profile [37]. Metformin is stable at room temperature with a long shelf life, is 
inexpensive and orally administered, and has low rates of significant toxicity or 
drug-drug interaction. Metformin is best known for its effects on liver and skeletal 
muscle cells, where it downregulates insulin resistance, lowers serum insulin, 
stimulates insulin receptor tyrosine kinase activity, inhibits hepatic glucose output 
(thus lowering A1C), increases glucose uptake by skeletal muscle cells, and can alter 
fatty acid metabolism.

Epidemiologic data show a significant lowering of cancer risk in patients with 
metabolic dysregulation (obesity, diabetes, or metabolic syndrome) who take 
metformin [29, 34, 38, 39]. Metformin use by BC patients has also been associated 
with improved treatment response and survival. In one meta-analytic study of BC 
patients with diabetes, metformin use was associated with a 65% improvement in 
BC-specific survival as compared to nonusers [40]. The anticancer properties of 
metformin are in contrast to other antidiabetic agents, including sulfonylureas and 
insulin, which promote cancer growth [9].

It is also taken for its ‘antiaging’ properties in individuals without obesity or 
metabolic dysregulation, particularly outside of the US [10, 41, 42].

Numerous clinical trials are currently underway in BC patients to evaluate the 
benefit of metformin combined with or following the administration of other 
therapeutic agents [29, 32, 33, 43–46]. Studies designed to test the benefit of 
metformin in patients in only specific molecular subtypes of BC have not been per-
formed, although some have looked at molecular cohort interactions as a secondary 
goal [30, 47–51]. There are limited data on the use of metformin in metabolically 
‘normal’ BC patients. However, our preclinical data suggest that metformin is most 
active in all molecular subtypes with physiological levels of extracellular glucose 
[26]. This evidence provides a rationale for testing metformin in otherwise healthy 
BC patients.

3. AMPK-dependent mechanisms of metformin action in BC

Cellular uptake of metformin requires expression and functionality of the organic 
cation transporter 1 (OCT1) protein, which in some individuals or BCs may be 
altered (more or less effective in transporting metformin into the cell) by polymor-
phism or genetic error [52]. Polymorphisms have also been associated with a decrease 
in metformin efficacy in diabetic patients [53–55]. In BC cells, we have demonstrated 
that OCT1 expression is associated with the anticancer activity in vivo [44]. Once 
inside the cell, metformin may directly interact with the metabolic sensor AMPK to 
induce activation, restoring homeostasis and blocking cellular replication and motil-
ity under low energy (stress) conditions. The AMPK ‘switch’ is also influenced by the 
intracellular AMP:ATP ratio, which in turn is influenced by fatty acid oxidation and 



Metformin

184

glucose metabolism. Thus, metformin can indirectly affect AMPK, through reduction 
of gluconeogenesis and thus changing of the AMP:ATP ratio. These mechanisms are 
represented in Figure 1. These processes are modulated by P53 status. It is mutated 
in many BCs, particularly tumors that are high grade, late-stage or nonluminal in 
subtype. In BCs that are P53 competent, AMPK activation (from metformin or other 
triggers) upregulates P53 tumor suppressor activity as a downstream target. This 
induces activation of cell cycle checkpoint proteins, to inhibit cell proliferation [56]. 
In P53 incompetent cells, AMPK activation from metformin may be less effective 
through P53 mechanisms. Given the numerous other actions of metformin, as well 
as the molecular subtype specificity of the drug, we postulated that P53 status alone 
would not have a major impact on anticancer effects of metformin. We have dem-
onstrated that this is the case in preclinical studies of numerous BC cell lines [57]. In 
other cells, metformin may induce cell cycle arrest and death through activation of 
apoptotic pathways and downregulation of p53 [58, 59] or PARP cleavage, especially 
in triple negative BC [60, 61].

Activation of mTOR-dependent protein synthesis and cell growth (downstream 
of the PI3K/Akt signaling axis), along with AMPK, provides a robust signal-
ing platform for BC cell growth, proliferation, and chemotherapy resistance. In 
addition to activating AMPK, metformin inhibits mTOR and downstream signal-
ing components of this critical pathway. Mutation of the PI3K catalytic subunit 
(PIK3CA) occurs in 20-35% of BCs [62, 63]. Mutation or loss of the tumor suppres-
sor gene PTEN has also been demonstrated in 40% of BC [64, 65]. Metformin can 
also inhibit gluconeogenesis and mTOR signaling independent of AMPK and the 
tuberous sclerosis 2 (TSC2) gene in some experimental systems (in hepatic cells 
that lack AMPK or its kinase, LKB1). In this model system, metformin induces 

Figure 1. 
Metformin AMPK-dependent mechanism of action on breast cancer. Metformin activates AMPK directly 
through insulin-like growth factor (IGF-I) or insulin receptor, which in turn can activate PI3K/Akt/mTOR 
or RAS/Raf/MEK/ERK to increase cell growth, survival, angiogenesis, migration, and invasion. Metformin 
indirectly activates AMPK, which activates mTORC2, CREB, and gluconeogenesis. Lastly, glucose can enter BC 
cell through GLUT-1, and metformin can directly downregulate GLUT-1 receptor.
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downregulation of hepatic gluconeogenesis through non-AMPK–associated 
mechanisms [66, 67].

Signaling systems and thus metformin sensitivity by dose or mechanism vary 
by the molecular subtype of BC as well as unique genomic changes in each patient’s 
BC. For example, we have shown that metformin-induced partial S phase arrest 
increased P-AMPK and reduced P-EGFR, P-MAPK, P-Src, cyclin D1, and cyclin E, 
with the induction of PARP cleavage and apoptosis only in triple negative BCs [44]. 
In this tumor subtype, metformin specifically targets Stat3 and is not dependent on 
mTOR signaling [44]. In non-triple negative BCs (luminal and HER2), metformin 
induces partial cell cycle arrest at the G1 checkpoint, reduces cyclin D1 and E2F1 
expression, and inhibits AMPK, MAPK, Akt, and mTOR activity [44, 57, 68]. 
Metformin-associated AMPK activation may also inactivate the insulin receptor 
substrate 1 (IRS1), which in turn regulates IGF-IR and PI3K/Akt signaling pathways 
to block the progrowth effects of hyperinsulinemia and insulin-like growth factors 
typically associated with type 2 diabetes [66, 67, 69].

Metformin is unique in the breadth and complexity of AMPK-dependent direct 
and indirect targets that inhibit cancer. Several new mechanisms fall into the rap-
idly expanding field of immuno-oncology. Metformin-induced activation of AMPK 
activates the programmed death ligand-1 (PDL-1) at S195, reducing stability and 
membrane localization and thus increasing PDL-1 degradation [70]. Metformin 
also promotes cytotoxic T cell lymphocyte activity in tumor tissue and enhances 
tumor-associated immune surveillance [6, 70, 71]. Additionally, metformin upregu-
lates pro-inflammatory cytokines (tumor necrosis factor alpha (TNFα), interleu-
kin-6 (IL-6), IL-1β, the nuclear factor kappa-light-chain-enhancer of activated 
B-cells (NF-κB), the hypoxia-inducible factor 1-alpha (HIF-1α), and the vascular 
endothelial growth factor (VEGF), reviewed in [72, 73]).

AMPK-dependent mechanisms of action have been validated using clinical 
trial–derived BC samples as well as preclinical model systems, reviewed in detail 
elsewhere [43]. Some of these were especially important to spur the expansion 
of metformin use in BC patients. The timing, dose, and duration of metformin 
treatment in BC patients with or without other chemotherapy are actively under 
investigation. Neoadjuvant metformin, in particular, has shown benefit with 
a higher rate of complete pathological response, as compared to similar BC 
patients [74].

3.1  Metformin targets cell cycle proteins in AMPK-dependent manner 
in breast cancer

AMPK plays an integral role in the regulation of cell cycle and cell division. 
The ability of metformin to activate AMPK thus has a significant inhibitory effect 
on cell-cycle associated proteins. This mechanism is represented in Figure 2. 
Expression profiling of BC derived from metformin-treated patients as compared 
to controls has shown consistent downregulation of many gene encoding proteins 
involved in mitosis, including kinesins, tubulins, histones, Aurora, as well as 
Polo-like kinases and ribosomal proteins (critical for protein and macromolecular 
biosynthesis, respectively) [75]. Given the targeted effects of metformin, it is not 
surprising that its actions are synergistic with drugs like paclitaxel that induce 
defects in mitotic spindle assembly, chromosome segregation, and cell division. In 
combination, metformin and paclitaxel dramatically increase the number of cells 
arrested in G2-M and apoptosis, as compared to either agent alone [76]. Metformin 
may also induce GO/G1 arrest due to activation of AMPK, downregulation of cyclin 
D1, and enhanced binding of CDK2 by p27Kip1 and p21cip1 [60, 61], especially in 
non-triple negative cells. Some have shown that metformin sensitivity to GO/G1 
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arrest is linked to overexpression of p27Kip1 p21cip1 [60, 61]. We have demonstrated 
that metformin induces cycle arrest at the G1 checkpoint in luminal A, B and 
HER2 BC [75] associated with a reduction of cyclin D1 and E2F1 expression, with 
no changes in p27Kip1 or p21waf1. While these authors describe how metformin can 
increase CDK chemical inhibitors to control BC growth [57, 61], others have utilized 
cell cycle-dependent kinases (CDK) inhibitors with metformin and report that this 
combination should be used with caution [77].

In addition to downregulating cell replication under stress, metformin upregu-
lates the cellular DNA-damage response, resulting in a decline in the mutational 
burden for those cancer cells that survive. Mechanisms underlying this effect 
include selective activation of the ataxia telangiectasia mutated (ATM) gene as well 
as ATM targets, such as protein kinase CHK2 gene and attenuation of reactive oxy-
gen species ROS that result in DNA damage [78]. Algire et al. have postulated that 
downregulation of ROS production and thus somatic mutation are likely contribut-
ing mechanisms for the reduction in cancer risk associated with metformin use [8].

