
Ko
nra

d J
ün

em
an

n

Konrad Jünemann

Confidential Data-Outsourcing
and Self-Optimizing P2P-Networks:
Coping with the Challenges of Multi-Party Systems

Co
nfi

de
nti

al
Da

ta-
Ou

tso
urc

ing
 an

d S
elf

-O
pti

mi
zin

g P
2P

-N
etw

ork
s

Konrad Jünemann

Confidential Data-Outsourcing and Self-

Optimizing P2P-Networks: Coping with

the Challenges of Multi-Party Systems

Confidential Data-Outsourcing and Self-
Optimizing P2P-Networks: Coping with
the Challenges of Multi-Party Systems

by

Konrad Jünemann

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik, 2014

Tag der mündlichen Prüfung: 01. Dezember 2014
Referenten: 	Prof. Dr. rer. nat. Hannes Hartenstein
	 Prof. Dr. rer. nat. Ralf Reussner

Print on Demand 2015

ISBN	 978-3-7315-0328-6
DOI	 10.5445/KSP/1000045068

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Confidential Data-Outsourcing and
Self-Optimizing P2P-Networks:

Coping with the Challenges of Multi-Party Systems

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Konrad Jünemann

aus Wilhelmshaven

Tag der mündlichen Prüfung: 01. Dezember 2014

Erster Gutachter: Prof. Dr. rer. nat. Hannes Hartenstein
Karlsruhe Institute of Technology (KIT)

Zweiter Gutachter: Prof. Dr. rer. nat. Ralf Reussner
Karlsruhe Institute of Technology (KIT)

Zusammenfassung

Ein Mehr-Parteien-System ist ein verteiltes System in dem nicht alle Komponenten
von derselben, sondern von mehreren verschiedenen Parteien kontrolliert werden,
zum Beispiel von privaten Unternehmen oder Einzelanwendern. Mit der rasant
gestiegenen Popularität des Cloud Computing Paradigmas werden heute viele wenn
nicht sogar die meisten großen IT-Systeme als Mehr-Parteien-System entworfen. So
ermöglicht etwa das Anmieten von Diensten sowie Rechen- und Speicherplatzka-
pazitäten nicht nur Kosten zu sparen, sondern es lässt sich gleichzeitig auch die
Skalierbarkeit eines Systems erhöhen und der Betrieb vereinfachen. Im Ergebnis sind
Firmen oft dazu gezwungen ihre IT auszulagern um kompetitiv zu bleiben. Auch
komplett dezentralisierte Mehr-Parteien-Systeme beginnen mit Veröffentlichung von
mehr und mehr kommerziellen Peer-to-Peer (P2P)-basierten Anwendungen ihre
durchs File-Sharing getriebene Vergangenheit hinter sich zu lassen.

Trotz ihrer vielen Stärken werden Mehr-Parteien-Systeme von einer Vielzahl von
Problemen betroffen die letztlich durch das Fehlen von Kontrolle und Vertrauen
gegenüber einzelnen Komponenten hervorgerufen werden. Oft wiegen diese Prob-
leme so schwer, dass sie beseitigt werden müssen um die inhärenten Vorteile der
Mehr-Parteien-Systeme in Anspruch nehmen zu können. Deshalb ist es wesentlich
zu verstehen, wie diesen Problemen begegnet werden kann. In dieser Arbeit beant-
worten wir diese Frage für zwei Klassen von Mehr-Parteien-Systemen.

Der erste Teil dieser Arbeit behandelt das ”Database-as-a-Service“ Szenario. Hierbei
soll eine Datenbank, die vertrauliche Informationen enthält, zu einem externen, nicht
komplett vertrauenswürdigen IT-Dienstleister ausgelagert werden. Dabei soll zum
einen die Vertraulichkeit der ausgelagerten Daten gewährt bleiben, zum anderen soll
dem Dienstleister aber auch ermöglicht werden, Anfragen über die Daten auszuw-
erten, also z.B. nach einem bestimmten Datensatz zu suchen. Hierfür wird der Ansatz
Securus vorgestellt. Securus garantiert dem Nutzer ein bestimmtes Vertraulichkeit-
sniveau, das einem vom Nutzer in der domänenspezifischen Sprache Securus-Latin
erstellten Profil von Vertraulichkeits- und Zugriffanforderungen entspricht. Hierfür
wählt und verknüpft Securus einen passenden Satz von Sicherheitsmechanismen. Das
hierfür zugrunde liegende Optimierungsproblem wird gelöst, indem es in ein ganz-
zahliges lineares Optimierungsproblem (engl.: Integer Linear Programming, ILP)
transformiert wird. Dadurch, dass der Anwender die schlussendlich eingesetzten
Sicherheitsmechanismen nicht kennen oder gar verstehen muss, gelingt es Securus,
Sicherheitswissen zu externalisieren und auch für Domänen- anstatt Sicherheitsex-
perten anwendbar zu machen.

i

Der zweite Teil dieser Arbeit behandelt öffentliche Verteilte Hashtabellen (engl.:
Distributed Hash Tables, DHTs). Eine DHT ist ein P2P-Netzwerk, das es erlaubt,
Schlüssel/Wert-Paare zu speichern und wieder abzurufen. DHTs haben sich in letzter
Zeit als attraktive Plattform für komplett dezentralisierte Systeme etabliert. Allerdings
stehen Peers öffentlicher DHTs nicht unter zentraler Kontrolle und sind daher übe-
raus unzuverlässig. Diese Unzuverlässigkeit hat das Potential, das Leistungsniveau
der DHT empfindlich herabzusetzen. Der Fokus des zweiten Teils dieser Arbeit
liegt deshalb darauf, dieses Problem zu charakterisieren und Gegenmaßnahmen zu
entwickeln. In einem ersten Schritt wird hierfür der Aufbau und die Leistung der
teilnehmerstärksten öffentlichen DHT – der BitTorrent Mainline DHT (MDHT) – im
Detail analysiert. Insbesondere wird dabei auch die Lookup Operation betrachtet, die
die wichtigste Funktionalität einer jeden DHT darstellt. Die Analyse beruht zu einem
großen Teil auf einer mehr als vier Jahre umfassenden Messstudie. Als Kernergebnis
ergab diese Studie insbesondere, dass die MDHT im Hinblick auf ihre Zusammenset-
zung nicht nur einer langsam aber kontinuierlich voranschreitenden Evolution, son-
dern auch drastischen, plötzlich auftretenden Veränderungen unterliegt, die auch
von scheinbar unbedeutenden Problemen hervorgerufen werden können, wie zum
Beispiel der Nichtverfügbarkeit eines einzelnen Servers. Mit Bezug auf diese Erkennt-
nis wird KadSim vorgestellt, ein Simulationsmodell der MDHT. Das Modell erlaubt es
Entwicklern von dezentralisierten Anwendungen genauer zu untersuchen, welchen
Einfluss Veränderungen innerhalb einer DHT auf die Leistung ihrer Anwendung
haben könnten. Hierfür ermöglicht KadSim es, die MDHT in ihrer Gesamtheit von
mehreren Millionen Peers zu simulieren. In einer Validierung konnte KadSim die
Leistung von zwölf getesteten Lookup Algorithmen mit überzeugender Genauigkeit
vorhersagen. Zuletzt wird ein Ansatz namens Simulation-based Runtime Adaptation
(SRA) vorgestellt der es ermöglicht, auch auf unvorhergesehene, plötzlich auftretende
Veränderungen in einer DHT adäquat reagieren zu können. Hierfür wird die Leistung
einer großen Anzahl alternativer Konfigurationen des verwendeten Lookup Algo-
rithmus in einem vollfaktoriellen Versuchsaufbau dynamisch zur Laufzeit gemessen
und verglichen. Der durch diese Messungen hervorgerufene Mehraufwand konnte
durch das Aufzeichnen und wiederholte ”Abspielen“ von mehrfach gleichartig initi-
ierten Anfragen in einer Simulationsumgebung wesentlich reduziert werden. Eine
abschließende Evaluation bestätigt die hohe Effektivität und Effizienz des Ansatzes.

ii

Abstract

A Multi-Party System is a distributed system in which not all components are con-
trolled by the same party. Instead, multiple independent parties are involved, such as
private companies or individual persons. With the advent of the cloud computing
paradigm, today many, if not most large-scale IT systems are designed as Multi-Party
Systems. For instance, renting storage, computing capacity, or services allows to
reduce costs, to increase scalability, or to make the system easier to manage. As a
result, a company often has to outsource their IT in order to stay competitive. With
the recent publication of more and more commercial Peer-to-Peer (P2P) based appli-
cations, fully decentralized Multi-Party Systems are furthermore starting to leave their
“piracy-driven” past behind. Despite their great advantages, Multi-Party Systems are
plagued by issues caused by the lack of trust and control over individual components.
Often, these issues have to be resolved in order to leverage the inherent strengths
of Multi-Party Systems. It is thus essential to understand how one can cope with
the lack of trust and control in Multi-Party Systems. In this thesis, we cover this
question for two classes of Multi-Party Systems.

The first part of this thesis covers a Database-as-a-Service scenario in which a
database containing sensitive information should be outsourced to a not fully trusted
storage provider while not only protecting data confidentiality but also allowing the
storage provider to evaluate queries. To tackle this problem, the Securus approach is
presented. Securus is able to provide hard confidentiality guarantees that match a pro-
file of confidentiality and access requirements defined by the user in the domain specific
language Securus-Latin. Securus satisfies this profile by selecting and combining a set
of security mechanisms. To solve this optimization problem, it is transformed into an
Integer Linear Programming (ILP) instance. As the user is not required to understand
any of the eventually employed security mechanisms, Securus externalizes security
knowledge and makes it applicable by non-security experts.

The second part of this thesis covers public Distributed Hash Tables (DHTs). A DHT
is a P2P network that allows to store and retrieve key/value pairs. Recently, public
DHTs have established themselves as attractive platforms for fully decentralized ap-
plications. However, as public peers are not centrally controlled they are notoriously
unreliable and have the potential to severely affect the DHT’s performance. The sec-
ond part of this thesis focuses on characterizing and dealing with this problem. In a
first step, an in-depth characterization of the largest public DHT, the BitTorrent Main-
line DHT (MDHT) is provided, including an analysis of the DHT’s key operation, the
lookup. Our characterization is based on a long-term measurement study covering

iii

more than four years. As key findings we not only identify that most properties of the
MDHT slowly change over time but also that the MDHT is subject to sudden, drastic
shifts that can be caused by seemingly insignificant problems, such as the unavailabil-
ity of a single server. In order to allow developers of decentralized applications to
better assess the impact of changing DHT characteristics on their application’s perfor-
mance, we developed KadSim, a simulation model of the MDHT. KadSim is capable
of simulating the MDHT in its entirety. In our validation, the performance of twelve
tested lookup algorithm variants could be predicted with sound accuracy. In order to
also allow clients to cope better with unforeseeable sudden shifts in the DHT, an ap-
proach called Simulation-based Runtime Adaptation (SRA) is presented. It optimizes
lookup performance dynamically by measuring the performance of a large number of
alternative lookup algorithm configurations directly at run-time, using a full-factorial
experimental design. The overhead of the approach has been reduced drastically by
“replaying” repeatedly initiated requests in a simulation environment. Our evaluation
confirms that the approach is not only very effective but also comes at low costs.

iv

Contents

Zusammenfassung i

Abstract iii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Objective . 2
1.2 Contributions . 4
1.3 Thesis Outline . 6

2 Background and Challenges 9
2.1 Distributed Systems and Multi-Party Systems 9
2.2 Issues in Multi-Party Systems . 10

2.2.1 In-House Database vs. Data Outsourcing 11
2.2.2 Private vs. Public P2P networks 12

2.3 Challenge . 12
2.4 Example: the iZEUS Project . 14

2.4.1 Project Background and Requirements 14
2.4.2 Problem Analysis . 15
2.4.3 Solution Outline . 16
2.4.4 Summary . 18

2.5 Example: the KAI Project . 18
2.5.1 Project Background and Requirements 18
2.5.2 Problem Analysis . 19
2.5.3 Solution Outline . 19
2.5.4 Summary . 20

I Confidential Data Outsourcing 21

3 Confidential Indexing 23
3.1 Structure . 24

v

Contents

3.2 Introduction . 24
3.3 Challenges and Research Questions 25
3.4 Cryptographic Fundamentals . 26

3.4.1 Ciphertext Indistinguishability 26
3.4.2 Keyed Hash Functions . 27

3.5 Confidentiality Preserving Indexing Approaches 28
3.5.1 Classification . 28
3.5.2 Substitution Categories . 29
3.5.3 Query categories . 30
3.5.4 CPIs supported by Securus . 30
3.5.5 Candidates for Future Addition 33

3.6 Data Fragmentation . 34

4 The Securus Approach 37
4.1 Concept . 37

4.1.1 Attacker Model . 38
4.1.2 User Model . 39
4.1.3 Usage Workflow: User perspective 40

4.2 Related Approaches . 41
4.2.1 CryptDB . 42
4.2.2 Fragmentation-based Approaches 42
4.2.3 Summary . 44

4.3 Architecture . 44
4.3.1 Components . 44
4.3.2 Data Indexing . 46
4.3.3 Merged Index Tables . 48

4.4 Policy Profiles . 48
4.4.1 Attributes, Namespaces and Tables 49
4.4.2 Access Policies . 51
4.4.3 Confidentiality Constraints 52
4.4.4 Inference Constraints . 53
4.4.5 Satisfying a policy profile . 54

4.5 Policy Transformation . 56
4.5.1 Overview . 56
4.5.2 ILP problem . 58
4.5.3 ILP solution and back transformation 60
4.5.4 CPI selection . 61

5 Evaluation and Discussion 63
5.1 Security . 63
5.2 Operational Aspects . 64
5.3 Expressiveness . 65
5.4 Transformation Performance . 66
5.5 Query Evaluation Performance . 66
5.6 Outlook . 68

vi

Contents

5.7 Conclusion . 69

II Performance Management in DHTs 71

6 Towards a Basic DHT Service 73
6.1 Motivation . 73
6.2 Challenges and Research Questions 76
6.3 Structure . 77

7 Lookup Algorithm Analysis 79
7.1 Kademlia . 81

7.1.1 XOR Metric . 82
7.1.2 Remote Procedure Calls . 82
7.1.3 Routing Table Management 83
7.1.4 Bootstrapping . 84

7.2 The BitTorrent Mainline DHT . 85
7.2.1 The BitTorrent Ecosystem . 85
7.2.2 Comparable public DHTs . 86
7.2.3 Significance as an Object of Study 86

7.3 Lookup Algorithms and Optimizations 88
7.3.1 Standard Lookup Algorithm (BEP5) 88
7.3.2 Popular Optimizations . 89
7.3.3 JKad . 90
7.3.4 utorrent . 92

7.4 Defining Lookup Algorithms . 92
7.5 A Graphical Lookup Notation . 94
7.6 Lookup Performance . 96

7.6.1 Performance Metrics . 96
7.6.2 Performance Inhibitors . 97
7.6.3 Lookup Performance in the MDHT 99

8 DHT Measurement 101
8.1 Objective . 102
8.2 BitMON . 103
8.3 DHT Sampling . 104

8.3.1 Progressive Accuracy Mode 106
8.3.2 Fixed Accuracy Mode . 107
8.3.3 Configuration and Statistics 107
8.3.4 Measurement Accuracy . 108
8.3.5 Comparison to other Crawlers 108

8.4 Analysis . 109
8.4.1 DHT size . 109
8.4.2 Peer Origin . 111
8.4.3 Session Length . 117

vii

Contents

8.4.4 Guarded Hosts . 119
8.4.5 Summary . 121

8.5 Selected Incidents . 122
8.5.1 The MDHT doubles in Size (May 2014) 122
8.5.2 Dependency on Bootstrapping Routers 123
8.5.3 Natural Disasters and Other Regional Events 124

8.6 Related Work . 125
8.6.1 DHT Measurement Methodology 125
8.6.2 DHT Measurement Studies 126
8.6.3 BitTorrent Measurement Studies 127

8.7 Conclusion . 128

9 DHT Modeling 131
9.1 Related Work . 132
9.2 Requirement Analysis . 133

9.2.1 Request Transmission . 133
9.2.2 Request Timeout . 134
9.2.3 Response Reception . 135

9.3 KadSim-Model . 136
9.3.1 Peer Population Model . 137
9.3.2 Peer Model . 137
9.3.3 Behavior Model . 139
9.3.4 Internet Model . 140
9.3.5 Condensed Overview . 142

9.4 Model Validation and Simulation Performance 142
9.4.1 Measurement Setup . 144
9.4.2 Simulation Setup . 144
9.4.3 Results . 144
9.4.4 Simulation Performance . 145

9.5 Discussion and Future Improvements 148
9.5.1 Routing Table Implementation 148
9.5.2 Guarded Hosts Ratio . 149
9.5.3 Network Latency . 150

9.6 Conclusion . 152

10 Self-Optimization of Lookup Algorithms 153
10.1 Simulation-based Runtime Adaptation 154

10.1.1 Experimental Design . 155
10.1.2 Recording Requests . 156
10.1.3 Run-Time Simulation . 157

10.2 Evaluation . 159
10.2.1 Impact on Lookup Performance 159
10.2.2 Network Overhead . 163
10.2.3 Computational Overhead . 163

10.3 Discussion . 164

viii

Contents

10.3.1 Benefit . 164
10.3.2 Applicability . 164
10.3.3 Limitations . 165

10.4 Conclusion . 165

11 Conclusion 167

A Peer Sightings per Country (June 2014) 173

Bibliography 177

ix

List of Figures

1.1 Structure of this thesis. 8

2.1 Components of the iZEUS service platform. 15
2.2 Trust model of the iZEUS service platform. 16
2.3 Screenshot of the iZEUS portal. 17
2.4 Components of the KAI system. 19

3.1 Substitution categories. 29

4.1 Securus’ usage workflow. 41
4.2 Architecture of Securus. 45
4.3 Data access in Securus. 46
4.4 Optimized Data Access. 48
4.5 Policy transformation overview. 57

6.1 Number of publications per year that include the keyword “DHT”. . 74

7.1 Storing of a key-value-pair. 79
7.2 160-bit ID space. 80
7.3 XOR Metric: exemplary distance graphs. 82
7.4 Buckets and Distances. 83
7.5 An iterative lookup algorithm in a nutshell. 88
7.6 Illustration of Lookup Events. 94
7.7 An exemplary JKad lookup. 95
7.8 JKad Lookup Performance. 100

8.1 Graphical user interface of BitMON. 104
8.2 Lookup-based DHT sampling. 105
8.3 Progressive accuracy mode. 107
8.4 DHT Size: monthly fluctuation. 110
8.5 DHT Size: long-term evolution. 110
8.6 DHT participation by continent (day). 112
8.7 DHT participation by continent (week). 113
8.8 DHT participation by country, June 2014. 113
8.9 Relative MDHT popularity per country inhabitants, June 2014. . . . 115
8.10 Relative MDHT popularity per country Internet users, June 2014. . . 115
8.11 MDHT popularity among G20 countries, per Internet users. 116

xi

List of Figures

8.12 Development of DHT participation by country. 116
8.13 Measuring a peer’s session length. 117
8.14 Fitted Session Length distribution. 118
8.15 DHT Size since May 2014. 123
8.16 Impact of the unavailability of a bootstrap server. 124
8.17 Impact of the Arabic Spring. 125
8.18 Earthquake in Japan. 125

9.1 Request transmission event (Repetition). 133
9.2 Request Timeout event (Repetition). 134
9.3 Response Reception event (Repetition). 135
9.4 RTT Model. 142
9.5 Ratio of unresponsive routing table entries per bucket. 149
9.6 Means of measured RTT distributions. 151
9.7 Standard deviations of measured RTT distributions. 151
9.8 Variation of the mean of a peer’s RTT distribution after 10 minutes. . 151

10.1 Simulation at run-time. 158

xii

List of Tables

3.1 CPI catalog. 31
3.2 Hash Index example. 31
3.3 Bucketization example. 32
3.4 Data fragmentation example. 35

4.1 Query categories in Securus-Latin. 52

5.1 Transformation Performance. 67

8.1 Guarded Host distribution. 120

9.1 Key DHT properties to model. 136
9.2 The KadSim model. 143
9.3 KadSim Evaluation Results, Part 1. 146
9.4 KadSim Evaluation Results, Part 2. 147

10.1 Lookup performance in three different scenarios. 161
10.2 Benefits of dynamic parametrization. 162
10.3 Overhead induced by optimization. 165

A.1 MDHT Participation per Country (June 2014). 175

xiii

1

Introduction

Today, basically all large IT systems are designed as distributed systems, i.e., they are
composed of components1 that communicate with each other by exchanging messages.
Systems in which the system’s components are not all operated and controlled by the
same but by multiple independent parties such as, for instance, private companies,
institutions, or even individual persons, constitute a subclass of distributed systems.
In this thesis, we will refer to such systems as Multi-Party Systems (MPS).

In the form of the cloud computing paradigm, Multi-Party Systems have become a
dictating topic not only for researchers and developers, but also for whole sectors of
the IT industry. The reasons for this phenomenon are manifold: for instance, the “as-a-
service” paradigm allows developers to rent storage, computing capacity, IT services,
or entire application platforms on demand directly from specialized IT companies.
This permits the developer to deploy and publish applications at reduced costs and
without being concerned about how to operate an entire IT infrastructure that has
to provide a high quality of service while also being resilient to external hazards
and attacks. By leveraging economies of scale, specialization allows to decrease
costs and improve overall quality of service. Service elasticity furthermore allows
to drastically increase the throughput of rented services on demand, for example,
in order to cope with peaks of incoming orders or in order to accelerate a specific
task. As a result, companies often have no choice but to source out their IT, if they
want to stay competitive.

Recently, it has also become more and more apparent that fully decentralized systems
are starting to leave their “piracy-driven” past behind and mature at an increasing
pace. This trend is witnessed by the recent publication of commercial Peer-to-Peer

1In [TVS07], Tanenbaum defines distributed systems to be composed of computers. However, in
this thesis we will use the notion of (deployed) components.

1

1 Introduction

(P2P)-based services such as the video streaming application Tribler [ZCBP11], the
file synchronization service BitTorrent Sync [FSK14] (which already had 2 million
registered users in December 2013), or the decentralized chat and voice over IP client
Bleep 2. With multiple millions of autonomic peers, public P2P networks constitute
an extreme example for highly distributed Multi-Party Systems that allow to build
and publish services at low costs.

However, the cooperation among multiple parties also introduces new challenges,
typically caused by the (partial) lack of control or trust [AFG+10]. For instance, parties
typically lack control over externally operated components but nevertheless depend
on their reliability, robustness and performance. They hence either have to be able to
predict the behavior of these components accurately or they have to be able to cope
with fluctuations. This problem is especially apparent in public P2P networks, as it
is typically impossible to control a peer’s up-time, the technical infrastructure it is
deployed on, or to predict its future behavior precisely. These uncertainties can easily
affect the overall quality of service provided by the network.

Furthermore, individual parties involved in a Multi-Party System often trust each
other only partially [GMR+12]. While they are likely to possess some level of trust (if
not, they would most probably not be part of the Multi-Party System), they might not
rule out the possibility that another party might try to seek a personal advantage. For
instance, a customer might not trust the provider of a service not to analyze sensitive
data for personal gain when receiving data from the customer for further processing.
In this case data confidentiality would be at risk.

In many scenarios, these challenges lead to key issues that have to be resolved before
an MPS-based architecture can even be considered viable. They thus constitute a
barrier for harnessing the inherent strengths of Multi-Party Systems. For instance, if
a company has to process sensitive data, outsourcing the data to an external storage
provider might be out of discussion unless data confidentiality can be preserved
reliably. Analogously, public P2P networks might not constitute a suitable platform for
building a specific decentralized application unless their reliability and performance
meet the application’s demand.

We thus state the motivational question of this thesis as follows:

How can one deal with key challenges in Multi-Party Systems in order to
leverage the inherent strengths of this class of systems?

1.1 Objective
This thesis tries to answer the motivational question for two classes of Multi-Party
Systems that are currently in the focus of both academic research and commercial
applications: data outsourcing solutions following the Database-as-a-Service (DaaS)
paradigm and public Distributed Hash Tables (DHTs).

2http://blog.bittorrent.com/2014/07/30/bittorrents-chat-client-unveiled-bittorrent-bleep-now-in-
invite-only-pre-alpha/, [last visited in October 2014]

2

1 Introduction

Database-as-a-Service: The first part of this thesis targets the DaaS scenario. In a
DaaS scenario, a database is outsourced to an external storage provider. The storage
provider then accepts queries from its customer, evaluates them, and returns the
results. The storage provider thus provides the service of hosting the database. With
the advent of the cloud computing paradigm, DaaS solutions have become increasingly
attractive, especially for companies that have to process a high amount of data but
are not IT specialists themselves.

Often, the key issue in this scenario is that the confidentiality of the outsourced
data has to be protected, because the storage provider is not considered trustworthy.
While the customer might trust the storage provider not to sabotage its customers
directly by tampering with the stored data, she might not trust the storage provider
not to be “curious”, i.e., try to extract information. This distrust could be caused by
a number of reasons. For example, the storage provider could possess an economic
interest in the stored data. The customer could also fear that the storage provider
could be compromised by an external attacker. Lastly, the customer could simply be
required by law to protect her data by technical means, because the data contains
personally identifiable information, for instance, in an eHealth or eTraffic scenario.

A naı̈ve approach to protect data confidentiality is to encrypt the entire database.
Unfortunately, this approach would make it impossible for the storage provider to
efficiently process incoming queries. Security techniques such as encryption thus have
to be applied in a more efficient way. This is not a trivial task as any solution has to
satisfy the customer’s demands in terms of how she wants to access the outsourced data
(access requirements) and in terms of the envisioned protection level (confidentiality
requirements). We thus state the first research question of this thesis as follows:

How can confidential databases be sourced out to honest-but-curious stor-
age providers while providing hard confidentiality guarantees?

Public DHTs: The second part of this thesis targets public DHTs. A DHT is a P2P
network that allows to store and retrieve key/value pairs. In public DHTs, peers are
controlled by individual persons rather than by a company as it is the case for private
DHTs such as employed by Amazon Dynamo [DHJ+07]. As a result, public DHTs
are much harder to manage and maintain than private DHTs. Today, the most widely
used public DHT, the BitTorrent Mainline DHT (MDHT), consists of millions of
peers that participate at any time [JAH11]. While most public DHTs were formed in
support of file-sharing applications, recently more and more commercial applications
start to arise that provide DHT-based services outside the file-sharing scenario. For
example, the services Tribler, BitTorrent Sync, and Bleep all leverage the MDHT.

However, this new class of DHT-based applications demands a far higher quality
of service than file-sharing applications, as many applications are more sensitive to
delays and the DHT typically has to be accessed more frequently. We thus state the
second research question of this thesis as follows:

How can public DHTs provide the ongoing and reliable quality of service
modern DHT-based applications demand?

3

1 Introduction

1.2 Contributions
In particular, this thesis presents the following contributions:

– Confidential DaaS Approach: This thesis presents a confidential DaaS ap-
proach called Securus that allows to satisfy hard confidentiality requirements
of sensitive data while still permitting the storage provider to evaluate received
queries. In order to do so, Securus combines various popular security tech-
niques so that they satisfy individual confidentiality and access requirements
specified by the user. Among others, Securus advances the research field in the
following ways:

– The user does not have to possess any cryptographic expert knowledge.
This makes it possible for domain rather than security experts to maintain
hard confidentiality requirements when outsourcing data.

– Securus contains a meta model that allows to define access and confi-
dentiality requirements while remaining cryptography-agnostic and still
being specific enough to allow Securus to chose trade-offs appropriately.

– Scenario-specific outsourcing solutions are generated by formulating the
constraints between the confidentiality and access requirements as an
Integer Linear Programming (ILP) problem. This way, a formal model of
the underlying optimization problem exists which is furthermore easy to
extend.

– In-depth Characterization of the MDTH: This thesis provides an in-depth
analysis and understanding of the key operation of any DHT, the lookup. Be-
sides presenting popular lookup algorithm variants and identifying important
performance inhibitors, the thesis provides the tools required to further assess
the performance of individual clients. Furthermore, results of a long-term
measurement study of the MDHT, the most widely deployed public DHT, are
presented. The measurements have been running continuously since August
2010 and are still ongoing. The results allow to characterize the MDTH with
respect to various properties that may impair the DHT’s overall performance.
Among others, the number of participating peers, the peers’ origin, the peers’
session lengths, and the prevalence of NAT gateways within the MDHT are
analyzed. To our knowledge, this makes our study the longest and most compre-
hensive study ever conducted on a public DHT. With the help of the collected
data we do not only characterize the composition, popularity, long-term evo-
lution, and stability of the MDHT, but are also able to quantify the impact of
specific incidents such as natural disasters or the distribution of a malfunc-
tioning DHT client version. In particular, our analysis shows that despite its
remarkable stability and popularity in general, the MDHT is also subject to
sudden, drastic shifts.

– Simulation-based Model of a Multi-Million Peer DHT: Based on the pre-
sented measurement results and other studies we built a model of the MDHT

4

1 Introduction

for a discrete-event-based simulator. KadSim is designed to assess lookup
performance within public DHTs and the impact of fluctuations within the
DHT on lookup performance. KadSim models the MDHT at its real size of
multiple millions of peers and also includes identified performance inhibitors
often encountered in public DHTs such as the presence of NAT gateways. Our
model is evaluated by predicting the performance of twelve alternative lookup
algorithms and comparing key performance metrics to measured results. While
this evaluation showed good results in most cases, we also identified cases in
which the model is unable to predict lookup performance reliably. In order
to further improve prediction quality in the future, possible extensions of our
model are presented and discussed.

– Self-Optimization of Lookup Algorithms: Our measurement study showed
that DHT clients have to cope with both long- and short-term fluctuations of
key characteristics of the DHT. This thesis presents an approach that enables
DHT clients to adapt dynamically to constantly changing conditions within the
DHT. Due to its deployment in public DHTs, the approach is tailored towards
being run automatically and unsupervised. It hence has been designed to be
able to adapt even to unpredicted changes by making minimal assumptions
about the state or behavior of the DHT. In an evaluation, it is shown that the
approach is not only very effective at adapting to unforeseen changes but also
that the approach comes at marginal costs.

Parts of the contributions presented in this thesis have been previously published in:

– Konrad Jünemann, Hannes Hartenstein; Self-Optimization of DHT Lookups
through Run-Time Performance Analysis, In: Proceedings of the 2014 Interna-
tional Conference on High Performance Computing & Simulation (HPCS),
IEEE, July 2014.

– Jens Köhler, Konrad Jünemann; Securus: From Confidentiality and Access Re-
quirements to Data Outsourcing Solutions, In: Hansen, M., Hoepman, J.-H.,
Leenes, R., Whitehouse, D. (Editors), Privacy and Identity Management for
Emerging Services and Technologies, Springer Berlin Heidelberg, pp. 139-149,
2014.

– Konrad Jünemann, Jens Köhler, Hannes Hartenstein; Data Outsourcing Sim-
plified: Generating Data Connectors from Confidentiality and Access Policies,
In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2012.

– Konrad Jünemann, Philipp Andelfinger, Hannes Hartenstein; Towards a Basic
DHT Service: Analyzing Network Characteristics of a Widely Deployed DHT, In:
Proceedings of the 20th International Conference on Computer Communica-
tions and Networks (ICCCN), July 2011.

5

1 Introduction

– Konrad Jünemann, Philipp Andelfinger, Jochen Dinger, Hannes Hartenstein;
BitMON: A Tool for Automated Monitoring of the BitTorrent DHT, In: Proceed-
ings of the Tenth International Conference on Peer-to-Peer Computing (P2P),
IEEE, August 2010.

– Jochen Dinger, Konrad Jünemann, Oliver Waldhorst, Michael Conrad; Au-
tonome Kommunikationsinfrastrukturen. Eine praxisnahe Betrachtung, In: Praxis
der Informationsverarbeitung und Kommunikation (PIK), K.G. Saur Verlag,
Volume 31, Issue 2, pp. 69-75, 2008.

1.3 Thesis Outline
The structure of this thesis is illustrated in Figure 1.1. Following the thesis’ introduction,
Chapter 2 presents the scope and background of the thesis in greater detail. The chapter
starts by presenting a definition of Multi-Party Systems and introducing the two key
issues that this thesis is concerned with: the lack of control and trust in Multi-Party
Systems. Then, it is demonstrated how these issues affect Multi-Party Systems by
discussing exemplary challenges faced in the research projects iZEUS and KAI.

After Chapter 2, the thesis is split into two parts. The first part covers the Database-
as-a-Service (DaaS) scenario under the assumption that the storage provider is not
trusted completely. The second part covers public DHTs in their role as building
blocks for fully decentralized applications. The focus lies on assessing and improving
the DHT’s reliability and performance under the challenge of uncontrollable peers.

Part I of this thesis starts with Chapter 3. In the beginning of this chapter, the
challenge of ensuring data confidentiality in a DaaS scenario is motivated. The
key concept of using confidentiality preserving indexes is identified in this process.
Following this motivation, the main research questions that will be answered in the
first part of the thesis are stated. The subsequent sections then introduce cryptographic
concepts and other confidentiality preserving techniques that build the foundation
of any confidential indexing approach.

Chapter 4 presents the main contribution of the first part of this thesis, the Securus
approach. Securus is confidential DaaS framework that aims at satisfying a user’s indi-
vidual confidentiality and access requirements. It achieves this generating a custom-
tailored software adapter for the user that serves as a proxy between the user and the
storage provider and satisfies the user’s specific requirements. After describing this
concept in greater detail, Securus’ technical architecture is presented. The remainder
of the chapter focuses on the meta-model that is used to specify the user’s requirements
and on how software adapters can be generated that match such requirements.

Chapter 5 provides a concluding evaluation and discussion of the Securus approach.
In particular, Securus’ deployability, achieved level of protection, and performance
are discussed. Then, future research opportunities are presented before the chap-
ter is concluded.

Part II of this thesis is divided into five chapters and begins with Chapter 6. This
chapter first motivates the vision of a public DHT playing the role of a Basic DHT

6

1 Introduction

Service that can be used to build a diverse set of completely decentralized applica-
tions and shows that this vision has begun to become reality in recent years. It is
furthermore motivated that DHTs have to provide a high quality of service reliably in
order to constitute a viable foundation for more applications. Today, many character-
istics of public DHTs are still poorly understood, in particular when considering
their constant evolution.

Chapter 7 presents an in-depth analysis of lookup algorithms and their performance
in the BitTorrent Mainline DHT. The chapter introduces the Kademlia protocol, sur-
veys commonly proposed optimizations and motivates the MDHT’s significance
as an object of study. Furthermore, a unifying definition of lookup algorithms is
given before the main inhibitors of lookup performance in public DHTs are intro-
duced and discussed.

In Chapter 8, we assess and quantify the composition of the MDHT and its evolution
with respect to the performance inhibitors identified in the previous chapter. The
assessment is based on a long-term measurement study that is ongoing for more
than 4 years. In particular, our analysis shows that despite its remarkable stability
and popularity, the MDHT is subject to sudden, drastic shifts that can severely affect
performance-critical properties of the MDHT.

Chapter 9 presents a model of the MDHT that allows to analyze the performance
of lookup algorithms under the influence of specific DHT characteristics. After
presenting the model in detail, the model is evaluated by comparing its performance
predictions for twelve different lookup algorithm variants against measured values.
While this evaluation showed good results in most cases, we also identified cases
in which the model is unable to predict lookup performance reliably. In order to
further improve prediction quality in the future, possible extensions of our model
are presented and discussed.

In Chapter 10, an approach is presented that allows DHT clients to optimize the
performance of their employed lookup algorithm on demand. This approach works
by testing the performance of different configurations of the algorithm at run-time
and choosing the configuration that provides the best performance, according to a
specific metric. This approach allows DHT clients to cope even with unpredicted
fluctuations in the DHT and thus constitutes an option for clients to provide more
consistent lookup performance.

Finally, Chapter 11 concludes the two parts of this thesis, provides an unifying inter-
pretation of the results presented so far and discusses directions for further research.

7

How can one deal with key challenges in Multi-Party Systems?

2 Background and Challenges

1 Introduction

4 The Securus Approach

3 Confidential Indexing

5 Evaluation and Discussion

7 Lookup Algorithm Analysis

6 Towards a Basic DHT Service

8 DHT Measurement

9 DHT Modeling

10 Self-Optimization
of Lookup Algorithms

11 Conclusion

Part I:
Confidential Data Outsourcing

Lack of Trust Lack of Control

Part II:
Performance Management

in DHTs

Figure 1.1: Structure of this thesis.

2

Background and Challenges

2.1 Distributed Systems and Multi-Party Systems
In [TVS07, p. 2], Tanenbaum and van Steen define distributed system loosely as follows:

Definition 1 (Distributed System [TVS07]) A distributed system is a collection of
independent computers that appears to its users as a single coherent system.

While the definition is deliberately broad, it covers two important aspects: first that
a distributed system is composed of independent components1 and second that a
distributed system acts as a single coherent system, i.e., it offers a cohesive service.
In order to act as such a system, the components have to communicate with each
other. Distributed systems thus have to employ some means of communication,
primarily through computer networks.

The authors furthermore list some of the most important goals that distributed
systems usually try to meet. In particular, a distributed system (1) should make
remote resources accessible for the user, it should (2) hide specifics about how its
components and resources are distributed, it should (3) be open to further extension,
e.g., by using standardized interfaces, and it should (4) be scalable. Of course, not
all distributed systems meet all of these goals to the same degree, but most cover
each aspect at least to some extent.

The list of possible examples for distributed systems is long and diverse, including var-
ious grid and cloud computing systems, content delivery networks, sensor networks
and other pervasive systems, as well as P2P networks, to name only a few. However,

1Although the authors use the term “computer”, they later state that they are actually speaking
about software components that are deployed on computers.

9

2 Background and Challenges

systems can roughly be categorized with the respect to the type of service they provide.
For instance, Tanenbaum and van Steen propose the following three categories:

The first category includes systems that focus on providing access to a distributed
set of resources. The emphasis of these systems typically lies on harmonizing the
access to the provided resources rather than on locating the resources. Among others,
this is achieved by providing a uniform interface to possibly heterogeneous resources,
building a federation of resource providers, and handling the data transfer as well
as exceptions. Not only raw storage or computing capacity but also IT services
can play the role of the managed resource. Typically, goals 1 and 3 are especially
important for this kind of systems. Examples include the grid computing sector,
systems following the “X-as-a-Service” design, and distributed computing platforms
such as BOINC [And04].

The second category includes systems that focus on managing the collaboration
between autonomous components rather than on providing access to resources. In
these systems, locating single components and routing information are typically
complex issues, as components either exhibit a highly dynamic behavior or are not very
reliable. Many of these systems are hence highly adaptive, for instance by employing
mechanics that allow them to self-organize. Typically, goals 2 and 4 are most important
for this category of systems. Examples for this category include P2P networks, sensor
networks, and pervasive systems.

A third category is formed by systems that focus on the integration of other typically
highly heterogeneous sets of services. These systems are typically designed with the
help of frameworks that allow the user to chose from a wide array of services and
combine the selected ones easily. Often, additional features are provided such as
the support of transactional access or persistence. The emphasize of these systems
hence lies on the composition of components. Typically, goal 3 is more important
than the others. Examples for this category are common in the enterprise world and
include systems based on the Service Oriented Architecture (SOA) model, workflow
engines, and other popular middleware frameworks.

Orthogonal to this categorization, distributed systems can be distinguished by
whether all components are managed by multiple different autonomous parties. We
hence expand Definition 1 by the definition of Multi-Party Systems:

Definition 2 (Multi-Party System) A Multi-Party System (MPS) is a distributed sys-
tem whose components are not all operated by the same but by multiple independent
parties. A party can be any organizationally independent entity such as a company,
institution, or individual person.

Multi-Party Systems thus present a subclass of distributed systems.

2.2 Issues in Multi-Party Systems
The separation of a system into distributed components leads to a number of unique
issues. Among the most important ones are the following:

10

2 Background and Challenges

– The unreliability of the network or other components.

– The untrustworthiness of the network or other components.

– The heterogeneity of the network or other components.

– The variability of the network or other components over time.

While these issues may arise in almost every kind of distributed system, they typically
are increasingly severe and more likely to appear in systems in which components
are operated by multiple different autonomous parties (Multi-Party Systems). In
the following, we illustrate the differences by analyzing exemplary pairs of Single-
and Multi-Party Systems.

2.2.1 In-House Database vs. Data Outsourcing

As an example for centralized distributed systems, we compare two scenarios: in
scenario A, a large company possesses offices in various areas of a country. The
offices all have to access a database which is hosted by a central computing center
operated by the company. As all components (the terminals located in the local
offices and the central database) are operated by the same company, this scenario
describes a Single-Party System.

In scenario B, the same company has decided to reduce maintenance costs by
outsourcing the central data bases to an external service provider. As now the cen-
tral database is operated by a different company, this scenario describes a Multi-
Party System.

Although the technical architectures are almost identical, in scenario B the company
has to cope with additional issues caused by the different trust relationship to the
operator of the central computing center:

– The company might not trust the service provider to respect the confidentiality
of sensitive data.

– The company is unable to control the security standards of the service provider.

– The company is unable to control how well the service provider maintains the
computing center.

For this reasons, the company might want to additionally encrypt its data in scenario
B in order to protect its confidentiality. However, encrypting the data might severely
impact the system’s performance, depending on factors such as the structure of the
database. Depending on the quality of service promised by the contract with the
service provider and the company’s faith in its fulfillment, the company might also
want to include additional mechanisms to improve or at least monitor the reliability
and performance of the database.

11

2 Background and Challenges

2.2.2 Private vs. Public P2P networks

As a second example, we chose P2P networks. P2P networks constitute an example
for massively distributed, decentralized, highly dynamic architectures that mainly fall
into the second of our three categories of distributed systems. We compare private P2P
networks, in which all peers are controlled by a single party (typically a company),
to public P2P networks, in which peers are dynamically controlled by individual
persons. Private P2P networks are commonly used to ease maintenance of highly
distributed but centrally administered systems.

While both systems are equally decentralized, massively distributed and self-orga-
nized, it is for several reasons far harder to provide a constant quality of service
in public P2P networks:

– In private P2P networks, peers typically all run the same code while in public
P2P networks peers can usually choose from various compatible but different
client implementations.

– In public P2P networks, peers typically exhibit a far more dynamic behavior
than peers do in private P2P networks.

– In public P2P networks, peers are commonly deployed on unreliable or over-
loaded hardware.

– In public P2P networks, peers have to be expected to be egoistic, i.e., they might
try to contribute as little as possible to the network while seeking a maximal
personal benefit at the same time.

– The composition of a public P2P network can change significantly at any time
without further notice.

In contrast, centrally maintained private P2P networks typically only have to deal
with the occasional failing of individual peers. As a result, private P2P networks have
reached maturity several years ago (for instance in Amazon Dynamo [DHJ+07] or
Apache Cassandra [LM10]) while commercial applications that are based on public
P2P networks have just recently began to arise.

2.3 Challenge
We have seen that Multi-Party Systems are typically more severely affected by classical
issues of distributed systems than Single-Party Systems are. These additional issues are
mainly caused by the lack of control and trust over externally operated components:

– Lack of Control: In a Multi-Party System, no party has direct control over any
component maintained by another party. As a result, it may be way harder to
predict how a component behaves and how it is maintained, depending on
the relation between the two involved parties. In systems in which contracts

12

2 Background and Challenges

provide long-term assurances, such a specific quality of service, components
may be expected to be more reliable than in systems in which components
enter the system ad hoc, e.g., in public P2P networks or pervasive systems. In
a Single-Party System, the operator will typically be in a position to limit the
heterogeneity of the components and to judge their reliability and variability
over time as she is in control of all components.

– Lack of Trust: In a Multi-Party System, components controlled by other parties
are typically not considered being as trustworthy as one’s own components. For
this reason, Multi-Party Systems often have to include security mechanisms
to protect either components or the processed data from potentially malicious
components. While in a Single-Party System the operator might still have to
protect the security of her system from external attackers, she can furthermore
typically consider all components being trustworthy.

The question now arises how one can deal with these issues. Unfortunately, no
one-fits-all solution exists due to the high diversity of the class of Multi-Party Systems.
Instead, systems have to be analyzed on a case by case basis. In this thesis, we will
do so for two of the most popular classes of Multi-Party Systems: trust issues will be
covered in a data outsourcing scenario while control issues will be covered in public
DHTs, which are a special kind of P2P networks.

When dealing with trust issues, it is first key to understand and model the nature
of the trust relations between the involved parties. Often, parties trust each other at
least to some extent, i.e., it is reasonable to assume that a party does not take certain
kinds of actions. This partial trust can often be leveraged to design a solution that
is able to resolve the described issues more efficiently. We demonstrate this general
approach with the description of the iZEUS project (see Section 2.4) and in Part I
of this thesis, beginning in Chapter 3.

In order to deal with control issues, it is analogously very important to understand
the behavior of the system’s components and to be able to assess their impact on the
system’s overall performance. In many cases, the component’s behavior – though
uncontrolled – is either stable or predictable enough to adjust the system appropri-
ately. Furthermore, the impact of the uncontrolled component’s behavior on the
system’s overall performance could be negligible. In these cases, the issues could be
resolved with minimal overhead. We demonstrate how distributed systems can be
monitored and assessed with the description of the KAI project (see Section 2.5) and
our measurement study and DHT assessment (see Chapters 7 and 8). We furthermore
show how the behavior of a highly decentralized Multi-Party System can be modeled
in Chapter 9. If the behavior of certain components cannot be controlled and is too
unreliable to be neglected, the system has to be able to cope with unpredicted changes.
We present an example of how a system can react even to unpredicted changes of
the behavior of other components in Chapter 10.

13

2 Background and Challenges

2.4 Example: the iZEUS Project
The project iZEUS2 aimed to develop and test novel approaches that help to further
advance e-Mobility by integrating Smart Traffic with Smart Grid concepts. The
project was supported by the German Bundesministerium für Wirtschaft und Industrie
(BMWi) with almost 20 million Euro and lasted from January 2012 until June 2014.
Multiple enterprises from the automotive, IT, and energy sectors participated as
project partners. From the KIT, eleven research groups participated. The approach
described in the following was developed in collaboration with the research groups
for Knowledge Management, led by Prof. Studer, and Software Design and Quality
(SDQ), led by Prof. Reussner.

2.4.1 Project Background and Requirements

One goal of the iZEUS project was to create a market for innovative IT services that
target e-Mobility in Germany. For this purpose, a loosely coupled IT service federation
should be created by developing a platform that eases cooperation between services,
provides single-sign on functionality, and makes it easy for users to discover new ser-
vices. In particular, the following requirements were defined for the platform to create:

1. Data-centric e-Mobility Services: The platform should target IT services from
the e-Mobility sector. This in particular means that services could either be web
applications, applications that are deployed on smart devices such as cell phones
or cars, or even be run in the background on a server without requiring any user
interaction. Services might furthermore consume or produce user-specific data,
i.e., data that contains personally identifiable information. Services should be
able to access user-specific data even if the user is currently unavailable. Such a
service could for example be used to better control urban traffic by regularly
retrieving the current position of a large number of cars and appropriately
changing traffic lights. Other examples for personal e-Mobility services in-
clude personal routing applications, fuel monitoring and optimization apps, or
services that allow customers to reserve parking spots in advance.

2. Service Integration: The platform should allow services to consume data pro-
duced by other services. E.g., if a certain service stores the energy consumption
of the user’s car, another service should theoretically be able access this data.
We will describe below how data access is authorized.

3. Registry and User Portal: The platform should not only serve as a central reg-
istration point for services but also as a central service portal for users. The
portal should allow users to conveniently browse and deploy available services.

4. Open Platform: The platform should be open to new service providers. It should
be easy to add new services to the platform. In particular this also requires that

2http://www.izeus.de, [last visited in October 2014]

14

2 Background and Challenges

the scheme of the processed data is not fixed but extensible. In other words, it
has to be possible for a service to produce data in a previously unknown format.

5. Privacy Control: At any time, the user should be able to easily monitor and
control who has access to her data. It should be easy and convenient for her to
grant services access to her data and revoke any previously granted permissions.

2.4.2 Problem Analysis

The service platform uses a centralized architecture. In the course of the project,
all central elements of the platform were operated by the KIT. Connected services
on the other hand could not only be deployed on servers provided by the KIT but
also on user-controlled mobile devices or on servers run by external companies. The
architecture hence describes a Multi-Party System. Figure 2.1 presents an overview
over the system’s components. Depending on whether we see the e-Mobility user or
the service providers as the main user of the system, the system could be categorized
in the first or the third category of distributed systems (systems that provide access
to resources and systems that integrate services).

iZEUS Datastore

iZEUS Portal

Authentication &
Authorization

Service B
(hosted on iZEUS
servers)

Service A
(hosted externally)

iZEUS Service Platform

SQL Database:
• User accounts
• Permissions

Figure 2.1: Components of the iZEUS service platform.

As a Multi-Party System, the iZEUS platform potentially has to cope with problems
caused by the lack of trust or control between individual components. In the following,
we will analyze the architecture for these kind of problems.

In our trust model, we assumed a worst case scenario. If component A distrusts
component B, it is assumed that component B tries to gain access to A’s data without
A’s consent. In order to achieve this behavior, B may even act maliciously, for instance

15

2 Background and Challenges

by intercepting and modifying sent data packets. The system thus has to prevent
these attacks from succeeding.

Figure 2.2 illustrates the assumed trust relations between the involved components.
We assume both the users and service providers to trust the platform itself. The
platform itself is thus not considered as an attacker in this model. However, users
do not trust any service provider. That means that the platform has to protect the
user’s data from being accessed by the services without the user’s consent. The service
providers neither trust the users nor the other service providers. In particular, this
means that the system furthermore has to enable service providers to forbid another
service to access their data explicitly.

Service Provider B

Service Provider A

User Service Platform

A B

A B

A trusts B

A mistrusts B

Figure 2.2: Trust model of the iZEUS service platform.

We identified only one occurrence at which the lack of control caused problems
in this system, as the services do not directly depend on the performance of other
services and we assumed the platform to be reasonable reliable. We hence found
the lack of trust to be the main issue in this scenario. However, services might be
hosted on mobile devices that are under direct control of the user. As from a service
provider’s perspective the user could potentially be malicious, the service provider
could forward the received data to another, unauthorized service. The system thus has
to allow service providers to forbid their data from being accessed from mobile devices.

