
A
n

d
re

as
 R

en
ts

ch
le

r

17

Model Transformation Languages
with Modular Information Hiding

Andreas Rentschler

The Karlsruhe Series on
Software Design

and Quality

17

M
o

d
el

 T
ra

n
sf

o
rm

at
io

n
 L

an
g

u
ag

es

w
it

h
 M

o
d

u
la

r
In

fo
rm

at
io

n
 H

id
in

g

transformation
module M
 export I1
 import I2 {
 mapping
 A::m1():B {
 }

Andreas Rentschler

Model Transformation Languages
with Modular Information Hiding

The Karlsruhe Series on Software Design and Quality
Volume 17

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Model Transformation Languages
with Modular Information Hiding

von
Andreas Rentschler

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik
Tag der mündlichen Prüfung: 14. Januar 2015
Referenten: Prof. Dr. Ralf Reussner
 Prof. Dr. Bernhard Beckert

Print on Demand 2015

ISSN 1867-0067
ISBN 978-3-7315-0346-0
DOI: 10.5445/KSP/1000045910

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Model Transformation
Languages with

Modular Information Hiding

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie

genehmigte

Dissertation

von

Andreas Rentschler
aus Eberbach (Baden)

Tag der mündlichen Prüfung: 14. Januar 2015
Erster Gutachter: Prof. Dr. Ralf Reussner
Zweiter Gutachter: Prof. Dr. Bernhard Beckert

Abstract

With a ratio of an estimated 60%, maintenance costs constitute a substiantial
share of the lifecycle costs of a typical software project. It is a major ob-
jective of software engineers to explore techniques that help to enhance
maintainability and understandability of software artifacts. One established
concept in this field is modular programming. By providing concepts to
divide functionality into independent modules, modular programming helps
to manage even complex programs. David L. Parnas has expanded on this
idea by introducing the additional concept of module interfaces. Accord-
ing to Parnas, any outbound dependencies of a module must be explicitly
declared in the module’s interface description to foster the encapsulation
of design decisions (information hiding).

Modularity is broadly used by modern general-purpose languages to tackle
the complexity of larger programs. No need for such a high-level concept
arises for most domain-specific languages, i.e., lean languages designed for
compact problem descriptions. One notable exception to this rule of thumb
are model transformation languages. Model transformations, together with
models, form the principal artifacts in model-driven software development,
a methodology of software engineering that aims to automatically generate
large parts of a software from abstract models. In such a process, transforma-
tions play a pivotal role, as they assign semantics to models by means of other
models and languages with already well-defined semantics, usually residing
at a lower level of abstraction. Industrial practitioners report that, despite
their domain-specificity, transformation programs on larger models quickly
get sufficiently large and complex and at the same time less maintainable.

i

A multitude of specific transformation languages exist, and most of them
establish some sort of modularity, but almost all of them solely have reuse in
mind while they neglect maintenance issues. An interface concept to attain
information hiding modularity as propagated by Parnas is supported by
none of them.

This thesis presents three contributions that render maintenance of model
transformations more efficient. The first and major scientific contribution of
this thesis is an information hiding modularity concept tailored to model
transformations. One novelty when it comes to model transformations
is that metamodels are software artifacts that are specified independently
from the transformation. Thus, interfaces must not only control visibility
of methods, but also control accessibility to incoming and outgoing data
types. Access control can be explicitly declared on a fine-grained level, i.e.,
packages and classes inside a metamodel. For obtaining maximal usability,
on top of our proposed syntactical extension, a type inference system is
defined that statically checks at design-time if interface contracts are met
or if they are not. Our module concept has been initially defined for the
imperative transformation language QVT-Operational (QVT-O) due to its
clarity. In the scope of this thesis, it is further shown that the concept is
applicable to declarative transformation languages as well. In this context,
we study the semantics of the declarative transformation language QVT-
Relations (QVT-R).

Legacy transformations are often monolithic or a suitable modular design
cannot be determined. To improve maintenance effort in such cases, we de-
velop a concept for visualization of dependence information according
to the methodology of visual analytics, the second contribution of this thesis.
The concept is implemented as a maintenance tool that statically analyzes
dependencies occurring among mapping methods and model elements. In-
formation is shown in an interactive graph-based view that offers cross-view
navigation and task-dependent filtering.

ii

In addition, a software clustering approach is adapted to the requirements
of the transformation domain. It forms the third contribution of this thesis. In
contrast to previously known approaches, high cohesion and low coupling is
not only based on control dependencies, it can also incorporate dependencies
to the classes of metamodels and their package structure. The approach is
particularly suitable to find decompositions for legacy transformations.

We evaluated each of the three contributions in a case study based on
larger transformations from the Palladio research project. For this purpose,
the module concept had been integrated into two imperative transformation
languages, Xtend and QVT-O.

The first study focuses on an Xtend transformation that maps architec-
tural descriptions in the Palladio component model to simulation code. It is
shown that locating the concerns in the modularized variant requires signifi-
cantly less effort than in the previous unmodularized variant. In the study,
two realistic maintenance scenarios had been examined, a bug fix and a
functional enhancement. The second case study validates the visualization
approach in an empirical experiment. Participants had to carry out realistic
maintenance tasks on a QVT-O transformation for mapping the Palladio com-
ponent model to a queueing Petri net model. Results show that participants
using the approach spotted locations of concerns with significantly higher
efficiency. The third case study aims to evaluate the automatic clustering
approach. Two previously modularized transformations are automatically
re-modularized, one QVT-O transformation that translates a set of advanced
modeling concepts of the Palladio model to basic concepts, and an Xtend
transformation that maps the Palladio model to simulation code. We are able
to confirm a significantly higher similarity between the automatically and the
manually clustered variant, when taking not only control but also model struc-
tures and dependencies into account of the automatic clustering process.

This dissertation points out that also domain-specific languages must
provide appropriate structuring concepts to ensure readability and main-
tainability of larger and more complex programs. The particular notion

iii

of an interface highly depends on the domain and the requested level of
granularity; In the case of model transformations, for example, we regard
mapping methods in combination with distinct model elements as equivalent
parts of an interface, thereby gaining extended expressiveness that results
in significantly better maintainable software.

iv

Kurzfassung

Betrachtet man die Gesamtkosten eines typischen Softwareprojekts über
seinen gesamten Lebenszyklus, so tragen die Kosten ihrer Wartung mit
geschätzten 60% zu einem wesentlichen Teil zu den Gesamtkosten bei. Soft-
waretechniker sind deswegen von je her an Techniken interessiert, die die
Wartbarkeit und Lesbarkeit der Softwareartefakte steigern. Ein bewährtes
Entwurfskonzept ist das modulare Programmieren; es sieht die Auftren-
nung von Funktionalität in unabhängige Module vor, und macht damit auch
komplexere Programme beherrschbar. David L. Parnas hat diese Idee um
einen Schnittstellenbegriff erweitert, bei dem die Abhängigkeiten eines
Moduls nach außen explizit in seiner Schnittstelle zu deklarieren sind, um
die Kapselung von Entwurfsentscheidungen – das sogenannte Information

Hiding – zu ermöglichen.
Derartig ausgereifte Modulkonzepte sind jedoch bisher hauptsächlich nur

in Allzwecksprachen vorzufinden, während domänenspezifischere Sprachen
in der Regel nur für kleinere Programme konzipiert sind, sodass Wartungs-
probleme hier eher selten auftreten. Eine Ausnahme stellen Transformati-
onssprachen dar, wie sie in der modellgetriebenen Softwareentwicklung in
Gebrauch sind. In der modellgetriebenen Softwareentwicklung geht es dar-
um, große Teile einer Software aus Modellen generativ zu erzeugen. Hierfür
werden in der Regel spezielle Transformationssprachen eingesetzt, die Mo-
delle mit hoher konzeptioneller Nähe zur Problemdomäne auf Modelle und
Sprachen mit wohldefinierter Semantik abbilden, üblicherweise auf einem
niedrigeren Abstraktionsniveau. Praktiker aus der Industrie berichten, dass
Transformationsprogramme in größeren Projekten schnell besonders groß
werden und dabei schwerer wartbar.

v

Zwar sehen viele Transformationssprachen Modulkonzepte vor, diese zie-
len aber häufig auf eine Wiederverwendbarkeit der Module ab. Ein Schnitt-
stellenbegriff, wie er von Parnas für eine bessere Wartbarkeit propagiert
wurde, wird von keiner dieser Sprachen bisher unterstützt.

Der wissenschaftliche Hauptbeitrag dieser Arbeit ist ein auf Transforma-
tionssprachen zugeschnittenes Modul- und Schnittstellenkonzept, das
Information Hiding explizit unterstützt. Eine Besonderheit bei Transfor-
mationen ist, dass Modelle unabhängig von Transformationen spezifizierte
Artefakte sind. Daher wird an den Schnittstellen im Gegensatz zu bisher
bekannten Konzepten zusätzlich der Zugriff auf ein- und ausgehende Da-
ten geregelt. Diese Zugriffsregelung findet anstatt auf Modellebene auf
feingranularer Ebene statt, den Paketen und Klassen innerhalb eines Mo-
dells. Basierend auf unserer syntaktischen Erweiterung wird ein statisches
Typsystem formuliert, das die Konformität von Implementierungen zu deren
Schnittstellen zur Entwurfszeit überprüft. Es wird außerdem gezeigt, dass
das für die imperative Sprache QVT-Operational (QVT-O) definierte Kon-
zept auch auf weitere imperative sowie deklarative Transformationssprachen
anwendbar ist. In diesem Zusammenhang findet eine formale Betrachtung
der Semantik der deklarativen Sprache QVT-Relations (QVT-R) statt.

Bestehende Transformationen sind häufig monolithisch oder für sie lässt
sich keine vorteilhafte Modularisierung finden. Um die Wartung solcher
Transformationen zu erleichtern, wird ein Visualisierungsansatz nach der
Visual-Analytics-Methodologie vorgestellt, bei dem ein Werkzeug die auf-
tretenden Abhängigkeiten zwischen Abbildungsfunktionen und Modell-
elementen innerhalb der Entwicklungsumgebung kontinuierlich anzeigt,
über aufgabenabhängige Filtereinstellungen verfügt und interaktiv navi-
gierbar ist.

Weiterhin wird der für gewöhnliche Programme verbreitete Reenginee-
ring-Ansatz des Software-Clustering auf Transformationsprogramme über-
tragen, sodass für schlecht oder nicht modularisierte Transformationen au-
tomatisch geeignetere Modularisierungen vorgeschlagen werden. Im Ge-

vi

gensatz zu gewöhnlichen Programmen besteht bei Transformationen die
Möglichkeit, vorhandene Paketstrukturen involvierter Modelle in den Mo-
dularisierungprozess einzubeziehen.

Für eine Evaluation wurde das Modulkonzept in die imperativen Trans-
formationssprachen Xtend und QVT-O integriert. Es wurden drei Fallstudien
auf größeren Transformationen durchgeführt. Die erste Fallstudie basiert
auf in Xtend geschriebenen Transformationsschablonen, die aus Architek-
turbeschreibungen im Palladio-Komponentenmodell Simulationscode ge-
nerieren. Hier konnte im Rahmen von realen Wartungsszenarien gezeigt
werden, dass der Aufwand zur Lokalisierung relevanter Codestellen bei
der Verwendung von Modulen gegenüber der alten, nicht modularisierten
Variante signifikant reduziert wird. Betrachtet wurde ein Szenario zur Feh-
lerbehebung sowie ein Szenario, bei dem um neue Funktionalität erweitert
wird. Das im Rahmen einer Vorarbeit entstandene Visualisierungswerkzeug
wurde in einer zweiten, empirischen Fallstudie validiert, bei der eine QVT-
O-Transformation sowohl korrektiven als auch aufwertenden Wartungsauf-
gaben aus der Praxis unterzogen wurde. Das Ergebnis des Experiments
ist, dass sich mit dem Werkzeug relevante Codestellen deutlich effizien-
ter lokalisieren lassen. Die dritte Fallstudie basiert auf einer in QVT-O
geschriebenen Transformation zur Überführung einer Gruppe erweiterter
Modellierkonzepte des Palladio-Komponentenmodell in elementare Kon-
zepte desselben Modells, und des in Xtend implementierten Generators
von Simulationscode aus Komponentenmodellinstanzen. Die Transforma-
tionen werden mit dem Clusteringansatz modularisiert, und das Ergebnis
mit einer händisch modularisierten Variante verglichen. In beiden Fällen ist
die Ähnlichkeit zur händischen Variante signifikant höher, wenn neben den
Kontroll- zusätzlich Modellstrukturen und -abhängigkeiten in das Clustering
miteinbezogen werden.

Die Beiträge dieser Arbeit verdeutlichen, dass nicht nur Allzweckspra-
chen, sondern auch domänenspezifische Sprachen geeignete Strukturierungs-
konzepte anbieten müssen, wenn die Les- und Wartbarkeit auch für große

vii

und komplexe Programme gewährleistet werden soll. Der Schnittstellen-
begriff kann, abhängig von der Domäne und der geforderten Granularität
der Schnittstelle, jeweils ein anderer sein; im Fall von Modelltransforma-
tionen, beispielsweise, sollten Modellelemente neben Abbildungsmethoden
ebenfalls als Teil der Schnittstelle berücksichtigt werden, um eine gleich-
bleibende Granularitätsstufe zu wahren.

viii

Acknowledgements

It is obvious that, although a dissertation lists one individual as author,
research and writing remains a communal enterprise. There are numerous
pieces to the puzzle that had to come together successful for this dissertation
project, and I am glad so many people have contributed to the success of
this dissertation by adding one or the other piece over the years.

First and foremost, I want to express my particular gratitude to Ralf
Reussner for his invitation to join the group, and for being an excellent
supervisor during Lucia Happe’s parental leave. It was basically his idea
to elaborate on this topic, bringing together model transformations and
modularity concepts to handle maintainability issues. At the same time,
I thank Lucia Happe who, despite many understandable distractions after
Natalie’s birth, still found enough time to be a great supervisor over the last
years, as she constantly brought in new ideas. I further want to say thank you
to Bernhard Beckert who agreed on being the second referee of this work.

Much of the work in this dissertation was funded with support from the
German Science Foundation (DFG). Without financial backing, research
presented hereinafter would not have been possible.

My first major publication probably wouldn’t have turned out successful
without Qais Noorshams, who provided invaluable feedback and ideas for
my publications, helped me in brushing up my knowledge on statistics and,
as an office room mate, helped to create a futile working atmosphere. Thank
you for all that, and also for joining the boycott of the student canteen in
favor of the MRI canteen.

A special thank you goes to my work colleagues from the MDSD research
group, Jörg Henß, Martin Küster, Erik Burger, Max Kramer, Misha Strittmat-

ix

ter, Michael Langhammer, Georg Hinkel, and Lucia Happe. All of them
helped me to forge my ideas. Erik in particular gave me valuable feedback
on this whole document at a later stage, without his help this dissertation
would be much less readable. I further thank all my colleagues from SDQ,
those from the chair, from the Decartes group and from the FZI Software
Engineering group, for providing a convenient working environment and
giving me honest feedback at several doctoral rounds and research stays.

Many students contributed to the project. I am grateful to Dominik Werle
for his intensive endeavor in sharing and forming my ideas of a module
concept for model transformations, for providing helpful critics, and last but
not least, for skillfully implementing our shared vision of a modular Xtend
and QVT-Operational language. Equally, I would like to thank the first of my
supervised students, Per Sterner, who started it all with many hours of discus-
sions on semantics of QVT-Relations, for implementing the complete visual
analytics framework and his assistance during the empirical experiment.
Three students, Dominik Messinger, Joakim von Kistowski and Michael
Junker supported my studies as assistant workers, they laid the foundations
for my ideas on analysis for clustering by investigating the Bunch tool and
creating a working prototype. It is obvious that I couldn’t have implemented
all the concepts by myself. Finally, I very much appreciated all the students
from the practical course on Model-driven Software Development (MDSD)
in winter term 2012/2013. They voluntarily served as guinea pigs in my
empirical study and helped to bring this part of my project to a success.

I am sincerely lucky for having had the chance to work with extremely
skillful researchers from King’s College and from Charles University. I
am grateful to Steffen Zschaler and Jeffrey Terrell from King’s College,
London, for introducing me to the Coq proof assistant, and for putting a lot
of effort into formalizing the semantics of QVT-Relations. I could not end
this list without our collaborators in the Ferdinand project, namely Lubomír
Bulej, Andrej Podzimek, Tomás Martinec, Lukás Marek, and Prof. Dr. Petr
Tůma. They took well care that we had a wonderful time and stimulating

x

discussions on both of our meetings in Prague. It was also a pleasant co-
incidence to meet again Andrej and Lubomír at Walter Binder’s chair at
a conference in Lugano.

Last but definitely not least, I want to heartily thank my girlfriend Katrin,
who was very patient and understanding at times when I was more involved
with paper and thesis writing than with anything else. Katrin tolerated many
days and nights with me working on my laptop, coming home late from
office, and traveling. She always made me realize that there is life beyond
work, and she gave me good advice on many occasions where I was in doubt.
Without her, I would not have had the energy to do all this.

I am grateful to my parents Ingrid and Jürgen, who, from the beginning,
supported my efforts as a young computer scientist. Without their support, I
would definitively not have had the chance to develop interest in computer
science and pursue what started as a kid’s passion. I further want to thank my
brothers Tobias and Michael, my sister-in-law Sonja, and all of my friends.
They gave me mental support particularly during the more stressful periods,
and they helped me to maintain a healthy work-life balance.

Thank you all! Without your support, this dissertation would surely not
have happened.

Karlsruhe (Germany), February 2015
Andreas Rentschler

xi

Simplicity does not precede complexity, but follows it.
– Alan J. Perlis [Per82]

xiii

Contents

Abstract . i

Kurzfassung . v

Acknowledgements . ix

1. Introduction . 1
1.1. Motivation . 2
1.2. Example Scenario . 5
1.3. Problem Statement . 12
1.4. Goals and Evaluation Criteria 13
1.5. Approach and Contributions 16
1.6. Realization and Validation 19
1.7. Outline . 22

2. Foundations . 25
2.1. Model-Driven Engineering 25

2.1.1. Methodology . 25
2.1.2. Metamodeling . 31
2.1.3. Model Transformations 34
2.1.4. QVT-Operational 38
2.1.5. QVT-Relations . 44
2.1.6. Xtend . 46
2.1.7. Triple Graph Grammar 53

2.2. Modular Programming 54
2.2.1. Software Design Technique 54

xv

2.2.2. Module Concepts 57
2.3. Formal Methods . 60

2.3.1. Semantics of Programming Languages 61
2.3.2. Program Verification 64

2.4. Software Maintenance . 66
2.4.1. Maintenance Process 66
2.4.2. Static Program Analysis 70
2.4.3. Program Visualization 71
2.4.4. Software Clustering 72

3. Modular Information Hiding for Maintainable Model
Transformations . 79
3.1. Modularity Tailored for Transformations 80
3.2. Augmenting QVT-Operational with Information-Hiding

Modularity . 86
3.3. The Conceptual Extension Core QVT-OM 88

3.3.1. Syntax . 89
3.3.2. Typing . 96
3.3.3. Example Derivation 100
3.3.4. Properties . 101
3.3.5. Coq Embedding 105

3.4. Application to Imperative Languages 106
3.4.1. Implementation in Eclipse QVTo 106
3.4.2. Implementation in Xtend 107

3.5. Applicability to Declarative Transformation Languages . . 112
3.5.1. Semantics of QVT-R 113
3.5.2. Conformance with the Language Standard 117
3.5.3. Creating Standards-Compliant Implementations . . 119
3.5.4. Applicability to QVT-Relations 120
3.5.5. Interoperability between QVT-Operational and

QVT-Relations . 121

xvi

3.6. Concluding Remarks . 125

4. Dependence Visualization for Efficiently Maintaining
Model Transformations . 127
4.1. Transformation Editor Support 128
4.2. Methodology Overview 131
4.3. The Dependency Graph 133

4.3.1. Dependency Graph Model 133
4.3.2. Dependence Analysis 135
4.3.3. Visual Representation 139

4.4. Task-Oriented Filtering 141
4.4.1. Defining Four Filters 142
4.4.2. Applying the Filters for Maintenance 145

4.5. Applicability to Other Transformation Languages 149
4.6. Concluding Remarks . 153

5. Remodularizing Legacy Transformations with
Automatic Clustering . 157
5.1. Expert Design of Model Transformation Programs 158
5.2. Overall Approach . 161
5.3. Dependence Analysis . 163

5.3.1. Implementation Structure 164
5.3.2. Model Structure 164
5.3.3. Model Use Dependencies 165
5.3.4. Weight Configuration 168

5.4. Cluster Analysis . 169
5.4.1. Algorithm and Parameters 170
5.4.2. Excluding Library Methods 170
5.4.3. Excluding Model Elements 171
5.4.4. Predefined Clusters 171
5.4.5. Clustering the Activity2Process Example

Transformation 171

xvii

5.5. Structural Analysis . 173
5.6. Assessment . 174

5.6.1. Modularization Quality 175
5.6.2. Similarity . 175
5.6.3. Assessing the Activity2Process Example

Transformation 176
5.7. Applicability to Other Transformation Languages 177
5.8. Concluding Remarks . 181

6. Validation . 183
6.1. Evaluation Goals . 183
6.2. Application Scenarios . 184
6.3. Modularizing an Xtend Transformation Using Information

Hiding Modularity . 185
6.3.1. Validation Goals 186
6.3.2. Experiment Design 187
6.3.3. Use Case Scenario 188
6.3.4. Scenario 1: Refactoring the Modular Structure . . . 189
6.3.5. Scenario 2: Locating Concerns 192
6.3.6. Threats to Validity 195
6.3.7. Evaluation Summary 196

6.4. Maintaining a QVT-O Transformation Supported by Visual
Analytics . 196
6.4.1. Validation Goals 197
6.4.2. Experiment Design 198
6.4.3. Use Case Scenario 200
6.4.4. Execution . 204
6.4.5. Analysis . 205
6.4.6. Discussion . 207
6.4.7. Threats to Validity 208
6.4.8. Evaluation Summary 209

xviii

6.5. Re-Engineering QVT-O and Xtend Transformations with
Automatic Clustering . 210
6.5.1. Validation Goals 211
6.5.2. Experiment Design 212
6.5.3. Use Case Scenarios 214
6.5.4. Scenario 1: QVT-O Transformation from PCM with

Events to PCM . 214
6.5.5. Scenario 2: Xtend Transformation from PCM to

SimuCom . 221
6.5.6. Threats to Validity 227
6.5.7. Evaluation Summary 228

6.6. Concluding Remarks . 228

7. Related Work . 231
7.1. Modularity in Modeling Languages 231

7.1.1. Compositionality 232
7.1.2. Information Hiding 233
7.1.3. Dynamic Views 234

7.2. Modularity in Model Transformation Languages 235
7.2.1. Modularization for Reuse 236
7.2.2. Internal Composition 236
7.2.3. External Composition 242

7.3. Semantics of Model Transformations 244
7.4. Program Analysis, Cluster Analysis, and Visualization of

Transformations . 246
7.4.1. Program Analysis 246
7.4.2. Software Cluster Analysis 248
7.4.3. Program Visualization 248

7.5. Summary . 251

8. Conclusions . 255
8.1. Summary . 255

xix

8.2. Lessons Learnt . 259
8.3. Assumptions and Limitations 260
8.4. Open Questions and Future Work Potentials 262
8.5. Final Remark . 267

A. Type System of Core QVT-OM 271
A.1. Syntax . 271
A.2. Auxiliaries . 276
A.3. Typing . 281
A.4. Properties . 287

B. Standards Compliant Implementations of QVT-R
Transformations . 293
B.1. The Approach . 293
B.2. Example Implementation and Proof 294
B.3. Encoding QVT-R Transformations in Coq 297

B.3.1. Encoding Metamodels 297
B.3.2. Encoding QVT-R Transformations 299

B.4. Verification Process . 301
B.4.1. Defining an Implementation 302
B.4.2. Verifying the Implementation 304

List of Figures . 306

List of Tables . 309

List of Listings . 311

Acronyms . 315

Bibliography . 323

xx

1. Introduction

Model-driven software engineering is a technique that was once promised to
make software development more efficient. Recently, model-driven software
processes have been found to struggle with maintenance problems them-
selves. Much of the development efforts that arise from manually developed
software is shifted away from the source code level to a higher level. At
this meta level, model transformations automatically generate large parts of
the source code from concise models and thus save much effort. However,
both types of first-class artifacts of a model-driven process, the models and
the transformations, can get substantially complex and require preventive
and reactive measures to be adopted to ensure their maintainability. While a
lot of techniques are known from the software engineering discipline that
support developers in keeping source code maintainable, they cannot be
easily adopted to model transformations. Transformations are designed in
special languages with only a minimal amount of programming concepts
and tools available. This thesis introduces a module concept, a visualization
technique, and a reverse engineering technique for model transformation
languages. All three approaches are novel in that they are tailored to the
peculiarities of model transformation programs as a specific case of soft-
ware programs, namely programs designed to manipulate object models in
modeling languages akin to the UML.

This introductory chapter motivates the problem of poorly maintainable
transformation programs (Sections 1.1–1.3) and determines objectives to
alleviate the situation (Section 1.4). It then briefly presents the contributions
of this thesis’ approaches (Section 1.5), and how they are implemented and

1

1. Introduction

validated to meet the goals set (Section 1.6). Section 1.7 concludes this
chapter by informing about the remaining parts of this thesis.

1.1. Motivation

In contrast to products from other engineering disciples, software can never
wear off. Even so, software requires to be continuously maintained: Require-
ments constantly change, and previously undetected bugs need to be fixed.
Experienced software engineers calculated maintenance costs to contribute
to the lifecycle costs of software with an estimated share of 60% average1,
making maintenance a critical cost factor. It is a fact that is known since
the seventies [Gla01], and despite emerging software engineering method-
ologies and techniques, this fact has not substantially changed since then
because of the ever growing size and complexity of today’s software.

Just as old as the problems that arise from the inherent complexity of soft-
ware are some of the techniques to improve quality and reduce maintenance
costs, ever since Dijkstra considered spaghetti code to hinder comprehen-
sion [Dij68]. Around that time, structured programming [DDH72] became
a well-accepted design technique on the level of subroutines. Not much
later, modular programming and object-oriented programming were widely
used, they shifted the abstraction level to the module and class level. These
new design structures are situated above the level of subroutines, their main
purpose is to hide implementations behind interfaces, encapsulate function-
ality and data, and separate them by conceptual concerns to gain optimal
reuse and understandability.

Soon, standardized modeling languages were discovered as a practical
means to capture the design of object-oriented systems for documentation
purposes. The Unified Modeling Language (UML) superseded these early no-
tations in the nineties and evolved into a general-purpose modeling language

1 Robert L. Glass, who coined the 60-60 rule of software, names a share of 40–80% of the
overall costs of a software product that can be attributed to software maintenance [Gla01].

2

1.1. Motivation

that is modeled by its own means. The UML can be used to describe arbitrary
domains and paved the way for model-driven software engineering.

Model-driven Software Engineering (MDSE) is a software engineering
methodology that raises the abstraction level another time. Now, instead of
the code, metamodels, models and transformations are first-class artifacts.
Metamodels, sometimes synonymously called Domain-Specific Languages
(DSLs), are used to directly capture the concepts of the target domain,
and are much closer to the actual problem than imperative code. Model
transformations finally map the models to executable code, so that large
amounts of code can be automatically generated.

Early programs that transform models into models were implemented in
a third-generation language like Java, but soon software engineers started to
apply the MDSE principle to transformation artifacts themselves, crafting
languages specific to the domain of modeling and transforming. This led to
the emergence of a multitude of transformation languages with varying focus,
ranging from purely declarative languages to fully imperative languages with
native support for a metamodeling language and a mapping API. On the other
hand, transformations that map to textual artifacts are often implemented in
template-based languages, where static textual artifacts are furnished with
meta expressions filling the dynamic parts.

MDSE has been extensively adopted in industrial software projects, the
Motorola case study [BLW05] is just one example among others [HWRK11;
HRW11; Voe10]. A prominent open-source example that adopts model-
driven techniques is the Eclipse GMF Tooling, a set of metamodels and
code generators2. With Graphical Modeling Framework (GMF) Tooling,
sophisticated graphical editors can be generated merely from a description
of the elements and their graphical representation. Generated code tends
to be less error-prone, and new features must be added only once to be
reused for every GMF-based editor.

2 The Eclipse Graphical Modeling Project; http://www.eclipse.org/modeling/gmp/.

3

http://www.eclipse.org/modeling/gmp/

1. Introduction

Even though generated sources must no longer be maintained, it is obvious
that maintainability of the modeling artifacts and transformations as the new
principal artifacts remains of equal importance as it used to be for the code.
Maintenance effort is shifted away from code artifacts towards metamodels,
models, target platform code and model transformations. Particularly trans-
formations are likely to be affected by new requirements as they depend on
metamodels and target platform code (co-evolution).

Maintenance issues have been evidenced not only in the context of
GMF [HRW09; Fav05], but also in the scope of two studies on long-term
experiences from industrial MDSE projects. There, evaluation is based on
interviews at 20 companies including Volvo and Ericsson. According to
Whittle et al. [WHR+13, p. 9], one of the industrial MDSE practitioners
interviews reported that

the complexity of these little [DSL] languages started to grow
and grow and grow. . . we were trying to share the [code gener-
ation] templates across teams and versioning and releasing of
these templates was not under any kind of control at all.

Cuadrado et al. [CIM14] gathered similar experiences from transfer
of technology projects at two smaller-sized software companies. Despite
MDSE’s potential to make smaller companies more productive, the compa-
nies were severely concerned about the immaturity of the tools as well as
the modeling and transformation languages, with good reasons: Since they
chose an incremental approach when introducing model-driven techniques,
the models and attached transformations had to be constantly updated. This
led to high maintenance efforts they had to cope with:

As the project evolved, the rules and constraints to generate the
Java code turned very specific from the company, which caused
a great number of modifications in the model-to-text transfor-
mation [. . .] , thus hindering its maintenance, readability and
evolution. (Cuadrado et al. [CIM14, p. 182])

4

1.2. Example Scenario

The application of smaller DSLs is able to reduce complexity – one of
MDSE’s promises –, but worsens maintainability, because DSLs must be
maintained across a whole company or even industry, and with complexity
comes maintenance overhead. This coincides with our experiences from the
Palladio research project3, whose software implementation was designed
in alignment with MDSE principles and therefore comprises many large
and complex model transformations. As it is characteristical for scientific
projects in general, new concepts are constantly added, refined, and modified,
making metamodels subject to constant evolution; on the other hand, stability
of the Palladio tooling is an important goal because it is actively used
by several companies.

Since model transformations themselves are usually implemented in
domain-specific languages with only few essential language concepts, there
is only weak support for high-level concepts that foster maintainability. Al-
though programs in a dedicated transformation language are typically more
concise, they can grow large and house complex logic, depending on the
size and heterogeneity of metamodels involved. Because transformations
are inherently meta programs, they are harder to understand than ordinary
programs. Yet they weakly support structuring concepts as they are known
from general-purpose languages, concepts which would help to comprehend
and maintain them. And even general-purpose object-oriented languages
lack concepts to explicitly declare model dependencies at interface level.
Next section’s example is going to demonstrate that interface concepts of
existing transformation languages do not support the maintenance process
comprehensively enough.

1.2. Example Scenario

With the aid of a minimalistic transformation program and two realistic
maintenance scenarios, we demonstrate the disadvantages of a module sys-

3 The Palladio approach; http://www.palladio-simulator.com.

5

http://www.palladio-simulator.com

1. Introduction

ActivityModel ProcessModel

mapActivity2Process

TransformationSource Model Target Model

Activity

Action

Process

Step

StartAction

CompositeActions

Composite
Action

actions

actions steps

next

mapAction2Step

mapAction2Step

call

call

mapAction2Step

mapAction2Step

QVT-O
method

Control
dependency

Data
dependency

Activity2Process
call

call

mapping

mapping

mapping

mapping

mapping

call

in out

in

out

in

in

in

out

in

out

createProcess
helper

<kind>

successors

import

StopAction

Figure 1.1: Activity2Process transformation in QVTo, method-level dependencies

tem that lacks proper interfaces. The example transformation maps activity
diagrams to process diagrams. Activity models are represented by package
ActivityModel, which contains a root class Activity (depicted on the
left-hand side of Figure 1.1). Activities are composed of actions, which
may refine to either StartAction, StopAction, or CompositeAction.
Any action can reference a successor action. A composite action serves
as a container for subactions and is placed in a separate package named
CompositeActions. Process models are represented by package Process-
Model that contains class Process as root (see right-hand side of Figure 1.1).
A process is composed of a number of steps of type Step. A step can refer-
ence one follow-up step and be tagged as a start or stop step by attributes
isStart or isStop.

In most declarative and imperative languages, the previously described
transformation is best to be implemented by five mapping rules or methods,
one for each class in the source model. One mapping mapActivity2Pro-

6

1.2. Example Scenario

cess creates for an Activity object a Process object. The remaining
mapping methods mapAction2Step create for each Action object a Step
object, depending on the concrete subtype. In an imperative language, the
latter is typically realized using dynamic dispatching methods, here, dispatch-
ing is used to distinguish the specific type of action. Figure 1.1 illustrates
data access dependencies for each of the mappings in the imperative lan-
guage QVT Operational Mappings (QVT-O) [Obj11]: read and write access
is distinguished by annotations in and out.

For this example, we decided for the imperative transformation language
of Query/View/Transformation (QVT), QVT-O, as it features one of the
more advanced module systems among prevalent transformation languages.
In a procedural language, execution order is predetermined by the con-
tainment hierarchy of composed references in the source model. Entry
point of the transformation is a mapping named main, it searches for all
instances of class Activity (the source model’s root class) and calls map-
ping Activity2Process on each element found. Per invocation, mapping
mapActivity2Process instantiates an object of type Process and properly
initializes attributes. It further calls one of the mappings mapAction2Step
for any action contained in an activity, depending on the concrete subtype
of action. Call dependencies are depicted as well in Figure 1.1. The main
method that forms the entry point (it triggers mapActivity2Process) has
been omitted for simplicity and is symbolized by an entering call.

Upon creation, the group of overloaded mappings mapAction2Step must
initialize attributes isStart and isStop accordingly, and take care that the
containment reference steps and the reference next is correctly set. In a
purely imperative language, one cannot generally assume that a successor
action is existent when setting the next step. To cope with this problem,
imperative transformation languages typically offer some kind of tracing
API so transformation developers do not have to be concerned with the
order elements are created. Every time a mapping succeeds, a trace record
is created. When setting the next step, one can query the trace API for the

7

1. Introduction

Action created for a given action’s successor. If it does not exist, setting the
next reference is transparently deferred to a later time. In QVT-O, querying
trace records is done by a call to function resolve. Composite actions
are handled in a separate mapAction2Step method. Here, a helper method
createProcess is explicitly called to create a new instance of Process,
which is then filled with all the steps created from subactions.

Listing 1.1 gives this implementation in QVT-O syntax. Expressions in
QVT are pure Object Constraint Language (OCL) expressions augmented
with imperative constructs like loops. In the implementation, QVT-O’s con-
cept of a mapping operation is used; such methods implicitly create the re-
spective target element and set up a trace record. Because we anticipate that
further types of Action might be added to the activity model, we put map-
ping mapAction2Step into a separate module Action2StepModule (List-
ing 1.1b) so that changes to actions will not affect parts of the program. We
use QVT-O’s import concept: the main function and the root mapping are de-
fined in transformation module Activity2ProcessModule (Listing 1.1a),
whereas mappings mapAction2Step are factored out into separate transfor-
mation modules Action2StepModule and CompositeAction2StepMod-

ule that are imported by the main module.

1 import Action2StepModule;
2 import CompositeAction2StepModule;
3 transformation Activity2ProcessModule(
4 in a:ActivityModel, out p:ProcessModel)
5 extends Action2StepModule, CompositeAction2StepModule;
6 main() {
7 a.rootObjects()[Activity]->map mapActivity2Process();
8 }
9 mapping Activity::mapActivity2Process() : Process {

10 result.steps := self.actions->map mapAction2Step();
11 }

(a) First module Activity2ProcessModule handles class Activity

8

1.2. Example Scenario

1 transformation Action2StepModule(
2 in a:ActivityModel, out p:ProcessModel);
3 mapping Action::mapAction2Step() : Step {
4 // result.name := self.name;
5 result.next := self.successors.late resolveone(Step);
6 }
7 mapping StartAction::mapAction2Step() : Step
8 inherits Action::mapAction2Step {
9 isStart := true

10 }
11 mapping StopAction::mapAction2Step() : Step
12 inherits Action::mapAction2Step {
13 isStop := true
14 }

(b) Second module Action2StepModule covers essential subtypes of class Action

1 import Action2StepModule;
2 transformation CompositeAction2StepModule(
3 in a:ActivityModel, out p:ProcessModel)
4 extends Action2StepModule;
5 mapping CompositeAction::mapAction2Step() : Step {
6 inherits Action::mapAction2Step {
7 // map all subactions into a separate process
8 createProcess(self);
9 // make this step the caller

10 name := "Run process " + self.name;
11 next := self.successors.late resolveone(Step);
12 isStart := false;
13 isStop := false;
14 }
15 helper createProcess(action : CompositeAction) : Process {
16 return object Process {
17 name := action.name;
18 steps += action.actions->map mapAction2Step();
19 };
20 }

(c) Third module CompositeAction2StepModule handles class CompositeAc-
tion

Listing 1.1: Activity2Process example in QVT-O

9

1. Introduction

ProcessModel

mapActivity2Process
in out

TransformationSource Model Target Model

Activity

Action

Process

Step

StartAction

CompositeActions

Composite
Action

actions

actions steps

next

mapAction2Step

mapAction2Step

in out

import

mapAction2Step

mapAction2Step

QVT-O
module

QVT-O
method

Declared control
dependency

Declared data
dependency

Activity2Process

Action2Step

call

createProcess
helper

in out

CompositeAction2Step
import

<name> <kind>

successors

Declared package
dependency

import

StopAction

ActivityModel

mapping

mapping

mapping

mapping

mapping

Figure 1.2: Activity2Process transformation, modularized with QVT-O, declared
dependencies

Although QVT-O allows for a basic modularization, Figure 1.2 illustrates
two significant issues with QVT-O’s module concept: From looking at the
transformation’s signature, one cannot tell (a) which module requires which
methods from imported modules, and (b) which of the model elements is pro-
cessed by which module. Hence, maintainability is hardly improved, which
is one of the major reasons for structuring a transformation. We further
demonstrate this by three typical change scenarios. In accordance with the
IEEE classification of maintenance tasks [IEE06], the first one classifies as a
corrective, the second one as an adaptive/corrective, and the third one as a per-
fective/preventive task. Corrective maintenance is about removing faults, and
adaptive maintenance is concerned with adapting code to changing require-
ments and models. Perfective maintenance aims at an improved performance
or maintainability and includes structural refactorings. Preventive mainte-
nance actions are modifications to prevent a problem before it occurs.

10

1.2. Example Scenario

Modifying a module’s inner logic. Whenever a faulty implementation is
reported, we must change a certain mapping’s implementation in order
to fix it. Suppose that there is a bug in the transformation, resulting
in too many Process objects created. We suspect the bug to reside
in module CompositeAction2Step, in particular an erroneous call to
method createProcess, but we do not exactly know about which
mappings actually call createProcess. As the method is part of
the inner logic of module CompositeAction2Step, calls from other
mappings ought not to happen, although we cannot be sure of this
with existing concepts. Current module concepts of transformation
languages do not specify which of the methods can be accessed from
other modules.

Identifying locations of concern. Whenever one of the models evolves,
the transformation must be adapted accordingly (co-evolution). Sup-
pose two features already present in the above example had been
introduced at a later time, composite actions and the name attribute.
Firstly, we would have had to introduce hierarchy by adding a class
CompositeAction that subclasses Action, and secondly, we would
have had to introduce a new attribute name to classes Action and
Step. In either case we would have had to find out about all the places
in the transformation where class Action or subclasses thereof are
handled. Without an interface concept that describes which of the
elements in a model are accessed, we must study any modules’ imple-
mentations to err on the side of caution. The same pertains for bugs
that need to be fixed and that can be traced down to a certain class or
attribute.

Refactoring the modular design. If we anticipate regular changes to a cer-
tain part of the transformation, it can be worthwhile to factor this part
out into a separate module. For instance, in the example above, we de-
cided to factor out logic that handles class CompositeAction, since

11

1. Introduction

the class already had been factored out into a different package ac-
cordingly. When doing so, we must first identify mappings that handle
class CompositeAction and be aware of all the callers and callees of
the affected mappings to be on the safe side. In existing transformation
languages, this requires us to study the complete implementation up
front.

The example demonstrates that the module concept of QVT-O introduces
maintenance issues. While QVT-O has basic support for modularity, the
language does not provide concepts to hide complexity behind interfaces.
The same is true for many other transformation languages that have been
designed in recent years, including ATL [JAB+06], ETL [KPP08], Ker-
meta [MFV+05], and VIATRA2 [VB07]. Czarnecki observes similar or
less powerful modularity features in his classification of transformation
languages from 2003 [CH06]. Advanced module concepts were missing in
all of the languages, and this has not changed since then. One exception are
transformation languages that are embedded into an object-oriented host
language, for instance RubyTL [CMT06], SMTL [GWS12] and Xtend. How-
ever, class mechanisms of Ruby, Scala and Java do not include metamodel
dependencies into their respective interface concept. This thesis introduces
a novel module and interface concept to model transformation languages so
transformations can be organized in a way that promotes comprehension.

1.3. Problem Statement

Maintainability of model transformations is an important premise for ap-
plying MDSE successfully in larger software projects. Transformations are
poorly maintainable, because important language concepts to reduce com-
plexity are missing. Early third-generation languages like M O D U L A-2
and Ada from the 1970s already include module and interface concepts to
promote the modular programming style, which can effectively increase
maintainability [RC93]. However, in contrast to information hiding as it is

12

1.4. Goals and Evaluation Criteria

supported by general-purpose languages, interfaces must respect dependen-
cies to metamodel elements. Even if we suppose that modular programming
will be supported by model transformation languages in the future, two
further questions remain to be answered: What makes a good modular de-
sign? And how can such a modular structure be automatically re-engineered
from legacy code? Due to an often monolithic design and the complexity
of dependencies, dependence information is not easy to recover from larger
transformation implementations. Maintainability of legacy transformations
can be substantially improved if we find a way to automatically extract
dependence information. It remains to be studied how developers can make
optimal use of this information. One possibility is to explore ways to pro-
cess such information so it can be optimally used in typical maintenance
scenarios. Another possible approach is to use dependence information to
re-engineer a suitable modular structure from legacy code.

In summary, the three general research questions managed by this the-
sis are:

Research Question 1: What modular concept for model transformation
languages can improve maintainability?

Research Question 2: When is a transformation program’s modular design
considered to enhance maintainability?

Research Question 3: Can we make maintenance more efficient for un-
modularized legacy transformations?

1.4. Goals and Evaluation Criteria

This thesis’ objective is to improve the maintainability of model transforma-
tions. There is empirical evidence that maintainability of transformations de-
teriorates with the size and complexity of metamodels involved [WHR+13].
Maintainability is said to have a major impact on the lifecycle costs of

13

1. Introduction

software [Gla01]. In computer science history, the development methodol-
ogy of modular programming is said to effectively master complexity. Our
principal goal is to introduce a rigorous module and interface concept to
transformation languages that helps to master complexity. We break this
goal down into the following three subgoals:

Goal 1: Design a new module construct with explicit interface definitions

that facilitates separation of concerns and, as a result of this, improves

understandability and maintainability. There already exist language
constructs to modularize transformation programs, but they do not
make external dependencies explicit. The aim here is to introduce a
rigorous interface concept that encourages developers to make these
dependencies explicit and reflect on a structured design. On the other
hand, the concepts should be concise but clear, and flexible enough to
integrate into existing languages. In the end, added concepts should
decrease the effort spent to locate concerns in transformation programs.
Because there exist transformation languages at various abstraction
levels, it must be examined if the approach is applicable to imperative
languages on the one side, and declarative languages on the other side
of the spectrum.

Goal 2: Develop an automated approach that supports developers in under-

standing and maintaining legacy transformation programs. Legacy
transformations are often monolithic or have a deteriorated modular
structure. In order to understand or locate concerns, developers must
reverse-engineer implicit dependencies. This requires substantial time
when carried out manually on large and complex programs. An ap-
proach should automatize this by extracting dependence information
and present it to developers in a visual form that supports readability.

Goal 3: Develop a re-engineering method to migrate legacy transforma-

tions to the newly developed language extension. For legacy trans-
formations that are productively used, it pays off in the long run to

14

1.4. Goals and Evaluation Criteria

re-engineer a modular structure which fosters comprehension and
maintenance. Determining an adequate structure requires develop-
ers to reverse-engineer low-level dependencies and find a suitable
modular design, which requires major manual effort. Although there
already are clustering approaches that automatize this for imperative
languages, they are not tailored to model transformation languages.

Aiming at contributions that are both theoretically sound and applicable
in practice, we define a set of evaluation criteria that must be met by the
defined goals. Depending on the goal, these are defined as follows:

Soundness. The added module system should abide to the common under-
standing of modularity. Programs should be considered as well-typed
if and only if they adhere to the information hiding principle according
to Parnas [Par72].

Genericity. Any of the planned approaches should be applicable to the more
prominent kinds of transformation languages. It should be accounted
for language aspects of imperative, declarative, and template-based
transformation languages, represented by QVT-R, QVT-O, and Xtend,
respectively. Further languages to consider are ATL, ETL, Kermeta2
and VIATRA2.

Automation. In practice, real transformations lack structure or their struc-
ture has eroded over time. Re-engineering of legacy transformations
to a modularized variant should be automated where possible, thus
aiming to minimize the effort spent by human developers to reobtain
an expedient modular structure.

Efficiency. The module concept and the visualization approach should in-
crease efficiency when carrying out typical maintenance tasks. The
re-modularization of legacy transformations should, despite being
automated, approximate the quality of an expert developer.

15

1. Introduction

Goal 1:
Introducing Modular
Programming to Model
Transformations

Side Contribution:
Defining Semantics of the Declarative
Transformation Language QVT-Relations

Conceptual Contribution 1:
Designing Information Hiding Modularity
for Model Transformation Languages

Chapter 3: Modular Information Hiding…

[MODELS 2014]

[RWN+14a]

Goal 2:
Identifying an Approach to
Efficiently Maintain Legacy
Model Transformations

Conceptual Contribution 2:
Interactive Visual Analytics for Efficient
Maintenance of Model Transformations

Chapter 4: Dependence Visualization for
Efficiently Maintaining Model
Transformations

[RNHR13] [RS14]

Conceptual Contribution 3:
Remodularizing Legacy Transformations
with Automatic Clustering Techniques

Chapter 5: Remodularizing
Legacy Transformations
with Automatic Clustering

[RWN+14b]

Goal 3:
Defining an Approach to
Modularize Legacy Model
Transformations

Sections 3.1 – 3.4:
Modularity Tailored for Transformations
The Conceptual Extension CoreQVTom
Application to Imperative Languages

Section 3.5:
Applicability to Declarative Languages

Figure 1.3: Conceptual contributions of this thesis (Arrows depict dependencies)

1.5. Approach and Contributions

Maintenance effort can be high due to the inherent complexity of model
transformations. To reduce maintenance effort, this thesis presents a mod-
ule concept for model transformation languages with information hiding
at the interface-level for sound encapsulation and separation of concerns.
Moreover, to cope with legacy transformations, this thesis proposes two
further approaches. The first approach automatically extracts hidden de-
pendencies and maps them graphically, so the information can be used by
developers to locate concerns; the second approach uses the same depen-
dence information to semi-automatically re-engineer an expedient modular
structure from legacy code.

In total, this thesis makes three conceptual contributions. Figure 1.3 shows
how the individual contributions relate to the research questions posed in
context of this thesis.

Contribution 1: Specification of a module concept and type checking sys-

tem that introduces interface-based separation of concerns to model

transformations. We build on QVT because of its broad use and
standardized definition. Until now, only the typing of OCL has been

16

1.5. Approach and Contributions

considered formally [CK01]. Therefore, we first formalize the abstract
syntax and type inference rules of a core subset of the QVT-O trans-
formation language. The existing module system is replaced with our
own that provides an enhanced interface concept. Available module
concepts are neither able to hide implementation details from module
users, nor do they establish scoping at the package level of incorpo-
rated models. The proposed interface concept facilitates information
hiding of methods, as well as model elements via access declarations.
Type inference rules are defined that ensure the added module and
interface concepts adhere to the information hiding principle. We
embed both type inference rules and information hiding principles
into Coq’s formal language Gallina [The12; BC10] where we then
are able to prove that the latter applies to the former. This work has
been published at an internal conference with a journal-like reviewing
process:

A. Rentschler et al., “Designing Information Hiding Mod-
ularity for Model Transformation Languages,” in Proceed-

ings of the 13th International Conference on Modularity

(AOSD ’14), Lugano, Switzerland, April 22 - 26, 2014, Ac-
ceptance Rate: 35.0%, New York, NY, USA: ACM, Apr.
2014, pp. 217–228 [RWN+14a]

Although we only apply it to a core of QVT-O, our module concept is
generic enough to be applied to declarative languages, as well. As a
proof-of-concept, we demonstrate this by example of the declarative
language QVT Relations (QVT-R). Because QVT-R still lacks formal
semantics, we provide semantics of a relevant subset of the language
as a side contribution.

Side Contribution: Formalization of a declarative transformation speci-

fication’s core concepts. Applicability to declarative transformation
languages can only be demonstrated with a thorough understanding

17

1. Introduction

of declarative concepts. Currently there is an uncertainty regarding se-
mantics of some of the core concepts of the relational transformation
language QVT-R. This contribution provides a mapping of a relevant
subset of QVT-R to constructive type theory as it is implemented by
the Coq proof assistant. The mapping helps to get a thorough for-
mal understanding of the typical language concepts of a declarative
transformation language.

Contribution 2: Definition of a visual analytics methodology to support

maintenance of model transformation programs, implemented in

widely used domain-specific languages. Understanding unmodular-
ized transformations and locating concerns during maintenance re-
quires maintainers to spend a substantial amount of time. To alleviate
transformation maintainers, we design an interactive visual analyt-
ics process to support understanding of model transformations for
maintenance. Hidden dependence information is extracted into a
generic dependency model for model transformations, a model that
unifies control and data flow information in a graph-like structure.
The approach comprises a set of task-oriented filter rules to exclude
details from the dependency graph that can be considered irrelevant
depending on the particular kind of maintenance activity carried out.
This work has been presented at an international conference:

A. Rentschler et al., “Interactive Visual Analytics for Effi-
cient Maintenance of Model Transformations,” in Proceed-

ings of the 6th International Conference on Model Trans-

formation (ICMT ’13), Budapest, Hungary, K. Duddy and
G. Kappel, Eds., ser. Lecture Notes in Computer Science,
Acceptance Rate (Full Paper): 20.7%, vol. 7909, Berlin–
Heidelberg–New York: Springer, Jun. 2013, pp. 141–
157 [RNHR13]

18

1.6. Realization and Validation

Contribution 3: Development of a re-engineering methodology that auto-

matically decomposes monolithic or badly structured legacy trans-

formations. We tailor existing clustering techniques to the particular
domain of model transformation languages. What differentiates trans-
formation programs from general-purpose programs is that transfor-
mations are typically structured in alignment with one of the involved
metamodel’s package structure, whereas call dependencies are typi-
cally considered less important. We design a coherence metric that
respects both data and control dependencies. Source or target-driven
decompositions are commonly used decomposition techniques in the
transformation domain. The approach is applicable to transformations
that lack any structure, or transformations that no longer reflect ei-
ther the logical structure of the implementation or the structure of
involved source or target models. This work has been presented to the
community in:

A. Rentschler et al., “Remodularizing Legacy Model Trans-
formations with Automatic Clustering Techniques,” in Pro-

ceedings of the 3rd Workshop on the Analysis of Model

Transformations co-located with the 17th International

Conference on Model Driven Engineering Languages and

Systems (AMT@MOD-ELS 2014), Valencia, Spain, Septem-

ber 29, 2014, B. Baudry et al., Eds., ser. CEUR Work-
shop Proceedings, vol. 1277, CEUR-WS.org, 2014, pp. 4–
13 [RWN+14b]

1.6. Realization and Validation

As a proof-of-concept and as a prerequisite to the validation, all men-
tioned conceptual approaches have been implemented as software. As tar-
get platform we have chosen the Eclipse modeling platform, in particular
Eclipse projects Java development tools (JDT) and the Eclipse modeling

19

1. Introduction

platform (EMP). On the whole, the following three technical realizations
have been made.

Technical Realization 1: Integration of the module concept into two rep-

resentative transformation languages, QVT-O and Xtend. QVT-O is
an imperative model-to-model transformation language, and Xtend is
an extensible domain-specific language with conceptual extensions
for writing template-based model-to-text transformations. Both lan-
guages are implemented under the Eclipse modeling platform; the
Eclipse-based implementation of QVT-O is named QVTo. Our lan-
guage extensions are named QVT Operational Modular Mappings
(QVTom) and Xtend Modular Mappings (Xtend2m), respectively. The
latter has been published in [RWN+14a].

Technical Realization 2: Implementation of the visual analytics method-

ology into a commonly used IDE for transformation development.

We integrated a visual view into the Eclipse IDE. The view dis-
plays a dependence graph using the Eclipse Zest API. The graph
is automatically laid out according to several styles, is interactive
navigable, and the user can choose from several filters. Three trans-
formation languages are currently supported, Eclipse QVTo, Eclipse
QVTd and mediniQVT. The latter two are Eclipse implementations
of the QVT-R language. Further transformation languages can be
easily supported. The tool has been presented at the 2013 MODELS
conference’s demonstration track:

A. Rentschler and P. Sterner, “Interactive Dependency Gra-
phs for Model Transformation Analysis,” in Joint Proceed-

ings of MODELS ’13 Invited Talks, Demonstration Session,

Poster Session, and ACM Student Research Competition co-

located with the 16th International Conference on Model

Driven Engineering Languages and Systems (MODELS

’13), Miami, USA, September 29 - October 4, 2013, Y. Liu

20

1.6. Realization and Validation

and S. Zschaler, Eds., ser. CEUR Workshop Proceedings,
vol. 1115, CEUR-WS.org, Jan. 2014, pp. 36–40 [RS14]

Technical Realization 3: Application of the re-engineering method by ex-

ploiting available clustering algorithms. We implemented an extrac-
tion mechanism to extract dependence information from QVT-O pro-
grams, resembling the extraction mechanism from previous contri-
bution. Call dependencies, model element usage and model package
structure dependencies are extracted. To find an optimal clustering
regarding our defined metric, we rely on the Bunch clustering sys-
tem, a received method for automatically re-engineering software
systems [MM06]. The Bunch tool uses search heuristics to find a
satisfactory solution. Our realization of the approach is described
in [RWN+14b].

Based on these implementations, we carried out validations in order to
demonstrate that evaluation criteria from Section 1.4 are met, and to further
attest to the practical applicability of our approaches.

Validation 1: Evaluation of the module concept on a real-world transfor-

mation in QVTom with realistic maintenance scenarios. For validation,
we examined the effort required to maintain a realistic model trans-
formation. We did so twice, once with and once without using our
concept, and compared results. As example scenario, we took a model-
to-text transformation from the Palladio research context that had been
written in Xtend, re-modularized it using our concept, and studied
several maintenance scenarios from past research. The study gives evi-
dence that the actual effort spent to locate concerns when carrying out
typical maintenance tasks can be significantly reduced by adequately
modularizing a transformation using our modularity concept.

Validation 2: Evaluation of the visual analytics approach on a real-world

transformation in QVTo with realistic maintenance scenarios. Here

21

1. Introduction

again, we analyzed the effort it takes to maintain a real-world model
transformation. We conducted an empirical study, comparing a group
of tool users against a group of non-tool users. The chosen transfor-
mation was a larger transformation from the Palladio research project
implemented in the model-to-model transformation language QVT-O.
Results show that efficiency is significantly improved for locating
concerns relevant to solve realistic maintenance tasks.

Validation 3: Evaluation of the re-engineering approach on real-world

transformations in QVTo and in Xtend. We compared maintenance
efforts of two versions of the same model transformation, one modu-
larized manually, the other modularized using our automatic clustering
approach. We decided for two transformations, an in-place model-
to-model transformation designed in QVT-O, and a model-to-text
transformation implemented in Xtend. The transformations had al-
ready been modularized with QVT-O’s and Xtend’s basic module
concept. From the results, we are able to conclude that effort in locat-
ing concerns as part of implementing authentic maintenance tasks of
the automatically modularized variant is comparable to a manually
modularized variant.

In sum, results of all three studies attest to the efficiency, the fourth
evaluation criterion stated above, of our approaches in practical scenarios.
Therefore, higher efficiency and practicability can be attested for the three
contributions that we present in this thesis.

1.7. Outline

The remainder of this thesis is structured as follows. Chapter 2 first pro-
vides the scientific background that is needed to understand the subsequent
chapters.

Chapter 3 presents the module concept for model transformations, a novel
approach for designing model transformations in a more structural manner.

22

1.7. Outline

Chapter 7: Related Work

Section 7.1 – 7.3:
Modularity in Modeling /
Model Transformation
Languages

Section 7.4:
Program Analysis,
Cluster Analysis, and
Visualization of
Transformations

Reuse
Internal Composition

External Composition
Semantics

Chapter 6: Validation

Section 6.3:
PCM to SimuCom

Section 6.4:
PCM to QPN

Section 6.5:
PCM Events to PCM

Chapter 2: Foundations

Section 2.1:
Model-driven Eng.

Section 2.4:
Software Maintenance

Chapter 4:
Dependence Visualization
for Efficiently Maintaining
Model Transformations

Chapter 3:
Modular Information
Hiding for Maintainable
Model Transformations

Chapter 5:
Remodularizing
Legacy Transformations
with Automatic Clustering

Section 2.2:
Modular Programming

Program Analysis
Program Visualization

Software Clustering

Section 2.3:
Formal Methods

Figure 1.4: Structure of this thesis (Arrows depict dependencies)

The approach is supposed to lead to a better understandability and maintain-
ability of transformation programs. This chapter forms the main contribution
and answers research question 1.

Chapter 4 introduces our second contribution that deals with research ques-
tion 2. We propose a novel approach that applies visual analytics techniques
to assist transformation developers who want to understand and maintain a
model transformation. Our adapted methodology is explained and a common
dependence graph model is defined, together with a set of filter functions.

Chapter 5 describes our solution to research question 3. It presents our
third contribution and complements our module concept by automatizing
the process of re-engineering a suitable modular structure from legacy trans-
formations. A quality metric for modular transformations is defined, and
a clustering algorithm explained that finds optimal clusterings regarding
our metric.

Chapter 6 validates the previous three approaches. For each of the ap-
proaches, a case study is carried out that examines larger transformations
from our research context in realistic maintenance scenarios. Chapter 7
studies relevant work from other researchers and discusses novelty of our
contributions. Chapter 8 finally concludes this thesis. It summarizes what

23

1. Introduction

has been done, discusses results, lessons learned and limitations, and gives
an outlook on what research could be done in this area in the future. A
detailed overview of the core chapters and important sections is given in
Figure 1.4. It points out reading dependencies for readers who are primarily
interested in a particular one of the three contributions.

24

2. Foundations

In this chapter, general terminology from related research fields is recapitu-
lated to gain a deeper understanding of the contributions presented in the
subsequent chapters. There are four general research fields that contributions
in this thesis relate to (cf. Figure 2.1). The entire work resides in the field of
model-driven software engineering, thus we start with a short introduction
to this particular methodology in Section 2.1. The overall objective is to
improve maintainability of model-driven software artifacts, therefore we
briefly elucidate in Section 2.4 our understanding of software maintenance
as well as received standard techniques to optimize maintenance processes.
The basic concepts of modular programming are explained in Section 2.2,
since, in order to tackle maintenance issues, we later apply this paradigm to
model transformation programming. Section 2.3 concludes with an overview
on formal methods that had been used to give formal grounds to the module
concepts that we will introduce to model transformation languages.

2.1. Model-Driven Engineering

2.1.1. Methodology

Model-driven Software Engineering (MDSE), or synonymously Model-
driven Engineering (MDE), is a development methodology that, together
with a set of methods, tools and techniques, aims to automatically generate
runnable software products from formal models [SV06]. Models are the
first-class assets in model-driven approaches, as opposed to model-based

approaches, where models are mainly for documentation purposes. The idea
behind modeling is to understand complex problems through abstraction.

25

2. Foundations

Model-driven
Engineering

Modular
Programming Formal Methods

Software
Maintenance

Metamodeling

Model Transformation
Languages

Program Visualization
Program Comprehension

Reengineering
Software

Clustering

Model
Transformation

Analysis

Visual Analytics

Module Concepts Semantics
of Module
Concepts

Modular Model
Transforma-

tions

Operational Semantics

Higher-order Logics

Theorem Proving

Information Hiding

Model
Transformation
Reengineering

Type Inference Systems

Semantics
of Models and

Transformations

Figure 2.1: Research areas touched by this thesis (including own contributions in
bold letters)

Models are abstract and formal at the same time, and processible by computer
programs. In a usual software development process, much if not all low-level
program code must be developed and maintained manually, which can lead
to high development costs. If parts of the code are generated from models,
development costs and time are expected to decrease, and software quality
is expected to be improved. With the increasing complexity of software,
interest in MDE is expected to be growing, too, because of the raised level
of abstraction [HWRK11; HRW11].

Together with models, model transformations play a pivotal role, as they
describe the logic to translate abstract models to less abstract ones, finally
resulting in executable code artifacts. MDE has been standardized by the
OMG under the term MDA. Despite being usefulness as a source for defini-
tions, it has been deemed to be too heavy-weight because of its strong focus
on the UML. Stahl and Voelter [SV06] proposed the MDSD and its practical

26

2.1. Model-Driven Engineering

Code of Application or
Reference Implementation

analyze

Individual
Code

Schematic
Repetitive Code

Generic
Code

Application
Model

Schematic
Repetitive Code

Individual
Code

Platform

DSL

Trans-
formations

uses references

separate

input

create

Figure 2.2: Model-driven Software Development (from [SV06, p. 15])

manifestation, the AC-MDSD, as alternative and more practical approaches.
Next, we will briefly describe each of the three methodologies and how they
relate to each other, before we define the basic terms of MDE.

Model-driven Software Development Model-driven Software Develop-
ment (MDSD) is a term that generally refers to an approach popularized by
Voelter and Stahl [SV06]. Model-driven Software Development (MDSD)
pursues a list of practice-oriented goals: it generally seeks to (i) maximize
the degree of automation; (ii) enhance software quality through a consequent
reuse of domain knowledge and best practices; (iii) improve maintainabil-
ity by reducing redundancies and concentrating cross-cutting concerns in
a single point (namely the transformations); and, finally, (iv) it aims for
better portability, interoperability, and manageability of complexity through
abstraction and the use of standards. This is achieved through models that
are both abstract and formal at the same time, from which as much code
as possible is generated.

An MDSD project always starts with a reference implementation (see
Figure 2.2). The first step is to analyze the software and extract three classes

27

2. Foundations

Computationally
Independent Model (CIM)

Platform
Independent Model (PIM)

Platform
Specific Model (PSM)

Code

manual transformation

model-to-model transformations

model-to-text transformations

system requirements +
system environment

computational information +
mark models (using UML profile)

platform details added

implementation

Mark Model
(UML profile)

referencesis transformed into

Figure 2.3: Model-driven Architecture

of code. There is (i) code that is generic with respect to the problem domain;
(ii) code that is specific to the developed instance but belongs to the targeted
domain; and (iii) code that is individual to the customer and that does
not exactly belong to the targeted domain. The generic code forms the
API and is the cornerstone of the generator framework, hence interfaces
must be well-defined and stable. Schematically repetitive code should be
entirely generated from an application model, which is a program in a
domain-specific language that formally describes the problem domain. The
amount of application-specific code that is added manually ought to be
small, and proper implementation techniques should be used to separate
customized code from the generated code to foster an incremental and
iterative development process.

Model-Driven Architecture The Model-Driven Architecture (MDA) is a
standardized model-driven software engineering approach [Obj03]. Princi-
pal objective of the Model-Driven Architecture (MDA) is to gain an utmost
degree of platform independence in order to leverage portability and in-
teroperability. The basic idea is to define multiple models on increasing
levels of abstraction. Three types of models exist, the Computationally-

28

2.1. Model-Driven Engineering

Independent Model (CIM), the Platform-Independent Model (PIM), and the
Platform-Specific Model (PSM) (see Figure 2.3).

The CIM is a view on the system that fully remains on the level of the
problem domain. It defines functional requirements and the environment of
the system (e.g., by means of use cases). It can have the shape of informal
text [KWB03], or it might consist of UML models, for instance the Open
Distributed Processing (ODP) enterprise and information viewpoints [Obj03;
SZ93]. The PIM is derived manually from the former model, and introduces
computational and architectural information. The PIM should nevertheless
not refer to any platform-specific concepts. The MDA guide recommends to
use the UML to semi-formally specify this view. What follows in an MDA
process is a group of transformations that introduces platform concepts,
before a final transformation maps the PSMs to an execution platform,
for instance the Java platform. Each transformation may create a separate
PSM instance, or, if the PSMs share a common target platform, it can be
more practical to introduce various platform concepts one after the other,
resulting in a chain of PSM to PSM transformations. The PIM to PSM
transformations typically require further information to decide at which
place which platform concepts to add. The guide suggests to use the UML

profile mechanism to annotate model elements in the PIM/PSM. Annotations
can be technically separated in an extra model, so that annotations do not
get lost on incremental runs. A profile is constituted of stereotypes to mark
classes, tagged values to attach values (which can serve as parameters), and
OCL constraints to assert their valid application.

In this approach, despite the notion of a platform being central, it is not
clear what a platform actually is. MDA literature gives several platform
examples, including middleware platforms like CORBA, JavaEE, and .NET,
component models like the EJB, COM or .NET, and programming or speci-
fication languages like Java, C++ , and XML. These few examples already
emphasize that platforms can be on different levels of abstraction. Since

29

2. Foundations

one platform can be the platform for another, it is important to be aware
that it is a relative concept.

The MDA guide exactly defines how transformations from PIM over
PSMs to Code are built, and depends on concrete technologies, such as
UML and UML profiles. The MDSD approach, on the other hand, remains
technology independent, and describes the transformation from domain
concepts to code as a blackbox transition.

Model-driven approaches have been successfully adopted in industrial
projects. MDSD success stories are reported for instance by Voelter [Voe10],
and also the Object Management Group (OMG) lists many success stories
on their site1. In a number of surveys, Hutchinson and Whittle interviewed
practitioners to identify acceptance and open issues of MDE [HWRK11;
HRW11; WHR+13].

Architecture-Centric MDSD This approach is a concrete flavor of MDSD
that aims for efficient reuse of domain knowledge across a family of soft-
ware architectures. Today’s business software is complex, and much code
is needed to bind domain concepts to the technical infrastructure, for ex-
ample the JavaEE platform. This code is usually highly redundant and is
a good candidate for automation. The architecture of a family of software
products plays a central role in this approach, and architectural concepts are
typically described as a platform-independent UML model enriched with
domain-specific concepts via the UML’s profile mechanism. For simplicity,
the transformation maps directly to code, sparing the need for mark models.
Internally, the transformation can be modularized using intermediate trans-
formations. Round-trip engineering (as favored by the MDA approach) is
abandoned in favor of strict forward engineering, together with an appropri-
ate mechanism to separate generated code artifacts from manually encoded
custom business logic. An initial reference implementation is considered
of extreme importance, it serves as a blueprint for the generative software

1 MDA success stories, http://www.omg.org/mda/products_success.htm

30

http://www.omg.org/mda/products_success.htm

2.1. Model-Driven Engineering

architecture to be developed. Taken together, Architecture-Centric MDSD
(AC-MDSD) picks up some of the ideas and concepts of MDA, while it
skips others for practicality reasons.

2.1.2. Metamodeling

Models are the first-class assets in model-driven engineering. The idea
behind modeling is to understand complex problems through abstraction
[Sel03]. With increasing complexity of software, interest in MDE is expected
to be growing, too.

The word model has a variety of meanings, reaching from copies of
physical objects to things mentally conceived of, for instance formal inter-
pretations of theories. There are many definitions, and none seems to be
complete. Müller surveys the concept of model [Mül01]. One of the most
notable definitions comes from Herbert Stachowiak (1921–2004), he lists
three fundamental properties that can be attributed to any model:

• Mapping Property: “Models are always models of something: they
are mappings from, representations of natural or artificial originals
that can be models themselves.” [Sta73, p. 131]

• Reduction Property: “Models in general capture not all attributes
of the original represented by them, but rather only those seeming
relevant to their model creators and/or model users.” [Sta73, p. 132]

• Pragmatism Property: “Models are not uniquely assigned to their
originals per se. They fulfill their replacement function (i) for par-
ticular – cognitive and/or acting, model using subjects, (ii) within
particular time intervals and (iii) restricted to particular mental or
actual operations.” [Sta73, pp. 131f.]

Stachowiak’s description of the concept applies well to our understanding
of a formal model. This thesis relies on Anneke Kleppe’s formal definitions

31

2. Foundations

that are based on graph theory [Kle09, p. 60ff.]. As a prerequisite, we repeat
the mathematical definition of a typed graph.

Definition 2.1 (Type Graph): A type graph G is a combination of a set of

vertices V , a set of edges E, a source function s : E→V that gives the source

node for a particular edge, a target function t : E→V that gives the target

node for a particular edge, and an inheritance relationship I ⊆V ×V , where

I is a reflexive partial ordering.

With this definition, models can be defined as typed graph structures.

Definition 2.2 (Model): A model is a combination of a type graph G and a

set of constraints C of various types.

A language specification comprises syntactical and semantic constraints.
Syntactical constraints can be classified as abstract syntax and concrete syn-
tax. Constraints regarding the concrete syntax limit the number of possible
instances to those which are considered as valid instances.

Definition 2.3 (Model Instance): An instance m of a model M is a labeled

graph that can be typed over the type graph GM of M and satisfies all the

constraints CM in model M’s constraint set.

Having models and the instance level defined, we can conclude with a
definition for models at the meta level.

Definition 2.4 (Metamodel): A metamodel is a model MM used to specify

a language.

There is an analogy between metamodels and domain-specific languages
[Fow10; Kle09; Voe13] which is pointed out by the definition. A language
specification consists of a set of four models that specify syntactical and
semantic constraints of the language. An abstract syntax model defines the
set of programs that are considered as valid. A concrete syntax model defines
the set of programs with a valid concrete representation, be it graphical or
textual. A semantic domain model defines the valid (static) semantic domain

32

2.1. Model-Driven Engineering

of the language. An example for a language to express abstract syntax is the
UML. Concrete textual syntax is usually defined using some form of the
EBNF language. Static semantics can be expressed in predicate logic using
the OCL. Dynamic semantics are described by mapping the abstract syntax
model to another syntax model (abstract or concrete) with well-defined
semantics. Plenty of model transformation languages are available that can
be used for this purpose.

Seen from a relative point of view, a metamodel can be defined as a model
of a model. However, this definition is overly simplified, as it neglects the
modeling level on which a model is used. Most metamodeling languages
limit the number of meta-levels. The Meta-Object Facilities (MOF) [Obj14]
specifies four modeling levels, the level of instances (M0), models (M1),
metamodels (M2), and meta metamodels (M3).

M0: Model Instances Models on the lowest level M0 represent real-world
object and cannot be instantiated further, they have a direct correspondence
to programs in a programming language.

M1: Models Models on the M1 level describe a modeling (or program-
ming) language, usually suited to describe elements of the real world (map-
ping, isomorphism) from a certain domain (reduction, abstraction) for a
certain purpose (pragmatism).

M2: Metamodels Metamodels (M2) form a class of languages used to
describe domain-specific languages. The most popular representative for an
M2 language is the UML, but also the Extended Backus-Naur Form (EBNF)
as a language to specify context-free grammar resides on this level.

M3: Meta Metamodels On the highest level M3 lies the meta metamodel
which defines some core concepts, the Essential MOF (EMOF) and the
Complete MOF (CMOF). MOF is a closed metamodeling architecture, i.e.,

33

2. Foundations

it defines its own concepts, thus avoiding the need to define even further
levels (M4 and above).

