
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

130,000 155M

TOP 1%154

5,300

Visual Analysis of Robot and Animal Colonies 91

Visual Analysis of Robot and Animal Colonies

E. Martínez and A.P. del Pobil

X

Visual Analysis of Robot and Animal Colonies

E. Martínez and A.P. del Pobil
Robotic Intelligence Lab, Jaume-I University Castellón, Spain

Interaction Science Dept., Sungkyunkwan University, Seoul, S. Korea

1. Introduction

Micro-robotics calls for the development of tracking systems in order to study the
movement of each micro-robot in a colony to answer questions about what they are doing
and where and when they act (see Fig. 1). Moreover, micro-robots can be used to emulate
social insect behaviour (Camazine et al., 2001) and study them through tracking experiments
involving several miniature robots on a desktop table. Thus, principles of self-organization
in these colonies, which were studied so far by analysis of a tremendous amount of insect
trajectories and manual event counting, are now better understood by biologists thanks to
robotics research.

Fig. 1. Analogy between social insects (left) and a micro-robot colony (right)

Although this approach is only recently increasing its popularity, computer vision systems
for tracking moving targets are widely used in many applications such as smart
surveillance, virtual reality, advanced user interfaces, motion analysis and model-based
image coding (Gavrila, 1999). Surveillance systems seek to automatically identify people,
objects or events of interest in different kind of environments (Russ, 1998; Toyama et al.
1999; Haritaoglu et al., 2000; Radke et al., 2005). However, this problem is not easy to solve.
First of all, it is not viable to tag each colony member under study. On the one hand, the tag
selection process can be difficult since tags must be very small in some cases and, therefore,
it might not be possible to detect them in an image. Furthermore, tags can become
ambiguous when a swarm is composed of many individuals. On the other hand, tagging can
alter individual behaviour. So, an application for tracking unmarked object has been
developed. A new problem arises: how to identify the same object in two consecutive frames.
SwisTrack (Correll et al., 2006) is a previous work following this approach which we try to
improve. It is a platform-independent, easy-to-use and robust tracking software developed
to study robot swarms and behavioural biology. It is part of the European project LEURRE
(http://leurre.ulb.ac.be.2006) focused on building and controlling mixed societies composed

6

www.intechopen.com

Swarm Robotics, From Biology to Robotics92

of animals and artificial embedded agents. In preliminary case studies towards this aim
(Caprari et al., 2005), an Insbot team has been introduced into a swarm of cockroaches and
allowed for modification of the natural behaviour of the swarm. We will show that our
application achieves robust performance in object identification and tracking without the
need of a strong intervention by the user.
As the structure of the designed method (see Fig. 2), this paper is organized as follows: the
visual segmentation and detection of objects are described in Sec. 2 and 3. In Sec. 4 we
outline the tracking problem and its solution. Experimental results are given in Sec. 5 and
discussed in Sec. 6.

Fig. 2. Flowchart of the whole designed method

2. Object Segmentation

A common element of any surveillance systems is a module that is capable of identifying the
set of pixels which represents all the individuals under study in each captured image. There
are several techniques to carry out this task. For example, the background modeling
approach (Toyama et al., 1999; Haritaoglu et al., 2000) allows to model dynamic factors such
as blinking of screens, shadows, mirror images on the glass windows or small variations in
illumination due to flickering of light sources. Pixels are classified as background or
foreground depending on the fitting of their values with the built model. As a drawback,
this method is not capable of adapting to sudden illumination changes, and we ruled it out
with the aim of developing a more robust surveillance application in the presence of
variation of lighting conditions. On the other hand, most of the alternative techniques are
developed by gray-level image processing so that if available images are in color, it is
necessary to convert them to gray-level. As our system has color images as input, the binary
image resulting from the segmentation process can be obtained from a combination of three

binary images (each color channel generates a gray-level image which is segmented by the
selected method obtaining a different binary image), or from a gray-level image obtained
directly from the color one.
Thus, the first step is to convert the captured color image to a gray-level one. For such
preprocessing, the Hue-Saturation-Intensity (HSI) system is used since it encodes color
information by separating an overall intensity value I from two values encoding chromaticity
- hue H and saturation S. HSI might also provide better support for computer vision
algorithms because it is amenable to normalization for lighting and focus on the two
chromaticy parameters that are more associated with the intrinsic character of a surface
rather than the lightning source. Thus, the resulting gray-level image is only built from the
intensity value. Derivation of HSI coordinates from RGB coordinates is a common process in
computer vision (Shapiro and Stockman, 2001).
Once the gray-scale image is available, a segmentation process has to be applied on it.
Although frame difference is the easiest and fastest method to detect moving objects in an
image, it fails when the objects are steady. This problem could be solved by taking a
reference image with no objects and subtracting it from the new ones. Nevertheless, a little
illumination change might make the whole process fail, thus, an alternative algorithm
should be chosen. In our case, the corresponding binary image is obtained from an input
gray-scale by thresholding operations as in Swistrack. This technique defines a range of
brightness values in the original image: pixel value greater than a threshold (or lower,
depending on its definition) belongs to the foreground and the rest of pixels are classified as
background. The drawback of this method is the correct determination of the threshold. In
Swistrack two different kinds of reference images are used, depending on the mode in which
the system is operating:
 Static background: the background image is captured at the beginning of the