2.4.3 Solution Outline

In the following, we will provide an outline of the architecture that we devised in order
to deal with the lack of trust. As a complete description would go beyond the scope of
this thesis, only important corner points will be provided. A more thorough descrip-
tion can be found in [WJL+12] and [JWHL13]. The platform was designed as follows:

– Central Data Store: The core of our platform is a centralized Cassandra database
[LM10] that stores data items produced by the services. This allows services
to access data even if the the service that originally produced the data is cur-
rently unavailable, for instance because if the data was produced by a mobile
application and the user currently has no reception.

– Schema-less Data Model The data model is schema-less and based on the
Resource Description Framework (RDF), which uses the approach to describe

16

2 Background and Challenges

relations of arbitrary data items. This scheme allows services to extend the
data model flexibly. However, our data model defines some properties every
data item has to possess: first, it must be specified which service produced the
respective data item (the item’s source) and it must be specified to which user (if
any) the specific item belongs. This information is required when authorizing
data access.

– Service Model: The system differentiates between three different kinds of ser-
vices. Services are categorized based on how the deployed (as a web-application,
as a non-web-based server-application, or as a mobile app). Each service fur-
thermore has to specify which kinds of data it produces and which kinds of
data it consumes.

– User and Service Authentication: The platform authenticates both users and
services. For each class of service, a different authentication process has to be
provided. The authentication method is based on the SAML standard CITE.

– Authorization based on Data Source and Described User: If a service wants to
access any data item, it first has to be authorized by the platform. Authorization
is based on the type of service, on the data item’s source (the service that
produced the item), and on the user the data item refers to. If the source service
has forbidden that its data is accessed from mobile apps and the accessing
service is a mobile app, access is not granted. Else access is only granted if both
the source and the referred user granted their permission.

– Web-Based Permission Management: Permissions can be conveniently set and
reviewed by service providers and users in a web-based user interface. A
screenshot of the portal is depicted in Figure 2.3.

Figure 2.3: Screenshot of the iZEUS portal.

17

2 Background and Challenges

2.4.4 Summary

The iZEUS project demonstrates how issues caused by the lack of trust can manifest in
centralized Multi-Party Systems. A thorough assessment of the trust relationship be-
tween the involved components allowed us to cope with these issues by authenticating
and authorizing access between untrusted components.

However, our solution requires the data produced by external services to be stored
on the service platform itself, as it constitutes the system’s only universally trusted
component. If a similar solution were to be deployed nationally, the operator might
wish to delegate the hosting of the platform to a specialized storage provider. This
is not possible without further protecting the data, as this storage provider would
potentially not be completely trusted. This way, the iZEUS project also motivated
our research towards providing a confidential DaaS solution, which will be presented
in the next chapters.

2.5 Example: the KAI Project
The project Kommunikation mittels autonomer Infrastrukturen (KAI, English trans-
lation: Communication by Autonomic Infrastructure)3 was funded by the German
Federal Office for Information Security (BSI)4 with the goal to develop an Internet-
based system that allows a small, closed group of users to communicate securely,
without requiring the help of any central services. The users should be free to use
any available entry point to access the Internet and still be able to discover each
other reliably. Once connected, the system should provide integrity and confiden-
tiality for user communication.

2.5.1 Project Background and Requirements

The key problem in this project was to allow the KAI clients to locate each other,
i.e., retrieve their IP addresses, without the help of any central components. This
was achieved by letting the clients store their current IP addresses within an already
existing public P2P network under a secret key. As all clients were aware of the secret
key, they could look up the other client’s IP addresses at any time.

In order to do so, the clients were required to “join” the P2P network. This is not a
trivial task to achieve without the help of any central components as we will see in
Part II of this thesis. For now it is sufficient to note that the probability for this task
to succeed in a specific amount of time depends to a large extent on the size of the
P2P network, i.e., the number of peers that are concurrently participating.

Furthermore, the system was designed to be used only in exceptional scenarios
and remain dormant for the rest of the time. Still, it had to function reliably when
activated. In its “dormant” state, each KAI client was maintained by one of its future
users, which were assumed not to be IT experts.

3http://dsn.tm.kit.edu/english/projects kai-project.php, [last visited in October 2014]
4https://www.bsi.bund.de, [last visited in October 2014]

18

2 Background and Challenges

2.5.2 Problem Analysis

The KAI system can be separated into two parts: the underlying public P2P network
and the KAI clients. Figure 2.4 provides an overview over the composition of the
KAI system. As not only the peers found within the P2P network is controlled by a
different parties but also the KAI clients themselves, the KAI system is an example
for a Multi-Party System.

P2P network

C

B

D

KAI network

141.3.2.2

141.3.2.1

141.3.2.3

B: 141.3.2.1
C: 141.3.2.2
D: 141.3.2.3

A 1

join KAI network
2

Figure 2.4: Components of the KAI system. The clients connected to the KAI network
(blue) utilize a public P2P network (green) to locate each others. After retrieving
the IP addresses of KAI clients B, C, and D (1), client A can join the encrypted KAI
network.

When analyzing the system for trust issues, a clear line can be drawn between its two
parts: the P2P network including all its peers had to be considered as untrustworthy
while all KAI clients were trusted. Still, KAI clients were required to authenticate
themselves in order to prevent impersonation attacks.

However, the key challenge was to deal with the unreliability of the involved com-
ponents caused by the lack of control: as the P2P network consists of a multitude
of autonomous and externally controlled peers, it had to be assumed to not only
show unreliable performance but also had to be expected to change in the future. It
could thus not be guaranteed that the P2P network still met the requirements of the
KAI system when after a longer hibernation period. Furthermore, as the KAI clients
were maintained by non IT experts, it could not be guaranteed that they remained
operational during such periods.

2.5.3 Solution Outline

In order to solve these problems, another component was designed which was called
the KAI Management Console. The Management Console was designed to monitor
KAI’s other components during hibernation periods. While the Management Console
constituted a central component, it was not used when the KAI system becomes active
an thus did not break any requirements. The Management Console fulfilled two tasks:

19

2 Background and Challenges

1. It monitored all KAI clients and verified that they were properly maintained. It
was able to push updates to the client and report any encountered problems. It
was also able to initiate tests on the remote clients.

2. It monitored the evolution of the underlying P2P network, in particular with
respect to its size. The Management Console would report if the P2P networks
shrank significantly or any other properties evolved in a negative direction. In
that case, the clients could be patched, for example to use an modified method
to join the P2P network. In extreme cases, the chosen P2P network could have
been replaced by another. In Chapter 8, we will report in much greater detail
on the measurements we conducted.

Due to space limitations, we abstain from going into more detail at this place. A
more detailed description of the KAI system is provided in [DJWC08].

2.5.4 Summary

The KAI system illustrated how the lack of control can influence the design of a fully
decentralized application. In fact, a large part of the KAI system was designed only to
deal with the lack of control over the public P2P network and the KAI clients. This
shows that similar problems should not be treated lightly.

In the KAI project, the main concept to solve the encountered problems was to
monitor the P2P network and the KAI clients in order to gain a better understand
of its behavior and to be able to react early to unexpected incidents. As we expect
this approach to apply to most decentralized applications, we continued and further
expanded our activities in this area of research. In the second part of this thesis, we
will hence report more thoroughly on our measurement efforts.

20

Part I

Confidential Data Outsourcing

21

3

Confidential Indexing

With the advent of the cloud computing paradigm, data outsourcing has become
increasingly popular, especially for companies that have to process large amounts of
data but do not possess a substantial IT infrastructure themselves. Typical reasons
for companies to outsource their data include the reduction of costs, the wish to
achieve better robustness of central IT services or to adapt better to in- or decreasing
workloads. In the database-as-a-service (DaaS) scenario, databases are outsourced
to external storage providers which evaluate queries issued by the client in its stead
and return the respective results.

One of the most important factors that inhibit the more widespread DaaS adop-
tion is the risk of a confidentiality breach of the (potentially sensitive) outsourced
data [AFG+10]. As the client looses direct control over the outsourced data, it has to
trust the storage provider to respect its data’s confidentiality. However, the storage
provider is often not considered trustworthy by the client [GMR+12]. The storage
provider (or one of its employees) might, for instance, have an economic interest
in spying on its customers’ data or might be required by law to provide access on
demand. The storage provider might also get compromised by an external attacker in
the future. Furthermore, the client might simply be required by law to protect its data
by technical means, for instance in the eHealth or eTraffic domain. The confidentiality
of the outsourced data thus has to be protected (for instance by encryption) in a way
that still allows the storage provider to evaluate queries issued by the client efficiently.

In the first part of this thesis, we present Securus (Secure And Efficient Cloud
Utilization Relying Upon Schemes), a confidential DaaS solution that targets this chal-
lenge.

Parts of the work presented in this part of the thesis has been published in [JKH12,
KJH14, KJ14].

23

3 Confidential Indexing

3.1 Structure
The first part of this thesis is structured as follows:

In Chapter 3, the problem of providing confidential indexing as a foundation for
confidential DaaS scenarios is introduced and motivated. Furthermore, the necessary
background for understanding the following chapters is established, in particular
by providing a brief introduction into cryptographic key definitions and presenting
a list of many popular security techniques.

Chapter 4 presents the Securus approach. Before diving into technical details,
Securus’ main concept and idea are introduced on a high level. Its usage workflow
is also illustrated as it differs from conventional DaaS frameworks. Then, Securus’
technical architecture is presented. Securus’ two main contributions, the policy profiles,
which are used to define the user’s access and confidentiality requirements, and the
transformation of these into mediators, which are software adapters that realize the
corresponding requirements, are explained in the subsequent sections.

Chapter 5 concludes this part of the thesis by evaluating and discussing Securus’
performance and deployability. An outlook of possible future additions to Secu-
rus is also given.

3.2 Introduction
Many approaches have been published that aim at allowing the storage provider to
evaluate queries issued by the client efficiently. Most of them assume an honest-but-
curious attacker model on which we also focus in this thesis. An honest-but-curious
storage provider observes but does not modify the outsourced data. Typically, the
storage provider is furthermore assumed not to monitor or alter queries. We will
describe the assumptions made about the attacker more thoroughly in the begin-
ning of the Chapter 4.

Most of these approaches use indexes that allow the storage provider to efficiently
evaluate a certain kind of queries. The index itself typically contains encrypted
data only. We call these approaches confidentiality preserving indexing approaches
(CPIs). One example for a CPI is using deterministic encryption or hashing to
build an index of a specific attribute, for instance the customers’ names. In order
to retrieve a customer with a specific name, the storage provider is asked to look
for the respective name’s ciphertext or hash. The customers’ names are hence not
revealed to the storage provider.

Another class of approaches is defined by the use of fragmentation in order to
protect the confidentiality of attribute combinations rather than single attributes. If
the combination of multiple attributes is considered sensitive, the relation can be
split up into multiple, unlinkable fragments. For instance, the combination of the
attributes name and dateOfBirth of a person could be considered sensitive as it allows
to identify most people in a database. By storing the customers’ names and dates of
birth in different, unlinkable tables, the storage provider could be prevented from
being able to identify any single person.

24

3 Confidential Indexing

While each of these CPIs and fragmentation approaches solves a specific DaaS
problem, they typically differ in the capabilities they assume the attacker to possess, in
the confidentiality goal they target, and in the class of queries whose evaluation they
support. Whether or not an approach fits the client’s needs depends in particular (i)
on how the data is going to be accessed (access requirements), and (ii) on the client’s
confidentiality requirements. In order to fully support its individual demands, the
client thus has to assess its requirements, carefully study each available approach, and
then select an appropriate set of CPIs. This task is complicated, error-prone, and can
only be fulfilled by a combined domain and security expert.

A popular solution that targets the confidential DaaS domain is CryptDB [PZB11].
CryptDB avoids the problem of letting the user define her confidentiality and access
requirements by applying and removing CPIs dynamically during normal operation:
when a database is first outsourced, a high level of protection is applied. However,
whenever a query is received that cannot be evaluated using the current level of
protection, the protection level is lowered permanently. The protection level is thus
incrementally relaxed. While this approach is very convenient to use, it does not
provide hard security guarantees – depending on the initiated queries, the database
might eventually be stored completely unprotected.

We thus state the motivational question for the first part this thesis as follows:

How can confidential databases be sourced out to honest-but-curious stor-
age providers while providing hard confidentiality guarantees?

3.3 Challenges and Research Questions
On the way towards tackling the motivational question, a couple of challenges arise.
In particular, the fact that no combination of CPIs is able to satisfy all possible
combinations of confidentiality and accessibility requirements ruins any hope to
find a “universal” outsourcing scheme that can be applied directly to any scenario.
Instead a different scheme has to be found each time that fits the specific scenario’s
access and confidentiality requirements. As very few people possess the required,
very specific knowledge about a wide range of CPIs, data fragmentation approaches,
and cryptography, this task cannot be fulfilled without external support in most cases.
One challenge is thus to provide a tool that generates custom tailored outsourcing
solutions based on the client’s specifications. The generated solutions should provide
hard security guarantees and still allow the client to access its data efficiently.

In order to allow the generation of a custom-tailored outsourcing solution, the
client has to express its confidentiality and access requirements. One the one hand,
this specification has to be specific enough to be used as a foundation for choosing
appropriately between alternative security techniques. One the other hand, it should
not be required to specify so many details that it becomes unrealistic to define real-
world scenarios. Choosing an appropriate abstraction level is thus not a trivial task.
As knowledge about the outsourced data’s semantics is required in order to define
one’s confidentiality and access requirements, the specification has to be defined by

25

3 Confidential Indexing

a domain rather than an security expert. No expert knowledge about any involved
security mechanics should hence be required during the specification process.

In summary, the following challenges prevent companies from outsourcing their
data to external storage providers according to the DaaS paradigm:

– As the client company often does not trust the storage provider, often hard
confidentiality guarantees are required when outsourcing a database. Current
confidential DaaS frameworks are unable to satisfy these requirements.

– Confidentiality and access requirements vary on a case by case basis and are
typically only understood by domain experts, which typically are not security
experts at the same time.

In the first part of this thesis, we present Securus, an approach that aims to over-
come these challenges. In order to do so, Securus in particular targets the following
research questions:

– How can data outsourcing solutions be generated that meet specific confiden-
tiality and access requirements?

– How can these requirements be defined by domain experts rather than security
experts?

3.4 Cryptographic Fundamentals
In order to protect the confidentiality of outsourced data while still allowing the
storage provider to evaluate received queries, most CPIs rely on cryptography. While
the focus of this thesis is not the cryptographic analysis of these approaches, an
understanding of some cryptographic concepts is required for being able to rank the
level of confidentiality provided by alternative CPIs. In this section, cryptographic
key concepts such as ciphertext indistinguishability, deterministic and probabilistic
encryption schemes, and keyed hash functions are introduced. For a more formal and
detailed introduction we refer to other publications such as [KL06].

3.4.1 Ciphertext Indistinguishability

Ciphertext indistinguishability is an important property of encryption schemes that al-
lows to define security with respect to the confidentiality of the encrypted data. It states,
“that for every two plaintexts m0 and m1, it should be hard to distinguish the case that a
ciphertext c is an encryption of m0 from the case that it is an encryption of m1” [KL06,
p. 42]. This definition is equivalent to stating that “a ciphertext reveals no information
whatsoever about the plaintext.” [KL06, p. 42] Due to this equivalency, ciphertext
indistinguishability is of great importance for Securus, as it allows to judge whether
or not a storage provider can reveal any information from outsourced ciphertexts.

A common definition is that an encryption scheme – such as the RSA cryptosys-
tem – provides ciphertext indistinguishability if it is resilient to chosen plaintext

26

3 Confidential Indexing

attacks (IND-CPA). The cryptosystem is resilient to chosen plaintext attacks, if an
adversary has only a negligible advantage over random guessing to win the game
which is sketched as follows:

1. The adversary chooses two plaintexts and submits them to the challenger.

2. The challenger chooses one of both plaintexts at random, encrypts it, and sends
the resulting ciphertext back to the attacker.

3. The adversary is free to perform a polynomially bounded number of computa-
tions. In particular, she may ask the challenger to encrypt any plaintext, even
the ones she already submitted.

4. Eventually, the adversary has to guess which plaintext the ciphertext was gener-
ated from. She wins the game if and only if she picks the right one.

A more formal definition of IND-CPA can be found in [KL06, p. 241 f.]. While
the IND-CPA model is defined only for asymmetric encryption schemes, equivalent
definitions exist for symmetric schemes as well. An important implication of this
definition is that an encryption scheme that satisfies it (almost always) has to produce
different ciphertexts when encrypting two equal plaintexts. Furthermore, produced
ciphertexts have to be indistinguishable from random data for the adversary.

A class of encryption schemes that provide ciphertext indistinguishability are proba-
bilistic encryption schemes as opposed to deterministic encryption schemes, which do
not. Probabilistic encryption schemes [GM84] use randomness to satisfy the indis-
tinguishability requirement. Popular examples for probabilistic encryption schemes
include public key encryption algorithms such as RSA-PSS [CJNP02], homomorphic
encryption schemes [Pai99], and symmetric block ciphers in cipher block chaining
(CBC) mode such as AES-CBC [FGK03] with random initialization vector.

Deterministic encryption schemes [BBO07] ensure that the ciphertext generated
for two equal values is always the same. Popular examples include RSA when used
without encryption padding and block ciphers in electronic codebook mode (ECB).

3.4.2 Keyed Hash Functions

Another important set of cryptographic tools are cryptographic hash functions. Cryp-
tographic hash functions generate constant length “checksums” of plaintext data. For
instance, these can later be used in an index as a substitute for the original value. This
allows to hide the value from the storage provider.

Any cryptographic hash function has to meet the following requirements [Pre94]:

1. It must be a one-way function. It is thus “hard” to invert the function if the
secret key is not known.

2. The function must produce fixed length results.

3. The function must be collision resistant, i.e., it is “hard” to find two distinct
values that map to the same result.

27

3 Confidential Indexing

Keyed hash functions are cryptographic hash functions that incorporate a secret key
in the hashing algorithm. It should be hard for an adversary that does not have access
to the secret key to determine the correct hash for a given plaintext.

Keyed hash functions and deterministic encryption schemes share the property
that they always generate the same results for two equal input values, as long as the
secret key remains fixed. Furthermore, they produce different results for equal inputs
in at least almost all the cases if different keys are used. An adversary can thus only
with a probability that is negligible higher than random guessing determine whether
a given ciphertext was created from a specific plaintext value, provided she does not
know the secret key. These properties are leveraged by many CPIs.

3.5 Confidentiality Preserving Indexing Approaches
This section introduces Confidentiality Preserving Indexing Approaches (CPIs), the
building blocks Securus assembles outsourcing solutions from. First, a classification
scheme is presented which will later be used to select CPIs that match specific require-
ments. This scheme is based on two dimensions: the substitution category, which
describes how well a CPI protects its contained entries, and the query category, which
specifies the queries that are supported by the CPI.

Following the classification scheme, popular CPIs are introduced. Each CPI is
categorized according to out classification scheme and an outline of their general
behavior is given. For completeness, CPIs that are promising candidates for future
addition to Securus will also be introduced.

3.5.1 Classification

A CPI is an established data indexing technique that satisfies specific confidentiality
requirements and permits specific kinds of queries to be evaluated by an untrusted
storage provider. This is achieved by building an index for a specific attribute that
needs to be accessed in order to evaluate the query. The index is created in a way that
at least partly protects the confidentiality of the stored data. Typically, the index is
either filled with plaintext values of the accessed attribute, or with substitutes created
from the plaintext values by either a hash function or encryption scheme.

We categorize CPIs with respect to the following criteria:

1. The substitution category, which describes the kind of substitutes that are stored
in the index (compare Section 3.5.2).

2. The query category, which describes the type of queries that can be evaluated
with the help of the CPI (compare Section 3.5.3).

In the following two subsections, both categories will be explained in detail.

28

3 Confidential Indexing

3.5.2 Substitution Categories

For our approach it is important to judge which kind of information can be deduced
from the data stored in the indexes maintained by the storage provider. We call the
entries stored in an index substitutes as they substitute the original values.

In particular, it is important to differentiate whether or not the substitutes of two
equal values are equal as well or not. If they are equal, a storage provider could deduce
information in case it possesses background knowledge: for instance, it could analyze
which patients found in a database suffer from the same illness. We distinguish
between the following three substitution categories:

– Plaintext: Values are not substituted.

– Distinguishable Substitutes: Values are substituted by ciphertexts or hashes that
leak the information of whether or not two ciphertexts were created from the
same value. In particular, distinguishable substitutes are produced by keyed
hash functions and deterministic encryption schemes (compare Section 3.4).

– Indistinguishable Substitutes: Values are substituted by ciphertexts that leak no
information about the original value whatsoever. In particular, an adversary
cannot judge whether or not two ciphertexts were created from the same value.
Indistinguishable substitutes are produced by probabilistic encryption schemes
(compare Section 3.4).

Figure 3.1 illustrates the difference between the three substitution categories. The
protection level increases from plaintext values, whose confidentiality is not protected
from the storage provider in any way, over distinguishable substitutes, which leak some
information that can be exploited by the storage provider under certain circumstances,
to indistinguishable substitutes, which leak no information.

It should furthermore be noted that it is possible to extend this dimension by
additional substitution categories to achieve an even more fine-grained differentia-
tion of confidentiality protection. Order preserving encryption schemes [BCLO09]
produce ciphertexts that could bridge the gap between plaintext values and distin-
guishable substitutes. We consider this and other extensions of Securus to constitute
promising future work.

“Smith”

“Smith”

3187fec5d

3187fec5d
Plaintext Distinguishable substitutes Indistinguishable substitutes

“Smith”

“Smith”

“Smith”

“Smith”

First round

Second round
“Smith”

“Smith”

ec789618

71f3c528

Figure 3.1: Substitution categories. The plaintext category means that values are
not substituted at all. Distinguishable substitutes are equal for equal values while
indistinguishable substitutes are almost always different, even if they were generated
from equal values.

29

3 Confidential Indexing

3.5.3 Query categories

Typically, a CPI allows only the evaluation of a specific kind of query as each kind of
index only supports a limited set of operations to be performed. In Securus, we dif-
ferentiate between three query categories: equality selections, range selections, and
aggregations.

– Equality selections: If a CPI supports equality selections for a specific attribute,
it enables the storage provider to select records based on whether or not the
attribute’s value is equal to a specific argument. An example for an equality
selection is the query SELECT ... WHERE name=‘Smith’. In this case,
the equality selection was defined for attribute name.

– Range selections: If a CPI supports range selections for a specific attribute,
it enables the storage provider to select records based on whether or not the
attribute’s value lies within a specific value range. An example for an equality
selection is the query SELECT ... WHERE age < 30. In this case, the
equality selection was defined for attribute age.

– Aggregations: If a CPI supports range selections for a specific attribute, it
enables the storage provider to perform some kind of operation on the values
in order to compute a result, for instance the sum, average, or minimum of the
values contained in a specific column. An example for an equality selection is
the query SELECT SUM(price) WHERE

Although all query categories accept only one attribute as an argument, more
complex queries can be created by combining different query categories. If, for
instance, a storage provider can evaluate equality selections for attribute name and
range selections on attribute age, it can also evaluate queries that ask it to return
all people that are named ‘Smith’ and younger than 30 years old. A query category
thus simply describe the operations the storage provider can use to access the values
of specific single attribute.

Similar to the substitution categories, this dimension, too, can be extended by
additional query categories in the future. In Section 5.6, we will discuss this op-
tion in greater detail.

3.5.4 CPIs supported by Securus

In the following, a catalog of CPIs that are currently supported by Securus will be
presented. Each CPI will be categorized according to the respective substitution and
query category. Table 3.1 depicts the CPI catalog and lists the contained CPIs. The
CPI catalog plays an important role for Securus’ policy transformation process, as it
constitutes the “library” of CPIs that can be used to satisfy the user’s needs.

It can be seen that not for every combination of query type and substitution category
suitable CPIs are available, as to our knowledge no CPIs exist yet that allow equality or
range selections to be evaluated efficiently on indistinguishable substitutes. Because

30

3 Confidential Indexing

indistinguishable ciphertexts provide a higher level of protection than distinguishable
ciphertexts, we furthermore consider homomorphic encryption schemes to “support”
both substitution categories.

Query type Plaintext Distinguishable ciphertexts Indistinguishable ciphertexts
Equality Selection ✓ Det. Encr. & Hash Indexes

[DVJ+03, CDV+05]
×

Range Selection ✓ Bucket Hash Indexes
[HILM02]

×

Aggregation ✓ Part. Homomorphic Encr.
[HIM04, MT06]

Part. Homomorphic Encr.
[HIM04, MT06]

Table 3.1: Catalog of CPIs that are supported by Securus. The✓ symbol indicates that
no CPIs need to be applied to support this category combination, whereas × indicates
that Securus does not support any CPIs that fit the respective profile.

Hash Indexes

Substitution Category: Distinguishable ciphertexts
Query Category: Equality selections

One way to put the storage provider in a position to evaluate equality selections
without storing plaintext values is the use of hash indexes. A hash index does not
store the values in the clear but replaces them by a distinguishable ciphertext, which
can either be generated by a deterministic encryption scheme or a keyed hash func-
tion. In order to select records based on whether or not the indexed attribute is
equal to a specific value x, the query has to be rephrased to not look for x but its
distinguishable ciphertext ξ.

Example: Table 3.2 shows how a hash index is added to a table for the attribute name.
If the user wants to evaluate the query SELECT ... WHERE name = ‘Bush’,
the substitute α first has to be generated for name ‘Bush’. In this example, she could
use a keyed hash function together with her secret key, which the storage provider
does not know. She then passes the query SELECT ... WHERE name = β to
the storage provider which returns the record 2.

ID name age
1 Smith 46
2 Bush 60
3 Pitt 51
4 Smith 60

(a) Data to source out.

ID name age
1 α 46
2 β 60
3 γ 51
4 α 60

(b) Relation with hash index.

Table 3.2: Hash Index example: A relation is sourced out and a hash index in applied
for attribute name. Names are stored as distinguishable ciphertexts, e.g., as keyed
hashes.

31

3 Confidential Indexing

Due to their reliance on distinguishable ciphertexts, hash indexes are vulnerable to
attackers with background knowledge. If, e.g., the attacker knows that Smith is the
most common name found in Table 3.2, she can infer that record 1 and 4 relate to
represent people named “Smith”. In [CDV+05], Ceselli et al. propose flattened hash
indexes which aim at mitigating this issue. A flattened hash index maps different
plaintext values to the same substitute so that each substitute occurs the same number
of times. However, this approach still allows the storage provider to infer some
information, as different substitutes can not have been created from the same plaintext.
Records with different substitutes thus always contain different values. For this reason,
Securus does not make use of flattened hash indexes.

Bucket Hash Indexes

Substitution Category: Distinguishable ciphertexts
Query Category: Range selections

Bucketization [HMCK12, HILM02] is an approach similar to hash indexes that
allows to evaluate range selections on distinguishable ciphertexts. With bucketization,
the substitute is not generated directly from a record’s plaintext value. Instead, the
values are sorted into “buckets” that cover a specific interval each. An ID is assigned
to each bucket. The generated index contains distinguishable substitutes of the IDs
of the buckets, the outsourced records belong to. In order to select records based on
whether or not the indexed attribute falls into a specific value range, a query is started
that asks the storage provider to return all records that cover parts of this range. The
returned results then have to be filtered on the client side.

Example: Table 3.3 shows how a table is outsourced while applying the value bucketi-
zation approach to the attribute age. The bucket table contains the intervals the individ-
ual buckets span and the buckets’ IDs. To evaluate the query SELECT ... WHERE
age < 49, the user has to pass the query SELECT ... WHERE bucket =
encr(8) OR bucket = encr(6) to the storage provider. The term encr(x)
here means that a distinguishable substitute has to be generated for the value x.

Similar to hash indexes, the bucketization approach is vulnerable to attackers that
possess background knowledge. Again, flattened bucket hash indexes [HMCK12]
promise mitigation of the issue, but cannot prevent an information flow in all cases.

ID name age
1 Smith 46
2 Bush 60
3 Pitt 51
4 Smith 60

(a) Data to source out.

B-ID range
8 31 - 40
6 41 - 50
3 51 - 60
5 61 - 70

Bucket Table

ID name bucket age
1 Smith encr(6) α
2 Bush encr(3) β
3 Pitt encr(3) γ
4 Smith encr(3) δ

Main table (with index)

(b) Relation with bucketization.

Table 3.3: Bucketization example: A relation is sourced out and a bucket hash index
is used to index attribute age. Distinguishable ciphertexts are used for the bucket
column, indistinguishable ciphertexts for the age column.

32

3 Confidential Indexing

Homomorphic Encryption

Substitution Category: Indistinguishable ciphertexts
Query Category: Aggregations

Homomorphic Encryption is a class of encryption schemes that allow a (limited)
set of operations to be executed directly on ciphertexts without having access to
the secret key [Pai99, OU98, RAD78]. Authors such as Hacıgümüş et al. [HIM04]
or Mykletun and Tsudik [MT06] proposed to use these schemes to build indexes
that store indistinguishable ciphertexts of the outsourced data but still allow the
storage provider to perform additions or multiplications. This allows the storage
provider to aggregate values stored in the index. For example, it could calculate
the sum of the indexed values.

In Securus, we make use of partially homomorphic encryption schemes only. Par-
tially homomorphic encryption is more efficient than fully homomorphic encryption,
but does allow homomorphic computation of only one operation.

3.5.5 Candidates for Future Addition

For several reasons, Securus does not support all available CPIs.
First, a CPI was not considered for inclusion if it did not allow the storage provider

to evaluate queries efficiently. As evaluation performance depends on a wide range of
factors, ranging from the employed database system to the user’s network connection,
we assess performance on a high level only. In particular, we deem a CPI’s being
not efficient if the number of sequential communication rounds required to evaluate
a query depends on the number of records stored in the data set. We furthermore
rejected CPIs that require to touch O(n) record in order to evaluate a query, where
n is the number of records stored in the index.

Second, a CPI was rejected if the provided confidentiality level was lower than
that of any other approach that supports the query category – i.e., if the index was
more likely to leak information.

In the following, each CPI is presented and it is stated, why it is not yet included.
It should be noted that some of these CPI may be promising candidates for future
addition to Securus, for example together with a possible extension of the employed
classification scheme (compare Section 5.6).

Order-preserving Encryption

Substitution Category: Distinguishable ciphertexts
Query Category: Range and Equality selections

Order-preserving encryption schemes [BCLO09, AKSX04] are a way to perform
range selections directly on distinguishable ciphertexts. Therefore, these encryption
schemes generate ciphertexts that maintain the order of the plaintext values. Com-
pared to bucket hash indexes, order-preserving encryption has the advantage that
no false positives are transferred to the user, i.e., the results returned by the storage
provider do not have to be filtered on the client-side. However, as the ordering of
the ciphertexts is not protected from the storage provider, the index is very suscep-

33

3 Confidential Indexing

tible to attackers that possess background knowledge, even if they do not have the
capability to observe any data modifications or insert operations. Because range
selections are already supported by bucket hash indexes, Securus does not include
order-preserving encryption schemes.

Searchable Encryption

Substitution Category: Indistinguishable ciphertexts
Query Category: Range and Equality selections

Searchable encryption schemes generate indistinguishable ciphertexts that allow
the storage provider to check directly whether or not the contained value matches a
specific predicate [KV08, BBO07, LO05, SWP00]. Predicates can be used to perform
equality and range selections. In order to do so, a token has to be generated on the
client side from the secret key and the predicate the index should be checked for. When
passed to the storage provider, the storage provider can use it to check which cipher-
texts match the predicate. The predicate remains unknown to the storage provider.

Until recently, searchable encryption schemes came at high costs that prevented
their use in production environments. Typical, these costs included large indexes, slow
search performance, or the absence of support for adding items to the index [KPR12].
Searchable encryption still has the disadvantage of requiring to access every item
contained in the index. Evaluation time thus scales linearly with the number of out-
sourced records. For this reasons, we did not include searchable encryption schemes.

3.6 Data Fragmentation
Often, only the combination of multiple values within a record is considered sensitive
while any value alone is not. For instance, the combination of the age and name of a
person could be considered sensitive, as it allows to identify most people in a database
while either of the two attributes alone will not be enough in most cases. Data frag-
mentation is a technique that aims at preserving the confidentiality of a combination
of attributes by splitting up a relation into two or more unlinkable fragments.

A key requirement of the data fragmentation approach is that the fragments are
unlinkable, i.e., stored in a way that makes it impossible for the attacker to determine
that two fragments belong to the same record. At the same time, the user has to
remain able to link fragments, as she eventually has to reconstruct the record. To
solve this problem, two different approaches exist that are also illustrated in Table 3.4:

1. Fragments can be stored on the same storage provider and linked by ID columns
(see [For10, CDVF+07, MPP05]). The ID columns contain indistinguishable
substitutes.

2. Fragments can be stored on different, non-colluding storage providers (see
[ABG+05, GTF+11, HHK+10]). The ID columns do not have to be encrypted.

When storing all fragments on the same storage provider, an ID column has to be
added to each fragment in order to allow the user to link fragments after retrieving

34

3 Confidential Indexing

ID name age
1 Smith 46
2 Bush 60
3 Pitt 51
4 Smith 60

(a) Data to source out. The combination of
a person’s name and age is considered being
sensitive.

ID name
α Smith
β Bush
γ Pitt
δ Smith

ID age
ε 46
ϕ 60
χ 51
η 60

(b) Option A: Fragments are stored on the
same storage provider. The ID columns
have be protected.

ID name
1 Smith
2 Bush
3 Pitt
4 Smith

ID age
1 46
2 50
3 51
4 50

(c) Option B: Fragments are stored on dif-
ferent storage providers. The records’ IDs
can be stored in the clear.

Table 3.4: Data fragmentation example: the confidentiality of the attribute combina-
tion name and age should be protected from the storage provider(s).

them. By encrypting all IDs deterministically (but using a different secret key for
each fragment), the storage provider is prevented from linking the fragments on
its own. It cannot infer any information even though deterministic encryption is
used, as each ID is unique. In order to access data that spans multiple fragments,
the user has to issue multiple sequential queries. If, for instance, the user wants to
retrieve the age of a person named “Bush” in Table 3.4c, she has to first run the query
SELECT ID FROM fragment1 WHERE name=’Bush’ to retrieve the ID of
the corresponding record. She then has to decrypt the ciphertext with a secret key
used for fragment1 and encrypt it again using the secret key used for fragment2 to
compute ϕ. Then, she can retrieve the age by running the query SELECT age
FROM fragment2 WHERE ID=ϕ.

Storing all fragments on the same storage provider has the main advantage of
requiring one storage provider only. The option of using this approach is thus available
in almost all DaaS scenarios. A disadvantage of storing all fragments on a single storage
provider is that the approach is vulnerable under certain conditions. In particular,
any attacker that is able to monitor a single query or data modification (i.e., an insert
or update operation) that affects multiple fragments is able to link these fragments,
thus breaking data confidentiality. If, for example, the storage provider monitors
that fragments β, ‘Bush’ and ϕ, 60 are added in short succession, it can assume that
they belong to the same record. An attacker might furthermore be able to infer
some information about the confidential attribute combination just by analyzing both
fragments. For instance in Table 3.4, the attacker knows that “Pitt” is either 46, 51, or
60 years old, as these are the only values contained in the age column. These kinds of
attacks would not be possible if at least one of the two attributes was encrypted.

35

3 Confidential Indexing

We feel that these issues make it very hard to judge whether or not the confidentiality
of an attribute combination is still protected appropriately when using this approach.
We hence decided not to employ fragmentation on single storage providers in Securus.

As an alternative approach, fragments can be stored on multiple, non-colluding
storage providers. To our knowledge, this idea has first been published by Aggarwal et
al. in [ABG+05], but has been used by others as well [GTF+11, HHK+10]. The principle
of this approach is to restrict access to at least one fragment for each storage provider,
rather than just concealing the fragments’ relation. As no storage provider knows
the data contained by the other fragment, the ID columns can be stored in the clear.
Furthermore, this approach is robust to both before-mentioned issues that occur
when storing all fragments on one storage provider.

Securus makes extensive use of data fragmentation if multiple non-colluding stor-
age providers are available.

36

4

The Securus Approach

In this chapter, the Securus approach is presented. First, Securus’ main concept
is introduced on an abstract level in Section 4.1. In the same section fundamental
assumptions are presented and discussed. Securus is furthermore compared to other
confidential DaaS solutions. Section 4.3, presents Securus’ technical architecture. All
main components are introduced and two key contributions – the definition of policy
profiles and their transformation into mediators – are motivated. In Sections 4.4 and
4.5, these contributions are presented in detail.

The subsequent chapter covers Securus’ evaluation, discussion, outlook, and conclu-
sion.

4.1 Concept
With Securus, we present an approach that aims at satisfying a user’s specific con-
fidentiality and access requirements. In order to do so, the user has to define her
requirements explicitly. Securus differs in this regard from conventional DaaS solu-
tions. Before delving into technical details of our approach, we will in this section
hence first provide a high level overview on Securus from a user’s perspective in
order to highlight fundamental assumptions Securus is based on and illustrate dif-
ferences to other approaches. We start with listing the assumptions made about
the attacker’s and user’s capabilities (user and attacker model). We then illustrate
Securus’ usage workflow from a user’s perspective. After that, Securus is compared
to other confidential DaaS solutions.

37

4 The Securus Approach

4.1.1 Attacker Model

We assume that the user does not only want to protect her data from the eyes of
external attackers but also from the storage provider. There are multiple possible
reasons for a user to have this demand:

1. First, the user might not trust the storage provider to not look into the out-
sourced data. The storage provider as a company might have an economic
interest to spy on its customers or might even be required by law to provide
access to its customer’s data under some circumstances. Even if these possibili-
ties can be ruled out, singular employees might develop a personal interest in
the stored data. In particular, employees such as administrators that have to
possess far-reaching rights to do their job pose a threat to data confidentiality.
As it is typically hard or impossible for the user to check the storage provider’s
internal security policies, she might prefer to be safe instead of being sorry.

2. Second, the user could be required by law to take special care when handling
its data, for example because the data contains sensitive information about the
user’s customers. This is especially important in eHealth, eTraffic, and Smart
Grid scenarios, which often also constitute “data-heavy” examples. Consider for
example a hospital that wants to source out their patients’ medical histories or
a car manufacturer that stores accurate movement profiles of its newest electric
car to provide special services to its buyers. National law might require the user
to protect its data by technical rather than contractual means.

3. Third, the storage provider could get compromised by an external attacker. As
stated before, most of the time it is impossible for the user to rate the storage
provider’s security standard accurately and assess the likelihood of an attack to
succeed.

By considering the storage provider as an attacker, we cover all of these demands.
We hence assume the storage provider to be honest-but-curious. This means that
the storage provider observes the outsourced data but does not manipulate any data,
queries, or returned results. While protection against malicious adversaries, i.e.,
against storage providers that do manipulate data or queries, is surely an important
topic, it is out of the scope of this thesis as we focus on preserving data confidentiality
rather than integrity. The user can, however, apply her own integrity preserving
techniques to her data prior to outsourcing it in order to discourage any tampering.

Like most other confidential DaaS frameworks, we furthermore assume that the
storage provider does not actively monitor queries in order to analyze their access
patterns, e.g., to derive which (encrypted) parts of a database were accessed. These
access patterns can be exploited by an attacker that possesses background knowledge
about the outsourced data. Most CPIs are unable to protect against this kind of attack1.

1While approaches such as Oblivious RAM [ABG+05] target similar scenarios, they do not fit our
performance requirements as the number of sequential communication rounds required to evaluate a
query depends on the number of records stored in the database (compare Section 3.5.5).

38

4 The Securus Approach

We feel that this is a reasonable assumption especially in scenarios in which the storage
provider is compromised by an external or internal attacker that only has access to the
data for a short time and might thus not be able to actively monitor incoming queries
for an extended time period. If, however, an storage provider with enough resources
to actively monitor and analyze query patterns for a longer time period is considered
(for instance the NSA), more advanced security techniques might be required.

We furthermore assume that one or more non-colluding storage providers are avail-
able to the user. Non-colluding storage providers do not exchange any information
about outsourced data between each other. If more than one provider with this prop-
erty are available, Securus can use data partitioning techniques to distribute the data
among them and meet the user’s confidentiality requirements more efficiently.

4.1.2 User Model

We will later see that it is not always possible to organize a database in a way that
ensures the confidentiality of all contained information and also allows to execute
every possible kind of query efficiently. In general, trade-offs have to be made, either
by relaxing the envisioned confidentiality level for some parts of the data or by giving
up support for some kinds of queries. In order to enable Securus to choose trade-offs
appropriately, the user has to specify the requirements she has on the outsourced
database. In particular, she has to specify confidentiality requirements (e.g., which
parts of the data demand for protection), and access requirements (e.g., how she
wants to access her data in the future). However, she does not need to possess any
cryptographic expert knowledge or understand any of the various security techniques
Securus employs. In fact, one of Securus’ main strengths is to make this knowledge
more available, manageable, and more easy to integrate, even for non-experts. We
expect the user to fit the following profile:

– The user has to understand the structure and semantics of the outsourced data.
If, for instance, the user wants to outsource a relational database, she has to
know the schema of the database and understand the nature of the contained
content. For example, she has to know whether a table contains natural persons,
articles to be sold, or hashed user passwords. The more the user knows about
the data, the better will the solution generated by Securus fit her needs. If, for
instance, she knows that every value contained in specific column of a table is
unique, Securus might be able to leverage this fact to execute queries over this
attribute more efficiently without impairing the satisfied level of protection.
This requirement makes Securus an suboptimal approach for users who manage
the data of others and are agnostic of its meaning.

– The user has to know how she is going to access the outsourced database, i.e.,
which kinds of queries Securus needs to support. In particular, she needs
to know by which attributes she is going to select individual entries. In SQL,
this relates to the attributes referred to within the WHERE part of a SELECT
statement. She furthermore needs to know whether she is going to use equality

39

4 The Securus Approach

selections (. . .WHERE attribute == ’value’), or range selections (. . .WHERE
attribute >= ’value’), and whether she wants to aggregate the return results
(. . .SELECT SUM(attribute)). In general, the fewer kinds of queries need to be
supported, the stronger can the confidentiality requirements be that Securus is
able to satisfy.
In case the set of query types that need to be supported changes after the
database has been sourced out, the whole database may have to be reorganized
and re-encrypted from scratch. Furthermore, the achievable protection level
might be lower in this case than it would be if all query types are known from
the beginning. The reason for this is that it has to be assumed that the storage
provider combines the information pieces it was able to infer from the first
encryption scheme with the ones it can infer from the second. However, as the
best-case scenario, it is also possible that the new query types can be supported
without requiring any re-organization of the data at all.

– The user has to be able to state her confidentiality requirements. In particular,
she has to know which information has to stay confidential and from which
parts of her data this information can be inferred. While this requirement may
seem hard to fulfill by a non-expert, the user is only required to specify her
confidentiality demands on a high level using two elemental expressions: first,
she can specify attributes whose values should remain hidden. The storage
provider should thus be unable to decipher or infer the clear-text values of these
attributes. These attributes will in the end often have to be encrypted. Second,
the user can define sets of attributes that are considered sensitive. No storage
provider should not be able to reveal all of these attributes’ values for any data
entry. For example, if the combination of the attributes name and salary of an
employee are considered sensitive, the storage provider should not be able to
determine both name and salary of any employee. The storage provider may,
however, know all employees’ names, as long as it cannot link them to their
salary.

4.1.3 Usage Workflow: User perspective

Figure 4.1 depicts a workflow that illustrates how Securus is used. To initiate the
data-outsourcing process, the user first has to define a Policy Profile, which specifies
her individual confidentiality and access requirements (1). The policy profile is written
in the domain specific language Securus-Latin. No cryptographic expert knowledge
is necessary in order to create the document. Policy profiles will be explained in
greater detail in Section 4.4.

Securus then computes which set of Confidentiality Preserving Indexing Approaches
(CPIs) fits these requirements best (2). Securus contains a catalog that covers vari-
ous popular CPIs (compare Section 3.5). The catalog can be extended in case new
CPI’s are published. To determine which set of CPIs fits best, the policy profile is
internally translated into an Integer Linear Programming problem (ILP) which is
then solved by a generic ILP solver.

40

4 The Securus Approach

database user

domain expert

define

Query / Result

Trusted environment
(e.g., inside user company)

ILP solution

Policy Profile
1

4

generate

• Select CPIs from catalog
• Generate mediator

compute

• Formulate as ILP problem
• Compute solution

2

3
Storage Provider 1

Storage Provider 2
Mediator

Figure 4.1: Securus’ usage workflow from a user perspective.

Based on the ILP’s result, a custom software adapter called Mediator is generated
for the user (3). The mediator covers the user’s requirements and implements the
CPIs that were determined by the ILP. Depending on the specific scenario, it is also
possible that the requirements defined in the policy profile cannot all be satisfied
at the same time with the available CPIs. If this case occurs, the user is prompted
that her requirements are too strict. She can then weaken either her confidentiality
or access requirements. The transformation of the policy profile and the generation
of the mediator is covered in Section 4.4.

From now on, the user accesses her data exclusively through the mediator (4). The
mediator creates all required tables and indexes on the storage provider(s) for the
user and handles all requests and cryptographic keys. For this reason, the mediator
has to be run in a trusted environment in the user’s domain of control and should not
be outsourced as well. Its main task is to transform and encrypt queries specified by
the user, forward the requests, and decrypt and restructure any received responses
before handing them over to the user. In Chapter 5 we evaluate the performance
of the mediator and discuss aspects related to the operation and deployability of
the mediator and Securus in general.

4.2 Related Approaches
In recent years, much research has been done in the area of confidential query eval-
uation, and multiple systems have been proposed that aim at integrating different
confidentiality preserving techniques. We categorize these systems in two classes:
(i) systems that focus on applying CPIs without using fragmentation to a large ex-
tent, and (ii) systems that mainly rely on data fragmentation. The perhaps most

41

4 The Securus Approach

popular member of the class of CPI-based approaches is CryptDB [PZB11], whereas
a solution advanced by a group of Italian researchers [For10] probably constitutes
the most popular example of an fragmentation-based approach. In the following, we
will introduce and discuss representatives from both classes of systems and compare
their strengths and weaknesses to those of Securus.

4.2.1 CryptDB

Similar to Securus, CryptDB [PZB11, PRZB11] aims at preserving data confidentiality
in a DaaS scenario. CryptDB is a self-regulating approach that selects a mix of
CPIs adaptively at run-time to preserve confidentiality. With CryptDB, the user
does not have to specify her requirements before outsourcing her data. Instead, the
complete data set is encrypted before it is transmitted to the storage provider. Multiple
encryption layers are used in this initial encryption process. The strength of the layers
increases from the inner to the outer layers. Whenever the user starts a query that
cannot be evaluated by the storage provider with the current encryption scheme used,
CryptDB removes one layer from the corresponding attributes by given the storage
provider access to the key. The protection level is thus incrementally relaxed with
each new currently unsupported type of query. The preserved confidentiality level of
the outsourced data depends directly on the processed queries. It can thus be hard to
judge at any given time whether or not the confidentiality of the data is still unbroken.

In contrast, Securus provides strong confidentiality guarantees but requires the user
to define a policy profile. We argue that this is the better trade in scenarios in which
data confidentiality is a must rather than an optional feature. As another difference,
CryptDB cannot leverage multiple SPs to improve query execution performance or
satisfy more advanced confidentiality requirements.

4.2.2 Fragmentation-based Approaches

Another approach has been proposed by Foresti et al. [For10, CVF+10]. Similar to
Securus, this approach combines fragmentation with encryption in order to preserve
data confidentiality. However, different from Securus, the system does not make
use of multiple non-colluding storage providers, should they be available, but stores
fragments on a single storage provider exclusively. As was already explained in
Section 3.6, it is key in this setting to prevent the storage provider from linking data
fragments. For this reason, each outsourced attribute must only be contained in
exactly one fragment. If it was contained in two fragments, the storage provider
could link the fragments based on identity of the values stored in the respective
columns. In Securus, an attribute can be contained in multiple fragments if they
are stored on different storage providers.

The fact that attributes cannot be stored in multiple fragments can impede evaluation
performance. If, for instance, an attribute has to be accessed for evaluating two
different kinds of queries, it cannot be part of both indexes. That means that one type
of query cannot be evaluated on the server-side alone. Instead, the results returned by
one sub-query have to be transferred to the client. The client can has to process the

42

4 The Securus Approach

second sub-query himself. This query evaluation process can introduce considerable
overhead, as (depending on the respective sub-queries) a high number of false positive
results have to be transferred to the client. This problem does not exist in Securus.

From a security point of view, the proposed solution and Securus differ in the
assumptions made about the storage providers: in Securus, it is assumed that all
fragments stored on the same storage provider can be linked, as the attacker only
needs to observe one INSERT operation in order to be able to link two fragments.
In contrast, the Italian approach does not make this assumption. Instead, it is con-
sidered an unrealistic assumption that multiple external storage providers do not
collude [For10, p. 87]. Which of both proposed approaches provides the higher pro-
tection level hence depends to a large degree on which of these two assumptions
is deemed to be more realistic.

With MimoSecco, another fragmentation-based approach has been proposed by
Achenbach et al. and Gabel et al. [AGH11, GH14]. Similar to the approach presented
by Foresti et al., MimoSecco fragments tables in order to hide attribute relations of the
original data. For each attribute exactly one fragment is created, which then serves as
an index for efficient execution of equality selections. Within these indexes, values
are stored in the clear. In [GH14], the authors state that in the future MimoSecco will
furthermore support hashed or encrypted indexes. The inclusion of these types of
CPIs would allow MimoSecco to evaluate equality selections efficiently without storing
them as plaintexts. The MimoSecco project furthermore presents an architectural
blueprint for incorporating trusted hardware into the data-outsourcing environment.

The Cumulus4J abstraction layer proposed by Huber et al./ [HGSB13] constitutes
another technique targeting secure database outsourcing. With some of the original
MimoSecco authors coauthoring the Cumulus4J publication, both projects employ
very similar data outsourcing and fragmentation concepts. Cumulus4J, however, is
more focused on performance than MimoSecco (cmp. [GH14]) and furthermore
introduces the security notion Ind-ICP, which provides a formal description of the
security property that a specific (fragmentation) approach hides attribute relations.
This notion is not only used to formalize the security guarantees made by Cumulus4J,
but also those made by MimoSecco.