The EMOF language closely corresponds to the facilities found in object-
oriented programming languages, and is closed in itself, i.e., it does not
depend on CMOF. Because of the EMOF’s universality and conciseness,
leaner approaches skip the M2 level and use the EMOF itself to specify M1
languages. For instance, the Eclipse Modeling Framework (EMF) [SBPM09]
completely relies on Ecore to represent Java code. Ecore is EMF’s imple-
mentation of the EMOF and is almost fully in alignment with the standards.
Note that the OCL, which is used to specify constraints on the models, is
itself an instance of M3.

The line between models and programs is blurry; Kleppe even coined the
term “mogram”, or “prodel”, to describe this phenomenon [Kle09]. It is prob-
ably due to tradition that models are commonly perceived as descriptive and
programs as prescriptive, i.e. models describe an existing system, and pro-
grams describe how a system can be automatically constructed [Voe13].

Where models are abstractions of concepts from the real world, meta-
models are abstractions from a class of models. The concept of meta-
models is closely related to the concept of ontologies, as both are used
to (semi-)formally represent knowledge within a domain as a set of con-
cepts [OGS09].

2.1.3. Model Transformations

Model transformations are an important facility in the field of MDE, where
models are first-class entities. Figure 2.4 illustrates the pivotal role of model
transformations in MDE. Text-to-Model (T2M) and Model-to-Text (M2T)
transformations are special cases of Model-to-Model (M2M) transforma-
tions where concrete textual representations of the input/output models are
processed. Transformations can be executed during development, mainte-
nance, or at run-time.

34

2.1. Model-Driven Engineering

Meta Model

Model

Model
Instance

«instanceOf»

«instanceOf»

Transformation
rules

Transformation
language

«instanceOf»

Meta Model

Model

Model
Instance

«instanceOf»

«instanceOf»

«to»«from»

Trace
information

«to»«from»

flow of data

Transformation
engine

Figure 2.4: The role of transformations in MDE

While it is possible to write any kind of transformation in a general-
purpose programming language like Java, there is a wide variety of domain-
specific languages available that feature oft-needed transformation concepts
to ease development. For example, most (if not all) languages use some
kind of model navigation and filtering language akin to the OCL, and have a
notion of a relation between model elements. For creating text from a model,
a natural language concept to embed model expressions into text templates
has become prevalent in most model-to-text transformation languages. The
level of abstraction differs heavily, ranging from fully declarative languages
to fully imperative languages. Whereas the former have a more formal
character (close to graph theory and logic programming), the latter are closer
to operational thinking which is typically more accepted by programmers
and typically exhibits faster execution times. As a compromise, there are
also hybrid languages that combine the benefits from both worlds.

Based on previous definitions, we cite Kleppe’s formal definition of a
model transformation, slightly modified for the M2T case [Kle09, p. 71].

35

2. Foundations

RelationsToCore
TransformationQVT

Operational
Mappings

Blackbox
Language
Extensions

QVT Relations

QVT Core

extends

Figure 2.5: The QVT specification – languages and architecture [Obj11]

Definition 2.5 (Model Transformation): A model transformation is a func-

tion t that maps from abstract syntax models Min
1 , . . . ,Min

m to syntax models

Mout
1 , . . . ,Mout

n . If the models in the target domain are abstract syntax models,

we speak of a model-to-model transformation; if the models in the target

domain are concrete syntax models, we speak of a model-to-text transforma-
tion.

QVT is a standard for model transformation defined by the OMG [Obj11]
and forms, beneath other standards, an important piece in the MDA puzzle.
The QVT standard comprises three languages, QVT-O, QVT-R, and QVT-
Core (Figure 2.5). QVT-O is an imperative model-to-model transformation
language for writing many-to-many and in-place transformations. QVT-R is
a declarative language that supports bidirectional and incremental semantics.
Both languages use the OCL language for model querying and filtering.
Conceptually, QVT-R translates to a core language with a minimum of
relational concepts, QVT-Core. QVT-Core has never been implemented so
far, but a modified variant of QVT-Core is currently implemented for the
Eclipse platform [WHK13]. Blackbox language extensions is a feature that
enables to implement some mappings of a QVT-R program in a different
language, for instance QVT-O or Java.

State-of-the-art of QVT has been investigated by Kurtev in 2008 [Kur07],
and by Helsen in 2006 [Hel06]. Guduric compares QVT-R with QVT-

36

2.1. Model-Driven Engineering

O [GPT09], and Stevens studies semantics and identifies several flaws in
the specification of QVT-R [Ste10].

The Atlas Transformation Language (ATL) is a hybrid transformation
language, it also supports imperative constructs to be used whenever declar-
ative constructs turn out to be less appropriate. ATL owes its popularity
to the fact that, as a submission for the OMG’s request for proposal to the
QVT specification, it had much time to mature, while the OMG took years
to unify all submitted proposals before it published the QVT standard.

The Epsilon Transformation Language (ETL) [KPP08] is another hybrid,
rule-based transformation language that has gained wider acceptance in the
community. It is part of a whole stack of languages, including the Epsilon

Generation Language, the Epsilon Validation Language, and the Epsilon

Object Language on top of which it is built.
Other more formal approaches are based on term/graph rewriting: VIsual

Automated model TRAnsformations (VIATRA), for example, is a framework
for transformation-based verification and validation environment, based
on Graph Transformations (GT) and Abstract State Machines (ASM) to
manipulate graph based models. Further graph-based approaches include
Graph Rewriting and Transformation (GReAT), Attributed Graph Grammar
system (AGG), Fujaba/TGG, and PROGRES. A comparison of the latter
three was carried out by Fuss et al. [FMRS07].

Mapping models to textual artifacts, e.g. code, is usually done using ded-
icated transformation languages based on text templates. Most generated
texts are static, with only few parts being dynamically generated from source
models. In such cases, using the plain target language and embedding ex-
pressions for the dynamic parts within meta tags into the text enhances
readability. Alternatively, visitor-based approaches construct textual artifacts
by traversing over a source model’s elements. If the source model and the
text are strongly coherent, for instance when Java syntax is generated from
a syntax tree, a visitor approach can be more appropriate. Examples for

37

2. Foundations

template-based languages are Xpand (superseded by the latest version of
Xtend), VTL, MOFScript, and JET [Ren06].

Transformation languages are still subject to active research, evidenced
by the annual Transformation Tool Contest (TTC) that takes place at the
International Conference of Model Transformations. At this venue, new
languages and language concepts are tested for their practicality. As of today,
there is a multitude of languages specific to the domain of model-based
transformations. We cannot comprehensively discuss these, yet a lot of
literature is available to further enlarge upon this topic. Czarnecki proposes
a taxonomy for the classification of model transformation languages [CH03;
CH06]. Tamura lists the most important characterization and classification
schemes, and analyzes QVT with respect to this set [TC10]. Biehl did a
literature study on model transformations [Bie10].

In this thesis, we mainly focus on three languages, QVT Operational
Mappings as a representative for imperative transformation languages, QVT
Relations as a representative for declarative languages, and Xtend as a
representative for a template-based model-to-text transformation languages.
The TGG formalism is used in Chapter 4 to formally specify a transformation.
These four languages are introduced in the sections that follow.

2.1.4. QVT-Operational

In QVT Operational Mappings (QVT-O), transformations are expressed in
an imperative style, where each modification step is made explicit. QVT-O
programs are always unidirectional, meaning they have exactly one execution
direction. Although a program is able to modify existing models, update
semantics must be implemented by hand, because transformation logic is not
automatically based on trace information from previous runs. The language
is, however, best to be used if source and target models are semantically and
structurally less coherent, whereas declarative languages are more concise if
there (ideally) is a one-to-one correspondence between classes.

38

2.1. Model-Driven Engineering

Any QVT-O transformation consists at minimum of a transformation
signature. Apart form the transformation’s name, the signature indicates
the set of model instances that are handled by the transformation. Each of
those model parameters must have an access indicator, the variable name
of an instance, and the type. There are three different access modes, in
specifies that an existing model is read but not modified, out specifies that
a model is freshly created, and inout specifies that an existing model is
modified. In regards to our introductory Activity2Process example (List-
ing 1.1a, lines 2-3), transformation Activity2Process reads an instance
of an ActivityModel that is globally accessible by variable a, and creates
an instance of ProcessModel, accessible by variable p.

transformation Activity2Process(

in a:ActivityModel, out p:ProcessModel);

Models that are involved in a transformation must be introduced with
modeltype statements prior to the signature. A model type declaration uses
a Uniform Resource Identifier (URI) to link a type to a model definition. This
is the preferred way, although models can alternatively be resolved by the
QVTo IDE that runs under the Eclipse environment. Remember that, when
dealing with MOF models, the URI is the unique identifier of a package.
For simplicity, we decided for the latter in the example. We could, however,
explicitly link the two model types to the URIs of packages ActivityModel
and ProcessModel by prepending these two lines:

modeltype ActivityModel uses

’http://www.kit.edu/Activity/1.0’;

modeltype ProcessModel uses ’http://www.kit.edu/Process/1.0’;

A transformation program consists of method declarations. Besides a
mandatory method named main() that poses the entry point, methods are
of one of three different kinds, mapping operations, helper operations, and
query functions. A mapping operation implicitly maps one element to an-
other. The mapping in the example below maps an Activity object (the

39

2. Foundations

context parameter) to a Process object (the return parameter) in the target
domain.It does so by assigning reference steps of the implicitly created
Process object a collection of Step objects. The collection is created by
calling another mapping, mapAction2Step, on each element that is con-
tained in the source object’s actions reference. Note that variable self

corresponds to the object in context, and variable result to the object
created in the target domain.

mapping Activity::mapActivity2Process() : Process {

result.steps := self.actions->map mapAction2Step();

}

QVT-O offers single dynamic dispatching based on a mapping method’s
context parameter. Having two overloaded mappings StartAction::map-
Action2Step() and StopAction::mapAction2Step(), the interpreter de-
cides at call time for the variant with the best matching type. Explicit dis-
patching is possible via the disjuncts keyword attached to a mapping
method, followed by a list of mappings which are invoked in order until one
of the called mapping’s when guard is satisfied.

What distinguishes QVT-O most from a General-Purpose Language
(GPL) is its powerful trace management API. Query operations follow
the pattern:

[sourceObject.| sourceObjects->][late] [inv]resolve[one][In](

targetObjectType[,filterExpression][,inMapping])

If no source object is provided, the query returns all entries that resolve
to type targetObjectType. The late option defers resolution and statements
that depend on the resulting value to a second pass. This kind of trace
resolution is expedient in situations where objects to be queried are created
at a later time during execution. Under the hood, the concept of promised

futures that is known from concurrent programming is applied. The one

option queries only one randomly chosen element. When prefix inv is used,
elements from the source domain rather than the target domain of involved

40

2.1. Model-Driven Engineering

mappings are queried. Suffix In constraints the query to a particular mapping
operation inMapping which is then to be given as an additional parameter.
An optional filter expression filterExpression uses OCL to further restrict
the elements returned. In the Activity2Process example, we are interested
in all Step elements that are created for an Action object that is referred
to via reference successors. Late resolution is used, since we cannot be
sure that an element’s successor has been created at the time the element
itself is mapped. Else, we would need to order all elements by their next
dependencies manually and make sure that no cycle occurs.

next := self.successors.late resolveoneIn(Step,

mapAction2Step);

Only elements that have been implicitly created by a mapping operation
are considered by function resolve, thus one should always prefer this
method type to create elements over explicit instantiations via the object
or new operator. Helper operations follow the same syntax as mapping
operations, but do not automatically instantiate an object of the return type.
However, although they allow side effects alike, explicit instantiation should
only be used to create intermediate elements. The subsequent helper method
would replace the original mapping mapAction2Step from Listing 1.1b only
at a first glance; the resolve function inside would yield an empty list.

helper Action::mapAction2Step() : Step {

return new object Step {

name := self.name;

// BUG: Step objects are no longer resolvable by QVT-O.

next := self.successors.late resolveone(Step);
...

}

}

Whenever a mapping or helper method modifies input parameters, these
must be marked with direction mode inout in the signature. Query functions,

41

2. Foundations

on the other hand, do not allow any side-effect; the body of a query function
is a regular OCL expression. A query function must only have one result
parameter and a set of input parameters that are automatically tagged with
direction mode in.

The body of mapping and helper methods is implemented in an extended
OCL syntax. Standard OCL is still used to query and filter model elements.
Beyond that, QVT-O defines an imperative extension to OCL that allows
to define and modify variables (var statement), instantiate and modify
model elements (new and object operator), and imperative block state-
ments (foreach and while loops, return and break statement). The map
operator is used to call a mapping on input elements. Remember that the
same applies here as for any operator in standard OCL: if a mapping is
called on a collection of elements, the arrow operator ‘->’ has to follow
the collection and precede the map statement, whereas the dot operator ‘.’
is to be used on single elements.

In the introductory example, we use QVT-O’s module concept to decom-
pose the transformation into two separate modules. Transformations can
be split across multiple files, given their signature owns exactly the same
model parameters. One transformation may use another one by importing it
and using the extends keyword succeeding the signature (see Listing 1.1a,
lines 1–5). Libraries are another concept to structure transformations. As
opposed to a transformation signature, the signature of libraries do not have
model parameters (i.e., ‘library libraryName();’). Only helper and query
methods can be put into libraries, because they do not rely on model param-
eters. Transformations gain access to libraries by an ‘access libraryName’
appended to their signature.

This short introduction does only touch on the syntax of QVT-O and OCL.
More details can be found in the QVT and the OCL specifications [Obj11;
Obj12]. The Eclipse QVTo project2 is an actively maintained open-source

2 Eclipse QVTo, http://www.eclipse.org/mmt/qvto/

42

http://www.eclipse.org/mmt/qvto/

2.1. Model-Driven Engineering

1 transformation Activity2Process(
2 activity : ActivityModel, process : ProcessModel) {
3 top relation Activity2Process {
4 checkonly domain activity a : Activity { };
5 enforce domain process p : Process { };
6 }
7 top relation Action2Step {
8 checkonly domain activity a1 : Action {
9 activity = a2 : Activity { },

10 };
11 enforce domain process s : Step {
12 process = p : Process { },
13 };
14 when { Activity2Process(a2, p); }
15 where {
16 StartAction2Step(a1, s);
17 StopAction2Step(a1, s);
18 CompositeAction2Step(a1, s);
19 }
20 }
21 top relation Successors2Next {
22 checkonly domain activity a1 : Action {
23 successors = a2 : Action { }
24 };
25 enforce domain process p1 : Step {
26 next = p2 : Step { }
27 };
28 when { Action2Step(a1, p1); Action2Step(a2, p2); }
29 }
30 relation StartAction2Step {
31 n : String;
32 checkonly domain activity a : StartAction { name = n };
33 enforce domain process s : Step { name = n; isStart =

true };
34 }
35 relation StopAction2Step {
36 n : String;
37 checkonly domain activity a : StopAction { name = n };
38 enforce domain process s : Step { name = n; isStop = true

};
39 }

43

2. Foundations

40 relation CompositeAction2Step {
41 n : String;
42 checkonly domain activity a1 : CompositeAction {
43 name = n
44 };
45 enforce domain process s : Step {
46 name = ’Run process ’ + n
47 };
48 }
49 }

Listing 2.1: Activity2Process example in QVT-R

implementation of QVT-O for the Eclipse ecosystem. SmartQVT3 is another
EMF-based implementation that is distributed under the Eclipse Public
License (EPL), but for which development seems to have come to a halt.

2.1.5. QVT-Relations

In QVT Relations (QVT-R), a transformation is specified declarative rather
than by giving step-wise instructions. A transformation defines a set of rela-
tions between the elements of at least two model instances. Listing 2.1 shows
how the Activity2Process example can be done in QVT-R. This transforma-
tion is specified on two domains, where domain variables a and p represent
instances of ActivityModel and ProcessModel, respectively (lines 1f.).

The top-level construct in the language are relations. A relation definition
comprises a set of variable declarations, two or more domain sections, plus
optional when and where sections. A domain section specifies an object
pattern to be matched on an object rooted in a particular domain (referred
to by the domain variable), together with a set of constraints on their at-
tributes and references. A constraint may either introduce another object to
be matched within the same domain, or an OCL expression that can refer-
ence variables (either object variables or those declared by the relation). The

3 SmartQVT, http://sourceforge.net/projects/smartqvt/

44

http://sourceforge.net/projects/smartqvt/

2.1. Model-Driven Engineering

object pattern can be hierarchical, nested up to an arbitrary depth. When
and where sections define one or more OCL expressions which may also
refer to variables in context of the relation. For a relation to hold, a valid
matching of the variables on the source domain must be found, so that
the precondition in the when clause evaluates to true, and subsequently a
match for the rest of the variables must be found so that the postcondition
in the where clause is fulfilled.

QVT-R transformations can be invoked in one of two modes. If invoked in
check-only mode, the relations are simply checked for consistency to ensure
that they hold in one way or another; if no match for all relations can be
found, the model instances are considered to be inconsistent. In enforce

mode, the relations are checked for consistency as well. However, exactly
one of the domains is selected as target domain in this mode (it must be
a domain that is tagged with keyword enforce), and if no valid match is
found, elements can be created, deleted, and modified in order to reach a
consistent state. Changes should be performed conservatively, i.e., only a
minimum of changes should be done (hippocraticness). The behavior is
called check-before-enforce semantics, and allows for incremental updates
in more than one direction. The key concept defines a set of key attributes,
as in a relational database. These attributes hint QVT-R at deciding if an
enforced object can be located among preexisting elements, or if a new
object has to be created.

Relations can be tagged as top level (with keyword top). A transformation
is only then considered to have succeeded if all top level relations hold.
However, relations may refer to top and non-top relations in their when

clauses, and non-top relations in their when and where clauses. When invoked
in such way, root objects of the relation’s domains must be assigned a
particular value (variables, constants or expressions thereof).

Consider top relation Action2Step (lines 7–20). When run in enforce
mode, with domain process selected as target domain, binding of the rela-
tion proceeds as follows. Initially, root variable a1 is bound to any instance of

45

2. Foundations

Action found in the activity domain. Reference a1.activity is bound
to an instance of Activity. On the target domain process, variable p is
bound to an instance of Process, so that relation Activity2Process holds
on variables a2 and p (line 14). Further on in the process domain, root
variable s is bound to an instance of Step. If none exists with a parent
activity a1, a new Step is created, and the property is set accordingly. There-
after, the where clause is enforced: non-top relations StartAction2Step,
StopAction2Step and CompositeAction2Step are invoked on parame-
ters a and s. Note that only one can match depending if object a is an instance
of StartAction, StopAction, or CompositeAction. Each of the three
rules set property ‘s.name’ based on variable n that is retrieved from property
‘a.name’, and configure properties isStart and isStop accordingly.

Because class CompositeAction inherits both from Action and Ac-

tivity, any instance of CompositeAction triggers two top-level rules,
Action2Step and Activity2Process (Remember that a successful execution of
a transformation requires all its top-level relations to hold). Thus the program
creates two objects for an instance of CompositeAction, one Step and a
separate Process object that is going to serve as container for sub actions.

A substantially more detailed introduction to the various concepts is given
in the OMG’s QVT specification [Obj11]. There are three implementations
of QVT-R. Of these, ModelMorf 4 is the one that most faithfully complies to
the QVT standard, but like MediniQVT5, it is no longer maintained. Eclipse

QVTd6 is a promising implementation for the Eclipse Modeling Platform

but is still under active development [WHK13].

2.1.6. Xtend

The Xtend language is a Java-based general-purpose programming language
with two outstanding features,

4 ModelMorf, http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
5 MediniQVT, http://projects.ikv.de/qvt
6 Eclipse QVTd, http://www.eclipse.org/mmt/?project=qvtd

46

http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://projects.ikv.de/qvt
http://www.eclipse.org/mmt/?project=qvtd

2.1. Model-Driven Engineering

• providing the easy extensibility of the language with domain-specific
concepts, feasible through the concept of extension methods, and

• offering concise syntax with much less clutter than Java, mainly due
to lambda expressions and a powerful static type inference system.

Xtend does not deny influences from the object-functional Scala lan-
guage7. Contrary to Scala, which compiles directly to Java byte code, Xtend
programs are transpiled into readable Java code thus providing a seam-
less integration with Java. Furthermore, Xtend offers special constructs for
template-based model-to-text transformations, and a simple mapping con-
cept to facilitate model-to-model transformation development. The Xtend
language used to be part of the Xpand language, where template expres-
sions had to be written in Xpand, and functional extensions on the model
elements in Xtend. From Xtend version 2.x on, Xtend had been completely
redesigned and evolved into an extensible language, where template expres-
sions that used to be part of Xpand are only one of the extended concepts
of the language. Throughout this dissertation, the name Xtend without a
version number always refers to the latest version, Xtend2. In sections where
we compare the newer Xtend with its predecessor, we explicitly name Xtend
Xtend2, and the predecessor Xtend1.

The rest of this section demonstrates how Xtend can be used to write M2M
and M2T transformations in an imperative style. Language concepts are
explained alongside that add to model transformation development and give
the impression of Xtend being well-suited for this particular domain. First,
consider the model-model transformation program from previous sections,
this time implemented in Xtend (Listing 2.2).

Conciser syntax The program defines one class and three methods. What
is most apparent is that, when compared to Java, a lot of syntactic noise is
avoided. Classes and methods are all public per default. Method definitions

7 Scala, http://www.scala-lang.org

47

http://www.scala-lang.org

2. Foundations

1 class Activity2Process {
2 var output = new ArrayList<EObject>
3 val factory = ProcessFactory.eINSTANCE
4 def run(List<EObject> input) {
5 output += input.filter(Activity).map[mapActivity2Process]
6 output
7 }
8 def create result:new factory.createProcess

mapActivity2Process(Activity self) {
9 result.steps += self.actions.map[mapAction2Step]

10 }
11 def dispatch create result:new factory.createStep

mapAction2Step(Action self) {
12 result.name = self.name
13 result.next = self.successors.mapAction2Step
14 result.isStart = self instanceof StartAction
15 result.isStop = self instanceof StopAction
16 }
17 def dispatch create result:new factory.createStep

mapAction2Step(CompositeAction self) {
18 result.name = "Run process " + self.name
19 result.next = self.successors.mapAction2Step
20 result.isStart = false
21 result.isStop = false
22 output += self.mapActivity2Process
23 }
24 }

Listing 2.2: Activity2Process example in Xtend

are commenced with a def, and variable definitions with a val, as in Scala.
Also, everything is an expression, and a line feed replaces the semicolon
character to separate statements. Because the value in line 6 poses the last
expression in method run, it automatically forms the return value without
the need for keyword return. Method run’s return type has not been defined
explicitly; Xtend’s static type inference system is able to automatically
derive type List<EObject>. The following code snippet shows the Java
code that is computed by the Xtend transpiler from lines 4–7:

48

2.1. Model-Driven Engineering

1 public ArrayList<EObject> run(final List<EObject> input) {

2 Iterable<Activity> _filter =

Iterables.<Activity>filter(input, Activity.class);

3 final Function1<Activity, process.Process> _function = new

Function1<Activity, process.Process>() {

4 public process.Process apply(final Activity it) { return

Activity2Process.this.mapActivity2Process(it); }

5 };

6 Iterable<EObject> _map = IterableExtensions.<Activity,

EObject>map(_filter, _function);

7 Iterables.<EObject>addAll(this.output, _map);

8 return this.output;

9 }

It can be easily seen that Xtend’s syntax is much more succinct due to a
variety of syntactical elements (syntactic sugar) and complementing libraries.
We discuss six prominent features of Xtend that are not readily provided by
Java, Xtend’s collection library, extension methods, closures, create methods,
template expressions, and multiple dispatching.

Collection library Xtend is delivered with its own adaptation of the
Google Guava API for Java (formerly called the Google Collections Li-

brary), an extension to the Java collections framework. In combination
with functional closures, query and filter operations on EMF-based mod-
els are syntactically close to OCL expressions. The expression in line 5
first filters all elements of type Activity into a list and invokes method
mapActivity2Process on each element of the list, compiling a new list
from the method’s return values. The same operation would translate to
an OCL expression along the lines of

input->select(oclIsTypeOf(Activity))->collect(e |

e.mapActivity2Process)

49

2. Foundations

Extension methods Another distinctive feature of Xtend – the one Xtend
actually got its name from – are extension methods. The developer can add
additional functionality to classes without the need to modify them. Any
method m whose first parameter is T can be invoked in two ways on an object
t : T, either the old way, ‘m(t)’, or using the new notation ‘t.m’ so that the
order of appearance mimics the flow of data. This syntactical trick enables
to use a more OCL-like syntax (functions from the collection Application
Programming Interface (API) can be chained this way, as demonstrated in
line 4 by the two collection methods filter and map), but also a syntax that
resembles that of QVT-O’s mapping invocations. Line 5 uses the extension
method style to call mapping mapActivity2Process.

Closures Closures are literal expressions that define anonymous func-
tions. Just like anonymous classes in Java, they capture final variables and
parameters in scope, but do not require the artificial overhead of defining an
anonymous class to wrap a function. While lambda expressions have been
introduced to Java 8, Xtend is still more concise and maintains compatibility
with older Java versions. Functions from the OCL library make heavy use
of closures, including the select function mentioned above. Like QVT-O,
a call to mapping method can be folded over a full collection of that type
using map from the collection API, else we would need to fall back to it-
erating over all elements using a for loop. Line 9 gives in an example for
the abbreviated syntax of a closure function, where ‘[mapAction2Step]’
is shorthand for ‘[e | e.mapAction2Step]’.

Create methods In Section 2.1.4 we said that QVT-O’s trace API plays an
important role to resolve elements from previously invoked mappings. Xtend
owns a similar (albeit much less capable) concept, create methods. When a
create method is invoked, it first checks if it had been invoked on the same
set of parameters prior. If an entry can be found in a dictionary that it keeps,
the same entry is returned, else the defined return type is first instantiated,

50

2.1. Model-Driven Engineering

1 class Activity2ActivityXML {
2 // TODO: caller must write return value to an xml file
3 def run(List<EObject> input) {
4 val activity = input.filter(Activity).head
5 mapActivity2ActivityXML(activity)
6 }
7 def mapActivity2ActivityXML(Activity self) ’’’
8 <activity>
9 «self.actions.map[mapAction2ActivityXML].join»

10 </activity>
11 ’’’
12 def mapAction2ActivityXML(Action self) ’’’
13 <action name="«self.name»"
14 isStart="«if (self instanceof StartAction) ’true’ else

’false’»"
15 isStop="«if (self instanceof StopAction) ’true’ else

’false’»"
16 next = "«self.successors.map[name].join(’,’)»"
17 ’’’
18 }

Listing 2.3: Activity2ActivityXML example in Xtend

then the method is run and finally the return value is stored to the dictionary
before it is returned to the caller. Methods can be turned into create methods
by prepending the return type with create result:new. Mapping methods
in Lines 8, 11, and 17 demonstrate the syntax. Only queries on concrete
mappings (cf. resolveIn, resolveOneIn) can be covered by this feature,
and resolution cannot be done without creating a new element if no entry
is found. In Chapter 3 we use active annotations (another Xtend feature)
to substitute create methods by a much more capable @Create annotation
and a more powerful trace resolution API.

Template Expressions We already mentioned that Xtend has its roots in
Xpand, a domain-specific language for template-based code generation. With
Xtend, code generators can be still written using the similar concept of tem-

51

2. Foundations

plate expressions. A template expression is a multiline string that is delimited
by three single quotes, ’’’. . .’’’. What distinguishes these strings from the
normal double quotation mark is that Xtend expressions can be embedded
into the string surrounded by meta tags, i.e. guillemets, «. . .». An expression
can evaluate to a string value which is directly inserted into the containing
string. Inside meta tags, there can also be meta block statements, either
conditionals «IF. . .». . .«ENDIF» or loops «FOR. . .». . .«ENDFOR». Xtend first
introduced smart white-space handling: Indentation inside the expression
(relative to the indentation outside the expression) is adopted by the gen-
erated string. In combination with a clever highlighting of indentations by
the Xtend text editor, creating formatted output without a pretty-printer has
become much easier. An example transformation from ActivityModel

instances to a textual XML representation demonstrates some of Xtend’s
abilities for code generation (Listing 2.3). Two mappings define template
expressions (lines 7ff. and 12ff.). The join operation in line 9 concatenates
the strings returned for each Activity object.

Multiple Dispatch Methods Not unlike Java, methods are bound based
on the static types of the arguments for each call statement. Especially when
dealing with models or extension methods, polymorphic behavior can be
more adequate. A set of dispatch methods shares a single method name,
but has distinct parameter types. Depending on the argument type, exactly
one method with the closest matching parameter type is invoked. Internally,
the transpiler to Java infers if-instanceof-else cascades, ordered in a
way such that more specific types come first. In the example above, method
mapAction2ActivityXML (line 12ff.) could be alternatively implemented
using two dispatching methods rather than checking the types manually:

def dispatch mapAction2ActivityXML(StartAction self) ’’’

<action name="«self.name»" isStart="true" isStop="false"

successors = "«self.successors.map[name].join(’,’)»">

’’’

52

2.1. Model-Driven Engineering

def dispatch mapAction2ActivityXML(StopAction self) ’’’

<action name="«self.name»" isStart="false" isStop="true"

next = "«self.successors.map[name].join(’,’)»">

’’’

This overview does only scratch the surface. The official Xtend User

Guide [The13] provides a complete (albeit merely informal) description of
the language. The Xtend language8 is part of the Eclipse stack, and was built
with the Eclipse Xtext DSL framework. Historically, the Xtend language
even originated from the Xtext project.

2.1.7. Triple Graph Grammar

TGG is a formal approach to model transformation programming that has
been developed by Schürr [Sch95] and that has its roots in graph grammars.
Early research on graph grammars has been done by Ehrig et al. [EPS73]
in the early seventies in order to generalize Chomsky’s formal generative
grammar theory. A Triple Graph Grammar (TGG) rule consists of a left
hand side and a right-hand side object pattern. Informally, each rule defines
a single construction step on one model, and how elements on another
model must be added to maintain equal semantics on both sides. Rules can
specify negative application conditions (NACs), i.e., object patterns that
must not occur for the rule to be applied. Further on, rules build a glue
(or correspondence) graph that consists of objects that relate semantically
equivalent objects on either side. Objects from the glue graph can be referred
to from arbitrary rules.

TGGs and QVT-R can be both classified as declarative transformation
languages. In fact, both share many concepts, and QVT-R can be (partially)
implemented in TGGs [GK10].

In this thesis, we use the compact notation suggested by Kindler [KW07].
The ++ operator annotated on an object or a reference tags those elements

8 Eclipse Xtend, https://www.eclipse.org/xtend/

53

https://www.eclipse.org/xtend/

2. Foundations

: Activity

name := NAME

: StartAction
++ : actions

++

: Process

name := NAME
isStart := true

: Step
++ : steps

++

: A2P

: SA2S ++

Figure 2.6: Triple graph grammar rule that maps StartAction to Step

that are to be instantiated or established in one of the three models, model
one, model two and a glue graph. Elements that are not tagged as such are
to be matched, they constitute the left-hand side of the rule, whereas the
right-hand side comprises both matched and created elements.

Figure 2.6 gives a simple example for a such notated rule that equates
to QVT-R rules Action2Step and StartAction2Step from Listing 2.1.
When read from left to right, an object of type Step is created for any
StartAction, together with a new gluing object of type SA2S. The created
Step instance is set to be contained by a Process object that must have
been previously created from object StartAction’s container element (and
put into relation by an instance of class A2P).

2.2. Modular Programming

Modular programming is a software engineering methodology that relies on
adequate language concepts to structure large and complex software systems.
First, we define important objectives that a modular design technique must
support. Then, we provide a list of the key features of modular language
concepts, and discern differences between module concepts and class or
component concepts.

2.2.1. Software Design Technique

Modular programming is quite an old design method that had been pro-
posed to address maintenance issues of large and complex software systems.

54

2.2. Modular Programming

In 1972, Parnas described modularization as “a mechanism for improving
the flexibility and comprehensibility of a system while allowing the short-
ening of its development time” (David L. Parnas [Par72]). In his opinion
(one which was shared by others at that time), the chief aim of modular
programming methods is to reduce development and maintenance costs
that arise from large and inappropriately structured code bases. He rec-
ommends to consequently hide design decisions behind interfaces, so that
developers responsible for a module can work on its implementation with-
out having others worry that changing decisions might break interfaces to
their respective module.

A more exhaustive list of requirements to is given by Bertrand Meyer.

Definition 2.6 (Criteria of a Modular Design Method): Meyer [Mey97]

states five requirements a modular design method must fulfill.

1. Decomposability. “A software construction method satisfies Modular
Decomposability if it helps in the task of decomposing a software

problem into a small number of less complex subproblems, connected

by a simple structure, and independent enough to allow further work

to proceed separately on each of them.”

2. Composability. “A method satisfies Modular Composability if it fa-

vors the production of software elements which may then be freely

combined with each other to produce new systems, possibly in an

environment quite different from the one in which they were initially

developed.”

3. Understandability. “A method favors Modular Understandability if it

helps produce software in which a human reader can understand each

module without having to know the others, or, at worst, by having to

examine only a few of the others.”

4. Continuity/Maintainability. “A method satisfies Modular Continuity
if, in the software architectures that it yields, a small change in a

55

2. Foundations

problem specification will trigger a change of just one module, or a

small number of modules.”

5. Protection. “A method satisfies Modular Protection if it yields archi-

tectures in which the effect of an abnormal condition occurring at run

time in a module will remain confined to that module, or at worst will

only propagate to a few neighboring modules.”

The second criterion, composability, encompasses reusability, the reuse of
the same module under a variety of situations. The third criterion, continuity,
implies maintainability, i.e., the ease with which a software system can be
adapted to changing requirements and bugs can be located and repaired.

The following definition puts the above criteria into a shorter formulation.
It adds reduced development time which can be achieved by having multiple
modules developed in parallel.

Definition 2.7 (Modular Programming): Modular Programming is the hi-

erarchical composition of a software system from isolated units with a self-

documenting and well-defined interface, yielding a product with a shorter

development time that is easier to understand and maintain.

Bass et al. [BCK03] list two important viewtypes (among others) for
module-based architectural structures, the decomposition structure, and the
uses structure. The first is the result of a hierarchical decomposition of a
system in a way that likely changes are encapsulated in few isolated modules,
with minimal functionality exposed by module interfaces, aiming to mini-
mize future maintenance efforts. The uses structure describes dependencies
on the level of procedures exposed by the interfaces, as well as external
resources. It serves as an aid in maximizing extensibility and reusability of
(subsets of) the system, and supports incremental development.

56

2.2. Modular Programming

2.2.2. Module Concepts

In order to design a product in a modular fashion, the programming lan-
guage used must support modularity. Almost all modern GPLs integrate
some concept to structure code, but not all of these concepts offer the same
capabilities, and not all are required to structure code on a larger scale. One
example is object-orientation, which does not provide means to properly
establish information hiding properties [Szy92], and is thus less suitable
for structuring software an a coarser grained level. Until today, there is no
received definition of what makes a good module concept and what not.

A useful module system facilitates to implement software according to
the following five rules.

Definition 2.8 (Rules of Good Modular Design): According to Bertrand

Meyer [Mey97], there are five rules of good modular design.

1. Direct Mapping. “The modular structure devised in the process of

building a software system should remain compatible with any modu-

lar structure devised in the process of modeling the problem domain.”

2. Few Interfaces. “Every module should communicate with as few

others as possible.”

3. Small Interfaces. “If two modules communicate, they should ex-

change as little information as possible.”

4. Explicit Interfaces. “Whenever two modules A and B communicate,

this must be obvious from the text of A or B or both.”

5. Information Hiding. “The designer of every module must select a

subset of the module’s properties as the official information about the

module, to be made available to authors of client modules.”

In addition, McConnell emphasizes that a good modular design must
maintain a uniform level of abstraction across all modules on the same
structural level [McC04, Ch. 5].

57

2. Foundations

From Meyer’s rules, and in correlation with Friedmann and Wand [FW08,
Ch. 8] we are able to infer informally the key concepts of a module system
and requirements therefor. Typically, a module concept enforces logical
boundaries between code units by providing explicit interfaces that are
separate from a module’s implementation. The interface exhaustively docu-
ments an implementation-independent description of what functionality is
provided (or exported). Additionally, the interface itself – or an implemen-
tation, in some cases – specifies external functional dependencies that are
needed (or imported). Similar to types, interfaces pose a contract between
the client/user of a module and the implementer of a module. Modules are
typically compile-time concepts, the linker resolves module dependencies
of a program before it is executed. A module system controls the scoping
and binding of names and types; implementation-specific details that are not
part of the interface are hidden (information hiding).

Modules vs. Classes As opposed to the definition of modularity in the
traditional sense that we introduced above, object-oriented languages pro-
vide a fine-grained notion of modularity, on the basis of Abstract Data Types
(ADTs). Classes are run-time concepts, where each class can be instantiated
multiple times. Subclassing can be easily used to break interface contracts
of a superclass: languages cannot enforce that behavior is maintained by
subclasses, due to the halting problem. On a coarser grained level, the notion
of classes or Java packages does not establish strong enough boundaries
between parts of a system. Object-oriented programming does not substi-
tute the modular programming paradigm, or to put in Szyperski’s words,
“Import is not Inheritance” [Szy92]. Using class concepts to implement a
module structure results in intuitive solutions (Szyperski states the example
of inheriting library classes), or just impractical solutions (Szyperski names
spaghetti scoping, i.e., weakly structured concepts to export methods to
friend classes). Module concepts have been added on top of object-oriented
languages as a means to package multiple classes behind well-defined inter-

58

2.2. Modular Programming

faces. This is evidenced by the extensive use of OSGi under Java, and the
planned integration of an OSGi-compatible module concept, code-named
project JigSaw, into Java 8.

Modules vs. Components Despite possessing an underlying model for
modularity [HC01, Ch. 19], in contrast to modules, components in the com-
mon sense are a run-time concept without static dependencies to other
components [Szy02, pp. 39ff.]. Components can be dynamically bound
and physically distributed (based on a deployment descriptor). Their main
objective is to foster large-scale reuse rather than maintainability. An in-
depth consideration of the commonalities and differences of abstract data
types, modules, classes and objects, and components, is carried out by Reuss-
ner [Reu01, Sect. 2.3.1].

According to MacCormack and Parnas, modular programming brings the
following benefits (cf. MacCormack [MRB07], Parnas [Par72]):

Encouraging deliberate designs. With languages that support module con-
cepts, implementations are type-checked against their interfaces to
ensure contracts are met. This encourages developers to think about a
modular design with encapsulated implementation decisions. It also
prevents misuse by introducing unintended dependencies from exter-
nal code.

Fostering team development. Initial development can be carried out more
efficiently with a proper interface concept. As soon as a modular
design has been created in terms of interfaces, multiple developers
may work on implementing different parts of the project in parallel.

Making software easier to understand, use and reuse. Developers gen-
erally require less effort to understand software behavior when pro-
vided with a view that abstracts from implementation details. Inter-
faces offer an abstract and often sufficient description of a module’s
responsibilities and dependencies.

59

2. Foundations

Simplifying modification and repair. If a decision is distributed over mul-
tiple modules, ripple-of-change effects occur when that decision is
being modified. Localized design decisions help to limit ripple-of-
change effect.

Facilitating variability through reconfiguration. Alternative implemen-
tations can be easily exchanged for design decisions that are encapsu-
lated behind an interface. This is done by simply exchanging imple-
mentations of the same interface.

Reussner names similar benefits for the concept of encapsulation in his
dissertation [Reu01, Sect. 2.2.1]: he lists increased understandability, faster
development, less redundancy, and higher adaptability. Only few additional
benefits [Reu01, Sect. 2.2.2] can be attributed to components but not to
modules, due to the added runtime flexibility of components.

2.3. Formal Methods

It is quite common for any engineering discipline to apply mathematical
analysis not only to specify and develop an appropriate solution, but also
to verify that the solution actually solves a given problem and the absence
of design flaws. In computer science, formal methods are mainly a class of
techniques that transfer fundamental concepts from theoretical computer
science to the field of software and hardware engineering [Hol97]. Depend-
ing on the criticality and complexity of a system that is to be development,
formal methods have become widely accepted as a means to affirm correct-
ness and safety of a particular software/hardware design. Some of the more
famous examples where formal methods could have helped to avoid errors in
design or implementation, are the dangling else problem in the ALGOL-60
compiler [Kau63], the $370 million Ariane 5 rocket crash [Dow97], and
Intel’s Pentium II bug in the chip’s floating point division unit [Cip95].

60

2.3. Formal Methods

2.3.1. Semantics of Programming Languages

A programming language is described by its concrete syntax and its seman-
tics. A program is only then considered a valid program of a language if it
conforms to the syntactic rules and static semantics of the language. The
dynamic semantics of a language specifies the meaning of a program in
the language.

Most approaches to formally define semantics of a programming language
can be associated with one of three major classes [Rey98; FW08]:

Operational Semantics is the most intuitive way to describe the meaning
of a program. Each of the constructs in the language is defined by the
effects it has on an abstract machine. Structured operational semantics
models use rules as part of a deductive system to express executions,
where each rule consists of a premise and a conclusion.

Axiomatic Semantics defines the effect of language constructs by logical
assertions on the state of the program. Hoare logic is one example,
here, each statement is linked to a precondition and a postcondition
in predicate logic – the postcondition is established if and only if the
precondition is satisfied.

Denotational Semantics defines the meaning of programs in a language by
mapping the statements as they appear in the language’s abstract syn-
tax onto state-transforming mathematical functions whose behavior is
rigorously defined.

Above-mentioned methods (including combinations thereof) are mainly
used to specify dynamic semantics, but they can be also employed for defin-
ing static semantics: Harper, for example, uses operational semantics to
specify a type system based on the abstract syntax [Har92]. Each method
brings its advantages and disadvantages. For example, operational semantics
can be translated to code with less effort if the abstract machine is close

61

2. Foundations

to the real target architecture. A downside is that semantics of the abstract
machine need to be understood.

Types The principal reason for typing is (i) to detect errors, (ii) to enforce
disciplined programming through “interfaces as types”, and (iii) to give pro-
grams a self-documenting character. Types can be seen as contracts between
users and developers of a program [Hen94]. Depending on the programming
language, everything can be typed. Types can represent two complementing
aspects of a language, types as a set of values, e.g., primitive types, com-
pound types, and functions, and (ii) types as a means of abstraction, e.g.,
interfaces of modules and classes.

Type Checking The process of verifying and enforcing the constraints of
types is called type checking. Type safety may be either verified statically
or dynamically, that is, at compile-time based on analysis of a program’s
text (source code), or at run-time based on run-time type information that is
attached to objects in the memory. Dynamic checking can complement static
checking, because not all properties can be checked statically, for instance
downcasts or meta programming constructs.

Definition 2.9 (Type system [Hen94]): A type system, or type inference

system, is a logical system of rules for inferring valid judgements. The

ingredients of a type system for programming languages are:

• Expressions e: syntactically well-formed program fragments

• Types τ: a language of interfaces (properties) we are interested in

• Typings (judgments) e : τ and more generally A ` e : τ mean that

“expression e has type τ if assumptions A hold”.

• Inference rules for deriving valid typings for compound expressions

from their constituent expressions.

62

2.3. Formal Methods

Famous instances of type inference systems are the simply typed lambda
calculus by Alonzo Church (1940), the Curry-Hindley and the Hindley-
Milner type system for the lambda calculus. Type systems are formally
studied by type theory.

Type Safety The often-quoted slogan by Robin Milner (1978), “Well-
typed programs do not go wrong”, summarizes the endeavor that type sys-
tems must be sound (or safe9), i.e., if a programming language is not able to
preserve abstraction at runtime. Milner formulated type safety as two prop-
erties, preservation and progress. Progress means to ensure that a well-typed
term is not stuck (either it is a value or it can take a step according to the
evaluation rules). Preservation assures that, if a well-typed term takes one
evaluation step, then the resulting term is again well-typed.
Theorem 2.3.1 (Type Safety [Pie02]). A type system is safe if, for any pair

of expressions e,e′, the following two properties are met.

1. Preservation. If e is a well-typed term, that is, e : τ for some type τ ,

and e→ e′, then e′ : τ .

2. Progress. If e is a well-typed term, e : τ for some τ , then either e is a

value, e val, or there exists e′ such that e→ e′.

Abstraction Safety An additional use of type systems is to enforce data
abstraction established by a particular abstraction concept, for example
modules, classes and abstract data types. The important role of type systems
to build better maintainable systems by enforcing data abstraction has been
posited by Reynolds, who points out that “type structure is a syntactic
discipline for maintaining levels of abstraction” [Rey83]. There are two
properties related to abstraction safety, representation independence and
representation invariants.
9 Luca Cardelli [Car97] distinguishes between soundness and safety: Type soundness is the

absence of forbidden errors. Type safety is hurt if a program fragment produces untrapped
errors, i.e., errors that go unnoticed, for example an access exceeding an array’s bounds.

63

2. Foundations

Representation independence [Mit86] is about giving evidence that a
program remains independent of the actual implementation of an abstract
type. In other words, two valid manifestations of the same abstract type
must be contextually equivalent and can be thus replaced while preserv-
ing type safety.

Representation invariants refine the set of valid representations of an
abstraction’s representation. While one cannot generally decide if two imple-
mentations are semantically equivalent, an abstract type declaration can in-
clude invariants that must be satisfied by any well-formed implementation of
the type. Reasoning about the correctness of an abstraction’s representations
presumes an abstraction function to exist. An abstraction function relates
concepts from concrete implementations to concepts of their abstract type.

A substantial body of work deals with protection mechanisms in program-
ming languages, the earliest publications on the topic are arguably those
by Morris Jr. [Mor73; Jr73]. The interested reader is referred to Pierce’s
book “Advanced Topics in Types and Programming Languages” [Pie04],
a concise compendium on the topic, with an extensive list of references
to original publications.

2.3.2. Program Verification

Program verification is the act of proving (or disproving) if an implementa-
tion meets a formal specification of the program. Code can be first imple-
mented and then verified in a separate step, or a proven implementation can
be formally derived from the specification (correct by construction).

There are two fundamentally different approaches, model checking, a
systematical and exhaustive exploration of a mathematical model of the
given system, and deductive verification, where verification is accomplished
by providing a formal proof on an abstract mathematical model of the system.
Proof assistants like the interactive theorem prover Coq [The12; BC10],
Isabelle, or automatic SMT solvers can be used for the latter. In this thesis,

64

2.3. Formal Methods

we decided to use Coq because of its good reputation for reasoning about
type systems including that of Featherweight Java [IPW01].

The Coq Proof Assistant The Coq proof assistant [BC10] is a develop-
ment environment used to formally prove mathematical assertions. Coq
evolves around Gallina, a synthesis of a strictly-typed functional program-
ming language, higher-order logics and a potent type system. Gallina’s
foundation is the Calculus of Inductive Constructions (CIC) [CH88; Pau93],
a higher-order typed lambda calculus and an extension of the Curry-Howard

Isomorphism: Terms in the lambda calculus are associated with natural
deduction proofs. A supplemental language of commands, the Vernacu-

lar [The12], allows users to

• define (co-)inductive types, (well-founded recursive) functions, and
logical predicates;

• interactively develop mathematical theorems and prove specifications
of programs;

• extract programs in Objective CaML, Haskell and Scheme from proofs
of specifications.

Coq’s proof system relies on a relatively lean proof checker giving a
high confidence on its own correctness. A Coq proof comprises a sequence
of tactics. Tactics call well-defined proof methods for breaking down an
assertion into simpler and simpler parts, until such parts are obtained that
can be trivially proven.

In this thesis, Coq is used in two important application areas, the reasoning
on type systems, and program certification. We use Coq to verify properties
of a type system (namely our module concept for transformations) that is
based on inference rules (Appendix A). The second usage of Coq takes place
as we verify functional programs to adhere to a transformation specification
in the declarative transformation language QVT-R (Appendix B).

65

2. Foundations

Process
Implementation

Problem and
Modification Analysis

Maintenance
Review / Acceptance

Migration

Retirement

Modification
Implementation

1

2
5

6

4

3

Figure 2.7: IEEE/ISO standardized software maintenance process [IEE06]

2.4. Software Maintenance

In terms of the IEEE Standard Glossary of Software Engineering Terminol-
ogy [IEE90], software maintenance is defined as “the process of modifying
a software system or component after delivery to correct faults, improve per-
formances or other attributes, or adapt to a changed environment.” The IEEE
Standard 14764 of “Maintenance as a Software Life Cycle Process” [IEE06,
p. 4] extends this to “the totality of activities required to provide cost-
effective support of software systems. Activities are performed during the
pre-delivery stage as well as the post-delivery stage.”

Maintainability, according to the ISO 9126 standard, encompasses the
quality factors analyzability, changeability, stability and testability. Many
sources state maintenance costs of 50 and more percent of the overall soft-
ware development costs. Though hard to objectively quantify, metrics on
architecture- and code-level are expected to be reasonable indicators, like
the degree of modularization, the coupling between modules, the degree
of documentation, and so forth [HKV07].

2.4.1. Maintenance Process

Maintenance is an enduring activity throughout the life of a software system.
The maintenance process by the IEEE Standard 14764 [IEE06] reflects this

66

2.4. Software Maintenance

Modification Request

Correction Enhancement

Corrective Preventive Adaptive Perfective

Classification

Maintenance Type

Figure 2.8: IEEE/ISO standardized maintenance types [IEE06]

fact by suggesting an iterative 3-staged cycle (Figure 2.7, thereby incorpo-
rating the iterative enhancement model as it is presented by [GT03]):

Step 1: Process Implementation. In response to a modification request or
problem report, the maintainer develops plans and procedures that are
to be executed.

Step 2: Problem and Modification Analysis. The modification request or
problem report is analyzed for its type (cf. classification below), scope
(expected costs and time), and criticality. If it is a modification request,
development options are identified and approved. If it is a problem re-
port, it is verified and replicated. Analysis results and implementation
options of a request or report are to be documented.

Step 3: Modification Implementation. Location of concerns are identi-
fied, i.e., software artifacts including affected documentation that have
to be modified in order to accomplish the request. Then, the develop-
ment process is started, complemented by test and evaluation criteria,
plus measurements to ensure the completeness, correctness and lo-
cality (i.e., original requirements remain unaffected) of the planned
modifications. Criteria and test results shall be documented.

Step 4: Maintenance Review / Acceptance. Reviews are to be conducted
to determine the integrity of the modifications. Approval is obtained
for the satisfactory completion of the modification.

67

2. Foundations

Step 5: Migration. A migration plan is created, which comprises six activi-
ties, a requirement/risk analysis, development of migration tools, data
and code conversion, the actual migration execution, verification of the
migration performed, and providing support for the old environments.

Step 6: Retirement. If pre-defined decisions to retire a software product
are met, a retirement plan is created and executed. Decisions are
usually economic-based, and may take one or more of the following
events into consideration: emerging technologies or those becom-
ing obsolete, degrading maintainability, standardization efforts, and
vendor independence.

Throughout the process, the system’s documentation is updated accord-
ingly. The IEEE standard defines several types of maintenance activities.
An initial modification request can lead to the identification of a problem
and a problem report is issued.

Definition 2.10 (Modification requests [IEE06]): Software maintenance

requests (also called change requests) can be classified into four major

classes, as shown in Figure 2.8:

Corrective Maintenance. Reactive modifications after delivery to correct

discovered problems, including unscheduled emergency maintenance

activities.

Preventive Maintenance. Post-delivery modifications of a product to detect

and correct latent faults, before they manifest as operational faults.

Adaptive Maintenance. Modifications to adapt a system to changes in the

system’s environment, e.g., the operating system or a third party frame-

work is updated.

Perfective Maintenance. Post-delivery modifications of a product to de-

tect and correct latent faults, before they manifest as a failure. This

group includes refactoring and reimplementation activities to improve

68

2.4. Software Maintenance

maintainability, optimize the performance and other software quality

attributes.

Model-Driven Software Evolution When model-driven software engi-
neering is practiced, first class artifacts of a product are even more exposed
to software evolution. Because of a long-term investment into a framework
for a complete family of products, maintainability is even of greater impor-
tance than for traditionally developed systems. Van Deursen et al. [vDVW07]
identify four dimensions of evolution in MDE:

Regular Evolution. Here, model instances of the domain language are
changed to adapt a system to new requirements.

Domain Language Evolution. In this case, the domain model itself is sub-
ject to changes, which may require to migrate existing instances to
the new model. The enhanced expressiveness must be respected by
the modeling infrastructure, which means that transformations and
the framework must be extended accordingly.

Platform Evolution. If the target platform is modified, the whole modeling
infrastructure including transformations is subject to modifications.

Abstraction Evolution. As further problem domains are sufficiently under-
stood, new modeling languages can be introduced for such domains.
The complete model-driven infrastructure must evolve with the gained
flexibility, including the target platform, transformations, and existing
models.

All dimensions except for the first one may affect model transformation
programs and hence lie in the focus of this thesis. Recently, a list of open
research challenges has been identified from empirical studies carried out
with SAP, Ableton, and Capgemini [HGSS13]. The studies emphasize the
aforementioned dimensions as the most important ones. Beyond that, they

69

2. Foundations

identify a poor predictability of evolutionary actions during development
and maintenance as another critical factor, and conclude that new methods
and techniques must be developed that better help to proactively manage
evolution in MDE.

2.4.2. Static Program Analysis

Static program analysis is the analysis of program code without executing
the program on a machine (which is classified as dynamic program analy-
sis) [NNH05]. If performed by humans without tool support, static program
analysis is also called program comprehension. On a higher abstraction
level than the level of individual statements but also when working with
large code bases, tools can effectively assist humans in automatically ana-
lyzing programs for quality and functional issues. These tools range from
standard IDE functionality like style checkers and compiler warnings on
single statements to more sophisticated techniques which include the com-
plete code, for example the computation of complex software metrics, dead
code identification, re-engineering of the modular structure and detection of
safety-critical issues. Techniques involve more or less formal methods, for
instance control-flow and data-flow analysis, Hoare-style reasoning, model
checking techniques, the symbolic execution or the abstract interpretation of
code. Type systems that are part of a language compiler can also be counted
to the list of static analysis methods.

Static program analysis is used in all three contributions of this thesis; in
the first contribution, it is used to establish static typing rules for enforcing
modular scoping; in the second contribution, to extract data and control
dependence information from programs for the purpose of visualization; and
in the third contribution, to extract static dependence information and for
automatically reverse engineering a modular structure.

70

2.4. Software Maintenance

Visualization

Models

KnowledgeData

Transformation Mapping

Model
Building

Model
Visualization

Data
Mining

User
Interaction

Parameter
Refinement

User

Feedback Loop

Visual Data Exploration

Automated Data Analysis

Figure 2.9: The visual analytics methodology [KKEM10]

2.4.3. Program Visualization

As software products tend to become larger and more complex, it can become
extremely hard to get the information needed to efficiently perform software
maintenance, re-engineering, and reverse engineering. Even though program
analysis techniques can be used to extract the required information from
the software’s artifacts, data can be complex and hard to communicate to a
human developer. In such cases, choosing the right form of presentation can
be critical for achieving an efficient workflow. Choosing a combination of
program analysis and visualization to help software developers comprehend
larger systems and to improve their overall productivity when carrying
out various development tasks is the principal goal in the research field of
software visualization [Die07].

Definition 2.11 (Software Visualization [Ger94; Die07]): According to

Gershon, scientific “visualization is the process of transforming information

into a visual form, enabling users to observe the information. The resulting

visual display enables the scientist or engineer to perceive visually features

which are hidden in the data but nevertheless are needed for data exploration

and analysis.” [Ger94]. Software visualization methods in particular provide

71

2. Foundations

graphical representations to “visualize the structure, behavior, and evolution

of software.” [Die07].

A notable visualization technique is the visual analytics methodology that
has been developed by Keim [KMS+08; KKEM10]. To put it in his words,
“visual analytics combines automated analysis techniques with interactive
visualizations for an effective understanding, reasoning and decision making
on the basis of very large and complex data sets” [KAF+08].

The process is shown in Figure 2.9. The approach includes active user
interaction with the view and analysis parameters, hence enabling the ex-
ploration of large data spaces by a tight coupling between the user and the
extraction and visualization process. The first step is a preprocessing step
that integrates multiple and possibly heterogeneous data sources and normal-
izes the data, summarized by the arrow labeled Transformation. In a next
step, information can be either visualized directly (Mapping), or analyzed
automatically using data mining techniques (Data Mining). The model that
is built can then be evaluated and refined in a human-computer interaction
loop. The third step integrates the user, who is able to control the analysis
and filtering process by trying out different algorithms and parameters (Pa-

rameter Refinement). He can further navigate on and zoom in and out of the
visualized data (User Interaction) to incrementally acquire the knowledge he
needs in a specific task context. This last step triggers the first step (Feedback

Loop) where the model is updated from the available data sources.
Visual analytics has been successfully utilized in software maintenance

[TEV10]. In Chapter 4, the visual analytics methodology is exploited to
support developers in maintaining model transformation programs.

2.4.4. Software Clustering

Understanding the structure of a software system is vitally important for
the process of software maintenance and evolution. Legacy systems of-
ten lack architectural descriptions of the design rationale, the documen-

72

2.4. Software Maintenance

Attribute 1

At
tri

bu
te

 2

Figure 2.10: Clustering of two-dimensional numerical data, based on the Euclidean
distance

tation has become obsolete or the structure has simply eroded over time.
In other cases, the system has been implemented in a language that does
not even offer information hiding modularity and other concepts required
for programming-in-the-large. In any case, restructuring of software is a
long-term investment into the quality of software and can be understood
as a form of preventative maintenance.

Software clustering is a variety of techniques which group software system
entities of a particular granularity level – ranging from variables, procedures,
and methods to classes, files and module – into subsystems in a way that
helps software engineers in comprehending the high-level structure of large
and complex software systems [ST12]. Most techniques work semi if not
fully automatically, hence they have the potential to reduce the effort spent
for understanding and reverse engineering modular structures significantly.
It is a consensus among researchers of the field that automatic clustering
approaches are unlikely to be as good as a manual clustering done by experts
with a good knowledge of the studied system [Tze01]. However, automatic
clusterings can give an initial suggestion of a system that can be manually
refined in a subsequent step.

73

2. Foundations

There are four stages of a software clustering process. Firstly, the clus-

tering objective is to be set. Depending on the desired level of granularity,
the type of system entities is to be selected that is extracted from the sys-
tem using static or dynamic program analysis techniques. These entities
must be equipped with attributes, i.e., the declared name of the entity, and
interactions between entities are chosen to be relevant, i.e., uses, creates

and extends relationships for classes. Secondly, a similarity measure must
be chosen that determines the factors that make a pair of entities belong
to the same group or cluster (i.e., being similar). Based on the measure,
an algorithm attempts to find groups (clusters) with maximal intra-cluster
similarity and minimal inter-cluster similarity. In regards to classes, this
concept resembles the principle of high cohesion and low coupling. Thirdly
and fourthly, a clustering algorithm and a visualization method has to be
selected. Software visualization methods have been already discussed pre-
viously in Section 2.4.3. To illustrate this principle, Figure 2.10 depicts a
fictitious set of entities, each having two numerical attributes, plotted onto a
regular two-dimensional graph. Three groups, drawn in a dashed line, has
been identified based on the Euclidean distance measure.

Clustering Algorithms Different kinds of algorithms are applicable to
find an optimal clustering based on a similarity measure. Everitt et al.
[ELL11] surveys the most common similarity measures. It is important
to keep in mind that the choice of a particular algorithm and similarity
measure may impose some possibly unreasonable structure rather than it
may discover an existing but hidden structure. Obviously, there are careful
considerations among several factors taken by experts which a sufficiently
simple measure can hardly take into account.

According to Wiggerts’ characterization [Wig97], we distinguish between
four classes of algorithms each having their own notion of a cluster: graph-
theoretical algorithms, construction algorithms, optimization algorithms and
hierarchical algorithms. Graph algorithms aim to find cliques (a subgraph

74

2.4. Software Maintenance

with any pair of vertices connected by an edge) or quasi-cliques in a graph
representation of the entities and their relations. Construction algorithms

assign entities to clusters in a single pass. Optimization algorithms search
for a solution that maximizes (or minimizes) the computed values of an
objective function. The hill-climbing algorithm is an example of a heuris-
tic that searches iteratively for a local optimum. It does so by tentatively
reassigning random entities to neighbored clusters and reverts if the objec-
tive function’s value is not improved. Hierarchical algorithms look for a
hierarchy of partitions based on distance connectivity, and can create an ag-
glomerative clustering (if partitions are successively composed bottom-up),
or divisive clustering (if partitions are repeatedly split). Many clustering al-
gorithms are integrated into prevalent mathematical frameworks (R Project,
Mathematica, SPSS, Maple, and the kind).

The Bunch Tool Bunch [MMCG99; MM06] is a clustering tool for the
software engineering domain. The tool was developed at Drexel University,
the first publication dates back to 1998. Bunch can use one of three optimiza-
tion algorithms, exhaustive search, the hill-climbing, and a genetic algorithm.
The tool offers both a purely automatic and a semiautomatic mode, in which
developers can, for instance, manually declare a set of entities to belong to a
predefined cluster. This can come in handy to keep cross-cutting platform
API methods from interfering with the software system’s methods.

Bunch uses a so-called Module Dependency Graph (MDG) to represent
the system entities and references. The MDG is a weighted directed graph
G = (V,E), where vertices V represent the set of entities, and edges E

correspond to the set of dependencies between entities: (u,v) ∈ E iff entity
u depends on entity v. Despite the naming, entities must not be modules,
but can stand for other types of entities. The task to extract a graph from
a given system is left to the user; thus, the user can differentiate between
different types of references by assigning different weights to the edges in
the graph, w : E → R. As input file format, the Bunch tool uses a simple

75

2. Foundations

text-based graph definition: A line in the file consists of the starting and
ending entities’ unique name followed by an optional weighting number,
each of the three separated by spaces. Third party source code analysis tools
can be used, for instance Acacia, when chained with a custom generator
that translates into the MDG file format.

A partition (or clustering) of G into n clusters (n-partition) is then formally
defined as ΠG =

⋃n
i=1 Gi with Gi = (Vi,Ei), and ∀v ∈V ∃1k ∈ [1,n],v ∈Vk.

Edges Ei are edges that leave or remain inside the partition, Ei = {〈v1,v2〉 ∈
E : v1 ∈ Vi ∧ v2 ∈ V}.

The similarity measure employed by the Bunch approach is the Modular-

ization Quality (MQ) index [MM06]10. Through this metric, a high cohesion
within the clusters and a low coupling between the clusters is rewarded
with a higher score. The score for a single cluster is a fraction with the
doubled weight of intra-edges µi as the numerator, and the doubled weight
of intra-edges µi plus the weight of inter-edges εi as the denominator. The
scores of all k clusters is added up to form the final MQ value,

MQ =
k

∑
i=1

2µi

2µi + εi
, with intra edges µi = ∑

e=(u,v)∈E
u,v∈Ci

w(e)

and inter edges εi = ∑
e→=(u,v)∈E
u∈Ci,v/∈Ci

w(e→)+ ∑
e←=(u,v)∈E
u/∈Ci,v∈Ci

w(e←)

Bunch does not differentiate between types of nodes, although edges can
be given different weights. Other software clustering approaches exist, a sur-
vey by Maqbool et al. [MB07] lists ARCH, ACDC [Tze01], LIMBO, and oth-
ers. ARCH is an earlier approach specifically designed to group procedures.
ACDC is a divisive/agglomerative algorithm for comprehension-driven clus-
tering. The input graph is decomposed based on seven sub-system patterns,
and in this process, isolated nodes are assigned to already created clus-

10Note that we refer to the latest definition from 2006 [MM06], not the original one from
1999 [MMCG99].

76

2.4. Software Maintenance

ters (orphan adoption algorithm). LIMBO is an agglomerative hierarchical
algorithm and employs an information loss measure to judge alternatives.

An in-depth discussion of the various kinds of software clustering algo-
rithms in general and those provided by the Bunch tool has been carried
out by Dominik Messinger in his seminar paper [Mes14]. The third con-
tribution in this thesis (Chapter 5) applies software clustering techniques
implemented by Bunch to re-engineer modular structures from model trans-
formation programs.

77

3. Modular Information Hiding for
Maintainable Model Transformations

Chapter 1 pointed out that maintenance issues of larger and more complex
model transformation programs are essentially caused by a lack of suitable
concepts for organizing programs in a structured way. In this chapter, we
develop a module concept that is much better tailored to the domain-specific
nature of model transformation engineering than existing concepts. The aim
of our approach is to gain the same advantages for model transformations
as they have been promised for real information hiding modularity, namely
improved understandability, maintainability and adaptability [SGCH01].

We formalize our concept by developing syntax and a type system for
Core QVT-OM, a compact subset of the transformation language QVT-O
that is enriched with our module concept. To meet the special demands
of transformations, module interfaces give control over both model and
code accessibility.

We discuss applicability to various transformation languages, including
those that follow the imperative language paradigm (QVT-O), the declara-
tive language paradigm (e.g., QVT-R), or those that natively support code
generation (e.g., Xtend).

To give a proof-of-concept and to demonstrate applicability, we integrate
our modular concept into the languages QVT-O and Xtend. The integration
into Eclipse QVTo turned out to be straight-forward due to our conceptual
definition in QVT-O and QVTo being to the widest extent compliant with
the QVT-O standard. We further chose Xtend because Xtend comprises
a few transformation concepts that it inherited from Xpand, a template-
based model-to-text transformation language. Xtend is a GPL designed

79

3. Modular Information Hiding for Maintainable Model Transformations

with extensibility in mind, in the spirit of Fowler’s definition of an internal
DSL [Fow10]. Finally, we can exploit interface and class concepts provided
by Xtend’s host language, Java, and adapt them to our needs using Java
annotations.

To a large extent, this chapter’s content is based on text that has been
presented at the International Conference on Modularity in 2014, previously
known as the Conference on Aspect-Oriented Software Development. From
feedback gained at the conference, we improved grammar and type inference
rules. Further on, a discussion of the applicability to other transformation
languages has been added a posteriori. The prototypical implementation for
Xtend originates from Dominik Werle’s bachelor thesis, supervised by the
author of this thesis. The embedding of the QVT-R language into higher-
order logics (HOL) stems from a collaboration with Jeffrey Terrell and
Steffen Zschaler from King’s College, London.

Presentation of this work is organized as follows. In Section 3.1, we
motivate on the need for information hiding properties by the introduc-
tory example. Section 3.2 uses the same example to show how information
hiding modularity can be integrated into QVT-O. Section 3.3 presents the
syntax and a type system for checking information hiding properties. Sec-
tions 3.4 and 3.5 study applicability to prevalent transformation languages
of imperative and declarative nature, respectively. Conclusive words in Sec-
tion 3.6 end the chapter.

3.1. Modularity Tailored for Transformations

In Section 1.2 in the introductory chapter, we have worked out deficiencies
of the structuring concepts provided by QVT-O and other prevalent transfor-
mation languages. By the Activity2Process scenario, we have studied three
types of maintenance requests that typically occur during transformation
development: (i) a corrective maintenance request, “Modifying a module’s
inner logic”, (ii) a corrective/adaptive maintenance request, “Identifying

80

3.1. Modularity Tailored for Transformations

locations of concern”, and (iii) a perfective/preventive maintenance request,
“Refactoring the modular design”.

We had to notice that existing structuring concepts are overly simple to
offer adequate assistance in any of the three scenarios. The gravest problem
is that transformation languages do not offer suitable methods by which
information can be hidden within privileged scopes. Without such a language
concept, however, it is impossible to improve program designs by hiding
away the complexity behind the public interfaces.

To solve mentioned issues, our idea is to introduce a proper linguistic
concept that facilitates information hiding. Protecting the internal details of
a piece of software from any other piece and encapsulating design decisions
that are likely to change bring several benefits, including better modular
designs, the chance to develop in teams, a better understandability and main-
tainability of the code, and better support for reuse through reconfigurations
(For a detailed list of the benefits of modular programming, the reader is
referred to Section 2.2).

So that developers can exploit these benefits to the fullest, we expect a
model transformation language to integrate a module concept that abides
to the information hiding principle. Our understanding of the principle is
described by two rules:

R1: Separation of interfaces from their implementations. Implementa-
tion details are hidden behind interfaces. This means that a program
compiles independently from the implementation chosen for a partic-
ular interface, as long as the implementations conform to the interface
and behave semantically identical. In the case of model transfor-
mations, typical candidates to remain private are query functions,
helper methods, and the internal state. Per required interface, a unique
implementation exists. In literature[Pie04], this property is called
representation independence. It is the irrefutable property of any
abstraction mechanism, as it ensures that client behavior does not
depend on the details of an abstraction.

81

3. Modular Information Hiding for Maintainable Model Transformations

R2: Conformance of interface and implementation. Rule R1 uses a con-
formance relation between an implementation and an interface. This
relation must possess three properties:

R2a: Method provisioning. There must exist exactly one one-to-one re-
lation between exported and implemented methods to avoid both
underspecification and ambiguity. Implemented methods must con-
form to exported method signatures. This means that method name
and the number of arguments have to be equal, and types must be
substitutable according to Liskov (contravariance of argument types,
covariance of return types).

R2b: Method access control. From a module implementation’s perspec-
tive, only methods that are either defined locally or by an imported
interface are visible. Any other method is not visible and can therefore
not be accessed. This covers any kind of reference, including call and
trace resolution statements.

R2c: Model access control. Regarding this rule, our domain-specific mod-
ule concept differs from module concepts for general-purpose pro-
gramming languages. In order to provide an implementation for a
module interface, only a small subset of the models involved must be
actually accessed. Larger models are usually structured into packages,
where one describes a particular viewpoint of the modeled domain.
When declaring interfaces for a transformation’s modular decomposi-
tion, the transformation designer can, more often than not, restrict the
visible parts of the models to the viewpoints required for fulfillment.
Interface declarations allow to make the scope of referencable and/or
instantiable model elements explicit. Any implementation can ac-
cess only model elements that are defined by exported interfaces. For
greater flexibility, access restrictions on models should be definable
not only at class-level but also at package-level. The latter is equiva-

82

3.1. Modularity Tailored for Transformations

lent to explicitly stating any of the directly nested classes, comparable
to Java’s star import statement.

Generally, an abstract interface declares a set of assumptions that devel-
opers of one module can make about another they intend to use. The idea is
to allow developers to program against modules without knowledge about
their implementation-specific internals, which even do not need to exist. For
this to work, an implementation must be providable in separation from its in-
terface declaration (Rule R1). Since the interface constitutes the contract an
implementor of the interface must fulfill, it is vital to check implementations
against their interface (Rule R2a).

Usually, functionality provided by a module is published in terms of a
method signature that states the method’s name as well as input and out-
put parameters of the method. Depending on the language for which the
concept is designed, the kind of top-level constructs offered by an interface
vary. Whereas interfaces in Java allow to declare method signatures, an
imperative transformation language like QVT-O typically includes ordinary
methods, mapping methods, and query functions as top-level constructs; a
declarative transformation language like QVT-R, on the other hand, pro-
vides relations or a similar notion of a rule declaration, and query functions.
These domain-specific concepts must be taken into account by our module
concept (Rule R2b).

Moreover, transformation constructs can be referred to in different ways:
a QVT-O mapping method, for instance, can be either called directly or
queried indirectly from a trace resolution statement. When designing a
module concept for a transformation languages, it must be considered which
of the top-level constructs to include in an interface description, and what
types of invocations to allow (Rule R2b).