experiment and is not updated at any time;
 Running average: the reference image is built as the running average of all video frames

processed until that moment
The threshold is fixed in both cases and represents the minimum difference required to
classify a pixel as foreground. It is important to note that the fixed threshold is sensitive to
changes in lighting conditions, especially in the first operation mode in which the reference
image is not updated during all the experiment. Although the running average is more
capable of dealing with illumination changes, it might consider objects that stop moving for
a long period of time as part of the background, without detecting their presence in the
scene. We have implemented a method for automatically calculating the threshold based on
histogram properties by updating its value in each frame, in order to adapt it to variations of
the lighting conditions. This provides an advantage over the Swistrack method, as significant
intensity differences between the objects to be tracked and the background are not
necessary.
After the threshold setting, two consecutive morphological operations are applied on the
binary image resulting from the segmentation process. These steps are required to erase
isolated points or lines caused by different dynamic factors such as, for example, changes
induced by camera motion, sensor noise, non-uniform attenuation, blinking of lights or
atmospheric absorption. A 3x3 erode filter is used to delete these artefacts and then a 3x3
expand filter is applied to recover the foreground region. A result of the whole process can
be observed in Figure 3, where a group of micro-robots is seen from above. As it can be seen,

www.intechopen.com

Visual Analysis of Robot and Animal Colonies 93

of animals and artificial embedded agents. In preliminary case studies towards this aim
(Caprari et al., 2005), an Insbot team has been introduced into a swarm of cockroaches and
allowed for modification of the natural behaviour of the swarm. We will show that our
application achieves robust performance in object identification and tracking without the
need of a strong intervention by the user.
As the structure of the designed method (see Fig. 2), this paper is organized as follows: the
visual segmentation and detection of objects are described in Sec. 2 and 3. In Sec. 4 we
outline the tracking problem and its solution. Experimental results are given in Sec. 5 and
discussed in Sec. 6.

Fig. 2. Flowchart of the whole designed method

2. Object Segmentation

A common element of any surveillance systems is a module that is capable of identifying the
set of pixels which represents all the individuals under study in each captured image. There
are several techniques to carry out this task. For example, the background modeling
approach (Toyama et al., 1999; Haritaoglu et al., 2000) allows to model dynamic factors such
as blinking of screens, shadows, mirror images on the glass windows or small variations in
illumination due to flickering of light sources. Pixels are classified as background or
foreground depending on the fitting of their values with the built model. As a drawback,
this method is not capable of adapting to sudden illumination changes, and we ruled it out
with the aim of developing a more robust surveillance application in the presence of
variation of lighting conditions. On the other hand, most of the alternative techniques are
developed by gray-level image processing so that if available images are in color, it is
necessary to convert them to gray-level. As our system has color images as input, the binary
image resulting from the segmentation process can be obtained from a combination of three

binary images (each color channel generates a gray-level image which is segmented by the
selected method obtaining a different binary image), or from a gray-level image obtained
directly from the color one.
Thus, the first step is to convert the captured color image to a gray-level one. For such
preprocessing, the Hue-Saturation-Intensity (HSI) system is used since it encodes color
information by separating an overall intensity value I from two values encoding chromaticity
- hue H and saturation S. HSI might also provide better support for computer vision
algorithms because it is amenable to normalization for lighting and focus on the two
chromaticy parameters that are more associated with the intrinsic character of a surface
rather than the lightning source. Thus, the resulting gray-level image is only built from the
intensity value. Derivation of HSI coordinates from RGB coordinates is a common process in
computer vision (Shapiro and Stockman, 2001).
Once the gray-scale image is available, a segmentation process has to be applied on it.
Although frame difference is the easiest and fastest method to detect moving objects in an
image, it fails when the objects are steady. This problem could be solved by taking a
reference image with no objects and subtracting it from the new ones. Nevertheless, a little
illumination change might make the whole process fail, thus, an alternative algorithm
should be chosen. In our case, the corresponding binary image is obtained from an input
gray-scale by thresholding operations as in Swistrack. This technique defines a range of
brightness values in the original image: pixel value greater than a threshold (or lower,
depending on its definition) belongs to the foreground and the rest of pixels are classified as
background. The drawback of this method is the correct determination of the threshold. In
Swistrack two different kinds of reference images are used, depending on the mode in which
the system is operating:
 Static background: the background image is captured at the beginning of the

experiment and is not updated at any time;
 Running average: the reference image is built as the running average of all video frames