Both MimoSecco and Cumulus4J differ from Securus in that they are vulnerable to
attackers who are able to observe single INSERT or UPDATE operations. They share
this property with the Italian fragmentation approach discussed earlier. As neither
homomorphic encryption nor bucket hash indexes are supported, it is furthermore
not possible to efficiently process range selections or aggregations without storing
the outsourced data in the clear. Due to this simplicity the user, however, has to
specify her individual scenario in much lesser detail than she would have when
using Securus. Compared to Securus, MimoSecco and Cumulus4J this way achieve a
distinct improvement in usability by lowering the maximum security level that can
be achieved and limiting the range of operations that can be executed efficiently.

43

4 The Securus Approach

4.2.3 Summary

To conclude this section, we summarize Securus’ strengths in comparison to the
previously mentioned approaches as follows. To our knowledge, Securus is the only
approach that combines all of the following strengths:

– Strong confidentiality guarantees: Securus allows the user to express her confi-
dentiality requirements. If these requirements can be satisfied by data fragmen-
tation and the available set of CPIs, Securus guarantees that they are satisfied
and stay satisfied in the future.

– Multiple storage providers supported: Securus is able to leverage more than
one storage provider in its generated solutions in case multiple non-colluding
storage providers are available.

– Combines fragmentation and CPIs: Securus incorporates both data fragmenta-
tion and CPIs in its problem finding algorithms. This gives Securus a broader
set of tools than it is available to approaches that only use one of both.

4.3 Architecture
In this section Securus’ technical architecture is introduced. Each of Securus’ main
components will be discussed briefly and put into Securus’ context. A detailed de-
scription of Securus’ two main novel concepts, namely the policy profile and its
transformation to the mediator, follows in the next two sections.

4.3.1 Components

Figure 4.2 depicts on a high level how Securus is deployed. Securus’ main components
are the registry and one or more mediators. The registry is a management component
that contains the logic for parsing policy profiles and generating mediators. Usu-
ally, only one registry instance should exist per deployment. For each independent
database that has to be sourced out, one mediator is generated by the registry.

In the following, the behavior of each component will be illustrated in greater detail.

Registry

The registry is Securus’ central management component. It is the only component that
exists when Securus is initially deployed. The registry contains Securus’ core routines
and is responsible for storing policy profiles and generating mediators. For being able
to do so, the registry also contains a catalog of CPIs that Securus supports. Policy
profiles are submitted by a domain expert that understands the semantics and confiden-
tiality requirements of the data (compare Section 4.1). They are stored in order to allow
to link to data structures that were defined in previously submitted policy profiles.

When a new policy profile is submitted, the document is first checked for errors.
Then, it is checked whether or not the policy profile can be satisfied. A policy profile

44

4 The Securus Approach

database user

domain expert

Mediator A

Mediator B

Storage Provider 1

Storage Provider 2

Storage Provider 3

submits … to

Policy Profile generates
Query / Result

Trusted environment
(e.g., inside user company)

Query / Result

DB B - part 1

Registry
+ CPI catalog

DB B - part 2 DB A - part 2

DB A - part 1

Figure 4.2: Illustration of Securus’ high-level architecture. Components that belong
to Securus are colored yellow while components that are outside the user’s direct
control are colored green.

can be satisfied, if all access requirements can be fulfilled without breaking any confi-
dentiality requirements. This process will be explained thoroughly in Section 4.5. If
the policy profile can be satisfied, the registry generates a new mediator that matches
this profile. The mediator generation process can be influenced by configuring the
registry. For instance, it has to be defined which storage providers are available.

Mediator

A mediator is a software component that implements a set of CPIs that are required
to satisfy a specific policy profile. For each outsourced database, one mediator is
generated. However, multiple instances of the same mediator can be deployed, if
necessary. A mediator provides an interface that allows database users to initiate
only those requests they specified in the corresponding policy profile. Whenever a
query is initiated, the mediator transforms it to one or more queries to the storage
providers. How exactly the query is transformed depends on the specific CPIs that
are used for this type of query. Typically, some arguments of the query will have to
be encrypted before transmitting them to the storage providers. For being able to
do so, the mediator also has to store the required cryptographic keys.

Often, results received from the storage provider will have to be reordered or filtered
to match the query issued by the user. This is also the mediator’s responsibility.

Storage Providers

Each mediator communicates with a specific set of storage providers. Multiple media-
tors can use the same storage provider, if this does not break any confidentiality con-
straints. Each storage provider has to provide a suitable interface to which Securus can
connect. Our approach is agnostic of the type of data-base used. In our prototypical
implementation, we support relational MySQL databases [Sue02], column-oriented
HBase databases [Whi09], and the document-oriented MongoDB [Cho13].

45

4 The Securus Approach

Storage Provider A Storage Provider B

ID name age salary

1 ### ### ###

2 ### ### ###

3 ### ### ###

4 ### ### ###

name age ID

α 46 1

β 60 2

γ 51 3

δ 60 4

age salary ID

46 ### 1

60 ### 2

51 ### 3

60 ### 4

name age salary

Smith 46 10M

Bush 60 12M

Pitt 51 9M

Smith 60 5M

Index I1 Main table Index I2

Query types to support:
- SELECT * … WHERE name = x AND age > y
- SELECT SUM(salary) … WHERE age > y

Sensitive attributes and attribute combinations:
- salary
- name + age

Storage providers have no background knowledge about
- name

Relation “Employees”

Indexing solution:

Scenario:

Figure 4.3: Data access in Securus for an exemplary scenario. Values printed as
‘###’ are replaced by indistinguishable substitutes while Greek characters represent
distinguishable substitutes. In this example, a hash index is used for attribute name in
index I1 and homomorphic encryption is used for attribute salary in index I2.

4.3.2 Data Indexing

Securus outsources a data table by creating two kinds of data structures on one or
multiple storage providers: the main table and one or multiple index tables. Figure 4.3
illustrates this concept. The main table is a direct duplicate of the data table and
contains all of its columns and entries. However, all entries are encrypted proba-
bilistically. Furthermore, an unencrypted ID column is added to the main table that
assigns a unique identifier to each entry. As the whole main table is encrypted prob-
abilistically, the contained data is sufficiently protected from the storage provider.
However, this also means that the main table cannot be used by the storage provider
in order to evaluate any queries.

For each kind of query that has to be evaluated, an index table is created. Each index
table allows the respective storage provider to evaluate matching queries efficiently.
The index table is thus stored on the storage provider that should process this kind
of query. Usually, each index table is created on only one storage provider alone.
However, it is possible to replicate an index table on multiple storage provider, for
instance as a backup plan in case the “primary” storage provider is unavailable. As
typically data has to be accessed by multiple kinds of queries, often multiple index
tables have to be created. The index tables can (and will, most of the time) be created
on different storage providers.

46

4 The Securus Approach

An index table contains a column for each attribute that the storage provider needs
to access in order to evaluate a query. For instance in Figure 4.3, the storage provider
has to select employes based on their name and their age. The corresponding index
table thus contains the columns name and age. Furthermore, each index table contains
an ID column that links the index table’s entries to the main table’s entries. The index
tables’ ID column thus serves as a secondary key. This allows the storage provider
to answer the query SELECT ... WHERE name = ‘‘Smith’’ AND age
= 60 by first retrieving the IDs of the entries it needs to return from the index table
I1 and returning the (encrypted) entries from the main table.

As the storage provider has to operate on the index tables, they cannot be sim-
ply be encrypted probabilistically like the main table. The index tables thus pose a
threat to data confidentiality. Securus has two means to prevent index tables from
leaking sensitive information:

1. Fragmentation: If multiple non-colluding storage providers are available, index
tables can be stored on different storage providers. This prevents each storage
provider from linking the values stored in multiple index tables. Consider for
example the scenario shown in Figure 4.3: if both index tables were stored
on the same storage provider, the storage provider could link the name of an
employee to her salary by joining both index table over the ID column. This is
not possible if the index tables are stored on two different storage providers, as
no storage provider has access to both index tables.

2. Substitution: As the index tables are merely used for identifying the entries that
have to be returned, the columns’ values can be replaced by substitutes, for exam-
ple by hash values of the original data. In this case, Securus would for instance re-
place the query SELECT ... WHERE name = ‘‘Smith’’ AND age
= 50 by the query SELECT ... WHERE name = α AND age = 50
where α represents the hash of the name “Smith”. While the storage provider
can still evaluate this query, the name “Smith” is not revealed. Many other
similar confidentiality preserving indexing techniques (CPIs) exist that can
be used by Securus. They differ in the kind of queries they support and the
cryptographic properties of the created substitutes (compare Section 3.5).

Securus main problem is thus to decide (i) on which storage provider each index
table should be created and (ii) which CPIs should be applied to which index table
columns. The second question can be reduced to the question of which substitution
category may be applied, as based on this information an appropriate CPI can be
chosen directly from the catalog.

The stated problem can thus be rephrased: to outsource a table, Securus has to
decide (i) on which storage provider each index table should be created and (ii) which
substitution classes may be applied to each index table’s columns. A solution to this
problems allows Securus to distribute the index tables and select CPIs appropriately.

Securus solves this problem by converting it into an ILP problem that can then be
solved by a generic ILP solver. In Section 4.5, this process is explained in detail.

47

4 The Securus Approach

Storage Provider A Storage Provider B

name age salary I_name I_age

α 46

β 60

γ 51

δ 60

Main table + Index I1

name age salary I_salary I_age

46

60

51

60

Main table + Index I2

Figure 4.4: An optimized indexing variant of the index structures shown in Fig-
ure 4.3. The complete relation is encrypted probabilistically and stored on both
storage providers. The index columns are appended to these tables. No ID columns
are required.

4.3.3 Merged Index Tables

For the sake of clarity and simplicity, we explained Securus’ indexing approach with
the help of dedicated index tables. However, a more efficient approach is to fuse all
main and index tables stored on the same storage provider into just one table. The
reason for this is that this way just one table has to be accessed for any query that
does not use joins. With dedicated index tables, two tables have to be accessed (the
corresponding index table and the main table). While we will continue to speak from
index tables for the rest of this thesis, Figure 4.4 illustrates the approach using fused
index tables. As all tables can be joined anyway by the storage provider using the ID
columns, both architecture are equivalent from a confidentiality point of view.

As depicted in Figure 4.4, only one table has to be created per storage provider.
The table contains:

– A column for each of the outsourced attributes. The columns contain proba-
bilistically encrypted values.

– All columns that would usually be created in the various index tables stored on
this storage provider, with the exception of any ID columns.

The downside of this approach is that the data might be replicated on multiple
storage providers, which results in increased storage consumption. However, in cases
in which storage costs are relatively cheap and high access performance is required,
this might constitute an acceptable tradeoff.

4.4 Policy Profiles
This section introduces policy profiles and explains their integral elements: Access
Policies, Confidentiality Constraints, and Inference Constraints. Policy profiles allow the
user to define her requirements with respect to the confidentiality and accessibility
of the outsourced data. Securus than has to compute a solution that satisfies the

48

4 The Securus Approach

specified policy profile. From the solution, a matching mediator can be generated.
The concepts of a solution to a policy profile and of how a solution can satisfy a policy
profile will be introduced in Subsection 4.4.5.

The foundation for a solution to be found is a formal definition of a policy profile.
This definition plays a key role in the generation process and will be referred to continu-
ously in this and the following sections. In the following, the definition will first be pre-
sented before its integral components will be described in the following subsections.

The term policy profile is defined as follows:

Definition 3 (Policy Profile) A policy profile is a tuple L ∶= (A, S, Q , C, F), where

– A is a set of attributes for which the policy profile is defined

– S is a set of non-colluding storage providers

– Q is a set of access policies

– C is a set of confidentiality constraints

– F is a set of inference constraints

Policy profiles are defined in the domain specific language Securus-Latin which
we also present in this section. The language will be gradually introduced together
with each presented policy profile element.

4.4.1 Attributes, Namespaces and Tables

A policy profile defines rules for data that is organized in tables. Securus organizes
related tables in Namespaces. Each policy profile is defined for a specific namespace.
All tables defined in this namespace are then accessible from this specific policy profile.

Namespaces can be declared in just one or multiple Securus-Latin files. These files
have to be registered at Securus’ registry for them to take effect. The registry manages
all valid namespaces defined in a company and is the authoritative source for deciding
which tables exist in a namespace. Tables can be added to a namespace by registering
a new Securus-Latin file that specifies the same namespace.

Listing 4.1 shows an exemplary namespace definition in Securus-Latin. Two tables
are added to namespace “medical” by this file. Tables are defined by theDataStruct
directive followed by the table’s name. Within brackets, a list of attributes follows.
Each attribute represents a column in the corresponding table. An attribute defi-
nition consists of the attribute’s name and its type. Currently, the types String,
Integer, Float, and Bytes are supported. The example hence defines the ta-
ble “Patient”, which consists of the four columns “firstname”, “lastname”, “age”, and
“illnessId”, and the table “Illness”, which consists of the two columns “name” and
“illnessId”. Note that it is not necessary to define whether or not an attribute is used
as a primary or secondary key.

49

4 The Securus Approach

1 Namespace medical {
DataStruct Patient {
firstname : String,
lastname : String,

5 age : Integer,
illnessId : Integer

}
DataStruct Illness {
name : String,

10 illnessId : Integer
}

}

Listing 4.1: Definition of namespaces and tables in Securus-Latin, file “namespace-
medical.sl”.

1 PolicyProfile medical-example {
namespace medical
APs {
[Patient.firstname, Patient.lastname]

5 [<Patient.age>]
[<Patient.age> : COUNT()]
[Patient.lastname, <Patient.age>]
[Illness.name, Patient JOIN Illness ON Patient.illnessId ==

Illness.illnessId]
}

10 CCs {
[Patient.firstname, Patient.lastname]
[Patient.lastname, Illness.name]
[Patient.firstname, Illness.name]
[Patient.illnessId]

15 [Illness.illnessId]
}
ICs {
[Illness.illnessId]

}
20 }

Listing 4.2: An exemplary profile, written in Securus-Latin. File “medical-example.sl”.

50

4 The Securus Approach

Each policy profile has to explicitly import the namespace it wants to use tables
from with using the namespace directive. Listing 4.2 shows a policy profile that
imports namespace “medical”. It is not possible to import multiple namespaces.

Namespaces and tables are not represented in our formal definition. Instead, a policy
profile’s set A contains all attributes that are accessible from the policy profile, i.e., all
attributes declared in the imported namespace. From a confidentiality perspective,
Securus thus handles a policy profile that uses a single table the same way as if the
table’s attributes were defined in two tables. The reason for this is that it is very hard to
judge whether or not any semantic relation between the entries contained in multiple
tables can be inferred, especially if the tables’ entries are queried together, for example
by join-operations. It is thus always assumed that data distributed over multiple tables
is as linkable as if it was stored in a single table only.

4.4.2 Access Policies

A policy profile can contain an arbitrary number of Access Policies. Each access policy
defines a class of queries that the storage providers should be able to evaluate. Access
policies are defined by (i) listing the attributes that the storage providers have to
access in order to evaluate the query and (ii) stating for each attribute how the storage
provider can access its values. The latter is done by choosing an appropriate query
category (compare Section 3.5.3). Given these options, an access policy is thus a set of
query category declarations for an arbitrary number of attributes. Multi declarations
can be combined to create compound queries. These allow the storage provider to
access multiple attributes for evaluating a single query.

Formally, access policies are defined as follows:

Definition 4 (Access Policy) Given a policy profile L = (A, S, Q , C, F), an access
policy Q ∈ Q is a tuple Q ∶= (E , R, G), E ∩ R = {} where

– E is a set of attributes E ⊆ A that are used in equality selections

– R is a set of attributes R ⊆ A that are used in range selections

– G is a set of attributes G ⊆ A that are used in aggregations

It should be noted that (with the exception of aggregations) the user does not have
to specify which attributes should be returned by the access policy, as the storage
provider does not have to decrypt any values it does not have to operate on. The
storage provider can thus return any attribute the user requests.

In Securus-Latin, access profiles have to be defined within the APs section of the
policy profile. All equality and range selections of the access policy are enclosed
by brackets and separated by commas. Aggregations2 are appended after a colon.
Table 4.1 lists how each query category has to be defined in Securus-Latin and also
provides a short SQL example for queries covered by the respective query category.
The following constitutes an example for Securus-Latin’s syntax:

2Out prototypical implementation currently supports the COUNT and SUM operations.

51

4 The Securus Approach

Query operation SQL example Securus-Latin
Equality selections . . .WHERE name=’Smith’ name
Range selections . . .WHERE age<45 <age>
Aggregators SELECT SUM(inc) . . . SUM(inc)

Table 4.1: Query categories in Securus-Latin. Equality selections correspond to SQL
queries in which records are selected based on whether or not a specific attribute is
equal to a term. For range selections, records are selected based on whether or not an
attribute is within a specific range of values. Aggregators correspond to queries which
require arithmetic operations to be performed on the stored data.

[P.lastname, <P.age>] : SUM(P.timeInHospital)

This defines an access policy that specified that the storage provider should be able
to perform equality selections on the attribute P.lastname and range selections on
the attribute P.age. Furthermore, the storage provider should be able to calculate the
sum over the records’ values for the attribute P.timeInHospital.

Among others, the access policy matches the following SQL queries:

– SELECT SUM(timeInHospital) FROM P WHERE lastname = ’Smith’ AND
age >= 50

– SELECT * FROM P WHERE lastname = ’Smith’ AND age < 20

– SELECT SUM(timeInHospital) FROM P WHERE age = 20

A special case of equality selections are joins [HM10]. In a join, two tables are
combined to create their Cartesian product. Then, those entries are selected that fit
a specific constraint. Currently, only Natural-joins are supported by Securus. In an
Natural-join, entries of the Cartesian product are selected based on equality between
two attributes (one of each table). Furthermore, duplicates are removed from the
resulting list of entries. For all confidentiality concerns, each join over two attributes
A.a and B.b can be considered equivalent to two equality selection being defined for
the two attributes. In the following, all considerations mentioning equality selections
thus also apply to joins, if not stated otherwise. In Securus-Latin, joins are defined
by declaring the two involved tables and attributes as follows: table1 JOIN table2
ON table1.attributeA == table2.attributeB

4.4.3 Confidentiality Constraints

A confidentiality constraint (CC) is a set of attributes. It declares the relation between
the specified attributes as sensitive: no storage provider may be able to reveal all of these
attributes for any entry in the outsourced data. This concept is not new but has already
been proposed by others, to our knowledge first by Aggarwal et al. [ABG+05]. Other
studies that use this concept include [XGS11, CVF+10]. Following the definition used
by Ciriani et al. [CVF+09], we define the term confidentiality constraint as follows:

52

4 The Securus Approach

Definition 5 (Confidentiality constraint) Given a policy profile L = (A, S, Q , C, F),
a confidentiality constraint C ∈ C is:

1. a singleton set {c ⊂ A}, stating that the values of the attribute are sensitive
(attribute visibility); or

2. a subset of attributes in A, stating that the association between values of the given
attributes is sensitive (association visibility).

In other words, at least one of these attributes has to remain concealed from the
storage provider (association visibility). If a CC consists of only one attribute, then
this attribute’s values have to be encrypted (attribute visibility). It should also be noted
that CCs can include attributes of different tables.

As a simple example, the user could define the combination of a patient’s first and
last name as sensitive, as together they identify a patient. They could thus not both be
stored in the clear on any storage provider. However, this CC would allow to store
either of both attributes alone at a storage provider in plaintext.

In Securus-Latin, a CC covering the attributes a and b is specified as [a, b]. CCs
are declared within the policy profiles’s section labeled “CCs” (compare Listing 4.2).

4.4.4 Inference Constraints

Securus might use deterministic encryption or hash functions to fill index columns
with distinguishable ciphertexts. This often allows efficient evaluation of range or
equality selections. However, the storage provider might be able to infer informa-
tion from distinguishable ciphertexts if it possesses background knowledge about the
outsourced data [CDV+05]. Background knowledge refers to any kind of informa-
tion the storage provider might possess that allows it to deduce information from
the outsourced data. Imagine for example that a storage provider knows that most
patients in a hospital suffer from the flu. If the attribute illness of the table Patient is
now outsourced using deterministic encryption, the same ciphertext will be stored
in the column illness of all patients who suffer from the same illness. The storage
provider would thus be able to infer which patients suffer from the flue, as the most
common ciphertext would be stored as their illness.

An Inference Constraint (IC) constraints the inference capabilities of the assumed
attacker on a single, specific attribute. The IC declares that the storage provider will
not be capable to infer any knowledge from the corresponding attribute, even if it is
stored using distinguishable ciphertexts. In particular, this assumption can be made
under any of the following two conditions:

– The attribute’s values are unique and uniformly distributed, as is commonly the
case for primary keys and identifiers. Uniform distribution is only required if
any range selections are defined for the respective attribute.

– It is impossible or very unlikely that the storage provider possesses any usable
background knowledge about the contained data. However, it is far harder to
judge whether or not this second statement applies to a user’s scenario.

53

4 The Securus Approach

If a user does not specify any ICs, it is assumed that the storage providers are able to
deduce information from any distinguishable ciphertexts found in the database. This
technically prevents Securus from using a wide range of CPIs at all. It is thus important
to assess carefully if ICs can be defined for any attributes. Often, previously unsatisfi-
able policy profiles can become satisfiable again if ICs are declared appropriately.

Inference constraints are formally defined as follows:

Definition 6 (Inference Constraint) Given a policy profile L = (A, S, Q , C, F), its
set of inference constraints F is a subset of the policy profiles attributes (F ⊆ A). Each
inference constraint states that no storage provider S ∈ S is able to infer any information
from distinguishable ciphertexts of the corresponding attribute.

ICs are defined within the ICs section of the policy profile. Each IC is declared by
butting the respective attribute in brackets. For instance, the IC

[Illness.illnessId]

specifies that the storage provider is not able to infer any information from val-
ues of the attribute illnessId in the table Illness, even if they are stored using distin-
guishable ciphertexts. In this case, the reason is that the attribute is used as the
primary key of the table.

4.4.5 Satisfying a policy profile

The mediator generated by Securus has to match the requirements defined in the cor-
responding policy profile. In order to do so, Securus has to decide (i) on which storage
provider the index columns corresponding to each defined access policy should be
stored, (ii) which attributes should be stored on which storage provider, and (iii) how
the values of these attributes should be encrypted. This information constitutes a
solution to the policy profile. Formally, we define a policy profile solution as follows:

Definition 7 (Policy Profile Solution) Given a policy profile L = (A, S, Q , C, F), a
solution for this policy profile is defined as a tuple N ∶= (M , P, D, I), where

– M is a set tuples M ∶= (Q , S), with Q ∈ Q , S ∈ S. Each tuple M states that access
policy Q can be evaluated by storage provider S.

– P is a set of tuples P ∶= (a, S), with a ∈ A, S ∈ S. Each tuple P states that values
of attribute a may be stored on storage provider S in plaintext.

– D is a set of tuples D ∶= (a, S), with a ∈ A, S ∈ S. Each tuple D states that values
of attribute a may be stored on storage provider S as distinguishable ciphertexts.

– I is a set of tuples I ∶= (a, S), with a ∈ A, S ∈ S. Each tuple I states that values of
attribute a may be stored on storage provider S as indistinguishable ciphertexts.

54

4 The Securus Approach

The set M thus defines on which storage providers index tables have to be created,
while the sets P, D, andI describe where and how the attribute’s values may be stored
without breaking data confidentiality. As with the exception of the index tables all
outsourced data is encrypted probabilistically, the sets P, D, andI only have to map
those attributes that are actually used in an access policy. Furthermore, the storage
provider an attribute is mapped to has to match the storage provider that should
support the corresponding access policy. More conditions exist that have to be fulfilled
in order to not break any confidentiality constraint or access policy. If the solution
fits all of these conditions, we say the solution satisfies the policy profile. Mediators
can only be generated from solutions that satisfy the given policy profile. In the
following, we define policy profile satisfaction.

Definition 8 (Policy Profile Satisfaction) A solution N = (M , P, D, I) satisfies pol-
icy profile L = (A, S, Q , C, F), if and only if all of the following three conditions hold.

Condition 1 No storage provider may be able to reveal all attributes of any CC. An
attribute is revealed by a storage provider S if its values are stored on S in plaintext. It
is is also revealed by storage provider S if its values are stored on S as distinguishable
ciphertext and no IC is defined for this attribute.

∀C ∈ C, S ∈ S, ∃a ∈ C ,
⎧⎪⎪
⎨
⎪⎪⎩

/∃ (a′, S′) ∈ P ∶ a = a′ ∧ S = S′, if a ∈ F
/∃ (a′, S′) ∈ (P ∪D) ∶ a = a′ ∧ S = S′, if a /∈ F

Condition 2 For every access policy there must be at least one storage provider who is
responsible for evaluating matching queries.

∀Q ∈ Q , ∃M = (Q′, S) ∶ Q = Q′

Condition 3 Every storage provider responsible for evaluating queries matching an
access policy must store all attributes used in the access policy’s definition. Attributes
used in equality and range selections must be stored in plaintext or as indistinguishable
ciphertexts.

∀M = ((E , R, G), S) ∈M , ((∀e ∈ E , ∃(a, S′) ∈ (P ∪D) ∶ a = e ∧ S′ = S)∧
(∀r ∈ R, ∃(a, S′) ∈ (P ∪D) ∶ a = r ∧ S′ = S)∧
(∀g ∈ G , ∃(a, S′) ∈ (P ∪D ∪ I) ∶ a = g ∧ S′ = S))

Condition 1 ensures that all confidentiality constraints are satisfied. It follows directly
from the definitions of confidentiality and inference constraints (see Definitions 5
and 6 on page 53 ff.). Basically, it means that the values of at least one attribute per

55

4 The Securus Approach

confidentiality constraint either have to be stored on a different storage provider
than those of the other attributes, or they have to be replaced by sufficiently secure
ciphertexts. Unless an inference constraint has been defined, only indistinguishable
ciphertexts are considered “secure”.

Conditions 2 and 3 together ensure that all access policies are satisfied as well. While
Condition 2 simply allocates the responsibility for evaluating queries matching an
access policy, Condition 3 ensures that the respective storage provider can access all
the data that it requires in order to evaluate incoming queries. For being able to do
so, an index table has to be created on the storage provider that contains a column
for each attribute used in the corresponding access policy. The storage provider
must hence be eligible for storing values of these attributes. Furthermore, a CPI
has to exist in Securus CPI catalog that supports the type of query. Values have to
be stored in plaintext or as distinguishable ciphertexts if the storage provider has
to process equality or range selections, as no suitable CPIs exist that allow these
operations to be processed on indistinguishable ciphertexts (see Section 3.5). With
the help of (partial) homomorphic encryption, aggregations can be processed on
all three kinds of substitutes.

4.5 Policy Transformation

4.5.1 Overview

This section describes the core of our approach: the generation of a mediator that
meets the users requirements. As it was described in Section 4.4.5, a solution that
satisfies a given policy profile has to specify (i) by which storage provider each access
policy should be evaluated in the future and (ii) on which storage providers which
kind of substitutes of each attribute’s values may be stored.

The transformation process is based on the idea of formulating this problem as
an ILP problem and adjusting it based on the specific policy profile. The problem
can then be solved with the help of a generic ILP solver to create a solution to the
ILP problem, which can then be converted into a blueprint of the mediator to create.
This approach has multiple advantages:

– Performance: Many performance-optimized generic ILP solvers are available.
As we will later see that the problem of satisfying a policy profile is NP-hard, we
cannot expect to find an algorithm of a better complexity class for our problem
without relying on heuristics or Monte Carlo algorithms.

– Exact solutions: The formulation as an ILP problem allows us to find exact
solutions. In particular, it can be judged whether an solution is “optimal”, i.e.,
no other solution exists that scores better on the optimality metric defined in
our ILP formulation. Furthermore, ILP solvers also allow to determine whether
or not an ILP problem is feasible, i.e., whether or not a solution exists at all.
From this analysis, we can directly deduct whether or not the policy profile can
be satisfied.

56

4 The Securus Approach

– Formal meta model: The formal specification of a policy profile makes it easier
to study and discuss confidentiality and access requirements. It furthermore
makes specification details more explicit which might otherwise remain hidden
in Securus’ source code.

For our implementation, we used Gurobi 5.0.0 [GO14], a fast commercial ILP solver.
However, any generic ILP solver can be used.

Figure 4.5 presents an overview over the complete policy transformation process.
The process starts with the definition of the policy profile by the user. As a first step,
the policy profile is transformed into an ILP problem. The ILP constraint consists of
a number of ILP constraints and an objective function. The ILP constraints are linear
inequalities that have to hold while the objective function is minimized. To generate
an ILP problem, Conditions 1 - 3 of the definition of a policy profile solution are
formulated as ILP constraints. Choices that are part of the solution, such as “Attribute
i is stored on storage provider j”, are modeled as variables the ILP constraints are
comprised of, e.g., xi , j ∈ {0, 1}. In Subsection 4.5.2 it is explained in greater detail,
how ILP constraints are deducted.

Policy profile

ILP problem

ILP solution

Solution

Mediator

Transformation

ILP solving

Back transformation

CPI selection

APs {[a], [, <c>]}
CCs {[a], [a, c], [b, c]}
ICs {[a], [b]}

Components Example Entity
APs, CCs, ICs

ILP constraints

Boolean variables

Tuples

CPI mapping

C1 : x3 - x1 ≥ 1
C2 : x2 - x3 ≤ 0
C3 : x3 ≥ 1
C4 : x1 + x2 ≤ 1

x1 = 0
x2 = 1
x3 = 1

(a, SP1, dist. subst.)
(b, SP2, dist. subst.)
(c, SP2, cleartext)

a, SP1: hash index
b, SP2: bucket hash index
c, SP2: none

Figure 4.5: Overview over the policy profile transformation process.

When the formulation of the ILP problem complete, the problem is solved. The ILP
problem’s solution consists of individual values chosen for each of the defined variables.
In a back transformation process, a solution for the policy profile is generated from the
ILP solution. The solution of the policy profile defines for each storage provider which
attributes have to be stored on it and which of them have to be replaced by substitutes
of an particular class (plaintext, distinguishable or indistinguishable substitutes).

57

4 The Securus Approach

Furthermore, the solution describes by which storage provider each access policy
will be supported. Section 4.5.3 illustrates this process.

In a last step, Securus picks an appropriate CPI for each attribute contained in the
policy profile’s solution from a table that maps substitution classes to CPIs. Using
this information, the mediator can be generated directly.

4.5.2 ILP problem

As the first step towards the generation of a mediator, the policy profile has to be trans-
formed into an ILP problem whose solutions satisfy the policy profile. ILP problems
consist of an objective function, a number of ILP constraints, and the variables the func-
tion and constraints use. All of these elements are generated from the policy profile
following a specific scheme. The scheme defines a fixed number of groups of variables
and constraints. The number of elements each group contains depends on the policy
profile. In the following, these groups will be described. The policy profile the ILP
problem is build for is being referred to using its formal notation L = (A, S, Q , C, F).

Variables

The ILP problem uses a large number of variables. These variables together constitute
the ILP problem’s solution. All variables may only be set to 0 or 1. We use the following
index-based notation to refer to a number of related variables:

vi∈X: refers to ∣X∣ variables, one for each element in set X.

The following variables are part of the ILP problem:

– pa∈A,S∈S ∈ {0, 1}: states whether or not values of attribute a are stored at storage
provider S in plaintext.

– da∈A,S∈S ∈ {0, 1}: states whether or not values of attribute a are stored at storage
provider S as distinguishable ciphertext.

– ia∈A,S∈S ∈ {0, 1}: states whether or not values of attribute a are stored at storage
provider S as indistinguishable ciphertext.

– za∈A,S∈S ∈ {0, 1}: states whether or not values of attribute a are stored at storage
provider S in plaintext or as distinguishable ciphertext. This is a set of helper
variables that are required to express a certain ILP constraint. Another ILP
constraint enforces the coherence of variables za,S , pa,S , and da,S .

– qQ∈Q ,S∈S ∈ {0, 1}: states whether or not storage provider S stores the index
columns required by access policy Q.

Together, (4 ∣A∣ + ∣Q ∣) ∣S∣ variables are used. The number of variables thus increases
linearly with the number of storage providers, attributes, and access policies.

58

4 The Securus Approach

Objective Function

ILP problems use an objective function to define an optimization criterion. Depend-
ing on the function, the ILP solver tries to minimize or maximize the function.
Whereas Securus makes extensive use of ILP constraints to model the policy pro-
file’s requirements, the objective function is of lesser importance for our approach.
In future work, the objective function could allow to further optimize mediator
performance by considering and comparing fine-grained performance differences
between individual CPIs. The objective function could pose an appropriate place
for implementing these changes.

In Securus’ current state, we use the objective function to minimize the number
of attributes whose values need to be encrypted:

min∑
S∈S
∑
a∈A
(da,S + ia,S) (4.1)

This criterion enforces that CPIs will not be applied unnecessarily: an optimal ILP
solution will encrypt as few attributes as possible.

ILP Constraints

An ILP constraint is a linear inequality that has to hold while the solver tries to
minimize the objective function. ILP constraints are the main instrument Securus
uses to model the policy profile’s requirements. As ILP constraints have to be defined
for each variable, many ILP constraints are used in order to generate a solution
that satisfies the policy profile. In the following, inequalities will be presented that
represent groups of ILP constraints. Each single ILP constraint of a group uses
a different set of variables.

Equation 4.2 represents a set of ∣C∣ ∗ ∣S∣ constraints. Each constraint enforces that a
specific storage provider is not able to reveal all attributes of a specific confidentiality
constraint. For doing so, each of these ILP constraints iterates over all attributes
referred to by the specific confidentiality constraint C. For each attribute, the func-
tion f (a, S) returns 1 if and only if storage provider S could reveal stored values.
Else, 0 is returned. Depending on whether or not an inference constraint has been
defined for the respective attribute either variable pa,S or za,S are used for doing so.
The ILP constraint then computes the number of attributes for which the f (a, S)
returned 1 by computing the sum of the function calls. As at least one attribute of
the confidentiality constraint C must remain hidden from the storage provider, this
sum must be smaller than the number of attributes defined in the confidentiality
constraint. This group of constraints hence enforces Condition 1 of our policy profile
satisfaction definition (see page 55).

∀C ∈ C, S ∈ S ∶ ∑
a∈C

f (a, S) < ∣C∣

with

f (a, S) = {
pa,S if a ∈ F
za,S else (4.2)

59

4 The Securus Approach

Equation 4.3 represents a set of ∣A∣ ∗ ∣S∣ constraints. The constraints enforce that each
variable za,S is set to 1 if and only if at least one of the variables pa,S and da,S are 1. The
variables za,S are used as helper variables to implement Equation 4.2.

∀a ∈ A, S ∈ S ∶ pa,S + da,S − za,S ≤ 0 (4.3)

Equation 4.4 represents a set of x ∗ ∣S∣ constraints where x stands for the number of
equality and range selections defined in the policy profile. Each constraint enforces
that the values of a specific attribute that is used in the definition of a equality or range
selection have to be stored either in plaintext or as distinguishable ciphertext on a
specific storage provider, if the storage provider has to support the corresponding
access policy. Together with the next one, this group of constraints thus enforces
Condition 3 of our policy profile satisfaction definition.

∀Q = (E , R, G) ∈ Q , S ∈ S, a ∈ (E ∪ R) ∶ pa,S + da,S − qQ ,S ≥ 0 (4.4)

Equation 4.5 represents a set of y ∗ ∣S∣ constraints where y stands for the number
of aggregations defined in the policy profile. Similar to Equation 4.4, this group of
constraints enforces that values of all attributes used in aggregations are stored on the
appropriate storage providers. As CPIs are available for each substitution category,
it does not matter which one is used.

∀Q = (E , R, G) ∈ Q , S ∈ S, a ∈ G ∶ pa,S + da,S + iQ ,S − qQ ,S ≥ 0 (4.5)

Equation 4.6 represents a set of ∣Q ∣ constraints. Each constraint enforces that at least
one storage provider is responsible for evaluating queries matching a specific access
policy. This group of constraints thus enforces Condition 2 of Definition 8.

∀Q ∈ Q ∶ ∑
S∈S

qQ ,S ≥ 1 (4.6)

Equations 4.7 – 4.11 state that 0 and 1 are the only valid numbers for all defined
variables. One constraint per defined variable ((4 ∣A∣+∣Q ∣) ∣S∣) is required for doing so.

∀Q ∈ Q , S ∈ S ∶ qQ ,S ∈ {0, 1} (4.7)
∀a ∈ A, S ∈ S ∶ pQ ,S ∈ {0, 1} (4.8)
∀a ∈ A, S ∈ S ∶ dQ ,S ∈ {0, 1} (4.9)
∀a ∈ A, S ∈ S ∶ iQ ,S ∈ {0, 1} (4.10)
∀a ∈ A, S ∈ S ∶ zQ ,S ∈ {0, 1} (4.11)

In summary, (5 ∣A∣ + ∣Q ∣ + ∣C∣ + x + y) ∣S∣ + ∣Q ∣ ILP constraints have to be defined.

4.5.3 ILP solution and back transformation

The ILP solver generates a solution for the ILP problem by assigning a value (either 0
or 1) to each defined variable so that all ILP constraints hold and the objective function

60

4 The Securus Approach

is minimized. From these variables, a solution N = (M , P, D, I) that satisfies the
policy profile L = (A, S, Q , C, F) can be deduced directly as follows:

M ∶= {(Q , S) ∣ qQ ,S = 1}
P ∶= {(a, S) ∣ pa,S = 1}
D ∶= {(a, S) ∣ da,S = 1}
I ∶= {(a, S) ∣ ia,S = 1}

The helper variable za,S is not used in this process.
Note that solutions might be generated that let multiple storage providers support

the same access policy. This can only happen if the respective access policy can be
satisfied by assigning the plaintext category to all attributes referred to by the access
policy, as else the ILP problem’s objective function would not be minimal. In our
implementation, we chose to simply ignore duplicates when generating the mediator
in order to avoid adding more constraints to the ILP problem.

Policy profiles can be unsatisfiable. Consider for instance a policy profile that
contains the access policy [a, b], the confidentiality constraint [a, b], and
no inference constraints. To satisfy the access policy, the values of both attributes
have to be stored on at least one storage provider in plaintext or as distinguishable
ciphertexts. However, the confidentiality constraint forbids exactly this. The policy
profile can thus not be satisfied. Securus is unable to generate a solution if and only
if the policy profile is unsatisfiable.

To resolve a conflict within a policy profile and make it satisfiable again, the user has
to either change the access policy, confidentiality constraint, or add a new inference
constraint. In [KJH14], Köhler et al. extend Securus by a mechanism that is able to
detect conflicts and present them to the user. This allows the user to more easily
identify conflicts and adjust the policy profile appropriately.

4.5.4 CPI selection

Based on the solution, appropriate CPIs can be chosen from the CPI catalog. For
doing so, Securus iterates through all access policies. For each attribute used in the ac-
cess policy, the corresponding substitution category, the storage provider the attribute
should be stored on, and the query type is retrieved. An appropriate CPI is then
selected from the cell in the CPI catalog that matches the individual attribute’s substi-
tution category and query type (compare Table 3.1 on page 31). The corresponding
index column will be created on the storage provider defined by the solution.

61

5

Evaluation and Discussion

In the previous chapters, Securus, its vision, and its technical foundation have been
introduced. In the following and last chapter of the first part of this thesis, the
suitability of the Securus approach during daily operation is evaluated and discussed.
In order to do so, we highlight the following deployability aspects:

– Security: Against which classes of adversaries can Securus protect the out-
sourced data when compared to other solutions?

– Operation: How easy is it to deploy and maintain Securus in a business envi-
ronment?

– Performance: What query evaluation performance can a user expect to achieve
with a generated mediator? How long does it take to generate a mediator?

Subsequently, Section 5.6 provides an outlook about promising future research
opportunities and remaining challenges. Section 5.7 concludes the Securus approach.

5.1 Security
When modeling the attacker’s capabilities, one can differentiate between the attacker’s
monitoring capabilities, i.e., whether she has not only access to the data but is also
able to monitor queries, and her background knowledge on the outsourced data. In
the following we will discuss our assumptions in this regard and compare them to
those made by other approaches.

Regarding the attacker’s monitoring capabilities, Securus assumes an adversary that
has access to the outsourced data only but does not monitor updates or queries. To our

63

5 Evaluation and Discussion

knowledge, this assumption is shared between all other published DaaS frameworks.
However, Securus is more robust than other approaches against adversaries that are
able to monitor a limited number of queries.

One cause for this is that Securus does not consider multiple fragments that are
stored on a single SP to be unlinkable but instead assumes that all columns that are
stored together on a storage provider can be linked. Approaches such as [DCdVFJ+13,
For10] depend the unlinkability of multiple fragments that are stored on one storage
provider. However, if the attacker is able to monitor a single updating or insert
operation targeting the fragmented table, she might be able to link fragments. Securus
is not vulnerable to this kind of attack.

Another cause is that Securus does not employ CPIs that allow to evaluate equality
or range selections on indistinguishable ciphertexts, as these CPIs have the potential
to already weaken the achieved protection level when a single query is monitored.
Consider for example a query that selects all employees from a table whose name
is “Smith”. Assume that names are stored as indistinguishable ciphertexts. If two
employees with the name “Smith” exist in the database, the attacker can immediately
infer that the two returned employees share the same name, if she monitored the
query. Effectively, the indistinguishable ciphertexts thus provided not more protection
than distinguishable ciphertexts. Securus is robust against this issue. It is thus ensured
that indistinguishable ciphertexts can not be linked by monitoring single queries.

Regarding the attacker’s background knowledge, Securus differentiates only between
two cases: the probability that the attacker may have (any) background knowledge
about a specific attribute and the absence of this probability (compare Section 4.4.4).
We feel that this is a reasonable model mainly because in practice, it is often hard
to judge in detail which kind of knowledge an attacker might possess. It is thus
easier for the user to accept the default level (an attacker might have complete back-
ground knowledge) for most attributes and defining exceptions rather than having
to analyze each attribute in detail.

5.2 Operational Aspects
Contrary to other approaches such as CryptDB [PRZB11] that do not provide hard
security guarantees, Securus requires the user to specify her access and confidentiality
requirements beforehand and expects them to remain unchanged. However, in
practice this obviously is not always the case. In the following, we will discuss under
which occasions a policy profile would have to be redefined and how Securus would
cope with such an event.

Attributes and tables can be added and removed freely from the database, as long
as the sets of confidentiality constraints, inference constraints, and access policies
remain unchanged. Attributes can easily be added by adding a new, probabilistically
encrypted column to the main table, while “removed” attributes could even simply
be ignored from now on without touching any data.

Confidentiality constraints describe the inherent dependencies and semantics of the
data. In general, it is thus not very likely that they have to be modified very often, if

64

5 Evaluation and Discussion

they were chosen correctly in the beginning. Possible scenarios which could force the
user to alter her specifications include changes in the companies legal environment –
e.g., new laws could require certain information to always remain encrypted.

Inference constraints might have to be removed from a policy profile in case that
attacker’s are assumed to suddenly have gained more background knowledge. An ex-
ample for a possible reason for this to happen is that a third party’s data center
has been compromised.

Access policies are the most likely candidates to change. For instance, the user
might have to access old data differently or she might have to add and access a new
table that represents a new product.

If an access policy or confidentiality constraint is added to an existing policy profile
or an inference constraint has been removed, three outcomes are possible:

1. It is possible to generate a backward compatible mediator. The mediator does
not require any previously outsourced data to be restructured or re-encrypted.

2. It is not possible to generate a backward compatible mediator, but a normal
mediator can be generated that reflects the changes made by the user. Previously
outsourced data has to be restructured and re-encrypted.

3. The new policy profile is not solvable. It has to be relaxed in order for a mediator
to be generated.

In order to check which is the case, the ILP problem is modified as follows. First, the
currently used ILP solution has to be “frozen” by converting all defined variables to
constants. Then, new ILP constraints can be added that enforce the new access policies
or confidentiality constraints. If any inference constraint has been removed, those
existing ILP constraints have to be modified that were defined in Equation 4.2 and
refer to the respective inference constraints. If the resulting ILP problem can be solved,
it is possible to generate a backwards compatible mediator that does not require to
restructure any previously outsourced data. If no solution exists, the new (modified)
policy profile has to be solved without freezing the old solution. Any generated
mediator will have to restructure and probably re-encrypt the previously outsourced
data. While this procedure can be costly, it can be performed automatically and
only has to be performed once.

5.3 Expressiveness
An often stated requirement on confidential DaaS frameworks is that they are able
to support most or all queries involved in everyday use. With equality and range
selections, joins, and aggregations, Securus already supports a wide range of relational-
algebra constructs. However, Securus concept is universal enough to be extended
to support further operators.

Consider for example the “LIKE” operator. LIKE selections can be evaluated an plain-
text values or even on distinguishable attributes, if searchable encryption schemes are

65

5 Evaluation and Discussion

also considered. In order to support LIKE selections it would thus be enough to define
a new group of ILP constraints that states that values of the corresponding index table’s
column have to be stored in plaintext only (plaintext or as indistinguishable cipher-
text in case SSE searchable encryption schemes are considered). In a similar fashion,
Securus can be extended to support other operators such as “GROUP BY” [KJ14].

5.4 Transformation Performance
In Securus, a mediator typically has to be generated only once. As this process is
furthermore performed outside normal operation routines, its performance is of
lesser importance. However, as the underlying optimization problem that has to be
solved is proven to be NP-hard [KJH14], one could wonder whether policy profiles
of typical complexity levels are solvable in reasonable time.

For this reason we evaluated the performance of the policy transformation process
by generating policy profiles of different complexities and measuring the time needed
to transform them into mediators [KJ14]. The experiment was designed as follows:
“For each complexity level we randomly generated policy profiles consisting of the
stated numbers of attributes, policies and SPRs. The number of attributes referenced
by the APs and CCs was chosen from an exponential distribution with βCC = 3,
βAPS e l = 3 and βAPAg gr = 0.3. The proportion of range selections and equality selections
was uniformly chosen as 2 : 8. We continued to generate policy profiles and measure
the transformation time until 5000 satisfiable policy profiles of each category had
been generated.” [JKH12] The experiment was run on a commodity computer with
4GB RAM and a 2.93GHz Dual Core CPU. The experiment’s results are shown in
Table 5.1. It can be seen that with mean transformation durations of less than 5.5 sec,
Securus’ ILP problems can typically be solved quickly for reasonably sized scenarios
and “hard” problem instances occur rarely. For large policy profiles that contained
80 attributes, 80 access policies, and 100 confidentiality constraints, transformation
could take up to 690 seconds. As mediators have to be generated only once, these
duration lengths are acceptable.

5.5 Query Evaluation Performance
In general, Securus’ query evaluation performance is determined by the CPIs that
are used to evaluate the respective query. The expected performance is furthermore
strongly influenced by the concrete database management system used, the techni-
cal infrastructure of the storage provider, and the client’s network connection. It
is hence not possible to make generalized statements about the performance of a
generated mediator. For a specific evaluations, we refer the reader to performance
measurements conducted by the original authors of the respective CPIs (compare
Section 3.5). However, Securus uses CPIs only then for a specific query category,
if the CPI is able to evaluate matching queries efficiently. In the following, we will
analyze Securus’ query evaluation performance on a higher level. This analysis as-

66

5 Evaluation and Discussion

Number of policies/elements Duration (s)
Attr. APs ICs CCs SPs mean max

10 5 1 10 3 0.004 0.056
20 10 2 40 4 0.015 0.217
20 15 2 10 4 0.016 0.330
40 40 3 50 4 0.555 8.169
40 40 3 60 4 0.658 6.714
80 40 3 40 4 0.036 0.812
80 60 3 80 4 0.887 16.602
80 80 3 100 4 5.474 692.235

Table 5.1: Time required to generate a mediator from policy profiles of various sizes
[KJ14].

sumes that the more optimized mediator variant, which uses merged index tables,
is used(compare Section 4.3.3).

When using the optimized mediator variant, every query that matches one of the
defined access policies can be evaluated (i) in a single communication round and (ii)
by accessing a single data table only1. It should be noted that this includes compound
queries which combine multiple selections or aggregations. As every query has to
match at least one access policy to be evaluated, all this is true for all valid queries.

Most CPIs furthermore have to encrypt or hash data that has to be transmitted and
decrypt returned values. With the exception of homomorphic encryption schemes,
most calculations are performed on a limited number of values on the client machine
and are comparatively cheap [PRZB11]. Depending on the concrete scheme used,
homomorphic encryption can take considerably more time.

Some CPIs induce additional overhead by requiring the mediator to transfer longer
queries (for example by chaining multiple AND clauses) or by having the storage
provider return false positives. This can lead to a higher amount of data having to be
transferred. From the currently supported CPIs, only bucket hash indexes suffer from
this phenomenon. For bucket hash indexes, the number of false positives in general
decreases for higher numbers of buckets while the number of additional AND clauses
increases. Section 3.5.4 on page 32 illustrates the CPI’s behavior in greater detail.

The combination of multiple CPIs in compound queries allows to optimize evalua-
tion performance by reordering query trees analogously to optimization conducted
in relational database systems [Cha98], especially if CPIs are used that might produce
false positives. While such fine-grained performance optimization models could
prove to be valuable, we consider them out of the scope of this thesis.

1The only exception are Joins, which require the storage provider to access every joined table.

67

5 Evaluation and Discussion

5.6 Outlook
While Securus already provides a rich set of features to preserve data confidentiality,
we see various options for future additions to and enhancements of Securus. In the
following, the most promising ideas will be discussed.

In order to balance access and confidentiality requirements, both dimensions are
currently divided into three levels (three substitution categories and three query
categories). Furthermore, Securus differentiates between two levels of background
knowledge: the storage provider is assumed to either possess complete background
knowledge or non at all. The ILP problem is build by analyzing interdependencies
between these levels. While we limited the numbers of levels deliberately in order
to ease policy profile definition, additional levels could be added to each of these
dimensions to allow for a more fine-grained policy profile definition. This would
allow to include new CPIs that are currently not be supported by Securus because
their confidentiality assumptions are to weak or their performance is inferior. In
order to not overburden the user, the use of these new features could remain optional.

For example, order-preserving encryption schemes (see Section 3.5.5) produce
distinguishable ciphertexts that also leak their order. This makes them very suscep-
tible to attackers with limited background knowledge. If, for instance an attacker
knows that a column contains order-preserving ciphertexts of the salaries of an com-
pany’s employees, she can assume that the company’s CEO is among the records
with the highest value in the salary column. Due to this susceptibility, we did not
include these schemes in Securus. However, when compared to bucket hash indexes,
order-preserving encryption schemes have the advantage of permitting more efficient
query evaluation as no false-positives are returned. By adding a new substitution
class between the categories plaintext and distinguishable ciphertexts, and starting
to differentiate between different levels of background knowledge, order-preserving
encryption schemes could fill a niche in Securus in which the user defines explicitly
that no background knowledge is available to any attacker. Per default, a higher
level of background knowledge could be assumed. In a similar fashion a new query
category could be introduced that represent queries that select records based on
string-similarity to a given argument. In SQL, the LIKE operator would fall into this
category. The addition of this category would allow to include searchable encryption
schemes (see Section 3.5.5) in Securus.