Rules R1, R2a, and R2c apply to any programming language irrespective
of the supported paradigm and domain specifity of the concepts. What
sets transformation languages apart from general-purpose languages, is
that their main purpose is to operate on richly structured and often large

83

3. Modular Information Hiding for Maintainable Model Transformations

1 transformation interface IMain(
2 in a : ActivityModel, out p : ProcessModel) {
3 scope in ActivityModel[Activity];
4 scope out ProcessModel[Process];
5 mapping Activity::mapActivity2Process() : Process;
6 }
7 transformation module Activity2Process
8 export IMain,
9 import IAction2Step, ICompositeAction2Step {

10 mapping Activity::mapActivity2Process() : Process {
11 result.steps := self.actions->map mapAction2Step();
12 }
13 }

(a) First module

1 transformation interface IAction2Step(
2 in a : ActivityModel, out p : ProcessModel) {
3 scope in ActivityModel[StartAction, StopAction];
4 scope out ProcessModel[Step];
5 mapping Action::mapAction2Step() : Step;
6 mapping StartAction::mapAction2Step() : Step;
7 mapping StopAction::mapAction2Step() : Step;
8 }
9 transformation module Action2Step

10 export IAction2Step {
11 mapping Action::mapAction2Step() : Step {
12 result.name := self.name;
13 result.next := self.successors.late resolveone(Step);
14 }
15 mapping StartAction::mapAction2Step() : Step {
16 result.name := self.name;
17 result.next := self.successors.late resolveone(Step);
18 result.isStart := true
19 }
20 mapping StopAction::mapAction2Step() : Step {
21 result.name := self.name;
22 result.next := self.successors.late resolveone(Step);
23 result.isStop := true
24 }
25 }

(b) Second module
84

3.1. Modularity Tailored for Transformations

1 transformation interface ICompositeAction2Step(
2 in a : ActivityModel, out p : ProcessModel) {
3 scope in ActivityModel[CompositeAction];
4 scope out ProcessModel[Process, Step];
5 mapping CompositeAction::mapAction2Step() : Step;
6 }
7 transformation module CompositeAction2Step
8 import IAction2Step,
9 export ICompositeAction2Step {

10 mapping CompositeAction::mapAction2Step() : Step {
11 createProcess(self);
12 result.name := "Run process " + self.name;
13 result.successor := self.next.late resolveone(Step);
14 }
15 helper createProcess(ca : CompositeAction) : Process {
16 return object Process {
17 name := ca.name;
18 steps += ca.actions->map Action2Step();
19 };
20 }
21 }

(c) Third module

Listing 3.1: Activity2Process example in QVT-OM

data models. Models are specified independently from transformations in
a separate object-oriented modeling language. Modeling languages that
are based on the MOF have their own notion of modularity, a package
mechanism that allows to group model elements by packages, which can be
split physically across multiple files. With the ability to modularize models
into packages, a module concept for model transformations must pick up on
this and provide a mechanism that supports to import specific packages of
a model rather than complete models. Per model import, it should be even
possible to declare the type of access at the interface level (Rule R2c).

With the two rules mentioned, interfaces are able to exactly declare which
functionality implementations must provide and which functionality and

85

3. Modular Information Hiding for Maintainable Model Transformations

model context they minimally require. This eases exchangeability and testa-
bility of implementations.

Violation of interface contracts should be detected at design-time employ-
ing static type checking. A compile-time error should be issued if methods
that are hidden are accessed, if model elements are referenced that are not
declared as modifiable or readable, or if methods that are declared in an
interface remain unimplemented or with incompatible signatures.

3.2. Augmenting QVT-Operational with Information-Hiding
Modularity

We propose a derivative of QVT-O, we name it QVT Operational Modular
Mappings (QVT-OM), that replaces the existing module concept with a
more elaborate one. To give an idea of the notation, we rewrite the previous
example in QVT Operational Modular Mappings (QVT-OM)’s modified syn-
tax (cf. Listing 3.1). A module (keyword transformationmodule) must
implement at least one interface and can depend on an arbitrary number of in-
terfaces, stated by keywords export and import, respectively. An interface
(keyword transformationinterface) must be exported by exactly one
module implementation. An interface declares a transformation signature,
which is a list of typed model parameters. Signatures of an implementation’s
exported interfaces must be identical, except for access restrictions. Access
restriction definitions commence with keyword scope, followed by one of
the directives in, out or inout, which indicate the direction, and a model’s
type name. Access is restricted per model type to the classes and packages
listed in trailing square brackets []. A package name is a shortcut for any
directly contained classes in the package. Modules must define at least the
methods declared in an exported interface with compatible signature.

There has to be one dedicated interface IMain with exactly one mapping
that forms the entry point of a transformation. This approach is borrowed
from the M O D U L A-3 language. In our example, module Activity2Pro-

86

3.2. Augmenting QVT-Operational with Information-Hiding Modularity

CompositeActions

Composite
Action

actions
import

ProcessModel

mapActivity2Process
in out

TransformationSource Model Target Model

Activity

Action

Process

Step

StartAction

actions steps

successors
next

mapAction2Step
in

out

mapAction2Stepin

in

in

out

import

mapAction2Step

mapAction2Step

Internal
method

call

createProcess
helper

out

module

import

<kind>QVT-O
module

Declared control / data / package
dependency (from top to bottom)

<name> <kind> Exported
method

StopAction

Activity2Process

Action2Step

CompositeAction2Step

ActivityModel

mapping

mapping

mapping

mapping

mapping

Figure 3.1: Activity2Process transformation in QVT-OM, declared dependencies

cess exports IMain (Listing 3.1a), so that mapping mapActivity2Process
forms the entry point.This mapping calls another set of mappings provided
by interfaces IAction2Step and ICompositeAction2Step, which are im-
plemented by modules Action2Step and CompositeAction2Step, respec-
tively (Listings 3.1b and 3.1c). Because all four mappings have identi-
cal names, parameter types and return type, dispatching occurs. Module
CompositeAction2Step internally declares a helper method createPro-

cess for internal use, which again calls all the four mappings on type Action
and subtypes.

Figure 3.1 graphically illustrates the modular decomposition of this re-
vised variant of the Activity2Process implementation. Note, that cyclic de-
pendencies are allowed, whereas QVTo’s original concept forbade them.
Module CompositeAction2Step remains independent from the core trans-
formation, except for the import dependence from module Activity2Pro-
cess. Furthermore, model scope is defined on a class-level. This eases

87

3. Modular Information Hiding for Maintainable Model Transformations

testability, but for less fine-grained decompositions, package-level scoping
may seem more appropriate.

Implementations of each interface are granted restricted read or read/write
access to distinct subsets of the models, with access to a class automatically
implicating access to the class’s features. In the example, implementations
of IMain can only access instances of Activity, and create or modify
instances of Process. On the other hand, implementations of IAction2-
Step can only refer to instances of StartAction and StopAction, and
create or modify objects of class Step. If the latter module implementation
would define further queries or mappings, these would not be visible to the
former module’s implementation.

The purpose of a module system is namespace control and data abstrac-
tion. There are no extra semantics added besides definition and resolution
of namespaces, access control on top of namespaces, and an aligned mech-
anism for entry point definition. Thus, QVT-OM programs can always be
transformed into non-modular QVT-OM or QVT-O programs by giving
unique names to entities.

Revisiting both example scenarios from Section 1.2, we can easily see
that the proposed module system brings certain benefits. Refactoring the
modular structure requires less effort, as all of the information required for
reasoning can be deducted from the interface definitions alone. When it
comes to adapting the example to an evolving model, we can locate the
affected module much quicker from reading the interface descriptions as
well: only one of the two modules has access to subclasses of Action.

3.3. The Conceptual Extension Core QVT-OM

In the style of Featherweight Java (FJ) [IPW01] we formalize a minimal
subset of QVT-OM that we call Core QVT-OM. Main purpose of Core
QVT-OM is to demonstrate the added modular system. While retaining core
features of transformation languages, we skip several of QVT-O’s features

88

3.3. The Conceptual Extension Core QVT-OM

that do not add to the general idea and should be integrable straightforwardly.
In this section, based on the syntax, we present a calculus for type inference
and prove its soundness. We guarantee that a well-typed program enforces
information hiding postulated by the two rules from the previous section.

Core QVT-OM skips several metamodeling concepts (e.g., abstract classes,
primitive types, multiplicities), many of QVT-O’s concepts (e.g., helpers,
queries, constructors, variables and globals, superimposition, disjunct calls,
guards and sections), and most concepts of the underlying OCL (conditional
operator if, assigment operator let, collection operations, and functions
from the standard library stdlib). QVT’s existing module concept, in-
cluding superimpositioning semantics, have been completely removed to
be replaced by our concepts, e.g., import, access, extend, transform,
and main.

We realize modularity as a second-class module system. This means that
the module system is separated from the core language’s system. Modular
definitions are evaluated statically at compile-time, hence at runtime, expres-
sions cannot reflect on modules nor can they manipulate them. If a program is
well-typed it conforms to the information hiding rules. Later at runtime, the
module structure can be ignored as it is no longer needed. Of course, one can
defer static evaluation of information hiding to runtime – this is not pursued
any further, because static type checking can be considered superior.

3.3.1. Syntax

Syntax The syntax is minimal, though expressive enough to demonstrate
relevant features and interaction of the added features together with core fea-
tures of QVT-O. The abstract syntax is presented in Figure 3.2 using a variant
of the Backus-Naur form. A transformation T comprises three parts, meta-
model definitions, interface definitions, and module implementations, the
latter defining mapping implementations with a minimal QVT-O syntax.

Metavariables p, c, f , i, t, s, x range over unique names of packages,
classes, fields, interfaces, domains, mappings, and both arguments and vari-

89

3. Modular Information Hiding for Maintainable Model Transformations

Syntax:

T ::= P I M Transformation program

P ::= package p { P C } Metamodel specification
C ::= class c (extends c′)? { F } Class declaration
F ::= (composes | references) f : c ([1] | [*]); Feature declaration

I ::= transformationinterface i
((in | out) t : p) { V S } Module interface declaration

V ::= scope (in | out) p[p′ c]; Model scope declaration
S ::= mapping c :: s(in c′) : c′′; Method signature declaration

M ::= transformationmodule m
export i (import j)? { O } Module implementation def.

O ::= mapping c :: s(in x : c′) : c′′

(inherits s′)? { B } Method implementation def.

B ::= result. f := E; Assignment
E ::= E.lateresolveone(c) Trace resolution call

| E->map s (x) Mapping invocation
| E.oclIsTypeOf(c) Type checking
| E. f Feature access
| new c(E) Class instantiation
| self Context access
| x Variable access

Figure 3.2: Core QVT-OM’s syntax.

ables, respectively. Typing judgments on sequences are abbreviated, P is
shorthand for whitespace or comma separated lists P1 . . .Pn with zero or
a finite number of elements, analogous for C, F , V , S, O, B. The ? oper-
ator marks grammatical expressions as optional, the | operator separates
alternative choices.

Metamodels are formulated with the same notation as described in the
QVT specification, with one extension: Packages p not only define classes,
they define subpackages as well. A class c can inherit from another class
c′, and define contained or referenced elements. A field f is typed with a
class c and can have multiplicities 1 or 0..∗.

As an example, Listing 3.2 defines both example models, Activity and
Process, in a simple textual syntax that is described in the QVT specifi-

90

3.3. The Conceptual Extension Core QVT-OM

Metamodel primitives:
package G { classObject{}; classBoolean{}; classString{}; }

Metamodel subtyping:

c <: c
c <: c′ c′ <: c′′

c <: c′′
class c extends c′ { ... }

c <: c′ c <: Object
class c { ... }

c <: Object

Lookup of metamodel packages, classes and features:

class c (extends c′)? { . . .}

classesC(c) = c,classesC
(
(c′)?

)
package p { P C }

P = package p′ { . . .} C = class c (extends c′)? { . . .}

packagesP(p) = p′ classesP(p) = c,
[

k classesC
(
(c′k)

?
)]

class c (extends c′)? { (composes | references) f : c ([1] | [*]); }
featuresC(c) = featuresC

(
(c′)?

)
, f : c

Lookup of declared and implemented mapping types:

transformationinterface i . . . { V S }

S = mapping c :: s(in c′) : c′′

mappingsI(i) =
⋃
S∈S

{
(i,c,s,c′,c′′)

}
transformationmodule m . . . { O }

O = mapping c :: s(in x : c′) : c′′ . . . { . . .}

mappingsM(m) =
⋃

O∈O

{
(this,c,s,c′,c′′)

}
Lookup of declared model scope:

transformationinterface i . . . { V S }

S = mapping c :: s(in c′) : c′′

scopeM(i) =
⋃
S∈S

({
c,c′′

}
∪
⋃
k

c′k
)
×{in}

transformationinterface i . . . { V S }

V = scope (a = in | out) p[p′ c]
transformationmodule m exporti (import j)? { . . . }

scopeI(i) =
⋃

V∈V

(⋃
k

(
classesP(p′k)∪ classesC(ck)

)
×{ak}

)
∪
⋃
k

scopeM(jk) ∪
(
classesP(G)×{out}

)

Figure 3.3: Core-QVT-OM’s primitives, subtyping rules, and auxiliary functions.

91

3. Modular Information Hiding for Maintainable Model Transformations

cation [Obj11]. Package CompositeActions that imports root package
ActivityModel for extension is omitted. The namespace concept known
from the UML’s Meta-Object Facilities (MOF) superstructure is used to
group classes and subpackages. In this case, root packages ActivityModel
and ProcessModel represent the metamodels.

Module structure is well-formed:

` I WF `M WF

` T WF
(W F - P R O G R A M)

∀ V ∈V , V = scope (b = in | out) p′[p′′ c] :
p′′k ⊂ packagesP

+(p′k)∧ classesC
∗(ck

)
⊂ classesP

∗(packagesP
+(pk)

)
∧∃ l : p′ = pl

∆
[

scopeI(i)
]
` S WF

` transformationinterface i ((a = in | out) t : p) { V S } WF

(W F - I N T E R F A C E)
transformationmodule m export i . . . { . . .}

mappingsM(m) 3 (this,c0,s,c′0,c
′′
0)

∆ 3 (c, ·),(c′, ·),(c′′,out)
c0 <: c c′ <: c′0 c′′ <: c′′0
` mapping c :: s(in c′) : c′′ WF

(W F - M A P P I N G D E C L)

transformationmodule m′ export i . . . { . . .}⇒ m′ = m
transformationinterface i (a = (in | out) t : p) { . . .}

∀ k,n : transformationinterface jk ((c = in | out) t ′ : p′′′) { . . .}⇒
an = cn ∧ tn = t ′n ∧ pn = p′′′n
∆
[

scopeI(i)
]
,Ω
[(
∪kmappingsI(jk)

)
∪mappingsM(m)

]
` O WF

` transformationmodule m export i (import j)? { O } WF

(W F - M O D U L E)
∆ 3 (c, ·),(c′, ·),(c′′,out)

Γ[self 7→ c,x 7→ c′,result 7→ c′′],∆,Ω ` B WF

∆,Ω ` mapping c :: s(in x : c′) : c′′ { B } WF
(W F - M A P P I N G I M P L)

Γ(result) = c c0 <: c′ ∆ 3 (c,out),(c0, ·)
featuresC(c) 3 f : c′ Γ,∆,Ω ` e0 : c0

Γ,∆,Ω ` result. f := e0; WF
(W F - A S S I G N M E N T)

(a) Well-formedness rules

92

3.3. The Conceptual Extension Core QVT-OM

Expression typing and conformance checks:

Γ,∆,Ω ` e0 : c0 ∆ 3 (c0, ·) ∆ 3 (c, ·)
Γ,∆,Ω ` e0.lateresolveone(c) : c

(T- T R A C E R E S)

c0 <: c c <: c′ ∆ 3 (c0, ·),(c′′, ·),(c, ·)
Ω 3 (i,c,s,c′,c′′) (·, ĉ,s,c′,c′′) ∈Ω⇒ c <: ĉ

Γ,∆,Ω ` e0 : c0 Γ,∆,Ω ` e : c
Γ,∆,Ω ` e0->map s (e) : c′′

(T- M A P P I N G I N V)

Γ,∆,Ω ` e0 : c0 ∆ 3 (c, ·)
Γ,∆,Ω ` e0.oclIsTypeOf(c) : Boolean

(T- T Y P E C H E C K)

featuresC(c0) = f : c
Γ,∆,Ω ` e0 : c0 ∆ 3 (c0, ·),(ci,out)

Γ,∆,Ω ` e0. fi : ci
(T- F E AT U R E)

Γ,∆,Ω ` e : c′ ∆ 3 (c,out),(c′, ·)
Γ,∆,Ω ` new c(e) : c

(T- C L A S S I N S T)

Γ(self) = c ∆ 3 (c, ·)
Γ,∆ ` self : c

(T- C O N T E X T)

Γ(x) = c ∆ 3 (c, ·)
Γ,∆ ` x : Γ(x)

(T- VA R I A B L E)

(b) Expression typing rules

Figure 3.4: Core-QVT-OM’s typing rules.

A module interface i specifies a list of model domains t : p the transforma-
tion unit is operating on, where a domain either acts as input or output (in or
out). A domain owns a unique model domain identifier t that is part of any
model element reference, and that is typed by a root package p. Interface
declarations comprise declarations of model scope V and method signatures
S. A model scope declarations commences with an access modifier and a
root package p, followed by the exact elements contained in the root package
that are accessible by implementations must be declared in trailing square
brackets. This can be a list of classes c′ and packages p′. Naming a pack-
age equals to naming all directly contained classes in the package. Method
signatures of mappings are identical to QVT-O’s syntax. Each metamodel

93

3. Modular Information Hiding for Maintainable Model Transformations

1 package ActivityModel {
2 class Activity { composes actions : Action [*]; }
3 class Action { references successor : Action [0..1]; }
4 class StartAction extends Action { }
5 class StopAction extends Action { }
6 }
7 package ProcessModel {
8 class Process { composes steps : Step [*]; }
9 class Step {

10 references next : Step [0..1];
11 composes isStart : Boolean [1];
12 composes isStop : Boolean [1];
13 }
14 }

Listing 3.2: Activity2Process example – Source and target models

element, the calling context c, parameters c′ and the target element c′′, is
prefixed by the respective domain that marks the context, t, t ′, and t ′′.

A module m implements exactly one interface i. To do so, it can rely on
one or more interfaces j. This time, mapping signatures are supplemented by
a list of statements. Again, this syntax is limited for the sake of simplicity –
we imagine a full QVT-OM where module implementation definitions can
implement multiple interfaces, and where syntax spans the full range of
statements available in QVT-O. Assignment expressions can be used to
setup fields of target model elements built from QVT-O expressions. We
have seven types of expressions in Core QVT-OM: Querying a target object
created from a source object, invoking a mapping s defined by an exported or
imported interface j, checking the type of an expression, accessing a field f ,
instantiating a class c in domain t with constructor parameters e, accessing
the surrounding mapping’s source context, and accessing an argument or
variable x. This is a valid subset of QVT-O’s rich syntax. We now aim at
showing how information hiding is enforced on this variety of concepts.

94

3.3. The Conceptual Extension Core QVT-OM

Metamodel primitives and subtyping To any metamodel defined, a
global package G introduces the primitive data types Object, Boolean,
and String, see the upper section in Figure 3.3. Respective fields have
been omitted for simplicity.

Like in FJ, a subtyping relationship between classes is established by an
operator <: that is based on the extends keyword. Subtyping is reflexive,
transitive, but also antisymmetric, i.e. no cycles are permitted. For con-
venience, any class except Object inherits from Object by default. The
middle section in Figure 3.3 lists the subtyping rules for our language.

Auxiliary methods We introduce auxiliary methods for metamodel and
mapping lookup. These methods are utilized by the typing rules hereinafter,
they are defined in Figure 3.3 in the lower section. Function classesC :
C → P(N×C) maps a class to a list of inherited classes including it-
self. In case that (extends c′)? is omitted, c′ evaluates to Object, and
classesC(Object) = ε . For a given package, functions packagesP : P→
P(N×P) and classesP : P→P(N×C) compute all packages and classes
directly contained in the package, respectively. And finally, for a given class,
function featuresC : C → P(N×F) retrieves directly contained features.
Note that here – and similarly, in the rest of this section –, for brevity, we
abbreviate typing judgments on sequences, writing f : k as shorthand for
f1 : k1, . . . , fn : kn (cf. [IPW01]).

Function mappingsI : I→
(
(I×S)→ ((C×P(N×C))×C)

)
creates for a

given interface identifier a function that relates pairs of interface and mapping
identifiers to the mapping’s signature type. Analogously, mappingsM : M→(
(I×S)→ ((C×P(N×C))×C)

)
creates such a function for any mapping

defined in a module implementation – here, we use this for identifying the
interface whose implementation is currently being defined.

The scope of model elements that are accessible for implementations
of an interface i is computed by functions scopeM,scopeI : I → P(N×
{in,out}), where scopeM evaluates explicit scope definitions and joins

95

3. Modular Information Hiding for Maintainable Model Transformations

types that are implicitly accessible. The latter are accumulated by scopeI and
comprise context, parameter and return types of imported methods; these
types must be read-accessible by implementations to execute a delegating
call and further process the returned value. In addition, primitive types
are globally defined.

For any of these functions being special kinds of binary relations, the + op-
erator denotes their transitive closure. The ∗ operator is short for a functional
closure on sets, for instance, classesP

∗(P) :=
⋃

p∈P classesP(p).

3.3.2. Typing

We build a type system in the style of the classical Hindley-Milner type
system. Several ideas and many notational elements are borrowed from
FJ [IPW01]. Primary judgment of our type system is that of type well-
formedness with respect to the modular structure, ` T WF. To attain this goal,
we must judge about the typing of expressions to determine any explicit and
implicit type references. We use a type system where typing relations take
the form Γ,∆,Ω ` e : t. This reads: “In a scoped type environment Γ, Ω, ∆

of variables, methods, and model elements, the term e has type t”.
We capture scoping information in a type environment that consists

of three parts: a variable environment Γ, a method environment Ω, and
a model element environment ∆. The variable environment is a func-
tion mapping identifiers in scope to types, Γ ::= /0 | Γ, [nk=0 vk 7→ ck]. The
method environment stores quintuples that consist of interface identifier,
context type, mapping identifier, parameter types, and return type, Ω ::=
/0 |Ω, [nk=0 (i,ck,sk,c′k,c′′k)]. Similarly, the model element environment cap-
tures accessible model elements, ∆ ::= /0 | ∆, [nk=0 (ck,ak)], where ck is the
class identifier and ak is the access type, in or out, the pair of both defining
accessibility for a single class.

Notation Γ[x0 7→ c0, . . . , xn 7→ cn] is the type environment Γ updated at
xk,k = 0..n to map xk to ck. For an overlined syntax expression x : c, type
variables are represented as sequences (xk)

n
k=0, (tk)n

k=0, and (ck)
n
k=0. Then,

96

3.3. The Conceptual Extension Core QVT-OM

Γ[x : c], Γ[k xk 7→ ck], and Γ[{x0 7→ c0, . . . , xn 7→ cn}] are short forms for
the notation mentioned above.

Type inference rules are displayed in Figure 3.4. They are completely syn-
tax directed, thus defining small-step semantics. As we already mentioned,
our type system is designed to prove that a modular transformation program
in Core QVT-OM is well-formed regarding the information hiding principle.
In accordance with Rule W F - P R O G R A M (Figure 3.4a), A transformation
program T is only then well-formed, if its interface definitions and module
implementations are well-formed.

An interface signature defines a sequence of modeling domains on pack-
ages p, and model scope statements declare for each domain a list of pack-
ages p′ and classes c on which access is opened up. These elements must be
(directly or transitively) contained in the respective domain’s root package
p (Rule W F - I N T E R F A C E). It is also ensured that scope information is
only given for packages that are part of the transformation signature.With
the auxiliary function scopeI , an environment ∆ is built that contains the
list of accessible classes.

Now, mapping signatures declared inside the interface definition are tested
to be wellformed. Any of these declared signatures must be implemented by
a module m with compatible types, and any type used must be accessible
(Rule W F - M A P P I N G D E C L). Type conformance is checked according to
the Liskov principle, and accessibility is checked based on the ∆ environ-
ment. Remember that ∆ 3 (c′, ·) is shorthand syntax for ∆ 3 (c′0,in)∨∆ 3
(c′0,out),∆ 3 (c′1,in)∨∆ 3 (c′1,out), . . . ,∆ 3 (c′n,in)∨∆ 3 (c′n,out) with
n representing the length of list c′, n := #c′− 1. The dot operator · is a
placeholder for arbitrary values in a tuple (“don’t care” semantics), and is
used whenever a type is tested for read access, because a declared write
access encompasses read accessibility.

Rule W F - M O D U L E makes sure that there is exactly one implementa-
tion per interface defined. The transformation signature of the implemented
interface and imported interfaces must be identical. A module inherits model

97

3. Modular Information Hiding for Maintainable Model Transformations

visibilities from the interface it implements, so ∆ is configured in the same
way as in Rule W F - I N T E R F A C E. The Ω environment is filled with meth-
ods provided by imported interfaces plus those defined locally.

According to Rule W F - M A P P I N G I M P L, a mapping implementation
must have any of its signature’s type accessible. Two variables plus their
respective types are added to its scope, self and result. In the body
of a mapping, the target object’s features can be initialized. Rule W F -
A S S I G N M E N T states that the target object’s features used here must be
a valid feature of the object’s type, both sides of the assignment must have
matching types, and the result’s type must be write accessible. Please note
that only the feature’s parent object is modified, hence only the feature’s
parent type must be permitted write access on the left-hand side of an
expression.

Expression typing presented in Figure 3.4b is obvious, insofar that we
infer for each syntactical element related types, and check that the element is
visible and excels a valid accessibility mode. Rule T- T R A C E R E S tests the
context and return type for accessibility. Rule T- M A P P I N G I N V checks
read-access rights that arise from mapping invocations; these are implicitly
permitted as long as the called mapping has been imported correctly (see
our explanations on Rule W F - M O D U L E). The rule also ensures that
parameter types are compatible, and ensures that the mapping with the
closest context type is chosen if overloaded methods exist. Checks on a
specific type require the context type and the type checked against to be
accessible (Rule T- T Y P E C H E C K). Access to a feature demands read
access to the parent type and the feature type, which must be a valid feature
of the given class (Rule T- F E AT U R E). If an object is created, we check
if its type is write accessible, and if parameter types of the constructor are
read accessible (Rule T- C L A S S I N S T). Context and variables are checked
if they are in scope and their type is at least read accessible (Rules T-
C O N T E X T , T- VA R I A B L E).

98

3.3. The Conceptual Extension Core QVT-OM

Γ(self) = Activity
∆ 3 (Activity, ·)

featuresC(Activity) 3 actions : Action[*]
Γ,∆,Ω ` self : Activity
∆ 3 (Activity, ·),(Action,out)

(T- C O N T E X T)

Action<: Action c = /0
Ω 3 (IAction2Step,Action,mapAction2Step, /0,Step)
Γ,∆,Ω ` self.actions : Action : Action[*]

(T- F E AT U R E)

Γ(result) = Process Step[*]<: Step[*]
∆ 3 (Process,out),(Step, ·) featuresC(Process) 3 steps : Step[*]
Γ,∆,Ω ` self.actions->

map mapAction2Step() : Step[*]

(T- M A P P I N G I N V)

∆ 3 (Activity, ·),(Process,out)
Γ = { self 7→ Activity,result 7→ Process },∆,Ω
` B = result.steps := self.actions->

map mapAction2Step(); WF

(W F - A S S I G N M E N T)

transformation module m′ exportIMain { . . .}
⇒ m′ = Activity2Process

∆ = { (Activity,in),(Process,out) } ∪
{ (Action,in),(StartAction,in),(StopAction,in),(Step,out) } ∪
{ (Object,out),(Boolean,out),(String,out) }

Ω = { (IMain,Activity,mapActivity2Process, /0,Process),
(IAction2Step,Action,mapAction2Step, /0,Step),
(IAction2Step,StartAction,mapAction2Step, /0,Step),
(IAction2Step,StopAction,mapAction2Step, /0,Step) }

` O = mapping Activity::mapActivity2Process()
: Process { B } WF

(W F - M A P P I N G I M P L)

` transformation module Activity2Process
export IMain { O } WF

(W F - M O D U L E)

Figure 3.5: Example inference rules – Interface-compliant implementation of mod-
ule Activity2Process.

99

3. Modular Information Hiding for Maintainable Model Transformations

3.3.3. Example Derivation

For a better understanding of the typing rules, we give an example derivation
on a subset of the Activity2Process example. We exclude the third module
CompositeAction2Step, as it uses syntactical elements not covered by
our core calculus. For this, we have to remove the import statement in
line 4 of Listing 3.1a.

We start right after Rule W F - P R O G R A M, has been applied, demanding
to show well-formedness for interface declarations and implementation
definitions of both modules.

The derivation given in Figure 3.5 aims to show that the implementation
of the main module, module Activity2Process, is wellformed accord-
ing to our rewriting system. Six rules are applied, Rules W F - M O D U L E ,
W F - M A P P I N G I M P L , W F - A S S I G N M E N T , T- M A P P I N G I N V , T-
F E AT U R E , and T- C O N T E X T , one for each structural element of our
syntax.

Rule W F - M O D U L E verifies that there is not a second implementation
of the same interface, and builds two environments, the ∆ and the Ω environ-
ment. The ∆ environment captures all the model elements that are in scope,
and the Ω environment captures all mappings that are in scope, these are
mappings from imported interfaces, and local mappings.

Then, Rule W F - M A P P I N G I M P L is applied to each of the module’s
mappings. There is only one mapping defined, method mapActivity2-

Process. There are two premises, one queries the ∆ environment, if all
parameters are correctly accessible. The other updates the Γ environment
by adding variables self and result that represent the context and re-
turn value, variables for each input parameter. To each of the variables the
declared type is assigned.

The rule asks to give evidence that the methods body is wellformed,
which consists of a single assignment statement, on which we can apply
Rule T- A S S I G N M E N T . This boils down to several premises that query

100

3.3. The Conceptual Extension Core QVT-OM

the feature type to test accessibility and type compatibility of the left and
right hand side expressions.

The remaining expression is call statement, so we can apply Rule T-
M A P P I N G I N V. There are three methods in scope whose context, parameter
and return type would match, though we must only provide one of them.
Later at runtime, dynamic dispatching comes into play. Type conformance
according to Liskov’s substitution principle is approved on context and input
parameters. In our example, we only need to check the context parameter.

The next rule, Rule T- F E AT U R E, ascertains that class Activity actually
possesses a feature actions that is accessed here, and that the feature’s
type is read accessible. T-Context is the last rule which applies. Finally,
Rule T- C O N T E X T retrieves the type of variable self, and ascertains
that it is in scope.

3.3.4. Properties

Now that syntax and typing rules are defined, we must give evidence that
hiding actually works, i.e., a program is well-typed if and only if it is ab-
straction safe.

Type systems generally help to detect the presence of a class of type-
related runtime errors, called syntactic type safety. Soundness of the se-
mantics with respect to a type system generally means that “well-typed
programs cannot go wrong”, and can be justified on the basis of two prop-
erties, progress and preservation. Since we mainly reuse typing rules from
the OCL and QVT, we assume our type system to be type safe. We can
do so, since modularity here is not first-class, i.e., a module itself cannot
be reasoned about in the program. Thus, typing of our abstraction mecha-
nism is distinct from expression typing, although conformance of module
implementations to their interfaces rest upon subtyping rules.

However, added syntactical elements and the type system have been partic-
ularly designed for the purpose of enforcing abstraction safety. Abstraction
safety ascertains that well-typed programs at runtime abide to the infor-

101

3. Modular Information Hiding for Maintainable Model Transformations

mation hiding principle. Assuming syntactic type safety, what remains to
be shown is that the type system establishes representation independence
and representation invariants (cf. Section 2.3). Both of these properties are
captured by rules R1 and R2 postulated in Section 3.1 at the beginning of
this chapter. In the following, we formalize our rules, and provide proof
sketches for each of them.

R1: Separation of interfaces from their implementations This prop-
erty relates to representation independence. According to Pierce’s defini-
tion [Pie02], separation is possible exactly when modules that implement the
same interface can be exchanged while maintaining type conformance.
Theorem 3.3.1. For any pair of transformations T and T ′, where

T = P I M0 . . .Mk . . .Mn

T ′ = P I M0 . . .M′k . . .Mn ,

with module implementations Mk, M′k of the same name mk = m′k, both

exporting the same interface ik = i′k, and both being well-formed, i.e.,`M WF

and `M′ WF, we can say that ` T WF ⇔ ` T ′ WF.

Proof. In the type system, wellformedness is checked independently for
each module implementation: a transformation T is wellformed iff inter-
faces and implementations are wellformed (W F - P R O G R A M). A module
implementation may only reference methods declared in one of its im-
ported interfaces. Method signatures are bound to exactly one method imple-
mentation of exactly one implementation of that module, secured by W F -
M A P P I N G D E C L. Required and provided method signatures must be com-
patible in terms of Liskov’s substitution principle, as encoded by rules W F -
M A P P I N G D E C L for module implementations and T- M A P P I N G I N V

for method invocations. Therefore, any module implementation remains
independent of any other module implementations.

102

3.3. The Conceptual Extension Core QVT-OM

R2: Conformance of interface and implementation This rule corre-
sponds to representation invariants of our module system. There are certain
invariants enforced upon a module implementation by the interface that it
implements: Firstly, all of the method signatures declared in the interface
must be implemented. Secondly, implemented code must obey access restric-
tions on externally defined methods, and thirdly, it must only access model
elements declared to be in scope. We go through each class of invariant by
providing a formal definition and a proof sketch.

R2a: Method provisioning A program is only then well-formed if there
exists exactly one implementation per interface. If an interface misses an
implementation potential method calls cannot be resolved. If an interface is
implemented multiple times it is not clearly expressed which implementation
to choose, resulting in nondeterministic behavior.
Theorem 3.3.2. For any interface i ∈ I, there exists exactly one implemen-

tation m ∈M for i. For this implementation we can find exactly one bijective

mapping between implementation and interface methods fm,i : O|m→ S|i,
so that each method o ∈ O|m maps to a method s ∈ S|i with equal name and

an equal number of arguments, o = s and |c′o| = |c′s|, and signature types

are pairwise compatible according to Liskov (contravariant argument types,

covariant return types).

Proof. Suppose for an implementation m ∈M of interface i ∈ I exists an-
other implementation m′ ∈M of that same interface. Then, implementations
m, m′ must be identical, as guaranteed by rule W F - M O D U L E: m = m′. In
addition, W F - M A P P I N G D E C L guarantees that for any method imple-
mentation (which there must be exactly one, as we have just shown), type
conformance constraints according to Liskov are met.

R2b: Method access control In an implementation, only model types or
mappings are referenced that are imported by the prefixed interface, and the
interface is imported by the implemented interface.

103

3. Modular Information Hiding for Maintainable Model Transformations

Theorem 3.3.3. For any implementation of a module m,

transformationmodule m export i (import j)? ,

if a method implementation o ∈O|m references a method o that is not locally

defined, then it must be defined in at least one of the imported interfaces,

j′ ∈ j, and the signature of o is compatible (regarding to Liskov’s substitution

principle) to the signature of o specified in the interface j′.

Proof. Only mapping invocation expressions may refer to methods by the
method’s name o and a list of variables. There are two cases, either a called
mapping o is defined locally with matching parameter types, or the mapping
is dereferenced by imported interfaces. By inquiring the Ω environment,
rule T- M A P P I N G I N V ascertains that only methods in scope (i.e., local or
imported ones) are referenced. The same rule tests for type conformance, as
well.

R2c: Model access control In an implementation, only those model types
are referenced for read or write access in a specific domain whose respective
access mode is declared for this model type and domain type in the interface
that is implemented.
Theorem 3.3.4. For any expression’s inferred type,` e : c, model type c must

be defined as read-accessible in the respective domain t by the surrounding

module’s interface, except if access is delegated to another module. It must

be write-accessible if features are created or modified. Additionally, for

any parameter being part of a mapping or OCL operation’s signature, its

type c must be defined as accessible with the correct mode (read- or write-

accessible for context and input parameters, write-accessible for output

and return parameter types) in the respective domain t by the surrounding

module’s interface.

104

3.3. The Conceptual Extension Core QVT-OM

Proof. For any expression that is defined in the syntax, a type is inferred
by an expression typing rule. There, we can find a precondition in the
form of (c, ·) ∈ ∆ for read access checks, and (c,out) ∈ ∆ for write access
checks, depending on the underlying dynamic semantics; exceptions are T-
T R A C E R E S and T- M A P P I N G I N V which delegate to external modules.
The same is true for method parameters (rules W F - M A P P I N G D E C L ,
W F - M A P P I N G I M P L) and assignments (rule W F - A S S I G N M E N T).

Abstraction Safety A program is considered as being well-typed if and
only if it does not hurt the information hiding principle.
Corollary 3.3.5. Let T be a transformation program in valid Core QVT-OM

syntax. If ` T WF, transformation T does not hurt the principle of information

hiding as described by rules R1 and R2a to R2c.

Proof. From the proofs of Theorems 3.3.1 to 3.3.4 immediately follows
soundness of our module concept with respect to abstraction safety proper-
ties.

Decidability Because type inference rules are syntax directed, there is
only one conclusion for each syntactic form. Evaluation will only get stuck
if one of two kinds of premises remains unfulfilled, type conformance or
accessibility. If and only if our type system terminates on a program with
` T WF, it is well-formed. Hence the type system is decidable, and an efficient
implementation exists.

3.3.5. Coq Embedding

The type system and theorems presented in this section have been translated
to intuitionistic logic of the automatic theorem prover Coq. Within Coq’s
formal system, more rigorous and convincing proofs can be provided. The
embedding is described in Appendix A.

105

3. Modular Information Hiding for Maintainable Model Transformations

3.4. Application to Imperative Languages

To demonstrate general applicability of the approach to imperative trans-
formation languages, and for validating the concept on real model transfor-
mations, we have integrated the concept into two existing transformation
languages, QVT-O and Xtend. QVT-O is an imperative M2M transformation
language standard that has been implemented under the Eclipse ecosys-
tem. Xtend is a highly extensible general-purpose programming language
suitable for writing M2T transformations. As a sideline, we added a few
domain-specific concepts so that M2M transformations can be encoded
in Xtend, too.

3.4.1. Implementation in Eclipse QVTo

The QVT-OM approach has been prototypically integrated into the Eclipse
QVTo project, a manifestation of the official QVT-O standards. We named
the modified version QVTom1. With QVTo being to the widest extent
standards-compliant, adaptation of the language has been carried out without
complications.

The example code of the Activity2Process from Listing 3.1 is fully com-
patible with our QVTom variant. The underlying parser is generated from
an LALR Parser Generator (LPG) grammar specification. The parser emits
instances of an Ecore modeled Abstract Syntax Tree (AST) using the vis-
itor design pattern. Type checking is done partly by the visitor, partly in
a subsequent step. The hereby generated AST model instance is finally
interpreted.

We added keywords to the lexical grammar specification and adapted the
parser’s grammar rules as outlined in Figure 3.2. We had to adjust the gener-
ated parser by integrating the type checking rules from Figures 3.3 and 3.4,
accordingly. Code has been added that resolves modular dependencies on the
fly, eventuating in an AST that can be traversed by the vanilla interpreter.

1 Sources are available at qvt.github.io/qvtom.

106

http://qvt.github.io/qvtom

3.4. Application to Imperative Languages

The proposed Core QVT-OM is a minimal extension to demonstrate
the key concepts. The QVTo project already supports full OCL and QVT-
O syntax. For practicability, we implemented several additional features
which had not been mentioned so far. First, modules and interfaces can by
physically separated in files, and use the import statement to add other files
to a file’s scope. Second, interfaces can not only declare mapping methods,
but also helper methods and query functions.

3.4.2. Implementation in Xtend

We prototypically implemented a transformation language Xtend2m2 that
includes our module concept. Xtend2m augments the Xtend language3 for
model-to-model (M2M) and model-to-text (M2T) transformations on EMF-
based Ecore models. EMF maps Ecore metamodels to Java types. Xtend is
a statically typed language that compiles to ordinary Java code. It features
template expressions for M2T and cached methods for M2M, and because
it is built with the Xtext framework, it comes with full-featured Eclipse
editors and can be easily extended and customized. Extensibility was the
primary reason we decided to use the Xtend language for a prototypical
implementation of our concepts.

We exploit the fact that Xtend programs are 100% compatible with Java’s
type system: We utilize Java interfaces as module interfaces and Java classes
as module implementations. Mapping operations are Java methods inside a
class. As a consequence, Java’s type checker automatically ensures that a
module conforms to its interface, and enforces that only mappings marked
as public are accessed from outside.

However, there are four weaknesses. First, cached methods only take
care that, for a certain parameter set, the previously created element is re-
turned instead of a new one. Second, model access restrictions can not be
declared for an interface, and implementations are not statically checked

2 Sources are available at qvt.github.io/xtend2m.
3 Xtend is hosted at xtend-lang.org

107

http://qvt.github.io/xtend2m
http://xtend-lang.org

3. Modular Information Hiding for Maintainable Model Transformations

for violations against restrictions. Third, module implementations must be
kept independent from each other. This issue is already tackled by standard
dependency injection APIs, but it is not checked if the imported interface
is actually a transformation interface. And fourth, Xtend does not prescribe
how a transformation’s entry point must look like.

To mark classes and interfaces as transformation concepts, and to include
access declarations and mapping methods with QVT-O-like tracing, we
designed six dedicated Java annotations. Based on these annotations, we
were able to make use of an Xtend feature called Active Annotations. This
mechanism gives language developers the chance to intercept static code
analysis and transpilation to Java for two purposes. On the one hand, we
can perform static type checking, and in cases of any semantic issues we
can create appropriate compiler warnings and errors. These issues are then
displayed at the corresponding location in the Eclipse editor. On the other
hand, we can manipulate transpilation, for example, we are able to inject
code into methods with a certain annotation.

Listing 3.3 again shows the Activity2Process transformation from the
introduction, but this time it is implemented in Xtend2m rather than QVTom.
All the annotations used there are going to be explained in the follow-
ing paragraphs.

Interfaces must be indicated with @TransformationInterface, and
classes with @TransformationModule. Control dependencies can be de-
clared via @Import, and are mapped by the transpiler to an ordinary @Inject.
At the same time, transformation modules are automatically injected with a
factory for model creation, a module configuration class and a tracing API.
Type checking makes sure that an interface implemented or imported by a
transformation module is in any case annotated as a transformation interface.
A dedicated interface IMain constitutes the entry point. A transformation is
only valid if this interface is implemented by exactly one module.

We replaced cached methods with our own concept. Methods annotated
with @Create(typeof(T)) automatically create an instance of T that is

108

3.4. Application to Imperative Languages

1 @TransformationInterface
2 @ScopeIn(#["activity.Activity", "activity.Action"])
3 @ScopeOut(#["process.Process"])
4 interface IActivity2Process extends MainMethod {
5 def Process mapActivity2Process(Activity self)
6 }
7 @TransformationModule
8 @Import extension IAction2Step, ICompositeAction2Step
9 class Activity2Process implements IActivity2Process {

10 @Create(typeof(Process))
11 override Process mapActivity2Process(Activity self) {
12 result.steps = self.actions.map[mapAction2Step]
13 }
14 override main(List<List<EObject>> input) {
15 val activities = input.head.filter(typeof(Activity))
16 activities.map[mapActivity2Process]
17 doLateResolution
18 }
19 }

(a) First module

1 @TransformationInterface
2 @ScopeIn(#["activity.StartAction", "activity.StopAction"])
3 @ScopeOut(#["process.Step"])
4 interface IAction2StepModule {
5 def dispatch Step mapAction2Step(Action self)
6 }
7 @TransformationModule
8 class Action2Step implements IAction2Step {
9 @Create(typeof(Step))

10 override dispatch Step mapAction2Step(Action self) {
11 result.name = self.name
12 self.next.lateResolveOne [result.successor = it]
13 result.isStart = self instanceof StartAction
14 result.isStop = self instanceof StopAction
15 }
16 }

(b) Second module

109

3. Modular Information Hiding for Maintainable Model Transformations

1 @TransformationInterface
2 @ScopeIn(#["activity.CompositeAction"])
3 @ScopeOut(#["process.Process", "process.Step"])
4 interface ICompositeAction2Step {
5 def dispatch Step mapAction2Step(CompositeAction self)
6 }
7 @TransformationModule
8 @Import extension IAction2Step
9 class CompositeAction2Step implements ICompositeAction2Step {

10 @Create(typeof(Step))
11 override dispatch mapAction2Step(CompositeAction self) {
12 result.name = "Run process " + self.name
13 result.successor = self.next.mapAction2Step
14 result.isStart = false
15 result.isStop = false
16 self.mapAction2Process
17 }
18 @Create(typeof(Process))
19 def mapAction2Process(CompositeAction self) {
20 result.steps = self.actions.map[mapAction2Step]
21 }
22 }

(c) Third module

Listing 3.3: Activity2Process example in Xtend2m

registered at our tracing API. Later on, trace resolution can be conducted
in the style of QVT-O, for example by calling lateResolveOne. In con-
trast to QVT-O, late resolution must be triggered by an explicit call to
doLateResolution. Any referenced model types from inside a method are
checked if they are declared as accessible by the interface the surrounding
module implements.

Access control can be declared for module interfaces via two annotations,
@ScopeIn and @ScopeOut. These are parameterized by a list of model
element classes. All classes in a package can be declared using a wildcard
operator, myPackage.*.

110

3.4. Application to Imperative Languages

1 module Activity2ProcessTransformation
2 Workflow {
3 // load metamodels ActivityModel.ecore, ProcessModel.ecore
4 // load ActivityModel instance into slot "inputModel"

5

...
6 component = xtend2m.mwe.ModuleLoader {
7 input = "inputModel"
8 output = {
9 package = "process"

10 slot = "outputModel"
11 }
12 transformationModule = "Activity2Process"
13 transformationModule = "Action2Step"
14 }
15 // persist ProcessModel from slot "outputModel"

16

...
17 }

Listing 3.4: Activity2Process example – MWE2 workflow definition

At this time, the dependency injection framework has not been informed
about available implementations. Xtend programs are typically orchestrated
from a workflow script written for the Modeling Workflow Engine (MWE).
We built a customized workflow component that initiates the wiring and
then executes the transformation. So that this can happen, module implemen-
tations must be registered. Concerning the introductory Activity2Process

example, a workflow script must register implementations for two interfaces,
IMain and IAction2Step (Figure 3.4).

As we have shown, transformations written in Xtend2m share all modular
concepts of QVT-OM and key QVT-O concepts. Because Xtend already
comes with template expressions built-in, not only M2M, but also M2T
transformations can be written. One difference concerning our module
concept is that no metamodel represents the target, hence access restrictions
cannot be declared.

111

3. Modular Information Hiding for Maintainable Model Transformations

3.5. Applicability to Declarative Transformation Languages

There is a second class of transformation languages that pursues the declar-
ative paradigm: instead of imperatively prescribing how models are trans-
formed into other models, declarative languages describe how elements
between multiple models relate semantically. Many of the declarative lan-
guages use a first-class concept of a transformation rule to formulate these
declarations, hence they are alternatively named rule-based transformation
languages. One prominent example for a purely declarative language is
QVT-R. Other declarative languages like ATL allow both declarative rule
and imperative mapping operations as first-class entities, they are counted
to the hybrid transformation languages.

So far it has not been clarified if and how we can transfer our module
concept to declarative, rule-based languages. In this section, we are going to
demonstrate this for a widely known representative of declarative transfor-
mation languages, the QVT-R language. Despite being the only language of
its kind that has been described in a standard document, semantics have not
been formally described, evidenced by errors and subtle differences in the
tools that implement QVT-R. To address this situation, in the consequent
subsection we systematically embed a core subset of the formal language
standard in constructive type theory under the Coq proof environment. Our
embedding is mostly a shallow one, with only a minimum of computational
steps, which are fully automatized by code generator templates. We adhere
as faithfully as possible to the formal language standard, whilst we confine
ourselves to unidirectional, non-updating enforcement semantics. We give
justification for any deviation from the official specification.

Having our understanding of QVT-R’s core semantics made clear, the
next subsection elicits how interfaces and implementations fit into the lan-
guage.

112

3.5. Applicability to Declarative Transformation Languages

3.5.1. Semantics of QVT-R

The encoding of QVT-R transformations in Coq is founded on the basic
pattern proposed by Poernomo [Poe08], namely

∀s : S. Pre(s)→∃ t : T. Post (s, t) ,

where s is an instance of a source metamodel S, t is an instance of a target
metamodel T , Pre is a predicate on S that must hold before the transformation
is applied, and Post is a predicate on S and T that must hold after the
transformation is applied.

Before describing the encoding of a QVT-R transformation, let us first
define its abstract syntax, and say what it means for a transformation to
succeed.

Definition 3.1 (QVT-R Transformation): A QVT-R transformation T , with
source models mS,1, . . . , mS,r, target model mT , top relations R1, . . . , Rl ,
and non-top relations Rl+1, . . . , Rm, is given by:

transformation T (mS,1 : MS,1, . . ., mS,r : MS,r, mT : MT) {

top relation R1 { . . . } . . . top relation Rl { . . . }

relation Rl+1 { . . . } . . . relation Rm { . . . } . . .

}

Definition 3.2 (Successful QVT-R Transformation): A QVT-R transforma-
tion is deemed to succeed if all of its top relations hold.

With these definitions in place, we are now in a position to define the
encoding of a QVT-R transformation.

Definition 3.3 (QVT-R Transformation Encoding): A QVT-R transforma-
tion is encoded as a theorem, whose type is an expression in predicate logic
of the following form: for all source models, there exists a target model, so
that the encoding of each top relation holds over the models, i.e.

Theorem Transformation_T:

forall mS,1 : MS,1, . . ., forall mS,r : MS,r,

113

3. Modular Information Hiding for Maintainable Model Transformations

exists mT : MT,

Top_R1 (mS,1, . . ., mS,r, mT) ∧ . . . ∧
Top_Rl (mS,1, . . ., mS,r, mT).

Similarly, before defining the encoding of a QVT-R relation, let us first
define its abstract syntax.

Definition 3.4 (QVT-R Relation): The abstract syntax of a QVT-R relation
R, which contains a set of local variables, Vlocal , a set of patterns to match
on n domains, where n≥ 2, a when clause Cwhen, and a where clause Cwhere,
is given by

[top] relation R {

var Vlocal

checkonly domain S1 vS1,root {

AS1,1 =
(

CS1,1

∣∣∣ vS1,1 {
(
CS1,2

∣∣ vS1,2 { . . . CS1,k1 . . . }
)
}
)

}. . .

checkonly domain Sn vSn,root { . . . }

enforce domain T vT,root {

AT,1 =
(

CT,1

∣∣∣ vT,1 {
(
CT,2

∣∣ vT,2 { . . . CT,k . . . }
)
}
)

}

[when { Cwhen }]

[where { Cwhere }]

}

The source model of the i-th domain, 1≤ i≤ n, is parametrized by domain
variable Si, and the target model is parametrized by domain variable T . Each
domain is required to define at least one pattern, i.e. the root pattern. To
ease comprehension in the definition above, the number of attributes A in
a domain pattern is restricted to one. Patterns can be nested to an arbitrary
depth, until either a pattern is left empty, {}, or a constraint C is used, i.e.,
an OCL expression that may refer to existing variables in R’s context.

114

3.5. Applicability to Declarative Transformation Languages

In QVT-R, relations can appear in two distinct contexts. Firstly, they
can appear in a relation’s precondition, to check – for a given set of root
variables – that the relation holds. This is interpreted as meaning that the
relation has already been enforced. Secondly, they can be invoked from
a relation’s postcondition for a given configuration of the root variables.
In this context, a relation is enforced if it does not hold. Recall that top-
level relations can never be explicitly called, because they form part of the
transformation’s principal post-condition, i.e. for any valid match of the
checkonly domains, a top-level relation obliges the target model to provide
suitable objects to enable it to meet all of its constraints. This is also hinted
at by the specification [Obj11, p. 14].

In Coq, we can rely on a single definition for checking both top and
non-top relations alike, and for enforcing the non-top relations. However,
we cannot use this definition for enforcing top-level relations from the main
theorem above, since root variables must be exhaustively bound.

We now define the following short forms of variables in relations, to
ease the encoding of relations.

Definition 3.5 (Variable Short Forms): The short forms of variables in
relations is given by:

Root variables Vroot := {vS1,root, . . ., vSn,root, vT,root}
Source-bound variables VS :=

⋃n
i=1
{

vSi,root, vSi,1, . . ., vSi,ki

}
Target-bound variables VT :=

{
vT,root, vT,1, . . ., vT,k

}
All variables V :=Vlocal∪VS∪VT

Variables in when clause Vwhen := {v ∈V | v is used
in condition Cwhen}

Variables in where clause Vwhere := {v ∈V | v is used
in condition Cwhere}

Source pattern variables VCS := {v ∈V | ∃ i ∈ {1, . . . ,n},
j ∈ {1, . . . ,ki} :

v is used in constraint CSi, j}

115

3. Modular Information Hiding for Maintainable Model Transformations

Target pattern variables VCT := {v ∈V | ∃ j ∈ {1, . . .k} :
v is used in constraint CT, j}

Target-exclusive variables V̂T := (VCT ∪VT)\ (Vwhen∪VCS ∪VS)

Source/remaining variables V̂S :=V \ (Vwhen∪V̂T)

From defined variables, we conclude with our encoding of a QVT-R re-
lation. This definition differentiates between two types of relations, top
and non-top relations.

Definition 3.6 (QVT-R Relation Encoding): The encoding of top relations
(left) and non-top relations (right) is given by:

(a) Enforcing a top-level relation:

1 Definition Top_R (S1, . . ., Sn,

T) :=

2 forall (Vwhen \VT),

3 exists (Vwhen∩VT),

4 (Cwhen)→
5 forall (V̂S),

6 In S1,root S1 ∧. . . ∧
7 In Sn,root Sn ∧
8 CS1,1 ∧ . . . ∧ CS1,k1 ∧ . . . ∧
9 CSn,1 ∧ . . . ∧ CSn,kn→

10 exists (V̂T),

11 (In Troot T) ∧
12 (CT,1 ∧ . . . ∧ CT,k) ∧
13 (Cwhere).

(b) Relation with root variables
bound:

1 Definition R (S1, . . ., Sn, T,

Vroot) :=

2 (In S1,root S1) ∧ . . . ∧
3 (In Sn,root Sn) ∧
4 (In Troot T) ∧
5 forall (Vwhen \Vroot),

6 (Cwhen)→
7 forall (V̂S \Vroot),

8 (CS1,1 ∧ . . . ∧ CS1,k1) ∧ . . . ∧
9 (CSn,1 ∧ . . . ∧ CSn,kn)→

10 exists (V̂T \Vroot),

11 (CT,1 ∧ . . . ∧ CT,k) ∧
12 (Cwhere).

13

Note that top relations require both definitions. The definition on the left
is used to enforce the relation, whereas the definition on the right is used to
check that the relation holds for particular inhabitants of the root variables.

116

3.5. Applicability to Declarative Transformation Languages

It is easy to see that these definitions differ in two points. First, in the top-
level definition, target variables on the when condition use exists rather than
forall (Definition 3.6a, line 3 and 3.6b, line 4). At the time that a top relation
is enforced (recall that a top relation may depend on other relations, namely
those in its when clause), for each valid match that is found, witnesses of
created objects must exist in the target model. Ultimately, these witnesses
are the implementations of the corresponding relations. Knowing about
the exact characteristics of created objects facilitates the eventual proof
of correctness of the transformation. Second, the binding of root variables
differs. Since root variables are expected to be bound at the time a top relation
is checked or a non-top relation is called, they already appear as parameters
Vroot in Definition 3.6b, and proper containment of root variables can be
pulled up to the top of Definition 3.6b (lines 2–4). On the other hand, when
enforcing a top relation, propositions on the containment of root variables
must be postponed to the time a variable is introduced (Definition 3.6a,
lines 6, 7, and 11).

3.5.2. Conformance with the Language Standard

The semantics of QVT-R according to the language specification are fuzzy,
and turn out not to be well-founded when translated to Coq. In this section,
we briefly introduce the standard definition, before we compare it to our own
variant and give justification for minor modifications and improvements.

In the standard, predicate logic is only given for a single relation. There
is an informal description on p. 14, stating that “the execution of a trans-
formation requires that all its top-level relations hold”. This informal de-
scription correlates with Definition 3.1, and our translation to predicate
logic (Definition 3.3).

The standard lists formulas in predicate calculus for both checkonly and
enforcement modes. However, because we confine ourselves to non-updating
enforcement semantics, only definition Create is relevant in this contribu-
tion. In fact, it served as the basis for Definition 3.6.

117

3. Modular Information Hiding for Maintainable Model Transformations

Definition 3.7 (Standardized Enforcement Semantics for Relations): The
encoding of non-updating enforcement semantics according to the stan-
dard [Obj11, Ann. B, p. 225] is given by:

1 Definition Create_R (S1, . . .,

Sn, T) :=

2 forall (Vwhen),

3 (Cwhen)→
4 forall (V \ (Vwhen∪V̂T)),

5 (In S1,root S1) ∧ . . . ∧
6 (In Sn,root Sn) ∧
7 CS1,1 ∧ . . . ∧ CS1,k1 ∧ . . . ∧
8 CSn,1 ∧ . . . ∧ CSn,kn→

9 ¬ exists (V̂T),

10 (In Troot T) ∧
11 (CT,1 ∧ . . . ∧ CT,k) ∧
12 (Cwhere)→
13 assert (V̂T \VT = /0) ∧
14 forall v : VT,

15 createOrUpdate

(v.boundTemplate,

v, V \V̂T) ∧
16 (Cwhere).

Note that variable names have been changed to match those defined
earlier, and that the syntax is slightly different from the standard. However,
the semantics are the same.

The QVT specification informally explains that domain patterns implic-
itly include containment checks (cf. [Obj11, p. 223]). We made contain-
ment of root variables explicit in our definitions to allow for refactoring
steps explained below. Furthermore, domain patterns and conditions are
separate terms in the standard, whereas we use constrained terms C that
comprise both. The specification remains vague about how these translate
to predicate calculus.

In contrast to Definition 3.7, we differentiate between top and non-top
relations (Definition 3.6a vs. 3.6b). As already explained, it is impossible
to do otherwise because the root variables of non-top relations are already
bound upon a call, and are thus input as a parameter set rather than be-
ing quantified over.

There is an obvious issue with Definition 3.7 in that some of the variables
in VT may have already been bound in the when clause; therefore, line 14

118

3.5. Applicability to Declarative Transformation Languages

should use V̂T instead. An example of where this is relevant is variable s

in relation Class2Table (cf. ListingB.1).
The standard considers incremental updates, and any logic to define how

elements are created or updated is factored out into an (informally described)
function createOrUpdate (Definition 3.7, line 15). The first parameter is
the template expression that corresponds to variable v, the second param-
eter is variable v itself, and the third parameter defines bound variables
that are in scope. Recall that in our definition we do not consider update
semantics, including the key concept for identifying objects by certain prop-
erties. Therefore, we can explicitly use existential quantification to create
objects (Definition 3.6a and 3.6b, line 10), instead of a less natural uni-
versal quantification (Definition 3.7, line 14). Furthermore, checking for
non-existence is not needed (Definition 3.7, lines 9–12). Line 13 assures
that variables in the target pattern’s expressions are bound at the time of
enforcement. Because we decided to exclude type checking, we spared the
assertion in line 13, although the same constraint must apply in our case,
as well. Line 4 in Definition 3.7 and line 5 in Definition 3.6a and 3.6b are
equivalent considering how V̂S is defined.

To ease the process of proving, we pull up containment checks right after
the corresponding variable is introduced. We further ease proving by using
existential quantification rather than universal quantification for any variable
on the target domain that is introduced by a when clause.

3.5.3. Creating Standards-Compliant Implementations

The introduced formalism can be used to create functional implementations
of QVT-R programs that are provably correct with respect to the program’s
specification. The first step is to automatically translate the given QVT-R
script and the model specifications to Coq. In a second step, an OCaml
implementation is written under Coq, which is subsequently, in a third
step, manually proven to adhere to the Coq-embedded specification. At
last, a Haskell implementation can be automatically derived from the proof,

119

3. Modular Information Hiding for Maintainable Model Transformations

which can then be run on arbitrary model instances. Model instances can
be automatically translated from Ecore to Coq and back.

To demonstrate practicability of our formalization, we created from the
UML2RDBMS example transformation a Haskell program. Details on the
proof, which have been written conjointly with Jeffrey Terrell and Steffen
Zschaler from King’s College, London, can be found in Appendix B.

3.5.4. Applicability to QVT-Relations

Based on our above described understanding of the semantics of QVT-R’s
core concepts, we assess the applicability of our module concept to this
particular declarative language.

R1: Separation of interfaces from their implementations Compile-time
binding of modules is straight-forward, since both QVT dialects share many
concepts. We replace the existing structuring concept – one transformation
unit can extend other transformation units – by interface-based modularity.
In contrast to QVT-O, where an interface declares mapping and query meth-
ods, an interface in QVT-R declares the signatures of relations and query
methods. The signature of a relation consists of the relation’s type (top
or default type) and name, and the list of domains with kind (checkonly
or enforce) and type,

[top] relation R {

[checkonly | enforce]domain D1
...

[checkonly | enforce]domain Dn

}

Implementation details including local variables, template patterns, when
and where clauses must be omitted (cf. Definition 3.4). Note that, any do-
main identifier Di must be declared in the transformation signature of the
interface.

120

3.5. Applicability to Declarative Transformation Languages

R2a: Method provisioning If an implementation is in conformance with
its exported interface, it must provide implementation details for any relation
and query declared in the interface while adopting types, name and domain
parameters. We differentiate between top and non top rules; to keep the
runtime behavior of module implementations transparent, any top relation
must be kept visible to clients, since at runtime, all top relations are implicitly
enforced (see Definition 3.3). Hence, the module system expects that any
top relation defined by a module must be part of the module’s interface.

R2b: Method access control In QVT-R, relations and query functions are
referencable from a relation’s when and where clause, but not as part of one
of the pattern’s expressions. It does not, however, make sense to reference a
top rule from a where clause, because it is enforced automatically on any
match found. With information hiding modularity, access to relations and
queries is controlled. A relation may only reference queries and relations
that are either defined locally or by one of the imported interfaces.

R2c: Model access control Model access control mechanisms at the type
level can be implemented in a fashion similar to what has been described
for operational languages. Classes referenced in an enforceable domain
are potentially instantiated or updated and hence must be tagged as write-
accessible types. Any other (implicitly or explicitly) referenced type must
only be declared as read-only accessible, since QVT-R does not provide
instantiation mechanisms or update semantics outside enforced domains.

3.5.5. Interoperability between QVT-Operational and
QVT-Relations

Our modularity concept has been originally designed to be resolved at
compile-time up to this point. However, binding may be deferred to the
runtime of a program. Dynamic binding paves the way for model transfor-
mations where the modules of the same program may be implemented in a

121

3. Modular Information Hiding for Maintainable Model Transformations

language by choice, for instance, QVT-R or QVT-O. To facilitate interoper-
ability between declarative and imperative languages, dissimilar language
concepts at the interface-level must be integrated. We now discuss a hybrid
approach based on a binding mechanism at runtime, where some modules
are implemented in QVT’s declarative and others in QVT’s imperative
language.

In an imperative language, there is one single thread of execution that
starts at the entry point method and continues with called methods. Contrary
to that, a rule-based program does not have a single thread of execution, but
rather defines a set of rules which are to be enforced by a rule engine. Typical
implementations of a rule-based language apply a depth-first search algo-
rithm to find a valid match of all rules, and reverts the effects of tentatively
applied rules of a path that turns out to be non-satisfiable.

Rules correspond to relations in QVT-R, and interaction between rules
can be complex, since a rule may refer to itself or another rule as pre or
post condition (when and where clauses).An execution engine must always
keep track of found matches of a rule, so that rules that refer to rules in their
when condition can query for a particular match. The domains of a relation
are called a trace entry in the QVT specification. A rule is allowed to query
another rule only if the rule’s module imports the referenced rule’s module
interface. This check can be done at compile time or at runtime.

The QVT language has been explicitly designed for interoperability. The
standard specifies blackbox relations to be used, which can be implemented
as QVT-O mappings or procedures in another imperative language:

Mappings Operations can be used to implement one or more
Relations from a Relations specification when it is difficult to
provide a purely declarative specification of how a Relation is
to be populated. Mappings Operations invoking other Mappings
Operations always involves a Relation for the purposes of cre-
ating a trace between model elements, but this can be implicit,
and an entire transformation can be written in this language

122

3.5. Applicability to Declarative Transformation Languages

in the imperative style. (QVT Language Specification [Obj11,
Ch. 6.2])

Hence, relations may invoke mappings, and vice versa. However, accord-
ing to the OMG’s understanding of hybrid execution, restrictions apply. A
list of these restrictions is given in Chapter 7.8 of the document:

A relation may optionally have an associated black-box oper-
ational implementation to enforce a domain. The black-box
operation is invoked when the relation is executed in the direc-
tion of the enforced domain and the relation evaluates to false
as per the checking semantics. The invoked operation is respon-
sible for making the necessary changes to the model in order
to satisfy the specified relationship. It is a runtime exception if
the relation evaluates to false after the operation returns. The
signature of the operation can be derived from the domain spec-
ification of the relation – an output parameter corresponding to
the enforced domain, and an input parameter corresponding to
each of the other domains. The Relations that may be imple-
mented by Mapping Operations and Blackbox Operations are
restricted in the following ways:

• Their domain should be primitive or contain a simple
object template (with no sub-elements).

• The when and where clause should not define variables.

These restrictions allow for a simple call-out semantics, which
does not need any constraint evaluation before, and constraint
checking after the operation invocation. When clauses, where
clauses, patterns, and other machinery can be used in a “wrap-
per” relation that invokes the simple relation with values con-
strained by the wrapper. (QVT Language Specification [Obj11,
Ch. 7.8])

123

3. Modular Information Hiding for Maintainable Model Transformations

Specifying a blackbox relation equals a signature declaration in an inter-
face’s signature: a reference to an imperative method replaces constraints
in the shape of domain patterns or in when and where blocks. The standard
remains fuzzy when it comes to additional details on this approach, it men-
tions rules to reference mappings, and mappings being able to reference
other mappings for which a relation (signature) is provided. None of the
existing QVT tools implement blackbox functionality this way.

In accordance with the standard, in-place transformation – originally
supported by QVT-O – is implemented in QVT-R4 and hence must be disal-
lowed for interoperability. On the other hand, multi-directional relations, i.e.,
relations that can be executed in multiple directions, must be implemented
in QVT-O for each possible direction. The same applies to update seman-
tics of QVT-R, these are not implicitly provided by operational mappings
and must be disallowed.

Contrary to the standard’s prescription of “call-out semantics” for black-
box implementations5, it can be permitted to reference declarative rules
from within a mapping’s body. If the relation does not hold at the time
the statement is executed, execution is triggered. Else, already created in-
stances are returned that are stored in a shared trace model. Using one of
QVT-O’s trace resolution functions queries the trace model, and execution
is deferred when lateresolve is used. A detailed discussion on how a
common QVT model for trace records could like like has been contributed
by Willink and Matragkas [WM14].

It is further not clear how the standard implements references to blackbox
relations. We suggest to differentiate between references from a when block
and a where block: If a mapping is referenced in a when block, the trace
model is queried on already mapped elements, and if a mapping is referenced
from a where block, the mapping is executed if not done previously.

4 When source and target domain are bound to the same input model instance, the transformation
is ran in-place. In that mode, relations whose target pattern are affected by enforcement-
induced modifications are re-evaluated.

5 Although in Chapter 6.2 quoted before, mappings can invoke relations

124

3.6. Concluding Remarks

Modules
implemented in
QVT Relations

Modules
implemented in
QVT Operational

Relational Rule
Execution Engine

Operational Mappings
Execution Engine

Shared Trace Model

import

import

call

trigger

update
query /

update
query /

runs on runs on

Figure 3.6: Interoperability of QVT-Relations and QVT-Operational

An example architecture for a hybrid transformation engine is described
in Figure 3.6. The architecture includes two separate interpreters, one for
modules implemented in a declarative language, and another for modules
implemented in an imperative language.

3.6. Concluding Remarks

In this chapter, we have introduced a novel module concept that is specially
tailored for model transformations. The concept makes data and control
dependencies between modules explicit, it provides interface descriptions
that can hide implementation details from module users. Implementations
are statically checked if they actually meet contractual obligations defined
by provided interfaces. We formalized the underlying type system, and, as a
proof-of-concept, integrated this approach into the Xtend language.

Type inference does only implement a minimal subset of the OCL and
the QVT-O language. In the future, an existing type inference system for
OCL [CK01] could be integrated, and static typing of the complete QVT-O
language could be included.

Several features of common module systems remain yet unsupported.
For example, only implementations can define import dependencies, mod-
ules cannot form a hierarchy. Additionally, data dependencies could be

125

3. Modular Information Hiding for Maintainable Model Transformations

augmented with syntactic sugar, e.g. a postponed plus operator could auto-
matically include subclasses of a named class, following a similar feature
in Kermeta. Also, behavioral contracts in the spirit of Meyer’s Design by
Contract could complement our concept, as already proposed by Vallecillo
et al. [VGB+12] for monolithic transformations.

Scoping per model parameters (as suggested in the MODULARITY paper)
turned out to be impracticable, because (Imperative) OCL expressions only
allow to statically infer a type, but not unambiguously the associated extent

per statement. Ambiguities arise from domains with overlapping model type
elements, or with references that link domains. Static dataflow analysis could
try to infer the associated domain, and in ambiguous cases, extents would
have to be explicitly annotated (e.g., using @<domain>).

As we are going to show in a case study on a real-world M2T transforma-
tion in Chapter 6, our module system is able to effectively reduce the effort
of locating concerns that is involved in typical evolution scenarios.

126

4. Dependence Visualization for Efficiently
Maintaining Model Transformations

In the previous chapter we have ported information hiding modularity, an
established technique for software maintenance, to model transformation
development. This technique proactively helps to design and implement
maintainable transformations. Yet, however, a large number of legacy trans-
formations exists, with many having not been designed with comprehensibil-
ity and maintainability in mind. Others could not be properly modularized
because the language did not provide a sophisticated module concept. But
even if a modular design exists, it often has eroded over time. In any of these
cases, gaining an initial understanding of the software for refactoring and
repair is a fully manual process that involves much effort.

We propose an interactive visual analytics process that helps in understand-
ing model transformations for maintenance. Data and control dependencies
are statically analyzed and displayed in an interactive graph-based view with
cross-view navigation and task-oriented filter criteria.

Content of this chapter is based on text that has been primarily created
by the author of this thesis alone, and priorly published at the ICMT in
2013 [RNHR13]. Secondary authors of the publication have contributed
several ideas and given valuable feedback to the author. Content from the
original publication has been comprehensively revised and new content has
been added: the running example continues the Activity2Process scenario
from the introduction, the mapping from QVT-O to dependence graphs is
described in greater detail, and a study on the generality of the approach
has been added. Early conceptual work and the implementation prototype

127

4. Dependence Visualization for Efficiently Maintaining Model Transformations

have been first described in Per Sterner’s diploma thesis [Ste12] which has
been created under the author’s guidance.

This chapter is structured as follows. First, we evaluate maintenance
support of existing transformation development environments by example of
Eclipse QVT-O in Section 4.1. In Section 4.2, we introduce our visualization
process. Section 4.3 presents a generic model for dependency graphs that
is compatible with model transformation languages of any paradigm, and
in Section 4.4 we explain a task-oriented filtering technique on dependence
graphs that plays a key role in the visualization process. Section 4.5 discusses
generality of the approach with regards to transformation languages beyond
QVT-O, and Section 4.6 concludes this chapter with a short summary.

4.1. Transformation Editor Support

In practice, transformation developers regularly have to deal with legacy
transformations that were designed in a language which offers conceptually
weak support for modularity, or available concepts have not been sufficiently
utilized. In typical maintenance scenarios, places in the code need to be
identified that must be modified, the so-called locations of concern (cf. Sec-
tion 2.4). It is critical for the purpose to possess a sufficient understanding of
the procedures (the control flow), as well as to know which elements in the
models are accessed or changed at which places in the code (the data flow).

In the following, we will pick up and go through the maintenance scenarios
that have been presented for the Activity2Process example transformation
in the introductory chapter in Section 1.2. This time, we evaluate tools and
techniques developers use to improve their efficiency and effectiveness. We
are able to show for one of the more sophisticated transformation language
IDEs, the Eclipse QVT-O environment, that locating concerns involves
unnecessarily high manual effort and carries a risk to accidentally miss
out on relevant places.

128

4.1. Transformation Editor Support

Modifying a module’s inner logic. In order to fix an imaginary bug that
has been identified to reside in one of the inner methods in module
CompositeAction2Step, we need to know from which other meth-
ods a particular method is called. In our instance, we expect helper
method createProcess to contain an error that must be fixed, and
we would like to know the effects the present bug has on other parts
of the transformation. Since QVT-O does not allow to syntactically
hide methods from being accessed from outside the module, we must
check any module that imports the affected module and check each of
the methods if they execute a call to the erroneous method.