processed until that moment
The threshold is fixed in both cases and represents the minimum difference required to
classify a pixel as foreground. It is important to note that the fixed threshold is sensitive to
changes in lighting conditions, especially in the first operation mode in which the reference
image is not updated during all the experiment. Although the running average is more
capable of dealing with illumination changes, it might consider objects that stop moving for
a long period of time as part of the background, without detecting their presence in the
scene. We have implemented a method for automatically calculating the threshold based on
histogram properties by updating its value in each frame, in order to adapt it to variations of
the lighting conditions. This provides an advantage over the Swistrack method, as significant
intensity differences between the objects to be tracked and the background are not
necessary.
After the threshold setting, two consecutive morphological operations are applied on the
binary image resulting from the segmentation process. These steps are required to erase
isolated points or lines caused by different dynamic factors such as, for example, changes
induced by camera motion, sensor noise, non-uniform attenuation, blinking of lights or
atmospheric absorption. A 3x3 erode filter is used to delete these artefacts and then a 3x3
expand filter is applied to recover the foreground region. A result of the whole process can
be observed in Figure 3, where a group of micro-robots is seen from above. As it can be seen,

www.intechopen.com

Swarm Robotics, From Biology to Robotics94

although the lighting conditions are not good in some places, the designed application is
capable of detecting all visible micro-robots in the image. However, the pixels due to light
reflexions on the arena are not removed from the image. This issue will be solved by means
of the implemented labeling method described in next section.

Fig. 3. An image captured by the system camera (left), the binary image obtained by the
segmentation process (center) and the resulting binary image after applying two
morphological operations (right)

3. Object Identification

The aim of this stage is to obtain a labeled image in which each label identifies one colony
member. This can be a difficult task when objects are touching one another, because an
identified blob contains all objects with, at least, one point in common. The method
implemented to achieve the above goal can be divided into three steps:

1. Labeling of the identified blobs in the input binary image. A row-by-row labeling
method (Shapiro and Stockman, 2001) is used to reduce the computational cost of the
whole process. The binary image is scanned twice: the first time to tag each
foreground pixel based on the labels of its neighbors and to establish equivalences
between different labels; the second, crossed scan, will unify tags which belong to the
same blob

2. Classification of the labeled blobs as targets to be tracked or as bad-segmented pixels,
and detection of collisions inside a blob identified as a tracking target. All targets are
assumed as not touching in the first captured image. The number of targets to be
tracked is specified by the user, and the application calculates the minimal and
maximal size allowed from the first captured image. This knowledge, together with
the number of the detected blobs in each frame, allows to define a series of criteria to
determine when a blob represents more than one object, and to reject all blobs that do
not identify target objects but are instead the result of a bad segmentation, as it occurs
with the set of noisy pixels in the example of Fig. 3

3. Segmentation of blobs that represent groups of more than one object to be tracked. This
step is explained in more detail in the next section

As seen above, it is possible that the same blob identifies more than one object to be tracked.
Thus, it is important to detect these situations and split up the blob in the corresponding
objects. There are two different tasks to be performed: determining the number of touching
objects inside the same blob and splitting them up.
The first goal is achieved through several criteria which are relationships between blobs and
object sizes. They can be easily set up by the application, assuming that no target objects are
touching in the first captured image. Thus, our application calculates the maximum and

minimum dimensions of the visual objects from the first captured scene and the criteria
remain set. This step is important because perceived object size can vary with the distance
between the arena and the camera and if an object size in pixels is directly related to its real
size, as in Swistrack, a calibration error can be introduced in all calculations. Due to this
error, the application might fail the tracking process. So, the only parameter our application
needs, which is requested to the user, is the number of objects to be tracked.
The next step is to split up the different objects which compose one blob. As it is difficult to
identify several objects at the same time, we have studied three different, possible situations
assuming that only two objects are touching. Thus, our application split up any complex blob
in two different parts: one target object and another blob which can be again composed of
more than one micro-robot. If the new blob represents several micro-robots, the split-up
process is recursively applied until the obtained blob is composed of only one target object.
The three different cases that have been studied are the following:

1. two objects touching only in one point;
2. two objects sharing one side, that is, they are horizontally or vertically aligned;
3. two objects touching in several points which do not correspond to their sides

In the first case, a contour method is used. A chain code is calculated by considering that the
contact pixel will be visited twice. The method takes into account the contour irregularities
due to the segmentation process and it applies different criteria to determine the correct
contact point as shown in Fig. 4.

Case 1 Case 2 Case 3

Fig. 4. Colored images from the resolution of contact cases

The second case, when two objects share one side, has been considered because of the micro-
robots used in our experiments, the Alice2002 (Caprari and Siegwart, 2005) (see Fig. 5). These
micro-robots can be seen from above as boxes and two Alice2002 can share one side in any
moment. It is important to note that this case does not apply to micro-robots that do not
have a shape in which a side can be shared. A method based on dimension criteria is used to
determine the common side, and it estimates their splitting line as shown in Fig. 4.

(a) A micro-robot Alice 2002 (b) Infrared proximity sensors

Fig. 5. Micro-robot Alice2002

Finally, the most general and complex case is when an object and another blob compose a
bigger blob, and the contact between them is through several pixels which do not correspond
to an object side. Therefore, the designed method is based on holes inside blobs. Again, this
might be the result of a bad segmentation. For this reason, a set of criteria were defined for

www.intechopen.com

Visual Analysis of Robot and Animal Colonies 95

although the lighting conditions are not good in some places, the designed application is
capable of detecting all visible micro-robots in the image. However, the pixels due to light
reflexions on the arena are not removed from the image. This issue will be solved by means
of the implemented labeling method described in next section.