In summary, AMPK plays a central regulatory role in human cells, including BC 
where it regulates energy metabolism, cell growth and motility, response to insulin 
and growth factors, and estrogen production. Metformin induces AMPK activation 
in a robust manner, to affect numerous target pathways and intermediate molecules. 
The activity of AMPK and thus metformin can be modified by interacting factors 
including hormones, growth factors, and energy sensors. Selective targeting of 
AMPK-dependent pathways has shown less efficacy than metformin alone against 
BC [79], consistent with the findings that not all mechanisms of metformin action 
are AMPK dependent.

Figure 2. 
AMPK-dependent action on cell cycle and alternate mechanisms. Metformin activates AMPK directly 
through insulin-like growth factor (IGF-I) or insulin receptor, which in turn can activate PI3K/Akt/mTOR 
or RAS/Raf/MEK/ERK signaling pathway. Metformin can also inhibit downstream signaling intermediates 
to attenuate autophagy, mRNA translation, cell growth, ribosome biogenesis, protein synthesis, and cell cycle 
growth. Metformin can also activate AMPK, which blocks P53 and induces cell cycle arrest. Lastly, metformin 
can block complex I of mitochondrial biogenesis to increase intracellular O2, which can block HIF-1 and VEGF 
production.
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4. AMP-independent mechanisms of action on metformin

4.1 Metformin action on glucose and metabolism

Upregulation of bioavailable glucose, insulin, and other growth factors increase 
the risk and promote BC aggression [16, 23, 27, 80, 81]. In addition to shifts in host 
metabolism, glycolytic reprogramming occurs in breast epithelial cells during 
malignant transformation. This process is accentuated by systemic dysregulation of 
carbohydrate and lipid metabolism, as bioavailable sugars and fat typically increase 
in these patients. Glycolytic reprogramming includes dependence on aerobic res-
piration, providing less-efficient energy (ATP) production per molecule of glucose 
from and incomplete oxidative phosphorylation. Cancer cell reprogramming 
includes activation of numerous signaling intermediaries, including phosphatidyl-
inositide 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin 
(mTOR), phosphatase and tensin homolog (PTEN), and AMPK [82–84]. Changes 
in other factors including c-MYC, hypoxia-inducible factor 1-alpha (HIF1α), 
epidermal growth factor receptor (EGFR), tumor protein 53 (P53), and the Met 
receptor may also facilitate cancer cell dependence on aerobic glycolysis [16, 85–87].

We have focused on the effects of extracellular glucose and other carbohydrates, 
combined with or without metformin using BC cell lines and animal models of obesity, 
metabolic syndrome, and mammary tumorigenesis, summarized in Figure 3 and 
detailed elsewhere [26, 47, 49, 52, 57, 68, 88–93]. Importantly, most in vitro studies of 
metformin use commercially purchased media containing ~17 mM glucose (incompat-
ible with human life, above concentrations achieved in diabetes). This is significantly 
higher than serum derived from normal persons (~5 mM), metabolic syndrome 
patients (~7 mM), or uncontrolled diabetes (~10 mM) [26]. We have shown that all 
molecular subtypes of BC cells grown with high glucose media require significantly 
more metformin to achieve the same anticancer efficacy (i.e., much higher EC50 
of metformin) [26]. Normalization of glucose concentration in the culture media 
significantly reduced the EC50 of metformin for all BC cell types to induce BC growth 
inhibition or death. This hyperglycemic override of metformin action by dose makes 
biologic sense, given the ability of glucose to enter cells and promote many of the same 
pathways we have shown that are critical to metformin action. Similar issues may arise 
in animal models, particularly if the animals are overfed or obese. In both mouse and 
rat model systems, we have achieved plasma metformin concentrations equivalent to 
the normal range in humans, by providing it in the drinking water. We have also shown 
that metformin accumulates in the cytoplasm, markedly higher than serum levels in 
mammary tumor cells with functional and sufficient OCT1 protein [26].

Luminal A and some subsets of triple negative BC cell lines show the greatest 
increase in proliferation when cultured in media with supraphysiologic glucose or 
insulin. In contrast, luminal B and HER2 BC cells were significantly less responsive 
to glucose or insulin, even at the highest concentrations examined. This responsivity 
pattern was similar to the cellular response to metformin by molecular BC subtype, 
with triple negative being the most responsive. From a molecular standpoint, triple 
negative BC cell responsivity to high glucose and metformin by dose was unique 
(efficacy at lower EC50s). Triple negative BC cells are especially dependent on 
glucose/glucosamine (metabolized through glycolysis) and lipids for energy and 
building block production, cell division, phenotypic aggression, and motility [94]. 
When grown with media containing supraphysiologic glucose, they upregulate 
specific genes, including EGFR, P-EGFR, IGF1R, P-IGF1R, IRS2, cyclin D1, and 
cyclin E expression, and inhibit AMPK/P-AMPK and p38 in a dose-dependent 
manner [26]. With the addition of metformin, there is a downregulation of these 
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genes and the upregulation of genes associated with cell killing and growth control 
[49, 94]. Our report showed that glucose promotes phenotypic aggression and 
reduces metformin efficacy by targeting key enzymes that are required for glucose 
metabolism in TNBC. Such enzymes include G6PD, Fructose-2-6-BP, PGK, PGM, 
ENO, PKM2, and LDH-A (shown in Figure 3 and reviewed in [49]). Further, 
we reported that metformin attenuated the expression of over 20 critical genes 
involved in glucose metabolism, glucose transporters, gluconeogenesis, and tricar-
boxylic acid cycle [49]. Metformin-associated gene expression changes also reduced 
phenotypic aggressiveness and stem-like progenitor cell pool [26, 49, 90, 92]. 
Metformin treatment also restricted cell proliferation with S phase arrest, motility 
(through downregulation of intermediate filament proteins), and increased apop-
tosis (through activation of both the intrinsic and extrinsic pathways) [26, 47, 57, 
88, 89, 92]. Metformin significantly inhibits carbohydrate induced pro-oncogenic 
metabolic and biologic characteristics of triple negative BC cells [26]. Altogether, 
metformin’s ability to target key glucose transporters, such a GLUT1, along with key 
genes involved in glucose and carbohydrate metabolism, highlights the role that this 
agent may play to control highly aggressive malignant BC cells via downregulation 
of the cellular metabolic machinery.

We have also shown that inhibition of lipid biosynthesis was requisite to the 
anticancer effects of metformin in triple negative BC cells. It downregulates both 

Figure 3. 
Metformin action on glucose and metabolism breast cancer. Metformin enters the BC cell through OCT 1 
transporter to attenuate inner membrane fluidity/permeability, the Krebs cycle (TCA), and complex I of the 
mitochondria. Metformin can also block downstream signaling intermediates involved in the PI3K/Akt/mTOR 
or RAS/Raf/MEK/ERK signaling pathways, which can control BC cell growth. Lastly, metformin blocks 
GLUT1 transporter and key enzymes that are involved in carbohydrate synthesis.
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fatty acid synthase (FASN) and the cholesterol biosynthesis pathway, as detailed 
below. Other studies have focused on interactions between obesity, weight gain, 
hormonal status, and BC, and more specifically if metformin could be used to 
disrupt this process. Using a rat model of mammary tumor development after 
exposure to a carcinogen, animals were overfed and then segregated into lean and 
obese. Both subsets were subjected to ovary removal, half were given metformin, 
and they were followed for the development and progression of mammary tumors 
[52, 93, 95]. Obese rats experienced marked changes in metabolism, akin to 
metabolic syndrome. Mammary tumors from these obese rats showed enhanced 
tumor growth and tumor-associated glucose uptake, 50% higher than nonobese 
rats in association with upregulation of the progesterone receptor. In contrast, the 
lean rats preferentially deposited excess nutrients in mammary (nontumor) and 
peripheral tissues. Metformin abrogated systemic metabolic dysregulation, reduced 
tumorigenesis, tumor progression, and tumor-associated PR expression in obese 
rats. Similar changes in body weight and obesity are frequent after female meno-
pause has been observed in BC of postmenopausal females with obesity, providing 
additional clues for the use and timing of metformin associated with BC risk and 
treatment for future study.

4.2 Metformin action on cholesterol, EGFR signaling, and lipid rafts

The mevalonate pathway, also known as the β-hydroxy β-methylglutaryl-CoA 
(HMG-CoA) reductase pathway, is critical for cancer cell survival. Inhibition of 
the pathway by statins or other agents has been shown to have anticancer effects 
[96, 97]. In contrast, elevated cholesterol has been strongly associated with BC 
risk, a worse BC-associated outcome and chemotherapeutic resistance. This 
reflects the pivotal role of lipids including cholesterol in cancer survival and 
growth, including upregulation of signaling through membrane-bound recep-
tors, facilitation of intracellular signaling pathways, and serving as an anchor for 
intracytoplasmic filaments to promote motility and invasion and as a precursor for 
cellular metabolism to generate energy and facilitate replication [98, 99]. We have 
shown that triple negative BC cells are especially dependent on the upregulation of 
lipid and cholesterol biosynthesis [100].

Statins are widely prescribed for patients with high cholesterol or lipid abnor-
malities, most often to reduce the risk of cardiovascular disease. Statins also benefit 
women to reduce the risk and disease progression of BC. Two population-based 
studies from Northern Europe are particularly compelling. A Finnish study involv-
ing over 30,000 women showed that statin use, pre- or post-BC diagnosis, reduced 
BC-specific mortality by about 50% [101]. A large Danish study showed a benefit 
for BC patients as well, with significantly lower recurrence rates in statin users 
as compared to nonusers. They also reported that lipophilic statins (rather than 
hydrophilic satins) had the most anti-BC activity [102]. A recent study from MD 
Anderson Cancer Center suggests that statin use is particularly beneficial for BC 
patients with triple negative tumors, especially in patients with higher stage disease 
[95]. Their data are consistent with our preclinical data, showing significant 
upregulation of lipid metabolism-associated gene triple negative BC as compared 
to other molecular subtypes. See for further discussion elsewhere [103]. A major 
issue with statin use is toxicity, which reportedly occurs in up to half of patients. 
Some statin drugs are also expensive and thus may be unaffordable by many 
patients.