In the QVT-O editor under Eclipse, we need to start a text-based search
by the method’s name. If the transformation is modularized, we need
to repeat the search in any other module with an import of the rule’s
containing module. To detect occurrences, it is important to know
that in QVT-O, keywords disjuncts, merges, inherits and map all
have call-semantics.

Identifying locations of concern. In this second scenario, we were assum-
ing that we modified some of the models involved in the Activ-
ity2Process transformation. In a first case, we imagined we had not
already added another subclass CompositeAction of class Action
to ActivityModel (to be placed in a separate package) but rather
planned to do so. In a second case, we wanted to add an attribute name
to classes Action and Step.

Before we do so, it is useful to know about further locations in the
program where class Action or possible subclasses are instantiated,
or where classes Action and Step are currently accessed. Again, we
need to carry out a text-based search by the class name on all existing
modules. Particularly in this first case it is important to know that
in QVT-O, there are three ways to instantiate objects: implicitly via

129

4. Dependence Visualization for Efficiently Maintaining Model Transformations

a mapping, or explicitly via the object operator, or by calling the
corresponding constructor via new operator.

Refactoring the modular design. The last scenario was about moving any
method that deals with class CompositeAction to a separate module
CompositeA2Step2Step. Just like class CompositeAction has been
placed into a separate package CompositeActions, so it poses an
optional extension to the core model in package ActivityModel, we
want to conceptually isolate transformation logic for this extra part of
the ActivityModel.

In this case, a developer must initially find out about the methods
privately used by a given method. This requires to track the called
method’s callers, if there are any available. Similar to the first scenario,
we must have an understanding of the import, call and reuse dependen-
cies among modules and methods to isolate methods that are solely
reused used by methods that operate on class CompositeAction. And
similar to the second scenario, we must initially find out about the
uses of class CompositeAction.

From these three scenarios it is clear that developers, especially those who
are less familiar with QVT-O concepts, need to invest a lot of effort to identify
relevant control and data dependencies in complex transformation programs.
Program analysis techniques can automatically extract dependencies and
present these in a graphical form. However, dependency graphs tend to
confuse for larger programs without adequate filtering due to their sheer size.
In the next section of this chapter, we propose a visual analytics process
which takes the burden off developers to visualize only those dependencies
that can be considered as relevant for a particular activity.

130

4.2. Methodology Overview

QVT-O Editor
View

Dependency
Graph

program analysis
transformation

Dependency
View

chained filter
transformation

Transformation Information Flow Data Representation

navigation position filter criteria
navigation position Developer

view interaction

view interaction

Figure 4.1: Visual analytics process

4.2. Methodology Overview

To solve the information overload problem, visual analytics processes com-
bine analytical approaches together with advanced visualization techniques.
They can be characterized by four properties [KMS+08]:

“Analyse First – Show the Important – Zoom, Filter and Analyse
Further – Details on Demand”

We define an interactive visualization process which adheres to these prin-
ciples. In this chapter, we motivate our approach by referring to the QVT-O
language. However, the concepts we present here are general enough to
be transferred to further declarative and imperative languages. The process
contains two transformation steps, a dependency analysis and a filter trans-
formation (Figure 4.1). Code and graph representation are kept in sync
regarding navigation position and code modifications. A user can interact
with both views in parallel, and she or he can select and configure filters
to fit his current task. In the following, we show that our process meets all
four properties of a visual analytics process.

Analyze first Eclipse QVT-O features a textual representation, the QVT

editor view. QVT-O automatically maintains a second representation: a
model of the transformation and referenced metamodels. This model adheres
to the QVT specification [Obj11], thus offering a standardized interface
for code analysis. A so-called program analysis transformation extracts

131

4. Dependence Visualization for Efficiently Maintaining Model Transformations

data and control dependencies from the QVT model in our process, it is
the leftmost transformation in Figure 4.1). Static control and data flow
analysis results in an instance of a dependency graph model. This model
is presented in Section 4.3.

Show the important We already showed in the motivating example that,
depending on what kind of maintenance task is performed, a different subset
of elements and element types available in the graph is required for reasoning.
Which elements will be filtered out is configurable by the user. In Section 4.4,
we explain our concept of task-oriented filters and we further define a set
of useful types of filters.

Zoom, filter and analyse further Humans are capable to only perceive
a small subset of information at a time. Thus, we provide filters which re-
move any information out of focus. Depending on the task to be solved, a
user’s focus may lie on a certain method in the program, on a particular
type of dependencies, or on a higher abstraction level. Since each view is
limited regarding the information conveyed, interaction is needed. A feed-
back loop is established by dynamic filters, which can be quickly exchanged
and configured, and which react on changes to the editing location. In Fig-
ure 4.1, filter dynamics are reflected by information flows leading to the
filter transformation. Views are navigable, as pointed out by interactions
between the developer and the views.

Details on demand Eventually, maintainers must track an identified loca-
tion in the graph to the code to perform the actual changes. There also can
be occasions when the developer requires more details than those offered by
the view. In either case, the dependency view enables users to navigate to the
underlying program code of a mapping or the actual definition of a data ele-
ment. This kind of feature is called cross-view navigation and is illustrated
in Figure 4.1 by an information flow pointing back to the editor view.

132

4.3. The Dependency Graph

Next, we provide details on what dependence information is included
in a graph model and how the dependence graph is built from QVT-O
transformations.

4.3. The Dependency Graph

Before we describe the analysis procedure that extracts dependence informa-
tion from transformation programs, we introduce a generic object-oriented
model used to describe dependence information.

4.3.1. Dependency Graph Model

The main idea behind a dependence graph that helps in understanding
and maintaining model transformation programs is to provide a high-
level structural view on the code, while low-level information that is too
implementation-specific is removed. Of course, what classifies as impor-
tant structural information is arguable and is going to be discussed in
the following.

Since we focus on programs that are poorly modularized, particularly be-
cause existing transformation languages often do not offer adequate module
concepts, we concentrate on the the level of mappings and other methods,
common top-level language concepts shared by most if not all transfor-
mation languages.

What distinguishes transformation languages from GPLs and other kinds
of DSLs is that they are designed to operate on object-oriented models by
offering designated syntax or API functions to create, read, update and delete
model elements. Thus, another important characteristic is the elements of
these models a method operates on, and the structural rewlationships among
the model elements. Depending on the use case, classes or even attributes
of classes can be important. Therefore we include both types of model
elements, classes and attributes, in the graph.

133

4. Dependence Visualization for Efficiently Maintaining Model Transformations

name : String
type : ControlType

ControlElement

name : String
direction : Direction

ModelDomainTransformation

name : String

ModelElement

abstract : Boolean

ModelClass

collection : Boolean
ordered : Boolean

ModelAttributetype : ReferenceType

ControlReference

mode : AccessMode

ModelReference

TOPRULE
RULE
QUERY
HELPER

«enumeration»
ControlType

IN
OUT
INOUT

«enumeration»
Direction

READ
MODIFY

«enumeration»
AccessMode

CALL
REUSE

«enumeration»
ReferenceType

0..＊
controlElements

0..＊
modelReferences

0..＊
controlReferences

1 controlElement
1

modelElement

0..＊
domains

0..＊ classes

0..＊ attributes
0..＊ superClasses

Figure 4.2: Dependency graph model

Figure 4.2 shows how we defined dependence information in the Ecore
modeling language. In the model, a transformation (Transformation)
consists of control elements (ControlElement) and metamodel domains
(ModelDomain). Each domain refers to a metamodel name and has a di-
rection (IN, OUT, or INOUT).

Control elements have references (ControlReference) to other rules
for reuse purposes, tagged REUSE, but also for calls, tagged CALL. Control
elements are typed. We differentiate mapping rules, tagged RULE, methods
that form the entry point, tagged TOPRULE. Query functions and other helper
functions correspond to types QUERY and HELPER.

A control element can have data dependencies, represented by instances
of ModelReference. Referencing a model element (ModelElement) can be
either read-only (READ), or the referenced model element can be instantiated
or its content modified (MODIFY for both cases).

134

4.3. The Dependency Graph

The model differentiates between access to a class and access to an
attribute or reference (ModelClass and ModelAttribute). Like in Java,
there is no distinction between references and attributes.

Our model allows for inheritance relationships among classes to be de-
scribed. For this purpose, classes can further reference super classes in the
model (reference superClasses). Any model element belongs to exactly
one domain.

4.3.2. Dependence Analysis

The dependence graph model is only then of practical use if we can extract
dependence information from programs written in preferably any kind of
transformation language and build instances of the graph model. The chal-
lenge here is to identify language concepts that classify as control element
or as control or model use dependency. In this section we will concentrate
on two languages, QVT-O and QVT-R. Both languages qualify as good
examples, because (a) their syntax and semantics has been described in the
QVT specification [Obj11], including a formal MOF-based model of the
abstract syntax tree; and (b) they are representatives of distinct programming
techniques, the imperative and the declarative/rule-based paradigm, giving
us the chance to demonstrate that the graph model is compatible with a
wider spectrum of transformation languages.

In the following, we informally describe the various concepts of QVT-O
and QVT-R that are represented in the graph. We moreover employ TGG
rules (first introduced by Schürr [Sch95]) to formally specify the correspon-
dence between syntactical and graph elements for selected QVT-O concepts
(cf. Figure 4.3). We use Kindler’s compact notation [KW07] presented
in Section 2.1.7.

Control Elements QVT-O implements the imperative paradigm: There
is a single method called main which forms the entry point. This main
method is tagged TOPRULE, because it is implicitly executed by the QVT-O

135

4. Dependence Visualization for Efficiently Maintaining Model Transformations

: Operational
Transformation

: MappingOperation
++ : eOperations

++

: Transformation

type := RULE

: ControlElement
++ : controlElements

++

: OT2T

: IO2CE++

(a) A QVT-O mapping operation corresponds to a Rule instance

: ImperativeOperation

: ImperativeOperation
++ : inherited

: ControlElement

: ControlReference
++ : controlReferences

: IO2CE

: IO2CR

: ControlElement: IO2CE

++

++ : controlElement

++

(b) Control references include mappings referenced via inherits

: ImperativeOperation

: OperationBody
 : body

: Instantiation
Expression

++ : content
++

: ControlElement

mode := MODIFY

: ElementReference
++ : elementReferences

++

: IO2CE

: IE2ER++

: EClass
++ : instantiatedClass

: ModelClass
++ : modelElement

: EC2MC

(c) Operator new induces a modifying reference

: MappingOperation

: VarParameter
++ : result

++

: ControlElement

mode := MODIFY

: ElementReference
++ : elementReferences

++

: ModelClass
++ : modelElement

: IO2CE

: VP2ER++

: EClassifier
++ : eType

: EC2MC

(d) The result parameter embodies a modifying ElementReference

Figure 4.3: Constructing dependency graphs from QVT-O code – TGG rules for
select concepts

136

4.3. The Dependency Graph

runtime. Other types of method concepts comprise mapping, helper, con-
structor and query methods, all these operations must be called explicitly.
Mapping and constructor operations implicitly create the method signature’s
return type element, whereas helper operations can only instantiate elements
explicitly. Query methods in contrast cannot have side-effects. In the graph,
mapping operations (defined using keyword mapping) are tagged as RULE,
whereas helper and query operations (defined using statements helper,
query) map to types QUERY and HELPER, respectively. Custom construc-
tor functions (constructor) have a helper-like meaning and thus map to
HELPER, too. The rule from Figure 4.3a defines how the mapping operation
itself corresponds to a control node, i.e., an instance of ControlElement
that is of type RULE.

QVT-R is a rule-based language, where programs declare relations be-
tween elements (and patterns thereof) of multiple mapping domains. A
QVT-R execution engine operationalizes these unordered rules and imple-
ments a pattern matching algorithm. The language knows only three kinds
of top-level constructs, relations, top-level relations, and query methods. A
relation block (introduced by keyword top relation) is recognized as a
control element of type RULE or, if it is a top-level relation (defined using
keyword top relation), of type TOPRULE. OCL-based query methods are
identical to those supported by QVT-O, thus they are typed as QUERY, too.

Control Dependencies As usual for procedural languages, mappings in
QVT-O programs can refer to other mappings via call or dispatch statements
(keywords map and disjuncts for mappings, and call statements for helper
and query methods), or by using one of the features for reuse among mapping
methods (inherits and merges). The transformation rule in Figure 4.3b
takes care of mapping operations inherited for reuse, and creates a control
reference in any of these cases. Note, that mappings referred to via inherits
are expressed by a reference inherited in the QVT-O syntax tree. Custom
constructor functions (constructor) replace the default parameter-less con-

137

4. Dependence Visualization for Efficiently Maintaining Model Transformations

structor, they are called via the new operator with the number of parameters
and their types matching the constructor’s signature.

In QVT-R, relations can invoke relations from when an where clauses.
Queries may be invoked from domain patterns and when and where clauses
alike, i.e., anywhere OCL expressions may appear. A relation can refine
another relation for reuse purposes (keyword overrides).

Model Use Dependencies Identifying model use dependencies follows
the same approach in both QVT-O and QVT-R: we only need to find OCL
expressions in the control constructs’ implementation body. Since the type
of OCL expressions has been statically inferred by the OCL parser, the list
of types (instances of class Classifier) must be filtered for those that are
defined by one of the metamodels. We are not interested in primitive types
provided by the standard OCL library: Integer, Real, Boolean, String,
and the like. Collection types, i.e. Sequence, Bag, Set, and OrderedSet,
are reduced to the type they contain.

To determine the access mode of a use dependency, we proceed as follows.
If a type occurs as part of a language concept known to create, modify or
delete objects in one of the domains, the corresponding use reference is set
to mode MODIFY. In any other case, READ mode is assumed.

In QVT-O, extra rules parse a mapping’s body for imperative OCL ex-
pressions. Imperative OCL is an extension to OCL that adds constructs with
side effects. Two commands that are provided by Imperative OCL are new
and object, both can be used to create new instances of a given class in one
of the models. The rule shown in Figure 4.3c matches on the new operator
– represented by InstantiationExpression in the QVT syntax tree – and
creates a corresponding modifying element reference.

The access mode in QVT-R is determined based on the kind of domain
a type is referred to. If a domain has enforced mode (enforce), variable
types bound by the domain’s root variable or contained object template
expressions are presumed to be modified. whereas variables that occur in

138

4.3. The Dependency Graph

the defining block of a checking or a primitive domain (checkonly or
primitive) are READONLY. The same applies to class properties when we
parse template property items.

Model types referred to from a control construct’s signature definition
must be recognized custom to the language. In QVT-O, a mapping’s result
parameter of a mapping is transformed into a reference that is marked as
modifying (the attribute mode is set to MODIFY), because a QVT-O mapping
implicitly instantiates the return type (Figure 4.3d). The context parameter
and further input parameters of a mapping or a helper method are read-only
(if not explicitly tagged as out or inout). QVT-R does only support query
methods, which are strictly free of side effects in both languages.

4.3.3. Visual Representation

There is no received way of visualizing and laying out graph structures. For
our implementation and in this chapter, we decided to visualize dependency
graphs as node-link diagrams (NLDs). The advantage in choosing this kind
of representation is that we can use the Eclipse Zest framework to visualize
and automatically layout the graphs. An illustrative mapping between graph
elements and notational elements is given in Figure 4.4.

Control nodes are tagged by different icons depending on the type. Helper
and query methods, in contrast to mapping rules, are depicted by an overlaid
wrench symbol. Calls are graphically represented by an open arrow in black.
Control and model elements can be easily distinguished by color (gray and
green, respectively). An overlaid label icon discriminates class properties
from classes. Closed and filled arrows stand for inheritance relationships
among classes, a notational element referring to the UML. Dashed lines
symbolize the ownership relation between attributes and classes. Model use
dependencies are represented by open arrows in data flow direction; a green
color stands for read and red for write access. Model elements from different
namespaces are tagged by label icons in different colors.

139

4. Dependence Visualization for Efficiently Maintaining Model Transformations

Activity::mapActivity2Process<>

main<>
type := TOPRULE

: ControlElement

type := RULE

: ControlElement type := CALL

: ControlReference

: controlElement

: controlReferences

(a) Control elements and call dependencies

name

Action

CompositeAction

: ModelAttribute

: ModelClass

: ModelClass

: attributes

: superClasses

(b) Model elements and structural dependencies

CompositeAction

createProcess

Process

<>

: ModelAttribute

: ModelClass

type := QUERY or
type := HELPER

: ControlElement
mode := READ

: ModelReference

mode := WRITE

: ModelReference

: modelReferences

(c) Model use dependencies

Figure 4.4: Notation for dependence graph elements (dashed line marks correspon-
dence)

140

4.4. Task-Oriented Filtering

4.4. Task-Oriented Filtering

Dependency graphs of model transformations can be huge, bearing the
danger that useful information gets lost when studied by humans. Our idea is
to identify and remove details which are irrelevant for performing a particular
task before display. In this section, we present three filter functions and four
useful combinations thereof.

As prerequisite for defining the filter functions, we formalize our depen-
dency graph as follows: Let ControlElement, ModelClass, and ModelAttri-
bute be sets that represent instances of metamodel classes of the same name,
respectively. Furthermore, let ModelElement := ModelClass ∪̇ ModelAt-
tribute denote the set of ModelElement instances, i.e., the set containing in-
stances of ModelClass and ModelAttribute. For referenced instances, let
functions modelRe f erences, modelElement, controlRe f erences, control-
Element, superClasses, attributes be defined by representing sets of in-
stances of their respectively named metamodel reference. When applied
to sets, functions are applied element-wise and the result is the union of
each mapping.

Then, we create the dependency graph G as a tuple of vertices V and Edges
E, i.e., G = (V,E). V and E elements are created using ControlElement,
ModelClass, and ModelAttribute elements by defining sets VControlElement ,
V ModelClass, and V ModelAttribute, as well as bijective functions φX (i.e., map-
ping rules), where

φControlElement : ControlElement→VControlElement

φModelClass : ModelClass→V ModelClass

φModelAttribute : ModelAttribute→V ModelAttribute

We imply VControlElement , V ModelClass, V ModelAttribute are pairwise disjunct by
construction and define V := VControlElement ∪̇ V ModelClass ∪̇ V ModelAttribute.
We further define V ModelElement :=V ModelClass ∪̇ V ModelAttribute. To obtain E

141

4. Dependence Visualization for Efficiently Maintaining Model Transformations

elements, where E ⊆V ×V , we use the following four derivation rules:1

∀r1,r2 ∈ControlElement :

r2 ∈ (controlElement ◦ controlRe f erences)(r1) ⇐⇒
(φControlElement(r1),φControlElement(r2)) ∈ E

∀r ∈ControlElement,e ∈ModelElement :

e ∈ (modelElement ◦ elementRe f erences)(r) ⇐⇒
(φControlElement(r),φModelElement(e)) ∈ E

∀c1,c2 ∈ModelClass :

c2 ∈ superClasses(c1) ⇐⇒ (φModelClass(c1),φModelClass(c2)) ∈ E

∀a ∈ModelAttribute,c ∈ModelClass :

a ∈ modelAttributes(c) ⇐⇒ (φModelAttribute(a),φModelClass(c)) ∈ E

4.4.1. Defining Four Filters

With these definitions in place, we are now able to define three basic filter
functions on top of the graph structure G. One that retains control nodes
alone, another that retains only a given element and elements that are directly
linked to that element, and a last one that drops class attribute.

Filtering control nodes We define a filtering function removing data
dependencies by

f control f low (V,E) :=
(
V ′,E ′

)
, where

V ′ :=V \V ModelElement

E ′ := E \ (VControlElement ×V ModelElement)

\ (V ModelClass×V ModelClass)

\ (V ModelClass×V ModelAttribute)

1 The function composition operator “◦” is defined as: (g◦ f)(x) = g(f (x))

142

4.4. Task-Oriented Filtering

Filtering direct dependencies. Let vcurrent ∈V be the node whose direct
dependencies shall be filtered. Contextual filtering is defined by function

f context
vcurrent (V,E) := (V ′,E ′), where

V ′ := {v ∈V | (v,vcurrent) ∈ E ∨ (vcurrent ,v) ∈ E} ∪
{vcurrent}

E ′ := {(v1,v2) ∈ E | v1 = vcurrent ∨ v2 = vcurrent}

Filtering classes without attributes. To reduce complexity, attributes of
classes and dependencies can be filtered by

f classes (V,E) :=
(
V ′,E ′

)
, where

V ′ :=V \V ModelAttribute

E ′ := E \ (VControlElement ×V ModelAttribute)

\ (V ModelAttribute×V ModelClass)

These basic filter functions can be arbitrarily combined. However, the
order in which functions are applied is relevant, and not all combinations
can be conceived as useful. We define four filter combinations together with
their primary field of application:

F1 := f control f low,

F2 := (f context
vcurrent ◦ f control f low),

F3 := f context
vcurrent ,

F4 := (f context
vcurrent ◦ f classes).

Next, we describe fields of application for each of the four filter combi-
nations. We go through the Activity2Process maintenance scenarios from
the introduction to demonstrate how these maintenance tasks can be solved
by choosing the right type of filter. Figure 4.5 illustrates dependency graphs

143

4. Dependence Visualization for Efficiently Maintaining Model Transformations

of Activity2Process using distinct filter combinations, configured in a way
that aids in locating concerns for the tasks.

F1: Show control dependencies of the complete transformation. Resulting
view helps to initially grasp the overall control structures of an un-
known transformation. Filter F1 is useful for investigating unknown
transformations of smaller and medium size.

F2: Show control dependencies in context of the currently selected control

node vcurrent . With an overall understanding of the control structures,
this filter reduces the view to direct control dependencies of an element.
Filter F2 can be used to incrementally get an understanding of the
behavior of larger transformations by progressively navigating the
control elements. It is also practical while working within the text
editor, as long as data dependencies are of no interest.

F3: Show control and data dependencies in context of the currently selected

control or data node, vcurrent . When reading transformation rules,
it makes sense to primarily concentrate on direct dependencies. In
contrast to slicing criteria, only direct dependencies are displayed,
both in forward and backward directions. This filter helps to cope
with change requests where details at the attribute-level are required
to locate concerns.

F4: Show control and data dependencies in context of the currently selected

control or data node vcurrent , but remove information about accessed

class attributes. The resulting view is the same as that from Filter F3,
but further reduces data dependencies to the class-level. If an attribute
is modified, the class the attribute belongs to is shown instead. Filter
F4 is useful for change requests where details at the class-level are
sufficient to locate concerns.

The filters were designed having typical maintenance tasks in mind. They
reduce the effort spent by developers to understand transformation logic of

144

4.4. Task-Oriented Filtering

previously unfamiliar code, and furthermore, they particularly help to locate
concerns more quickly in typical maintenance tasks, as will be pointed
out next.

4.4.2. Applying the Filters for Maintenance

At the beginning of this chapter, we have motivated the inferior support of
common code editors for transformation languages regarding comprehen-
sion and maintenance processes. By the same three maintenance scenarios
for the Activity2Process transformation we want to demonstrate benefits of
a context-sensitive, interactive dependence view. At the same, Figure 4.5
gives example dependence graphs computed by Filters F1 – F4, configured
such that they help to track down the locations of concern in the given
three scenarios.

Modifying a module’s inner logic. To determine all methods that call
helper method createProcess, we apply Filter F1, yielding the graph
shown in Figure 4.5a; for the user’s convenience, we have moved
the cursor to method createProcess in the text editor. Note that the
method currently selected in the code view is highlighted in the graph
view with an orange frame, and elements that do not lie in the direct
context of the selected element are faded.

Filter F1 is useful in the first maintenance scenario, especially if we
first need to get an initial understanding of the transformation logic: It
reveals that createProcess is indeed only called from method Com-

positeAction::mapAction2Step, therefore the bug is supposed to
reside there.

Filter F2’s view may have sufficed to track the bug in the previously
mentioned scenario, because we were only interested in direct caller
dependencies of createProcess. In context of this mapping, the fil-
ter would yield the exact same graph shown in Figure 4.5a, though
with the blurred elements omitted. The filter additionally helps at

145

4. Dependence Visualization for Efficiently Maintaining Model Transformations

main<>

StartAction::mapAction2Step<> StopAction::mapAction2Step<>

Action::mapAction2Step<>

main<><>

StartAction::mapAction2StepStartAction::mapAction2Step<><> StopAction::mapAction2StepStopAction::mapAction2Step<><>

Action::mapAction2Step<><>

createProcess

Activity::mapActivity2Process<>

<>

CompositeAction::mapAction2Step<>

(a) Control dependencies for the transformation, with mapping
CompositeAction::mapAction2Step highlighted

createProcess

Activity::mapActivity2Process<>

<>

CompositeAction::mapAction2Step<>

(b) Control dependencies in context
of QVT-O mapping CompositeAc-
tion::mapAction2Step

146

4.4. Task-Oriented Filtering

ActivityActivityAction

CompositeActionStartAction StopAction

createProcess

Activity::mapActivity2Process<>

CompositeAction::mapAction2Step<>

Action::mapAction2Step<>

createProcess

CompositeAction::mapAction2StepCompositeAction::mapAction2Step

<>

name

previous

next

container

(c) Data and control dependencies for class Action

CompositeAction::mapAction2Step

createProcess

<>

Action

CompositeAction

Activity

CompositeAction::mapAction2Step

CompositeAction

(d) Data and control dependencies for
class CompositeAction

Figure 4.5: Filtered dependency graphs for the introductory Activity2Process exam-
ple transformation

147

4. Dependence Visualization for Efficiently Maintaining Model Transformations

understanding larger transformation programs by focusing on the por-
tion of the graph that is highlighted in the code view, which can be
successively explored by simple clicks. Figure 4.5b shows control de-
pendencies in context of mapping CompositeAction::mapAction2-

Step. A mouse click would shift the focus in both the code and this
graph view to the clicked node. Backwards navigation using Eclipse’s
navigation history is possible.

Identifying locations of concern. In Section 4.1’s second maintenance sce-
nario, we must identify methods that refer to classes Action and Step.
In both cases, we apply Filter F3 in context to show all operations
modifying or reading the respective element. Figure 4.5c shows the
graph we get with class Action in context. There are four mappings
reading instances of class Action, according to outgoing connections
shown in the graph. Notice that subclass CompositeAction and at-
tribute name are already handled by the transformation at the time the
graph was generated.

Refactoring the modular design. The last scenario requires a two-step
procedure to locate methods that operate on elements of package
CompositeActions to be factored out into a separate module accord-
ingly.

In a first step, all methods must be found that operate on class
CompositeAction, which is the only element in the package. Fig-
ure 4.5d depicts dependencies in context of class CompositeAction
computed by Filter F4. The chosen filter provides enough informa-
tion to identify methods that handle class CompositeAction, the
first step in locating concerns for the last scenario. According to Fig-
ure 4.5b, there are two mappings that operate on CompositeAction,
CompositeAction::mapAction2Step and createProcess.

In a second step, we may use Filter F1 to study control dependencies
of methods CompositeAction::mapAction2Step and createPro-

148

4.5. Applicability to Other Transformation Languages

cess. The filter helps to see if these methods refer to methods that are
not referred to elsewhere, and that can be safely moved out as well.
We may also judge the quality of this refactoring, because we can
quickly see the mappings called. However, according to the graph, the
only mappings used by the two candidate methods are the mappings
responsible for classes Action, StartAction, StopAction. Hence,
a module that would contain both candidate methods must solely
import module IAction2Step.

By these three example scenarios one can already anticipate that the
filters are able to remove much of the information that is irrelevant for
accomplishing a particular task. We carried out an empirical study on a
real QVT-O transformation to evince an increase in productivity in realistic
maintenance scenarios. This study is further described in Chapter 6.

4.5. Applicability to Other Transformation Languages

So far, we have only considered concepts from QVT-O and QVT-R, but we
have not yet clarified if dependence graphs can be applied to transformation
languages that follow the imperative, declarative and mixed paradigms. For
the purpose of demonstrating general applicability, we studied seven different
kinds of transformation languages: QVT-O, QVT-R, and further on Xtend,
ATL, ETL, Kermeta2, and VIATRA2. QVT-O, Xtend and Kermeta2 are
imperative languages, whereas QVT-R is a fully declarative language; ATL,
ETL and VIATRA2 combine declarative and imperative features.

We observed that all of these languages technically qualify for our depen-
dence graph, because dependence information can be directly inferred from
the available language concepts. Table 4.1 lists for each of the languages
top-level control constructs that can be represented as control elements in
the dependence graph (in the third column), call constructs that map to de-
pendencies among control elements (in the fourth column), and those that
equal model use dependencies (fifth column). As a proof-of-concept, we

149

4. Dependence Visualization for Efficiently Maintaining Model Transformations

Table 4.1.: Control elements and referencing concepts in selected transformation
languages

Language Control Constructs Control Dependencies Data Dependencies†

QVT-O main new B
imperative mapping M map M () object B

mapping M mapping A::M |
inherits| helper H
disjuncts| (. . ., out b: B,. . .
merges M′ . . ., in a: A,. . .) : B

helper H H (. . .) statically evaluable type A
query Q Q (. . .) of (sub) expression
constructor C new C

QVT-R top relation R when {. . . R; . . .} enforce T b:B
declarative relation R where {. . . R; . . .} checkonly S a:A

query Q Q(. . .) statically evaluable type A
rule R overrides R′ of (sub) expression

Xtend @Create(. . .) M(. . .) @Create(B)
imperative def M (. . .) F(. . .) def A F(. . ., a:A,. . .)

def F(. . .) override M′ | F ′ new B
statically evaluable type A

of (sub) expression

ATL rule R implicit cast from A to B rule R
hybrid from a:A to b:B resolveTemp(exp:A, ’b’) from a:A

rule R extends R′ to b:B
lazy rule L thisModule.L statically evaluable type A
helper H H(. . .) of (sub) expression
query Q Q(. . .)

ETL rule R equivalents() rule R
hybrid primary rule R equivalent() from a:A

lazy Rrule R rule R extends R′ to b:B
operation O O(. . .) statically evaluable type A

of (sub) expression

Kermeta2 aspect class A { B.new
imperative operation O(. . .) self.O(. . .) operation O |

method M(. . .) M(. . .) method M
} (. . ., a:A, . . .) : B

inheritance mechanism statically evaluable type A
of (sub) expression

VIATRA2 rule main()
hybrid gtrule G apply G gtrule G |

rule R apply R rule R |
pattern P find P pattern P

(. . ., out B,. . .
. . ., in A,. . .) : B

statically evaluable type A
of (sub) expression

† Placeholder A for type names stands for types from one of the source models (read access),
and placeholder B stands for types from the target model (write access).

150

4.5. Applicability to Other Transformation Languages

implemented a mapping from QVT-O and QVT-R in the implementations
Eclipse QVTo and Eclipse mediniQVT.

Below, we discuss how concepts from each of the languages could map
to our graph model, sparing QVT-O and QVT-R which already have been
thoroughly discussed at this point.

Xtend With Xtend being a Java-like GPL, there is no particular concept
for mapping methods. However, active annotations can be used to augment
the language with domain-specific concepts. As mentioned in the previous
chapter, we have defined an annotation @Create which adds tracing and
implicit instantiation of return types. A simpler language concept that is
integrated in the language is the cached statement, which can be used in
combination with a new operator on return types. The graph builder can be
made aware of either mapping concept. Xtend is able to use EMF/Ecore-
based models when compiled to Java source code.

The language can be, and in practice is more often than not, used as a
model-to-text rather than a model-to-model transformation language due to
its powerful template expressions. When extracting dependence information
from Xtend scripts that incorporate template expressions, we have two
choices, ignoring the textual output at all, or statically analysing each method
if it uses file-based output library methods, and synthesizing an artificial
target model that represents files (for instance, one class per call). The latter
technique will be used in Chapter 5, where it is described in greater detail.

ATL The Atlas Transformation Language [JAB+06] unifies declarative
concepts with a few imperative concepts, namely called rules and lazy rules
which must be invoked imperatively. ATL rules are similarly structured as
QVT-R relations, they use/from to instead of checkonly/enforce to denote
input/output domains. Lazy rules resemble non-top relations and must be
explicitly called, helper and query functions resemble the same-titled QVT-
O concepts. On the implementation-level, ATL uses a highly OCL-like

151

4. Dependence Visualization for Efficiently Maintaining Model Transformations

expression language. Trace resolution is either done implicitly by coercing
a type cast from input to output model elements for which a rule exists, or
by calling method resolveTemp.

ETL The Epsilon Transformation Language [KPP08] follows a similar
approach as the ATL, both offering a mixture of declarative and imperative
constructs, and both founded on an OCL-like language – in this case, the
Epsilon Object Language (EOL). The concept of primary and lazy rules re-
sembles ATL’s concept of ordinary rules and lazy rules. Explicit trace queries
are realized by operations equivalents and equivalent, depending on if
the query is executed on a single element or a collection.

Kermeta2 Kermeta2 is a metaprogramming environment based on an
object-oriented DSL. The language can be classified as an imperative GPL
and thus falls into a similar category as Xtend, with both being usable as a
universal programming language. Originally, the language has been designed
to add dynamic semantics to object models, but it can be additionally used to
implement model transformations [MFV+05]. The recommended design is a
source-based visitor pattern. Source classes are annotated by aspect classes
that implement traversal operations. Elements are instantiated solely via the
new operator. A traceability API is not yet integrated.

VIATRA2 In the collection of languages presented here, the VIATRA2
transformation language [VB07] advocates the graph transformation for-
malism. What differentiates the language from other graph transformation
approaches is a textual notation, and further that the ASM formalism com-
plements VIATRA2 with imperative concepts for better practicality. Readers
not familiar with graph transformation concepts are referred to Section 2.1.7
for a brief introduction into the concept triple graph grammars. There is only
one implicitly triggered rule named main(), any other rule must be triggered
explicitly using the apply statement. Patterns are factored out into a separate

152

4.6. Concluding Remarks

pattern construct, and the pattern matcher can be invoked by a find exe-
cution statement. Rules and patterns can have input and output parameters,
tagged in and out; any of the declared input parameters must be passed at
invocation time. There is a set of commands for model manipulation in the
imperative style not listed in the table, including new, rename, move, setTo,
copy and delete among others. VIATRA transformations support MOF
standards compliant modeling languages including its own metamodeling
environment, the VIATRA Textual Metamodeling Language (VTML).

Discussion of the concepts demonstrates that in the future, additional
transformation languages that belong to various programming paradigms
can be analyzed for model dependence information. Obtained information
can then be visualized in the same way as proposed for QVT languages.

4.6. Concluding Remarks

Regarding model transformations, much complexity is induced by data
and control dependencies: The larger input and output metamodels are, the
more transformation mappings are required (control dependencies), and
the number of referred metamodel elements increases (data dependencies).
Call dependencies between mappings can be quite complex, and indirect
data dependencies cannot be seen from investigating a mapping without
looking at all called or depending mappings. This observation accounts for
programs written in transformation languages following any paradigm, be
it a declarative, imperative and hybrid language.

In this chapter, we demonstrated a novel approach to visualize data and
control flow dependencies of metamodels and transformations using interac-
tive node-link diagrams (NLDs). Interactively navigable dependency graphs
are integrated into transformation development IDEs (namely Eclipse QVT
Operational Mappings (QVTo) and MediniQVT) as a complementary view
to existing textual editors. We expect such a view to ease the effort to un-
derstand and maintain model transformations. The view has been integrated

153

4. Dependence Visualization for Efficiently Maintaining Model Transformations

into the Eclipse environment and provides adapters for Eclipse QVTmedini
and Eclipse QVTo. Adapters for further transformation languages may be
easily added, as shown in the previous section.

Our visual analytics approach for model transformations currently pro-
vides NLDs for graphical representation. Further information could be at-
tached to this view, for instance warnings and errors emitted by the type
checker. Different types of visualizations could offer an improved user expe-
rience, for example filtered hierarchical edge bundlings (HEBs). Automatic
layout algorithms could be improved and adjusted to better display model
transformation mappings and rules. Custom model and transformation refac-
toring operations could be provided on the graph structure, inspired by
Kruse [Kru11]. Additionally, analysis of OCL expressions [JGB11] may be
refined, as not all data dependencies are captured yet.

At the moment, the approach uses static type analysis; dynamically typed
languages are not supported. However, there are few transformation lan-
guages – we only know of RubyTL – that use dynamic typing. Reflective
programming can lead to a loss of type information, even in a statically typed
language like OCL. OCL since version 2.5 supports reflective programming,
e.g. one can select types based on their class name: Instead of using OCL’s
type selector that explicitly refers to the type, as in Listing 1.1a, line 7,

activity.rootObjects()[Activity]

we could alternatively use reflective programming,

activity.rootObjects()->select(metaClassName() = "Activity")

Although reflective programming constructs as the above one can be used
in QVT-O and QVT-R, developers are generally discouraged to use reflection
capabilities, as they can lead to code with poorer maintainability due to
a loss of static type information. Nevertheless, in practical maintenance
scenarios, accuracy of a statically derived dependence graph is sufficiently
high to provide a significant benefit, as will be revealed in an empirical study

154

4.6. Concluding Remarks

presented in Chapter 6. Nevertheless, possible future work could tackle this
issue by including dynamic type information into the displayed graph, i.e.,
types that have been derived when running a program on particular input
data, a technique named footprint estimations [JGB11].

155

5. Remodularizing Legacy Transformations
with Automatic Clustering

While modeling languages typically provide means to structure classes into
packages for improved understandability, transformation programs can be
structured into modules to cope with their inherent code complexity. Most
transformation languages provide basic module concepts to allow for a
fine-grained structuring of the code. In practice, however, the structure of
transformations steadily deteriorates as the models evolve, and eventually
leads to adverse effects on the productivity during maintenance. This obser-
vation has been reported by practitioners from Whittle’s studies [WHR+13,
p. 9] (cf. Chapter 1), and coincides with our own experiences from the
Palladio project. At this point, it remains a manual process to discover con-
cern-based structures of transformation programs, which are essential for
understanding and refactoring the programs. Although the preceding chap-
ter’s visualization approach reduces the effort to understand transformation
programs, it still requires human experts to identify a suitable structure.

In this chapter, we propose to apply clustering algorithms to find decom-
positions of transformation programs at the method level in a fully automatic
manner. In contrast to clustering techniques for general-purpose languages,
we integrate not only method calls but also class and package dependencies
of the models into the process. We support the three transformation-specific
styles identified by Lawley [LDGR04], the source-driven, the target-driven
and the aspect-driven decompositional style. The approach relies on the
Bunch tool [MM06] for finding decompositions with minimal coupling and
maximal cohesion. Extraction of dependence information relies on tech-
niques described in the previous Chapter 4.

157

5. Remodularizing Legacy Transformations with Automatic Clustering

Parts of this chapter have been previously published at the AMT workshop,
collocated with the MODELS 2014 conference. The present text has been
extensively expanded and revised.

Presentation of the approach is organized as follows: We continue this
chapter by characterizing three established designs of model transforma-
tion programs in Section 5.1. The overall approach which we use to find
clusterings of model transformations is described in Section 5.2. The ap-
proach comprises four steps described in the next four sections. Section 5.3
gives details on how a dependence graph is extracted from the code. In
Section 5.4, we describe how we automatically derive clusterings from the
graph. Section 5.5 presents the technique we use to extract an existing
modular structure from transformation programs. Section 5.6 gives detail
on how results gained from cluster analysis and structural analysis can be
used to refactor the transformation at hand. In Section 5.7 we demonstrate
applicability to other widely used transformation languages. Eventually,
Section 5.8 concludes this chapter.

5.1. Expert Design of Model Transformation Programs

Reconsider the introductory Activity2Process example from Chapter 1. Both
maintenance scenarios emphasize the need to keep the scope of models and
the number of modules that are imported at a minimum; internally, mappings
in a module may have arbitrary references to each other. This relates to two
software metrics to measure the quality of a module decomposition, favoring
a low degree of method and data interconnectivity between modules and a
high degree of intraconnectivity of methods within a module (low coupling

and high cohesion).
In an optimal decomposition, each module encapsulates a single concern

with a minimal model scope, and model scopes overlap for as few modules
as possible. It is not always as simple as in the Activity2Process scenario,
where a mapping references exactly one class including its attributes and

158

5.1. Expert Design of Model Transformation Programs

references per domain. Depending on the transformation language that is
used, mappings may read instances of multiple classes in the source domain
and create and/or modify instances of multiple classes in the target domain.
Some languages even allow in-place transformations to be defined, where
source and target domains overlap.

By observing transformations that have been manually implemented by
experts, we can distinguish three classic styles of how a transformation
is structured [DGL+05]. Figure 5.1 iconically represents the three design
alternatives on the level of mapping rules.

Source-driven decomposition In this case, for objects of each class in the
source domain, objects of one or more classes are generated in the tar-
get domain (one-to-many mappings). Transformations where models
are transformed to models that are equally or less abstract usually fall
into this category. The Activity2Process transformation is a typical
candidate for a source-driven decomposition. It traverses the tree-like
structured activity model, and each node embodies an own high-level
concept that is mapped to target concepts. This kind of design often
applies to in-place transformations that only modify a small subset of
the input model and output the results.

Target-driven decomposition When objects of a particular class in the tar-
get domain are constructed from information distributed over instances
of multiple classes in the source domain (many-to-one mappings), a
target-driven decomposition is deemed more adequate (cf. [DGL+05]).
It occurs regularly for transformations from low-level to high-level
concepts (synthesizing transformations).

Aspect-driven decomposition In several cases, a mixture of the two ap-
plies. Aspect-driven decompositions are required whenever a single
concern is distributed over multiple concepts in both domains (many-
to-many mappings). In-place transformations (i.e., transformations
within a single domain) that replace concepts with low-level concepts

159

5. Remodularizing Legacy Transformations with Automatic Clustering

Source domain Target domain

(a) Source-driven design

Source domain Target domain

(b) Target-driven design

Source domain Target domain

(c) Aspect-driven design

Transformation Mapping ClassObject-Oriented Model

Figure 5.1: Prevalent designs of model transformations

160

5.2. Overall Approach

often have to be implemented in this style, particularly if operations
are executed per concern and affect multiple elements in the domain.
The technique can be used to alleviate an occurent tangling and scat-
tering of the rules, as pointed out by Kurtev et al. [KvBJ06; KvBJ07].

Whilst these styles reflect the design at the mapping level, they affect a
modular design accordingly. Note that a single mapping symbolized in Fig-
ure 5.1 can be or even has to be implemented by multiple control constructs,
depending on the language’s capabilities and the underlying logic that is to
be implemented. For example, consider a one-to-many mapping from the
source-driven decomposition. Such a single concern may require multiple
control constructs to implement the mapping in question, one per element
created on the target side. A many-to-one mapping, on the other hand, might
additionally be accompanied by query functions to collect information from
various places in the source model. It is considered a good style to aggregate
all top-level constructs that implement a specific concern into a single mod-
ule. The three design patterns and their ramification on a modular design
have been pointed out by Lawley [LDGR04].

Therefore, any of these styles – and preferably also mixtures of the three –
must be supported by an automatic decomposition analysis in order to
produce meaningful results.

5.2. Overall Approach

We decided to use Bunch, because it uses classic low-coupling and high-
cohesion heuristics that match the information hiding property we are head-
ing for, it does not make further assumptions regarding the underlying se-
mantics, and because it has gained a good reputation so far [MB07]. Hill
climbing has been reported to produce better results than the genetic algo-
rithm included [SMDM05], which coincides with our own experiences.

The methodology of our automatic clustering approach for model transfor-
mations follows to a wide extent the typical procedure of software clustering

161

5. Remodularizing Legacy Transformations with Automatic Clustering

Transformation
Program

Weighted
Dependence

Graph

Automatically
Derived

Clustering

Manually
Derived Expert

Clustering

Quality and
Similarity of
Clusterings

Excluded
Library Methods

Algorithm and
Parameters

Dependence
Analysis

Cluster
Analysis

Structural
Analysis

Transformation Information Flow Data Representation

Weight
Configuration

Assess-
ment

Figure 5.2: Clustering approach

approaches in general. It comprises three steps (Figure 5.2). In the first step,
dependence information is statically analyzed and extracted from the source
files, resulting in a weighted dependence graph. It is crucial to choose appro-
priate weights for the types of dependencies that are going to be extracted.
The graph serves as input for the cluster analysis. Before running cluster
analysis as the second step, an appropriate algorithm must be chosen, and
the algorithm’s parameters are to be configured. Bunch gives us the ability
to identify some of the nodes as globally used library methods (“Excluded
Library Methods” in the figure), which can be done in an optional step. In
the last step, the automatically derived clustering has to be analyzed. One
option is to compare results with the existing modular decomposition that is
automatically extractable from the source files, for instance using some of
the available similarity measures. As another option, developers may also
compare clusterings derived with alternative weights, either manually, or us-
ing similarity or quality metrics. This whole procedure can be repeated with
different configurations. Developers planning to refactor the present code
manually to obtain an improved modular structure can base their decisions
on the computed clusterings.

162

5.3. Dependence Analysis

In the following subsections, we will address any of the steps one by
one, and elaborate on the peculiarities that appear in light of model trans-
formations. The Activity2Process scenario from the introduction will be
used as a running example.

5.3. Dependence Analysis

A preliminary step in any graph-based clustering approach is to extract de-
pendence information from software systems in a graph-based form. When
dealing with general-purpose programming languages, various source code
analysis tools are available to choose from. However, as we want to ex-
tract dependencies from languages specific to the domain of model trans-
formations, we have to build our own structural analyzers, one for each
transformation language to be supported.

We use static analysis, i.e., only information is used that is immediately
available at the syntactic level, whereas dynamic information that results
from (partial) execution of the source code is not used. Here, in the context
of transformation programs, we consider not only control constructs and
dependencies, but in addition to that the structure of involved models and
model use dependencies among control constructs and model elements.

We reuse ideas from the previous chapter’s approach that visualizes the
obtained dependence graph to aid in the process of transformation mainte-
nance [RNHR13]. The approach presented there is already able to extract
method-level dependencies, information on the model structure, and model
use dependencies of the methods. In this context, slightly different informa-
tion is required by the intended clustering algorithm than for visualization.
Thus, we are going to define a graph structure that captures relevant infor-
mation. In this section, we focus on the differences, namely untyped nodes,
the option to carry out package-level dependence extraction, and weighted
edges configured according to the type of dependence relation.

163

5. Remodularizing Legacy Transformations with Automatic Clustering

5.3.1. Implementation Structure

Any method that is present in one of the source files is represented by a
single node vi ∈ V in the graph G = (V,E). For instance, QVT-O defines
four different types of methods, namely helpers, mappings, queries, and
constructors; these are all translated to nodes in the graph.

The extraction of top-level constructs and use dependencies among con-
trol nodes is equivalent to what has been described in Section 4.3.2, hence
we will only give a brief description of the mapping from language to
graph concepts.

Method call dependencies are extracted as follows: For any two nodes
vi,v j ∈V in the graph where each node represents a distinct method, vi 6= v j,
a directed edge points from vi to v j,

〈
vi,v j

〉
∈ E, iff the method represented

by vi calls or otherwise references the method represented by v j.

Definition 5.1 (Extraction of Method Call Dependencies):

∀ vi,v j ∈VMethods : ∃
〈
vi,v j

〉
∈ E⇐ vi 6= v j ∧

method represented by vi references method represented by v j

In QVT-O, a single call (indicated by keyword map) may refer to multi-
ple methods in the case of method dispatching, and references may arise
from reuse dependencies (keywords are disjunct, merge, override, and
extend). The same applies to Xtend, where methods can be annotated with
the keyword dispatch, and override methods from super classes (keyword
override).

5.3.2. Model Structure

Any package and class in one of the models that are used by the transfor-
mation is represented by a distinct node in the graph.

Package containment is extracted as follows: For any two nodes vi,v j ∈V

in the graph where each represents a distinct model element, vi 6= v j, a di-

164

5.3. Dependence Analysis

rected edge points from vi to v j,
〈
vi,v j

〉
∈ E, iff vi represents a class or pack-

age and v j represents a package that directly contains that class or package.
Additionally, inheritance and reference relationships among classes are

defined. For any two nodes vi,v j ∈V in the graph where each represents a
class, vi 6= v j, a directed edge points from vi to v j,

〈
vi,v j

〉
∈ E, iff vi repre-

sents a class that inherits from or references instances of another class
represented by v j.

Definition 5.2 (Extraction of Model Structure):

∀ vi ∈VClasses ∪ VPackages,v j ∈VPackages : ∃
〈
vi,v j

〉
∈ E⇐ vi 6= v j ∧

model element represented by vi is directly contained
in package represented by v j

∀ vi,v j ∈VClasses : ∃
〈
vi,v j

〉
∈ E⇐ vi 6= v j ∧

class represented by vi inherits from or references
instances of another class represented by v j

The same techniques apply that have been described in Chapter 4 to extract
this information from MOF compliant modeling languages.

5.3.3. Model Use Dependencies

For any two nodes vi,v j ∈V in the graph, where node vi represents a method
and node v j a class or package, vi 6= v j, a directed edge points from vi to v j,〈
vi,v j

〉
∈ E, iff the method represented by vi implicitly or explicitly refers to

one of the classes or packages of the involved models. We distinguish model
use dependencies with read access and write access; depending on the access
type, a different weight is assigned to the edge, as will be described below.

Definition 5.3 (Extraction of Model Use Dependencies):

∀ vi ∈VMethods,v j ∈VClasses ∪ VPackages : ∃
〈
vi,v j

〉
∈ E⇐ vi 6= v j ∧

method represented by vi references implicitly or
explicitly model element represented by v j

165

5. Remodularizing Legacy Transformations with Automatic Clustering

1 def map2JavaInterface(OperationInterface oi) ’’’
2 public interface «oi.javaName()»
3 {
4 «oi.interfaceHelperMethodsDeclarationTM»
5 «FOR iface : oi.signatures SEPARATOR ";"»
6 «iface.operationSignature»
7 «ENDFOR»;
8 }
9 ’’’

Listing 5.1: Xtend template method

Extracting model use dependencies is the same as described in the previous
chapter with a single exception: the analysis can be optionally carried out
on package-level. In this case, if a model use dependency is detected that
refers to a class, the containing package is chosen instead as target node.

In QVT-O, read dependencies occur as both context and in/inout pa-
rameters, or within the implementation body for each of the intermediate
OCL expression’s inferable type; write dependencies occur in the form of
a mapping’s result parameter and explicit instantiations via new or object
operator. We provide an alternative extraction method that reduces class-
level dependencies to package-level dependencies. When using Xtend as
a model-to-text transformation language, file system access API is used to
generate files at various points in the program.

Transformation programs that generate textual artifacts from models typi-
cally use a template-based approach. The Xtend language provides rich string
expressions for this purpose. A rich string expression is a multi-line string
expression that allows developers to embed model queries, conditionals and
loops into the string. Listing 5.1 gives an example for the use of template
expressions. The method map2JavaInterface from the PCM2SimuCom
transformation – further discussed in the validation section below – uses
them to maps interfaces of a component model to Java interfaces.

166

5.3. Dependence Analysis

m
ap
pi
ng
_A
ct
io
n2
St
ep
M
od
ul
e_
m
ap
Ac
tio
n2
St
ep

cl
as
s_
co
re
_A
ct
io
n

pa
ck
ag
e_
co
re

cl
as
s_
co
re
_B
as
ic
Ac
tio
n

m
ap
pi
ng
_A
ct
iv
ity
2P
ro
ce
ss
M
od
ul
e_
m
ap
Ac
tiv
ity
2P
ro
ce
ss

en
try
_A
ct
iv
ity
2P
ro
ce
ss
M
od
ul
e_
m
ai
n

cl
as
s_
co
re
_A
ct
iv
ity

cl
as
s_
co
re
_S
ta
rtA

ct
io
n

m
ap
pi
ng
_A
ct
io
n2
St
ep
M
od
ul
e_
m
ap
Ac
tio
n2
St
ep
2

m
ap
pi
ng
_A
ct
io
n2
St
ep
M
od
ul
e_
m
ap
Ac
tio
n2
St
ep
3

cl
as
s_
co
re
_S
to
pA
ct
io
n

pa
ck
ag
e_
pr
oc
es
s

cl
as
s_
pr
oc
es
s_
St
ep

cl
as
s_
pr
oc
es
s_
Pr
oc
es
s

he
lp
er
_C

om
po
si
te
Ac
tio
n2
St
ep
M
od
ul
e_
cr
ea
te
Pr
oc
es
s

pa
ck
ag
e_
co
m
po
si
te

m
ap
pi
ng
_C

om
po
si
te
Ac
tio
n2
St
ep
M
od
ul
e_
m
ap
Ac
tio
n2
St
ep

cl
as
s_
co
m
po
si
te
_C

om
po
si
te
Ac
tio
n

W
re
ad

W
wr

ite

W
pa

ck
ag

e

W
wr

ite W
wr

ite
W

wr
ite

W
re
ad

W
pa

ck
ag

e

W
re
ad

W
re
ad W

re
ad

W
pa

ck
ag

e

W
ca

ll

W
ca

ll

W
ca

ll

W
ca

ll

W
ca

ll

Fi
gu

re
5.

3:
A

ct
iv

ity
2P

ro
ce

ss
tr

an
sf

or
m

at
io

n
–

E
xt

ra
ct

ed
de

pe
nd

en
ce

gr
ap

h

167

5. Remodularizing Legacy Transformations with Automatic Clustering

Rich strings use triple quotation marks, and may contain expressions
enclosed by guillemets «. . .». The method returns a string that is eventually
stored to a file using function generateFile from the FileSystemAccess
API. For any method in an Xtend script that calls FileSystemAccess::
generateFile, we conceive the method to have a write dependency to a
distinct node in the graph that represents the generated file.

Figure 5.3 depicts the graph that has been extracted from the Activ-
ity2Process example transformation. The attentive reader should notice that
there is no differentiation on the type of nodes; model elements and control
nodes are treated the same. Still, dependence relations among the nodes
can be assigned different weights depending on their type to prioritize the
importance of nodes in the clustering process. Subsequently, we are going to
discuss the role these weights play in controlling the clustering algorithm.

Bunch stores dependence graphs in a simple textual form, where each
line declares an edge by naming start and end node and an optional weight,
separated by whitespace characters. Nodes are uniquely identifiable strings
that lack whitespace characters.

5.3.4. Weight Configuration

To guide the clustering algorithm, the influence of dependence relations can
be regulated manually. For this purpose, a weighting function w : E→ N0

assigns positive numbers to the edges in the graph. Depending on the type
of dependency represented by the respective edge, we use the following
weights:

Wwrite for write-access dependencies to classes and packages,
Wread for read-access dependencies to classes and packages from one

of the method’s parameters,
Wnavigate for read-access dependencies to classes and packages from

within a method body1,
Wcall for method call dependencies,

168

5.4. Cluster Analysis

Wpackage for containment of classes and packages to their directly con-
taining package2,

Wreference for associations from one class to another3,
Wcontain for aggregations (i.e., containment references) between classes,

and
Winherit for inheritance relationships between classes.

These weights constitute a particular weight configuration, vector

WC := 〈Wwrite,Wread,Wnavigate,Wcall,

Wpackage,Wreference,Wcontain,Winherit〉 ∈ N8
0.

Since Bunch aims to maximize the MQ value, a higher weighted edge
increases the chance that the nodes connected by the edge end up in the
same cluster. Choosing a weight of zero naturally results in the respective
type of edge being ignored by the clustering algorithm. Choosing values
Wwrite �Wread promotes a mainly target-driven decomposition, whereas
values Wwrite�Wread enforce a mainly source-driven decomposition.

5.4. Cluster Analysis

Once dependence information has been extracted from the source files in
form of a graph, and weights have been configured accordingly, cluster
analysis can be performed on the obtained graph structure in a follow-up
step. With Bunch, we can choose from various algorithms, manually define

1 It is important to note that our dependence graph model from Chapter 4 does not differentiate
between read access dependencies that originate from a method’s input parameters and those
that derive from the method’s implementation body, Wread and Wnavigate.

2 Previous chapter’s dependence graph model abstracts away from package elements, whereas
at this point we are explicitly interested in them as they expose structural information of the
models involved.

3 We discriminate containment and non-containment associations, because they expose impor-
tant structural information of the models. Furthermore, bidirectional associations are reduced
to a single direction, because Bunch presumes dependence graphs to not contain reflexive
edges.

169

5. Remodularizing Legacy Transformations with Automatic Clustering

a list of nodes that represent library methods and are excluded from the
clustering process, and even predetermine manually derived clusters for a
subset of nodes in the graph.

5.4.1. Algorithm and Parameters

Bunch supports three clustering algorithms, exhaustive search, hill climb-
ing, and a genetic algorithm. An exhaustive search is impractical in most
realistic scenarios due to graph partitioning being an NP-hard problem. The
remaining two search algorithms, hill climbing and the genetic algorithm, are
evolutionary search techniques and can be parametrized further. Regarding
hill climbing, parameters are the size of the population the minimum percent
of search space to consider, the percent of search space that is randomized,
and if used, various simulated annealing parameters. Bunch supports variants
of the modularization quality index to be used as fitness function.

In this chapter, we solely use Bunch’s hill climbing algorithm together
with the “Incremental MQ Weighted” metric, since from our experience, this
combination appeared to produce more stable results. We use a consistent
configuration, with population size set to 100, the minimum search space set
to 90%, and randomization to 10%. Simulated annealing has been disabled.
This is also preset by Bunch as the default configuration.

5.4.2. Excluding Library Methods

Most software makes use of a set of helper methods that are used by many
other methods. Because of their omnipresence, they can be specified for
being excluded from the clustering process. Else, the algorithm would try to
assign those to one of the clusters, thereby introducing a lot of noise in the
output and even distorting the outcome. Model transformation programs, as
well, often use common helper and query methods that are usually put into
a separate module. However, if helper methods are expected to be useful

170

5.4. Cluster Analysis

only for a single module, developers might consider to move such methods
into the respective module.

5.4.3. Excluding Model Elements

One could explicitly make the models separate modules on the package-level,
but this would not help in minimizing the scope at the class-level.

Thus, we decided to include both model elements and transformation
methods into the clustering process, so that classes, packages and mappings
are clustered indifferently of their type. Through this, the algorithm will try
to group all mapping methods that reference a particular class into the
same cluster.

5.4.4. Predefined Clusters

Clustering algorithms must rely on a sufficiently simple metric to find par-
titions. Such metric can never replace knowledge by human experts, who
are able to include sophisticated design decisions and semantics beyond
cohesion and coupling. It is commonly accepted by researchers in the field
that automatized clustering approaches like Bunch will never replace expert
knowledge. Therefore, Bunch gives users the ability to preassign some of
the nodes to clusters, and leave the rest of the nodes to be automatically
assigned by Bunch.

5.4.5. Clustering the Activity2Process Example Transformation

Figure 5.4 depicts the clustering that has been computed from the Activ-
ity2Process’s weighted dependence graph. Colored nodes (or darker shaded
nodes in a black and white printout) represent the transformation’s methods,
while light gray nodes mark the transformation’s model elements.

171

5. Remodularizing Legacy Transformations with Automatic Clustering

(SS-L1):mapping_Activity2ProcessModule_mapActivity2Process

(SS-L0):mapping_Action2StepModule_mapAction2Step

mapping_Action2StepModule_mapAction2Stepclass_core_Action

(SS-L0):package_core

package_core

class_core_BasicAction

(SS-L0):mapping_Activity2ProcessModule_mapActivity2Process

mapping_Activity2ProcessModule_mapActivity2Process

entry_Activity2ProcessModule_main

class_core_Activity

(SS-L0):mapping_Action2StepModule_mapAction2Step2

class_core_StartAction mapping_Action2StepModule_mapAction2Step2

(SS-L0):mapping_Action2StepModule_mapAction2Step3

mapping_Action2StepModule_mapAction2Step3class_core_StopAction

(SS-L1):helper_CompositeAction2StepModule_createProcess

(SS-L0):class_process_Step

package_process

class_process_Step

(SS-L0):helper_CompositeAction2StepModule_createProcess

class_process_Processhelper_CompositeAction2StepModule_createProcess

(SS-L0):mapping_CompositeAction2StepModule_mapAction2Step

package_composite

mapping_CompositeAction2StepModule_mapAction2Step

class_composite_CompositeAction

a

a

b

b

b

c

c

Figure 5.4: Activity2Process transformation – Bunch-derived clustering based on
class-level dependencies vs. expert clustering (denoted by small letters
in bold)

Boxes mark a two-level partitioning created by Bunch – L0 stands for the
lower and more detailed level, whereas L1 partitions subsume one or more
L0 partitions. For this clustering, a weight configuration

〈Wwrite, Wread, Wnavigate, Wcall, Wpackage, Wreference, Wcontain, Winherit 〉 :=
〈1, 15, 0, 5, 15, 0, 0, 0 〉

has been used. With a sufficiently higher weight for read than for write
dependencies, 15� 1, a source-driven decomposition has been performed.
Therefore, mapping methods have been grouped together with their respec-

172

5.5. Structural Analysis

tive source model elements (Activity, Action, etc.) on L0. Two of the
clusters solely contain model elements and can be ignored. In the L1 parti-
tion, two clusters remain: One cluster aggregates Activity2Process and
Action2Step methods, the other cluster aggregates CompositeAction2-
Step methods. The reference to class CompositeAction may have pri-
marily induced the algorithm to correctly group the respective methods
together.

When comparing the Bunch-derived L0 partition with our handmade
partitioning illustrated by small letters a, b, and c in bold (cf. Figure 5.4),
we can observe that both partitions are highly similar. Bunch, however,
decided to agglomerate the L0 clusters to a single L1 cluster, whereas the
expert decided to put them into two individual clusters a and b. Developers
may think about adopting Bunch’s recommendation and merge clusters
Activity2Process and Action2Step.

5.5. Structural Analysis

Only few transformation programs are designed completely monolithically.
In practice, a given transformation program is likely to already implement
a modular design albeit a degraded or obsolete one.

To include the legacy modular structure of the code into a later assessment,
an automatized structural analysis can be used that extracts this information.
When generating dependence graphs, we have deliberately ignored language
concepts used to modularize transformation code. For the purpose of com-
paring automatically generated partitions with the already encoded partition,
it can be helpful to automatically derive modularization information from
the program under study.

The Bunch tool that we use here relies on so-called Structural Information
Language (SIL) files to persist partition information using a proprietary
textual file format. A SIL file comprises one line for each partition declared,
where a line names the partition in braces prefixed by keyword SS (short

173

5. Remodularizing Legacy Transformations with Automatic Clustering

1 SS(mainmodule_Activity2ProcessModule):
entry_Activity2ProcessModule_main,
mapping_Activity2ProcessModule_Activity2Process

2 SS(mainmodule_Action2StepModule):
mapping_Action2StepModule_Action2Step,
mapping_Action2StepModule_Action2Step2,
mapping_Action2StepModule_Action2Step3

3 SS(mainmodule_CompositeAction2StepModule):
helper_CompositeAction2StepModule_createProcess,
mapping_CompositeAction2StepModule_Action2Step

Listing 5.2: Activity2Process example – SIL file

for subsystem), followed by a comma-separated list of nodes assigned to
that partition. Names of partitions and nodes have to be unique and, like
identifiers in Java or C, free of whitespace characters.

Detecting the modular structure is straight forward, yet highly language de-
pendent. In QVT-O, a module is declared using one of keywords transfor-
mation or library. Starting from the main modules, import declarations
(keyword import) help to recursively identify additionally used modules.
Elements in a partition are all control constructs defined in a module, model
elements are omitted because in the general case there is no uniquely as-
signed partition. Listing 5.2 shows the SIL file generated from Listing 1.1.

5.6. Assessment

The main objective of the approach presented in this chapter is to gain a bet-
ter understanding of the code, but also to agree on a modular decomposition
that fosters understandability and that can be used to restructure the code.
To achieve this goal, in this last step, the existing modular structure and
partitions computed by the algorithm on different parameters are compared
against each other regarding their modularization quality and structural dif-
ferences. Although this is a manual step that requires to find a compromise
on two or more partitions and to refine the solution based on expert knowl-

174

5.6. Assessment

edge, developers can profit from a set of metrics to simplify the process.
Metrics support expert decisions by giving objective and repeatable quality
measures [KB04]. We require metrics to find answers to two questions:

Is one clustering of inferior quality than another clustering? With re-
gards to cohesion and coupling as a quality measure, one can use
Bunch’s MQ value to judge the quality by a single value. In the
context of this work, the MQ value is also the fitness function by
which automatically derived clusterings are judged by.

To what degree are two clusterings similar? There are various metrics to
measure the similarity between two graphs, each paying attention to
different aspects, e.g., if to consider nodes alone or edges as well,
others measurements calculate the distance in terms of modification
operations. We use three similarity measures that were already used
for comparing Bunch produced clusterings against manually derived
clustering [MM08].

5.6.1. Modularization Quality

In context of the Bunch tool, it makes sense to observe the modularization
quality index that Bunch uses to assess partitions when searching for a
(quasi-)optimal partition. The MQ value can be computed for both method
and model dependencies (which it has been optimized for), but also for
method dependencies alone. For manually encoded partitions, the MQ value
is only available for method dependencies alone, because model elements
are not assigned to any clusters. With Bunch’s user-driven clustering method,
however, one could run Bunch on the preclustered methods to make Bunch
cluster the remaining model elements.

5.6.2. Similarity

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl.

175

5. Remodularizing Legacy Transformations with Automatic Clustering

The latter two had been specifically built for the software domain by Mitchell
et al. [MM08], all three are supported by the Bunch tool.

Precision and Recall Precision is calculated as the percentage of node
pairs in a single cluster of a sample clustering that are also contained within
a single cluster in the authoritative clustering. Recall, on the other hand, is
defined as the percentage of node pairs within a single cluster in the authori-
tative clustering that are also node pairs within a single cluster in the sample
clustering [ST12]. The metric does not consider edges, and another drawback
is the metric’s sensitivity to the size and number of clusters [MM01].

EdgeSim The EdgeSim similarity measure [MM01] calculates the normal-
ized ratio of intra and intercluster edges that are present in both partitions.
Nodes are not taken into account.

MergeClumps The MergeClumps (MeCl) metric is a distance measure
[MM01]. Starting with the largest subsets of entities that have been placed
in each of the partitions into the same clusters, a series of merge operations
is calculated that is needed to convert one partition into the other. Both
directions are considered, and the largest number of merge operations (in
a normalized form) is taken as the MeCl distance.

We decided for the three measures due to their good reputation they
have gained in the community [ST12]. Other measurements that are used
in other contexts include MojoFM [WT04] and the Koschke-Eisenbarth
metric [KE00], as surveyed by Shtern et al. [ST12].

5.6.3. Assessing the Activity2Process Example
Transformation

We use the above measurements to compare quality and similarity of man-
ually and automatically derived partitions in the Activity2Process exam-
ple: Results are given in Table 5.2. The expert clustering – the one manu-

176

5.7. Applicability to Other Transformation Languages

Table 5.2.: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering

Cluste
rs

M
Q

index

wo./
w. m

od
els

Prec
isi

on

&
Reca

ll

Edge
Sim

M
eC

l

Expert clustering
Derived manually 3 1.067 100% 100 100%

— 100%

Class-level dependencies
Hill Climbing, Weighted MQ 2 1.083 33.333% 72.72 85%

1.821 100%

ally done – comprises three clusters, whereas the derived clustering com-
prises two.

The MQ index is at 1.067 for the expert clustering, and 1.083 for the
derived clustering (and 1.821 with model elements included in the clusters).
This shows that cohesion and coupling cannot be easily improved.

When comparing the expert and the computed partitions without model
elements, precision is at 33.333% and recall at 100%. The low precision
can be attributed to the fact that two clusters correspond to a single one in
the derived clustering. Similarity is at 72.72% according to EdgeSim, and
at 85% according to MeCl. Thus, even when taking edges into account as
well, Bunch’s clustering is highly similar to the expert clustering.

5.7. Applicability to Other Transformation Languages

The approach is universally applicable for any transformation language
except for two steps, dependence analysis and structural analysis. So far,
we have only looked at two transformation languages in the respective
sections, QVT-O and Xtend, because we have implemented the approach
only for these two languages.

Regarding the first step, the transformation that extracts dependence in-
formation from the code, we already were able to demonstrate applicability
of dependence graph analysis to various transformation languages in the

177

5. Remodularizing Legacy Transformations with Automatic Clustering

Table 5.3.: Module concepts in selected transformation languages
Language Modularity Constructs Module Dependencies

QVT-O transformation T; import T | L;
imperative library L; T | L access T ′ | L′

T extends T ′

QVT-OM transformation interface I I import I′

imperative transformation module M M export I

QVT-R transformation T; import T | L;
declarative T extends T ′

Xtend class C import C′

imperative C extends C′

extension C

Xtendm @TransformationInterface @Import extension I
imperative interface I C implements I

@TransformationModule
class C

ATL module M; M uses M′;
hybrid

ETL <file> import "<file>";
hybrid

Kermeta2 package P; require "<file>" | P
imperative [aspect] class C C inherits C′

package P using P

VIATRA2 entity E; import N.E;
hybrid machine M namespace N.E;

previous chapter in Section 4.5. The dependence graph we use here uses
only a subset of the concepts reflected by the dependence graph that belongs
to the visual analytics approach.

We did not yet, however, discuss to what extent structural information can
be extracted from transformation languages other than QVT-O and Xtend.
Of course, structural analysis is not a premise to cluster transformations, but
if a language already provides a mechanism to structure transformations,
it should be supported. In this section, we study the following languages
concerning their promoted structuring concept and how they might be sup-
ported by our approach: QVT-O and our own extension QVT-OM, QVT-R,

178

5.7. Applicability to Other Transformation Languages

Xtend and Xtendm enhanced by us, ATL, ETL, Kermeta2, and VIATRA2.
Table 5.3 delineates modularity concepts for each of the languages4.

Two questions we would like to answer here is: What are the structur-
ing concepts that represent modules? And how are dependencies among
modules defined? Modularity concepts are essential to identify an exist-
ing partition. Dependencies are required to resolve the full set of modules
starting from the main module, they are not part of the structural model
though as it defined above.

QVT-O We have already remarked in Section 5.5 that the QVT-O language
distinguishes between transformation and library units. Library units can
solely be accessed from other library or transformation units by means of
keyword access, whereas transformation units can refine other transfor-
mation units using superimposition (keyword extends). Either way, units
must be imported priorly using an import statement. For structural analysis,
both kinds of units are relevant as they represent valid clusters comprising
method implementations.

QVT-OM Our own modularity concept that we have presented in Chapter 3
replaces QVT-O’s original concepts to allow for information hiding modular-
ity. There are two types of unit declarations, transformation interface

and transformation module. Only the latter unit type defines method
implementations and thus represents clusters. To accumulate required mod-
ules when there is only the main module given, analysis can parse import
declarations, for which a module must be found that exports the respective
interface via export declaration.

4 Note that an in-depth discussion of the concepts has already been carried out at the end of
Chapter 3, and will again be carried out in the related work section. The former comparison,
however, discusses extensibility of existing modularity concepts, and the latter juxtaposes
existing concepts in light of their information hiding capabilities and model visibility control.

179

5. Remodularizing Legacy Transformations with Automatic Clustering

QVT-R QVT-R is the declarative pendant to QVT-O, which reuses large
parts of QVT-R’s concepts. Indeed, QVT-R’s modularity concepts form
a subset of QVT-O’s. A transformation unit can only refine another unit
through extends, no library concept is provided according to the standard
documentation. Transformation units pose valid clusters that must be iden-
tified during analysis.

Xtend The Xtend language compiles to Java and solely reuses Java’s
namespace concept, peppered with Google Guice-like dependence injec-
tion through the extension keyword. Only non-abstract classes should be
detected as valid clusters, containing inherited and locally defined meth-
ods. A class can reference other classes via composition and inheritance
(keywords extension and extends).

XtendM Our own conceptual extension to Xtend to attain information
hiding modularity reuses Xtend’s structuring concepts, but uses Java annota-
tions to mark Java interfaces, classes, and class imports as transformation
units (cf. the concepts listed in Table 5.3). This alleviates the structural
analyzer from distinguishing transformation units from ordinary classes.

ATL ATL’s namespace concept is relatively simple, in that it provides
module declarations that can put into scope of another module via uses

statements. Hence, modules immediately correspond to clusters.