Fig. 3. An image captured by the system camera (left), the binary image obtained by the
segmentation process (center) and the resulting binary image after applying two
morphological operations (right)

3. Object Identification

The aim of this stage is to obtain a labeled image in which each label identifies one colony
member. This can be a difficult task when objects are touching one another, because an
identified blob contains all objects with, at least, one point in common. The method
implemented to achieve the above goal can be divided into three steps:

1. Labeling of the identified blobs in the input binary image. A row-by-row labeling
method (Shapiro and Stockman, 2001) is used to reduce the computational cost of the
whole process. The binary image is scanned twice: the first time to tag each
foreground pixel based on the labels of its neighbors and to establish equivalences
between different labels; the second, crossed scan, will unify tags which belong to the
same blob

2. Classification of the labeled blobs as targets to be tracked or as bad-segmented pixels,
and detection of collisions inside a blob identified as a tracking target. All targets are
assumed as not touching in the first captured image. The number of targets to be
tracked is specified by the user, and the application calculates the minimal and
maximal size allowed from the first captured image. This knowledge, together with
the number of the detected blobs in each frame, allows to define a series of criteria to
determine when a blob represents more than one object, and to reject all blobs that do
not identify target objects but are instead the result of a bad segmentation, as it occurs
with the set of noisy pixels in the example of Fig. 3

3. Segmentation of blobs that represent groups of more than one object to be tracked. This
step is explained in more detail in the next section

As seen above, it is possible that the same blob identifies more than one object to be tracked.
Thus, it is important to detect these situations and split up the blob in the corresponding
objects. There are two different tasks to be performed: determining the number of touching
objects inside the same blob and splitting them up.
The first goal is achieved through several criteria which are relationships between blobs and
object sizes. They can be easily set up by the application, assuming that no target objects are
touching in the first captured image. Thus, our application calculates the maximum and

minimum dimensions of the visual objects from the first captured scene and the criteria
remain set. This step is important because perceived object size can vary with the distance
between the arena and the camera and if an object size in pixels is directly related to its real
size, as in Swistrack, a calibration error can be introduced in all calculations. Due to this
error, the application might fail the tracking process. So, the only parameter our application
needs, which is requested to the user, is the number of objects to be tracked.
The next step is to split up the different objects which compose one blob. As it is difficult to
identify several objects at the same time, we have studied three different, possible situations
assuming that only two objects are touching. Thus, our application split up any complex blob
in two different parts: one target object and another blob which can be again composed of
more than one micro-robot. If the new blob represents several micro-robots, the split-up
process is recursively applied until the obtained blob is composed of only one target object.
The three different cases that have been studied are the following:

1. two objects touching only in one point;
2. two objects sharing one side, that is, they are horizontally or vertically aligned;
3. two objects touching in several points which do not correspond to their sides

In the first case, a contour method is used. A chain code is calculated by considering that the
contact pixel will be visited twice. The method takes into account the contour irregularities
due to the segmentation process and it applies different criteria to determine the correct
contact point as shown in Fig. 4.

Case 1 Case 2 Case 3

Fig. 4. Colored images from the resolution of contact cases

The second case, when two objects share one side, has been considered because of the micro-
robots used in our experiments, the Alice2002 (Caprari and Siegwart, 2005) (see Fig. 5). These
micro-robots can be seen from above as boxes and two Alice2002 can share one side in any
moment. It is important to note that this case does not apply to micro-robots that do not
have a shape in which a side can be shared. A method based on dimension criteria is used to
determine the common side, and it estimates their splitting line as shown in Fig. 4.

(a) A micro-robot Alice 2002 (b) Infrared proximity sensors

Fig. 5. Micro-robot Alice2002

Finally, the most general and complex case is when an object and another blob compose a
bigger blob, and the contact between them is through several pixels which do not correspond
to an object side. Therefore, the designed method is based on holes inside blobs. Again, this
might be the result of a bad segmentation. For this reason, a set of criteria were defined for

www.intechopen.com

Swarm Robotics, From Biology to Robotics96

detecting when a hole is due to bad segmentation and when it is a hole between two
different objects. As it can be seen in Fig. 4, the designed method provides successful results.