Metformin, in contrast, is relatively nontoxic and inexpensive. We have dem-
onstrated that metformin has potent effects in lipid and cholesterol biosynthesis 
in BC cells. More specifically, it inhibits transcriptional activation of HMGCo-A 
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(the enzyme targeted by statins), as well as over 20 other genes in the cholesterol 
biosynthesis pathway. We have also shown that it induces translational activation 
of downstream signaling, including the genes ACAA2, HMGCS1, HMGCR, MVK, 
MVD, LSS, and DHCR24 (Figure 4). Through broad inhibition of cholesterol 
biosynthesis in triple negative BC, metformin induces a significant reduction of 
membrane-associated and intracellular cholesterol and reduces GM1 lipid rafts 
through decreased synthesis and destabilization (disassociation). GM1 lipid raft 
stability has a profound effect on some receptors that rely on GM1 lipid rafts (like 
EGFR) for stability, ligand binding, and thus activation, resulting in downstream 
signaling. We have shown that metformin inhibits cholesterol biosynthesis and 
raft production, reducing membranous EGFR and its activation associated with 
downstream signaling in TNBC [91]. We have also shown that in combination, 
metformin and the statin-mimetic MβCD were synergistic in attenuating choles-
terol biosynthesis and cell proliferation [91]. Others have validated our observation 
that metformin downregulates genes involved in cholesterol biosynthesis, reporting 
downregulation of HMGCR, LDLR, and SREBP1 [104]. A particularly exciting 
corollary of these findings is the potential of metformin to synergize with receptor 
tyrosine kinase inhibitors (RTKIs) against BC. This is an underexplored area of 
breast oncology research with tremendous translational potential, given the grow-
ing use of RTKIs against BC.

Figure 4. 
Metformin action on cholesterol synthesis and lipid rafts. Metformin blocks epidermal growth factor receptor 
(EGFR), human epidermal growth factor receptors 2/3 (HER2/HER3), which in turn can block key enzymes 
involved in cholesterol synthesis pathway. Metformin and statins both can inhibit rate limiting step HMG-CoA 
Reductase, HMGCR. Metformin can also decrease cellular membrane rigidity, increase fluidity, and decrease 
cholesterol content to allow for the internalization of EGFR, HER2, or HER3 receptors. Internalization of these 
receptors is through GM1 lipid rafts, which are degraded and allow for BC cell death.
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4.3 Metformin action on miRNA and FASN signaling

MiRNAs are endogenous, short (21-25) nucleotide sequences that control gene 
expression during post-transcriptional translation. It has previously been reported 
that more than half of human genes are regulated by miRNAs [105]. A growing 
body of evidence has highlighted the role of miRNAs as master regulators of meta-
bolic processes, such as lipid and cholesterol synthesis [92, 105, 106]. Perturbations 
of these processes are important for tumor development. Modulation of these 
regulators using synthetic antagomirs to block the activity of specific miRNAs is 
an important new area of breast research. Metformin exerts some of its anticancer 
activity through modulation of miRNAs that target genes in metabolic and other 
pathways (Figure 5) [92, 107, 108]. miRNAs have been reported to be potential 
biomarkers for BC (i.e., miR-9, miR-10b, and miR-17-5p), whereas others reportedly 
have prognostic (i.e., miR-148a and miR-335) or predictive relevance (i.e., miR-26a, 
miR-30c, miR-187, and miR-339-5p) [109].

We have shown that metformin increases several members of the miR-193 
family. It upregulates miR-193b, which in turn targets and downregulates the FASN 
3’UTR. FASN is an important component of de novo fatty acid synthesis. Using an 
miR-193b mimetic, we induced a drastic reduction in fatty acid synthase (FASN) 
protein expression as well as increased growth inhibition and apoptosis of TNBC 
[92]. A separate expression profiling study of metformin-treated TNBC cells has 
shown similar results [106]. These data show that inhibition of FASN and fatty acid 
biosynthesis contributes to the potency of metformin against BC cells.

Figure 5. 
Metformin action on lipid synthesis and miRNAs metformin blocks EGFR, HER2, and HER3, which in turn 
can block key enzymes involved in cholesterol synthesis pathway as described in Figure 4. Metformin can also 
block acetyl-CoA carboxylase (ACC), which in turn can decrease fatty acid synthase (FASN). Metformin 
can also increase a myriad of miRNAS (shown in green). One of these miRNAs (miR-193b) can target FASN, 
which can decrease fatty acid synthesis in BC cells. Additionally metformin can block FASN and increase BC 
cell death.
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which can decrease fatty acid synthesis in BC cells. Additionally metformin can block FASN and increase BC 
cell death.
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4.4 Metformin action on PI3K/Akt/mTOR signaling in breast cancer

The PI3K/Akt/mTOR pathway plays a central role in regulating protein syn-
thesis, cell proliferation, tumorigenesis, angiogenesis, tumor growth, and metas-
tasis [63]. While AMPK-dependent phosphorylation is frequently described in 
metformin-mediated inhibition of the PI3K/Akt/mTOR signaling pathway, AMPK 
activation is not mandatory for these effects; see schematic in Figure 6 [57]. We 
have shown that metformin inhibits Akt and mTOR and inhibits cellular prolifera-
tion and colony formation and causes a partial G1 cell cycle arrest in all ER-positive, 
HER2 normal or abnormal BC cell lines examined [57]. Metformin-mediated 
inhibition of the PI3K/Akt/mTOR signaling pathway has also been shown to induce 
inhibition of cell replication, S phase arrest, and apoptosis, with a reduction in E2F1 
and cyclin D1 expression in triple negative BC cell lines [57].

4.5 Metformin action in STAT3 signaling

TNBC shows high activation of the signal transducer and activator of transcrip-
tion 3 (STAT3) signaling pathway, which in turn promotes cell growth, invasion, 
migration, metastasis, angiogenesis, immune evasion, and drug resistance and 
inhibits apoptosis [88]. We have shown that metformin specifically targets STAT3 
signaling to reduce P-STAT3 at both Ser727 and Tyr705 phosphorylation sites but 
not STAT3 expression in TNBC, schematically represented in Figure 6. In com-
bination with a Stat3 inhibitor, metformin significantly downregulated STAT3 

Figure 6. 
Metformin action in breast cancer. Metformin can block receptor tyrosine kinase (RTK), such as EGFR, HER2, 
and HER3. Metformin further blocks downstream signaling intermediates involved in PI3K/Akt/mTOR or 
RAS/Raf/MEK/ERK signaling pathway, such as AKT, mTOR, MEK, or ERK, which can decrease cell growth, 
angiogenesis, and migration/invasion. Further, metformin can further block cytokine and growth factor 
receptors such as the TGF-RII. Metformin can block IL-6/STAT3 pathway and TGF-signaling pathway, which 
in turn can decrease cell growth, angiogenesis, migration/invasion, inflammation, and EMT.
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expression and was synergistic in reducing cell growth and the induction of apop-
tosis in TNBC [88]. Given that TNBC also shows an upregulation/activation of the 
PI3K/Akt/mTOR signaling pathways, we then combined metformin with an mTOR 
inhibitor rapamycin, to determine if it would reduce metformin efficacy. Significant 
interactions with metformin were not observed; thus, mechanisms underlying its 
effects are not dependent on mTOR.

The JAK/STAT pathway is upregulated by obesity-associated mechanisms that 
promote BC growth. Others have demonstrated that metformin attenuates Janus 
kinase (JAK)/STAT3 signaling at Ser515 and Ser518 within the Src homology 2 
domain of JAK1 [110]. Metformin has also been shown to preferentially inhibit 
nuclear translocation of NK-𝜅𝜅B and phosphorylation of STAT3 in cancer stem cells 
(CSCs) as compared to non-CSCs [111]. Given the procarcinogenic and prometa-
static role that JAK/STAT pathways play in TNBC, the development of therapeutic 
strategies to attenuate these pathways using metformin may provide benefit with 
limited toxicity.

4.6 Metformin and TGF-β signaling in TNBC

A subset of TNBC subclassified as mesenchymal-stem like/claudin-low (MSL/
CL) characteristically shows high expression and activation of TGF-β signaling, 
phenotypic aggression, and a worse outcome. In addition to TGF-β receptor 2 
expression, BC in this group shows upregulation of Smad2, Smad3, ID1, and ID3 
[90]. They are especially responsive to TGF-β ligand 1 (TGF-β1), resulting in cell 
proliferation, migration, and invasion. MSL/CL cell lines also demonstrate down-
regulation of several growth factor receptors in response to metformin, includ-
ing fibroblast growth factor receptors (FGFR2 and FGFR3), hormone receptors 
(AR, ESR1, and PGR), and claudin integral membrane proteins of tight junctions 
(CLDN3, CLDN4, and CLDN7) in the MSL/CL BC subtypes [90]. Metformin 
directly attenuated TGF-β signaling pathway by downregulating activation of 
Smad2/Smad3, ID1, and ID3 (Figure 6). In combination with TGF-β inhibitors 
(TβRI-KIs; LY2197s299 or SB431542), metformin synergistically enhanced cell 
death in MSL/CL BC cells [90]. Overall, these data suggest that targeting TGF-β 
signaling using metformin with or without a TGF-β inhibitor may provide benefit 
for patients with MSL/CL BCs.

The process of epithelial-mesenchymal transition (EMT) is also common in 
TNBC and has been associated with biologic aggression and stem-like properties. 
Metformin reportedly inhibits EMT in a metastatic canine model of mammary 
cancer [112]. Others have shown that metformin reduces EMT through block-
ade of transcription factors like ZEB1, TWIST1, and SNAIL (Slug) [113–115]. 
Given that TGF-β pathway activation and EMT promote breast cancer stem cells 
(BCSC), therapeutic resistance, dormancy, and a poor outcome [113], and that 
metformin has been shown to block these in TNBC, inhibitors against TGF-β-
induced EMT combined with metformin may provide benefit in some TNBC 
patients.

