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1. Introduction   
 

Micro-robotics calls for the development of tracking systems in order to study the 
movement of each micro-robot in a colony to answer questions about what they are doing 
and where and when they act (see Fig. 1). Moreover, micro-robots can be used to emulate 
social insect behaviour (Camazine et al., 2001) and study them through tracking experiments 
involving several miniature robots on a desktop table. Thus, principles of self-organization 
in these colonies, which were studied so far by analysis of a tremendous amount of insect 
trajectories and manual event counting, are now better understood by biologists thanks to 
robotics research. 

  
Fig. 1. Analogy between social insects (left) and a micro-robot colony (right) 
 
Although this approach is only recently increasing its popularity, computer vision systems 
for tracking moving targets are widely used in many applications such as smart 
surveillance, virtual reality, advanced user interfaces, motion analysis and model-based 
image coding (Gavrila, 1999). Surveillance systems seek to automatically identify people, 
objects or events of interest in different kind of environments (Russ, 1998; Toyama et al. 
1999; Haritaoglu et al., 2000; Radke et al., 2005). However, this problem is not easy to solve. 
First of all, it is not viable to tag each colony member under study. On the one hand, the tag 
selection process can be difficult since tags must be very small in some cases and, therefore, 
it might not be possible to detect them in an image. Furthermore, tags can become 
ambiguous when a swarm is composed of many individuals. On the other hand, tagging can 
alter individual behaviour. So, an application for tracking unmarked object has been 
developed. A new problem arises: how to identify the same object in two consecutive frames. 
SwisTrack (Correll et al., 2006) is a previous work following this approach which we try to 
improve. It is a platform-independent, easy-to-use and robust tracking software developed 
to study robot swarms and behavioural biology. It is part of the European project LEURRE 
(http://leurre.ulb.ac.be.2006) focused on building and controlling mixed societies composed 
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of animals and artificial embedded agents. In preliminary case studies towards this aim 
(Caprari et al., 2005), an Insbot team has been introduced into a swarm of cockroaches and 
allowed for modification of the natural behaviour of the swarm. We will show that our 
application achieves robust performance in object identification and tracking without the 
need of a strong intervention by the user. 
As the structure of the designed method (see Fig. 2), this paper is organized as follows: the 
visual segmentation and detection of objects are described in Sec. 2 and 3. In Sec. 4 we 
outline the tracking problem and its solution. Experimental results are given in Sec. 5 and 
discussed in Sec. 6. 
 

 
Fig. 2. Flowchart of the whole designed method 

 
2. Object Segmentation 

A common element of any surveillance systems is a module that is capable of identifying the 
set of pixels which represents all the individuals under study in each captured image. There 
are several techniques to carry out this task. For example, the background modeling 
approach (Toyama et al., 1999; Haritaoglu et al., 2000) allows to model dynamic factors such 
as blinking of screens, shadows, mirror images on the glass windows or small variations in 
illumination due to flickering of light sources. Pixels are classified as background or 
foreground depending on the fitting of their values with the built model. As a drawback, 
this method is not capable of adapting to sudden illumination changes, and we ruled it out 
with the aim of developing a more robust surveillance application in the presence of 
variation of lighting conditions. On the other hand, most of the alternative techniques are 
developed by gray-level image processing so that if available images are in color, it is 
necessary to convert them to gray-level. As our system has color images as input, the binary 
image resulting from the segmentation process can be obtained from a combination of three 

 