4. Tracking Micro-robots

Once each micro-robot is identified as an object, the next step is to match each object with
one of those detected in the previous frame, in order to obtain its trajectory.
Object position can be calculated as the geometrical center of gravity of object contour
(Correll et al., 2006), but we decided to calculate it as the geometrical center of gravity of a
blob corresponding to an object. Since the correspondence between an object and a blob has
been obtained in the previous step, this procedure is easier and faster. The issue now is how
to associate each center of gravity with its corresponding object between the new ones. The
chosen solution, the nearest neighbor method, is an easy one, but its implementation raises
several issues (Correll et al., 2006). The different way of dealing with them will determine
the successfulness of the application.
The first challenge to solve is the case of an object that is closer to the previous position than
the real one (situation already described in a previous work (Correll et al., 2006)). A
quadratic assignment problem for minimizing the sum over the distance of all assignments
is used in Swistrack, but this does not constitute an optimum solution since it fails in some
cases. On the contrary, a solution focused on the previous movements of objects is presented
here, that is, the matching algorithm associates the information on the nearest neighbor with
that regarding the previous movement direction.
It might also be that an object disappears from the scene (Correll et al., 2006), but if the
application does not detect all elements specified by the user, then it will fail when this
situation occurs, because objects enter or leave the arena, and the system will repeatedly
capture another image until it finds all the objects. Another situation (again presented in
(Correll et al., 2006)) is when two shared trajectories are divided at the wrong time, but this
is not possible in our application because blobs are divided into their corresponding objects
even though they are touching, as previously explained. Finally, an additional skill of our
application is the ability of avoiding un-associated contours.
Overall, our application is capable of solving the four different situations expounded in
(Correll et al., 2006) and does not need the help of the user for correcting wrong trajectories.
It is also important to note that the modified nearest neighbor technique is only applied on a
small region of the image, not on the whole image, in order to make the application faster.
Again, it is not possible to fix the search area size because a delay can be produced during
capture process. Thus, our application calculates the search area dimension based on
capture time between frames and the maximum velocity of tracking objects, which will be
requested to the user. This reduces the computational time and guarantees the success of the
matching process.

5. Experiments

We first provide a brief overview of the robotic platform used, followed by the experimental
results.
The experimental setup is depicted in Figure 6. A camera is pointing downwards to the
desktop where the micro-robots are working. Our application operates with monocular

color video images (see Fig. 6). The distance between the camera and the arena can vary
from one setup to another and the system calculates the parameter values needed for
obtaining the different criteria. It is important to note that the background of the micro-robot
workspace is black in all our experiments, while the most common solution is to use a white
background.

Fig. 6. Experimental setup (left) and a 320x240 captured image by the camera (right)

The objects to be tracked are Alice2002 robots, as mentioned above. They are extremely
sensitive to external forces and can be very easily damaged if not handled with care. Among
their features, we can mention:

 tiny dimensions (22 mm (width) x 21 mm (length) x 20 mm (height))
 small weight (aproximately 11 g)
 infrared proximity sensors (front, right and left) to avoid obstacles
 low consumption (12 - 17 mW)
 autonomy (up to 10 hours thanks to its Ni-MH rechargeable battery (Varta 3/V40H))
 velocity of 40 mm/s

Finally, a Graphical User Interface (GUI) has been developed to check the performance of
our application. It is composed of two different windows (see Figure 7(a)): on the left, the
user can observe the images taken in real-time and, on the right, a graphical window is
showing the different positions of the objects. Each obtained trajectory is drawn in a
different color to help the user identify each target. As the duration of the experiments is
unknown and the amount of points can be considerable, the application only shows the last
seventy object positions to ease tracking of each described trajectory to the user.
Two different experiments have been carried out. The first one is the tracking of three
unmarked Alice2002 (see Figure 7). Six untagged Alice2002 are studied in the second
experiment (Fig. 8). Both experiments have been carried out at different times of the day and
in different days to test the robustness of our application to different lighting conditions.
As it can be seen in Fig. 7a, all micro-robots to be tracked are not touching in the first stage.
Thus, our application can obtain the information it needs: the objects position, i.e., their
geometrical center of gravity, and the maximum and minimum size allowed for any object.
For clarity of representation, objects are highlighted by inscribing them in circles.
Although there are relevant delays between the first and the second frames and between the
second and the third ones, our application is capable of correctly tracking the objects as
shown in Fig. 7b.
To check the system in different situations, we have changed the moving pattern of the
objects during the experiment. For the first 25 frames all three objects are describing a

www.intechopen.com

Visual Analysis of Robot and Animal Colonies 97

detecting when a hole is due to bad segmentation and when it is a hole between two
different objects. As it can be seen in Fig. 4, the designed method provides successful results.

4. Tracking Micro-robots

Once each micro-robot is identified as an object, the next step is to match each object with
one of those detected in the previous frame, in order to obtain its trajectory.
Object position can be calculated as the geometrical center of gravity of object contour
(Correll et al., 2006), but we decided to calculate it as the geometrical center of gravity of a
blob corresponding to an object. Since the correspondence between an object and a blob has
been obtained in the previous step, this procedure is easier and faster. The issue now is how
to associate each center of gravity with its corresponding object between the new ones. The
chosen solution, the nearest neighbor method, is an easy one, but its implementation raises
several issues (Correll et al., 2006). The different way of dealing with them will determine
the successfulness of the application.
The first challenge to solve is the case of an object that is closer to the previous position than
the real one (situation already described in a previous work (Correll et al., 2006)). A
quadratic assignment problem for minimizing the sum over the distance of all assignments
is used in Swistrack, but this does not constitute an optimum solution since it fails in some
cases. On the contrary, a solution focused on the previous movements of objects is presented
here, that is, the matching algorithm associates the information on the nearest neighbor with
that regarding the previous movement direction.
It might also be that an object disappears from the scene (Correll et al., 2006), but if the
application does not detect all elements specified by the user, then it will fail when this
situation occurs, because objects enter or leave the arena, and the system will repeatedly
capture another image until it finds all the objects. Another situation (again presented in
(Correll et al., 2006)) is when two shared trajectories are divided at the wrong time, but this
is not possible in our application because blobs are divided into their corresponding objects
even though they are touching, as previously explained. Finally, an additional skill of our
application is the ability of avoiding un-associated contours.
Overall, our application is capable of solving the four different situations expounded in
(Correll et al., 2006) and does not need the help of the user for correcting wrong trajectories.
It is also important to note that the modified nearest neighbor technique is only applied on a
small region of the image, not on the whole image, in order to make the application faster.
Again, it is not possible to fix the search area size because a delay can be produced during
capture process. Thus, our application calculates the search area dimension based on
capture time between frames and the maximum velocity of tracking objects, which will be
requested to the user. This reduces the computational time and guarantees the success of the
matching process.