4.7  Metformin action on breast cancer and angiogenesis, and the 
microenvironment

Clinical studies have demonstrated that diabetic patients treated with met-
formin are less likely to develop cardiovascular disease, independent of glycemic 
control. It is unclear whether this outcome reflects downregulation of hyperglyce-
mia and systemic inflammatory triggers or vascular damage, or whether metformin 
has a direct effect on endothelial cells, vascular resistance, elasticity, and damage 
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[12, 80, 116]. In the context of breast cancer, it has long been demonstrated that 
high-stage and grade cancers with a worse prognosis have the capacity to upregu-
late peri- and intratumoral neo-angiogenesis [117]. The induction of new vessels 
provides metabolic and oxygen delivery advantages to the cancer cells, facilitating 
survival and growth. Neo-angiogenesis is also associated with an increased capacity 
of the BC to metastasize, particularly to distant sites including the visceral organs 
and brain. We have demonstrated a reduction in vascular density and growth, in 
association with metformin treatment in preclinical models. Others have shown 
that metformin is associated with reduced tumor angiogenesis in many different 
cancer cell types. Metformin and alternate biguanides, such as phenformin, down-
regulate VEGF-dependent activation of ERK1, inhibiting neo-angiogenesis and 
reducing microvessel density (MVD) [118]. Wang et al. have shown that metformin 
also downregulates the expression of two other genes, platelet-derived growth 
factor B (PDGF-B) and fibroblast growth factor (FGF-2), to reduce angiogenesis 
[119]. Downregulation of PDGF-B also restricts BC cell proliferation, survival, and 
migration, [117]. Metformin’s effect on the microenvironment and angiogenesis 
has also been shown to enhance chemo-sensitivity, via a reduction in MVD leak-
age and cancer cell hypoxia in vivo [117]. Thus, metformin’s effects go beyond the 
cancer cell itself and include the peri- and intratumoral microenvironment and 
neovasculature.

Figure 7. 
Metformin action on breast cancer stem cells. Metformin can block a myriad of signaling pathways involved in 
BCSCs, including WNT, transforming growth factor (TGF), NOTCH, hypoxia inducible factor (HIF), and 
STAT3 signaling pathways. These pathways are thought to enrich for BCSC through the enrichment of CD44 
positive receptor and aldehyde dehydrogenase (ALDH+) and decrease in CD24 expression. Metformin can be 
given as a monotherapy or combinatorial therapy with alternate chemotherapeutic agents, which in turn can 
induce BCSC death with an increase in apoptosis, cell cycle arrest, and DNA damage. Overall, reduction in 
BCSCs can result in reduction of tumor growth and prevention in therapy-mediated relapse.
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4.8 Metformin action on breast cancer stem cells

Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are the 
progenitor cells that give rise to BC as well as heterogeneity within transformed 
populations. CSCs are maintained as a subpopulation within the neoplasm that 
perpetuates clonal expansion and may facilitate dormancy, metastasis, chemo-
resistance, and relapse. Among the molecular BC subtypes, TNBC shows the 
highest enrichment of CSCs, identified by expression patterns with flow cytometry 
as CD44+, CD24−/low CSC [120]. BC CSCs are particularly sensitive to metformin, 
which induces rapid cell death facilitated through a number of pathways involved 
in cell differentiation, renewal, metastasis, and metabolism (Figure 7). It directly 
targets key CSC gene signatures such as Notch 1, NFκB, Sox2, KLF-4, Oct4, Lin28, 
MMP-9, and MMP-2 [121]. Metformin attenuates CSCs in resistant BC, through 
repression of let-7 miRNA [121]. Its ability to attenuate key metabolic genes, such as 
FASN via upregulation of miR-193b, also contributes to its anti-CSC activity as stem 
cells are heavily dependent on aerobic glycolysis [92].

The capacity of metformin to induce CSC cell death has significant clinical 
relevance, given their role in therapeutic resistance, dormancy, and disease pro-
gression. Metformin reduces cancer recurrence through the preferential killing 
of differentiated rather than undifferentiated CSCs [122]. In combination with 
chemotherapy, metformin is especially active against BC CSCs [111]. In studies 
of trastuzumab-resistant BC cells as well as xenograft models, the combination 
of trastuzumab and metformin significantly reduced CD44+, CD24−/low CSC 
subpopulations and reduced tumor volume [111, 123, 124]. In combination with 
doxorubicin, paclitaxel, or carboplatin, metformin can also eradicate CSCs and 
reduce the effective dosage required of the highly toxic chemotherapeutic agents, 
minimizing patient risk [111, 123].

5.  Clinical evidence with metformin in breast cancer prevention 
and treatment

The pleiotropic oncostatic effects of metformin have been explored as an adju-
vant therapeutic option for the management of BC [43, 125, 126]. Epidemiological 
studies have demonstrated associations between metformin use in patients with 
type 2 diabetes and decreased cancer incidence and cancer-related mortality [10]. 
Several observational and randomized trials have evaluated a number of biomarker 
changes after metformin administration, increasing the footage of metformin as an 
off-label agent for BC. Over 11 ongoing and 13 completed clinical trials have tested 
the efficacy of metformin as a monotherapy or in combination with chemotherapy 
and/or radiotherapy for the management of BC (reviewed in [43, 127]). Goodwin 
et al. have shown that after six months of metformin treatment, a reduction in 
insulin by 22% had improved metabolic indices, such as insulin sensitivity, body 
weight, and cholesterol levels in nondiabetic patients with early-stage BC [29]. This 
information suggests that metformin is effective in the nondiabetic population. 
These data and other clinical trials further provide support in using metformin 
as an adjuvant agent as it is the only agent that does not promote BC but actually 
retards tumor growth. In addition, these clinical trials further support the need to 
screen for metabolic dysfunction and evaluate whether or not metformin should 
be integrated into the treatment for BC therapy. Further, BC patients receiving 
1500 mg/day of metformin showed a significant reduction in insulin levels and 
insulin resistance [44, 128]. The effect of metformin in response to neoadjuvant 
chemotherapy has been examined in diabetic BC patients. This study included 2529 
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women with BC and confirmed that metformin could achieve higher pathological 
complete response with neoadjuvant therapy relative to non-metformin users [129]. 
Dowling et al. have further examined neoadjuvant metformin in a prospective 
window of opportunity study [32]. Clinical and biological effects of metformin on 
nondiabetic BC patients were evaluated. These patients were treated with 500 mg 
of metformin three times daily for 2 weeks. Significant attenuated expression of the 
insulin receptor was observed in treated breast tumors and had high expression of 
OCT1 (organic cation transporter 1) [32]. The effect of metformin in nondiabetic 
BC patients was previously reviewed [43]. Systemic reviews and meta-analyses, 
highlighting a summary of studies involving metformin therapy in nondiabetic 
patients and diabetic patients, were reviewed in [43].

5.1 Metformin dose recommended for breast cancer patients

Pharmacokinetic profiling of mouse tumors provided preclinical analysis of 
appropriate human doses to provide efficient inhibition of tumor growth [130]. 
Based on this evidence, metformin-mediated activation of AMPK and antitumor 
function was dependent on cellular uptake of the drug, which is primarily con-
trolled by membrane transporters OCT1, OCT2, and OCT3 [131]. Based on the high 
expression of OCT transporters, 850 mg/day of metformin is required to inhibit 
tumor growth efficiently. If a tumor expresses low levels of OCT transporter, 
then 2250 mg/day is recommended [132]. Additionally, a dose of metformin of 
500–850 mg/day is typically recommended with standard chemotherapy (includ-
ing anthracyclines, platinum, taxanes, and capecitabine) for first- or second-line 
therapy (please see https://www.drugbank.ca/drugs/DB00331). The combination 
of metformin with a chemotherapeutic agent is recommended for a number of 
cycles until progression is unacceptable or toxicity develops.

5.2 Indications and contraindications for metformin use for breast cancer

Metformin is not approved for clinical use by the FDA and is still considered 
investigational for the treatment for BC. While metformin is well established as an 
inexpensive, well-tolerated, and effective for the treatment of diabetes, adjuvant 
use of metformin for BC remains to be defined. Current clinical trials have not 
outlined indications and contraindications for metformin use as adjuvant therapy 
for BC. Generally, metformin hydrochloride tablets are contraindicated in patients 
with (1) severe renal impairment (eGFR below 30 mL/min/1.73 m2), (2) hypersen-
sitivity to metformin, and (3) acute or chronic metabolic acidosis including diabetic 
ketoacidosis. Additionally, current clinical trials with metformin have been listed 
(https://clinicaltrials.gov/ct2/show/NCT01310231 and https://clinicaltrials.gov/ct2/
show/NCT01101438). The NCIC CTG MA.32 Phase III randomized clinical trial 
has completed enrollment of 3649 nondiabetic women receiving standard surgical, 
chemotherapeutic, hormonal, biologic, and radiation treatment for T1-3, N0-3, M0 
breast cancer. This trial has provided preliminary findings [33] and has not defined 
clear indications and/or contraindications for metformin use as adjuvant therapy 
for breast cancer.

6. Conclusions

A preponderance of clinical, epidemiological, and scientific evidence indicates that 
metabolic dysregulation of carbohydrate and lipid metabolism promote BC pathogen-
esis and a worse outcome, for women who have the disease [9, 10, 30, 40, 45, 129, 133]. 
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One of the therapeutic agents commonly used in patients with metabolic syndrome or 
type 2 diabetes, metformin, has demonstrated significant anti-BC activity. Metformin 
inhibits gluconeogenesis, reduces circulating levels of glucose, increases insulin 
sensitivity, and reduces hyperinsulinemia associated with insulin [134]. These factors 
have been associated with BC prognosis. Several mechanisms of metformin action 
involve AMPK-dependent and AMPK-independent signaling pathways, and these 
effects are remarkably broad and potent. Its ability to target metabolic dysregulation 
of carbohydrate and lipid metabolism as well as cancer stem cells appear to be equally 
important in its anticancer activity against BC [129, 133–137]. Furthermore, the 
effects of metformin are unique among molecular subsets of BC. A better understand-
ing of these mechanisms will facilitate targeted applications in patients with specific 
subtypes, fostering the goal of more personalized cancer care.