Furthermore, Securus could be extended to (optionally) also provide support against
attackers that are able to monitor queries and data modifications. Securus does
currently not protect against attackers of this kind as the matching CPIs typically
require a logarithmic number of sequential communication rounds to evaluate a query.
Query evaluation is thus considerably slower than a conventional database. However,
including these kinds of CPIs could allow Securus to better meet the user’s demands
in cases in which a high level of confidentiality is required and query evaluation
performance is secondary.

Another direction for further improvement is to make Securus more easily integrable
into existing IT infrastructures. Desirable features would for example be to provide
full SQL support, or an integrated access control.

68

5 Evaluation and Discussion

Lastly, Securus could target other protection goals besides data confidentiality. In
particular, data integrity and anonymity constitute often desired features. To ensure
data anonymity, several approaches have been proposed [MKGV07, Swe02] that
resemble CPIs and could probably be combined in a similar manner.

5.7 Conclusion
In previous three chapters of this thesis, we presented Securus, a confidential DaaS
approach that allows to satisfy hard confidentiality requirements when outsourcing
sensitive data. As a new step in the user’s workflow, Securus lets the user define
her access and confidentiality requirements as a policy profile prior to outsourcing
her data in the domain specific language Securus-Latin. A custom-tailored software
adapter that enforces these requirements by fragmenting the outsourced data and
applying an appropriate set of CPIs is then generated. Securus computes which
security mechanisms it has to apply by transforming the policy profile into an Integer
Linear Programming (ILP) problem, which is designed so that its solution directly
determines the architecture of the adapter to generate.

Securus is the first confidential DaaS solution that at the same time provides strong
confidentiality guarantees, combines data fragmentation and encryption, and is able
to utilize multiple non-colluding storage providers. Securus furthermore isolates the
required security knowledge and makes it easily reusable. The user thus does not
have to be both security and domain expert any longer.

In particular, the Securus approach includes the following scientific contributions:

– Meta model for access and confidentiality requirements: Through the use of
policy profiles, a meta model is provided that allows to express access and confi-
dentiality requirements. It is specific enough to define confidentiality demands
in sufficient detail to compute an appropriate mix of security techniques, but
abstract enough to not require the user to possess any cryptographic expert
knowledge. By making worst-case assumptions by default that can be relaxed by
the user, it is furthermore tailored towards providing hard security guarantees.

– Combination of fragmentation and CPIs: Securus advances the field of con-
fidential DaaS research by being the first framework that allows to combine
CPIs with data fragmentation on multiple, non-colluding storage providers.
This approach is more generic and can cope with stronger attacker models
than solutions that rely on CPIs only or rely on data fragmentation on a single
storage provider. At the same time, Securus does not depend on the existence
of multiple storage providers.

– Universal problem formulation: Securus underlying optimization problem is
based on the concept that a scenario’s requirements can be categorized in
multiple dimensions: the supported kind of queries, the protection level of the
stored data, and the capabilities of the attacker. Interdependencies between
the dimensions are modeled as constraints of an ILP problem. This concept

69

5 Evaluation and Discussion

allows Securus to be easily extended, for example by introducing more levels
of a dimension in order to permit an even more nuanced distinction of CPIs.
This makes Securus a very sustainable approach.

70

Part II

Performance Management in DHTs

71

6

Towards a Basic DHT Service

6.1 Motivation
Distributed Hash Tables (DHTs) are Peer-to-Peer networks that allow users to store
and retrieve key/value pairs without relying on central services. DHTs reached wide-
spread use due to their inclusion in popular file-sharing applications such as BitTor-
rent1 and eMule2. High resilience against external shut-down attempts combined with
the networks’ good scalability are some reasons for the success of the DHT technology
in this field of interest. As of today, millions of users contribute simultaneously at any
time at the three largest public DHTs – the BitTorrent Mainline DHT (MDHT), the
Azureus DHT, and KAD [ZDWR11, JAH11, SENB09]. Studies like [CKC+13] analyze
the motivation behind file-sharing uses further.

Despite their reputation, DHTs were designed as a fundamental building block for
general, decentralized applications rather than to advance (illegal) file-sharing. To
achieve this goal, they provide a directed routing functionality that is required by most
decentralized applications: identifying those peers that are responsible for storing a
specific key/value-pair3 in logarithmic time. This process is called a Lookup. The ability
to perform lookups constitutes a DHT’s main functionality. Besides storing arbitrary
values, lookups can be used to build more advanced services such as locating other
peers, forming groups of peers, and many others. Other desirable properties include a
DHT’s ability to self-organize its peers, its lack of central components and hence lower
maintenance costs, and its ability to scale well with an increasing number of peers.

Due to these properties, many DHT-based systems have been proposed by academic
research. Examples include content dissemination protocols like Swift [OGJK12],

1http://www.bittorrent.com, [last visited in October 2014]
2http://www.emule.com, [last visited in October 2014]
3Values are typically stored redundantly on a small number of peers to cope with peer dynamics.

73

6 Towards a Basic DHT Service

 0

 50

 100

 150

 200

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Pu
bl

ic
at

io
ns

RTT [ms]

"DHT" (IEEE Xplore)

Figure 6.1: Number of publications per year that include the keyword “DHT”.

distributed file systems like CFS [DKK+01] or PAST [RD01b], web caches [FFM04],
distributed DNS [Bau08], and traffic information services [RSKM09].

Furthermore, much research has been done to further improve DHTs and the
quality of the services they provide. Figure 6.1 visualizes the tremendous impact
that the advent of DHTs have had on the academic world. It lists the number of
publications in this field of research during the last twelve years. For each year, the
figure shows the number of IEEE publications that contained the search term “DHT”
in their metadata – for instance in the publication’s title or its assigned keywords.
The searches were conducted with the IEEE Xplore search engine4 on April 26th 2014.
The graph shows a rapid growth of publication numbers in the field of DHTs since
2001, with almost 200 publications a year at its peak.

The decline in publication numbers since 2009 shows a strong resemblance to Gart-
ner’s Hype Cycle [LF03], a model developed by the American IT research firm Gartner,
Inc. to describe the maturity, adoption, and application of technologies. According to
this model, emerging technologies have to progress through two subsequent “hype
phases”: the first positive hype phase is characterized by overenthusiasm and inflated
expectations. The second, negative hype phase is characterized by disillusionment
and exaggerated depreciation. During the subsequent third phase, real-world benefits
and weaknesses are beginning to get accepted, triggering mainstream adoption of
the respective technology. In this phase, a level of maturity is eventually reached that
allows wide-spread adoption of the technology. Figure 6.1 suggests that the DHT
technology might currently be at the verge of the third phase: core issues – such as ele-
mental routing mechanisms – have indeed been getting increasingly well understood
and DHTs are starting to mature. Furthermore, the community has recently started
focusing mostly on bringing DHT-based applications to live. As one promising idea,
the concept of sharing a single DHT as a kind of basic service between a multitude

4http://ieeexplore.ieee.org/, [last visited in October 2014]

74

6.1 Motivation

of decentralized applications has been proposed by many researchers. Among the
first, Rhea et al. started the project OpenDHT [RGK+05]. OpenDHT was a centrally
administered platform that allowed researchers to explore application-side problems
of decentralized applications. Along OpenDHT were many other projects that shared
a similar idea such as JXTA [Gon01], OpenChord [www14c], Hazelcast [www14a], and
lately Maidsafe [www14b]. As one of the most advanced DHT-based application plat-
forms, Maidsafe provides decentralized storage, authentication, and single sign on. In
[ZWXY13], Zhang et al. provide a more detailed picture of the field of DHT platforms.

Although many of the proposed systems had tremendous academic success, for
years few had a large impact in the non-academic world. This changed when the first
companies started to leverage private DHTs to build privately managed, decentralized
systems that require low maintenance when compared to centralized approaches.
A private DHT is a DHT that is under the central control of a single party, i.e., the
DHT consists exclusively of peers that are managed by the same party. Private DHTs
are thus examples for Single-Party Systems. Public DHTs on the other hand are
formed by peers that are controlled by individual users and thus constitute prime
examples for Multi-Party Systems.

A popular example for a system that is based on a private DHT is Amazon Dy-
namo [DHJ+07]. Amazon’s infrastructure consists of “tens of thousands of servers
and network components located in many datacenters around the world” [DHJ+07].
To provide a reliable key-value storage system, Amazon Dynamo lets the devices
form a DHT. The DHT allows to manage the continuous failing of components. The
system thus harnesses the DHT’s self organization capabilities to more easily cope
with failures that are very hard to predict in advance.

One reason for the earlier success of private DHTs when compared to public DHTs
is that they do not face many challenges that Multi-Party Systems have to cope
with, in particular peer dynamics and peer heterogeneity. While these problems
remain far from being solved, major improvements have recently been made: studies
such as [JOK11, FPJ+07] have helped to increase lookup performance and stability
considerably, and security features have been standardized recently [Nor14a].

With these improvements, more and more commercial applications that use a
public DHT as their foundation started to arise in the recent years. The applica-
tion Tribler [ZCBP11], for instance, provides P2P-based video streaming on demand.
Tribler uses the MDHT to locate data items among its users. Another application
that leverages the MDHT is BitTorrent Sync5 [FSK14]. BitTorrent Sync allows to syn-
chronize files between personal computers and other devices. Different from other
popular synchronization services like Dropbox, BitTorrent Sync does not transfer
files to any central servers, in order to comply with privacy concerns. In Decem-
ber 2013, BitTorrent Sync had over 2 millions of registered users6. With Bleep7 a

5http://www.bittorrent.com/sync, [last visited in October 2014]
6http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/, [last visited in

October 2014]
7http://blog.bittorrent.com/2014/07/30/bittorrents-chat-client-unveiled-bittorrent-bleep-now-in-

invite-only-pre-alpha/, [last visited in October 2014]

75

6 Towards a Basic DHT Service

DHT-based and decentralized chat and voice over IP client was released in July 2014.
Through the use of encryption and the abstinence of the use of any servers, Bleep
targets a privacy-aware audience.

The success of these systems does not only show that it is possible to build compet-
itive solutions on the foundation of public DHTs, but also that users are willing to
participate in these kind of systems, even if they have to contribute some of their com-
puter’s resources in order to do so. However, this new class of DHT-based applications
demands a far higher quality of service than file-sharing applications: while generally
only one lookup has to be performed to download a file, lookups can be much more
frequent for other applications. At the same time, many applications are much more
sensitive to lookup delays than file-sharing applications [JOK11]. These requirements
have to be met reliably for such a Public DHT Service to be viable. The goal of the
second part of this thesis thus is to ensure that public DHTs can provide a high quality
of service as reliably as possible. For doing so, the performance characteristics of
public DHTs have to be understood: how peer autonomy affects a DHT’s performance,
and how one can cope with the identified challenges. With this background in mind,
we state our motivational question as follows:

How can public DHTs provide the ongoing and reliable quality of service modern
DHT-based applications demand?

6.2 Challenges and Research Questions
As Multi-Party Systems, public DHTs face unique challenges that often prevent them
from achieving the performance and predictability of private DHTs. These challenges
are caused by the lack of control over the DHT’s environment, namely (i) the behavior
of the peers’ users, (ii) the client implementations they use, and (iii) the technical
infrastructure the peers use to connect to each other. Each of these three aspects
leads to issues that private DHTs lack and that have the potential to severely affect
a DHT’s reliability and performance:

Firstly, as peers are controlled by natural persons instead of a single organization
with a clearly defined agenda, peers will join and leave the network unpredictably.
This phenomenon is called churn and strongly affects lookup performance. Further-
more, users might lose interest in using the DHT altogether. Secondly, public DHTs
are formed from compatible but not identical client implementations that have the
potential to influence each others performance and might receive updates at any time.
Thirdly, public DHTs are typically realized as an overlay network on top of the Internet,
a much more diverse technical infrastructure than private DHTs rely on. As peers
are coming from all over the world, inter-peer latencies are way less predictable than
within private DHTs. Furthermore, peers use widely different kinds of network links,
might be hosted on constrained hardware, or might be located behind NAT gateways
or firewalls. We will later show that especially the latter poses a great challenge for
public DHTs, as those peers typically experience one-way connectivity only.

Public DHTs are thus composed of a heterogeneous mass of ultimately unpredictable
peers. Key properties of the DHT thus fluctuate and might even suddenly shift on

76

6.3 Structure

occasion. However, because of the high numbers of participating peers, these peer
dynamic also lead to more predictable long-term trends. Examples for such short-
and long-term changes that we observed are the sudden duplication of peer numbers
due to a bug in a popular BitTorrent client in May 2014, and a the gradual increase
of the number of peers that come from Russia. We will describe both events in
greater detail in Chapter 8.

Today, neither peer composition in public DHTs nor its evolution is understood well.
While several measurement studies exist that target public DHTs [WK13, SENB09,
MRGS09, JOK09, SR05b], and other properties have been analyzed analytically
[RSS13, WTN06], none provides both a comprehensive picture coupled with on-
going measurements that allow to identify and judge trends early. A second problem
is that the community still lacks the tools to evaluate the impact that changes within a
public DHT’s composition have on the DHT’s performance, at least not on a satisfying
level of detail. Most probably, it would still be impossible to predict every fluctuation
in a global DHT, even if these problems were solved. It is thus necessary that peers
adapt optimally to unpredicted changes in the DHT. We will see that in this area
today’s DHT clients fall short of our expectations.

In summary, the following challenges inhibit the viability of today’s public DHT’s
as a platform for decentralized applications:

1. The composition of public DHTs is heterogeneous, not well understood, and
changes over time.

2. It is unclear how specific changes of the DHT affect lookup performance.

3. Despite their reputation, DHT clients are bad at adapting to changing DHT
properties.

In this part of the thesis, we tackle these challenges by covering the following
research questions. The research question were directly derived from the stated
three challenges.

1. How do public DHTs perform and evolve over time?

2. How can we better understand performance inhibitors and assess how they
affect lookup performance?

3. How can clients more reliably provide high lookup performance despite the
inherent dynamics of public DHTs?

6.3 Structure
The second part of this thesis is structured as follows:

We begin in Chapter 7 by assessing the behavior of lookup algorithms in public
DHTs. In order to do so, we first present the technical background by explaining
the used protocols and introducing the BitTorrent Mainline DHT (MDHT) as the

77

6 Towards a Basic DHT Service

main object of our studies. We explain why we chose the MDHT instead of other
public DHTs and outline DHT characteristics. We then analyze lookup algorithms
in greater detail. The analysis allows us to identify by which factors lookup perfor-
mance is affected the most.

In Chapter 8 we analyze the peer composition of the MDHT and quantify peer
dynamics. Our analysis is based on a long-term and ongoing measurement study that
we conducted on the MDHT. The measurements were first started in August 2010.

Based on these measurements and other studies, we built a simulation model of the
MDHT that allows for a simulation-based prediction of real-world lookup perfor-
mance. In Chapter 9 we describe our model in detail and elaborate on the trade-offs
we had to make to balance prediction accuracy, ease of use, and simulation perfor-
mance. The model is validated by comparing the simulated performance of typical
lookup algorithm variants to their real-world performance.

Chapter 10 present an approach that aims at letting clients more reliably provide
high lookup performance, even if the DHT evolved in an unforeseen manner. The
approach is based on the idea of dynamically optimizing the client though tuning its
parameters at run-time. For doing so, different configurations are automatically
tested and compared.

This part of the thesis in concluded together with its first part in Chapter 11.

78

7

Lookup Algorithm Analysis

Lookup algorithms are the heart of any DHT client, as they empower the client
to retrieve values by get(key) calls or storing them by put(key, value) calls. These
procedures are performed in two steps, with the lookup being the first. As illustrated in
Figure 7.1, the lookup returns a number of peers that are responsible for managing the
specified key and the corresponding values. In the following, we will call these peers
target peers. Target peers have to store any value that is assigned to the corresponding
key and return it if requested. During the second step of any get or put operation, one
or multiple of these peers are contacted in order to either store or return a value.

Step 1: Requests that are part of lookup(key)
Step 2: Requests that are part of store(key, value)

DHT

Application put(key, value)

Figure 7.1: Storing of a value under a specific key in a DHT. In step one, two green
target peers are identified by a performing alookup for key. In step two, the value is
pushed to all target peers.

79

7 Lookup Algorithm Analysis

To define which peers have to be returned for a given key, DHT protocols specify
a proximity metric that calculates the distance between peers and keys. The target
peers for a given key can then be defined as the k peers closest to the key. In public
DHTs, k is usually greater than one to reduce the chance that all target peers leave the
DHT at the same time and previously stored values are lost. In order to share the load
of being a target peer between all participating peers, DHT protocols try to distribute
both peers and keys uniformly over the ID space created by the used metric (compare
Figure 7.2). This is typically achieved by assigning random, uniformly distributed
IDs to peers at start-up and hashing keys.

2160 20

key 1 = “umbrella”
hash(key 1) = 0011…2

key 2 = “citron”
hash(key 2) = 1001…2

Figure 7.2: 160-bit ID space. Peers are assigned a random ID whereas keys are hashed.
In this example, the three peers closest to a key are responsible for storing the corre-
sponding values (k = 3).

Lookup algorithms identify those peers among the currently participating ones that
are closest to the key with respect to said metric. A plethora of different algorithms
have been proposed and / or implemented for various DHTs (among others: [JOK11,
SCB10, FPJ+07, SR06a]). Typically, lookup algorithms even differ significantly within
the same DHT, as multiple compatible clients are available to the user. In [JOK11],
Jiminez et al. studied the market share of different competing DHT clients within
the BitTorrent Mainline DHT, one of the most widely used public DHTs. While
60.0% of all checked peers used µtorrent, at least four other implementations could
be identified. Furthermore, 32.5% of all peers did not identify their implementation.

Lookup algorithms can be assessed in multiple ways. Among the most important
qualities a good algorithm should provide are the following:

– Speed: Lookup algorithms should ideally identify and return the target peers
quickly, i.e., the duration of a lookup should be low.

– Low overhead: Lookup algorithms should induce low computational load
and require to send as few network messages as possible. It can further be
differentiated between the overhead induced during the execution of a lookup
and the overhead induced during idle periods of time.

– Accuracy: In public DHTs, lookup algorithms will occasionally be unable
to reliably identify all target peers, especially ones with few connections to
other peers. For instance, recently joined peers might remain invisible to most
peers for some time until more and more peers are getting aware of their
presence [SENB07]. We call the capability of a lookup algorithm to miss as few
peers as possible as the algorithms accuracy.

80

7.1 Kademlia

This chapter aims at providing a deeper understanding about lookup algorithms,
their performance, and proposed optimizations. This analysis also serves as a foun-
dation for the following chapters. First of all, Section 7.1 introduces the Kademlia
protocol, which is used by the currently most widely used public DHT, the BitTorrent
Mainline DHT. As the remainder of this part of the thesis will focus on the MDHT,
its prominent role is being justified before the DHT’s most characteristic properties
are introduced. In Section 7.3, different lookup algorithm variants are presented
and discussed. The analysis starts with a description of a set of implementation rec-
ommendations that are widely considered as a reference implementation for any
lookup algorithm that aims at being compatible to the MDHT. As, however, these
recommendations are not very strict, often proposed optimizations are presented
and discussed. With JKad, we designed a configurable lookup algorithm that is able
to “mimic” many commonly proposed optimization. As most measurements and
experiments we report on in the rest of this thesis were performed with the help of
JKad, we introduce the lookup algorithm used by JKad in greater detail. In Section 7.4,
we propose a definition of “lookup algorithms”. The definition is deliberately broad to
match most if not all previously proposed optimizations, but still allows to place later
statements on a more stable foundation. Section 7.5 presents KademliaPlot, a tool
and graphical notation that allows to depict the workflow of single lookups. When
integrated into simulation frameworks or DHT clients, traces of lookups can be stored
and easily visualized. In Section 7.6, we analyze JKad’s performance within the MDHT.

7.1 Kademlia
This section introduces Kademlia [MM02], the protocol used by the largest public
DHTs. Kademlia was originally published in 2011 by Petar Maymounkov and David
Mazières [MM02] as a DHT protocol that “has a number of desirable features not
simultaneously offered by any previous DHT.” [MM02]. Among these features are the
fact that routing information spreads automatically as a side-effect of lookups, the
flexibility to send multiple requests in parallel to speed up lookups by avoiding timeout
delays, as well as formal provability of key Kademlia properties, such as its scalability.
Although it was published one year later than its four competitors CAN [RFH+01],
Pastry [RD01a], Tapestry [ZHS+04], and Chord [SMK+01], these characteristics en-
abled the protocol to reach a much bigger impact on public DHTs, as Kademlia is
today used by all major public DHTs that experience widespread adoption. Among
others, these DHTs include the Kad network, the Vuze network, and the BitTorrent
Mainline DHT (MDHT). In the following, we provide a brief description of Kademlia’s
main elements – the XOR metric, the the defined remote procedure calls (RPCs), and
the routing table design. Note that while most Kademlia-based DHTs adopt these
original recommendations, implementations differ in detail as we already mentioned.
At places where the paper by Maymounkov et al. is especially ambiguous, we resort to
the BEP5 specifications [Loe08], a document that specifies how the Kademlia protocol
has to be implemented by clients that aim for MDHT compatibility.

81

7 Lookup Algorithm Analysis

7.1.1 XOR Metric

Most of Kademlia’s defining features stem from the use of the XOR metric that is used
to define distances between entities of an 160-bit ID space. At start-up, each peer is
assigned a 160-bit integer as an ID, chosen at random. Keys are placed by computing
their SHA-1 hash. Distances are then calculated by computing their bitwise exclusive
or (XOR) and interpreting the result as an integer (d(x , y) ∶= x ⊗ y).

 0

 16

 32

 48

 64

 80

 96

 112

 128

 0 16 32 48 64 80 96 112 128

D
ist

an
ce

 to
 ID

ID space

ID1 = 0
ID2 = 48
ID3 = 113
ID4 = 127

Figure 7.3: XOR Metric: distance graphs for four exemplary IDs.

Figure 7.3 illustrates the XOR metric by depicting the distances to other peers for
four starting peer IDs ID1 to ID4. For clarity, we chose an ID space of only 27 IDs
in this example. It can be seen that any peer found in the same half of the ID space
as the starting peer is closer than any peer from the other half. In fact, the distance
graph looks the same in both halves with the exception that it is shifted along the
y-axis. The same is true when further separating each half into smaller fractions. The
routing table’s structure utilizes this property for its peer management.

7.1.2 Remote Procedure Calls

Kademlia defines for Remote Procedure Calls (RPCs): Ping, Store, Find Node, and
Find Value. Each RPC is performed by sending a single UDP packet, the request.
The recipient responds with another single UDP packet, the response. The RPC’s
behavior is defined as follows:

– Ping: This RPC checks whether or not the recipient is online. A peer that
receives a Ping request has to respond immediately with a Ping response.

– Store: This RPC transfers a key-value pair to the recipient and asks the peer to
store it for later retrieval.

82

7.1 Kademlia

– Find Node: This RPC asks the recipient to return the k peers it knows that
are closest to a target ID, according to the XOR metric. The target ID is an ID
taken from the 160-bit ID space and typically constitutes the hash of a key that
is searched for in a lookup. The response contains not only the peers’ IPs and
port numbers, but also their IDs.

– Find Value: This RPC behaves exactly like Find Node, unless the recipient
currently stores a key-value pair that matches the target ID. In that case, the
key-value pair is returned instead of the list of peers.

Due to their importance for the execution of lookup algorithms, we will call both
Find Node and Find Value RPCs simply as requests in this thesis.

7.1.3 Routing Table Management

Every peer maintains a routing table to store the IDs and IP-addresses of a number
of peers. The routing table consists of a number of buckets. Each bucket contains
up to k (typically k is set to eight) peers of a similar distance to the peer the routing
table’s owner: the distance of any peer x in bucket n to the routing table’s owner z
is 2(159−n) < d(x , z) ≤ 2(160−n). Due to the use of the XOR metric all peers found
in on bucket originate from a precisely defined part of the ID space. For instance,
all peers found in bucket 0 are coming from the half of the ID space that does not
contain z, while all peers found in bucket 1 are coming from those of the remaining
two quarters that does not contain z. Hence, bucket n covers 1/2(n+1) of the ID space.
Figure 7.4 illustrates this concept. As each bucket can only hold a fixed number of
peers but buckets cover a smaller part of the ID space the closer they come to the ID
of the routing table’s owner, peers store in general many peers more in their direct
vicinity than in a greater distance.

2160 20

z

ID = 111110..2

bucket n = 0
prefix: 02

d(x,z) ≥ 10..2 = 2159 n = 1
prefix: 102

d(x,z) ≥ 010..2 = 2158
 n = 2

 prefix: 1102
d(x,z) ≥ 0010..2 = 2157

 n = 3
prefix: 11102

d(x,z) ≥ 00010..2 = 2156

Each bucket contains at most 8 peers

Figure 7.4: Buckets and Distances. This figure depicts which parts of the ID space
are covered by the first four buckets of a peer with an ID starting with the bits 111110.
Furthermore, a lower bound for the distance of any of the buckets’ peers is given.

83

7 Lookup Algorithm Analysis

Whenever a packet is received, the sending peer is added to the routing table. For
doing so, the appropriate bucket index is determined by computing the distance
between to the sender of the packet and counting the number of leading zeros in
its binary representation. If, e.g., the first three bits of the two IDs are the same
then the bucket index would be 3.

In case that the identified bucket and all buckets with a higher index are empty, the
peer is inserted into the highest bucket that is not empty instead. If this bucket gets
filled completely at a later point in time, it is split by moving all its peers that do not
belong here to the next higher bucket index. This way, more and more buckets
are filled over time.

If at least one other bucket with a higher index exists that is not empty, i.e., the peer
does not have to inserted into the last bucket, it is attempted to add it to the bucket
with the correct bucket index. Three things can happen now:

1. If the bucket is not full or it contains at least one bad entry, the new peer is
inserted, potentially replacing the bad peer.

2. If the bucket contains any questionable peers, these peers are pinged. If any of
them does not respond, it is replaced. If all respond, the new peer is discarded.

3. Else, i.e., if the bucket contains only good peers, the new peer is discarded.

A peer is considered good if it ever responded to a request and sent us any packet
(request or response) in the last 15 min. If the peer either did not have a chance
to respond as it was not yet queried or if it did not sent a packet in the last 15 min,
then it is considered being questionable. If the peer was queried but did not respond
it is considered being bad.

7.1.4 Bootstrapping

Bootstrapping is the process in which a new peer joins a DHT, makes itself known
to other peers, and fills its routing table. The process can be separated into two
parts: first, the discovering of an initial peer and second, the advertising of the
joining peers presence.

An initial peer can be discovered in multiple ways. A fully decentralized approach
called Random Address Probing was published by Dinger et al. in 2009 [DW09].
In order to identify the initial peer, peers search for peers by “probing” (i.e., port-
scanning) random IP addresses. This approach has the advantage of not-relying
on any central servers but can be more time-consuming and harder to implement
than other concepts.

For this reason, DHT implementations typically employ dedicated central servers
that are used for bootstrapping only. The IP addresses and port numbers of these
servers are hard-coded into the client or can be configured by the user. Some of
the bootstrapping servers that are used by MDHT clients can be reached under
router.bittorrent.com and dht.transmissionbt.com, both on UDP port 6881. While
a centralized bootstrapping is surely easier to implement, we will later see that the

84

7.2 The BitTorrent Mainline DHT

reliance on central servers can provide a serious risk for an otherwise fully decen-
tralized DHT. In Chapter 8, we will report on measurement reports that show that
the MDHT’s size dropped by approximately 25% in periods in which one of the
more commonly used bootstrapping servers was unreachable. To our knowledge, all
commercial MDHT clients make use of central bootstrapping servers.

After an initial peer has been found, the client has to fill its routing table and
propagate its presence to other peers. It does that by starting a lookup for its own
ID. The routing table is filled automatically in the process with the peers contacted
during the lookup. When the lookup is finished, is bucket that is not empty at this
point in time is additionally refreshed by starting a lookup for a random ID from
the corresponding bucket.

7.2 The BitTorrent Mainline DHT
As mentioned earlier, the Kademlia protocol is used by multiple public DHTs. The
three largest of them are the BitTorrent Mainline DHT (MDHT), the Azureus DHT
(also known as Vuze DHT), and KAD. The MDHT is formed by clients that are
compatible to the Mainline implementation of the BitTorrent client 1, a popular file-
sharing application. The Azureus DHT is used by a competing – but incompatible –
BitTorrent client called Vuze 2. The KAD network is built by eMule clients, another
popular file-sharing application 3.

In this section, we provide a glimpse on the MDHT before we will analyze it thor-
oughly in the following chapters. We also elaborate on the MDHT’s significance as
an important study object, as due to its enormous size and complexity it not only
allows us to analyze and quantify real-world challenges for decentralized applications
but also to gain valuable insight about user behavior.

7.2.1 The BitTorrent Ecosystem

With millions of users, BitTorrent has been one of the most popular file sharing applica-
tions for years. The first BitTorrent client was published in July 2001 by Bram Cohen 4.
Today, a wide spectrum of compatible clients is available, typically free of charge.

The BitTorrent client is just one component of the ecosystem that is required for
BitTorrent to work. Beside the peers, it furthermore consists of peer discovery mecha-
nisms, and torrent-discovery sites. Each file that is shared between BitTorrent peer is
identified by a infohash, which is derived by a hashing mechanism. The set of peers
that participate in sharing a specific file at a specific time are called a swarm.

To join a swarm, a user first needs the file’s infohash. Infohashes are distributed by
torrent-discovery sites in the form of .torrent files. Popular torrent-discovery sites in-

1http://www.bittorrent.com, [last visited in October 2014]
2http://www.vuze.com, [last visited in October 2014]
3http://www.emule.com, [last visited in October 2014]
4https://groups.yahoo.com/neo/groups/decentralization/conversations/topics/3160, [last visited in

October 2014]

85

7 Lookup Algorithm Analysis

clude The Pirate Bay (http://thepiratebay.se/) and Mininova (http://www.mininova.or
g/). These sites can be browsed to find and download .torrent files. Among other data,
a .torrent file contains the file’s infohash and the IP addresses of one or more Trackers.

A tracker is a server that manages a file’s swarm. Any peer that wants to join a
swarm must retrieve the .torrent file and register at at least one of the listed trackers.
The peer can then obtain a list of other swarm members from the tracker and start
to download the file from them. At the same time, other swarm members will ask
the peer to upload already exchanged pieces to them. Zhang et at. provide a good
overview over the BitTorrent ecosystem in its state of 2011 [ZDWR11].

Originally, trackers were the only peer discovery mechanism supported by BitTor-
rent. BitTorrent clients did not yet include a DHT implementation at this time. In
2005, BitTorrent clients began to offer a second “trackerless” peer discovery mecha-
nism to their users. For trackerless peer discovery, a DHT plays the role of the tracker.
A file’s swarm is thus managed by the DHT instead of a tracker. In order to do so,
a get(key) call has to be performed with the key being the file’s infohash. The DHT
then returns a list of all members of the swarm as a response. To register itself as a
new member of the swarm, the peer has to issue a put(infohash, <IP address, port>)
call. The main advantage of DHT-based peer discovery is that it eliminates the single
point of failure that a central tracker constitutes.

7.2.2 Comparable public DHTs

When BitTorrent clients started to include DHT implementations, the Kademlia
protocol [MM02] was chosen. However, some clients used incompatible DHT vari-
ants. The BitTorrent Mainline client used a variant that the authors specified in the
BitTorrent Enhancement Proposal 5 (BEP5) [Loe08] while the Azureus client used a
different variant. The peers using the Mainline and compatible clients formed the
MDHT, whereas the Azureus peers formed the Azureus DHT. Today, most clients
share compatibility with the MDHT, while some peers, such as the Azureus client
itself (now re-branded as Vuze), are compatible with both DHTs.

The third major public, Kademlia-based DHT is the KAD network. The KAD
network is formed by eMule clients, another popular file-sharing application.

7.2.3 Significance as an Object of Study

All three major DHTs have been studied extensively during the last couple of years.
Like this thesis, most studies focus on improving lookup performance [JOK11, SCB10,
OHKY10, FPJ+07, BS07, SR06a, RGRK04] or quantifying the DHTs’ robustness and
stability [CSM11, SENB09, CW07, BL07] in order to establish DHTs as a viable option
for building public and fully decentralized systems.

Whereas the three DHTs have many challenges in common, the MDHT is of particu-
lar significance as an object of study mainly because of its size and ongoing popularity.
For instance, Salah et al. [SS13] reported on decreasing numbers of participating peers
in KAD, going down from 1.2 - 1.8 million in 2009 as measured by [YLX+11] to 0.5
millions in 2013. In 2008, Steiner et al. estimated the Azureus DHT to contain around

86

7.2 The BitTorrent Mainline DHT

1.1 million peers [SB08]. In comparison, we found the size of the MDHT to fluctuate
between six and eleven million peers, depending on the current season, weekday,
and time [JAH11]. This makes the MDHT the by far most widely used public DHT.
Our measurements further show that the MDHT is growing continuously at least
since 2010, which is when we started our measurements. We will report on these
results more thoroughly in Chapter 8.

While the MDHT is on the one hand very popular among users, it on the other hand
also has unique properties that make it harder to study. First and foremost, differently
from smaller DHTs like KAD, the MDHT is comprised of a multitude of different
client implementations. Jiminez et al. studied the market share of competing DHT
clients and estimated that 60.0% of all checked peers use the µtorrent client, 7.3% use
the libtorrent client 5, and the client used by 32.5% of all peers could not be identified
[JOK11]. Furthermore, the source code of the most common client, µtorrent, is not
publicly available, which makes it harder to understand and predict the behavior of
remote peers. These facts might explain why, despite its popularity, the MDHT is
less intensely studied than the KAD network.

In the remaining chapters of this thesis, we focus on the MDHT due to its huge and
still increasing popularity. We argue that its size and heterogeneity make it a more real-
istic and interesting object to study real-world challenges of large-scale decentralized
applications, the type of systems whose viability we ultimately strive to support. In
particular, we see the MDHT as a good candidate for studying the following aspects:

– Real-world issues: In studies that rely on analytical models or simulation
alone, real-world issues of deployed DHTs have often been either neglected
or oversimplified, assuming a more idealized model of the Internet that does
not suffer from issues like NAT gateways or client heterogeneity. However,
real-world lookup performance still often falls short of expectations. To pave
the road for decentralized systems, a better understanding of the underlying
causes is necessary. The analysis of a large, real-world DHT is a requirement
for this.

– User behavior: The performance and stability of public DHTs is greatly affected
by their users’ behavior, e.g., their session lengths. As the MDHT is comprised
of millions of peers coming from almost all parts of the world, it is an ideal
candidate to study user behavior in public DHTs.

– Long-term evolution: DHTs are highly dynamic systems that change and
evolve over time. Properties such as the DHT’s size, topology, the users’ behavior,
or the proliferation of NAT gateways are bound to change over time. Long-term
monitoring of the MDHT allows us to gain insight about the DHT’s stability
and to estimate the likelihood of these kinds of events.

5http://www.rasterbar.com/products/libtorrent/, [last visited in October 2014]

87

7 Lookup Algorithm Analysis

7.3 Lookup Algorithms and Optimizations
The official standardization document for the MDHT, the BitTorrent Enhancement
Proposal 5 (BEP5) [Loe08], does not define a lookup algorithm in detail but rather
sketches its behavior roughly. Clients thus have to choose their own algorithm, which
is why lookup performance varies significantly between implementations. In this
section, we introduce the standard lookup algorithm specification and commonly
proposed optimization. We furthermore analyze the algorithms used by some popular
MDHT clients. We then present JKad, the lookup algorithm we used for most of our
measurements. JKad is highly configurable and can be used to “mimic” commonly
proposed lookup optimizations.

7.3.1 Standard Lookup Algorithm (BEP5)

Lookup algorithms can be implemented either iteratively (the source peer sends
all requests) or recursively (the peer receiving a request executes the next request).
As in reality most DHTs, including the MDHT, support only iterative lookups we
focus on this variant only.

The BEP5 specifications go only so far as to state that lookup algorithms should
use multiple Find Node requests to iteratively approach the target ID. Figure 7.5
illustrates this process. The peer that initiates a lookup for a target ID (in the following,
we will call this peer source peer) sends Find Node requests to those peers from its
routing table that are closest to the target ID. These peers then return the closest peers
they know, i.e., that are contained in their routing tables. This process is repeated
until no even closer peers can be found. The eight peers closest to the target ID that
were queried and did respond are then returned as the lookup’s result (the target
peers). Due to the routing table’s structure, lookup duration will be in O(log n), with
n being the size of the DHT [MM02].

Note, that if one can be sure that all values stored for a specific key are the same,
a lookup does not necessarily need to identify all eight target peers if it only wants

2160 20

target ID

target peers

source peer

routing table links

Figure 7.5: Overview over an iterative lookup algorithm’s behavior. The source peer
queries the peer from its routing table that is closest to the target ID. The queried peer
then returns the closest peers it knows and the source peer sends another request.
This way, the target ID is approached iteratively.

88

7.3 Lookup Algorithms and Optimizations

to retrieve a key’s value. Instead, the lookup can be stopped immediately when one
peer is found that holds the desired key. Hence, this lookup variant is much quicker
but it can only be used to retrieve values, not to store them. In this thesis we will
focus on the stricter, more general variant.

7.3.2 Popular Optimizations

Many studies have been published that focus on improving lookup performance.
Many of them rely on altering the lookup algorithm alone, while some also try to
improve the routing table’s structure or maintenance routines. In the following, we
present the most common optimization proposals.

Parallel Requests

Parallelism has often been proposed as a means to speed up lookups: by sending more
than one Find Node requests in parallel, the impact of unresponsive peers or late
responses can be diminished [SCB10, FPJ+07, SR06a, SR05b]. In [FPJ+07], Falkner et
al. use this technique to speed up lookups in the Azureus DHT. In [SR06a], Stutzbach
et al. employ the same strategy in KAD. An analytical examination of the optimal
degree of parallelism is presented by Wu et al. in [WTN06]. Based on measurement
results on the KAD network given in [SR05b], the authors find a parallelism degree
of 2 or 3 to be optimal. The study furthermore compares iterative and recursive
routing strategies analytically.

Decreased Timeout Thresholds

Another often proposed idea is to decrease the timeout threshold as much as possible.
The timeout threshold specifies how long the lookup algorithm waits for a response
to a previously sent request. After this time, the algorithm typically considers the
queried peer as being unresponsive and sends a new request to a different peer. Hence,
choosing an adequate timeout threshold is a trade off between aborting too many
queries prematurely and waiting unreasonably long for pending, but eventually failing
requests. In [FPJ+07], the authors propose to use measured response probabilities to
introduce “soft” timeout thresholds: instead of abandoning pending queries, the rate
at which additional requests are being sent is derived from the measured probabil-
ity. Steiner et al. advise in [SCB10] to derive the timeout threshold from measured
inter-peer round trip delays.

Some studies have proposed to systematically favor peers with low expected round
trip delays [KLKP08, JOK11]. In the KAD network, Kaune et al. introduced two
new techniques (proximity neighbour selection and proximity route selection) that aim
at filling the routing table preferably with peers that are geographically close. In a
simulation of 10,000 peers, the authors their method to reduce lookup duration to
a third of its previous value [KLKP08]. Similar to this approach, Jiminez et al. let
the client replace existing routing table entries with a certain probability, if a new
peer possesses a shorter round trip delay [JOK11].

89

7 Lookup Algorithm Analysis

Increased Bucket Size

Lookup performance can be improved by increasing the capacity of the routing table’s
buckets, i.e., the bucket size. A similar idea, which is already mentioned in the original
Kademlia publication [MM02], is to add more buckets to the routing table. Both ideas
have been studied analytically for the KAD network in [SR06a] with the conclusion
that their performance gain is virtually identical, but an increased bucket size comes
at lower costs in terms of implementation complexity and bandwidth consumed for
routing table maintenance. In [JOK11], the authors propose to increase bucket sizes
proportionally to the ID space the buckets cover. This technique allows to limit the
maintenance traffic increase. In a measurement study, in which one modified peer is
brought into the MDHT, the authors find only a small performance gain.

Adaptive Parametrization

Typically, lookup algorithms use static parameters that are set by the developer based
on one-time measurements. Often, a better lookup performance can be achieved by
adaptive parametrization, i.e., choosing the values just-in-time. For instance, Steiner
et al. proposed in [SCB10] to dynamically adapt the number of parallel requests,
the timeout threshold, and other parameters. In Chapter 10, we will present how
parameters can reliably and efficiently be optimized at run-time.

Other Proposals

In their study from 2011, Jiminez et al. presented a client for the MDHT that not only
combines parallel requests, favoring of low-RTT peers, and increased bucket sizes, but
also includes a quarantine and an improved routing table maintenance feature [JOK11].
The quarantine feature was originally proposed in [JOK09]. It adds new peers to
routing table only if they respond to at least one request during a quarantine period
of three min. This mechanic prevents peers that suffer from limited connectivity from
being added to the routing table. The improved routing table maintenance feature
send a Ping request to the most stale routing table entry every six seconds. This
helps ensuring each bucket contains fresh entries.

7.3.3 JKad

Our studies required an open source client that is compatible to the MDHT, is able
to handle a high number of simultaneous lookups, and is reliable enough to run
unsupervised for months. Popular MDHT libraries such as libtorrent were not able
to satisfy these needs. We thus implemented our own client, called JKad. JKad is
written in Java and available under GNU General Public License, version 3 (GPL)6.
JKad has already been presented in [JH14]. In terms of routing table structure and
management, JKad follows the BEP5 recommendations as closely as possible. However,
JKad uses a lookup algorithm that combines several optimizations that we previously
presented, namely Parallel Requests, Decreased Timeout Thresholds, and Adaptive
Parametrization. The algorithm also implements the new idea of using different

6http://dsn.tm.kit.edu/jkad.php

90

7.3 Lookup Algorithms and Optimizations

parallelism degrees in different phases of a lookup. By changing the parameters’
values, the algorithm is furthermore able to “mimic” other algorithm. For instance,
it is possible to configure the algorithm to behave like a pure BEP5 client or to just
use the Parallel Requests optimization.

The algorithm makes extensive use of request parallelization. This allows the al-
gorithm to continue making progress even if some queried peers fail to respond
or respond late. As furthermore more peers will be returned, convergence towards
the target ID is accelerated. However, this performance increase comes at the cost
of additionally sent queries. If the probability of timeouts to occur is small, a se-
quential algorithm might be able to provide similar performance at lower costs. A
lower parallelism degree should thus be chosen for low timeout probabilities. JKad’s
lookup algorithm hence adapts to different timeout probabilities by changing the
number of requests that are allowed to be pending at the same time. We call this
variable the parallelism degree l.

The algorithm is divided into two phases: approximation and covering.

– Approximation Phase: During approximation, the algorithm’s goal is to ap-
proach the target ID quickly until it is “close” to the target ID, but without
sending to many requests to limit the induced overhead. It does so by sending
a request to each of those l peers it knows that are closest to the target ID.
Whenever a response is received or a timeout occurs, the algorithm sends a
new request to the closest known peer not yet contacted. Hence, l requests will
be pending at any time. Most peers that are returned during approximation
will be still distant to the target ID. As they will thus most likely not be part
of the lookup’s final result, the algorithm should not send more requests than
necessary to avoid being forced to wait for timeouts to expire. The parallelism
degree l thus has to be minimized in order to maximize efficiency.
When peers cease to return peers that are closer to the target than they are,
the algorithm assumes that it has reached the target ID’s direct vicinity. It thus
ends the approximation phase when the b closest peers it knows have all been
queried without responding with any closer peers. The parameter b is called the
covering threshold. If a smaller value is used for b, the algorithm will detect the
target ID’s vicinity earlier. However, approximation phase is also more likely to
end prematurely in case some peers are accidentally unable to return any closer
peers, for instance because their routing tables are not filled yet.

– Covering Phase: Covering phase begins after approximation is complete. The
algorithm assumes at this point in time that it has reached the direct vicinity of
the target ID. It thus does not expect to receive many more even closer peers.
However, it still has to make sure that the closest eight peers did not return any
closer peers. As those peers have to be queried anyway, the algorithm cannot
save bandwidth by using a low parallelism degree. It thus queries the eight
closest peers in parallel. It should be noted that more than eight peers can be
sent during covering phase in case that some peers do not reply or they return
closer peers.

91

7 Lookup Algorithm Analysis

7.3.4 utorrent

As mentioned before, µtorrent is by far the most commonly used BitTorrent client
today. Both Zhang et al. and Jiminez et al. estimate that around 60% of all users use
this client [ZDWR11, JOK11]. This client implementation is particularly important
for the MDHT not only because it affects the most users directly, but also because
issues can severely affect the MDHT itself because of the implementation’s domi-
nating market share.

µtorrent is developed by BitTorrent, Inc., an American, privately held company. The
company was founded in 2004 by Ashwin Navin and Bram Cohen, the inventor of
the BitTorrent protocol. Among others, the company actively drives the development
of the BitTorrent protocol. In this process, MDHT changes are also introduced and
specified in BitTorrent Enhancement Proposals (BEPs)7. The last MDHT-related
change was the addition of a security feature in January 2014 [Nor14a].

Unfortunately, µtorrent’s source code is not publicly available. In [JOK11] Jiminez et
al. reverse engineered some aspects of the client to compare it to their own implemen-
tation. Their implementation showed higher performance and fewer maintenance
traffic than µtorrent. According to Arvid Norberg, a developer working for BitTorrent,
Inc., the µtorrent client was later improved and now includes not only the changes
suggested by the authors but also employs further optimizations [Nor14c, Nor14b].
In the following, we describe all mentioned optimizations.

The µtorrent client uses an increased number of buckets as was already suggested
in the original Kademlia publication [MM02]. Each bucket contains 8 peers. Ini-
tially, a µtorrent client separates the ID space in 32 buckets with each bucket cov-
ering a 5 bit range. As usual, only the bucket in which the client’s own ID lies will
be split. The client also spreads out maintenance traffic more evenly over time, as
was suggested in [JOK11].

Furthermore, µtorrent favors peers based on their RTT and their position inside
their bucket. Peers have a higher chance of being added to a bucket if they have
a low RTT and if their addition leads to a more even peer distribution within the
bucket. Norberg described the position-based favoring as being stronger than the
RTT-based favoring [Nor14c].

As another optimization, µtorrent does not use a fixes parallelism degree but tries
to always query the closest αpeers immediately. This is the same behavior as JKad
uses during its covering phase (compare Section 7.3.3. The parameter αis set to 3 or 4.

7.4 Defining Lookup Algorithms
In the previous sections, we have explained that no strict standard for lookup algo-
rithms in the MDHT exist. Both the original Kademlia publication [MM02] as well as
the BEP5 specification [Loe08] only provide recommendations that are furthermore
fuzzy in key areas. Most algorithms that make use of the four Kademlia RPCs can
be deemed compatible to the MDHT. In practice, the lookup algorithms used by

7http://www.bittorrent.org/beps/bep 0000.html, [last visited in October 2014]

92

7.4 Defining Lookup Algorithms

virtually any pair of two MDHT clients differ or use at least different parameters. This
makes it hard to make general statements about how “lookup algorithms” behave in
general, e.g., in order to improve or predict their performance.

In the following, we thus propose a definition that defines a set of minimal require-
ments for lookup algorithms. The definition is deliberately broad to fit most previously
proposed lookup optimizations. Its main idea is to forbid communication by other
means than sending requests, but leave most other points unspecified.

Definition 9 (Lookup Algorithm) A lookup algorithm is an algorithm that matches
the following requirements:

– Fixed Target ID: Each lookup is initialized with a 160 bit target ID. The target
ID is fixed and does not change until the lookup is complete.

– Requests only: The algorithm communicates with other peers only by sending
Find Node or Find Value requests and receiving the corresponding results as
specified by the BEP5 standard. The requests’ target ID parameter is always set
to the lookup’s fixed target ID. The lookup algorithm is free to decide when and
how many request to send, but requests are only sent to known peers. In the
beginning of a lookup’s execution only the peers currently contained in the source
peer’s routing table are considered known. When a peer is returned by a request it
becomes known as well.

– Termination: The lookup algorithm terminates every lookup at some point in
time. Upon termination, the lookup chooses 8 known peers (or all available ones,
if less than 8 peers are known) to return.

As mentioned before, the definition fits virtually all previously proposed lookup
optimizations. For example, it fits all 8 variants proposed by Jiminez et al. in [JOK11]
(including the 2 variants of their BEP5 implementation), as well as the lookup algo-
rithm proposed by Falkner et al. in [FPJ+07]. Note, however, that not every lookup
algorithm that matches this definition would be considered a “good” lookup algo-
rithm: for instance, an algorithm could just terminate instantaneously and return 8
randomly chosen peers from its routing table. While this algorithm would be very
fast, it would be very unlikely that any of the target peers would be returned.

Most importantly, the definition implies that lookup algorithms use Find Node or
Find Value requests as the only means of communication. This allows us to model
the algorithms communication with the DHT completely by three types of events,
which we call Lookup Events: Request Transmission, Request Timeout, and Response
Reception. As any request can be modeled by just these three types of events, and any
lookup can be interpreted as a concatenation of multiple requests, any lookup can be
described by these three types of events as well. In the next section, we will illustrate
these event types in greater detail with the help of a graphical notation.

93

7 Lookup Algorithm Analysis

7.5 A Graphical Lookup Notation
In order to be able to visualize the behavior of specific lookup algorithms better, we
developed a graphical notation that allows to plot individual lookups. The notation is
based on Definition 9 introduced in the previous section and its use of Lookup Events.
A lookup event is a specific point in time at which a query was either started (Re-
quest Transmission), aborted (Request Timeout), or successfully completed (Response
Reception). Figure 7.6 illustrates the graphical representation of lookup events.

A lookup can be visualized by plotting all of its lookup events as seen in Figure 7.7.
The figure shows the behavior of a single, exemplary JKad lookup. For this lookup, the
parallelism degree l was set to 2 and the covering threshold b was set to 8. The timeout
threshold t was set to 1 second. With these parameters, the lookup algorithm will never
enter its covering phase and thus behave similar to a strict BEP5 implementation.