5. Experiments

We first provide a brief overview of the robotic platform used, followed by the experimental
results.
The experimental setup is depicted in Figure 6. A camera is pointing downwards to the
desktop where the micro-robots are working. Our application operates with monocular

color video images (see Fig. 6). The distance between the camera and the arena can vary
from one setup to another and the system calculates the parameter values needed for
obtaining the different criteria. It is important to note that the background of the micro-robot
workspace is black in all our experiments, while the most common solution is to use a white
background.

Fig. 6. Experimental setup (left) and a 320x240 captured image by the camera (right)

The objects to be tracked are Alice2002 robots, as mentioned above. They are extremely
sensitive to external forces and can be very easily damaged if not handled with care. Among
their features, we can mention:

 tiny dimensions (22 mm (width) x 21 mm (length) x 20 mm (height))
 small weight (aproximately 11 g)
 infrared proximity sensors (front, right and left) to avoid obstacles
 low consumption (12 - 17 mW)
 autonomy (up to 10 hours thanks to its Ni-MH rechargeable battery (Varta 3/V40H))
 velocity of 40 mm/s

Finally, a Graphical User Interface (GUI) has been developed to check the performance of
our application. It is composed of two different windows (see Figure 7(a)): on the left, the
user can observe the images taken in real-time and, on the right, a graphical window is
showing the different positions of the objects. Each obtained trajectory is drawn in a
different color to help the user identify each target. As the duration of the experiments is
unknown and the amount of points can be considerable, the application only shows the last
seventy object positions to ease tracking of each described trajectory to the user.
Two different experiments have been carried out. The first one is the tracking of three
unmarked Alice2002 (see Figure 7). Six untagged Alice2002 are studied in the second
experiment (Fig. 8). Both experiments have been carried out at different times of the day and
in different days to test the robustness of our application to different lighting conditions.
As it can be seen in Fig. 7a, all micro-robots to be tracked are not touching in the first stage.
Thus, our application can obtain the information it needs: the objects position, i.e., their
geometrical center of gravity, and the maximum and minimum size allowed for any object.
For clarity of representation, objects are highlighted by inscribing them in circles.
Although there are relevant delays between the first and the second frames and between the
second and the third ones, our application is capable of correctly tracking the objects as
shown in Fig. 7b.
To check the system in different situations, we have changed the moving pattern of the
objects during the experiment. For the first 25 frames all three objects are describing a

www.intechopen.com

Swarm Robotics, From Biology to Robotics98

clockwise circular trajectory. A different circular trajectory with smaller radius is described
during the next 25 frames, as shown in Fig. 7d. Finally, the micro-robots are set in wall
following mode, so they describe a straight-line trajectory until they find a wall to follow, as
can be observed in Fig. 7e.
The second experiment was similar. In this case, our application had to track six unmarked
Alice2002. Again, the first captured frame (see Fig. 8a) reveals that the experiment starts
without collisions between objects. The trajectories described in this experiment are, first,
the smallest-radius circular trajectory; then, four of the micro-robots change their trajectory
describing a circular trajectory with a larger radius and the two remaining ones go straight
ahead looking for a wall to follow. Now, two more micro-robots change to the wall
following mode. It is important to note that our application is capable of detecting objects
only partially visible as shown in Fig. 8d.

(a) Initial State (b) After 5 frames (c) Circular
trajectory

(d) Circular
trajectory with a
different radius

(e) Following wall
mode

Fig. 7. Three Alice2002 tracking experiment: captured image (up) and trajectory image
(down)

(a) First Stage (b) Circular

Trajectory
(c) Change in some

trajectories
(d) Another change
in some trajectories

(e) Following wall
mode

Fig. 8. Six Alice2002 tracking experiment

In addition, examples of the use of our split-up method are finally shown in Fig. 9. A one-
shot video segment of 10 minute duration is available at
 http://www.robot.uji.es/lab/plone/Members/emartine

Fig. 9. Collision detection

To conclude this section, a graph is presented (see Fig. 10) which compares the trajectory
followed by a member of the studied colony in a multiple-target experiment versus the
trajectory obtained by the developed software. As it can be observed, there is no mismatch
in data-association thanks to the implemented method to split up blobs when several
members are in touch.