A number of clinical trials are underway to evaluate metformin in BC patients 
[30, 44–46, 50, 136]. Most have been designed to evaluate its efficacy, in combina-
tion with various chemo- or radiotherapy agents; see (https://clinicaltrials.gov/ct2/
results?term=+cancer+AND+metformin). Most ongoing or completed clinical trials 
have evaluated metformin’s effect on cellular proliferation or death, pathological 
response rate, progression-free or overall survival. Some have also sought to com-
pare its efficacy in patients with or without metabolic dysregulation, as a secondary 
aim. None have specifically been designed to evaluate interactions with CSCs, or in 
selected molecular subtypes, although correlative studies have provided some data 
in this regard. The ALTTO trial has shown that metformin improves outcomes for 
patients with diabetes and either HER2+ or hormone receptor positive BC [30]. The 
NCIC Clinical Trials Group (NCIC CTG) MA.32 has shown benefit from metfor-
min, as compared to placebo on outcomes in early stage BC [33]. It demonstrated 
efficacy with improvements in body weight, insulin, glucose, and leptin levels in BC 
patients examined, regardless of baseline BMI or fasting insulin levels [33].

In conclusion, metformin is a unique drug with a long track record of human 
use, which has demonstrated robust efficacy against type 2 diabetes and metabolic 
dysregulation. Epidemiologic data show independent and significant benefit in 
preventing cardiovascular disease and cancer in these patients. Metformin is an 
inexpensive oral agent that is currently available worldwide. It is generally well 
tolerated and has a low risk:benefit ratio. Epidemiological and clinical data have 
shown that metformin reduces BC incidence and mortality in women with meta-
bolic dysregulation, obesity, and type 2 diabetes. This subpopulation of woman 
is at significantly higher risk for BC, particularly in the postmenopausal setting. 
Preclinical and clinical evidence shows that metformin inhibits BC cell replication 
and tumor growth, decreases tumor aggression, reduces the stem cell pool, and 
slows motility/metastasis and can promote cell death through apoptosis, autophagy, 
or upregulation of immunity. Metformin has unique effects on molecular subsets of 
BC, with the aggressive triple negative BC showing the most sensitivity and lowest 
EC50 data. TNBC is particularly sensitive to metformin’s downregulation of fatty 
acid and cholesterol biosynthesis, glucose transport, and carbohydrate metabolism. 
This cancer subtype is typically the most aggressive and is less responsive to tradi-
tional chemotherapy; thus, metformin’s potency may provide significant benefit 
especially in these patients.
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Metformin is not approved for clinical use by the FDA and is still considered 
investigational for the treatment for BC. While metformin is well established as an 
inexpensive, well-tolerated, and effective for the treatment of diabetes, adjuvant 
use of metformin for BC remains to be defined. Current clinical trials have not 
outlined indications and contraindications for metformin use as adjuvant therapy 
for BC. Generally, metformin hydrochloride tablets are contraindicated in patients 
with (1) severe renal impairment (eGFR below 30 mL/min/1.73 m2), (2) hypersen-
sitivity to metformin, and (3) acute or chronic metabolic acidosis including diabetic 
ketoacidosis. Additionally, current clinical trials with metformin have been listed 
(https://clinicaltrials.gov/ct2/show/NCT01310231 and https://clinicaltrials.gov/ct2/
show/NCT01101438). The NCIC CTG MA.32 Phase III randomized clinical trial 
has completed enrollment of 3649 nondiabetic women receiving standard surgical, 
chemotherapeutic, hormonal, biologic, and radiation treatment for T1-3, N0-3, M0 
breast cancer. This trial has provided preliminary findings [33] and has not defined 
clear indications and/or contraindications for metformin use as adjuvant therapy 
for breast cancer.

6. Conclusions

A preponderance of clinical, epidemiological, and scientific evidence indicates that 
metabolic dysregulation of carbohydrate and lipid metabolism promote BC pathogen-
esis and a worse outcome, for women who have the disease [9, 10, 30, 40, 45, 129, 133]. 
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One of the therapeutic agents commonly used in patients with metabolic syndrome or 
type 2 diabetes, metformin, has demonstrated significant anti-BC activity. Metformin 
inhibits gluconeogenesis, reduces circulating levels of glucose, increases insulin 
sensitivity, and reduces hyperinsulinemia associated with insulin [134]. These factors 
have been associated with BC prognosis. Several mechanisms of metformin action 
involve AMPK-dependent and AMPK-independent signaling pathways, and these 
effects are remarkably broad and potent. Its ability to target metabolic dysregulation 
of carbohydrate and lipid metabolism as well as cancer stem cells appear to be equally 
important in its anticancer activity against BC [129, 133–137]. Furthermore, the 
effects of metformin are unique among molecular subsets of BC. A better understand-
ing of these mechanisms will facilitate targeted applications in patients with specific 
subtypes, fostering the goal of more personalized cancer care.

A number of clinical trials are underway to evaluate metformin in BC patients 
[30, 44–46, 50, 136]. Most have been designed to evaluate its efficacy, in combina-
tion with various chemo- or radiotherapy agents; see (https://clinicaltrials.gov/ct2/
results?term=+cancer+AND+metformin). Most ongoing or completed clinical trials 
have evaluated metformin’s effect on cellular proliferation or death, pathological 
response rate, progression-free or overall survival. Some have also sought to com-
pare its efficacy in patients with or without metabolic dysregulation, as a secondary 
aim. None have specifically been designed to evaluate interactions with CSCs, or in 
selected molecular subtypes, although correlative studies have provided some data 
in this regard. The ALTTO trial has shown that metformin improves outcomes for 
patients with diabetes and either HER2+ or hormone receptor positive BC [30]. The 
NCIC Clinical Trials Group (NCIC CTG) MA.32 has shown benefit from metfor-
min, as compared to placebo on outcomes in early stage BC [33]. It demonstrated 
efficacy with improvements in body weight, insulin, glucose, and leptin levels in BC 
patients examined, regardless of baseline BMI or fasting insulin levels [33].

In conclusion, metformin is a unique drug with a long track record of human 
use, which has demonstrated robust efficacy against type 2 diabetes and metabolic 
dysregulation. Epidemiologic data show independent and significant benefit in 
preventing cardiovascular disease and cancer in these patients. Metformin is an 
inexpensive oral agent that is currently available worldwide. It is generally well 
tolerated and has a low risk:benefit ratio. Epidemiological and clinical data have 
shown that metformin reduces BC incidence and mortality in women with meta-
bolic dysregulation, obesity, and type 2 diabetes. This subpopulation of woman 
is at significantly higher risk for BC, particularly in the postmenopausal setting. 
Preclinical and clinical evidence shows that metformin inhibits BC cell replication 
and tumor growth, decreases tumor aggression, reduces the stem cell pool, and 
slows motility/metastasis and can promote cell death through apoptosis, autophagy, 
or upregulation of immunity. Metformin has unique effects on molecular subsets of 
BC, with the aggressive triple negative BC showing the most sensitivity and lowest 
EC50 data. TNBC is particularly sensitive to metformin’s downregulation of fatty 
acid and cholesterol biosynthesis, glucose transport, and carbohydrate metabolism. 
This cancer subtype is typically the most aggressive and is less responsive to tradi-
tional chemotherapy; thus, metformin’s potency may provide significant benefit 
especially in these patients.
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Abstract

Living in a time when population is continuously ageing, the challenge and 
demand for assessing the age-related pathways, potential diseases and longevity have 
become of major interest. The pharmaceutical industry possesses huge resources in 
this field, mainly due to the recent discoveries of novel mechanisms of action of old-
established, classical drugs. Here we find metformin, a well-established antidiabetic 
medicine but with new potential benefits, as the most recent reports quote. We pres-
ent the main pathways of the possible implications of metformin in the modulation 
of ageing processes, evolution and diseases, focussing on its ageing counteraction, 
based on the latest scientifically based biochemical reports.

Keywords: metformin, type 2 diabetes, mechanisms of ageing, anti-ageing

1. Introduction

At present, metformin is the preferred first-line drug used for the treatment 
of type 2 diabetes mellitus (T2DM) [1–4]. However, the journey of metformin 
(1,1-dimethylbiguanide hydrochloride) has not been a simple one. Galega officinalis, 
also termed as French lilac, Italian fitch, or Spanish sainfoin, the herb metformin 
derives from, has been known as a traditional medicine since the seventeenth 
century and was recommended for the treatment of thirst and frequent urination 
(symptoms of diabetes) by John Hill in 1772. The identification of guanidine and of 
its related compounds within Galega officinalis, which proved to be able to reduce 
blood glucose in animals, led to the synthesis of metformin (dimethylbiguanide) 
in 1922. However, it was only in the 1950s that more information on metformin’s 
properties was published and when the name of Glucophage, meaning glucose eater, 
was suggested by Jean Sterne. Metformin was introduced as a treatment for T2DM in 
1958 in the UK and in other European countries, whereas in the USA it was approved 
only in 1994 and started to be used beginning in 1995 [5]. A milestone multicentre 
trial, the United Kingdom Prospective Diabetes Study (UKPDS) in 1998, showed 
that the newly T2DM diagnosed patients receiving metformin for more than a 
decade displayed significant reduction of the cardiovascular events and of diabetes-
related death and highlighted that these effects were independent of the glucose-
lowering efficacy. Moreover, the potentially beneficial effects of metformin on the 
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macro- and microvasculature have also been revealed [5–8]. Finally, in a 10-year 
posttrial analysis, metformin continues to offer cardiovascular benefits [9]. Based 
on these evidence data, in 2009, the American Diabetes Association (ADA) and the 
European Association for the Study of Diabetes (EASD) indicated metformin as the 
first-line therapy for T2DM [10]. Furthermore, metformin holds a significant role in 
the delay/prevention of T2DM onset, as shown by the randomised trial conducted 
in the USA, i.e. the Diabetes Prevention Program (DPP). The study highlighted that 
metformin reduces the incidence of T2DM by 31% compared to placebo in adults 
at high risk for T2DM (obese and with impaired glucose tolerance) [11–14]. Hence, 
metformin is also recommended as a pharmacologic tool for the prevention of T2DM 
in subjects with prediabetes, mainly for those with a BMI ≥ 35 kg/m [2], those aged 
<60 years, and in women with prior gestational diabetes mellitus [15–17].