The x-axis of the diagram shows the elapsed time in milliseconds whereas the y-axis
shows the encountered peers’ distances to the target ID on a logarithmic scale. The
dashed vertical line on the right denotes the completion of the lookup. Each empty
(white) circle represents the discovery of a formerly unknown peer. Peers are normally
detected when they are returned by successful Find Node-requests, but the very first
peers are taken from the source peer’s routing table. A white circle at (x, y) hence
represents a peer that was discovered x ms after the lookup was started and whose
distance to the target is y. A horizontal arrow means that a request was sent to the
peer (white circle) left of the arrow. The beginning of the arrow represents the Request
Transmission event. Often, peers are not immediately queried when discovered.

The arrowhead specifies that the query terminated at a certain time: if the arrowhead
ends in an ’X’, a Request Timeout occurred, i.e., no response was received and the
request was aborted after a set duration. Else, the arrow ends in a filled (black) circle,
which represents the Response Reception event. The peers that were returned by the
response are also drawn as white circles and connected to the Response Reception
event through a vertical, dotted line. Note that because only formerly unknown peers
are depicted, often less than the expected 8 peers are shown. Those successfully queried
peers (black circles) that form the lookup’s end result are surrounded by another circle.

tTr

IP
(a) Request Transmission. At tTr ms a request is
sent to the peer using the ID IP .

tI

(b) Request Timeout. At tl ms after the request
was sent, the lookup algorithm triggers a timeout.

td

(c) Response Reception. At td ms after the request
was sent, a response is received containing a num-
ber of previously unknown peers.

Figure 7.6: Illustration of Lookup Events.

94

7.5 A Graphical Lookup Notation

2^140

2^145

2^150

2^155

2^160

 0 500 1000 1500 2000 2500 3000 3500

d
is

ta
n
c
e

time [ms]

Figure 7.7: Lookup Events forming an exemplary lookup. At each point in time,
the algorithm runs 2 requests in parallel. Requests time out after 200 ms without a
response.

Diagrams like this are useful to get a quick, intuitive impression of a lookup’s
performance and the algorithm’s behavior. For instance, it can be seen in Figure 7.7
that at every time exactly two requests are pending, with the exception of the very
end of the lookup. One can thus assume that the lookup algorithm uses a parallelism
degree of two. The diagram furthermore shows that the speed at which the algorithm
approaches the target ID decreases logarithmically during the first 1.0 - 1.5 seconds, as
the depicted lookup events form a approximately linear line on the logarithmic scale.
This behavior is caused by Kademlia’s routing table structure. It can also be seen, that
starting around the 1.4 seconds mark request stop returning any closer peers, as most
black circles are only connected to peers above them, and thus further away from the
target ID. This point in time marks the beginning of the covering phase that JKad
would normally try to detect, if the covering threshold b was set to a lower value. All
of the lookup’s result peers were identified in this phase.

When analyzing the lookup’s performance, it is easy to see that the covering phase
was responsible for more than half of the lookup’s duration. The use of a higher
parallelism degree during this phase could have prevented that. The plot also makes it
obvious that at several points in time the algorithm did nothing but wait for requests
that eventually timed out. In fact, the lookup algorithm did nothing else for XXX%
of the lookup duration. A shorter timeout threshold or higher parallelism degree
might help decrease this fraction. The plot also shows that the majority of the peers
returned by the lookup were around 2139 units away from the target ID, which is an
important factor to judge the lookup algorithms accuracy.

In summary, we see that the used graphical notation allows to quickly get a first
impression about a lookup algorithm’s behavior. While it is no substitute for a nu-
merical, statistically significant analysis, it has the potential to be of great use for
researchers and developers alike.

95

7 Lookup Algorithm Analysis

7.6 Lookup Performance

7.6.1 Performance Metrics

Besides the duration, the performance of a lookup can be measured by various metrics,
for instance the induced network traffic. In the following, some of the most important
metrics will be introduced and discussed.

Lookup Duration

The lookup duration or lookup latency is typically considered as one of the most
important performance metrics. It can be defined in multiple ways: one way is to
measures the time until the lookup algorithm has found 8 peers that did reply to a
request but did not return any peers that were even closer to the target ID.

Another common definition is to measure the time until at least one peer has been
found that stored the value belonging to a specific key. This definition is, for instance,
used by Jiminez et al. [JOK11]. This definition has the advantage that it more closely
represents the time the user in practice actually has to wait for a lookup, as in most
cases lookups are used to retrieve rather than store values. However, a disadvantage
of this definition is that the measured lookup performance depends on the popularity
of the used key-value pair: the more popular it is, the higher the chances rise that
a peer that stores the correct value can be found quickly.

In this thesis, we will use the first definition. As this definition leads to higher
lookup durations, care should thus be taken when comparing results with studies
that use the second definition.

Requests sent

Measures the number of requests sent on average during a lookup. Unanswered
requests are counted. This metric is an important indicator for a lookup’s efficiency
as it directly describes the algorithm’s bandwidth consumption. Also, sending many
requests can introduce considerable strain on a possible NAT gateway that protects
the sending peer, as for each sent request a new entry has to be created within the
NAT gateway’s connection table.

Responses Received

Measures the number of responses received on average during a lookup. As every
request results in a timeout or a response, this metric also shows how well the variant
“avoids” causing timeouts.

Timeout Block Time

We define Timeout Block Time (TBT) as the cumulative duration per lookup in which
only requests were pending that later resulted in timeouts. The TBT is a good indicator
about how strongly an algorithm variant is affected by timeouts, as it describes the
time that is lost due to timeouts.

96

7.6 Lookup Performance

Target Distance

The target distance of a lookup is computed as the average distance that the 8 returned
target peers had from the target ID. Target distances are usually very large as only a
couple of millions of peers are spread over the entire ID range which has a length of 2160.
Because routing tables are structured logarithmically, outliers in both measurement as
well as simulation can lead resulting distances being magnitudes larger than normally.
As these outliers would dominate the calculation of a variant’s average target distance,
we typically use median target distances for this metric.

7.6.2 Performance Inhibitors

Although private DHTs exhibit great lookup performance with delays of below 100 ms
[DHJ+07, LM10], lookup performance in public DHTs still has a long way to go with
latencies often being a magnitude higher [JOK11]8. The main differences between
lookups run in private and public DHTs are higher network latencies and especially
the high likelihood for timeouts to occur.

Timeouts are probably the biggest threat to lookup performance in public DHTs.
They occur if no reply is received to a Find Node request in time. Timeouts impair
lookup performance as they delay the lookup’s progress without helping to discover
any new peers. Depending on the specific lookup algorithm used and the current state
of the routing table, a large percentage of initiated requests typically remain unan-
swered. For different configurations of JKad, we observed timeout ratios of 35 to 70%.

Timeouts are caused by different effects:

– Churn: The queried peer has already left the DHT, i.e., the user has stopped the
client.

– Guarded Hosts: Despite being online, the queried peer did either not receive the
request or the response did not reach the querying peer. The most prominent
reason for this is that the queried peer was located behind a NAT gateway or
firewall.

– Network Latency: The response reaches the querying peer too late, i.e., after
a specific timeout threshold set by the lookup algorithm expired. Either the
request, the response, or both packets could be delayed. For instance, delays
can be caused by congested passages in the Internet or the user’s IT infrastruc-
ture. Besides increasing the probability of a request to time out, high network
latencies impair lookup performance in another way, as they also delay the
reception of responses that did not time out.

In the following, each of this causes will be discussed in greater detail.

Churn

Churn is a term often used in the marketing world and is derived from the words
change and turn. In this context, the churn rate is for instance used as a measure to

8In this paper, the second definition (compare Section 7.6) for lookup latency was used.

97

7 Lookup Algorithm Analysis

describe at which pace customers join or leave a specific market. Within the P2P
community, it describes the rate at which peers join and leave a P2P-network.

A high churn rate constitutes an important problem for lookup performance in
public DHTs, as it causes an routing table’s entries to become stale more quickly. A
stale routing table entry is an entry that refers to a peer that is no longer reachable, for
example because it has gone offline. If this entry is queried, a timeout occurs. Clients
hence employ different maintenance techniques to hold their entries up-to-date, from
which some have already been introduced in Section 7.1.3. Typically, it is ensured that
peers are regularly queried. If they do not respond to a specific number of requests,
they are removed from the routing table.

Due to its great importance, churn in public DHTs has been the subject of nu-
merous studies [MCPCLG13, LWZ+12, OHKY10, BL07, WTN06, SENB07, SR06b,
SR05b, LSM+05, SW04, RGRK04]. An analysis of most of these studies will be given
in Section 8.6 of the following chapter, as our own measurements will then have
been introduced. We will, however, provide in the following a brief view on the
introduced models.

Churn has mostly been modeled as a combination of two factors [SR06b]: the
inter-arrival time, which is the time interval between two subsequent peer arrivals in
the DHT, and the session length, which specifies the duration for which a specific peer
participates continuously at the DHT until it leaves the network. Stutzbach et al. found
in their empirical study in different public DHTs that session lengths follow a Weibull
or log-normal distribution, but are ill-explained by the exponential distribution.

Guarded Hosts

Guarded hosts are peers that are located behind a NAT gateway or firewall and thus
suffer from connectivity problems. Depending on the type of firewall or NAT gate-
way, guarded hosts will not be able to send or receive packets, resulting in queries
to time out.

Peers hidden behind a firewall will typically not be able to receive any incoming
Kademlia packets at all, but might still be able to send requests. These peers will
thus never answer requests. For this reason, most maintenance mechanisms are very
good at filtering them from the routing table. Our measurements that we report on
in Section 8.4.4 show that only a small percentage (11.8%) of around 290.000 tested
peers showed behavior that could have been caused by a firewall.

NAT gateways will block incoming packets depending on whether or not the sender
of the incoming packet has been contacted in the recent past. If it has been, packets
originating from the respective peer will be accepted for a certain time, typically 2
min [JOK09, RWHM03]. This leads to the problem, that during these period of time
the guarded host appears completely reachable to the peer it contacted although it
cannot be reached by other peers. To our knowledge, this effect was first defined a
non-transitive connectivity by Freedman et al. [FLRS05]. In their study, Freedman et
al. provide a thorough analysis of connectivity problems of guarded hosts. A similar
assessment is presented in [JOK09]. In both studies, non-transitive connectivity is
identified as a major issue for DHT networks.

98

7.6 Lookup Performance

RFC3489 [RWHM03] defines four types of NAT gateways: full cone, restricted
cone, port restricted cone and symmetric. The type determines whether the sender
is identified by its IP address (restricted cone NAT), its IP address and port number
(symmetric or port restricted cone NAT), or not at all (full cone NAT). Full cone NAT
gateways thus “accept” packets from completely different IP addresses.

Any kind of NAT gateway thus allows a peer located behind it to receive responses
from any contacted peer, as the response should come from the same IP address and
port number the request was sent to. The peer will, however, in general not be able
to receive requests, as those are typically not preceded by an outgoing packet. The
fact that affected peers will still be able to send requests makes them harder to filter
from routing tables. In our measurements, we estimated ratio 33.8% of all tested
peers to be located behind any kind of NAT gateway.

Network Latency

The network latency denotes the time required for a UDP packet to reach its des-
tination. For lookup algorithms, the Round Trip Time (RTT) typically is the more
important metric. The RTT is defined as the time interval between the transmission
of a request and the reception of the corresponding response. It is thus influenced
twice by the network latency, as both the request and the response are affected.

Packets can be delayed at any section on their way to the recipient: at the sender’s
local IT infrastructure (say, for instance, its NAT gateway), at the Internet, and / or at
the recipient’s local IT infrastructure. While geographically distant peers certainly
show higher network latencies introduced by the routing through the Internet, these
delays account typically for far below 200ms. The local IT infrastructure of a user,
on the other hand, may introduce far higher latencies, if overloaded: NAT gateways,
which are often used to connect to the ISP, may introduce delays of over a second
when they cannot handle a high number of incoming and outgoing packets any more
[DW09]. Such delays are likely to exceed even the most conservative timeout thresh-
olds and cause timeouts. Unfortunately, this phenomenon can be caused directly by
extensive file-sharing use, which is why it is not uncommon in the MDHT.

In order to reduce the issues caused by peers that suffer from high network latencies,
the idea has been proposed to favor peers with low RTTs, i.e., let low-latency peers
replace routing tables entries that refer to high-latency peers. This approach has
already been explained in Section 7.3.

7.6.3 Lookup Performance in the MDHT

Figure 7.8 illustrates the lookup performance of different JKad variants. For each tested
configuration, 10,000 lookups were started with JKad (V. 0.7.159). All experiments
were run on a Linux machine (Intel T7200 Dual Core @ 2 GHz, 2GB RAM) that was
directly connected to the Internet using a 2 GBit/s connection. It was not protected
by any NAT- or Firewall-capable devices. For each set of 10,000 lookups, a new JKad
instance was started. To build its routing table, the client was started and left idle
for 120 s. Then, a new lookup was started every second. For each lookup, a new
target ID was chosen at random. After the last lookup had been started, the client

99

7 Lookup Algorithm Analysis

was given 30 more seconds to wait for incoming responses before it was stopped. The
measurements were conducted between 10 am and 2 pm CET during November 2013.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 200 400 600 800 1000

D
ur

at
io

n
[m

s]

Timeout threshold [ms]

l = 2
l = 4

l = 8
br.

(a) Average lookup durations for the tested
variants.

 20
 40
 60
 80

 100
 120

 200 400 600 800 1000

Re
qu

es
ts

se
nt

Timeout threshold [ms]

l = 2
l = 4

l = 8
br.

(b) Average requests sent per lookup for the
tested variants.

Figure 7.8: Two of the most important lookup performance metrics for differently
parametrized jKad variants, including 95% confidence intervals. All measurements
were conducted in the MDHT. The parameter l denotes the parallelism degree of
the variant, while broadcast mode means that parallelism degree was set to 0 and
the broadcast threshold b was set to 8, i.e., the 8 closest nodes were always instantly
pinged (compare Section 7.3.3).

Figure 7.8a depicts the average lookup duration as a function of the chosen timeout
threshold, while Figure 7.8b depicts the number of requests sent on average per lookup.

The chosen algorithm variants displayed vastly different lookup durations ranging
from around one to ten seconds. Lookup duration increases linearly with higher
timeout thresholds and lower parallelism degrees. In broadcasting mode, lookups
were especially fast.

Furthermore, the number of sent requests differs greatly between variants. Higher
parallelism degrees lead to more requests being sent. Low timeout thresholds in-
crease the number of sent requests as well, as more requests are prematurely aborted
and need to be repeated.

100

8

DHT Measurement

In the two previous chapters, we motivated the significance of the MDHT as an
object of study and provided an glimpse on how DHT properties such as the peers’
session lengths or the prevalence of NAT gateways affect lookup performance. In
this chapter, we present a thorough assessment of the MDHT and quantify these
and other properties. Our analysis is based on results we obtained by long-term
measurements that are running continuously since August 2010 and still ongoing.
To our knowledge, this makes this study the most long-term and comprehensive
measurement study of any widely deployed public DHT.

The work presented in this chapter has partly been published in [JAH11] and
[JADH10]. Parts of this chapter are based upon these publications.

The chapter is structured as follows:
Section 8.1 introduces the objective of our measurement study. In Section 8.2,

BitMON – the framework, with which our measurements are conducted – is presented.
In the following section, it is explained how BitMON is able to collect peer samples
that are representative for the whole DHT. These samples are the basis for different
analyses. In Section 8.4, measurement results are presented, analyzed and discussed.
In the end of the section, the results are briefly summarized. Section 8.5 lists three
selected incidents that occurred since 2010 and analyzes their effect of the MDHT.
Among these incidents are the Arabic spring, the Japanese Tōhoku earthquake of
2011, and the sudden growth of the MDHT to twice its previous size in May 2014.
Section 8.6 presents related measurement methodology and related measurement
studies. Section 8.7 concludes this chapter.

101

8 DHT Measurement

8.1 Objective
Our need to monitor the behavior and evolution of the MDHT originally arose
due to requirements of the project KAI which has already been introduced in Sec-
tion 2.5 on page 18.

An integral part of the envisioned system was the user discovery service that returned
the IP addresses of all currently active users. When a user connected to the system,
she used the discovery service to connect to the other users and establish encrypted
connections. As the system was required not to rely on any central services, the
discovery service was implemented with the help of the MDHT: immediately after a
user got connected to the Internet, the discovery component connected to the MDHT
and stored the peer’s current IP address and port number in the MDHT, using a
pre-configured key that was shared between all users. The discovery component thus
just had to perform a get(key) call on the shared key to receive a list of all active peers.

Typical MDHT clients however still use central services to bootstrap, i.e., to connect
to the MDHT (compare Section 7.1.4). The discovery service hence had to rely on
decentralized bootstrapping. For doing so, the client sends Ping requests to random
IP addresses (“Random Address Probing”). In [DW09], Dinger and Waldhorst de-
scribe the approach in detail. Obviously, the effectiveness of Random Address Probing
depends severely on the number of available MDHT peers and the port numbers they
listen on. The more peers are listening on a specific port, the higher the probability to
quickly guess a matching IP address by chance. The effectiveness of the KAI system
thus depended on the popularity of the MDHT and their users’ port number prefer-
ences. It was thus required to monitor the MDHT to ensure the system’s reliability.

Besides our use-case, many other systems exist whose performance relies on com-
parable properties of public DHTs. The application Tribler [ZCBP11], for instance,
provides P2P-based video streaming on demand. Recently, Tribler was extended to
support the Swift protocol [OGJK12], which allows to search for items in a information-
centric rather than location-specific fashion. Tribler uses the MDHT to locate data
items among its users. Because of Tribler’s on-demand nature, lookup performance
and reliability is of utmost importance [JOK11]. As lookup performance depends
on the number of participating peers, the prevalence of NAT gateways, and other
factors that are bound to change over time, changes in the MDHT could influence
user experience severely. The MDHT is used in a similar way by BitTorrent Sync 1, an
application that allows to synchronize files between personal computers and other
devices. Different from other popular synchronization services like Dropbox 2, Bit-
Torrent Sync does not transfer files to any central servers, to comply with privacy
concerns. In December 2013, BitTorrent Sync had over 2 millions of registered users 3.
In [FSK14], Farina et al. provide a deeper analysis of the service. Another example
are DHT-based Content Delivery Networks (CDN) like Coral [Fre10, FFM04] that
aim at delivering data items – such as websites – quickly.

1http://www.bittorrent.com/sync, [last visited in October 2014]
2https://www.dropbox.com/, [last visited in October 2014]
3http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/, [last visited in

October 2014]

102

8.2 BitMON

In order to assure a satisfying performance for systems that are based on public
DHTs, it is thus necessary to monitor the respective DHT for unexpected changes
and trends. Our goal was to provide such a long-term monitoring for the MDHT.
Whereas our initial incentive was to support the KAI project, we quickly recognized
the demand of similar projects and extended our monitoring engine. The objective
of our measurements is twofold:

– Firstly, we aim at monitoring and publishing key properties of the MDHT
automatically for projects and applications that directly depend on the MDHT.
Among these key properties are the MDHT’s size, the geographic origin of
peers, and many others. Our goal is to provide a valuable tool to ease the
management of DHT-based systems.

– Secondly, we aim at gaining a better understanding of the real-world behavior of
public DHTs in general. Therefore, we analyze the MDHT’s long-term evolution
and analyze the DHT for stability and its reaction to global events. We hope
that our results help other researchers to better understand public DHTs and
to develop new large-scale DHT-based applications.

8.2 BitMON
For our measurements, we created a measurement platform called BitMON [JADH10].
BitMON was originally created in 2009 and received smaller updates over the years.
The tool was written in Java. BitMON does not only conduct the various supported
measurements but can also create diagrams from the collected data. It thus combines
measurement and data analysis. BitMON comes with a graphical user interface (GUI)
that allows to start and stop measurements and to display diagrams. A screen shot
of the GUI is shown in Figure 8.1.

In 2014, the tool received a makeover to make it easier to handle the vast amount of
data it collected during the last years. BitMON 2 still uses the same measurement and
analysis routines as BitMON, but stores all collected data in an Apache CouchDB 4

database. Previously, measurement results were stored in individual files. BitMON
2 furthermore discards the old user interface in favor of an interactive, web-based
replacement. As the measurement engine remained unchanged, we will in the fol-
lowing use the name “BitMON” for both versions of the tool, when discussing the
measurements or their results.

BitMON was build as a framework to make it easier to support new monitoring
demands. BitMON can be extended by three kinds of modules to provide new
functionality:

– MeasurementProviders implement the measurement routines used by Bit-
MON. They perform the actual measurements, for instance by crawling the
MDHT, and produce Measurement Results.

4http://couchdb.apache.org/, [last visited in October 2014]

103

8 DHT Measurement

Figure 8.1: Graphical user interface of BitMON.

– Analyzers consume measurement results and analyze the raw data. As output,
the create two kinds of plots, Snapshots and Trends. Snapshots are created from
a single measurement result and visualize a certain aspect of the MDHT at the
time of the measurement, for instance the current distribution of port numbers
used by the peers. Trends are created from multiple measurement results and
visualize the evolution of a specific aspect over time. A trend could for instance
plot the weekly fluctuation of the MDHT’s size.

– Thresholds monitor the analyzers’ results for sudden changes. If a certain
threshold is exceeded, a warning message is generated. In BitMON 2, thresholds
are not used any more.

In Figure 8.1 three measurement providers are used. Each one can be controlled
by its own control panel. Multiple measurements can be running concurrently. On
the right, a log of recent warnings and other events is shown. Above the providers’
control panels, the analyzers display their plots in multiple tabs.

8.3 DHT Sampling
In order to draw universally valid conclusions about a DHT’s peers, two options exist:
observing every participating peer extrapolating from a smaller but representative
subset (or “sample”) of peers. A full crawl of a public DHT consisting of more than
ten million peers takes much longer than a partial crawl and has a much higher
memory footprint. As a result, full crawls are not only inconvenient to process and
store for later analysis, but also less accurate on the timescale. We thus decided to
rely on representative samples.

104

8.3 DHT Sampling

Our sampling process is based on the idea of finding all peers within a small interval
of Kademlia’s ID space [JAH11]. The interval represents the 256th part of the ID
space and hence spans 2152 IDs. Peers are retrieved by running lookups for a large
number of IDs taken from the interval. As peers are uniformly distributed over the
ID space, it is possible to generalize conclusions drawn from the peers found within
a specific partition of the ID space.

2160 20

lookup(ti,j) lookup(ti,j+1)

coverage:

8-bit partition
(e.g., [3 * 2152, 4 * 2152])

inter-ID dist.

40% of partition

(a) Sampling process using a high inter-ID distance. In this example, the fourth 8-bit partition
of the ID space is scanned using a high inter-ID distance. As the scanned areas do not overlap,
many peers are missed and only a small part of the whole partition can be considered scanned.

2160 20

lookup(ti,j)

coverage:

lookup(ti,j+3) lookup(ti,j+1) lookup(ti,j+2)

85% of partition

(b) Sampling process using a low inter-ID distance. This time, the same partition as shown in
Figure 8.2a is scanned again, but with a lower inter-ID distance. Some peers are returned by
multiple lookups and a much larger ratio of the partition can be considered scanned. However,
a higher number of lookups need to be run.

Figure 8.2: Lookup-based DHT sampling.

To completely scan a partition of the ID-space, we leverage the fact that lookups
return the eight closest peers to the target ID. The probability that a peer that lies
“between” the returned peers is missed should thus be very low. As a result, the area
between the peers with the lowest and highest IDs can be considered scanned. If IDs
that are close to each other are targeted by consecutive lookups, the scanned areas
will likely overlap, creating a consolidated scanned interval in which all peers have
been detected. With decreasing distances between targeted IDs, a larger and larger
part of the partition will be covered, eventually approaching a coverage of 100%, as
illustrated by Figure 8.2. With low inter-ID distances, scans are thus more accurate
as they are able to detect a higher ratio of peers. On the down side, more lookups
need to be run for doing so, potentially slowing down the crawling process. Thus,
an appropriate tradeoff has to be chosen.

105

8 DHT Measurement

Our crawler supports two modes: one in which the partition is scanned once per
crawl (fixed accuracy mode) and one, in which the partition is repeatedly scanned
in multiple cycles, while the number of executed lookups is doubled from cycle to
cycle (progressive accuracy mode). In progressive accuracy mode, the crawler is able
to automatically determine an appropriate number of lookups to conduct, but might
overestimate peer numbers slightly, as the same ID interval is scanned multiple times.
In the following, we will describe both modes.

8.3.1 Progressive Accuracy Mode

In progressive accuracy mode, the ID partition is scanned in multiple cycles, as
depicted by Figure 8.3. In the ith cycle, 2i IDs are looked up. The IDs targeted
during the same cycle are evenly distributed over the whole partition. This is done by
separating the partition into 2i parts and using the IDs in the center of each of these
parts. More formally, the jth target ID ti , j of cycle i can be computed as follows:

ti , j=0,...,2i ∶= l + ⌊2 j + 1
2i+1 w⌋ (8.1)

where l is the lower boundary of the crawled partition, and w is the width of the
crawled partition. Note that no ID will be targeted twice:

∀i , i′, j ∈ {0, . . . , 2i} , j′ ∈ {0, . . . , 2i′} ∶ ti , j = ti′ , j′ ⇔ i = i′ ∧ j = j′ (8.2)

Because of this, the lookup results of different cycles can be combined: Any peer
that is returned at least once by a lookup during any cycle is included into the the
collected sample.

The scan rate, which is defined as the number of lookups sent per second, stays
fixed during the whole crawl. Hence, each cycle takes twice the time of the previous
one. With higher cycle numbers, coverage converges against 100% of the partition,
as illustrated by Figure 8.2. When a satisfying threshold is exceeded (we use 95%),
the crawl is stopped after completing the current cycle. At which cycle this happens
depends on the current size of the DHT, as the area covered by a single lookup depends
on the number of participating peers: with higher peer numbers, the returned peers
will likely be closer to the target ID and thus cover a smaller area of the ID space.
This way, the crawler is able to adapt to different DHT sizes.

An issue of the progressive accuracy mode is that it is susceptible to overestimating
the DHT size in the presence of higher churn rates, e.g., when the peers’ session
lengths are short. The reason for this is that over multiple cycles the crawler will
look up IDs that are very close to each other with considerable delay (up to multiple
minutes). As a result, peers that were already counted by the first lookups might
leave the DHT while new peers that join the DHT might be counted by subsequent
lookups. On average, our estimations made in progressive accuracy mode deviation
are 10% higher than those made in fixed accuracy mode.

106

8.3 DHT Sampling

2160 20

0 1
2
𝑤

1 1
4𝑤

3
4𝑤

2 1
8𝑤

3
8𝑤

5
8𝑤

7
8
𝑤

3 1
16𝑤

5
16

𝑤
9

16𝑤
13
16𝑤

3
16𝑤

7
16

𝑤
11
16𝑤

15
16𝑤

lower partition boundary l partition width w

cycle 𝑡𝑖,𝑗 = 𝑙 + … target ID

Figure 8.3: Progressive accuracy mode. In this mode, the partition is scanned in
multiple cycles. In each cycle, the number of initiated lookups doubles. The rate at
which lookups are started stays constant.

8.3.2 Fixed Accuracy Mode

In fixed accuracy mode, the crawler scans the partition in a single cycle of a pre-
configured depth i. The coverage of the scanned area does not serve any purpose in
fixed accuracy mode. In all other respects, the crawler behaves exactly as it would
in progressive accuracy mode. In depth i = 14, 214 = 16, 384 lookups would thus be
run in a single cycle before the crawl ends.

Compared to the progressive accuracy mode, a fixed accuracy crawl suffers to a
far lesser extent from the overestimation problem as far less time elapses between
lookups targeting close IDs because IDs are looked up strictly in ascending order.
However, the user is required to “guess” an appropriate cycle depth to configure
the crawler properly. This number could, for instance, be derived by running the
crawler first in progressive accuracy mode.

8.3.3 Configuration and Statistics

For our long-term measurement, we ran BitMON in progressive accuracy mode
until we switched to fixed accuracy mode in August 2014. In progressive mode, the
crawler always stopped after processing the 13th cycle, hence∑13

i=0 2i = 214 − 1 = 16, 383
lookups were run per scan. We used a scan rate of 10 lookups per second. One
crawl thus took 27 minutes and 20 seconds. In fixed accuracy mode, we used a cycle

107

8 DHT Measurement

depth of 14, so a crawl took approximately the same time as before. Our database
currently (as of October 10th 2014) contains 70.752 DHT samples, each containing
between 15.000 to 105.000 peers.

8.3.4 Measurement Accuracy

Like any other DHT crawler, out approach might miss peers when trying to scan an
ID interval completely. We argue that the impact of this probability is negligible and
does not spoil the representativeness of collected samples. Our rationale is based
on two arguments: (i) peers that are missed have not been bootstrapped properly
and (ii) peers that have not been bootstrapped properly are not contributing to the
DHT and thus (per definition) not part of the DHT.

Our crawler is configured so that every peer has multiple chances to be detected:
with 214 lookups being run per scan and 8 peers returned per lookup, up to 217 peers
can be detected per scan, which would suffice for DHT sizes of up to 217∗256 = 225 ≈ 32
million peers. In every lookup for target ID t, at least the eight eventually returned
peers have been queried for any even closer peers (compare Section 7.3). A missed
peer thus must not have been known by any of these peers, i.e., it must not have been
contained in their routing tables. As these eight peers are closest to t, the missed
peer would belong in the deepest bucket of each of these peers. The deepest bucket
cannot be full, as if it was, it would be split and a new, not completely filled bucket
would be created (compare Section 7.1). The missed peer can thus not have been
dropped from the other peers’ routing tables for the reason of them being full: if it is
not contained, the peer thus must have never contacted these peers. However, any
peer has to repeatedly lookup its own ID as part of its bootstrapping process. In this
process, it would have sent requests to at least some of the eight and thus be added
to their routing tables. A peer that has been missed by multiple lookups can thus
not have been bootstrapped properly. It should be noted that any peer that replies to
requests will over time be propagated to other peers and as a result be part of more
and more routing tables, until it is eventually known to the peers in its direct vicinity.
At that point, lookups will be able to find the peer.

If a peer is missed, it can not be found by lookups and is thus not propagated to
enough peers, most probably because it either just joined the DHT or does not reply
to requests. Such a peer does not (yet) contribute to the DHT as it will not be able to
store key/value pairs. We do not consider such peers as being part of the DHT. Missing
those peers does thus not spoil our samples. In Section 8.6.2, it will furthermore be
shown that our results are in-line with other measurement studies.

8.3.5 Comparison to other Crawlers

The idea of relying on lookups only is different from many other crawlers [WK13,
SENB07] that use Find Node requests to query any available peers in a breadth-first
search. Whenever these crawlers receive a response, more peers become available.
This way, every peer within a DHT can eventually be queried. Compared to these
crawlers, our approach has multiple advantages:

108

8.4 Analysis

1. A lookup-based crawler accesses the MDHT the same way DHT-based ap-
plications will: by running lookups. Thus, peers will only be included into a
sample if they will also be used by DHT-based applications. Created samples
thus represent a user’s view on the MDHT by definition. Depending on the
specific method used, alternative crawlers are subject to a higher risk of over- or
under-representing certain groups of peers, for instance in case not the entire
DHT can be scanned.

2. The approach allows to scan a partition of the MDHT selectively and thus
enables the user to choose the size of collected samples, simplifying the handling
of the results while maintaining representativeness. To create representative
samples using an algorithm that is based on a simple breadth-first search, the
whole DHT needs to be scanned.

3. Moreover, the approach is relatively easy to implement, deploy, and manage.
Our approach only requires a DHT client that is capable of handling ten lookups
per second. The crawler can be deployed on a single machine and has low CPU
and memory requirements: our crawler runs seldom produces a higher CPU
load than 20% on a T7200 dual core CPU @ 2 GHz and consumes less than 500
MB RAM, with multiple measurement providers running at the same time.

However, a disadvantage of our approach is that a single crawl takes longer when
compared to other crawlers.

8.4 Analysis

8.4.1 DHT size

We define the size of a DHT as the number of concurrently participating peers. This
number should not be confused with the number of deployed DHT clients, which
is much higher [SR06b]. We argue that the number of participating peers reflects
the popularity of the MDHT better than the number of client deployments and is
more useful to characterize peer behavior. While our initial interest in the number of
participating peers arose because of its significance for the KAI project, the metric
is an important indicator for several other properties:

– Popularity: The DHT size is a direct indicator for the current popularity of
MDHT-based applications. It can also be used to estimate long-term trends.

– User Behavior: The DHT size also constitutes a foundation to analyze short-term
user behavior, such as the likelihood of users to use a MDHT-based application
at a certain time.

– Impact on Lookup Performance: Because of the logarithmic organization of
Kademlia’s routing table, O(log n) hops are needed to reach a randomly cho-
sen ID, with n denoting the DHT size [MM02]. The DHT size thus directly

109

8 DHT Measurement

influences the lookup performance and is an important parameter for every
lookup performance model.

– DHT stability: A long-term analysis of the DHT size allows to judge the MDHT’s
stability and resilience to global events such as natural disasters or changes to
the Internet’s topology to a certain extent.

In the following we report on our estimations of the DHT size. All presented results
are estimations gained from extrapolating from collected representative samples as
we explained in Section 8.3. The numbers were computed by multiplying the number
of peers found within the 256th part of the ID space by 256.

0

2

4

6

8

10

Mon
07 Apr

Mon
14 Apr

Mon
21 Apr

Mon
28 Apr

M
ill

io
ns

 o
f P

ee
rs

Date (UTC)

Figure 8.4: Monthly fluctuation of DHT size.

0

2

4

6

8

10

12

Oct

Jan
2011

Apr

Jul

Oct

Jan
2012

Apr

Jul

Oct

Jan
2013

Apr

Jul

Oct

Jan
2014

Apr

M
ill

io
ns

 o
f P

ee
rs

Date (UTC)

max. avg. min.

Figure 8.5: Daily minimum, maximum, and average DHT size.

110

8.4 Analysis

Figure 8.4 plots the fluctuations of the DHT size in a typical month. A strong diurnal
cycle is apparent with its daily peek lying in the central European evening and the
daily low lying in the middle of the central European night. Similar patterns have
been found within the KAD network by Steiner et al. [SENB07]. For example, on
May 1st only 6.3 million peers were online at 01:30 am UTC (03:30 CEST), but 8.9
million peers participated at 17 pm UTC (7 pm CEST). This means that the DHT
grew by by 41% from its daily low to its high. The DHT also shows a weekly pattern
which becomes even more noticeable when looking at a whole month as depicted in
Figure 8.4. During the weekend, more peers seem to participate so that on Sundays
the DHT size rises to a peak that is 3 to 5% higher than that of common weekdays.

In Figure 8.5 we illustrate long-term trends in the MDHT. The figure plots the
daily minimum, average, and maximum DHT size since 2010. The average value is
calculated as avg = (min +max)/2. The figure shows that the DHT grew from an
average number of 6 million peers (September 2010) to over 8 million peers (Jan 2014).
Peer numbers increased comparatively quickly until the growth slowed down in the
beginning of 2011. Moreover, a strong seasonal pattern is apparent. During northern
hemisphere winter, more users seem to use the DHT. The daily peak furthermore
seems to be more affected by this phenomenon than the daily low. We assume that
this is due to the fact that users are more likely to stay indoors during winter rather
than going out. We can thus conclude that the popularity of the MDHT remains
undiminished and in fact still increasing.

8.4.2 Peer Origin

In the following, we analyze the distribution of the peers’ countries of origin. To
determine a peer’s country of origin we used the Maxmind GeoIP database 5 to map
the peer’s IP address to a country. Details about each country, such as the number of in-
habitants and the continent it belongs to, were taken from the GeoNames geographical
database 6. An estimation of the number of Internet Users per country was retrieved
from the Internet World Stats database 7. As our analysis is based on our representa-
tively collected samples, all presented results can be seen as representative as well.

Peer Numbers per Continent

Figure 8.6 illustrates how the composition of the MDHT changes during a typical
day. Each point on a specific line represents the sum of all peers coming from the
corresponding continent that were found in a DHT sample collected at a specific
time (X-value). Each continent has a different point in time during the day at which
its share on the MDHT’s population is the highest. These points match the evening
hours of the continent’s most prominent time zones nicely. For Europe, the daily
peak lies at 17:30 UTC while the daily low lies at 1:30 UTC. The diurnal fluctuation
is also most prominent for the European continent, which is explained by the low
number of time zones it spans. At its daily low, little more than 2 million European

5http://dev.maxmind.com/geoip/legacy/geolite/, [last visited in October 2014]
6http://www.geonames.org/countries/, [last visited in October 2014]
7http://www.internetworldstats.com/list2.htm, [last visited in October 2014]

111

8 DHT Measurement

0

1

2

3

4

5

6

7

8

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

M
ill

io
ns

 o
f P

ee
rs

01 Apr 2014 (UTC)

Europe
Asia

North-America

South-America
others

Figure 8.6: DHT participation by continent (day).

peers participate at the DHT. Until its daily high is reached, European participation
increases by over 150% to almost 6 million peers. Asian and North-American peers
are much less common during any time of the day. Their daily peaks and lows are
furthermore much less distinct. At their daily lows, both continents contribute around
1 million peers to the DHT, while around 1.9 million Asian peers can be found at Asian
peak time (12:30 UTC) and 1.7 million North-American peers at North-American
peak time (1:30 UTC, which is 17:30 PST and 20:30 EST). South-America shows
similar daily fluctuations as North-America, but significantly lower number of peers,
reaching only 0.7 million concurrently active peers during its peak time. All remaining
countries together reach similarly low numbers. As can be seen in Figure 8.7, the
shown fluctuations are regular and periodic.

Peer Numbers per Country

The previously presented results show that the MDHT is dominated by European peers.
Figure 8.8 displays the 15 countries of origin that were most commonly encountered
during our measurements in June 2014. For each country, the fraction of all peer
sightings collected in this time interval is depicted that could be attributed to the
country. A peer sighting is defined as a peer entry that is contained in a DHT sample.
If the same peer is contained in multiple samples, multiple sightings are counted for
this peer. More formally, if sc,i denotes the number of peers in sample i that came
from country c ∈ C and si ∶= ∑

c∈C sc,i denotes the number of all peers contained in
sample i, the ratio depicted in Figure 8.8 is calculated as:

rc ∶=
∑

n
i=0 sc,i

∑
n
i=0 si

The figure thus illustrates the cumulative amount of time that peers coming from
each country spent in the MDHT. It can be seen that Russian peers alone account
for 18.8% of all peer sightings, followed by peers coming from the United States

112

8.4 Analysis

0
1
2
3
4

5
6
7
8

Tue
01 Apr

Wed
02 Apr

Thu
03 Apr

Fri
04 Apr

Sat
05 Apr

Sun
06 Apr

Mon
07 Apr

Tue
08 Apr

M
ill

io
ns

 o
f P

ee
rs

Date (UTC)

Europe
Asia

North-America

South-America
others

Figure 8.7: DHT participation by continent (week).

0

5

10

15

20

25

30

35

40

Russia
US Ukraine

France
UK Canada

Brazil
Australia

Hungary

India
South Korea

Bulgaria

Romania

Spain
Sweden

others

Ra
tio

 (%
)

Europe
Asia

North-America
South-America

others

Figure 8.8: Countries with the highest absolute MDHT participation during June
2014.

113

8 DHT Measurement

(11.0%). Ukraine and France together account for another 10.1% of all peer sightings.
Interestingly, some large and industrialized countries are not to be found in the top
15. Germany, for instance, is found on rank 46 and accounts for only 0.43% of all
peer sightings, beyond countries like the Netherlands (rank 17, 1.27%) Israel (rank
21, 1.11%), and Serbia (rank 31, 0.64%). As another example, China, is placed only on
rank 16 with 1.44% of all peer sightings, despite its 1.3 billion inhabitants.

Popularity per Country

In order to put these numbers into a better perspective, Figure 8.9 shows by which
factor a country’s number of sightings is overrepresented in the MDHT when com-
pared to the country’s number of inhabitants. With 9.5 million inhabitants Sweden,
for instance, only accounts for 0.14% of the world population but for 1.78% of all
peer sightings in the MDHT. It is thus overrepresented by a factor of 1.78/0.14 ≈ 12.8.
The overrepresentation factor is thus a good indicator for how popular the use of
the MDHT is in a country. Only the countries with the 16 highest factors are de-
picted. To avoid outliers, we furthermore filtered countries with less than 10, 000
sightings (around 0.01% of all sightings).

The figure shows that the MDHT is most popular in Northern and Eastern Europe.
For example, Bulgarian, Slovenian, and Hungarian peers are all around 20 times more
common than the size of their countries would make you suggest. Furthermore, users
from Canada, Australia, and Israel seem to also to use the MDHT quite commonly, as
they are overrepresented by factors of 8.5 to 10.4. The high factors found for Iceland
and New Caledonia might partly be caused by measurement inaccuracies as these
countries have extremely few inhabitants.

In Figure 8.10 the countries’ number of peer sightings is compared to the (estimated)
number of Internet users in that country, rather than its number of inhabitants. While
the factors are lower than in the previous analysis, the plot shows the high MDHT
popularity in Eastern Europe even more pointedly.

As of now, the most prominent reason to use the MDHT still is the file-sharing use
case. However, the popularity of file-sharing is hugely different between countries,
even between those of comparable wealth and level of industrialization, as Figure 8.11
shows. The figure plots the overrepresentation factor per Internet user for the 20
major economies of the world (Group of Twenty, G-20) . The European Union was
omitted in this plot as it is composed of multiple countries. Strikingly, Germany
is underrepresented by a factor of 0.15 while France and the UK, countries with a
similar culture and standard of living, are overrepresented by a factor of 2.3 and 1.9,
respectively. Similarly, we see quite different factors for Canada (3.5) and the US
(1.0). Among the selected countries, popularity is highest in Russia (7.5). We suspect
anti-piracy campaigns and the likelihood of legal prosecution to be the cause for the
popularity differences between individual countries.

Popularity Evolution

Figure 8.12 illustrates at the example of selected countries how differently a country’s
participation rate can evolve over time. The figure shows how many peers were
coming from certain countries at each point in time since 2010.

114

8.4 Analysis

0

5

10

15

20

25

30

35

40

Iceland

Bulgaria

Slovenia

Hungary

Latvia
Sweden

Lithuania

New Caledonia

Israel
Australia

Russia
Norway

Moldova

Canada

Ukraine

UAE

Fa
ct

or
Europe

Asia
North-America
South-America

others

Figure 8.9: MDHT popularity relative to inhabitant numbers. The graph depicts the
factor by which a country’s share of all peer peer sightings was higher than its share
of the world population would suggest.

0

5

10

15

20

Bulgaria

Hungary

Slovenia

Moldova

Latvia
Ukraine

Lithuania

Russia
Romania

Greece
Israel

Sweden

Belarus

Kazakhstan

Australia

Serbia

Fa
ct

or

Europe
Asia

North-America
South-America

others

Figure 8.10: MDHT popularity relative to a country’s number of Internet users. The
graph depicts the factor by which a country’s share of all peer peer sightings was
higher than its share of the global number of Internet users would suggest.

115

8 DHT Measurement

0

2

4

6

8

10

Russia
Australia

Canada

France
UK South Africa

South Korea

Brazil
US Saudi Arabia

Italy
Argentina

Turkey

India
Japan

Mexico

Germany

Indonesia

China

Fa
ct

or

Europe
Asia

North-America
South-America

others

Figure 8.11: MDHT popularity among G20 countries, per Internet users.

First it can be seen that the number of peers coming from the United States remained
almost constant since 2011. The number of Russian peers though increased at a
rapid rate, from around 700k peers in 2010 and to more than 1.5 million peers in
spring 2014. We hence assume that file-sharing popularity has drastically increased in
Russia but remained largely unchanged in the US. For China, we detected a slow but
steady increase in peer numbers until growth started to increase rapidly in summer
2013, reaching peak numbers of over 2 million concurrently active Chinese peers in
November 2013. Beginning in December and January 2014, the number of Chinese
peers suddenly started to drop to around 0.2 million peers in April 2014. We expect
the cause for this unexpected behavior to be changes in a client that is only used by
Chinese peers. In comparison, German peers became rarer over time peer numbers
started to increase again in January 2014. However, German peers remain drastically
underrepresented as was already discussed before.

0.0
0.5
1.0
1.5
2.0
2.5

2011 2012 2013 2014

M
ill

io
ns

 o
f P

ee
rs RU

US
CN

(a) Russia, United States, China.

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

2011 2012 2013 2014

M
ill

io
ns

 o
f P

ee
rs DE

(b) Germany.

Figure 8.12: Development of DHT participation for selected countries.

116

8.4 Analysis

8.4.3 Session Length

Measurement Methodology

The session length is defined as the duration between the point in time Tj at which a
peer joins the DHT and the moment Tl at which it leaves. The session length thus
compute as Ts = Tl − Tj. We will see that session length in public DHTs are typically
short (50% of all MDHT sessions are shorter than 115 min). Short session length are an
important metric that describes churn rates, as we already introduced in Section 7.6.2.

2 1

session 2

Tj
(real)

Td

time

session 1

a crawl was completed

Tj’
(estimated)

Inaccuracy: Tj = Tj’ ±[0, Td)

PING requests

Tl
(real)

Tl’
(estimated)

inaccuracy: Tl = Tl’ +[0, Tp)

1 2

Session start Tj detected Session end Tl detected
Td

Tp

Tj Tl

Figure 8.13: Measuring a peer’s session length. At point (1), the monitored peer has
not been seen for at least 60 minutes. When the peer is detected again, it is unclear
whether the peer joined during the last crawl or during the crawl before. The estimated
start of the session might thus differ from the real one at most by the duration of a
single crawl. At point (2), three consecutive Ping requests have failed. The session is
thus estimated to have ended at T ′l , the time the last packet was received successfully.

To determine the length of a peer’s current session, one has to measure both Tj and
Tl . In particular, it is hard not trivial to detect Tj, as it is not easy to decide whether
or not a peer has already been online before it was seen. We solve this problem by
comparing the samples collected continuously by our crawler. Figure 8.13 illustrates
the approach. If a peer was not contained in any sample during the last 60 minutes
but it is present in the newest one, it is assumed that the peer joined during one of
the last two crawls. Tj is thus set to the starting time of the most recent crawl which
is equal to the ending time of the second-most recent crawl. The inaccuracy of this
estimation is thus within the interval ±[0, Td), where Td denotes the duration of a
single crawl. During our long-term measurements Td was 27 minutes.

Following this procedure, the measurement provider continuously checks completed
crawls for started sessions. If a session start is detected, the corresponding peer is
inserted into a set of currently tracked peers. The measurement provider continues
to check for each tracked peer if the peer is part of any following collected sample. If
it is not, the peer is removed from the set. As soon as enough peers are being tracked,

117

8 DHT Measurement

the set of peers is sealed and the measurement provider starts trying to detect the
end of the peers’ sessions. BitMON is currently configured to start this procedure
when 2000 peers are being tracked. Meanwhile, the provider continues to track new
session starts as a foundation for following measurements.

To track the end of a peer’s session, the provider sends Ping requests to the peer
continuously. Each second, 10 peers are contacted. If a peer does not answer to 3
consecutive requests, Tl is set to the time at which the last response was received
(cmp. Figure 8.13. With 2000 peers being tracked on average, the maximum delay
between two Ping requests sent to the same peer was 2000/10 s ≈ 3 1

3 min. In reality,
the session ends thus up to 200 seconds later than our measurements suggest. This
number is even smaller for long-living peers, as fewer peers need to be queried at
later stages of the measurement.

Results

Figure 8.14 shows the session length as a complementary cumulative distribution
function (CCDF). The shown plot was created by averaging 46 session length mea-
surement runs that lasted 25 hours each and were taken between September and
November 2013. Together, 92,000 peers were tested.

As the tracked peers have to be present in at least two DHT samples before the set
of tracked peers is sealed and the measurement engine starts to sent Ping requests,
peers are not pinged for 27 minutes, which is the time required to collect one DHT
sample. It is thus first detected that a peer timed out after less than 27 minutes when
it is first pinged. As no pings were send previously, the measurement engine is unable
to estimate the session end more precisely. As a result, sessions that timed out in less
than 27 minutes are depicted as having lasted 0 minutes in the figure.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

Re
ac

ha
bl

e P
ee

rs
 [%

]

Session Length [h]

Measurement
Fitted Weibull(183.3 min, 0.594)

Figure 8.14: Comparison of the session length model to the measured distribution as
complementary cumulative distribution functions (CCDF). As peers were not pinged
before 27 minutes had passed, shorter session lengths were incorrectly detected as
having lasted 0 minutes only.

118

8.4 Analysis

The results show that only 30% of sessions last 4 hours or longer. The shortest 50% of
sessions last below 115 minutes while the longest 5% last at least 17 hours and 48 min-
utes. Session lengths thus show a heavy tailed distribution. While many authors found
session lengths to follow heavy tailed distributions [SENB09, SW04, BQ04], Stutzbach
et al. showed that the Weibull distribution is a good fit [SR06b]. Our results confirm
this finding. We found that our results are well-described by a Weibull distribution
with scale λ = 183.4 min and shape k = 0.594. This function is also plotted in Fig-
ure 8.14. In Chapter 9, the function will be used in a simulation model of the MDHT.

The figure shows that most sessions are rather short

8.4.4 Guarded Hosts

Measurement Methodology

Guarded hosts are peers that are located behind a firewall or NAT gateway [WCZJ04].
Depending of the configuration of the used device, guarded hosts are often unable
to receive packets from peers they did not contact before. We differentiate between
four types of NAT gateways: full cone, restricted cone, port restricted cone and sym-
metric. These types are defined in [RWHM03]. In Section 7.6.2, we already outlined
their individual behavior.

In [JAH11], we describe our measurement approach as follows: “For measuring the
number of guarded hosts we used a similar experiment design as described in [JOK09]:
our measurement engine had access to 3 different UDP sockets A1, A2 and B, where
A1 and A2 were bound to the same IP address, but different ports. Socket B was
bound to a second IP address. For becoming popular among other peers, we were
continuously sending Find Node queries to peers that were returned by previous
requests. We limited our sending rate to a maximum of 1000 queries per second.
Whenever a packet coming from a peer that had not been queried yet was received
on socket A1, 3 Ping queries were sent from each of our 3 sockets (9 queries in total).
Each packet was sent after a delay of 30 sec. We then categorized the peer depending
on which of our sockets we received replies.”