Fig. 10. Trajectory followed by a single target vs individual trajectory obtained by the
implemented software (above) and error (below)

www.intechopen.com

Visual Analysis of Robot and Animal Colonies 99

clockwise circular trajectory. A different circular trajectory with smaller radius is described
during the next 25 frames, as shown in Fig. 7d. Finally, the micro-robots are set in wall
following mode, so they describe a straight-line trajectory until they find a wall to follow, as
can be observed in Fig. 7e.
The second experiment was similar. In this case, our application had to track six unmarked
Alice2002. Again, the first captured frame (see Fig. 8a) reveals that the experiment starts
without collisions between objects. The trajectories described in this experiment are, first,
the smallest-radius circular trajectory; then, four of the micro-robots change their trajectory
describing a circular trajectory with a larger radius and the two remaining ones go straight
ahead looking for a wall to follow. Now, two more micro-robots change to the wall
following mode. It is important to note that our application is capable of detecting objects
only partially visible as shown in Fig. 8d.

(a) Initial State (b) After 5 frames (c) Circular
trajectory

(d) Circular
trajectory with a
different radius

(e) Following wall
mode

Fig. 7. Three Alice2002 tracking experiment: captured image (up) and trajectory image
(down)

(a) First Stage (b) Circular

Trajectory
(c) Change in some

trajectories
(d) Another change
in some trajectories

(e) Following wall
mode

Fig. 8. Six Alice2002 tracking experiment

In addition, examples of the use of our split-up method are finally shown in Fig. 9. A one-
shot video segment of 10 minute duration is available at
 http://www.robot.uji.es/lab/plone/Members/emartine

Fig. 9. Collision detection

To conclude this section, a graph is presented (see Fig. 10) which compares the trajectory
followed by a member of the studied colony in a multiple-target experiment versus the
trajectory obtained by the developed software. As it can be observed, there is no mismatch
in data-association thanks to the implemented method to split up blobs when several
members are in touch.

Fig. 10. Trajectory followed by a single target vs individual trajectory obtained by the
implemented software (above) and error (below)

www.intechopen.com

Swarm Robotics, From Biology to Robotics100

6. Conclusions

We have presented a tracking application to study micro-robots or social insect cooperative
behavior without the risk of conditioning the results by tagging them. Our system has been
compared with previous ones, and namely with Swistrack, an application intended to control
mixed societies. Although this previous study had the same goal, the authors deal with the
tracking problem in a different way. The given results have shown the robustness of our
application with regard to lighting conditions. Also, no special illumination is required and
performances do not depend on the surrounding objects, as for example it occurs in
Swistrack.
Our designed method also solves situations in which there are several objects touching one
another and it can match an object position in one frame with its position in the next frame.
It is also capable of detecting objects even though their velocity is very slow or if they do not
move, a case typically difficult for similar methods.
As a further achievement, our application only requires two parameters from the user: the
number of target objects and their maximum speed. No thresholds need to be set manually.
Overall, we have designed an application transparent to the user who does not need to
know the implementation details to work with it.
So far, our application has only been tested with homogeneous robotic societies. As further
research, we plan to test it with mixed societies.

7. Acknowledges

This research was partly supported by the Korea Science and Engineering Foundation under
the WCU (World Class University) program funded by the Ministry of Education, Science
and Technology, S. Korea, Grant No. R31-2008-000-10062-0), by the European Commission's
Seventh Framework Programme FP7/2007-2013 under grant agreement 217077 (EYESHOTS
project), by Ministerio de Ciencia e Innovacion (DPI-2008-06636, DPI2004-01920 and FPI
grant BES-2005-8860), by Generalitat Valenciana (PROMETEO/2009/052) and by Fundacio
Caixa Castello-Bancaixa (P1-1B2008-51)

8. References

Camazine S.; Deneubourg J.L.; Franks N.R.; Sneyd J.; Theraulaz G. and Bonabeau E. (2001).
Self-Organization in Biological Systems. Princeton Studies in Complexity, Princeton
University Press

Caprari G.; Colot A.; Siegwart R.; Halloy J. and Deneubourg J.L. (2005). Building mixed
societies of animals and robots. IEEE Robotics and Automation Magazine, 12, 2, (58-65)

Caprari G. and Siegwart R. (2005). Mobile micro-robots ready to use: Alice, Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295 – 3300

Correll N.; Sempo G.; Lopez de Meneses Y.; Halloy J.; Deneubourg J.L. and Martinoli A.
(2006). Swistrack: A tracking tool for multi-unit robotic and biological systems,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2185-2191

Gavrila D.M. (1999). The visual analysis of human movement: A survey. Computer Vision and
Image Understanding, 73, 1, (82–98)

Haritaoglu I.; Harwood D. and Davis L.S. (2000). W4: Real-time surveillance of people and
their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 8,
(809 – 830)

Toyama K., Krum J., Brumitt B., and Meyers B. (1999). Wallflower: Principles and practice of
background maintenance, Proceedings of the Seventh IEEE International Conference on
Computer Vision, volume 1, pp. 255 – 261, Kerkyra, Greece

Radke R.J.; Andra S.; Al-Kofahi O. and Roysam B. (2005). Image change detection
algorithms: A systematic survey. IEEE Transactions on Image Processing, 14, 3,
(March), (294-307)