ETL Modularity in the Epsilon family of languages exploits the physical
file system to logically separate declarations, not unlike the C/C++ language.
Import statements put definitions from external files into scope. Thus, clus-
ters correlate with ETL and EOL files.

Kermeta2 The Kermeta modeling language uses the same language con-
cepts for both model and transformation definition. Besides using files as

180

5.8. Concluding Remarks

physical structuring concepts with the requires statement, each file can
define the namespace it contributes definitions to via a package declaration.
External package visibility is then established through using statements.
Similar to C# ’s concept of partial classes [HWG03], portions of a class can
be spread out to multiple files by utilizing the aspect class mechanism. It
is a vitally important feature to separate transformation code from model
definitions. A major challenge of static analysis is to separate class defini-
tions that contain transformation operations from those that purely define
the models involved in the transformation. Any defined class qualifies as a
cluster that defines an operation which is either the transformation’s main
method, or which is directly or indirectly reachable from the main method.

VIATRA2 The VIATRA language allows developers to split code into
physical files. Namespaces are declared using keyword namespace, and
can be imported into other namespaces using keyword import. An abstract
state machine is declared in a machine block statement, and contains ASM
and graph transformation rule definitions. Definitions of model entities are
established with entity blocks, and can represent packages, classes and
objects, thereby attaining MOF compliance. A structural analyzer, similar to
the one used for QVT-O in this chapter, could parse for machine statements
and identify them as definitions of separate clusters if they appear in different
files and namespaces.

5.8. Concluding Remarks

Together with models, model transformations belong to the core assets of
software developed according to the model-driven paradigm. Much of the
recent work in this area has focused on reuse aspects of transformations,
neglecting maintainability as an equally important concern. To manage the
inherent complexity of transformation programs, well-approved language
concepts can be used, including information hiding modularity. In practice,

181

5. Remodularizing Legacy Transformations with Automatic Clustering

however, these transformation programs lack structure, or their structure has
slowly eroded over time as the transformations evolved.

This chapter proposes to transfer software clustering techniques to the
specific domain of model transformation programs. Based on automatically
derived clusterings, developers have to spent less effort in understanding,
maintaining and refactoring the code. Our aim is to automatically derive
clusterings that exhibit high similarity with manual decompositions. To reach
this goal, we had to integrate structural information of the models and model
use dependencies of the transformation language’s concepts, and we had
to guide the clustering algorithm by weighting the input dependencies to
match the type of transformation at hand.

Despite promising results indicated by the example (Section 5.6.3) and
our empirical validation (which will be presented in the subsequent chapter
under Section 6.5), a few interesting points for future research arose which
we think are worth to be pursued. At the moment, the approach is limited to
information that can be automatically extracted from the source code and
the models. To achieve an improved partitioning, more expert knowledge
could be integrated into the clustering process. We currently extract data
dependence information at the type-level, whereas dataflow analysis could
help to detect cohesiveness between methods more accurately. Finally, other
quality metrics beyond (or in combination with) coupling and cohesion
could be explored and tested if they deliver better results.

182

6. Validation

We already could give evidence for some of the initial objectives stated in
the introductory chapter that they have been met (see Section 1.4), whereas
it has not been shown yet if efficiency is increased. In this chapter, all three
approaches presented in Chapters 3, 4 and 5 are validated in individual
case studies.

Results of the case studies had been previously published together with the
contribution’s paper. Yet, in this thesis we added a few details we originally
had to spare off due to size constraints.

The chapter is pre-eminently structured by the case studies that had been
carried out. But before, Section 6.1 discusses the overall evaluation goals
in greater detail, and Section 6.2 introduces the project where application
scenarios for all three studies had been drawn from. Section 6.3 contains
the first case study that evaluates our chief contribution, the module con-
cept. Section 6.4 shows practicability for the visual analytics approach
in an empirical study. Section 6.5 examines benefits of the clustering ap-
proach by two realistic transformations. A final remark in Section 6.6 brings
the chapter to a close.

6.1. Evaluation Goals

Three contributions are made by this thesis: a module concept, a visual-
ization methodology, and an automatic clustering technique, all targeted
for model transformations. The chief goal of all three approaches is to im-
prove the maintainability of model transformations. To attain this goal, in
Section 1.4, we gave a list of success criteria we want to have met for the

183

6. Validation

approaches. Five of the six criteria had already been shown in the respective
chapter of the approach:

Soundness The module system is required to be sound regarding the infor-
mation hiding principle. A sketched proof can be found in Chapter 3,
and a Coq embedding of the type system and soundness theorems
appears in Appendix A.

Genericity We would like to attain a better maintainability for any transfor-
mation language. Applicability to the various types of transformation
languages is discussed at the end of contributing chapters (Chapters 3
to 5).

Automation Re-engineering of legacy transformations to a modularized
variant should be automated where possible. This goal is obtained by
the clustering approach that we presented in Chapter 5.

Efficiency The three principal contributions of this thesis, the module con-
cept, the visualization and the re-engineering approach, are all de-
signed to increase efficiency when carrying out typical maintenance
tasks in practical scenarios. We have not shown yet that this is the
actual case.

The rest of the chapter aims to demonstrate by a set of case studies that all
three contributions are able to meet the last mentioned criterion of efficiency.
The case studies focus on real-world transformations from a research project,
thus ensuring practicability.

6.2. Application Scenarios

All example transformations used for validation are taken from a larger sci-
entific project, the Palladio Research Project [MKK11]. The project provides
a set of methods and tools for predicting the reliability and performance
of software architectures.

184

6.3. Modularizing an Xtend Transformation Using Information Hiding Modularity

The Palladio approach [BKR09] aims at detecting performance and other
quality-related problems at an early stage in the software development pro-
cess1. This is accomplished by modeling the software to be developed
already at design-time in the PCM. The Palladio Component Model (PCM)
is an architectural modeling language for describing component-based soft-
ware architectures [BKR09]. The model is then annotated with estimated
performance costs and supplemented with expected usage scenarios. A
process and event-based simulator, the SimuCom simulator, evaluates the
performance impact on the hardware resources the components are allocated
to. Through this approach, designers can identify performance bottlenecks
and other quality issues, and judge design alternatives based on measure-
ments which they obtain from simulation.

6.3. Modularizing an Xtend Transformation Using Information
Hiding Modularity

In Chapter 3, we have presented an approach that provides information
hiding modularity for model transformation languages. To demonstrate
advantages of a thorough module concept over prevalent structuring concepts,
we have carried out a case study in order to evaluate if reduced maintenance
efforts can be indeed achieved.

We present the experiment design based on Victor Basili’s Goal, Ques-

tion, Metric (GQM) plan [Bas92], in alignment with Wohlin’s template
(cf. [JCP08]): First we set the experiment goal, we formulate questions and
hypotheses, and derive metrics (Section 6.3.1). We give details on the ex-
periment setup in Section 6.3.2. We continue to present two scenarios in
Section 6.3.3, and for each we describe how we conducted the experiment,
including a thorough analysis and discussion of the results (Sections 6.3.4
and 6.3.5). Presentation of the study concludes with a list of potential validity
threats (Section 6.3.6) and a summary (Section 6.3.7).

1 For details on Palladio, see palladio-simulator.com.

185

http://palladio-simulator.com

6. Validation

Questions required to answer in order to reach goal:

Metrics used to answer each question:

G:

Q:

M3:

M1:

M2:

Goal of the study:

is derived from

Evaluate whether information-hiding modularity reduces maintenance efforts
compared to existing structuring concepts.

Is less effort involved in carrying out typical maintenance tasks?

Number of lines of code (LOC) to study

Number of lines of code (LOC) of the transformation

Ratio of lines of code to study

Figure 6.1: GQM plan – Certain metrics (M) are required to answer quantifiable
questions (Q), in order to achieve our goal (G).

6.3.1. Validation Goals

The following goal is set to be empirically shown for the approach:

G: “Analyze information hiding modularity (object), for the purpose of
evaluation (purpose), with respect to process efficiency (quality focus),
from the point of view of transformation developers carrying out

maintenance tasks (perspective)”

To put it differently, the purpose of the planned study is to find empirical
evidence that maintenance costs of transformations are significantly lower
(process-related improvement) if the transformation has been thoroughly de-
signed using our novel modularity concept in contrast to regular structuring
mechanisms which usually lack explicit interfaces. Note that in this thesis,
we perceive process efficiency as a cost-effectiveness ratio, i.e., efficiency is
improved if the same effect is achieved at lower costs. Costs may cover arbi-
trary resources, time, money, perceived strain of the subjects, and so on.

186

6.3. Modularizing an Xtend Transformation Using Information Hiding Modularity

From the goal stated above, we derive a single question and discuss the
metrics that are used to answer the question,

Q: “Is less effort involved in carrying out typical maintenance tasks?”
The question asks for the effort involved in maintaining a model
transformation with versus without information hiding modularity.
To give an answer to this question, it is important to clarify what a
typical maintenance task exactly is, and how effort can be measured.
We decided for two realistic maintenance tasks that belong to distinct
classes of maintenance activities. For practicability reasons, we did
not carry out a study with human subjects, but rather calculated the
amount of code which is required to logically deduce the code spot
that is relevant for a particular task (Metrics M1 to M3).

The question relates to the following hypothesis to be observed:

H: Effort A subject who uses information hiding modularity for model
transformations requires less effort to carry out typical maintenance
tasks.

6.3.2. Experiment Design

The study had been carried out by a single subject. The subject was an
experienced transformation developer, familiar with the PCM2SimuCom
transformation. We varied the class of maintenance request (control vari-
able). We focused on two important types of maintenance tasks, a perfective
and a corrective maintenance request (cf. Section 2.4). To measure the ef-
fort, we recorded the number of Lines of Code (LOC) that are required to
be read by the subject in order to carry out the respective request (Metric
M1). We further computed the number of LOC of the complete transfor-
mation under study (Metric M2). The fraction of M1 and M2 forms the
percentage of code of the overall transformation program which had to be
understood (Metric M3).

187

6. Validation

6.3.3. Use Case Scenario

To validate our approach, we chose a transformation that is practically used
in a larger research project on software architecture simulation, the Palladio
approach. The transformation maps the component model to simulation
code. For this transformation, we are able to show that maintenance ef-
fort is significantly smaller if a transformation is structured based on our
module concept.

To identify quality-related issues of a software with the Palladio approach,
component-based software architectures and typical usage scenarios are
first modeled in the Palladio Component Model. Instances of this model are
then translated to simulation code that is based on the SimuCom simulation
framework. Other targets exist as well, for instance mappings to Plain Old
Java Objects (POJOs), to Enterprise Java Beans (EJB), and to a performance
prototype (ProtoCom).

Technically, PCM2SimuCom, the program for translating architectural
models to simulation code, had been implemented as a Model-to-Text
(M2T) transformation written in Xpand and Xtend1, both being prede-
cessors of Xtend22. M2T transformations are special cases of Model-to-
Model (M2M) transformations, where the target model are textual artifacts.
Xpand and Xtend2 are both template-based languages, meaning that trans-
formation logic is embedded into static text with the help of meta-tags.
The transformation and its design has been described in Becker’s doctoral
thesis [Bec08b].

We examined two maintenance scenarios from recent maintenance activi-
ties. Each activity belongs to a class of activities that typically appear during
transformation development at frequent intervals. The first scenario deals
with the process of refactoring the modular structure of the transformation.
The second scenario is about adapting the transformation for a new require-
ment. We will demonstrate that the effort involved in identifying bad smells

2 As we discuss the dated dialect Xtend1, we refer to Xtend as Xtend2.

188

6.3. Modularizing an Xtend Transformation Using Information Hiding Modularity

and locating concerns can be dramatically reduced with a proper modular
structure and descriptive module interfaces.

6.3.4. Scenario 1: Refactoring the Modular Structure

By this first maintenance scenario, we want to evaluate if explicit interfaces
specifically help in refactoring the modular structure of a transformation
program. This we do by comparing the efforts required to reason about the
modular structure of the same transformation program to accomplish a refac-
toring task, once with and once without explicit interface descriptions.

6.3.4.1. Execution

One of the more recent development tasks in the Palladio project was to
migrate the meanwhile deprecated Xpand templates to the Xtend2 language.
Transformation templates were already modularized using the template
method pattern, with the result that variants share common parts in ab-
stract super classes, and refine implementation details by overriding abstract
(template) methods. Yet, former modularizations did not use Xtend/Java
interfaces to declare which public methods implementations must provide,
and even in Xtend or Java, it is not possible to restrict access to model
elements.

As a first step, we took the SimuCom transformation and created a variant
that employs interfaces with model use dependencies. We made use of the
Xtend2m add-on to declare proper interfaces. We developed Xtend2m as
a prototype of our module concept (see Section 3.4.2).

We then analyzed the code for bad smells in the design, e.g., modules
with high coupling and/or low cohesion. For each variant, we finally mea-
sured the minimal amount of code required to spot the smell just from
looking at the code.

189

6. Validation

Table 6.1.: SimuCom transformation – Data dependencies per module

Xtend Module rel
iab

ilit
y.*

res
ou

rce
en

v.*

sy
ste

m.*

sef
f.*

us
ag

em
od

el.
*

rep
os

ito
ry.

*

LOC

M1: Allocation 7
M2: Build 7 7 157
M3: Calculators 7 7 32
...
M10: Dummies 7 7 89
M11: JavaCore 7 7 244
M12: JavaNamesExt 7 7 7 7 278
M13: PCMExt 7 7 7 7 480
M14: ProvidedPorts 7 260
M15: Repository 7 120
M16: Resources 7 7 27
M17: SEFFBody 7 7 7 220
...
M23: SimAllocations 7 7 7 111
M24: SimCalculators 7 7 7 86
M25: SimCalls 7 7 286
...
M32: SimResources 7 252
M33: SimSEFFBody 7 7 7 252
M34: SimSensors 35
M35: SimUsage 7 7 7 253
...
M39: SimUsageFactory 7 7 7 91

LOC (Σ) 4987

Modules (Σ) 4 2 11 13 9 30
LOC (%) 18% 7% 35% 42% 28% 87%
Modules (%) 10% 5% 28% 33% 23% 77%

6.3.4.2. Analysis

Results of a precursive analysis of data dependencies are depicted in Ta-
ble 6.1 in the form of a dependence matrix. The table lists for select modules
which of the six PCM packages it references. The PCM is packetized by six
modeling aspects, a structural view (repository.*), a behavioral view (seff.*),
an assembly view (system.*), a usage view (usagemodel.*), a resource view
(resourceenvironment.*), and a view on reliability annotations (reliability.*).
For instance, PCM’s reliability concepts are handled – and thus referenced –

190

6.3. Modularizing an Xtend Transformation Using Information Hiding Modularity

by four modules: M12, M17, M28, and M33 (M28 has been omitted in this
view). These four modules share 18% of the overall 4987 LOC.

While modules M1,. . . ,M22 act as generic templates for various targets
including SimuCom, modules M23,. . . ,M39 refine these to produce Simu-
Com target code. For example, M23 extends M1 in order to implement
several abstract methods.

According to the table, almost all modules reference model elements from
only few packages. This indicates a low coupling regarding data depen-
dencies. Only two modules exhibit a particularly high degree of coupling,
JavaNamesExt and PCMExt (M12 and M13). Both modules depend on four
PCM packages and are called by most other modules. Inspecting their code
quickly reveals a low coupling, most methods contained in the modules
do not rely on other methods. Background to this is that the two modules
had been used to collect helper methods. This design decision issues from
Xpand’s inability to mix template expressions with utility functions. Both
modules used to be implemented in Xtend1. However, with the advent of
Xtend2, template expressions and functions are mixable. Almost all meth-
ods are only required by single modules, thus they can be moved to the
respective module without breaking the code.

H: Effort Determining the two modules M12 and M13 as the ones with the
highest coupling (regarding data dependencies) involves different amounts
of effort depending on the variant used. When we use the modules with
ordinary interface definitions, we have to carefully read all the implement-
ing classes for model elements used, yielding a full 4987 LOC to examine.
Note that studying model import definitions alone is not sufficient, since
types might be implicitly accessed from within the module’s implementation
without the need to import the type. On the other hand, with model use depen-
dencies declared in the interfaces, we immediately get the same results from
examining the interface definitions alone, which have 378 LOC. Whilst we
have already read the code of modules M12 and M13 in the first variant’s case,

191

6. Validation

it is still required to read them for the second variant, in order to check the
code for the degree of cohesion, so we end up with 378+758 = 1136 LOC
of the second variant to read. Thus, we end up with a ratio of 100% of code
to read regarding the first variant, versus 23% of code to read regarding the
second variant. This indicates that, based on statistical significance obtained
from a more extensive experiment, hypothesis H might be accepted.

6.3.4.3. Discussion

H: Effort This first scenario demonstrates that there was 67% less code
to read with more descriptive interface definitions that have model use
dependencies included.

In this example scenario, we identified a bad smell just from studying
dependencies declared in module interfaces. Thus, we were able to reduce
the coupling and increase cohesion between modules, making the overall
transformation presumably easier to understand and maintain. Without de-
scriptive interfaces, we would have to reverse-engineer data dependencies
manually, with the risk of missing some dependencies. On the other hand,
our type interference system statically analyzes implementations against
declared interfaces and identifies violations automatically.

6.3.5. Scenario 2: Locating Concerns

Another important kind of maintenance task is to repair bugs present in a
transformation. In this scenario, we study the effort it takes to locate places
in the code where the bug potentially resides.

6.3.5.1. Execution

Again, the same two variants of the SimuCom transformation had been
used: The original variant that had been structured based on Xtend’s class
mechanism and the template method pattern, and a second variant that

192

6.3. Modularizing an Xtend Transformation Using Information Hiding Modularity

employs interfaces with model use dependencies, but possesses the same
modular structure.

In the Palladio model, software components can realize component in-
terfaces. Interfaces in turn can extend other interfaces. When a component
realizes such a chain of interfaces, it must provide operations for any in-
terface along that inheritance chain. Until recently3, our transformations
were not aware of inheritance chains. A first step to correct the transforma-
tions is to locate places in the code where interfaces are handled. In the
PCM, three manifestations of interfaces exist, all being descendants of class
Interface, namely OperationInterface, InfrastructureInterface,
and EventGroup. All four model elements are part of the structural view,
and therefore belong to the repository.* namespace. Without having data
dependencies declared, we must investigate the full code to track down
relevant places. Since the SimuCom transformation employs our module
concept, we can narrow down possible locations of concern by just studying
module descriptions.

We analyzed the code to locate a concern that we were facing in a past
maintenance scenario. For each variant, we measured the minimal amount of
code required to identify the location of concern from looking at the code.

6.3.5.2. Analysis

By looking at a transformation’s module interfaces, we can tell if a module
is actually authorized to access these interface concepts. With dependencies
declared at the package-level, we would have to check modules with access
to the repository namespace, being 30 out of 39 modules (see Table 6.1).
Since we already have the transformation’s model dependencies declared
at the class-level, we can narrow down the number of modules we need to
consider even further. Table 6.2 displays for relevant modules if they access

3 Bug record is sdqbuild.ipd.kit.edu/jira/browse/PALLADIO-165, fixed on June 25,
2013.

193

https://sdqbuild.ipd.kit.edu/jira/browse/PALLADIO-165

6. Validation

Table 6.2.: SimuCom transformation – Change impact analysis

Xtend Module <
: r

ep
os

ito
ry.

Int
erf

ac
e

Had
to

mod
ify

?

M1: Allocation
M2: Build 7...
M6: ComposedStructure 7
M7: ContextPattern 7
M8: DataTypes
M9: DelegatorClass 7 7
M10: Dummies 7
M11: JavaCore 7 7
M12: JavaNamesExt
M13: PCMExt
M14: ProvidedPorts 7 7
M15: Repository 7 7...

...
M19: Sensors 7
M20: System
M21: Usage 7
M22: UserActions...
M27: SimContextPattern
M28: SimDummies 7
M29: SimJavaCore 7
M30: SimProvidedPorts 7
M31: SimRepository 7
M32: SimResources...

Modules (Σ) 14 4
LOC (%) 40% 14%
Modules (%) 36% 10%

any Interface-related class4 residing in the repository.* namespace.
There are only 14 modules whose implementation must be examined further.
In the end, we had to edit four among these to get our task done.

H: Effort When working with the variant that employs model use depen-
dencies at the class level, the amount of code to read is reduced to the
interface definitions plus the implementations of 14 out of the 39 modules,
so we end up with 2116 instead of 5298 LOC. This is opposed to the code
for all 39 modules when working with the classic variant. Hence, the ratio
of code required to read in order to spot the correct places is reduced from
100% to 40%. Again, this is a good indication that hypothesis H might be
accepted based on statistical significance from a broader data set.

4 I.e., references to class Interface or subclasses thereof.

194

6.3. Modularizing an Xtend Transformation Using Information Hiding Modularity

6.3.5.3. Discussion

H: Effort Like the first scenario, this second scenario again demonstrates
that the amount of code to read can be substantially reduced with model
use dependencies being part of interface descriptions, this time defined at
the class rather than the package level.

A large portion of maintenance tasks require to locate concerns in the code,
particularly corrective maintenance tasks. Having more expressive interface
descriptions helps to locate such concerns more quickly and with less effort.
Model use dependencies can be stated at the package and class level, giving
developers the ability to specify model use dependencies at arbitrary levels.
Static type checking frees developers from the burden to check if module
implementations strictly abide to model use dependencies declared in the
interface implemented. This realistic example scenario demonstrated that
class level dependencies can help to locate typical concerns – like in this
corrective maintenance scenario – with a much smaller effort.

6.3.6. Threats to Validity

Validity of the outcome is most likely to be threatened by several factors.

Construct Validity Lines of Code (LOC) is often considered as a prob-
lematic metric, although it can be – and widely is – used as a rule of thumb
to measure code complexity. To reenforce the hypothesis that information
hiding modularity actually helps to diminish maintenance efforts, extended
case studies are needed that measure the efficiency of experienced develop-
ers based on more accurate metrics. It has to be pointed out that the effort
required to declare the interfaces by including method and model visibility
has not been measured in the experiment.

Internal Validity We had only one subject carry out the tasks, and he co-
developed the module concept. As he migrated the original Xpand templates

195

6. Validation

to Xtend, he gained an exhaustive understanding of Xpand and Xtend, and
further of the PCM2SimuCom transformation. As a co-developer of the
concept, he may have unconsciously worked towards a positive outcome.

External Validity So far, we did just study a single example M2T transfor-
mation, thus it is not guaranteed that the results apply to arbitrary transforma-
tions of this and other kinds. Additional transformations must be observed
in order to obtain statistical significance. An experiment design similar to
the one we use to validate our visual analytics approach in Section 6.4 could
lead to a more reliable validation in the future.

6.3.7. Evaluation Summary

Without a modular structure based on a descriptive module concept, de-
velopers need to fall back to a text-based search. However, a word-based
search for “interface” leads to many false positives, because semantics are ig-
nored. With our proposed blackbox module concept, maintenance of model
transformations takes less effort than with existing module concepts that
do not account for data and control dependencies at the interface-level.
Statistical significance remains to be demonstrated in a future study on
additional transformations.

6.4. Maintaining a QVT-O Transformation Supported by Visual
Analytics

To evaluate how our approach from Chapter 4 supports important mainte-
nance tasks, we carried out an empirical study, where users had to identify
code locations affected by typical change requests. For the case study, we
implemented our approach for QVT-O under Eclipse.5

5 The tool we implemented can be downloaded from http://qvt.github.io/tca.

196

http://qvt.github.io/tca

6.4. Maintaining a QVT-O Transformation Supported by Visual Analytics

Next, we are going to give details on the experiment design: We define
our validation goals in Section 6.4.1 and derive the hypotheses and vari-
ables of the experiment as part of our experimental design in Section 6.4.2,
before we present the transformation under study and describe the mainte-
nance scenario in Section 6.4.3. We give details on how the experiment has
been conducted (Section 6.4.4), analyze and discuss results (Sections 6.4.5
and 6.4.6), before we expound potential threats that could jeopardize our
observations in Section 6.4.7. We then conclude this section with a short
summary (Section 6.4.8).

6.4.1. Validation Goals

Formalization of goals is done according to the GQM plan [Bas92], follow-
ing Wohlin’s template. Our experiment’s goal can be stated as follows:

G: “Analyze dependency graphs (object), for the purpose of evaluation

(purpose), with respect to process efficiency, product quality, and user

experience (quality focus), from the point of view of transformation

developers carrying out maintenance tasks (perspective)”

In other words, the purpose of the study is to empirically evaluate whether
our approach makes maintaining model transformations more efficient
(process-related improvement), the outcome is of higher quality (product-
related improvement), and the developer experiences less effort (improve-
ment regarding user experience).

For each of the three improvements, we define three questions together
with suitable metrics, so we can statistically derive answers from measure-
ments (Figure 6.2):

Q1: “Is the product quality improved when the tool is used?” The ques-
tion can be further refined into “Is there a difference for experts and
novices?”, for which we observe the results from experts and novices
separately. First, we need to find out if the tool has actually been

197

6. Validation

applied; this is done based on objective and subjective observations
(active and passive tool usage). The product quality itself is quantified
using the f-measure (Metric M3) that is computed from the proportion
of right and wrong answers (Metrics M1 and M2).

Q2: “Is the process more efficient when the tool is used?” To give an an-
swer here means to track process resources, i.e., time, money, devel-
opers. We focus solely on time (Metrics M4 and M5, because human
resources stay constant, and cost is an indirect result of consumed
time and developers.

Q3: “Is the user less strained when he uses the tool than without?” An
answer to this question is highly subjective to each subject’s expe-
rience with the tool. We use a questionnaire to record the perceived
difficulty and the perceived usability (Metrics M6 and M7). Again, this
question can be contemplated for experts and for novices in isolation.

In order to accomplish our set goal, we explored the following three hy-
potheses:

H1: Effectiveness Subjects who use dependency graphs locate affected
places more effectively than equally classified subjects who do not use
it.

H2: Time expenditure Subjects who use dependency graphs are faster in
performing the maintenance tasks than equally classified subjects who
do not use it.

H3: Perceived strain Subjects who use dependency graphs are less strained

than equally classified subjects who do not use it.

6.4.2. Experiment Design

We varied the availability of the tool (control variable) and took measure-
ments to assess effectiveness, time consumption and perceived strain (re-

198

6.4. Maintaining a QVT-O Transformation Supported by Visual Analytics

Questions required to answer in order to reach goal:

Metrics used to answer each question:

G:

Q1:

M1:

Goal of the study:

Evaluate whether interactive visualization of dependency graphs improves the
maintenance of model transformations.

Is the product quality
higher?

False positives
per task

M3:

M2: False negatives
per task

F-Measure

Q2: Is the process more
time-efficient? Q3: Is the user less

strained?

is derived from

M4: Required time
per task

M5: Required time
for all tasks

M6: Perceived difficulty

M7: Perceived usability

Figure 6.2: GQM plan – Certain metrics (M) are required to answer quantifiable
questions (Q), in order to achieve our goal (G).

sponse variables). We used the following metrics: To evaluate the effective-
ness, we determined the numbers of false positives and false negatives of
each given answer (M1 and M2). Based on these, we used the f-measure with
β = 1 to compute the harmonic mean value of precision & recall (M3). The
f-measure is a widely-used measure for assessing quality of information re-
trieval. It is also suitable for evaluating feature location tasks [WPXZ11].

Subjects were asked to record starting and ending time for each task, so
we could calculate the actual time needed (M4 and M5). Regarding the
subjectively felt level of strain, we asked for the user’s personally experi-
enced difficulty level on six-level Likert items in the post-session question-
naire (M6). We additionally asked tool users for the perceived usability
of the tool (M7).

According to a classification scheme by Juzgado and Moreno [JM01],
this experiment follows a between-subjects design. Its single dimension
tool usage has two levels (with or without). It is a quasi-experiment, since

199

6. Validation

assignment to groups had been done based on information determined from
the pre-questionnaire, rather than purely randomly.

The study had been carried out in an exam-style situation on two bache-
lor students, twelve master students and eight experienced researchers, all
of them reasonably trained in the tools and activities of model transfor-
mation development.

6.4.3. Use Case Scenario

We decided for the PCM2QPN [MKK11] transformation that is part of
the Palladio research project. The transformation PCM2QPN is a QVT-O
program that transforms PCM instances to Queuing Petri Nets (QPNs). It
encompasses 2886 lines of code, plus 952 lines of code distributed over four
library modules. We decided for QVT Operational Mappings because of
its stable integration into the Eclipse Integrated Development Environment
(IDE), its adherence to a language standard, and its wide acceptance. There
is one source metamodel, the PCM, consisting of 154 classes, and SimQPN’s
Petri net model as target model, consisting of 20 classes.

Each subject was asked to perceive certain aspects, and to locate concerns
of a set of change requests to a correct set of code places. In software
engineering, there are typically four types of maintenance tasks [Sal09]:
preventive, corrective, perfective and adaptive. In accordance to this widely
used classification, we name five classes of change requests:

Bug fix request (Corrective): This request is about finding a bug which is
present in the transformation, which can cause either the program not
to compile, or the output to be incorrect. For instance, as a reaction
to modifications to the metamodels, developers need to adapt the
transformation accordingly.

Feature request (Perfective): To match new functional requirements, new
functionality needs to be added, or existing functionality needs to be
changed or removed. Because changes may originate from or have

200

6.4. Maintaining a QVT-O Transformation Supported by Visual Analytics

impact on depending artifacts, feature requests may result not only in
modification of a transformation but also of metamodels, models and
documentation.

Non-functional improvement (Perfective): A perfective task can also tar-
get non-functional requirements, it can even have an impact that is
orthogonal to code structure.

Refactoring request (Preventive): Refactoring means organizing code
structure without adding or removing existing functionality. For in-
stance, a class attribute could be pulled up, which can result in an
attribute assignment being pulled up a rule inheritance chain accord-
ingly.

Environmental change request (Adaptive): Transformation programs do
not function in isolation. Input metamodels change, or language con-
cepts are updated.

Subjects were asked to not perform the actual change, because of the
limited time frame, and because people brought a varying level of knowledge
and experience with QVT-O and the underlying Object Constraint Language.
Subject had to handle the following seven tasks (which can be understood
without knowledge of the PCM and QPN metamodels):

T1: Comprehension task / Searching for keywords

“Where does the transformation create elements in the target model?

Name one example for each of the three variants for element instanti-

ation.”

Subjects had to look for the keywords constructor, object, map-
ping. They were asked to name one example for each instantiation
type, three locations in total. Note that for mappings, non-tool users
had to check for a return type, with implicit instantiation semantics.
Tool users could check write-access edges in the graph, but still had to

201

6. Validation

check the underlying code for the actual used instantiation type. Filter
F4 combined with cross-navigation was the optimal choice. This task
served as a warm-up question.

T2: Comprehension task / Analyzing control flow

“Which call trace leads from the entry method to a method creating

instances of ExternalCallAction? Do not use the debugger or exe-

cute instrumented code.”

A manual depth-first search using the browsing history had to be
conducted, in order to find paths in the overall control flow leading
from the entry method’s node to the target method. Non-tool users
had to use text-based search and hyperlink navigation. Tool users
could use Filter F2, after identifying the target method as a method
having write-access to the named class (Filter F4). The trace was eight
methods deep, and included downcasts regarding the contextual type
of a mapping.

T3: Refactoring request / Analyzing control flow

“Name all unused methods.”

Non-tool users were required to search for occurences of each meth-
od’s name. The transformation’s main file had 41 mappings, 117
helpers, and ten queries. Tool users could check for unreferenced
nodes in the general control-flow view (Filter F1). There were twelve
unused methods in total, seven mappings and five helpers.

T4: Non-functional improvement / Analyzing data element usage

“Assert statements need to be added to check consistency of created

connections. Please name all methods that instantiate objects of type

ConnectionType.”

Subjects had to look for the keywords constructor, object, map-
ping, in conjunction with ConnectionType. Non-tool users had to
use the search command. Tool users could rely on write-access depen-

202

6.4. Maintaining a QVT-O Transformation Supported by Visual Analytics

dencies (Filter F4). There were 33 instantiating methods in total, 30
mapping rules and three helper methods.

T5: Feature request / Analyzing data element usage

“A new subtype of AbstractAction is planned to be added to the

source metamodel. Where are AbstractAction elements handled?

Name all occurrences.”

Here, subjects had to check data dependencies. While non-tool users
had to use the search command, tool users could select Filter F4 and
check outgoing or incoming edges in context of class AbstractAc-
tion. The correct answer included five mappings and five queries,
where two queries were located in an external module.

T6: Feature request / Analyzing data element usage

“Class ForkAction, subtype of AbstractAction, should be used as

blue print for the new subtype of AbstractAction to be added. Where

does the transformation handle the ForkAction element? Name all

occurences.”

The right answer encompasses eight queries and six mappings. Tool
users could check data dependencies in context of ForkAction (Filter
F4), others had to do a text-based search for the name.

T7: Bug fix request / Analyzing data flow for unused class attributes

“Created target models contain objects of class Place with an unini-

tialized attribute departureDiscipline. Identify the buggy lines of

code.”

Only one single mapping did create elements of type Place without
proper initialization. Tool users were able to use Filter F3 in context
of class Place, and check attribute dependencies for each displayed
method.

203

6. Validation

program group

subjects

control group

6 non-experts

5 experts

assigning quasi-randomly, based on experience level
determined from pre-questionaire and/or gradings.

6 non-experts

5 experts

14 students
(2 pre- and 12 post-grads)

8 researchers

Figure 6.3: Grouping of participants during the experiment

6.4.4. Execution

Students participated in two practical training sessions on transformation
development. Training was done by this thesis’ author within scope of a
practical course on MDSD. Each session ended with graded exercise sheets.
We sent our fellow researchers training material to brush up their knowledge
of the QVT-O language.

Assignment to one of the two groups happened randomly. Beforehand,
participants had to fill out a pre-session questionnaire, where they rated their
own expertise level on a five-point Likert item and stated their academic de-
gree. Based on this information, we randomly swapped participants between
both groups so that each group had seven students and four researchers, and
the mean expertise level for both groups was equally balanced (Figure 6.3).

The experiment started with a 30 minutes tutorial on how to use the
tool. Each participant was assigned to one workstation with a preconfigured
Eclipse IDE. Then, subjects were handed out the task sheets, they were asked
to answer tasks in prescribed order, and to note down when they started and
when they ended a task. Subjects could freely partition their available time

204

6.4. Maintaining a QVT-O Transformation Supported by Visual Analytics

to the tasks. Subjects could decide to end a task prematurely, without the
option to resume later. After 75 minutes total, the experiment closed with
a post-session questionnaire. Using a debugger or executing the code was
not permitted. Supervisors frequently inspected subjects to ensure that they
refrained from using unauthorized tools.

6.4.5. Analysis

For analysis, none of the outliers were removed from the data set to retain
the natural results from the study.

H1: Effectiveness For hypothesis H1, we investigated the f-measure. Box-
plots in Figure 6.4a contrast program with control group on a per-task level.
Applying Welch’s one-tailed t-test to the f1-measures at the default sig-
nificance level of α = 0.05, tool users showed a significant improvement
over non-tool users for tasks T2-T6 (p2 = 0.015, p3 = 0.001, p4 = 0.047,
p5 = 0.003, p6 = 0.034). For tasks T1 and T6, Welch’s two-tailed t-test did
not reveal a significant difference (p1 = 0.160, p7 = 0.283). We are able to
reject H1’s corresponding null hypothesis for all tasks but tasks T1 and T7.

H2: Time expenditure For H2 we tested time consumption. Figure 6.4b
shows boxplots for the consumed time per task and added up. Welch’s t-test
had been used to test for significancy. We can confirm hypothesis H2 only
for task T3 with a one-tailed test revealing p = 0.010. For the other tasks,
two-tailed tests did not indicate any significant difference between groups.

H3: Perceived strain H3 was based on subjective data from the ques-
tionnaires. All answers were posed using six-point Likert items, ranging
from “strongly disagree” to “strongly agree”. One question was if subjects
would rate the tasks as difficult to solve (see Figure 6.4c for details). Further
questions asked tool users if they think that the tool helps in understanding,
debugging, refactoring, and extending a previously unknown transformation,

205

6. Validation

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Tasks 1−7

0.00

0.25

0.50

0.75

1.00

Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool Tool ¬Tool

A
cc

ur
ac

y
[F

1
sc

or
e]

(a) Effectiveness calculated from precision & recall

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

0

10

20

30

Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool Tool¬Tool

Ti
m

e
re

qu
ire

d
[m

in
ut

es
] Tasks 1−7

50

60

70

Tool ¬Tool
Ti

m
e

re
qu

ire
d

[m
in

ut
es

]
(b) Timing

Difficulty

Strongly
 disagree

Disagree

Rather
 disagree

Rather
 agree

Agree

Strongly
 agree

Tool ¬Tool

S
ub

je
ct

iv
e

ra
tin

g

(c) Rating of the over-
all task difficulty

Understanding Debugging Refactoring Extending

Strongly
 disagree

Disagree

Rather
 disagree

Rather
 agree

Agree

Strongly
 agree

Expert Novice Expert Novice Expert Novice Expert Novice

S
ub

je
ct

iv
e

ra
tin

g

(d) Rating of the tool’s ability to assist at one of the tasks,
grouped by experts and novices

Figure 6.4: Measured response variables†

† In the boxplots, individual values are marked as dots jittered horizontally (and for discrete
values also vertically) by a random value. A cross marks the mean, and a bar the median
value.

206

6.4. Maintaining a QVT-O Transformation Supported by Visual Analytics

based on their experience they gained at the respective task. Figure 6.4d
shows respective boxplots. Mean values report that non-tool users found
the tasks to be “rather hard”, while tool users found the tasks to be “rather
easy”. Additionally, tool users rated the tool’s usability for understanding,
debugging, and refactoring a transformation on a six-level Likert item. On
average, participants agreed that the tool helps in all four disciplines.

6.4.6. Discussion

H1: Effectiveness Effectiveness is significantly improved for all tasks
except the first and the last. For the first task, thought to be a warm-up
exercise, we argue that even if tool users could profit from navigating the
graph, they would still have to check the underlying code for the keywords,
making tool-based navigation only slightly better than a common text-based
search. Many users did not find enough time for the last task, four out of
eleven non-tool users and three out of eleven tool users did not even begin
to process this task. A known problem lies in the tool’s inability to detect
attributes accessed from within a constructor.

H2: Time expenditure The overall expenditure of time was almost in-
different. Task T3 was solved significantly faster, and with better results.
This indicates that for some maintenance tasks our approach produces much
better results than for others.

H3: Perceived strain According to the ratings, tool users perceived the
same tasks less difficult than non-tool users. Based on their experiences,
most tool users found the tool to support understanding, debugging, refactor-
ing and extending transformations, although to a limited extend. Novices
were less convinced of the tool’s help for debugging tasks. We expect de-
velopers to prefer the Eclipse debugging perspective over static analysis
for most types of bugs.

207

6. Validation

Because of a significant improvement of the overall effectiveness, the
indifferent overall expenditure of time, and a less perceived strain, we are
able to attribute a higher efficiency to tool users. Results show that for some
tasks, the abstraction level offered by our tool is too high.

6.4.7. Threats to Validity

Some aspects of our study and its participants may have caused biased
results.

Construct validity The study’s primary construct is the use of data and
control dependencies to locate concerns. The choice of change requests was
carefully chosen to represent a real-life situation. We are aware that there are
change requests which are not in alignment to data flow and code structure,
e.g. cross-cutting concerns, others require finer-grained knowledge, e.g. de-
tails of the program code. For instance, the tool’s program analysis did miss
two dependencies, resulting in a slightly smaller recall value for task T5
(cf. Figure 6.4a). A second threat is due to the metrics we used. In feature
location scenarios, using the f-measure is considered as a common method
to compare product-related quality [WPXZ11]. Since people could freely
partition their available time to the tasks, recorded times are not accurate, par-
ticularly towards the end. Subjective ratings need to be treated with care.

Internal validity Blind testing was not possible for the subjects could
easily conclude from the experiment setup that the tool was under test, but
people were assigned to one group at the latest possible time. Subjects were
equally trained, we gave advice for each task on how to optimally use the
tool and an alternative IDE feature. None of the subjects were involved in the
tool’s development. We refrained from asking subjects to perform the actual
maintenance task, because we expect the tool to show its particular strength
in understanding code and locating concerns rather than in editing code.

208

6.4. Maintaining a QVT-O Transformation Supported by Visual Analytics

External validity Generalizability is threatened by the fact that we in-
vestigated only a single transformation written in a single transformation
language. We are confident the transformation together with the two incor-
porated Ecore metamodels, the Palladio Component Model and the Queuing
Petri Net, reflect industrial quality standards. Program and model artifacts
had been reviewed at least once. We also believe that our mix of novices and
experts approximated to a real-world situation. We compared our tool to the
bare Eclipse QVT-O environment, as we do not know of similar tools for
QVT-O. Yet, by further equipping non-tool users with diagrammatic visual-
izations as those suggested by van Amstel et al. [vAvB11], we could check if
our interactive approach would outcompete a static visualization approach.

6.4.8. Evaluation Summary

Results obtained from the experiment show that subjects using our approach
were significantly more efficient and effective carrying out maintenance
tasks. Therefore, the experiment is able to demonstrate efficiency of the
visual analytics approach. Beyond this, results suggest that it is the large
number of dependencies among metamodel elements and transformation
rules that hampers understandability of model transformations.

Our study indicates that maintenance processes can be heavily improved
by revealing dependency information to maintainers. Instead of utilizing
program analysis techniques, transformation languages could proactively
provide concepts to let programmers explicitly declare dependencies for
program elements, e.g., rules and modules. Since prevalent module con-
cepts are coined towards reuse rather than maintenance [WKK+12b], we
recommend to use our module concept from Chapter 3 that allows to declare
dependencies upfront.

However, for existing transformations that do not use a module concept
with explicit interfaces, a module’s dependencies can be derived automati-
cally with our approach. For transformations with non-existent or insufficient
module structure, a clustering algorithm based on this dependence informa-

209

6. Validation

tion can even automatically propose suitable modular structures [DYM+08],
as presented in Chapter 5.

6.5. Re-Engineering QVT-O and Xtend Transformations with
Automatic Clustering

In this section, we validate the clustering approach from Chapter 5. Two real-
world transformations are clustered twice, once manually by an expert, and
another time using our automatic approach. Results are compared against
each other, and analyzed for their differences.

The approach relies on static analyzers to extract call and model depen-
dencies, as well as the existing modular structure, from parsed syntax trees
of programs in the respective transformation language. Dependence and
structure analysis (cf. Figure 5.2) are fully automated steps. For the purpose
of this case study, we have implemented the steps for two transformation
languages: for the QVT-O M2M transformation language as it is available
under Eclipse, and for the Xtend language, an extensible language com-
monly used to build M2T transformations6. Both analysis transformations
have been implemented in Xtend. As highlighted in Section 5.7, further
transformation languages can be added.

To demonstrate applicability and an increased value of our approach,
we have clustered two real-world transformations: We use the similarity
measures introduced in the previous section to compare automatically de-
rived clusterings with a clustering done manually by an experienced de-
veloper. We conceive sample clusterings with a higher similarity to the
expert clustering as superior.

We proceed as we did for previously described experiments: Based on
Basili’s template, we define our validation goals (Section 6.5.1) and derive
the hypotheses and variables of the experiment as part of the experimental

6 Implementations as well as example transformations and data obtained from our studies can
be downloaded from http://qvt.github.io/tca.

210

http://qvt.github.io/tca

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

design (Section 6.5.2). Then, we present both transformations under study,
one after the other (Section 6.5.3), explaining for each the steps executed to
obtain a clustering, analyzing and discussing the results. The section ends
with a list of potential validity threats (Section 6.5.6) and an evaluation
summary (Section 6.5.7).

6.5.1. Validation Goals

We set our goal for this study as follows:

G: “Analyze the automatic clustering approach (object), for the purpose of
evaluation (purpose), with respect to product quality and effectiveness

(quality focus), from the point of view of transformation developers

re-engineering the modular structure (perspective)”

We want to show that the automatic clustering approach produces cluster-
ings which have a comparable or even better modularization quality (equal
quality), and which show a higher resemblance to what a human expert
developer would have produced by hand (improved effectiveness), when
compared to existing clustering approaches. Quality and effectiveness should
be assessed from a transformation developer’s perspective who is supposed
to refactor and maintain the model transformation at hand.

For each of the two aspects, quality and effectiveness, we formulate ques-
tions and define metrics that are going to be used to find an answer to the
questions (cf. Figure 6.5):

Q1: “Is the outcome of equal or better quality?” The question is to be
answered when comparing the approach to existing automatic solu-
tions and a manual clustering. As metrics, the number of clusters
(Metric M1) and an objective measure to calculate the modularization
quality, with and without model elements (Metrics M2 and M3), are
needed.

211

6. Validation

Q2: “Is the outcome similar to the expert’s solution?” Again, similarity
to a given manual clustering is observed for automatic clusterings
derived using our approach and existing approaches. We chose three
established similarity measure, Precision & Recall, EdgeSim, and
MeCl (Metrics M4 to M6).

In order to accomplish our set goal, we explored the following two hy-
potheses:

H1: Quality Clusterings produced by the automatic approach while incor-
porating model use dependencies are not of lower quality than cluster-
ings produced by the automatic approach using control dependencies
alone, and manually derived clustering.

H2: Effectiveness Clusterings automatically derived by incorporating con-
trol and model use dependencies are more similar to an expert cluster-
ing than clusterings automatically derived using control dependencies
alone.

6.5.2. Experiment Design

The experiment had two control variables. Firstly, we varied the transfor-
mation under study, and secondly, we tested three different configurations
for the clustering algorithm:

• control dependencies alone,

• control dependencies and model dependencies at the package level,
and

• control dependencies and model dependencies at the class level.

We used six different metrics to assess quality and effectiveness (response
variables) as follows. Quality (cf. Question Q1) has been measured in three

212

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

Questions required to answer in order to reach goal:

Metrics used to answer each question:

G:

Q1:

M1:

Goal of the study:

Evaluate whether the automatic clustering approach emulates expert clustering better
than existing approaches.

Is the outcome of equal or better
quality?

Number of Clusters

M3:

M2: Modularization Quality
(with model elements)

Modularization Quality
(without model elements)

Q2: Is the outcome similar to the expert’s
solution?

M4: Precision and Recall

M5: EdgeSim

M6: MergeClumps

Figure 6.5: GQM plan – Certain metrics (M) are required to answer quantifiable
questions (Q), in order to achieve our goal (G).

ways: Metric M1 observes the number of clusters produced. Despite being
only a weak reference point, a derived clustering which contains only few or
much more partitions than an expert clustering can be deemed as less usable.
Metrics M2 and M3 both use the MQ index as a numerical measure for
cohesion and coupling. The automatically obtained clustering maximizes the
MQ value based on control and model elements (Metric M2), but a manual
expert clustering does not take these into account. To compare the quality
of automatically and manually derived clusterings an MQ value computed
solely on control elements (Metric M3) is required.

To ascertain the effectiveness (cf. Question Q2), we used the same three
similarity measures that are utilized by the approach to assess results from
different configurations, Precision & Recall (Metric M4), EdgeSim (Metric
M5), and MeCl (Metric M6). Their specific characteristics have already
been extensively discussed in Section 5.6.

213

6. Validation

6.5.3. Use Case Scenarios

Both the transformations that we use for this case study, PCMEvents2PCM
and PCM2SimuCom, were developed as part of the Palladio approach and
play a pivotal role in the approach’s implementation. The PCMEvents2PCM
transformation is a QVT-O transformation that refines the PCM, and the
PCM2SimuCom is an Xtend transformation that maps instances of the PCM
to simulation code.

6.5.4. Scenario 1: QVT-O Transformation from PCM with
Events to PCM

The first transformation under study replaces high-level concepts for event-
based modeling with core concepts in the PCM [RKSK13]. It has been
described in greater detail in Rathfelder’s doctoral thesis [Rat13]. The
PCMEvents2PCM transformation works in-place, meaning that the out-
put model is a modification of the input model. With the transformation
executed as a preprocessing step, subsequent transformations (including
the one discussed in the second case study below) do not have to deal with
event-based concepts. The transformation had been implemented in QVT-
O [Obj11], a model-to-model transformation language that augments the
OCL with imperative transformation concepts.

The expert decomposition (Table 6.3) has a flat hierarchy of modules: mod-
ule Main imports almost all other modules. The implementation maintains
two registries of model parts that are successively added to eventually re-
place event-based modeling concepts; in the expert decomposition, these are
encapsulated by modules SEFFRegistry, OperationSignatureRegistry
and EventChannelMiddlewareRegistry. Apart from Main, only five mod-
ules import modules themselves. There are two helper modules, Finder and
Commons, that define general-purpose helper functions to find and manip-
ulate PCM concepts.

214

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

Table 6.3.: PCMEvents2PCM – Dependence matrix of expert decomposition (aster-
isk denotes module with entry point)

M
ai

n
Fi

nd
er

C
om

m
on

s
Va

ri
ab

le
U

til
So

ur
ce

Po
rt

So
ur

ce
C

om
m

un
ic

at
io

n
So

ur
ce

Si
nk

Po
rt

Si
nk

C
om

m
un

ic
at

io
n

Si
nk

SE
FF

U
til

SE
FF

R
eg

is
tr

y
O

pe
ra

tio
nS

ig
na

tu
re

R
eg

is
tr

y
In

te
rf

ac
eU

til
E

ve
nt

Fi
lte

r
E

ve
nt

D
is

tr
ib

ut
io

n
E

ve
nt

C
ha

nn
el

M
W

R
eg

is
tr

y

∗Main (a) 7 7 7 7 7 7 7 7 7 7 · 7 7 7 7 7

Finder (b) · · · · · · · · · · · · · · · ·
Commons (c) · · · · · · · · · · · · · · · ·

VariableUtil (d) · · 7 · · · · · · · · · · · · ·
SourcePort (e) · · 7 · · · · · · 7 · · · · · ·

SourceCommunication (f) · · 7 · · · · · · 7 · · · · · ·
Source (g) · · · 7 · · · · · · · 7 · · · ·

SinkPort (h) · · 7 · · · · · · 7 · · · · · ·
SinkCommunication (i) · · 7 · · · · · · 7 · · · · · ·

Sink (k) · · 7 · · · · · · 7 · 7 · · · ·
SEFFUtil (m) · · · 7 · · · · · · 7 7 · · · ·

SEFFRegistry (n) · · · · · · · · · · · · · · · ·
OperationSignatureRegistry (o) · · · · · · · · · · · · · · · ·

InterfaceUtil (p) · · · · · · · · · · · · 7 · · ·
EventFilter (q) · · 7 · · · · · · · 7 · · · · ·

EventDistribution (r) · · 7 · · · · · · · 7 · · · · ·
EventChannelMWRegistry (s) · · · · · · · · · · · · · · · ·

6.5.4.1. Execution

For deriving partitions from this transformation with Bunch, we use a weight
configuration of

〈Wwrite, Wread, Wnavigate, Wcall, Wpackage, Wreference, Wcontain, Winherit 〉 :=
〈15, 5, 0, 10, 15, 0, 0, 0 〉

Weights for outgoing and incoming model dependencies are at Wwrite =

15 and Wread = 5, respectively. Through this, we achieve a target-driven
decomposition, but still respect source elements in case of query methods

215

6. Validation

Table 6.4.: PCMEvents2PCM – Alternative clusterings
Configuration Statistics Similarity to expert clustering

Cluste
rs

M
Q

index

wo./
w. m

od
els

Prec
isi

on

&
Reca

ll

Edge
Sim

M
eC

l

Expert clustering
Derived manually 17 6.296 100% 100 100%

— 100%

Method-call dependencies only
Hill Climbing, Weighted MQ 9 4.470 14.397% 46.73 -1260%

— 24.194%

Package-level dependencies
Hill Climbing, Weighted MQ 7 5.068 14.224% 54.34 -550%

3.973 31.935%

Class-level dependencies
Hill Climbing, Weighted MQ 16 5.760 35.461% 62.50 -290%

6.271 32.258%
Hill Climbing, Weighted MQ 8 2.889 36.143% 78.80 -110%
(design. lib. Finder, Commons) 6.271 71.935%

that miss output dependencies. With Wcall set to 10, average attention is
payed to the method call structure. Because we want to modularize the
transformation based on the package structure of the PCM if clustering at the
class-level, we weighted package containment dependencies at Wpackage =

15. References and inheritance dependencies of classes are omitted. The
remaining weights are set to zero. Please see Section 5.3.4 for an explanation
of the vector’s components.

We derived partitions based on three different levels, on method-level
alone, on package-level, and finally on class-level. We configured Bunch’s
hill climbing with the parameter set from Section 5.4. For each of the par-
titions we computed modularization quality and similarity metrics when
compared to the expert clustering. We use the three measures Precision/Re-
call, EdgeSim, and MeCl (as discussed in Section 5.6.2) to assess similarity
between the automatically derived clustering and a reference clustering that
had been done manually by an expert developer. Results of all four runs
we carried out are given in Table 6.4.

216

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

6.5.4.2. Analysis

When we confined the input graph to methods and call dependencies in the
first run, we obtained nine clusters, with an MQ value of 4.470, which is
29% worse than the expert partition’s 6.296. All three similarity metrics
indicate a relative high dissimilarity.

In a second run, we added model packages and read/write dependencies at
the package-level. Bunch produced seven clusters, with a slightly improved
MQ value of 5.068 (that is, without considering model elements). With both
EdgeSim at 54.34 and MeCl at −550%, the partition showed more similar-
ities with the expert partition than the partition from the first run, because
Bunch started to group methods based on the output dependencies. For ex-
ample, methods that generate elements from the Service Effect Specification
(SEFF) package were grouped together, like they had been encapsulated
into modules SEFFUtil and SEFFRegistry by the expert. When looking
at the transformation under study, many methods collect data from vari-
ous places in the input model and therefore depend on multiple packages.
Hence, the clustering algorithm can insufficiently group methods by their
package responsibilities alone.

Our third run integrated classes and class-level dependencies into the
input graph, for which Bunch identified 16 clusters. The modularization
quality, according to an MQ index of 5.760, is almost as good as that of the
expert clustering. All three measurements agree that similarity is higher than
for the previous ones: Precision & Recall, EdgeSim and MeCl are at their
highest of 35.461, 32.258, 62.50, and −290%, respectively.

Finally, in a fourth experiment, we marked generic queries and helper
methods as designated library methods. With this information, Bunch was
able to produce a clustering that is even more similar to the expert’s variant.
Interestingly, the MQ value without model elements turned out to be the
worst of the series (2.889). A very likely reason for this effect is that having

217

6. Validation

outsourced many of the helper methods into a designated library module
increases coupling.

Since Bunch uses randomization, results vary on each run. To reenforce
our confidence about the added value of class-level dependencies, we re-
peated the first and fourth runs four times in addition each and applied
Wilcoxon’s rank sum test in two-sided mode.

H1: Quality The MQ value without model elements is slightly worse for
the class-level decomposition due to class dependencies being optimized as
well but not considered here. There is no statistically significant difference
nevertheless (p = 0.056 > 0.05, the typical confidence limit). Therefore, we
can reject H1’s corresponding null hypothesis.

H2: Effectiveness Precision did also not significantly improve (p =

0.056) but Recall, EdgeSim and MeCl (p = 0.008 for all three tests). Hence,
we are able to reject the null hypothesis of H2.

6.5.4.3. Discussion

In the following, we discuss a partition obtained from the last run (class-
level dependencies, designated library methods). Figure 6.6 shows the seven
clusters that had been output by Bunch. Nodes of model elements, as well
as the eighth cluster that contains the helper methods, had been removed to
improve readability. The Bunch-generated clusters had been enumerated for
reference; assigned numbers are indicated by circled numbers. The expert
clustering has been made visible in three ways for ease of comparison: a
small letter in bold (from the enumeration in Table 6.3), a color code, and
the prefixed module name.

The most obvious difference is the much smaller number of clusters (8 as
opposed to 17). Although Bunch automatically outputs partitions at varying

218

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

(SS-L4):class_repository_OperationRequiredRole

helper_SinkCommunication_create

helper_SinkCommunication_createComponent

helper_EventFilter_create

helper_EventFilter_createComponent
helper_SourceCommunication_createComponent

helper_SourceCommunication_create

helper_SourcePort_create

helper_SourcePort_createComponent

helper_SEFFUtil_createForwardingExternalCallAction

helper_SEFFUtil_createForwardingSEFF

helper_Main_processSourceRoleDirectConnection helper_Sink_adoptAndConnect

helper_SEFFUtil_createStopAction

helper_SEFFUtil_createSEFFWithBranchAction

helper_SEFFUtil_createStartAction

helper_SEFFUtil_createGuardedBranchTransitionWithOnlyStartToStop

helper_SEFFUtil_createGuardedBranchTransitionWithExternalCall

helper_Main_Transformation_weaveInMiddleware

helper_Main_Transformation_connectComponentToMiddleware

(SS-L4):helper_SinkPort_createComponent

helper_Main_removeEventModelElements

helper_Main_processSourceRole

helper_SEFFUtil_createEmptyBranchActionhelper_SinkPort_createComponent

helper_SEFFUtil_createForkBehaviour

(SS-L4):package_repository

helper_InterfaceUtil_createOperationInterface

helper_Main_createOperationInterfaces

helper_InterfaceUtil_createOperationSignature

helper_Sink_adoptAndConnect2

helper_OperationSignatureRegistry_findOperationInterface2

helper_OperationSignatureRegistry_findSignature

helper_SEFFUtil_switchToOperationSignature

helper_OperationSignatureRegistry_findOperationInterface

helper_OperationSignatureRegistry_getCombinedIdentifier

helper_OperationSignatureRegistry_registerSignature

helper_Source_transformEmitEventActions

helper_Source_createExternalCallAction

helper_SEFFUtil_addExternalCallActionToSeff

mapping_Sink_createSinkOperationProvidedRole

(SS-L4):helper_Main_processSourceRoleChannelConnection

helper_Sink_connectComponent

helper_EventChannelMiddlewareRegistry_getIdentifier

helper_EventChannelMiddlewareRegistry_find

helper_Sink_connectComponent2

helper_SinkPort_create

helper_Main_processSourceRoleChannelConnection

(SS-L4):helper_EventDistribution_addSinkRequiredRole

helper_VariableUtil_createVariableUsage

helper_VariableUtil_buildCompleteForwardingVariableUsageSet

helper_VariableUtil_createDefaultVariableCharacterisation

helper_VariableUtil_completeVariableCharacterizations

helper_VariableUtil_createVariableCharacterisation

helper_VariableUtil_createVariableUsage2

helper_Main_Transformation_createVariableUsage

helper_VariableUtil_createVariableReference

helper_EventDistribution_addSinkRequiredRole

helper_EventDistribution_createComponent

helper_EventDistribution_create

(SS-L4):class_repository_OperationSignature

helper_SEFFRegistry_findSEFF

helper_SEFFRegistry_getCombinedIdentifierhelper_SEFFUtil_createBasicSEFFWithForkAction helper_SEFFRegistry_registerSEFF

helper_SEFFUtil_createForkAction

(SS-L4):class_allocation_Allocation

helper_Main_setupCentralMiddleware

entry_Main_main

helper_EventChannelMiddlewareRegistry_register

helper_Main_setupEventChannelMiddleware

1 2

3 4

5 6

7

a

a

a

s

a

a

a

a

a

a

a

a

h

m

m

o

o

o

o

o

g

g

m

m

n

n

n

m

m m

m

m

m

q

q

d

d

d

d

d

d

d

r

r

r

m

m

p

p

m

i

i

f

f

e

e

k

k

k k

h

k

s

s

Figure 6.6: PCMEvents2PCM transformation – Bunch-derived clustering based
on class-level dependencies (classes and designated library methods
removed) vs. expert clustering (denoted by small letters in bold)

219

6. Validation

levels of detail, this is the level with the most useful average cluster size
according to Bunch7.

Small letters in bold indicate the affinity to clusters in the expert partition.
Bunch decided to distribute methods of the main module (depicted in gray)
to multiple clusters, leaving only three methods in the main module (cluster
one). This has a positive effect on the module use hierarchy, which is much
less flat than the expert’s partition. The second cluster’s responsibility is
less clear; createComponent of SinkCluster should rather be moved to
cluster three, and SEFFUtil’s methods semantically belong to cluster five.
Responsibility of the remaining clusters is more obvious (as indicated by
their names): cluster four, for instance, collects methods that modify elements
from the repository package, clusters five and seven are more specifically
concerned with package SEFF, and cluster six with class VariableUsage.

Many modules (represented by the clusters) contain several methods that
are used solely internally. These methods should not be exposed to other
modules, as they are implementation-specific. With the newly proposed
interface concept for QVT-O, we can hide implementation-specific methods
from clients. The dependence information at hand can be used to determine
the set of methods relevant for users of a module.

Some common helper functions from Commons and Finder can be
safely moved to a single module if they are used by this module alone.
Although helper methods had been put into a dedicated cluster, it could
make sense to reassess if they should have global visibility; if a method
is expected to be useful only to a single module, it might be reasonable
to make it a private method of that module. Some helper methods, like
createAllocationMethod are only used internally by other common
helper methods, in this case createAssemblyContext, and can be hid-
den from client modules. When defining interfaces for each of the modules

7 The Bunch developers have found the median level of the subsystem hierarchy obtained from
hierarchical clustering heuristics to provide a reasonable tradeoff between the number of
clusters and the sizes of the individual clusters [Mit02].

220

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

Table 6.5.: PCMEvents2PCM – Dependence matrix of class-level clustering (entry
point indicated by an asterisk)

1 2 3 4 5 6 7 8
∗1 7 7 7 · · · 7

2 · 7 · 7 · · 7

3 · 7 7 7 7 · 7

4 · · 7 · 7 · 7

5 · 7 7 7 7 7 7

6 · 7 · · · 7 7

7 · · · · 7 · 7

8 · · · · · · ·

represented by a cluster, it can be easily checked which of the methods
should be public and thus part of the interface definition, and which pri-
vate to the module.

A downside of Bunch is that many clusters have mutual dependencies.
According to the class-level dependence matrix, this partition has five oc-
currences of direct dependencies (cf. Table 6.5). While cyclic dependencies
are possible with our module concept for QVT-O, any good design should
avoid them (acyclic dependencies principle [Mar96]). Removing mutual
dependencies must be done manually, since Bunch’s clustering algorithms
cannot ensure acyclicity.

6.5.5. Scenario 2: Xtend Transformation from PCM to
SimuCom

The second transformation under study is a model-to-text transformation that
is used in context of the Palladio project. It has already been employed in an
earlier case study we presented in Section 6.3. Palladio relies upon a transfor-
mation that translates instances of PCM models to Java code with references
to the SimuCom simulation framework. The PCM is translated to different
targets as well, for instance mappings to POJOs, to EJB, and to a performance
prototype (ProtoCom). Therefore, a componentization of PCM-related trans-
formations is important to ensure reusability of shared functionality.

221

6. Validation

Reusability has been achieved by the template method design pattern.
Target-independent functionality is factored out into abstract classes with ab-
stract methods. Each target does then concretize the abstract classes. The set
of subclassing templates for generating the SimuCom target, for example, is
prefixed by Sim. Mentioned design is further discussed by Becker [Bec08a].
In the following, we abstract away from this reuse technique, because it rests
upon inheritance, a whitebox technique – module SimAllocation, for in-
stance, is internally implemented by the eponymous class SimAllocation
and superclass Allocation.

Table 6.6 displays dependencies that occur among the 20 modules of
the expert clustering. The transformation comprises four separate sub
transformations whose entry points are contained in distinct modules, one
for each viewpoint of the input model: the component repository (main
module SimRepository), the system composition (main module System),
the usage model (main module SimUsage), and the resource allocation
(main module SimAllocation). Modules Sensors, PCM, and JavaNames

group query methods that are generally useful for two or more modules.
Module JavaNames provides 54 methods used by all other modules. De-
spite the experts endeavor to avoid cycles, there are three occurrences
of mutual dependencies, pair SimJavaCore and SimProvidedPorts, pair
SimUsageFactory and SimUsage, and pair SimUsage and SimUserAc-

tions.

6.5.5.1. Execution

Template-based designs facilitate a target-driven decomposition: methods for
generating content of a particular file are often clustered into a single module
for optimal coupling and cohesion. To reflect this design principle, we chose
a weight configuration of 〈40,5,5,20,5,0,0,0〉 for the clustering algorithm.
This configuration makes target dependencies the top priority (Wwrite = 40),
seconded by call dependencies with Wcall = 20 and followed by equal values
for source model dependencies and package containment dependencies

222

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

Table 6.6.: PCM2SimuCom – Dependence matrix of expert decomposition (asterisks
indicate main modules)

Si
m

A
cc

ur
ac

y
Si

m
A

llo
ca

tio
n

Si
m

C
al

cu
la

to
rs

Si
m

C
al

ls
Si

m
C

om
po

se
dS

tr
uc

tu
re

Si
m

C
on

te
xt

Pa
tt

er
n

Si
m

D
um

m
ie

s
Si

m
Ja

va
C

or
e

Si
m

Pr
ov

id
ed

Po
rt

s
Si

m
R

ep
os

ito
ry

Si
m

R
es

ou
rc

es
Si

m
SE

FF
B

od
y

Si
m

Se
ns

or
s

Si
m

U
sa

ge
Fa

ct
or

y
Si

m
U

sa
ge

Si
m

U
se

rA
ct

io
ns

Sy
st

em
Se

ns
or

s
PC

M
Ja

va
N

am
es

SimAccuracy (a) · · · · · · · · · · · · · · · · · · ·
∗SimAllocation (b) 7 · · · · · · · · · · · · · · · · 7 7

SimCalculators (c) · · · · · · · · · · · · · · · · 7 7 7

SimCalls (d) 7 · · · · · 7 · · · 7 · 7 · · · 7 7 7

SimC’dStructure (e) · · · · · · · · · · · · · · · · · 7 7

SimC’tPattern (f) · · · · · · · · · · · · · · · · · · 7

SimDummies (g) · · · · · · 7 · · · · · · · · · · · 7

SimJavaCore (h) · · · · · 7 · 7 · · 7 · · · · · · 7 7

SimProvidedPorts (i) · · · · · · · 7 · · · · · · · · · · 7
∗SimRepository (k) · · · · 7 7 · 7 7 · · · · · · · · · 7

SimResources (m) · · · · · · · · · · · · · · · · · · 7

SimSEFFBody (n) 7 · · 7 · · · 7 · · 7 · · · · · · 7 7

SimSensors (o) · · · · · · · · · · · · · · · · · · ·
SimUsageFactory (p) · · · · · · · · · · · · · 7 · · · 7 7

∗SimUsage (q) · · 7 · · · 7 · · · · · 7 7 7 · · 7 7

SimUserActions (r) · · · 7 · · · · · · · · · · 7 · · · 7
∗System (s) · · · · 7 7 · · 7 · · · · · · · · · 7

Sensors (t) · · · · · · · · · · · · · · · · · · ·
PCM (u) · · · · · · · · · · · · · · · · · · ·

JavaNames (v) · · · · · · · · · · · · · · · · · · ·

(Wread =Wpackage = 5). Source model dependencies are again considered at
both the package and class level, whereas target model dependencies are
considered at the file-level.

As we did for transformation PCMEvents2PCM, we initially applied
Bunch on method-level dependencies alone, before we added model depen-
dencies and predetermined a set of library methods. We consistently used
Hill Climbing with the parameter set from Section 5.4. Table 6.7 shows
results for the five automatically derived partitions, and the expert partition

223

6. Validation

Table 6.7.: PCM2SimuCom – Alternative clusterings
Configuration Statistics Similarity to expert clustering

Cluste
rs

M
Q

index

wo./
w. m

od
els

Prec
isi

on

&
Reca

ll

Edge
Sim

M
eC

l

Expert clustering
Derived manually 20 6.034 100% 100 100%

— 100%

Method-call dependencies only
Hill Climbing, Weighted MQ 10 4.896 13.259% 50.63 -6600%

— 29.836%

Package-level dependencies
Hill Climbing, Weighted MQ 12 5.275 18.442% 57.01 -6120%

5.450 23.729%
Hill Climbing, Weighted MQ 13 7.310 37.889% 84.81 -2380%
(design. lib. JavaNames, PCM) 6.600 38.278%

Class-level dependencies
Hill Climbing, Weighted MQ 14 6.560 16.081% 51.91 -6280%

7.873 17.634%
Hill Climbing, Weighted MQ 25 10.741 48.695% 88.63 -1380%
(design. lib. JavaNames, PCM) 15.835 59.192%

for comparison. Again, we used MQ to measure modularization quality, and
Precision/Recall, EdgeSim, and MeCl to measure the degree of similarity.

6.5.5.2. Analysis

The partition we received from the first run had been derived from method-
level call dependencies alone. Ten clusters had been produced, which evalu-
ate an MQ value of 4.9 that is the lowest of all three runs. All four similarity
measurements attest a low degree of similarity with the expert clustering.

For the second run, we added model dependencies, at the package and
file level for source and target, respectively. This produced a better modular-
ization quality even sans model dependencies (MQ = 5.275), and a higher
similarity (despite a smaller recall ratio).

In a third run, we considered class level dependencies. Despite a higher
rated quality, similarity is worse than for the second run’s results. We carried
out a fourth and fifth run on the package and class level, respectively, but

224

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

(SS-L4):def_out_SimJavaCore_componentImplementationForImplComponentTypesAndSubSystems

def_SimRepository_componentRoot3

entry_SimRepository_root

def_SimCompletions_innerCompletionComponent

def_SimRepository_componentRoot2

def_SimJavaCore_innerImplementation

def_SimJavaCore_superClassesTM

def_SimJavaCore_classHeader

def_SimJavaCore_componentImplementationChildClassTM

def_out_SimJavaCore_componentImplementationForImplComponentTypesAndSubSystems

def_SimJavaCore_innerImplementation2

def_SimJavaCore_componentPackage

def_SimJavaCore_innerImplementation3

def_SimJavaCore_componentConstructorTM

def_SimJavaCore_specificImplementationPartTM

file_def_out_SimJavaCore_componentImplementationForImplComponentTypesAndSubSystems

def_SimJavaCore_componentImplementation2

def_SimJavaCore_componentImplementation

def_SimJavaCore_componentImplementation3

def_SimRepository_componentRoot
10k k

k

k

h

*

h

h

hh

h

h

h

h

h

h

h

h

h

Figure 6.7: PCM2SimuCom transformation – Bunch-derived clustering of cluster
#10 based on package and file-level dependencies (packages removed)
vs. expert clustering (denoted by small letters in bold)

we explicitly put helper methods from modules JavaNames and PCM into
a dedicated module. Interestingly, both runs produced much better results
in terms of quality and similarity. This indicates that crosscutting modules
have a strong impact on the outcome.

To demonstrate a significant improvement of class-level clustering over
method-level clustering, we again executed each clustering five times and
applied Wilcoxon’s rank sum test on the observation.

H1: Quality The MQ value improved only insignificantly (p = 0.952).
Since there is no significant change, we can reject the null hypothesis cor-
responding to H1.

H2: Effectiveness While the MQ value improved only insignificantly,
with a high confidence we can attest a higher similarity to the expert de-
composition according to Precision, Recall, EdgeSim and MeCl (p-values
are 0.008, 0.008, 0.012, and 0.008, respectively). Therefrom, H2’s null hy-
pothesis is rejected.

225

6. Validation

Table 6.8.: PCM2SimuCom – Dependence matrix of package-level clustering (aster-
isks indicate modules with entry points)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 7 · 7 7 · · · 7 · · · · · · · 7 · · · · · · · 7

2 7 · 7

3 7 · · · · 7 · · · · · · · · · · · · · · · · · 7

4 · 7

5 7 · 7

6 · 7

7 · · 7 · · · · · · · · · · · · · · · 7 · · · · 7

∗8 · · 7 · · · 7 7 · · · · 7 · · · 7 · 7 · · · · 7

∗9 · · 7 · · · · · · · · 7 · · · · · · · 7 7 · 7 7

10 · · 7 · 7

11 · · · · · · · · · · · · · · · 7 · · · · · · · 7

12 · · 7 · · · · 7 · · · · · · · · 7 · · · · · · 7

13 · · 7 · · · · · 7 · · · · · · · · · 7 · 7 · · 7

∗14 · · · · · · · 7 · · · · · · · · 7 · · · · · · 7

∗15 · · · · · · · · · · · · · · 7 · · · · · · · · 7

16 · · · · · · · · · · · · · · 7 · · · · · 7 · · 7

∗17 7 · · · · · · · 7 · · · · · · · · 7 7 · · · · 7

18 · · · · · · · 7 · · · · · · · · · · · · · · · 7

19 · · · · · · · · · · · 7 · 7 · · · · · · · · · 7

20 · · 7 · · · · 7 · · · · · · · · · · · · · · 7 7

21 · · · · · · · · · · · · 7 · · · · · · · · · · 7

22 · · · · · · · · · · · · 7 · · 7 · · · · · · · 7

∗23 · · · · · 7 · · · · · · · · · · · · · · · · · 7

24 · · · · · · · · · · · · 7 · · · · · · · · · · 7

25 ·

Next, we take a closer look at one of the five partitions from the last
run, where class-level dependencies with predetermined helper methods
had been considered.