Due to its high overhead, we ran this measurement provider for a limited time
only, beginning in September 2010 and ending in March 2011. We continued these
measurements in August 2014.

Results

Table 8.1 lists the shares of the peers for each kind of behavior as measured in Septem-
ber 2014. During these measurements, which lasted from September 1st to September
19th, 209.994 peers were assessed in 99 individual measurement runs. Each mea-
surement took approximately 4 hours.

– The category FULLY ACCESSIBLE refers to peers that responded to packets
sent from each of our three sockets. Most likely, the tested peer was connected to
the Internet directly or behind a correctly configured full cone NAT or activated
port-forwarding [RWHM03].

119

8 DHT Measurement

Category Replied to Ratio [%]
FULLY ACCESSIBLE A1, A2, and B 51.7
IP A1, and A2 2.8
IP AND PORT A1 31.0
FIREWALL None. 11.8
OTHER Any other combination. 2.5

Table 8.1: Guarded Host distribution.

– Peers of the IP category answered only to sockets that used the same IP, but
different ports. This behavior is expected of peers that are located behind a
restricted cone NAT gateway. This type of NAT gateway seems to be rather
uncommon.

– The IP AND PORT category refers to peers that did only respond to packets
sent from the same socket. This behavior is typical for peers that are located
behind a symmetric or port restricted cone NAT gateway. These types were most
common in our measurements.

– Peers that did never respond were grouped in the FIREWALL category. Using
a firewall is a common reason for missing responses.

– Any other combination of unanswered requests is reflected by the OTHER
category. We cannot match this behavior to any type of firewalls or NAT
gateways and expect random packet losses to be the reason. Only 2.8% of all
assessed peers fell into this category.

It can be seen that every second assessed peer suffered from limited connectivity. It
should be noted that this does not necessarily mean that 50% of all peers in the DHT
suffer from limited connectivity, as we can only check peers that contact us first and
impaired peers might have a higher or lower probability than normal peers for doing
so. All other studies we are aware of suffer from the same problem (e.g., [JOK09]).
However, the ratio is a good estimator for predicting the likelihood that a previously
unknown peer that just sent us a query is a guarded host. This information is useful
for configuring routing table maintenance algorithms correctly.

In general, our results match the observations made in [JOK09] very well. However,
we found more fully accessible peers (51.7% over 38.2%) and less peers that did not
respond (11.8% over 18.2%).

To reduce the number of guarded hosts, countermeasures should be taken. A
popular tool are hole punching techniques as described in [DW09, FSK05]. Other
solutions can directly be included into the DHT client, such as the exclusion of
guarded hosts, favoring fully accessible peers [BMR+06] or higher choosing a higher
parallelism degree to speed up lookups [FPJ+07]. Some of these have in fact already
been implemented in clients such as µtorrent (compare Section 7.3.4). Further rec-
ommendations are given in [JOK09].

120

8.4 Analysis

8.4.5 Summary

In this section, we analyzed the MDHT with respect to the number of concurrently
participating peers, the peers’ origin, the peers’ session lengths, and the prevalence
of guarded hosts. The focus of our analysis laid on studying whether or not the
MDHT is dominated by any particular countries, on determining the relative pop-
ularity of MDHT clients in specific countries, and on evaluating whether or not
these properties evolve over time. In particular, the collected data allows to draw
the following conclusions:

– European dominance: The MDHT is currently dominated by European peers.
With around 2-6 Mio. concurrently participating European peers, at most times
more peers can be found that come from Europe than from Asia and North-
America combined, the two next-most prevalent continents, which contribute
just 1 to 2 Mio. peers. The European peak contribution is thus three times as
high as Asian or North-American.

– Strong diurnal, weekly, and seasonal fluctuation: The number of concurrently
participating peers that originate from a specific country shows multiple regular
wave-like patters. Peer numbers peak once a day in the home-country’s evening
hours, at which time typically multiple times more peers are online than during
the night or early morning. Furthermore, peer numbers are higher during the
weekends.

– Russia and US currently most prevalent: During summer 2014, 18.8% of all peers
are coming from Russia, followed by the US, which contributes another 11.0%.
Other European countries, such as the Ukraine, the United Kingdom, and
France are responsible for less than 6% each. For Asia, India and South-Korea
are top contributors. Interestingly, peers from some other countries are way
less common than one might have expected. For example, only 1.4% of all peers
are Chinese and only 0.4% are German.

– MDHT most popular in Eastern and Northern Europe: In relation to the number
of a country’s inhabitants or its number of Internet users, the MDHT is most
popular in Eastern and Northern Europe. For example, Bulgarian peers are
15 times as common as the country’s number of Internet users would suggest.
According to this metric, the MDHT is also very popular in Russia, Australia,
Canada, and France, while it is very unpopular in China, Germany, Mexico,
Japan, and India. The United States take a middle ground. We assume a different
level of law-enforcement pressure on file-sharing users to be one reason for this
discrepancies.

– Drastic shifts in popularity are common: Historically, we see that many of these
findings are prone to change over time. For example in 2010, Russian peers
were much less common than peers coming from the US and only marginally
more common than Chinese peers, which were more prevalent than those

121

8 DHT Measurement

coming from most Eastern European countries. While most of these properties
changed gradually, we also saw an example of a sudden, drastic shift, as the
average number of Chinese peers dropped from over 1 million peers to less
than 500000 in just 2 months.

8.5 Selected Incidents
Till now, we presented mostly regular or slowly evolving metrics of the MDHT that
were influenced by changing user behavior and other effects. Now, we will report on
a selected number of fairly irregular and sudden incidents we observed during our
long-lasting measurements. These phenomenons illustrate how easily a public DHT
like the MDHT can be affected if no preventive measures have been taken.

8.5.1 The MDHT doubles in Size (May 2014)

Beginning on May 9th 2014, we observed a drastic increase of the MDHT’s size. As
depicted in Figure 8.15, the growth started suddenly and continued for ten days. For
a limited time span our measurement engine was unable to cope with the increased
number of peers, until we fixed the problem. The short gaps seen in the figure are
caused by this problem. The growth of the DHT suddenly stopped on 19th and the
DHT’s size remained stable for three weeks until it started to decrease again on June
10th. Both in- and decrease happened at approximately the same pace. Since June 19th,
the size of the MDHT remains stable again at 9 to 14 million peers. The DHT size
thus did not normalize completely but remained at an around 50% higher level.

We inquired other BitTorrent developers to find the cause of the phenomenon,
among others by sending an email to the official discussion group for BitTorrent
developers 8 on May 16th. Unfortunately, this group is not publicly accessible. We
received a response [Nor14d] from the developers of the µtorrent client that stated that
they believed a recently introduced security feature to be the cause. They confirmed
this suspicion on May 24th and promised to release a hotfix soon [Nor14e].

According to the µtorrent developers, the phenomenon was caused by two bugs that
were related to the implementation of the BEP42 proposal [Nor14a]. The document
proposes to choose a peer’s ID based on its external IP address to defend against the
Sybil attack [DH06]. The bug was apparently related to receiving messages that did not
state their own external IP explicitly. In this case, the DHT client would occasionally
restart and in process choose a new ID. As one and the same client could now be
found under two different IDs in the DHT, the number of peers in the DHT increased
artificially. As the bug was distributed to millions of µtorrent peers in parallel, the
MDHT could double in size in only a couple of days.

The DHT size hence increased because peers joined the MDHT multiple times. This
behavior can cause problems as an affected peer might “poison” other peers’ routing
tables by changing its own ID. Any older routing table entries of other peers will
still link to the previous ID. The affected peer will thus fill a position in the wrong

8https://groups.google.com/a/bittorrent.com/d/forum/bt-developers, [last visited in October 2014]

122

8.5 Selected Incidents

0

5

10

15

20

25

30

Mon
05 May

Mon
12 May

Mon
19 May

Mon
26 May

Mon
02 Jun

Mon
09 Jun

Mon
16 Jun

Mon
23 Jun

Mon
30 Jun

M
ill

io
ns

 o
f P

ee
rs

Date (UTC)

Figure 8.15: Size of the MDHT since May 2014.

bucket, leading to suboptimal results when queried. The quality of its own routing
table might also suffer as whenever the ID is changed the routing table has to be
rebuild. Although we saw a significant improvement after the hotfix was deployed
beginning on June 10th, the problem apparently has not been fixed completely. In fact,
we still find entries in our client’s routing table that refer to peers with the same ports
and IP addresses, but different IDs. We notified the µtorrent team about our findings.

This incident demonstrates how severely and quickly a public DHT can be affected
if issues arise in a client implementation that dominates the DHT. It also shows
how important it is to stakeholders to monitor the DHT continuously in order for
detecting problems as early as possible.

8.5.2 Dependency on Bootstrapping Routers

As we already explained in Section 7.1.4, most clients use central bootstrapping servers
in order to connect to the MDHT. The addresses of these servers are hard-coded
into the clients and return a list of currently available clients when queried. Popular
bootstrapping servers are router.bittorrent.com and dht.transmissionbt.com, both on
UDP port 6881. Despite their simple nature, bootstrapping servers are very important
for the MDHT as most clients rely on their availability.

On multiple occasions during our measurements, the bootstrapping server with the
hostname router.bittorrent.com:6881 went unavailable for an extended period of time.
All incidents occurred in 2011: from April 22nd through April 26th (5 days), from May
18th through May 21th (4 days), from May 23rd through May 26th (4 days), and from
August 14th through August 18th (5 days). As an example for the ramifications these
events had on the MDHT, Figure 8.16 depicts the DHT’s size in May 2011. It can be seen
that peer numbers dropped by around 25% during this periods of time but recovered
quickly when the server came online again. This illustrates how strongly public DHTs
depend on central components, despite their otherwise decentralized architecture.

123

8 DHT Measurement

0

2

4

6

8

10

Mon
16 May

Mon
23 May

Mon
30 May

M
ill

io
ns

 o
f P

ee
rs

Date (UTC)

Figure 8.16: Impact of the unavailability of router.bittorrent.com:6881 on the MDHT
in May 2011.

Since 2011, we did not notice any more comparable incidents. This hints that the
reliability of the bootstrap servers has improved significantly, possibly because the
operators recognized their great importance. However, the idea that an otherwise
completely decentralized systems depends on a small number of centralized servers
should pose threatening to potential developers of DHT-based applications. To rem-
edy this issue, fully decentralized bootstrapping mechanisms should be implemented,
for instance as described in [DW09]. To our knowledge, no publicly available client
supports a comparable approach yet.

8.5.3 Natural Disasters and Other Regional Events

Continuous monitoring also allows to assess how well the MDHT is able to cope with
natural disasters and other events that impair peers coming from a specific region of
the world. As an example, we analyzed two major events of this kind: Egypt’s cut-off
from the Internet during the Arabic Spring and the Japanese Tōhoku earthquake in
2011. Figures 8.17 and 8.18 depict the number of peers coming from the respective
countries during these events. In the case of Egypt, the duration of the measures
taken by the Egyptian government can be clearly seen as peer numbers dropped to
zero instantly. In the case of Japan, a sudden decrease of peer numbers right when
the earthquake hit is visible as a spike would have been expected at that time of day.
However, the impact of this major earthquake was rather small, even when looking at
Japanese peers only as participation completely normalized in under a week.

When comparing these results to Figure 8.5 in Section 8.4.1, one can see that the two
events did not have a major effect on global peer numbers, especially when compared
to the failure of a single bootstrap server. This highlight both strengths and weaknesses
of the current state of the MDHT: a high potential resilience against even massive
global disturbances but also a high susceptibility against issues of key components.

124

8.6 Related Work

0
10
20
30
40
50

28 Jan 04 Feb

Th
ou

sa
nd

 P
ee

rs

Egypt
offline

Egyptian peers

Figure 8.17: Impact of the Arabic Spring
2011 on peer numbers.

0 k
50 k

100 k
150 k
200 k
250 k

11 Mar 18 Mar

Th
ou

sa
nd

 P
ee

rs

Earthquake (05:46 UTC)

Japanese peers

Figure 8.18: Impact of the major earth-
quake of 2011 on Japanese peer num-
bers.

8.6 Related Work
During the past years, many studies have been published that aim at attaining a better
understanding about the MDHT, its quirks, and its users’ behavior and incentives. We
divide this huge field of research into three groups: (i) studies that present measure-
ment methodology, (ii) studies that focus describing certain MDHT characteristics
that are important for lookup performance and reliability, and (iii) studies that focus
on gaining insight about the behavior of BitTorrent users over the world. These groups
are not disjunct, i.e., papers may appear in multiple categories. In the following, we
will discuss the relation of our work to research done in each of these fields.

8.6.1 DHT Measurement Methodology

Multiple different measurement engines have been proposed that target public DHTs.
However, most of them focus on the KAD or Azureus, rather than the MDHT. Fur-
thermore, most other crawlers use graph exploration for peer sampling, i.e., they try
to retrieve and follow the peers’ routing table entries. Compared to our crawler, this
approach has the advantage that it is generally faster and produces less overhead, but
it is also harder to judge whether the collected samples represent the whole DHT well.
In the following, we will provide an overview of commonly used crawlers.

Steiner et al. use the crawler Blizzard for their various measurement studies [SCB10,
SENB09, SB08, SENB07, SBEN07]. The crawler was developed by the authors them-
selves and first introduced in [SENB07]. Blizzard targets the KAD network, but was
later extended to also cover Azureus [SB08]. The crawler uses a graph exploration
approach. The crawler is very fast as the authors state that they crawled the full
KAD network (1.5 to 2 million peers were contacted) in 8 min [SENB07]. In order
to achieve this, the crawler exploits the fact that KAD and Azureus peers use per-
sistent peer IDs, which means that peer IDs do not change between sessions. This
is not the case in the MDHT.

The crawler used by Stutzbach et al. is called Cruiser and first introduced in [SR05a].
It features a modular design and was first used only for the unstructured P2P network
Gnutella but was later extended to cover KAD as well [SR06b]. Like Blizzard, Cruiser
uses a graph exploration approach. In [SR06a], the authors state that the crawler can

125

8 DHT Measurement

capture 1000 peers in 3-4 minutes and 250 peers in around one minute. The authors
also discuss common pitfalls that can cause biased samples [SR06b]. Later, a new
crawler called Montra was developed, partly by the same authors [MRGS09]. Montra
targets the KAD network as well but uses a passive traffic monitoring approach rather
than crawling peers actively. Montra is efficient enough to monitor up to 32,000 KAD
peers or 37,000 Azureus peers using a moderately configured PC [MRGS12]. Other
than the crawlers mentioned before, Montra focusses more on the analysis of P2P
traffic rather than peers. It can thus not directly been compared to other crawlers.

In [FPJ+07], Falkner et al. use their own, unnamed crawler to crawl the Azureus
DHT. The crawler uses instrumented DHT clients that were deployed on 250 ma-
chines of the PlanetLab platform. To our knowledge, development on the crawler
has seized since the publication.

In [YN11], Yoshida et al. describe a measurement approach that allows crawl Bit-
Torrent peers that are located behind a NAT-gateway or firewall more easily. The
authors then compare different measurement methodologies and characterize session
lengths and inter-arrival times. They find that peer-level measurement approaches,
i.e., approaches in which the peers are directly contacted, are generally more accu-
rate than approaches on tracker-level when assessing session lengths, but not when
assessing inter-arrival times.

Another long-term measurement study targeting the MDHT was conducted by
Wang and Kangasharju [WK13]. Inspired by Steiner et al.’s Blizzard, the crawler uses
a graph exploration approach as well. However, the authors claim to have found a
systematic error in all other crawlers (not just graph exploration based ones). The
error would cause a considerable number of peers to be missed by the measurements.
An plausible explanation of why this error would apply to all previous measurement
approaches is not given. The authors introduce a number called correction factor to
extrapolate from their estimations in order to account for missed peers.

8.6.2 DHT Measurement Studies

Jiminez et al. [JOK09] measured the ratio of MDHT peers that are located behind
certain types of NAT gateways and firewalls by conducting a 24 hour measurement.
In general, their results match the observations made in our own measurements very
well, although we found slightly more fully accessible peers and less unresponsive
peers. In a similar study [WCZJ04], Wang et al. found a ratio of 25-36% of guarded
hosts in the file-sharing networks eDonkey and Gnutella.

Steiner et al. [SENB09, SENB07] analyzed session lengths of peers of the Kademlia-
based KAD network. The authors found a mean of 670 minutes and a median of
155 minutes. However, these values can not be directly compared to our results as
they were measured in a different network and a different time. The authors also find
similar diurnal fluctuations of peer numbers as observed within the MDHT. The mea-
surements they conducted did not last long enough to observe any weekly or seasonal
fluctuations. The authors also reported on a high percentage of peers coming from
China (>20%) during their measurements which were conducted in Summer 2006.

126

8.6 Related Work

Stutzbach et al. [SR06a, SR05b] carefully analyzed session lengths, NAT gateways,
and peer numbers in three large P2P networks, including the KAD DHT, which
is similar but independent from the MDHT. Whereas most absolute numbers the
authors report on are obsolete today, our work is influenced by some of their findings
such as the session length distributions and the importance to model peer dynamics.

In 2013, Wang and Kangasharju [WK13] reported on their own measurements of the
MDHT, in which they used similar metrics as ours. Contrary to our findings of 7-10
million peers presented in [JAH11], the authors estimate the number of participating
peers to have been as high as 27 million in 2013. These numbers have been contradicted
by the development team of the µtorrent client who stated in 2013 to beginning of 2014
in the BEP42 standard, which defines a new BitTorrent Security Extension [Nor14a]:
“The size of the DHT is approximately 8.4 million nodes. This is estimated by observing
that a typical routing table typically has about 20 of its top routing table buckets full.
That means the key space is dense enough to contain 8 nodes for every combination of the
20 top bits of node IDs.” We suspect issues in Wang and Kangasharju’s methodology
to be the cause of the stark discrepancy of their measurement results to other studies.

8.6.3 BitTorrent Measurement Studies

Due to the widespread use of BitTorrent, many studies exist that focus on characteriz-
ing the BitTorrent ecosystem, e.g., [ZDWR11, NRZ+07, PGES05, GCX+05, IUKB+04].
Among others, they often try to assess peer metrics such as BitTorrent’s popularity
in certain countries or their session lengths. While some of these studies make use
of the DHT for their measurements [SZFY12, NRZ+07], most rely on crawling Bit-
Torrent’s swarms and trackers (cmp. Section 7.2.1). Because most BitTorrent clients
also include an MDHT client, BitTorrent peers typically act as MDHT peers as well.
Statistics of BitTorrent peers can thus be compared to MDHT peers directly, as long
as BitTorrent remains the dominant incentive to use the MDHT. This opens a new
avenue to assess BitTorrent peers.

Whereas tracker-based crawling allows to analyze file-sharing specific metrics, such
as the content shared in BitTorrent, it lacks the representativeness of a DHT-based
analysis when it comes to characterizing the peer landscape [ZIP+10]. This is mainly
due to the difficulty of choosing an appropriate set of trackers and the uncertainty of
whether or not the monitored content is representative for the entirety of all BitTorrent
users. In contrast, the peer samples we collect from the MDHT are created by picking
peers at random from a uniform distribution (the ID space) and can thus be seen
as representative for all peers. Parts of our results can thus be used to complement
studies targeting the BitTorrent ecosystem.

In 2011, Zhang et al. published one of the most comprehensive studies of the Bit-
Torrent ecosystem [ZDWR11]. In their paper, the authors study BitTorrent’s tracker,
peer, and content landscape. The necessary data was mined by crawling a number
of public trackers for nine months. To our knowledge, the measurements are not
ongoing any more but have been stopped. Among others, the authors find that during
their measurements most trackers reside in Northern Europe, while most peers were

127

8 DHT Measurement

coming from the US (≈ 0.9 millions), followed by the UK (≈ 0.3 millions). While
our historical data from 2011 matches the peer numbers of these two countries very
well, Russian peers were at least as common in 2011 as American peers, according to
our measurements. Chinese peers should have also been more prevalent than peers
from the UK. Neither of these countries are shown in the studies graph, probably
because the authors focused on trackers targeting the western (English-speaking)
world. The authors also find that peers from Singapore and the United Arab Emirates
are most overrepresented when compared to their countries number of Internet users.
We also found that peers from these countries are more common than their their
number of Internet users would make you assume (factor of around 2), but are way
less common than peers from most Eastern-European countries (factors of 3 to 15).
We find that care should be taken when making general assumptions that are based
on these results only, as large parts of the world are not included in this study and
the results are getting older every year. We feel that our measurement solution could
be used to resolve these issues to a large extent.

In [SZFY12], Su et al. study short- and long-term swarm evolution in BitTorrent
by a hybrid measurement system that combines crawls of trackers and swarms with
information gathered from the MDHT. The authors find that users’ interest in a specific
torrent shows a strong diurnal periodicity that strongly affects swarm evolution. We
suspect this periodicity to be a symptom of the diurnal fluctuations we found in our
peer number measurements. In this case, Su et al.’s study would provide a valuable
example of how an application’s quality of service (in this case the health of a torrent’s
swarm) is affected by peer behavior.

8.7 Conclusion
In this chapter, we presented an ongoing large-scale measurement study on the MDHT.
Our objectives are not only to provide a valuable service for MDHT-based applications
that rely on certain DHT characteristics but also to support other researchers and
developers with understanding user behavior and making informed choices. We
monitor the MDHT continuously since August 2010 and assess different key DHT
properties. The backbone of our analysis is a series of representative sets of peer
samples. Every day, 53 of such samples each consisting of tens of thousands of peers
are collected. This makes our study the to our knowledge longest and most complete
measurement study of a publicly deployed DHT ever run.

First, we explained the architecture of our monitoring framework BitMON. In
particular, we illustrated a novel peer sampling approach that leverages lookups to
retrieve peers and differs from typical crawlers, which use raw Find Node requests
in a graph exploration fashion. The main advantage of our approach is that it is more
resilient to biases in collected samples.

We then analyzed our collected data in detail. Among others, we analyzed the global
number of participating peers, the composition of the DHT with respect to the peers’
countries of origin, the lengths of the peers’ sessions, and the prevalence of guarded
hosts. Some of our most important findings include:

128

8.7 Conclusion

– The MDHT indeed evolves over time in terms of size, peer composition, and
other properties. For instance, the ratio of Russian peers has more than doubled
from below 9% in October 2010 to over 18% in June 2014.

– The MDHT is also subject to sudden, drastic changes. On multiple occasions,
we noticed events that massively affected the MDHT: the unavailability of a
bootstrapping server lead to around 25% less peers in the network, a bug in
an update of a popular BitTorrent client lead to around ten million additional
(artificial) peers, and the number of Chinese peers dropped to 50% in just two
months.

– Otherwise, the MDHT is remarkably stable and its popularity around the world
seems unbroken. With the recent advent of more and more commercial DHT-
based applications such as Tribler or BitTorrent Sync, we do not expect public
interest in the MDHT to vanish soon.

We draw two main conclusions from these observations. First, we expect the MDHT
to continue getting more attractive as a platform for decentralized applications. With
BitTorrent Sync and Tribler, economic use-cases besides file-sharing reach our for
customers. The ongoing improvement of lookups performance in µtorrent and recent
additions of security related and other features [Nor14a] show the growing significance
of the MDHT, which is only of lesser importance for traditional file-sharing clients.

Second, we see that the DHT can not yet achieve the reliability of classic centralized
architectures. In particular, DHT-based applications have to be able to cope with
short- and long-term changes in key properties of the DHT. In order to establish
DHTs as a viable competitor to centralized platforms, the research community should
focus on how to provide a constant quality of service.

In Chapter 10, we therefore present an approach that allows DHT clients to adapt
to MDHT changes dynamically in order to optimize lookup performance.

129

9

DHT Modeling

In 1987, George E. P. Box wrote in his book “Empirical model-building and response
surfaces” [BD87]: “Essentially, all models are wrong, but some are useful.” This is
especially true for models of public P2P networks as these systems are strongly in-
fluenced by the behavior of the participating users and the only “perfect” model is
the P2P-network itself. For this reason, today no model of a public DHT exists that
would allow to assess lookup performance accurately, although various P2P simula-
tors exist. Available simulation models typically abstract from at least some key DHT
characteristics that have a strong impact on lookup performance.

In this chapter, we present KadSim, a model of the MDHT that aims at allowing
users to assess the performance of lookup algorithms in the MDHT. KadSim was
implemented for the Java-based simulator PeerSim [MJ09]. The purpose of our model
is to provide a means to assess the performance of lookup algorithms in public DHTs
at the example of the MDHT. A typical use-case for such a model is the optimization of
the client, either to test how a client that demonstrated high performance in a private
DHT would cope with a more dynamic environment or to assess how well a lookup
algorithm would be able to adapt to changes in the public DHT it is currently deployed
in. For example, the user might want to know how lookup performance develops in
case that the number of participating peers doubles, halves, or session lengths decrease.

Hence, the model should support the following tasks:
– Predict performance of a client implementation when deployed in a public

DHT.

– Predict impact of DHT changes on lookup performance.
In particular, KadSim should allow to simulate a large-scale public DHT such as the

MDHT in its entirety. It thus should be possible to simulate DHTs consisting of
millions of peers.

131

9 DHT Modeling

In order to build a suitable model, we first provide an in-depth requirement analysis
in Section 9.2 in which we identify key properties that affect lookup performance.

In Section 9.2, each property (for instance, the peers’ session lengths) is then mod-
eled based on our own real-world measurements and other studies conducted on
the MDHT. Tradeoffs between simulation accuracy and simulation performance are
discussed and options on how to improve accuracy or performance, respectively,
are presented.

In Section 9.4, the model is then validated by testing commonly proposed lookup
optimizations in our simulation as well as in the real-world. For this task, we use the
JKad client as it is able to mimic common lookup optimizations.

Section 9.5 discusses limitations of our model and proposes optimizations to further
improve the model’s accuracy in the future.

Section 9.6 concludes this chapter.

9.1 Related Work
In the following, P2P simulators and models will be introduced. As the measurement
studies that our model is based upon have already been presented and discussed in
Chapter 8, they will be omitted in this section.

In surveys such as [NLB+07, ZCY09], the authors evaluate commonly used P2P
simulators. They conclude that most simulators (among others OverSim [BHK07] and
PlanetSim [AL08]) are incapable of simulating P2P networks consisting of millions
of peers, with the exception of PeerSim, which is stated to be scalable to up to 1
million peers [NLB+07]. PeerSim1 [MJ09] is a Java-based P2P simulator that supports
discrete event-based simulations. PeerSim is today one of the most commonly used
P2P simulator. Main reasons for its wide employment are its good scalability as well
as the fact that it is comparatively easy to understand and modify. PeerSim abstracts
from the complete network layer, which is rarely modeled in P2P simulations.

With HiFiP2P [SLG+09], Shi et al. published a scalable, Java-based P2P simulator
that includes a realistic model of the network layer (underlay). HiFiP2P supports par-
allel and distributed simulation, a fact that can help when simulating millions of peers.
In their study, the authors simulated a Chord-based [SMK+01] DHT that was formed
by 1 million peers and compare simulation performance to a combination of the Plan-
etSim [AL08] and J-Sim2 simulators. However, no comparison with PeerSim is given.

We chose to build our model for PeerSim because of the simulator’s good scalability.
In this chapter, we show that PeerSim is indeed capable of simulating up to 9 million
peers (and probably more) in a realistic scenario.

Hildebrandt et al. [HBH07] proposed RealPeer, an approach for simulation-based
development of P2P systems. Among others, their approach proposes to share the
source-code between simulation and real-world implementations of P2P protocols,
an idea we also follow. To evaluate their approach, the authors created and simulated

1http://peersim.sourceforge.net, [last visited in October 2014]
2http://www.j-sim.org/, [last visited in October 2014]

132

9.2 Requirement Analysis

a Gnutella P2P network consisting of 1000 peers. Unfortunately, the used model is
simplistic and is not build upon detailed real-world observations.

9.2 Requirement Analysis
Widely deployed public DHTs are far too complex to be ever understood completely.
Besides the complexity introduced by the high number of components and the dy-
namic creation and termination of links, the main cause is that components are
controlled by individual persons, rather than by deterministic algorithms. Human
behavior is thus an inherent part of a public DHT. Examples for human behavior
in public DHT’s include that the users choose which client implementations they
want to use, how often and how long they let their client run, how much stress they
put on their internet connection while running a DHT client, or how they configure
their NAT gateway, if present.

As it is hence impossible to distinctly derive an adequate level of abstraction from
a complete description of the system, an empiric strategy is required that helps us
to decide which DHT properties have to be modeled in order to predict lookup
performance with reasonable predictive accuracy.

Our strategy is based on our lookup algorithm definition (Definition 9 on page 93)
and its notion of elementary Lookup Events. By analyzing by which DHT properties
each type of event is effected the most, we derive a set of DHT properties that have
to be included by our model. This strategy is feasible because any lookup can be
described as a concatenation of lookup events, no matter which individual lookup
algorithm was used, as was already illustrated in Section 7.5. Any DHT property
that affects a lookup’s performance thus has to influence at least on lookup event
the affected lookup consists of. Our strategy hence allows us to analyze lookup
algorithms in general rather than focusing on a specific implementation. For this
reason, lookup events constitute a good basis for analyzing the impact that DHT
properties have on lookup performance.

In the following, each of the three kinds of lookup events will be analyzed. Then
it will be deduced which DHT properties affect instances of the respective event
type the most.

9.2.1 Request Transmission

tTr

IP

Figure 9.1:]

Request Transmission event as introduced in Section 7.5 on
page 94. At tTr ms a request is sent to the peer using the ID
IP.

At any moment during a lookup, the lookup algorithm can decide to query another
peer and create a Request Transmission event. For convenience, Figure 9.1 illustrates
again how this type of event is visualized in our graphical notation. The lookup

133

9 DHT Modeling

algorithm has to decide when a new peer should be queried and which peer should
be queried, as the source peer “knows” only a limited number of peers at any point
in time. A peer is known, if it is either contained in the source peer’s routing table
or if it was returned by previous requests started during the lookup. Both decisions
depend on the lookup algorithm and the source peer’s internal state only, i.e., its
routing table and data structures used by the lookup algorithm. In particular, the
decision making process is not influenced directly by the DHT’s current state. That
means that a client that is run in a simulation environment will decide to query the
same peers as another client, which is not run in a simulation environment, as long
as two conditions are met: both clients use the same lookup algorithm and both
clients’ internal states are identical.

While it is comparatively easy to copy a given lookup algorithm for inclusion in a
specific simulator, it is harder to assess which DHT properties affect a client’s state. A
client’s internal state typically consists of two data structures: (i) the routing table and
(ii) data structures stored by the lookup algorithm for the lookup’s lifespan, which
typically includes a list of peers that were returned by previous Find Node requests.

We regard the influence that the source peer’s routing table has on the transmission
of new requests as less important. The reason for this is that the source peer’s routing
table is typically only accessed to retrieve the first peers to query during a lookup,
as with each request, peers are received that are closer to the target ID than the
closest known peers so far.

The lookup algorithm can only store information that was collected from previous
queries, as by definition this is the only means for a lookup algorithm to commu-
nicate. This information is modeled by the other two types of lookup events and
thus not covered at this place.

We thus conclude that in order to reproduce request transmission events in sufficient
detail, it is enough to ensure that the implementation of the lookup algorithm used in
the simulation environment closely resembles the real world implementation.

9.2.2 Request Timeout

tI

Figure 9.2: Request Timeout as introduced in Section 7.5
on page 94. At tl ms after the request was sent, the lookup
algorithm triggers a timeout.

Any request started during a lookup might remain unanswered, resulting in a
timeout event (compare Figure 9.2). With 35 to 70% of all sent requests resulting in
a timeout, timeouts occur frequently in the MDHT. As timeouts seriously impair
lookup performance, it is important to model the probability for a timeout to occur
as realistically as possible.

Unfortunately, this probability is affected by a wide range of factors. Among the
most important ones are the following (Guarded Hosts, Session Length, and Network
Latency have already been introduced in Section 7.6.2):

134

9.2 Requirement Analysis

– Guarded hosts: Due to their commonness 3, guarded hosts are one of the most
important reasons for the high ratio of observed timeouts.

– Session length: When a peer tries to contact another peer that has meanwhile
gone offline, a timeout occurs after a timeout threshold expires. If session
lengths are small, this happens more frequently as peers are getting offline more
quickly.
The session length of a given peer depends on two factors: the behavior of
the peer’s user (i.e., after what time she shuts down the client) and technical
constraints such as regular 24 hour disconnects that are carried out by some
ISPs.

– Lookup algorithm and Network Latency: The lookup algorithm has to define
after which duration an unanswered request is considered to have timed out. If
this duration is chosen too small, requests might falsely be detected as having
timed out.

– Routing table: To reduce the number of timeouts occurring during lookups,
Kademlia clients regularly refresh their routing tables by pinging their entries
and replacing unresponsive ones. The thoroughness with which a peer refreshes
its routing table influences the number of stale entries found within its rout-
ing table. Stale entries might later be propagated to other peers. Thus, the
mechanism a peer uses to refresh its own routing table does not only affect the
performance of the peer’s own lookups but those started by other peers as well.

9.2.3 Response Reception

td

Figure 9.3: Response Reception as introduced in Section 7.5
on page 94. At td ms after the request was sent, a response
is received containing eight peers. In our graphical repre-
sentation, only previously unknown peers are shown (two
in this example).

Response reception events describe the successful reception of an incoming response
to a Find Node request (see Figure 9.3). This event type is described by the time
interval td after which the response was received (i.e., the round trip time between
both peers) and the returned peers.

The returned peers constitute candidates to be queried in the future. As further
Request Transmission, Request Timeout, and Request Reception events might be
triggered by this, it is important to model the returned peers with respect to the
properties that are important for these types of events. These are all properties that

3In multiple studies the total ratio of guarded hosts has been estimated to lie between 50% and
70% [JAH11, JOK09, WCZJ04].

135

9 DHT Modeling

have previously been identified, i.e., the peer’s session length, guarded hosts, network
latency, and the routing table implementation.

All returned peers originate from the queried peer’s routing table. It is hence
important to model how a routing table is filled. In order to do so, not only the
routing table’s maintenance routines need to be modeled, but also the composition
of the DHT, as all routing table entries are eventually drawn from this population.
In conclusion, the following properties have to be modeled:

– Network Latency: The network latency between peers affects lookup perfor-
mance as it dictates the duration of successful Find Node requests.

– Routing Table: The structure and maintenance routines used by the peers
within the DHT have to be modeled, as the peers returned by any Find Node
request are drawn from these routing tables. It should be noted that in hetero-
geneous DHTs, multiple kinds of routing table implementations can be used at
the same time.

– DHT Composition: The composition of the DHT has to be modeled with
respect to the peer’s session length, guarded hosts, network latency, and employed
routing table implementation. The absolute number of peers found within the
DHT has also be defined as it affects the numbers of hops that are required by
a lookup algorithm to reach an arbitrary target ID.

9.3 KadSim-Model
In the previously presented analysis, key DHT properties have been identified that
need to be included in a our DHT model. In the following, we will explain in detail
how each property is modeled in KadSim and justify our design decisions. Where
necessary, we also describe the model’s implementation. In Section 9.5, limitations
of the model are discussed and a number of possible improvements are presented.
Table 9.1 summarizes the relation between the foundation of our analysis, i.e., the
lookup events, and the properties of our model.

DHT Property Tr. TO. Rcp. Modeled in
DHT Composition × Peer Population Model, Section 9.3.1
Lookup Algorithm × × Peer Model, Section 9.3.2Routing Table × ×
Session Length × Behavior Model, Section 9.3.3
Network Latency × × Internet Model, Section 9.3.4Guarded Hosts ×

Table 9.1: Relation between DHT properties and Lookup Events. It is listed which
types of Lookup Events are affected the most by any particular DHT property, as
analyzed in Section 9.2. Tr. stands for Request Transmission, TO. for Request Timeout,
and Rcp. for Response Reception.

136

9.3 KadSim-Model

9.3.1 Peer Population Model

Public DHTs like the MDHT consist of a highly diverse set of autonomic peers. In
practice, it is impossible to accurately model the full level of diversity of a public DHT,
as every peer behaves at least a little bit different from any other, solely because it is
operated by a different user. Thus, peer diversity has to be reduced in the model.

In order to simulate different scenarios, sometimes a more accurate model might be
required while sometimes a less accurate model could be sufficient. For this reason,
we chose to provide a tool with which a user is able to choose an appropriate level of
accuracy himself. This tool is the concept of peer populations. A population is a group
of an arbitrary number of peers that share specific properties with each other. For
example, peers originating from China might use a different client implementation
than peers coming from the US whereas peers being controlled by users of a specific
age group might share similar session lengths. Depending on the desired level of
abstraction, DHTs can be modeled as a set of few or many populations.

As some lookup algorithms might wish to exploit correlation of peers within certain
populations – for instance to filter high latency peers – while others do not, our model
supports arbitrary numbers of peer populations. Users can thus adjust the model to
the required level of detail, easing scenario configuration in cases that do not require
a very diverse model while still allowing for a higher precision in more complex sce-
narios. Although using multiple populations demands a higher effort from the user
for configuring the model, it does not increase KadSim’s computational complexity
or memory consumption significantly, as long as a reasonable number of populations
is used (n <1000). Depending on the complexity of the configured stochastic distribu-
tions, a single population instance typically occupies far less than 1 kB of memory.

In our model, every peer belongs to exactly one population. Populations can consist
of up to thousands or millions of peers. Populations possess properties that describe
how session lengths, the guarded host state, the client implementation, and network
latencies are modeled for this population. These properties will be explained more
thoroughly in their corresponding sections.

In case peer specific information has to be stored to model a property, a property
can store a state on a specific peers. A property state may contain any kind of data
that the corresponding property has to store. For example, the guarded host property
has to store for each peer whether or not the peer is located behind a NAT gateway.

9.3.2 Peer Model

The Peer Model is the part of our model that describes the implementation of the
client(s) used in the DHT. The model can be divided in two parts: (i) the clients’ lookup
algorithm and (ii) the routing table implementation, which includes the routing table’s
structure, its maintenance routines, and its bootstrapping mechanism. Our model is
based on the design decision that the routing table implementation most commonly
used in the DHT should be modeled as accurately as possible while it is far less
important to model the lookup algorithms used by other peers. However, the lookup
algorithm whose performance should be tested obviously has to be modeled in detail.

137

9 DHT Modeling

Our reasoning behind this decision is as follows: The routing table implementa-
tion used by most peers in a DHT has a large impact on the lookup performance
experienced by other peers, as it determines which peers are returned when a re-
quest is received. The quality of the maintenance and filtering routines used by the
routing table thus not only determines the probability with which stale peers are
returned but also the distance of the returned peers to the target ID. These charac-
teristics strongly affect the lookup’s convergence speed and the number of timeouts
encountered. It is hence important to model the routing table implementation most
commonly used in a public DHT.

Compared to the routing table, the lookup algorithm used by a specific client has
a far lesser effect on the lookup performance of other peers. This is mainly because
iterative rather than recursive lookups are used in all large public DHTs and thus a
lookup is controlled by the source peer alone. While the lookup algorithm also slightly
affects the freshness of the routing table’s content by indirectly “checking” each peer
that is contacted during a lookup, we expect alternative lookup algorithms deployed
in the wild to differ only slightly in this regard. It is hence sufficient to accurately
model the algorithm to be tested in the simulation environment. If, however, a
“pathological” lookup algorithm was to be deployed that focused on updating the
routing tables of remote peers rather than on completing the lookup, it might be
necessary to model this algorithm in detail.

In the following it is explained how both lookup algorithms and routing tables
are implemented in KadSim.

Lookup Algorithm

In order to simulate the performance of a lookup algorithm in KadSim, the lookup
algorithm has to be implemented for KadSim. This is a comparatively easy task, as
the internal data structures used by simulated peers are very similar to real Kademlia
clients. The core algorithm remains largely untouched. Typically, only the transmis-
sion and reception of requests has to be modified because the simulation environment
has to schedule events instead of sending real packets.

For our validation, we implemented JKad’s lookup algorithm as it follows the BEP5
specification but is also able to mimic the behavior of common lookup algorithm
variants, for instance by sending only a limited number of requests in parallel. The
algorithm has already been described in Section 7.3.3. This way, different configu-
rations can be tested and directly validated against the JKad client. As furthermore
both JKad and PeerSim are implemented in Java, parts of the algorithm’s implemen-
tation could directly be reused.

Routing Table

Modeling the routing table implementations used in a DHT is much easier if the
DHT to simulate is homogeneous, i.e., only one type of client is used, instead of being
heterogeneous, i.e., multiple types of clients are used.

For instance, if the user wants to use KadSim to assess the performance of freshly cre-
ated DHT that is formed only by peers that use the user’s novel client implementation,
she can simply translate her implementation to the simulation environment. It is, how-

138

9.3 KadSim-Model

ever, a more difficult task to predict the performance of a new client when brought into
an already existing, heterogeneous DHT, as various clients would have to be modeled.

This problem is especially apparent for the MDHT. As we already mentioned in
Section 7.3, the MDHT is composed of a multitude of different client implementations.
While µtorrent seems to be the most popular client, multiple different versions of the
client exist and it is unknown which share of peers uses which version. Although
we possess a rough specification of optimizations employed by newer versions of
the µtorrent client (compare Section 7.3.4), we have neither access to the client’s
source code as it is not publicly available, nor do we know in which version each
optimizations was first introduced. This makes it very hard to reproduce how the
“average” peer builds its routing table.

For these reasons, our peer model is based on the official BEP5 recommendations
that were already presented in Section 7.1.

9.3.3 Behavior Model

The Behavior Model is the part of our model that defines the behavior of the peers’ users.
It thus describes human factors rather than characteristics of technical components.

Session Length

In our model, the session length is defined as the time interval between a peer’s
creation and its destruction (i.e., when the peer goes offline). A peer’s session length is
drawn from a stochastic distribution configured for the peer’s population. While many
authors found session lengths to follow heavy tailed distributions [SENB09, SW04],
Stutzbach et al. showed that the Weibull distribution is a good fit [SR06b]. Our own
long-term measurements confirm these findings. For our validation, we thus used a
fitted Weibull distribution with scale λ = 183.4min and shape k = 0.594. Figure 8.14
on page 118 compares this distribution to real-world session lengths.

Population Size and Churn

Little’s Law [LG08] connects the size of a peer population to the peers’ session lengths
and the peers’ inter-arrival time, which we define as the average difference in time
between two consecutive peer arrivals: if on average every tI seconds a new peer joins
the DHT and stays online for tS seconds, the number of concurrently participating
peers n converges against n = tS/tI .

When aiming at creating a population of a specific size, the according number of
peers should not just be created at the beginning of the simulation, because this would
interfere with how peers fill their routing tables over time. Instead, peers should be
added gradually to the network at a rate reflecting peer inter-arrival times. For a
specific DHT size n the necessary inter-arrival time can be calculated by tI = tS/n.

The previous chapter already established that in reality the size of a population
changes during the day. However, it is typically not desirable to model these fluctua-
tions in a simulation environment, as these fluctuations make it much harder to study
lookup performance. A better approach is to conduct multiple simulations that use dif-
ferent but stable population sizes as sensitivity study. For our validation, we thus chose

139

9 DHT Modeling

a DHT size of 8 million peers which represents the DHT size of an average weekday
around 12 pm CET. Together with the session length distribution presented above, this
leads to an average inter-arrival time of tI = tS/n = 16, 775.2s/8, 000, 000 = 2.10ms.

9.3.4 Internet Model

The Internet Model is the part of the our model that specifies the environment the
peers are deployed in. In particular, this includes the technical infrastructure of the
user and the Internet, which is used to communicate with other peers.

Guarded Hosts

Guarded hosts are peers that are either located behind a firewall or a NAT gateway.
Peers hidden behind a firewall that is not properly configured to forward packets will
not be able to receive any incoming Kademlia packets, but might still be able to send
requests. As these peers will thus never answer requests, they are filtered out from
routing tables with relative ease. They will thus typically not be present in other peers’
routing tables for long. In our measurements, 11.8% of all tested peers4 showed this
behavior. As we hence do not expect peers that are located behind a firewall to play
an important role in the DHT, we chose not to include them into our model.

It is important, however, to model the behavior of peers that are located behind NAT
gateways. While every type of NAT gateway allows the guarded peer to send packets,
the decision about whether or not any incoming packets are forwarded depends on
the current state of the gateway’s connection table. Through this table, gateways track
any outgoing connections by adding a new entry whenever a new host is contacted.
When an incoming packet is received, the gateway searches for a matching entry
(depending on the gateway’s type either by the host’s IP address, its port number, or
both). Only if a matching entry is found, the packet is forwarded, else it is discarded.
Entries typically last for 2 minutes only [JOK09, RWHM03].

Introducing connection tables for simulated peers can significantly increase the
simulation’s memory footprint, especially if one wants to simulate the MDHT in
its original size. We thus used a more abstract model that does not use connection
tables. In this model, we assume that responses are only sent in reply to a request
and are sent in timely manner, i.e., with a delay of less than 2 minutes. This allows
us to decide whether the gateway would forward an individual packet without the
help of a connection table. The model behaves as follows:

– Responses are never blocked. The reason for this is that in order for a response
to be sent a request must have already been received – an entry must thus
have recently been added to the source peer’s connection table anyway. The
destination peer’s NAT gateway on the other hand would never block outgoing
packets.

– Requests are blocked if the recipient is located behind a NAT gateway. While
outgoing requests will not be blocked at the source peer’s NAT gateway, they

4Note that this is not equal to the ratio of “firewalled” peers peers found among all routing table
entries – we expect this number to be much lower.

140

9.3 KadSim-Model

will be blocked by the recipient’s (if existent), if no matching entry exists in the
connection table. At this point, we assume that no such entry exists, as most
requests are sent to peers that were received from other peers’ routing tables.
That means that most of the time, source and destination peers do not know
each other. It is thus unlikely that a matching entry exists in the connection
table .

In reality packets might also be forwarded if the connection table stores an entry
that shares the same IP address with the sender of the received packet and a restricted
cone NAT [RWHM03] is used. We did not model this behavior because we not only
deem it a rare event, but also this type of NAT gateway is very uncommon (Jiminez et
al. find that less than 5.5% of all tested peers use this NAT types [JOK09]).

In our model, a ratio of a population of peers can be configured to use NAT gateways.
On creation of an individual peer, this ratio is interpreted as the probability that the
newly created peer uses a NAT gateway. Any requests sent to such a peer are then
blocked. Responses sent to the NAT-guarded peer are unaffected.

For our validation, we configured a global ratio of 39.6% NAT-guarded peers which
closely reflects our empirical findings [JAH11, JOK09].

Network Latency

As already introduced in Section 7.6.2, the network latency between two peers can
be described as the sum of three components: the delay introduced by the source
peer’s local IT infrastructure, the delay introduced on the packet’s way through the
Internet towards the destination peer, and the delay introduced by the destination
peer’s local IT infrastructure. A perfect model would perfectly describe each of
these three components. While the latencies introduced on one peer’s side can be
assumed to affect all packets sent or received by this peer to the same degree, the
delay introduced by the Internet depends on the communication partner as well,
especially on its geographical location.

Our RTT model is based on the observation that it is more important to describe
the probability for high RTTs to occur than it is to accurately describe low RTTs,
as high RTTs are likely to cause timeouts. High timeouts are commonly caused
within the sending or receiving peer’s infrastructure due to overloaded NAT gateways
or bandwidth constraints [DW09]. It is thus important to model the probability
of these events to happen.

In order to monitor the likelihood of these events, we measured the RTTs of a high
number of requests. In this experiment, 10,000 lookups were started for random target
IDs. The RTTs of all successfully answered requests were measured. Figure 9.4 depicts
the results as a histogram. In our model, RTTs are drawn from a distribution that
was derived by fitting these results by a Mixture Normal distribution. A histogram
of the resulting distribution 0.43 ∗ Norm(52, 192)] + 0.25 ∗ Norm(115, 132) + 0.05 ∗
Norm(184, 132) + 0.27 ∗ Norm(325, 1002) is also shown in Figure 9.4.

As future work, an improved model could however incorporate models that aim
at predicting Internet latencies accurately, such as iPlane, for instance [MKBA+09].

141

9 DHT Modeling

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

[0-10]
[20-30]

[40-50]

[60-70]

[80-90]

[100-110]

[120-130]

[140-150]

[160-170]

[180-190]

[200-210]

[220-230]

[240-250]

[260-270]

[280-290]

[300-310]

[320-330]

[340-350]

[360-370]

[380-390]

[400-410]

[420-430]

[440-450]

[460-470]

[480-490]

[500-510]

Ra
tio

RTT [ms]

Measurement
Multimodal Normal distribution

Figure 9.4: The distribution of measured RPC round trip times compared to our RTT
model, depicted as histogram.

A reason for our decision not to include similar models is that they would require a
more accurately model of the geographic position of each peer.

9.3.5 Condensed Overview

Table 9.2 provides a condensed view on our model by listing all presented properties.
For each property, a brief summary of its model is given. In the last column, studies
our model is based on are listed.

9.4 Model Validation and Simulation Performance
In order to validate our model, we compared the performance of typical lookup algo-
rithm variants in simulation to their performance in the real-world MDHT. Each vari-
ant is represented by a different JKad variant (compare Section 7.3.3). Each variant used
a different combination of parallelism degree l , broadcast threshold b, and timeout
threshold t. Three different parallelism degrees were tested (l ∈ {2, 4, 8}). In these vari-
ants, the broadcast threshold b was set to 8, so broadcasting was essentially deactivated.
Each parallelism degree was tested with with timeout thresholds of 200, 500, and 1000
ms. In another group of variants, we furthermore set the broadcasting threshold to b
to 0, which means that JKad’s covering or broadcasting phase started immediately.
Again, we tested the timeout threshold mentioned before. In the following, we will re-
fer to this variants as the variants being run in broadcasting mode. This setup led to 12
tested lookup variants ({l ∶= 2, l ∶= 4, l ∶= 8, b ∶= 0} × {t ∶= 200, t ∶= 500, t ∶= 1000}).

142

9.4 Model Validation and Simulation Performance

Property Model and abstraction level See also
Peer Population Model (described in Section 9.3.1)
Peer Variation Peer populations; validation based on single-population

model.
[JAH11,
SENB07]

Peer Model (described in Section 9.3.2)
Lookup Algorithm Emulation (not abstracted);

Multiple BEP5 Variants implemented.
[FPJ+07,
JOK11,
SR06a]

Routing Table According to BEP5 specifications. [Loe08]
Behavior Model (described in Section 9.3.3)
Churn Model Peers join and leave dynamically. [JAH11,

SR06b]
DHT Size Population size converges against 8 million peers;

Validation started at ≈ 7.5 million peers.
[JAH11]

Session Length Population-based Distribution derived from measurements:
PDF: Weibull(183.4min, 0.594)

[SENB07,
SR06b,
JAH11]

Inter-arrival Time Constant, derived from Session Length and DHT Size; Vali-
dation based on 2.10 ms.