Ageing continues to be an intruding topic and an area of great interest, constantly 
addressed by researchers worldwide. It encompasses a plethora of complex processes 
that have urged scientists to decipher its underlying mechanisms and to find the 
possible avenues to postpone its onset and that of its associated diseases [18]. Data 
from the literature have demonstrated a sustained ageing of the world’s population, 
estimating a total of around 21.8% of subjects over 60 years old in 2050 and 32.2% in 
2100 [19]. Installed as a result of the interaction between genetic, epigenetic, envi-
ronmental and stochastic factors, ageing involves a progressive decline of the body 
functions as a consequence of the gradual cellular impairment due to a failure of the 
repair mechanisms [20–23]. Age is a major risk factor for the onset of metabolic, 
cardiovascular, neurodegenerative, immune and malignant diseases [24]. Ageing 
has been reported to be conditioned by the genetic factor in a proportion of 25–30%, 
while the remaining 70–75% is ruled by the environmental factor, making it a pos-
sible target for therapeutic tools among which metformin has been found [25, 26].

Beyond its blood glucose-lowering effect, metformin has been described as 
a drug used for preventing or delaying several conditions associated with age-
ing [27]. As such, metformin has been proven useful in overweight and obesity 
[28, 29], hypertension [30], atherosclerosis [31], coronary artery disease [32], 
dementia [33] and cancer [34]. Moreover, in terms of mortality [35], it has been 
shown that patients with T2DM under metformin monotherapy had a longer 
survival than the matched, nondiabetic controls. However, the precise beneficial 
mechanisms by which metformin performs its non-glycaemic work are yet to be 
analysed. Hence, given the complex mechanisms of action of metformin, there is 
a growing interest in approaching and studying the potential anti-ageing effect 
of this drug. With regard to this interest, some large randomised clinical trials 
have been recently set up in order to evaluate the potential role of metformin in 
reducing the burden of age-related diseases. The Investigation of Metformin in 
Pre-Diabetes on Atherosclerotic Cardiovascular outcomes (VA-IMPACT) trial is a 
placebo-controlled study started in February 2019 and aimed at shedding light on 
the potential role of metformin in reducing mortality and cardiovascular morbid-
ity in patients with prediabetes and established atherosclerotic cardiovascular 
disease. More precisely, the primary outcomes include the time to death from any 
cause, nonfatal myocardial infarction, stroke, hospitalisation for unstable angina, 
or symptom-driven coronary revascularisation [27]. The other clinical trial, also 
a placebo-controlled trial, i.e. Targeting Ageing with Metformin (TAME), inves-
tigates subjects who have been diagnosed with one single age-associated disease 
and will provide insight on the ability of metformin to postpone and/or prevent 
the installation of a second pathology, such as cancer, CVD and dementia [13, 36]. 
Finally, more information is needed for a better understanding of the mechanistic 
targets and therapeutic implications of certain drugs (such as metformin) that 
might delay/alleviate the development of age-related diseases [37].
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Herein, we revisit the mechanisms involved in ageing and the mechanistic target 
of metformin as a potential anti-ageing drug, and we review the available data on 
the clinical and experimental results showing the ability of metformin to promote 
healthspan and longevity.

2. Epidemiological data on the anti-ageing effect of metformin

A large body of evidence has demonstrated that metformin could be consid-
ered a geroprotective agent in humans [23]. As explained, the protective role of 
metformin in survival has been largely demonstrated by the UKPDS multicentre 
trial in terms of cardiac and all-cause mortality, as compared with usual care [8, 9]. 
However, given its main role, that is to reduce hyperglycaemia, and knowing that 
a good control of diabetes correlates with an extended lifespan, the question arises 
whether metformin could be accounted as a tool to prolong longevity in patients 
that do not display T2DM. In keeping with this question, a recent systematic review 
by Campbell et al. [23] summarised the studies in which the effects of metformin 
on all-cause mortality or diseases of ageing have been compared to the nondiabetic 
or general population or to diabetics controlling the disease through other means. 
Overall, the meta-analysis revealed that subjects with T2DM under metformin 
treatment have a lower rate of all-cause mortality and longer survival than people 
free of T2DM not using metformin and the general population, suggesting that this 
drug could be an effective instrument to extend the lifespan of those not affected 
by T2DM [23, 35, 38–40]. Moreover, the meta-analysis revealed that subjects with 
T2DM taking metformin had lower rates of all-cause mortality than those following 
other therapies, such as insulin or sulphonylurea [23]. Given these results, it may 
be argued that the outcome is attained by the geroprotective role of metformin 
resulting in delaying or preventing diseases of ageing, such as cancer or cardiovas-
cular disturbances, which are the two most encountered ageing-related diseases 
[23, 41]. Firstly, in terms of malignancies, Campbell et al. [23] showed that people 
with T2DM taking metformin had a lower rate of developing any cancer compared 
with the general population. Moreover, the risk of developing colorectal, breast or 
lung cancer in individuals with T2DM on metformin treatment, as compared to 
those using other therapies, was lower. Secondly, subjects with T2DM following 
metformin therapy displayed a lower rate of any form of cardiovascular disease 
with respect to those managing their T2DM through any non-metformin therapy. 
In addition, although the incidence of stroke was also lower with metformin, for 
myocardial infarction the effect of the drug seems to be non-significant [23].

Finally, apart from the cardiovascular diseases and cancer, there are also other 
age-related pathologies that could be targeted by metformin, such as cognitive 
dysfunction. However, the evidence in patients with T2DM is conflicting with some 
studies showing a protective role of metformin against cognitive decline, whereas 
others are arguing that metformin treatment could induce neurodegeneration as 
well as Parkinson’s and Alzheimer’s disease. Nevertheless, the interpretation of the 
data is difficult given the possible presence of other concomitant conditions that 
may contribute to this cognitive decline [42].

3. Mechanisms involved in ageing

Ageing is a complex process that occurs at the molecular, cellular, organ 
and organismal level that everyone faces in time [43]. It involves the loss of the 
body’s ability to overcome and respond to stress (homeostenosis) by repair and 
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lung cancer in individuals with T2DM on metformin treatment, as compared to 
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regeneration, thus leading to various disturbances within the human body [24]. 
Overall, the ageing processes are of a heterogeneous and heterochronic nature. As 
a heterogeneous process, ageing can evolve at different rates in diverse organisms, 
while the heterochronic feature implies that cells and tissues within a single organ-
ism can age in an asynchronic manner, finally making chronological age different 
as compared to biological age [24, 43]. Growing body of evidence has shown that 
ageing involves multiple mechanisms that inter-relate with and modulate each 
other. In this respect, two elegant reviews have described nine hallmarks of ageing, 
which have been classified into primary hallmarks (genomic instability, telomere 
attrition, epigenetic alterations, and loss of proteostasis) as the main culprit of 
molecular damage, antagonistic hallmarks (deregulated nutrient sensing, mito-
chondrial dysfunction, and cellular senescence) with beneficial effects when at 
low levels, by protecting the human organism against damage, but with deleterious 
effects when at high levels, and finally, the integrative hallmarks (stem cell exhaus-
tion and altered intercellular communication) that arise when the accumulating 
damage cannot be balanced by homeostatic mechanisms, thus ultimately inducing 
ageing [22, 36].

Genomic instability has been revealed to be a major stochastic mechanism of age-
ing [44, 45]. Broadly, deoxyribonucleic acid (DNA) damage can be induced by both 
exogenous genotoxic factors, such as ionising radiation and ultraviolet irradiation 
as well as endogenous genotoxic agents, i.e. products of normal metabolism that 
lead to the formation of reactive oxygen species (ROS) and subsequently to oxida-
tive stress, that may finally result in deleterious effects on the cell. DNA lesions can 
cause mutations, block transcription and replication but can also trigger DNA dam-
age response (DDR), which implies mechanisms that intervene and arrest cell cycle 
progression, resulting in the repair of almost all the alterations that occur within the 
genome. However, when DNA damage is extensive and prevails over repair, DDR 
effectors trigger cell death (apoptosis) or cell senescence, contributing to ageing 
and age-related diseases [46, 47]. In fact, in ageing, DNA damage overtakes DNA 
repair, leading to genomic instability, a fact sustained by studies showing accumula-
tion of DNA alterations in old tissues [48]. On the other hand, genomic instability 
has been reported to be a driver of accelerated ageing, widely demonstrated by the 
presence of hypersensitivity to genotoxins and defects in genome maintenance in 
progeroid syndromes termed as diseases of accelerated ageing. Collectively, DNA 
damage as a culprit in ageing is highlighted by the accrual of sources of damage, 
i.e. oxidative stress (the oxidative stress theory of ageing) associated with the 
mitochondrial theory of ageing, as mitochondria is the primary source of ROS, 
increased activation of the DDR, mutations and presence of senescent cells along 
with a decreased capacity for DNA repair [47]. Among these factors oxidative stress 
is a well-known pathogenic mechanism and seems to be the most important one 
[49]. The overproduction of ROS along with a reduced antioxidant defence, i.e. 
oxidative stress, leads to DNA, protein and lipid damage [50, 51]. Also, ROS lead to 
age-related DNA lesions acting via nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) which controls cytokine and chemokine expression and 
regulates adhesion molecules [45, 52, 53].