binary images (each color channel generates a gray-level image which is segmented by the 
selected method obtaining a different binary image), or from a gray-level image obtained 
directly from the color one. 
Thus, the first step is to convert the captured color image to a gray-level one. For such 
preprocessing, the Hue-Saturation-Intensity (HSI) system is used since it encodes color 
information by separating an overall intensity value I from two values encoding chromaticity 
- hue H and saturation S. HSI might also provide better support for computer vision 
algorithms because it is amenable to normalization for lighting and focus on the two 
chromaticy parameters that are more associated with the intrinsic character of a surface 
rather than the lightning source. Thus, the resulting gray-level image is only built from the 
intensity value. Derivation of HSI coordinates from RGB coordinates is a common process in 
computer vision (Shapiro and Stockman, 2001). 
Once the gray-scale image is available, a segmentation process has to be applied on it. 
Although frame difference is the easiest and fastest method to detect moving objects in an 
image, it fails when the objects are steady. This problem could be solved by taking a 
reference image with no objects and subtracting it from the new ones. Nevertheless, a little 
illumination change might make the whole process fail, thus, an alternative algorithm 
should be chosen. In our case, the corresponding binary image is obtained from an input 
gray-scale by thresholding operations as in Swistrack. This technique defines a range of 
brightness values in the original image: pixel value greater than a threshold (or lower, 
depending on its definition) belongs to the foreground and the rest of pixels are classified as 
background. The drawback of this method is the correct determination of the threshold. In 
Swistrack two different kinds of reference images are used, depending on the mode in which 
the system is operating: 
 Static background: the background image is captured at the beginning of the 

experiment and is not updated at any time; 
 Running average: the reference image is built as the running average of all video frames 

processed until that moment 
The threshold is fixed in both cases and represents the minimum difference required to 
classify a pixel as foreground. It is important to note that the fixed threshold is sensitive to 
changes in lighting conditions, especially in the first operation mode in which the reference 
image is not updated during all the experiment. Although the running average is more 
capable of dealing with illumination changes, it might consider objects that stop moving for 
a long period of time as part of the background, without detecting their presence in the 
scene. We have implemented a method for automatically calculating the threshold based on 
histogram properties by updating its value in each frame, in order to adapt it to variations of 
the lighting conditions. This provides an advantage over the Swistrack method, as significant 
intensity differences between the objects to be tracked and the background are not 
necessary. 
After the threshold setting, two consecutive morphological operations are applied on the 
binary image resulting from the segmentation process. These steps are required to erase 
isolated points or lines caused by different dynamic factors such as, for example, changes 
induced by camera motion, sensor noise, non-uniform attenuation,  blinking of lights or 
atmospheric absorption. A 3x3 erode filter is used to delete these artefacts and then a 3x3 
expand filter is applied to recover the foreground region. A result of the whole process can 
be observed in Figure 3, where a group of micro-robots is seen from above. As it can be seen, 
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necessary to convert them to gray-level. As our system has color images as input, the binary 
image resulting from the segmentation process can be obtained from a combination of three 

 

binary images (each color channel generates a gray-level image which is segmented by the 
selected method obtaining a different binary image), or from a gray-level image obtained 
directly from the color one. 
Thus, the first step is to convert the captured color image to a gray-level one. For such 
preprocessing, the Hue-Saturation-Intensity (HSI) system is used since it encodes color 
information by separating an overall intensity value I from two values encoding chromaticity 
- hue H and saturation S. HSI might also provide better support for computer vision 
algorithms because it is amenable to normalization for lighting and focus on the two 
chromaticy parameters that are more associated with the intrinsic character of a surface 
rather than the lightning source. Thus, the resulting gray-level image is only built from the 
intensity value. Derivation of HSI coordinates from RGB coordinates is a common process in 
computer vision (Shapiro and Stockman, 2001). 
Once the gray-scale image is available, a segmentation process has to be applied on it. 
Although frame difference is the easiest and fastest method to detect moving objects in an 
image, it fails when the objects are steady. This problem could be solved by taking a 
reference image with no objects and subtracting it from the new ones. Nevertheless, a little 
illumination change might make the whole process fail, thus, an alternative algorithm 
should be chosen. In our case, the corresponding binary image is obtained from an input 
gray-scale by thresholding operations as in Swistrack. This technique defines a range of 
brightness values in the original image: pixel value greater than a threshold (or lower, 
depending on its definition) belongs to the foreground and the rest of pixels are classified as 
background. The drawback of this method is the correct determination of the threshold. In 
Swistrack two different kinds of reference images are used, depending on the mode in which 
the system is operating: 
 Static background: the background image is captured at the beginning of the 

experiment and is not updated at any time; 
 Running average: the reference image is built as the running average of all video frames 