[SR06b]

Internet Model (described in Section 9.3.4)
Network Latency One Distribution for each pair of Populations; Validation

based on measured mixed Normal Distribution. PDF:
0.43 ∗ Norm(52, 192)] + 0.25 ∗ Norm(115, 132) + 0.05 ∗
Norm(184, 132) + 0.27 ∗ Norm(325, 1002)

Guarded Hosts Single model for 4 different NAT types;
All NATs behave like simplified port-restricted cone NAT:
only responses are received;
39.6% of all peers are behind NAT.

[RWHM03,
JOK09,
JAH11]

Table 9.2: The KadSim model.

143

9 DHT Modeling

9.4.1 Measurement Setup

For each lookup algorithm configuration to test, we started 10,000 lookups with JKad
(V. 0.7.159). All experiments were run on a Linux machine (Intel T7200 Dual Core
@ 2 GHz, 2GB RAM) that was directly connected to the Internet using a 2 GBit/s
connection. It was not protected by any NAT- or Firewall-capable devices.

For each set of 10,000 lookups, a new JKad instance was started. To build its routing
table, the client was started and left idle for 120 seconds. Then, a new lookup was
started every second. For each lookup, a new target ID was chosen at random. After
the last lookup had been started, the client was given 30 more seconds to wait for
incoming responses before it was stopped. The traces of all performed lookups
were stored on disk for later analysis. All measurements took place between 10 am
and 2 pm CET during November 2013. Based on our MDHT monitoring results
(compare Section 8.4.1), we estimate that the MDHT’s size lay between around 8
and 10 millions peers during that time.

9.4.2 Simulation Setup

For our simulation we used the PeerSim simulator (V. 1.0.5) that was extended by
KadSim. For each lookup algorithm configuration to test, 10,000 lookups were sim-
ulated in a single simulation run. Each run was initiated by creating an initial set
of 5000 peers. Then, the DHT was allowed to grow for 24 hours of simulation time
before the lookups were started. At that time around 7.5 millions of (simulated) peers
were alive. All lookups were started from a single peer that was selected by picking
peers at random until a peer was found that was not located behind a NAT gateway
and scheduled to be alive for at least 11,000 more simulated seconds. Then, a new
lookup was started from the source peer every second. As done during the real-world
measurements, a new target ID was chosen at random for each lookup.

The simulations were run on the high performance cluster InstitutsCluster II (IC2)5

and were assigned 64 GB of RAM and 16 CPU cores (2 Intel Xeon Octa-Core @
2.6 GHz) each. A more detailed description of the simulations’ performance is
given in Section 9.4.4.

9.4.3 Results

Tables 9.3 and 9.4 compare the performance of the tested variants in simulation and
real-world measurements by five different performance metrics. All metrics have
already been introduced in Section 7.6.1 on page 96. For every combination of metric
variant, a performance value was calculated for each of the 10,000 performed lookups.
The values for each set of lookups were then averaged. The table shows the averages
and 95% confidence intervals, with the exception of the result distances, which show
the median. Furthermore, the deviation of the simulation results from the real-world
measurements is shown. In the following, we will discuss each metric.

5http://www.scc.kit.edu/dienste/ic2.php, [last visited in October 2014]

144

9.4 Model Validation and Simulation Performance

– The results show that despite the vastly variable lookup durations shown by the
algorithm variants, the simulation results in general closely reflect the measured
lookup duration. The highest deviation was close to 20% but deviation typically
stayed below 10%.

– Similarly, simulation was able to predict the number of requests sent per lookup
well. The simulation results deviated typically by less than 10% from the mea-
surement results and never by more than 17%.

– For the number of responses received per lookup, deviation was even smaller in
most cases: for all but the variants using broadcast mode, deviation was below
9%.

– Timeout block time (TBT) varies strongly between algorithm variants, ranging
from 300 ms to over 6 s. Unsurprisingly, high timeout thresholds greatly
increase TBT, whereas high parallelism degrees greatly lower TBT. Even for the
most efficient variants TBT makes up at least 25% of the lookup duration.
Prediction quality was still reasonable for this metric, but worse than for most
other metrics. While the TBT predicted in the simulations often deviated by
10% or less from the measured values, it could occasionally be as high as 40%.

– As the last evaluated metric, the target distance metric also showed similar
results in both simulation and measurements. For half of the tested variants,
deviation was below 10% while the highest deviation was 30%.

9.4.4 Simulation Performance

Simulating large DHTs is a both memory and CPU consuming task. The simula-
tions performed during our validation were run on the high performance cluster
InstitutsCluster II (IC2) and were assigned 64 GB of RAM and 16 CPU cores (2 Intel
Xeon Octa-Core @ 2.6 GHz) each. Because our model makes use of one thread
only, the additional cores were used to speed up the Java garbage collector only. The
simulations took on average 4338 min (= 72 h, 18 min) to complete.

Most of the allocated memory is used for holding the peers’ routing tables: on
average, a peer’s routing table stores 160 entries, organized in 20 buckets. Each bucket
is represented by an Object (8 byte) that holds a timestamp determines when it was
last modified (4 byte) and two arrays (2 ∗ 12 = 24 byte). The first array stores the
pointers (8 ∗ 8 = 64 byte) to the linked peer, and the second the timestamps that hold
the time when the entry was last modified (8 ∗ 4 = 32 byte). Each routing table is
also an object (8 byte) that stores its 20 buckets in another array (12 + 20 ∗ 8 = 172
byte). This data alone thus accounts for 8 + 172 + 20 ∗ (8 + 4 + 24 + 64 + 32) = 2820
byte per peer or ≈ 25.4 GB for 9 million peers.

145

9 DHT Modeling

Parameters Lookup Duration [ms] Requests Sent Responses Received
l t Meas. Sim. Dev. Meas. Sim. Dev. Meas. Sim. Dev.
2 200 3583

± 20
3461
± 34

-3% 43.3
± 0.2

44.3
± 0.4

2% 15.7
± 0.0

16.6
± 0.1

6%

2 500 5654
± 36

5099
± 51

-9% 32.4
± 0.2

36.5
± 0.4

12% 15.4
± 0.0

16.7
± 0.1

8%

2 1000 8995
± 65

10638
± 122

18% 30.3
± 0.1

35.5
± 0.3

17% 15.4
± 0.0

16.7
± 0.1

8%

4 200 1872
± 11

2199
± 20

17% 47.6
± 0.2

55.5
± 0.4

17% 20.7
± 0.1

20.8
± 0.1

0%

4 500 3619
± 24

3294
± 29

-8% 39.7
± 0.2

41.4
± 0.3

4% 21.2
± 0.1

22.2
± 0.1

4%

4 1000 6050
± 41

5796
± 55

-4% 39.0
± 0.2

41.9
± 0.3

7% 21.5
± 0.1

23.1
± 0.1

7%

8 200 1402
± 7

1295
± 9

-7% 68.9
± 0.3

67.9
± 0.4

-1% 29.5
± 0.1

31.2
± 0.1

5%

8 500 2663
± 16

2262
± 17

-15% 59.5
± 0.3

58.0
± 0.3

-2% 33.8
± 0.1

34.1
± 0.1

1%

8 1000 4264
± 28

3932
± 32

-7% 60.9
± 0.3

59.5
± 0.3

-2% 37.7
± 0.2

35.9
± 0.2

-4%

br. 200 1178
± 8

1342
± 13

13% 83.6
± 0.3

88.5
± 0.4

5% 42.2
± 0.2

31.6
± 0.1

-25%

br. 500 2072
± 18

1838
± 15

-11% 81.7
± 0.3

76.6
± 0.3

-6% 52.4
± 0.2

38.7
± 0.1

-26%

br. 1000 3706
± 32

3180
± 32

-14% 82.0
± 0.3

78.1
± 0.3

-4% 51.9
± 0.2

37.5
± 0.1

-27%

Table 9.3: First part of the comparison of the performance metrics of simulated (“Sim.”
columns) and real-world lookups (“Meas.” columns), including 95% confidence
intervals. “Dev.” denotes the proportionate deviation of the simulated values from
the measured ones. The l column specifies parallelism degree (with “br.” meaning
broadcast mode) while the t column specifies the used timeout threshold in ms.

146

9.4 Model Validation and Simulation Performance

Parameters Timeout Block Time [ms] Result Distance
l t Meas. Sim. Dev. Meas. Sim. Dev.
2 200 2352

± 18
2325
± 31

-1% 2140.7 2140.4 -22%

2 500 3530
± 32

3471
± 47

-1% 2139.9 2139.8 -11%

2 1000 6670
± 61

8622
± 116

29% 2139.7 2139.9 2%

4 200 775
± 8

1082
± 16

40% 2140.3 2140.5 16%

4 500 1590
± 18

1421
± 23

-10% 2139.8 2139.8 -2%

4 1000 3194
± 33

3532
± 48

10% 2139.7 2139.8 -3%

8 200 302
± 4

294
± 5

-2% 2140.3 2140.3 -2%

8 500 552
± 8

444
± 8

-19% 2139.8 2139.7 -2%

8 1000 1304
± 16

1611
± 23

23% 2139.7 2139.8 8%

br. 200 626
± 8

602
± 11

-3% 2140.3 2140.5 12%

br. 500 1221
± 17

883
± 13

-27% 2139.9 2139.8 -9%

br. 1000 2525
± 31

2077
± 29

-17% 2139.6 2140.0 30%

Table 9.4: Second part of the comparison of the performance metrics of simulated
(“Sim.” columns) and real-world lookups (“Meas.” columns), including 95% confi-
dence intervals. “Dev.” denotes the proportionate deviation of the simulated values
from the measured ones. The l column specifies parallelism degree (with “br.” mean-
ing broadcast mode) while the t column specifies the used timeout threshold in ms.

147

9 DHT Modeling

9.5 Discussion and Future Improvements
Corresponding to George E. P. Box’s motivational statement “Essentially, all models
are wrong, but some are useful.” KadSim has proven to be a useful tool to predict
lookup performance of DHT clients that are similar to the BEP5 implementation,
such as JKad. However, KadSim is not yet able to model the effect that some more
recently published optimizations have on lookup performance. In particular, the
model’s prediction quality decreases under the following conditions:

– Low timeout probabilities: Our model often assumes that timeouts are likely
to occur. Based on this assumption, the model abstracts from effects that
affect lookup performance to a lesser extent. If KadSim is used to model a
DHT in which lookups are rather unlikely to occur (e.g., a private DHT), this
assumption does not hold any longer.

– Peer Favoring: In its current state, KadSim is not able to accurately model peer
favoring mechanisms employed by clients like µtorrent. Below, we will however
propose a new latency model that remedies this issue.

– Non Kademlia-based communication: Modern BitTorrent clients typically in-
clude non-Kademlia based mechanisms to exchange BitTorrent peers. As most
of these BitTorrent peers include a DHT implementation as well, they can be
also added to the client’s routing table. An example of such a technique is
BitTorrent’s Peer Exchange mechanisms (PEX) [WDH+10]. As of now, KadSim
is unable to model such kinds of inter-peer communication that does not rely
on the Kademlia protocol.

In the following, we will discuss in which areas the model could be improved in the
future. We will also sketch how prospective extensions could be designed.

9.5.1 Routing Table Implementation

First and foremost, the challenge of including a more realistic model of the peers’
routing table implementations (most importantly µtorrent’s) remains. With the recent
release of BitTorrent Sync and Bleep – both of which use µtorrent as a DHT client
– we expect the ratio of peers using this client to rise in the future. As structure,
maintenance routines, and bootstrapping routines differ between µtorrent and the
BEP5 implementation used in KadSim, we expect our model to deviate from real-
world behavior in some aspects.

In order to test this presumption, we conducted an experiment in which we analyzed
the routing tables of 500 randomly chosen peers both in real world measurements
and simulation and counted the number of unresponsive peers found per bucket. In
our simulation, peers were picked at random and their routing tables were analyzed
directly. For our measurement, peers were chosen by starting a lookup for a random
target ID and choosing the closest returned peer. Then, multiple Find Node requests
were sent. The target ID of the ith request had the i highest-order bits in common

148

9.5 Discussion and Future Improvements

with the queried peer’s ID. The remaining bits were chosen at random. This way,
BEP5 conform routing tables are completely crawled. For peers that use variable
bucket sizes eight peers are returned that have the first j bits in common with the ID
of the queried peer for every j. Each returned entry was then pinged to determine
whether or not the peer responded.

Figure 9.5 depicts the ratio of unresponsive peers found in each depth of the routing
table. Bucket index i represents the bucket that covers all peers that have the first
i bits in common with the queried peers. In BEP5 conform routing tables, bucket
0 thus covers half the ID space while bucket 2 covers a quarter. It can be seen that
in our simulation model, buckets with low indexes contained a far higher ratio of
unresponsive peers than can be found in real world measurements. Furthermore, real
world peers show way more unresponsive peers on very “deep” buckets.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

U
nr

es
po

ns
iv

e P
ee

rs
 [%

]

Bucket Index

Simulation
Measurement

Figure 9.5: Ratio of unresponsive routing table entries per bucket, comparison between
simulation and measurement.

We expect this behavior to be caused by different maintenance techniques used by
µtorrent peers that more effectively filter unresponsive peers. As deeper buckets cover
a smaller ID area, less incoming requests are received from peers that fit in deeper buck-
ets, making routing table maintenance less effective on deeper bucket levels. Together,
the over-representation of unresponsive peers on low bucket depths and their under-
representation on high bucket depths could cancel each other out in our simulation.

In order to improve KadSim in this regard, µtorrent’s behavior has to be analyzed
in more detail. Besides the routing table’s structure, µtorrent’s maintenance and
bootstrapping routines should be included in KadSim.

9.5.2 Guarded Hosts Ratio

All guarded host measurement studies we are aware of require peers that should
be examined to contact a specific “probe” peer first. Hence, it cannot be assumed
that the tested peers are a representative sample of the DHT’s population. Instead,

149

9 DHT Modeling

certain groups of peers are most certainly overrepresented, for instance peers that
send more requests than others. It is thus unclear whether or not the modeled ratio
of guarded hosts closely reflects the MDHT.

9.5.3 Network Latency

Clients such as µtorrent favor peers with low RTTs under the assumption of chrono-
logical correlation of packet latencies, i.e., peers that responded quickly to one query
are more likely to respond quickly to a second query as well. It is thus advantageous
to hold these peers in one’s routing rather than other peers. This correlation is not
yet modeled in KadSim. Optimizations that include peer favoring mechanisms can
thus not accurately be simulated.

In order to improve our latency model, RTTs could in the future be drawn from
peer-specific distributions rather than from a population specific one. The peer-
specific distributions could then be parametrized by a mean and variance chosen
from a population specific distribution.

In order to analyze how well real world RTTs can indeed be modeled by a population-
specific and a number of peer-specific distributions, we conducted an experiment. In
this experiment, we measured the RTTs of randomly chosen peers. The experiment
was performed on a dual core Linux machine that was directly connected to the
Internet via a 1 GBit/s connection. It was designed as follows:

1. A lookup was started for a random, uniformly chosen target ID. The returned
peers were placed in a buffer.

2. For each peer in the buffer, the following steps were conducted:

(a) The peer was Kademlia-pinged 40 times with a 50 ms break after each
ping (first ping round).

(b) The RTT of each successful ping was measured.
(c) If a peer did reply to only 10 pings or fewer, it was discarded.

3. The process was repeated (beginning with step 1) until 10,000 peers had been
tested.

4. After 10 and 60 minutes, each of the 10,000 peers was pinged again 40 times
(second and third ping round).

Figure 9.6 depicts as a histogram of the average RTTs of the first round of pings for all
tested peer. They match our previous model very well (compare Section 9.3.4). From
this distribution, the mean values of a peer’s specific RTT distribution could be drawn.

Figure 9.7 depicts a histogram of the standard deviations experienced by each peer
during the first ping round. It can be seen, that the standard deviation was small
for most peers (below 10 ms for almost 70% of all peers), i.e., RTTs deviated little
from the peer’s specific mean.

150

9.5 Discussion and Future Improvements

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

 0 100 200 300 400 500

Ra
tio

RTT means [ms]

Figure 9.6: The means of the RTT distri-
butions measured for 10,000 peers, de-
picted as a histogram, and a comparison
to our model.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 20 40 60 80 100 120

Ra
tio

Standard deviation [ms]

Figure 9.7: The standard deviation of
the RTT distributions measured for
10,000 peers, depicted as a histogram,
and a comparison to our model.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120 140

Ra
tio

Difference of avg. RTTs [ms]

After 10 minutes
After 60 minutes

Figure 9.8: Variation of the mean of a peer’s RTT distribution after 10 minutes.

Figure 9.8 illustrates to which extent RTTs fluctuated during longer time intervals.
The figure depicts the differences of the average RTT measured during a peer’s first
ping round and the second, which was started after 10 minutes, respectively third,
which was started after 60 minutes. Peers were only included in this diagram if they
did not fail to respond to too many of our pings until the second and third ping
rounds were complete. As a result, only 3240 peers were included. Again, the data is
plotted as a histogram. The graph illustrates that the second and third ping rounds
typically showed a mean RTT that was very similar to the first ping round: For almost
70% of all peers, the mean RTTs differed by at most 10 ms.

In summary, we conclude that RTTs can be assumed to be reasonably consistent
for multiple queries sent to the same peer. Even after a break of one hour, mean
RTTs differed typically by few milliseconds only. Peer-specific distributions constitute
a good model of this behavior.

151

9 DHT Modeling

9.6 Conclusion
In this chapter, we presented KadSim, a simulation model of the Kademlia-based
Mainline DHT (MDHT) for the PeerSim simulator. KadSim is designed to predict
lookup performance within public DHTs consisting of multiple millions of peers. To
our knowledge, KadSim is the first model that is capable of simulating large-scale
public DHTs while still providing a high level of accuracy. It can be used to experiment
with new lookup algorithms, to analyze the impact of changes within the current
DHT such as growing peer numbers, changing session lengths, or declining use of
NAT gateways. We parametrized KadSim to closely reflect the current state of the
MDHT, the currently most widely used public DHT. For this purpose, we modeled
key properties such as the MDHT’s size, the peers’ session lengths, the number of
deployed NAT gateways, and expected packet latencies. The model is based on
long-term measurement results presented in the last chapter and other studies. We
validated KadSim against the MDHT by testing twelve alternative lookup algorithm
variants in PeerSim and the real world and comparing key performance metrics. Our
validation showed that the predicted lookup latency never differed by more than
18% from the real-world measurements and by less than 10% for 50% of the tested
algorithm variants. The predicted number of sent packets deviated at most by 17%
from the measurements and at most by 10% for 75% of the variants. While these
results suggest a reasonable prediction quality, the validation also identified cases in
which KadSim is unable to predict lookup performance reliably. To remedy these
issues, future improvements to KadSim are proposed and discussed, among others
including a more realistic model of inter-peer round trip times.

152

10

Self-Optimization of Lookup Algorithms

We already motivated in previous chapters that lookup performance is of utmost
importance for many applications that need to access a DHT frequently. Low or unre-
liable lookup performance can be a serious inhibitor for the success of decentralized
systems. For instance, Kreits et Niemelä – two of the developers of the popular music
streaming service Spotify 1 – state that “the lookup time becomes a big issue, which
is one of the reasons for Spotify not using a Distributed Hash Table (DHT) to find
peers.” [KN10]. Furthermore, many latency-sensitive application applications are
also concerned with fluctuating performance values as they “treat lookup latency
above a narrow threshold as failure.” [JOK11].

If key DHT characteristics, such as its size or the popularity of NAT gateways among
users, change, lookup performance is prone to degrade. In Chapter 8, we saw that
public DHTs in fact do underlie both long-term and short-term changes. While
some trends were relatively stable, we observed sudden and unpredicted events on
multiple occasions that had massive effects on the MDHT as a whole, in addition
to the gradually progressing evolution.

Current client implementations are unable to adapt optimally to these kind of fluc-
tuations. In fact, clients are typically optimized for the DHT’s state at implementation
time, assuming a static and unchanging network. In this chapter, we show how a
client can adapt its lookup algorithm to changing DHT conditions by modifying its
parametrization dynamically. This is achieved by testing and comparing alternative
configurations automatically at run-time. To reduce overhead, the client records
requests that were sent during this optimization cycles and replays them, if the same
peer is queried again. The approach is called Simulation-based Runtime Adaptation
(SRA) and was published in [JH14]. This chapter is partly based on this publication.

1http://www.spotify.com/, [last visited in October 2014]

153

10 Self-Optimization of Lookup Algorithms

The main contributions presented in this chapter are:

– Proof of Concept: We show that SRA works and satisfies its goals by applying
it to JKad. We provide a detailed description of the approach and present
optimization results gathered within MDHT. The approach is generic and can
be adapted to other algorithms or protocols.

– Relevance Analysis: “We show that self-adaptation is a useful feature for DHT
clients. At the example of two possible scenarios of the MDHT’s future state
we show that the optimal combination of lookup parameters from today might
not be optimal tomorrow. We illustrate that not adapting to changing DHT
conditions can severely affect lookup performance. In one of our examples,
the lookups of a client using static parameters were more than three times
slower and had a 25% higher network overhead than those of a client using
SRA.” [JH14]

– Overhead Evaluation: “We show that SRA comes at almost no cost. As the
approach is based on measuring lookup performance, it can adapt even to
unforeseen changes in the DHT. Our evaluation also shows that the approach
induces minimal overhead, as on average only 4 additional UDP packets are
sent per second and the simulation is computationally inexpensive.” [JH14]

Section 10.1 describes the main concept of the SRA approach, the automatic as-
sessment of alternative lookup algorithm variants, conducted as an experiment in
full-factorial experimental design. In Section 10.1.2, we explain how requests can be
recorded for later reuse. In Section 10.1.3, we show how recorded requests can be
replayed leveraging run-time simulation. Section 10.2 provides an in-depth evaluation
of the SRA approach. Section 10.4 concludes this chapter.

10.1 Simulation-based Runtime Adaptation
As we already introduced in Chapter 7, lookup algorithms can typically be fine-
tuned by various parameters. Two of themost common examples are the algorithm’s
parallelism degree l , i.e., the maximum number of requests pending at any time,
and the timeout threshold t, i.e., the duration to wait for responses to a particular
request. In general, a lower parallelism degree is to be preferred if the probability
of requests to time out is low, while a high parallelism degree is advantageous if the
probability is high. The reason for this is that the lookup algorithm in general wants
to prevent being stuck in a state, in which all currently pending requests finally result
in a timeout, as the waiting time would then essentially be wasted. On the other hand,
the algorithm also does not want to send more requests than absolutely necessary, as
each increases overhead. The timeout threshold should be set high enough to give
most queried peers enough time to respond, but not much higher, as each additional
millisecond is wasted on peers that do not respond. Inter-peer round trip times
(RTT) and the probability for requests to timeout are only two MDHT properties

154

10.1 Simulation-based Runtime Adaptation

that influence the timeout threshold’s optimal value. In summary, it can be seen that
to achieve optimal lookup performance, the algorithm has to be parametrized in
dependence of the current state of the MDHT.

It should also be noted that most if not all changes to a lookup algorithms can be
integrated in a way that allows to switch them on or off by a parameter. This way,
even completely different algorithms can be combined. The SRA approach can then
be used to select the best-suited algorithm on demand.

Self-optimization can either be is triggered periodically, for instance once a week,
or on demand, for instance when lookup performance decreases. During these
optimization cycle, an experiment is run at run-time in order to evaluate the lookup
performance currently achieved by each individual combination of parameters. The
experiment is conducted using a full-factorial experimental design [Jai91]. This
also means that all possible parameter combinations are tested. The performance
achieved by each parameter combination is compared and the optimal one is identified.
Optimality is defined by a metric chosen by the developer or user – typically, the
metric will try to balance the induced overhead with the lookup duration and other
properties. The concrete criteria depend on the individual application. When a
parameter combination is selected, the client is configured to use this set of values
from now on and the optimization cycle is complete.

The full-factorial experimental design would normally introduce considerable strain
on the client, as many parameter combinations need to be tested and multiple lookups
need to be run for each one of them to achieve statistical significance. Thus, a massive
number of requests would have to be sent normally. To avoid this, requests are
recorded by saving the request’s response and its delay. This RPC record can later be
reused instead of sending a physical packet, in case the same peer is queried again.
We will introduce this process in greater detail in Section 10.1.2.

To allow to replay RPC records, the whole experiment must be run in a simulation
environment. “The lookup algorithm is separated from the engine by an interface
and is in fact agnostic of it being run in this manner. Whenever the algorithm tries to
query a peer, the simulator checks whether the request has to be physically executed
or a matching RPC record exists that can be replayed. In the first case, the simulation
is paused and a new RPC record is recorded just-in-time.” [JH14] In Section 10.1.3,
we explain how RPC records are replayed during simulation.

10.1.1 Experimental Design

For being able to use a full-factorial experimental design, a finite number of valid
levels have to be set for each parameter. It is the responsibility of the lookup algorithm’s
developer to pick a satisfying amount of levels. For JKad, we used 7 levels for the
parallelism degree parameter l (1, 2, 4, 6, 8, 10, 12), 5 levels for the covering threshold
b (1, 2, 4, 6, 8), and 5 levels for the timeout threshold t (100, 200, 500, 1000, 2000 ms)
(cmp. Section 7.3.3 for a description of JKad’s lookup algorithm). The elements of the
Cartesian product of these levels constitute the parameter combinations to test. For
JKad, 7 ∗ 5 ∗ 5 = 175 parameter combinations thus need to be tested.

155

10 Self-Optimization of Lookup Algorithms

To assess a parameter combination, the lookup algorithm is configured accordingly
and a high number of lookups are run. A different, random target ID is used for
each lookup. As a variance reduction technique, the same set of target IDs is used
for every parameter combination.

The lookup performance is then deducted by measuring key performance metrics,
such as the number of packets sent, received, and the lookup duration. These proper-
ties are averaged over all repetitions. The performance results is compared between
all parameter combinations with the help of a user-defined metric. Depending on the
requirements of the application, the client is used for, the metric can combine one
or multiple performance properties at will. One example would be to simply choose
the smallest lookup duration, another would be to trade an increase in overhead for
a decreased lookup duration. Consider for instance the metric mini(di + 100 ∗ pi),
where di is the average lookup duration of parameter set i, and pi is the average
number of packets sent per lookup. According to this metric, it would thus be worth
to send another request if this reduces lookup duration by at least 100 ms. However,
this metric just constitutes an example.

By choosing the full-factorial experiment design, we avoid the threat of running
in local extrema during optimization. This allows us to reliably predict lookup per-
formance without human supervision, even if the inter-dependencies between the
algorithm’s parameters, the MDHT’s properties, and lookup performance are not fully
understood. While several other designs require to perform a lower number of tests,
those designs have to make assumptions about the relation between parameter levels.
If, for instance, one assumed linear growth of performance between a parameter’s
levels, it would be sufficient to test only the lowest and highest level and interpolate
the others. “Our approach however is based on the idea that no such assumptions
can be made about any parameters, as it is designed to adapt to unforeseen changes
within the DHT network.” [JH14]

10.1.2 Recording Requests

A serious disadvantage of the chosen design is its high overhead. The high number of
lookups that need to be run could not only lead to significant computational overhead
but also to high bandwidth consumption. The SRA approach records requests to peers
to reduce this overhead. If the same peer is queried multiple times, the previously
recorded request will be replayed. As we will see in Section 10.2, this idea has a
massive impact on the induced overhead: on average, only 4 requests had to be sent
per second (or 1.26 per tested lookup) for comparing 175 parameter combinations.

Recorded requests are called RPC records. An RPC record is meant to replicate
a particular request’s course of action and thus contains all necessary information.
In the client, RPC records are stored within a hash table and indexed by the ID of
the peer the recorded request was sent to. Requests are recorded by measuring and
storing the duration until a response was received. If no response is received after
the timeout threshold is reached, this information is stored as well. In summary, an
RPC record consists of the following fields [JH14]:

156

10.1 Simulation-based Runtime Adaptation

– The recipient of the original request.

– The target ID used.

– A flag, indicating whether a response was received or not.

– The response, in case one was returned.

– The delay until the response was received or a timeout occurred.

Whenever the lookup algorithm tries to start a new request and an RPC record exists
that matches the queried peer’s ID, the client can replay the record instead of sending
a physical packet. To do so, the response is retrieved from the record and transferred
to the lookup algorithm when the specified delay has passed. To the lookup algorithm,
the response packet looks exactly like a regular response. However, a query can only
be substituted by replaying an RPC record if the following three requirements are met:

1. Same target ID: The target ID used must be identical to the target ID stored in
the RPC record that should be replayed. The reason for this is that it depends
on the transmitted target ID which peers are returned in the response – using
different IDs would thus mean that the returned peers would not match. This
requirement forbids the sharing of RPC records between different repetitions
of the experiment. However, RPC records can be shared between multiple
lookups of the same repetition, even if the lookups use different parameter
combinations.

2. Same recipient: “The queried peer must be identical to the recipient of the
RPC record that should be replayed. That means, both the peer ID and the IP
address must match. The reasoning behind this is that different peers would
return completely different responses as their routing tables would be filled
with different peers.” [JH14]

3. Freshness: The RPC record must not be too old, as a peer’s routing table changes
over time, or the queried peer might become unavailable. Records that are up
to one minute old are considered “fresh” by us.

10.1.3 Run-Time Simulation

We already mentioned that the lookup algorithm has to run in a simulation environ-
ment during optimization cycles in order to allow RPC records to be replayed. RPC
records are converted to events that can be executed by the discrete event simulation
engine. All lookups initiated during optimization are run by this engine. The simula-
tor is connected to component called RPC collector, which is responsible for recording
and managing RPC records. Requests are recorded just-in-time, i.e., when the lookup
algorithm tries to query a peer for which no RPC record has been collected yet.

To ease sharing of RPC records between multiple lookups, all lookups that of the
same repetition of the experiment are simulated in parallel. All of these lookups share

157

10 Self-Optimization of Lookup Algorithms

the same target ID. Because of this, at most one physical packet is sent per peer and
repetition. When all lookups of one repetition have terminated, the RPC collector
clears its hash map from all previously collected RPC records as a new target ID will
be used in the next repetition. For each simulated lookup, a dedicated, independent
event queue is used. The concurrently simulated lookups thus do not influence each
other, with the exception of the shared use of RPC records. The lookup algorithm uses
the same source code during simulation and normal operation and is in fact agnostic
of being simulated. All lookups are simulated by the same thread by cycling from
one event queue to another after each executed event. This way, multiple lookups
can simultaneously be blocked (e.g., because they have to wait for pending response)
without halting the simulation completely.

Figure 10.1 depicts how requests are recorded and replayed. Multiple simulation
instances can be seen on the left. Each represents one simulated lookup and its event
queue. Whenever the lookup algorithm tries to query a peer, the RPC collector is
contacted (1). It is then checked if an RPC record has already been collected for the
recipient of the just initiated request (2).

If no matching record exists, the RPC collector sends a new physical request to the
corresponding real-world peer P and records the request (3). The simulation instance
that caused the query is paused until the record has been successfully recorded, either
by receiving a response or by expiration of the timeout period. Paused simulation
instances will not be scheduled for simulation until un-paused. Any other simulation
that tries to query P before RPC collection is complete is paused as well. When the
RPC record has been collected successfully, it is added to the RPC collectors hash
table and all waiting simulation instances are un-paused (4).

The new RPC record is then handled exactly as if it had existed in the first place. The
engine creates a new event from the record and inserts it into the event queue of the
corresponding simulation instance or instances (5). The event stands either for the
reception of a response packet or a timeout, in case that the record does not contain a
response packet or the timeout threshold used by the simulated lookup algorithm is
shorter than the record’s response delay. To execute the event, the response packet is

Simulation Environment

Sim. Instance 1

RPC Collector

P

1
2

3

4
5 RPC records

response

request(P)
DHT

Figure 10.1: Simulation at run-time [JH14]. When a request is initiated during simula-
tion (1), it is checked whether or not a matching RPC record already exists (2). If not,
a new one is collected ((3) and (4)). Otherwise, simulation continues as usual (5).

158

10.2 Evaluation

forwarded to the lookup algorithm. This allows the algorithm to react to the response
as usual, potentially by querying other peers.

10.2 Evaluation
In the following, we will evaluate the effect of the SRA approach on lookup perfor-
mance its overhead. This section was taken directly from our publication [JH14]
and slightly revised.

10.2.1 Impact on Lookup Performance

Our evaluation starts with an assessment of the impact the SRA approach has on
lookup performance. In particular, we highlight three findings:

– In general, the achieved lookup performance differs significantly between pa-
rameter combinations.

– If DHT characteristics change, different parameter combinations than before
might provide optimal performance.

– Using a static parameter combination might lead to significant performance
reduction in case the DHT changes, even if the used combination was once
optimal.

Our evaluation is based on testing the SRA approach within the MDHT under
current and changing conditions and comparing the performance of alternative
parameter combinations. As it is not feasible to wait for the MDHT to change in
a drastic way, we created two hypothetical scenarios the MDHT could potentially
evolve to. One represents a DHT in which request are less likely to time out, the
other one in which requests are more likely to time out. These two scenarios are
emulated by modifying the responses received by our client, for instance by dropping
some packets or changing the returned peers.

Scenario A represents a DHT in which no peers are located behind NAT gate-
ways. Hence, the probability for requests to time out is significantly decreased. If
IPv6 reaches wide spread adoption, the real-world MDHT could evolve towards
this scenario.

In scenario B we assume that requests are more likely to time out than today. One
of multiple possible reasons for the MDHT to evolve into this direction is that users
shut down their clients more quickly, which would lead to more stale routing table
entries. For instance, greater legal pressure on file sharing users could potentially
cause this kind of behavior. Another reason would be that even more users than
today use NAT-capable gateways to connect to the internet, or that ISPs start to
drop Kademlia packets on purpose.

To model scenario A, we modified our simulation approach. In this variant, RPC
records are collected in advance to filter out any unresponsive peers that were returned.
Whenever the lookup algorithm wants to query a peer, the simulation is halted and

159

10 Self-Optimization of Lookup Algorithms

the simulator retrieves the RPC record matching the respective peer. The simulator
now collects an RPC record for each of the peers found within the record’s result
packet (the request’s children), if no record exists yet for the child. A timeout threshold
is used that is higher than that of any tested parameter combination, e.g., 3 seconds
in our evaluation. Any child that causes a timeout is then removed from the parent
record’s list of returned peers. After all unresponsive children have been removed,
the simulation is unblocked and continues to create a new event from the RPC
record as usual. As all unresponsive peers are removed from the received results,
the lookup algorithm will never be able to send a request to any peer that would
not respond eventually. However, if a short timeout threshold is used, the lookup
algorithm will still experience timeouts.

To implement scenario B, we modified our approach in a different way. In this
variant, a normal optimization round is run in which a certain percentage of suc-
cessfully collected RPC records are dropped and registered as timeouts instead. For
our evaluation, 75% of all successful requests were replaced by timeouts. As a result,
timeout ratios increased from around 57% to 88% (cmp. Table 10.1).

For our analysis we ran the described scenarios on three weekdays (Mon., 24 Feb.
to Wed., 26 Feb.), always starting around 9 am CET. At this time, around 7.5 million
peers were online according to our measurements. We ran all experiments on the
same Linux machine (Intel T7200 Dual Core @ 2 GHz, 2GB RAM) that was directly
connected to the Internet using a 1 GBit/s connection. It was not located behind any
NAT- or Firewall-capable devices. For each scenario we tested 175 different parameter
combinations and ran 1000 lookup repetitions.

Table 10.1 shows how lookup performance varies within the three tested scenarios
(real-world performance, scenario A, and scenario B). For each scenario the parameter
combinations are given that led to the lowest lookup duration (labeled “fast”) and
to the lowest number of sent requests (labeled “eco”). Furthermore, both properties
are combined by a metric that combines lookup duration und the number of sent
packets (labeled “tradeoff ”). We defined the metric as f (d , s) = d + 100 ∗ s with d
representing the lookup duration in ms and s denoting the number of requests sent
per lookup. To get optimal results according to this metric it is thus worth sending
another request if this reduces lookup duration by at least 100 ms. Note that this
simply constitutes an example for a reasonable combined metric as it depends on
the specific use-case which tradeoffs are most desirable.

Table 10.1 also shows that similar parameter combinations lead to lookups with the
shortest lookup duration or the lowest number of sent packets, if one just wants to
optimize for one metric (“fast lookups at any costs”): unsurprisingly, the lookup algo-
rithms run fastest with high parallelism degrees and short timeout thresholds, while
for bandwidth-efficient lookup algorithms the opposite is true. However, different
parameters are chosen in all three scenarios when optimizing for the “tradeoff ” metric.
In this case, lower parallelism degrees are chosen in scenarios with a low probability
for timeouts to occur while higher degrees are preferred in scenarios in which requests
time out frequently. It can furthermore be seen that lookup performance differs signifi-
cantly, not only between the three scenarios but also between parameter combinations.

160

10.2 Evaluation

Parameter comb. Duration [ms] Sent Requests Received
ResponsesName l b t

fast 12 4 100 766 ± 13 93.9 ± 1.3 32.8 ± 0.4
eco 1 8 1000 15886 ± 394 27.0 ± 0.4 13.3 ± 0.1
tradeoff 4 2 200 1841 ± 34 44.1 ± 0.6 18.9 ± 0.2

(a) Real World Scenario.
Parameter comb. Duration

[ms]
Sent
Requests

Received
ResponsesName l b t

fast 12 4 100 478 ± 7 70.9 ± 0.9 40.3 ± 0.4
eco 1 6 500 2099 ± 63 14.9 ± 0.2 14.0 ± 0.2
tradeoff 2 4 1000 1381 ± 40 17.7 ± 0.2 17.4 ± 0.2

(b) Scenario A (all peers respond).
Parameter comb. Duration

[ms]
Sent
Requests

Received
ResponsesName l b t

fast 12 8 100 552 ± 26 64.3 ± 3.4 8.2 ± 0.5
eco 1 6 100 4563 ± 175 52.8 ± 2.2 6.6 ± 0.3
tradeoff 8 2 100 806 ± 39 57.0 ± 2.5 7.2 ± 0.4

(c) Scenario B (75% more unresponsive peers).

Table 10.1: Lookup performance in three different scenarios, including 95% confidence
intervals.

In scenario A, fewer packets are sent than in the real world scenario, while the
lookup duration is shorter. This is because failed requests would usually force the
lookup algorithm to send a new request to the next available peer. In this scenario
the lookup algorithm rarely has to do this, as the probability for requests to time out
is very low. Also, increasing the timeout threshold is not as punishing as it would be
in other scenarios, as every peer will respond eventually. Hence, increasing timeout
threshold leads to fewer timeouts in this scenario.

In scenario B, way more packets than in the real world scenario have to be sent.
However, far fewer responses are received, which might be surprising as one could
assume that a constant number of requests is required to reach the target ID. However,
because of the fact that many peers are unresponsive in this scenario, the DHT
effectively consists of fewer peers. Hence, a lower number of responses are required
to find the closest peers to a hash.

Table 10.2 illustrates the potential loss in performance, if one optimized the lookup
algorithm in a specific scenario and the state of the DHT changes afterward. Each of
the table’s rows represents one of the parameter combinations that proved optimal in
the three scenarios with respect to the “tradeoff ” metric. For each parameter combi-
nation the lookup performance in each of the three scenarios is given, when using
the respective parameters. Performance values are printed bold, if the corresponding
parameter combination is optimal in this scenario. The values then represent the

161

10 Self-Optimization of Lookup Algorithms

Parameter comb. Real world
Name l b t Dur. Sent Rcv. Metric Dev.
tradeoff (RW) 4 2 200 1841 44.1 18.9 6240
tradeoff (A) 2 4 1000 8057 29.1 15.0 10967 +75.8%
tradeoff (B) 8 2 100 992 71.7 25.3 8162 +30.8%

(a) Real World Scenario.
Parameter comb. Scenario A (all peers respond)

Name l b t Dur. Sent Rcv. Metric Dev.
tradeoff (RW) 4 2 200 798 29.7 22.6 3768 +19.6%
tradeoff (A) 2 4 1000 1381 17.7 17.4 3151
tradeoff (B) 8 2 100 547 51.5 29.5 5697 +80.8%

(b) Scenario A (all peers respond).
Parameter comb. Scenario B (75% unresponsive)

Name l b t Dur. Sent Rcv. Metric Dev.
tradeoff (RW) 4 2 200 3038 71.7 10.8 10208 +56.9%
tradeoff (A) 2 4 1000 26861 74.4 13.3 34301 +427.2%
tradeoff (B) 8 2 100 806 57.0 7.2 6506

(c) Scenario B (75% more unresponsive peers).

Table 10.2: Benefits of dynamic parametrization. Lookup performance decreases when
using parameter combinations under conditions, the parameters were not optimized
for. The “Dev.” columns show the deviation of a specific parameter combination
compared to the scenario’s optimal combination. l is the parallelism degree, b the
covering threshold, t the timeout threshold.

benchmark we compare the other parameter combinations against. For convenience,
the Metric columns show the result of the metric function (f (d , s) = d + 100 ∗ s).
The Dev. columns show by which percentage these values deviate from the scenario’s
benchmark. A deviation of +100% would thus mean that the result of the metric
function is twice as high as the benchmark.

The table shows that lookup performance can decrease when parameter combi-
nations are used in scenarios the parameters were not chosen for. For instance, if
one used in the real world scenario the parameter combination that is optimal in
low-timeout scenario A, lookup performance is almost 80% off the possible optimum,
with lookup duration being more than four times as high. The effect is similar if one
used in scenario A the parameter combination optimal in scenario B. In scenario
B, using a sub-optimal parameter combination can be even more costly, increasing
lookup duration by a factor of 33 and the number of packets sent by 17 packets per
lookup. It should also be noted that in the real-world and in the “toughest” scenario
(Scenario B) lookups still have the potential of achieving similar performance, if the
optimal parameter combination is used.

162

10.2 Evaluation

Although two of the considered scenarios are hypothetical, these results show that
if the lookup algorithm does not adapt to changing network conditions, one risks
significant deterioration of lookup performance.

10.2.2 Network Overhead

In the following, we will show that the reuse of collected RPC records drastically
reduces the overhead of additional sent and received packets. While the exact savings
depend on the specific lookup algorithms and parameters that are to be tested, our
algorithm constitutes a good estimator for other popular implementations.

Table 10.3 depicts the number of requests that were sent during an exemplary
optimization run. On average 239 requests were sent per minute (4.0 per second).
On average, only 1.26 RPC records had to be collected per simulated lookup (without
the use of RPC records, 52.9 packets would have been sent per lookup). This leads
to a bandwidth consumption of 3.9 kBit/s of outgoing traffic, as the IPv4 frame of
a Find Node request is 122 Bytes long. As requests will often not be answered, the
incoming traffic is even smaller. On average, 146.6 responses were received each
minute in addition to the normal traffic generated by the DHT client, resulting in an
additional bandwidth consumption of 2.6 kBit/s for response packets of 135 Bytes
each. Without RPC records, 4921.8 packets would have been received per minute.

This overhead is only significant in settings that suffer from severe bandwidth
constraints and hardly affects modern broadband connections. The number of packets
sent per second is low enough to not overload usual NAT gateways employed by
consumers, as these devices can typically cope with packets sent to up to 40 to 50
different peers per second [DW09].

10.2.3 Computational Overhead

In the following we will show that the simulation of lookups induces low computa-
tional overhead for reasonable numbers of parameters and levels.

Simulating a lookup introduces the overhead of scheduling and executing events.
However, for each request sent by the lookup algorithm only one event needs to be
scheduled, which represents either a timeout or the reception of a response. Thus,
the number of events necessary to simulate a single lookup is limited, although exact
numbers depend on the specific lookup algorithm used. During our evaluation
an average number of 53.4 events were necessary to simulate a lookup (compare
Table 10.3). The overhead for scheduling and handling such low numbers of events is
small, even when compared to the processing required for normal lookup execution.

As simulations are frequently paused due to RPC collection, simulations are not
CPU-bound. In our measurements, simulating one lookup for each of the 175 tested
parameter combinations took on average 55.5 seconds. Each second, an average
number of 138.3 events were processed.

We also monitored the CPU consumption of the client during our evaluation using
the Linux-tool top. The client process never exceeded 20% CPU load and usually
stayed below 10%. On average, the process induced 4% CPU load.

163

10 Self-Optimization of Lookup Algorithms

In summary, our evaluation shows that lookup simulation does not cause high
computational overhead. The overhead can even be considered marginal for most
modern consumer computers. It should also be noted that in most use cases self-
optimization does not need to be triggered very frequently but only once a day or
week. As the optimization could for instance furthermore be configured to only start
when the system is experiencing low load (e.g. at night), the approach might even
be feasible in CPU-constrained environments.

10.3 Discussion
In the last sections we have shown that our approach has the potential to improve
lookup performance in a constantly evolving environment. We will now further
discuss the benefit, applicability and limitations of our approach. With the exception
of Subsection 10.3.3, this section is taken directly from our paper [JH14].

10.3.1 Benefit

In the last sections, we showed how lookup algorithms can be automatically optimized
at run-time at the cost of a moderately increased bandwidth consumption during
simulation. Our approach is not only generic, i.e. it can be applied to other DHT
protocols as well, but also ensures through its combination of simulation and measure-
ment that conclusions drawn from simulation are valid. As thus optimization will not
accidentally degrade lookup performance, adoption of this approach comes at no risk.

Lookup optimization can provide a “free” increase of lookup performance or reduc-
tion of overhead, as well as the ability to react to the evolution of the DHT network.
The approach could furthermore ease peer management by compensating some
degree of fluctuation within the DHT network and making manual configuration
unnecessary. Self-optimization also allows groups of peers, that experience different
DHT conditions than others, to use an individual configuration. For instance, during
European daytime the MDHT consists mostly of European peers, which could poten-
tially result in different session lengths. Moreover, the automatic collection of RPC
records and evaluation of the algorithm’s performance potential could constitute a
valuable tool for monitoring and improving a DHTs structure and performance.

10.3.2 Applicability

While we applied the SRA approach to the Kademlia-based BitTorrent Mainline
DHT, it can be used in other DHTs as well. To be a good candidate, a DHT should
have the following properties.

– Property 1: Differently parametrized lookups often query the same peers and
use the same parameters for the request.

– Property 2: Repeated requests return the same result.

– Property 3: An iterative rather than recursive lookup implementation is used.

164

10.4 Conclusion

Metric Value
Time / repetition 55.5 s
Events / Lookup 53.4
Events / s 138.3
CPU load 4%

(a) Computational Overhead

Metric Value
Packets sent / min 239.0
Packets sent / s 4.0
Packets sent / Lookup 1.26
kBit / s (out) 3.9
Packets rcv. / min 146.6
Packets rcv. / s 2.44
kBit / s (in) 2.6
Packets rcv. / Lookup 0.78

(b) Network overhead.

Table 10.3: Overhead induced by optimization. All shown values are averages over a
run in the real world scenario with 175 parameter combinations and 1000 repetitions.

Besides the MDHT, both other major public DHTs – the Vuze DHT (also known
as Azureus DHT) and KAD – satisfy these requirements. Iterative implementa-
tions of the protocols Chord [SMK+01], Pastry [RD01a], and Tapestry [ZHS+04]
are suitable as well.

If any requirements are not met, requests can either not be recorded (in the case
of recursive lookups) or they cannot be replayed very often. However, if requests
cannot be reused multiple times the full-factorial experiment design employed by the
SRA approach is a poor choice, as it will lead to significant computational overhead
and bandwidth consumption.

10.3.3 Limitations

The performance of lookup algorithms can not only be improved by optimizing the
lookup algorithm itself but also by improving other aspects of the client, for example
the routing table and its maintenance routines (compare Section 7.3.2). A limitation
of our approach is that it cannot be applied to optimizations that alter the client’s
persistent state, most notably the quality of the routing table’s entries. Examples
for such optimizations include the favoring of low-latency-peers, or checking for
stale peers more commonly. While popular clients like µtorrent make use of such
optimizations, they typically also include techniques that do not alter the clients state.
Our approach can hence still improve the lookup performance of these clients.

10.4 Conclusion
In this chapter, we presented a novel approach that enables DHT clients to adapt
dynamically to constantly changing conditions within the DHT. In order to do so,
the combination of parameters of the client’s lookup algorithm is identified that cur-
rently leads to optimal performance. Optimality is defined by a metric chosen by
the client developer or user. Typically, the metric will weigh the lookup’s latency

165

10 Self-Optimization of Lookup Algorithms

against the number of packets to send. The approach allows the client to efficiently,
reliably, and automatically utilize its full performance potential, even if the DHT
changes unpredictably.

Our evaluation compared possible scenarios of the MDHT’s future state to its current
state. In the first scenario, we assumed that IPv6 reaches wide spread adoption which
would result in peers being more likely to answer queries, whereas in the second
scenario we assumed them to be less likely to do so. Our results showed that a lookup
algorithm that is optimally parametrized today would provide poor performance in
both scenarios, contradicting the self-organization principle of P2P networks. Using
fixed parameters has the potential to severely affect lookup performance, as in our
evaluation lookup latency were up to three times higher while sending 25% more
packets compared to the lookup algorithm’s potential.

The study does not only prove that it is possible to dynamically adapt to unpredicted
DHT conditions, but also that the costs for doing so are very low. By measuring lookup
performance directly during normal operation at run-time and with high statistical
significance, parameter combinations can be compared reliably and with virtually
no risk of misjudging current trends or shifts regarding the DHT’s composition.
With user-defined metrics, lookup algorithms can be optimized for speed, efficiency,
accuracy, or any tradeoff. The approach furthermore induces minimal overhead as
only 4 additional UDP packets are sent per second and CPU load is marginal.

166

11

Conclusion

In the networked world of today, many, if not most large-scale systems are built by
composing separately managed computers, services and resources. The increasing
importance of the role that these Multi-Party Systems (MPS) play in today’s world
motivated this thesis to focus on how to cope with key challenges of these systems,
namely the (partial) lack of control and trust. Often, the elimination of these challenges
is a prerequisite for leveraging the inherent strengths of Multi-Party Systems which
include good scalability, manageability, elasticity, and the reduction of costs. This
thesis provided insights and approaches for coping with two classes of Multi-Party
Systems: data outsourcing solutions following the Database-as-a-Service (DaaS)
paradigm and public Distributed Hash Tables (DHTs).