Russ J.C. (1998). The Image Processing Handbook, CRC Press, third edition
Shapiro L.G. and Stockman G.C. (2001). Computer Vision, Prentice Hall, NJ

www.intechopen.com

Visual Analysis of Robot and Animal Colonies 101

6. Conclusions

We have presented a tracking application to study micro-robots or social insect cooperative
behavior without the risk of conditioning the results by tagging them. Our system has been
compared with previous ones, and namely with Swistrack, an application intended to control
mixed societies. Although this previous study had the same goal, the authors deal with the
tracking problem in a different way. The given results have shown the robustness of our
application with regard to lighting conditions. Also, no special illumination is required and
performances do not depend on the surrounding objects, as for example it occurs in
Swistrack.
Our designed method also solves situations in which there are several objects touching one
another and it can match an object position in one frame with its position in the next frame.
It is also capable of detecting objects even though their velocity is very slow or if they do not
move, a case typically difficult for similar methods.
As a further achievement, our application only requires two parameters from the user: the
number of target objects and their maximum speed. No thresholds need to be set manually.
Overall, we have designed an application transparent to the user who does not need to
know the implementation details to work with it.
So far, our application has only been tested with homogeneous robotic societies. As further
research, we plan to test it with mixed societies.

7. Acknowledges

This research was partly supported by the Korea Science and Engineering Foundation under
the WCU (World Class University) program funded by the Ministry of Education, Science
and Technology, S. Korea, Grant No. R31-2008-000-10062-0), by the European Commission's
Seventh Framework Programme FP7/2007-2013 under grant agreement 217077 (EYESHOTS
project), by Ministerio de Ciencia e Innovacion (DPI-2008-06636, DPI2004-01920 and FPI
grant BES-2005-8860), by Generalitat Valenciana (PROMETEO/2009/052) and by Fundacio
Caixa Castello-Bancaixa (P1-1B2008-51)

8. References

Camazine S.; Deneubourg J.L.; Franks N.R.; Sneyd J.; Theraulaz G. and Bonabeau E. (2001).
Self-Organization in Biological Systems. Princeton Studies in Complexity, Princeton
University Press

Caprari G.; Colot A.; Siegwart R.; Halloy J. and Deneubourg J.L. (2005). Building mixed
societies of animals and robots. IEEE Robotics and Automation Magazine, 12, 2, (58-65)

Caprari G. and Siegwart R. (2005). Mobile micro-robots ready to use: Alice, Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295 – 3300

Correll N.; Sempo G.; Lopez de Meneses Y.; Halloy J.; Deneubourg J.L. and Martinoli A.
(2006). Swistrack: A tracking tool for multi-unit robotic and biological systems,
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2185-2191

Gavrila D.M. (1999). The visual analysis of human movement: A survey. Computer Vision and
Image Understanding, 73, 1, (82–98)

Haritaoglu I.; Harwood D. and Davis L.S. (2000). W4: Real-time surveillance of people and
their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 8,
(809 – 830)

Toyama K., Krum J., Brumitt B., and Meyers B. (1999). Wallflower: Principles and practice of
background maintenance, Proceedings of the Seventh IEEE International Conference on
Computer Vision, volume 1, pp. 255 – 261, Kerkyra, Greece

Radke R.J.; Andra S.; Al-Kofahi O. and Roysam B. (2005). Image change detection
algorithms: A systematic survey. IEEE Transactions on Image Processing, 14, 3,
(March), (294-307)

Russ J.C. (1998). The Image Processing Handbook, CRC Press, third edition
Shapiro L.G. and Stockman G.C. (2001). Computer Vision, Prentice Hall, NJ

www.intechopen.com

Swarm Robotics, From Biology to Robotics102

www.intechopen.com

Swarm Robotics from Biology to Robotics

Edited by Ester Martinez Martin

ISBN 978-953-307-075-9

Hard cover, 102 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In nature, it is possible to observe a cooperative behaviour in all animals, since, according to Charles Darwin’s

theory, every being, from ants to human beings, form groups in which most individuals work for the common

good. However, although study of dozens of social species has been done for a century, details of how and

why cooperation evolved remain to be worked out. Actually, cooperative behaviour has been studied from

different points of view. Swarm robotics is a new approach that emerged on the field of artificial swarm

intelligence, as well as the biological studies of insects (i.e. ants and other fields in nature) which coordinate

their actions to accomplish tasks that are beyond the capabilities of a single individual. In particular, swarm

robotics is focused on the coordination of decentralised, self-organised multi-robot systems in order to

describe such a collective behaviour as a consequence of local interactions with one another and with their

environment. This book has only provided a partial picture of the field of swarm robotics by focusing on

practical applications. The global assessment of the contributions contained in this book is reasonably positive

since they highlighted that it is necessary to adapt and remodel biological strategies to cope with the added

complexity and problems that arise when robot individuals are considered.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

E. Martinez and A.P. del Pobil (2010). Visual Analysis of Robot and Animal Colonies, Swarm Robotics from

Biology to Robotics, Ester Martinez Martin (Ed.), ISBN: 978-953-307-075-9, InTech, Available from:

http://www.intechopen.com/books/swarm-robotics-from-biology-to-robotics/visual-analysis-of-robot-and-

animal-colonies

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