processed until that moment 
The threshold is fixed in both cases and represents the minimum difference required to 
classify a pixel as foreground. It is important to note that the fixed threshold is sensitive to 
changes in lighting conditions, especially in the first operation mode in which the reference 
image is not updated during all the experiment. Although the running average is more 
capable of dealing with illumination changes, it might consider objects that stop moving for 
a long period of time as part of the background, without detecting their presence in the 
scene. We have implemented a method for automatically calculating the threshold based on 
histogram properties by updating its value in each frame, in order to adapt it to variations of 
the lighting conditions. This provides an advantage over the Swistrack method, as significant 
intensity differences between the objects to be tracked and the background are not 
necessary. 
After the threshold setting, two consecutive morphological operations are applied on the 
binary image resulting from the segmentation process. These steps are required to erase 
isolated points or lines caused by different dynamic factors such as, for example, changes 
induced by camera motion, sensor noise, non-uniform attenuation,  blinking of lights or 
atmospheric absorption. A 3x3 erode filter is used to delete these artefacts and then a 3x3 
expand filter is applied to recover the foreground region. A result of the whole process can 
be observed in Figure 3, where a group of micro-robots is seen from above. As it can be seen, 
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although the lighting conditions are not good in some places, the designed application is 
capable of detecting all visible micro-robots in the image. However, the pixels due to light 
reflexions on the arena are not removed from the image. This issue will be solved by means 
of the implemented labeling method described in next section. 
 

   
Fig. 3. An image captured by the system camera (left), the binary image obtained by the 
segmentation process (center) and the resulting binary image after applying two 
morphological operations (right) 

 
3. Object Identification 

The aim of this stage is to obtain a labeled image in which each label identifies one colony 
member. This can be a difficult task when objects are touching one another, because an 
identified blob contains all objects with, at least, one point in common. The method 
implemented to achieve the above goal can be divided into three steps: 

1. Labeling of the identified blobs in the input binary image. A row-by-row labeling 
method (Shapiro and Stockman, 2001) is used to reduce the computational cost of the 
whole process. The binary image is scanned twice: the first time to tag each 
foreground pixel based on the labels of its neighbors and to establish equivalences 
between different labels; the second, crossed scan, will unify tags which belong to the 
same blob 

2. Classification of the labeled blobs as targets to be tracked or as bad-segmented pixels, 
and detection of collisions inside a blob identified as a tracking target. All targets are 
assumed as not touching in the first captured image. The number of targets to be 
tracked is specified by the user, and the application calculates the minimal and 
maximal size allowed from the first captured image. This knowledge, together with 
the number of the detected blobs in each frame, allows to define a series of criteria to 
determine when a blob represents more than one object, and to reject all blobs that do 
not identify target objects but are instead the result of a bad segmentation, as it occurs 
with the set of noisy pixels in the example of Fig. 3 

3. Segmentation of blobs that represent groups of more than one object to be tracked. This 
step is explained in more detail in the next section 

As seen above, it is possible that the same blob identifies more than one object to be tracked. 
Thus, it is important to detect these situations and split up the blob in the corresponding 
objects. There are two different tasks to be performed: determining the number of touching 
objects inside the same blob and splitting them up. 
The first goal is achieved through several criteria which are relationships between blobs and 
object sizes. They can be easily set up by the application, assuming that no target objects are 
touching in the first captured image. Thus, our application calculates the maximum and 

 

minimum dimensions of the visual objects from the first captured scene and the criteria 
remain set. This step is important because perceived object size can vary with the distance 
between the arena and the camera and if an object size in pixels is directly related to its real 
size, as in Swistrack, a calibration error can be introduced in all calculations. Due to this 
error, the application might fail the tracking process. So, the only parameter our application 
needs, which is requested to the user, is the number of objects to be tracked.  
The next step is to split up the different objects which compose one blob. As it is difficult to 
identify several objects at the same time, we have studied three different, possible situations 
assuming that only two objects are touching. Thus, our application split up any complex blob 
in two different parts: one target object and another blob which can be again composed of 
more than one micro-robot. If the new blob represents several micro-robots, the split-up 
process is recursively applied until the obtained blob is composed of only one target object. 
The three different cases that have been studied are the following: 

1. two objects touching only in one point; 
2. two objects sharing one side, that is, they are horizontally or vertically aligned; 
3. two objects touching in several points which do not correspond to their sides 

In the first case, a contour method is used. A chain code is calculated by considering that the 
contact pixel will be visited twice. The method takes into account the contour irregularities 
due to the segmentation process and it applies different criteria to determine the correct 
contact point as shown in Fig. 4. 
 