Telomeres are chromosomal end structures that play important roles in the 
protection of DNA from degradation [54]. In each cell division, 20–200 base pairs 
are lost within the telomeres, and telomerase is in charge of repairing telomeres 
after cell division. However, when they reach a certain critical length, i.e. shorten-
ing or attrition, the cells stop replicating and die [43]. The shortening process, as 
the telomerase fails to replicate completely the terminal ends of the DNA molecules, 
has been reported in ageing [55, 56]. Moreover, in humans, damaged telomerase can 
cause degenerative defects associated with ageing [57, 58].
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Epigenetics meaning “above the genes” is termed as the inheritance of changes 
in gene function with no modifications in the nucleotide sequence of DNA [43, 59]. 
Epigenetic changes that comprise alterations in DNA itself as DNA methylation and 
modifications of histones (acetylation and methylation) as well as of other chroma-
tin-associated proteins and chromatin remodelling can also be involved in ageing 
[22]. Sirtuins, a family of NAD-dependent deacetylases that act on Lys16 of histone 
H4, are emerging as a link between cellular transformation and lifespan [59]. Of 
note, epigenetic alterations seem to be reversible, underpinning the anti-ageing 
interventions [60]. Moreover, Greer et al. [61] showed transgenerational epigenetic 
inheritance of longevity in Caenorhabditis elegans suggesting that manipulation 
of specific chromatin modifiers in parents can induce an epigenetic memory of 
longevity in descendants.

Proteostasis or protein stability is an important feature of the cells and involves 
a complex network that coordinates protein synthesis with polypeptide folding, 
conservation of protein conformation and protein degradation [62, 63]. When 
damaged, as a consequence of various external and endogenous stress factors, it 
leads to the accumulation of protein aggregates holding proteotoxic effects and 
becomes a contributor to ageing and to age-related diseases [63–65]. In fact, it has 
been demonstrated that with age, proteostasis becomes compromised, leading to 
proteotoxicity [43, 62, 66]. More precisely, intracellular damaged protein deposi-
tion has been described in age-related diseases such as Alzheimer’s and Parkinson’s 
[62, 63, 67]. Finally, evidence data have revealed a double-sense link between DNA 
damage and proteostasis, which jointly induce an increased cellular lesion [63].

Deregulated nutrient sensing represents another important hallmark of ageing 
[22, 68]. Nutrient sensing is mediated by specific molecular pathways, such as 
insulin and insulin-like growth factor 1 (IGF-1 informs the cells about the presence 
of glucose and has the same intracellular signalling pathway as insulin), termed as 
“insulin and/IGF1-signalling” pathway (IIS) as well as the mechanistic target of 
rapamycin (mTOR) that senses nutrients, whereas AMP-activated protein kinase 
(AMPK) and sirtuins detect the energy levels [22, 43]. All these systems named as 
“nutrient sensing” pathways regulate metabolism and influence ageing [43]. More 
precisely, current data show that anabolic signalling induces accelerated ageing, 
while decreased nutrient signalling (attained through caloric restriction) promotes 
a healthy span and extends longevity [69, 70].

The “insulin and/IGF1-signalling” pathway (IIS) operates on the forkhead box 
proteins or FOXO family of transcription factors and on the mTOR complexes and 
has been reported to be the most conserved ageing-controlling pathway. Indeed, 
mutations that reduce the functions of insulin and IGF-1 receptor or downregu-
late the intracellular effectors, i.e. AKT, mTOR and FOXO, result in increased 
lifespan [22, 69, 71].

The mTOR kinase is part of two complex proteins and is sensitive to high levels 
of amino acids controlling a wide range of cellular functions, mostly anabolic 
metabolism [72]. It is noteworthy that mTOR is a target of rapamycin (an mTOR 
inhibitor), an antibiotic that exerts anti-proliferative effects by acting through this 
specific pathway. Several studies have shown that mTOR manipulation by inducing 
downregulation is involved in extending longevity [22, 43].

Finally, the AMPK pathway and sirtuins that sense changes in energy levels, 
i.e. low levels of ATP, act in the opposite direction as compared to IIS and mTOR, 
their activation leading to increased energy production and decreased ATP utilisa-
tion [22, 43]. In fact, caloric restriction seems to activate the AMPK pathway [73]. 
Finally, upregulation of both AMPK and sirtuins favours healthy ageing [74].

Mitochondrial dysfunction is a feature of ageing that refers to reduced respiratory 
chain efficiency, resulting in electron leak and diminished ATP production [75]. The 
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consequence of mitochondrial dysfunction, installed across ageing, is the formation 
of ROS, and the theory of free radicals as a mechanism inducing ageing has been 
widely discussed [76]. However, this theory has been re-analysed and reconsidered 
as emerging data show that oxidative stress up to a specific threshold has, in fact, a 
beneficial effect in prolonging lifespan [77, 78]. More specifically, it seems that ROS 
in a certain amount may play a role as a trigger of compensatory homeostatic reac-
tions as a response to the ongoing and increasing stress factors that come along with 
ageing, resulting in facing damage and maintaining survival [79]. Still, when over 
the specific threshold, ROS change their purpose and induce deleterious age-related 
effects [77, 80, 81].

Apart from the ROS theory, accumulating data have revealed that impaired 
mitochondrial function may contribute to ageing through other mechanisms, 
such as the increase of permeability in response to stress that triggers inflamma-
tory reactions, the damaged interface between the outer mitochondrial membrane 
and the endoplasmic reticulum as well as reduced biogenesis of mitochondria 
[22]. Furthermore, it seems that both endurance training and alternate-day fast-
ing have the ability to improve healthspan through mitochondrial degeneration 
avoidance [82, 83].

Finally, the mitochondrial dysfunction seems to be related to the hormesis which 
is deemed as an adaptive response of the organism to low doses of a toxic agent or 
physical condition, such as ROS, that induces the ability of the organism to tolerate 
higher doses of the same toxic agent [63]. Hence, although severe mitochondrial 
dysfunction is deleterious, mild respiratory damage may increase lifespan, possibly 
subsequently to a hormetic response [84]. In fact, data from the literature have 
shown that metformin could be considered a mild mitochondrial “toxic agent” as it 
induces a low energy state and activates AMPK [85]. In this respect, Anisimov et al. 
[74] showed that when administrated early in life, metformin treatment increases 
life span in mice.

Senescence is an age hallmark that stands out as a response triggered by genomic 
instability and telomere attrition resulting in growth arrest, thus limiting the 
proliferation of aged and damaged cells [22, 46, 47, 86]. A second important 
feature of senescent cells is the development of a peculiar secretome, termed as the 
senescence-associated secretory phenotype (SASP), which encompasses cytokines, 
chemokines and proteases, resulting in a pro-inflammatory state [87, 88]. Under 
normal conditions the SASP is involved in the recruitment of macrophages, neutro-
phils and natural killer (NK) cells, thus holding a beneficial effect in eliminating the 
senescent cells. However, across the ageing process, the senescence cells accumulate 
resulting in increased cytokine production and recruitment of more immune cells, 
which jointly contribute to the onset of the inflammageing state, a true driver of 
ageing [36, 87]. Moreover, a declined activity of the immune system, termed as 
immunosenescence, is installed in aged people, thus impairing the clearance of 
senescent cells and, in turn, increasing even more the chronic inflammation state. 
Collectively, senescence, inflammageing and immunosenescence promote age-
ing and operate together, rendering aged people more susceptible to age-related 
diseases [87, 89]. Finally, interestingly, mitochondrial dysfunction can also trigger 
cellular senescence, a process termed as “mitochondrial dysfunction-associated 
senescence” (MiDAS). MiDAS support the existence of a strong inter-relation 
between cellular senescence and metabolic dysfunction, highlighting that targeting 
metabolism may be a proper way to extend lifespan in humans [36].

Stem cell exhaustion, i.e. the progressive decline in the regenerative potential 
of the stem cells needed for tissue repair, is another characteristic of ageing. As 
explained, ageing is accompanied by immunosenescence, a condition that results 
from reduced haematopoiesis and that has several deleterious consequences [22].
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Finally, apart from cellular damage, ageing also implies altered intercellular com-
munication. Inflammation is an ageing-associated damage in intercellular commu-
nication termed as “inflammageing,” as previously described. Inflammageing may 
result from multiple causes, such as the accumulation of tissue damage, the reduced 
ability of the immune system to remove pathogens, the increase of senescent cells 
that produce pro-inflammatory cytokines, immunosenescence that fails to remove 
the senescent cells, the activation of the NFkB transcription factor, as well as the 
onset of a dysfunctional autophagic response [22]. Noteworthy, that inflammation 
is involved in the pathogenesis of obesity and T2DM, diseases that contribute to the 
onset of ageing [71]. Apart from inflammation, the intercellular communication has 
been revealed by the bystander effect referring to senescent cells inducing senes-
cence in neighbouring cells via gap-junction-mediated cell–cell cross talk [90].

Given the aforementioned complex hallmarks of ageing, researchers world-
wide have searched for proper tools to obtain the delay of ageing and the avoid-
ance of age-related diseases. Here we find metformin, a drug that has been 
reported to be useful in modulating some of the age-related features. In fact, 
in cellular and animal models, metformin has been shown to influence and to 
hold beneficial effects on the following age related hallmarks [91]: (1) genomic 
instability [92, 93], (2) telomere attrition [94], (3) epigenetic changes [95], (4) 
proteostasis [96, 97], (5) nutrient-sensing pathways [98, 99], (6) mitochondrial 
function [100], (7) cellular senescence [101, 102], (8) stem cell function [103], 
and (9) low-grade inflammation [104].

4. Experimental evidence on the anti-ageing effect of metformin

Evidence-based data have revealed that metformin holds an important role 
in extending survival and delaying the onset of age-related diseases in nematode 
Caenorhabditis elegans [105, 106] and mice [107], but not in Drosophila melanogaster 
[108, 109]. In this respect, metformin supplementation was shown to increase 
mean lifespan and to prolong the healthspan of nematode Caenorhabditis elegans 
(an experimental model often used to study ageing and anti-ageing therapies) via 
AMPK [106]. Moreover, other authors have shown that metformin has the ability 
to retard ageing in Caenorhabditis elegans by metabolic alteration of its trophic 
microbial partner, E. coli. In brief, metformin disrupts the bacterial folate cycle, 
which reduces the levels of methionine in the worm. Finally, this results in postpon-
ing ageing by triggering a metabolic dietary restriction phenomenon and AMPK 
activation [105, 110]. Based on these results, we might argue another important role 
of metformin, that of modulating human microbiota, i.e. an increased abundance 
of E. coli, resulting in an increased production of short-chain fatty acids, such as 
butyrate and propionate, by which metformin might induce significant positive 
results in T2DM and might interfere with longevity [36, 111, 112].