6.5.5.3. Discussion

With a little over 400 methods and over 200 referenced classes, the partition is
too big to be shown as a whole. Figure 6.7 depicts merely one cluster, cluster

226

6.5. Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering

number ten of this partition8. The expert clustering is captured by small
letters in bold, by a color code, and by the prefixed name. The shown cluster
groups those methods of module JavaCore that produce textual output for
a generated file (represented by the encircled node). These methods are only
used by the SimRepository template, and thus cause Bunch to include them
to this cluster. A single method belongs to a template that has been omitted
in our dependence matrix in Table 6.6, it has been marked by an asterisk.

Without file dependence information, this partition obviously cannot be re-
engineered from the method dependence graph automatically, as evidenced
by the first run on method-only dependence information.

Table 6.8 exhibits the dependence matrix of the third run’s partition. The
25th cluster is the one that collects methods from modules JavaNames and
PCM. Particularly those methods had been grouped differently, for which
analysis was either not able to detect any file handle, or the method had been
used to generate content for multiple files. This applies to modules with a
high reuse rate, indicated by the number of imports.

6.5.6. Threats to Validity

Admittedly, two issues commonly known to apply to clustering algorithms
in general remain.

Some modules are not recognized because they serve as a cross-cutting
container for helper functions, for instance, Finder, Commons, JavaNames
and PCM in the case studies above. Yet, few of these helper methods are
only used by a single module, and in such cases should be kept local to
a component implementation. Here, our clustering approach can help to
identify such methods and assign them to a single module.

Because clustering algorithms are NP-hard, we must use heuristics, such
as hill climbing or genetic algorithms, to find solutions for realistic programs

8 The complete partion can be retrieved from http://qvt.github.io/tca.

227

http://qvt.github.io/tca

6. Validation

in a reasonable amount of time. Results from heuristics incorporate pseudo-
random numbers, making it hard to reproduce the results.

6.5.7. Evaluation Summary

Both case studies demonstrate that the decomposition originally intended
by the expert software designer can be significantly better approximated,
if we include additional bits of information into the clustering process that
go beyond call dependencies. By further extracting model dependencies at
the package or class level and integrating them into the dependence graph,
a clustering that is substantially more similar to the expert clustering is
computed. This, however, requires additional knowledge about the class of
transformation to be added, manifested as a weight configuration.

It is generally assumed that automatic clustering results can rarely be taken
as is, not only due to the sub-optimality of these solutions, but also due to re-
quired simplicity of objective functions. We nevertheless demonstrated that
clusterings recommended by Bunch can help to identify misplaced methods,
presumed the maintainer brings enough expertise to carefully review the clus-
tering output. With regards to transformation programs, we further demon-
strated superiority of results when considering packages and even more so
when considering classes versus plain method-level decompositions.

6.6. Concluding Remarks

All of the approaches aim at improving the maintenance processes of model
transformations. This chapter exhibited three separate case studies to validate
any of the approaches presented in this thesis in terms of their practical
efficiency. Our findings from the studies we carried out in here can be
summarized as follows:

• An advanced module concept with explicit interfaces that include
model use dependencies reduces the effort spent at certain mainte-
nance activities. By one larger transformation we demonstrated that

228

6.6. Concluding Remarks

the reasoning on a transformation’s modular structure and the locat-
ing of concerns can be significantly alleviated. We expect to observe
a positive outcome for other transformation languages, as well, yet
additional case studies are required to fully ascertain this.

• Interactive visual analytics for model transformations increases the
efficiency of development and maintenance tasks by automating much
of the work it takes to locate concerns and obtain an understanding
of the overall structure for a given transformation program. This may
yet be true only for larger transformations that do not make sufficient
use of the structuring concepts a given language provides. Studies on
further transformation programs must be carried out to answer this
question.

• Clustering of model transformations can be significantly improved by
incorporating model use dependencies into the optimization heuristics.
One caveat, however, is that fundamental knowledge about the kind
of transformation – source-driven, target-driven or a compromise be-
tween the latter two – must be available. According to our experience,
it typically takes several attempts to tare a weight configuration when
a transformation should be structured according to more than one
domain. Nevertheless can the approach help to refactor the modular
structure of model transformations with less effort than a manual
approach would demand.

As indicated in the various sections, threats of validity exist which might
be tackled in future case studies that were not manageable in the scope of
this thesis. So far, only the visual analytics approach had been validated with
human participants. In the future, similar experiments could be carried out to
test if developers benefit from transformations structured using information
hiding modularity. Further on, there is no experiment that studies if an
adequately modularized transformation gives a considerable advantage over
the visual analytics approach.

229

7. Related Work

This dissertation relates to three major areas of research in computer science.
One area concerns modularization concepts of domain-specific languages
and model transformation programs in particular (Sections 7.1 and 7.2) and
concerns our module concept from Chapter 3. Another area relates to formal
considerations of semantics of transformation languages (Section 7.3), it has
been touched by our side contribution from the aforementioned chapter. The
third area concerns program analysis, clustering and visualization techniques
of model transformation programs (Section 7.4). Contributions to this area
have been described in Chapters 4 and 5. This chapter reviews related
work in these areas.

7.1. Modularity in Modeling Languages

Model transformations describe how models are transformed. Modeling
languages, on the other hand, are languages used to describe the models
involved. Our modularity concept for model transformations that we present
in Chapter 3 strongly relates to modularity of modeling languages, as it
integrates model access control to parts of the models. When structuring
a transformation, units of decomposition often conform to the units of the
models which are transformed. A particular example for this is the field of
language modularization, which aims to compose languages from language
fragments, in a similar way as models can reuse other models. Each language
module contributes its own type checker and generator fragment.

231

7. Related Work

We distinguish here between two intrinsic features of modularity: compo-
sitionality and information hiding capabilities. Other extrinsic approaches
describe dynamic views on models in a separate language.

7.1.1. Compositionality

Compositionality is about compartmentalizing models to foster compre-
hensibility, extensibility and reuse. The most prevalent concept to attain
compositionality is the packaging mechanism provided by the CMOF mod-
eling language.

The Complete MOF (CMOF) allows to group classifiers, packages and
other elements into packages [PPH05; Obj14]. It supports three concepts
to relate one package with another: import, access, and merge. A package
import makes it possible to refer to the publicly visible package members
from the imported package. An import can be public (keyword import) or
private (keyword access), so that imported elements are either again visible
for clients, or they remain hidden from clients of the importing package. A
package merge creates a new package from the base package and referred
packages, it is generally used to extend a model in increments.

The Essential MOF (EMOF) merely defines packages as a means to group
elements, import mechanisms are imported from the CMOF. Apart from that,
the EMF/Ecore realization of the EMOF standard provides a rudimentary
packaging mechanism which resembles the CMOF’s default public import
described above [SBPM09].

Our model scoping concept adopts Ecore’s package construct to estab-
lish namespace control, but adds relaxations – if a package is declared as
visible, super and subclasses are implicitly visible, even if they are located
in packages that are out of scope.

The field of language engineering is related, since the difference between
models and languages is quite blurred. Several language workbenches aim
for the compositionality of languages from sublanguages. To do so, a lan-
guage extension must provide means to modularize and compose grammars,

232

7.1. Modularity in Modeling Languages

type systems, and generators/compilers. A prominent example is JetBrains’
Meta Programming System (MPS)1, a projectional language workbench.
Projectional editing means that textual or graphical representations in the
editor are projections of the underlying AST. The meta-metamodel of AST
representations is close to EMF Ecore. Languages in MPS can be com-
posed from sublanguages, where each language module (called fragment)
contributes a distinct part of the abstract syntax. To the best of our knowl-
edge, MPS does not allow for visibility control concerning abstract syntax
definitions of a language fragment.

7.1.2. Information Hiding

While the MOF provides means to control visibility, as explained, EMF/
Ecore does not prevent private elements from being used by importers. There
is no notion of access control supported by Ecore, yet annotations may be
used to suppress operations or features from being accessed. Either way, the
default package import mechanism of Ecore does not respect annotations.

Since most transformation languages are designed to operate on Ecore
standardized models, there is no way to reuse visibility information as
provided by the Complete MOF and UML language. Thus, we define our
own concept on class and package-based visibility control. Just recently,
Garmendia et al. [GGKdL14] tackle this limitation with the EMF Splitter

approach. They introduce modularity concepts (e.g., project, package, and
unit) through annotations, and establish rules to control visibility of modeling
elements. This visibility, however, addresses extensibility options rather than
providing a customized view for transformation units.

The JetBrains MPS does not provide for an encapsulation mechanism
for language fragments.

1 JetBrains Meta Programming System; https://www.jetbrains.com/mps/.

233

https://www.jetbrains.com/mps/

7. Related Work

7.1.3. Dynamic Views

For the purpose of reuse and interoperability, it can make sense to create a
view on one or more larger models, (i) by abstracting from information that
is irrelevant for a particular task, and (ii) by linking and pruning information
distributed over multiple places in a model. Views are usually created to
support modeling tasks carried out by different roles in a software project by
creating views on models that omit inadequate information, and transform
information to a more appropriate form. Views can also be used to adapt
instances of legacy models to overcome versioning problems and foster
tool interoperability.

There exists substantial work on creating dynamic views on models in-
dependent from the model’s intrinsic structure, with the added possibility
to conjoin multiple separate models into one single model. Much of this
work has been discussed in Goldschmidt’s and Burger’s dissertations [Gol11;
Bur14]. In addition to the approaches mentioned there, Burger presents his
own concept of flexible views on a single underlying model.

The scoping of model elements as it is integrated into our approach can be
considered a very special case of creating dynamic views on models. Model
scoping is an ad-hoc definition of views to provide information hiding at
the syntactical level. Views can overlap as well, they do not necessarily
have to be pairwise disjoint. For pragmatical reasons, scoping is on the
syntactical level, whereas views may define a separate model together with
a synchronizing, bijective transformation.

The view-based approach presented by Burger abstracts from the under-
lying model, at the cost of an additional effort to define and maintain extra
transformations, and to ensure that the transformations are semantically
preserving. In the end, both our model scoping and the view-based approach
establish information hiding regarding models, but on a different level due
to different intents: scoping establishes information hiding abilities on the
syntactic level with minimal effort, whereas dynamic views establish infor-

234

7.2. Modularity in Model Transformation Languages

mation hiding on a more abstract (and thus elaborate) level, with the ability
to generalize from the underlying models.

7.2. Modularity in Model Transformation Languages

The module concept that we introduce in Chapter 3 is definitely not the
first one proposed for transformation languages. Many if not all prevalent
transformation languages already include some notion to structure trans-
formations, albeit mostly for the purpose of reuse or as a basic mechanism
to physically structure code. In the following, we discuss their properties,
primary aims, and how they relate and compare to our own concept.

Early formal treatment of modular concepts as they appear in general-
purpose programming languages had been carried out by Burstall and Lamp-
son [BL84]. More recently, modularity has been discovered as beneficial for
domain-specific languages as well, for example Kang and Ryu introduced
modularity to the JavaScript language [KR12]. Similarly, Bierman et al. pro-
posed a superset of ECMAScript called TypeScript [BAT14] that fosters
programming in the large. It does so by adding syntactic sugar in shape of
dynamically loadable modules which is statically type checked.

The initial European workshop on composition of model transformations
in 2006 marked major interest in the topic for the first time. Since then, com-
positionality of model transformations has been under steady research, albeit
most compositional approaches focus on reusability. In Belaunde’s article on
QVT-O’s compositional abilities [Bel06], the author distinguishes between
coarse-grained and fine-grained techniques, also known as internal and ex-
ternal composition. The former work on transformations and whole models,
whereas the latter work at the level of mappings and model elements.

This section first overlooks techniques that modularize offer external
composability, and finally those that offer internal composability. As will
be shown, most of the available techniques aim to leverage reuse, none of
them is concerned with maintenance efforts.

235

7. Related Work

7.2.1. Modularization for Reuse

Olsen et al. investigate possible ways to improve reusability of transforma-
tions [OAO06], compositional techniques being among them. Among seven
different kinds, as-is reuse and opportunistic reuse (including whitebox tech-
niques like edit, copy & paste) are the most trivial kinds of reuse. Other ways
of reuse are composition (also known as chaining), parametrization, trans-
formations of higher-order, specialization (e.g., by using inheritance), and
source model filtering (i.e., limiting the scope to source model subsets). Their
experience stems from structuring a library of ATL transformations, as well
as development of M2T transformations in MOFScript, a language featuring
rule polymorphism, transformation inheritance, and library import.

A more up-to-date survey and far more detailed classification of reuse tech-
niques is given by Wimmer, Kusel et al. [WKK+12b; WKK+12a; KSW+13].
They consider both fine-grained and coarse-grained reuse, which relate to
internal and external composability. They observe that no module mecha-
nism so far provides means to define access rights (like private vs. pro-
tected in Java) or restricted inheritance options (final in Java) despite the
early availability of module concepts. None of the presented fine-grained
compositional mechanisms seems to possess blackbox characteristics. We
believe the main reason is that techniques which aim at better reuse rely
on invasive whitebox mechanisms, whereas we concentrate on improving
maintainability. In fact, we deliberately decide in favor of maintainability:
Because our approach introduces static dependencies to model elements,
we even hinder reuse over metamodels, yet we can improve evolvability,
understandability, and type safety.

7.2.2. Internal Composition

Original work on modularity had been carried out in the 1990s in the field
of Graph Rewriting Systems, surveyed by Heckel et al. [HEET99]. Hiding

236

7.2. Modularity in Model Transformation Languages

of rewrite rules seems to be possible in all of the discussed approaches, but
hiding of typed graph structures remains unsupported.

TGG In their article [KKS07], Klar et al. discuss ways to handle problems
occurring when dealing with complex transformation specifications. Partic-
ularly rule-based languages like QVT-R and TGGs are missing concepts
for modularization, composition, specialization, parametrization and reuse.
They transfer MOF’s concept of structuring models to manage rules in their
own TGG dialect named MOFLON. Concepts which they reuse and which
stem from MOF include packages, nested namespaces, import, merge and
rule-based refinement. They have reuse in mind, and although rules can be
hidden from imports, there is no explicit interface concept.

Anjorin et al. [ASLS14] set the formal foundations for a refinement
mechanism of TGG rules. The matching patterns in TGG rules must be
defined for each rule from scratch, although patterns for rules that relate to
the same model elements often share similar patterns. To avoid redundancy
caused by pattern duplication, they introduce a refinement relation among
rules that allows for the flexible composition and reuse of (sub) patterns.

JetBrains MPS Under the MPS language development environment, a
language fragment consists of an abstract syntax definition, one or more
concrete syntax projections, a type system, and a generator. Language frag-
ments can integrate with other language fragments through one of four
design techniques: referencing, extension, reuse, and embedding, accord-
ing to Voelter’s classification of composition approaches [Voe11]. MPS
brings its own rule-based language to be used to implement the generator:
mapping rules are typically implemented using a template-based mecha-
nism akin to that of Xtend, or a manual approach. There is no dedicated
interface definition for language fragments, and none of the concepts pro-
vided by a fragment, i.e. syntactical entities, type and mapping rules, can
be protected from client access.

237

7. Related Work

Stratego/XT Stratego/XT is another oft-used transformation language in
the field of language and compiler engineering. It supports “meta-model
extensibility through generator extensibility” [HKGV10], also known as
horizontal modularity. Our approach still requires the respective modules
to be modified when the models change, yet our descriptive interfaces help
to locate the affected modules with less effort.

RubyTL Cuadrado and Molina are the inventors of RubyTL [CMT06;
CM06], a DSL for hybrid model transformations embedded into Ruby. They
further added a rule organization mechanism called phasing [CM08; CM09]
to RubyTL, a DSL embedded into Ruby. Phasing is a whitebox technique
designed to promote modularity and internal transformation composition.
Common code can be factored out, as one phase may refine rules of another
phase. A phase has a scope (a pivot point, i.e., an element in the source
metamodel from which a rule evolves), a precondition, by-value parameters,
and a scheduling script for ordering sub-phases and binding parameters.
However, their concept does not include interface descriptions to make data
and rule dependencies between phases explicit.

Table 7.1 compares typical modularity features between languages we
perceived to be most interesting and our proposed derivate, QVT-OM. A
checkmark indicates full support, partial support if bracketed, and either
the respective keyword or possible limitations are stated below. All of the
observed languages support modularity to some extent.

Xtend The Xtend language is a Java-based general-purpose language,
though it can be – and has been – extended by domain-specific concepts.
It is already equipped with extensions to write M2M and M2T transforma-
tions, namely an OCL-like collection library, cached methods and template
expressions. It has to be noted, though, that the concept of mapping meth-
ods is very basic compared to “real” transformation languages, e.g., there
is no trace resolution API.

238

7.2. Modularity in Model Transformation Languages

Table 7.1.: Comparison of concepts for internal composition

Concept QVT-O
M

Xten
d2

Kerm
eta

2

QVT-R

QVT-O

ATL
ETL

VIA
TRA2

Modules 3 3 3 3 3 3 3 3
class class library, library, module files namespace

transformation transformation

Import mechanisms 3 3 3 3 3 3 3 3
extension, inherits import access, uses import import

extends extend

Rule inheritance – – – (3) 3 3 3 –
unimpl. inherits extends extends

Rule merging – – – – 3 – – –
merges

Superimposition – 3 3 (3) 3 3 3 3
override implicit implicit extends implicit implicit model+

data

Qualified namespace 3 3 3 (3) (3) (3) (3) (3)
package package models models models models models?

Explicit interfaces 3 3 3 – – – – –
interface abstract

class

Traces 3 (3) – – – – – –
only local

Methods 3 3 3 – – – – –
def implicit

Model elements 3 (3) – – – – – –
import

Information hiding 3 3 – – – – – –
private

Due to its Java heritage, programs can be decomposed into classes. Im-
ports are declarable by the extension keyword that translates to an an-
notation implemented by a dependency injection framework, or by using
class-based inheritance (extends). Methods may override inherited meth-
ods, which paves the way for superimposition. Because Xtend transforma-
tions refer to the EMF representation of Ecore models, objects in the model
referred to by their type must be imported, either one by one or using a wild-
card import. However, types may be still navigated to without an explicit
import declaration. Like Java, Xtends supports (but does not require) the

239

7. Related Work

use of interfaces and information hiding through private methods. However,
in contrast to our approach, interfaces cannot restrict accessibility of traces
and visibility of model elements.

Kermeta2 The Kermeta language is an object-oriented (OO) modeling
language that allows to imperatively define dynamic semantics with an
OCL-like syntax. Kermeta’s aspect feature can be used to define model
transformations by attaching mapping operations to classes of the source
model. Thus, transformations are modularizable using EMOF’s class concept
and Kermeta’s aspect mechanism. Inheritance is possible, and methods are
implicitly redefinable. The EMOF-compliant models bring packages as
namespace mechanism. There exists support for explicit interfaces through
abstract classes. Yet, Kermeta’s transformation concept is very rudimentary,
as mappings are written as normal operations that must explicitly instantiate
target elements. Caching and tracing is so far not provided by Kermeta, and
no accessibility control is possible.

QVT-R The declarative transformation language QVT Relations (QVT-R),
according to the standard [Obj11], allows transformations to be decom-
posed into modules, and query methods can be put into separate libraries.
Tranformation modules and rule inheritance have not been implemented
so far. Wagelaar et al. [WVD10] propose superimposition techniques for
both ATL and QVT-R, but this technique remains to be implemented as well.
Only complete models can be implemented. Neither explicit interfaces nor
information hiding features are regarded by the language definition.

QVT-O The QVT Operational Mappings (QVT-O) language provides two
structuring concepts, transformations and libraries. A transformation can
either access other transformations and libraries, or it can extend other trans-
formations. The latter mechanism overrides same-named rules from the
imported transformation. Rules themselves may reuse imported or local

240

7.2. Modularity in Model Transformation Languages

rules in two ways, either by inheritance or by merging another rule’s func-
tionality. A transformation has full access to the imported models, no access
restrictions apply. There is no possibility to define explicit interfaces, and
methods cannot be hidden from clients.

ATL Transformation programs written in the Atlas Transformation Lan-
guage (ATL) can be structured using the module keyword. A module is able
to import methods from another module, which can be subsequently called
or inherited from (keyword extends). Superimposition has been added by
Wagelaar [WVD10]. Like in QVT, models can be only imported as a whole.
Explicit interfaces are not part of the language.

ETL The Epsilon Transformation Language (ETL) is, just like ATL, a
hybrid transformation language, uniting both declarative and imperative
concepts. Programs are distributable over multiple files, and one file may
import another. Similar to ATL, rules can extend and superimpose other
rules. Again, subsets of models, i.e. packages, cannot be imported. It is not
possible to declare interfaces.

VIATRA2 The VIATRA language aggregates declarative and imperative
features by combining two popular formal techniques, GTs and ASMs. The
language’s namespace concept makes it possible to decompose programs
into modules, which can then relate to each other using import statements.
Superimposition is provided, and affects both model and data. To our knowl-
edge, there is no concept that makes it possible to refer to the subpackages
of a model, and neither interfaces nor information hiding is supported.

Summary Most of the languages that we discussed concentrate on white-
box techniques for reuse matters, for example inheritance, merging, and
superimposition of rules. Superimposition was first introduced by Wagelaar
to ATL and QVT [Wag08], a technique to overlay sets of rule definitions

241

7. Related Work

on top of each other. QVT-O is said to have an OO heritage [Bel06] and
thus only supports inheritance and superimposition.

When it comes to interface concepts, only few languages provide concepts
to make traces, methods, or model elements explicit. Only internal DSLs
are able to hide implementation details by exploiting concepts of high-
level languages, for instance Xtend and RubyTL. Rules in Kermeta are
defined as class methods in UML, so inheritance, interfaces and other UML
concepts can be exploited. To our knowledge, QVT-OM with its existing
prototypes QVTom and Xtend2m are the only approaches that introduce
blackbox modularity.

7.2.3. External Composition

Several approaches are concerned with compositionality at the transforma-
tion level, also known as blackbox composition, mostly aiming at reusability
of transformations. The most notable ones are MCC, UniTI [VAB+07] inte-
grated into Eclipse AM3 as a GMM4CT plug-in, PICOTIN, Wires*, TraCo,
transML, and MWE. The Model Control Center (MCC) by Kleppe [Kle06]
is the oldest approach for transformation composition.

UniTI Universal Transformation Infrastructure (UniTI) is one of the more
elaborate composition frameworks. Meanwhile, it has been integrated into
AMMA Megamodel (AM3) under the subproject Global Model Manage-
ment for Composite Transformations (GMM4CT) [Van10], where it builds
upon the megamodel registry. The megamodel is a model managing meta-
models, models, transformations and arbitrary further types of artifacts,
like tools, plus relations among these artifacts. It shares many similarities
with the ModelBus approach. In his 2007 publication [VAB+07], Vanhooff
additionally defines four roles for transformation development based on
UniTI’s component concepts: developer, designer, harvester and assembler.
The process is roughly explained in the context of his transformation com-
ponent framework UniTI.

242

7.2. Modularity in Model Transformation Languages

PICOTIN The PICOTIN approach, whose acronym stands for “PICO Trans-
formation INfrastructure”, by some sources referred to as the Transformation
Composition Framework (TCF), is another component model for the model
transformation domain [Mar04]. Picotin defines its own declarative transfor-
mation language to be used to specify the basic transformation components,
which comprises simplistic forall-exists rules. The component model does
not support explicit interfaces, component definitions include both interface
and implementation. This work remains a proposal, there is no validation
that demonstrates applicability in larger, more realistic MDE scenarios.

Wires* The Wires* approach is a composition framework for ATL by
Rivera et al. [RRLB09]. It is a dataflow-based, graphical description lan-
guage for ATL-based transformations. Its outstanding feature is the sup-
port of higher-order and generic transformations. With the exception of
primitively valued extra parameters, components refer to complete models,
classifying this as an approach for external composition.

TraCo The TraCo approach is a transformation composition framework
that showcases safe composition through contractual interfaces [HKA11].
TraCo’s interfaces only provide for full models, it has neither built-in support
for model access policies, nor does it include mapping operations. A TraCo
component is purely data-driven, it cannot refer to external mappings or
externally generated traces. A notable field of application is to ensure that
only valid transformation variants can be built from available components.
With our approach, type-safe configuration of variants could be performed
similarly at design-time. There is no runtime validation intended, because
our binding is resolved before runtime.

transML Guerra [GdLK+13] et al. present transML, a holistic approach
to transformation engineering that relies on a family of special-purpose lan-
guages for the various phases of the transformation development life-cycle.

243

7. Related Work

The process includes an architectural view at the level of transformation com-
ponents and interfaces. Metamodels and directions belong to the interface
declaration, but no fine-grained access control is possible.

MWE The MWE is a simple orchestration language that belongs to the
Eclipse Xtext/Xtend project. It is similar to the Apache Ant build tool [TB02],
but has been primarily designed for model-based tasks. Components are
realized as java beans, where an interface consists of untyped parameters
and dynamically typed model slots. The framework already comes with a set
of components that serve as facades for EMF-based MDE tools, including
model readers, writers, and facades for Xtext and Xtend. Composition of
workflows is generally possible, though not very sophisticated.

Summary All of the approaches we discussed follow the data-driven pro-
gramming paradigm, component instances are executed as soon as models
are present at all of the available input ports. None of them offers a lan-
guage concept for binding model concepts, which has only recently been
proposed by Cuadrado et al. [CGdL11; CGdL12] and later refined [SGdL14].
While UniTI supports a shared tracing model, it is not possible to explic-
itly share single traces based on concepts. As for the other approaches,
Cuadrado’s component concept as well does not allow transformation frag-
ments to be composed.

7.3. Semantics of Model Transformations

In Section 3.5 we have contributed formal semantics for the QVT-R lan-
guage based on the official standard’s description using first-order logics.
Because of the standard’s widely accepted impreciseness, many of the for-
mal foundation deviate from the standard’s foundation as they investigate
bidirectional and update semantics, for which first-order logics have been
deemed insufficient.

244

7.3. Semantics of Model Transformations

In addition to first order logic-based semantics in Annex B, the latest
version of the QVT-R specification furthermore provides a mapping from
QVT-R to the more fundamental language QVT-Core [Obj11, Ch. 10], but
is omissive about the exact semantics of QVT-Core. Since there is a general
perception that the semantics as they are defined in the specification are not
sufficiently formal and rigorous, much work has been done to improve the
situation. Most approaches use different formalisms apart from first-order
logics to capture semantics of QVT-R.

An embedding of QVT-R into the Coloured Petri Net formalism has been
explored by de Lara and Guerra to formally define semantics [dLG09], and
by Wimmer et al. as a debugging aid [WKK+09]. Stevens applies game the-

ory to capture check-only semantics [Ste13]. Bidirectional checking [BS12]
and enforcing semantics [BS13] had been formalised in mu calculus by
Bradfield and Stevens, they forbid unbounded recursion, just as we do in
Coq. Macedo and Cunha embed bidirectional semantics into Alloy, a HOL-
based specification language [MC13]; they use predicate logic as well, but
pursue ideas from Stevens on bidirectional enforcement semantics [Ste10].
Troya and Vallecillo embed the ATL transformation language in Maude’s
rewriting logic [TV11], but ATL differs from QVT insofar that it mixes
imperative with declarative programming concepts. Strecker suggests to
deeply embed graph rewriting rules in Isabelle/HOL for formal verifica-
tion [Str08]. Coq4MDE [KCPT11] aims to translate modeling concepts
to constructive type theory, yet it does not provide an embedding of QVT
semantics. Guerra proposes algebraic semantics as an aid for translating
QVT-R concepts to a formal calculus [GdL12]. Considering the constraint-
based nature of QVT-R, instance-based verification instead of program-based
verification can be used as an alternative method, as demonstrated by Cabot
et al. [CCGdL08], who extract OCL invariants from a QVT specification
to verify correctness on an instance-level. Garcia extracts invariants for
symbolic analysis using Alloy [Gar08].

245

7. Related Work

All of these works propose their interpretation of the QVT-R semantics,
but none of them aims to reuse and improve the first-order logic-based se-
mantics from the QVT standard. At least for the basic case of unidirectional,
non-updating enforcement semantics, we are able to translate these to the
formal specification language Gallina as faithfully as possible.

Large parts of the OCL have been systematically embedded into HOL
by Brucker et al. [BW08]. Brucker’s HOL-OCL could have been used to
embed the metamodels and OCL expressions into higher-order logics. His
approach, however, does not cover transformation logic yet.

7.4. Program Analysis, Cluster Analysis, and Visualization of
Transformations

In this thesis, we propose to exploit program analysis techniques twice:
Firstly, Chapter 4 additionally applies visual analytics to automatically ex-
tracted dependence information to aid the maintenance process, and secondly,
dependence information is used in Chapter 5 to re-engineer the modular
structure from transformation code. Subsequently, we discuss related work
in the context of model transformation engineering on three areas, (i) on
program analysis in general, (ii) on cluster analysis, and (iii) on program
visualization.

7.4.1. Program Analysis

Program analysis techniques are already applied to model transforma-
tions. Varro and his colleagues transfer graph transformations into Petri
nets [VVE+06], where they are able to prove termination for many programs.
Ujhelyi, Horvath and Varro analyze programs in VIATRA2’s transformation
language VTCL for common errors in transformation programs [UHV09].
The same authors suggest a dynamic backward slicing approach [UHV12]
to understand program behavior for a certain input.

246

7.4. Program Analysis, Cluster Analysis, and Visualization of Transformations

Wimmer et al. [WKK+09] propose to translate QVT-R programs to the
QPN formalism, where they are able to reason about the program’s proper-
ties. Issues which can be detected are violated boundedness properties of
output models, and transition errors due to erroneous rules or input models.
Termination and confluence can be ensured from state space exploration
of the automaton.

Cuadrado et al. [CGL14] perform static program analysis on ATL, in order
to detect typing errors that are not detectable by standard tools. They use
constraint solving techniques to derive a test model fragment or witness that
leads to the problematic statement being executed. Standard ATL tools only
support a weak typing system, making it prone to various typing errors.

In comparison, our approach is based on static program analysis, aiming
to support both re-engineering and maintenance endeavours rather than
reasoning about program properties.

Vieira and Ramalho developed a higher order transformation [VR11]
to automatically extract dependencies from ATL transformations. Their
objective is similar to ours, namely to assist developers inspecting trans-
formation code by providing dependency information from transformation
rules to model elements. The unvalidated approach is specific to the ATL,
and it lacks data dependencies and filters. A graphical user interface for the
Eclipse-based ATL editor is left for future work.

Further work exists on quality metrics that incorporate the peculiari-
ties of model transformation programs. Code-based quality metrics had
been explored by van Amstel et al. for the ASF+SDF term rewriting lan-
guage and the imperative language Xtend [vALvB08; vAvB11], and by
Kapova et al. [KGBH10] for the declarative model transformation lan-
guage QVT-R. Tolosa defines metrics for the hybrid transformation language
ATL [TSG+11], adding relative metrics including the proportion of imper-
ative concepts used. Based on the premise that declarative constructs are
regarded to foster a better design and imperative constructs are discouraged,
they can give a quick estimation of the quality of designs.

247

7. Related Work

7.4.2. Software Cluster Analysis

Software clustering approaches mainly focus on recovering an architec-
ture from code written in general-purpose programming languages. Hence
their view consists of procedures and call relationships, modules and use
dependencies, or classes and their relationships.

Other information to discover a modular structure had been put into
consideration as well, including the change history [BN05], omnipresent
objects [WT05], or transactions (repeated use of a set of classes by other
classes indicates that they form a single purpose) [SP07]. Furthermore, a
combination of control and data dependencies as a source of information to
discover a hidden modular structure in procedural and object-oriented code
had been studied over the last three decades [HB85; LW90; CP92; SR99].
We apply a similar technique to model transformation languages, though
in our specific case we additionally exploit the subtleties of UML/MOF-
compliant modeling languages as data description language, for instance
hierarchical structured data elements.

Nevertheless, when it comes to the application of automatic clustering
techniques to model transformation programs in particular, no previous
work is known to us. Despite some investigations on the architectural de-
sign of model transformations [DGL+05; LDGR04; KvBJ06; KvBJ07],
there is no work which considers to (semi-)automatically re-engineer such
a design from code.

7.4.3. Program Visualization

Software visualization tools had been surveyed by Diehl in his book from
2007 [Die07]. Telea et al. [THER09] make a comparison between HEB
visualizations and classical NLDs when used for comprehending C/C++ code.
HEBs and NLDs are utilized as paper-based diagrams, yet our dependency
graphs can be classified as NLDs.

248

7.4. Program Analysis, Cluster Analysis, and Visualization of Transformations

Regarding general-purpose programming languages, various work can be
found on program visualization. Chen and Railich [CR00] proposed abstract
system dependence graphs (ASDGs) to help locating concepts in programs.
Concepts are given in the form of a change request. An attached case study
attests better efficiency to maintainers using their graph variant. ASDGs
incorporate data and control dependencies. In contrast to our approach, re-
search is targeting general-purpose programming languages. A retrospective
view is given ten years after the initial study [CR10].

The Stacksplorer approach [Krä11] is one example for program visu-
alization of GPL code. This approach enhances the Xcode IDE with a
demand-driven call graph visualization for inter- and intra-file navigation on
ObjectiveC code. The Java IDE under Eclipse, for example, merely allows
to navigate the call graph by searching for callers and callees in a tree-
based view, without featuring live computation. Still, Stacksplorer misses
out on data dependencies, which are highly relevant when dealing with
model transformation programs.

Only recently, visualization techniques have been considered for programs
from the model transformation domain. Van Amstel et al. have been con-
quering HEB diagrams for visualizing a transformation’s data and control
dependencies and metamodel coverage [vAvB11]. They concentrated on
ATL, QVT-O, and Xtend. However, data and control dependencies are not
integrated into a single view, and effectiveness and efficiency of static HEB
diagrams for maintenance tasks remain to be validated.

The VIATRA2 Eclipse integration provides a graph visualization compo-
nent for model spaces that Zest’s automatic layout feature and is editable,
but it does not integrate transformation programs into the view.

There is work [JGB11] that proposes to estimate the so-called footprint of
model transformation programs. According to the authors, a footprint of a
model operation is “the part of a model actually used by an operation”. Their
main presumption is that transformations typically cover only a small subset
of the model and the instance and type level, information which may be used

249

7. Related Work

in three scenarios: First, to generate a dynamic view of the relevant subset
of a model, second, to optimize the metamodel by removing unneeded
elements, and third, to find problems in the transformation. They assess
the performance costs and exactness of the results of a static analysis as
opposed to that of a dynamic analysis. The approach has been implemented
for Kermeta, but is obviously applicable to other transformation languages.
Our dependence analysis is similar to a static footprint, in that it creates
model slices to hide irrelevant information. Their focus, however, lies on
the models, thus they do not, in contrast to our approach, consider control
structures of the transformation program, nor do they consider the benefits
of an interactive visualization with customizable filters.

Wimmer et al. [WKS+09b; WKS+09a] suggest to employ a graphical
debugging method to help developers in understanding QVT-R programs
more quickly and thoroughly, and to ease the location of faulty code. They
blame the high amount of rules with interrelated data and control depen-
dencies as the main cause for declarative transformation code being poorly
understandable. Their debugging framework called Transformations on Petri
Nets in Color (TROPIC) translates QVT-R programs into a colored Petri
net which is then automatically visualized. All MDE-related artifacts, the
transformation, models and instances thereof, are displayed in a single ho-
mogeneous view. Users may choose between different levels of abstraction,
to hide information not required. The view is designed to make the dynamic
operational sequences of the QVT-R language and the actual implemen-
tation more transparent. Their approach mainly focusses on the dynamic
semantics of QVT-R. Our approach, by contrast, is based on dependence in-
formation that can be extracted statically, and is not restricted to declarative
transformation languages alone.

In a similar attempt, Schönböck et al. use Petri nets to integrate data and
control structures into a graphical view [SKK+10] to foster debuggabil-
ity. Their approach is designed for declarative rule-based transformation
languages alone and lacks validation.

250

7.5. Summary

Eclipse editors, including that for QVT-O, support hyperlinked syntax.
However, control dependencies are not computed live, and navigation over
calls is only possible in the forward direction. Learning about data dependen-
cies from code requires good cognitive abilities and a thorough knowledge
of all the relevant language concepts. Still, data dependencies derived from
other methods can not directly be seen. Furthermore, it is not possible to
directly learn about all the places a particular data element is accessed.

7.5. Summary

This chapter provided an overview of approaches that are closely related
to this thesis’ contributions. We highlighted shortcomings of existing ap-
proaches that have been tackled by our own approaches. These shortcomings,
and how they relate to our contributions, can be summarized as follows:

Modularization for Maintainability So far, none of the modularization
concepts that had been proposed for model transformation languages
are dedicated to mitigate maintenance efforts. Most of the work con-
centrates on modularity for reuse. Although all of the transformation
languages that we studied provide some kind of module concept to
structure the code (as shown in the related work chapter), none of
them offers explicit interfaces that allow to declare the contextual de-
pendencies of the module at a level of detail sufficient to ease typical
maintenance processes.

Semantics of QVT-R Since the standardizing document of the QVT lan-
guages has been published in 2008, the normative description of the
QVT-R language’s semantics have been criticized as incomplete and
flawed. There is a substantial body of research work that aims to clar-
ify the exact semantics of QVT-R, mostly focussing on bidirectional
and updating semantics. We are obviously the first ones who translated
the standard’s first-order logics of the non-updating, unidirectional

251

7. Related Work

case into a theorem proving engine as faithfully as possible. There,
we were able to derive a working implementation with approved
standards-compliance.

Automatic Re-Engineering Until now, the re-engineering of model trans-
formation programs had to be performed completely manually. To
the best of our knowledge, we are the first who consider to transfer
automatic clustering techniques, which are known to reasonably work
for general-purpose programs, to model transformation programs. As
opposed to general purpose programs, experts tend to structure the pro-
grams according to the models involved in the transformation. Hence,
input to a clustering intention must include not only control depen-
dence information, but also model use dependencies and a weighting
to balance the influence of control and model use dependencies.

Visualization Techniques While several approaches have been proposed
up to now that automatically analyze dependence information for
visualization, none of them integrates both model and control de-
pendencies, none has been synchronized with the textual editor for
improved usability, and none can be interactively navigated and fil-
tered according to preset criteria. Above all, none of the approaches
features has been empirically validated in realistic scenarios, which
has been done for our own approach with a positive outcome. Exist-
ing visualization approaches for GPLs cannot be directly transferred
to Model Transformation Languages (MTLs) as they miss out on
important details, namely information on model use dependencies.

The three main and one side contributions of this thesis tackle the short-
comings and issues mentioned above. Modularization for maintainability
refers to our module concept with information hiding properties that we
presented in Chapter 3. The same chapter discusses our improved formal-
ization of the QVT-R language’s semantics. The automatic re-engineering
approach tailored to the peculiarities of model transformations has been

252

7.5. Summary

introduced in Chapter 5. Our interactive visualization technique has been
explained in Chapter 4.

253

8. Conclusions

This chapter concludes the thesis with a retrospective view on the research
questions and how they have been answered, and further provides a general
outlook on the role modularity concepts could play for domain-specific
languages.

The chapter is organized as follows. Section 8.1 summarizes the main
contributions and validation results, and Section 8.2 outlines benefits gained
and scientific findings made. Section 8.3 summarizes assumptions and limita-
tions of our contributions with regard to the initially stated research questions.
Section 8.4 suggests questions for short-term and long-term future work.
Finally, Section 8.5 ends the thesis by listing the overall benefits.

8.1. Summary

Model-driven techniques promise to make software development more ef-
ficient than ordinary engineering methods. Thus, software industries are
increasingly interested in model-driven engineering to cope with the ever
growing complexity. The domain-specific languages, methods and tools
that are used in this field, however, exhibit similar problems as they are
not capable to handle the inherent complexity of the models, processes and
model transformations [BLW05; HWRK11; HRW11; WHR+13]. In fact,
model-driven assets are subject to software evolution to the same extent
as traditional software artifacts, and even more so the model transforma-
tions, in that they need to co-evolve with the domain models and changes
in the target platform.

255

8. Conclusions

Programs developed in a domain-specific language can get complex to
a degree where one has to think about a sophisticated structure to keep
maintenance efforts low. This is not only true for applications designed
in general purpose scripting languages, but also for model transformation
programs. Many model transformations map between heterogeneous models
and platform libraries of increasing size. Moreover, model transformations
tend to offer a high degree of variability in terms of configuration parameters
or even a feature model.

In this thesis, we presented and validated three approaches to alleviate
maintenance costs of transformations, leading to these four contributions:

Domain-specific Modularity for Model Transformations We designed a
module concept for model transformation languages that establishes infor-
mation hiding at the level of mapping methods (or in a declarative context,
rules), and model elements. Since transformation modules not only depend
on mapping methods/rules provided by other modules, but do further query,
modify and create parts of the models that are processed, interfaces must be
capable not only to declare the scope of methods/rules, but also the models.
With our concept, both of them can be declarable at a sufficient level of
detail to allow for a more precise definition of contextual dependencies.

We were able to show that the approach is conceptually compatible with
other imperative and declarative transformation languages. For clarification,
we formalized the dynamic semantics of a subset of the QVT-R language, as
the language standard’s description is reportedly incomplete and erroneous.
As we found out in Chapter 7, none of the domain-specific transformation
languages that have been proposed so far offer explicit interfaces, only those
implemented as an internal DSL may hijack the host language’s OO concepts.
None of the model transformation languages offers a fine-grained access
control mechanism for the models involved.

256

8.1. Summary

Interactive Visual Analytics for Model Transformations We realized
that a lot of transformation implementations which have been designed
in the past are not properly structured, or the design has deteriorated over
time due to evolution of the models. Not in all cases does it pay off to
manually refactor the legacy design, for instance when only few maintenance
operations have to be performed. If this is the case, automatic program
analysis techniques can provide assistance. We designed an approach that
is based on the visual analytics methodology and fitted towards typical
maintenance tasks on model transformation programs. In contrast to usual
analysis techniques which focus on control dependence information alone,
we merge control and model use dependence information into a single graph
view. We give developers the ability to interactively apply preconfigured
filters. Our navigable graphical view is linked with the textual editor view,
so developers get complete details on demand and through this are instantly
able to identify the location of concern in the source files.

We showed that the approach is general enough to be useful for both
imperative and declarative transformation languages. There are previous
approaches on analysis and visualization of model transformations, but
none of them integrates control and model dependencies, is synchronized
with the textual editor, can be interactively navigated, or offers context-
sensitive dynamic filters.

Clustering Analysis for Model Transformations We searched for a meth-
od that takes the burden off of developers refactoring legacy transformations
with a suboptimal design due to erosion or negligence. Our solution sug-
gests to apply clustering techniques to (semi-)automatically re-engineer
the modular structure from the code. In concert with literature, there are
three predominant modular designs of model transformations, a source-
driven, a target-driven, and a hybrid decomposition. In order to compute
clusterings with an optimized cohesion and coupling, it takes information on
method call and model use dependencies. Based on a graph representation

257

8. Conclusions

of the dependence information, we assigned weights to the different types
of dependence relationships, so that during clustering analysis, a certain
decompositional style is favored.

As we found out at the end of Chapter 5, the approach can be transferred
to a variety of transformation languages. We are not aware of previous
work that aims to automatically derive clusterings for model transforma-
tion programs.

Validation In the scope of this thesis, we have validated the above men-
tioned approaches in three separate case studies on three different model
transformations from the Palladio research project.

For the module concept, we have evaluated realistic maintenance scenar-
ios that were recently carried out on the PCM2-Simu-Com transformation.
The study comes to the conclusion that – with a proper modularization
based on expressive interfaces – the amount of code that is required to be
understood can be reduced by more than 50 percent as opposed to a similar
decomposition without interfaces.

Our interactive visual analytics methodology has been validated in an
empirical experiment that involved 22 participants. The experiment has been
conducted on the PCM2QPN transformation implemented in Eclipse QVT-
O. We asked subjects to carry out seven maintenance tasks from all four
types of maintenance tasks. Results reveal that subjects using our graphical
view achieved significantly higher levels of efficiency and effectiveness than
subjects that used the standard Eclipse QVTo editor alone. Various analysis
techniques have been proposed for model transformation engineering in
the past, yet this is the first one that has been empirically validated in an
experiment with human subjects.

Regarding the automatic re-engineering of the module structure, we
studied two transformations implemented in QVT-O and Xtend, named
PCMEvents2PCM and PCM2SimuCom. We found out that results obtained
from automatic analysis are significantly more similar to an expert clustering

258

8.2. Lessons Learnt

if we consider model use and structural dependence information in addition
to control dependencies. This is because prevalent decompositional styles are
driven by the structure of the input and output models of a transformation.

8.2. Lessons Learnt

Assessed from a broader viewpoint, there are two scientific findings made
by this thesis, which we are going to point out below.

Applying Language Concepts, Tools and Techniques to Domain-Spe-

cific Languages Techniques for complexity and cost reduction known to
effectively work for software development in general can be successfully
transferred to software artifacts specific to model-driven software develop-
ment. This includes a sophisticated module concept and automatic program
analysis techniques in combination with visual analytics and automatic
cluster analysis. In both cases, we had to carefully adapt the generic con-
cepts of modular programming, program analysis and cluster analysis to the
domain-specific case of model transformation languages.

What distinguishes model transformation languages the most from imper-
ative GPLs is that they are strongly linked with object-oriented modeling
languages. A prominent indication for this bondage is that transformation
programs are most often decomposed along one of the model’s structure. We
had to consider dependencies among code and models in all three approaches,
modularity, program and visual analysis, and cluster analysis.

Importance of Modularity for Domain-Specific Languages By example
of model transformations, we have seen that programs in domain-specific
languages can grow complex to a point where there is a need for a well-
designed architecture if we want to avoid high maintenance costs. Most
model transformation languages allow programs to be stored across multiple
files like any other scripting language. Such a simple modularization mecha-

259

8. Conclusions

nism turns out to be insufficient for more complex programs, as evidenced
by reports on maintenance problems from larger model-driven software
projects. Most model transformation languages provide means to structure
transformations, though all of them focus on whitebox reuse, and neglect
the benefits of blackbox modularity.

Our solution to this problem is to introduce a structuring concept that
minimizes the logical boundaries and makes them explicit through well-
defined interfaces. What is exposable through an interface highly depends
on the domain concepts used by the language – regarding transformation
languages, elements that lie at the logical boundaries are model types and
the top level structuring concept. We consider model types at any granularity,
reaching from classes, over packages to complete models. Top level structur-
ing concepts are methods and/or rules, depending on if the transformation
language uses declarative and/or imperative concepts.

A similar observation can be made for domain-specific languages from
other domains: Two prominent examples are JavaScript [CR14; BAT14]
and Lua [IdFF07], both had been originally designed for smaller applica-
tions. As developers began to use the languages for larger implementations,
they began to emulate the information hiding principle using functional
programming concepts. At a later time, module systems were integrated
into both languages that were more sophisticated, tailored to the particular
needs of the domains they were used in.

8.3. Assumptions and Limitations

Not all aspects could have been researched in the context of this thesis. This
section briefly looks at the assumptions which have been made and discusses
limitations. Some of these have already been mentioned in the concluding
remarks of the contributing chapters.

260

8.3. Assumptions and Limitations

Rule-Level Decompositions We have assumed that decomposing trans-
formations at the level of rules is the optimal choice to attain maintainability.
Past research has considered generics and subrule level decompositions,
though with the purpose of reuse in mind [KSW+13]. The module concept
presented in this thesis does not support the modularization of crosscutting
concerns, these would require aspectual techniques to be included.

Limited Portability Applicability and compatibility of the module concept
for only a selection of transformation languages has been examined in
detail. Although the more prominent languages have been selected, which
cover the various paradigms, applicability might not be given for some
experimental transformation languages that follow a different paradigm,
for instance approaches where transformation rules are semi-automatically
derived from a set of interrelated source and target models [Var06].

Upfront Costs of Modular Design Whereas the advantage of a modular
design with explicit interfaces has been shown in comparison with the same
modular but without explicit interfaces, no comparison of a modular design
versus a non-modularized version has been carried out. Model scoping is
assumed to be declarable upfront at design time of a model transformation.
Fine-grained model access control is an optional feature that allows to set
the required scope of a module interface to the full models, to a list of
packages, and to a list of classes. As new knowledge about the design is
obtained at the later implementation stage, the model scope declarations
may be refined accordingly.

Automatic Dependence Analysis vs. Manual Interface Design We pres-
ent two approaches that help to locate concerns, automatic dependence
analysis, and a manual interface design. It remains unknown if our visual
analytics method is able to outperform a modularized transformation, par-

261

8. Conclusions

ticularly when crosscutting concerns must be located that are distributed
over multiple modules.

Semi-Automatic Clustering Determining the weight configuration re-
mains an iterative, manual process. The configuration sets used in the case
study have been iteratively determined by slight adaptation of a set of start-
ing values and comparing the outcome with the expert clustering. Although
we assume that the number of iterations required to reach a configuration
that produces clusterings of acceptable quality is low (as it has been the case
for the case studies), no general statement can be made.

8.4. Open Questions and Future Work Potentials

While we were conducting this research, some questions appeared that
remain unanswered, and ideas for improvements and follow-up research
were identified that would have gone beyond the scope of this thesis, but
which we consider promising nonetheless. In this section, we point out some
of these which pose potential future directions of this work.

General Practicality Up to this point, we were able to show that the struc-
turing concept is compatible with declarative rule-based languages. What
we did not demonstrate is the practicability of our approach for this class
of transformation languages. As opposed to design patterns for imperative
languages, declarative languages are differently structured. Some patterns do
not work because the functional character of QVT-R does not include state,
hence there is no state to hide. If integrated into a declarative transformation
language like QVT-R, does the approach enable developers to create use-
ful decompositions of a program that renders maintenance more effective?
To ascertain practicability of the approach for declarative model transfor-
mations, declarative transformations from real software projects must be
structured and analyzed under realistic maintenance scenarios.

262

8.4. Open Questions and Future Work Potentials

Transformation Language Interoperability Our definition of modular-
ity supports transformation languages from various paradigms, yet we did
not treat the case of mixing languages of diverse paradigms. An impor-
tant, preliminary step would be to agree on language-independent interface
descriptions, similar to standardization efforts like Common Object Re-
quest Broker Architecture (CORBA) or Microsoft’s Interface Description
Language (IDL) for imperative, object-oriented languages. This poses the
question of what concepts should be supported at the logical boundaries.
The semantics of rules specified in the declarative QVT-R language sup-
port multidirectionality and updating semantics. If multidirectionality is
supported on the interface level, the underlying module concept must make
sure that imperative implementations of a bidirectional rule are provided
for each possible direction. Romeikat et al. [RRMB08] discuss emerging
challenges in context of the QVT language stack, as they translate a subset
of QVT-R to QVT-O. General ideas on how to provide interoperability can
be drawn from an approach that embeds rule-based programming in the
style of PROLOG into Java [CV08].

Aspectual Decomposition Transformations on heterogeneous metamod-
els are often decomposed by functional aspects, as neither a purely source-
nor target-driven decomposition can be applied. In such cases, there are
two possible solutions, we may either (i) incorporate aspect-oriented pro-
gramming techniques, or we may (ii) attempt to refactor the metamodels
or introduce appropriate intermediate metamodels. Aspect orientation is
currently not supported by the module system in this thesis, but calls for
a module concept that allows for fragments of mappings to be declared
at the interface level.

Genericity of Transformation Modules The module concept developed
in this thesis does hardly facilitate the reuse of transformation logic across
different metamodel definitions, as model elements are explicitly referenced.

263

8. Conclusions

However, there is some work that applies the concept of generic typing to
model transformation languages through the binding of generic types to
concrete model types [CGdL11]. These approaches, however, do not provide
for a proper interface concept as we do. The binding concept suggested
by Cuadrado can profit by our module concept: Because our interfaces
already declares the elements a module depends on, declarations at the
implementation-level for binding accessible elements would only be neces-
sary. We expect the availability of generics at the interface-level to leverage
reusability much better than generic definitions without a proper module con-
cept. We believe it is possible that native language concepts can extend the
existing module concept in a way type safety can be ensured at compile time
by the type checker. A revised form of Cuadrado’s model reuse concepts
has been proposed by Zschaler [Zsc14], which may leverage reusability if
integrated into our module concept.

Variability Mechanism for Transformation Modules While variability

is easily possible by an additional feature model as input to a transformation,
there is no built-in mechanism that selects and binds module implementa-
tions according to a given feature configuration.

Typing of Model Transformation Languages Not all transformation lan-
guages are strictly typed, making them prone to various typing errors. One
example is ATL [CGL14]. Proper typing of model transformations is gaining
more and more attention in the community, because it helps to identify errors
and ensures that evolving metamodels stay compatible to a transformation.
At this time, prevalent transformation languages define proper typing only
for a subset of the language, as most rely on the strongly typed OCL.

Verified Transformation Implementations Transformation implementa-
tions are currently not verified if they actually provide the demanded func-
tionality. Design by contract as proclaimed by Bertrand Meyer suggests

264

8.4. Open Questions and Future Work Potentials

to use pre and post conditions and invariants on the interface level. There
is no support for behavioral contracts in our interface concept yet. The
interface concept of model transformations that has been developed could
be augmented by contractual definitions, and implementations of interfaces
could be checked using one of the available verification techniques (proof
development, model checking, instance-based testing). Another way to im-
prove the concept is to include testing, for example with a native test-case
description language for module interfaces.

Fundamental work on this topic has been done by Cariou et al. [CMSD04;
CBBD09; CBFB11], who use the OCL to specify contracts at the method
level, similar to the Java Modeling Language (JML). Their approach poses
a good starting point, although it does not consider benefits gained from
specifying contracts at the interface level of transformation modules. An
embedding of the ATL and mapping constraints into a SAT-solving engine
is provided by Selim et al. [SBC+13]. While their approach demonstrates
the importance of correctness and safety in the Automotive industry, it
does not consider the fruitful combination of contract-based and modu-
lar programming.

Transformation Engineering Process The concepts and tools proposed
in this thesis mainly aim to ease maintenance of model transformations.
As a future step, it could be interesting to consider other phases of the
lifecycle of model transformation development, for instance requirements
elicitation, architectural design, validation/certification and testing. Further-
more, co evolution of models and model transformations could be supported
by process guidelines.

Formal Verification of Declarative Semantics When safety-critical sys-
tems are developed using model-driven techniques, verifiable correctness
of model transformations is an important challenge. In this context, an im-
portant question is if we can have verified modules. Under verified modules

265

8. Conclusions

we understand modules whose specification fragment (as part of the in-
terface) is delivered together with not only an implementation, but also a
proof that certifies correctness of the implementation with regards to the
semantic specification.

Testability of Transformation Modules Another important challenge fo-
cusses on unit testing of model transformations. The module concept intro-
duced here is an important premise for automated testing in that it allows to
strictly define control and model dependencies. Only instances of those parts
of the model must be given as input and tested on the output that are declared
in the interface. Such an instance-based test case may be accompanied by
mock-up methods that emulate the imported functionality.

Version Control Mechanism Versioning of models is an important chal-
lenge that yet remains to be solved. Having modularized transformations,
it can be interesting as well to assign separate version numbers to the mod-
ules of a transformations. Here, inspiration may be drawn from component
models, for instance the Open Services Gateway initiative (OSGi). With the
parts of models versioned, for instance at the package level, transformation
modules might use available version numbers when resolving dependencies
to packages and classes.

Design Patterns for Model Transformations As suggested by Syriani
and Gray in their 2012 position paper [SG12], much benefit may be drawn
from a catalog of design patterns for model transformations. Not much work
can be found on the modular design of model transformations. A study on
modularization techniques of rule-based transformation languages was made
by Kurtev et al. [KvBJ06; KvBJ07]. Notable advancements on the topic
have been published very recently by Lano and Kolahdouz-Rahimi [LK14],
who compiled an extensive catalog of transformation-specific patterns. One
additional candidate for such a pattern is the model parts registry pattern

266

8.5. Final Remark

extensively used in the PCMEvents2PCM transformation presented in this
thesis. Future work may explore additional patterns that are based on an
adequate modularization constructs, and examine their maintainability en-
hancements for real transformations.

Automatic Re-Engineering of Model Transformations based on Com-

mon Design Patterns In this thesis, only basic design rules are considered
by our automatic clustering approach, namely a source and target driven
decompositional style. Having identified a set of design rules that are com-
monly used by transformation developers, these rules could be integrated
into our clustering approach to further improve its capabilities. Similar work
has been done by Cai et al. who are able to successfully recognize design
rules during cluster analysis [CWWW13]. Their approach reveals promising
results for the abstract factory design pattern.

8.5. Final Remark

The three approaches presented in this thesis tackle the problem of high
maintenance efforts of model transformations. The high complexity induced
by large models has been identified as the major cause of a worsened main-
tainability. This complexity cannot be handled with existing languages and
tools: neither do modularity concepts of existing transformation languages
provide explicit interfaces with information hiding capabilities of methods
and models, nor exist tools to adequately handle the complexity.

Results of this thesis give model-driven software developers new language
concepts to proactively develop better maintainable model transformations,
as well as new tools that help to understand, maintain and refactor legacy
transformations with less effort. Through information hiding modularity
and the analysis tools proposed in this thesis, the following benefits are
achieved:

267

8. Conclusions

Significantly Reduced Maintenance Efforts Maintenance efforts are re-
duced for previously modularized transformations and legacy trans-
formations alike. Descriptive interface declarations and the visual
analytics approach help to identify locations of concern measurably
faster.

Significantly Reduced Re-Engineering Efforts Re-engineering the mod-
ular structure of legacy transformations can be automated to a large
extent, leading to results which reflect the widely accepted transforma-
tion designs much better than those obtained from existing clustering
methods.

Self-Documenting Transformation Programs Software is easier to un-
derstand, use, and reuse, if the program is decomposed into self-
contained modules with expressive interface descriptions. Interface
declarations are statically enforced by the type checker, reenforcing
the confidence in the interface declarations and leveraging modular
programming for model transformation engineering.

Collaborative Development Information hiding modularity enables soft-
ware engineers to subdivide the planned transformation into separate
subprograms which are first described by explicit interfaces that en-
force the logical boundaries between the modules and models. Based
on such a design with minimized dependencies, programmers are able
to implement modules in parallel without requiring knowledge of all
modules and the complete models. It is easy to identify modules that
are affected by anticipated changes to parts of the models, either by
reading the interface descriptions, or by using our analytics approach
on existing code.

These benefits jointly contribute to reach the primary goal of this thesis,
namely a reduction of the costs involved in model transformation develop-
ment and model transformation maintenance.

268

8.5. Final Remark

From a broader perspective, we demonstrate how a domain-specific lan-
guage is augmented with a module concept with information hiding capabil-
ities. In contrast to modularity for general-purpose programming languages,
one must carefully consider the domain-specific concepts that should be
exposed at the module boundaries. As we have found out in this thesis, in
case of model transformation languages, not only methods or rules might
be published by a module, but also the models – or parts thereof – that are
referred to by the internal transformation logic.

With a predicted increase in size and complexity of software, model-driven
engineering techniques might reach their limits. Particularly model transfor-
mations must be capable to handle increasingly large and complex models
without an increase in development and maintenance costs. This research
represents a step towards the preparation of software engineering techniques
for a lean and cost-effective development of tomorrow’s software.

269

8. Conclusions

One man’s constant is another man’s variable.
– Alan J. Perlis [Per82]

270

A. Type System of Core QVT-OM

In this first of two appendix chapters, we embed language and typing of
Core QVTom into the Coq theorem prover. Core QVTom is a dialect of QVT
Operational Mappings (QVT-O) which we have extended by information
hiding modularity features. This embedding into Coq implements the typing
rule from Chapter 3 as faithfully as possible. It reuses ideas and definitions
from an embedding done for cast-free Featherweight Java1 by Bruno De
Fraine, Erik Ernst and Mario Sudholt, particularly package metatheory.

A.1. Syntax

To begin with, syntactical elements of the language are defined (cf. Fig-
ure 3.2 from Section 3.3). To ease proofs, model packages cannot contain
further packages. The Activity2Process example does not define subpack-
ages, and without subpackages, no recursion on the package containment
hierarchy is needed.

Further on, data structures genv, denv, and oenv are defined, which cap-
ture environments Γ, ∆, and Ω, respectively. Inhabitants PT, IT, and MT

of lists of packages, interfaces and module implementations are assumed
as postulates. They represent the particular set of models, interfaces and
modules that is type checked.

1 (** * Syntax *)

2

3 (** ** Lexical categories *)

4

1 Cast-free Featherweight Java, 2008; http://soft.vub.ac.be/~bdefrain/featherj/.

271

http://soft.vub.ac.be/~bdefrain/featherj/

A. Type System of Core QVT-OM

5 (** Names of packages, classes, features, interfaces,

domains, implementations, mappings, variables are atoms

(their equality is decidable). *)

6 Definition pname := atom.

7 Definition cname := atom.

8 Definition fname := atom.

9 Definition iname := atom.

10 Definition tname := atom.

11 Definition mname := atom.

12 Definition sname := atom.

13 Definition vname := atom.

14

15 (** The names [self], [result] and [Object], [Boolean],

[String], [Global] are predefined. We simply assume that

these names exist. *)

16 Parameter this : iname.

17 Parameter self : vname.

18 Parameter result : vname.

19 Parameter Object’ : cname.

20 Parameter Boolean’ : cname.

21 Parameter String’ : cname.

22 Parameter Global’ : pname.

23

24 (** ** Type and term expressions *)

25

26 (** Class names are the only form of types. **)

27 Definition ctype := cname.

28

29 (** The expression forms are variable reference, field get,

method invocation and object creation. Corresponds to

syntax rule E. *)

30 Inductive exp : Type :=

31 | e_trace_resolution_call : exp→ cname→ exp

32 | e_mapping_invocation : exp→ sname→ (*list*) vname→ exp

272

A.1. Syntax

33 | e_type_check : exp→ cname→ exp

34 | e_feature_access : exp→ fname→ exp

35 | e_class_instantiation : cname→ (*list exp→*) exp

36 | e_variable_access : vname→ exp (* var includes self *).

37 Inductive REFTYPE : Type :=

38 | COMPOSES : REFTYPE

39 | REFERENCES : REFTYPE.

40 Inductive REFMULT : Type :=

41 | ONE : REFMULT

42 | STAR : REFMULT.

43 (** Corresponds to syntax rules F, C, and P. *)

44 Inductive feature : Type := declare_feature : fname→ cname→
REFTYPE→ REFMULT→ feature.

45 Inductive class : Type := declare_class : cname→ (option

cname)→ (list feature)→ class.

46 Inductive package : Type := declare_package : pname→ (list

class)→ (list package)→ package.

47 Inductive TDIR : Type :=

48 | IN : TDIR

49 | OUT : TDIR.

50 (** Corresponds to syntax rules B, S, O, V, I, M and T. *)

51 Inductive body : Type := declare_body : fname→ exp→ body.

52 Inductive methodsign : Type := declare_methodsign : cname→
sname→ ((*list*) cname)→ cname→ methodsign.

53 Inductive methodimpl : Type := declare_methodimpl : cname→
sname→ ((*list*) (vname * cname))→ cname→ body→
methodimpl.

54 Inductive scope : Type := declare_scope : TDIR→ pname→
(list pname)→ list (cname)→ scope.

55 Inductive domain : Type := declare_domain : TDIR→ tname→
pname→ domain.

56 Inductive interface : Type := declare_interface : iname→
(list domain)→ (list scope)→ (list methodsign)→
interface.

273

A. Type System of Core QVT-OM

57 Inductive module : Type := declare_module : mname→ iname→
list iname→ list methodimpl→ module.

58 (* Transformation definition is covered by axiomatic types

[PT] [IT] [MT] in this encoding. *)

59 (*Inductive transformation : Type := declare_transformation

: list package→ list interface→ list module→
transformation.*)

60 Hint Constructors body.

61 Hint Constructors methodsign.

62 Hint Constructors methodimpl.

63 Hint Constructors scope.

64 Hint Constructors domain.

65 Hint Constructors interface.

66 Hint Constructors module.

67

68 (** ** Environments and class tables *)

69

70 (** A gamma environment [genv] declares a number of

variables and their types. A delta environment [denv]

lists accessible classes together with their respective

access type. An omega environment [oenv] binds interface

and mapping identifier to a mapping’s signature. *)

71 Notation genv := (list (vname * ctype)).

72 Notation denv := (list (TDIR * ctype)).

73 Notation oenv := (list (iname * methodsign)) (*list ((iname

* sname) * (ctype * (*list*) ctype * ctype))*).

74 Inductive ok_genv : genv→ Prop :=

75 | ok_genv_empty : ok_genv nil

76 | ok_genv_extend : forall Gamma v t,

77 ok_genv Gamma→
78 (forall (t’ : ctype), ¬In (v, t’) Gamma)→
79 ok_genv ((v, t)::Gamma).

80 Inductive ok_denv : denv→ Prop :=

81 | ok_denv_empty : ok_denv nil

274

A.1. Syntax

82 | ok_denv_extend : forall Delta d t,

83 ok_denv Delta→
84 (forall (t’ : ctype), ¬In (d, t’) Delta)→
85 ok_denv ((d, t)::Delta).

86 Inductive ok_oenv : oenv→ Prop :=

87 | ok_oenv_empty : ok_oenv nil

88 | ok_oenv_extend : forall Omega i ms cn sn cn’ cn’’,

89 ok_oenv Omega→
90 ms = declare_methodsign cn sn cn’ cn’’→
91 (forall ms_ cn_ sn_ cn’_ cn’’_, ms_ = declare_methodsign

cn_ sn_ cn’_ cn’’_ ∧ sn 6= sn_ ∧ ¬In (i, ms_) Omega)→
92 ok_oenv ((i, ms)::Omega).

93 (** [ptable] maps the names of packages to their

definitions. A package definition consists of a number

of contained packages and classes. [itable] maps the

names of interfaces to their definitions. An interface

definition consists of a number of domains and method

signatures. [mtable] maps the names of modules to their

definitions. A module definition consists of an

exported interface, imported interfaces, class and a

number of methods. *)

94 Notation ptable := (list package).

95 Notation itable := (list interface).

96 Notation mtable := (list module).

97 (** Predefined objects *)

98 Parameter Global : package.

99 Parameter Object : class.

100 Parameter Boolean : class.

101 Parameter String : class.

102 (** We assume fixed tables [PT], [IT], [MT]. *)

103 Parameter PT : ptable.

104 Parameter IT : itable.

105 Parameter MT : mtable.

275

A. Type System of Core QVT-OM

A.2. Auxiliaries

Rule-based definitions for auxiliary methods classesC, classesP, packagesP,
featuresC, mappingsI , mappingsM , scopeM , and scopeI from Figure 3.3 di-
rectly translate to Coq. For convenience, closures are defined for some
of them.

1 (** * Auxiliaries *)

2

3 (** ** Lookup of metamodel packages, classes and features *)

4 (** [classes_c], [classes_p], [packages_p] and [features_c]

look up inherited classes of a class, contained classes

in a package, contained packages in a package, and

features of a class. *)

5

6 (** [packages_p p ps] holds if a (root) package named [p]

defines packages [ps]. *)

7 Inductive packages_p : package→ (list package)→ Prop :=

8 | packages_p_global : packages_p Global nil

9 | packages_p_other : forall p pn cs ps,

10 p = (declare_package pn cs ps)→
11 In p PT→
12 packages_p p ps

13 (* NB: method only works on root packages for now, inner

packages not used. *).

14 (** [classes_c c cs] holds if a class [c] maps to list cs

which contains [c] and super classes of [c]. *)

15 Inductive classes_c : class→ list class→ Prop :=

16 | classes_c_object : classes_c Object nil

17 | classes_c_boolean : classes_c Boolean nil

18 | classes_c_string : classes_c String nil

19 | classes_c_other : forall p cs ps c cn dn fs d cs’’ p’ cs’

ps’ d’ fs’,

20 (* for any class c that inherits from d *)

276

A.2. Auxiliaries

21 c = (declare_class cn (Some dn) fs)→
22 In (declare_package p cs ps) PT→
23 In c cs→
24 (* and d is defined as (declare_class d d’ fs’) *)

25 d = (declare_class dn d’ fs’)→
26 In (declare_package p’ cs’ ps’) PT→
27 In d cs’→
28 (* then we can say that this relation holds *)

29 classes_c d cs’’→
30 classes_c c (c::d::cs’’).

31 (** [classes_p p cs] holds if a package [p] refers to

classes [cs] by declaring one of the classes or using

them as super class. For this we define a closure

function classes_cs of classes_c. *)

32 Definition classes_p (p : package) (cs : list class) : Prop

:=

33 exists pn ps, p = (declare_package pn cs ps) ∧ In p PT.

34 (** [features_c c fs] holds if a class named [c] or its

super classes define features [fs]. *)

35 Inductive features_c : class→ list feature→ Prop :=

36 | features_c_object : features_c Object nil (* NOTE: we

could instead define Global as part of ptable *)

37 | features_c_boolean : features_c Boolean nil

38 | features_c_string : features_c String nil

39 | features_c_other : forall p ps cs c cn d dn d’ fs fs’ fs’’,

40 In (declare_package p cs ps) PT→
41 c = (declare_class cn (Some dn) fs)→
42 In c cs→
43 d = (declare_class dn d’ fs’’)→
44 features_c d fs’→
45 features_c c (fs’++fs)

46 | features_c_other’ : forall p ps cs c cn fs,

47 In (declare_package p cs ps) PT→
48 c = (declare_class cn None fs)→

277

A. Type System of Core QVT-OM

49 In c cs→
50 features_c c fs.

51 (** [package_pn pn p] holds if a package named [pn] maps to

a package [p] of name [pn]. *)

52 Definition package_pn (pn : pname) (p : package) : Prop :=

53 exists cs ps, p = (declare_package pn cs ps) ∧ In p PT.

54 (** [class_cn cn c] holds if a class named [cn] maps to a

class [c] of name [cn]. *)

55 Inductive class_cn : cname→ class→ Prop :=

56 | class_cn_object : class_cn Object’ Object

57 | class_cn_boolean : class_cn Boolean’ Boolean

58 | class_cn_string : class_cn String’ String

59 | class_cn_other : forall c cn dn fs p cs ps,

60 c = (declare_class cn (Some dn) fs)→
61 In (declare_package p cs ps) PT→
62 In c cs→
63 class_cn cn c.

64 (** [feature_fn fn f] holds if a feature named [fn] maps to

a feature [f] of name [fn]. *)

65 Inductive feature_fn : fname→ feature→ Prop :=

66 | feature_fn_other : forall f fn rt rm c cn dn fs p cs ps,

67 f = (declare_feature fn cn rt rm)→
68 c = (declare_class cn (Some dn) fs)→
69 In (declare_package p cs ps) PT→
70 In c cs→
71 In f fs→
72 feature_fn fn f.

73 (** [interface_in in i] holds if an interface named [in]

maps to an interface [i] of name [in]. *)

74 Definition interface_in (in_ : iname) (i : interface) : Prop

:=

75 exists ds ss ms, i = (declare_interface in_ ds ss ms) ∧ In i

IT.

278

A.2. Auxiliaries

76 Inductive interface_ins : (list iname)→ (list interface)→
Prop :=

77 | interface_ins_nil: interface_ins nil nil

78 | interface_ins_cons: forall in_ i ins is,

79 interface_ins ins is→
80 interface_in in_ i→
81 interface_ins (in_::ins) (i::is).