The first part of this thesis covered the DaaS scenario. In this scenario, a database
containing sensitive information is outsourced to an only partially trusted external
storage provider. The storage provider is assumed to be honest-but-curious, i.e., it
does not tamper with the outsourced data but still tries to extract information for
personal gain. The goal is to protect data confidentiality while still allowing the
storage provider to evaluate queries received from the user.

In order to tackle this problem, we presented Securus, a confidential DaaS approach
that allows to satisfy hard confidentiality requirements when outsourcing databases
containing sensitive information. This is achieved by letting the user define access and
confidentiality requirements, which are then used to generate a custom-tailored soft-
ware adapter called mediator that acts as a gateway between user and storage provider.
The mediator transforms queries by applying popular Confidentiality Preserving In-
dexing techniques (CPIs) and by fragmenting records. Securus’ key challenge is to
compute which set of CPIs and fragmentation approaches fits the user’s needs.

In particular, Securus provides the following scientific contributions:

167

11 Conclusion

1. Separation of security and domain knowledge: Securus calculates how cer-
tain confidentiality requirements can be satisfied without requiring the user
to understand any of the eventually employed security techniques or encryp-
tion schemes. Instead, she just has to possess domain knowledge about the
outsourced data, i.e., understand its structure and semantics. Securus hence
externalizes security knowledge and makes it applicable by domain rather than
security experts. This not only simplifies the data outsourcing process but also
makes the application of security mechanisms less error-prone.

2. Meta model for access and confidentiality requirements: For the definition
of access and confidentiality requirements, a meta model is presented that does
not require the user to possess any expert knowledge about security concepts
but is nonetheless specific enough to allow Securus to compute an appropriate
combination of security techniques. With the help of the domain specific
language Securus-Latin, models that comply to this meta model can easily be
defined by the user. Both the language and the meta model were designed for
simplicity in order to allow quick user adoption.

3. Extensible transformation approach: Securus’ transformation algorithm is
designed as an analytical optimization problem that describes interdependen-
cies between multiple dimensions of a scenario: the kinds of queries that need
to be supported, the protection level of the stored data, and the attacker’s capa-
bilities. Each dimension is divided into multiple levels. The interdependencies
are then modeled as an ILP problem that is solved by a generic ILP solver. As
Securus does not use any heuristics, the generated solution is guaranteed to be
optimal. This concept does not only allow to define Securus’ core optimization
routine concisely by a set of analytical constraints, but also simplifies its future
extension. In particular, it is possible to introduce additional levels to one or
more dimensions in order to permit an even more nuanced distinction of CPIs.
This makes Securus a very sustainable approach.

The second part of this thesis covered public DHTs. Public DHTs are public P2P
networks that allow to store and retrieve key/value pairs. Recently, more and more
commercial DHT-based applications have been published. Several of them use the
BitTorrent Mainline DHT (MDHT), which today is the most widely used public DHT
consisting of multiple millions of concurrently participating peers. We thus chose
the MDHT as our main object under study.

As a highly distributed Multi-Party System, the MDHT’s performance is strongly
affected by the lack of control over individual peers as peers join and leave the network
unpredictably, may be deployed on constrained hardware, and exhibit unreliable be-
havior in general. Today, the community still lacks the understanding and the tools to
assess how these issues influence the reliability and performance of large-scale public
DHTs. The goal of the second part of this thesis was to analyze this interaction and to
propose approaches that allow to cope better with the lack of control in public DHTs.

In particular, the following scientific contributions were provided in this part
of the thesis:

168

1. In-depth characterization of the MDHT: This thesis presented an in-depth
characterization of the MDHT. For this purpose, a detailed analysis of the
behavior and performance of the key operation of a DHT – the lookup – was
provided. In this analysis, a unifying definition of lookup algorithms was pro-
vided, commonly proposed optimizations were surveyed, and key performance
inhibitors of lookups in public DHTs were identified. Furthermore, a long-term
measurement study conducted on the MDHT was presented. With our ongoing
study covering a period of more than four years (started in August 2010), it is
the longest and most comprehensive study ever conducted on a public DHT.
Among other properties, the study characterizes the MDHT with respect to the
number of participating peers, their origin, session lengths, and the prevalence
of NAT gateways. Besides this characterization, the following key conclusions
were drawn:

(a) The MDHT evolves over time with respect to its size, peer composition,
and other properties. For instance, the ratio of Russian peers has more
than doubled from below 9% in October 2010 to over 18% in June 2014
while the ratio of peers from the US has remained stable.

(b) The MDHT is subject to sudden, drastic shifts. These shifts can be trig-
gered by seemingly insignificant problems: the unavailability of a boot-
strapping server led to around 25% less peers in the network while a bug
in an update of a popular client lead to around ten million additional
(artificial) peers.

(c) Otherwise, the MDHT is remarkably stable and its popularity around the
world seems unbroken. Our measurements did not show any evidence
that would hint a beginning decline of global participation.

2. Simulation-based model: In order to better analyze the impact of changing
DHT characteristics on lookup performance, we presented KadSim, a simula-
tion model of the MDHT. To our knowledge, KadSim is the first model that
is capable of simulating a large-scale public DHT in its entirety while still pro-
viding a high level of predictive accuracy. KadSim was parametrized to closely
reflect the current state of the MDHT on the foundation of our measurement
results and other studies. KadSim was validated against the MDHT by running
twelve alternative lookup algorithms in the simulator and the real world and
comparing their performance. Our validation showed reasonable prediction
quality as lookup latencies never differed by more than 18% while the predicted
number of sent packets deviated at most by 17% from the measurement results.
However, the validation also identified cases in which KadSim was unable to pre-
dict lookup performance reliably. To remedy these issues, future improvements
to KadSim were proposed and discussed.

3. Self-Optimization of lookup algorithms: We furthermore presented an ap-
proach that allows lookup algorithms to better adapt to unpredictably changing

169

11 Conclusion

conditions within the DHT. The Simulation-based Runtime Adaptation (SRA)
approach identifies at runtime which configuration of the lookup algorithm
would currently lead to optimal lookup performance with respect to a user-
defined optimality metric. In order to be able to cope even with unpredicted
changes, the approach measures the performance of each possible configuration
but “replays” repeatedly initiated requests to reduce overhead by running them
in a simulation engine. Our evaluation shows that the approach is not only very
effective at optimizing lookup performance but also comes at low costs. By mea-
suring lookup performance with high statistical confidence, the optimization
is furthermore reliable enough to be run automatically and unsupervised.

In this thesis, we could demonstrate that it is indeed possible to deal with the
lack of trust and control in Multi-Party Systems. However, a requirement is that
the system must be well-understood, in particular with respect to the relation and
interdependencies between the involved components. In the DaaS scenario, a core
aspect that commonly was understood poorly both by domain and security experts
is the conflict area of a scenario’s confidentiality requirements, access requirements,
and attacker capabilities. As we showed with Securus, it is possible to resolve this
problem and generate an adequate solution by separating the knowledge about the
specific scenario’s requirements (domain knowledge) from the requirements’ inter-
dependencies (security knowledge). This separation does not only allow the user to
specify individual scenarios on her own, but also makes it possible to “ship” security
concepts as an integrated solution.

In the area of public DHTs, this thesis showed that public DHTs cannot be generally
expected to be reliable and robust to external influences, despite being renowned for
these properties: unforeseen and seemingly insignificant events can severely change
the DHT’s composition and behavior. Therefore, stakeholders such as developers
of DHT-based applications need to manage the DHT. However, as public DHTs are
(mostly) devoid of centralized components, they require their own special form of
management. In particular, the inherent strengths of public P2P networks, such as
self-organization and scalability, must not be constrained. Essential ingredients of this
form of management are monitoring, simulation, and dynamic adaptation. For most
of these activities the decentralized system itself does not have to be changed. Instead,
developers of a DHT-based application can, for instance, monitor the DHT with
the help of a dedicated “management component” that is separated from the DHT
but allows them to quickly react to unforeseen incidents. The appropriate actions to
take could then be determined with the help of simulation. Additionally, automatic
adaptation of DHT clients at run-time allows to further increase the system’s resilience
to such events, as we also showed in this thesis. Together, these measures allow decen-
tralized systems to establish a second, highly competitive option to centrally managed
systems.

From this thesis, one can proceed into multiple different research directions. Out
of these, we find the following two to be particularly promising. First, the ongoing
market penetration of Multi-Party-Systems and the increasing security awareness

170

in the enterprise world, especially in recent years, demands for integrated, ready-
to-deploy security solutions. While today many solutions exists that target single
security aspects, they are often hard to combine or even completely incompatible
with one another. We regard it as one of the most important next steps to design
approaches that cover and coordinate multiple security aspects at the same time.
In particular, data confidentiality, integrity, service availability, access control, and
anonymity have to be addressed. Many research questions remain to be solved in
order to accomplish this goal, for instance with respect to understanding, formaliz-
ing, and coping with interdependencies between security mechanisms. However, if
these challenges can be overcome, “secure DaaS” could become an integrated product
that is easy to distribute and deploy.

Second, we consider it an important topic to recognize the management of a public
DHT as an integral service that is a direct requirement for DHTs to become an
attractive and sustainable platform for decentralized applications. Hence, publicly
deployed DHTs should support application developers actively at monitoring and
simulating the DHT’s behavior. In particular, it should be easy to quickly analyze the
DHT’s current state. This could either be achieved by extending the DHT protocol,
enabling clients to provide the required information directly, or by letting researchers
design suitable frameworks and tools. One of the hardest questions on the way
towards this goal include the task of designing an approach that allows to derive a
comprehensive and accurate model of the DHT’s current state automatically. This
model could then be used to allow decentralized applications to adapt appropriately.

171

A

Peer Sightings per Country (June 2014)

In the following, we provide a full list of the peer participation in the MDHT per
country during June 2014. Our results are based on peer sightings, which are defined as
occurrences of peers in representative samples collected from the MDHT. Section 8.4.2
on page 111 further defines and explained the measurement and analysis procedure.

Table A.1 lists our results. For convenience, the number of inhabitants 1 and the
estimated number of Internet users 2 (both in millions) are listed for each coun-
try. Then, the number of peer sightings and its share of all sightings is listed. The
countries are ordered by their share. Lastly, it is stated by which factor a country is
overrepresented when its number of peer sightings is compared to its inhabitants
or its number of Internet users. If, for instance, only 2% of the world’s Internet
users but 4% of all peer sightings originate from a specific country, the country is
overrepresented by a factor of 2. To filter outliers, only those countries were only
included in our list that had at least 1 million inhabitants, 500,000 estimated Internet
users, and at least 10,000 peer sightings.

For our analysis, 1,522 representative peer samples collected in June 2014 were
processed. Together, 95,455,593 peer sightings were contained. Our analysis further-
more assumes a world population of 6,868,879,426 people and estimates 2,457,160,587
Internet users to exist over the world.

I.net Overrepr. per
Rank Name Cont. Pop. Users Sightings Share Inhab. I.net User

M M k [%]
1 Russia EU 140.7 61.5 17910.5 18.8 9.2 7.5
2 United States NA 310.2 277.2 10545.7 11.1 2.4 1.0
3 Ukraine EU 45.4 15.3 5074.6 5.3 8.0 8.5

1http://www.geonames.org/countries/, [last visited in October 2014]
2http://www.internetworldstats.com/list2.htm, [last visited in October 2014]

173

A Peer Sightings per Country (June 2014)

4 France EU 64.8 50.3 4603.3 4.8 5.1 2.4
5 United Kingdom EU 62.3 52.7 4093.0 4.3 4.7 2.0
6 Canada NA 33.7 28.5 3975.8 4.2 8.5 3.6
7 Brazil SA 201.1 81.8 3122.2 3.3 1.1 1.0
8 Australia OC 21.5 19.6 2895.7 3.0 9.7 3.8
9 Hungary EU 10.0 6.5 2677.6 2.8 19.3 10.6
10 India AS 1173.1 121.0 2165.9 2.3 0.1 0.5
11 South Korea AS 48.4 40.3 2159.9 2.3 3.2 1.4
12 Bulgaria EU 7.1 3.6 2113.5 2.2 21.3 15.2
13 Romania EU 22.0 8.6 2087.9 2.2 6.8 6.3
14 Spain EU 46.5 30.7 1994.2 2.1 3.1 1.7
15 Sweden EU 9.6 8.4 1700.7 1.8 12.8 5.2
16 China AS 1330.0 617.6 1377.1 1.4 0.1 0.1
17 Netherlands EU 16.6 15.1 1212.9 1.3 5.2 2.1
18 Japan AS 127.3 101.2 1209.8 1.3 0.7 0.3
19 Greece EU 11.0 5.0 1088.8 1.1 7.1 5.6
20 Italy EU 60.3 35.8 1078.8 1.1 1.3 0.8
21 Israel AS 7.4 5.3 1061.0 1.1 10.4 5.2
22 Kazakhstan AS 15.3 5.4 882.4 0.9 4.1 4.2
23 Portugal EU 10.7 5.5 765.3 0.8 5.2 3.6
24 Turkey AS 77.8 36.5 761.7 0.8 0.7 0.5
25 Belarus EU 9.7 4.4 744.8 0.8 5.5 4.3
26 Belgium EU 10.4 8.5 724.0 0.8 5.0 2.2
27 Argentina SA 41.3 28.0 710.0 0.7 1.2 0.7
28 Poland EU 38.5 23.9 682.9 0.7 1.3 0.7
29 Norway EU 5.0 4.6 620.4 0.7 8.9 3.5
30 Lithuania EU 3.6 2.1 615.8 0.7 12.4 7.5
31 Serbia EU 7.3 4.1 607.7 0.6 6.0 3.8
32 Denmark EU 5.5 5.0 581.4 0.6 7.6 3.0
33 Thailand AS 67.1 18.3 579.2 0.6 0.6 0.8
34 Slovenia EU 2.0 1.4 573.8 0.6 20.6 10.4
35 UAE AS 5.0 5.9 548.1 0.6 7.9 2.4
36 Mexico NA 112.5 51.2 535.4 0.6 0.3 0.3
37 Moldova EU 4.3 1.4 533.7 0.6 8.9 9.6
38 Latvia EU 2.2 1.5 524.7 0.6 17.0 8.8
39 Malaysia AS 28.3 17.7 516.2 0.5 1.3 0.7
40 Pakistan AS 184.4 29.1 485.3 0.5 0.2 0.4
41 Saudi Arabia AS 25.7 13.0 473.3 0.5 1.3 0.9
42 Philippines AS 99.9 33.6 469.7 0.5 0.3 0.4
43 Taiwan AS 22.9 16.1 459.5 0.5 1.4 0.7
44 South Africa AF 49.0 6.8 440.1 0.5 0.6 1.7
45 Algeria AF 34.6 5.2 437.4 0.5 0.9 2.2
46 Germany EU 81.8 67.4 408.0 0.4 0.4 0.2
47 Chile SA 16.7 10.0 334.1 0.3 1.4 0.9
48 Indonesia AS 243.0 55.0 329.1 0.3 0.1 0.2
49 Vietnam AS 89.6 30.9 276.9 0.3 0.2 0.2
50 Egypt AF 80.5 29.8 274.1 0.3 0.2 0.2
51 Singapore AS 4.7 3.7 272.7 0.3 4.2 1.9
52 Hong Kong AS 6.9 4.9 269.8 0.3 2.8 1.4
53 Finland EU 5.2 4.7 267.6 0.3 3.7 1.5
54 New Zealand OC 4.3 3.3 234.7 0.2 4.0 1.8
55 Venezuela SA 27.2 11.0 227.9 0.2 0.6 0.5
56 Colombia SA 44.2 28.5 227.8 0.2 0.4 0.2

174

57 Switzerland EU 7.6 6.4 206.7 0.2 2.0 0.8
58 Croatia EU 4.5 3.2 183.0 0.2 2.9 1.5
59 Ireland EU 4.6 3.1 154.8 0.2 2.4 1.3
60 Slovakia EU 5.5 4.3 145.8 0.1 1.9 0.9
61 Czechia EU 10.5 7.4 145.6 0.1 1.0 0.5
62 Morocco AF 31.6 15.7 141.8 0.1 0.3 0.2
63 Bosnia and Herz. EU 4.6 2.0 140.7 0.1 2.2 1.9
64 Armenia AS 3.0 1.8 129.7 0.1 3.1 1.9
65 Azerbaijan AS 8.3 4.7 120.8 0.1 1.0 0.7
66 Estonia EU 1.3 1.0 113.5 0.1 6.3 2.9
67 Georgia AS 4.6 1.3 101.4 0.1 1.6 2.0
68 Uruguay SA 3.5 1.9 85.7 0.1 1.8 1.2
69 Macedonia EU 2.1 1.1 84.4 0.1 2.9 2.0
70 Peru SA 29.9 10.0 83.7 0.1 0.2 0.2
71 Tunisia AF 10.6 3.9 79.4 0.1 0.5 0.5
72 Austria EU 8.2 6.6 77.0 0.1 0.7 0.3
73 Iran AS 76.9 36.5 77.0 0.1 0.1 0.1
74 Kyrgyzstan AS 5.5 2.2 66.9 0.1 0.9 0.8
75 Ecuador SA 14.8 11.6 56.8 0.1 0.3 0.1
76 Kuwait AS 2.8 1.1 55.2 0.1 1.4 1.3
77 Cyprus EU 1.1 0.7 54.1 0.1 3.5 2.1
78 Dominican Rep. NA 9.8 4.6 53.4 0.1 0.4 0.3
79 Puerto Rico NA 3.9 1.7 52.1 0.1 1.0 0.8
80 Bangladesh AS 156.1 8.1 51.0 0.1 0.0 0.2
81 Jamaica NA 2.8 1.6 50.9 0.1 1.3 0.8
82 Trin. and Tobago NA 1.2 0.7 45.3 0.1 2.7 1.8
83 Uzbekistan AS 27.9 8.6 42.0 0.0 0.1 0.1
84 Nepal AS 29.0 2.0 40.3 0.0 0.1 0.5
85 Albania EU 3.0 1.5 39.4 0.0 0.9 0.7
86 Sri Lanka AS 21.5 2.5 39.2 0.0 0.1 0.4
87 Iraq AS 29.7 1.3 32.9 0.0 0.1 0.6
88 Syria AS 22.2 5.1 28.7 0.0 0.1 0.1
89 Ghana AF 24.3 2.1 27.4 0.0 0.1 0.3
90 Ethiopia AF 88.0 1.0 24.0 0.0 0.0 0.6
91 Jordan AS 6.4 2.0 22.5 0.0 0.3 0.3
92 Costa Rica NA 4.5 2.0 22.2 0.0 0.4 0.3
93 Oman AS 3.0 1.7 22.1 0.0 0.5 0.3
94 Palestine AS 3.8 1.5 19.4 0.0 0.4 0.3
95 Senegal AF 12.3 2.0 18.3 0.0 0.1 0.2
96 Kenya AF 40.0 21.3 16.5 0.0 0.0 0.0
97 Nigeria AF 154.0 45.0 16.0 0.0 0.0 0.0
98 Paraguay SA 6.4 1.5 16.0 0.0 0.2 0.3
99 El Salvador NA 6.1 1.5 15.6 0.0 0.2 0.3
100 Panama NA 3.4 1.5 14.7 0.0 0.3 0.3
101 Guatemala NA 13.6 2.3 14.3 0.0 0.1 0.2
102 Angola AF 13.1 3.0 13.1 0.0 0.1 0.1
103 Lebanon AS 4.1 1.4 13.0 0.0 0.2 0.2
104 Bolivia SA 9.9 2.0 10.9 0.0 0.1 0.1

Table A.1: MDHT Participation per Country (June 2014).

175

Bibliography

[ABG+05] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-
Molina, Krishnaram Kenthapadi, Rajeev Motwani, Utkarsh Srivastava,
Dilys Thomas, and Ying Xu. Two can keep a secret: A distributed
architecture for secure database services. In Proceedings of CIDR, 2005.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010.

[AGH11] Dirk Achenbach, Matthias Gabel, and Matthias Huber. Mimosecco:
A middleware for secure cloud storage. In Daniel D. Frey, Shuichi
Fukuda, and Georg Rock, editors, Improving Complex Systems Today,
Advanced Concurrent Engineering, pages 175–181. Springer London,
2011.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong
Xu. Order preserving encryption for numeric data. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’04, pages 563–574, New York, NY, USA, 2004. ACM.

[AL08] Jordi Pujol Ahulló and Pedro Garćıa López. Planetsim: An exten-
sible framework for overlay network and services simulations. In
Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops,
Simutools ’08, pages 45:1–45:1. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008.

[And04] David P. Anderson. Boinc: a system for public-resource computing
and storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on, pages 4–10, Nov 2004.

[Bau08] Ingmar Baumgart. P2PNS: A Secure Distributed Name Service for
P2PSIP. In Proceedings of the 2008 Sixth Annual IEEE International
Conference on Pervasive Computing and Communications, pages 480–
485, 2008.

177

BIBLIOGRAPHY

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Determinis-
tic and efficiently searchable encryption. In Alfred Menezes, editor,
Advances in Cryptology - CRYPTO 2007, volume 4622 of Lecture Notes
in Computer Science, pages 535–552. Springer Berlin Heidelberg, 2007.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam
O’Neill. Order-preserving symmetric encryption. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, volume 5479 of
Lecture Notes in Computer Science, pages 224–241. Springer Berlin
Heidelberg, 2009.

[BD87] George EP Box and Norman R Draper. Empirical model-building and
response surfaces., page 424. John Wiley & Sons, 1987.

[BHK07] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. Oversim:
A flexible overlay network simulation framework. In IEEE Global
Internet Symposium, 2007, pages 79–84, 2007.

[BL07] Andreas Binzenhöfer and Kenji Leibnitz. Estimating churn in struc-
tured p2p networks. In Lorne Mason, Tadeusz Drwiega, and James
Yan, editors, Managing Traffic Performance in Converged Networks,
volume 4516 of Lecture Notes in Computer Science, pages 630–641.
Springer Berlin Heidelberg, 2007.

[BMR+06] Andrew Brampton, Andrew MacQuire, Idris A. Rai, Nicholas J. P. Race,
and Laurent Mathy. Stealth Distributed Hash Table: a Robust and
Flexible Super-Peered DHT. In Proceedings of the 2006 ACM CoNEXT
conference, CoNEXT ’06, pages 19:1–19:12, 2006.

[BQ04] Fabian E. Bustamante and Yi Qiao. Friendships that last: Peer lifespan
and its role in p2p protocols. In Fred Douglis and BrianD. Davison, ed-
itors, Web Content Caching and Distribution, pages 233–246. Springer
Netherlands, 2004.

[BS07] Andreas Binzenhöfer and Holger Schnabel. Improving the perfor-
mance and robustness of kademlia-based overlay networks. In Torsten
Braun, Georg Carle, and Burkhard Stiller, editors, Kommunikation in
Verteilten Systemen (KiVS), Informatik aktuell, pages 15–26. Springer
Berlin Heidelberg, 2007.

[CDV+05] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani Di Vimercati,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Modeling
and assessing inference exposure in encrypted databases. ACM Trans.
Inf. Syst. Secur., 8(1):119–152, February 2005.

[CDVF+07] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Fragmen-

178

BIBLIOGRAPHY

tation and encryption to enforce privacy in data storage. In Computer
Security–ESORICS 2007, pages 171–186. Springer, 2007.

[Cha98] Surajit Chaudhuri. An overview of query optimization in relational
systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’98, pages
34–43, New York, NY, USA, 1998. ACM.

[Cho13] Kristina Chodorow. MongoDB: the definitive guide. O’Reilly Media,
Inc., 2013.

[CJNP02] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier.
Universal padding schemes for rsa. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 226–241. Springer Berlin Heidelberg, 2002.

[CKC+13] Rubén Cuevas, Michal Kryczka, Angel Cuevas, Sebastian Kaune, Car-
men Guerrero, and Reza Rejaie. Unveiling the incentives for content
publishing in popular bittorrent portals. Networking, IEEE/ACM Trans-
actions on, 21(5):1421–1435, Oct 2013.

[CSM11] Damiano Carra, Moritz Steiner, and Pietro Michiardi. Adaptive load
balancing in kad. In Peer-to-Peer Computing (P2P), 2011 IEEE Interna-
tional Conference on, pages 92–101. IEEE, 2011.

[CVF+09] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Fragmen-
tation design for efficient query execution over sensitive distributed
databases. In Proceedings of the 2009 29th IEEE International Con-
ference on Distributed Computing Systems, ICDCS ’09, pages 32–39,
Washington, DC, USA, 2009. IEEE Computer Society.

[CVF+10] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Com-
bining fragmentation and encryption to protect privacy in data stor-
age. ACM Transactions on Information and System Security (TISSEC),
13(3):22:1–22:33, July 2010.

[CW07] Scott A. Crosby and Dan S. Wallach. An analysis of bittorrent’s two
kademlia-based dhts. Technical report, Technical Report TR07-04,
Rice University, 2007.

[DCdVFJ+13] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. On information leakage by indexes over data fragments. In
Data Engineering Workshops (ICDEW), 2013 IEEE 29th International
Conference on, pages 94–98, April 2013.

179

BIBLIOGRAPHY

[DH06] Jochen Dinger and Hannes Hartenstein. Defending the sybil at-
tack in p2p networks: taxonomy, challenges, and a proposal for self-
registration. In Availability, Reliability and Security, 2006. ARES 2006.
The First International Conference on, pages 756–763, April 2006.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.

[DJWC08] Jochen Dinger, Konrad Jünemann, Oliver Waldhorst, and Michael
Conrad. Autonome kommunikationsinfrastrukturen. eine praxisnahe
betrachtung. PIK-Praxis der Informationsverarbeitung und Kommu-
nikation, 31(2):69–75, 2008.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with CFS. In ACM SIGOPS
Operating Systems Review, volume 35, pages 202–215, 2001.

[DVJ+03] Ernesto Damiani, S. De Capitani Vimercati, Sushil Jajodia, Stefano
Paraboschi, and Pierangela Samarati. Balancing confidentiality and
efficiency in untrusted relational dbmss. In Proceedings of the 10th
ACM Conference on Computer and Communications Security, CCS ’03,
pages 93–102, New York, NY, USA, 2003. ACM.

[DW09] Jochen Dinger and Oliver P. Waldhorst. Decentralized bootstrapping
of p2p systems: A practical view. In Luigi Fratta, Henning Schulzrinne,
Yutaka Takahashi, and Otto Spaniol, editors, NETWORKING 2009,
volume 5550 of Lecture Notes in Computer Science, pages 703–715.
Springer Berlin Heidelberg, 2009.

[FFM04] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democ-
ratizing content publication with coral. In Proc. of the 1st conf. on
Symposium on Networked System Design and Impl. - Volume 1, pages
18–18, 2004.

[FGK03] S. Frankel, R. Glenn, and S. Kelly. RFC3602 - The AES-CBC Cipher
Algorithm and Its Use with IPsec. http://tools.ietf.org/html/rfc3602,
September 2003.

[FLRS05] Michael J. Freedman, Karthik Lakshminarayanan, Sean Rhea, and Ion
Stoica. Non-transitive connectivity and dhts. In Proceedings of the 2Nd
Conference on Real, Large Distributed Systems - Volume 2, WORLDS’05,
pages 55–60, Berkeley, CA, USA, 2005. USENIX Association.

180

BIBLIOGRAPHY

[For10] Sara Foresti. Preserving privacy in data outsourcing, volume 99.
Springer, 2010.

[FPJ+07] Jarret Falkner, Michael Piatek, John P. John, Arvind Krishnamurthy,
and Thomas Anderson. Profiling a Million User DHT. In Proc. of the
7th ACM SIGCOMM conference on Internet measurement, IMC ’07,
pages 129–134, 2007.

[Fre10] Michael J. Freedman. Experiences with coralcdn: A five-year opera-
tional view. In NSDI, pages 95–110, 2010.

[FSK05] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-Peer Commu-
nication Across Network Address Translators. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, pages
13–13, 2005.

[FSK14] Jason Farina, Mark Scanlon, and M-Tahar Kechadi. Bittorrent sync:
First impressions and digital forensic implications. Digital Investiga-
tion, 11, Supplement 1(0):S77 – S86, 2014. Proceedings of the First
Annual (DFRWS) Europe.

[GCX+05] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and
Xiaodong Zhang. Measurements, analysis, and modeling of bittorrent-
like systems. In Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement, IMC ’05, pages 4–4, Berkeley, CA, USA, 2005.
USENIX Association.

[GH14] Matthias Gabel and Gerald Hübsch. Secure database outsourcing to
the cloud using the mimosecco middleware. In Helmut Krcmar, Ralf
Reussner, and Bernhard Rumpe, editors, Trusted Cloud Computing,
pages 187–202. Springer International Publishing, 2014.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 28(2):270 – 299, 1984.

[GMR+12] Nelson Gonzalez, Charles Miers, Fernando Redı́golo, Marcos
Simpĺıcio, Tereza Carvalho, Mats Näslund, and Makan Pourzandi.
A quantitative analysis of current security concerns and solutions for
cloud computing. Journal of Cloud Computing, 1(1), 2012.

[GO14] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2014.

[Gon01] Li Gong. Jxta: a network programming environment. Internet Com-
puting, IEEE, 5(3):88–95, May 2001.

[GTF+11] Vignesh Ganapathy, Dilys Thomas, Tomas Feder, Hector Garcia-
Molina, and Rajeev Motwani. Distributing data for secure database
services. In Proceedings of the 4th International Workshop on Privacy

181

BIBLIOGRAPHY

and Anonymity in the Information Society, PAIS ’11, pages 8:1–8:10, New
York, NY, USA, 2011. ACM.

[HBH07] Dieter Hildebrandt, Ludger Bischofs, and Wilhelm Hasselbring.
Realpeer–a framework for simulation-based development of peer-to-
peer systems. In Parallel, Distributed and Network-Based Processing,
2007. PDP ’07. 15th EUROMICRO International Conference on, pages
490–497, 2007.

[HGSB13] Matthias Huber, Matthias Gabel, Marco Schulze, and Alexander Bieber.
Cumulus4j: A provably secure database abstraction layer. In Alfredo
Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl, and Lida
Xu, editors, Security Engineering and Intelligence Informatics, volume
8128 of Lecture Notes in Computer Science, pages 180–193. Springer
Berlin Heidelberg, 2013.

[HHK+10] Christian Henrich, Matthias Huber, Carmen Kempka, Jörn Müller-
Quade, and Ralf Reussner. Technical report: Secure cloud computing
through a separation of duties, 2010.

[HILM02] Hakan Hacıgümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Exe-
cuting SQL over Encrypted Data in the Database-Service-Provider
Model. In Proc. of SIGMOD, 2002.

[HIM04] Hakan Hacıgümüş, Bala Iyer, and Sharad Mehrotra. Efficient execution
of aggregation queries over encrypted relational databases. In Database
Systems for Advanced Applications, pages 125–136. Springer, 2004.

[HM10] Terry Halpin and Tony Morgan. Information modeling and relational
databases. Morgan Kaufmann, 2010.

[HMCK12] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu.
Secure multidimensional range queries over outsourced data. The
VLDB Journal, 21(3):333–358, June 2012.

[IUKB+04] Mikel Izal, Guillaume Urvoy-Keller, Ernst W Biersack, Pascal A Felber,
Anwar Al Hamra, and Luis Garces-Erice. Dissecting bittorrent: Five
months in a torrent’s lifetime. In Chadi Barakat and Ian Pratt, editors,
Passive and Active Network Measurement, volume 3015 of Lecture Notes
in Computer Science, pages 1–11. Springer Berlin Heidelberg, 2004.

[JADH10] Konrad Jünemann, Philipp Andelfinger, Jochen Dinger, and Hannes
Hartenstein. Bitmon: A tool for automated monitoring of the bittorrent
dht. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth International
Conference on, pages 1–2, Aug 2010.

[JAH11] Konrad Jünemann, Philipp Andelfinger, and Hannes Hartenstein. To-
wards a basic dht service: Analyzing network characteristics of a widely

182

BIBLIOGRAPHY

deployed dht. In Computer Communications and Networks (ICCCN),
2011 Proceedings of 20th International Conference on, pages 1–7, July
2011.

[Jai91] Raj K. Jain. The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing. Wiley, 1991.

[JH14] Konrad Jünemann and Hannes Hartenstein. Self-optimization of dht
lookups through run-time performance analysis. In High Performance
Computing & Simulation (HPCS), 2014 International Conference on,
pages 407–415, July 2014.

[JKH12] Konrad Jünemann, Jens Köhler, and Hannes Hartenstein. Data out-
sourcing simplified: Generating data connectors from confidentiality
and access policies. In Cluster, Cloud and Grid Computing (CCGrid),
2012 12th IEEE/ACM International Symposium on, pages 923–930, May
2012.

[JOK09] Raúl Jiménez, Flutra Osmani, and Björn Knutsson. Connectivity Prop-
erties of Mainline BitTorrent DHT nodes. In IEEE Ninth International
Conf. on Peer-to-Peer Computing, (P2P ’09), pages 262–270, 2009.

[JOK11] Raúl Jiménez, Flutra Osmani, and Björn Knutsson. Sub-Second
lookups on a Large-Scale Kademlia-Based overlay. In 11th IEEE Inter-
national Conf. on Peer-to-Peer Computing 2011 (P2P’11), Kyoto, Japan,
2011.

[JWHL13] Konrad Jünemann, Andreas Wagner, Andreas Harth, and Michael
Langhammer. iZEUS AP 530: Basisdienste. Arbeitspaketbericht,
Projekt iZEUS, September 2013.

[KJ14] Jens Köhler and Konrad Jünemann. Securus: From confidentiality and
access requirements to data outsourcing solutions. In Marit Hansen,
Jaap-Henk Hoepman, Ronald Leenes, and Diane Whitehouse, editors,
Privacy and Identity Management for Emerging Services and Technolo-
gies, volume 421 of IFIP Advances in Information and Communication
Technology, pages 139–149. Springer Berlin Heidelberg, 2014.

[KJH14] Jens Köhler, Konrad Jünemann, and Hannes Hartenstein. Securus:
Composition of confidentiality preserving indexing approaches for
secure database-as-a-service. PIK-Praxis der Informationsverarbeitung
und Kommunikation, 37(2):149–155, 2014.

[KL06] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptogra-
phy: principles and protocols. CRC Press, 2006.

183

BIBLIOGRAPHY

[KLKP08] Sebastian Kaune, Tobias Lauinger, Aleksandra Kovacevic, and Kon-
stantin Pussep. Embracing the peer next door: Proximity in kademlia.
In Peer-to-Peer Computing, 2008. P2P’08. Eighth International Confer-
ence on, pages 343–350. IEEE, 2008.

[KN10] Gunnar Kreitz and Fredrik Niemelä. Spotify–large scale, low latency,
p2p music-on-demand streaming. In Peer-to-Peer Computing (P2P),
2010 IEEE Tenth International Conference on, pages 1–10. IEEE, 2010.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages
965–976, New York, NY, USA, 2012. ACM.

[KV08] Florian Kerschbaum and Julien Vayssière. Privacy-preserving data
analytics as an outsourced service. In Proceedings of the 2008 ACM
Workshop on Secure Web Services, SWS ’08, pages 87–96, New York,
NY, USA, 2008. ACM.

[LF03] Alexander Linden and Jackie Fenn. Understanding gartner’s hype
cycles. Strategic Analysis Report Nº R-20-1971. Gartner, Inc, 2003.

[LG08] John DC Little and Stephen C Graves. Little’s law. In Building Intuition,
pages 81–100. Springer, 2008.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review,
44(2):35–40, 2010.

[LO05] Jun Li and Edward R. Omiecinski. Efficiency and security trade-off in
supporting range queries on encrypted databases. In Sushil Jajodia
and Duminda Wijesekera, editors, Data and Applications Security
XIX, volume 3654 of Lecture Notes in Computer Science, pages 69–83.
Springer Berlin Heidelberg, 2005.

[Loe08] Andrew Loewenstern. BitTorrent Enhancement Proposal (BEP5):
DHT Protocol. http://www.bittorrent.org/beps/bep 0005.html, 2008.
last retrieved in August 2014.

[LSM+05] Jinyang Li, Jeremy Stribling, Robert Morris, M Frans Kaashoek, and
Thomer M Gil. A performance vs. cost framework for evaluating
dht design tradeoffs under churn. In INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, volume 1, pages 225–236. IEEE, 2005.

[LWZ+12] Bingshuang Liu, Tao Wei, Jianyu Zhang, Jun Li, Wei Zou, and Mo Zhou.
Revisiting why kad lookup fails. In Peer-to-Peer Computing (P2P), 2012
IEEE 12th International Conference on, pages 37–42, Sept 2012.

184

BIBLIOGRAPHY

[MCPCLG13] Adan G. Medrano-Chavez, Elizabeth Perez-Cortes, and Miguel Lopez-
Guerrero. On the effect of peer online times on the lookup service of
chord and kademlia p2p systems. In Communications (LATINCOM),
2013 IEEE Latin-America Conference on, pages 1–6, Nov 2013.

[MJ09] Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simula-
tor. In Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth International
Conference on, pages 99–100, 2009.

[MKBA+09] Harsha V. Madhyastha, Ethan Katz-Bassett, Thomas E. Anderson,
Arvind Krishnamurthy, and Arun Venkataramani. iplane nano: Path
prediction for peer-to-peer applications. In Proceedings of USENIX
NSDI, volume 9, pages 137–152, 2009.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1), March 2007.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In P2P Systems, pages
53–65, 2002.

[MPP05] Amihai Motro and Francesco Parisi-Presicce. Blind custodians: A
database service architecture that supports privacy without encryption.
In Data and Applications Security XIX, pages 338–352. Springer, 2005.

[MRGS09] Ghulam Memon, Reza Rejaie, Yang Guo, and Daniel Stutzbach. Large-
scale monitoring of dht traffic. In IPTPS, volume 9, pages 1–11, 2009.

[MRGS12] Ghulam Memon, Reza Rejaie, Yang Guo, and Daniel Stutzbach. Mon-
tra: A large-scale dht traffic monitor. Computer Networks, 56(3):1080–
1091, 2012.

[MT06] Einar Mykletun and Gene Tsudik. Aggregation queries in the database-
as-a-service model. Data and Applications Security XX, pages 89–103,
2006.

[NLB+07] Stephen Naicken, Barnaby Livingston, Anirban Basu, Sethalat Rod-
hetbhai, Ian Wakeman, and Dan Chalmers. The state of peer-to-peer
simulators and simulations. SIGCOMM Comput. Commun. Rev., 37(2),
March 2007.

[Nor14a] Arvid Norberg. BitTorrent DHT Security Extension, Version 1.0.0,
Januar 2014. http://www.bittorrent.org/beps/bep 0042.html, 2014. last
retrieved in August 2014.

185

BIBLIOGRAPHY

[Nor14b] Arvid Norberg. Email: “DHT Implementation in uTorrent” – Publica-
tion Permission, personal communication, July 3, 2014.

[Nor14c] Arvid Norberg. Email: “DHT Implementation in uTorrent”, personal
communication, June 27, 2014.

[Nor14d] Arvid Norberg. Email: “Peers in Mainline DHT increases by 15 mil-
lions in 7 days - reasons?” – Part 1, personal communication, May 19,
2014.

[Nor14e] Arvid Norberg. Email: “Peers in Mainline DHT increases by 15 mil-
lions in 7 days - reasons?” – Part 2, personal communication, May 24,
2014.

[NRZ+07] Giovanni Neglia, Giuseppe Reina, Honggang Zhang, Donald F
Towsley, Arun Venkataramani, and John S Danaher. Availability in
bittorrent systems. In INFOCOM 2007. 26th IEEE International Con-
ference on Computer Communications. IEEE, pages 2216–2224, May
2007.

[OGJK12] Flutra Osmani, Victor Grishchenko, Raul Jiménez, and Björn
Knutsson. Swift: The missing link between peer-to-peer and
information-centric networks. In Proceedings of the First Workshop
on P2P and Dependability, P2P-Dep ’12, pages 4:1–4:6, New York, NY,
USA, 2012. ACM.

[OHKY10] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Yliant-
tila. Performance evaluation of a Kademlia-based communication-
oriented P2P system under churn. Computer Networks, 54(5):689–705,
2010.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryp-
tosystem as secure as factoring. In Kaisa Nyberg, editor, Advances
in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in
Computer Science, pages 308–318. Springer Berlin Heidelberg, 1998.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology -
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 223–238. Springer Berlin Heidelberg, 1999.

[PGES05] Johan Pouwelse, PaweThl Garbacki, Dick Epema, and Henk Sips. The
bittorrent p2p file-sharing system: Measurements and analysis. In
Peer-to-Peer Systems IV, pages 205–216. Springer, 2005.

[Pre94] Bart Preneel. Cryptographic hash functions. European Transactions
on Telecommunications, 5(4):431–448, 1994.

186

BIBLIOGRAPHY

[PRZB11] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. Cryptdb: Protecting confidentiality with encrypted
query processing. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 85–100, New York,
NY, USA, 2011. ACM.

[PZB11] Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: A practical encrypted relational dbms. Technical report,
MIT, 2011.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data
banks and privacy homomorphisms. Foundations of secure computa-
tion, 4(11):169–180, 1978.

[RD01a] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware 2001, pages 329–350. Springer, 2001.

[RD01b] Antony Rowstron and Peter Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage util-
ity. In ACM SIGOPS Operating Systems Review, volume 35, pages
188–201, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network, volume 31.
ACM, 2001.

[RGK+05] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia
Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu. OpenDHT: a
Public DHT Service and its Uses. In Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for computer
communications, SIGCOMM ’05, pages 73–84, 2005.

[RGRK04] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.
Handling churn in a dht. In Proceedings of the USENIX Annual Tech-
nical Conference, pages 127–140. Boston, MA, USA, 2004.

[RSKM09] Jedrzej Rybicki, Björn Scheuermann, Markus Koegel, and Martin
Mauve. PeerTIS: a peer-to-peer traffic information system. In Proc. of
the 6th ACM intern. work. on Vehicular InterNETworking, VANET ’09,
pages 23–32, 2009.

[RSS13] Stefanie Roos, Hani Salah, and Thorsten Strufe. Comprehending
kademlia routing - a theoretical framework for the hop count distribu-
tion. Technical report, TU Darmstadt, 2013.

[RWHM03] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. RFC3489 -
STUN - Simple Traversal of User Datagram Protocol (UDP) Through

187

BIBLIOGRAPHY

Network Address Translators (NATs). http://tools.ietf.org/html/rfc34
89, March 2003.

[SB08] Moritz Steiner and Ernst W. Biersack. Crawling azureus. Institut
Eurecom, France, Tech. Rep. EURECOM, 2495(06), 2008.

[SBEN07] Moritz Steiner, Ernst W. Biersack, and Taoufik En-Najjary. Actively
monitoring peers in kad. In IPTPS, volume 7, pages 26–27, 2007.

[SCB10] Moritz Steiner, Damiano Carra, and Ernst W. Biersack. Evaluating
and improving the content access in kad. Peer-to-peer networking and
applications, 3(2):115–128, 2010.

[SENB07] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. A Global
View of KAD. In IMC ’07: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 117–122, 2007.

[SENB09] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Long Term
Study of Peer Behavior in the KAD DHT. IEEE/ACM Transactions on
Networking, 17(5):1371–1384, 2009.

[SLG+09] Guangyu Shi, Youshui Long, Hao Gong, Changqing Wan, Chuanliang
Yu, Xianqing Yang, Hongli Zhang, and Yunfei Zhang. Hifip2p: The
simulator capable of massive nodes and measured underlay. In Par-
allel, Distributed and Network-based Processing, 2009 17th Euromicro
International Conference on, 2009.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 149–160, New York, NY, USA,
2001. ACM.

[SR05a] Daniel Stutzbach and Reza Rejaie. Capturing accurate snapshots of the
gnutella network. In INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings IEEE,
volume 4, pages 2825–2830 vol. 4, March 2005.

[SR05b] Daniel Stutzbach and Reza Rejaie. Characterizing churn in peer-to-
peer networks. University of Oregon, Eugene, OR, Tech. Rep. CIS-TR-
2005-03, 2005.

[SR06a] Daniel Stutzbach and Reza Rejaie. Improving Lookup Performance
Over a Widely-Deployed DHT. In Proc. of the 25th IEEE International
Conf. on Computer Communications (INFOCOM 2006)., pages 1–12,
2006.

188

BIBLIOGRAPHY

[SR06b] Daniel Stutzbach and Reza Rejaie. Understanding Churn in Peer-to-
Peer Networks. In Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, IMC ’06, pages 189–202, 2006.

[SS13] Hani Salah and Thorsten Strufe. Capturing connectivity graphs of a
large-scale p2p overlay network. In Distributed Computing Systems
Workshops (ICDCSW), 2013 IEEE 33rd International Conference on,
pages 172–177, July 2013.

[Sue02] Steve Suehring. Mysql bible. John Wiley & Sons, Inc., 2002.

[SW04] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across
large networks. IEEE/ACM Trans. Netw., 12(2), April 2004.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 10(05):557–570, 2002.

[SWP00] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical
techniques for searches on encrypted data. In Security and Privacy,
2000. S P 2000. Proceedings. 2000 IEEE Symposium on, pages 44–55,
2000.

[SZFY12] Majing Su, Hongli Zhang, Binxing Fang, and Ning Yan. A measure-
ment study on swarm evolution of bittorrent. In Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (CyberC), 2012 Interna-
tional Conference on, pages 512–518, Oct 2012.

[TVS07] Andrew Tanenbaum and Maarten Van Steen. Distributed systems.
Pearson Prentice Hall, 2007.

[WCZJ04] Wenjie Wang, Hyunseok Chang, A. Zeitoun, and S. Jamin. Character-
izing Guarded Hosts in Peer-to-Peer File Sharing Systems. In Global
Telecommunications Conference. GLOBECOM ’04, volume 3, pages
1539–1543, 2004.

[WDH+10] Di Wu, Prithula Dhungel, Xiaojun Hei, Chao Zhang, and Keith W.
Ross. Understanding peer exchange in bittorrent systems. In Peer-to-
Peer Computing (P2P), 2010 IEEE Tenth International Conference on,
pages 1–8, Aug 2010.

[Whi09] Tom White. Hadoop: the definitive guide: the definitive guide. O’Reilly
Media, Inc., 2009.

[WJL+12] Andreas Wagner, Konrad Jünemann, Michael Langhammer, Jörg
Henß, Steffen Stadtmüller, and Andreas Harth. iZEUS AP 520: Plat-
tformkonzept E-Mobility Dienste. Arbeitspaketbericht, Projekt iZEUS,
Oktober 2012.

189

BIBLIOGRAPHY

[WK13] Liang Wang and Jussi Kangasharju. Measuring large-scale distributed
systems: Case of bittorrent mainline dht. In Peer-to-Peer Computing
(P2P), 2013 IEEE 13th International Conference on, 2013.

[WTN06] Di Wu, Ye Tian, and Kam-Wing Ng. Analytical study on improving dht
lookup performance under churn. In Peer-to-Peer Computing, 2006.
P2P 2006. Sixth IEEE International Conference on, pages 249–258, Sept
2006.

[www14a] Hazelcast Project Website. http://hazelcast.com, 2014. last visited in
October 2014.

[www14b] Maidsafe Project Website. http://maidsafe.net/, 2014. last visited in
October 2014.

[www14c] OpenChord Project Website. http://sourceforge.net/projects/open-
chord/, 2014. last visited in October 2014.

[XGS11] Li Xiong, Slawomir Goryczka, and Vaidy Sunderam. Adaptive, secure,
and scalable distributed data outsourcing: a vision paper. In Proc. of
3DAPAS, 2011.

[YLX+11] Jie Yu, Liming Lu, Peng Xiao, Zhoujun Li, and Yuan Zhou. Monitor-
ing, analyzing and characterizing lookup traffic in a large-scale dht.
Computer Communications, 34(13):1622–1629, 2011.

[YN11] Masahiro Yoshida and Akihiro Nakao. Measuring bittorrent swarms
beyond reach. In Peer-to-Peer Computing (P2P), 2011 IEEE Interna-
tional Conference on, pages 220–229, Aug 2011.

[ZCBP11] Niels Zeilemaker, Mihai Capotă, Arno Bakker, and Johan Pouwelse.
Tribler: P2p media search and sharing. In Proceedings of the 19th ACM
International Conference on Multimedia, MM ’11, pages 739–742, New
York, NY, USA, 2011. ACM.

[ZCY09] Dengyi Zhang, Xuhui Chen, and Hongyun Yang. State of the art and
challenges on peer-to-peer simulators. In Wireless Communications,
Networking and Mobile Computing, 2009. WiCom ’09. 5th International
Conf. on, 2009.

[ZDWR11] Chao Zhang, Prithula Dhungel, Di Wu, and Keith W. Ross. Unravel-
ing the bittorrent ecosystem. Parallel and Distributed Systems, IEEE
Transactions on, 22(7):1164–1177, July 2011.

[ZHS+04] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D
Joseph, and John D Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. Selected Areas in Communications,
IEEE Journal on, 22(1):41–53, 2004.

190

BIBLIOGRAPHY

[ZIP+10] Boxun Zhang, Alexandru Iosup, Johan Pouwelse, Dick Epema, and
Henk Sips. Sampling bias in bittorrent measurements. In Pasqua
D’Ambra, Mario Guarracino, and Domenico Talia, editors, Euro-Par
2010 - Parallel Processing, volume 6271 of Lecture Notes in Computer
Science, pages 484–496. Springer Berlin Heidelberg, 2010.

[ZWXY13] Hao Zhang, Yonggang Wen, Haiyong Xie, and Nenghai Yu. DHT
Platforms, pages 23–38. SpringerBriefs in Computer Science. Springer
New York, 2013.

191

9 783731 503286

ISBN 978-3-7315-0328-6

This thesis addresses the inherent lack of control and trust in
Multi-Party Systems at the examples of the Database-as-a-Service
(DaaS) scenario and public Distributed Hash Tables (DHTs). In the
DaaS field, it is shown how confidential information in a database
can be protected while still allowing the external storage provider
to process incoming queries. For public DHTs, it is shown how
these highly dynamic systems can be managed by facilitating
monitoring, simulation, and self-adaptation.

Ko
nra

d J
ün

em
an

n
Co

nfi
de

nti
al

Da
ta-

Ou
tso

urc
ing

 an
d S

elf
-O

pti
mi

zin
g P

2P
-N

etw
ork

s