Case 1 Case 2 Case 3 

      
Fig. 4. Colored images from the resolution of contact cases 
 
The second case, when two objects share one side, has been considered because of the micro-
robots used in our experiments, the Alice2002 (Caprari and Siegwart, 2005) (see Fig. 5). These 
micro-robots can be seen from above as boxes and two Alice2002 can share one side in any 
moment. It is important to note that this case does not apply to micro-robots that do not 
have a shape in which a side can be shared. A method based on dimension criteria is used to 
determine the common side, and it estimates their splitting line as shown in Fig. 4. 

 

   
(a) A micro-robot Alice 2002 (b) Infrared proximity sensors 

Fig. 5. Micro-robot Alice2002 
 
Finally, the most general and complex case is when an object and another blob compose a 
bigger blob, and the contact between them is through several pixels which do not correspond 
to an object side. Therefore, the designed method is based on holes inside blobs. Again, this 
might be the result of a bad segmentation. For this reason, a set of criteria were defined for 
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although the lighting conditions are not good in some places, the designed application is 
capable of detecting all visible micro-robots in the image. However, the pixels due to light 
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detecting when a hole is due to bad segmentation and when it is a hole between two 
different objects. As it can be seen in Fig. 4, the designed method provides successful results. 

 
4. Tracking Micro-robots 

Once each micro-robot is identified as an object, the next step is to match each object with 
one of those detected in the previous frame, in order to obtain its trajectory.  
Object position can be calculated as the geometrical center of gravity of object contour 
(Correll et al., 2006), but we decided to calculate it as the geometrical center of gravity of a 
blob corresponding to an object. Since the correspondence between an object and a blob has 
been obtained in the previous step, this procedure is easier and faster. The issue now is how 
to associate each center of gravity with its corresponding object between the new ones. The 
chosen solution, the nearest neighbor method, is an easy one, but its implementation raises 
several issues (Correll et al., 2006). The different way of dealing with them will determine 
the successfulness of the application. 
The first challenge to solve is the case of an object that is closer to the previous position than 
the real one (situation already described in a previous work (Correll et al., 2006)). A 
quadratic assignment problem for minimizing the sum over the distance of all assignments 
is used in Swistrack, but this does not constitute an optimum solution since it fails in some 
cases. On the contrary, a solution focused on the previous movements of objects is presented 
here, that is, the matching algorithm associates the information on the nearest neighbor with 
that regarding the previous movement direction. 
It might also be that an object disappears from the scene (Correll et al., 2006), but if the 
application does not detect all elements specified by the user, then it will fail when this 
situation occurs, because objects enter or leave the arena, and the system will repeatedly 
capture another image until it finds all the objects. Another situation (again presented in 
(Correll et al., 2006)) is when two shared trajectories are divided at the wrong time, but this 
is not possible in our application because blobs are divided into their corresponding objects 
even though they are touching, as previously explained. Finally, an additional skill of our 
application is the ability of avoiding un-associated contours. 
Overall, our application is capable of solving the four different situations expounded in 
(Correll et al., 2006) and does not need the help of the user for correcting wrong trajectories. 
It is also important to note that the modified nearest neighbor technique is only applied on a 
small region of the image, not on the whole image, in order to make the application faster. 
Again, it is not possible to fix the search area size because a delay can be produced during 
capture process. Thus, our application calculates the search area dimension based on 
capture time between frames and the maximum velocity of tracking objects, which will be 
requested to the user. This reduces the computational time and guarantees the success of the 
matching process. 