82

83 (** ** Lookup of declared and implemented mapping types *)

84 Inductive mappings_i : interface→ list (iname * methodsign)

→ Prop :=

85 | mappings_i_other : forall i in’ ds ss ms,

86 i = (declare_interface in’ ds ss ms)→
87 In i IT→
88 mappings_i i (List.map (fun m⇒ (in’, m)) ms).

89 Inductive mappings_is : list interface→ list (iname *

methodsign)→ Prop :=

90 | mappings_is_nil : mappings_is nil nil

91 | mappings_is_cons : forall i ds is ds’,

92 mappings_i i ds→
93 mappings_is is ds’→
94 mappings_is (i::is) (ds++ds’).

95 Inductive mappings_m : module→ list (iname * methodsign)→
Prop :=

96 | mappings_m_other : forall m mn i is ms ds ss ms’,

97 m = (declare_module mn i is ms)→
98 In m MT→
99 In (declare_interface i ds ss ms’) IT→

100 mappings_m m (List.map (fun m’⇒ (this, m’)) ms’).

101 Inductive mappings_ms : list module→ list (iname *

methodsign)→ Prop :=

102 | mappings_ms_nil : mappings_ms nil nil

103 | mappings_ms_cons : forall m ds ms ds’,

104 mappings_m m ds→

279

A. Type System of Core QVT-OM

105 mappings_ms ms ds’→
106 mappings_ms (m::ms) (ds++ds’).

107

108 (** ** Lookup of model scope, derived from interface

signatures and scope declarations *)

109 Inductive scope_m : interface→ list (TDIR * cname)→ Prop :=

110 | scope_m_other : forall i in’ ds ss ms,

111 i = (declare_interface in’ ds ss ms)→
112 In i IT→
113 scope_m i (List.flat_map

114 (* for a given (exported) interface, parameter types of

all the methods are in scope *)

115 (fun m⇒ match m with (declare_methodsign c s c’ c’’)⇒
116 (IN, c)::(IN, c’’):: (IN, c’)::nil

117 end)

118 ms).

119 Inductive scope_i : interface→ list (TDIR * cname)→ Prop :=

120 | scope_i_other : forall i in’ ds ss ms m is ms’ cs’ ss’ c’

p’ i’ cn’,

121 i = (declare_interface in’ ds ss ms)→
122 In i IT→
123 In (declare_module m in’ is ms’) MT→
124 scope_i i (

125 (* primitives are always accessible *)

126 (OUT, Object’)::(OUT, Boolean’)::(OUT, String’)::

127 (* for each scope declaration, make declared packages

and classes accessible *)

128 (List.flat_map (fun s⇒ match s with (declare_scope d p

ps cs)⇒
129 (* get declared class/package from class/package name,

compute super/contained classes, return respective

name + scope directive as tuple. *)

130 (List.map (fun c⇒ let x := (class_cn cn’ c) in (d,

cn’)) (List.flat_map (fun cn⇒ let x := (class_cn

280

A.3. Typing

cn c’) in let y := (classes_c c’ cs’) in cs’) cs))

++

131 (List.map (fun c⇒ let x := (class_cn cn’ c) in (d,

cn’)) (List.flat_map (fun pn⇒ let x :=

(package_pn pn p’) in let y := (classes_p p’ cs’)

in cs’) ps))

132 end) ss) ++

133 (* iterate over all exported interfaces (is) *)

134 (List.flat_map (fun in’⇒ let x := (interface_in in’ i’)

in let y := (scope_m i’ ss’) in ss’) is)

135).

A.3. Typing

Core QVT-OM’s typing and well-formedness rules are implemented as one
inductive definition typing and several additional definitions commencing
with ok_ under Coq, as presented in Figures 3.4b and 3.4a. Subtyping rules
(cf. Figure 3.3) are declared by definition sub.

1 (** * Typing *)

2

3 (** ** Well-formed types *)

4

5 (** [ok_type t] holds when [t] is a well-formed type. *)

6 Inductive ok_type : class→ Prop :=

7 | ok_object: ok_type Object

8 | ok_boolean: ok_type Boolean

9 | ok_string: ok_type String

10 | ok_in_pt:

11 forall p pn cs ps c cn dn fs,

12 p = (declare_package pn cs ps)→
13 In p PT→
14 c = (declare_class cn dn fs)→

281

A. Type System of Core QVT-OM

15 In c cs→
16 ok_type c.

17 Inductive ok_types : list class→ Prop :=

18 | ok_type_nil : ok_types nil

19 | ok_type_head : forall c cs,

20 ok_types cs→
21 ok_type c→
22 ok_types (c::cs).

23 Hint Constructors ok_type.

24 Hint Constructors ok_types.

25

26 (** ** Subtyping *)

27

28 (** [extends C D] holds if [C] is a direct subclass of [D].

*)

29 Definition extends (C D : cname) : Prop :=

30 exists pn cs ps fs, In (declare_package pn cs ps) PT ∧ In

(declare_class C (Some D) fs) cs.

31 Hint Unfold extends.

32 (** [sub s u] holds if [s] is a subtype of [u]. The subtype

relation is the reflexive, transitive closure of the

direct subclass relation. *)

33 Inductive sub : ctype→ ctype→ Prop :=

34 | sub_reflexive : forall t, sub t t

35 | sub_transitive : forall t1 t2 t3, sub t1 t2→ sub t2 t3→
sub t1 t3

36 | sub_extends : forall C D, extends C D→ sub C D

37 | sub_object : forall C, sub C Object’.

38 Hint Constructors sub.

39

40 (** ** Term expression and declaration typing *)

41

282

A.3. Typing

42 (** [typing E e t] holds when expression [e] has type [t] in

environments [Gamma, Delta Omega]. [wide_typing E e t]

holds when [e] has a subtype of [t]. *)

43 Inductive typing : genv→ denv→ oenv→ exp→ ctype→ Prop :=

44 | T_Variable :

45 forall Gamma Delta Omega x cn tdir,

46 ok_genv Gamma→
47 ok_denv Delta→
48 In (x, cn) Gamma→
49 In (tdir, cn) Delta→
50 typing Gamma Delta Omega (e_variable_access x) cn

51 (* self is just an ordinary variable in this encoding

52 | T_Context: ... *)

53 | T_ClassInst:

54 forall Gamma Delta Omega cn,

55 In (OUT, cn) Delta→
56 typing Gamma Delta Omega (e_class_instantiation cn) cn

57 | T_Feature:

58 forall Gamma Delta Omega e0 c0n c0 fs fi ci tdir fin c rt

rm,

59 typing Gamma Delta Omega e0 c0n→
60 class_cn c0n c0→
61 features_c c0 fs→
62 In fi fs→
63 In (tdir, c0n) Delta→
64 In (OUT, ci) Delta→
65 fi = (declare_feature fin c rt rm)→ (* extract feature

[fi]’s name [fin] *)

66 typing Gamma Delta Omega (e_feature_access e0 fin) ci

67 | T_TypeCheck:

68 forall Gamma Delta Omega e0 c0n tdir cn,

69 typing Gamma Delta Omega e0 c0n→
70 In (tdir, cn) Delta→
71 typing Gamma Delta Omega (e_type_check e0 cn) Boolean’

283

A. Type System of Core QVT-OM

72 | T_MappingInv:

73 forall Gamma Delta Omega e0 c0n c0 vn vc in’ sn c vc’ c’’

in’’ c’ tdir tdir’ tdir’’,

74 typing Gamma Delta Omega e0 c0n→
75 typing Gamma Delta Omega (e_variable_access vn) vc→
76 In (in’, declare_methodsign c sn vc’ c’’) Omega→
77 ((In (in’’, declare_methodsign c’ sn vc’ c’’) Omega)→ sub

c c’)→
78 sub c0 c→
79 sub vc vc’→
80 In (tdir, c0) Delta→
81 In (tdir’, c’’) Delta→
82 In (tdir’’, vc) Delta→
83 typing Gamma Delta Omega (e_mapping_invocation e0 sn vn)

c’’

84 | T_TraceRes:

85 forall Gamma Delta Omega e0 c0 c tdir tdir’,

86 typing Gamma Delta Omega e0 c0→
87 In (tdir, c) Delta→
88 In (tdir’, c0) Delta→
89 typing Gamma Delta Omega (e_trace_resolution_call e0 c0) c

90 (* wide_typing implicitly adds super types of a type: typing

E C ∧ C :> D→ typing E D *)

91 with wide_typing : genv→ denv→ oenv→ exp→ ctype→ Prop :=

92 | wide_typing_sub : forall Gamma Delta Omega e t t’,

93 typing Gamma Delta Omega e t→ sub t t’→ wide_typing

Gamma Delta Omega e t’

94 with wide_typings : genv→ denv→ oenv→ list exp→ list

ctype→ Prop :=

95 | wide_typings_nil : forall Gamma Delta Omega,

96 ok_genv Gamma→
97 ok_denv Delta→
98 ok_oenv Omega→
99 wide_typings Gamma Delta Omega nil nil

284

A.3. Typing

100 | wide_typings_cons : forall Gamma Delta Omega E0 es e t,

101 wide_typings Gamma Delta Omega es E0→
102 wide_typing Gamma Delta Omega e t→
103 wide_typings Gamma Delta Omega (e::es) (t::E0).

104

105 (* We do structural recursion, and there is exactly one rule

applicable to the residual syntactical expression (in

contrast to expression typing). Thus, we can refer to

the next rule directly. *)

106 Definition ok_assignment (Gamma : genv) (Delta : denv)

(Omega : oenv) (b : body) : Prop :=

107 exists b e0 c0 c cn c’ tdir fn f fs rt rm,

108 b = declare_body fn e0→
109 In (result, cn) Gamma→
110 In (OUT, cn) Delta→
111 sub c0 c’→
112 In (tdir, c0) Delta→
113 features_c c fs→
114 In f fs→
115 f = (declare_feature fn c’ rt rm)→ (* extract feature

[f]’s name [fn] and type [c’] *)

116 typing Gamma Delta Omega e0 c0.

117 Definition ok_mappingimpl (Delta : denv) (Omega : oenv) (m:

methodimpl) : Prop :=

118 exists m cn sn pn cn’’ b vn cn’ tdir tdir’,

119 m = declare_methodimpl cn sn pn cn’’ b→
120 pn = (vn, cn’)→
121 In (tdir, cn) Delta→
122 In (tdir’, cn’) Delta→
123 In (OUT, cn’’) Delta→
124 ok_assignment ((self, cn)::(vn, cn’)::(result, cn’’)::nil)

Delta Omega b.

125 Definition ok_module (m: module) : Prop :=

126 exists m mn in_ jns js mis i ds ss ms ss’ os’ os’’,

285

A. Type System of Core QVT-OM

127 m = declare_module mn in_ jns mis→
128 i = declare_interface in_ ds ss ms→
129 In i IT→
130 scope_i i ss’→
131 interface_ins jns js→
132 mappings_is js os’→
133 mappings_m m os’’→
134 (forall mi, In mi mis→ ok_mappingimpl ss’ (os’ ++ os’’)

mi).

135 Inductive ok_modules : list module→ Prop :=

136 | ok_modules_nil: ok_modules nil

137 | ok_modules_cons: forall m ms,

138 ok_module m→
139 ok_modules ms→
140 ok_modules (m::ms).

141 Definition ok_mappingdecl (Delta : denv) (in_ : iname) (ms:

methodsign) : Prop :=

142 exists cn sn cn’ cn’’ m mn jns mis os tdir tdir’ ms0 cn0

cn0’ cn0’’,

143 ms = declare_methodsign cn sn cn’ cn’’→
144 m = declare_module mn in_ jns mis→
145 In m MT→
146 mappings_m m os→
147 In (in_, ms0) os→
148 ms0 = declare_methodsign cn0 sn cn0’ cn0’’→
149 In (tdir, cn) Delta→
150 In (tdir’, cn’) Delta→
151 In (OUT, cn’’) Delta→
152 sub cn0 cn→
153 sub cn’ cn0’→
154 sub cn’’ cn0’’.

155 Definition ok_interface (i: interface) : Prop :=

156 exists in_ ds ss mss ss’,

157 i = declare_interface in_ ds ss mss→

286

A.4. Properties

158 scope_i i ss’→
159 (forall ms, In ms mss→ ok_mappingdecl ss’ in_ ms).

160 Inductive ok_interfaces : list interface→ Prop :=

161 | ok_interfaces_nil: ok_interfaces nil

162 | ok_interfaces_cons: forall i is,

163 ok_interface i→
164 ok_interfaces is→
165 ok_interfaces (i::is).

166 Definition ok_program : Prop :=

167 ok_interfaces IT ∧ ok_modules MT.

A.4. Properties

At this point, we are able to translate the theorems that postulate ab-
straction safety from Section 3.3.4 into Coq propositions. Abstraction
safety (Rule 1) is captured by parameter representation_independence.
Representation invariants (Rules 2a to 2c) are captured by parameters
method_provisioning, method_access_control, and model_access-

_control. The actual proofs under Coq, which give evidence that the four
theorems apply to the previously translated type system, are left for fu-
ture work.

1 (** * Properties *)

2

3 (** Abstraction safety *)

4

5 Definition parameters_match (mi : methodimpl) (ms :

methodsign) : Prop :=

6 exists cn sn vn cn’ cn’’ b cn_ cn_’ cn_’’,

7 mi = declare_methodimpl cn sn (vn, cn’) cn’’ b ∧
8 ms = declare_methodsign cn_ sn cn_’ cn_’’ ∧
9 sub cn_ cn ∧

287

A. Type System of Core QVT-OM

10 sub cn_’ cn’ ∧ (* this must be done recursively for

multiple parameters *)

11 sub cn’’ cn_’’.

12 Function method_call_in_scope (e : exp) (ins : list iname)

(mis : list methodimpl) : Prop :=

13 match e with

14 | e_trace_resolution_call e’ cn⇒ method_call_in_scope e’

ins mis

15 (* for any invocation of method [sn] in the method body of

[mi] *)

16 | e_mapping_invocation e’ sn vn⇒
17 method_call_in_scope e’ ins mis→
18 (* [s] is either defined locally, then *)

19 ((* there must be exactly one method implemented by the

given name, where *)

20 exists! mi, forall cn vn cn’ cn’’ b,

21 In mi mis→
22 mi = declare_methodimpl cn sn (vn, cn’) cn’’ b→
23 (* It remains future work to infer typing of... *)

24 (* * context type [e] |- [cn_] matches type of context

parameter [cn] *)

25 (* * variable [vn] |- [cn’_] :> input parameter [cn’]

*)

26 (* * return type = return type of surrounding method

implementation) <: return type [cn’’] *)

27 True

28 (* else, there is an [s’] defined in exactly one

imported interface [in_] with *)

29) ∨ (

30 exists! i ms, forall in_ ds ss mss cn cn’ cn’’ ,

31 In in_ ins→
32 In i IT→
33 i = declare_interface in_ ds ss mss→
34 In ms mss→

288

A.4. Properties

35 ms = declare_methodsign cn sn cn’ cn’’→
36 (* parameter types of [ms] and [ms’] match (according

to Liskov’s principle) *)

37 True

38)

39 | e_type_check e’ cn⇒ method_call_in_scope e’ ins mis

40 | e_feature_access e’ fn⇒ method_call_in_scope e’ ins mis

41 | e_class_instantiation cn (*es*)⇒ True

42 | e_variable_access vn⇒ True

43 end.

44 Definition model_access_in_scope (td : TDIR) (cn : cname)

(ss : list scope) : Prop :=

45 (* class [cn] is either declared directly, *)

46 exists s, forall pn pns cns,

47 In s ss→
48 s = declare_scope td pn pns cns→
49 In cn cns ∨ (

50 (* or one of the declared packages [pns] contains [cn] *)

51 exists pn’, forall p cns’ pns’ c scn fs,

52 In pn’ pns ∧
53 In p PT ∧
54 p = (declare_package pn’ cns’ pns’) ∧
55 In c cns’ ∧
56 c = (declare_class cn scn fs)

57).

58 Function expression_model_access_in_scope (e : exp) (ss :

list scope) : Prop :=

59 (* for any expression [e] in the method body of [m], the

inferred type [t] must be (read/write) accessible. *)

60 match e with

61 | e_trace_resolution_call e’ cn⇒
expression_model_access_in_scope e’ ss ∧
model_access_in_scope IN cn ss

289

A. Type System of Core QVT-OM

62 | e_mapping_invocation e’ sn vn⇒
expression_model_access_in_scope e’ ss ∧ True

63 | e_type_check e’ cn⇒ expression_model_access_in_scope e’

ss ∧ model_access_in_scope IN cn ss

64 | e_feature_access e’ fn⇒
expression_model_access_in_scope e’ ss

65 | e_class_instantiation cn⇒ model_access_in_scope OUT cn

ss

66 | e_variable_access vn⇒ True

67 end.

68

69 Module Type AbstractionSafety (H: Hypotheses).

70 Parameter representation_independence:

71 (* for any transformation built from list of models

[PT], interfaces [IT] and implementations [MT], and

interface i and implementations [m], [m’] *)

72 forall i m m’ MT’ in_ ds ss mss mss’ mn mn’ is is’ mis,

73 (* interface [i] is implemented by [m] and [m’] *)

74 i = declare_interface in_ ds ss mss→
75 m = declare_module mn in_ is mis→
76 m’ = declare_module mn’ in_ is’ mss’→
77 ok_interface i→
78 ok_module m→
79 ok_module m’→
80 (* if the program is wellformed with [m], then it must

also be wellformed with [m’] *)

81 (MT = (m::MT’)→ ok_program)→
82 (MT = (m’::MT’)→ ok_program).

83 Parameter method_provisioning:

84 ok_program→
85 (* for any interface [i] *)

86 forall i in_ ds ss mss,

87 In i IT→
88 i = declare_interface in_ ds ss mss→

290

A.4. Properties

89 (* there exists exactly one module [m] that implements

interface [i] *)

90 exists! m, exists mn is mis,

91 In m MT ∧
92 m = declare_module mn in_ is mis→
93 (* and a bijective mapping between signatures of [i] and

[m] with names, parameter names and types matching *)

94 forall ms, In ms mss→ exists! mi, In mi mis ∧
parameters_match mi ms.

95 Parameter method_access_control:

96 ok_program→
97 (* for any module [m] *)

98 forall m mn in_ ins mis i ds ss mss mi cn sn vn cn’ cn’’

b fn e,

99 In m MT→
100 m = declare_module mn in_ ins mis→
101 (* that implements interface [i] *)

102 In i IT→
103 i = declare_interface in_ ds ss mss→
104 (* for any method [mi] implemented by [m] *)

105 In mi mis→
106 mi = declare_methodimpl cn sn (vn, cn’) cn’’ b→
107 b = declare_body fn e→
108 (* method invocations in implementation [mi]’s body [b]

must be in scope *)

109 method_call_in_scope e ins mis.

110 Parameter model_access_control:

111 ok_program→
112 (* for any module [m] *)

113 forall m mn in_ ins mis i ds ss mss mi cn sn vn cn’ cn’’

b fn e,

114 In m MT→
115 (* there exists exactly one module [m] that implements

interface [i] declaring scope [ss] *)

291

A. Type System of Core QVT-OM

116 m = declare_module mn in_ ins mis→
117 In i IT→
118 i = declare_interface in_ ds ss mss→
119 In mi mis→
120 mi = declare_methodimpl cn sn (vn, cn’) cn’’ b→
121 (* for any expression [e] in the method body of [m], the

inferred type [t] must be (read/write) accessible. *)

122 b = declare_body fn e→
123 expression_model_access_in_scope e ss→
124 (* for any parameter in the method signatures of [m],

the defined type [t] must be (read/write)

accessible. *)

125 model_access_in_scope IN cn ss ∨ model_access_in_scope

OUT cn ss→
126 model_access_in_scope IN cn’ ss ∨ model_access_in_scope

OUT cn’ ss→
127 model_access_in_scope OUT cn’’ ss.

128 End AbstractionSafety.

292

B. Standards Compliant Implementations of
QVT-R Transformations

In this second and last appendix chapter, by example of the UML2RDBMS
example transformation, we demonstrate how to create unidirectional, non-
updating implementations of QVT-R specifications that are verifiably correct
with respect to the intended semantics of the language.

B.1. The Approach

Ideas from several different proposals went into the QVT standard, making
QVT-R a universal language with advanced mapping features. For instance,
the same transformation can be executable in multiple directions (bidirec-

tionality), and either be used to check if models are consistent (check-only

mode) or to update an existing model (check-before-enforce mode). The stan-
dard uses predicate logic to specify the semantics, but these are incomplete
and ill-formed with respect to the bidirectional use case. Thus, most work on
QVT [Ste13; BS12; BS13; MC13; dLG09; Gar08] exploits better suitable
formalisms to capture the semantics of advanced features. Standards confor-
mity is demonstrated for none of them, probably due to known errors.

To address this situation, in this chapter we systematically embed a core
subset of the formal language standard in constructive type theory under the
Coq proof environment. Our embedding is mostly a shallow one, with only
a minimum of computational steps, which are fully automatized by code
generator templates. We adhere as faithfully as possible to the formal lan-
guage standard, whilst we confine ourselves to unidirectional, non-updating

293

B. Standards Compliant Implementations of QVT-R Transformations

enforcement semantics. We give justification for any deviation from the
official specification.

The embedding can be used to systematically create implementations
of QVT-R specifications that conform to the standard. The essential steps
of our approach are as follows:

1. We encode a QVT-R specification in Constructive Type Theory (CTT)
using ideas from Lano [LKP+12] and Poernomo [Poe08];

2. We prove implementability of the CTT specifications using the Coq
interactive proof assistant [Pau12];

3. Using the Curry-Howard Isomorphism [Pau12], we extract a func-
tional and verified – albeit not necessarily very efficient – implemen-
tation of the transformation specification from our proof.

Implementation and proof that follow emerged from a collaboration with
Jeffrey Terrell and Steffen Zschaler from King’s College, London.

B.2. Example Implementation and Proof

As a running example, we use the well-known UML2RDBMS transforma-
tion, which transforms UML class diagrams (Figure B.1a) into relational
schemata (Figure B.1b). There is a standard encoding of this transforma-
tion in the QVT standard [Obj11, Annex A.1.1], which demonstrates many
of the key concepts.

Although the transformation is relatively small and well studied, it is a
good example for our purposes as it exercises all of the features of QVT-R. In
particular, it consists of a number of top and called relations, with when and
where clauses. Some of these relations invoke each other recursively, giving
grounds to a recursive specification of the transformation. The relations
use extensive pattern matching and variables in different contexts, such
as at the top of a relation or as part of a matched pattern, giving grounds

294

B.2. Example Implementation and Proof

name : EString

Package

name : EString

Classifier
0..＊ classifier

1 namespace

name : EString

Association
0..＊ association

1 namespace

kind : EString

Class

attribute name : EString

PrimitiveDataType

0..1
general

1..＊

0..＊

type

1

0..＊

name : EString

Attribute

subclass

0..＊ owner

1

0..＊
1 source 1 destination

sourceOf

typeOf

destinationOf

(a) Simplified UML

name : EString

Schema

name : EString

Table

1..＊ table

1 schema

name : EString

ForeignKey

1..＊ table

1 schema

name : EString
type : EString

Column
1..＊ column

1 owner

name : EString

Key
1 hasKey

1 owner
owner

1
hasForeignKey

1..＊

1

refersTo

1..＊ referredBy

hasForeignKey

1

1..＊
column

(b) Simplified RDBMS

Figure B.1: Metamodels used by the UML2RDBMS example

to different forms of specification. We will discuss the transformation in
more detail in the next section.

The UML2RDBMS transformation is specified as a set of relations be-
tween the elements of two typed models, uml and rdbms. Identifiers UML
and RDBMS stand for their respective types.

transformation UML2RDBMS (uml : UML, rdbms : RDBMS) { . . . }

295

B. Standards Compliant Implementations of QVT-R Transformations

1 top relation Class2Table {
2 cn, prefix: String;
3 checkonly domain uml c:Class {
4 namespace = p:Package { },
5 kind = ’Persistent’,
6 name = cn };
7 enforce domain rdbms t:Table {
8 schema = s:Schema { },
9 name = cn,

10 column = cl:Column {
11 name = cn + ’_tid’, type = ’NUMBER’ },
12 hasKey = k:Key { name = cn + ’_pk’, column = cl } };
13 when { Package2Schema(p, s); }
14 where { prefix = ’’; Attribute2Column(c, t, prefix); }
15 }

Listing B.1: UML2RDBMS example in QVT-R – Relation Class2Table

The official UML2RDBMS transformation used here comprises eight rela-
tions, Package2Schema, Class2Table, Class2PKey, Attribute2Column,
PrimitiveAttribute2Column, ComplexAttribute2Column, SuperAt-

tribute2Column, and Association2FKey. In addition, there is also one
query function for mapping primitive type identifiers from MOF to Struc-
tured Query Language (SQL), PrimitiveType2SqlType. Relation At-

tribute2Column and the other three relations on subtypes of class At-

tribute form a potentially recursive chain of invocations. The mapping
of attributes is initiated by top relation Class2Table, which is specified
in Listing B.1.

The rule obviously relates classes with tables, it checks some of the
properties on either domain. The relationship can only be enforced to hold in
direction of the RDBMS model, noticeable from keyword enforce attached
to the respective domain. According to the relation’s when section, relation
Package2Schema must hold on the containing elements of matched classes
and tables. If it holds, attributes and columns are matched, accordingly, as
denoted by the expression in the where section.

296

B.3. Encoding QVT-R Transformations in Coq

B.3. Encoding QVT-R Transformations in Coq

As part of defining standards-compliant semantics, we developed a tool for
automatically translating QVT-R transformations, along with the Essential
MOF (EMOF) metamodels on which they are based, into Coq. In this
section, we describe the core mapping rules.

B.3.1. Encoding Metamodels

We start by describing how classes, attributes, containment references, as-
sociations and inheritance are encoded in Coq. We are specifically using
EMF/Ecore [SBPM09], EMOF’s most prevalent dialect. We complement the
work of Calegari et al. [CLST10] with an essential prerequisite for capturing
the semantics of QVT-R transformations correctly, namely an encoding of
bidirectional associations.

A class is encoded as an inductive type, with its attributes and immediate
super class (if any) encoded as members. Since containment references
cannot be cyclic, they can be encoded inductively just like an attribute, with
the attribute’s type equal to that of a previously defined class. For instance,
class Table in the RDBMS metamodel is encoded as follows.

1 Record Table_OID : Set := Build_Table_OID {

2 Project_Table_OID_nat : nat }.

3 Record Table : Set := Build_Table {

4 Project_Table_oid : Table_OID;

5 Project_Table_super : ModelElement;

6 Project_Table_columns : list Column;

7 Project_Table_hasKey : option Key }.

Clearly, the order in which classes are defined is important. Where there
is a need to support recursive relations, as is the case in the running example,
Coq demands to be able to syntactically determine whether the recursion will
terminate. In such situations, a suitable subset of the classes is encoded as a
set of mutually inductive types. This is discussed further in Section B.3.2.

297

B. Standards Compliant Implementations of QVT-R Transformations

Most primitive data types in the EMOF have a direct correspondence in
Coq, e.g., string for String, nat for Integer, and bool for Boolean. Fur-
ther, a multiplicity of 0..1 is encoded as an option type, and a multiplicity
of 0..* is encoded as a list type.

In contrast to containment references, associations can form cycles. We
encode associations so that the tree structure of inductive types is preserved.
Instead of directly referencing an associated object, its object identifier (OID,
a unique natural number) is referenced as a proxy value1. For example,
in order to resolve reference ForeignKey::owner (cf. Figure B.1b), two
auxiliary functions are employed: AllInstances_Table builds a list of all
Table objects in the model’s containment tree, and Find_Table looks up
the matching Table object for a given OID.

1 Definition AllInstances_Table (rdbms : RDBMS) : list Table :=

2 flat_map Project_Schema_tables (AllInstances_Schema rdbms).

3 Definition Find_Table (rdbms : RDBMS) (oid : Table_OID) :

option Table :=

4 find (fun oid’⇒ beq_nat

5 (Project_Table_OID_nat (Project_Table_oid oid’))

6 (Project_Table_OID_nat oid)) (AllInstances_Table rdbms).

7 Definition Resolve_ForeignKey_owner (rdbms : RDBMS) (fk :

ForeignKey)

8 : option Table :=

9 (Find_Table rdbms (Project_ForeignKey_owner fk)).

Attentive readers will have noticed that hasForeignKey and schema

are not part of class Table’s record definition. This is because they are
computationally derived from their opposing reference. We illustrate this
by example of hasForeignKey.

1 Definition Resolve_Table_hasForeignKey (rdbms : RDBMS) (t :

Table)

1 Whilst coinductive representations are generally possible (for example, see Picard and
Matthes [PM11]), they are more difficult to prove than inductive representations.

298

B.3. Encoding QVT-R Transformations in Coq

2 : list ForeignKey :=

3 (filter (fun t’⇒ match (Resolve_ForeignKey_owner rdbms t’)

with

4 | Some t’’⇒ beq_nat

5 (Project_Table_OID_nat (Project_Table_oid t’’))

6 (Project_Table_OID_nat (Project_Table_oid t))

7 | _⇒ false

8 end) (AllInstances_ForeignKey rdbms)).

This method exposes a limitation in that only the forward direction can
be assigned a value, i.e. the backward direction must be derived. By default,
we choose the forward direction to be the one that targets the class that is
lowest in the containment hierarchy.

For our approach to work, we have to assume that the OIDs of each
class are unique. A transformation expects valid input models to abide
by their metamodel’s uniqueness constraints. In return, a transformation
should only produce valid target models. It naturally depends on how a
transformation is implemented if the output model’s OIDs are unique, and
evidence must be given for this.

B.3.2. Encoding QVT-R Transformations

In Section 3.5.1 we presented the formal semantics of important QVT-R
concepts encoded in CTT under Coq. This embedding of QVT-R programs
into Coq has been encoded as a transformation program. We invoked the pro-
gram to automatically translate the UML2RDBMS example transformation
to logical expressions. For example, the top relation Class2Table, which
is given in Listing B.1, is encoded as in Listing B.2.

Recursive Relations The where clause of the top Class2Table relation
invokes a non-top relation Attribute2Column, which in turn calls three
subordinate relations, of which two recursively call Attribute2Column. In
QVT-R, there are no restrictions on what can be achieved through recursion,

299

B. Standards Compliant Implementations of QVT-R Transformations

1 Definition Top_Class2Table (uml : UML) (rdbms : RDBMS) : Prop
:=

2 forall p : UML.Package,
3 exists s : RDBMS.Schema,
4 Package2Schema uml rdbms p s→
5 forall (cn : string) (prefix : string) (c : UML.Class),
6 In c (UML.AllInstances_Class uml) ∧
7 Some p = (UML.Resolve_Class_namespace uml c) ∧
8 (UML.Project_Class_kind c) = UML.PERSISTENT ∧
9 (UML.Project_Class_name c) = cn→

10 exists t : RDBMS.Table,
11 In t (RDBMS.AllInstances_Table rdbms) ∧
12 exists (cl : RDBMS.Column) (k : RDBMS.Key),
13 (RDBMS.Project_Table_name t) = cn ∧
14 Some s = (RDBMS.Resolve_Table_schema rdbms t) ∧

15

...
16 (RDBMS.Project_Key_name k) = (cn ++ "_pk")%string ∧
17 In (Some cl) (RDBMS.Resolve_Key_column rdbms k) ∧
18 (prefix = ""→ Attribute2Column uml c t prefix).

Listing B.2: Coq Encoding of Relation Class2Table

but inevitably there is a price to pay, for not all QVT-R transformations are
guaranteed to terminate. By way of contrast, it is simply not possible to con-
struct a program, e.g. a transformation, which does not terminate in Coq.

To marry QVT-R’s unrestricted support for recursion, with Coq’s more
restricted form, the recursive Attribute2Column relation is encoded as
a Fixpoint as follows.

1 Fixpoint Attribute2Column (c : UML.Class) (t : RDBMS.Table) . . .

: Prop :=

2 (forall (an : string) . . .,

3 (fix PrimitiveAttribute2Column (l : list UML.Attribute) :

Prop :=

4 match l with . . . end) (UML.Project_Class_attributes c)) ∧
5 (forall (an : string) . . .,

300

B.4. Verification Process

6 (fix ComplexAttribute2Column (l : list UML.Attribute) :

Prop :=

7 match l with . . . end) (UML.Project_Class_attributes c)) ∧
8 match Project_Class_general c with

9 | None⇒ True

10 | Some sc⇒ Attribute2Column sc t prefix

11 end.

On each invocation of Attribute2Column, the principal argument c is
guaranteed to be structurally smaller than it was last time, in virtue of the
way that the relations between UML.Class and its neighbouring classes are
encoded, i.e. as a set of mutually inductive types (rather than as record
types), with explicit references to each other rather than implicit references
via OIDs, i.e.

1

...

2 with Class : Set := Build_Class : Class_OID→ Classifier→
3 option Class→ list Attribute→ Class

4 with Attribute : Set := Build_Attribute : Attribute_OID→
5 ModelElement→ (Class + PrimitiveDataType)→ Attribute

6 with PrimitiveDataType : Set := Build_PrimitiveDataType :

7 PrimitiveDataType_OID→ Classifier→ PrimitiveDataType

8

...

B.4. Verification Process

In constructive type theory, proofs are carried out by constructing an inhabi-
tant of a type that fulfills the specification. There is an analogy between a
constructive proof and a program, which has been formulated as the Curry-
Howard correspondence [CH88]. Whenever the specification ’asks’ for an
inhabitant of a type, we provide a function that generates an inhabitant
for which we are able to prove that it possesses the required properties. A

301

B. Standards Compliant Implementations of QVT-R Transformations

Build_AssocToForeignKey

Build_ClassToKey

relation PackageToSchema

relation ClassToTable

relation AssocToFKey

relation AttributeToColumn

relation SuperAttributeToColumn

relation PrimitiveAttributeToColumn

Build_PackageToSchema

Build_ClassToTable

Build_AssocToColumn

Build_AttributeToColumn

Build_SuperAttributeToColumn

Build_PrimitiveAttributeToColumn

Build_ComplexAttributeToColumn

Build_ClassToColumn

relation ComplexAttributeToColumn

Figure B.2: UML2RDBMS relations vs. functions (arrows depict call dependen-
cies).

verification process thus consists of two steps. First, we define the map-
ping functions that generate model elements in the target model. Second,
we verify that the elements created in this manner do in fact possess the
required properties.

B.4.1. Defining an Implementation

Implementing a transformation in a functional programming language is
easiest done by recursing over the target model’s (tree-like) containment
structure and constructing the elements bottom-up. The same approach,
first constructing the target elements and then updating their references, is
pursued by ATL as well. However, the same QVT relation can instantiate
objects of distinct types, located at different nodes in the tree.

We must therefore untangle the transformation logic by splitting up the
implementation of a relation into separate functions, with each function
creating objects of exactly one type of target class. For instance, when
creating a target table in UML2RDBMS, the associated columns must first
be created. Now, there are three relations that create columns, and since
one of them also creates foreign keys, creating columns must be factored
out across a number of different functions. The complete set of functions is
shown in Figure B.2. Each function is accompanied by an iterative variant,

302

B.4. Verification Process

recognisable by the prefix Establish. For relation Class2Table, we wrote
the following function:

1 Function Build_Class2Table (uml : UML) (p : UML.Package) (c :

UML.Class)

2 (prefix : string) : RDBMS.Table :=

3 (RDBMS.Build_Table

4 (* oid *) (RDBMS.Build_Table_OID . . .)

5 (* super *) (RDBMS.Build_ModelElement . . .)

6 (* columns *) (RDBMS.Build_Column . . .) ::

7 ((Establish_Attribute2Column c prefix) ++

8 (Establish_Assoc2Column uml . . .)))

9 (* hasKey *) (Some RDBMS.Build_Key . . .)).

For a certain type instantiated in the target model, we are obliged to guaran-
tee that each object has a unique OID. For bijective relations we can reuse the
OID from the source objects (these are contractually certified to be unique).
However, this is no longer possible when an object maps to multiple objects
of the same type in the target model. To avoid the clashing of OID values, a
state monad for generating a series of natural numbers can help [Swi09].

The implementation of Establish_Attribute2Column follows the
same structure as its counterpart relation. However, instead of returning
Prop, it returns list RDBMS.Column; and instead of taking the conjunction
of the encodings of the subordinates relations, it concatenates the lists of
columns returned by the implementations of the subordination relations.

1 Fixpoint Establish_Attribute2Column . . . : list RDBMS.Column :=

2 ((fix Primitive. . . (l : list UML.Attribute) : list

RDBMS.Column :=

3 match l with . . . end) (Project_Class_attributes c)) ++

4 ((fix Complex. . . (l : list UML.Attribute) : list

RDBMS.Column :=

5 match l with . . . end) (Project_Class_attributes c)) ++

6 match Project_Class_general c with

303

B. Standards Compliant Implementations of QVT-R Transformations

7 | None⇒ nil

8 | Some sc⇒ Establish_Attribute2Column sc prefix

9 end.

B.4.2. Verifying the Implementation

Coq requires us to prove that a manually written implementation abides
by the generated specification. This again is a manual step, which leads to
relatively straightforward but long proofs2.

Uniqueness properties are retained by the transformation Associa-
tions can only be resolved when OIDs in source and target models are
unique. We prove that instances of a type in the target metamodel retain
the uniqueness property, provided that elements in the source model have
unique OIDs, e.g., for class Table,

1 Hypothesis TableOIDsAreUnique:

2 forall (uml : UML) (rdbms : RDBMS) (t1 t2 : RDBMS.Table),

3 rdbms = Establish_Package2Schema (uml) ∧
4 In t1 (AllInstances_Table rdbms) ∧
5 In t2 (AllInstances_Table rdbms) ∧
6 (Project_Table_OID_nat (Project_Table_oid t1)) =

7 (Project_Table_OID_nat (Project_Table_oid t2))→ t1 = t2.

As useful corollaries, we can then show that containment relations preserve
uniqueness properties. We mentioned above that, in more complex scenarios,
a state monad is needed to guarantee uniqueness of OIDs. However, running
proofs that involve monads is cumbersome. Hoare-style reasoning to prove
uniqueness of numbers generated by a state monad in Coq is demonstrated
by Swierstra [Swi09].

2 Any sources discussed here can be accessed at http://qvt.github.io/qvtr2coq.

304

http://qvt.github.io/qvtr2coq

B.4. Verification Process

Bidirectional references are invertible Independently of the transfor-
mation, we can show that backward references are invertible. To give an
example, for any Table t and Schema s, we are able to reveal that

Some s = (RDBMS.Resolve_Table_schema rdbms t)→
In t (RDBMS.Project_Schema_tables s)

Transformation theorem Equipped with these helping lemmas, we fi-
nally prove that the implementation satisfies the theorem from Definition 6.
When dealing with non-recursive relations, each of the target constraints
CT , i,1≤ i≤ k can be proven one after the other. The implementation makes
regular use of list operations, thus, lemmas to lift applicator functions out
of list operations are very useful. One example is lemma in_flat_map

from Coq’s standard library.

Recursive relations The proof of the recursive relation Attribute2Col-

umn requires the use of Coq’s fix tactic. Fixing the bound variable c when

forall (c : UML.Class), . . . , Attribute2Column c t prefix

is the current goal does two things. First, it asserts by means of a hypothesis
that the current goal is inhabited. Second, it guards the hypothesis to ensure
that it is only ever used with objects of UML.Class that are structurally
smaller than the one it started with.

305

List of Figures

1.1. Activity2Process transformation in QVTo, method-level
dependencies . 6

1.2. Activity2Process transformation, modularized with QVT-O,
declared dependencies . 10

1.3. Conceptual contributions of this thesis (Arrows depict
dependencies) . 16

1.4. Structure of this thesis (Arrows depict dependencies) 23

2.1. Research areas touched by this thesis (including own
contributions in bold letters) 26

2.2. Model-driven Software Development (from [SV06, p. 15]) . . 27
2.3. Model-driven Architecture 28
2.4. The role of transformations in MDE 35
2.5. The QVT specification – languages and architecture [Obj11] . 36
2.6. Triple graph grammar rule that maps StartAction to Step . 54
2.7. IEEE/ISO standardized software maintenance process [IEE06] 66
2.8. IEEE/ISO standardized maintenance types [IEE06] 67
2.9. The visual analytics methodology [KKEM10] 71
2.10. Clustering of two-dimensional numerical data, based on the

Euclidean distance . 73

3.1. Activity2Process transformation in QVT-OM, declared
dependencies . 87

3.2. Core QVT-OM’s syntax. 90

307

List of Figures

3.3. Core-QVT-OM’s primitives, subtyping rules, and auxiliary
functions. 91

3.4. Core-QVT-OM’s typing rules. 93
3.5. Example inference rules – Interface-compliant implementation

of module Activity2Process. 99
3.6. Interoperability of QVT-Relations and QVT-Operational . . . 125

4.1. Visual analytics process . 131
4.2. Dependency graph model 134
4.3. Constructing dependency graphs from QVT-O code – TGG

rules for select concepts . 136
4.4. Notation for dependence graph elements (dashed line marks

correspondence) . 140
4.5. Filtered dependency graphs for the introductory

Activity2Process example transformation 147

5.1. Prevalent designs of model transformations 160
5.2. Clustering approach . 162
5.3. Activity2Process transformation – Extracted dependence graph 167
5.4. Activity2Process transformation – Bunch-derived clustering

based on class-level dependencies vs. expert clustering
(denoted by small letters in bold) 172

6.1. GQM plan – Certain metrics (M) are required to answer
quantifiable questions (Q), in order to achieve our goal (G). . 186

6.2. GQM plan – Certain metrics (M) are required to answer
quantifiable questions (Q), in order to achieve our goal (G). . 199

6.3. Grouping of participants during the experiment 204
6.4. Measured response variables 206
6.5. GQM plan – Certain metrics (M) are required to answer

quantifiable questions (Q), in order to achieve our goal (G). . 213

308

List of Figures

6.6. PCMEvents2PCM transformation – Bunch-derived clustering
based on class-level dependencies (classes and designated
library methods removed) vs. expert clustering (denoted by
small letters in bold) . 219

6.7. PCM2SimuCom transformation – Bunch-derived clustering of
cluster #10 based on package and file-level dependencies
(packages removed) vs. expert clustering (denoted by small
letters in bold) . 225

B.1. Metamodels used by the UML2RDBMS example 295
B.2. UML2RDBMS relations vs. functions (arrows depict call

dependencies). 302

309

List of Tables

4.1. Control elements and referencing concepts in selected
transformation languages . 150

5.2. Activity2Process – Manual vs. derived clustering 177
5.3. Module concepts in selected transformation languages 178

6.1. SimuCom transformation – Data dependencies per module . . . 190
6.2. SimuCom transformation – Change impact analysis 194
6.3. PCMEvents2PCM – Dependence matrix of expert

decomposition (asterisk denotes module with entry point) . . . 215
6.4. PCMEvents2PCM – Alternative clusterings 216
6.5. PCMEvents2PCM – Dependence matrix of class-level

clustering (entry point indicated by an asterisk) 221
6.6. PCM2SimuCom – Dependence matrix of expert decomposition

(asterisks indicate main modules) 223
6.7. PCM2SimuCom – Alternative clusterings 224
6.8. PCM2SimuCom – Dependence matrix of package-level

clustering (asterisks indicate modules with entry points) 226

7.1. Comparison of concepts for internal composition 239

311

List of Listings

1.1 Activity2Process example in QVT-O 9

2.1 Activity2Process example in QVT-R 44
2.2 Activity2Process example in Xtend 48
2.3 Activity2ActivityXML example in Xtend 51

3.1 Activity2Process example in QVT-OM 85
3.2 Activity2Process example – Source and target models 94
3.3 Activity2Process example in Xtend2m 110
3.4 Activity2Process example – MWE2 workflow definition . . . 111

5.1 Xtend template method . 166
5.2 Activity2Process example – SIL file 174

B.1 UML2RDBMS example in QVT-R – Relation Class2Table . . 296
B.2 Coq Encoding of Relation Class2Table 300

313

Acronyms

AC-MDSD Architecture-Centric Model-driven
Software Development

27, 30, 31

ADT Abstract Data Types 58

AGG Attributed Graph Grammar system 37

AM3 AMMA Megamodel 242

AMT Workshop on the Analysis of Model
Transformations

158

AOSD International Conference on Aspect-
Oriented Software Development

318

API Application Programming Interface 3, 7, 20, 28, 40, 49,
50, 75, 108, 133,
152, 166, 168, 238

ASDG Abstract System Dependence Graph 249

ASM Abstract State Machines 37, 152, 181, 241

AST Abstract Syntax Tree 106, 233

ATL Atlas Transformation Language 12, 15, 37, 112, 149,
151, 152, 178–180,
236, 239–241, 243,
245, 247, 249, 264,
265, 302

CIC Calculus of Inductive Constructions 65

315

Acronyms

CIM Computationally-Independent
Model

28, 29

CMOF Complete Meta-Object Facilities 33, 34, 232

COM Component Object Model 29

CORBA Common Object Request Broker
Architecture

29, 263

CTT Constructive Type Theory 294, 299

DSL Domain-Specific Language 3, 5, 53, 80, 133,
152, 238, 242, 256

EBNF Extended Backus-Naur Form 33

EJB Enterprise Java Beans 29, 188, 221

EMF Eclipse Modeling Framework 34, 44, 49, 151, 232,
233, 239, 244, 297

EMOF Essential Meta-Object Facilities 33, 34, 232, 240,
297, 298

EOL Epsilon Object Language 152, 180

EPL Eclipse Public License 44

ETL Epsilon Transformation Language 12, 15, 37, 149, 152,
178–180, 239, 241

FJ Featherweight Java 65, 88, 95, 96, 271

GMF Graphical Modeling Framework 3, 4

GMM4CT Global Model Management for
Composite Transformations

242

GPL General-Purpose Language 40, 57, 79, 133, 151,
152, 249, 252, 259

316

Acronyms

GQM Goal, Question, Metric 185, 186, 197, 199,
213, 308

GReAT Graph Rewriting and
Transformation

37

GT Graph Transformations 37, 241

HEB Hierarchical Edge Bundling 154, 248, 249

HOL Higher-Order Logics 80, 246

ICMT International Conference of Model
Transformations

38, 127

IDE Integrated Development
Environment

39, 128, 153, 200,
204, 208, 249

IDL Interface Description Language 263

IEEE Institute of Electrical and
Electronics Engineers

10, 66–68, 307

ISO International Organization for
Standardization

66, 67, 307

JavaEE Java Platform, Enterprise Edition 29, 30

JET Java Emitter Templates 38

JML Java Modeling Language 265

LOC Lines of Code 187, 190–192, 194,
195

LPG LALR Parser Generator 106

M2M Model-to-Model, a class of model
transformations

34, 47, 106, 107,
111, 188, 210, 238

317

Acronyms

M2T Model-to-Text, a class of model
transformations

34, 35, 47, 106,
107, 111, 126, 188,
196, 210, 236, 238

MCC Model Control Center 242

MDA Model-Driven Architecture 26, 28–31

MDE Model-driven Engineering 25–27, 30, 31, 34,
35, 69, 70, 243,
244, 250, 307

MDG Module Dependency Graph 75, 76

MDSD Model-driven Software
Development

26, 27, 30, 204

MDSE Model-driven Software Engineering 1, 3–5, 12, 25

MeCl MergeClumps, a similarity metric 175–177, 212, 213,
216, 217, 224

MODELS International Conference on Model
Driven Engineering Languages and
Systems

20, 158

MODU-
LARITY

International Conference on
Modularity, formerly AOSD

126

MOF Meta-Object Facilities 33, 39, 85, 92, 135,
153, 165, 181, 233,
237, 248, 296

MPS JetBrains Meta Programming
System

233, 237

MQ Modularization Quality 76, 169, 170, 175,
177, 213, 216–218,
224, 225

MTL Model Transformation Language 252

MWE Modeling Workflow Engine 111, 242, 244, 313

318

Acronyms

.NET The .NET Framework 29

NLD Node-Link Diagram 139, 153, 154, 248

NP-hard Non-deterministic Polynomial-time
hard

170, 227

OCaml Objective Categorical Abstract
Machine Language

119

OCL Object Constraint Language 8, 16, 29, 33–36, 41,
42, 44, 45, 49, 50,
89, 101, 104, 107,
114, 125, 126, 137,
138, 151, 154, 166,
201, 214, 238, 240,
245, 246, 264, 265

ODP Open Distributed Processing 29

OID Object Identifier 298, 299, 301, 303,
304

OMG Object Management Group 26, 30, 36, 37, 46,
123

OO Object-Oriented 240, 242, 256

OSGi Open Services Gateway initiative 59, 266

PCM Palladio Component Model 185, 188, 190, 191,
193, 200, 201, 209,
214, 216, 221

PICOTIN PICO Transformation INfrastructure 243

PIM Platform-Independent Model 29, 30

POJO Plain Old Java Object 188, 221

PSM Platform-Specific Model 29, 30

319

Acronyms

QPN Queuing Petri Net 200, 201, 209, 247

QVT Query/View/Transformation 7, 8, 16, 36–38, 42,
46, 89, 90, 101, 118,
120, 122, 124, 131,
132, 135, 138, 153,
241, 245, 246, 251,
263, 293, 294, 302,
307

QVTd QVT Declarative, Eclipse
implementation of QVT Relations

20, 46

QVT-O QVT Operational Mappings 7–10, 12, 15, 17,
20–22, 36, 38–40,
42, 44, 50, 79, 80,
83, 86, 88, 89, 93,
94, 106–108, 110,
111, 120, 122, 124,
125, 127–131, 133,
135–139, 146, 149,
151, 154, 164, 166,
174, 177–181, 196,
200, 201, 204, 209,
210, 214, 220, 221,
235, 239, 240, 242,
249, 251, 258, 263,
271, 307, 308, 313

QVTo Eclipse implementation of QVT
Operational Mappings

6, 20–22, 39, 42,
79, 87, 107, 153,
154, 258, 307

320

Acronyms

QVT-OM QVT Operational Modular
Mappings

79, 85–89, 94, 97,
105, 107, 111, 178,
238, 239, 242, 281,
307, 313

QVTom Eclipse implementation of QVT
Operational Modular Mappings

20, 21, 106, 108,
242, 271

QVT-R QVT Relations 15, 17, 18, 20,
36–38, 44–46, 53,
54, 65, 79, 80, 83,
112–117, 119–122,
124, 135, 137–139,
149, 151, 154, 178,
180, 237, 239, 240,
244–247, 250–252,
256, 262, 263, 293,
294, 296, 297, 299,
300, 313

RubyTL Ruby Transformation Language 12, 154, 238, 242

SAT Boolean Satisfiability Problem 265

SEFF Service Effect Specification 217

SIL Structural Information Language
(probably), a proprietary file format
by Bunch

173, 174, 313

SMT Satisfiability Modulo Theories 64

SMTL Scala Model Transformation
Language

12

SQL Structured Query Language 296

321

Acronyms

T2M Text-to-Model transformation 34

TCF Transformation Composition
Framework

243

TGG Triple Graph Grammars 37, 38, 53, 135,
136, 237, 308

TROPIC Transformations on Petri Nets in
Color

250

TTC Transformation Tool Contest 38

UML Unified Modeling Language 2, 3, 29, 30, 33, 92,
139, 233, 242, 248

UniTI Universal Transformation
Infrastructure

242

URI Uniform Resource Identifier 39

VIATRA VIsual Automated model
TRAnsformations

12, 15, 37, 149, 152,
153, 178, 179, 181,
239, 241, 246, 249

VTCL VIATRA Textual Command
Language

246

VTL Velocity Template Language 38

VTML VIATRA Textual Metamodeling
Language

153

XML Extensible Markup Language 29

Xtend2m Xtend Modular Mappings 20, 107, 108, 189,
242

322

Bibliography

[ASLS14] A. Anjorin, K. Saller, M. Lochau, and A. Schürr, “Modular-
izing Triple Graph Grammars Using Rule Refinement,” in
Proceedings of the 17th International Conference on Fun-

damental Approaches to Software Engineering (FASE ’14),
S. Gnesi and A. Rensink, Eds., ser. Lecture Notes in Com-
puter Science, vol. 8411, Springer, 2014, pp. 340–354, I S B N:
978-3-642-54803-1 (cit. on p. 237).

[Bas92] V. R. Basili, “Software Modeling and Measurement: The
Goal/Question/Metric Paradigm,” University of Maryland
at College Park, College Park, MD, USA, Tech. Rep., 1992
(cit. on pp. 185, 197).

[BAT14] G. M. Bierman, M. Abadi, and M. Torgersen, “Understand-
ing TypeScript,” in Proceedings of the 28th European Con-

ference on Object-Oriented Programming (ECOOP ’14),

Uppsala, Sweden, July 28 - August 1, 2014, R. Jones, Ed., ser.
Lecture Notes in Computer Science, vol. 8586, Springer,
2014, pp. 257–281, I S B N: 978-3-662-44201-2 (cit. on
pp. 235, 260).

[BC10] Y. Bertot and P. Castéran, Interactive Theorem Proving and

Program Development: Coq’Art The Calculus of Inductive

Constructions, 1st. Springer, 2010, I S B N: 3-642-05880-9,
978-3-642-05880-6 (cit. on pp. 17, 64, 65).

[BCK03] L. Bass, P. Clements, and R. Kazman, Software Architecture

in Practice, 2nd ed. Boston, MA, USA: Addison-Wesley

323

Bibliography

Longman Publishing Co., Inc., 2003, I S B N: 0-321-15495-9
(cit. on p. 56).

[Bec08a] S. Becker, “Coupled Model Transformations,” in Proceed-

ings of the 7th International Workshop on Software and Per-

formance (WOSP ’08), A. Avritzer, E. J. Weyuker, and C. M.
Woodside, Eds., ACM, 2008, pp. 103–114 (cit. on p. 222).

[Bec08b] ——, “Coupled Model Transformations for QoS Enabled
Component-Based Software Design,” PhD thesis, University
of Oldenburg, Germany, Mar. 2008 (cit. on p. 188).

[Bel06] M. Belaunde, “Transformation Composition in QVT,” in
Proceedings of the 1st European Workshop on Composition

of Model Transformations (CMT ’06), ser. TR-CTI, Centre
for Telematics and Information Technology, Univ. of Twente,
Jun. 2006, pp. 39–46. [Online]. Available: http://doc.ut
wente.nl/66171/ (cit. on pp. 235, 242).

[Bie10] M. Biehl, “Literature Study on Model Transformations,”
Embedded Control Systems, Royal Institute of Technol-
ogy, Stockholm, Sweden, Tech. Rep. ISRN/KTH/MMK,
Jul. 2010. [Online]. Available: http://www.md.kth.se
/~biehl/files/papers/mt.pdf (cit. on p. 38).

[BKR09] S. Becker, H. Koziolek, and R. Reussner, “The Palladio Com-
ponent Model for Model-Driven Performance Prediction,”
Journal of Systems and Software, vol. 82, no. 1, pp. 3–22,
Jan. 2009 (cit. on p. 185).

[BL84] R. M. Burstall and B. W. Lampson, “A Kernel Language
for Abstract Data Types and Modules,” in Proceedings of

the International Symposium on Semantics of Data Types, G.
Kahn, D. B. MacQueen, and G. D. Plotkin, Eds., ser. Lecture
Notes in Computer Science, vol. 173, Springer, 1984, pp. 1–
50, I S B N: 3-540-13346-1 (cit. on p. 235).

324

http://doc.utwente.nl/66171/
http://doc.utwente.nl/66171/
http://www.md.kth.se/~biehl/files/papers/mt.pdf
http://www.md.kth.se/~biehl/files/papers/mt.pdf
http://dx.doi.org/10.1016/j.jss.2008.03.066

Bibliography

[BLW05] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering
in a Large Industrial Context - Motorola Case Study,” in
Proceedings of the 8th International Conference on Model

Driven Engineering Languages and Systems (MoDELS ’05),
L. C. Briand and C. Williams, Eds., ser. Lecture Notes in
Computer Science, vol. 3713, Springer, 2005, pp. 476–491,
I S B N: 3-540-29010-9 (cit. on pp. 3, 255).

[BN05] D. Beyer and A. Noack, “Clustering Software Artifacts
Based on Frequent Common Changes,” in Proceedings of the

13th International Workshop on Program Comprehension

(IWPC ’05), IEEE Computer Society, 2005, pp. 259–268,
I S B N: 0-7695-2254-8 (cit. on p. 248).

[BS12] J. C. Bradfield and P. Stevens, “Recursive Checkonly QVT-
R Transformations with General when and where Clauses
via the Modal Mu Calculus,” in Proceedings of the 15th

International Conference on Fundamental Approaches to

Software Engineering (FASE ’12), J. de Lara and A. Zisman,
Eds., ser. Lecture Notes in Computer Science, vol. 7212,
Springer, 2012, pp. 194–208, I S B N: 978-3-642-28871-5
(cit. on pp. 245, 293).

[BS13] ——, “Enforcing QVT-R with mu-Calculus and Games,” in
Proceedings of the 16th International Conference on Fun-

damental Approaches to Software Engineering (FASE ’13),
V. Cortellessa and D. Varró, Eds., ser. Lecture Notes in Com-
puter Science, vol. 7793, Springer, 2013, pp. 282–296, I S B N:
978-3-642-37056-4 (cit. on pp. 245, 293).

[Bur14] E. Burger, Flexible Views for View-based Model-driven De-

velopment, ser. The Karlsruhe Series on Software Design
and Quality; 14. Karlsruhe: KIT Scientific Publishing, 2014
(cit. on p. 234).

325

Bibliography

[BW08] A. D. Brucker and B. Wolff, “HOL-OCL: A Formal Proof
Environment for UML/OCL,” in Proceedings of the 11th

International Conference on Fundamental Approaches to

Software Engineering (FASE ’08), J. L. Fiadeiro and P. Inver-
ardi, Eds., ser. Lecture Notes in Computer Science, vol. 4961,
Springer, 2008, pp. 97–100, I S B N: 978-3-540-78742-6 (cit.
on p. 246).

[Car97] L. Cardelli, “Type Systems,” in The Computer Science and

Engineering Handbook, A. B. Tucker, Ed., CRC Press, 1997,
pp. 2208–2236, I S B N: 0-849-32909-4 (cit. on p. 63).

[CBBD09] E. Cariou, N. Belloir, F. Barbier, and N. Djemam, “OCL
Contracts for the Verification of Model Transformations,”
Electronic Communications of the EASST (ECEASST), vol.
24, 2009. [Online]. Available: http://journal.ub.tu-
berlin.de/index.php/eceasst/article/view/326

(cit. on p. 265).
[CBFB11] E. Cariou, C. Ballagny, A. Feugas, and F. Barbier, “Contracts

for Model Execution Verification,” in Proceedings of the

7th European Conference on Modelling Foundations and

Applications (ECMFA ’11), Birmingham, UK, June 6 - 9,

2011, R. B. France, J. M. Küster, B. Bordbar, and R. F. Paige,
Eds., Springer, 2011, pp. 3–18. D O I: 10.1007/978-3-642
-21470-7_2 (cit. on p. 265).

[CCGdL08] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara, “An Invariant-
Based Method for the Analysis of Declarative Model-to-
Model Transformations,” in Proceedings of the 11th Interna-

tional Conference on Model Driven Engineering Languages

and Systems (MODELS ’08), ser. Lecture Notes in Computer
Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M.
Voelter, Eds., vol. 5301, Springer, 2008, pp. 37–52, I S B N:

326

http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/326
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/326
http://dx.doi.org/10.1007/978-3-642-21470-7_2
http://dx.doi.org/10.1007/978-3-642-21470-7_2

Bibliography

978-3-540-87874-2. D O I: http://dx.doi.org/10.1007
/978-3-540-87875-9_3 (cit. on p. 245).

[CGdL11] J. S. Cuadrado, E. Guerra, and J. de Lara, “Generic Model
Transformations: Write Once, Reuse Everywhere,” in Pro-

ceedings of the 4th International Conference Theory and

Practice of Model Transformations (ICMT ’11), J. Cabot
and E. Visser, Eds., ser. Lecture Notes in Computer Science,
vol. 6707, Springer, 2011, pp. 62–77, I S B N: 978-3-642-
21731-9. D O I: 10.1007/978-3-642-21732-6_5 (cit. on
pp. 244, 264).

[CGdL12] ——, “Flexible Model-to-Model Transformation Templates:
An Application to ATL,” Journal of Object Technology, vol.
11, no. 2, pp. 1–28, 2012. D O I: 10.5381/jot.2012.11.2
.a4 (cit. on p. 244).

[CGL14] J. S. Cuadrado, E. Guerra, and J. D. Lara, “Uncovering Errors
in ATL Model Transformations Using Static Analysis and
Constraint Solving,” in IEEE 25th International Symposium

on Software Reliability Engineering (ISSRE ’14), Naples,

Italy, November 3-6, 2014, To Appear, 2014 (cit. on pp. 247,
264).

[CH03] K. Czarnecki and S. Helsen, “Classification of Model Trans-
formation Approaches,” OOPSLA Workshop on Generative

Techniques in the Context of Model-Driven Architecture, Oct.
2003. [Online]. Available: http://www.softmetaware.c
om/oopsla2003/czarnecki.pdf (cit. on p. 38).

[CH06] ——, “Feature-based Survey of Model Transformation Ap-
proaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–646,
2006 (cit. on pp. 12, 38).

[CH88] T. Coquand and G. Huet, “The Calculus of Constructions,”
Information and Computation, vol. 76, no. 2-3, pp. 95–120,

327

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-87875-9_3
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-87875-9_3
http://dx.doi.org/10.1007/978-3-642-21732-6_5
http://dx.doi.org/10.5381/jot.2012.11.2.a4
http://dx.doi.org/10.5381/jot.2012.11.2.a4
http://dx.doi.org/10.1109/ISSRE.2013.6698899
http://dx.doi.org/10.1109/ISSRE.2013.6698899
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://www.softmetaware.com/oopsla2003/czarnecki.pdf

Bibliography

Feb. 1988, I S S N: 0890-5401. D O I: 10.1016/0890-5401
(88)90005-3 (cit. on pp. 65, 301).

[CIM14] J. S. Cuadrado, J. L. C. Izquierdo, and J. G. Molina, “Ap-
plying Model-driven Engineering in Small Software Enter-
prises,” Sci. Comput. Program., vol. 89, pp. 176–198, 2014.
D O I: 10.1016/j.scico.2013.04.007 (cit. on p. 4).

[Cip95] B. Cipra, “How Number Theory Got the Best of the Pentium
Chip,” Science, vol. 267, no. 5195, p. 175, Jan. 1995, I S S N:
1095-9203. D O I: 10.1126/science.267.5195.175 (cit.
on p. 60).

[CK01] M. V. Cengarle and A. Knapp, “A Formal Semantics for OCL
1.4,” in Proceedings of the 4th International Conference

on The Unified Modeling Language, Modeling Languages,

Concepts, and Tools (UML ’01), M. Gogolla and C. Kobryn,
Eds., ser. Lecture Notes in Computer Science, vol. 2185,
London, UK: Springer, 2001, pp. 118–133, I S B N: 978-3-
540-42667-7. D O I: 10.1007/3-540-45441-1_10 (cit. on
pp. 17, 125).

[CLST10] D. Calegari, C. Luna, N. Szasz, and A. Tasistro, “A Type-
Theoretic Framework for Certified Model Transformations,”
in Proceedings of the 13th Brazilian Symposium on For-

mal Methods (SBMF ’10), ser. Lecture Notes in Computer
Science, J. Davies, L. Silva, and A. da Silva Simão, Eds.,
vol. 6527, Springer, 2010, pp. 112–127 (cit. on p. 297).

[CM06] J. S. Cuadrado and J. G. Molina, “A Plugin-Based Language
to Experiment with Model Transformation,” in Proceedings

of the 9th International Conference on Model Driven En-

gineering Languages and Systems (MoDELS ’06), O. Nier-
strasz, J. Whittle, D. Harel, and G. Reggio, Eds., ser. Lec-
ture Notes in Computer Science, vol. 4199, Springer, 2006,
pp. 336–350, I S B N: 3-540-45772-0 (cit. on p. 238).

328

http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/j.scico.2013.04.007
http://dx.doi.org/10.1126/science.267.5195.175
http://dx.doi.org/10.1007/3-540-45441-1_10

Bibliography

[CM08] ——, “Approaches for Model Transformation Reuse: Factor-
ization and Composition,” in Proceedings of the 1st Interna-

tional Conference Theory and Practice of Model Transforma-

tions (ICMT ’08), A. Vallecillo, J. Gray, and A. Pierantonio,
Eds., ser. Lecture Notes in Computer Science, vol. 5063,
Springer, 2008, pp. 168–182, I S B N: 978-3-540-69926-2
(cit. on p. 238).

[CM09] ——, “Modularization of Model Transformations through a
Phasing Mechanism,” Software and System Modeling, vol.
8, no. 3, pp. 325–345, 2009. D O I: 10.1007/s10270-008-
0093-0 (cit. on p. 238).

[CMSD04] E. Cariou, R. Marvie, L. Seinturier, and L. Duchien, “OCL
for the Specification of Model Transformation Contracts,” in
Proceedings of the Workshop OCL and Model Driven Engi-

neering of the 7th International Conference on UML Model-

ing Languages and Applications (UML ’04), O. Patrascoiu,
Ed., University of Kent, Lisbon, Portugual, Oct. 2004, pp. 69–
83 (cit. on p. 265).

[CMT06] J. S. Cuadrado, J. G. Molina, and M. M. Tortosa, “RubyTL: A
Practical, Extensible Transformation Language,” in Proceed-

ings of the Second European Conference on Model Driven

Architecture - Foundations and Applications (ECMDA-FA

’06), A. Rensink and J. Warmer, Eds., ser. Lecture Notes in
Computer Science, vol. 4066, Springer, 2006, pp. 158–172,
I S B N: 3-540-35909-5 (cit. on pp. 12, 238).

[CP92] W. Chu and S. Patel, “Software Restructuring by Enforcing
Localization and Information Hiding,” in Proceedings of

the 18th International Conference on Software Maintenance

(ICSM ’92), Nov. 1992, pp. 165–172. D O I: 10.1109/ICSM
.1992.242546 (cit. on p. 248).

329

http://dx.doi.org/10.1007/s10270-008-0093-0
http://dx.doi.org/10.1007/s10270-008-0093-0
http://dx.doi.org/10.1109/ICSM.1992.242546
http://dx.doi.org/10.1109/ICSM.1992.242546

Bibliography

[CR00] K. Chen and V. Rajlich, “Case Study of Feature Location
Using Dependence Graph,” in Proceedings of the IEEE

8th International Workshop on Program Comprehension

(IWPC ’00), 2000, pp. 241–249, I S B N: 0-769-50656-9 (cit.
on p. 249).

[CR10] K. Chen and V. Rajlich, “Case Study of Feature Location
Using Dependence Graph, after 10 Years,” in Proceedings of

the IEEE 18th International Conference on Program Com-

prehension (ICPC ’10), Jul. 2010, pp. 1–3. D O I: 10.1109
/ICPC.2010.40 (cit. on p. 249).

[CR14] J. Cho and S. Ryu, “JavaScript Module System: Exploring
the design space,” in Proceedings of the 13th International

Conference on Modularity (AOSD ’14), Lugano, Switzerland,

April 22 - 26, 2014, W. Binder, E. Ernst, A. Peternier, and
R. Hirschfeld, Eds., ACM, 2014, pp. 229–240, I S B N: 978-
1-4503-2772-5 (cit. on p. 260).

[CV08] M. Cimadamore and M. Viroli, “Integrating Java and Pro-
log through Generic Methods and Type Inference,” in Pro-

ceedings of the ACM Symposium on Applied Computing

(SAC ’08), Fortaleza, Ceara, Brazil, March 16-20, 2008, R. L.
Wainwright and H. Haddad, Eds., ACM, 2008, pp. 198–205,
I S B N: 978-1-59593-753-7 (cit. on p. 263).

[CWWW13] Y. Cai, H. Wang, S. Wong, and L. Wang, “Leveraging De-
sign Rules to Improve Software Architecture Recovery,” in
Proceedings of the 9th International ACM SIGSOFT Con-

ference on Quality of Software Architectures (QoSA ’13), P.
Kruchten, A. Koziolek, and R. L. Nord, Eds., ACM, 2013,
pp. 133–142. D O I: 10.1145/2465478.2465480 (cit. on
p. 267).

330

http://dx.doi.org/10.1109/ICPC.2010.40
http://dx.doi.org/10.1109/ICPC.2010.40
http://dx.doi.org/10.1145/2465478.2465480

Bibliography

[DDH72] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Eds., Struc-

tured Programming. London, UK, UK: Academic Press Ltd.,
1972, I S B N: 0-122-00550-3 (cit. on p. 2).

[DGL+05] K. Duddy, A. Gerber, M. J. Lawley, K. Raymond, and J. Steel,
“Declarative Transformation for Object-Oriented Models,” in
Transformation of Knowledge, Information, and Data: The-

ory and Applications, P. van Bommel, Ed., Idea Group Pub-
lishing, 2005, ch. 4, I S B N: 1-59140-529-7 (cit. on pp. 159,
248).

[Die07] S. Diehl, Software Visualization: Visualizing the Structure,

Behaviour, and Evolution of Software. Springer, 2007, I S B N:
978-3-540-46504-1. D O I: 10.1007/978-3-540-46505-8
(cit. on pp. 71, 72, 248).

[Dij68] E. W. Dijkstra, “Letters to the Editor: Go to Statement Con-
sidered Harmful,” Commun. ACM, vol. 11, no. 3, pp. 147–
148, Mar. 1968, I S S N: 0001-0782. D O I: 10.1145/362929
.362947 (cit. on p. 2).

[dLG09] J. de Lara and E. Guerra, “Formal Support for QVT-Relations
with Coloured Petri Nets,” in Proceedings of the 12th In-

ternational Conference on Model Driven Engineering Lan-

guages and Systems (MODELS ’09), A. Schürr and B. Selic,
Eds., ser. Lecture Notes in Computer Science, vol. 5795,
Springer, 2009, pp. 256–270, I S B N: 978-3-642-04424-3
(cit. on pp. 245, 293).

[Dow97] M. Dowson, “The Ariane 5 Software Failure,” SIGSOFT

Softw. Eng. Notes, vol. 22, no. 2, p. 84, Mar. 1997, I S S N:
0163-5948. D O I: 10.1145/251880.251992 (cit. on p. 60).

[DYM+08] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M.
Duchrow, “Cluster Analysis of Java Dependency Graphs,”
in Proceedings of the 4th ACM Symposium on Software Vi-

sualization (SoftVis ’08), Ammersee, Germany: ACM, 2008,

331

http://dx.doi.org/10.1007/978-3-540-46505-8
http://dx.doi.org/10.1145/362929.362947
http://dx.doi.org/10.1145/362929.362947
http://dx.doi.org/10.1145/251880.251992

Bibliography

pp. 91–94, I S B N: 978-1-605-58112-5. D O I: 10.1145/140
9720.1409735 (cit. on p. 210).

[ELL11] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis, 5th,
B. Everitt, Ed., ser. Wiley Series in Probability and Statistics.
Chichester, UK: Wiley Publishing, 2011, I S B N: 978-0-470-
74991-3 (cit. on p. 74).

[EPS73] H. Ehrig, M. Pfender, and H. J. Schneider, “Graph-Gram-
mars: An Algebraic Approach,” in Proceedings of the 14th

Annual Symposium on Switching and Automata Theory

(SWAT ’73), IEEE Computer Society, 1973, pp. 167–180.
D O I: 10.1109/SWAT.1973.11 (cit. on p. 53).

[Fav05] J.-M. Favre, “Languages evolve too! Changing the Software
Time Scale,” in Proceedings of the 8th International Work-

shop on Principles of Software Evolution (IWPSE ’05), IEEE
Computer Society, 2005, pp. 33–44, I S B N: 0-7695-2349-8
(cit. on p. 4).

[FMRS07] C. Fuss, C. Mosler, U. Ranger, and E. Schultchen, “The
Jury Is Still Out: A Comparison of AGG, Fujaba, and PRO-
GRES,” ECEASST, vol. 6, 2007 (cit. on p. 37).

[Fow10] M. Fowler, Domain-Specific Languages, 1st. Addison-Wes-
ley Professional, 2010, I S B N: 978-0-321-71294-3 (cit. on
pp. 32, 80).