In a very recent study, Song et al. [113] used the silkworm, a popular experimen-
tal model, to investigate the impact of metformin on lifespan and the underlying 
molecular pathways. They found that metformin prolonged lifespan without reduc-
ing body weight, which suggests that it can increase lifespan by remodelling the 
animal’s energy distribution strategy. Also, metformin increased fasting tolerance 
and levels of the antioxidant glutathione and activated APMK. Finally, these results 
suggest that activity in this pathway may contribute to metformin-induced lifespan 
extension in silkworm by increasing stress resistance and anti-oxidative capacity, 
while reducing energy output for silk product [113].

Studies on ageing and lifespan have also been performed on mice,  highlighting 
the potential anti-ageing effect of metformin, resulting in an extended 
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ing body weight, which suggests that it can increase lifespan by remodelling the 
animal’s energy distribution strategy. Also, metformin increased fasting tolerance 
and levels of the antioxidant glutathione and activated APMK. Finally, these results 
suggest that activity in this pathway may contribute to metformin-induced lifespan 
extension in silkworm by increasing stress resistance and anti-oxidative capacity, 
while reducing energy output for silk product [113].

Studies on ageing and lifespan have also been performed on mice,  highlighting 
the potential anti-ageing effect of metformin, resulting in an extended 
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lifespan [114–116]. Anisimov et al. [116] demonstrated that chronic treatment of 
female mice with metformin significantly increased mean and maximum lifespan, 
even without cancer prevention in that model. In a further study, the authors 
showed that in female mice, metformin increased lifespan and postponed tumours 
when started at young and middle, but not at the old age [74]. Besides the increase 
of lifespan in mice, Martin-Montalvo et al. [107] pointed out that metformin seems 
to mimic some of the benefits of calorie restriction and leads to improved glucose-
tolerance test, increased insulin sensitivity and reduced low-density lipoprotein 
and cholesterol levels without a decrease in the caloric intake. With respect to the 
mechanisms of action, metformin seems to increase the antioxidant activity, result-
ing in reductions in both oxidative stress and chronic inflammation [107].

Finally, as previously mentioned, not all experimental models confirm the anti-
ageing role of metformin. It is the case of Drosophila fruit fly, another animal model 
where the authors showed that metformin induced a robust activation of AMPK 
and reduced lipid stores, but did not increase lifespan. Moreover, they found that 
when administered in high concentrations, metformin is toxic to flies. Finally, it 
seems that metformin appears to have evolutionarily conserved effects on metabo-
lism but not on fecundity or lifespan [108].

5.  Mechanisms of metformin action: A focus on molecular 
pathways that modulate ageing

The main universally accepted role of metformin is to alleviate hyperglycaemia. 
This outcome is obtained through the inhibition of hepatic gluconeogenesis  
[117, 118]. Metformin holds an insulin-sensitising action and insulin-induced sup-
pression of endogenous glucose production [119]. Although other organs have been 
discussed as a target for metformin, such as the gut [120], liver remains the main 
ground of action, as reduced hepatic uptake of metformin prevents the lower-
ing blood glucose effect [91]. There are several mechanisms by which metformin 
downregulates gluconeogenesis. Firstly, metformin induces alterations in cellular 
energetics [117], i.e. by decreasing cellular respiration through inhibition of the 
complex I mitochondrial respiratory chain [121, 122]. The result of this inhibition is 
the increase of the ADP:ATP and AMP:ATP ratios, which subsequently activate the 
cellular energy state sensor AMP-activated protein kinase (AMPK) [91, 110, 123], 
the key player of metformin. Once activated, AMPK leads to an increase in ATP 
production and a decrease in ATP consumption [42]. Noteworthy, AMPK is one of 
the molecular pathways that can modify the rate of ageing [43]. The importance of 
the activation of AMPK in obtaining the reduction in hepatic glucose production 
was investigated by Hawley et al. [85] who showed that an AMPK mutant does not 
respond to metformin treatment. On the other hand, Foretz et al. [124] showed 
that in AMPK knockout mice, the inhibition of gluconeogenesis is still present and 
associated with a reduction in energy state, but this happens in response to higher 
concentrations of metformin as compared to standard treatment. With regard to 
therapeutic concentrations of metformin, it seems that AMPK activation is manda-
tory for the suppression of gluconeogenesis [117, 125]. Finally, we have to mention 
that the activation of AMPK via inhibition of the complex I mitochondrial respira-
tory chain has been recently debated [126] as physiological/low concentration of 
metformin, which cannot induce AMP/ATP change, can still activate AMPK [125].

Another effect mediated by AMPK activation by metformin refers to the inhibi-
tory phosphorylation of acetyl-CoA carboxylase (ACC), which leads to increased 
fatty acid uptake and β-oxidation and hence to improved lipid metabolism and 
subsequently to improved insulin sensitivity [127]. Furthermore, activated AMPK 
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decreases glucagon-stimulated cyclic AMP (cAMP) accumulation, cAMP-depen-
dent protein kinase (PKA) activity and downstream PKA target phosphorylation 
and increases cyclic nucleotide phosphodiesterase 4B (PDE4B). The authors pro-
vided a new mechanism by which AMPK antagonises hepatic glucagon signalling 
via phosphorylation-induced PDE4B activation [128]. Moreover, the decreased PKA 
activity promotes glucose consumption and inhibits glucose output [129]. Finally, 
metformin inhibits hepatic gluconeogenesis through AMPK-dependent regulation 
of the orphan nuclear receptor small heterodimer partner (SHP) [130].

Secondly, AMPK-independent mechanisms by which metformin inhibits hepatic 
gluconeogenesis have been reported [117]. In this respect, Miller et al. [131] point 
towards the ability of the drug to inhibit adenylate cyclase, reduce levels of cAMP 
and PKA activity, abrogate phosphorylation of critical protein targets of PKA, and 
block glucagon-dependent glucose output from hepatocytes through accumulation 
of AMP and related nucleotides independently of AMPK [131]. In addition, met-
formin inhibits the mitochondrial glycerophosphate dehydrogenase, resulting in 
an altered hepatocellular redox state, reduced conversion of lactate and glycerol to 
glucose and hence decreased hepatic gluconeogenesis [132].

Taken together, given the important role of metformin in inhibiting hepatic 
gluconeogenesis and therefore in reducing hyperglycaemia and subsequently 
hyperinsulinemia, jointly, important accelerators of ageing, several studies regard 
metformin as a potential anti-ageing drug [42, 117]. Metformin works through 
complex mechanisms that have been demonstrated to be similar to those associated 
with caloric restriction, a well-known model that underpins extended lifespan and 
healthspan. More precisely, it seems that both metformin and caloric restriction 
induce the same gene expression profile [107, 117, 133].

Another important target involved in changing the rate of ageing is mTOR [117]. 
TOR responds to insulin, amino acids and hormones and is involved in controlling 
a wide range of cellular functions, such as glucose metabolism, lipid and protein 
synthesis, inflammation and mitochondrial function [72]. Metformin has been 
demonstrated to downregulate mTOR in both a AMPK-dependent and AMPK-
independent manner [98, 134–136]. Through stimulation of AMPK, metformin 
induces suppression of ATP consumption by inhibiting energy needing processes, 
such as protein synthesis via mTOR [42, 137]. In addition, through downregulation 
of mTOR signalling and of insulin-like growth factor 1 (IGF-1), metformin influ-
ences cell growth, proliferation and autophagy [42].

NF-kB pathway is another key mediator of ageing. As previously described, it is 
activated by genotoxic, oxidative and inflammatory stress and regulates the expres-
sion of cytokines, inflammation, growth factors and genes that regulate apoptosis 
[45]. Metformin has been demonstrated to inhibit NF-kB resulting in suppressing 
the inflammatory response via AMPK-dependent and independent pathways [138]. 
Also, metformin seems to hold the ability to reduce the endogenous ROS production 
[93] by acting at a mitochondrial level through blockage of the reverse electron flow 
at the respiratory chain complex 1 [139].

Finally, a very recent pathway has been described by Chen et al. [140]. The 
authors showed through genetic manipulation that metformin extends the 
Caenorhabditis elegans lifespan and attenuates age-related fitness decline via a 
mechanism that requires v-ATPase-Ragulator-AXIN/LKB1 of the lysosomal path-
way [140].

In toto, the possible molecular mechanisms by which metformin exerts anti-
ageing effects are [13, 91]: (1) inhibition of mitochondrial complex 1 in the electron 
transport chain and decrease of ROS production [139, 141], (2) activation of AMPK 
[106, 124, 140, 142–144], (3) inhibition of mTOR [106, 134, 135, 140], (4) NF-ĸB 
inhibition [101], and (5) reduced IGF-1 signalling [145].
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6. Conclusions

Ageing encompasses a cluster of processes that induce a gradual decline of the 
human body functions, a condition that everyone faces in time. Also, ageing is a 
risk factor for a gamut of disturbances such as cancer, T2DM and cardiovascular 
and neurodegenerative diseases. Therefore, researchers worldwide strive to find the 
adequate tools in order to delay/avoid the onset of age-related diseases and hence 
promote healthspan. In keeping with this aim, metformin emerges as a drug that, 
beyond its main role to reduce hyperglycaemia, has antitumor effects and works 
as a protector against cardiovascular and neurodegenerative diseases making it a 
potential anti-ageing medicine. Importantly, metformin seems to possess positive 
effects even in nondiabetic subjects. However, the exact mechanisms of action and 
the molecular pathways involved in ageing that are modulated by metformin are not 
fully explained, and further studies are warranted for a better understanding of the 
beneficial effects of this drug.
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background treatment of diabetes and pre-diabetes, but also in reproductive pathology, 
cancer, cardiovascular disease, and antiageing. In this respect, the mechanisms of 

action and the pharmacodynamics of metformin seem to be incompletely known, a 
number of current studies have revealed new action valences.
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