 
5. Experiments 

We first provide a brief overview of the robotic platform used, followed by the experimental 
results. 
The experimental setup is depicted in Figure 6. A camera is pointing downwards to the 
desktop where the micro-robots are working. Our application operates with monocular 

 

color video images (see Fig. 6). The distance between the camera and the arena can vary 
from one setup to another and the system calculates the parameter values needed for 
obtaining the different criteria. It is important to note that the background of the micro-robot 
workspace is black in all our experiments, while the most common solution is to use a white 
background. 
 

 
 

Fig. 6. Experimental setup (left) and a 320x240 captured image by the camera (right) 
 
The objects to be tracked are Alice2002 robots, as mentioned above. They are extremely 
sensitive to external forces and can be very easily damaged if not handled with care. Among 
their features, we can mention: 

 tiny dimensions (22 mm (width) x 21 mm (length) x 20 mm (height)) 
 small weight (aproximately 11 g) 
 infrared proximity sensors (front, right and left) to avoid obstacles 
 low consumption (12 - 17 mW) 
 autonomy (up to 10 hours thanks to its Ni-MH rechargeable battery (Varta 3/V40H)) 
 velocity of 40 mm/s 

Finally, a Graphical User Interface (GUI) has been developed to check the performance of 
our application. It is composed of two different windows (see Figure 7(a)): on the left, the 
user can observe the images taken in real-time and, on the right, a graphical window is 
showing the different positions of the objects. Each obtained trajectory is drawn in a 
different color to help the user identify each target. As the duration of the experiments is 
unknown and the amount of points can be considerable, the application only shows the last 
seventy object positions to ease tracking of each described trajectory to the user. 
Two different experiments have been carried out.  The first one is the tracking of three 
unmarked Alice2002 (see Figure 7).  Six untagged Alice2002 are studied in the second 
experiment (Fig. 8). Both experiments have been carried out at different times of the day and 
in different days to test the robustness of our application to different lighting conditions.  
As it can be seen in Fig. 7a, all micro-robots to be tracked are not touching in the first stage. 
Thus, our application can obtain the information it needs: the objects position, i.e., their 
geometrical center of gravity, and the maximum and minimum size allowed for any object. 
For clarity of representation, objects are highlighted by inscribing them in circles. 
Although there are relevant delays between the first and the second frames and between the 
second and the third ones, our application is capable of correctly tracking the objects as 
shown in Fig. 7b. 
To check the system in different situations, we have changed the moving pattern of the 
objects during the experiment. For the first 25 frames all three objects are describing a 
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detecting when a hole is due to bad segmentation and when it is a hole between two 
different objects. As it can be seen in Fig. 4, the designed method provides successful results. 
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capture process. Thus, our application calculates the search area dimension based on 
capture time between frames and the maximum velocity of tracking objects, which will be 
requested to the user. This reduces the computational time and guarantees the success of the 
matching process. 

 
5. Experiments 

We first provide a brief overview of the robotic platform used, followed by the experimental 
results. 
The experimental setup is depicted in Figure 6. A camera is pointing downwards to the 
desktop where the micro-robots are working. Our application operates with monocular 

 

color video images (see Fig. 6). The distance between the camera and the arena can vary 
from one setup to another and the system calculates the parameter values needed for 
obtaining the different criteria. It is important to note that the background of the micro-robot 
workspace is black in all our experiments, while the most common solution is to use a white 
background. 
 

 
 

Fig. 6. Experimental setup (left) and a 320x240 captured image by the camera (right) 
 
The objects to be tracked are Alice2002 robots, as mentioned above. They are extremely 
sensitive to external forces and can be very easily damaged if not handled with care. Among 
their features, we can mention: 

 tiny dimensions (22 mm (width) x 21 mm (length) x 20 mm (height)) 
 small weight (aproximately 11 g) 
 infrared proximity sensors (front, right and left) to avoid obstacles 
 low consumption (12 - 17 mW) 
 autonomy (up to 10 hours thanks to its Ni-MH rechargeable battery (Varta 3/V40H)) 
 velocity of 40 mm/s 

Finally, a Graphical User Interface (GUI) has been developed to check the performance of 
our application. It is composed of two different windows (see Figure 7(a)): on the left, the 
user can observe the images taken in real-time and, on the right, a graphical window is 
showing the different positions of the objects. Each obtained trajectory is drawn in a 
different color to help the user identify each target. As the duration of the experiments is 
unknown and the amount of points can be considerable, the application only shows the last 
seventy object positions to ease tracking of each described trajectory to the user. 
Two different experiments have been carried out.  The first one is the tracking of three 
unmarked Alice2002 (see Figure 7).  Six untagged Alice2002 are studied in the second 
experiment (Fig. 8). Both experiments have been carried out at different times of the day and 
in different days to test the robustness of our application to different lighting conditions.  
As it can be seen in Fig. 7a, all micro-robots to be tracked are not touching in the first stage. 
Thus, our application can obtain the information it needs: the objects position, i.e., their 
geometrical center of gravity, and the maximum and minimum size allowed for any object. 
For clarity of representation, objects are highlighted by inscribing them in circles. 
Although there are relevant delays between the first and the second frames and between the 
second and the third ones, our application is capable of correctly tracking the objects as 
shown in Fig. 7b. 
To check the system in different situations, we have changed the moving pattern of the 
objects during the experiment. For the first 25 frames all three objects are describing a 
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clockwise circular trajectory. A different circular trajectory with smaller radius is described 
during the next 25 frames, as shown in Fig. 7d. Finally, the micro-robots are set in wall 
following mode, so they describe a straight-line trajectory until they find a wall to follow, as 
can be observed in Fig. 7e. 
The second experiment was similar. In this case, our application had to track six unmarked 
Alice2002. Again, the first captured frame (see Fig. 8a) reveals that the experiment starts 
without collisions between objects. The trajectories described in this experiment are, first, 
the smallest-radius circular trajectory; then, four of the micro-robots change their trajectory 
describing a circular trajectory with a larger radius and the two remaining ones go straight 
ahead looking for a wall to follow. Now, two more micro-robots change to the wall 
following mode. It is important to note that our application is capable of detecting objects 
only partially visible as shown in Fig. 8d. 
 

     

     

(a) Initial State (b) After 5 frames (c) Circular 
trajectory 

(d) Circular 
trajectory with a 
different radius 

(e) Following wall 
mode 

Fig. 7. Three Alice2002 tracking experiment: captured image (up) and trajectory image 
(down) 
 

     

     
(a) First Stage (b) Circular 

Trajectory 
(c) Change in some 

trajectories 
(d) Another change 
in some trajectories 

(e) Following wall 
mode 

Fig. 8. Six Alice2002 tracking experiment 
 
In addition, examples of the use of our split-up method are finally shown in Fig. 9. A one-
shot video segment of 10 minute duration is available at 
 http://www.robot.uji.es/lab/plone/Members/emartine 

 

    

    
Fig. 9. Collision detection 
 
To conclude this section, a graph is presented (see Fig. 10) which compares the trajectory 
followed by a member of the studied colony in a multiple-target experiment versus the 
trajectory obtained by the developed software. As it can be observed, there is no mismatch 
in data-association thanks to the implemented method to split up blobs when several 
members are in touch.  
 

 

 
Fig. 10. Trajectory followed by a single target vs individual trajectory obtained by the 
implemented software (above) and error (below) 
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6. Conclusions 

We have presented a tracking application to study micro-robots or social insect cooperative 
behavior without the risk of conditioning the results by tagging them. Our system has been 
compared with previous ones, and namely with Swistrack, an application intended to control 
mixed societies. Although this previous study had the same goal, the authors deal with the 
tracking problem in a different way. The given results have shown the robustness of our 
application with regard to lighting conditions. Also, no special illumination is required and 
performances do not depend on the surrounding objects, as for example it occurs in 
Swistrack. 
Our designed method also solves situations in which there are several objects touching one 
another and it can match an object position in one frame with its position in the next frame. 
It is also capable of detecting objects even though their velocity is very slow or if they do not 
move, a case typically difficult for similar methods. 
As a further achievement, our application only requires two parameters from the user: the 
number of target objects and their maximum speed. No thresholds need to be set manually. 
Overall, we have designed an application transparent to the user who does not need to 
know the implementation details to work with it. 
So far, our application has only been tested with homogeneous robotic societies. As further 
research, we plan to test it with mixed societies. 
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