[FW08] D. P. Friedman and M. Wand, Essentials of Programming

Languages, 3rd. MIT Press, 2008, pp. I–XXII, 1–410, I S B N:
978-0-262-06279-4 (cit. on pp. 58, 61).

[Gar08] M. Garcia, “Formalization of QVT-Relations: OCL-based
Static Semantics and Alloy-based Validation,” in Proceed-

ings of the 2nd Workshop on MDSD Today, P. Friese, S.
Zambrovski, and F. Zimmermann, Eds., Shaker Verlag, Oct.
2008, pp. 21–30, I S B N: 978-3-832-27627-0 (cit. on pp. 245,
293).

332

http://dx.doi.org/10.1145/1409720.1409735
http://dx.doi.org/10.1145/1409720.1409735
http://dx.doi.org/10.1109/SWAT.1973.11

Bibliography

[GdL12] E. Guerra and J. de Lara, “An Algebraic Semantics for QVT-
Relations Check-only Transformations,” Fundam. Inform.,
vol. 114, no. 1, pp. 73–101, 2012 (cit. on p. 245).

[GdLK+13] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, and O. M.
dos Santos, “Engineering Model Transformations with trans-
ML,” Software and System Modeling, vol. 12, no. 3, pp. 555–
577, 2013 (cit. on p. 243).

[Ger94] N. Gershon, “From Perception to Visualization,” in Scien-

tific Visualization - Advances and Challenges, L. Rosenblum,
R. Earnshaw, J. Encarnacao, H. Hagen, A. Kaufman, S. Kli-
menko, G. Nielson, F. Post, and D. Thalmann, Eds., Aca-
demic Press, 1994, pp. 129–139 (cit. on p. 71).

[GGKdL14] A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara,
“EMF Splitter: A Structured Approach to EMF Modular-
ity,” in Proceedings of the 3rd Workshop on Extreme Model-

ing (XM ’14) collocated with the 17th ACM/IEEE Interna-

tional Conference on Model Driven Engineering Languages

and Systems (MODELS ’11), Valencia, Spain, September 29,

2014, D. D. Ruscio, J. de Lara, and A. Pierantonio, Eds., ser.
CEUR Workshop Proceedings, vol. 1239, CEUR-WS.org,
Oct. 2014, pp. 22–31. [Online]. Available: http://nbn-re
solving.de/urn:nbn:de:0074-1239-2 (cit. on p. 233).

[GK10] J. Greenyer and E. Kindler, “Comparing Relational Model
Transformation Technologies: Implementing Query/View/-
Transformation with Triple Graph Grammars.,” Software

and System Modeling, pp. 21–46, 2010 (cit. on p. 53).
[Gla01] R. L. Glass, “Loyal Opposition - Frequently Forgotten Fun-

damental Facts about Software Engineering,” IEEE Software,
vol. 18, no. 3, pp. 112–111, 2001 (cit. on pp. 2, 14).

[Gol11] T. Goldschmidt, View-based Textual Modelling, ser. The Karl-
sruhe Series on Software Design and Quality; 6. Karlsruhe:

333

http://nbn-resolving.de/urn:nbn:de:0074-1239-2
http://nbn-resolving.de/urn:nbn:de:0074-1239-2

Bibliography

KIT Scientific Publishing, 2011, I S B N: 978-3-86644-642-7.
[Online]. Available: http://dx.doi.org/10.5445/KSP
/1000022234 (cit. on p. 234).

[GPT09] P. Guduric, A. Puder, and R. Todtenhoefer, “A Comparison
between Relational and Operational QVT Mappings,” in
Proceedings of the 6th International Conference on Informa-

tion Technology: New Generations (ITNG ’09), S. Latifi, Ed.,
IEEE Computer Society, 2009, pp. 266–271, I S B N: 978-0-
7695-3596-8 (cit. on p. 37).

[GT03] P. A. Grubb and A. A. Takang, Software Maintenance - Con-

cepts and Practice, 2nd. World Scientific, 2003, pp. I–XIX,
1–349, I S B N: 978-9-812-38426-3 (cit. on p. 67).

[GWS12] L. George, A. Wider, and M. Scheidgen, “Type-Safe Model
Transformation Languages as Internal DSLs in Scala,” in
Proceedings of the 5th International Conference Theory and

Practice of Model Transformations (ICMT ’12), Z. Hu and
J. de Lara, Eds., Springer, 2012, pp. 160–175. D O I: 10.100
7/978-3-642-30476-7_11 (cit. on p. 12).

[Har92] R. Harper, “Constructing Type Systems over an Operational
Semantics,” Journal of Symbolic Computation, vol. 14, no.
1, pp. 71–84, 1992, I S S N: 0747-7171. D O I: http://dx.do
i.org/10.1016/0747-7171(92)90026-Z (cit. on p. 61).

[HB85] D. Hutchens and V. Basili, “System Structure Analysis: Clus-
tering with Data Bindings,” IEEE Transactions on Software

Engineering, vol. SE-11, no. 8, pp. 749–757, Aug. 1985,
I S S N: 0098-5589. D O I: 10.1109/TSE.1985.232524 (cit.
on p. 248).

[HC01] G. T. Heineman and W. T. Councill, Eds., Component-based

Software Engineering: Putting the Pieces Together. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2001, I S B N: 0-201-70485-4 (cit. on p. 59).

334

http://dx.doi.org/10.5445/KSP/1000022234
http://dx.doi.org/10.5445/KSP/1000022234
http://dx.doi.org/10.1007/978-3-642-30476-7_11
http://dx.doi.org/10.1007/978-3-642-30476-7_11
http://dx.doi.org/http://dx.doi.org/10.1016/0747-7171(92)90026-Z
http://dx.doi.org/http://dx.doi.org/10.1016/0747-7171(92)90026-Z
http://dx.doi.org/10.1109/TSE.1985.232524

Bibliography

[HEET99] R. Heckel, G. Engels, H. Ehrig, and G. Taentzer, “Classi-
fication and Comparison of Module Concepts for Graph
Transformation Systems,” in Handbook of Graph Grammars

and Computing by Graph Transformations, Volume 2: Ap-

plications, Languages, and Tools, H. Ehrig, G. Engels, H.-J.
Kreowski, and G. Rozenberg, Eds. World Scientific, Oct.
1999, ch. 1, I S B N: 9-810-24020-1 (cit. on p. 236).

[Hel06] S. Helsen, “Model Transformations with QVT,” in Model-

driven Software Development - Technology, Engineering,

Management. Pitman, 2006, ch. 10, pp. 203–222, I S B N:
978-0-470-02570-3 (cit. on p. 36).

[Hen94] F. Henglein, “Fundamentals of Type Inference Systems,”
Course notes, updated August 9, 2009, 1994, [Online]. Avail-
able: http://typesatwork.imm.dtu.dk/material/T
aW_Paper_TypeInferenceFundamentals.pdf (cit. on
p. 62).

[HGSS13] R. Hebig, H. Giese, F. Stallmann, and A. Seibel, “On the
Complex Nature of MDE Evolution,” in Proceedings of the

16th International Conference on Model-Driven Engineering

Languages and Systems (MODELS ’13), Miami, FL, USA,

September 29 - October 4, 2013, A. Moreira, B. Schätz, J.
Gray, A. Vallecillo, and P. J. Clarke, Eds., Springer, 2013,
pp. 436–453. D O I: 10.1007/978-3-642-41533-3_27
(cit. on p. 69).

[HKA11] F. Heidenreich, J. Kopcsek, and U. Aßmann, “Safe Composi-
tion of Transformations,” Journal of Object Technology, vol.
10, pp. 1–20, 2011 (cit. on p. 243).

[HKGV10] Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and E. Visser,
“Code Generation by Model Transformation: A Case Study
in Transformation Modularity,” Software and System Model-

ing, vol. 9, no. 3, pp. 375–402, 2010 (cit. on p. 238).

335

http://typesatwork.imm.dtu.dk/material/TaW_Paper_TypeInferenceFundamentals.pdf
http://typesatwork.imm.dtu.dk/material/TaW_Paper_TypeInferenceFundamentals.pdf
http://dx.doi.org/10.1007/978-3-642-41533-3_27

Bibliography

[HKV07] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model
for Measuring Maintainability,” in Proceedings of the 6th In-

ternational Conference on Quality of Information and Com-

munications Technology (QUATIC ’07), Washington, DC,
USA: IEEE Computer Society, 2007, pp. 30–39, I S B N: 0-
769-52948-8. D O I: 10.1109/QUATIC.2007.7 (cit. on
p. 66).

[Hol97] C. M. Holloway, “Why Engineers Should Consider For-
mal Methods,” NASA Langley Research Center, Tech. Rep.
20040105661, Oct. 1997. [Online]. Available: https://ar
chive.org/details/nasa%5C_techdoc%5C_200401056

61 (cit. on p. 60).
[HRW09] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth, “Lan-

guage Evolution in Practice: The History of GMF,” in Re-

vised Selected Papers of the 2nd International Conference

on Software Language Engineering (SLE ’09), M. van den
Brand, D. Gasevic, and J. Gray, Eds., ser. Lecture Notes
in Computer Science, vol. 5969, Springer, 2009, pp. 3–22,
I S B N: 978-3-642-12106-7 (cit. on p. 4).

[HRW11] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-
driven Engineering Practices in Industry,” in Proceedings of

the 33rd International Conference on Software Engineering

(ICSE ’11), R. N. Taylor, H. Gall, and N. Medvidovic, Eds.,
ACM, 2011, pp. 633–642, I S B N: 978-1-4503-0445-0 (cit.
on pp. 3, 26, 30, 255).

[HWG03] A. Hejlsberg, S. Wiltamuth, and P. Golde, C# Language

Specification. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003, I S B N: 0-321-15491-6 (cit. on
p. 181).

[HWRK11] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristof-
fersen, “Empirical Assessment of MDE in Industry,” in Pro-

336

http://dx.doi.org/10.1109/QUATIC.2007.7
https://archive.org/details/nasa%5C_techdoc%5C_20040105661
https://archive.org/details/nasa%5C_techdoc%5C_20040105661
https://archive.org/details/nasa%5C_techdoc%5C_20040105661

Bibliography

ceedings of the 33rd International Conference on Software

Engineering (ICSE ’11), R. N. Taylor, H. Gall, and N. Med-
vidovic, Eds., ACM, 2011, pp. 471–480, I S B N: 978-1-4503-
0445-0 (cit. on pp. 3, 26, 30, 255).

[IdFF07] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “The
Evolution of Lua,” in Proceedings of the 3rd ACM SIGPLAN

History of Programming Languages Conference (HOPL-III),

San Diego, California, USA, 9-10 June 2007, B. G. Ryder
and B. Hailpern, Eds., ACM, 2007, pp. 1–26 (cit. on p. 260).

[IEE06] IEEE Computer Society, “International Standard for Soft-
ware Engineering – Software Life Cycle Processes – Mainte-
nance,” ISO/IEC 14764(E) and IEEE Std 14764-2006, pp. 1–
46, Sep. 2006, Revision of IEEE Std 1219-1998. D O I: 10.1
109/IEEESTD.2006.235774 (cit. on pp. 10, 66–68).

[IEE90] ——, “IEEE Standard Glossary of Software Engineering
Terminology,” IEEE Std 610.12-1990, pp. 1–84, Dec. 1990.
D O I: 10.1109/IEEESTD.1990.101064 (cit. on p. 66).

[IPW01] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java:
A Minimal Core Calculus for Java and GJ,” ACM Trans.

Program. Lang. Syst., vol. 23, no. 3, pp. 396–450, 2001 (cit.
on pp. 65, 88, 95, 96).

[JAB+06] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez,
“ATL: A QVT-like Transformation Language,” in Compan-

ion to the 21th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applica-

tions, (OOPSLA ’06), P. L. Tarr and W. R. Cook, Eds., ACM,
2006, pp. 719–720, I S B N: 1-595-93491-X (cit. on pp. 12,
151).

[JCP08] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting Ex-
periments in Software Engineering,” in Guide to Advanced

Empirical Software Engineering, F. Shull, J. Singer, and D. I.

337

http://dx.doi.org/10.1109/IEEESTD.2006.235774
http://dx.doi.org/10.1109/IEEESTD.2006.235774
http://dx.doi.org/10.1109/IEEESTD.1990.101064

Bibliography

Sjøberg, Eds., New York, NY, USA: Springer, 2008, ch. 8,
pp. 201–228, I S B N: 978-1-848-00043-8 (cit. on p. 185).

[JGB11] C. Jeanneret, M. Glinz, and B. Baudry, “Estimating Foot-
prints of Model Operations,” in Proceedings of the 33rd

International Conference on Software Engineering (ICSE

’11), Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 601–610,
I S B N: 978-1-4503-0445-0. D O I: 10.1145/1985793.1985
875 (cit. on pp. 154, 155, 249).

[JM01] N. J. Juzgado and A. M. Moreno, Basics of Software En-

gineering Experimentation. Kluwer Academic Publishers,
2001, pp. I–XX, 1–395, I S B N: 978-0-792-37990-4 (cit. on
p. 199).

[Jr73] J. H. M. Jr., “Types are Not Sets,” in Conference Record of

the ACM Symposium on Principles of Programming Lan-

guages (POPL ’73), Boston, Massachusetts, USA, October

1973, P. C. Fischer and J. D. Ullman, Eds., ACM Press, 1973,
pp. 120–124. D O I: 10 . 1145 / 512927 . 512938 (cit. on
p. 64).

[KAF+08] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlham-
mer, and G. Melançon, “Visual Analytics: Definition, Pro-
cess, and Challenges,” in Information Visualization, A. Ker-
ren, J. T. Stasko, J.-D. Fekete, and C. North, Eds., Berlin,
Heidelberg: Springer, 2008, pp. 154–175, I S B N: 978-3-540-
70955-8. D O I: 10.1007/978-3-540-70956-5_7 (cit. on
p. 72).

[Kau63] A. F. Kaupe Jr., “A Note on the Dangling else ALGOL 60,”
Commun. ACM, vol. 6, no. 8, pp. 460–462, Aug. 1963, I S S N:
0001-0782. D O I: 10.1145/366707.367585 (cit. on p. 60).

[KB04] C. Kaner and W. P. Bond, “Software Engineering Metrics:
What Do They Measure and How Do We Know?” In Pro-

ceedings of the IEEE 10th International Software Metrics

338

http://dx.doi.org/10.1145/1985793.1985875
http://dx.doi.org/10.1145/1985793.1985875
http://dx.doi.org/10.1145/512927.512938
http://dx.doi.org/10.1007/978-3-540-70956-5_7
http://dx.doi.org/10.1145/366707.367585

Bibliography

Symposium (METRICS ’04), Sep. 2004, pp. 1–12 (cit. on
p. 175).

[KCPT11] M. Kezadri, B. Combemale, M. Pantel, and X. Thirioux,
“A Proof Assistant Based Formalization of components in
MDE,” in 8th International Symposium on Formal Aspects

of Component Software (FACS ’11), University of Oslo, Nor-
way, Sep. 2011 (cit. on p. 245).

[KE00] R. Koschke and T. Eisenbarth, “A Framework for Experimen-
tal Evaluation of Clustering Techniques,” in Proceedings of

the 8th International Workshop on Program Comprehension

(IWPC ’00), IEEE Computer Society, 2000, pp. 201–210,
I S B N: 0-7695-0656-9 (cit. on p. 176).

[KGBH10] L. Kapová, T. Goldschmidt, S. Becker, and J. Henss, “Evalu-
ating Maintainability with Code Metrics for Model-to-Model
Transformations,” in Proceedings of the 6th International

Conference on the Quality of Software Architectures: Re-

search into Practice - Reality and Gaps (QoSA ’10), ser.
LNCS, Prague, Czech Republic: Springer, 2010, pp. 151–
166, I S B N: 3-642-13820-9, 978-3-642-13820-1. D O I: 10.1
007/978-3-642-13821-8_12 (cit. on p. 247).

[KKEM10] D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann,
Mastering the Information Age - Solving Problems with Vi-

sual Analytics. Eurographics Association, 2010, pp. 1–168,
I S B N: 978-3-905-67377-7 (cit. on pp. 71, 72).

[KKS07] F. Klar, A. Königs, and A. Schürr, “Model Transformation
in the Large,” in Proceedings of the 6th Joint Meeting of the

European Software Engineering Conference and the ACM

SIGSOFT International Symposium on Foundations of Soft-

ware Engineering (ESEC/SIGSOFT-FSE ’07), I. Crnkovic
and A. Bertolino, Eds., ACM, 2007, pp. 285–294, I S B N:
978-1-595-93811-4 (cit. on p. 237).

339

http://dx.doi.org/10.1007/978-3-642-13821-8_12
http://dx.doi.org/10.1007/978-3-642-13821-8_12

Bibliography

[Kle06] A. Kleppe, “MCC: A Model Transformation Environment,”
in Proceedings of the Second European Conference on

Model Driven Architecture - Foundations and Applications

(ECMDA-FA ’06), A. Rensink and J. Warmer, Eds., ser. Lec-
ture Notes in Computer Science, vol. 4066, Springer, 2006,
pp. 173–187, I S B N: 3-540-35909-5 (cit. on p. 242).

[Kle09] ——, Software Language Engineering: Creating Domain-

specific Languages Using Metamodels. Addison Wesley,
Pearson Education, 2009, I S B N: 978-0-321-55345-4 (cit. on
pp. 32, 34, 35).

[KMS+08] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas,
and H. Ziegler, “Visual Analytics: Scope and Challenges,”
in Visual Data Mining, S. J. Simoff, M. H. Böhlen, and A.
Mazeika, Eds., Berlin, Heidelberg: Springer, 2008, pp. 76–
90, I S B N: 978-3-540-71079-0. D O I: 10.1007/978-3-540
-71080-6_6 (cit. on pp. 72, 131).

[KPP08] D. S. Kolovos, R. F. Paige, and F. Polack, “The Epsilon Trans-
formation Language,” in Proceedings of the 1st International

Conference Theory and Practice of Model Transformations

(ICMT ’08), A. Vallecillo, J. Gray, and A. Pierantonio, Eds.,
ser. Lecture Notes in Computer Science, vol. 5063, Springer,
2008, pp. 46–60, I S B N: 978-3-540-69926-2 (cit. on pp. 12,
37, 152).

[KR12] S. Kang and S. Ryu, “Formal Specification of a JavaScript
Module System,” SIGPLAN Not., vol. 47, no. 10, pp. 621–
638, Oct. 2012, I S S N: 0362-1340 (cit. on p. 235).

[Krä11] J.-P. Krämer, “Stacksplorer – Understanding Dynamic Pro-
gram Behavior,” Diploma Thesis, RWTH Aachen University,
Jan. 2011 (cit. on p. 249).

[Kru11] S. Kruse, “On the Use of Operators for the Co-Evolution
of Metamodels and Transformations,” in Proceedings of

340

http://dx.doi.org/10.1007/978-3-540-71080-6_6
http://dx.doi.org/10.1007/978-3-540-71080-6_6
http://dx.doi.org/10.1145/2398857.2384661
http://dx.doi.org/10.1145/2398857.2384661

Bibliography

the 2nd International Workshop on Models and Evolution

(ME ’11) collocated with the 14th ACM/IEEE International

Conference on Model Driven Engineering Languages and

Systems (MODELS ’11), Wellington, New Zealand, 2011
(cit. on p. 154).

[KSW+13] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Rets-
chitzegger, and W. Schwinger, “Reuse in Model-to-Model
Transformation Languages: Are we there yet?” English, Soft-

ware and Systems Modeling (SoSyM), pp. 1–36, 2013, I S S N:
1619-1366. D O I: 10.1007/s10270-013-0343-7. [On-
line]. Available: http://dx.doi.org/10.1007/s10270-
013-0343-7 (cit. on pp. 236, 261).

[Kur07] I. Kurtev, “State of the Art of QVT: A Model Transformation
Language Standard,” in Proceedings of the 3rd International

Symposium on Applications of Graph Transformations with

Industrial Relevance (AGTIVE ’07), A. Schürr, M. Nagl, and
A. Zündorf, Eds., ser. Lecture Notes in Computer Science,
vol. 5088, Springer, 2007, pp. 377–393, I S B N: 978-3-540-
89019-5 (cit. on p. 36).

[KvBJ06] I. Kurtev, K. van den Berg, and F. Jouault, “Evaluation
of Rule-based Modularization in Model Transformation
Languages Illustrated with ATL,” in Proceedings of the

2006 ACM Symposium on Applied Computing (SAC), Di-

jon, France, April 23-27, 2006, H. Haddad, Ed., ACM, 2006,
pp. 1202–1209, I S B N: 1-59593-108-2 (cit. on pp. 161, 248,
266).

[KvBJ07] I. Kurtev, K. van den Berga, and F. Jouault, “Rule-based
Modularization in Model Transformation Languages illus-
trated with ATL,” Sci. Comput. Program., vol. 68, no. 3,
pp. 138–154, 2007 (cit. on pp. 161, 248, 266).

341

http://dx.doi.org/10.1007/s10270-013-0343-7
http://dx.doi.org/10.1007/s10270-013-0343-7
http://dx.doi.org/10.1007/s10270-013-0343-7

Bibliography

[KW07] E. Kindler and R. Wagner, “Triple Graph Grammars: Con-
cepts, Extensions, Implementations, and Application Scenar-
ios,” Software Engineering Group, Department of Computer
Science, University of Paderborn, Paderborn, Germany, Tech.
Rep. TR-RI-07-284, Jun. 2007, p. 75 (cit. on pp. 53, 135).

[KWB03] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The

Model Driven Architecture: Practice and Promise. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2003, I S B N: 0-321-19442-X (cit. on p. 29).

[LDGR04] M. Lawley, K. Duddy, A. Gerber, and K. Raymond, “Lan-
guage Features for Re-use and Maintainability of MDA
Transformations,” in Proceedings of the OOPSLA Workshop

on Best Practices for Model-Driven Software Development,
2004 (cit. on pp. 157, 161, 248).

[LK14] K. Lano and S. Kolahdouz-Rahimi, “Model-Transformation
Design Patterns,” Software Engineering, IEEE Transactions

on, vol. PP, no. 99, 2014, To Appear, I S S N: 0098-5589.
D O I: 10.1109/TSE.2014.2354344 (cit. on p. 266).

[LKP+12] K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, J. Terrell, and
S. Zschaler, “Correct-by-Construction Synthesis of Model
Transformations using Transformation Patterns,” Software

and Systems Modeling (SoSyM), pp. 1–35, 2012, I S S N:
1619-1366. D O I: 10.1007/s10270-012-0291-7 (cit. on
p. 294).

[LW90] S.-S. Liu and N. Wilde, “Identifying Objects in a Conven-
tional Procedural Language: An example of data design re-
covery,” in Proceedings of the 16th International Conference

on Software Maintenance (ICSM ’90), Nov. 1990, pp. 266–
271. D O I: 10.1109/ICSM.1990.131371 (cit. on p. 248).

[Mar04] R. Marvie, “A Transformation Composition Framework for
Model Driven Engineering,” IRCICA, University of Lille

342

http://dx.doi.org/10.1109/TSE.2014.2354344
http://dx.doi.org/10.1007/s10270-012-0291-7
http://dx.doi.org/10.1109/ICSM.1990.131371

Bibliography

1, France, Tech. Rep. LIFL 2004-n10, Nov. 2004. [Online].
Available: http://www2.lifl.fr/~marvie/pubs/RT200
4-10.pdf (cit. on p. 243).

[Mar96] R. Martin, “Granularity,” C++ Report, vol. 8, no. 10, pp. 57–
62, Nov. 1996, I S S N: 1040-6042. [Online]. Available: http
://www.objectmentor.com/resources/articles/gra

nularity.pdf (cit. on p. 221).
[MB07] O. Maqbool and H. A. Babri, “Hierarchical Clustering for

Software Architecture Recovery,” IEEE Transactions on

Software Engineering, vol. 33, no. 11, pp. 759–780, 2007
(cit. on pp. 76, 161).

[MC13] N. Macedo and A. Cunha, “Implementing QVT-R Bidirec-
tional Model Transformations Using Alloy,” in Fundamen-

tal Approaches to Software Engineering, ser. Lecture Notes
in Computer Science, V. Cortellessa and D. Varró, Eds.,
vol. 7793, Springer, 2013, pp. 297–311, I S B N: 978-3-642-
37056-4. D O I: 10.1007/978-3-642-37057-1_22 (cit. on
pp. 245, 293).

[McC04] S. McConnell, Code Complete: A Practical Handbook of

Software Construction, 2nd ed. Redmond, WA, USA: Mi-
crosoft Press, 2004, I S B N: 0735619670, 9780735619678
(cit. on p. 57).

[Mes14] D. Messinger, “Automatic Clustering for Software Architec-
ture Recovery with Bunch,” in Seminar: Big Data, Architec-

ture and Performance, Best Paper Award by the SDQ Chair,
Computer Science Faculty, Karlsruhe Institute of Technol-
ogy, Germany, Feb. 2014 (cit. on p. 77).

[Mey97] B. Meyer, Object-Oriented Software Construction, 2nd. Pren-
tice-Hall, 1997, I S B N: 0-136-29155-4 (cit. on pp. 55, 57).

[MFV+05] P.-A. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet, F.
Fondement, P. Studer, and J.-M. Jézéquel, “On Executable

343

http://www2.lifl.fr/~marvie/pubs/RT2004-10.pdf
http://www2.lifl.fr/~marvie/pubs/RT2004-10.pdf
http://www.objectmentor.com/resources/articles/granularity.pdf
http://www.objectmentor.com/resources/articles/granularity.pdf
http://www.objectmentor.com/resources/articles/granularity.pdf
http://dx.doi.org/10.1007/978-3-642-37057-1_22

Bibliography

Meta-Languages Applied to Model Transformations,” in
Model Transformations In Practice Workshop, Montego Bay,
Jamaica, Oct. 2005. [Online]. Available: http://hal.inri
a.fr/inria-00000381 (cit. on pp. 12, 152).

[Mit02] B. S. Mitchell, “A Heuristic Search Approach to Solving the
Software Clustering Problem,” PhD thesis, Drexel Univer-
sity, 2002 (cit. on p. 220).

[Mit86] J. C. Mitchell, “Representation Independence and Data
Abstraction,” in Proceedings of the 13th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Lan-

guages (POPL ’86), St. Petersburg Beach, Florida: ACM,
1986, pp. 263–276. D O I: 10.1145/512644.512669 (cit. on
p. 64).

[MKK11] P. Meier, S. Kounev, and H. Koziolek, “Automated Transfor-
mation of Component-Based Software Architecture Models
to Queueing Petri Nets,” in Proceedings of the 19th Inter-

national Symposium on Modeling, Analysis Simulation of

Computer and Telecommunication Systems (MASCOTS ’11),
IEEE, Jul. 2011, pp. 339–348. D O I: 10.1109/MASCOTS.20
11.23 (cit. on pp. 184, 200).

[MM01] B. S. Mitchell and S. Mancoridis, “Comparing the Decompo-
sitions Produced by Software Clustering Algorithms Using
Similarity Measurements,” in Proceedings of the IEEE Inter-

national Conference on Software Maintenance (ICSM ’01),
IEEE Computer Society, 2001, pp. 744–753 (cit. on p. 176).

[MM06] B. S. Mitchell and S. Mancoridis, “On the Automatic Mod-
ularization of Software Systems Using the Bunch Tool,”
IEEE Transactions on Software Engineering, vol. 32, no. 3,
pp. 193–208, 2006 (cit. on pp. 21, 75, 76, 157).

344

http://hal.inria.fr/inria-00000381
http://hal.inria.fr/inria-00000381
http://dx.doi.org/10.1145/512644.512669
http://dx.doi.org/10.1109/MASCOTS.2011.23
http://dx.doi.org/10.1109/MASCOTS.2011.23

Bibliography

[MM08] ——, “On the Evaluation of the Bunch Search-based Soft-
ware Modularization Algorithm,” Soft Computing, vol. 12,
no. 1, pp. 77–93, 2008 (cit. on pp. 175, 176).

[MMCG99] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner,
“Bunch: A Clustering Tool for the Recovery and Mainte-
nance of Software System Structures,” in Proceedings of the

IEEE International Conference on Software Maintenance

(ICSM ’99), IEEE Computer Society, 1999, pp. 50–59 (cit.
on pp. 75, 76).

[Mor73] J. H. Morris Jr., “Protection in Programming Languages,”
Commun. ACM, vol. 16, no. 1, pp. 15–21, Jan. 1973, I S S N:
0001-0782. D O I: 10.1145/361932.361937 (cit. on p. 64).

[MRB07] A. MacCormack, J. Rusnak, and C. Baldwin, “The Impact of
Component Modularity on Design Evolution: Evidence from
the Software Industry,” Harvard Business School Technology

& Operations Mgt. Unit Research Paper, vol. No. 08-038,
2007 (cit. on p. 59).

[Mül01] R. Müller, The Concept of Model: Definitions and Types,
[Online]. Available: http://www.muellerscience.co
m/ENGLISH/Theconceptofmo-del.definitions.htm,
2001 (cit. on p. 31).

[NNH05] F. Nielson, H. R. Nielson, and C. Hankin, Principles of

Program Analysis, 2nd. Springer, 2005, pp. I–XXI, 1–452,
I S B N: 978-3-540-65410-0 (cit. on p. 70).

[OAO06] G. K. Olsen, J. Aagedal, and J. Oldevik, “Aspects of Reus-
able Model Transformations,” in Proceedings of the 1st Eu-

ropean Workshop on Composition of Model Transformations

(CMT ’06), ser. TR-CTI, URL: doc.utwente.nl/66171/,
Centre for Telematics and Information Technology, Univ. of
Twente, Jun. 2006, pp. 21–26 (cit. on p. 236).

345

http://dx.doi.org/10.1145/361932.361937
http://www.muellerscience.com/ENGLISH/Theconceptofmodel.definitions.htm
http://www.muellerscience.com/ENGLISH/Theconceptofmodel.definitions.htm
http://doc.utwente.nl/66171/

Bibliography

[Obj03] Object Management Group, Model Driven Architecture –

Specifications, Version 1.0.1, Jun. 2003. [Online]. Available:
http://www.omg.org/cgi-bin/doc?omg/03-06-01

(cit. on pp. 28, 29).
[Obj11] ——, MOF 2.0 Query/View/Transformation, version 1.1, Jan.

2011. [Online]. Available: http://www.omg.org/spec/Q
VT/1.1/PDF/ (cit. on pp. 7, 36, 42, 46, 92, 115, 118, 123,
131, 135, 214, 240, 245, 294).

[Obj12] ——, Object Constraint Language (OCL), Version 2.3.1, Jan.
2012. [Online]. Available: http://www.omg.org/spec/O
CL/2.3.1/ (cit. on p. 42).

[Obj14] ——, Meta-Object Facility – Core Specification, Version

2.4.2, Jan. 2014. [Online]. Available: http://www.omg.or
g/spec/MOF/ISO/19508/ (cit. on pp. 33, 232).

[OGS09] D. Oberle, S. Grimm, and S. Staab, “An Ontology for Soft-
ware,” in Handbook on Ontologies, ser. International Hand-
books on Information Systems, 2nd, Springer, 2009, pp. 383–
402, I S B N: 978-3-540-70999-2 (cit. on p. 34).

[Par72] D. L. Parnas, “On the Criteria To Be Used in Decomposing
Systems into Modules,” Communications of the ACM, vol.
15, no. 12, pp. 1053–1058, 1972 (cit. on pp. 15, 55, 59).

[Pau12] C. Paulin-Mohring, “Introduction to the Coq Proof-Assistant
for Practical Software Verification,” in Tools for Practical

Software Verification, ser. Lecture Notes in Computer Sci-
ence, B. Meyer and M. Nordio, Eds., vol. 7682, Springer,
2012, pp. 45–95, I S B N: 978-3-642-35745-9. D O I: 10.100
7/978-3-642-35746-6_3 (cit. on p. 294).

[Pau93] ——, “Inductive Definitions in the System Coq - Rules
and Properties,” in Proceedings of the Conference on Typed

Lambda Calculi and Applications (TLCA ’93), ser. Lecture
Notes in Computer Science, M. Bezem and J. F. Groote, Eds.,

346

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/QVT/1.1/PDF/
http://www.omg.org/spec/QVT/1.1/PDF/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/MOF/ISO/19508/
http://www.omg.org/spec/MOF/ISO/19508/
http://dx.doi.org/10.1007/978-3-642-35746-6_3
http://dx.doi.org/10.1007/978-3-642-35746-6_3

Bibliography

vol. 664, Springer, 1993, pp. 328–345, I S B N: 3-540-56517-
5 (cit. on p. 65).

[Per82] A. J. Perlis, “Epigrams on Programming,” SIGPLAN Notices,
vol. 17, no. 9, pp. 7–13, 1982 (cit. on pp. xiii, 270).

[Pie02] B. C. Pierce, Types and Programming Languages. MIT Press,
2002, pp. I–XXI, 1–623, I S B N: 978-0-262-16209-8 (cit. on
pp. 63, 102).

[Pie04] ——, Advanced Topics in Types and Programming Lan-

guages. The MIT Press, 2004, I S B N: 0-262-16228-8 (cit. on
pp. 64, 81).

[PM11] C. Picard and R. Matthes, “Coinductive Graph Representa-
tion: the Problem of Embedded Lists,” ECEASST, vol. 39,
2011 (cit. on p. 298).

[Poe08] I. Poernomo, “Proofs-as-Model-Transformations,” in Pro-

ceedings of the 1st International Conference on Model Trans-

formation (ICMT ’08), ser. Lecture Notes in Computer
Science, A. Vallecillo, J. Gray, and A. Pierantonio, Eds.,
vol. 5063, Springer, 2008, pp. 214–228, I S B N: 978-3-540-
69926-2 (cit. on pp. 113, 294).

[PPH05] D. Pilone, N. Pitman, and D. Heymann-Reder, UML 2.0 in a

Nutshell, 1st. O’Reilly Media, Inc., 2005, I S B N: 978-0-596-
00795-7 (cit. on p. 232).

[Rat13] C. Rathfelder, Modelling Event-Based Interactions in Com-

ponent-Based Architectures for Quantitative System Evalua-

tion, ser. The Karlsruhe Series on Software Design and Qual-
ity; 10. Karlsruhe: KIT Scientific Publishing, 2013, I S B N:
978-3-86644-969-5. [Online]. Available: http://dx.doi
.org/10.5445/KSP/1000032232 (cit. on p. 214).

[RC93] L. Rising and F. Calliss, “An Experiment Investigating the
Effect of Information Hiding on Maintainability,” in Proceed-

ings of the 12th Annual International Phoenix Conference on

347

http://dx.doi.org/10.5445/KSP/1000032232
http://dx.doi.org/10.5445/KSP/1000032232

Bibliography

Computers and Communications (IPCCC ’93), Mar. 1993,
pp. 510–516. D O I: 10.1109/PCCC.1993.344523 (cit. on
p. 12).

[Ren06] A. Rentschler, “Model-To-Text Transformation Languages,”
in Seminar: Modellgetriebene Software-Entwicklung Ar-

chitekturen, Muster und Eclipse-basierte MDA, S. Becker,
J. Happe, H. Koziolek, K. Krogmann, M. Kuperberg, and R.
Reussner, Eds., ser. Karlsruhe Reports in Informatics, Best
Paper Award by the SDQ Chair, Computer Science Faculty,
University of Karlsruhe, Germany, 2006, pp. 98–129. [On-
line]. Available: http://digbib.ubka.uni-karlsruhe
.de/volltexte/documents/2918 (cit. on p. 38).

[Reu01] R. H. Reussner, Parametrisierte Verträge zur Protokolladap-

tion bei Software-Komponenten. Logos Verlag, Berlin, 2001,
I S B N: 978-3-89722-783-5 (cit. on pp. 59, 60).

[Rey83] J. C. Reynolds, “Types, Abstraction and Parametric Poly-
morphism,” in Proceedings of the IFIP 9th World Computer

Congress (IFIP Congress ’83), R. E. A. Mason, Ed., 1983,
pp. 513–523, I S B N: 0-444-86729-5 (cit. on p. 63).

[Rey98] ——, Theories of Programming Languages. Cambridge Uni-
versity Press, 1998, pp. I–XII, 1–500, I S B N: 978-0-521-
59414-1 (cit. on p. 61).

[RKSK13] C. Rathfelder, B. Klatt, K. Sachs, and S. Kounev, “Modeling
Event-based Communication in Component-Based Software
Architectures for Performance Predictions,” Journal of Soft-

ware and Systems Modeling (SoSyM), pp. 1–27, Mar. 2013,
I S S N: 1619-1366. D O I: 10.1007/s10270-013-0316-x.
[Online]. Available: http://dx.doi.org/10.1007/s102
70-013-0316-x (cit. on p. 214).

[RNHR13] A. Rentschler, Q. Noorshams, L. Happe, and R. Reussner,
“Interactive Visual Analytics for Efficient Maintenance of

348

http://dx.doi.org/10.1109/PCCC.1993.344523
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2918
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2918
http://dx.doi.org/10.1007/s10270-013-0316-x
http://dx.doi.org/10.1007/s10270-013-0316-x
http://dx.doi.org/10.1007/s10270-013-0316-x

Bibliography

Model Transformations,” in Proceedings of the 6th Interna-

tional Conference on Model Transformation (ICMT ’13), Bu-

dapest, Hungary, K. Duddy and G. Kappel, Eds., ser. Lecture
Notes in Computer Science, Acceptance Rate (Full Paper):
20.7%, vol. 7909, Berlin–Heidelberg–New York: Springer,
Jun. 2013, pp. 141–157, I S B N: 978-3-642-38882-8. D O I:
10.1007/978-3-642-38883-5_14 (cit. on pp. 18, 127,
163).

[RRLB09] J. E. Rivera, D. Ruiz-González, F. López-Romero, and J. M.
Bautista, “Wires* : A Tool for Orchestrating Model Trans-
formations,” in XIV Jornadas de Ingeniería del Software y

Bases de Datos (JISBD 2009), San Sebastián, Spain, Septem-

ber 8-11, 2009, A. Vallecillo and G. Sagardui, Eds., 2009,
pp. 158–161, I S B N: 978-84-692-4211-7 (cit. on p. 243).

[RRMB08] R. Romeikat, S. Roser, P. Müllender, and B. Bauer, “Transla-
tion of QVT Relations into QVT Operational Mappings,” in
Proceedings of the 1st International Conference Theory and

Practice of Model Transformations (ICMT ’08), A. Valle-
cillo, J. Gray, and A. Pierantonio, Eds., ser. Lecture Notes in
Computer Science, vol. 5063, Springer, 2008, pp. 137–151,
I S B N: 978-3-540-69926-2 (cit. on p. 263).

[RS14] A. Rentschler and P. Sterner, “Interactive Dependency Gra-
phs for Model Transformation Analysis,” in Joint Proceed-

ings of MODELS ’13 Invited Talks, Demonstration Session,

Poster Session, and ACM Student Research Competition co-

located with the 16th International Conference on Model

Driven Engineering Languages and Systems (MODELS ’13),

Miami, USA, September 29 - October 4, 2013, Y. Liu and S.
Zschaler, Eds., ser. CEUR Workshop Proceedings, vol. 1115,
CEUR-WS.org, Jan. 2014, pp. 36–40 (cit. on pp. 20, 21).

349

http://dx.doi.org/10.1007/978-3-642-38883-5_14

Bibliography

[RWN+14a] A. Rentschler, D. Werle, Q. Noorshams, L. Happe, and R.
Reussner, “Designing Information Hiding Modularity for
Model Transformation Languages,” in Proceedings of the

13th International Conference on Modularity (AOSD ’14),

Lugano, Switzerland, April 22 - 26, 2014, Acceptance Rate:
35.0%, New York, NY, USA: ACM, Apr. 2014, pp. 217–228,
I S B N: 978-1-450-32772-5. D O I: 10.1145/2577080.2577
094 (cit. on pp. 17, 20).

[RWN+14b] ——, “Remodularizing Legacy Model Transformations with
Automatic Clustering Techniques,” in Proceedings of the

3rd Workshop on the Analysis of Model Transformations

co-located with the 17th International Conference on Model

Driven Engineering Languages and Systems (AMT@MOD-

ELS 2014), Valencia, Spain, September 29, 2014, B. Baudry,
J. Dingel, L. Lucio, and H. Vangheluwe, Eds., ser. CEUR
Workshop Proceedings, vol. 1277, CEUR-WS.org, 2014,
pp. 4–13 (cit. on pp. 19, 21).

[Sal09] K. A. Saleh, Software Engineering. J Ross Publishing, 2009,
I S B N: 978-1-932-15994-3 (cit. on p. 200).

[SBC+13] G. M. K. Selim, F. Büttner, J. R. Cordy, J. Dingel, and S.
Wang, “Automated Verification of Model Transformations in
the Automotive Industry,” in Proceedings of the 16th Interna-

tional Conference on Model-Driven Engineering Languages

and Systems (MODELS ’13), Miami, FL, USA, September

29 - October 4, 2013, A. Moreira, B. Schätz, J. Gray, A. Val-
lecillo, and P. J. Clarke, Eds., Springer, 2013, pp. 690–706.
D O I: 10.1007/978-3-642-41533-3_42 (cit. on p. 265).

[SBPM09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework 2.0, 2nd. Addison-
Wesley Professional, 2009, I S B N: 0-321-33188-5 (cit. on
pp. 34, 232, 297).

350

http://dx.doi.org/10.1145/2577080.2577094
http://dx.doi.org/10.1145/2577080.2577094
http://dx.doi.org/10.1007/978-3-642-41533-3_42

Bibliography

[Sch95] A. Schürr, “Specification of Graph Translators with Triple
Graph Grammars,” in Proceedings of the 20th International

Workshop on Graph-Theoretic Concepts in Computer Sci-

ence (WG ’94), E. W. Mayr, G. Schmidt, and G. Tinhofer,
Eds., ser. Lecture Notes in Computer Science, vol. 903,
Springer, 1995, pp. 151–163, I S B N: 3-540-59071-4 (cit.
on pp. 53, 135).

[Sel03] B. Selic, “The Pragmatics of Model-Driven Development,”
IEEE Software, vol. 20, no. 5, pp. 19–25, 2003 (cit. on p. 31).

[SG12] E. Syriani and J. Gray, “Challenges for Addressing Qual-
ity Factors in Model Transformation,” in Proceedings of

the IEEE Fifth International Conference on Software Test-

ing, Verification and Validation (ICST ’12), G. Antoniol, A.
Bertolino, and Y. Labiche, Eds., IEEE, 2012, pp. 929–937,
I S B N: 978-1-4577-1906-6 (cit. on p. 266).

[SGCH01] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The
Structure and Value of Modularity in Software Design,”
SIGSOFT Softw. Eng. Notes, vol. 26, no. 5, pp. 99–108, Sep.
2001, I S S N: 0163-5948 (cit. on p. 79).

[SGdL14] J. Sánchez Cuadrado, E. Guerra, and J. de Lara, “A Compo-
nent Model for Model Transformations,” IEEE Transactions

on Software Engineering, vol. PP, no. 99, 2014, To Appear,
I S S N: 0098-5589. D O I: 10.1109/TSE.2014.2339852
(cit. on p. 244).

[SKK+10] J. Schönböck, G. Kappel, A. Kusel, W. Retschitzegger, W.
Schwinger, and M. Wimmer, “Catch Me If You Can - De-
bugging Support for Model Transformations,” in Models in

Software Engineering, Workshops and Symposia at MOD-

ELS ’09, ser. Lecture Notes in Computer Science, Springer,
2010, pp. 5–20, I S B N: 978-3-642-12260-6 (cit. on p. 250).

351

http://dx.doi.org/10.1145/503271.503224
http://dx.doi.org/10.1109/TSE.2014.2339852

Bibliography

[SMDM05] A. Shokoufandeh, S. Mancoridis, T. Denton, and M. May-
cock, “Spectral and Meta-heuristic Algorithms for Software
Clustering,” Journal of Systems and Software, vol. 77, no. 3,
pp. 213–223, 2005 (cit. on p. 161).

[SP07] R. Sindhgatta and K. Pooloth, “Identifying Software De-
compositions by Applying Transaction Clustering on Source
Code,” in Proceedings of the 31st Annual International Com-

puter Software and Applications Conference (COMPSAC

’07), IEEE Computer Society, 2007, pp. 317–326, I S B N:
978-0-7695-2870-0 (cit. on p. 248).

[SR99] M. Siff and T. W. Reps, “Identifying Modules via Concept
Analysis,” IEEE Transactions on Software Engineering, vol.
25, no. 6, pp. 749–768, 1999 (cit. on p. 248).

[ST12] M. Shtern and V. Tzerpos, “Clustering Methodologies for
Software Engineering,” Adv. Soft. Eng., vol. 2012, 1:1–1:1,
Jan. 2012, I S S N: 1687-8655. D O I: 10.1155/2012/792024
(cit. on pp. 73, 176).

[Sta73] H. Stachowiak, Allgemeine Modelltheorie [General Model

Theory]. Springer Verlag, Wien, 1973, I S B N: 3-211-81106-
0 (cit. on p. 31).

[Ste10] P. Stevens, “Bidirectional Model Transformations in QVT:
Semantic Issues and Open Questions,” Software and System

Modeling, vol. 9, no. 1, pp. 7–20, 2010 (cit. on pp. 37, 245).
[Ste12] P. Sterner, “Statische Code-Analyse von Modelltransforma-

tionen,” Diploma Thesis, Computer Science Faculty, Karl-
sruhe Institute of Technology, Germany, Nov. 2012 (cit. on
p. 128).

[Ste13] P. Stevens, “A Simple Game-theoretic Approach to Check-
only QVT Relations,” Software and System Modeling, vol.
12, no. 1, pp. 175–199, 2013 (cit. on pp. 245, 293).

352

http://dx.doi.org/10.1155/2012/792024

Bibliography

[Str08] M. Strecker, “Modeling and Verifying Graph Transforma-
tions in Proof Assistants,” Electr. Notes Theor. Comput. Sci.,
vol. 203, no. 1, pp. 135–148, 2008 (cit. on p. 245).

[SV06] T. Stahl and M. Voelter, Model-Driven Software Develop-

ment: Technology, Engineering, Management. John Wiley &
Sons, 2006, I S B N: 978-0-470-02570-3 (cit. on pp. 25–27).

[Swi09] W. Swierstra, “A Hoare Logic for the State Monad,” in The-

orem Proving in Higher Order Logics, ser. Lecture Notes in
Computer Science, S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, Eds., vol. 5674, Springer, 2009, pp. 440–451,
I S B N: 978-3-642-03358-2. D O I: 10.1007/978-3-642-0
3359-9_30 (cit. on pp. 303, 304).

[SZ93] A. Schill and M. Zitterbart, “A System Framework for Open
Distributed Processing,” J. Network Syst. Manage., vol. 1,
no. 1, pp. 71–93, 1993 (cit. on p. 29).

[Szy02] C. Szyperski, Component Software: Beyond Object-Oriented

Programming, 2nd. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002, I S B N: 0-201-74572-0
(cit. on p. 59).

[Szy92] C. A. Szyperski, “Import is Not Inheritance - Why We Need
Both: Modules and Classes,” in Proceedings of the European

Conference on Object-Oriented Programming (ECOOP ’92),
O. L. Madsen, Ed., ser. Lecture Notes in Computer Science,
vol. 615, Springer, 1992, pp. 19–32, I S B N: 3-540-55668-0
(cit. on pp. 57, 58).

[TB02] J. Tilly and E. M. Burke, Ant - The Definitive Guide: Com-

plete build management for Java. O’Reilly, 2002, pp. I–
XVIII, 1–269, I S B N: 978-0-596-00184-1 (cit. on p. 244).

[TC10] G. Tamura and A. Cleve, “A Comparison of Taxonomies for
Model Transformation Languages,” Paradigma, vol. 4, no.

353

http://dx.doi.org/10.1007/978-3-642-03359-9_30
http://dx.doi.org/10.1007/978-3-642-03359-9_30

Bibliography

1, pp. 1–14, Mar. 2010. [Online]. Available: http://hal.i
nria.fr/inria-00488765 (cit. on p. 38).

[TEV10] A. Telea, O. Ersoy, and L. Voinea, “Visual Analytics in Soft-
ware Maintenance: Challenges and Opportunities,” in Inter-

national Symposium on Visual Analytics Science and Tech-

nology (EuroVAST ’10), J. Kohlhammer and D. Keim, Eds.,
Bordeaux, France: Eurographics Association, 2010, pp. 75–
80, I S B N: 978-3-905-67374-6. D O I: 10.2312/PE/EuroVA
ST/EuroVAST10/075-080 (cit. on p. 72).

[The12] The Coq Development Team, The Coq Proof Assistant, Ref-

erence Manual, Version 8.4, 2012. [Online]. Available: htt
p://coq.inria.fr/refman (cit. on pp. 17, 64, 65).

[The13] The Eclipse Foundation, Xtend User Guide, Version 2.5.0,
Dec. 2013. [Online]. Available: http://www.eclipse.or
g/xtend/documentation/ (cit. on p. 53).

[THER09] A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers, “Extrac-
tion and Visualization of Call Dependencies for Large C/C++
Code Bases: A Comparative Study,” in Proceedings of the

5th IEEE International Workshop on Visualizing Software

for Understanding and Analysis (VISSOFT ’09), IEEE, Sep.
2009, pp. 81–88. D O I: 10.1109/VISSOF.2009.5336419
(cit. on p. 248).

[TSG+11] J. B. Tolosa, O. Sanjuán-Martínez, V. García-Díaz, B. C. P.
G-Bustelo, and J. M. C. Lovelle, “Towards the Systematic
Measurement of ATL Transformation Models,” Softw., Pract.

Exper., vol. 41, no. 7, pp. 789–815, 2011 (cit. on p. 247).
[TV11] J. Troya and A. Vallecillo, “A Rewriting Logic Semantics

for ATL,” Journal of Object Technology, vol. 10, pp. 1–29,
2011 (cit. on p. 245).

[Tze01] V. Tzerpos, “Comprehension-driven Software Clustering,”
PhD thesis, University of Toronto, 2001 (cit. on pp. 73, 76).

354

http://hal.inria.fr/inria-00488765
http://hal.inria.fr/inria-00488765
http://dx.doi.org/10.2312/PE/EuroVAST/EuroVAST10/075-080
http://dx.doi.org/10.2312/PE/EuroVAST/EuroVAST10/075-080
http://coq.inria.fr/refman
http://coq.inria.fr/refman
http://www.eclipse.org/xtend/documentation/
http://www.eclipse.org/xtend/documentation/
http://dx.doi.org/10.1109/VISSOF.2009.5336419

Bibliography

[UHV09] Z. Ujhelyi, Á. Horváth, and D. Varró, “A Generic Static
Analysis Framework for Model Transformation Programs,”
Budapest Univ. of Technology and Economics, Tech. Rep.,
Jun. 2009 (cit. on p. 246).

[UHV12] ——, “Dynamic Backward Slicing of Model Transforma-
tions,” in Proceedings of the 5th International Conference

on Software Testing, Verification and Validation (ICST ’12),
IEEE, 2012, pp. 1–10, I S B N: 978-0-7695-4670-4. D O I: 10
.1109/ICST.2012.80 (cit. on p. 246).

[VAB+07] B. Vanhooff, D. Ayed, S. V. Baelen, W. Joosen, and Y.
Berbers, “UniTI: a unified transformation infrastructure,” in
Proceedings of the 10th International Conference on Model

Driven Engineering Languages and Systems (MODELS ’07),
G. Engels, B. Opdyke, D. C. Schmidt, and F. Weil, Eds., ser.
Lecture Notes in Computer Science, vol. 4735, Springer,
2007, pp. 31–45, I S B N: 978-3-540-75208-0 (cit. on p. 242).

[vALvB08] M. van Amstel, C. Lange, and M. van den Brand, “Metrics
for Analyzing the Quality of Model Transformations,” in
ECOOP Workshop on Quantitative Approaches in Object-

Oriented Software Engineering (ECOOP-QAOOSE ’08),
vol. 12, 2008, pp. 41–51 (cit. on p. 247).

[Van10] B. Vanhooff, “Loosely Coupled Transformation Chains. How
to Enable Transformation Reuse with Traceability Informa-
tion,” Berbers, Yolande (supervisor), PhD thesis, Informatics
Section, Department of Computer Science, Faculty of En-
gineering Science, Apr. 2010, p. 196. [Online]. Available:
https://lirias.kuleuven.be/handle/123456789/26

2244 (cit. on p. 242).
[Var06] D. Varró, “Model Transformation by Example,” in Proceed-

ings of the 9th International Conference on Model Driven

Engineering Languages and Systems (MoDELS ’06), O. Nier-

355

http://dx.doi.org/10.1109/ICST.2012.80
http://dx.doi.org/10.1109/ICST.2012.80
https://lirias.kuleuven.be/handle/123456789/262244
https://lirias.kuleuven.be/handle/123456789/262244

Bibliography

strasz, J. Whittle, D. Harel, and G. Reggio, Eds., ser. Lec-
ture Notes in Computer Science, vol. 4199, Springer, 2006,
pp. 410–424, I S B N: 3-540-45772-0 (cit. on p. 261).

[vAvB11] M. van Amstel and M. G. J. van den Brand, “Model Transfor-
mation Analysis: Staying Ahead of the Maintenance Night-
mare,” in Proceedings of the 4th International Conference on

Theory and Practice of Model Transformations (ICMT ’11),
ser. LNCS, Zürich, Switzerland: Springer, 2011, pp. 108–
122, I S B N: 978-3-642-21731-9 (cit. on pp. 209, 247, 249).

[VB07] D. Varró and A. Balogh, “The Model Transformation Lan-
guage of the VIATRA2 Framework,” Sci. Comput. Program.,
vol. 68, no. 3, pp. 214–234, 2007 (cit. on pp. 12, 152).

[vDVW07] A. van Deursen, E. Visser, and J. Warmer, “Model-Driven
Software Evolution: A Research Agenda,” in CSMR Work-

shop on Model-Driven Software Evolution (MoDSE ’07),
D. Tamzalit, Ed., Amsterdam, The Netherlands, Mar. 2007,
pp. 41–49. [Online]. Available: http://swerl.tudelft.n
l/twiki/pub/Main/TechnicalReports/TUD-SERG-200

7-006.pdf (cit. on p. 69).
[VGB+12] A. Vallecillo, M. Gogolla, L. Burgueño, M. Wimmer, and L.

Hamann, “Formal Specification and Testing of Model Trans-
formations,” in 12th International School on Formal Meth-

ods for the Design of Computer, Communication, and Soft-

ware Systems (SFM ’12), M. Bernardo, V. Cortellessa, and
A. Pierantonio, Eds., ser. LNCS, vol. 7320, Springer, 2012,
pp. 399–437, I S B N: 978-3-642-30981-6 (cit. on p. 126).

[Voe10] M. Voelter, “Architecture As Language,” IEEE Software, vol.
27, no. 2, pp. 56–64, 2010 (cit. on pp. 3, 30).

[Voe11] ——, “Language and IDE Modularization and Composition
with MPS,” in Generative and Transformational Techniques

in Software Engineering IV, International Summer School,

356

http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf

Bibliography

GTTSE 2011, Braga, Portugal, July 3-9, 2011. Revised Pa-

pers, R. Lämmel, J. Saraiva, and J. Visser, Eds., Springer,
2011, pp. 383–430. D O I: 10.1007/978-3-642-35992-7
_11. [Online]. Available: http://dx.doi.org/10.1007
/978-3-642-35992-7_11 (cit. on p. 237).

[Voe13] ——, DSL Engineering: Designing, Implementing and Using

Domain-Specific Languages, January 23 2013. CreateSpace
Independent Publishing Platform, 2013, I S B N: 978-1-481-
21858-0. [Online]. Available: http://dslbook.org (cit.
on pp. 32, 34).

[VR11] A. Vieira and F. Ramalho, “A Static Analyzer for Model
Transformations,” in Proceedings of the 3rd International

Workshop on Model Transformation with ATL (MtATL ’11),
ser. CEUR Workshop Proceedings, vol. 742, CEUR-WS.org,
Jun. 2011, pp. 75–88 (cit. on p. 247).

[VVE+06] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G.
Taentzer, “Termination Analysis of Model Transformations
by Petri Nets,” in Proceedings of the 3rd International Con-

ference on Graph Transformations (ICGT ’06), Natal, Rio
Grande do Norte, Brazil, September 17-23: Springer, 2006,
pp. 260–274 (cit. on p. 246).

[Wag08] D. Wagelaar, “Composition Techniques for Rule-Based
Model Transformation Languages,” in Proceedings of the 1st

International Conference on Theory and Practice of Model

Transformation (ICMT ’08), A. Vallecillo, J. Gray, and A.
Pierantonio, Eds., ser. Lecture Notes in Computer Science,
vol. 5063, Springer, 2008, pp. 152–167, I S B N: 978-3-540-
69926-2 (cit. on p. 241).

[WHK13] E. Willink, H. Hoyos, and D. Kolovos, “Yet Another Three
QVT Languages,” in Proceedings of the 6th International

Conference on Model Transformation (ICMT ’13), ser. Lec-

357

http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dslbook.org

Bibliography

ture Notes in Computer Science, K. Duddy and G. Kappel,
Eds., vol. 7909, Springer, Jun. 2013, pp. 58–59, I S B N: 978-
3-642-38882-8. D O I: 10.1007/978-3-642-38883-5_8
(cit. on pp. 36, 46).

[WHR+13] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R.
Heldal, “Industrial Adoption of Model-Driven Engineering:
Are the Tools Really the Problem?” In Proceedings of the

16th International Conference on Model-Driven Engineer-

ing Languages and Systems (MODELS ’13), A. Moreira, B.
Schätz, J. Gray, A. Vallecillo, and P. J. Clarke, Eds., ser. Lec-
ture Notes in Computer Science, vol. 8107, Springer, 2013,
pp. 1–17, I S B N: 978-3-642-41532-6 (cit. on pp. 4, 13, 30,
157, 255).

[Wig97] T. A. Wiggerts, “Using Clustering Algorithms in Legacy
Systems Remodularization,” in Proceedings of the 4th Work-

ing Conference on Reverse Engineering (WCRE ’97), IEEE,
1997, pp. 33–43 (cit. on p. 74).

[WKK+09] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J.
Schoenboeck, and W. Schwinger, “Right or Wrong? – Verifi-
cation of Model Transformations using Colored Petri Nets,”
in Proceedings of the 9th OOPSLA Workshop on Domain-

Specific Modeling (DSM 2009), Helsinki Business School,
Orlando, Oct. 2009 (cit. on pp. 245, 247).

[WKK+12a] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J.
Schönböck, and W. Schwinger, “Fact or Fiction - Reuse in
Rule-Based Model-to-Model Transformation Languages,”
in Proceedings of the 5th International Conference Theory

and Practice of Model Transformations (ICMT ’12), Z. Hu
and J. de Lara, Eds., ser. Lecture Notes in Computer Science,
vol. 7307, Springer, 2012, pp. 280–295, I S B N: 978-3-642-
30475-0 (cit. on p. 236).

358

http://dx.doi.org/10.1007/978-3-642-38883-5_8

Bibliography

[WKK+12b] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J.
Schönböck, W. Schwinger, D. S. Kolovos, R. F. Paige, M.
Lauder, A. Schürr, and D. Wagelaar, “Surveying Rule In-
heritance in Model-to-Model Transformation Languages,”
Journal of Object Technology, vol. 11, no. 2, pp. 1–46, 2012
(cit. on pp. 209, 236).

[WKS+09a] M. Wimmer, G. Kappel, J. Schoenboeck, A. Kusel, W. Rets-
chitzegger, and W. Schwinger, “A Petri Net Based Debug-
ging Environment for QVT Relations,” in Proceedings of

the 2009 IEEE/ACM 24th International Conference on Auto-

mated Software Engineering (ASE ’09), IEEE, 2009, pp. 3–
14, I S B N: 978-0-7695-3891-4. D O I: 10.1109/ASE.2009
.99 (cit. on p. 250).

[WKS+09b] M. Wimmer, A. Kusel, J. Schönböck, G. Kappel, W. Rets-
chitzegger, and W. Schwinger, “Reviving QVT Relations:
Model-Based Debugging Using Colored Petri Nets,” in Pro-

ceedings of the 12th International Conference on Model

Driven Engineering Languages and Systems (MODELS ’09),
ser. Lecture Notes in Computer Science, A. Schürr and B.
Selic, Eds., vol. 5795, Springer, 2009, pp. 727–732 (cit. on
p. 250).

[WM14] E. D. Willink and N. Matragkas, “QVT Traceability: What
does it really mean?” The Eclipse Foundation, Tech. Rep.,
2014. [Online]. Available: http://www.eclipse.org/m
mt/qvt/docs/ICMT2014/QVTtraceability.pdf (cit. on
p. 124).

[WPXZ11] J. Wang, X. Peng, Z. Xing, and W. Zhao, “An Exploratory
Study of Feature Location Process: Distinct Phases, Recur-
ring Patterns, and Elementary Actions.,” in Proceedings of

the 27th IEEE International Conference on Software Mainte-

nance (ICSM ’11), Washington, DC, USA: IEEE Computer

359

http://dx.doi.org/10.1109/ASE.2009.99
http://dx.doi.org/10.1109/ASE.2009.99
http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf
http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf

Bibliography

Society, 2011, pp. 213–222, I S B N: 978-1-457-70663-9 (cit.
on pp. 199, 208).

[WT04] Z. Wen and V. Tzerpos, “An Effectiveness Measure for Soft-
ware Clustering Algorithms,” in Proceedings of the 12th

International Workshop on Program Comprehension (IWPC

’04), IEEE Computer Society, 2004, pp. 194–203, I S B N:
0-7695-2149-5 (cit. on p. 176).

[WT05] ——, “Software Clustering based on Omnipresent Object De-
tection,” in Proceedings of the 13th International Workshop

on Program Comprehension (IWPC ’05), IEEE Computer
Society, 2005, pp. 269–278, I S B N: 0-7695-2254-8 (cit. on
p. 248).

[WVD10] D. Wagelaar, R. Van Der Straeten, and D. Deridder, “Module
Superimposition: A Composition Technique for Rule-based
Model Transformation Languages,” English, Software and

Systems Modeling (SoSyM), vol. 9, pp. 285–309, 3 2010,
I S S N: 1619-1366. D O I: 10.1007/s10270-009-0134-3
(cit. on pp. 240, 241).

[Zsc14] S. Zschaler, “Towards Constraint-Based Model Types: A
Generalised Formal Foundation for Model Genericity,” in
Proceedings of the 2nd Workshop on View-Based, Aspect-

Oriented and Orthographic Software Modelling (VAO ’14),
ser. VAO ’14, York, United Kingdom: ACM, 2014, 11:11–
11:18, I S B N: 978-1-4503-2900-2. D O I: 10.1145/263167
5.2631678. [Online]. Available: http://doi.acm.org/1
0.1145/2631675.2631678 (cit. on p. 264).

All web sites were last retrieved on March 12, 2015.

360

http://dx.doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.1145/2631675.2631678
http://dx.doi.org/10.1145/2631675.2631678
http://doi.acm.org/10.1145/2631675.2631678
http://doi.acm.org/10.1145/2631675.2631678

Band 1 Steffen Becker
 Coupled Model Transformations for QoS Enabled

Component-Based Software Design. 2008
 ISBN 978-3-86644-271-9

Band 2 Heiko Koziolek
 Parameter Dependencies for Reusable Performance

Specifications of Software Components. 2008
 ISBN 978-3-86644-272-6

Band 3 Jens Happe
 Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments. 2009
 ISBN 978-3-86644-381-5

Band 4 Klaus Krogmann
 Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis. 2012
 ISBN 978-3-86644-804-9

Band 5 Michael Kuperberg
 Quantifying and Predicting the Influence of Execution

Platform on Software Component Performance. 2010
 ISBN 978-3-86644-741-7

Band 6 Thomas Goldschmidt
 View-Based Textual Modelling. 2011
 ISBN 978-3-86644-642-7

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 7 Anne Koziolek
 Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes. 2013
 ISBN 978-3-86644-973-2

Band 8 Lucia Happe
 Configurable Software Performance Completions through

Higher-Order Model Transformations. 2013
 ISBN 978-3-86644-990-9

Band 9 Franz Brosch
 Integrated Software Architecture-Based Reliability

Prediction for IT Systems. 2012
 ISBN 978-3-86644-859-9

Band 10 Christoph Rathfelder
 Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation. 2013
 ISBN 978-3-86644-969-5

Band 11 Henning Groenda
 Certifying Software Component

Performance Specifications. 2013
 ISBN 978-3-7315-0080-3

Band 12 Dennis Westermann
 Deriving Goal-oriented Performance Models

by Systematic Experimentation. 2014
 ISBN 978-3-7315-0165-7

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 13 Michael Hauck
 Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments. 2014
 ISBN 978-3-7315-0138-1

Band 14 Zoya Durdik
 Architectural Design Decision Documentation through

Reuse of Design Patterns. 2014
 ISBN 978-3-7315-0292-0

Band 15 Erik Burger
 Flexible Views for View-based

Model-driven Development. 2014
 ISBN 978-3-7315-0276-0

Band 16 Benjamin Klatt
 Consolidation of Customized Product Copies
 into Software Product Lines. 2015
 ISBN 978-3-7315-0368-2

Band 17 Andreas Rentschler
 Model Transformation Languages with
 Modular Information Hiding. 2015
 ISBN 978-3-7315-0346-0

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

A
n

d
re

as
 R

en
ts

ch
le

r

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

Model-driven software development is a methodology of software engineering
that aims to increase productivity by automatically generating large parts of a
software from abstract models. Model transformations play a pivotal role here,
as they assign semantics to models by means of other models and languages
with already well-defined semantics. Industrial practitioners report that, despite
their domain-specificity, transformation programs on larger models quickly get
sufficiently large and complex and at the same time less maintainable.

This book presents three contributions that render maintenance of model trans-
formations more efficient. The first and major scientific contribution of this thesis
is an information hiding modularity concept tailored to model transformations.
In contrast to general-purpose modularity, interfaces not only control visibility
of methods, but also accessibility to incoming and outgoing model parts. Fur-
thermore, developers still have to cope with legacy transformations that offer an
inferior modular design. To reduce maintenance efforts in such cases, a concept
for visualization of controlflow and model dependence information according to
the methodology of visual analytics is presented. In addition, a software cluster-
ing approach is suggested that supports design patterns of the transformation
domain, and thus is able to automatically derive modular decompositions from
legacy transformations.

ISSN 1867-0067
ISBN 978-3-7315-0346-0 9 783731 503460

ISBN 978-3-7315-0346-0

M
o

d
el

 T
ra

n
sf

o
rm

at
io

n
 L

an
g

u
ag

es

w
it

h
 M

o
d

u
la

r
In

fo
rm

at
io

n
 H

id
in

g

	Abstract
	Kurzfassung
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Example Scenario
	1.3 Problem Statement
	1.4 Goals and Evaluation Criteria
	1.5 Approach and Contributions
	1.6 Realization and Validation
	1.7 Outline

	2 Foundations
	2.1 Model-Driven Engineering
	2.1.1 Methodology
	2.1.2 Metamodeling
	2.1.3 Model Transformations
	2.1.4 QVT-Operational
	2.1.5 QVT-Relations
	2.1.6 Xtend
	2.1.7 Triple Graph Grammar

	2.2 Modular Programming
	2.2.1 Software Design Technique
	2.2.2 Module Concepts

	2.3 Formal Methods
	2.3.1 Semantics of Programming Languages
	2.3.2 Program Verification

	2.4 Software Maintenance
	2.4.1 Maintenance Process
	2.4.2 Static Program Analysis
	2.4.3 Program Visualization
	2.4.4 Software Clustering

	3 Modular Information Hiding for Maintainable Model Transformations
	3.1 Modularity Tailored for Transformations
	3.2 Augmenting QVT-Operational with Information-Hiding Modularity
	3.3 The Conceptual Extension Core QVT-OM
	3.3.1 Syntax
	3.3.2 Typing
	3.3.3 Example Derivation
	3.3.4 Properties
	3.3.5 Coq Embedding

	3.4 Application to Imperative Languages
	3.4.1 Implementation in Eclipse QVTo
	3.4.2 Implementation in Xtend

	3.5 Applicability to Declarative Transformation Languages
	3.5.1 Semantics of QVT-R
	3.5.2 Conformance with the Language Standard
	3.5.3 Creating Standards-Compliant Implementations
	3.5.4 Applicability to QVT-Relations
	3.5.5 Interoperability between QVT-Operational and QVT-Relations

	3.6 Concluding Remarks

	4 Dependence Visualization for Efficiently Maintaining Model Transformations
	4.1 Transformation Editor Support
	4.2 Methodology Overview
	4.3 The Dependency Graph
	4.3.1 Dependency Graph Model
	4.3.2 Dependence Analysis
	4.3.3 Visual Representation

	4.4 Task-Oriented Filtering
	4.4.1 Defining Four Filters
	4.4.2 Applying the Filters for Maintenance

	4.5 Applicability to Other Transformation Languages
	4.6 Concluding Remarks

	5 Remodularizing Legacy Transformations with Automatic Clustering
	5.1 Expert Design of Model Transformation Programs
	5.2 Overall Approach
	5.3 Dependence Analysis
	5.3.1 Implementation Structure
	5.3.2 Model Structure
	5.3.3 Model Use Dependencies
	5.3.4 Weight Configuration

	5.4 Cluster Analysis
	5.4.1 Algorithm and Parameters
	5.4.2 Excluding Library Methods
	5.4.3 Excluding Model Elements
	5.4.4 Predefined Clusters
	5.4.5 Clustering the Activity2Process Example Transformation

	5.5 Structural Analysis
	5.6 Assessment
	5.6.1 Modularization Quality
	5.6.2 Similarity
	5.6.3 Assessing the Activity2Process Example Transformation

	5.7 Applicability to Other Transformation Languages
	5.8 Concluding Remarks

	6 Validation
	6.1 Evaluation Goals
	6.2 Application Scenarios
	6.3 Modularizing an Xtend Transformation Using Information Hiding Modularity
	6.3.1 Validation Goals
	6.3.2 Experiment Design
	6.3.3 Use Case Scenario
	6.3.4 Scenario 1: Refactoring the Modular Structure
	6.3.5 Scenario 2: Locating Concerns
	6.3.6 Threats to Validity
	6.3.7 Evaluation Summary

	6.4 Maintaining a QVT-O Transformation Supported by Visual Analytics
	6.4.1 Validation Goals
	6.4.2 Experiment Design
	6.4.3 Use Case Scenario
	6.4.4 Execution
	6.4.5 Analysis
	6.4.6 Discussion
	6.4.7 Threats to Validity
	6.4.8 Evaluation Summary

	6.5 Re-Engineering QVT-O and Xtend Transformations with Automatic Clustering
	6.5.1 Validation Goals
	6.5.2 Experiment Design
	6.5.3 Use Case Scenarios
	6.5.4 Scenario 1: QVT-O Transformation from PCM with Events to PCM
	6.5.5 Scenario 2: Xtend Transformation from PCM to SimuCom
	6.5.6 Threats to Validity
	6.5.7 Evaluation Summary

	6.6 Concluding Remarks

	7 Related Work
	7.1 Modularity in Modeling Languages
	7.1.1 Compositionality
	7.1.2 Information Hiding
	7.1.3 Dynamic Views

	7.2 Modularity in Model Transformation Languages
	7.2.1 Modularization for Reuse
	7.2.2 Internal Composition
	7.2.3 External Composition

	7.3 Semantics of Model Transformations
	7.4 Program Analysis, Cluster Analysis, and Visualization of Transformations
	7.4.1 Program Analysis
	7.4.2 Software Cluster Analysis
	7.4.3 Program Visualization

	7.5 Summary

	8 Conclusions
	8.1 Summary
	8.2 Lessons Learnt
	8.3 Assumptions and Limitations
	8.4 Open Questions and Future Work Potentials
	8.5 Final Remark

	A Type System of Core QVT-OM
	A.1 Syntax
	A.2 Auxiliaries
	A.3 Typing
	A.4 Properties

	B Standards Compliant Implementations of QVT-R Transformations
	B.1 The Approach
	B.2 Example Implementation and Proof
	B.3 Encoding QVT-R Transformations in Coq
	B.3.1 Encoding Metamodels
	B.3.2 Encoding QVT-R Transformations

	B.4 Verification Process
	B.4.1 Defining an Implementation
	B.4.2 Verifying the Implementation

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography

